language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def gen_fv_extended(self, g, ng, node): """Generate sensitivities for free variables. Note that the default gen_fv_extended does nothing, so this is different behavior. """ with About(node.debug, self.relation): self.remap_node((g, node), g, node, ng, ng.apply())
def gen_fv_extended(self, g, ng, node): """Generate sensitivities for free variables. Note that the default gen_fv_extended does nothing, so this is different behavior. """ with About(node.debug, self.relation): self.remap_node((g, node), g, node, ng, ng.apply())
Python
def finalize_graph(self, g, ng): """Generate the output of the backprop graph. * Sensitivities for all free variables are packed in an EnvInstance using env_setitem. * We return a tuple with fv sensitivities first, and then all parameter sensitivities. """ fv_sens = Constant(newenv) for fv in g.free_variables_extended: sens = self.get(g, fv) if sens.is_apply(zeros_like): # Skip if there is no gradient continue fv_sens = ng.apply( P.env_setitem, fv_sens, ng.apply(operations.embed, self.grad_fprop.get_jinv(fv)), sens, ) in_sens = [self.get(g, p) for p in g.parameters] ng.output = ng.apply(P.make_tuple, fv_sens, *in_sens) if len(ng.parameters) == 0: # This can happen if the output is a constant. In that case we just # add a dummy parameter to satisfy the backpropagator protocol. with About(g.output.debug, "grad_sens"): ng.add_parameter()
def finalize_graph(self, g, ng): """Generate the output of the backprop graph. * Sensitivities for all free variables are packed in an EnvInstance using env_setitem. * We return a tuple with fv sensitivities first, and then all parameter sensitivities. """ fv_sens = Constant(newenv) for fv in g.free_variables_extended: sens = self.get(g, fv) if sens.is_apply(zeros_like): # Skip if there is no gradient continue fv_sens = ng.apply( P.env_setitem, fv_sens, ng.apply(operations.embed, self.grad_fprop.get_jinv(fv)), sens, ) in_sens = [self.get(g, p) for p in g.parameters] ng.output = ng.apply(P.make_tuple, fv_sens, *in_sens) if len(ng.parameters) == 0: # This can happen if the output is a constant. In that case we just # add a dummy parameter to satisfy the backpropagator protocol. with About(g.output.debug, "grad_sens"): ng.add_parameter()
Python
def Jimpl(prim: Primitive, resources, node): """Implement J on a Primitive.""" try: g = resources.grad_implementations[prim] err = False except KeyError: # pragma: no cover err = True if g is None: err = True if err: raise InternalInferenceError( f"Missing a backpropagator for primitive '{prim}'", refs=[node] ) return resources.convert(g, manage=False)
def Jimpl(prim: Primitive, resources, node): """Implement J on a Primitive.""" try: g = resources.grad_implementations[prim] err = False except KeyError: # pragma: no cover err = True if g is None: err = True if err: raise InternalInferenceError( f"Missing a backpropagator for primitive '{prim}'", refs=[node] ) return resources.convert(g, manage=False)
Python
def _make_grad_transform(prim, fn, flags): """Given a function for the bprop, make the augmented function.""" from .pipeline import standard_parse info = NamedDebugInfo(prim=prim, name=prim.name) bprop = clone(standard_parse(fn)) bprop.flags.update(default_grad_flags) bprop.debug.name = None bprop.debug.about = About(info, "grad_bprop") # type: ignore if bprop.output.match(_is_raise): pass elif bprop.output.match(_is_mktuple_resolve) or bprop.output.match( _is_mktuple_direct ): bprop.output = bprop.apply( P.make_tuple, newenv, *bprop.output.inputs[1:] ) else: raise InternalInferenceError( f"The backpropagator for {prim} is not defined properly. " f"It should return a tuple literal.", refs=[bprop.return_], ) *args, out_param, dout = bprop.parameters with About(info, "grad_fprop"): outer = Graph() outer.flags.update(default_grad_flags) outer.flags.update(flags) outer.transforms["primal"] = prim outer.output = Constant(None) mng = manage(bprop, outer) transf_args = [] for p in args: with About(p.debug, "grad_fprop"): outer_p = outer.add_parameter() with About(p.debug, "equiv"): transf_p = outer.apply(P.Jinv, outer_p) mng.replace(p, transf_p) transf_args.append(transf_p) with About(out_param.debug, "equiv"): out_value = outer.apply(prim, *transf_args) mng.replace(out_param, out_value) with About(out_param.debug, "grad_sens"): new_dout = bprop.add_parameter() mng.replace(dout, new_dout) # We remove all parameters except new_dout bprop.parameters = [new_dout] result = outer.apply(P.J, out_value) outer.output = outer.apply(P.make_tuple, result, bprop) return clone(outer)
def _make_grad_transform(prim, fn, flags): """Given a function for the bprop, make the augmented function.""" from .pipeline import standard_parse info = NamedDebugInfo(prim=prim, name=prim.name) bprop = clone(standard_parse(fn)) bprop.flags.update(default_grad_flags) bprop.debug.name = None bprop.debug.about = About(info, "grad_bprop") # type: ignore if bprop.output.match(_is_raise): pass elif bprop.output.match(_is_mktuple_resolve) or bprop.output.match( _is_mktuple_direct ): bprop.output = bprop.apply( P.make_tuple, newenv, *bprop.output.inputs[1:] ) else: raise InternalInferenceError( f"The backpropagator for {prim} is not defined properly. " f"It should return a tuple literal.", refs=[bprop.return_], ) *args, out_param, dout = bprop.parameters with About(info, "grad_fprop"): outer = Graph() outer.flags.update(default_grad_flags) outer.flags.update(flags) outer.transforms["primal"] = prim outer.output = Constant(None) mng = manage(bprop, outer) transf_args = [] for p in args: with About(p.debug, "grad_fprop"): outer_p = outer.add_parameter() with About(p.debug, "equiv"): transf_p = outer.apply(P.Jinv, outer_p) mng.replace(p, transf_p) transf_args.append(transf_p) with About(out_param.debug, "equiv"): out_value = outer.apply(prim, *transf_args) mng.replace(out_param, out_value) with About(out_param.debug, "grad_sens"): new_dout = bprop.add_parameter() mng.replace(dout, new_dout) # We remove all parameters except new_dout bprop.parameters = [new_dout] result = outer.apply(P.J, out_value) outer.output = outer.apply(P.make_tuple, result, bprop) return clone(outer)
Python
def wrap_grad_transform(prim): """Wrap the grad transform for prim.""" from .pipeline import standard_parse def deco(fn): g = standard_parse(fn) for g2 in manage(g, weak=True).graphs: name = short_labeler.name(g2) name = name.replace("__fprop__", syms["grad_fprop"]) g2.debug.name = name.replace("__bprop__", syms["grad_bprop"]) g2.flags.update(default_grad_flags) g.transforms["primal"] = prim return g return deco
def wrap_grad_transform(prim): """Wrap the grad transform for prim.""" from .pipeline import standard_parse def deco(fn): g = standard_parse(fn) for g2 in manage(g, weak=True).graphs: name = short_labeler.name(g2) name = name.replace("__fprop__", syms["grad_fprop"]) g2.debug.name = name.replace("__bprop__", syms["grad_bprop"]) g2.flags.update(default_grad_flags) g.transforms["primal"] = prim return g return deco
Python
def bprop_to_grad_transform(prim, **flags): """Create the grad transform of a function from a bprop function.""" def deco(fn): return _make_grad_transform(prim, fn, flags) return deco
def bprop_to_grad_transform(prim, **flags): """Create the grad transform of a function from a bprop function.""" def deco(fn): return _make_grad_transform(prim, fn, flags) return deco
Python
async def infer_conv2d( self, engine, input: AbstractArray, weight: AbstractArray, stride: u64pair_typecheck, padding: u64pair_typecheck, dilation: u64pair_typecheck, groups: xtype.UInt[64], ): """Infer the return type of primitive `conv2d`.""" # TODO: _shape_type should not allow float to be converted to uint # TODO: "groups: UInt[64]" should not allow float to be converted to uint h_in, w_in = input.xshape()[2:] kernel_size = weight.xshape()[2:] stride = tuple( self.require_constant(e, argnum=f'"2:stride[{edx}]"') for edx, e in enumerate(stride.elements) ) padding = tuple( self.require_constant(e, argnum=f'"3:padding[{edx}]"') for edx, e in enumerate(padding.elements) ) dilation = tuple( self.require_constant(e, argnum=f'"4:dilation[{edx}]"') for edx, e in enumerate(dilation.elements) ) N = input.xshape()[0] C_out = weight.xshape()[0] # Based on formulae in shape section of: # https://pytorch.org/docs/stable/nn.html#conv2d H_out = ( (h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) // stride[0] ) + 1 W_out = ( (w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) // stride[1] ) + 1 out_shape = (N, C_out, int(H_out), int(W_out)) # Checks all elements of input have same xtype as all elements of weight engine.check(AbstractScalar, input.element, weight.element) # ^ TODO: PyTorch also enforces, but might want to change for mixed precis return type(weight)( weight.element, {SHAPE: out_shape, TYPE: weight.xtype()} )
async def infer_conv2d( self, engine, input: AbstractArray, weight: AbstractArray, stride: u64pair_typecheck, padding: u64pair_typecheck, dilation: u64pair_typecheck, groups: xtype.UInt[64], ): """Infer the return type of primitive `conv2d`.""" # TODO: _shape_type should not allow float to be converted to uint # TODO: "groups: UInt[64]" should not allow float to be converted to uint h_in, w_in = input.xshape()[2:] kernel_size = weight.xshape()[2:] stride = tuple( self.require_constant(e, argnum=f'"2:stride[{edx}]"') for edx, e in enumerate(stride.elements) ) padding = tuple( self.require_constant(e, argnum=f'"3:padding[{edx}]"') for edx, e in enumerate(padding.elements) ) dilation = tuple( self.require_constant(e, argnum=f'"4:dilation[{edx}]"') for edx, e in enumerate(dilation.elements) ) N = input.xshape()[0] C_out = weight.xshape()[0] # Based on formulae in shape section of: # https://pytorch.org/docs/stable/nn.html#conv2d H_out = ( (h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) // stride[0] ) + 1 W_out = ( (w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) // stride[1] ) + 1 out_shape = (N, C_out, int(H_out), int(W_out)) # Checks all elements of input have same xtype as all elements of weight engine.check(AbstractScalar, input.element, weight.element) # ^ TODO: PyTorch also enforces, but might want to change for mixed precis return type(weight)( weight.element, {SHAPE: out_shape, TYPE: weight.xtype()} )
Python
async def infer_universe_getitem( self, engine, universe: xtype.UniverseType, handle: lib.AbstractHandle ): """Infer the return type of primitive `universe_getitem`.""" return broaden(handle.element)
async def infer_universe_getitem( self, engine, universe: xtype.UniverseType, handle: lib.AbstractHandle ): """Infer the return type of primitive `universe_getitem`.""" return broaden(handle.element)
Python
async def infer_partial(self, engine, fn, *args): """Infer the return type of primitive `partial`.""" fns = await fn.get() assert isinstance(fns, Possibilities) return AbstractFunction(*[PartialApplication(fn, list(args)) for fn in fns])
async def infer_partial(self, engine, fn, *args): """Infer the return type of primitive `partial`.""" fns = await fn.get() assert isinstance(fns, Possibilities) return AbstractFunction(*[PartialApplication(fn, list(args)) for fn in fns])
Python
def pattern_replacer(*pattern, interest=False): """Create a PatternSubstitutionOptimization using this function.""" if len(pattern) == 2 and pattern[0] == "just": pattern = pattern[1] def deco(f): return PatternSubstitutionOptimization( pattern, f, name=f.__name__, interest=interest ) return deco
def pattern_replacer(*pattern, interest=False): """Create a PatternSubstitutionOptimization using this function.""" if len(pattern) == 2 and pattern[0] == "just": pattern = pattern[1] def deco(f): return PatternSubstitutionOptimization( pattern, f, name=f.__name__, interest=interest ) return deco
Python
def register(self, interests, opt=None): """Register an optimizer for some interests.""" def do_register(opt): ints = interests if ints is None: self._d.setdefault(None, []).append(opt) return if not isinstance(ints, tuple): ints = (ints,) for interest in ints: assert isinstance(interest, Primitive) or ( interest in (Graph, Apply) ) self._d.setdefault(interest, []).append(opt) # There could be the option to return do_register also. do_register(opt)
