language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def released_token(chain, team_multisig, token, release_agent, customer) -> Contract:
"""Create a Crowdsale token where transfer restrictions have been lifted."""
token.functions.setReleaseAgent(release_agent.address).transact({"from": team_multisig})
release_agent.functions.release().transact({"from": team_multisig})
# Make sure customer 1 has some token balance
token.functions.transfer(customer, 10000).transact({"from": team_multisig})
return token | def released_token(chain, team_multisig, token, release_agent, customer) -> Contract:
"""Create a Crowdsale token where transfer restrictions have been lifted."""
token.functions.setReleaseAgent(release_agent.address).transact({"from": team_multisig})
release_agent.functions.release().transact({"from": team_multisig})
# Make sure customer 1 has some token balance
token.functions.transfer(customer, 10000).transact({"from": team_multisig})
return token |
Python | def empty_token(chain, team_multisig, token_name, token_symbol) -> Contract:
"""Create the token contract without initial supply."""
args = [token_name, token_symbol, 0, 0, True] # Owner set
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('CrowdsaleToken', deploy_args=args, deploy_transaction=tx)
return contract | def empty_token(chain, team_multisig, token_name, token_symbol) -> Contract:
"""Create the token contract without initial supply."""
args = [token_name, token_symbol, 0, 0, True] # Owner set
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('CrowdsaleToken', deploy_args=args, deploy_transaction=tx)
return contract |
Python | def tranche_pricing(chain, proxy_buyer, team_multisig):
"""ETH tanche pricing for testing presale counters."""
args = [
[
to_wei("0", "ether"), to_wei("0.00666666", "ether"),
to_wei("10001", "ether"), to_wei("0.00714285", "ether"),
to_wei("30001", "ether"), to_wei("0.00769230", "ether"),
to_wei("50001", "ether"), to_wei("0.00833333", "ether"),
to_wei("75001", "ether"), to_wei("0.00909090", "ether"),
to_wei("100001", "ether"), to_wei("0.01000000", "ether"),
to_wei("1000000000", "ether"), to_wei("0.01000000", "ether"),
to_wei("1000000000000", "ether"), to_wei("0.00", "ether")
],
]
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('EthTranchePricing', deploy_args=args, deploy_transaction=tx)
contract.transact({"from": team_multisig}).setPreicoAddress(proxy_buyer.address, to_wei("0.05", "ether"))
return contract | def tranche_pricing(chain, proxy_buyer, team_multisig):
"""ETH tanche pricing for testing presale counters."""
args = [
[
to_wei("0", "ether"), to_wei("0.00666666", "ether"),
to_wei("10001", "ether"), to_wei("0.00714285", "ether"),
to_wei("30001", "ether"), to_wei("0.00769230", "ether"),
to_wei("50001", "ether"), to_wei("0.00833333", "ether"),
to_wei("75001", "ether"), to_wei("0.00909090", "ether"),
to_wei("100001", "ether"), to_wei("0.01000000", "ether"),
to_wei("1000000000", "ether"), to_wei("0.01000000", "ether"),
to_wei("1000000000000", "ether"), to_wei("0.00", "ether")
],
]
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('EthTranchePricing', deploy_args=args, deploy_transaction=tx)
contract.transact({"from": team_multisig}).setPreicoAddress(proxy_buyer.address, to_wei("0.05", "ether"))
return contract |
Python | def sign(data: bytes, private_key_seed_ascii: str, hash_function=sha256_msg):
"""Sign data using Ethereum private key.
:param private_key_seed_ascii: Private key seed as ASCII string
"""
priv_key = PrivateKey(Web3.sha3(text=private_key_seed_ascii))
msghash = hash_function(data)
signature = priv_key.sign_msg_hash(msghash)
v, r, s = signature.vrs
# assuming chainID is 1 i.e the main net
# TODO: take in chainID as a param, so that v is set appropriately
# currently there's no good way to determine chainID
v = to_eth_v(v)
r_bytes = to_bytes(r)
s_bytes = to_bytes(s)
# Make sure we use bytes data and zero padding stays
# good across different systems
r_hex = binascii.hexlify(r_bytes).decode("ascii")
s_hex = binascii.hexlify(s_bytes).decode("ascii")
# Convert to Etheruem address format
pub_key = priv_key.public_key
addr = pub_key.to_checksum_address()
pub = pub_key.to_bytes()
#
# Return various bits about signing so it's easier to debug
return {
"signature": signature,
"v": v,
"r": r,
"s": s,
"r_bytes": r_bytes,
"s_bytes": s_bytes,
"r_hex": "0x" + r_hex,
"s_hex": "0x" + s_hex,
"address_bitcoin": addr,
"address_ethereum": get_ethereum_address_from_private_key(private_key_seed_ascii),
"public_key": pub,
"hash": msghash,
"payload": binascii.hexlify(bytes([v] + list(r_bytes) + list(s_bytes,)))
} | def sign(data: bytes, private_key_seed_ascii: str, hash_function=sha256_msg):
"""Sign data using Ethereum private key.
:param private_key_seed_ascii: Private key seed as ASCII string
"""
priv_key = PrivateKey(Web3.sha3(text=private_key_seed_ascii))
msghash = hash_function(data)
signature = priv_key.sign_msg_hash(msghash)
v, r, s = signature.vrs
# assuming chainID is 1 i.e the main net
# TODO: take in chainID as a param, so that v is set appropriately
# currently there's no good way to determine chainID
v = to_eth_v(v)
r_bytes = to_bytes(r)
s_bytes = to_bytes(s)
# Make sure we use bytes data and zero padding stays
# good across different systems
r_hex = binascii.hexlify(r_bytes).decode("ascii")
s_hex = binascii.hexlify(s_bytes).decode("ascii")
# Convert to Etheruem address format
pub_key = priv_key.public_key
addr = pub_key.to_checksum_address()
pub = pub_key.to_bytes()
#
# Return various bits about signing so it's easier to debug
return {
"signature": signature,
"v": v,
"r": r,
"s": s,
"r_bytes": r_bytes,
"s_bytes": s_bytes,
"r_hex": "0x" + r_hex,
"s_hex": "0x" + s_hex,
"address_bitcoin": addr,
"address_ethereum": get_ethereum_address_from_private_key(private_key_seed_ascii),
"public_key": pub,
"hash": msghash,
"payload": binascii.hexlify(bytes([v] + list(r_bytes) + list(s_bytes,)))
} |
Python | def verify(msghash: bytes, signature, public_key):
"""Verify that data has been signed with Etheruem private key.
:param signature:
:return:
"""
key_api = KeyAPI('eth_keys.backends.NativeECCBackend')
return key_api.ecdsa_verify(msghash, Signature(signature), PublicKey(public_key)) | def verify(msghash: bytes, signature, public_key):
"""Verify that data has been signed with Etheruem private key.
:param signature:
:return:
"""
key_api = KeyAPI('eth_keys.backends.NativeECCBackend')
return key_api.ecdsa_verify(msghash, Signature(signature), PublicKey(public_key)) |
Python | def milestone_ico(chain, team_multisig, start_time, milestone_pricing, preico_cap, preico_funding_goal, token, presale_fund_collector, end_time) -> Contract:
"""Create a crowdsale contract that uses milestone based pricing."""
args = [
token.address,
milestone_pricing.address,
team_multisig,
start_time,
end_time,
0,
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('UncappedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
# Allow crowdsale contract to do mint()
token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert token.functions.mintAgents(contract.address).call() == True
return contract | def milestone_ico(chain, team_multisig, start_time, milestone_pricing, preico_cap, preico_funding_goal, token, presale_fund_collector, end_time) -> Contract:
"""Create a crowdsale contract that uses milestone based pricing."""
args = [
token.address,
milestone_pricing.address,
team_multisig,
start_time,
end_time,
0,
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('UncappedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
# Allow crowdsale contract to do mint()
token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert token.functions.mintAgents(contract.address).call() == True
return contract |
Python | def aml_reclaim_setup(aml_token: Contract, team_multisig: str, customer: str, customer_2):
"""Setup some tokens for accounts for performing the reclaim test. ."""
aml_token.functions.setTransferAgent(team_multisig, True).transact({"from": team_multisig})
aml_token.functions.transfer(customer, 1000000).transact({"from": team_multisig})
aml_token.functions.transfer(customer_2, 2000000).transact({"from": team_multisig}) | def aml_reclaim_setup(aml_token: Contract, team_multisig: str, customer: str, customer_2):
"""Setup some tokens for accounts for performing the reclaim test. ."""
aml_token.functions.setTransferAgent(team_multisig, True).transact({"from": team_multisig})
aml_token.functions.transfer(customer, 1000000).transact({"from": team_multisig})
aml_token.functions.transfer(customer_2, 2000000).transact({"from": team_multisig}) |
Python | def csv_stream(aml_reclaim_setup, customer):
"""Set up a CSV file for reclaim"""
source = CSV_SOURCE.format(customer)
return StringIO(source) | def csv_stream(aml_reclaim_setup, customer):
"""Set up a CSV file for reclaim"""
source = CSV_SOURCE.format(customer)
return StringIO(source) |
Python | def vault(chain, team_multisig, token, unlock_time):
"""Deploy a loaded vault contract and move all tokens there."""
args = [
team_multisig,
token.address,
unlock_time
]
contract, hash = chain.provider.deploy_contract('TimeVault', deploy_args=args)
# Load all tokens to the vault
token.functions.transfer(contract.address, 1000000).transact({"from": team_multisig})
return contract | def vault(chain, team_multisig, token, unlock_time):
"""Deploy a loaded vault contract and move all tokens there."""
args = [
team_multisig,
token.address,
unlock_time
]
contract, hash = chain.provider.deploy_contract('TimeVault', deploy_args=args)
# Load all tokens to the vault
token.functions.transfer(contract.address, 1000000).transact({"from": team_multisig})
return contract |
Python | def crowdsale(chain, team_multisig, start_time, end_time, pricing_strategy, preico_cap, minimum_funding_goal, cap, token) -> Contract:
"""Create a crowdsale contract that has a minting cap and bonus % and token sold limit."""
args = [
token.address,
pricing_strategy.address,
team_multisig,
start_time,
end_time,
minimum_funding_goal,
cap
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('MintedEthCappedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
assert contract.call().weiCap() == cap
# Allow crowdsale contract to do mint()
token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert token.functions.mintAgents(contract.address).call() == True
return contract | def crowdsale(chain, team_multisig, start_time, end_time, pricing_strategy, preico_cap, minimum_funding_goal, cap, token) -> Contract:
"""Create a crowdsale contract that has a minting cap and bonus % and token sold limit."""
args = [
token.address,
pricing_strategy.address,
team_multisig,
start_time,
end_time,
minimum_funding_goal,
cap
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('MintedEthCappedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
assert contract.call().weiCap() == cap
# Allow crowdsale contract to do mint()
token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert token.functions.mintAgents(contract.address).call() == True
return contract |
Python | def participate_early(chain, web3: Web3, presale_address: str, crowdsale_address: str, deploy_address: str, start=0, end=32, timeout=300) -> int:
"""Move funds over early.
.. note ::
Crowdsale contract checks the participate whitelist by invest address, not by msg.sender.
This process will open the presale investors an ability to participate to the crowdsale early,
bypassing the retail investor start time. However they could also top up their existing
preico accounts, so this is largerly no issue.
:param start: Move only n investors (for testing purposes)
:param end: Move only n investors (for testing purposes)
"""
updated = 0
PresaleFundCollector = get_contract_by_name(chain, "PresaleFundCollector")
presale = PresaleFundCollector(address=presale_address)
Crowdsale = PresaleFundCollector = get_contract_by_name(chain, "Crowdsale")
crowdsale = Crowdsale(address=crowdsale_address)
# Make sure presale is correctly set
txid = presale.transact({"from": deploy_address}).setCrowdsale(crowdsale.address)
logger.info("Setting presale crowdsale address to %s on txid", crowdsale.address, txid)
check_succesful_tx(web3, txid, timeout=timeout)
# Double check presale has a presale price set
MilestonePricing = get_contract_by_name(chain, "MilestonePricing")
pricing_strategy = MilestonePricing(address=crowdsale.functions.pricingStrategy().call())
if not pricing_strategy.functions.preicoAddresses(presale.address).call():
raise RuntimeError("Was not listed as presale address for pricing: {}".format(presale.address))
for i in range(start, min(end, presale.functions.investorCount().call())):
investor = presale.functions.investors(i).call()
if presale.call().balances(investor) > 0:
print("Whitelisting for {} to crowdsale {}".format(investor, crowdsale.address))
txid = crowdsale.functions.setEarlyParicipantWhitelist(investor, True).transact({"from": deploy_address})
print("Broadcasting whitelist transaction {}".format(txid))
check_succesful_tx(web3, txid, timeout=timeout)
funds = from_wei(presale.functions.balances(investor).call(), "ether")
print("Moving funds {} ETH for investor {} to presale {}".format(funds, investor, presale.address))
txid = presale.functions.participateCrowdsaleInvestor(investor).transact({"from": deploy_address})
print("Broadcasting transaction {}".format(txid))
check_succesful_tx(web3, txid, timeout=timeout)
updated += 1
else:
print("Investor already handled: {}".format(investor))
return updated | def participate_early(chain, web3: Web3, presale_address: str, crowdsale_address: str, deploy_address: str, start=0, end=32, timeout=300) -> int:
"""Move funds over early.
.. note ::
Crowdsale contract checks the participate whitelist by invest address, not by msg.sender.
This process will open the presale investors an ability to participate to the crowdsale early,
bypassing the retail investor start time. However they could also top up their existing
preico accounts, so this is largerly no issue.
:param start: Move only n investors (for testing purposes)
:param end: Move only n investors (for testing purposes)
"""
updated = 0
PresaleFundCollector = get_contract_by_name(chain, "PresaleFundCollector")
presale = PresaleFundCollector(address=presale_address)
Crowdsale = PresaleFundCollector = get_contract_by_name(chain, "Crowdsale")
crowdsale = Crowdsale(address=crowdsale_address)
# Make sure presale is correctly set
txid = presale.transact({"from": deploy_address}).setCrowdsale(crowdsale.address)
logger.info("Setting presale crowdsale address to %s on txid", crowdsale.address, txid)
check_succesful_tx(web3, txid, timeout=timeout)
# Double check presale has a presale price set
MilestonePricing = get_contract_by_name(chain, "MilestonePricing")
pricing_strategy = MilestonePricing(address=crowdsale.functions.pricingStrategy().call())
if not pricing_strategy.functions.preicoAddresses(presale.address).call():
raise RuntimeError("Was not listed as presale address for pricing: {}".format(presale.address))
for i in range(start, min(end, presale.functions.investorCount().call())):
investor = presale.functions.investors(i).call()
if presale.call().balances(investor) > 0:
print("Whitelisting for {} to crowdsale {}".format(investor, crowdsale.address))
txid = crowdsale.functions.setEarlyParicipantWhitelist(investor, True).transact({"from": deploy_address})
print("Broadcasting whitelist transaction {}".format(txid))
check_succesful_tx(web3, txid, timeout=timeout)
funds = from_wei(presale.functions.balances(investor).call(), "ether")
print("Moving funds {} ETH for investor {} to presale {}".format(funds, investor, presale.address))
txid = presale.functions.participateCrowdsaleInvestor(investor).transact({"from": deploy_address})
print("Broadcasting transaction {}".format(txid))
check_succesful_tx(web3, txid, timeout=timeout)
updated += 1
else:
print("Investor already handled: {}".format(investor))
return updated |
Python | def basic_kyc(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BasicKYC', deploy_transaction=tx)
check_gas(chain, hash_)
return contract | def basic_kyc(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BasicKYC', deploy_transaction=tx)
check_gas(chain, hash_)
return contract |
Python | def mock_security_transfer_agent(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockSecurityTransferAgent', deploy_transaction=tx)
check_gas(chain, hash_)
return contract | def mock_security_transfer_agent(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockSecurityTransferAgent', deploy_transaction=tx)
check_gas(chain, hash_)
return contract |
Python | def restricted_transfer_agent(chain, team_multisig, basic_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [basic_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('RestrictedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, basic_kyc.transact(tx).adminAddRole(team_multisig, "setter"))
check_gas(chain, hash_)
return contract | def restricted_transfer_agent(chain, team_multisig, basic_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [basic_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('RestrictedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, basic_kyc.transact(tx).adminAddRole(team_multisig, "setter"))
check_gas(chain, hash_)
return contract |
Python | def advanced_transfer_agent(chain, team_multisig, basic_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [basic_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('AdvancedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
return contract | def advanced_transfer_agent(chain, team_multisig, basic_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [basic_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('AdvancedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
return contract |
Python | def announcement(chain, team_multisig, announcement_name, announcement_uri, announcement_type, announcement_hash) -> Contract:
"""Create a bogus announcement for testing"""
args = [to_bytes(text=announcement_name), to_bytes(text=announcement_uri), announcement_type, announcement_hash]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BogusAnnouncement', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
assert removeNonPrintable(contract.call().announcementName()) == announcement_name
assert removeNonPrintable(contract.call().announcementURI()) == announcement_uri
assert contract.call().announcementType() == announcement_type
return contract | def announcement(chain, team_multisig, announcement_name, announcement_uri, announcement_type, announcement_hash) -> Contract:
"""Create a bogus announcement for testing"""
args = [to_bytes(text=announcement_name), to_bytes(text=announcement_uri), announcement_type, announcement_hash]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BogusAnnouncement', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
assert removeNonPrintable(contract.call().announcementName()) == announcement_name
assert removeNonPrintable(contract.call().announcementURI()) == announcement_uri
assert contract.call().announcementType() == announcement_type
return contract |
Python | def receiver(chain, team_multisig) -> Contract:
"""Create the receiver contract for callback testing."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockERC677Receiver', deploy_transaction=tx)
return contract | def receiver(chain, team_multisig) -> Contract:
"""Create the receiver contract for callback testing."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockERC677Receiver', deploy_transaction=tx)
return contract |
Python | def failsafetester(chain, team_multisig) -> Contract:
"""Create a contract for testing the failsafe."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('TestCheckpointFailsafe', deploy_transaction=tx)
return contract | def failsafetester(chain, team_multisig) -> Contract:
"""Create a contract for testing the failsafe."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('TestCheckpointFailsafe', deploy_transaction=tx)
return contract |
Python | def security_token_verifier(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockSecurityTransferAgent', deploy_transaction=tx)
check_gas(chain, hash_)
return contract | def security_token_verifier(chain, team_multisig) -> Contract:
"""Create the transaction verifier contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('MockSecurityTransferAgent', deploy_transaction=tx)
check_gas(chain, hash_)
return contract |
Python | def mock_kyc(chain, team_multisig, customer) -> Contract:
"""Create the Mock KYC contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BasicKYC', deploy_transaction=tx)
check_gas(chain, hash_)
check_gas(chain, contract.transact(tx).adminAddRole(team_multisig, "setter"))
check_gas(chain, contract.transact(tx).setAttributes(customer, 1))
check_gas(chain, contract.transact(tx).setAttributes(team_multisig, 1))
return contract | def mock_kyc(chain, team_multisig, customer) -> Contract:
"""Create the Mock KYC contract."""
