language
stringclasses 6
values | original_string
stringlengths 25
887k
| text
stringlengths 25
887k
|
---|---|---|
Python | def loader_callable_from_functions(cls, load_fn, defaults_fn):
"""Return a function that creates a new backend loader.
for more details about load_fn and defaults_fn.
:return: a callable (with no arguments) that will generate
and return a BackendLoader object.
"""
def loader():
return cls(load_fn=load_fn, defaults_fn=defaults_fn)
return loader | def loader_callable_from_functions(cls, load_fn, defaults_fn):
"""Return a function that creates a new backend loader.
for more details about load_fn and defaults_fn.
:return: a callable (with no arguments) that will generate
and return a BackendLoader object.
"""
def loader():
return cls(load_fn=load_fn, defaults_fn=defaults_fn)
return loader |
Python | def collect_backend_plugins():
"""Collect backend plugins.
Look for entry points in namespace "myia.backend".
Each entry point must be a backend module.
From a backend module we must be able to import two functions:
- `load_options(**backend_options)`: must check backend options and return
a dictionary with valid options. Used to cache loaded backends.
- `load_backend(backend_options)`: must take
a dictionary of valid backend options and return a new instance
of backend. Used to effectively load the backend
if not already in cache.
:return: a dictionary mapping a backend name to a loader function
to generate BackendLoader instances.
"""
# Manually register Python backend from myia package.
backends = {
"python": BackendLoader.loader_callable_from_pkg(
"myia.compile.backends.python"
)
}
backends.update(
{
entry_point.name: BackendLoader.loader_callable_from_pkg(
entry_point.module_name
)
for entry_point in pkg_resources.iter_entry_points("myia.backend")
}
)
return backends | def collect_backend_plugins():
"""Collect backend plugins.
Look for entry points in namespace "myia.backend".
Each entry point must be a backend module.
From a backend module we must be able to import two functions:
- `load_options(**backend_options)`: must check backend options and return
a dictionary with valid options. Used to cache loaded backends.
- `load_backend(backend_options)`: must take
a dictionary of valid backend options and return a new instance
of backend. Used to effectively load the backend
if not already in cache.
:return: a dictionary mapping a backend name to a loader function
to generate BackendLoader instances.
"""
# Manually register Python backend from myia package.
backends = {
"python": BackendLoader.loader_callable_from_pkg(
"myia.compile.backends.python"
)
}
backends.update(
{
entry_point.name: BackendLoader.loader_callable_from_pkg(
entry_point.module_name
)
for entry_point in pkg_resources.iter_entry_points("myia.backend")
}
)
return backends |
Python | def parse_default():
"""Parses the default backend.
Returns name and options from the environment or builtin default.
See the documentation of get_default() for the backend string syntax.
"""
backend_spec = os.environ.get("MYIA_BACKEND", "pytorch")
backend, *opts = backend_spec.split("?", maxsplit=1)
if len(opts) == 1:
opts = urllib.parse.parse_qs(
opts[0],
keep_blank_values=True,
strict_parsing=True,
errors="strict",
)
for k in opts:
assert len(opts[k]) == 1
opts[k] = opts[k][0]
else:
assert len(opts) == 0
opts = {}
return backend, opts | def parse_default():
"""Parses the default backend.
Returns name and options from the environment or builtin default.
See the documentation of get_default() for the backend string syntax.
"""
backend_spec = os.environ.get("MYIA_BACKEND", "pytorch")
backend, *opts = backend_spec.split("?", maxsplit=1)
if len(opts) == 1:
opts = urllib.parse.parse_qs(
opts[0],
keep_blank_values=True,
strict_parsing=True,
errors="strict",
)
for k in opts:
assert len(opts[k]) == 1
opts[k] = opts[k][0]
else:
assert len(opts) == 0
opts = {}
return backend, opts |
Python | def load_backend(name, options=None):
"""Load the named backend.
Returns the backend class registered for the name.
If you pass None as the name, this will load the default backend.
See the documentation for get_default() for more information.
Raises:
UnknownBackend: The name is not recognized.
LoadingError: There was an error loading the backend.
"""
if name is None:
assert options is None
return get_default()
if options is None:
options = {}
if name not in _backends:
raise UnknownBackend(name)
backend_loader = _backends[name]()
options = backend_loader.load_options(**options)
key = (name, tuple(sorted(list(options.items()))))
res = _active_backends.get(key, None)
if res is None:
try:
res = backend_loader.load_backend(options)
_active_backends[key] = res
except Exception as e:
raise LoadingError(name) from e
return res | def load_backend(name, options=None):
"""Load the named backend.
Returns the backend class registered for the name.
If you pass None as the name, this will load the default backend.
See the documentation for get_default() for more information.
Raises:
UnknownBackend: The name is not recognized.
LoadingError: There was an error loading the backend.
"""
if name is None:
assert options is None
return get_default()
if options is None:
options = {}
if name not in _backends:
raise UnknownBackend(name)
backend_loader = _backends[name]()
options = backend_loader.load_options(**options)
key = (name, tuple(sorted(list(options.items()))))
res = _active_backends.get(key, None)
if res is None:
try:
res = backend_loader.load_backend(options)
_active_backends[key] = res
except Exception as e:
raise LoadingError(name) from e
return res |
Python | def register_backend(name, load_fn, defaults_fn):
"""Register a new backend.
This is to allow third party libraries to register their own
backends if loaded by the user. Built-in backends are
preregistered.
Arguments:
name (str): Name of the backend, must be unique
load_fn: function that will load the backend. This must
return a callable that will take keyword arguments
for options.
defaults_fn: function that takes the same default arguments as
load_fn and maps them to canonical and/or default
values.
"""
assert name not in _backends
_backends[name] = BackendLoader.loader_callable_from_functions(
load_fn, defaults_fn
) | def register_backend(name, load_fn, defaults_fn):
"""Register a new backend.
This is to allow third party libraries to register their own
backends if loaded by the user. Built-in backends are
preregistered.
Arguments:
name (str): Name of the backend, must be unique
load_fn: function that will load the backend. This must
return a callable that will take keyword arguments
for options.
defaults_fn: function that takes the same default arguments as
load_fn and maps them to canonical and/or default
values.
"""
assert name not in _backends
_backends[name] = BackendLoader.loader_callable_from_functions(
load_fn, defaults_fn
) |
Python | def compile(self, graph, argspec, outspec):
"""Compile the group of graphs rooted at `graph`.
This function takes in a fully typed graph cluster rooted at
`graph` with a manager and must return a callable that accepts
arguments of the same type and number as the root graph.
"""
raise NotImplementedError("compile") | def compile(self, graph, argspec, outspec):
"""Compile the group of graphs rooted at `graph`.
This function takes in a fully typed graph cluster rooted at
`graph` with a manager and must return a callable that accepts
arguments of the same type and number as the root graph.
"""
raise NotImplementedError("compile") |
Python | def supports_prim_group(self, prim_group: PrimGroup):
"""Return True if given primitive group is supported.
:param prim_group: a PrimitiveGroup object
"""
raise NotImplementedError("supports_prim_group") | def supports_prim_group(self, prim_group: PrimGroup):
"""Return True if given primitive group is supported.
:param prim_group: a PrimitiveGroup object
"""
raise NotImplementedError("supports_prim_group") |
Python | def defaults(self):
"""Return defaults for this object."""
if self._defaults is None:
defaults = resolve_from_path(self._defaults_location)
if not isinstance(defaults, dict):
defaults = getattr(defaults, self.defaults_field)
self._defaults = defaults
return self._defaults | def defaults(self):
"""Return defaults for this object."""
if self._defaults is None:
defaults = resolve_from_path(self._defaults_location)
if not isinstance(defaults, dict):
defaults = getattr(defaults, self.defaults_field)
self._defaults = defaults
return self._defaults |
Python | def repr_(obj: Any, **kwargs: Any):
"""Return unique string representation of object with additional info.
The usual representation is `<module.Class object at address>`. This
function returns `<module.Class(key=value) object at address>` instead, to
make objects easier to identify by their attributes.
Arguments:
obj: object to represent
**kwargs: The attributes and their values that will be printed as part
of the string representation.
"""
name = f"{obj.__module__}.{obj.__class__.__name__}"
info = ", ".join(f"{key}={value}" for key, value in kwargs.items())
address = str(hex(id(obj)))
return f"<{name}({info}) object at {address}>" | def repr_(obj: Any, **kwargs: Any):
"""Return unique string representation of object with additional info.
The usual representation is `<module.Class object at address>`. This
function returns `<module.Class(key=value) object at address>` instead, to
make objects easier to identify by their attributes.
Arguments:
obj: object to represent
**kwargs: The attributes and their values that will be printed as part
of the string representation.
"""
name = f"{obj.__module__}.{obj.__class__.__name__}"
info = ", ".join(f"{key}={value}" for key, value in kwargs.items())
address = str(hex(id(obj)))
return f"<{name}({info}) object at {address}>" |
Python | def list_str(lst: List):
"""Return string representation of a list.
Unlike the default string representation, this calls `str` instead of
`repr` on each element.
"""
elements = ", ".join(str(elem) for elem in lst)
return f"[{elements}]" | def list_str(lst: List):
"""Return string representation of a list.
Unlike the default string representation, this calls `str` instead of
`repr` on each element.
"""
elements = ", ".join(str(elem) for elem in lst)
return f"[{elements}]" |
Python | def register(self, handler, run_history=False):
"""Register a handler for this event.
This returns the handler so that register can be used as a decorator.
Arguments:
handler: A function. The handler's first parameter will always
be the event.
run_history: Whether to call the handler for all previous events
or not.
"""
self._handlers.append(handler)
if run_history and self.history:
for entry in self.history():
if isinstance(entry, tuple):
handler(self, *entry)
else:
handler(self, entry)
return handler | def register(self, handler, run_history=False):
"""Register a handler for this event.
This returns the handler so that register can be used as a decorator.