def register(self, interests, opt=None): """Register an optimizer for some interests.""" def do_register(opt): ints = interests if ints is None: self._d.setdefault(None, []).append(opt) return if not isinstance(ints, tuple): ints = (ints,) for interest in ints: assert isinstance(interest, Primitive) or ( interest in (Graph, Apply) ) self._d.setdefault(interest, []).append(opt) # There could be the option to return do_register also. do_register(opt)
Python
def apply_opt(self, resources, mng, n): """Apply optimizations passes according to the node map.""" loop = True changes = False while loop: loop = False for transformer in self.node_map.get(n): args = dict(opt=transformer, node=n, manager=mng, profile=False) with tracer("opt", **args) as tr: tr.set_results(success=False, **args) with About(n.debug, "opt", transformer.name): new = transformer(resources, n) if new is not None and new is not n: tracer().emit_match(**args, new_node=new) if new is True: changes = True continue if new and new is not n: mng.replace(n, new) tracer().emit_success(**args, new_node=new) tr.set_results(success=True, **args) if resources and resources.live_inferrer: resources.live_inferrer() n = new loop = True changes = True break return n, changes
def apply_opt(self, resources, mng, n): """Apply optimizations passes according to the node map.""" loop = True changes = False while loop: loop = False for transformer in self.node_map.get(n): args = dict(opt=transformer, node=n, manager=mng, profile=False) with tracer("opt", **args) as tr: tr.set_results(success=False, **args) with About(n.debug, "opt", transformer.name): new = transformer(resources, n) if new is not None and new is not n: tracer().emit_match(**args, new_node=new) if new is True: changes = True continue if new and new is not n: mng.replace(n, new) tracer().emit_success(**args, new_node=new) tr.set_results(success=True, **args) if resources and resources.live_inferrer: resources.live_inferrer() n = new loop = True changes = True break return n, changes
Python
async def infer_array_reduce( self, engine, fn: AbstractFunctionBase, a: AbstractArray, shp: u64tup_typecheck, ): """Infer the return type of primitive `array_reduce`.""" shp_i = await force_pending(a.xshape()) shp_v = build_value(shp, default=ANYTHING) if shp_v == ANYTHING: raise AssertionError( "We currently require knowing the shape for reduce." ) # return (ANYTHING,) * (len(shp_i) - 1) else: delta = len(shp_i) - len(shp_v) if delta < 0 or any( 1 != s1 != ANYTHING and 1 != s2 != ANYTHING and s1 != s2 for s1, s2 in zip(shp_i[delta:], shp_v) ): raise MyiaShapeError( f"Incompatible dims for reduce: {shp_i}, {shp_v}" ) res = await engine.execute(fn, a.element, a.element) return type(a)(res, {SHAPE: shp_v, TYPE: a.xtype()})
async def infer_array_reduce( self, engine, fn: AbstractFunctionBase, a: AbstractArray, shp: u64tup_typecheck, ): """Infer the return type of primitive `array_reduce`.""" shp_i = await force_pending(a.xshape()) shp_v = build_value(shp, default=ANYTHING) if shp_v == ANYTHING: raise AssertionError( "We currently require knowing the shape for reduce." ) # return (ANYTHING,) * (len(shp_i) - 1) else: delta = len(shp_i) - len(shp_v) if delta < 0 or any( 1 != s1 != ANYTHING and 1 != s2 != ANYTHING and s1 != s2 for s1, s2 in zip(shp_i[delta:], shp_v) ): raise MyiaShapeError( f"Incompatible dims for reduce: {shp_i}, {shp_v}" ) res = await engine.execute(fn, a.element, a.element) return type(a)(res, {SHAPE: shp_v, TYPE: a.xtype()})
Python
async def infer_array_cast( self, engine, a: lib.AbstractArray, typ: lib.AbstractType ): """Infer the return type of primitive `array_cast`.""" scal = typ.element if not isinstance(scal, lib.AbstractScalar): raise MyiaTypeError("array_cast must cast to a scalar dtype") t = scal.xtype() engine.check(xtype.Number, t) e_values = {**a.element.values, lib.TYPE: t} return lib.AbstractArray(lib.AbstractScalar(e_values), a.values)
async def infer_array_cast( self, engine, a: lib.AbstractArray, typ: lib.AbstractType ): """Infer the return type of primitive `array_cast`.""" scal = typ.element if not isinstance(scal, lib.AbstractScalar): raise MyiaTypeError("array_cast must cast to a scalar dtype") t = scal.xtype() engine.check(xtype.Number, t) e_values = {**a.element.values, lib.TYPE: t} return lib.AbstractArray(lib.AbstractScalar(e_values), a.values)
Python
async def infer_take(self, engine, inp: AbstractArray, indices: AbstractArray): """Infer the return type of primitive `take`.""" indices_shape = tuple(await force_pending(indices.xshape())) inp_shape = tuple(await force_pending(inp.xshape())) assert len(inp_shape) == 2 output_shape = indices_shape + (inp_shape[1],) return AbstractArray( inp.element, {SHAPE: output_shape, TYPE: await force_pending(inp.xtype())}, )
async def infer_take(self, engine, inp: AbstractArray, indices: AbstractArray): """Infer the return type of primitive `take`.""" indices_shape = tuple(await force_pending(indices.xshape())) inp_shape = tuple(await force_pending(inp.xshape())) assert len(inp_shape) == 2 output_shape = indices_shape + (inp_shape[1],) return AbstractArray( inp.element, {SHAPE: output_shape, TYPE: await force_pending(inp.xtype())}, )
Python
def bprop_take(inp, indices, out, dout): """Backpropagator for primitive `take`.""" return ( P.take_grad_inp(P.shape(inp)[0], indices, dout), zeros_like(indices), )
def bprop_take(inp, indices, out, dout): """Backpropagator for primitive `take`.""" return ( P.take_grad_inp(P.shape(inp)[0], indices, dout), zeros_like(indices), )
Python
def string_to_np_dtype(string): """Convert given string to numpy d-type. Return None if parsing failed.""" try: # If Numpy cannot parse given string, it will raise a TypeError. np_dtype = np.dtype(string) except TypeError: pass else: # We accept only: # - booleans, # - signed integers, # - unsigned integers, # - floating values # - complex values. if np_dtype.kind in "biufc": return np_dtype.type return None
def string_to_np_dtype(string): """Convert given string to numpy d-type. Return None if parsing failed.""" try: # If Numpy cannot parse given string, it will raise a TypeError. np_dtype = np.dtype(string) except TypeError: pass else: # We accept only: # - booleans, # - signed integers, # - unsigned integers, # - floating values # - complex values. if np_dtype.kind in "biufc": return np_dtype.type return None
Python
async def to_scalar_type(info, data): """Convert given data to abstract scalar. Arguments: data: arbitrary data to convert Returns: an abstract scalar object if data can be converted, otherwise raise an exception. """ sync_data = await data.get() # We expect either: # - an abstract type containing an abstract scalar with scalar type # - an abstract scalar containing a string to be parsed to a scalar type if isinstance(sync_data, AbstractType): abstract_scalar = sync_data.element if isinstance(abstract_scalar, AbstractScalar): xtype = await force_pending(abstract_scalar.xtype()) if inspect.isclass(xtype) and issubclass(xtype, Number): return Constant(abstract_scalar) elif isinstance(sync_data, AbstractScalar): xtype = await force_pending(sync_data.xtype()) if xtype is String: np_dtype = string_to_np_dtype(sync_data.xvalue()) if np_dtype: myia_type = pytype_to_myiatype(np_dtype) return Constant( AbstractScalar({VALUE: ANYTHING, TYPE: myia_type}) ) # In any other case, we raise an exception. raise MyiaTypeError("Unable to convert data to scalar type: %s" % sync_data)
async def to_scalar_type(info, data): """Convert given data to abstract scalar. Arguments: data: arbitrary data to convert Returns: an abstract scalar object if data can be converted, otherwise raise an exception. """ sync_data = await data.get() # We expect either: # - an abstract type containing an abstract scalar with scalar type # - an abstract scalar containing a string to be parsed to a scalar type if isinstance(sync_data, AbstractType): abstract_scalar = sync_data.element if isinstance(abstract_scalar, AbstractScalar): xtype = await force_pending(abstract_scalar.xtype()) if inspect.isclass(xtype) and issubclass(xtype, Number): return Constant(abstract_scalar) elif isinstance(sync_data, AbstractScalar): xtype = await force_pending(sync_data.xtype()) if xtype is String: np_dtype = string_to_np_dtype(sync_data.xvalue()) if np_dtype: myia_type = pytype_to_myiatype(np_dtype) return Constant( AbstractScalar({VALUE: ANYTHING, TYPE: myia_type}) ) # In any other case, we raise an exception. raise MyiaTypeError("Unable to convert data to scalar type: %s" % sync_data)
Python
def compute_finite_diff(self) -> Dict[str, float]: """Compute the finite differences gradient. Returns: A dictionary that maps d<outname>/d<argname> to the gradient computed by finite difference with fn on args. """ results: Dict[str, float] = {} for (under, over), ipath in gen_variants(self.args, self.wiggle, ()): under = clean_args(under) over = clean_args(over) under_res = self.wrap(self.fn(*under)) over_res = self.wrap(self.fn(*over)) eps = self.epsilon @smap.variant def mkdiff(self, a: object, b): return (b - a) / (2 * eps) diff = mkdiff(under_res, over_res) for opath in gen_paths(diff, ()): self._set_result( results, opath, ipath, resolve_path(diff, opath) ) self.finite_diff = results return results
def compute_finite_diff(self) -> Dict[str, float]: """Compute the finite differences gradient. Returns: A dictionary that maps d<outname>/d<argname> to the gradient computed by finite difference with fn on args. """ results: Dict[str, float] = {} for (under, over), ipath in gen_variants(self.args, self.wiggle, ()): under = clean_args(under) over = clean_args(over) under_res = self.wrap(self.fn(*under)) over_res = self.wrap(self.fn(*over)) eps = self.epsilon @smap.variant def mkdiff(self, a: object, b): return (b - a) / (2 * eps) diff = mkdiff(under_res, over_res) for opath in gen_paths(diff, ()): self._set_result( results, opath, ipath, resolve_path(diff, opath) ) self.finite_diff = results return results
Python
def compare(self) -> Dict[str, Dict]: """Compare the exact gradients to the estimated ones. Returns: A dictionary that maps d<outname>/d<argname> to a dictionary that contains both gradients and a boolean 'match' field. """ exact = self.compute_exact() fin = self.compute_finite_diff() results = {} rel = self.rel_error for k in exact: e = exact[k] f = fin[k] if e is None: match = f == 0 elif e == f: match = True else: threshold = max(abs(rel * e), abs(rel * f)) match = bool(abs(e - f) <= threshold) results[k] = dict(exact=e, difference=f, match=match) return results
def compare(self) -> Dict[str, Dict]: """Compare the exact gradients to the estimated ones. Returns: A dictionary that maps d<outname>/d<argname> to a dictionary that contains both gradients and a boolean 'match' field. """ exact = self.compute_exact() fin = self.compute_finite_diff() results = {} rel = self.rel_error for k in exact: e = exact[k] f = fin[k] if e is None: match = f == 0 elif e == f: match = True else: threshold = max(abs(rel * e), abs(rel * f)) match = bool(abs(e - f) <= threshold) results[k] = dict(exact=e, difference=f, match=match) return results
Python
def assert_match(self): """Assert that the exact gradients match the estimated ones.""" results = self.compare() failed = False argspec = [ f"{name}={arg}" for name, arg in zip(self.argnames, self.args) ] print(f"In: {', '.join(argspec)}") outspec = [ f"{name}={arg}" for name, arg in zip(self.outnames, self.out) ] print(f"Out: {', '.join(outspec)}") for path, data in results.items(): if data["match"]: print(f"{path} OK: == {data['exact']}") else: failed = True print( f"{path} MISMATCH:" f" {data['exact']} != {data['difference']}" f" (exact / finite diff)" ) if failed: raise Exception("Gradients do not match.")
def assert_match(self): """Assert that the exact gradients match the estimated ones.""" results = self.compare() failed = False argspec = [ f"{name}={arg}" for name, arg in zip(self.argnames, self.args) ] print(f"In: {', '.join(argspec)}") outspec = [ f"{name}={arg}" for name, arg in zip(self.outnames, self.out) ] print(f"Out: {', '.join(outspec)}") for path, data in results.items(): if data["match"]: print(f"{path} OK: == {data['exact']}") else: failed = True print( f"{path} MISMATCH:" f" {data['exact']} != {data['difference']}" f" (exact / finite diff)" ) if failed: raise Exception("Gradients do not match.")