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('BasicKYC', deploy_transaction=tx)
check_gas(chain, hash_)
check_gas(chain, contract.transact(tx).adminAddRole(team_multisig, "setter"))
check_gas(chain, contract.transact(tx).setAttributes(customer, 1))
check_gas(chain, contract.transact(tx).setAttributes(team_multisig, 1))
return contract |
Python | def restricted_transfer_agent(chain, team_multisig, mock_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [mock_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('RestrictedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
return contract | def restricted_transfer_agent(chain, team_multisig, mock_kyc) -> Contract:
"""Create the transaction verifier contract."""
args = [mock_kyc.address]
tx = {
"from": team_multisig
}
contract, hash_ = chain.provider.deploy_contract('RestrictedTransferAgent', deploy_args=args, deploy_transaction=tx)
check_gas(chain, hash_)
return contract |
Python | def new_token(chain, team_multisig, token_name, token_symbol) -> Contract:
"""Get another token contract with 0 initial issuance."""
args = [token_name, token_symbol, 0, 0, True] # Owner set
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('CrowdsaleToken', deploy_args=args, deploy_transaction=tx)
return contract | def new_token(chain, team_multisig, token_name, token_symbol) -> Contract:
"""Get another token contract with 0 initial issuance."""
args = [token_name, token_symbol, 0, 0, True] # Owner set
tx = {
"from": team_multisig
}
contract, hash = chain.provider.deploy_contract('CrowdsaleToken', deploy_args=args, deploy_transaction=tx)
return contract |
Python | def success_sample_data(customer, customer_2):
"""Enough to break the minimum funding goal"""
data = """
Address,Payment at,Tx hash,Tx index,Invested ETH,Received tokens
{},2017-04-13T16:01:46+00:00,0xf88780859cfde239e5898d036b685f5358d4b0a0f82e8cce26403c782f8a2e52,1,0.505,561
{},2017-04-13T16:02:38+00:00,0x1385320b9d693afad1dce05cb0f9c8c3c1bc017668d32ee2b69d4039fdaf5983,3,0.1,111
{},2017-04-13T16:02:38+00:00,0x1385320b9d693afad1dce05cb0f9c8c3c1bc017668d32ee2b69d4039fdaf5984,4,7500,1111
""".strip().format(customer, customer_2, customer_2)
return list(csv.DictReader(StringIO(data))) | def success_sample_data(customer, customer_2):
"""Enough to break the minimum funding goal"""
data = """
Address,Payment at,Tx hash,Tx index,Invested ETH,Received tokens
{},2017-04-13T16:01:46+00:00,0xf88780859cfde239e5898d036b685f5358d4b0a0f82e8cce26403c782f8a2e52,1,0.505,561
{},2017-04-13T16:02:38+00:00,0x1385320b9d693afad1dce05cb0f9c8c3c1bc017668d32ee2b69d4039fdaf5983,3,0.1,111
{},2017-04-13T16:02:38+00:00,0x1385320b9d693afad1dce05cb0f9c8c3c1bc017668d32ee2b69d4039fdaf5984,4,7500,1111
""".strip().format(customer, customer_2, customer_2)
return list(csv.DictReader(StringIO(data))) |
Python | def relaunched_crowdsale(chain, team_multisig, start_time, end_time, milestone_pricing, preico_cap, minimum_funding_goal, cap, original_crowdsale, new_token, founder_allocation) -> Contract:
"""Create a crowdsale with fixed contracts."""
args = [
new_token.address,
milestone_pricing.address,
team_multisig,
start_time,
end_time,
minimum_funding_goal,
cap
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('RelaunchedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not new_token.functions.released().call()
assert contract.functions.maximumSellableTokens().call() == cap
# Allow crowdsale contract to do mint()
new_token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert new_token.functions.mintAgents(contract.address).call() == True
set_finalizer(chain, new_token, contract, team_multisig, founder_allocation)
return contract | def relaunched_crowdsale(chain, team_multisig, start_time, end_time, milestone_pricing, preico_cap, minimum_funding_goal, cap, original_crowdsale, new_token, founder_allocation) -> Contract:
"""Create a crowdsale with fixed contracts."""
args = [
new_token.address,
milestone_pricing.address,
team_multisig,
start_time,
end_time,
minimum_funding_goal,
cap
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('RelaunchedCrowdsale', deploy_args=args, deploy_transaction=tx)
assert contract.functions.owner().call() == team_multisig
assert not new_token.functions.released().call()
assert contract.functions.maximumSellableTokens().call() == cap
# Allow crowdsale contract to do mint()
new_token.functions.setMintAgent(contract.address, True).transact({"from": team_multisig})
assert new_token.functions.mintAgents(contract.address).call() == True
set_finalizer(chain, new_token, contract, team_multisig, founder_allocation)
return contract |
Python | def kyc_crowdsale(chain, team_multisig, preico_starts_at, preico_ends_at, pricing, preico_cap, preico_funding_goal, preico_token_allocation, kyc_token, signer_address, default_finalize_agent, initial_supply) -> Contract:
"""Create a Pre-ICO crowdsale contract."""
token = kyc_token
args = [
token.address,
pricing.address,
team_multisig,
preico_starts_at,
preico_ends_at,
preico_funding_goal,
team_multisig
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('KYCCrowdsale', deploy_args=args, deploy_transaction=tx)
args = [
contract.address
]
finalizer_contract, hash = chain.provider.deploy_contract('NullFinalizeAgent', deploy_args=args)
contract.functions.setFinalizeAgent(finalizer_contract.address).transact({"from": team_multisig})
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
# Allow the token sale contract to distribute unreleased tokens
# token.transact({"from": team_multisig}).setTransferAgent(contract.address, True)
token.functions.setTransferAgent(team_multisig, True).transact({"from": team_multisig})
token.functions.approve(contract.address, initial_supply).transact({"from": team_multisig})
token.functions.setReleaseAgent(team_multisig).transact({"from": team_multisig})
contract.functions.setSignerAddress(signer_address).transact({"from": team_multisig})
return contract | def kyc_crowdsale(chain, team_multisig, preico_starts_at, preico_ends_at, pricing, preico_cap, preico_funding_goal, preico_token_allocation, kyc_token, signer_address, default_finalize_agent, initial_supply) -> Contract:
"""Create a Pre-ICO crowdsale contract."""
token = kyc_token
args = [
token.address,
pricing.address,
team_multisig,
preico_starts_at,
preico_ends_at,
preico_funding_goal,
team_multisig
]
tx = {
"from": team_multisig,
}
contract, hash = chain.provider.deploy_contract('KYCCrowdsale', deploy_args=args, deploy_transaction=tx)
args = [
contract.address
]
finalizer_contract, hash = chain.provider.deploy_contract('NullFinalizeAgent', deploy_args=args)
contract.functions.setFinalizeAgent(finalizer_contract.address).transact({"from": team_multisig})
assert contract.functions.owner().call() == team_multisig
assert not token.functions.released().call()
# Allow the token sale contract to distribute unreleased tokens
# token.transact({"from": team_multisig}).setTransferAgent(contract.address, True)
token.functions.setTransferAgent(team_multisig, True).transact({"from": team_multisig})
token.functions.approve(contract.address, initial_supply).transact({"from": team_multisig})
token.functions.setReleaseAgent(team_multisig).transact({"from": team_multisig})
contract.functions.setSignerAddress(signer_address).transact({"from": team_multisig})
return contract |
Python | def token_10000(chain, team_multisig):
"""Unlocked token with mint of 10,000 ethereum decimal units"""
args = [
team_multisig,
"Token",
"TKN",
10000 * 10**18,
0,
chain.web3.eth.getBlock('pending').timestamp
]
contract, hash = chain.provider.deploy_contract('CentrallyIssuedToken', deploy_args=args)
assert contract.functions.balanceOf(team_multisig).call() == 10000 * 10**18
contract.functions.releaseTokenTransfer().transact({"from": team_multisig})
return contract | def token_10000(chain, team_multisig):
"""Unlocked token with mint of 10,000 ethereum decimal units"""
args = [
team_multisig,
"Token",
"TKN",
10000 * 10**18,
0,
chain.web3.eth.getBlock('pending').timestamp
]
contract, hash = chain.provider.deploy_contract('CentrallyIssuedToken', deploy_args=args)
assert contract.functions.balanceOf(team_multisig).call() == 10000 * 10**18
contract.functions.releaseTokenTransfer().transact({"from": team_multisig})
return contract |
Python | def token_vault_tapped(chain, team_multisig, token, freeze_ends_at) -> Contract:
"""Another token vault deployment with a single customer."""
total = 3000
args = [
team_multisig,
freeze_ends_at,
token.address,
total,
]
contract, hash = chain.provider.deploy_contract('TokenVault', deploy_args=args)
return contract | def token_vault_tapped(chain, team_multisig, token, freeze_ends_at) -> Contract:
"""Another token vault deployment with a single customer."""
total = 3000
args = [
team_multisig,
freeze_ends_at,
token.address,
total,
]
contract, hash = chain.provider.deploy_contract('TokenVault', deploy_args=args)
return contract |
Python | def loaded_token_vault(token_vault, team_multisig, token_vault_balances):
"""Token vault with investor balances set."""
for address, balance in token_vault_balances:
token_vault.functions.setInvestor(address, balance, 0).transact({"from": team_multisig})
return token_vault | def loaded_token_vault(token_vault, team_multisig, token_vault_balances):
"""Token vault with investor balances set."""
for address, balance in token_vault_balances:
token_vault.functions.setInvestor(address, balance, 0).transact({"from": team_multisig})
return token_vault |
Python | async def exchange_peer_info(endpoint, msg_tag, ctrl_tag, listener):
"""Help function that exchange endpoint information"""
# Pack peer information incl. a checksum
fmt = "QQQ"
my_info = struct.pack(fmt, msg_tag, ctrl_tag, hash64bits(msg_tag, ctrl_tag))
peer_info = bytearray(len(my_info))
my_info_arr = Array(my_info)
peer_info_arr = Array(peer_info)
# Send/recv peer information. Notice, we force an `await` between the two
# streaming calls (see <https://github.com/rapidsai/ucx-py/pull/509>)
if listener is True:
await comm.stream_send(endpoint, my_info_arr, my_info_arr.nbytes)
await comm.stream_recv(endpoint, peer_info_arr, peer_info_arr.nbytes)
else:
await comm.stream_recv(endpoint, peer_info_arr, peer_info_arr.nbytes)
await comm.stream_send(endpoint, my_info_arr, my_info_arr.nbytes)
# Unpacking and sanity check of the peer information
ret = {}
(ret["msg_tag"], ret["ctrl_tag"], ret["checksum"]) = struct.unpack(fmt, peer_info)
expected_checksum = hash64bits(ret["msg_tag"], ret["ctrl_tag"])
if expected_checksum != ret["checksum"]:
raise RuntimeError(
f'Checksum invalid! {hex(expected_checksum)} != {hex(ret["checksum"])}'
)
return ret | async def exchange_peer_info(endpoint, msg_tag, ctrl_tag, listener):
"""Help function that exchange endpoint information"""
# Pack peer information incl. a checksum
fmt = "QQQ"
my_info = struct.pack(fmt, msg_tag, ctrl_tag, hash64bits(msg_tag, ctrl_tag))
peer_info = bytearray(len(my_info))
my_info_arr = Array(my_info)
peer_info_arr = Array(peer_info)
# Send/recv peer information. Notice, we force an `await` between the two
# streaming calls (see <https://github.com/rapidsai/ucx-py/pull/509>)
if listener is True:
await comm.stream_send(endpoint, my_info_arr, my_info_arr.nbytes)
await comm.stream_recv(endpoint, peer_info_arr, peer_info_arr.nbytes)
else:
await comm.stream_recv(endpoint, peer_info_arr, peer_info_arr.nbytes)
await comm.stream_send(endpoint, my_info_arr, my_info_arr.nbytes)
# Unpacking and sanity check of the peer information
ret = {}
(ret["msg_tag"], ret["ctrl_tag"], ret["checksum"]) = struct.unpack(fmt, peer_info)
expected_checksum = hash64bits(ret["msg_tag"], ret["ctrl_tag"])
if expected_checksum != ret["checksum"]:
raise RuntimeError(
f'Checksum invalid! {hex(expected_checksum)} != {hex(ret["checksum"])}'
)
return ret |
Python | def handle_ctrl_msg(ep_weakref, log, msg, future):
"""Function that is called when receiving the control message"""
try:
future.result()
except UCXCanceled:
return # The ctrl signal was canceled
logger.debug(log)
ep = ep_weakref()
if ep is None or ep.closed():
if ep is not None:
ep.abort()
return # The endpoint is closed
opcode, close_after_n_recv = CtrlMsg.deserialize(msg)
if opcode == 1:
ep.close_after_n_recv(close_after_n_recv, count_from_ep_creation=True)
else:
raise UCXError("Received unknown control opcode: %s" % opcode) | def handle_ctrl_msg(ep_weakref, log, msg, future):
"""Function that is called when receiving the control message"""
try:
future.result()
except UCXCanceled:
return # The ctrl signal was canceled
logger.debug(log)
ep = ep_weakref()
if ep is None or ep.closed():
if ep is not None:
ep.abort()
return # The endpoint is closed
opcode, close_after_n_recv = CtrlMsg.deserialize(msg)
if opcode == 1:
ep.close_after_n_recv(close_after_n_recv, count_from_ep_creation=True)
else:
raise UCXError("Received unknown control opcode: %s" % opcode) |
Python | def create_listener(
self, callback_func, port=0, endpoint_error_handling=None,
):
"""Create and start a listener to accept incoming connections
callback_func is the function or coroutine that takes one
argument -- the Endpoint connected to the client.
Notice, the listening is closed when the returned Listener
goes out of scope thus remember to keep a reference to the object.
Parameters
----------
callback_func: function or coroutine
A callback function that gets invoked when an incoming
connection is accepted
port: int, optional
An unused port number for listening, or `0` to let UCX assign
an unused port.
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Listener
The new listener. When this object is deleted, the listening stops
"""
self.continuous_ucx_progress()
if port is None:
port = 0
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
logger.info("create_listener() - Start listening on port %d" % port)
ret = Listener(
ucx_api.UCXListener(
worker=self.worker,
port=port,
cb_func=_listener_handler,
cb_args=(callback_func, self, endpoint_error_handling),
)
)
return ret | def create_listener(
self, callback_func, port=0, endpoint_error_handling=None,
):
"""Create and start a listener to accept incoming connections
callback_func is the function or coroutine that takes one
argument -- the Endpoint connected to the client.
Notice, the listening is closed when the returned Listener
goes out of scope thus remember to keep a reference to the object.
Parameters
----------
callback_func: function or coroutine
A callback function that gets invoked when an incoming
connection is accepted
port: int, optional
An unused port number for listening, or `0` to let UCX assign
an unused port.
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Listener
The new listener. When this object is deleted, the listening stops
"""
self.continuous_ucx_progress()
if port is None:
port = 0
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
logger.info("create_listener() - Start listening on port %d" % port)
ret = Listener(
ucx_api.UCXListener(
worker=self.worker,
port=port,
cb_func=_listener_handler,
cb_args=(callback_func, self, endpoint_error_handling),
)
)
return ret |
Python | async def create_endpoint(self, ip_address, port, endpoint_error_handling=None):
"""Create a new endpoint to a server
Parameters
----------
ip_address: str
IP address of the server the endpoint should connect to
port: int
IP address of the server the endpoint should connect to
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Endpoint
The new endpoint
"""
self.continuous_ucx_progress()
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
ucx_ep = ucx_api.UCXEndpoint.create(
self.worker, ip_address, port, endpoint_error_handling
)
self.worker.progress()
# We create the Endpoint in three steps:
# 1) Generate unique IDs to use as tags
# 2) Exchange endpoint info such as tags
# 3) Use the info to create an endpoint
seed = os.urandom(16)
msg_tag = hash64bits("msg_tag", seed, ucx_ep.handle)
ctrl_tag = hash64bits("ctrl_tag", seed, ucx_ep.handle)
peer_info = await exchange_peer_info(
endpoint=ucx_ep, msg_tag=msg_tag, ctrl_tag=ctrl_tag, listener=False,
)
tags = {
"msg_send": peer_info["msg_tag"],
"msg_recv": msg_tag,
"ctrl_send": peer_info["ctrl_tag"],
"ctrl_recv": ctrl_tag,
}
ep = Endpoint(endpoint=ucx_ep, ctx=self, tags=tags)
logger.debug(
"create_endpoint() client: %s, error handling: %s, msg-tag-send: %s, "
"msg-tag-recv: %s, ctrl-tag-send: %s, ctrl-tag-recv: %s"
% (
hex(ep._ep.handle),
endpoint_error_handling,
hex(ep._tags["msg_send"]),
hex(ep._tags["msg_recv"]),
hex(ep._tags["ctrl_send"]),
hex(ep._tags["ctrl_recv"]),
)
)
# Setup the control receive
CtrlMsg.setup_ctrl_recv(ep)
return ep | async def create_endpoint(self, ip_address, port, endpoint_error_handling=None):
"""Create a new endpoint to a server
Parameters
----------
ip_address: str
IP address of the server the endpoint should connect to
port: int
IP address of the server the endpoint should connect to
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Endpoint
The new endpoint
"""
self.continuous_ucx_progress()
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
ucx_ep = ucx_api.UCXEndpoint.create(
self.worker, ip_address, port, endpoint_error_handling
)
self.worker.progress()
# We create the Endpoint in three steps:
# 1) Generate unique IDs to use as tags
# 2) Exchange endpoint info such as tags
# 3) Use the info to create an endpoint
seed = os.urandom(16)
msg_tag = hash64bits("msg_tag", seed, ucx_ep.handle)
ctrl_tag = hash64bits("ctrl_tag", seed, ucx_ep.handle)
peer_info = await exchange_peer_info(
endpoint=ucx_ep, msg_tag=msg_tag, ctrl_tag=ctrl_tag, listener=False,
)
tags = {
"msg_send": peer_info["msg_tag"],
"msg_recv": msg_tag,
"ctrl_send": peer_info["ctrl_tag"],
"ctrl_recv": ctrl_tag,
}
ep = Endpoint(endpoint=ucx_ep, ctx=self, tags=tags)
logger.debug(
"create_endpoint() client: %s, error handling: %s, msg-tag-send: %s, "
"msg-tag-recv: %s, ctrl-tag-send: %s, ctrl-tag-recv: %s"
% (
hex(ep._ep.handle),
endpoint_error_handling,
hex(ep._tags["msg_send"]),
hex(ep._tags["msg_recv"]),
hex(ep._tags["ctrl_send"]),
hex(ep._tags["ctrl_recv"]),
)
)
# Setup the control receive
CtrlMsg.setup_ctrl_recv(ep)
return ep |
Python | async def create_endpoint_from_worker_address(
self, address, endpoint_error_handling=None
):
"""Create a new endpoint to a server
Parameters
----------
address: UCXAddress
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Endpoint
The new endpoint
"""
self.continuous_ucx_progress()
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
ucx_ep = ucx_api.UCXEndpoint.create_from_worker_address(
self.worker, address, endpoint_error_handling,
)
self.worker.progress()
ep = Endpoint(endpoint=ucx_ep, ctx=self, tags=None)
logger.debug(
"create_endpoint() client: %s, error handling: %s"
% (hex(ep._ep.handle), endpoint_error_handling)
)
return ep | async def create_endpoint_from_worker_address(
self, address, endpoint_error_handling=None
):
"""Create a new endpoint to a server
Parameters
----------
address: UCXAddress
endpoint_error_handling: None or boolean, optional
Enable endpoint error handling raising exceptions when an error
occurs, may incur in performance penalties but prevents a process
from terminating unexpectedly that may happen when disabled.
None (default) will enable endpoint error handling based on the
UCX version, enabling for UCX >= 1.11.0 and disabled for any
versions prior to that. This is done to prevent CUDA IPC to be
quietly disabled due to lack of support in older UCX versions.
Explicitly specifying True/False will override the default.
Returns
-------
Endpoint
The new endpoint
"""
self.continuous_ucx_progress()
if endpoint_error_handling is None:
endpoint_error_handling = get_ucx_version() >= (1, 11, 0)
ucx_ep = ucx_api.UCXEndpoint.create_from_worker_address(
self.worker, address, endpoint_error_handling,
)
self.worker.progress()
ep = Endpoint(endpoint=ucx_ep, ctx=self, tags=None)
logger.debug(
"create_endpoint() client: %s, error handling: %s"
% (hex(ep._ep.handle), endpoint_error_handling)
)
return ep |
Python | def register_am_allocator(self, allocator, allocator_type):
"""Register an allocator for received Active Messages.
The allocator registered by this function is always called by the
active message receive callback when an incoming message is
available. The appropriate allocator is called depending on whether
the message received is a host message or CUDA message.
Note that CUDA messages can only be received via rendezvous, all
eager messages are received on a host object.
By default, the host allocator is `bytearray`. There is no default
CUDA allocator and one must always be registered if CUDA is used.
Parameters
----------
allocator: callable
An allocation function accepting exactly one argument, the
size of the message receives.
allocator_type: str
The type of allocator, currently supports "host" and "cuda".
"""
if allocator_type == "host":
allocator_type = ucx_api.AllocatorType.HOST
elif allocator_type == "cuda":
allocator_type = ucx_api.AllocatorType.CUDA
else:
allocator_type = ucx_api.AllocatorType.UNSUPPORTED
self.worker.register_am_allocator(allocator, allocator_type) | def register_am_allocator(self, allocator, allocator_type):
"""Register an allocator for received Active Messages.
The allocator registered by this function is always called by the
active message receive callback when an incoming message is
available. The appropriate allocator is called depending on whether
the message received is a host message or CUDA message.
Note that CUDA messages can only be received via rendezvous, all
eager messages are received on a host object.
By default, the host allocator is `bytearray`. There is no default
CUDA allocator and one must always be registered if CUDA is used.
Parameters
----------
allocator: callable
An allocation function accepting exactly one argument, the
size of the message receives.
allocator_type: str
The type of allocator, currently supports "host" and "cuda".