Arguments:
handler: A function. The handler's first parameter will always
be the event.
run_history: Whether to call the handler for all previous events
or not.
"""
self._handlers.append(handler)
if run_history and self.history:
for entry in self.history():
if isinstance(entry, tuple):
handler(self, *entry)
else:
handler(self, entry)
return handler |
Python | def trigger(self, stringify=lambda err: f"* {err.args[0]}"):
"""Raise an exception if an error occurred."""
if self.errors:
msg = "\n".join(stringify(e) for e in self.errors)
exc = self.exc_class(msg)
exc.errors = self.errors
raise exc | def trigger(self, stringify=lambda err: f"* {err.args[0]}"):
"""Raise an exception if an error occurred."""
if self.errors:
msg = "\n".join(stringify(e) for e in self.errors)
exc = self.exc_class(msg)
exc.errors = self.errors
raise exc |
Python | def core(fn=None, **flags):
"""Wrap a graph that defines a core Myia function.
The following flags can be set:
core: (default: True) Indicates that this is a core function
(only informative at the moment).
ignore_values: (default: False) Make the inferrer ignore argument
values for the parameters (leads to less specialization).
"""
flags = {
# This is a function defined in Myia's core
"core": True,
"reference": True,
**flags,
}
fn._myia_flags = flags
return fn | def core(fn=None, **flags):
"""Wrap a graph that defines a core Myia function.
The following flags can be set:
core: (default: True) Indicates that this is a core function
(only informative at the moment).
ignore_values: (default: False) Make the inferrer ignore argument
values for the parameters (leads to less specialization).
"""
flags = {
# This is a function defined in Myia's core
"core": True,
"reference": True,
**flags,
}
fn._myia_flags = flags
return fn |
Python | def resolve_from_path(path):
"""Resolve a module or object from a path of the form x.y.z."""
modname, field = path.rsplit(".", 1)
mod = __import__(modname, fromlist=[field])
return getattr(mod, field) | def resolve_from_path(path):
"""Resolve a module or object from a path of the form x.y.z."""
modname, field = path.rsplit(".", 1)
mod = __import__(modname, fromlist=[field])
return getattr(mod, field) |
Python | def assert_scalar(*args):
"""Assert that the arguments are all scalars."""
# TODO: These checks should be stricter, e.g. require that all args
# have exactly the same type, but right now there is some mixing between
# numpy types and int/float.
for x in args:
if isinstance(x, np.ndarray):
if x.shape != ():
msg = f"Expected scalar, not array with shape {x.shape}"
raise TypeError(msg)
elif not isinstance(x, (int, float, np.number)):
raise TypeError(f"Expected scalar, not {type(x)}") | def assert_scalar(*args):
"""Assert that the arguments are all scalars."""
# TODO: These checks should be stricter, e.g. require that all args
# have exactly the same type, but right now there is some mixing between
# numpy types and int/float.
for x in args:
if isinstance(x, np.ndarray):
if x.shape != ():
msg = f"Expected scalar, not array with shape {x.shape}"
raise TypeError(msg)
elif not isinstance(x, (int, float, np.number)):
raise TypeError(f"Expected scalar, not {type(x)}") |
Python | def dfs(
root: T,
succ: Callable[[T], Iterable[T]],
include: Callable[[T], str] = always_include,
) -> Iterable[T]:
"""Perform a depth-first search.
Arguments:
root: The node to start from.
succ: A function that returns a node's successors.
include: A function that returns whether to include a node
in the search.
* Return 'follow' to include the node and follow its edges.
* Return 'nofollow' to include the node but not follow its edges.
* Return 'exclude' to not include the node, nor follow its edges.
"""
seen: Set[T] = set()
to_visit = [root]
while to_visit:
node = to_visit.pop()
if node in seen:
continue
seen.add(node)
incl = include(node)
if incl == FOLLOW:
yield node
to_visit += succ(node)
elif incl == NOFOLLOW:
yield node
elif incl == EXCLUDE:
pass
else:
raise ValueError(
"include(node) must return one of: "
'"follow", "nofollow", "exclude"'
) | def dfs(
root: T,
succ: Callable[[T], Iterable[T]],
include: Callable[[T], str] = always_include,
) -> Iterable[T]:
"""Perform a depth-first search.
Arguments:
root: The node to start from.
succ: A function that returns a node's successors.
include: A function that returns whether to include a node
in the search.
* Return 'follow' to include the node and follow its edges.
* Return 'nofollow' to include the node but not follow its edges.
* Return 'exclude' to not include the node, nor follow its edges.
"""
seen: Set[T] = set()
to_visit = [root]
while to_visit:
node = to_visit.pop()
if node in seen:
continue
seen.add(node)
incl = include(node)
if incl == FOLLOW:
yield node
to_visit += succ(node)
elif incl == NOFOLLOW:
yield node
elif incl == EXCLUDE:
pass
else:
raise ValueError(
"include(node) must return one of: "
'"follow", "nofollow", "exclude"'
) |
Python | def toposort(
root: T,
succ: Callable[[T], Iterable[T]],
include: Callable[[T], str] = always_include,
allow_cycles=False,
) -> Iterable[T]:
"""Yield the nodes in the tree starting at root in topological order.
Arguments:
root: The node to start from.
succ: A function that returns a node's successors.
include: A function that returns whether to include a node
in the search.
* Return 'follow' to include the node and follow its edges.
* Return 'nofollow' to include the node but not follow its edges.
* Return 'exclude' to not include the node, nor follow its edges.
allow_cycles: Return an arbitrary order for graphs with cycles instead
of an error
"""
done: Set[T] = set()
todo: List[T] = [root]
rank: Dict[T, int] = {}
cycles = set()
while todo:
node = todo[-1]
if node in done:
todo.pop()
continue
if node in rank and rank[node] != len(todo):
if allow_cycles:
cycles.add(node)
else:
raise ValueError("cycle")
else:
rank[node] = len(todo)
cont = False
incl = include(node)
if incl == FOLLOW:
for i in succ(node):
if i not in done and i not in cycles:
todo.append(i)
cont = True
elif incl == NOFOLLOW:
pass
elif incl == EXCLUDE:
done.add(node)
todo.pop()
continue
else:
raise ValueError(
"include(node) must return one of: "
'"follow", "nofollow", "exclude"'
)
if cont:
continue
done.add(node)
yield node
todo.pop() | def toposort(
root: T,
succ: Callable[[T], Iterable[T]],
include: Callable[[T], str] = always_include,
allow_cycles=False,
) -> Iterable[T]:
"""Yield the nodes in the tree starting at root in topological order.
Arguments:
root: The node to start from.
succ: A function that returns a node's successors.
include: A function that returns whether to include a node
in the search.
* Return 'follow' to include the node and follow its edges.
* Return 'nofollow' to include the node but not follow its edges.
* Return 'exclude' to not include the node, nor follow its edges.
allow_cycles: Return an arbitrary order for graphs with cycles instead
of an error
"""
done: Set[T] = set()
todo: List[T] = [root]
rank: Dict[T, int] = {}
cycles = set()
while todo:
node = todo[-1]
if node in done:
todo.pop()
continue
if node in rank and rank[node] != len(todo):
if allow_cycles:
cycles.add(node)
else:
raise ValueError("cycle")
else:
rank[node] = len(todo)
cont = False
incl = include(node)
if incl == FOLLOW:
for i in succ(node):
if i not in done and i not in cycles:
todo.append(i)
cont = True
elif incl == NOFOLLOW:
pass
elif incl == EXCLUDE:
done.add(node)
todo.pop()
continue
else:
raise ValueError(
"include(node) must return one of: "
'"follow", "nofollow", "exclude"'
)
if cont:
continue
done.add(node)
yield node
todo.pop() |
Python | def gc(self):
"""Garbage-collect unused canonical objects."""
to_gc = list(self.to_gc)
self.to_gc.clear()
for hsh in to_gc:
if not self.hashes[hsh]:
del self.hashes[hsh] | def gc(self):
"""Garbage-collect unused canonical objects."""
to_gc = list(self.to_gc)
self.to_gc.clear()
for hsh in to_gc:
if not self.hashes[hsh]:
del self.hashes[hsh] |
Python | def eqkey(x):
"""Return the equality key for x."""
if getattr(x, "_incomplete", False):
raise IncompleteException()
elif isinstance(x, EqKey):
return x
elif isinstance(x, (list, tuple)):
return ItemEK(x, range(len(x)))
elif isinstance(x, dict):
return ItemEK(x, x.keys())
elif hasattr(x, "__eqkey__"):
return x.__eqkey__()
else:
assert not isinstance(x, (set, frozenset))
return Atom(x, x) | def eqkey(x):
"""Return the equality key for x."""
if getattr(x, "_incomplete", False):
raise IncompleteException()
elif isinstance(x, EqKey):
return x
elif isinstance(x, (list, tuple)):
return ItemEK(x, range(len(x)))
elif isinstance(x, dict):
return ItemEK(x, x.keys())
elif hasattr(x, "__eqkey__"):
return x.__eqkey__()
else:
assert not isinstance(x, (set, frozenset))
return Atom(x, x) |
Python | def deep_eqkey(obj, path=frozenset()):
"""Return a key for equality tests for non-recursive structures."""
if obj is None or isinstance(obj, (int, float)):
return obj
cached = getattr(obj, "$intern_deep_eqkey", None)
if cached is not None:
return cached
oid = id(obj)
if oid in path:
_maybe_setattr(obj, "$intern_deep_eqkey", RECURSIVE)
return RECURSIVE
key = eqkey(obj)
if isinstance(key, ElementsBase):
subs = [deep_eqkey(x, path | {oid}) for x in key.values]
if RECURSIVE in subs:
_maybe_setattr(obj, "$intern_deep_eqkey", RECURSIVE)
return RECURSIVE
dk = (
key.type,
type(key.values)(subs),
)
else:
assert isinstance(key, Atom)
dk = key.type, key.value
_maybe_setattr(obj, "$intern_deep_eqkey", dk)
return dk | def deep_eqkey(obj, path=frozenset()):
"""Return a key for equality tests for non-recursive structures."""
if obj is None or isinstance(obj, (int, float)):
return obj
cached = getattr(obj, "$intern_deep_eqkey", None)
if cached is not None:
return cached
oid = id(obj)
if oid in path:
_maybe_setattr(obj, "$intern_deep_eqkey", RECURSIVE)
return RECURSIVE
key = eqkey(obj)
if isinstance(key, ElementsBase):
subs = [deep_eqkey(x, path | {oid}) for x in key.values]
if RECURSIVE in subs:
_maybe_setattr(obj, "$intern_deep_eqkey", RECURSIVE)
return RECURSIVE
dk = (
key.type,
type(key.values)(subs),
)
else:
assert isinstance(key, Atom)
dk = key.type, key.value
_maybe_setattr(obj, "$intern_deep_eqkey", dk)
return dk |
Python | def hashrec(obj, n=10):
"""Hash a (possibly self-referential) object.