Python
def __fprop__switch(jcond, jtb, jfb): """Backpropagator for primitive `switch`.""" cond = Jinv(jcond) rval = operations.switch(cond, jtb, jfb) def __bprop__switch(dout): tb = Jinv(jtb) fb = Jinv(jfb) return ( newenv, zeros_like(cond), operations.switch(cond, dout, zeros_like(fb)), operations.switch(cond, zeros_like(tb), dout), ) return rval, __bprop__switch
def __fprop__switch(jcond, jtb, jfb): """Backpropagator for primitive `switch`.""" cond = Jinv(jcond) rval = operations.switch(cond, jtb, jfb) def __bprop__switch(dout): tb = Jinv(jtb) fb = Jinv(jfb) return ( newenv, zeros_like(cond), operations.switch(cond, dout, zeros_like(fb)), operations.switch(cond, zeros_like(tb), dout), ) return rval, __bprop__switch
Python
async def infer_split(self, engine, x, sections, dim): """Infer the return type of primitive `split`.""" sections_v = [e.xvalue() for e in sections.elements] x_shp_v = x.xshape() dim_v = dim.xvalue() shp_r = () for s in sections_v: shp_r = shp_r + (x_shp_v[:dim_v] + (s,) + x_shp_v[dim_v + 1 :],) return AbstractTuple( [ type(x)(x.element, {SHAPE: out_shape, TYPE: x.xtype()}) for out_shape in shp_r ] )
async def infer_split(self, engine, x, sections, dim): """Infer the return type of primitive `split`.""" sections_v = [e.xvalue() for e in sections.elements] x_shp_v = x.xshape() dim_v = dim.xvalue() shp_r = () for s in sections_v: shp_r = shp_r + (x_shp_v[:dim_v] + (s,) + x_shp_v[dim_v + 1 :],) return AbstractTuple( [ type(x)(x.element, {SHAPE: out_shape, TYPE: x.xtype()}) for out_shape in shp_r ] )
Python
async def infer_transpose( self, engine, a: AbstractArray, permutation: u64tup_typecheck ): """Infer the return type of primitive `transpose`.""" perm = build_value(permutation, default=ANYTHING) if perm == ANYTHING: shp = (ANYTHING,) * len(permutation.elements) else: a_shp = await force_pending(a.xshape()) if list(sorted(perm)) != list(range(len(a_shp))): raise MyiaShapeError( "The second argument of transpose must be a permutation of" " all of the array's axes." ) shp = tuple(a_shp[i] for i in perm) return type(a)(a.element, {SHAPE: shp, TYPE: a.xtype()})
async def infer_transpose( self, engine, a: AbstractArray, permutation: u64tup_typecheck ): """Infer the return type of primitive `transpose`.""" perm = build_value(permutation, default=ANYTHING) if perm == ANYTHING: shp = (ANYTHING,) * len(permutation.elements) else: a_shp = await force_pending(a.xshape()) if list(sorted(perm)) != list(range(len(a_shp))): raise MyiaShapeError( "The second argument of transpose must be a permutation of" " all of the array's axes." ) shp = tuple(a_shp[i] for i in perm) return type(a)(a.element, {SHAPE: shp, TYPE: a.xtype()})
Python
def import_mod(pkg): """Helper function for simple frontends. This will return a callable that will load a module. """ def loader(): importlib.import_module(pkg) return loader
def import_mod(pkg): """Helper function for simple frontends. This will return a callable that will load a module. """ def loader(): importlib.import_module(pkg) return loader
Python
def collect_frontend_plugins(): """Collect frontend plugins. Look for entry points in namespace "myia.frontend". Each entry point must be a frontend module. :return: a dictionary mapping a frontend name to a loader function to import frontend module. """ return { entry_point.name: import_mod(entry_point.module_name) for entry_point in pkg_resources.iter_entry_points("myia.frontend") }
def collect_frontend_plugins(): """Collect frontend plugins. Look for entry points in namespace "myia.frontend". Each entry point must be a frontend module. :return: a dictionary mapping a frontend name to a loader function to import frontend module. """ return { entry_point.name: import_mod(entry_point.module_name) for entry_point in pkg_resources.iter_entry_points("myia.frontend") }
Python
def constvar(cls=object): """Return a variable matching a Constant of the given type.""" def _is_c(n): return n.is_constant(cls) return var(_is_c)
def constvar(cls=object): """Return a variable matching a Constant of the given type.""" def _is_c(n): return n.is_constant(cls) return var(_is_c)
Python
def pop(self): """Remove the top element of the stack and return it.""" curr, prev = self.var.get() assert prev is not None self.var.set(prev) return curr
def pop(self): """Remove the top element of the stack and return it.""" curr, prev = self.var.get() assert prev is not None self.var.set(prev) return curr
Python
def debug_name(self): """Return the name, create a fresh name if needed.""" if self.name: return self.name prefix = "" if self.obj is not None: prefix = self.obj.__class__.__name__.lower() self.name = f"_{prefix}{self.id}" return self.name
def debug_name(self): """Return the name, create a fresh name if needed.""" if self.name: return self.name prefix = "" if self.obj is not None: prefix = self.obj.__class__.__name__.lower() self.name = f"_{prefix}{self.id}" return self.name
Python
def find(self, prop, skip=set()): """Find a property in self or in self.about.debug.""" curr = self while curr is not None: rel = curr.about and curr.about.relation if hasattr(curr, prop) and rel not in skip: return getattr(curr, prop) if not curr.about: break curr = curr.about.debug return None
def find(self, prop, skip=set()): """Find a property in self or in self.about.debug.""" curr = self while curr is not None: rel = curr.about and curr.about.relation if hasattr(curr, prop) and rel not in skip: return getattr(curr, prop) if not curr.about: break curr = curr.about.debug return None
Python
async def infer_tuple_setitem( self, engine, arg: lib.AbstractTuple, idx: xtype.Int[64], value: lib.AbstractValue, ): """Infer the return type of primitive `tuple_setitem`.""" nelems = len(arg.elements) idx_v = self.require_constant(idx, argnum=2, range=range(-nelems, nelems)) elts = arg.elements new_elts = tuple([*elts[:idx_v], value, *elts[idx_v + 1 :]]) return lib.AbstractTuple(new_elts)
async def infer_tuple_setitem( self, engine, arg: lib.AbstractTuple, idx: xtype.Int[64], value: lib.AbstractValue, ): """Infer the return type of primitive `tuple_setitem`.""" nelems = len(arg.elements) idx_v = self.require_constant(idx, argnum=2, range=range(-nelems, nelems)) elts = arg.elements new_elts = tuple([*elts[:idx_v], value, *elts[idx_v + 1 :]]) return lib.AbstractTuple(new_elts)
Python
async def resolve(info, r_data, r_item): """Perform static name resolution on a Namespace.""" data_v, item_v = await info.build_all(r_data, r_item) if not isinstance(data_v, Namespace): # pragma: no cover raise MyiaTypeError( f"data argument to resolve must be Namespace," f" not {data_v}" ) if not isinstance(item_v, str): # pragma: no cover raise MyiaTypeError( f"item argument to resolve must be a string," f" not {item_v}." ) try: resolved = data_v[item_v] except NameError: raise MyiaNameError(f"Cannot resolve name '{item_v}'") return Constant(resolved)
async def resolve(info, r_data, r_item): """Perform static name resolution on a Namespace.""" data_v, item_v = await info.build_all(r_data, r_item) if not isinstance(data_v, Namespace): # pragma: no cover raise MyiaTypeError( f"data argument to resolve must be Namespace," f" not {data_v}" ) if not isinstance(item_v, str): # pragma: no cover raise MyiaTypeError( f"item argument to resolve must be a string," f" not {item_v}." ) try: resolved = data_v[item_v] except NameError: raise MyiaNameError(f"Cannot resolve name '{item_v}'") return Constant(resolved)
Python
def validate_annotation(annotation, abstract): """Check if abstract is allowed by given annotation.""" try: annotation_merge( type_to_abstract(annotation), abstract, forced=True, bind_pending=True, ) except MyiaTypeError as exc: raise AnnotationMismatchError(f"{type(exc).__name__}: {exc.message}") return abstract
def validate_annotation(annotation, abstract): """Check if abstract is allowed by given annotation.""" try: annotation_merge( type_to_abstract(annotation), abstract, forced=True, bind_pending=True, ) except MyiaTypeError as exc: raise AnnotationMismatchError(f"{type(exc).__name__}: {exc.message}") return abstract
Python
def reset(self): """Reset all of the InferenceEngine's caches.""" self.cache = EvaluationCache( loop=self.loop, keycalc=self.compute_ref, keytransform=self.get_actual_ref, ) self.reference_map = {} self.new_reference_map = {} self.constructors = {}
def reset(self): """Reset all of the InferenceEngine's caches.""" self.cache = EvaluationCache( loop=self.loop, keycalc=self.compute_ref, keytransform=self.get_actual_ref, ) self.reference_map = {} self.new_reference_map = {} self.constructors = {}
Python
async def infer_function(self, fn, argspec, outspec=None): """Infer a function call on the given argspec/outspec.""" if not isinstance(fn, Function): fn = to_abstract(fn).get_unique() vfn = AbstractFunctionUnique(argspec, outspec) out = await execute_inferrers( self, [self.get_inferrer_for(fn)], VirtualReference(vfn.output), [VirtualReference(arg) for arg in vfn.args], ) if outspec is not None: self.abstract_merge(out, vfn.output) return out
async def infer_function(self, fn, argspec, outspec=None): """Infer a function call on the given argspec/outspec.""" if not isinstance(fn, Function): fn = to_abstract(fn).get_unique() vfn = AbstractFunctionUnique(argspec, outspec) out = await execute_inferrers( self, [self.get_inferrer_for(fn)], VirtualReference(vfn.output), [VirtualReference(arg) for arg in vfn.args], ) if outspec is not None: self.abstract_merge(out, vfn.output) return out
Python
def run(self, graph, *, argspec, outspec=None): """Run the inferrer on a graph given initial values. Arguments: graph: The graph to analyze. argspec: The arguments. Must be a tuple of AbstractValue. outspec (optional): Expected inference result. If provided, inference result will be checked against it. """ self.mng.add_graph(graph) empty_context = self.context_class.empty() root_context = empty_context.add(graph, argspec) out = self.run_coroutine(self.infer_function(graph, argspec, outspec)) out = concretize_abstract(out) return out, root_context
def run(self, graph, *, argspec, outspec=None): """Run the inferrer on a graph given initial values. Arguments: graph: The graph to analyze. argspec: The arguments. Must be a tuple of AbstractValue. outspec (optional): Expected inference result. If provided, inference result will be checked against it. """ self.mng.add_graph(graph) empty_context = self.context_class.empty() root_context = empty_context.add(graph, argspec) out = self.run_coroutine(self.infer_function(graph, argspec, outspec)) out = concretize_abstract(out) return out, root_context
Python
def ref(self, node, context): """Return a Reference to the node in the given context.""" if node.abstract is not None: return Reference(self, node, CONTEXTLESS) if context is CONTEXTLESS: return Reference(self, node, CONTEXTLESS) if node.is_constant_graph(): if node.value.abstract is not None: with untested(): return Reference(self, node, CONTEXTLESS) graph = node.value.parent else: graph = node.graph new_context = context.filter(graph) ref = Reference(self, node, new_context) if new_context.graph is not graph: raise InternalInferenceError( f"Trying to access node '{ref.node}' of function '{graph}'" f" from function '{context.graph}', but it is not visible" " in that scope. This typically indicates either a bug" " in a macro or a bug in Myia.", refs=[ref], ) return ref
def ref(self, node, context): """Return a Reference to the node in the given context.""" if node.abstract is not None: return Reference(self, node, CONTEXTLESS) if context is CONTEXTLESS: return Reference(self, node, CONTEXTLESS) if node.is_constant_graph(): if node.value.abstract is not None: with untested(): return Reference(self, node, CONTEXTLESS) graph = node.value.parent else: graph = node.graph new_context = context.filter(graph) ref = Reference(self, node, new_context) if new_context.graph is not graph: raise InternalInferenceError( f"Trying to access node '{ref.node}' of function '{graph}'" f" from function '{context.graph}', but it is not visible" " in that scope. This typically indicates either a bug" " in a macro or a bug in Myia.", refs=[ref], ) return ref