"""
if allocator_type == "host":
allocator_type = ucx_api.AllocatorType.HOST
elif allocator_type == "cuda":
allocator_type = ucx_api.AllocatorType.CUDA
else:
allocator_type = ucx_api.AllocatorType.UNSUPPORTED
self.worker.register_am_allocator(allocator, allocator_type) |
Python | async def recv(self, buffer, tag):
"""Receive directly on worker without a local Endpoint into `buffer`.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to receive into. Raise ValueError if buffer
is smaller than nbytes or read-only.
tag: hashable, optional
Set a tag that must match the received message.
"""
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[Worker Recv] worker: %s, tag: %s, nbytes: %d, type: %s" % (
hex(self.worker.handle),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
return await comm.tag_recv(self.worker, buffer, nbytes, tag, name=log) | async def recv(self, buffer, tag):
"""Receive directly on worker without a local Endpoint into `buffer`.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to receive into. Raise ValueError if buffer
is smaller than nbytes or read-only.
tag: hashable, optional
Set a tag that must match the received message.
"""
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[Worker Recv] worker: %s, tag: %s, nbytes: %d, type: %s" % (
hex(self.worker.handle),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
return await comm.tag_recv(self.worker, buffer, nbytes, tag, name=log) |
Python | async def close(self):
"""Close the endpoint cleanly.
This will attempt to flush outgoing buffers before actually
closing the underlying UCX endpoint.
"""
if self.closed():
self.abort()
return
try:
# Making sure we only tell peer to shutdown once
if self._shutting_down_peer:
return
self._shutting_down_peer = True
# Send a shutdown message to the peer
msg = CtrlMsg.serialize(opcode=1, close_after_n_recv=self._send_count)
msg_arr = Array(msg)
log = "[Send shutdown] ep: %s, tag: %s, close_after_n_recv: %d" % (
hex(self.uid),
hex(self._tags["ctrl_send"]),
self._send_count,
)
logger.debug(log)
try:
await comm.tag_send(
self._ep, msg_arr, msg_arr.nbytes, self._tags["ctrl_send"], name=log
)
# The peer might already be shutting down thus we can ignore any send errors
except UCXError as e:
logging.warning(
"UCX failed closing worker %s (probably already closed): %s"
% (hex(self.uid), repr(e))
)
finally:
if not self.closed():
# Give all current outstanding send() calls a chance to return
self._ctx.worker.progress()
await asyncio.sleep(0)
self.abort() | async def close(self):
"""Close the endpoint cleanly.
This will attempt to flush outgoing buffers before actually
closing the underlying UCX endpoint.
"""
if self.closed():
self.abort()
return
try:
# Making sure we only tell peer to shutdown once
if self._shutting_down_peer:
return
self._shutting_down_peer = True
# Send a shutdown message to the peer
msg = CtrlMsg.serialize(opcode=1, close_after_n_recv=self._send_count)
msg_arr = Array(msg)
log = "[Send shutdown] ep: %s, tag: %s, close_after_n_recv: %d" % (
hex(self.uid),
hex(self._tags["ctrl_send"]),
self._send_count,
)
logger.debug(log)
try:
await comm.tag_send(
self._ep, msg_arr, msg_arr.nbytes, self._tags["ctrl_send"], name=log
)
# The peer might already be shutting down thus we can ignore any send errors
except UCXError as e:
logging.warning(
"UCX failed closing worker %s (probably already closed): %s"
% (hex(self.uid), repr(e))
)
finally:
if not self.closed():
# Give all current outstanding send() calls a chance to return
self._ctx.worker.progress()
await asyncio.sleep(0)
self.abort() |
Python | async def send(self, buffer, tag=None, force_tag=False):
"""Send `buffer` to connected peer.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to send. Raise ValueError if buffer is smaller
than nbytes.
tag: hashable, optional
tag: hashable, optional
Set a tag that the receiver must match. Currently the tag
is hashed together with the internal Endpoint tag that is
agreed with the remote end at connection time. To enforce
using the user tag, make sure to specify `force_tag=True`.
force_tag: bool
If true, force using `tag` as is, otherwise the value
specified with `tag` (if any) will be hashed with the
internal Endpoint tag.
"""
self._ep.raise_on_error()
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
if tag is None:
tag = self._tags["msg_send"]
elif not force_tag:
tag = hash64bits(self._tags["msg_send"], hash(tag))
nbytes = buffer.nbytes
log = "[Send #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._send_count,
hex(self.uid),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._send_count += 1
try:
return await comm.tag_send(self._ep, buffer, nbytes, tag, name=log)
except UCXCanceled as e:
# If self._ep has already been closed and destroyed, we reraise the
# UCXCanceled exception.
if self._ep is None:
raise e | async def send(self, buffer, tag=None, force_tag=False):
"""Send `buffer` to connected peer.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to send. Raise ValueError if buffer is smaller
than nbytes.
tag: hashable, optional
tag: hashable, optional
Set a tag that the receiver must match. Currently the tag
is hashed together with the internal Endpoint tag that is
agreed with the remote end at connection time. To enforce
using the user tag, make sure to specify `force_tag=True`.
force_tag: bool
If true, force using `tag` as is, otherwise the value
specified with `tag` (if any) will be hashed with the
internal Endpoint tag.
"""
self._ep.raise_on_error()
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
if tag is None:
tag = self._tags["msg_send"]
elif not force_tag:
tag = hash64bits(self._tags["msg_send"], hash(tag))
nbytes = buffer.nbytes
log = "[Send #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._send_count,
hex(self.uid),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._send_count += 1
try:
return await comm.tag_send(self._ep, buffer, nbytes, tag, name=log)
except UCXCanceled as e:
# If self._ep has already been closed and destroyed, we reraise the
# UCXCanceled exception.
if self._ep is None:
raise e |
Python | async def am_send(self, buffer):
"""Send `buffer` to connected peer.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to send. Raise ValueError if buffer is smaller
than nbytes.
"""
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[AM Send #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._send_count,
hex(self.uid),
hex(self._tags["msg_send"]),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._send_count += 1
return await comm.am_send(self._ep, buffer, nbytes, name=log) | async def am_send(self, buffer):
"""Send `buffer` to connected peer.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to send. Raise ValueError if buffer is smaller
than nbytes.
"""
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[AM Send #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._send_count,
hex(self.uid),
hex(self._tags["msg_send"]),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._send_count += 1
return await comm.am_send(self._ep, buffer, nbytes, name=log) |
Python | async def recv(self, buffer, tag=None, force_tag=False):
"""Receive from connected peer into `buffer`.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to receive into. Raise ValueError if buffer
is smaller than nbytes or read-only.
tag: hashable, optional
Set a tag that must match the received message. Currently
the tag is hashed together with the internal Endpoint tag
that is agreed with the remote end at connection time.
To enforce using the user tag, make sure to specify
`force_tag=True`.
force_tag: bool
If true, force using `tag` as is, otherwise the value
specified with `tag` (if any) will be hashed with the
internal Endpoint tag.
"""
if tag is None:
tag = self._tags["msg_recv"]
elif not force_tag:
tag = hash64bits(self._tags["msg_recv"], hash(tag))
if not self._ctx.worker.tag_probe(tag):
self._ep.raise_on_error()
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[Recv #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._recv_count,
hex(self.uid),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._recv_count += 1
try:
ret = await comm.tag_recv(self._ep, buffer, nbytes, tag, name=log)
except UCXCanceled as e:
# If self._ep has already been closed and destroyed, we reraise the
# UCXCanceled exception.
if self._ep is None:
raise e
self._finished_recv_count += 1
if (
self._close_after_n_recv is not None
and self._finished_recv_count >= self._close_after_n_recv
):
self.abort()
return ret | async def recv(self, buffer, tag=None, force_tag=False):
"""Receive from connected peer into `buffer`.
Parameters
----------
buffer: exposing the buffer protocol or array/cuda interface
The buffer to receive into. Raise ValueError if buffer
is smaller than nbytes or read-only.
tag: hashable, optional
Set a tag that must match the received message. Currently
the tag is hashed together with the internal Endpoint tag
that is agreed with the remote end at connection time.
To enforce using the user tag, make sure to specify
`force_tag=True`.
force_tag: bool
If true, force using `tag` as is, otherwise the value
specified with `tag` (if any) will be hashed with the
internal Endpoint tag.
"""
if tag is None:
tag = self._tags["msg_recv"]
elif not force_tag:
tag = hash64bits(self._tags["msg_recv"], hash(tag))
if not self._ctx.worker.tag_probe(tag):
self._ep.raise_on_error()
if self.closed():
raise UCXCloseError("Endpoint closed")
if not isinstance(buffer, Array):
buffer = Array(buffer)
nbytes = buffer.nbytes
log = "[Recv #%03d] ep: %s, tag: %s, nbytes: %d, type: %s" % (
self._recv_count,
hex(self.uid),
hex(tag),
nbytes,
type(buffer.obj),
)
logger.debug(log)
self._recv_count += 1
try:
ret = await comm.tag_recv(self._ep, buffer, nbytes, tag, name=log)
except UCXCanceled as e:
# If self._ep has already been closed and destroyed, we reraise the
# UCXCanceled exception.
if self._ep is None:
raise e
self._finished_recv_count += 1
if (
self._close_after_n_recv is not None
and self._finished_recv_count >= self._close_after_n_recv
):
self.abort()
return ret |
Python | async def recv_obj(self, tag=None, allocator=bytearray):
"""Receive from connected peer that calls `send_obj()`.
As opposed to `recv()`, this function returns the received object.
Data is received into a buffer allocated by `allocator`.
The transfer includes an extra message containing the size of `obj`,
which increses the overhead slightly.
Parameters
----------
tag: hashable, optional
Set a tag that must match the received message. Notice, currently
UCX-Py doesn't support a "any tag" thus `tag=None` only matches a
send that also sets `tag=None`.
allocator: callabale, optional
Function to allocate the received object. The function should
take the number of bytes to allocate as input and return a new
buffer of that size as output.
Example
-------
>>> await pickle.loads(ep.recv_obj())
"""
nbytes = array.array("Q", [0])
await self.recv(nbytes, tag=tag)
nbytes = nbytes[0]
ret = allocator(nbytes)
await self.recv(ret, tag=tag)
return ret | async def recv_obj(self, tag=None, allocator=bytearray):
"""Receive from connected peer that calls `send_obj()`.
As opposed to `recv()`, this function returns the received object.
Data is received into a buffer allocated by `allocator`.
The transfer includes an extra message containing the size of `obj`,
which increses the overhead slightly.
Parameters
----------
tag: hashable, optional
Set a tag that must match the received message. Notice, currently
UCX-Py doesn't support a "any tag" thus `tag=None` only matches a
send that also sets `tag=None`.
allocator: callabale, optional
Function to allocate the received object. The function should
take the number of bytes to allocate as input and return a new
buffer of that size as output.
Example
-------
>>> await pickle.loads(ep.recv_obj())
"""
nbytes = array.array("Q", [0])
await self.recv(nbytes, tag=tag)
nbytes = nbytes[0]
ret = allocator(nbytes)
await self.recv(ret, tag=tag)
return ret |
Python | async def flush():
"""Flushes outstanding AMO and RMA operations. This ensures that the
operations issued on this worker have completed both locally and remotely.
This function does not guarantee ordering.
"""
if _ctx is not None:
return await _get_ctx().flush()
else:
# If ctx is not initialized we still want to do the right thing by asyncio
return await asyncio.sleep(0) | async def flush():
"""Flushes outstanding AMO and RMA operations. This ensures that the
operations issued on this worker have completed both locally and remotely.
This function does not guarantee ordering.
"""
if _ctx is not None:
return await _get_ctx().flush()
else:
# If ctx is not initialized we still want to do the right thing by asyncio
return await asyncio.sleep(0) |
Python | async def _progress_task(self):
"""This helper function maintains a UCX progress loop."""
while True:
worker = self.weakref_worker()
if worker is None or not worker.initialized:
return
worker.progress()
del worker
# Give other co-routines a chance to run.
await asyncio.sleep(0) | async def _progress_task(self):
"""This helper function maintains a UCX progress loop."""
while True:
worker = self.weakref_worker()
if worker is None or not worker.initialized:
return
worker.progress()
del worker
# Give other co-routines a chance to run.
await asyncio.sleep(0) |
Python | def decode_mp3(mp3_arr):
"""
decodes an array if uint8 representing an mp3 file
:rtype: np.array
"""
container = av.open(io.BytesIO(mp3_arr.tobytes()))
stream = next(s for s in container.streams if s.type == 'audio')
# print(stream)
a = []
for i, packet in enumerate(container.demux(stream)):
for frame in packet.decode():
a.append(frame.to_ndarray().reshape(-1))
waveform = np.concatenate(a)
if waveform.dtype != 'float32':
raise RuntimeError("Unexpected wave type")
return waveform | def decode_mp3(mp3_arr):
"""
decodes an array if uint8 representing an mp3 file
:rtype: np.array
"""
container = av.open(io.BytesIO(mp3_arr.tobytes()))
stream = next(s for s in container.streams if s.type == 'audio')
# print(stream)
a = []
for i, packet in enumerate(container.demux(stream)):
for frame in packet.decode():
a.append(frame.to_ndarray().reshape(-1))
waveform = np.concatenate(a)
if waveform.dtype != 'float32':
raise RuntimeError("Unexpected wave type")
return waveform |
Python | def pad_or_truncate(x, audio_length):
"""Pad all audio to specific length."""
if len(x) <= audio_length:
return np.concatenate((x, np.zeros(audio_length - len(x), dtype=np.float32)), axis=0)
else:
return x[0: audio_length] | def pad_or_truncate(x, audio_length):
"""Pad all audio to specific length."""
if len(x) <= audio_length:
return np.concatenate((x, np.zeros(audio_length - len(x), dtype=np.float32)), axis=0)
else:
return x[0: audio_length] |
Python | def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
state_dict = {k: v for k, v in state_dict.items()}
if "time_new_pos_embed" not in state_dict:
# we are working with ImageNet model
_logger.info("Adapting pos embedding from ImageNet pretrained model to PaSST.")
v = state_dict.pop("pos_embed")
new_pos_embed, freq_new_pos_embed, time_new_pos_embed = adapt_image_pos_embed_to_passt(
v, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
state_dict["new_pos_embed"] = new_pos_embed
state_dict["freq_new_pos_embed"] = freq_new_pos_embed
state_dict["time_new_pos_embed"] = time_new_pos_embed
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# this should never occur
v = resize_pos_embed(
v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
out_dict[k] = v
return out_dict | def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
state_dict = {k: v for k, v in state_dict.items()}
if "time_new_pos_embed" not in state_dict:
# we are working with ImageNet model
_logger.info("Adapting pos embedding from ImageNet pretrained model to PaSST.")
v = state_dict.pop("pos_embed")
new_pos_embed, freq_new_pos_embed, time_new_pos_embed = adapt_image_pos_embed_to_passt(
v, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
state_dict["new_pos_embed"] = new_pos_embed
state_dict["freq_new_pos_embed"] = freq_new_pos_embed
state_dict["time_new_pos_embed"] = time_new_pos_embed
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# this should never occur
v = resize_pos_embed(
v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
out_dict[k] = v
return out_dict |
Python | def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
print("\n\n Loading DEIT BASE 384\n\n")
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer(
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
return model | def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
""" DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
print("\n\n Loading DEIT BASE 384\n\n")
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_vision_transformer(
'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs)
return model |
Python | def insert(self, value: int) -> None:
"""Insert a new element to the heap
Args:
value (int): A number
Raises:
Exception: When the heap is full
"""
if self.size >= self.max_size:
raise Exception("Heap is full")
position = self.size
self.heap[position] = value
self.size += 1
self.__sift_up(position) | def insert(self, value: int) -> None:
"""Insert a new element to the heap
Args:
value (int): A number
Raises:
Exception: When the heap is full
"""
if self.size >= self.max_size:
raise Exception("Heap is full")
position = self.size
self.heap[position] = value
self.size += 1
self.__sift_up(position) |
Python | def extract_max(self) -> int:
"""Extracts the element with highest priority.
i) Moves the last leaf to the root.
ii) Bubble down the root until the element at the top is the new maximum
iii) Return the element which was the max
Returns:
int: Value of element
Raises:
Expection: When heap is empty
"""
if self.size == 0:
raise Exception("Heap is empty")
max_element = self.heap[0]
self.heap[0] = self.heap[self.size - 1]
self.__sift_down(0)
self.size -= 1
return max_element | def extract_max(self) -> int:
"""Extracts the element with highest priority.
i) Moves the last leaf to the root.
ii) Bubble down the root until the element at the top is the new maximum
iii) Return the element which was the max
Returns:
int: Value of element
Raises:
Expection: When heap is empty
"""
if self.size == 0:
raise Exception("Heap is empty")
max_element = self.heap[0]
self.heap[0] = self.heap[self.size - 1]
self.__sift_down(0)
self.size -= 1
return max_element |
Python | def remove(self, pos: int) -> int:
"""Removes the element of the position i
Args:
pos (int): Position of element to be removed
Returns:
int: Value of element removed
"""
self.heap[pos] = float("+inf")
self.__sift_up(pos)
self.extract_max() | def remove(self, pos: int) -> int:
"""Removes the element of the position i
Args:
pos (int): Position of element to be removed
Returns:
int: Value of element removed
"""
self.heap[pos] = float("+inf")
self.__sift_up(pos)
self.extract_max() |
Python | def change_priority(self, pos: int, value: int) -> None:
"""Changes the priority of an element
Args:
pos (int): Position of element
value (int): New priority value
"""
old_value = self.heap[pos]
self.heap[pos] = value
if value > old_value:
self.__sift_up(pos)
else:
self.__sift_down(pos) | def change_priority(self, pos: int, value: int) -> None:
"""Changes the priority of an element
Args:
pos (int): Position of element
value (int): New priority value
"""
old_value = self.heap[pos]
self.heap[pos] = value
if value > old_value:
self.__sift_up(pos)
else:
self.__sift_down(pos) |
Python | def __sift_up(self, position: int) -> None:
"""Bubble up the elements to keep the heap constraints
Args:
position (int): Position of the inserted element
"""
if position == 0:
return
parent_pos = self.__parent(position)
if self.heap[position] > self.heap[parent_pos]:
self.__swap(parent_pos, position)
self.__sift_up(parent_pos) | def __sift_up(self, position: int) -> None:
"""Bubble up the elements to keep the heap constraints
Args:
position (int): Position of the inserted element
"""
if position == 0:
return
parent_pos = self.__parent(position)
if self.heap[position] > self.heap[parent_pos]:
self.__swap(parent_pos, position)
self.__sift_up(parent_pos) |
Python | def __sift_down(self, position: int) -> None:
"""Bubble down the elements to keep the heap constraints
Args:
position (int): Position of the element to be bubbled down
"""
# Return if there are no more children to compare to
max_index = position
left_child_pos = self.__left_child(position)
if (
left_child_pos < self.size
and self.heap[max_index] < self.heap[left_child_pos]
):
max_index = left_child_pos
right_child_pos = self.__right_child(position)
if (
right_child_pos < self.size
and self.heap[max_index] < self.heap[right_child_pos]
):
max_index = right_child_pos
if max_index != position:
self.__swap(max_index, position)
self.__sift_down(max_index) | def __sift_down(self, position: int) -> None:
"""Bubble down the elements to keep the heap constraints
Args:
position (int): Position of the element to be bubbled down
"""
# Return if there are no more children to compare to
max_index = position
left_child_pos = self.__left_child(position)
if (
left_child_pos < self.size
and self.heap[max_index] < self.heap[left_child_pos]
):
max_index = left_child_pos
right_child_pos = self.__right_child(position)
if (
right_child_pos < self.size
and self.heap[max_index] < self.heap[right_child_pos]
):
max_index = right_child_pos
if max_index != position:
self.__swap(max_index, position)
self.__sift_down(max_index) |
Python | def __parent(self, pos: int) -> int:
"""Returns the parent position of a given element
Args:
pos (int): Position of element to find parent
Returns:
int: Position of parent
"""
return (pos - 1) // 2 | def __parent(self, pos: int) -> int:
"""Returns the parent position of a given element
Args:
pos (int): Position of element to find parent
Returns:
int: Position of parent
"""
return (pos - 1) // 2 |
Python | def train(self, train_data, validation_data=None, test_data=None, epochs=1, steps_per_epoch=None, callbacks=[]):
""" Main training loop
Args:
train_data: an iterable of dictionaries from Input Layers to values {Input:data}.