This explores the object breadth-first and uses the first n elements
to compute the hash.
Arguments:
obj: The object for which to compute a hash.
n: The maximum number of contributions to the hash.
"""
count = 0
h = []
for key in _bfs(obj):
if count == n:
break
count += 1
if isinstance(key, Atom):
h.extend((key.type, key.value))
else:
h.extend((key.type, len(key.values)))
return pyhash(tuple(h)) | def hashrec(obj, n=10):
"""Hash a (possibly self-referential) object.
This explores the object breadth-first and uses the first n elements
to compute the hash.
Arguments:
obj: The object for which to compute a hash.
n: The maximum number of contributions to the hash.
"""
count = 0
h = []
for key in _bfs(obj):
if count == n:
break
count += 1
if isinstance(key, Atom):
h.extend((key.type, key.value))
else:
h.extend((key.type, len(key.values)))
return pyhash(tuple(h)) |
Python | def eqrec(obj1, obj2, cache=None):
"""Compare two (possibly self-referential) objects for equality."""
id1 = id(obj1)
id2 = id(obj2)
if (id1, id2) in cache:
return True
cache.add((id1, id2))
key1 = eqkey(obj1)
key2 = eqkey(obj2)
if type(key1) is not type(key2) or key1.type is not key2.type:
return False
if isinstance(key1, Atom):
return key1.value == key2.value
elif isinstance(key1, ElementsBase):
v1 = key1.values
v2 = key2.values
if len(v1) != len(v2):
return False
for x1, x2 in zip(v1, v2):
if not eqrec(x1, x2, cache):
return False
else:
return True
else:
raise AssertionError() | def eqrec(obj1, obj2, cache=None):
"""Compare two (possibly self-referential) objects for equality."""
id1 = id(obj1)
id2 = id(obj2)
if (id1, id2) in cache:
return True
cache.add((id1, id2))
key1 = eqkey(obj1)
key2 = eqkey(obj2)
if type(key1) is not type(key2) or key1.type is not key2.type:
return False
if isinstance(key1, Atom):
return key1.value == key2.value
elif isinstance(key1, ElementsBase):
v1 = key1.values
v2 = key2.values
if len(v1) != len(v2):
return False
for x1, x2 in zip(v1, v2):
if not eqrec(x1, x2, cache):
return False
else:
return True
else:
raise AssertionError() |
Python | def eq(obj1, obj2):
"""Compare two (possibly self-referential) objects for equality."""
if obj1 is obj2:
return True
key1 = deep_eqkey(obj1)
if key1 is RECURSIVE:
return eqrec(obj1, obj2, set())
else:
key2 = deep_eqkey(obj2)
return key1 == key2 | def eq(obj1, obj2):
"""Compare two (possibly self-referential) objects for equality."""
if obj1 is obj2:
return True
key1 = deep_eqkey(obj1)
if key1 is RECURSIVE:
return eqrec(obj1, obj2, set())
else:
key2 = deep_eqkey(obj2)
return key1 == key2 |
Python | def new(cls, *args, **kwargs):
"""Instantiates a non-interned instance."""
obj = object.__new__(cls)
obj.__init__(*args, **kwargs)
return obj | def new(cls, *args, **kwargs):
"""Instantiates a non-interned instance."""
obj = object.__new__(cls)
obj.__init__(*args, **kwargs)
return obj |
Python | def empty(cls):
"""Create an empty, incomplete instance."""
inst = object.__new__(cls)
inst._incomplete = True
return inst | def empty(cls):
"""Create an empty, incomplete instance."""
inst = object.__new__(cls)
inst._incomplete = True
return inst |
Python | async def embed(info, x):
"""Return a constant that embeds the identity of the input node."""
typ = sensitivity_transform(await x.get())
key = SymbolicKeyInstance(x.node, typ)
return Constant(key) | async def embed(info, x):
"""Return a constant that embeds the identity of the input node."""
typ = sensitivity_transform(await x.get())
key = SymbolicKeyInstance(x.node, typ)
return Constant(key) |
Python | def combine_relations(self, root_name, relations):
"""Combine a name and a list of relations in a single string."""
if root_name is None:
return None
ids = [r for r in relations if isinstance(r, int)]
relations = [r for r in relations if not isinstance(r, int)]
if ids:
relations.append(ids[-1])
tags = [
self.relation_symbols.get(r, f"{r}:") for r in reversed(relations)
]
return "".join(tags) + root_name | def combine_relations(self, root_name, relations):
"""Combine a name and a list of relations in a single string."""
if root_name is None:
return None
ids = [r for r in relations if isinstance(r, int)]
relations = [r for r in relations if not isinstance(r, int)]
if ids:
relations.append(ids[-1])
tags = [
self.relation_symbols.get(r, f"{r}:") for r in reversed(relations)
]
return "".join(tags) + root_name |
Python | def const_fn(self, node):
"""Return name of function, if constant.
Given an `Apply` node of a constant function, return the
name of that function, otherwise return None.
"""
fn = node.inputs[0] if node.inputs else None
if fn and fn.is_constant():
return self.label(fn, False)
else:
return None | def const_fn(self, node):
"""Return name of function, if constant.
Given an `Apply` node of a constant function, return the
name of that function, otherwise return None.
"""
fn = node.inputs[0] if node.inputs else None
if fn and fn.is_constant():
return self.label(fn, False)
else:
return None |
Python | def label(x, labeler=default_labeler):
"""Return an informative textual label for a node."""
if isinstance(x, Primitive):
return x.name
elif isinstance(x, (ANFNode, Graph, DebugInfo)):
return labeler.name(x, True)
else:
return repr(x) | def label(x, labeler=default_labeler):
"""Return an informative textual label for a node."""
if isinstance(x, Primitive):
return x.name
elif isinstance(x, (ANFNode, Graph, DebugInfo)):
return labeler.name(x, True)
else:
return repr(x) |
Python | async def infer_casttag(
self, engine, x: lib.AbstractTaggedUnion, tag: xtype.Int[64]
):
"""Infer the return type of primitive `casttag`."""
opts = await lib.force_pending(x.options)
tag_v = self.require_constant(tag, argnum=2, range={i for i, _ in opts})
for i, typ in opts:
if i == tag_v:
return typ
raise AssertionError("Unreachable") | async def infer_casttag(
self, engine, x: lib.AbstractTaggedUnion, tag: xtype.Int[64]
):
"""Infer the return type of primitive `casttag`."""
opts = await lib.force_pending(x.options)
tag_v = self.require_constant(tag, argnum=2, range={i for i, _ in opts})
for i, typ in opts:
if i == tag_v:
return typ
raise AssertionError("Unreachable") |
Python | def inject(**utilities):
"""Inject all utilities in the globals of every module."""
for name, module in list(sys.modules.items()):
glob = vars(module)
for key, value in utilities.items():
if key not in glob:
try:
glob[key] = value
except TypeError:
pass | def inject(**utilities):
"""Inject all utilities in the globals of every module."""
for name, module in list(sys.modules.items()):
glob = vars(module)
for key, value in utilities.items():
if key not in glob:
try:
glob[key] = value
except TypeError:
pass |
Python | def range_(start, stop=None, step=None):
"""Myia implementation of the standard range function."""
if stop is None:
stop = start
start = 0
if step is None:
step = 1
return Range(start, stop, step) | def range_(start, stop=None, step=None):
"""Myia implementation of the standard range function."""
if stop is None:
stop = start
start = 0
if step is None:
step = 1
return Range(start, stop, step) |
Python | def _resolve_var(self):
"""Try to forcefully resolve one variable to resume execution.
For example, if the code contains the literal 1.0, we let its type
be determined by variables it interacts with, but if there is nothing
else to do, we may force it to Float[64].
"""
# Filter out all done tasks
varlist = [fut for fut in self._vars if not fut.done()]
# Filter out priority-less tasks, which cannot be forced
later = [fut for fut in varlist if fut.priority() is None]
varlist = [fut for fut in varlist if fut.priority() is not None]
self._vars = later
if not varlist:
return False
varlist.sort(key=lambda x: x.priority())
found = False
while varlist:
v1 = varlist.pop()
try:
v1.force_resolve()
except self.errtype as e:
self._errors.append(e)
else:
found = True
break
self._vars += varlist
return found | def _resolve_var(self):
"""Try to forcefully resolve one variable to resume execution.
For example, if the code contains the literal 1.0, we let its type
be determined by variables it interacts with, but if there is nothing
else to do, we may force it to Float[64].