Python
async def compute_ref(self, ref): """Compute the value associated to the Reference.""" node = ref.node tracer().emit("request_ref", engine=self, reference=ref) inferred = ref.node.abstract if inferred is not None: result = inferred elif node.is_constant(): result = await self.infer_constant(ref) elif node.is_apply(): result = await self.infer_apply(ref) else: # pragma: no cover # The check in the `ref` method should catch most of the situations # that would otherwise end up here, so this might be inaccessible. raise InternalInferenceError( f"Type information for {ref.node} is unavailable." f" This indicates either a bug in a macro or a bug in Myia.", refs=[ref], ) if ref.node.annotation: result = validate_annotation(ref.node.annotation, result) tracer().emit("compute_ref", engine=self, reference=ref, result=result) return result
async def compute_ref(self, ref): """Compute the value associated to the Reference.""" node = ref.node tracer().emit("request_ref", engine=self, reference=ref) inferred = ref.node.abstract if inferred is not None: result = inferred elif node.is_constant(): result = await self.infer_constant(ref) elif node.is_apply(): result = await self.infer_apply(ref) else: # pragma: no cover # The check in the `ref` method should catch most of the situations # that would otherwise end up here, so this might be inaccessible. raise InternalInferenceError( f"Type information for {ref.node} is unavailable." f" This indicates either a bug in a macro or a bug in Myia.", refs=[ref], ) if ref.node.annotation: result = validate_annotation(ref.node.annotation, result) tracer().emit("compute_ref", engine=self, reference=ref, result=result) return result
Python
async def reroute(self, orig, new): """Set the inference result for orig to the result for new. This sets an entry in reference_map from orig to new. """ if not new.node.debug.about: # This will link the old node's debug info to the new node, if # necessary. new.node.debug.about = About(orig.node.debug, "reroute") self.reference_map[orig] = self.new_reference_map[orig] = new return await self.get_inferred(new)
async def reroute(self, orig, new): """Set the inference result for orig to the result for new. This sets an entry in reference_map from orig to new. """ if not new.node.debug.about: # This will link the old node's debug info to the new node, if # necessary. new.node.debug.about = About(orig.node.debug, "reroute") self.reference_map[orig] = self.new_reference_map[orig] = new return await self.get_inferred(new)
Python
def run_coroutine(self, coro): """Run an async function using this inferrer's loop.""" errs_before = len(self.errors) try: fut = self.loop.schedule(coro) self.loop.run_forever() self.errors.extend(self.loop.collect_errors()) new_errors = self.errors[errs_before:] for err in new_errors: err.engine = self if new_errors: new_errors.sort(key=lambda err: -getattr(err, "priority", 1000)) raise new_errors[0] return fut.result() finally: for task in asyncio.all_tasks(self.loop): task._log_destroy_pending = False
def run_coroutine(self, coro): """Run an async function using this inferrer's loop.""" errs_before = len(self.errors) try: fut = self.loop.schedule(coro) self.loop.run_forever() self.errors.extend(self.loop.collect_errors()) new_errors = self.errors[errs_before:] for err in new_errors: err.engine = self if new_errors: new_errors.sort(key=lambda err: -getattr(err, "priority", 1000)) raise new_errors[0] return fut.result() finally: for task in asyncio.all_tasks(self.loop): task._log_destroy_pending = False
Python
async def infer_apply(self, ref): """Infer the type of a ref of an Apply node.""" ctx = ref.context n_fn, *n_args = ref.node.inputs # We await on the function node to get the inferrer fn_ref = self.ref(n_fn, ctx) fn = await fn_ref.get() argrefs = [self.ref(node, ctx) for node in n_args] if isinstance(fn, AbstractFunction): infs = [self.get_inferrer_for(poss) for poss in await fn.get()] return await self.loop.schedule( execute_inferrers(self, infs, ref, argrefs), context_map={infer_trace: {**infer_trace.get(), ctx: ref}}, ref=ref, ) elif isinstance(fn, AbstractFunctionUnique): infs = [self.get_inferrer_for(fn)] return await self.loop.schedule( execute_inferrers(self, infs, ref, argrefs), context_map={infer_trace: {**infer_trace.get(), ctx: ref}}, ref=ref, ) else: g = ref.node.graph newcall = g.apply(operations.call_object, n_fn, *n_args) return await self.reroute(ref, self.ref(newcall, ctx))
async def infer_apply(self, ref): """Infer the type of a ref of an Apply node.""" ctx = ref.context n_fn, *n_args = ref.node.inputs # We await on the function node to get the inferrer fn_ref = self.ref(n_fn, ctx) fn = await fn_ref.get() argrefs = [self.ref(node, ctx) for node in n_args] if isinstance(fn, AbstractFunction): infs = [self.get_inferrer_for(poss) for poss in await fn.get()] return await self.loop.schedule( execute_inferrers(self, infs, ref, argrefs), context_map={infer_trace: {**infer_trace.get(), ctx: ref}}, ref=ref, ) elif isinstance(fn, AbstractFunctionUnique): infs = [self.get_inferrer_for(fn)] return await self.loop.schedule( execute_inferrers(self, infs, ref, argrefs), context_map={infer_trace: {**infer_trace.get(), ctx: ref}}, ref=ref, ) else: g = ref.node.graph newcall = g.apply(operations.call_object, n_fn, *n_args) return await self.reroute(ref, self.ref(newcall, ctx))
Python
async def infer_constant(self, ctref): """Infer the type of a ref of a Constant node.""" cvt = self.resources.convert(ctref.node.value) if cvt is ctref.node.value: return to_abstract( ctref.node.value, context=ctref.context, node=ctref.node, loop=self.loop, ) else: # The current Constant's value is not compatible with the # pipeline so we redirect to a correct one. newct = Constant(cvt) new = self.ref(newct, ctref.context) return await self.reroute(ctref, new)
async def infer_constant(self, ctref): """Infer the type of a ref of a Constant node.""" cvt = self.resources.convert(ctref.node.value) if cvt is ctref.node.value: return to_abstract( ctref.node.value, context=ctref.context, node=ctref.node, loop=self.loop, ) else: # The current Constant's value is not compatible with the # pipeline so we redirect to a correct one. newct = Constant(cvt) new = self.ref(newct, ctref.context) return await self.reroute(ctref, new)
Python
def abstract_merge(self, *values): """Merge a list of AbstractValues together.""" from .amerge import amerge_engine token = amerge_engine.set(self) try: rval = reduce(amerge, values) finally: amerge_engine.reset(token) return rval
def abstract_merge(self, *values): """Merge a list of AbstractValues together.""" from .amerge import amerge_engine token = amerge_engine.set(self) try: rval = reduce(amerge, values) finally: amerge_engine.reset(token) return rval
Python
def check_predicate(self, predicate, x): """Returns whether the predicate applies on x. A predicate can be: * A Myia type (xtype.Int[64] etc.) * A Python class * A callable that returns a boolean """ if isinstance(predicate, xtype.TypeMeta): if isinstance(x, AbstractValue): x = x.xtype() if x is None: return False return isinstance(x, type) and issubclass(x, predicate) elif isinstance(predicate, type): return isinstance(x, predicate) elif callable(predicate): return predicate(self, x) else: raise ValueError(predicate)
def check_predicate(self, predicate, x): """Returns whether the predicate applies on x. A predicate can be: * A Myia type (xtype.Int[64] etc.) * A Python class * A callable that returns a boolean """ if isinstance(predicate, xtype.TypeMeta): if isinstance(x, AbstractValue): x = x.xtype() if x is None: return False return isinstance(x, type) and issubclass(x, predicate) elif isinstance(predicate, type): return isinstance(x, predicate) elif callable(predicate): return predicate(self, x) else: raise ValueError(predicate)
Python
def check(self, predicate, *values): """Merge all values and check that the predicate applies. Some values may be Pending, in which case a check will be scheduled when they are finally resolved. """ for value in values: if isinstance(value, Pending): value.add_done_callback( lambda fut: self.assert_predicate(predicate, fut.result()) ) else: self.assert_predicate(predicate, value) return self.abstract_merge(*values)
def check(self, predicate, *values): """Merge all values and check that the predicate applies. Some values may be Pending, in which case a check will be scheduled when they are finally resolved. """ for value in values: if isinstance(value, Pending): value.add_done_callback( lambda fut: self.assert_predicate(predicate, fut.result()) ) else: self.assert_predicate(predicate, value) return self.abstract_merge(*values)
Python
def concretize_cache(self): """Complete the engine's caches with concretized contexts.""" concretize_cache(self.cache.new, dest=self.cache.cache) self.cache.new = {} concretize_cache(self.new_reference_map, dest=self.reference_map) self.new_reference_map = {}
def concretize_cache(self): """Complete the engine's caches with concretized contexts.""" concretize_cache(self.cache.new, dest=self.cache.cache) self.cache.new = {} concretize_cache(self.new_reference_map, dest=self.reference_map) self.new_reference_map = {}
Python
def run(self, nodes): """Infer the types of the given nodes.""" async def _run(todo): for node in todo: await self.get_inferred(self.ref(node, CONTEXTLESS)) self.reset() todo = OrderedSet() nodes = OrderedSet(nodes) while nodes: node = nodes.pop() calls = OrderedSet( [user for user, idx in self.mng.uses[node] if idx == 0] ) for call in calls: call.abstract = None nodes.update(calls) todo.add(node) self.run_coroutine(_run(todo)) for ref, fut in self.cache.cache.items(): new_ref = self.get_actual_ref(ref) if new_ref is not ref: self.mng.replace(ref.node, new_ref.node) ref = new_ref result = fut.result() result = self.fix_type(result) ref.node.abstract = concretize_abstract(result)
def run(self, nodes): """Infer the types of the given nodes.""" async def _run(todo): for node in todo: await self.get_inferred(self.ref(node, CONTEXTLESS)) self.reset() todo = OrderedSet() nodes = OrderedSet(nodes) while nodes: node = nodes.pop() calls = OrderedSet( [user for user, idx in self.mng.uses[node] if idx == 0] ) for call in calls: call.abstract = None nodes.update(calls) todo.add(node) self.run_coroutine(_run(todo)) for ref, fut in self.cache.cache.items(): new_ref = self.get_actual_ref(ref) if new_ref is not ref: self.mng.replace(ref.node, new_ref.node) ref = new_ref result = fut.result() result = self.fix_type(result) ref.node.abstract = concretize_abstract(result)
Python
def nokw(self, args): """Assert that there are no keyword arguments.""" for arg in args: if isinstance(arg, AbstractKeywordArgument): raise MyiaTypeError("Keyword arguments are not allowed here")
def nokw(self, args): """Assert that there are no keyword arguments.""" for arg in args: if isinstance(arg, AbstractKeywordArgument): raise MyiaTypeError("Keyword arguments are not allowed here")
Python
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" g = self.get_graph(engine, args) nargs = len(g.parameters) if len(args) != nargs: raise type_error_nargs(self._graph, nargs, len(args)) # args were already normalized by run() context = self.make_context(engine, args, normalize=False) tracer().emit_infer_context(engine=engine, context=context) # We associate each parameter of the Graph with its value for each # property, in the context we built. for p, arg in zip(g.parameters, context.argkey): if p.annotation: validate_annotation(p.annotation, arg) ref = engine.ref(p, context) engine.cache.set_value(ref, arg) out = engine.ref(g.return_, context) return await engine.get_inferred(out)
