language
stringclasses
6 values
original_string
stringlengths
25
887k
text
stringlengths
25
887k
Python
def pytorch_dtype_to_type(dtype): """Map a pytorch dtype to a myia type.""" import torch _type_map = { torch.int8: Int[8], torch.int16: Int[16], torch.int32: Int[32], torch.int64: Int[64], torch.uint8: UInt[8], torch.float16: Float[16], torch.float32: Float[32], torch.float64: Float[64], torch.bool: Bool, } if dtype not in _type_map: raise TypeError(f"Unsupported dtype {dtype}") return _type_map[dtype]
def pytorch_dtype_to_type(dtype): """Map a pytorch dtype to a myia type.""" import torch _type_map = { torch.int8: Int[8], torch.int16: Int[16], torch.int32: Int[32], torch.int64: Int[64], torch.uint8: UInt[8], torch.float16: Float[16], torch.float32: Float[32], torch.float64: Float[64], torch.bool: Bool, } if dtype not in _type_map: raise TypeError(f"Unsupported dtype {dtype}") return _type_map[dtype]
Python
def mt(*tests, **kwargs): """Multitest. All MyiaFunctionTest instances in the list of tests will be run on the same function. If kwargs are provided, they will be given to all the tests. """ def deco(fn): def runtest(test): test.run(fn) pytests = [] for test in tests: test = test.configure(**kwargs) pytests += test.generate_params() runtest = pytest.mark.parametrize("test", pytests)(runtest) return runtest return deco
def mt(*tests, **kwargs): """Multitest. All MyiaFunctionTest instances in the list of tests will be run on the same function. If kwargs are provided, they will be given to all the tests. """ def deco(fn): def runtest(test): test.run(fn) pytests = [] for test in tests: test = test.configure(**kwargs) pytests += test.generate_params() runtest = pytest.mark.parametrize("test", pytests)(runtest) return runtest return deco
Python
def check(self, run, args, expected, **kwargs): """Check the result of run() against expected. Expected can be either: * A value, which will be compared using eqtest. * A subclass of Exception, which run() is expected to raise. * A callable, which can run custom checks. """ message = None if isinstance(expected, Exception): message = expected.args[0] expected = type(expected) if isinstance(expected, type) and issubclass(expected, Exception): try: res = run(args) except expected as err: if message is not None and message not in err.args[0]: raise else: raise else: res = run(args) if isinstance(expected, FunctionType): if not expected(args, res): raise Exception(f"Failed the result check function") elif not eqtest(res, expected, **kwargs): raise Exception(f"Mismatch: expected {expected}, got {res}")
def check(self, run, args, expected, **kwargs): """Check the result of run() against expected. Expected can be either: * A value, which will be compared using eqtest. * A subclass of Exception, which run() is expected to raise. * A callable, which can run custom checks. """ message = None if isinstance(expected, Exception): message = expected.args[0] expected = type(expected) if isinstance(expected, type) and issubclass(expected, Exception): try: res = run(args) except expected as err: if message is not None and message not in err.args[0]: raise else: raise else: res = run(args) if isinstance(expected, FunctionType): if not expected(args, res): raise Exception(f"Failed the result check function") elif not eqtest(res, expected, **kwargs): raise Exception(f"Mismatch: expected {expected}, got {res}")
Python
def generate_params(self): """Generate pytest parameters. If any of the kwargs is an instance of Multiple, we will generate tests for each possible value it can take. If there are multiple Multiples, we will test a cartesian product of them. """ marks = self.spec.get("marks", []) id = self.spec.get("id", "test") spec = dict(self.spec) for key in ("marks", "id"): if key in spec: del spec[key] multis = [ (k, v) for k, v in self.spec.items() if isinstance(v, Multiple) ] options = list(product(*[v.options for _, v in multis])) params = [] for option in options: curr_spec = dict(spec) curr_ids = [] curr_marks = list(marks) for (spec_k, _), opt_info in zip(multis, option): mul, opt_id, opt_marks, value = opt_info curr_spec[spec_k] = value curr_ids.append(opt_id) curr_marks += opt_marks curr_ids.append(id) p = pytest.param( MyiaFunctionTest(self.runtest, curr_spec), marks=curr_marks, id="-".join(curr_ids), ) params.append(p) return params