"""
# Filter out all done tasks
varlist = [fut for fut in self._vars if not fut.done()]
# Filter out priority-less tasks, which cannot be forced
later = [fut for fut in varlist if fut.priority() is None]
varlist = [fut for fut in varlist if fut.priority() is not None]
self._vars = later
if not varlist:
return False
varlist.sort(key=lambda x: x.priority())
found = False
while varlist:
v1 = varlist.pop()
try:
v1.force_resolve()
except self.errtype as e:
self._errors.append(e)
else:
found = True
break
self._vars += varlist
return found |
Python | def run_forever(self):
"""Run this loop until there is no more work to do."""
while True:
while self._todo:
h = self._todo.popleft()
h._run()
# If some literals weren't forced to a concrete type by some
# operation, we sort by priority (i.e. floats first) and we
# force the first one to take its default concrete type. Then
# we resume the loop.
if not self._resolve_var():
break | def run_forever(self):
"""Run this loop until there is no more work to do."""
while True:
while self._todo:
h = self._todo.popleft()
h._run()
# If some literals weren't forced to a concrete type by some
# operation, we sort by priority (i.e. floats first) and we
# force the first one to take its default concrete type. Then
# we resume the loop.
if not self._resolve_var():
break |
Python | def call_exception_handler(self, ctx):
"""Log an exception in the list of errors."""
if "exception" in ctx:
self._errors.append(ctx["exception"])
else:
raise AssertionError("call_exception_handler", ctx) | def call_exception_handler(self, ctx):
"""Log an exception in the list of errors."""
if "exception" in ctx:
self._errors.append(ctx["exception"])
else:
raise AssertionError("call_exception_handler", ctx) |
Python | def collect_errors(self):
"""Return a collection of all exceptions from all futures."""
futs, self._tasks = self._tasks, []
errors, self._errors = self._errors, []
errors += [
fut.exception() for _, fut in futs if fut.done() and fut.exception()
]
not_done = [ref for ref, fut in futs if not fut.done()]
if not errors and not_done:
exc = self.errtype(
f"Could not run inference to completion."
" There might be an infinite loop in the program"
" which prevents type inference from working. "
" The above is the set of blocked calls and does not "
" necessarily constitute a stack trace.",
refs=[x for x in not_done if x],
priority=-2,
)
errors.append(exc)
return errors | def collect_errors(self):
"""Return a collection of all exceptions from all futures."""
futs, self._tasks = self._tasks, []
errors, self._errors = self._errors, []
errors += [
fut.exception() for _, fut in futs if fut.done() and fut.exception()
]
not_done = [ref for ref, fut in futs if not fut.done()]
if not errors and not_done:
exc = self.errtype(
f"Could not run inference to completion."
" There might be an infinite loop in the program"
" which prevents type inference from working. "
" The above is the set of blocked calls and does not "
" necessarily constitute a stack trace.",
refs=[x for x in not_done if x],
priority=-2,
)
errors.append(exc)
return errors |
Python | def call_soon(self, callback, *args, context=None):
"""Call the given callback as soon as possible."""
h = asyncio.Handle(callback, args, self, context=context)
self._todo.append(h)
return h | def call_soon(self, callback, *args, context=None):
"""Call the given callback as soon as possible."""
h = asyncio.Handle(callback, args, self, context=context)
self._todo.append(h)
return h |
Python | def create_pending(self, resolve, priority):
"""Create a Pending associated to this loop."""
pending = Pending(resolve=resolve, priority=priority, loop=self)
self._vars.append(pending)
return pending | def create_pending(self, resolve, priority):
"""Create a Pending associated to this loop."""
pending = Pending(resolve=resolve, priority=priority, loop=self)
self._vars.append(pending)
return pending |
Python | def create_pending_from_list(self, poss, dflt, priority):
"""Create a PendingFromList associated to this loop."""
pending = PendingFromList(poss, dflt, priority, loop=self)
self._vars.append(pending)
return pending | def create_pending_from_list(self, poss, dflt, priority):
"""Create a PendingFromList associated to this loop."""
pending = PendingFromList(poss, dflt, priority, loop=self)
self._vars.append(pending)
return pending |
Python | def create_pending_tentative(self, tentative):
"""Create a PendingTentative associated to this loop."""
pending = PendingTentative(tentative=tentative, loop=self)
self._vars.append(pending)
return pending | def create_pending_tentative(self, tentative):
"""Create a PendingTentative associated to this loop."""
pending = PendingTentative(tentative=tentative, loop=self)
self._vars.append(pending)
return pending |
Python | def is_simple(x):
"""Returns whether data or a Pending is considered "simple".
"Simple" data is merged by identity, whereas this may not be the case
for non-simple data, e.g. Possibilities are merged using set union, and
distinct numbers e.g. 2 and 3 are merged into ANYTHING.
Simple data can be forced more easily because it won't cause problems
if we find more values to merge along.
"""
from .data import AbstractScalar
if isinstance(x, Pending):
return x.is_simple()
if isinstance(x, AbstractScalar):
return is_simple(x.xtype())
elif isinstance(x, xtype.TypeMeta):
return True
else:
return False | def is_simple(x):
"""Returns whether data or a Pending is considered "simple".
"Simple" data is merged by identity, whereas this may not be the case
for non-simple data, e.g. Possibilities are merged using set union, and
distinct numbers e.g. 2 and 3 are merged into ANYTHING.
Simple data can be forced more easily because it won't cause problems
if we find more values to merge along.
"""
from .data import AbstractScalar
if isinstance(x, Pending):
return x.is_simple()
if isinstance(x, AbstractScalar):
return is_simple(x.xtype())
elif isinstance(x, xtype.TypeMeta):
return True
else:
return False |
Python | async def find_coherent_result(v, fn):
"""Return fn(v) without fully resolving v, if possible.
If v is a PendingFromList and fn(x) is the same for every x in v,
this will return that result without resolving which possibility
v is. Otherwise, v will be resolved.
"""
if isinstance(v, PendingFromList):
results = set()
for option in v.possibilities:
results.add(await fn(option))
if len(results) == 1:
return results.pop()
x = await v
return await fn(x) | async def find_coherent_result(v, fn):
"""Return fn(v) without fully resolving v, if possible.
If v is a PendingFromList and fn(x) is the same for every x in v,
this will return that result without resolving which possibility
v is. Otherwise, v will be resolved.
"""
if isinstance(v, PendingFromList):
results = set()
for option in v.possibilities:
results.add(await fn(option))
if len(results) == 1:
return results.pop()
x = await v
return await fn(x) |
Python | def find_coherent_result_sync(v, fn):
"""Return fn(v) without fully resolving v, if possible.
If v is a PendingFromList and fn(x) is the same for every x in v,
this will return that result without resolving which possibility
v is. Otherwise, an exception is raised.
"""
if isinstance(v, PendingFromList):
exc = InferenceError("Nothing matches")
results = set()
for option in v.possibilities:
try:
results.add(fn(option))
except Exception as e:
exc = e
if len(results) == 1:
return results.pop()
elif len(results) == 0:
raise exc
else:
raise InferenceError("Must resolve Pending to find result")
elif isinstance(v, Pending):
raise InferenceError("Must resolve Pending to find result")
else:
return fn(v) | def find_coherent_result_sync(v, fn):
"""Return fn(v) without fully resolving v, if possible.
If v is a PendingFromList and fn(x) is the same for every x in v,
this will return that result without resolving which possibility
v is. Otherwise, an exception is raised.
"""
if isinstance(v, PendingFromList):
exc = InferenceError("Nothing matches")
results = set()
for option in v.possibilities:
try:
results.add(fn(option))
except Exception as e:
exc = e
if len(results) == 1:
return results.pop()
elif len(results) == 0:
raise exc
else:
raise InferenceError("Must resolve Pending to find result")
elif isinstance(v, Pending):
raise InferenceError("Must resolve Pending to find result")
else:
return fn(v) |
Python | async def force_pending(v):
"""Resolve v if v is Pending, otherwise return v directly."""
if isinstance(v, Pending):
return await v
else:
return v | async def force_pending(v):
"""Resolve v if v is Pending, otherwise return v directly."""
if isinstance(v, Pending):
return await v
else:
return v |
Python | def run_helper(epochs, n, batch_size, layer_sizes):
"""Run a model with the specified layer sizes on n random batches.
Arguments:
epochs: How many epochs to run.
n: Number of training batches to generate.
batch_size: Number of samples per batch.
layer_sizes: Sizes of the model's layers.
"""
layers = []
for W, b in mlp_parameters(*layer_sizes):
layers.append(Linear(W, b))
layers.append(Tanh())
model = Sequential(tuple(layers))
model = to_device(model, backend, backend_options)
data = generate_data(n, batch_size, layer_sizes[0], layer_sizes[-1])
for _ in range(epochs):
costs = []
t0 = time.time()
for inp, target in data:
cost, model = step(model, inp, target, lr)
costs.append(cost)
costs = [float(c.from_device()) for c in costs]
c = sum(costs) / n
t = time.time() - t0
print(f"Cost: {c:15.10f}\tTime: {t:15.10f}") | def run_helper(epochs, n, batch_size, layer_sizes):
"""Run a model with the specified layer sizes on n random batches.
Arguments:
epochs: How many epochs to run.
n: Number of training batches to generate.
batch_size: Number of samples per batch.
layer_sizes: Sizes of the model's layers.
"""
layers = []
for W, b in mlp_parameters(*layer_sizes):
layers.append(Linear(W, b))
layers.append(Tanh())
model = Sequential(tuple(layers))
model = to_device(model, backend, backend_options)
data = generate_data(n, batch_size, layer_sizes[0], layer_sizes[-1])
for _ in range(epochs):
costs = []
t0 = time.time()
for inp, target in data:
cost, model = step(model, inp, target, lr)
costs.append(cost)
costs = [float(c.from_device()) for c in costs]
c = sum(costs) / n
t = time.time() - t0
print(f"Cost: {c:15.10f}\tTime: {t:15.10f}") |
Python | def fill_reverse_tag_map():
"""Fill the back-conversion map.
Do this after a compilation step involving the constructors you
need since the tags are not set otherwise.