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" g = self.get_graph(engine, args) nargs = len(g.parameters) if len(args) != nargs: raise type_error_nargs(self._graph, nargs, len(args)) # args were already normalized by run() context = self.make_context(engine, args, normalize=False) tracer().emit_infer_context(engine=engine, context=context) # We associate each parameter of the Graph with its value for each # property, in the context we built. for p, arg in zip(g.parameters, context.argkey): if p.annotation: validate_annotation(p.annotation, arg) ref = engine.ref(p, context) engine.cache.set_value(ref, arg) out = engine.ref(g.return_, context) return await engine.get_inferred(out)
Python
def compute_bprop_type(orig_fn, args, out): """Compute the abstract type of the bprop for orig_fn.""" fn = AbstractFunction(orig_fn) bparams = [sensitivity_transform(fn)] bparams += [sensitivity_transform(a) for a in args] bparams_final = AbstractTuple(bparams) return AbstractFunctionUnique((sensitivity_transform(out),), bparams_final)
def compute_bprop_type(orig_fn, args, out): """Compute the abstract type of the bprop for orig_fn.""" fn = AbstractFunction(orig_fn) bparams = [sensitivity_transform(fn)] bparams += [sensitivity_transform(a) for a in args] bparams_final = AbstractTuple(bparams) return AbstractFunctionUnique((sensitivity_transform(out),), bparams_final)
Python
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" infer_trace.set({**infer_trace.get(), self.prim: (self.prim, args)}) await self.checker.check(engine, args) return await self._infer(self, engine, *args)
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" infer_trace.set({**infer_trace.get(), self.prim: (self.prim, args)}) await self.checker.check(engine, args) return await self._infer(self, engine, *args)
Python
def require_constant(self, a, *, argnum, range=None): """Returns the constant associated to abstract argument a. If a is not a constant, raises a MyiaTypeError. Arguments: a: Value to check for constantness argnum (int): Which argument we are checking. range (optional): A range or collection in which the argument must lie. """ v = a.xvalue() if v is ANYTHING: raise MyiaTypeError( f"Argument {argnum} to {self.prim} must be constant." ) if range is not None and v not in range: raise MyiaTypeError( f"Argument {argnum} to {self.prim} is out of range." f" It should lie in {range}" ) return v
def require_constant(self, a, *, argnum, range=None): """Returns the constant associated to abstract argument a. If a is not a constant, raises a MyiaTypeError. Arguments: a: Value to check for constantness argnum (int): Which argument we are checking. range (optional): A range or collection in which the argument must lie. """ v = a.xvalue() if v is ANYTHING: raise MyiaTypeError( f"Argument {argnum} to {self.prim} must be constant." ) if range is not None and v not in range: raise MyiaTypeError( f"Argument {argnum} to {self.prim} is out of range." f" It should lie in {range}" ) return v
Python
def standard_prim(prim): """Decorator to define and register a StandardInferrer.""" def deco(fn): if isinstance(fn, type): return fn.partial() else: return StandardInferrer.partial(prim=prim, infer=fn) return deco
def standard_prim(prim): """Decorator to define and register a StandardInferrer.""" def deco(fn): if isinstance(fn, type): return fn.partial() else: return StandardInferrer.partial(prim=prim, infer=fn) return deco
Python
def normalize_args_sync(self, args): """If infer_value is False, return broadened arguments.""" if not self.infer_value: args = tuple(_broaden(a) for a in args) return args
def normalize_args_sync(self, args): """If infer_value is False, return broadened arguments.""" if not self.infer_value: args = tuple(_broaden(a) for a in args) return args
Python
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" infer_trace.set({**infer_trace.get(), self.prim: (self.prim, args)}) if any(not isinstance(arg, AbstractScalar) for arg in args): raise MyiaTypeError(f"Expected scalar as argument to {self.prim}") ts = [arg.xtype() for arg in args] outtype = await self.checker.check(engine, ts, uniform=True) return self.run_impl(engine, args, outtype)
async def infer(self, engine, *args): """Infer the abstract result given the abstract arguments.""" infer_trace.set({**infer_trace.get(), self.prim: (self.prim, args)}) if any(not isinstance(arg, AbstractScalar) for arg in args): raise MyiaTypeError(f"Expected scalar as argument to {self.prim}") ts = [arg.xtype() for arg in args] outtype = await self.checker.check(engine, ts, uniform=True) return self.run_impl(engine, args, outtype)
Python
def run_impl(self, engine, args, outtype): """Run the implementation on abstract data. If infer_value is False, this returns an AbstractScalar with value ANYTHING. Arguments: engine: The InferenceEngine args: The abstract arguments outtype: The output type to give to the result """ if not self.infer_value: outval = ANYTHING else: values = [arg.xvalue() for arg in args] if any(v is ANYTHING for v in values): outval = ANYTHING else: outval = self.impl(*values) return AbstractScalar({VALUE: outval, TYPE: outtype})
def run_impl(self, engine, args, outtype): """Run the implementation on abstract data. If infer_value is False, this returns an AbstractScalar with value ANYTHING. Arguments: engine: The InferenceEngine args: The abstract arguments outtype: The output type to give to the result """ if not self.infer_value: outval = ANYTHING else: values = [arg.xvalue() for arg in args] if any(v is ANYTHING for v in values): outval = ANYTHING else: outval = self.impl(*values) return AbstractScalar({VALUE: outval, TYPE: outtype})
Python
async def execute_inferrers(engine, inferrers, outref, argrefs): """Execute a set of inferrers on a tuple of References. The results of the inferrers will be bound together and an error will be raised eventually if they cannot be merged. """ reroutes = set( [await inf.reroute(engine, outref, argrefs) for inf in inferrers] ) if len(reroutes) > 1: # We do no rerouting if there is more than one possibility reroutes = {None} (newref,) = reroutes if newref is not None: return await engine.reroute(outref, newref) if len(inferrers) == 1: (inf,) = inferrers return await _run_trace(inf, engine, outref, argrefs) else: pending = [] for inf in inferrers: p = engine.loop.create_pending(resolve=None, priority=lambda: None) pending.append(p) engine.loop.schedule( _inf_helper(engine, inf, outref, argrefs, p), ref=outref ) return bind(engine.loop, None, [], pending)
async def execute_inferrers(engine, inferrers, outref, argrefs): """Execute a set of inferrers on a tuple of References. The results of the inferrers will be bound together and an error will be raised eventually if they cannot be merged. """ reroutes = set( [await inf.reroute(engine, outref, argrefs) for inf in inferrers] ) if len(reroutes) > 1: # We do no rerouting if there is more than one possibility reroutes = {None} (newref,) = reroutes if newref is not None: return await engine.reroute(outref, newref) if len(inferrers) == 1: (inf,) = inferrers return await _run_trace(inf, engine, outref, argrefs) else: pending = [] for inf in inferrers: p = engine.loop.create_pending(resolve=None, priority=lambda: None) pending.append(p) engine.loop.schedule( _inf_helper(engine, inf, outref, argrefs, p), ref=outref ) return bind(engine.loop, None, [], pending)
Python
async def infer_distribute( self, engine, a: AbstractArray, _shp: u64tup_typecheck ): """Infer the return type of primitive `distribute`.""" shp = tuple(x.xvalue() for x in _shp.elements) a_shp = await force_pending(a.xshape()) delta = len(shp) - len(a_shp) if delta < 0: raise MyiaShapeError("Cannot distribute to smaller shape") elif delta > 0: a_shp = (1,) * delta + a_shp for vs, s in zip(a_shp, shp): if vs != s and vs not in (1, ANYTHING) and s not in (1, ANYTHING): raise MyiaShapeError("Cannot change shape when distributing") return type(a)(a.element, {SHAPE: shp, TYPE: a.xtype()})
async def infer_distribute( self, engine, a: AbstractArray, _shp: u64tup_typecheck ): """Infer the return type of primitive `distribute`.""" shp = tuple(x.xvalue() for x in _shp.elements) a_shp = await force_pending(a.xshape()) delta = len(shp) - len(a_shp) if delta < 0: raise MyiaShapeError("Cannot distribute to smaller shape") elif delta > 0: a_shp = (1,) * delta + a_shp for vs, s in zip(a_shp, shp): if vs != s and vs not in (1, ANYTHING) and s not in (1, ANYTHING): raise MyiaShapeError("Cannot change shape when distributing") return type(a)(a.element, {SHAPE: shp, TYPE: a.xtype()})
Python
def build_value(a, default=ABSENT): """Build a concrete value out of an abstract one. A concrete value cannot be built if, for some abstract data, the inferred value is ANYTHING. Some types such as AbstractArray cannot be built either. Arguments: a: The abstract value. default: A default value to return if the value cannot be built. If not provided, a ValueError will be raised in those cases. """ def return_default(err): if default is ABSENT: raise err else: return default if isinstance(a, AbstractType): return a.element v = a.values.get(VALUE, ABSENT) if v is ANYTHING or isinstance(v, Possibilities): return return_default(ValueError(v)) elif v is ABSENT: try: return _build_value(a) except ValueError as e: return return_default(e) elif isinstance(v, Pending): if v.done(): return v.result() else: return return_default(ValueError(v)) else: return v
def build_value(a, default=ABSENT): """Build a concrete value out of an abstract one. A concrete value cannot be built if, for some abstract data, the inferred value is ANYTHING. Some types such as AbstractArray cannot be built either. Arguments: a: The abstract value. default: A default value to return if the value cannot be built. If not provided, a ValueError will be raised in those cases. """ def return_default(err): if default is ABSENT: raise err else: return default if isinstance(a, AbstractType): return a.element v = a.values.get(VALUE, ABSENT) if v is ANYTHING or isinstance(v, Possibilities): return return_default(ValueError(v)) elif v is ABSENT: try: return _build_value(a) except ValueError as e: return return_default(e) elif isinstance(v, Pending): if v.done(): return v.result() else: return return_default(ValueError(v)) else: return v
Python
def abstract_check(self, x, **kwargs): """Check that a predicate applies to a given object.""" __call__ = self.resolve(x) def proceed(): if prop: if hasattr(x, prop): return getattr(x, prop) is x elif __call__(x, **kwargs): if isinstance(x, AbstractValue): setattr(x, prop, x) return True else: return False else: return __call__(x, **kwargs) prop = self.prop cache = self.cache try: rval = cache.get(x, None) except TypeError: return proceed() if rval is None: cache[x] = True cache[x] = proceed() return cache[x] else: return rval
def abstract_check(self, x, **kwargs): """Check that a predicate applies to a given object.""" __call__ = self.resolve(x) def proceed(): if prop: if hasattr(x, prop): return getattr(x, prop) is x elif __call__(x, **kwargs): if isinstance(x, AbstractValue): setattr(x, prop, x) return True else: return False else: return __call__(x, **kwargs) prop = self.prop cache = self.cache try: rval = cache.get(x, None) except TypeError: return proceed() if rval is None: cache[x] = True cache[x] = proceed() return cache[x] else: return rval
Python
def concretize_abstract(self, x: Pending): """Clone an abstract value while resolving all Pending (synchronous).""" if x.done(): return self(x.result()) else: raise AssertionError("Unresolved Pending", x)
def concretize_abstract(self, x: Pending): """Clone an abstract value while resolving all Pending (synchronous).""" if x.done(): return self(x.result()) else: raise AssertionError("Unresolved Pending", x)
Python
def concretize_cache(src, dest=None): """Complete a cache with concretized versions of its keys. If an entry in the cache has a key that contains a Pending, a new key is created where the Pending is resolved, and it is entered in the cache so that it can be found more easily. """ if dest is None: dest = src for k, v in list(src.items()): kc = refmap(concretize_abstract, k) dest[kc] = v kc2 = refmap(no_tracking_id, kc) dest[kc2] = v