def generate_params(self): """Generate pytest parameters. If any of the kwargs is an instance of Multiple, we will generate tests for each possible value it can take. If there are multiple Multiples, we will test a cartesian product of them. """ marks = self.spec.get("marks", []) id = self.spec.get("id", "test") spec = dict(self.spec) for key in ("marks", "id"): if key in spec: del spec[key] multis = [ (k, v) for k, v in self.spec.items() if isinstance(v, Multiple) ] options = list(product(*[v.options for _, v in multis])) params = [] for option in options: curr_spec = dict(spec) curr_ids = [] curr_marks = list(marks) for (spec_k, _), opt_info in zip(multis, option): mul, opt_id, opt_marks, value = opt_info curr_spec[spec_k] = value curr_ids.append(opt_id) curr_marks += opt_marks curr_ids.append(id) p = pytest.param( MyiaFunctionTest(self.runtest, curr_spec), marks=curr_marks, id="-".join(curr_ids), ) params.append(p) return params
Python
def backend_except(*excluded_backends): """Return backend_all without excluded backends.""" return Multiple( *[ param for backend, target, param in _get_backend_testing_parameters() if target == "cpu" and backend not in excluded_backends ] )
def backend_except(*excluded_backends): """Return backend_all without excluded backends.""" return Multiple( *[ param for backend, target, param in _get_backend_testing_parameters() if target == "cpu" and backend not in excluded_backends ] )
Python
def bt(*primitives): """Backend testing. Generate a decorator to parametrize a test with backend names. Decorated test function must expected an argument named "backend" that will receive backend name to test with. :param primitives: list of primitives or groups of primitives (as PrimGroup objects) required for this test. If a backend does not support any of given primitives or groups, then related test is explicitly skipped. :return: a decorator """ if primitives: primitives = [PrimGroup.ensure(p) for p in primitives] backends = [ pytest.param(backend, id=backend, marks=[getattr(pytest.mark, backend)]) for backend in sorted(_pytest_parameters) ] def deco(fn): @functools.wraps(fn) def wrapper_fn(*args, **kwargs): if primitives: backend = kwargs["backend"] bck = load_backend(backend) for prim_group in primitives: if not bck.supports_prim_group(prim_group): pytest.skip( f"Backend {backend} does not support {prim_group}" ) return fn(*args, **kwargs) return pytest.mark.parametrize("backend", backends)(wrapper_fn) return deco
def bt(*primitives): """Backend testing. Generate a decorator to parametrize a test with backend names. Decorated test function must expected an argument named "backend" that will receive backend name to test with. :param primitives: list of primitives or groups of primitives (as PrimGroup objects) required for this test. If a backend does not support any of given primitives or groups, then related test is explicitly skipped. :return: a decorator """ if primitives: primitives = [PrimGroup.ensure(p) for p in primitives] backends = [ pytest.param(backend, id=backend, marks=[getattr(pytest.mark, backend)]) for backend in sorted(_pytest_parameters) ] def deco(fn): @functools.wraps(fn) def wrapper_fn(*args, **kwargs): if primitives: backend = kwargs["backend"] bck = load_backend(backend) for prim_group in primitives: if not bck.supports_prim_group(prim_group): pytest.skip( f"Backend {backend} does not support {prim_group}" ) return fn(*args, **kwargs) return pytest.mark.parametrize("backend", backends)(wrapper_fn) return deco
Python
def populate(self): """Generate all the new nodes.""" for graph in self.graphs: target_graph = self.get_graph(graph) mng = self.manager for p in graph.parameters: self.gen_parameter(graph, target_graph, p) for node in mng.nodes[graph]: if node.is_apply(): self.gen_apply(graph, target_graph, node) elif node.is_parameter() and node not in graph.parameters: self.gen_rogue_parameter(graph, target_graph, node) if self.gen_child is not NotImplemented: for child in mng.children[graph]: self.gen_child(graph, target_graph, child) if self.gen_fv_direct is not NotImplemented: for node in mng.free_variables_direct[graph]: self.gen_fv_direct(graph, target_graph, node) if self.gen_fv is not NotImplemented: for node in mng.free_variables_total[graph]: if isinstance(node, ANFNode): self.gen_fv(graph, target_graph, node) if self.gen_fv_graph is not NotImplemented: for node in mng.free_variables_total[graph]: if isinstance(node, Graph): self.gen_fv_graph(graph, target_graph, node) if self.gen_fv_extended is not NotImplemented: for node in mng.free_variables_extended[graph]: self.gen_fv_extended(graph, target_graph, node) for ct in mng.constants[graph]: if ct.is_constant_graph(): self.gen_constant_graph(graph, target_graph, ct) else: self.gen_constant(graph, target_graph, ct)