"""
for tag, ctr in tag_map.items():
if ctr.tag != -1:
rev_tag_map[ctr.tag] = tag | def fill_reverse_tag_map():
"""Fill the back-conversion map.
Do this after a compilation step involving the constructors you
need since the tags are not set otherwise.
"""
for tag, ctr in tag_map.items():
if ctr.tag != -1:
rev_tag_map[ctr.tag] = tag |
Python | def initialize(self, mod, mng):
"""Add types to the module."""
if mng is not None:
for node in mng.all_nodes:
if isinstance(node.abstract, AbstractTaggedUnion):
for opt in node.abstract.options:
get_union_ctr(*opt)
elif node.is_apply(P.env_setitem):
key = node.inputs[2]
tt = to_relay_type(node.inputs[3].abstract)
assert key.is_constant()
self.env_val_map[key.value] = tt
env_val_keys = sorted(list(self.env_val_map.keys()))
for i, k in enumerate(env_val_keys):
self.env_val_map[k] = (i, self.env_val_map[k])
mod[union_type] = adt.TypeData(union_type, [], list(tag_map.values()))
mod[option_type] = adt.TypeData(option_type, [a], [nil, some])
self.env_ctr = adt.Constructor("v", [self._build_env_type()], env_type)
mod[env_type] = adt.TypeData(env_type, [], [self.env_ctr, dead_env]) | def initialize(self, mod, mng):
"""Add types to the module."""
if mng is not None:
for node in mng.all_nodes:
if isinstance(node.abstract, AbstractTaggedUnion):
for opt in node.abstract.options:
get_union_ctr(*opt)
elif node.is_apply(P.env_setitem):
key = node.inputs[2]
tt = to_relay_type(node.inputs[3].abstract)
assert key.is_constant()
self.env_val_map[key.value] = tt
env_val_keys = sorted(list(self.env_val_map.keys()))
for i, k in enumerate(env_val_keys):
self.env_val_map[k] = (i, self.env_val_map[k])
mod[union_type] = adt.TypeData(union_type, [], list(tag_map.values()))
mod[option_type] = adt.TypeData(option_type, [a], [nil, some])
self.env_ctr = adt.Constructor("v", [self._build_env_type()], env_type)
mod[env_type] = adt.TypeData(env_type, [], [self.env_ctr, dead_env]) |
Python | def do_env_update(self, env_, key, val):
"""Build the code to update the env."""
v = relay.var("v")
cl = adt.Clause(
adt.PatternConstructor(self.env_ctr, [adt.PatternVar(v)]), v
)
env = adt.Match(env_, [cl], complete=False)
map = dict((i, k) for k, (i, _) in self.env_val_map.items())
new_env = relay.Tuple(
[
some(val) if map[i] == key else relay.TupleGetItem(env, i)
for i in range(len(map))
]
)
return self.env_ctr(new_env) | def do_env_update(self, env_, key, val):
"""Build the code to update the env."""
v = relay.var("v")
cl = adt.Clause(
adt.PatternConstructor(self.env_ctr, [adt.PatternVar(v)]), v
)
env = adt.Match(env_, [cl], complete=False)
map = dict((i, k) for k, (i, _) in self.env_val_map.items())
new_env = relay.Tuple(
[
some(val) if map[i] == key else relay.TupleGetItem(env, i)
for i in range(len(map))
]
)
return self.env_ctr(new_env) |
Python | def do_env_find(self, env, key, dft):
"""Build the code to find a value in env."""
v = relay.var("v")
cl = adt.Clause(
adt.PatternConstructor(self.env_ctr, [adt.PatternVar(v)]), v
)
env_v = adt.Match(env, [cl], complete=False)
val = relay.TupleGetItem(env_v, self.env_val_map[key][0])
x = relay.var("x")
nil_c = adt.Clause(adt.PatternConstructor(nil, []), dft)
some_c = adt.Clause(
adt.PatternConstructor(some, [adt.PatternVar(x)]), x
)
return adt.Match(val, [some_c, nil_c]) | def do_env_find(self, env, key, dft):
"""Build the code to find a value in env."""
v = relay.var("v")
cl = adt.Clause(
adt.PatternConstructor(self.env_ctr, [adt.PatternVar(v)]), v
)
env_v = adt.Match(env, [cl], complete=False)
val = relay.TupleGetItem(env_v, self.env_val_map[key][0])
x = relay.var("x")
nil_c = adt.Clause(adt.PatternConstructor(nil, []), dft)
some_c = adt.Clause(
adt.PatternConstructor(some, [adt.PatternVar(x)]), x
)
return adt.Match(val, [some_c, nil_c]) |
Python | def to_relay_type(self, a: AbstractScalar):
"""Convert a myia abstract to a Relay type."""
tp = a.xtype()
if issubclass(tp, Bool):
return relay.ty.scalar_type("bool")
elif issubclass(tp, Nil):
return relay.ty.TupleType([])
elif issubclass(tp, EnvType):
return env_type()
elif issubclass(tp, UniverseType):
return relay.ty.TupleType([])
else:
return relay.ty.scalar_type(type_to_np_dtype(tp)) | def to_relay_type(self, a: AbstractScalar):
"""Convert a myia abstract to a Relay type."""
tp = a.xtype()
if issubclass(tp, Bool):
return relay.ty.scalar_type("bool")
elif issubclass(tp, Nil):
return relay.ty.TupleType([])
elif issubclass(tp, EnvType):
return env_type()
elif issubclass(tp, UniverseType):
return relay.ty.TupleType([])
else:
return relay.ty.scalar_type(type_to_np_dtype(tp)) |
Python | def handle_wrapper(fn, handle_params):
"""Wraps a model function to perform handle updates."""
def wrapper(*args):
handle_instances = list(args[i] for i in handle_params)
res = fn(*args)
u = res[0]
res = res[1] if len(res) == 2 else res[1:]
for h, v in zip(handle_instances, u):
h.value = v
return (), res
if len(handle_params) == 0:
return fn
else:
return wrapper | def handle_wrapper(fn, handle_params):
"""Wraps a model function to perform handle updates."""
def wrapper(*args):
handle_instances = list(args[i] for i in handle_params)
res = fn(*args)
u = res[0]
res = res[1] if len(res) == 2 else res[1:]
for h, v in zip(handle_instances, u):
h.value = v
return (), res
if len(handle_params) == 0:
return fn
else:
return wrapper |
Python | def from_list(elems):
"""Convert a list to a linked list using Cons."""
rval = Empty()
for elem in reversed(elems):
rval = Cons(elem, rval)
return rval | def from_list(elems):
"""Convert a list to a linked list using Cons."""
rval = Empty()
for elem in reversed(elems):
rval = Cons(elem, rval)
return rval |
Python | async def infer_argmax(
self, engine, input: lib.AbstractArray, dim: lib.u64tup_typecheck
):
"""Infer the return type of primitive `argmax`."""
shp = ()
shp_inp = input.xshape()
dim = tuple(
self.require_constant(e, argnum=f'"1:dim[{edx}]"')
for edx, e in enumerate(dim.elements)
)
shp = list(shp_inp)
for d in dim:
shp[d] = 1
shp = tuple(shp)
return type(input)(
AbstractScalar({VALUE: ANYTHING, TYPE: xtype.Int[64]}),
{SHAPE: shp, TYPE: input.xtype()},
) | async def infer_argmax(
self, engine, input: lib.AbstractArray, dim: lib.u64tup_typecheck
):
"""Infer the return type of primitive `argmax`."""
shp = ()
shp_inp = input.xshape()
dim = tuple(
self.require_constant(e, argnum=f'"1:dim[{edx}]"')
for edx, e in enumerate(dim.elements)
)
shp = list(shp_inp)
for d in dim:
shp[d] = 1
shp = tuple(shp)
return type(input)(
AbstractScalar({VALUE: ANYTHING, TYPE: xtype.Int[64]}),
{SHAPE: shp, TYPE: input.xtype()},
) |
Python | def pytorch_random_initialize(seed):
"""Implementation of random_initialize for pytorch."""
rng = torch.Generator()
rng.manual_seed(seed.item())
return rng.get_state() | def pytorch_random_initialize(seed):
"""Implementation of random_initialize for pytorch."""
rng = torch.Generator()
rng.manual_seed(seed.item())
return rng.get_state() |
Python | def pytorch_random_uint32(rstate, shape):
"""Implementation of random_uint32 for pytorch."""
shape = tuple(dim.item() for dim in shape)
rng = torch.Generator()
rng.set_state(rstate)
output = torch.zeros(shape, dtype=torch.int64)
output.random_(0, 2 ** 32, generator=rng)
return rng.get_state(), output | def pytorch_random_uint32(rstate, shape):
"""Implementation of random_uint32 for pytorch."""
shape = tuple(dim.item() for dim in shape)
rng = torch.Generator()
rng.set_state(rstate)
output = torch.zeros(shape, dtype=torch.int64)
output.random_(0, 2 ** 32, generator=rng)
return rng.get_state(), output |
Python | def pytorch_array_cast(op):
"""Implementation of array_cast for pytorch."""
t = op.inputs[2]
dt = _type_map[t.value.xtype()]
def _impl(x):
return (x.to(dtype=dt),)
return _impl, op.inputs[1:2] | def pytorch_array_cast(op):
"""Implementation of array_cast for pytorch."""
t = op.inputs[2]
dt = _type_map[t.value.xtype()]
def _impl(x):
return (x.to(dtype=dt),)
return _impl, op.inputs[1:2] |
Python | def pytorch_array_map(op):
"""Implementation of array_map for pytorch."""
fn = op.inputs[1]
assert fn.is_constant(Primitive)
fn = fn.value
if fn in scalar_mapping:
impl = scalar_mapping[fn]
else:
raise NotImplementedError(f"array_map of {fn}")
def _impl(*args):
return (impl(*args),)
return _impl, op.inputs[2:] | def pytorch_array_map(op):
"""Implementation of array_map for pytorch."""