def concretize_cache(src, dest=None): """Complete a cache with concretized versions of its keys. If an entry in the cache has a key that contains a Pending, a new key is created where the Pending is resolved, and it is entered in the cache so that it can be found more easily. """ if dest is None: dest = src for k, v in list(src.items()): kc = refmap(concretize_abstract, k) dest[kc] = v kc2 = refmap(no_tracking_id, kc) dest[kc2] = v
Python
def broaden(self, d: TrackDict, **kwargs): # noqa: D417 """Broaden an abstract value. * Concrete values such as 1 or True will be broadened to ANYTHING. Arguments: d: The abstract data to clone. """ return {k: k.broaden(v, self, **kwargs) for k, v in d.items()}
def broaden(self, d: TrackDict, **kwargs): # noqa: D417 """Broaden an abstract value. * Concrete values such as 1 or True will be broadened to ANYTHING. Arguments: d: The abstract data to clone. """ return {k: k.broaden(v, self, **kwargs) for k, v in d.items()}
Python
def sensitivity_transform(self, x: (AbstractFunction, AbstractFunctionUnique)): """Return an abstract value for the sensitivity of x. * The sensitivity of a function is an Env * The sensitivity of J(x) is x * We set the sensitivity of a random state as a nil scalar """ return AbstractScalar({VALUE: ANYTHING, TYPE: xtype.EnvType})
def sensitivity_transform(self, x: (AbstractFunction, AbstractFunctionUnique)): """Return an abstract value for the sensitivity of x. * The sensitivity of a function is an Env * The sensitivity of J(x) is x * We set the sensitivity of a random state as a nil scalar """ return AbstractScalar({VALUE: ANYTHING, TYPE: xtype.EnvType})
Python
async def force_through(self, x, through): """Clone an abstract value (asynchronous).""" __call__ = self[type(x), object] if not isinstance(x, through) and not isinstance(x, Pending): return x cache = self.state if isinstance(x, AbstractValue) and x in cache: return cache[x] call = __call__(x, through) if isinstance(call, AsyncGeneratorType): cls = await call.asend(None) inst = cls.empty() cache[x] = inst constructor = _make_constructor(inst) rval = await call.asend(constructor) assert rval is inst return rval else: return await call
async def force_through(self, x, through): """Clone an abstract value (asynchronous).""" __call__ = self[type(x), object] if not isinstance(x, through) and not isinstance(x, Pending): return x cache = self.state if isinstance(x, AbstractValue) and x in cache: return cache[x] call = __call__(x, through) if isinstance(call, AsyncGeneratorType): cls = await call.asend(None) inst = cls.empty() cache[x] = inst constructor = _make_constructor(inst) rval = await call.asend(constructor) assert rval is inst return rval else: return await call
Python
def refmap(self, fn, x: Context): """Map a function on a Reference/Context/etc.""" return Context( self(fn, x.parent), x.graph, tuple(fn(arg) for arg in x.argkey) )
def refmap(self, fn, x: Context): """Map a function on a Reference/Context/etc.""" return Context( self(fn, x.parent), x.graph, tuple(fn(arg) for arg in x.argkey) )
Python
def collapse_options(options): """Collapse a list of options, some of which may be AbstractUnions.""" opts = [] todo = list(options) while todo: option = todo.pop() if isinstance(option, AbstractUnion): todo.extend(option.options) else: opts.append(option) opts = Possibilities(opts) return opts
def collapse_options(options): """Collapse a list of options, some of which may be AbstractUnions.""" opts = [] todo = list(options) while todo: option = todo.pop() if isinstance(option, AbstractUnion): todo.extend(option.options) else: opts.append(option) opts = Possibilities(opts) return opts
Python
def union_simplify(options, constructor=AbstractUnion): """Simplify a list of options. Returns: * None, if there are no options. * A single type, if there is one option. * An AbstractUnion. """ options = collapse_options(options) if len(options) == 0: return None elif len(options) == 1: return options.pop() else: return constructor(options)
def union_simplify(options, constructor=AbstractUnion): """Simplify a list of options. Returns: * None, if there are no options. * A single type, if there is one option. * An AbstractUnion. """ options = collapse_options(options) if len(options) == 0: return None elif len(options) == 1: return options.pop() else: return constructor(options)
Python
def normalize_adt(x): """Normalize the ADT to make it properly recursive.""" rval = _normalize_adt_helper(x, {}, {}) rval = rval.intern() rval = broaden(rval) rval = _finalize_adt(rval) return rval
def normalize_adt(x): """Normalize the ADT to make it properly recursive.""" rval = _normalize_adt_helper(x, {}, {}) rval = rval.intern() rval = broaden(rval) rval = _finalize_adt(rval) return rval
Python
def manage(*graphs, weak=False): """Ensure that all given graphs have a manager and return it. * If one or more graphs has a manager, that manager will be used. * If two graphs have different managers, an error will be raised. * If no graph has a manager, one will be created. Arguments: graphs: The graphs to manage. weak: If True, when creating a new manager, graphs will not be forcefully associated with it. (Defaults to False.) """ manager = None for graph in graphs: manager = graph._manager if manager: break if manager is None: manager = GraphManager(manage=not weak) root = True else: root = False for graph in graphs: manager.add_graph(graph, root=root) return manager
def manage(*graphs, weak=False): """Ensure that all given graphs have a manager and return it. * If one or more graphs has a manager, that manager will be used. * If two graphs have different managers, an error will be raised. * If no graph has a manager, one will be created. Arguments: graphs: The graphs to manage. weak: If True, when creating a new manager, graphs will not be forcefully associated with it. (Defaults to False.) """ manager = None for graph in graphs: manager = graph._manager if manager: break if manager is None: manager = GraphManager(manage=not weak) root = True else: root = False for graph in graphs: manager.add_graph(graph, root=root) return manager
Python
def dec(self, graph, key, qty=1): """Decrement the count for self[graph][key] by qty. The key is deleted if the count falls to zero. """ d = self[graph] if d[key] == qty: del d[key] return True else: d[key] -= qty assert d[key] > 0 return False
def dec(self, graph, key, qty=1): """Decrement the count for self[graph][key] by qty. The key is deleted if the count falls to zero. """ d = self[graph] if d[key] == qty: del d[key] return True else: d[key] -= qty assert d[key] > 0 return False
Python
def reset(self): """Reset this graph's information. This makes the statistic invalid, so it must be recomputed. """ super().reset() self.valid = False
def reset(self): """Reset this graph's information. This makes the statistic invalid, so it must be recomputed. """ super().reset() self.valid = False
Python
def gc(self): """Garbage-collect disconnected graphs. Normally this is done incrementally through reference counting, but because of circular references, some graphs might remain. """ reach = OrderedSet(self.roots) for root in self.roots: reach.update(self.graphs_reachable[root]) # TODO: Ideally the two lines below should be replaced by the commented # out line, but it causes an error in # tests/test_grad.py::test_recursive_closure # # self._drop_all(self.graphs - reach, drop_nodes=True) if reach != self.graphs: self.reset()
def gc(self): """Garbage-collect disconnected graphs. Normally this is done incrementally through reference counting, but because of circular references, some graphs might remain. """ reach = OrderedSet(self.roots) for root in self.roots: reach.update(self.graphs_reachable[root]) # TODO: Ideally the two lines below should be replaced by the commented # out line, but it causes an error in # tests/test_grad.py::test_recursive_closure # # self._drop_all(self.graphs - reach, drop_nodes=True) if reach != self.graphs: self.reset()
Python
def reset(self): """Reset the manager's state. Recompute everything from the roots. """ old_events = self.events self.events = Events( add_node=None, drop_node=None, add_graph=None, drop_graph=None, add_edge=None, drop_edge=None, invalidate_nesting=None, invalidate_uses=None, reset=None, post_reset=None, ) if old_events: old_events.reset() roots = OrderedSet(self.roots) if self.roots else OrderedSet() self.roots = OrderedSet() self.graphs = OrderedSet() self.all_nodes = OrderedSet() self.uses = defaultdict(OrderedSet) self.nodes = NodesStatistic(self) self.call_sites = CallSitesStatistic(self) self.higher_order_sites = HigherOrderSitesStatistic(self) self.constants = ConstantsStatistic(self) self.free_variables_direct = FVDirectStatistic(self) self.graph_constants = GraphConstantsStatistic(self) self.graphs_used = GraphsUsedStatistic(self) self.graph_users = GraphUsersStatistic(self) self.graph_dependencies_direct = GDepDirectStatistic(self) self.graph_dependencies_prox = GDepProxStatistic(self) self.graph_dependencies_prox_inv = GDepProxInvStatistic(self) self.graph_dependencies_total = GDepTotalStatistic(self) self.parents = ParentStatistic(self) self.children = ChildrenStatistic(self) self.scopes = ScopeStatistic(self) self._free_variables_total = FVTotalStatistic(self) self.free_variables_extended = FVExtendedStatistic(self) self.graphs_reachable = GraphsReachableStatistic(self) self.recursive = RecursiveStatistic(self) for root in roots: self.add_graph(root, root=True) if old_events: old_events.post_reset()
def reset(self): """Reset the manager's state. Recompute everything from the roots. """ old_events = self.events self.events = Events( add_node=None, drop_node=None, add_graph=None, drop_graph=None, add_edge=None, drop_edge=None, invalidate_nesting=None, invalidate_uses=None, reset=None, post_reset=None, ) if old_events: old_events.reset() roots = OrderedSet(self.roots) if self.roots else OrderedSet() self.roots = OrderedSet() self.graphs = OrderedSet() self.all_nodes = OrderedSet() self.uses = defaultdict(OrderedSet) self.nodes = NodesStatistic(self) self.call_sites = CallSitesStatistic(self) self.higher_order_sites = HigherOrderSitesStatistic(self) self.constants = ConstantsStatistic(self) self.free_variables_direct = FVDirectStatistic(self) self.graph_constants = GraphConstantsStatistic(self) self.graphs_used = GraphsUsedStatistic(self) self.graph_users = GraphUsersStatistic(self) self.graph_dependencies_direct = GDepDirectStatistic(self) self.graph_dependencies_prox = GDepProxStatistic(self) self.graph_dependencies_prox_inv = GDepProxInvStatistic(self) self.graph_dependencies_total = GDepTotalStatistic(self) self.parents = ParentStatistic(self) self.children = ChildrenStatistic(self) self.scopes = ScopeStatistic(self) self._free_variables_total = FVTotalStatistic(self) self.free_variables_extended = FVExtendedStatistic(self) self.graphs_reachable = GraphsReachableStatistic(self) self.recursive = RecursiveStatistic(self) for root in roots: self.add_graph(root, root=True) if old_events: old_events.post_reset()
Python
def add_graph(self, graph, root=False): """Add a graph to this manager, optionally as a root graph.""" if root: self.roots.add(graph) if graph in self.graphs: return self._ensure_graph(graph) self.events.add_graph(graph) self._acquire_nodes(graph.parameters) self._acquire_nodes({graph.return_})
def add_graph(self, graph, root=False): """Add a graph to this manager, optionally as a root graph.""" if root: self.roots.add(graph) if graph in self.graphs: return self._ensure_graph(graph) self.events.add_graph(graph) self._acquire_nodes(graph.parameters) self._acquire_nodes({graph.return_})
Python
def keep_roots(self, *roots): """Keep only the graphs reachable from the given roots. All other graphs will be removed from this manager. If no roots are given, existing roots will be used. """ if roots: self.roots = OrderedSet() for root in roots: self.add_graph(root, True) else: roots = self.roots keep = OrderedSet() for root in roots: keep.update(self.graphs_reachable[root]) self._maybe_drop_graphs( self.graphs - keep, ignore_users=True, recursive=False )