(calling iter on this object should yield an iterator for an epoch.)
validation_data: an iterable of dictionaries from Input Layers to values {Input:data}.
test_data: an iterable of dictionaries from Input Layers to values {Input:data}.
epochs (int): number of training epochs.
steps_per_epoch: number of steps in an epoch, if not None, epochs are incremented each time
this number of steps pass even if the entire train_data has not been transversed.
callbacks: ``Callback`` functions scheduled during the training.
"""
# train loop properties
step = Property("step", 0)
epoch = Property("epoch", 1)
epoch_step = Property("epoch_step", 0)
last_loss = Property("last_loss", 0)
train_loss = Property("train_loss", None)
total_epochs = StaticProperty("total_epochs", value=epochs)
test_loss = Property("test_loss", None)
# TODO training loop only works with a single optimizer
# changing the optimizer during this loop is problematic
# without replacing the properties in the scheduler for the new
# optimizer
optimizer_props: dict = self.optimizer_params[self.optimizer]
properties = [step,
epoch_step,
epoch,
train_loss,
last_loss,
test_loss,
total_epochs
] + list(optimizer_props.values())
scheduler = Scheduler(model=self,
properties=properties)
for callback in callbacks:
scheduler.register(callback)
if steps_per_epoch is not None and train_data is not None:
epoch_data = iter(train_data)
if validation_data:
validation_cb = Eval(target_property="validation_loss",
dataset=validation_data,
priority=-2)
scheduler.register(validation_cb)
if test_data:
test_cb = Eval(property="test_loss",
dataset=test_data,
priority=-1)
scheduler.register(test_cb)
# MAIN TRAINING LOOP
scheduler.trigger(OnLoop(AT.START))
try:
while epoch.value <= epochs:
# EPOCH START
# restart iterator for an epoch
if steps_per_epoch is None and train_data is not None:
epoch_data = iter(train_data)
epoch_step.value = 0
total_loss = 0
scheduler.trigger(OnEpoch(epoch.value, AT.START))
while steps_per_epoch is None or epoch_step.value < steps_per_epoch:
try:
if train_data is not None:
feed_dict = next(epoch_data)
else:
feed_dict = {}
feed_dict, param_feed = Model.parse_input(feed_dict, self.train_inputs)
optimizer_props = self.optimizer_params[self.optimizer]
for param_name in param_feed:
if param_name in optimizer_props:
optimizer_props[param_name].value = param_feed[param_name]
# updated here because we want this property to give us the current step, to know when
# a step ends use OnEveryStep(at=AT.END)
epoch_step.value += 1
step.value += 1
# update property values
for param_name in param_feed:
# add new properties if not in the scheduler
if param_name not in scheduler.props:
scheduler.observe(Property(name=param_name, value=param_feed[param_name]))
else:
# only update property if value changes
prop = scheduler.props[param_name]
# only change the value if this value is different, no need to trigger
# redundant updates on the properties that don't change value
if prop.value != param_feed[param_name]:
prop.value = param_feed[param_name]
scheduler.trigger(OnStep(step.value, AT.START))
scheduler.trigger(OnEpochStep(epoch_step.value, AT.START))
*outputs, loss = self.train_step(feed_dict)
if not np.isscalar(loss):
if isinstance(loss, list):
loss = np.mean([np.mean(l) for l in loss])
else:
loss = np.mean(loss)
last_loss.value = loss
total_loss += loss
train_loss.value = total_loss / epoch_step.value
scheduler.trigger(OnStep(epoch_step.value, AT.END))
scheduler.trigger(OnEpochStep(epoch_step.value, AT.END))
except StopIteration:
break
# EPOCH END
scheduler.trigger(OnEpoch(epoch.value, AT.END))
epoch.value += 1
except StopTrain as e:
logging.info("Training stopped: {}".format(str(e)))
except Exception as e:
logging.exception("Error: " + str(e))
raise e
scheduler.trigger(OnLoop(AT.END)) | def train(self, train_data, validation_data=None, test_data=None, epochs=1, steps_per_epoch=None, callbacks=[]):
""" Main training loop
Args:
train_data: an iterable of dictionaries from Input Layers to values {Input:data}.
(calling iter on this object should yield an iterator for an epoch.)
validation_data: an iterable of dictionaries from Input Layers to values {Input:data}.
test_data: an iterable of dictionaries from Input Layers to values {Input:data}.
epochs (int): number of training epochs.
steps_per_epoch: number of steps in an epoch, if not None, epochs are incremented each time
this number of steps pass even if the entire train_data has not been transversed.
callbacks: ``Callback`` functions scheduled during the training.
"""
# train loop properties
step = Property("step", 0)
epoch = Property("epoch", 1)
epoch_step = Property("epoch_step", 0)
last_loss = Property("last_loss", 0)
train_loss = Property("train_loss", None)
total_epochs = StaticProperty("total_epochs", value=epochs)
test_loss = Property("test_loss", None)
# TODO training loop only works with a single optimizer
# changing the optimizer during this loop is problematic
# without replacing the properties in the scheduler for the new
# optimizer
optimizer_props: dict = self.optimizer_params[self.optimizer]
properties = [step,
epoch_step,
epoch,
train_loss,
last_loss,
test_loss,
total_epochs
] + list(optimizer_props.values())
scheduler = Scheduler(model=self,
properties=properties)
for callback in callbacks:
scheduler.register(callback)
if steps_per_epoch is not None and train_data is not None:
epoch_data = iter(train_data)
if validation_data:
validation_cb = Eval(target_property="validation_loss",
dataset=validation_data,
priority=-2)
scheduler.register(validation_cb)
if test_data:
test_cb = Eval(property="test_loss",
dataset=test_data,
priority=-1)
scheduler.register(test_cb)
# MAIN TRAINING LOOP
scheduler.trigger(OnLoop(AT.START))
try:
while epoch.value <= epochs:
# EPOCH START
# restart iterator for an epoch
if steps_per_epoch is None and train_data is not None:
epoch_data = iter(train_data)
epoch_step.value = 0
total_loss = 0
scheduler.trigger(OnEpoch(epoch.value, AT.START))
while steps_per_epoch is None or epoch_step.value < steps_per_epoch:
try:
if train_data is not None:
feed_dict = next(epoch_data)
else:
feed_dict = {}
feed_dict, param_feed = Model.parse_input(feed_dict, self.train_inputs)
optimizer_props = self.optimizer_params[self.optimizer]
for param_name in param_feed:
if param_name in optimizer_props:
optimizer_props[param_name].value = param_feed[param_name]
# updated here because we want this property to give us the current step, to know when
# a step ends use OnEveryStep(at=AT.END)
epoch_step.value += 1
step.value += 1
# update property values
for param_name in param_feed:
# add new properties if not in the scheduler
if param_name not in scheduler.props:
scheduler.observe(Property(name=param_name, value=param_feed[param_name]))
else:
# only update property if value changes
prop = scheduler.props[param_name]
# only change the value if this value is different, no need to trigger
# redundant updates on the properties that don't change value
if prop.value != param_feed[param_name]:
prop.value = param_feed[param_name]
scheduler.trigger(OnStep(step.value, AT.START))
scheduler.trigger(OnEpochStep(epoch_step.value, AT.START))
*outputs, loss = self.train_step(feed_dict)
if not np.isscalar(loss):
if isinstance(loss, list):
loss = np.mean([np.mean(l) for l in loss])
else:
loss = np.mean(loss)
last_loss.value = loss
total_loss += loss
train_loss.value = total_loss / epoch_step.value
scheduler.trigger(OnStep(epoch_step.value, AT.END))
scheduler.trigger(OnEpochStep(epoch_step.value, AT.END))
except StopIteration:
break
# EPOCH END
scheduler.trigger(OnEpoch(epoch.value, AT.END))
epoch.value += 1
except StopTrain as e:
logging.info("Training stopped: {}".format(str(e)))
except Exception as e:
logging.exception("Error: " + str(e))
raise e
scheduler.trigger(OnLoop(AT.END)) |
Python | def identity(x, name: str = None) -> tf.Tensor:
""" Identity function
Returns a tensor with the same content as the input tensor.
Args:
x (`Tensor`): The input tensor.
name (`str`): name for this op
Returns:
tensor (`Tensor`): of the same shape, type and content of the input tensor.
"""
return tf.identity(x, name=name) | def identity(x, name: str = None) -> tf.Tensor:
""" Identity function
Returns a tensor with the same content as the input tensor.
Args:
x (`Tensor`): The input tensor.
name (`str`): name for this op
Returns:
tensor (`Tensor`): of the same shape, type and content of the input tensor.
"""
return tf.identity(x, name=name) |
Python | def variables(self):
""" variables
returns a list of **all** variables in the layer state
Returns:
variables (`List[tf.Variable]`): a list of all variables in the layer state
"""
return list(self.var_dict().values()) | def variables(self):
""" variables
returns a list of **all** variables in the layer state
Returns:
variables (`List[tf.Variable]`): a list of all variables in the layer state
"""
return list(self.var_dict().values()) |
Python | def filter_args(self, **kwargs):
""" filter_args
filters a given keyword argument dictionary removing any argument
that is not present in the constructor for the current Layer type.
Args:
**kwargs (`Dict['str',Any]`): keyword arguments to be filtered
Returns:
new_kwargs (`Dict['str',Any]`): new filtered kwargs
"""
new_kwargs = dict(kwargs)
for key in kwargs:
if key not in self.arg_names and not self.arg_spec.varkw:
del new_kwargs[key]
return new_kwargs | def filter_args(self, **kwargs):
""" filter_args
filters a given keyword argument dictionary removing any argument
that is not present in the constructor for the current Layer type.
Args:
**kwargs (`Dict['str',Any]`): keyword arguments to be filtered
Returns:
new_kwargs (`Dict['str',Any]`): new filtered kwargs
"""
new_kwargs = dict(kwargs)
for key in kwargs:
if key not in self.arg_names and not self.arg_spec.varkw:
del new_kwargs[key]
return new_kwargs |
Python | def update(self, **kwargs):
""" update
Updates the config constructor argument dictionary and validates those parameters.
Args:
**kwargs (`Dict['str',Any]`): new values for constructor named arguments to be updated
"""
self._validate_args(**kwargs)
self.kwargs.update(kwargs) | def update(self, **kwargs):
""" update
Updates the config constructor argument dictionary and validates those parameters.
Args:
**kwargs (`Dict['str',Any]`): new values for constructor named arguments to be updated
"""
self._validate_args(**kwargs)
self.kwargs.update(kwargs) |
Python | def as_function(self, name="layer_function", compile=False):
""" returns a python function of a Tensorflow compiled graph as a callable
!!! note
This returns the entire graph as a function that terminates on
this layer. If you want the function for this layer alone just
get the `tf.function(layer.compute)`
Args:
name (`str`): function name to be returned
compile (`bool`): if True, returns a `Tensorflow` compile graph as a callable
else, returns a python function.
Returns:
fn (`Callable`): either a Tensorflow static graph or a python callable function.
"""
graph = Graph.build(inputs=None, outputs=self)
return graph.as_function(name=name, compile=compile) | def as_function(self, name="layer_function", compile=False):
""" returns a python function of a Tensorflow compiled graph as a callable
!!! note
This returns the entire graph as a function that terminates on
this layer. If you want the function for this layer alone just
get the `tf.function(layer.compute)`
Args:
name (`str`): function name to be returned
compile (`bool`): if True, returns a `Tensorflow` compile graph as a callable
else, returns a python function.
Returns:
fn (`Callable`): either a Tensorflow static graph or a python callable function.
"""
graph = Graph.build(inputs=None, outputs=self)
return graph.as_function(name=name, compile=compile) |
Python | def input(self):
""" syntax sugar to return a single input if layers only have one input
or the last layer if the current layer has more than one input
Returns:
layer (`Layer`): single input of the current layer
"""
if hasattr(self, "inputs"):
# if len(self.inputs) > 1:
# raise AttributeError("this layer has multiple inputs, use .inputs[i] instead")
if len(self.inputs) > 0:
return self.inputs[0]
else:
return None | def input(self):
""" syntax sugar to return a single input if layers only have one input
or the last layer if the current layer has more than one input
Returns:
layer (`Layer`): single input of the current layer
"""
if hasattr(self, "inputs"):
# if len(self.inputs) > 1:
# raise AttributeError("this layer has multiple inputs, use .inputs[i] instead")
if len(self.inputs) > 0:
return self.inputs[0]
else:
return None |
Python | def _list_extra_dependencies_for_serialization(self, serialization_cache):
""" Lists extra dependencies to serialize.
Internal sub-classes can override this method to return extra dependencies
Args:
serialization_cache: A dictionary shared between all objects in the same
object graph. This object is passed to both
`_list_extra_dependencies_for_serialization` and
`_list_functions_for_serialization`.
Returns:
A dictionary mapping attribute names to trackable objects.
"""
dependencies = {}
if self.inputs:
if self.input_graph is not None:
layers = self.input_graph.dependency_iter()
dependencies = {
f"{dep_layer.name}": dep_layer
for dep_layer in layers
}
return dependencies | def _list_extra_dependencies_for_serialization(self, serialization_cache):
""" Lists extra dependencies to serialize.
Internal sub-classes can override this method to return extra dependencies
Args:
serialization_cache: A dictionary shared between all objects in the same
object graph. This object is passed to both
`_list_extra_dependencies_for_serialization` and
`_list_functions_for_serialization`.
Returns:
A dictionary mapping attribute names to trackable objects.
"""
dependencies = {}
if self.inputs:
if self.input_graph is not None:
layers = self.input_graph.dependency_iter()
dependencies = {
f"{dep_layer.name}": dep_layer
for dep_layer in layers
}
return dependencies |
Python | def reuse_with(self, *layers, name=None):
""" Reuse with a different input layer
Calls reuse with on the wrapped layer and then creates a new wrapped layer
around it, using the current tensor function.
"""
new_wrapped = self.wrapped.reuse_with(*layers)
# forward any previous attributes if we're wrapping over other WrapLayer instances
attr_fwd = self.fwd_attr
if isinstance(new_wrapped, Wrap):
attr_fwd += new_wrapped.fwd_attr
if name is None:
name = self.name
return Wrap(wrapped_layer=new_wrapped,
n_units=self.n_units,
wrap_fn=self.wrap_fn,
fwd_attr=attr_fwd,
name=name) | def reuse_with(self, *layers, name=None):
""" Reuse with a different input layer
Calls reuse with on the wrapped layer and then creates a new wrapped layer
around it, using the current tensor function.
"""
new_wrapped = self.wrapped.reuse_with(*layers)
# forward any previous attributes if we're wrapping over other WrapLayer instances
attr_fwd = self.fwd_attr
if isinstance(new_wrapped, Wrap):
attr_fwd += new_wrapped.fwd_attr
if name is None:
name = self.name
return Wrap(wrapped_layer=new_wrapped,
n_units=self.n_units,
wrap_fn=self.wrap_fn,
fwd_attr=attr_fwd,
name=name) |
Python | def reset(self):
""" reset
resets the variable using its initializer
Returns:
an op that can be run to reinitialize the variable
"""
with layer_scope(self):
self.layer_state.variable.assign(self.init(self.shape))
self.layer_state.counter.assign(0) | def reset(self):
""" reset
resets the variable using its initializer
Returns:
an op that can be run to reinitialize the variable
"""
with layer_scope(self):
self.layer_state.variable.assign(self.init(self.shape))
self.layer_state.counter.assign(0) |
Python | def compute_shape(self):
"""
!!! problem
the problem in other libs like keras is they always assume
at least a 2d tensor, which for neural networks is acceptable but
if we try this as a general computational block, it breaks
Returns:
"""
input_shape = self.input.shape
try:
output_shape = fix_reshape_dimensions(input_shape,
self.target_shape)
except ValueError as e:
raise ValueError(f"shape of {self.name} could not be determined") from e
return tf.TensorShape(output_shape) | def compute_shape(self):
"""
!!! problem
the problem in other libs like keras is they always assume
at least a 2d tensor, which for neural networks is acceptable but
if we try this as a general computational block, it breaks
Returns:
"""
input_shape = self.input.shape
try:
output_shape = fix_reshape_dimensions(input_shape,
self.target_shape)
except ValueError as e:
raise ValueError(f"shape of {self.name} could not be determined") from e
return tf.TensorShape(output_shape) |
Python | def reuse_with(self, input_layer, name=None, transpose_weights=None, sparse_weights=None, shape=None):
""" Reuses the current layer on a different input.
"""
# if current layer is sharing variables, forward the sharing
share_state_with = self if self.share_state_with is None else self.share_state_with
if name is None:
name = self.name
if transpose_weights is None:
transpose_weights = self.transpose_weights
if sparse_weights is None:
sparse_weights = self.sparse_weights
return Linear(input_layer=input_layer,
n_units=self.n_units,
weight_init=self.weight_init,
weights=self.weights,
transpose_weights=transpose_weights,
sparse_weights=sparse_weights,
add_bias=self.add_bias,
weight_norm=self.weight_norm,
name=name,
share_state_with=share_state_with,
shape=shape) | def reuse_with(self, input_layer, name=None, transpose_weights=None, sparse_weights=None, shape=None):
""" Reuses the current layer on a different input.
"""
# if current layer is sharing variables, forward the sharing
share_state_with = self if self.share_state_with is None else self.share_state_with
if name is None:
name = self.name
if transpose_weights is None:
transpose_weights = self.transpose_weights
if sparse_weights is None:
sparse_weights = self.sparse_weights
return Linear(input_layer=input_layer,
n_units=self.n_units,
weight_init=self.weight_init,
weights=self.weights,
transpose_weights=transpose_weights,
sparse_weights=sparse_weights,
add_bias=self.add_bias,
weight_norm=self.weight_norm,
name=name,
share_state_with=share_state_with,
shape=shape) |
Python | def init_state(self):
""" Create a recurrent cell from the given config
!!! bug "Dev note"
The only stateful thing here is the cell which is a layer. Since layers
Need to know their input layer for their state to be initialized, we need
to give the cell a dummy input.
Returns:
state (`LayerState`): a state with a cell layer that performs the computations
"""
layer_state = super().init_state()
input_seq = self.input
with layer_scope(self):
# TODO add input_dim to RNNCells for syntax sugar
# create dummy input which is used to init the cell init state without running the entire graph
# I guess computing output shape would be useful here
# TODO already have that so does it apply
x0 = tf.ones_like(input_seq[0])
if self.share_state_with is not None:
cell = self.share_state_with.cell
cell = cell.reuse_with(input_layer=x0,
# previous_state=self.previous_state,
regularized=self.regularized)
else:
cell = self.cell_config(x0, previous_state=self.previous_state)
if cell.regularized != self.regularized:
# create a new regularized cell if somehow the regularized parameter doesn't match the constructor
cell = cell.reuse_with(input_layer=x0,
# previous_state=self.previous_state,
regularized=self.regularized)
layer_state.cell = cell
if self.previous_state is None:
self.previous_state = cell.previous_state
# if no previous state is provided we need to add it from current cell
self._inputs += as_list(self.previous_state)
self.n_units = cell.n_units
return layer_state | def init_state(self):
""" Create a recurrent cell from the given config
!!! bug "Dev note"
The only stateful thing here is the cell which is a layer. Since layers
Need to know their input layer for their state to be initialized, we need
to give the cell a dummy input.
Returns:
state (`LayerState`): a state with a cell layer that performs the computations
"""
layer_state = super().init_state()
input_seq = self.input
with layer_scope(self):
# TODO add input_dim to RNNCells for syntax sugar
# create dummy input which is used to init the cell init state without running the entire graph
# I guess computing output shape would be useful here
# TODO already have that so does it apply
x0 = tf.ones_like(input_seq[0])
if self.share_state_with is not None:
cell = self.share_state_with.cell
cell = cell.reuse_with(input_layer=x0,
# previous_state=self.previous_state,
regularized=self.regularized)
else:
cell = self.cell_config(x0, previous_state=self.previous_state)
if cell.regularized != self.regularized:
# create a new regularized cell if somehow the regularized parameter doesn't match the constructor
cell = cell.reuse_with(input_layer=x0,
# previous_state=self.previous_state,
regularized=self.regularized)
layer_state.cell = cell
if self.previous_state is None:
self.previous_state = cell.previous_state
# if no previous state is provided we need to add it from current cell
self._inputs += as_list(self.previous_state)
self.n_units = cell.n_units
return layer_state |
Python | def as_concat(self):
""" concatenates the sequence produced by a lookup and returns the current lookup
viewed as a concat sequence layer
Returns:
seq_concat (`Wrap`): a `SeqConcat` layer as a view for the Lookup layer
"""
return Wrap(self,
n_units=None,
wrap_fn=lambda current_layer: SeqConcat(current_layer, seq_size=self.seq_size),
fwd_attr=["weights", "bias", "seq_size"],
name="concat") | def as_concat(self):
""" concatenates the sequence produced by a lookup and returns the current lookup
viewed as a concat sequence layer
Returns:
seq_concat (`Wrap`): a `SeqConcat` layer as a view for the Lookup layer
"""
return Wrap(self,
n_units=None,
wrap_fn=lambda current_layer: SeqConcat(current_layer, seq_size=self.seq_size),
fwd_attr=["weights", "bias", "seq_size"],
name="concat") |
Python | def reuse_with(self, input_layer, name=None):
""" Reuses the current layer on a different input.