fn = op.inputs[1]
assert fn.is_constant(Primitive)
fn = fn.value
if fn in scalar_mapping:
impl = scalar_mapping[fn]
else:
raise NotImplementedError(f"array_map of {fn}")
def _impl(*args):
return (impl(*args),)
return _impl, op.inputs[2:] |
Python | def _pytorch_array_reduce_add(tshp):
"""Generate implementation for sum reduction based on given axes."""
def _impl(array):
ashp = array.shape
if len(tshp) < len(ashp):
ts = (1,) * (len(ashp) - len(tshp)) + tshp
else:
ts = tshp
axis = list(i for i, t in enumerate(ts) if t == 1)
if len(axis) == 1:
axis = axis[0]
res = torch.sum(array, axis, keepdim=True)
if len(tshp) < len(ashp):
res = torch.reshape(res, shape=tshp)
return (res,)
return _impl | def _pytorch_array_reduce_add(tshp):
"""Generate implementation for sum reduction based on given axes."""
def _impl(array):
ashp = array.shape
if len(tshp) < len(ashp):
ts = (1,) * (len(ashp) - len(tshp)) + tshp
else:
ts = tshp
axis = list(i for i, t in enumerate(ts) if t == 1)
if len(axis) == 1:
axis = axis[0]
res = torch.sum(array, axis, keepdim=True)
if len(tshp) < len(ashp):
res = torch.reshape(res, shape=tshp)
return (res,)
return _impl |
Python | def _pytorch_array_reduce_mul(tshp):
"""Generate implementation for product reduction based on given axes."""
def _impl(array):
ashp = array.shape
if len(tshp) in (0, len(ashp)):
res = torch.prod(array)
else:
raise NotImplementedError(
"We currently only support full product on an array."
)
return (res,)
return _impl | def _pytorch_array_reduce_mul(tshp):
"""Generate implementation for product reduction based on given axes."""
def _impl(array):
ashp = array.shape
if len(tshp) in (0, len(ashp)):
res = torch.prod(array)
else:
raise NotImplementedError(
"We currently only support full product on an array."
)
return (res,)
return _impl |
Python | def pytorch_array_reduce(op):
"""Implementation of array_reduce for pytorch."""
fn = op.inputs[1]
shape = op.inputs[3]
assert fn.is_constant(Primitive)
assert shape.is_constant(tuple)
fn = fn.value
tshp = shape.value
if fn == P.scalar_add:
gen_impl = _pytorch_array_reduce_add
elif fn == P.scalar_mul:
gen_impl = _pytorch_array_reduce_mul
else:
raise NotImplementedError(f"reduce with {fn}")
return gen_impl(tshp), (op.inputs[2],) | def pytorch_array_reduce(op):
"""Implementation of array_reduce for pytorch."""
fn = op.inputs[1]
shape = op.inputs[3]
assert fn.is_constant(Primitive)
assert shape.is_constant(tuple)
fn = fn.value
tshp = shape.value
if fn == P.scalar_add:
gen_impl = _pytorch_array_reduce_add
elif fn == P.scalar_mul:
gen_impl = _pytorch_array_reduce_mul
else:
raise NotImplementedError(f"reduce with {fn}")
return gen_impl(tshp), (op.inputs[2],) |
Python | def pytorch_array_getitem(op):
"""Implementation of array_getitem for pytorch."""
def _impl(array, begin, end, strides):
idx = tuple(slice(b, e, s) for b, e, s in zip(begin, end, strides))
return (array[idx],)
return _impl, op.inputs[1:] | def pytorch_array_getitem(op):
"""Implementation of array_getitem for pytorch."""
def _impl(array, begin, end, strides):
idx = tuple(slice(b, e, s) for b, e, s in zip(begin, end, strides))
return (array[idx],)
return _impl, op.inputs[1:] |
Python | def pytorch_array_setitem(op):
"""Implementation of array_setitem for pytorch."""
def _impl(array, begin, end, strides, value):
idx = tuple(slice(b, e, s) for b, e, s in zip(begin, end, strides))
ret = array.clone()
ret[idx] = value
return (ret,)
return _impl, op.inputs[1:] | def pytorch_array_setitem(op):
"""Implementation of array_setitem for pytorch."""
def _impl(array, begin, end, strides, value):
idx = tuple(slice(b, e, s) for b, e, s in zip(begin, end, strides))
ret = array.clone()
ret[idx] = value
return (ret,)
return _impl, op.inputs[1:] |
Python | def pytorch_argmax(op):
"""Implementation of argmax for pytorch."""
def _impl(x, dim):
dim = tuple(sorted(dim))
n = ()
for _s in range(len(x.shape)):
if _s not in dim:
n = n + (_s,)
n = n + dim
x = x.permute(n)
ns = x.shape[0 : -len(dim)] + (-1,)
r = torch.argmax(x.reshape(ns), -1, keepdim=False)
rl = list(r.shape)
for _sd in dim:
rl.insert(_sd, 1)
rf = tuple(rl)
return (torch.reshape(r, rf),)
return _impl, op.inputs[1:] | def pytorch_argmax(op):
"""Implementation of argmax for pytorch."""
def _impl(x, dim):
dim = tuple(sorted(dim))
n = ()
for _s in range(len(x.shape)):
if _s not in dim:
n = n + (_s,)
n = n + dim
x = x.permute(n)
ns = x.shape[0 : -len(dim)] + (-1,)
r = torch.argmax(x.reshape(ns), -1, keepdim=False)
rl = list(r.shape)
for _sd in dim:
rl.insert(_sd, 1)
rf = tuple(rl)
return (torch.reshape(r, rf),)
return _impl, op.inputs[1:] |
Python | def pytorch_array_max(op):
"""Implementation of array_max for pytorch."""
def _impl(x, dim):
dim = tuple(sorted(dim))
n = ()
for _s in range(len(x.shape)):
if _s not in dim:
n = n + (_s,)
n = n + dim
x = x.permute(n)
ns = x.shape[0 : -len(dim)] + (-1,)
r = torch.max(x.reshape(ns), -1, keepdim=False)[0]
rl = list(r.shape)
for _sd in dim:
rl.insert(_sd, 1)
rf = tuple(rl)
return (torch.reshape(r, rf),)
return _impl, op.inputs[1:] | def pytorch_array_max(op):
"""Implementation of array_max for pytorch."""
def _impl(x, dim):
dim = tuple(sorted(dim))
n = ()
for _s in range(len(x.shape)):
if _s not in dim:
n = n + (_s,)
n = n + dim
x = x.permute(n)
ns = x.shape[0 : -len(dim)] + (-1,)
r = torch.max(x.reshape(ns), -1, keepdim=False)[0]
rl = list(r.shape)
for _sd in dim:
rl.insert(_sd, 1)
rf = tuple(rl)
return (torch.reshape(r, rf),)
return _impl, op.inputs[1:] |
Python | def pytorch_gather(op):
"""Implementation of gather for pytorch."""
def _impl(x, dim, index):
dim = dim.item()
return (torch.gather(x, dim, index),)
return _impl, op.inputs[1:] | def pytorch_gather(op):
"""Implementation of gather for pytorch."""
def _impl(x, dim, index):
dim = dim.item()
return (torch.gather(x, dim, index),)
return _impl, op.inputs[1:] |
Python | def pytorch_scatter(op):
"""Implementation of scatter for pytorch."""
def _impl(x, dim, index, src):
dim = dim.item()
return (torch.scatter(x, dim, index, src),)
return _impl, op.inputs[1:] | def pytorch_scatter(op):
"""Implementation of scatter for pytorch."""
def _impl(x, dim, index, src):
dim = dim.item()
return (torch.scatter(x, dim, index, src),)
return _impl, op.inputs[1:] |
Python | def pytorch_scatter_add(op):
"""Implementation of scatter_add for pytorch."""
def _impl(x, dim, index, src):
dim = dim.item()
return (torch.scatter_add(x, dim, index, src),)
return _impl, op.inputs[1:] | def pytorch_scatter_add(op):
"""Implementation of scatter_add for pytorch."""
def _impl(x, dim, index, src):
dim = dim.item()
return (torch.scatter_add(x, dim, index, src),)
return _impl, op.inputs[1:] |
Python | def pytorch_concat(op):
"""Implementation of concat for pytorch."""
def _impl(x, dim):
dim = dim.item()
return (torch.cat(x, dim),)
return _impl, op.inputs[1:] | def pytorch_concat(op):
"""Implementation of concat for pytorch."""
def _impl(x, dim):
dim = dim.item()
return (torch.cat(x, dim),)
return _impl, op.inputs[1:] |
Python | def pytorch_split(op):
"""Implementation of split for pytorch."""
def _impl(x, sections, dim):
dim = dim.item()
return (torch.split(x, sections, dim),)
return _impl, op.inputs[1:] | def pytorch_split(op):
"""Implementation of split for pytorch."""
def _impl(x, sections, dim):
dim = dim.item()
return (torch.split(x, sections, dim),)
return _impl, op.inputs[1:] |
Python | def pytorch_conv2d(op):
"""Implementation of conv2d for pytorch."""
def _impl(input, weight, stride, padding, dilation, groups):
groups = groups.item()
return (
torch.nn.functional.conv2d(
input, weight, None, stride, padding, dilation, groups
),
)
return _impl, op.inputs[1:] | def pytorch_conv2d(op):
"""Implementation of conv2d for pytorch."""
def _impl(input, weight, stride, padding, dilation, groups):
groups = groups.item()
return (
torch.nn.functional.conv2d(
input, weight, None, stride, padding, dilation, groups
),
)
return _impl, op.inputs[1:] |
Python | def pytorch_conv2d_weight_grad(op):
"""Implementation of conv2d_weight_grad for pytorch."""