def keep_roots(self, *roots): """Keep only the graphs reachable from the given roots. All other graphs will be removed from this manager. If no roots are given, existing roots will be used. """ if roots: self.roots = OrderedSet() for root in roots: self.add_graph(root, True) else: roots = self.roots keep = OrderedSet() for root in roots: keep.update(self.graphs_reachable[root]) self._maybe_drop_graphs( self.graphs - keep, ignore_users=True, recursive=False )
Python
def _ensure_graph(self, graph): """Ensure that the graph is managed by this manager.""" if self.manage: if graph._manager and graph._manager is not self: raise ManagerError( "A graph can only have one manager. " f"Graph: {graph}" ) graph._manager = self self.graphs.add(graph)
def _ensure_graph(self, graph): """Ensure that the graph is managed by this manager.""" if self.manage: if graph._manager and graph._manager is not self: raise ManagerError( "A graph can only have one manager. " f"Graph: {graph}" ) graph._manager = self self.graphs.add(graph)
Python
def _process_edge(self, node, key, inp, direction): """Add/remove an edge between two nodes. Arguments: node: node that will change inputs key (int): input position inp: input node to add/remove direction: {1, -1}: Added/removed:: * 1 if the edge is added. * -1 if the edge is removed. """ if self.check_opaque and self.check_opaque(inp): return if direction == -1: if (node, key) not in self.uses[inp]: # It's possible that we already got here when we # dropped a graph. return # pragma: no cover self.uses[inp].remove((node, key)) self.events.drop_edge(node, key, inp) else: if inp.graph is not None: self.add_graph(inp.graph) if inp.is_constant_graph(): self.add_graph(inp.value) self.uses[inp].add((node, key)) self.events.add_edge(node, key, inp)
def _process_edge(self, node, key, inp, direction): """Add/remove an edge between two nodes. Arguments: node: node that will change inputs key (int): input position inp: input node to add/remove direction: {1, -1}: Added/removed:: * 1 if the edge is added. * -1 if the edge is removed. """ if self.check_opaque and self.check_opaque(inp): return if direction == -1: if (node, key) not in self.uses[inp]: # It's possible that we already got here when we # dropped a graph. return # pragma: no cover self.uses[inp].remove((node, key)) self.events.drop_edge(node, key, inp) else: if inp.graph is not None: self.add_graph(inp.graph) if inp.is_constant_graph(): self.add_graph(inp.value) self.uses[inp].add((node, key)) self.events.add_edge(node, key, inp)
Python
def _process_inputs(self, node, direction): """Process the inputs of a newly [dis]connected node. Arguments: node: node to process direction: {1, -1}: Added/removed:: * 1 if the node was connected. * -1 if the node was disconnected. """ for key, inp in enumerate(node.inputs): self._process_edge(node, key, inp, direction)
def _process_inputs(self, node, direction): """Process the inputs of a newly [dis]connected node. Arguments: node: node to process direction: {1, -1}: Added/removed:: * 1 if the node was connected. * -1 if the node was disconnected. """ for key, inp in enumerate(node.inputs): self._process_edge(node, key, inp, direction)
Python
def _maybe_drop_nodes(self, nodes): """Check if the nodes are connected to a graph, drop them if not.""" nodes = OrderedSet(nodes) # Set of graphs to check if we want to drop them or not graphs_to_check = OrderedSet() while nodes: node = nodes.pop() if node not in self.all_nodes: continue uses = self.uses[node] if uses or (node.is_parameter() and node in node.graph.parameters): continue if node.is_constant_graph(): graphs_to_check.add(node.value) self._process_inputs(node, -1) self.all_nodes.remove(node) self.events.drop_node(node) nodes.update(node.inputs) return graphs_to_check
def _maybe_drop_nodes(self, nodes): """Check if the nodes are connected to a graph, drop them if not.""" nodes = OrderedSet(nodes) # Set of graphs to check if we want to drop them or not graphs_to_check = OrderedSet() while nodes: node = nodes.pop() if node not in self.all_nodes: continue uses = self.uses[node] if uses or (node.is_parameter() and node in node.graph.parameters): continue if node.is_constant_graph(): graphs_to_check.add(node.value) self._process_inputs(node, -1) self.all_nodes.remove(node) self.events.drop_node(node) nodes.update(node.inputs) return graphs_to_check
Python
def free_variables_total(self): """Map each graph to its free variables. This differs from `free_variables_direct` in that it also includes free variables needed by children graphs. Furthermore, graph Constants may figure as free variables. """ return self._ensure_statistic(self._free_variables_total)
def free_variables_total(self): """Map each graph to its free variables. This differs from `free_variables_direct` in that it also includes free variables needed by children graphs. Furthermore, graph Constants may figure as free variables. """ return self._ensure_statistic(self._free_variables_total)
Python
def _commit_changes(self, changes): """Commit changes. This modifies the graph and update attributes and properties. """ addedges = Counter() rmedges = Counter() adds = Counter() rms = Counter() undolog = [] for operation, *args in changes: if operation == "set_edge": root_node, key, new_node = args old_node = root_node.inputs[key] rmedges[(root_node, key, old_node)] += 1 addedges[(root_node, key, new_node)] += 1 rms[old_node] += 1 adds[new_node] += 1 root_node.inputs[key] = new_node undolog.append(("set_edge", root_node, key, old_node)) elif operation == "set_parameters": graph, new_parameters = args old_parameters = graph.parameters for p in new_parameters: adds[p] += 1 for p in old_parameters: rms[p] += 1 graph.parameters = new_parameters undolog.append(("set_parameters", graph, old_parameters)) for root_node, key, new_node in addedges - rmedges: self._process_edge(root_node, key, new_node, 1) self._acquire_nodes(adds - rms) for root_node, key, old_node in rmedges - addedges: self._process_edge(root_node, key, old_node, -1) maybe_drop_graphs = self._maybe_drop_nodes(rms - adds) self._maybe_drop_graphs(maybe_drop_graphs) return undolog
def _commit_changes(self, changes): """Commit changes. This modifies the graph and update attributes and properties. """ addedges = Counter() rmedges = Counter() adds = Counter() rms = Counter() undolog = [] for operation, *args in changes: if operation == "set_edge": root_node, key, new_node = args old_node = root_node.inputs[key] rmedges[(root_node, key, old_node)] += 1 addedges[(root_node, key, new_node)] += 1 rms[old_node] += 1 adds[new_node] += 1 root_node.inputs[key] = new_node undolog.append(("set_edge", root_node, key, old_node)) elif operation == "set_parameters": graph, new_parameters = args old_parameters = graph.parameters for p in new_parameters: adds[p] += 1 for p in old_parameters: rms[p] += 1 graph.parameters = new_parameters undolog.append(("set_parameters", graph, old_parameters)) for root_node, key, new_node in addedges - rmedges: self._process_edge(root_node, key, new_node, 1) self._acquire_nodes(adds - rms) for root_node, key, old_node in rmedges - addedges: self._process_edge(root_node, key, old_node, -1) maybe_drop_graphs = self._maybe_drop_nodes(rms - adds) self._maybe_drop_graphs(maybe_drop_graphs) return undolog
Python
def generate_data( n, batch_size, input_size, target_size, sequence_size, *, seed=91 ): """Generate inputs and targets. Generates n batches of samples of size input_size, matched with a single target. """ R = RandomState(seed=seed) return [ ( [param(R, batch_size, input_size) for i in range(sequence_size)], param(R, batch_size, target_size), ) for i in range(n) ]
def generate_data( n, batch_size, input_size, target_size, sequence_size, *, seed=91 ): """Generate inputs and targets. Generates n batches of samples of size input_size, matched with a single target. """ R = RandomState(seed=seed) return [ ( [param(R, batch_size, input_size) for i in range(sequence_size)], param(R, batch_size, target_size), ) for i in range(n) ]
Python
def lstm_parameters(*layer_sizes, batch_size, seed=6666): """Generates parameters for a MLP given a list of layer sizes.""" R = RandomState(seed=seed) i, h, *rest = layer_sizes W_i = param(R, i, h) W_f = param(R, i, h) W_c = param(R, i, h) W_o = param(R, i, h) R_i = param(R, h, h) R_f = param(R, h, h) R_c = param(R, h, h) R_o = param(R, h, h) b_i = param(R, 1, h) b_f = param(R, 1, h) b_c = param(R, 1, h) b_o = param(R, 1, h) s0 = numpy.zeros((1, h), dtype=dtype) c0 = numpy.zeros((1, h), dtype=dtype) parameters = [ (W_i, W_f, W_c, W_o, R_i, R_f, R_c, R_o, b_i, b_f, b_c, b_o, s0, c0) ] for i, o in zip((h, *rest[:-1]), rest): W = param(R, i, o) b = param(R, 1, o) parameters.append((W, b)) return parameters
def lstm_parameters(*layer_sizes, batch_size, seed=6666): """Generates parameters for a MLP given a list of layer sizes.""" R = RandomState(seed=seed) i, h, *rest = layer_sizes W_i = param(R, i, h) W_f = param(R, i, h) W_c = param(R, i, h) W_o = param(R, i, h) R_i = param(R, h, h) R_f = param(R, h, h) R_c = param(R, h, h) R_o = param(R, h, h) b_i = param(R, 1, h) b_f = param(R, 1, h) b_c = param(R, 1, h) b_o = param(R, 1, h) s0 = numpy.zeros((1, h), dtype=dtype) c0 = numpy.zeros((1, h), dtype=dtype) parameters = [ (W_i, W_f, W_c, W_o, R_i, R_f, R_c, R_o, b_i, b_f, b_c, b_o, s0, c0) ] for i, o in zip((h, *rest[:-1]), rest): W = param(R, i, o) b = param(R, 1, o) parameters.append((W, b)) return parameters
Python
def step(model, lr, x, y): """Returns the loss and parameter gradients.""" # value_and_grad will return cost(model, x, y) and dcost(...)/dmodel. # The 'model' argument can be omitted: by default the derivative wrt # the first argument is returned. _cost, dmodel = value_and_grad(cost, "model")(model, x, y) return _cost, model - (lr * dmodel)
def step(model, lr, x, y): """Returns the loss and parameter gradients.""" # value_and_grad will return cost(model, x, y) and dcost(...)/dmodel. # The 'model' argument can be omitted: by default the derivative wrt # the first argument is returned. _cost, dmodel = value_and_grad(cost, "model")(model, x, y) return _cost, model - (lr * dmodel)
Python
def run_helper(epochs, n, batch_size, layer_sizes): """Run a model with the specified layer sizes on n random batches. The first layer is an LSTM layer, the rest are linear+tanh. Arguments: epochs: How many epochs to run. n: Number of training batches to generate. batch_size: Number of samples per batch. layer_sizes: Sizes of the model's layers. """ layers = [] lstmp, *linp = lstm_parameters(*layer_sizes, batch_size=batch_size) layers.append(LSTMLayer(*lstmp)) for W, b in linp: layers.append(Linear(W, b)) layers.append(Tanh()) model = Sequential(tuple(layers)) data = generate_data(n, batch_size, layer_sizes[0], layer_sizes[-1], 10) lr = getattr(numpy, dtype)(0.01) for _ in range(epochs): costs = [] t0 = time.time() for inp, target in data: cost, model = step(model, lr, inp, target) if isinstance(cost, numpy.ndarray): cost = float(cost) costs.append(cost) c = sum(costs) / n t = time.time() - t0 print(f"Cost: {c:15.10f}\tTime: {t:15.10f}")
def run_helper(epochs, n, batch_size, layer_sizes): """Run a model with the specified layer sizes on n random batches. The first layer is an LSTM layer, the rest are linear+tanh. Arguments: epochs: How many epochs to run. n: Number of training batches to generate. batch_size: Number of samples per batch. layer_sizes: Sizes of the model's layers. """ layers = [] lstmp, *linp = lstm_parameters(*layer_sizes, batch_size=batch_size) layers.append(LSTMLayer(*lstmp)) for W, b in linp: layers.append(Linear(W, b)) layers.append(Tanh()) model = Sequential(tuple(layers)) data = generate_data(n, batch_size, layer_sizes[0], layer_sizes[-1], 10) lr = getattr(numpy, dtype)(0.01) for _ in range(epochs): costs = [] t0 = time.time() for inp, target in data: cost, model = step(model, lr, inp, target) if isinstance(cost, numpy.ndarray): cost = float(cost) costs.append(cost) c = sum(costs) / n t = time.time() - t0 print(f"Cost: {c:15.10f}\tTime: {t:15.10f}")