Uses the variables in this layer to create a new Layer instance with a different input_layer
Args:
input_layer: a ``Lookup` Layer
name: name for the new ``Layer``
Return:
``Layer``: a new layer with shared variables with the current layer.
"""
# if current layer is sharing variables, forward the sharing
share_state_with = self if self.share_state_with is None else self.share_state_with
if name is None:
name = self.name
return Lookup(input_layer,
seq_size=self.seq_size,
embedding_shape=self.embedding_shape,
batch_size=self.batch_size,
weights=self.weights,
weight_init=None,
dtype=self.dtype,
name=name,
share_state_with=share_state_with,
batch_padding=self.batch_padding) | def reuse_with(self, input_layer, name=None):
""" Reuses the current layer on a different input.
Uses the variables in this layer to create a new Layer instance with a different input_layer
Args:
input_layer: a ``Lookup` Layer
name: name for the new ``Layer``
Return:
``Layer``: a new layer with shared variables with the current layer.
"""
# if current layer is sharing variables, forward the sharing
share_state_with = self if self.share_state_with is None else self.share_state_with
if name is None:
name = self.name
return Lookup(input_layer,
seq_size=self.seq_size,
embedding_shape=self.embedding_shape,
batch_size=self.batch_size,
weights=self.weights,
weight_init=None,
dtype=self.dtype,
name=name,
share_state_with=share_state_with,
batch_padding=self.batch_padding) |
Python | def compute(self, input_tensor, *previous_state):
""" compute layer value based on input `Tensor` values
Args:
input_tensor: a `Tensor` or `Layer` input to the current cell
*previous_state: (previous_h, previous_memory)
Returns:
`Constant`: a tensor with the cell's output
"""
previous_h, previous_memory = previous_state
output = self.output.compute(input_tensor, previous_h, previous_memory)
return output | def compute(self, input_tensor, *previous_state):
""" compute layer value based on input `Tensor` values
Args:
input_tensor: a `Tensor` or `Layer` input to the current cell
*previous_state: (previous_h, previous_memory)
Returns:
`Constant`: a tensor with the cell's output
"""
previous_h, previous_memory = previous_state
output = self.output.compute(input_tensor, previous_h, previous_memory)
return output |
Python | def layer(n_units=None, name="layer", dtype=None, var_list=None):
""" Decorator for functions that returns a layer layer configuration
Returns:
config (`LayerConfig`): instance that can be called on layers to create a new layer instance
"""
def function_to_config(fn):
if isinstance(fn, LayerConfig):
return fn
return Lambda.config(fn=fn, n_units=n_units, dtype=dtype, var_list=var_list, name=name)
return function_to_config | def layer(n_units=None, name="layer", dtype=None, var_list=None):
""" Decorator for functions that returns a layer layer configuration
Returns:
config (`LayerConfig`): instance that can be called on layers to create a new layer instance
"""
def function_to_config(fn):
if isinstance(fn, LayerConfig):
return fn
return Lambda.config(fn=fn, n_units=n_units, dtype=dtype, var_list=var_list, name=name)
return function_to_config |
Python | def rms(x):
""" Root mean square (RMS)
Also known as quadratic mean is defined as:
$x_{\\mathrm{RMS}}=\\sqrt{\\frac{x_{1}^{2}+x_{2}^{2}+\\ldots+x_{n}^{2}}{n}}$
In estimation theory, the root-mean-square deviation of an estimator is a measure of the imperfection of the fit of
the estimator to the data.
Args:
x (`Tensor`): input tensor
Returns:
result (`Tensor`): scalar tensor with the result of applying the root mean square to the input tensor
"""
return tf.sqrt(tf.reduce_mean(tf.square(x))) | def rms(x):
""" Root mean square (RMS)
Also known as quadratic mean is defined as:
$x_{\\mathrm{RMS}}=\\sqrt{\\frac{x_{1}^{2}+x_{2}^{2}+\\ldots+x_{n}^{2}}{n}}$
In estimation theory, the root-mean-square deviation of an estimator is a measure of the imperfection of the fit of
the estimator to the data.
Args:
x (`Tensor`): input tensor
Returns:
result (`Tensor`): scalar tensor with the result of applying the root mean square to the input tensor
"""
return tf.sqrt(tf.reduce_mean(tf.square(x))) |
Python | def sparse_dense_multiply(sp_tensor, dense_tensor, name="sparse_multiply_dense"):
""" element-wise sparse_multiply_dense
!!! info
Uses `sparse_dense_cwise_mul` from Tensorflow but returns a dense result
and reshapes the result to match the shape of `sp_tensor`
Args:
sp_tensor (SparseTensor): a sparse tensor
dense_tensor (Tensor): a dense tensor
name (str): op name
Returns:
A dense tensor (Tensor): the result for the multiplication between the sparse and dense tensors
"""
with tf.name_scope(name):
mul = sparse_dense_cwise_mul(sp_tensor.indices,
sp_tensor.values,
sp_tensor.dense_shape,
dense_tensor)
mul = tf.reshape(mul, tf.shape(sp_tensor))
return mul | def sparse_dense_multiply(sp_tensor, dense_tensor, name="sparse_multiply_dense"):
""" element-wise sparse_multiply_dense
!!! info
Uses `sparse_dense_cwise_mul` from Tensorflow but returns a dense result
and reshapes the result to match the shape of `sp_tensor`
Args:
sp_tensor (SparseTensor): a sparse tensor
dense_tensor (Tensor): a dense tensor
name (str): op name
Returns:
A dense tensor (Tensor): the result for the multiplication between the sparse and dense tensors
"""
with tf.name_scope(name):
mul = sparse_dense_cwise_mul(sp_tensor.indices,
sp_tensor.values,
sp_tensor.dense_shape,
dense_tensor)
mul = tf.reshape(mul, tf.shape(sp_tensor))
return mul |
Python | def sparse_sparse_dot(sp_tensor1, sp_tensor2, name="sparse_sparse_dot"):
""" Returns the dot product between two tensors with the same shape
Args:
sp_tensor1: a ``SparseTensor``
sp_tensor2: a ``SparseTensor``
name: the name for this op
Returns:
``Tensor``: a ``Tensor`` with the result of the dot product
"""
with tf.name_scope(name):
# sparse multiply computes the overlap between two sparse tensors
radial_dif = sparse_sparse_multiply(sp_tensor1, sp_tensor2)
dot_prod = tf.sparse.reduce_sum(radial_dif, axis=-1)
return dot_prod | def sparse_sparse_dot(sp_tensor1, sp_tensor2, name="sparse_sparse_dot"):
""" Returns the dot product between two tensors with the same shape
Args:
sp_tensor1: a ``SparseTensor``
sp_tensor2: a ``SparseTensor``
name: the name for this op
Returns:
``Tensor``: a ``Tensor`` with the result of the dot product
"""
with tf.name_scope(name):
# sparse multiply computes the overlap between two sparse tensors
radial_dif = sparse_sparse_multiply(sp_tensor1, sp_tensor2)
dot_prod = tf.sparse.reduce_sum(radial_dif, axis=-1)
return dot_prod |
Python | def sparse_sparse_multiply(sp_tensor1, sp_tensor2):
""" Element-wise multiplication of two sparse tensors
!!! warning
if the two sparse tensors don't overlap, returns an empty sparse tensor.
Args:
sp_tensor1: a `SparseTensor`
sp_tensor2: a `SparseTensor`
Returns:
a `SparseTensor` with the element-wise multiplication of the two sparse tensors
"""
overlap1 = ops.sparse_overlap(sp_tensor1, sp_tensor2)
overlap2 = ops.sparse_overlap(sp_tensor2, sp_tensor1)
values = tf.math.multiply(overlap1.values, overlap2.values)
return tf.SparseTensor(overlap1.indices, values, overlap1.dense_shape) | def sparse_sparse_multiply(sp_tensor1, sp_tensor2):
""" Element-wise multiplication of two sparse tensors
!!! warning
if the two sparse tensors don't overlap, returns an empty sparse tensor.
Args:
sp_tensor1: a `SparseTensor`
sp_tensor2: a `SparseTensor`
Returns:
a `SparseTensor` with the element-wise multiplication of the two sparse tensors
"""
overlap1 = ops.sparse_overlap(sp_tensor1, sp_tensor2)
overlap2 = ops.sparse_overlap(sp_tensor2, sp_tensor1)
values = tf.math.multiply(overlap1.values, overlap2.values)
return tf.SparseTensor(overlap1.indices, values, overlap1.dense_shape) |
Python | def sparse_dot(sp_tensor1, tensor2, name=None):
""" Returns the dot product between two tensors with the same shape
Args:
sp_tensor1: a ``SparseTensor``
tensor2: a ``Tensor`` or ``SparseTensor``
name: the name for this op
Returns:
``Tensor``: a ``Tensor`` with the result of the dot product
"""
with tf.name_scope(name):
if isinstance(tensor2, tf.Tensor):
dense_values = tf.gather_nd(tensor2, sp_tensor1.indices)
radial_dif = tf.math.multiply(sp_tensor1.values, dense_values)
sp_radial_dif = tf.SparseTensor(indices=sp_tensor1.indices, values=radial_dif,
dense_shape=sp_tensor1.dense_shape)
dot_prod = tf.sparse.reduce_sum(sp_radial_dif, axis=-1)
return dot_prod
elif isinstance(tensor2, tf.SparseTensor):
return sparse_sparse_dot(sp_tensor1, tensor2)
else:
raise TypeError(
"inputs must be of type Tensor or SparseTensor: tensor2 == {t} found".format(t=type(tensor2))) | def sparse_dot(sp_tensor1, tensor2, name=None):
""" Returns the dot product between two tensors with the same shape
Args:
sp_tensor1: a ``SparseTensor``
tensor2: a ``Tensor`` or ``SparseTensor``
name: the name for this op
Returns:
``Tensor``: a ``Tensor`` with the result of the dot product
"""
with tf.name_scope(name):
if isinstance(tensor2, tf.Tensor):
dense_values = tf.gather_nd(tensor2, sp_tensor1.indices)
radial_dif = tf.math.multiply(sp_tensor1.values, dense_values)
sp_radial_dif = tf.SparseTensor(indices=sp_tensor1.indices, values=radial_dif,
dense_shape=sp_tensor1.dense_shape)
dot_prod = tf.sparse.reduce_sum(sp_radial_dif, axis=-1)
return dot_prod
elif isinstance(tensor2, tf.SparseTensor):
return sparse_sparse_dot(sp_tensor1, tensor2)
else:
raise TypeError(
"inputs must be of type Tensor or SparseTensor: tensor2 == {t} found".format(t=type(tensor2))) |
Python | def logit(x, dtype=tf.float32):
""" logit
The logit is a link function / a transformation of a parameter. It is the logarithm of the odds.
$$
logit(p) = log(p/(1-p))
$$
logit(0) = -inf, logit(1) = inf, and logit(p) for p<0 or p>1 yields nan.
Args:
x (`Tensor`): an input tensor
dtype (`DType`): data type
Returns:
logit (`Tensor`): a tensor f the same shape as `x`
"""
x = tf.convert_to_tensor(x, dtype)
x = tf.math.divide(x, 1 - x)
return tf.math.log(x) | def logit(x, dtype=tf.float32):
""" logit
The logit is a link function / a transformation of a parameter. It is the logarithm of the odds.
$$
logit(p) = log(p/(1-p))
$$
logit(0) = -inf, logit(1) = inf, and logit(p) for p<0 or p>1 yields nan.
Args:
x (`Tensor`): an input tensor
dtype (`DType`): data type
Returns:
logit (`Tensor`): a tensor f the same shape as `x`
"""
x = tf.convert_to_tensor(x, dtype)
x = tf.math.divide(x, 1 - x)
return tf.math.log(x) |
Python | def categorical_cross_entropy(labels, logits, axis=-1, name="categorical_cross_entropy"):
""" Categorical Cross entropy
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive.
!!! warning
This is to be used on the **logits** of a model, not on the predicted labels. Do not call this loss with the
output of softmax.
See also [from TensorFlow](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits).
Args:
labels (Tensor): empiric probability distribution. Each row labels[i] must be a valid probability distribution
(integrate to 1).
logits (Tensor): unscaled log probabilities used to predict the labels with `softmax(logits)`
axis (int): The class dimension. Defaulted to -1 which is the last dimension.
name (str): op name
Returns:
tensor (`Tensor`): categorical (softmax) cross-entropy loss.
"""
return tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits, axis=axis, name=name) | def categorical_cross_entropy(labels, logits, axis=-1, name="categorical_cross_entropy"):
""" Categorical Cross entropy
Measures the probability error in discrete classification tasks in which the classes are mutually exclusive.
!!! warning
This is to be used on the **logits** of a model, not on the predicted labels. Do not call this loss with the
output of softmax.
See also [from TensorFlow](https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits).
Args:
labels (Tensor): empiric probability distribution. Each row labels[i] must be a valid probability distribution
(integrate to 1).
logits (Tensor): unscaled log probabilities used to predict the labels with `softmax(logits)`
axis (int): The class dimension. Defaulted to -1 which is the last dimension.
name (str): op name
Returns:
tensor (`Tensor`): categorical (softmax) cross-entropy loss.
"""
return tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits, axis=axis, name=name) |
Python | def binary_hinge(labels, logits):
""" Binary Hinge Loss
Measures the classification error for maximum-margin classification. Margin classifiers like
Support Vector Machines (SVM) maximise the distance between the closest examples and the decision boundary
separating the binary classes. The hinge loss is defined as:
$$
\\ell(y) = \\max(0, 1-t \\cdot y),
$$
where $t$ is the intended output (labels) and $y$ are the output logits from the
classification decision function, not the predicted class label.
Args:
labels (`Tensor`): tensor with values -1 or 1. Binary (0 or 1) labels are converted to -1 or 1.
logits (`Tensor`): unscaled log probabilities.
Returns:
tensor (`Tensor`): hinge loss float tensor
"""
return tf.losses.hinge(labels, logits) | def binary_hinge(labels, logits):
""" Binary Hinge Loss
Measures the classification error for maximum-margin classification. Margin classifiers like
Support Vector Machines (SVM) maximise the distance between the closest examples and the decision boundary
separating the binary classes. The hinge loss is defined as:
$$
\\ell(y) = \\max(0, 1-t \\cdot y),
$$
where $t$ is the intended output (labels) and $y$ are the output logits from the
classification decision function, not the predicted class label.
Args:
labels (`Tensor`): tensor with values -1 or 1. Binary (0 or 1) labels are converted to -1 or 1.
logits (`Tensor`): unscaled log probabilities.
Returns:
tensor (`Tensor`): hinge loss float tensor
"""
return tf.losses.hinge(labels, logits) |
Python | def sparsemax_loss(logits, labels, name="sparsemax_loss"):
""" Sparsemax Loss
A loss function for the sparsemax activation function. This is similar to `tf.nn.softmax`, but able to output s
parse probabilities.
!!! info
Applicable to multi-label classification problems and attention-based neural networks
(e.g. for natural language inference)
!!! cite "References"
1. [From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification](https://arxiv.org/abs/1602.02068)
Args:
labels (`Tensor`): the target dense labels (one hot encoded)
logits (`Tensor`): unnormalized log probabilities
name (str): op name
Returns:
loss (`Tensor`): sparsemax loss
"""
with tf.name_scope(name):
logits = tf.convert_to_tensor(logits)
sparsemax = tx.sparsemax(logits)
labels = tf.convert_to_tensor(labels, name="labels")
shifted_logits = logits - tf.math.reduce_mean(logits, axis=1)[:, tf.newaxis]
# sum over support (support = predicted labels)
support = tf.cast(sparsemax > 0, sparsemax.dtype)
sum_s = support * sparsemax * (shifted_logits - 0.5 * sparsemax)
# - z_k + ||q||^2
q_part = labels * (0.5 * labels - shifted_logits)
return tf.math.reduce_sum(sum_s + q_part, axis=1) | def sparsemax_loss(logits, labels, name="sparsemax_loss"):
""" Sparsemax Loss
A loss function for the sparsemax activation function. This is similar to `tf.nn.softmax`, but able to output s
parse probabilities.
!!! info
Applicable to multi-label classification problems and attention-based neural networks
(e.g. for natural language inference)
!!! cite "References"
1. [From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification](https://arxiv.org/abs/1602.02068)
Args:
labels (`Tensor`): the target dense labels (one hot encoded)
logits (`Tensor`): unnormalized log probabilities
name (str): op name
Returns:
loss (`Tensor`): sparsemax loss
"""
with tf.name_scope(name):
logits = tf.convert_to_tensor(logits)
sparsemax = tx.sparsemax(logits)
labels = tf.convert_to_tensor(labels, name="labels")
shifted_logits = logits - tf.math.reduce_mean(logits, axis=1)[:, tf.newaxis]
# sum over support (support = predicted labels)
support = tf.cast(sparsemax > 0, sparsemax.dtype)
sum_s = support * sparsemax * (shifted_logits - 0.5 * sparsemax)
# - z_k + ||q||^2
q_part = labels * (0.5 * labels - shifted_logits)
return tf.math.reduce_sum(sum_s + q_part, axis=1) |
Python | def sinkhorn_loss(target, predicted, epsilon, n_iter, cost_fn=None):
""" Sinkhorn Loss
Alias:
* `tx.metrics.sinkhorn`
!!! info
Optimal Transport (OT) provides a framework from which one can define a more powerful geometry to compare
probability distributions. This power comes, however, with a heavy computational price. The cost of computing OT
distances scales at least in $O(d^3 log(d))$ when comparing two histograms of dimension $d$. Sinkhorn algorithm
alleviate this problem by solving an regularized OT in linear time.
Given two measures with n points each with locations x and y
outputs an approximation of the Optimal Transport (OT) cost with regularization
parameter epsilon, niter is the maximum number of steps in sinkhorn loop
!!! cite "References"
1. [Concerning nonnegative matrices and doubly stochastic matrices](https://msp.org/pjm/1967/21-2/p14.xhtml)
2. [Sinkhorn Distances:Lightspeed Computation of Optimal Transport](https://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf)
Args:
predicted (`Tensor`): model distribution
target (`Tensor`): ground_truth, empirical distribution
epsilon (float): regularization term >0
n_iter (int): number of sinkhorn iterations
cost_fn (Callable): function that returns the cost matrix between y_pred and y_true, defaults to $|x_i-y_j|^p$.
Returns:
cost (`Tensor`): sinkhorn cost of moving from the mass from the model distribution `y_pred` to the empirical
distribution `y_true`.
"""
return tx.sinkhorn(target, predicted, epsilon=epsilon, n_iter=n_iter, cost_fn=cost_fn) | def sinkhorn_loss(target, predicted, epsilon, n_iter, cost_fn=None):
""" Sinkhorn Loss
Alias:
* `tx.metrics.sinkhorn`
!!! info
Optimal Transport (OT) provides a framework from which one can define a more powerful geometry to compare
probability distributions. This power comes, however, with a heavy computational price. The cost of computing OT
distances scales at least in $O(d^3 log(d))$ when comparing two histograms of dimension $d$. Sinkhorn algorithm
alleviate this problem by solving an regularized OT in linear time.
Given two measures with n points each with locations x and y
outputs an approximation of the Optimal Transport (OT) cost with regularization
parameter epsilon, niter is the maximum number of steps in sinkhorn loop
!!! cite "References"
1. [Concerning nonnegative matrices and doubly stochastic matrices](https://msp.org/pjm/1967/21-2/p14.xhtml)
2. [Sinkhorn Distances:Lightspeed Computation of Optimal Transport](https://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf)
Args:
predicted (`Tensor`): model distribution
target (`Tensor`): ground_truth, empirical distribution
epsilon (float): regularization term >0
n_iter (int): number of sinkhorn iterations
cost_fn (Callable): function that returns the cost matrix between y_pred and y_true, defaults to $|x_i-y_j|^p$.
Returns:
cost (`Tensor`): sinkhorn cost of moving from the mass from the model distribution `y_pred` to the empirical
distribution `y_true`.