def _impl(
input, weight_size, grad_output, stride, padding, dilation, groups
):
weight_size = tuple(w.item() for w in weight_size)
stride = tuple(_x.item() for _x in stride)
padding = tuple(_x.item() for _x in padding)
dilation = tuple(_x.item() for _x in dilation)
groups = groups.item()
return (
conv2d_weight(
input,
weight_size,
grad_output,
stride,
padding,
dilation,
groups,
),
)
return _impl, op.inputs[1:] | def pytorch_conv2d_weight_grad(op):
"""Implementation of conv2d_weight_grad for pytorch."""
def _impl(
input, weight_size, grad_output, stride, padding, dilation, groups
):
weight_size = tuple(w.item() for w in weight_size)
stride = tuple(_x.item() for _x in stride)
padding = tuple(_x.item() for _x in padding)
dilation = tuple(_x.item() for _x in dilation)
groups = groups.item()
return (
conv2d_weight(
input,
weight_size,
grad_output,
stride,
padding,
dilation,
groups,
),
)
return _impl, op.inputs[1:] |
Python | def pytorch_max_pool2d(op):
"""Implementation of max_pool2d for pytorch."""
def _impl(input, kernel_size, stride, padding, dilation, ceil_mode):
return (
torch.nn.functional.max_pool2d(
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode.item(),
False,
),
)
return _impl, op.inputs[1:] | def pytorch_max_pool2d(op):
"""Implementation of max_pool2d for pytorch."""
def _impl(input, kernel_size, stride, padding, dilation, ceil_mode):
return (
torch.nn.functional.max_pool2d(
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode.item(),
False,
),
)
return _impl, op.inputs[1:] |
Python | def pytorch_max_pool2d_grad(op):
"""Implementation of max_pool2d grad for pytorch."""
def _impl(input, kernel_size, stride, padding, dilation, ceil_mode, dout):
input.requires_grad_(requires_grad=True)
output = torch.nn.functional.max_pool2d(
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode.item(),
False,
)
grads = torch.autograd.grad(output, input, dout, allow_unused=True)
return (grads[0],)
return _impl, op.inputs[1:] | def pytorch_max_pool2d_grad(op):
"""Implementation of max_pool2d grad for pytorch."""
def _impl(input, kernel_size, stride, padding, dilation, ceil_mode, dout):
input.requires_grad_(requires_grad=True)
output = torch.nn.functional.max_pool2d(
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode.item(),
False,
)
grads = torch.autograd.grad(output, input, dout, allow_unused=True)
return (grads[0],)
return _impl, op.inputs[1:] |
Python | def to_numpy(self, v):
"""Make a numpy array from a torch tensor."""
if v.is_cuda:
with untested():
v = v.cpu()
return v.detach().numpy() | def to_numpy(self, v):
"""Make a numpy array from a torch tensor."""
if v.is_cuda:
with untested():
v = v.cpu()
return v.detach().numpy() |
Python | def to_scalar(self, v):
"""Convert a torch tensor to a scalar."""
if (v is None) or (v is True) or (v is False) or (isinstance(v, str)):
return v
else:
return v.item() | def to_scalar(self, v):
"""Convert a torch tensor to a scalar."""
if (v is None) or (v is True) or (v is False) or (isinstance(v, str)):
return v
else:
return v.item() |
Python | def from_backend_value(self, v, t):
"""Convert a backend value to an intermediate value."""
if isinstance(t, abstract.AbstractScalar):
return self.to_scalar(v)
elif isinstance(t, abstract.AbstractArray):
# Convert torch tensor to numpy tensor.
output = self.to_numpy(v)
# If possible and necessary, cast numpy tensor to expected tensor.
array_type = t.element.xtype()
if array_type and array_type not in _type_map:
# Probably u16, u32 or u64. Let's cast.
output = output.astype(type_to_np_dtype(array_type))
return output
elif isinstance(t, abstract.AbstractTuple):
return tuple(
self.from_backend_value(ve, te) for ve, te in zip(v, t.elements)
)
elif isinstance(t, abstract.AbstractTaggedUnion):
return TaggedValue(
v.tag, self.from_backend_value(v.value, t.options.get(v.tag))
)
elif isinstance(t, abstract.AbstractRandomState):
return RandomStateWrapper(self.to_numpy(v))
elif isinstance(t, abstract.AbstractType):
if isinstance(t.element, abstract.AbstractHandle):
return HandleInstance
else:
myia_type = t.element.xtype()
if myia_type in _type_map:
return getattr(np, type_to_np_dtype(myia_type))
else:
return v
else:
raise NotImplementedError(f"Don't know what to do for {t}") | def from_backend_value(self, v, t):
"""Convert a backend value to an intermediate value."""
if isinstance(t, abstract.AbstractScalar):
return self.to_scalar(v)
elif isinstance(t, abstract.AbstractArray):
# Convert torch tensor to numpy tensor.
output = self.to_numpy(v)
# If possible and necessary, cast numpy tensor to expected tensor.
array_type = t.element.xtype()
if array_type and array_type not in _type_map:
# Probably u16, u32 or u64. Let's cast.
output = output.astype(type_to_np_dtype(array_type))
return output
elif isinstance(t, abstract.AbstractTuple):
return tuple(
self.from_backend_value(ve, te) for ve, te in zip(v, t.elements)
)
elif isinstance(t, abstract.AbstractTaggedUnion):
return TaggedValue(
v.tag, self.from_backend_value(v.value, t.options.get(v.tag))
)
elif isinstance(t, abstract.AbstractRandomState):
return RandomStateWrapper(self.to_numpy(v))
elif isinstance(t, abstract.AbstractType):
if isinstance(t.element, abstract.AbstractHandle):
return HandleInstance
else:
myia_type = t.element.xtype()
if myia_type in _type_map:
return getattr(np, type_to_np_dtype(myia_type))
else:
return v
else:
raise NotImplementedError(f"Don't know what to do for {t}") |
Python | def to_backend_value(self, v, t):
"""Convert an intermediate value to a backend value."""
if isinstance(t, abstract.AbstractError) or v is abstract.DEAD:
return None
elif isinstance(t, abstract.AbstractType):
# Handle abstract types.
# Return v if type does not match any torch type.
myia_type = t.element.xtype()
if myia_type is xtype.Tuple:
return tuple
return _type_map.get(myia_type, v)
elif isinstance(t, abstract.AbstractArray):
return self.from_numpy(v)
elif isinstance(t, abstract.AbstractScalar):
if issubclass(
t.values[abstract.TYPE], (xtype.Number, xtype.Bool, xtype.Nil)
):
return self.from_scalar(v, t.values[abstract.TYPE])
elif issubclass(t.values[abstract.TYPE], xtype.EnvType):
assert len(v._contents) == 0
return ()
else:
raise NotImplementedError(f"to_backend_value for {t}")
elif isinstance(t, abstract.AbstractTuple):
return tuple(
self.to_backend_value(v, t) for v, t in zip(v, t.elements)
)
elif isinstance(t, abstract.AbstractTaggedUnion):
real_t = t.options.get(v.tag)
return TaggedValue(v.tag, self.to_backend_value(v.value, real_t))
elif isinstance(t, abstract.AbstractRandomState):
return self.from_numpy(v.state.copy())
else:
raise NotImplementedError(f"to_backend_value for {t}") | def to_backend_value(self, v, t):
"""Convert an intermediate value to a backend value."""
if isinstance(t, abstract.AbstractError) or v is abstract.DEAD:
return None
elif isinstance(t, abstract.AbstractType):
# Handle abstract types.
# Return v if type does not match any torch type.
myia_type = t.element.xtype()
if myia_type is xtype.Tuple:
return tuple
return _type_map.get(myia_type, v)
elif isinstance(t, abstract.AbstractArray):
return self.from_numpy(v)
elif isinstance(t, abstract.AbstractScalar):
if issubclass(
t.values[abstract.TYPE], (xtype.Number, xtype.Bool, xtype.Nil)
):
return self.from_scalar(v, t.values[abstract.TYPE])
elif issubclass(t.values[abstract.TYPE], xtype.EnvType):
assert len(v._contents) == 0
return ()
else:
raise NotImplementedError(f"to_backend_value for {t}")
elif isinstance(t, abstract.AbstractTuple):
return tuple(
self.to_backend_value(v, t) for v, t in zip(v, t.elements)
)
elif isinstance(t, abstract.AbstractTaggedUnion):
real_t = t.options.get(v.tag)
return TaggedValue(v.tag, self.to_backend_value(v.value, real_t))
elif isinstance(t, abstract.AbstractRandomState):
return self.from_numpy(v.state.copy())
else:
raise NotImplementedError(f"to_backend_value for {t}") |
Python | async def infer_universe_setitem(
self,
engine,
universe: xtype.UniverseType,
handle: lib.AbstractHandle,
value,
):
"""Infer the return type of primitive `universe_setitem`."""
engine.abstract_merge(handle.element, value)
return AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UniverseType}) | async def infer_universe_setitem(
self,
engine,
universe: xtype.UniverseType,
handle: lib.AbstractHandle,
value,
):
"""Infer the return type of primitive `universe_setitem`."""
engine.abstract_merge(handle.element, value)
return AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UniverseType}) |
Python | def remove(self, e):
"""Remove an element that is present.
Raise KeyError if not present.
"""
del self._d[e] | def remove(self, e):
"""Remove an element that is present.
Raise KeyError if not present.
"""
del self._d[e] |
Python | def pop(self):
"""Remove and return an element.
Raise KeyError if empty.
"""
return self._d.popitem()[0] | def pop(self):
"""Remove and return an element.
Raise KeyError if empty.