Python
async def infer_tuple_getitem( self, engine, arg: lib.AbstractTuple, idx: xtype.Int[64] ): """Infer the return type of primitive `tuple_getitem`.""" nelems = len(arg.elements) idx_v = self.require_constant(idx, argnum=2, range=range(-nelems, nelems)) return arg.elements[idx_v]
async def infer_tuple_getitem( self, engine, arg: lib.AbstractTuple, idx: xtype.Int[64] ): """Infer the return type of primitive `tuple_getitem`.""" nelems = len(arg.elements) idx_v = self.require_constant(idx, argnum=2, range=range(-nelems, nelems)) return arg.elements[idx_v]
Python
def full(shape, fill_value, dtype=None): """Main code for operation full. Arguments: shape: a tuple of integers fill_value: a scalar value dtype: either a string (e.g. 'int32') or a numpy dtype (e.g. np.int32) Returns: an array """ if dtype is None: dtype = typeof(fill_value) abstract_scalar_type = to_scalar_type(dtype) scalar_value = scalar_cast(fill_value, abstract_scalar_type) return distribute( myia_to_array(scalar_value, abstract_array(shape, scalar_value)), shape )
def full(shape, fill_value, dtype=None): """Main code for operation full. Arguments: shape: a tuple of integers fill_value: a scalar value dtype: either a string (e.g. 'int32') or a numpy dtype (e.g. np.int32) Returns: an array """ if dtype is None: dtype = typeof(fill_value) abstract_scalar_type = to_scalar_type(dtype) scalar_value = scalar_cast(fill_value, abstract_scalar_type) return distribute( myia_to_array(scalar_value, abstract_array(shape, scalar_value)), shape )
Python
def cynode(self, id, label, classes, parent=None, node=None): """Build data structure for a node in cytoscape.""" if not isinstance(id, str): if node is None: node = id id = self.id(id) data = {"id": id, "label": str(label)} if self.tooltip_gen and node: ttip = self.tooltip_gen(self._strip_cosmetic(node)) if ttip is not None: if not isinstance(ttip, str): ttip = str(hrepr(ttip)) data["tooltip"] = ttip if parent: parent = parent if isinstance(parent, str) else self.id(parent) data["parent"] = parent self.nodes.append({"data": data, "classes": classes})
def cynode(self, id, label, classes, parent=None, node=None): """Build data structure for a node in cytoscape.""" if not isinstance(id, str): if node is None: node = id id = self.id(id) data = {"id": id, "label": str(label)} if self.tooltip_gen and node: ttip = self.tooltip_gen(self._strip_cosmetic(node)) if ttip is not None: if not isinstance(ttip, str): ttip = str(hrepr(ttip)) data["tooltip"] = ttip if parent: parent = parent if isinstance(parent, str) else self.id(parent) data["parent"] = parent self.nodes.append({"data": data, "classes": classes})
Python
def cyedge(self, src_id, dest_id, label): """Build data structure for an edge in cytoscape.""" cl = "input-edge" if isinstance(label, tuple): label, cl = label if not isinstance(label, str): label = str(label) if not isinstance(dest_id, str): dest_id = self.id(dest_id) if not isinstance(src_id, str): src_id = self.id(src_id) data = { "id": f"{dest_id}-{src_id}-{label}", "label": label, "source": dest_id, "target": src_id, } self.edges.append({"data": data, "classes": cl})
def cyedge(self, src_id, dest_id, label): """Build data structure for an edge in cytoscape.""" cl = "input-edge" if isinstance(label, tuple): label, cl = label if not isinstance(label, str): label = str(label) if not isinstance(dest_id, str): dest_id = self.id(dest_id) if not isinstance(src_id, str): src_id = self.id(src_id) data = { "id": f"{dest_id}-{src_id}-{label}", "label": label, "source": dest_id, "target": src_id, } self.edges.append({"data": data, "classes": cl})
Python
def const_fn(self, node): """ Return name of function, if constant. Given an `Apply` node of a constant function, return the name of that function, otherwise return None. """ return self.labeler.const_fn(node)
def const_fn(self, node): """ Return name of function, if constant. Given an `Apply` node of a constant function, return the name of that function, otherwise return None. """ return self.labeler.const_fn(node)
Python
def add_graph(self, g): """Create a node for a graph.""" if g in self.processed: return if self.beautify: g = cosmetic_transformer(g) name = self.name(g) argnames = [self.name(p) for p in g.parameters] lbl = f'{name}({", ".join(argnames)})' classes = ["function", "focus" if g in self.focus else ""] self.cynode(id=g, label=lbl, classes=" ".join(classes)) self.processed.add(g)
def add_graph(self, g): """Create a node for a graph.""" if g in self.processed: return if self.beautify: g = cosmetic_transformer(g) name = self.name(g) argnames = [self.name(p) for p in g.parameters] lbl = f'{name}({", ".join(argnames)})' classes = ["function", "focus" if g in self.focus else ""] self.cynode(id=g, label=lbl, classes=" ".join(classes)) self.processed.add(g)
Python
def process_node_generic(self, node, g, cl): """Create node and edges for a node.""" lbl = self.label(node) self.cynode(id=node, label=lbl, parent=g, classes=cl) fn = node.inputs[0] if node.inputs else None if fn and fn.is_constant_graph(): self.graphs.add(fn.value) for inp in node.inputs: if inp.is_constant_graph(): self.cyedge(src_id=g, dest_id=inp.value, label=("", "use-edge")) edges = [] if fn and not (fn.is_constant() and self.function_in_node): edges.append((node, "F", fn)) edges += [ (node, i + 1, inp) for i, inp in enumerate(node.inputs[1:]) or [] ] self.process_edges(edges)
def process_node_generic(self, node, g, cl): """Create node and edges for a node.""" lbl = self.label(node) self.cynode(id=node, label=lbl, parent=g, classes=cl) fn = node.inputs[0] if node.inputs else None if fn and fn.is_constant_graph(): self.graphs.add(fn.value) for inp in node.inputs: if inp.is_constant_graph(): self.cyedge(src_id=g, dest_id=inp.value, label=("", "use-edge")) edges = [] if fn and not (fn.is_constant() and self.function_in_node): edges.append((node, "F", fn)) edges += [ (node, i + 1, inp) for i, inp in enumerate(node.inputs[1:]) or [] ] self.process_edges(edges)
Python
def class_gen(self, node, cl=None): """Generate the class name for this node.""" g = node.graph if cl is not None: pass elif node in self.returns: cl = "output" elif node.is_parameter(): cl = "input" if node not in g.parameters: cl += " unlisted" elif node.is_constant(): cl = "constant" elif node.is_special(): cl = f"special-{type(node.special).__name__}" else: cl = "intermediate" if _has_error(node.debug): cl += " error" if self._class_gen: return self._class_gen(self._strip_cosmetic(node), cl) else: return cl
def class_gen(self, node, cl=None): """Generate the class name for this node.""" g = node.graph if cl is not None: pass elif node in self.returns: cl = "output" elif node.is_parameter(): cl = "input" if node not in g.parameters: cl += " unlisted" elif node.is_constant(): cl = "constant" elif node.is_special(): cl = f"special-{type(node.special).__name__}" else: cl = "intermediate" if _has_error(node.debug): cl += " error" if self._class_gen: return self._class_gen(self._strip_cosmetic(node), cl) else: return cl
Python
def process_node(self, node): """Create node and edges for a node.""" if node in self.processed: return g = node.graph self.follow(node) cl = self.class_gen(node) if g and g not in self.processed: self.add_graph(g) if node.inputs and node.inputs[0].is_constant(): fn = node.inputs[0].value if fn in cosmetics: cosmetics[fn](self, node, g, cl) elif hasattr(fn, "graph_display"): fn.graph_display(self, node, g, cl) else: self.process_node_generic(node, g, cl) else: self.process_node_generic(node, g, cl) self.processed.add(node)
def process_node(self, node): """Create node and edges for a node.""" if node in self.processed: return g = node.graph self.follow(node) cl = self.class_gen(node) if g and g not in self.processed: self.add_graph(g) if node.inputs and node.inputs[0].is_constant(): fn = node.inputs[0].value if fn in cosmetics: cosmetics[fn](self, node, g, cl) elif hasattr(fn, "graph_display"): fn.graph_display(self, node, g, cl) else: self.process_node_generic(node, g, cl) else: self.process_node_generic(node, g, cl) self.processed.add(node)
Python
def process(self): """Process all graphs in entry_points.""" if self.nodes or self.edges: return while self.graphs: g = self.graphs.pop() self.process_graph(g) return self.nodes, self.edges
def process(self): """Process all graphs in entry_points.""" if self.nodes or self.edges: return while self.graphs: g = self.graphs.pop() self.process_graph(g) return self.nodes, self.edges
Python
def add_graph(self, g): """Create a node for a graph.""" name = self.name(g) argnames = [self.name(p) for p in g.parameters] lbl = f'{name}({", ".join(argnames)})' classes = ["function", "focus" if g in self.focus else ""] self.cynode(id=g, label=lbl, classes=" ".join(classes)) # self.processed.add(g)
def add_graph(self, g): """Create a node for a graph.""" name = self.name(g) argnames = [self.name(p) for p in g.parameters] lbl = f'{name}({", ".join(argnames)})' classes = ["function", "focus" if g in self.focus else ""] self.cynode(id=g, label=lbl, classes=" ".join(classes)) # self.processed.add(g)
Python
def process_node_generic(self, node, g, cl): """Create node and edges for a node.""" if node.is_constant() and self.duplicate_constants: return lbl = self.label(node) self.cynode(id=node, label=lbl, parent=g, classes=cl) fn = node.inputs[0] if node.inputs else None if fn and fn.is_constant_graph(): self.graphs.add(fn.value) for inp in node.inputs: if inp.is_constant_graph(): self.cyedge(src_id=g, dest_id=inp.value, label=("", "use-edge")) edges = [] if fn and not (fn.is_constant() and self.function_in_node): edges.append((node, "F", fn)) edges += [ (node, i + 1, inp) for i, inp in enumerate(node.inputs[1:]) or [] ] self.process_edges(edges)
def process_node_generic(self, node, g, cl): """Create node and edges for a node.""" if node.is_constant() and self.duplicate_constants: return lbl = self.label(node) self.cynode(id=node, label=lbl, parent=g, classes=cl) fn = node.inputs[0] if node.inputs else None if fn and fn.is_constant_graph(): self.graphs.add(fn.value) for inp in node.inputs: if inp.is_constant_graph(): self.cyedge(src_id=g, dest_id=inp.value, label=("", "use-edge")) edges = [] if fn and not (fn.is_constant() and self.function_in_node): edges.append((node, "F", fn)) edges += [ (node, i + 1, inp) for i, inp in enumerate(node.inputs[1:]) or [] ] self.process_edges(edges)
Python
def process_node(self, node): """Create node and edges for a node.""" # if node in self.processed: # return g = node.graph # self.follow(node) cl = self.class_gen(node) if node.inputs and node.inputs[0].is_constant(): fn = node.inputs[0].value if fn in cosmetics: cosmetics[fn](self, node, g, cl) elif hasattr(fn, "graph_display"): fn.graph_display(self, node, g, cl) else: self.process_node_generic(node, g, cl) else: self.process_node_generic(node, g, cl)
def process_node(self, node): """Create node and edges for a node.""" # if node in self.processed: # return g = node.graph # self.follow(node) cl = self.class_gen(node) if node.inputs and node.inputs[0].is_constant(): fn = node.inputs[0].value if fn in cosmetics: cosmetics[fn](self, node, g, cl) elif hasattr(fn, "graph_display"): fn.graph_display(self, node, g, cl) else: self.process_node_generic(node, g, cl) else: self.process_node_generic(node, g, cl)
Python
def process(self): """Process all graphs in entry_points.""" if self.nodes or self.edges: return for g in self.graphs: self.add_graph(g) for node in self.todo: self.process_node(node) return self.nodes, self.edges
def process(self): """Process all graphs in entry_points.""" if self.nodes or self.edges: return for g in self.graphs: self.add_graph(g) for node in self.todo: self.process_node(node) return self.nodes, self.edges