"""
return tx.sinkhorn(target, predicted, epsilon=epsilon, n_iter=n_iter, cost_fn=cost_fn) |
Python | def sparse_ones(indices, dense_shape, dtype=tf.float32, name="sparse_ones"):
""" Creates a new `SparseTensor` with the given indices having value 1
Args:
indices (`Tensor`): a rank 2 tensor with the `(row,column)` indices for the resulting sparse tensor
dense_shape (`Tensor` or `TensorShape`): the output dense shape
dtype (`tf.DType`): the tensor type for the values
name (`str`): sparse_ones op
Returns:
sp_tensor (`SparseTensor`): a new sparse tensor with values set to 1
"""
with tf.name_scope(name=name):
indices = as_tensor(indices, tf.int64)
dense_shape = as_tensor(dense_shape, tf.int64)
indices_shape = indices.shape
values = tf.ones([indices_shape[0]], dtype)
return tf.SparseTensor(indices, values, dense_shape) | def sparse_ones(indices, dense_shape, dtype=tf.float32, name="sparse_ones"):
""" Creates a new `SparseTensor` with the given indices having value 1
Args:
indices (`Tensor`): a rank 2 tensor with the `(row,column)` indices for the resulting sparse tensor
dense_shape (`Tensor` or `TensorShape`): the output dense shape
dtype (`tf.DType`): the tensor type for the values
name (`str`): sparse_ones op
Returns:
sp_tensor (`SparseTensor`): a new sparse tensor with values set to 1
"""
with tf.name_scope(name=name):
indices = as_tensor(indices, tf.int64)
dense_shape = as_tensor(dense_shape, tf.int64)
indices_shape = indices.shape
values = tf.ones([indices_shape[0]], dtype)
return tf.SparseTensor(indices, values, dense_shape) |
Python | def sparse_zeros(indices, dense_shape, dtype=tf.float32, name="sparse_zeros"):
""" Creates a new `SparseTensor` with the given indices having value 0
Args:
indices (`Tensor`): a rank 2 tensor with the `(row,column)` indices for the resulting sparse tensor
dense_shape (`Tensor` or `TensorShape`): the output dense shape
dtype (`tf.DType`): the tensor type for the values
name (`str`): sparse_ones op
Returns:
sp_tensor (`SparseTensor`): a new sparse tensor with values set to 0
"""
with tf.name_scope(name=name):
indices = as_tensor(indices, tf.int64)
dense_shape = as_tensor(dense_shape, tf.int64)
indices_shape = tf.shape(indices)
values = tf.zeros([indices_shape[0]], dtype)
return tf.SparseTensor(indices, values, dense_shape) | def sparse_zeros(indices, dense_shape, dtype=tf.float32, name="sparse_zeros"):
""" Creates a new `SparseTensor` with the given indices having value 0
Args:
indices (`Tensor`): a rank 2 tensor with the `(row,column)` indices for the resulting sparse tensor
dense_shape (`Tensor` or `TensorShape`): the output dense shape
dtype (`tf.DType`): the tensor type for the values
name (`str`): sparse_ones op
Returns:
sp_tensor (`SparseTensor`): a new sparse tensor with values set to 0
"""
with tf.name_scope(name=name):
indices = as_tensor(indices, tf.int64)
dense_shape = as_tensor(dense_shape, tf.int64)
indices_shape = tf.shape(indices)
values = tf.zeros([indices_shape[0]], dtype)
return tf.SparseTensor(indices, values, dense_shape) |
Python | def sparse_indices(sp_values, name="sparse_indices"):
""" Returns a `SparseTensor` with the values containing column indices for the active values on a
given `SparseTensor`.
!!! example "Use Case"
To be used with ``embedding_lookup_sparse`` when we need two `SparseTensor` objects with the indices and
values
Args:
sp_values (`SparseTensor`): a sparse tensor for which we extract the active indices.
name (`str`): name for sparse_indices op
Returns:
sp_indices (`SparseTensor`): a sparse tensor with the column indices
"""
with tf.name_scope(name=name):
if len(sp_values.get_shape().dims) == 1:
[flat_indices] = tf.unstack(sp_values.indices, num=1, axis=-1)
else:
_, flat_indices = tf.unstack(sp_values.indices, num=2, axis=-1)
sp_indices = tf.SparseTensor(sp_values.indices, flat_indices, sp_values.dense_shape)
return sp_indices | def sparse_indices(sp_values, name="sparse_indices"):
""" Returns a `SparseTensor` with the values containing column indices for the active values on a
given `SparseTensor`.
!!! example "Use Case"
To be used with ``embedding_lookup_sparse`` when we need two `SparseTensor` objects with the indices and
values
Args:
sp_values (`SparseTensor`): a sparse tensor for which we extract the active indices.
name (`str`): name for sparse_indices op
Returns:
sp_indices (`SparseTensor`): a sparse tensor with the column indices
"""
with tf.name_scope(name=name):
if len(sp_values.get_shape().dims) == 1:
[flat_indices] = tf.unstack(sp_values.indices, num=1, axis=-1)
else:
_, flat_indices = tf.unstack(sp_values.indices, num=2, axis=-1)
sp_indices = tf.SparseTensor(sp_values.indices, flat_indices, sp_values.dense_shape)
return sp_indices |
Python | def repeat(x, n, name="repeat"):
""" Repeats the values of a tensor along the last dimension
Args:
x (`Tensor`): input tensor
n (`int`): number of repetitions of each element
name (`str`): name for the repeat op
Returns:
tensor (`Tensor`): tensor with shape [shape[:-1, ], shape[-1:, ] * n]
"""
with tf.name_scope(name):
x = tf.convert_to_tensor(x)
n = as_tensor(n, dtype=x.dtype)
shape = tf.shape(x, out_type=x.dtype)
flat_x = tf.reshape(x, [-1])
rep_x = tf.tile(tf.expand_dims(flat_x, -1), tf.stack([1, n]))
new_shape = tf.concat([shape[:-1, ], shape[-1:, ] * n], axis=-1)
rep_x = tf.reshape(rep_x, new_shape)
return rep_x | def repeat(x, n, name="repeat"):
""" Repeats the values of a tensor along the last dimension
Args:
x (`Tensor`): input tensor
n (`int`): number of repetitions of each element
name (`str`): name for the repeat op
Returns:
tensor (`Tensor`): tensor with shape [shape[:-1, ], shape[-1:, ] * n]
"""
with tf.name_scope(name):
x = tf.convert_to_tensor(x)
n = as_tensor(n, dtype=x.dtype)
shape = tf.shape(x, out_type=x.dtype)
flat_x = tf.reshape(x, [-1])
rep_x = tf.tile(tf.expand_dims(flat_x, -1), tf.stack([1, n]))
new_shape = tf.concat([shape[:-1, ], shape[-1:, ] * n], axis=-1)
rep_x = tf.reshape(rep_x, new_shape)
return rep_x |
Python | def matrix_indices(index_tensor, dtype=tf.int64, sort_indices=True, name="matrix_indices"):
""" Transforms a batch of column indices into a batch of matrix indices
Args:
index_tensor (`Tensor`): a tensor with shape `(b,n)` with a batch of `n` column indices.
dtype (`DType`): the output dtype for the indices. Defaults to `int64`.
sort_indices (`bool`): if `True`, output indices are sorted in canonical row-major order.
name (`str`): name for this op.
Returns:
tensor (`Tensor`): tensor with shape `[b,2]` for each index in the input tensor with the corresponding matrix
indices
"""
with tf.name_scope(name):
index_tensor = as_tensor(index_tensor, dtype)
if len(index_tensor.shape) < 2:
index_tensor = tf.expand_dims(index_tensor, 0)
shape = tf.shape(index_tensor, out_type=dtype)
row_indices = tf.range(0, shape[0])
row_indices = repeat(row_indices, shape[-1])
# sort ascending
if sort_indices:
sorted_indices, _ = tf.nn.top_k(tf.cast(index_tensor, tf.int32),
k=tf.cast(shape[-1], tf.int32))
sorted_indices = tf.reverse(sorted_indices, axis=[-1])
col_indices = sorted_indices
else:
col_indices = index_tensor
col_indices = tf.reshape(col_indices, [-1])
col_indices = tf.cast(col_indices, dtype)
indices = tf.stack([row_indices, col_indices], axis=-1)
return indices | def matrix_indices(index_tensor, dtype=tf.int64, sort_indices=True, name="matrix_indices"):
""" Transforms a batch of column indices into a batch of matrix indices
Args:
index_tensor (`Tensor`): a tensor with shape `(b,n)` with a batch of `n` column indices.
dtype (`DType`): the output dtype for the indices. Defaults to `int64`.
sort_indices (`bool`): if `True`, output indices are sorted in canonical row-major order.
name (`str`): name for this op.
Returns:
tensor (`Tensor`): tensor with shape `[b,2]` for each index in the input tensor with the corresponding matrix
indices
"""
with tf.name_scope(name):
index_tensor = as_tensor(index_tensor, dtype)
if len(index_tensor.shape) < 2:
index_tensor = tf.expand_dims(index_tensor, 0)
shape = tf.shape(index_tensor, out_type=dtype)
row_indices = tf.range(0, shape[0])
row_indices = repeat(row_indices, shape[-1])
# sort ascending
if sort_indices:
sorted_indices, _ = tf.nn.top_k(tf.cast(index_tensor, tf.int32),
k=tf.cast(shape[-1], tf.int32))
sorted_indices = tf.reverse(sorted_indices, axis=[-1])
col_indices = sorted_indices
else:
col_indices = index_tensor
col_indices = tf.reshape(col_indices, [-1])
col_indices = tf.cast(col_indices, dtype)
indices = tf.stack([row_indices, col_indices], axis=-1)
return indices |
Python | def dense_one_hot(column_indices, num_cols, dtype=tf.float32, reduce=True, name="dense_one_hot"):
"""Transforms a batch of indices to a dense `Tensor` by adding the `one-hot` encoding for each index.
Example:
```python
indices = [[0],[1]]
dense_shape = [2,2]
dense_one_hot = [[1,0],[0,1]]
```
Args:
column_indices: a dense `Tensor` with the active indices for each sample (row).
num_cols: number of columns for the one-hot encoding
dtype: the type for the output tensor.
reduce (`bool`): if true applies reduce sum on last dimension,
name: name for this op
Returns:
`Tensor`: A dense `Tensor` with a `one-hot encoding` for the given indices.
"""
with tf.name_scope(name=name):
column_indices = as_tensor(column_indices, tf.int64)
one_hot_dense = tf.one_hot(column_indices, depth=num_cols, dtype=dtype)
if column_indices.get_shape().ndims >= 2 and reduce:
one_hot_dense = tf.math.reduce_sum(one_hot_dense, axis=1)
return one_hot_dense | def dense_one_hot(column_indices, num_cols, dtype=tf.float32, reduce=True, name="dense_one_hot"):
"""Transforms a batch of indices to a dense `Tensor` by adding the `one-hot` encoding for each index.
Example:
```python
indices = [[0],[1]]
dense_shape = [2,2]
dense_one_hot = [[1,0],[0,1]]
```
Args:
column_indices: a dense `Tensor` with the active indices for each sample (row).
num_cols: number of columns for the one-hot encoding
dtype: the type for the output tensor.
reduce (`bool`): if true applies reduce sum on last dimension,
name: name for this op
Returns:
`Tensor`: A dense `Tensor` with a `one-hot encoding` for the given indices.
"""
with tf.name_scope(name=name):
column_indices = as_tensor(column_indices, tf.int64)
one_hot_dense = tf.one_hot(column_indices, depth=num_cols, dtype=dtype)
if column_indices.get_shape().ndims >= 2 and reduce:
one_hot_dense = tf.math.reduce_sum(one_hot_dense, axis=1)
return one_hot_dense |
Python | def sparse_matrix_indices(column_indices, num_cols, dtype=tf.float32, name="sparse_one_hot"):
"""Transforms a batch of column indices to a one-hot encoding `SparseTensor`.
Example:
``` python
indices = [[0,1,4],
[1,2,6]]
dense_shape = [2,10]
sp_one_hot = sparse_one_hot(indices,dense_shape)
expected = tf.SparseTensor(indices=[[0,0],
[0,1],
[0,4],
[1,1],
[1,2],
[1,6]],
values=[1,1,1,1,1,1],
dense_shape=[2,10])
```
Args:
column_indices (`Tensor`): a dense tensor with the indices to be active for each sample (row)
num_cols (`int`): number of columns for the one-hot encoding
dtype (`tf.DType`): the type for the output values.
name (`str`): name for this op
Returns:
sp_tensor (`SparseTensor`): a sparse tensor with the one hot encoding for the given indices
"""
with tf.name_scope(name=name):
column_indices = as_tensor(column_indices, tf.int64)
indices = matrix_indices(column_indices, dtype=tf.int64)
dense_shape = tf.cast([tf.shape(column_indices)[0], num_cols], dtype=tf.int64)
return sparse_ones(indices, dense_shape, dtype) | def sparse_matrix_indices(column_indices, num_cols, dtype=tf.float32, name="sparse_one_hot"):
"""Transforms a batch of column indices to a one-hot encoding `SparseTensor`.
Example:
``` python
indices = [[0,1,4],
[1,2,6]]
dense_shape = [2,10]
sp_one_hot = sparse_one_hot(indices,dense_shape)
expected = tf.SparseTensor(indices=[[0,0],
[0,1],
[0,4],
[1,1],
[1,2],
[1,6]],
values=[1,1,1,1,1,1],
dense_shape=[2,10])
```
Args:
column_indices (`Tensor`): a dense tensor with the indices to be active for each sample (row)
num_cols (`int`): number of columns for the one-hot encoding
dtype (`tf.DType`): the type for the output values.
name (`str`): name for this op
Returns:
sp_tensor (`SparseTensor`): a sparse tensor with the one hot encoding for the given indices
"""
with tf.name_scope(name=name):
column_indices = as_tensor(column_indices, tf.int64)
indices = matrix_indices(column_indices, dtype=tf.int64)
dense_shape = tf.cast([tf.shape(column_indices)[0], num_cols], dtype=tf.int64)
return sparse_ones(indices, dense_shape, dtype) |
Python | def dropout(tensor,
noise_shape=None,
random_mask=None,
probability=0.1,
scale=True,
seed=None,
return_mask=False,
name="dropout"):
""" With probability `probability`, outputs `0` otherwise outputs the input element. If ``scale`` is True, the
input elements are scaled up by `1 / (1-probability)` so that the expected sum of the activations is unchanged.
By default, each element is kept or dropped independently. If `noise_shape`
is specified, it must be [broadcastable](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
to the shape of `x`, and only dimensions with `noise_shape[i] == shape(x)[i]`
will make independent decisions. For example, if `shape(x) = [k, l, m, n]`
and `noise_shape = [k, 1, 1, n]`, each batch and channel component will be
kept independently and each row and column will be kept or not kept together.
Args:
tensor (`Tensor`): an input tensor
noise_shape (`Tensor`): A 1-D `Tensor` of type `int32`, representing the shape for randomly generated drop flags
return_mask (`bool`): if `True`, returns the random mask used
random_mask (`Tensor`): a tensor used to create the random bernoulli mask
probability (`float` or `Tensor`): A scalar `Tensor` with the same type as x. The probability that each element
is kept.
scale (`bool`): if true rescales the non-zero elements to 1 / (1-drop_probability)
seed (`int`): A Python integer with the random number generator seed
name (`str`): a name for this operation
Returns:
tensor (`Tensor`): output tensor with the same `DType` as the input
Raises:
ValueError: if `probability` is not in `[0, 1]` or if `x` is not a floating point tensor.
"""
with tf.name_scope(name):
tensor = tf.convert_to_tensor(tensor, name="x")
if random_mask is not None:
random_mask = as_tensor(random_mask, tensor.dtype)
if not tensor.dtype.is_floating:
try:
tensor = tf.cast(tensor, tf.float32)
except Exception:
raise ValueError("x has to be a floating point tensor since it might be scaled"
"Got a %s tensor instead. and could not cast it" % tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("drop probability must be a scalar tensor or a float in the "
"range [0, 1), got %g" % probability)
# Early return if nothing needs to be dropped.
if isinstance(probability, float) and probability == 0:
if return_mask:
return tensor, None
else:
return tensor
elif isinstance(probability, float) and probability == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
probability = tf.convert_to_tensor(
probability, dtype=tensor.dtype, name="drop_probability")
probability.get_shape().assert_is_compatible_with(tf.TensorShape([]))
# Do nothing if we know drop_probability == 0
const_val = tensor_util.constant_value(probability)
if const_val == 0:
if return_mask:
return tensor, None
else:
return tensor
elif const_val == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
noise_shape = _get_noise_shape(tensor, noise_shape)
if random_mask is None:
with tf.name_scope(name="random_mask"):
keep_prob = 1 - probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
if scale:
ret = tf.math.divide(tensor, tf.math.maximum(1 - probability, 1e-10)) * random_mask
else:
ret = tensor * random_mask
if not tf.executing_eagerly():
ret.set_shape(tensor.get_shape())
if return_mask:
return ret, random_mask
else:
return ret | def dropout(tensor,
noise_shape=None,
random_mask=None,
probability=0.1,
scale=True,
seed=None,
return_mask=False,
name="dropout"):
""" With probability `probability`, outputs `0` otherwise outputs the input element. If ``scale`` is True, the
input elements are scaled up by `1 / (1-probability)` so that the expected sum of the activations is unchanged.
By default, each element is kept or dropped independently. If `noise_shape`
is specified, it must be [broadcastable](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
to the shape of `x`, and only dimensions with `noise_shape[i] == shape(x)[i]`
will make independent decisions. For example, if `shape(x) = [k, l, m, n]`
and `noise_shape = [k, 1, 1, n]`, each batch and channel component will be
kept independently and each row and column will be kept or not kept together.
Args:
tensor (`Tensor`): an input tensor
noise_shape (`Tensor`): A 1-D `Tensor` of type `int32`, representing the shape for randomly generated drop flags
return_mask (`bool`): if `True`, returns the random mask used
random_mask (`Tensor`): a tensor used to create the random bernoulli mask
probability (`float` or `Tensor`): A scalar `Tensor` with the same type as x. The probability that each element
is kept.
scale (`bool`): if true rescales the non-zero elements to 1 / (1-drop_probability)
seed (`int`): A Python integer with the random number generator seed
name (`str`): a name for this operation
Returns:
tensor (`Tensor`): output tensor with the same `DType` as the input
Raises:
ValueError: if `probability` is not in `[0, 1]` or if `x` is not a floating point tensor.
"""
with tf.name_scope(name):
tensor = tf.convert_to_tensor(tensor, name="x")
if random_mask is not None:
random_mask = as_tensor(random_mask, tensor.dtype)
if not tensor.dtype.is_floating:
try:
tensor = tf.cast(tensor, tf.float32)
except Exception:
raise ValueError("x has to be a floating point tensor since it might be scaled"
"Got a %s tensor instead. and could not cast it" % tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("drop probability must be a scalar tensor or a float in the "
"range [0, 1), got %g" % probability)
# Early return if nothing needs to be dropped.
if isinstance(probability, float) and probability == 0:
if return_mask:
return tensor, None
else:
return tensor
elif isinstance(probability, float) and probability == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
probability = tf.convert_to_tensor(
probability, dtype=tensor.dtype, name="drop_probability")
probability.get_shape().assert_is_compatible_with(tf.TensorShape([]))
# Do nothing if we know drop_probability == 0
const_val = tensor_util.constant_value(probability)
if const_val == 0:
if return_mask:
return tensor, None
else:
return tensor
elif const_val == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
noise_shape = _get_noise_shape(tensor, noise_shape)
if random_mask is None:
with tf.name_scope(name="random_mask"):
keep_prob = 1 - probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
if scale:
ret = tf.math.divide(tensor, tf.math.maximum(1 - probability, 1e-10)) * random_mask
else:
ret = tensor * random_mask
if not tf.executing_eagerly():
ret.set_shape(tensor.get_shape())
if return_mask:
return ret, random_mask
else:
return ret |
Python | def alpha_dropout(tensor,
noise_shape=None,
random_mask=None,
probability=0.1,
seed=None,
return_mask=False,
name="dropout"):
""" Alpha Dropout keeps mean and variance of inputs in order to ensure the self-normalization after dropout.
Alpha dropout is proposed for Scaled Exponential Linear Units (SELUs) because it randomly sets activations to the
negative saturation value rather than 0.