"""
return self._d.popitem()[0] |
Python | def union(self, *others):
"""Return a new set with elements from the set and all others."""
res = self.copy()
res.update(*others)
return res | def union(self, *others):
"""Return a new set with elements from the set and all others."""
res = self.copy()
res.update(*others)
return res |
Python | def intersection(self, *others):
"""Return a new set with elements common to the set and all others."""
res = self.copy()
res.intersection_update(*others)
return res | def intersection(self, *others):
"""Return a new set with elements common to the set and all others."""
res = self.copy()
res.intersection_update(*others)
return res |
Python | def difference(self, *others):
"""Return a new set with elements that are not in the others."""
res = self.copy()
res.difference_update(*others)
return res | def difference(self, *others):
"""Return a new set with elements that are not in the others."""
res = self.copy()
res.difference_update(*others)
return res |
Python | def symmetric_difference(self, other):
"""New set with the with the elements that are not in common."""
res = self.copy()
res.symmetric_difference_update(other)
return res | def symmetric_difference(self, other):
"""New set with the with the elements that are not in common."""
res = self.copy()
res.symmetric_difference_update(other)
return res |
Python | def update(self, *others):
"""Update the set, adding elements from all others."""
for other in others:
for e in other:
self.add(e)
return self | def update(self, *others):
"""Update the set, adding elements from all others."""
for other in others:
for e in other:
self.add(e)
return self |
Python | def intersection_update(self, *others):
"""Update the set, keeping only elements found in it and all others."""
for other in others:
for e in list(self):
if e not in other:
self.discard(e)
return self | def intersection_update(self, *others):
"""Update the set, keeping only elements found in it and all others."""
for other in others:
for e in list(self):
if e not in other:
self.discard(e)
return self |
Python | def difference_update(self, *others):
"""Update the set, removing elements found in others."""
for other in others:
for e in other:
self.discard(e)
return self | def difference_update(self, *others):
"""Update the set, removing elements found in others."""
for other in others:
for e in other:
self.discard(e)
return self |
Python | def symmetric_difference_update(self, other):
"""Update the set, keeping only the difference from both sets."""
for e in other:
if e in self:
self.remove(e)
else:
self.add(e) | def symmetric_difference_update(self, other):
"""Update the set, keeping only the difference from both sets."""
for e in other:
if e in self:
self.remove(e)
else:
self.add(e) |
Python | def _color(color, text):
"""Wrap the text with the given color.
If Buche is active, the color is not applied.
"""
if os.environ.get("BUCHE"):
return text
else:
return f"{color}{text}{Fore.RESET}" | def _color(color, text):
"""Wrap the text with the given color.
If Buche is active, the color is not applied.
"""
if os.environ.get("BUCHE"):
return text
else:
return f"{color}{text}{Fore.RESET}" |
Python | def _pgraph(path):
"""Print a graph using Buche."""
def _p(graph, **_):
bucheg(graph)
return lambda: DoTrace({path: _p}) | def _pgraph(path):
"""Print a graph using Buche."""
def _p(graph, **_):
bucheg(graph)
return lambda: DoTrace({path: _p}) |
Python | def log(path=None, *fields, **kwfields):
"""Log fields of interest on the given path.
The breakword module is used for logging, thus it is possible to set a
word upon which to enter a breakpoint (using the BREAKWORD environment
variable).
* When no path is given, show all events.
* The "help" field shows all possible fields.
"""
getters = Getters(fields, kwfields)
def _p(**kwargs):
_curpath = kwargs["_curpath"]
results = getters(kwargs)
_display(_curpath, results)
return DoTrace({pth: _p for pth in _resolve_path(path)}) | def log(path=None, *fields, **kwfields):
"""Log fields of interest on the given path.
The breakword module is used for logging, thus it is possible to set a
word upon which to enter a breakpoint (using the BREAKWORD environment
variable).
* When no path is given, show all events.
* The "help" field shows all possible fields.
"""
getters = Getters(fields, kwfields)
def _p(**kwargs):
_curpath = kwargs["_curpath"]
results = getters(kwargs)
_display(_curpath, results)
return DoTrace({pth: _p for pth in _resolve_path(path)}) |
Python | def stat(path=None, *fields, **kwfields):
"""Collect and display statistics about certain fields.
* Numeric fields will display min/max/avg
* String/other fields will count occurrences, sorted descending
"""
return StatAccumulator(path, fields, kwfields) | def stat(path=None, *fields, **kwfields):
"""Collect and display statistics about certain fields.
* Numeric fields will display min/max/avg
* String/other fields will count occurrences, sorted descending
"""
return StatAccumulator(path, fields, kwfields) |
Python | async def make_list(info, *elems):
"""Create a list using Cons and Empty."""
g = info.graph
lst = g.apply(Empty)
abstracts = await info.abstracts()
if not abstracts:
return lst
restype = info.engine.abstract_merge(*abstracts)
for arg in reversed(info.nodes()):
lst = g.apply(Cons, arg, lst)
return g.apply(P.unsafe_static_cast, lst, listof(restype)) | async def make_list(info, *elems):
"""Create a list using Cons and Empty."""
g = info.graph
lst = g.apply(Empty)
abstracts = await info.abstracts()
if not abstracts:
return lst
restype = info.engine.abstract_merge(*abstracts)
for arg in reversed(info.nodes()):
lst = g.apply(Cons, arg, lst)
return g.apply(P.unsafe_static_cast, lst, listof(restype)) |
Python | async def infer_array_setitem(
self,
engine,
a: lib.AbstractArray,
begin: lib.u64tup_typecheck,
end: lib.u64tup_typecheck,
strides: lib.i64tup_typecheck,
value: lib.AbstractArray,
):
"""Infer the return type of primitive `array_setitem`."""
return a | async def infer_array_setitem(
self,
engine,
a: lib.AbstractArray,
begin: lib.u64tup_typecheck,
end: lib.u64tup_typecheck,
strides: lib.i64tup_typecheck,
value: lib.AbstractArray,
):
"""Infer the return type of primitive `array_setitem`."""
return a |
Python | async def infer_composite_full(
self,
engine,
shape: u64tup_typecheck,
fill_value: AbstractScalar,
dtype: AbstractType,
):
"""Infer the return type of primitive `composite_full`."""
return AbstractArray(
AbstractScalar(
{
TYPE: await force_pending(dtype.element.xtype()),
VALUE: fill_value.xvalue(),
}
),
{
SHAPE: tuple(
self.require_constant(e, argnum=f'"0:shape[{edx}]"')
for edx, e in enumerate(shape.elements)
),
TYPE: NDArray,
},
) | async def infer_composite_full(
self,
engine,
shape: u64tup_typecheck,
fill_value: AbstractScalar,
dtype: AbstractType,
):
"""Infer the return type of primitive `composite_full`."""
return AbstractArray(
AbstractScalar(
{
TYPE: await force_pending(dtype.element.xtype()),
VALUE: fill_value.xvalue(),
}
),
{
SHAPE: tuple(
self.require_constant(e, argnum=f'"0:shape[{edx}]"')
for edx, e in enumerate(shape.elements)
),
TYPE: NDArray,
},
) |
Python | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => A:x = (B:a)(B:b, B:c)
"""
new_inputs = [
self.remappers["grad_fprop"].get(link.graph, inp)
for inp in link.node.inputs
]
link.new_node.inputs = new_inputs | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => A:x = (B:a)(B:b, B:c)
"""
new_inputs = [
self.remappers["grad_fprop"].get(link.graph, inp)
for inp in link.node.inputs
]
link.new_node.inputs = new_inputs |
Python | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => B:x = (A:x)[0]
"""
assert not link.node.is_parameter()
app = self.remappers["grad_fprop_app"].get(link.graph, link.node)
link.new_node.inputs = sexp_to_node(
(P.tuple_getitem, app, 0), link.new_graph
).inputs | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => B:x = (A:x)[0]
"""
assert not link.node.is_parameter()
app = self.remappers["grad_fprop_app"].get(link.graph, link.node)
link.new_node.inputs = sexp_to_node(
(P.tuple_getitem, app, 0), link.new_graph
).inputs |
Python | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => C:x = (A:x)[1]
"""
app = self.remappers["grad_fprop_app"].get(link.graph, link.node)
link.new_node.inputs = sexp_to_node(
(P.tuple_getitem, app, 1), link.new_graph
).inputs | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => C:x = (A:x)[1]
"""
app = self.remappers["grad_fprop_app"].get(link.graph, link.node)
link.new_node.inputs = sexp_to_node(
(P.tuple_getitem, app, 1), link.new_graph
).inputs |
Python | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => D:x = (C:x)(E:x)
"""
g = link.graph
node = link.node
assert not node.is_parameter()
fn = self.remappers["grad_bprop"].get(g, node)
arg = self.remappers["grad_sens"].get(g, node)
link.new_node.inputs = [fn, arg] | def link_apply(self, link):
"""Link generated nodes to their inputs.
x = a(b, c) => D:x = (C:x)(E:x)
"""
g = link.graph
node = link.node
assert not node.is_parameter()
fn = self.remappers["grad_bprop"].get(g, node)
arg = self.remappers["grad_sens"].get(g, node)
link.new_node.inputs = [fn, arg] |
Python | def gen_apply(self, g, ng, node):
"""Generate sensitivities for applications.
* The output node's sensitivity is ng's sole parameter.
* If a node is used in multiple graphs, each graph has a
corresponding sensitivity node.
"""
with About(node.debug, self.relation):
if node is g.output:
new_node = ng.add_parameter()
else:
new_node = ng.apply()
# NOTE: First parameter to remap_node is (g, node) instead of just
# node. This lets us dispatch to a different node depending on whether
# it belongs to the graph that uses it, or is a free variable.
self.remap_node((g, node), g, node, ng, new_node) | def gen_apply(self, g, ng, node):
"""Generate sensitivities for applications.
* The output node's sensitivity is ng's sole parameter.
* If a node is used in multiple graphs, each graph has a
corresponding sensitivity node.
"""
with About(node.debug, self.relation):
if node is g.output:
new_node = ng.add_parameter()
else:
new_node = ng.apply()
# NOTE: First parameter to remap_node is (g, node) instead of just
# node. This lets us dispatch to a different node depending on whether
# it belongs to the graph that uses it, or is a free variable.
self.remap_node((g, node), g, node, ng, new_node) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.