def populate(self): """Generate all the new nodes.""" for graph in self.graphs: target_graph = self.get_graph(graph) mng = self.manager for p in graph.parameters: self.gen_parameter(graph, target_graph, p) for node in mng.nodes[graph]: if node.is_apply(): self.gen_apply(graph, target_graph, node) elif node.is_parameter() and node not in graph.parameters: self.gen_rogue_parameter(graph, target_graph, node) if self.gen_child is not NotImplemented: for child in mng.children[graph]: self.gen_child(graph, target_graph, child) if self.gen_fv_direct is not NotImplemented: for node in mng.free_variables_direct[graph]: self.gen_fv_direct(graph, target_graph, node) if self.gen_fv is not NotImplemented: for node in mng.free_variables_total[graph]: if isinstance(node, ANFNode): self.gen_fv(graph, target_graph, node) if self.gen_fv_graph is not NotImplemented: for node in mng.free_variables_total[graph]: if isinstance(node, Graph): self.gen_fv_graph(graph, target_graph, node) if self.gen_fv_extended is not NotImplemented: for node in mng.free_variables_extended[graph]: self.gen_fv_extended(graph, target_graph, node) for ct in mng.constants[graph]: if ct.is_constant_graph(): self.gen_constant_graph(graph, target_graph, ct) else: self.gen_constant(graph, target_graph, ct)
Python
def gen_apply(self, graph, new_graph, node): """Makes an empty Apply node (to link later).""" with About(node.debug, self.relation): new = Apply([], new_graph) self.remap_node(node, graph, node, new_graph, new)
def gen_apply(self, graph, new_graph, node): """Makes an empty Apply node (to link later).""" with About(node.debug, self.relation): new = Apply([], new_graph) self.remap_node(node, graph, node, new_graph, new)
Python
def gen_constant(self, graph, new_graph, constant): """Makes a copy of the constant with the same value.""" with About(constant.debug, self.relation): new = Constant(constant.value) self.remap_node(constant, graph, constant, new_graph, new)
def gen_constant(self, graph, new_graph, constant): """Makes a copy of the constant with the same value.""" with About(constant.debug, self.relation): new = Constant(constant.value) self.remap_node(constant, graph, constant, new_graph, new)
Python
def remap_node(self, key, graph, node, new_graph, new_node, link=None): """Remap the given node as normal and copy abstract and annotation.""" nn = super().remap_node(key, graph, node, new_graph, new_node, link) if self.set_abstract and nn.abstract is None: nn.abstract = node.abstract if self.set_annotation and nn.annotation is None: nn.annotation = node.annotation return nn
def remap_node(self, key, graph, node, new_graph, new_node, link=None): """Remap the given node as normal and copy abstract and annotation.""" nn = super().remap_node(key, graph, node, new_graph, new_node, link) if self.set_abstract and nn.abstract is None: nn.abstract = node.abstract if self.set_annotation and nn.annotation is None: nn.annotation = node.annotation return nn
Python
def gen_graph(self, graph): """Generate a new graph unless the graph is meant to be inlined. Copies flags and transforms. """ if graph in self.inlines: target_graph, new_params = self.inlines[graph] for p, new_p in zip(graph.parameters, new_params): self.repl[p] = new_p elif graph not in self.graph_repl: self.graph_repl[graph] = graph.make_new(self.graph_relation)
def gen_graph(self, graph): """Generate a new graph unless the graph is meant to be inlined. Copies flags and transforms. """ if graph in self.inlines: target_graph, new_params = self.inlines[graph] for p, new_p in zip(graph.parameters, new_params): self.repl[p] = new_p elif graph not in self.graph_repl: self.graph_repl[graph] = graph.make_new(self.graph_relation)
Python
def gen_constant_graph(self, graph, new_graph, constant): """Generate a constant for the cloned graph when applicable.""" g = constant.value if g not in self.inlines and g in self.graph_repl: target_graph = self.get_graph(g) with About(constant.debug, self.relation): new = Constant(target_graph) self.remap_node(constant, graph, constant, new_graph, new)
def gen_constant_graph(self, graph, new_graph, constant): """Generate a constant for the cloned graph when applicable.""" g = constant.value if g not in self.inlines and g in self.graph_repl: target_graph = self.get_graph(g) with About(constant.debug, self.relation): new = Constant(target_graph) self.remap_node(constant, graph, constant, new_graph, new)
Python
def run(self): """Run all remappers. All remappers generate their graphs first, then the nodes are populated first, then linked, then their graphs are finalized. """ remappers = self.remappers.values() for remapper in remappers: remapper.generate() for remapper in remappers: remapper.populate() for remapper in remappers: remapper.link() for remapper in remappers: remapper.finalize()