The multiplicative noise will have standard deviation $\\sqrt{\\frac{probability}{(1-probability)}}
!!! cite "References"
1. [Self-Normalizing Neural Networks](https://arxiv.org/pdf/1706.02515.pdf)
Args:
tensor (`Tensor`): A floating point tensor.
noise_shape (`Tensor`): A 1-D `Tensor` of type `int32`, representing the shape for randomly generated drop flags
return_mask (`bool`): if true, returns the random mask used
random_mask (`Tensor`): a tensor used to create the random bernoulli mask
probability (`float` or `Tensor`): A scalar `Tensor` with the same type as x. The probability that each element
is kept.
seed (`int`): A Python integer with the random number generator seed
name (`str`): a name for this operation (optional)
Returns:
result (`Tensor`): a tensor with the same shape as the input with the dropped units set to negative values
"""
tensor = tf.convert_to_tensor(tensor, name="x")
with tf.name_scope(name):
if random_mask is not None:
random_mask = as_tensor(random_mask, tensor.dtype)
if not tensor.dtype.is_floating:
try:
tensor = tf.cast(tensor, tf.float32)
except Exception:
raise ValueError("x has to be a floating point tensor since it might be scaled"
"Got a %s tensor instead. and could not cast it" % tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("drop probability must be a scalar tensor or a float in the "
"range [0, 1), got %g" % probability)
# Early return if nothing needs to be dropped.
if isinstance(probability, float) and probability == 0:
if return_mask:
return tensor, None
else:
return tensor
elif isinstance(probability, float) and probability == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
probability = tf.convert_to_tensor(
probability, dtype=tensor.dtype, name="drop_probability")
probability.get_shape().assert_is_compatible_with(tf.TensorShape([]))
# Do nothing if we know drop_probability == 0
const_val = tensor_util.constant_value(probability)
if const_val == 0:
if return_mask:
return tensor, None
else:
return tensor
elif const_val == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
noise_shape = _get_noise_shape(tensor, noise_shape)
if random_mask is None:
with tf.name_scope(name="random_mask"):
keep_prob = 1 - probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
alpha_p = -alpha * scale
# Get affine transformation params
a = ((1 - probability) * (1 + probability * alpha_p ** 2)) ** -0.5
b = -a * alpha_p * probability
# Apply mask
x = tensor * random_mask + alpha_p * (1 - random_mask)
# Do affine transformation
return a * x + b | def alpha_dropout(tensor,
noise_shape=None,
random_mask=None,
probability=0.1,
seed=None,
return_mask=False,
name="dropout"):
""" Alpha Dropout keeps mean and variance of inputs in order to ensure the self-normalization after dropout.
Alpha dropout is proposed for Scaled Exponential Linear Units (SELUs) because it randomly sets activations to the
negative saturation value rather than 0.
The multiplicative noise will have standard deviation $\\sqrt{\\frac{probability}{(1-probability)}}
!!! cite "References"
1. [Self-Normalizing Neural Networks](https://arxiv.org/pdf/1706.02515.pdf)
Args:
tensor (`Tensor`): A floating point tensor.
noise_shape (`Tensor`): A 1-D `Tensor` of type `int32`, representing the shape for randomly generated drop flags
return_mask (`bool`): if true, returns the random mask used
random_mask (`Tensor`): a tensor used to create the random bernoulli mask
probability (`float` or `Tensor`): A scalar `Tensor` with the same type as x. The probability that each element
is kept.
seed (`int`): A Python integer with the random number generator seed
name (`str`): a name for this operation (optional)
Returns:
result (`Tensor`): a tensor with the same shape as the input with the dropped units set to negative values
"""
tensor = tf.convert_to_tensor(tensor, name="x")
with tf.name_scope(name):
if random_mask is not None:
random_mask = as_tensor(random_mask, tensor.dtype)
if not tensor.dtype.is_floating:
try:
tensor = tf.cast(tensor, tf.float32)
except Exception:
raise ValueError("x has to be a floating point tensor since it might be scaled"
"Got a %s tensor instead. and could not cast it" % tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("drop probability must be a scalar tensor or a float in the "
"range [0, 1), got %g" % probability)
# Early return if nothing needs to be dropped.
if isinstance(probability, float) and probability == 0:
if return_mask:
return tensor, None
else:
return tensor
elif isinstance(probability, float) and probability == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
probability = tf.convert_to_tensor(
probability, dtype=tensor.dtype, name="drop_probability")
probability.get_shape().assert_is_compatible_with(tf.TensorShape([]))
# Do nothing if we know drop_probability == 0
const_val = tensor_util.constant_value(probability)
if const_val == 0:
if return_mask:
return tensor, None
else:
return tensor
elif const_val == 1:
zeros = tf.zeros_like(tensor)
if return_mask:
return zeros, None
else:
return zeros
noise_shape = _get_noise_shape(tensor, noise_shape)
if random_mask is None:
with tf.name_scope(name="random_mask"):
keep_prob = 1 - probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
alpha_p = -alpha * scale
# Get affine transformation params
a = ((1 - probability) * (1 + probability * alpha_p ** 2)) ** -0.5
b = -a * alpha_p * probability
# Apply mask
x = tensor * random_mask + alpha_p * (1 - random_mask)
# Do affine transformation
return a * x + b |
Python | def binary_random_mask(tensor, mask_probability=0.0, seed=None):
""" Creates a binary mask with the same shape as the given tensor, randomly generated from
the given mask probability.
Args:
tensor (`Tensor`): tensor for which we would like to create a mask
mask_probability (`float`, `Tensor`): scalar tensor or float with probability of masking a given value
seed (`int`): seed for random number generator
Returns:
binary_mask (`Tensor`): a tensor with values `0` or `1` with the same shape as the input tensor
"""
with tf.name_scope(name="random_mask"):
tensor = as_tensor(tensor)
noise_shape = _get_noise_shape(tensor, None)
keep_prob = 1 - mask_probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
return random_mask | def binary_random_mask(tensor, mask_probability=0.0, seed=None):
""" Creates a binary mask with the same shape as the given tensor, randomly generated from
the given mask probability.
Args:
tensor (`Tensor`): tensor for which we would like to create a mask
mask_probability (`float`, `Tensor`): scalar tensor or float with probability of masking a given value
seed (`int`): seed for random number generator
Returns:
binary_mask (`Tensor`): a tensor with values `0` or `1` with the same shape as the input tensor
"""
with tf.name_scope(name="random_mask"):
tensor = as_tensor(tensor)
noise_shape = _get_noise_shape(tensor, None)
keep_prob = 1 - mask_probability
random_state = tf.random.uniform(noise_shape, seed=seed, dtype=tensor.dtype)
mask = keep_prob + random_state
random_mask = tf.math.floor(mask, name="binary_mask")
return random_mask |
Python | def sparse_dropout(sp_tensor,
probability=0.2,
scale=True,
seed=None,
mask=None,
return_mask=False,
alpha=False,
name="sparse_dropout"):
""" Performs a dropout on a `SparseTensor`.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
sp_tensor (`SparseTensor`): a sparse tensor on which the dropout is performed.
mask (`Tensor`): a binary random mask to be applied to the values of this tensor
return_mask (`bool`): if true returns the random_mask used to perform dropout (result,random_mask)
probability (`float`, `Tensor`): A scalar tensor with the same type as x. The probability
that each element is kept.
scale (`bool`): if True rescales the input to 1 / keep_prob else simply drops without rescaling
seed (`int): A Python integer used as seed. (See `TensorFlow` documentation
for ``tf.set_random_seed`` for behavior.)
alpha (`bool`): if True uses `alpha_dropout` instead of `dropout` in the inputs
name (`str`): A name for this operation (optional).
"""
with tf.name_scope(name=name):
dense_shape = sp_tensor.dense_shape
if not sp_tensor.values.dtype.is_floating:
raise ValueError("sp_tensor has to be a floating point tensor since its values are going to"
" be scaled. Got a %s tensor instead." % sp_tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("keep_prob must be a scalar tensor or a float in the "
"range (0, 1], got %g" % probability)
probability = tf.convert_to_tensor(probability,
dtype=sp_tensor.dtype,
name="drop_probability")
if alpha:
drop_values = alpha_dropout(tensor=sp_tensor.values,
random_mask=mask,
probability=probability,
return_mask=return_mask,
seed=seed
)
else:
drop_values = dropout(tensor=sp_tensor.values,
random_mask=mask,
probability=probability,
scale=scale,
return_mask=return_mask,
seed=seed)
if return_mask is not None:
drop_values, mask = drop_values
not_zero = tf.math.not_equal(drop_values, 0)
values = tf.boolean_mask(drop_values, not_zero)
indices = tf.boolean_mask(sp_tensor.indices, not_zero)
new_tensor = tf.SparseTensor(indices, values, dense_shape)
if return_mask is not None:
return new_tensor, mask
else:
return new_tensor | def sparse_dropout(sp_tensor,
probability=0.2,
scale=True,
seed=None,
mask=None,
return_mask=False,
alpha=False,
name="sparse_dropout"):
""" Performs a dropout on a `SparseTensor`.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
Args:
sp_tensor (`SparseTensor`): a sparse tensor on which the dropout is performed.
mask (`Tensor`): a binary random mask to be applied to the values of this tensor
return_mask (`bool`): if true returns the random_mask used to perform dropout (result,random_mask)
probability (`float`, `Tensor`): A scalar tensor with the same type as x. The probability
that each element is kept.
scale (`bool`): if True rescales the input to 1 / keep_prob else simply drops without rescaling
seed (`int): A Python integer used as seed. (See `TensorFlow` documentation
for ``tf.set_random_seed`` for behavior.)
alpha (`bool`): if True uses `alpha_dropout` instead of `dropout` in the inputs
name (`str`): A name for this operation (optional).
"""
with tf.name_scope(name=name):
dense_shape = sp_tensor.dense_shape
if not sp_tensor.values.dtype.is_floating:
raise ValueError("sp_tensor has to be a floating point tensor since its values are going to"
" be scaled. Got a %s tensor instead." % sp_tensor.dtype)
if not 0 <= probability < 1:
raise ValueError("keep_prob must be a scalar tensor or a float in the "
"range (0, 1], got %g" % probability)
probability = tf.convert_to_tensor(probability,
dtype=sp_tensor.dtype,
name="drop_probability")
if alpha:
drop_values = alpha_dropout(tensor=sp_tensor.values,
random_mask=mask,
probability=probability,
return_mask=return_mask,
seed=seed
)
else:
drop_values = dropout(tensor=sp_tensor.values,
random_mask=mask,
probability=probability,
scale=scale,
return_mask=return_mask,
seed=seed)
if return_mask is not None:
drop_values, mask = drop_values
not_zero = tf.math.not_equal(drop_values, 0)
values = tf.boolean_mask(drop_values, not_zero)
indices = tf.boolean_mask(sp_tensor.indices, not_zero)
new_tensor = tf.SparseTensor(indices, values, dense_shape)
if return_mask is not None:
return new_tensor, mask
else:
return new_tensor |
Python | def apply_gate(tensor, gate):
""" Applies a gate tensor to the given input
if input tensor outer dimension is a multiple of gate outer dimension we use broadcasting to apply the gate evenly
across the input tensor.
Example:
```python
tx.apply_gate(tf.ones([1,4]),[1.,0.])
[[1., 1., 0., 0.]]
```
Args:
tensor (`Tensor`): an input tensor
gate (`Tensor`): float tensor that is multiplied by the input tensor. The outer dimension of the input tensor
should either match the gate tensor or be a multiple of gate tensor.
Returns:
gated (`Tensor`): input tensor gated using the given gate weights
"""
with tf.name_scope("apply_gate"):
tensor = as_tensor(tensor)
gate = as_tensor(gate)
n_gates = tf.shape(gate)[-1]
n_units = tf.shape(tensor)[-1]
feature_dim = n_units // n_gates
if isinstance(tensor, tf.SparseTensor):
tensor_in = tf.sparse.reshape(tensor, [-1, n_gates, feature_dim])
gate = tf.expand_dims(gate, -1)
gated = mx.sparse_dense_multiply(tensor_in, gate)
else:
tensor_in = tf.reshape(tensor, [-1, n_gates, feature_dim])
gated = tensor_in * tf.expand_dims(gate, -1)
out_shape = tf.stack([-1, n_units])
output = tf.reshape(gated, out_shape)
return output | def apply_gate(tensor, gate):
""" Applies a gate tensor to the given input
if input tensor outer dimension is a multiple of gate outer dimension we use broadcasting to apply the gate evenly
across the input tensor.
Example:
```python
tx.apply_gate(tf.ones([1,4]),[1.,0.])
[[1., 1., 0., 0.]]
```
Args:
tensor (`Tensor`): an input tensor
gate (`Tensor`): float tensor that is multiplied by the input tensor. The outer dimension of the input tensor
should either match the gate tensor or be a multiple of gate tensor.
Returns:
gated (`Tensor`): input tensor gated using the given gate weights
"""
with tf.name_scope("apply_gate"):
tensor = as_tensor(tensor)
gate = as_tensor(gate)
n_gates = tf.shape(gate)[-1]
n_units = tf.shape(tensor)[-1]
feature_dim = n_units // n_gates
if isinstance(tensor, tf.SparseTensor):
tensor_in = tf.sparse.reshape(tensor, [-1, n_gates, feature_dim])
gate = tf.expand_dims(gate, -1)
gated = mx.sparse_dense_multiply(tensor_in, gate)
else:
tensor_in = tf.reshape(tensor, [-1, n_gates, feature_dim])
gated = tensor_in * tf.expand_dims(gate, -1)
out_shape = tf.stack([-1, n_units])
output = tf.reshape(gated, out_shape)
return output |
Python | def empty_sparse_tensor(dense_shape, dtype=tf.float32, name="empty_sp_tensor"):
""" Creates an empty `SparseTensor`
Args:
dense_shape (`TensorShape`): a 1-D tensor, python list, or numpy array with the output shape for the sparse tensor
dtype (`DType`): the dtype of the values for the empty tf.SparseTensor
name (`str`): a name for this operation
Returns:
sp_tensor (`SparseTensor`): an empty sparse tensor with a given shape
"""
with tf.name_scope(name):
dense_shape = tf.convert_to_tensor(dense_shape, name="dense_shape", dtype=tf.int64)
index_shape = dense_shape.get_shape().with_rank(1)
empty_indices = tf.ones([0, index_shape[0]], dtype=tf.int64)
empty_values = tf.ones([0], dtype=dtype)
return tf.SparseTensor(empty_indices, empty_values, dense_shape) | def empty_sparse_tensor(dense_shape, dtype=tf.float32, name="empty_sp_tensor"):
""" Creates an empty `SparseTensor`
Args:
dense_shape (`TensorShape`): a 1-D tensor, python list, or numpy array with the output shape for the sparse tensor
dtype (`DType`): the dtype of the values for the empty tf.SparseTensor
name (`str`): a name for this operation
Returns:
sp_tensor (`SparseTensor`): an empty sparse tensor with a given shape
"""
with tf.name_scope(name):
dense_shape = tf.convert_to_tensor(dense_shape, name="dense_shape", dtype=tf.int64)
index_shape = dense_shape.get_shape().with_rank(1)
empty_indices = tf.ones([0, index_shape[0]], dtype=tf.int64)
empty_values = tf.ones([0], dtype=dtype)
return tf.SparseTensor(empty_indices, empty_values, dense_shape) |
Python | def embedding_lookup_sparse(params,
sp_tensor,
combiner=None,
max_norm=None,
name="embedding_lookup_sparse"):
"""Computes embeddings for the given ids and weights.
!!! info
assumes that there is at least one id for each row in the dense tensor
represented by sp_ids (i.e. there are no rows with empty features), and that
all the indices of sp_ids are in canonical row-major order.
It also assumes that all id values lie in the range [0, p0), where p0
is the sum of the size of params along dimension 0.
!!! note
in tensorflow's implementation, sparse gradients do not propagate through gather.
Args:
sp_tensor:
params: A single tensor representing the complete embedding tensor, or a
list of P tensors all of same shape except for the first dimension,
representing sharded embedding tensors. Alternatively, a
`PartitionedVariable`, created by partitioning along dimension 0. Each
element must be appropriately sized for the given `partition_strategy`.
sp_tensor (`SparseTensor`): N x M `SparseTensor` with the ids and weights
where N is typically batch size and M is arbitrary.
combiner: A string specifying the reduction op. Currently "mean", "sqrtn"
and "sum" are supported. "sum" computes the weighted sum of the embedding
results for each row. "mean" is the weighted sum divided by the total
weight. "sqrtn" is the weighted sum divided by the square root of the sum
of the squares of the weights.
max_norm: If not `None`, each embedding is clipped if its l2-norm is larger
than this value, before combining.
name (`str`): op name
Returns:
tensor (`Tensor`): dense tensor representing the combined embeddings for the
sparse ids. For each row in the dense tensor represented by `sp_ids`, the op
looks up the embeddings for all ids in that row, multiplies them by the
corresponding weight, and combines these embeddings as specified.
Raises:
TypeError: If `sp_ids` is not a `SparseTensor`, or if `sp_weights` is
neither `None` nor `SparseTensor`.
ValueError: If `combiner` is not one of {"mean", "sqrtn", "sum"}.
"""
if combiner is None:
logging.warn("The default value of combiner will change from \"mean\" "
"to \"sqrtn\" after 2016/11/01.")
combiner = "mean"
if combiner not in ("mean", "sqrtn", "sum"):
raise ValueError("combiner must be one of 'mean', 'sqrtn' or 'sum'")
if isinstance(params, PartitionedVariable):
params = list(params) # Iterate to get the underlying Variables.
if not isinstance(params, list):
params = [params]
if not isinstance(sp_tensor, tf.SparseTensor):
raise TypeError("sp_ids must be SparseTensor")
with tf.name_scope(name) as name:
segment_ids = sp_tensor.indices[:, 0]
if segment_ids.dtype != tf.int32:
segment_ids = tf.cast(segment_ids, tf.int32)
ids = sp_tensor.indices[:, -1]
# ids, idx = tf.unique(ids)
embeddings = tf.nn.embedding_lookup(
params=params,
ids=ids,
max_norm=max_norm)
# ***
# this second lookup causes problems because sparse gradients don't propagate though gather
# embeddings = embedding_lookup(embeddings, idx)
# embeddings, _ = gather_dynamic(embeddings, idx)
# ***
weights = sp_tensor.values
if weights.dtype != embeddings.dtype:
weights = tf.cast(weights, embeddings.dtype)
# Reshape weights to allow broadcast
ones = tf.fill(
tf.expand_dims(tf.rank(embeddings) - 1, 0), 1)
bcast_weights_shape = tf.concat(
[tf.shape(weights), ones], 0)
orig_weights_shape = weights.get_shape()
weights = tf.reshape(weights, bcast_weights_shape)
# Set the weight shape, since after reshaping to bcast_weights_shape,
# the shape becomes None.
if embeddings.get_shape().ndims is not None:
weights.set_shape(orig_weights_shape.concatenate(
[1 for _ in range(embeddings.get_shape().ndims - 1)]))
embeddings *= weights
if combiner == "sum":
embeddings = tf.math.segment_sum(embeddings, segment_ids, name=name)
elif combiner == "mean":
embeddings = tf.math.segment_sum(embeddings, segment_ids)
weight_sum = tf.math.segment_sum(weights, segment_ids)
embeddings = tf.math.divide_no_nan(embeddings, weight_sum, name=name)
elif combiner == "sqrtn":
embeddings = tf.math.segment_sum(embeddings, segment_ids)
weights_squared = tf.math.pow(weights, 2)
weight_sum = tf.math.segment_sum(weights_squared, segment_ids)
weight_sum_sqrt = tf.math.sqrt(weight_sum)
embeddings = tf.math.divide_no_nan(embeddings, weight_sum_sqrt, name=name)
else:
assert False, "Unrecognized combiner"
return embeddings | def embedding_lookup_sparse(params,
sp_tensor,
combiner=None,
max_norm=None,
name="embedding_lookup_sparse"):
"""Computes embeddings for the given ids and weights.
!!! info
assumes that there is at least one id for each row in the dense tensor
represented by sp_ids (i.e. there are no rows with empty features), and that
all the indices of sp_ids are in canonical row-major order.
It also assumes that all id values lie in the range [0, p0), where p0
is the sum of the size of params along dimension 0.
!!! note
in tensorflow's implementation, sparse gradients do not propagate through gather.
Args:
sp_tensor:
params: A single tensor representing the complete embedding tensor, or a
list of P tensors all of same shape except for the first dimension,
representing sharded embedding tensors. Alternatively, a
`PartitionedVariable`, created by partitioning along dimension 0. Each
element must be appropriately sized for the given `partition_strategy`.
sp_tensor (`SparseTensor`): N x M `SparseTensor` with the ids and weights
where N is typically batch size and M is arbitrary.
combiner: A string specifying the reduction op. Currently "mean", "sqrtn"
and "sum" are supported. "sum" computes the weighted sum of the embedding
results for each row. "mean" is the weighted sum divided by the total
weight. "sqrtn" is the weighted sum divided by the square root of the sum
of the squares of the weights.
max_norm: If not `None`, each embedding is clipped if its l2-norm is larger
than this value, before combining.
name (`str`): op name
Returns:
tensor (`Tensor`): dense tensor representing the combined embeddings for the
sparse ids. For each row in the dense tensor represented by `sp_ids`, the op
looks up the embeddings for all ids in that row, multiplies them by the
corresponding weight, and combines these embeddings as specified.
Raises:
TypeError: If `sp_ids` is not a `SparseTensor`, or if `sp_weights` is
neither `None` nor `SparseTensor`.
ValueError: If `combiner` is not one of {"mean", "sqrtn", "sum"}.
"""
if combiner is None:
logging.warn("The default value of combiner will change from \"mean\" "
"to \"sqrtn\" after 2016/11/01.")
combiner = "mean"
if combiner not in ("mean", "sqrtn", "sum"):
raise ValueError("combiner must be one of 'mean', 'sqrtn' or 'sum'")
if isinstance(params, PartitionedVariable):
params = list(params) # Iterate to get the underlying Variables.
if not isinstance(params, list):
params = [params]
if not isinstance(sp_tensor, tf.SparseTensor):
raise TypeError("sp_ids must be SparseTensor")
with tf.name_scope(name) as name:
segment_ids = sp_tensor.indices[:, 0]
if segment_ids.dtype != tf.int32:
segment_ids = tf.cast(segment_ids, tf.int32)
ids = sp_tensor.indices[:, -1]
# ids, idx = tf.unique(ids)
embeddings = tf.nn.embedding_lookup(
params=params,
ids=ids,
max_norm=max_norm)
# ***
# this second lookup causes problems because sparse gradients don't propagate though gather
# embeddings = embedding_lookup(embeddings, idx)
# embeddings, _ = gather_dynamic(embeddings, idx)
# ***
weights = sp_tensor.values
if weights.dtype != embeddings.dtype:
weights = tf.cast(weights, embeddings.dtype)
# Reshape weights to allow broadcast
ones = tf.fill(
tf.expand_dims(tf.rank(embeddings) - 1, 0), 1)
bcast_weights_shape = tf.concat(
[tf.shape(weights), ones], 0)
orig_weights_shape = weights.get_shape()
weights = tf.reshape(weights, bcast_weights_shape)
# Set the weight shape, since after reshaping to bcast_weights_shape,
# the shape becomes None.
if embeddings.get_shape().ndims is not None:
weights.set_shape(orig_weights_shape.concatenate(
[1 for _ in range(embeddings.get_shape().ndims - 1)]))
embeddings *= weights
if combiner == "sum":
embeddings = tf.math.segment_sum(embeddings, segment_ids, name=name)
elif combiner == "mean":
embeddings = tf.math.segment_sum(embeddings, segment_ids)
weight_sum = tf.math.segment_sum(weights, segment_ids)
embeddings = tf.math.divide_no_nan(embeddings, weight_sum, name=name)
elif combiner == "sqrtn":
embeddings = tf.math.segment_sum(embeddings, segment_ids)
weights_squared = tf.math.pow(weights, 2)
weight_sum = tf.math.segment_sum(weights_squared, segment_ids)
weight_sum_sqrt = tf.math.sqrt(weight_sum)
embeddings = tf.math.divide_no_nan(embeddings, weight_sum_sqrt, name=name)
else:
assert False, "Unrecognized combiner"
return embeddings |
Python | def sparse_overlap(sp_tensor1, sp_tensor2, name="sparse_overlap"):
"""sparse overlap
Returns a `SparseTensor` where the indices of the overlapping indices in the two
sparse tensors with the values of the first one.
Args:
sp_tensor1 (`SparseTensor`): a sparse tensor
sp_tensor2 (`SparseTensor`): another sparse tensor
name (`str`): name for sparse_overlap op
Returns:
sp_tensor (`SparseTensor`): sparse tensor with the overlapping indices and the values of `sp_tensor1`
"""
with tf.name_scope(name):
ones1 = mx.sparse_ones(sp_tensor1.indices, sp_tensor1.dense_shape)
ones2 = mx.sparse_ones(sp_tensor2.indices, sp_tensor2.dense_shape)
index_union = tf.sparse.add(ones1, ones2)
index_filter = tf.equal(index_union.values, 2.)
zeros1 = sparse_zeros(index_union.indices, index_union.dense_shape, sp_tensor1.values.dtype)
expand1 = tf.sparse.add(zeros1, sp_tensor1)
filtered = tf.sparse.retain(expand1, index_filter)
return filtered | def sparse_overlap(sp_tensor1, sp_tensor2, name="sparse_overlap"):
"""sparse overlap
Returns a `SparseTensor` where the indices of the overlapping indices in the two
sparse tensors with the values of the first one.
Args:
sp_tensor1 (`SparseTensor`): a sparse tensor
sp_tensor2 (`SparseTensor`): another sparse tensor
name (`str`): name for sparse_overlap op
Returns:
sp_tensor (`SparseTensor`): sparse tensor with the overlapping indices and the values of `sp_tensor1`
"""
with tf.name_scope(name):
ones1 = mx.sparse_ones(sp_tensor1.indices, sp_tensor1.dense_shape)
ones2 = mx.sparse_ones(sp_tensor2.indices, sp_tensor2.dense_shape)
index_union = tf.sparse.add(ones1, ones2)
index_filter = tf.equal(index_union.values, 2.)
zeros1 = sparse_zeros(index_union.indices, index_union.dense_shape, sp_tensor1.values.dtype)
expand1 = tf.sparse.add(zeros1, sp_tensor1)
filtered = tf.sparse.retain(expand1, index_filter)
return filtered |
Python | def sort_by_first(tensor1, tensor2, ascending=True, name="sort_by_first"):
"""sort_by_first
Sorts two tensors. Sorts the second by the changes in the first sort
Args:
tensor1 (`Tensor`): tensor to determine the oder by which the second is sorted
tensor2 (`Tensor`): tensor to be sorted according to the sorting of the first
ascending (`Bool`): if True sorts by ascending order of value
name (`str`): name of the op
Returns:
tensor1, tensor2 (`Tensor`,`Tensor`): sorted first tensor, second tensor sorted according to the indices of the
first tensor sorting
"""
with tf.name_scope(name=name):
tensor1 = as_tensor(tensor1)
tensor2 = as_tensor(tensor2)
sorted_tensor1, sorted_tensor1_indices = tf.nn.top_k(tensor1, k=tf.shape(tensor1)[-1])
if ascending:
sorted_tensor1 = tf.reverse(sorted_tensor1, axis=[-1])
sorted_tensor1_indices = tf.reverse(sorted_tensor1_indices, axis=[-1])
# TODO not sure what the performance implication of this check is when converted to graph
if len(tensor1.shape.as_list()) == 1:
sorted_tensor1_indices = tf.expand_dims(sorted_tensor1_indices, 1)
else:
sorted_tensor1_indices = matrix_indices(sorted_tensor1_indices, sort_indices=False)
sorted_values = tf.gather_nd(tensor2, sorted_tensor1_indices)
sorted_values = tf.reshape(sorted_values, tf.shape(tensor2))
return sorted_tensor1, sorted_values | def sort_by_first(tensor1, tensor2, ascending=True, name="sort_by_first"):
"""sort_by_first
Sorts two tensors. Sorts the second by the changes in the first sort
Args:
tensor1 (`Tensor`): tensor to determine the oder by which the second is sorted
tensor2 (`Tensor`): tensor to be sorted according to the sorting of the first
ascending (`Bool`): if True sorts by ascending order of value
name (`str`): name of the op
Returns:
tensor1, tensor2 (`Tensor`,`Tensor`): sorted first tensor, second tensor sorted according to the indices of the
first tensor sorting
"""
with tf.name_scope(name=name):
tensor1 = as_tensor(tensor1)
tensor2 = as_tensor(tensor2)
sorted_tensor1, sorted_tensor1_indices = tf.nn.top_k(tensor1, k=tf.shape(tensor1)[-1])
if ascending:
sorted_tensor1 = tf.reverse(sorted_tensor1, axis=[-1])
sorted_tensor1_indices = tf.reverse(sorted_tensor1_indices, axis=[-1])
# TODO not sure what the performance implication of this check is when converted to graph
if len(tensor1.shape.as_list()) == 1:
sorted_tensor1_indices = tf.expand_dims(sorted_tensor1_indices, 1)
else:
sorted_tensor1_indices = matrix_indices(sorted_tensor1_indices, sort_indices=False)
sorted_values = tf.gather_nd(tensor2, sorted_tensor1_indices)
sorted_values = tf.reshape(sorted_values, tf.shape(tensor2))
return sorted_tensor1, sorted_values |
Python | def ranges(range_sizes, name="ranges"):
""" ranges
similar to concatenating multiple `tf.range` calls applied
to each element of a given 1D tensor with range sizes.
Example:
```python
ranges([1,2,4])
[0,0,1,0,1,2,3]
```
the enums are `[0]`, `[0,1]`, `[0,1,2,3]`
Args:
range_sizes (`Tensor`): 1D tensor with range sizes
name (`str`): ranges op name
Returns:
ranges (`Tensor`): a 1D `Tensor` with `tf.reduce_sum(range_sizes)` dimensions
"""
with tf.name_scope(name):
range_sizes = tf.convert_to_tensor(range_sizes)
tf.ensure_shape(range_sizes, tf.TensorShape([None]))
tf.debugging.assert_greater(tf.shape(range_sizes)[0], 0,
message="range_sizes cannot be empty")
num_ranges = tf.shape(range_sizes)[0]
# get maximum repeat length in x
max_len = tf.math.reduce_max(range_sizes)
x = tf.range(max_len)
# tile it to the maximum repeat length [maxlen x maxlen] now
x_repeat = tf.stack([num_ranges, 1], axis=0)
x_tiled = tf.tile(tf.expand_dims(x, 0), x_repeat)
# create a sequence mask using x
# this will create a boolean matrix of shape [xlen, max_len]
# where result[i,j] is true if j < x[i].
mask = tf.sequence_mask(range_sizes, max_len)
# mask the elements based on the sequence mask
return tf.boolean_mask(x_tiled, mask) | def ranges(range_sizes, name="ranges"):
""" ranges
similar to concatenating multiple `tf.range` calls applied
to each element of a given 1D tensor with range sizes.
Example:
```python
ranges([1,2,4])
[0,0,1,0,1,2,3]
```
the enums are `[0]`, `[0,1]`, `[0,1,2,3]`
Args:
range_sizes (`Tensor`): 1D tensor with range sizes
name (`str`): ranges op name
Returns:
ranges (`Tensor`): a 1D `Tensor` with `tf.reduce_sum(range_sizes)` dimensions
"""
with tf.name_scope(name):
range_sizes = tf.convert_to_tensor(range_sizes)
tf.ensure_shape(range_sizes, tf.TensorShape([None]))
tf.debugging.assert_greater(tf.shape(range_sizes)[0], 0,
message="range_sizes cannot be empty")
num_ranges = tf.shape(range_sizes)[0]
# get maximum repeat length in x
max_len = tf.math.reduce_max(range_sizes)
x = tf.range(max_len)
# tile it to the maximum repeat length [maxlen x maxlen] now
x_repeat = tf.stack([num_ranges, 1], axis=0)
x_tiled = tf.tile(tf.expand_dims(x, 0), x_repeat)
# create a sequence mask using x
# this will create a boolean matrix of shape [xlen, max_len]
# where result[i,j] is true if j < x[i].
mask = tf.sequence_mask(range_sizes, max_len)
# mask the elements based on the sequence mask
return tf.boolean_mask(x_tiled, mask) |
Python | def gather_sparse(sp_tensor, ids, name="gather_sparse"):
""" gather_sparse
gather rows from a sparse tensor by the given ids and returns a sparse tensor
!!! warning
gathering from a `SparseTensor` is inefficient
Example:
```python
gather_sparse(sp_tensor,[1,1,4])
```
returns a `[3,sp_tensor.dense_shape[-1]]` `SparseTensor`
Args:
sp_tensor (`SparseTensor`): sparse tensor
ids (`Tensor`): an int tensor with the ids of the rows to be returned
name (`str`): on name
Returns:
sp_gathered (`SparseTensor`): a sparse tensor with the gathered rows.
"""
with tf.name_scope(name=name):
ids = tf.cast(ids, tf.int64)
ids = tf.reshape(ids, [-1])
# count columns and compute row coordinates
sp_column_ones = sparse_ones(sp_tensor.indices, sp_tensor.dense_shape, dtype=tf.int64)
col_count = tf.sparse.reduce_sum(sp_column_ones, axis=-1)
# sparse_reduce_sum sets shape to unknown
col_count.set_shape([sp_tensor.get_shape().as_list()[0]])
col_count_cs = tf.math.cumsum(col_count)
row_start_coor = col_count_cs - col_count
g_col_count = tf.gather(col_count, ids)
g_row_start_coor = tf.gather(row_start_coor, ids)
row_start_coor = tf.repeat(g_row_start_coor, g_col_count)
# col_counts = repeat_each(g_col_count, g_col_count)
offset = ranges(g_col_count)
# use modular arithmetic to make sure we get incremental coordinates
# gather_ids = row_start_coor + offset % col_counts
gather_ids = row_start_coor + offset
num_ids = tf.cast(tf.shape(ids)[0], tf.int64)
new_rows = tf.repeat(tf.range(num_ids), g_col_count)
sp_cols = sp_tensor.indices[:, -1]
new_cols = tf.gather(sp_cols, gather_ids)
new_indices = tf.stack([new_rows, new_cols], axis=-1)
new_values = tf.gather(sp_tensor.values, gather_ids)
new_shape = tf.concat([tf.expand_dims(tf.cast(num_ids, tf.int64), -1),
sp_tensor.dense_shape[1:]],
axis=-1)
sp = tf.SparseTensor(new_indices, new_values, new_shape)
return sp | def gather_sparse(sp_tensor, ids, name="gather_sparse"):
""" gather_sparse
gather rows from a sparse tensor by the given ids and returns a sparse tensor
!!! warning
gathering from a `SparseTensor` is inefficient
Example:
```python
gather_sparse(sp_tensor,[1,1,4])
```
returns a `[3,sp_tensor.dense_shape[-1]]` `SparseTensor`
Args:
sp_tensor (`SparseTensor`): sparse tensor
ids (`Tensor`): an int tensor with the ids of the rows to be returned
name (`str`): on name
Returns:
sp_gathered (`SparseTensor`): a sparse tensor with the gathered rows.
"""
with tf.name_scope(name=name):
ids = tf.cast(ids, tf.int64)
ids = tf.reshape(ids, [-1])
# count columns and compute row coordinates
sp_column_ones = sparse_ones(sp_tensor.indices, sp_tensor.dense_shape, dtype=tf.int64)
col_count = tf.sparse.reduce_sum(sp_column_ones, axis=-1)
# sparse_reduce_sum sets shape to unknown
col_count.set_shape([sp_tensor.get_shape().as_list()[0]])
col_count_cs = tf.math.cumsum(col_count)
row_start_coor = col_count_cs - col_count
g_col_count = tf.gather(col_count, ids)
g_row_start_coor = tf.gather(row_start_coor, ids)
row_start_coor = tf.repeat(g_row_start_coor, g_col_count)
# col_counts = repeat_each(g_col_count, g_col_count)
offset = ranges(g_col_count)
# use modular arithmetic to make sure we get incremental coordinates
# gather_ids = row_start_coor + offset % col_counts
gather_ids = row_start_coor + offset
num_ids = tf.cast(tf.shape(ids)[0], tf.int64)
new_rows = tf.repeat(tf.range(num_ids), g_col_count)
sp_cols = sp_tensor.indices[:, -1]
new_cols = tf.gather(sp_cols, gather_ids)
new_indices = tf.stack([new_rows, new_cols], axis=-1)
new_values = tf.gather(sp_tensor.values, gather_ids)
new_shape = tf.concat([tf.expand_dims(tf.cast(num_ids, tf.int64), -1),
sp_tensor.dense_shape[1:]],
axis=-1)
sp = tf.SparseTensor(new_indices, new_values, new_shape)
return sp |
Python | def grid_2d(shape, name="grid_2d"):
""" creates a tensor with a grid 2d coordinates
Args:
shape (`Tensor`): an Tensor of tf.int32 with a 2D shape for the grid
name (`str`): grid_2d op name
Returns:
grid_coordinates (`Tensor`): 2D tensor with grid coordinates
"""
shape = as_tensor(shape, tf.int32)
with tf.name_scope(name):
x = tf.range(shape[0])
y = tf.range(shape[1])
x = x[tf.newaxis, :, tf.newaxis]
y = y[:, tf.newaxis, tf.newaxis]
return tf.reshape(tf.concat([x + tf.zeros_like(y),
tf.zeros_like(x) + y], axis=2), [-1, 2]) | def grid_2d(shape, name="grid_2d"):
""" creates a tensor with a grid 2d coordinates
Args:
shape (`Tensor`): an Tensor of tf.int32 with a 2D shape for the grid
name (`str`): grid_2d op name
Returns:
grid_coordinates (`Tensor`): 2D tensor with grid coordinates
"""
shape = as_tensor(shape, tf.int32)
with tf.name_scope(name):
x = tf.range(shape[0])
y = tf.range(shape[1])
x = x[tf.newaxis, :, tf.newaxis]
y = y[:, tf.newaxis, tf.newaxis]
return tf.reshape(tf.concat([x + tf.zeros_like(y),
tf.zeros_like(x) + y], axis=2), [-1, 2]) |
Python | def sparse_tile(sp_tensor, num, name="sparse_tile"):
""" Constructs a `SparseTensor` by replicating the input sparse tensor `num` times
Args:
sp_tensor (`SparseTensor`): a sparse input tensor to be tiled
num (`int`): number of repetitions
name (`str`): name for the op
Returns:
sp_tile (`SparseTensor`): result sparse tensor
"""
with tf.name_scope(name):
sp_tensor = as_tensor(sp_tensor)
values = tf.tile(sp_tensor.values, [num])
num = as_tensor(num, tf.int64)
indices = tf.tile(sp_tensor.indices, [num, 1])
row_indices, col_indices = tf.unstack(indices, num=2, axis=-1)
# fix row indices
num_values = tf.shape(sp_tensor.values, out_type=tf.int64)[0]
batch_size = tf.shape(sp_tensor, out_type=tf.int64)[0]
# this is preferable to using dense shape directly because we need the num cols to be known
dim = sp_tensor.dense_shape[-1]
offset = tf.range(start=0, limit=num * batch_size, delta=batch_size, dtype=tf.int64)
row_offset = repeat(x=offset, n=num_values)
row_indices = row_indices + row_offset
indices = tf.stack([row_indices, col_indices], axis=-1)
tile_batch_size = batch_size * num
tiled_dense_shape = tf.stack([tile_batch_size, dim], axis=0)
sp_tilled = tf.SparseTensor(indices=indices,
values=values,
dense_shape=tiled_dense_shape)
return sp_tilled | def sparse_tile(sp_tensor, num, name="sparse_tile"):
""" Constructs a `SparseTensor` by replicating the input sparse tensor `num` times
Args:
sp_tensor (`SparseTensor`): a sparse input tensor to be tiled
num (`int`): number of repetitions
name (`str`): name for the op
Returns:
sp_tile (`SparseTensor`): result sparse tensor
"""
with tf.name_scope(name):
sp_tensor = as_tensor(sp_tensor)
values = tf.tile(sp_tensor.values, [num])
num = as_tensor(num, tf.int64)
indices = tf.tile(sp_tensor.indices, [num, 1])
row_indices, col_indices = tf.unstack(indices, num=2, axis=-1)
# fix row indices
num_values = tf.shape(sp_tensor.values, out_type=tf.int64)[0]
batch_size = tf.shape(sp_tensor, out_type=tf.int64)[0]
# this is preferable to using dense shape directly because we need the num cols to be known
dim = sp_tensor.dense_shape[-1]
offset = tf.range(start=0, limit=num * batch_size, delta=batch_size, dtype=tf.int64)
row_offset = repeat(x=offset, n=num_values)
row_indices = row_indices + row_offset
indices = tf.stack([row_indices, col_indices], axis=-1)
tile_batch_size = batch_size * num
tiled_dense_shape = tf.stack([tile_batch_size, dim], axis=0)
sp_tilled = tf.SparseTensor(indices=indices,
values=values,
dense_shape=tiled_dense_shape)
return sp_tilled |
Subsets and Splits