def run(self): """Run all remappers. All remappers generate their graphs first, then the nodes are populated first, then linked, then their graphs are finalized. """ remappers = self.remappers.values() for remapper in remappers: remapper.generate() for remapper in remappers: remapper.populate() for remapper in remappers: remapper.link() for remapper in remappers: remapper.finalize()
Python
def collect_graphs(self, graphs, inlines): """Collect the full set of graphs to clone. This set will include the scopes of the graphs if clone_constants is True, as well as any graphs they use if total is True. """ def expand_clones(graph): if self.clone_children: self.graphs.update(self.manager.scopes[graph] - {graph}) if self.total: self.graphs.update(self.manager.graphs_reachable[graph]) self.graphs = set() self.inlines = {} for graph in graphs: self.graphs.add(graph) expand_clones(graph) for graph, target_graph, new_params in inlines: self.inlines[graph] = (target_graph, new_params) expand_clones(graph) if set(self.inlines) & self.graphs: msg = "Trying to clone and inline a graph at the same time." if self.total: msg += " Try setting the `total` option to False." raise Exception(msg) self.graphs.update(self.inlines)
def collect_graphs(self, graphs, inlines): """Collect the full set of graphs to clone. This set will include the scopes of the graphs if clone_constants is True, as well as any graphs they use if total is True. """ def expand_clones(graph): if self.clone_children: self.graphs.update(self.manager.scopes[graph] - {graph}) if self.total: self.graphs.update(self.manager.graphs_reachable[graph]) self.graphs = set() self.inlines = {} for graph in graphs: self.graphs.add(graph) expand_clones(graph) for graph, target_graph, new_params in inlines: self.inlines[graph] = (target_graph, new_params) expand_clones(graph) if set(self.inlines) & self.graphs: msg = "Trying to clone and inline a graph at the same time." if self.total: msg += " Try setting the `total` option to False." raise Exception(msg) self.graphs.update(self.inlines)
Python
def clone( g, total=True, relation="copy", clone_constants=False, graph_relation=None, ): """Return a clone of g.""" return GraphCloner( g, total=total, relation=relation, clone_constants=clone_constants, graph_relation=graph_relation, )[g]
def clone( g, total=True, relation="copy", clone_constants=False, graph_relation=None, ): """Return a clone of g.""" return GraphCloner( g, total=total, relation=relation, clone_constants=clone_constants, graph_relation=graph_relation, )[g]
Python
def transformable_clone(graph, relation="transform"): """Return a clone of the graph that can be safely transformed. If the graph is recursive, recursive calls will point to the original graph and not to the clone. This allows us to modify the returned graph safely, without messing up the recursive call sites. """ with About(graph.debug, relation): newg = Graph() for p in graph.parameters: with About(p.debug, "copy"): p2 = newg.add_parameter() p2.abstract = p.abstract cl = GraphCloner(inline=(graph, newg, newg.parameters)) newg.output = cl[graph.output] return newg
def transformable_clone(graph, relation="transform"): """Return a clone of the graph that can be safely transformed. If the graph is recursive, recursive calls will point to the original graph and not to the clone. This allows us to modify the returned graph safely, without messing up the recursive call sites. """ with About(graph.debug, relation): newg = Graph() for p in graph.parameters: with About(p.debug, "copy"): p2 = newg.add_parameter() p2.abstract = p.abstract cl = GraphCloner(inline=(graph, newg, newg.parameters)) newg.output = cl[graph.output] return newg
Python
async def infer_scatter( self, engine, input: lib.AbstractArray, dim: xtype.UInt[64], index: lib.AbstractArray, src: lib.AbstractArray, ): """Infer the return type of primitive `scatter`.""" return input
async def infer_scatter( self, engine, input: lib.AbstractArray, dim: xtype.UInt[64], index: lib.AbstractArray, src: lib.AbstractArray, ): """Infer the return type of primitive `scatter`.""" return input
Python
def bprop_scatter(x, dim, index, src, out, dout): """Backpropagator for primitive `scatter`.""" x_grad = scatter(dout, dim, index, zeros_like(src)) src_grad = gather(dout, dim, index) return (x_grad, zeros_like(dim), zeros_like(index), src_grad)
def bprop_scatter(x, dim, index, src, out, dout): """Backpropagator for primitive `scatter`.""" x_grad = scatter(dout, dim, index, zeros_like(src)) src_grad = gather(dout, dim, index) return (x_grad, zeros_like(dim), zeros_like(index), src_grad)
Python
async def infer_make_handle( self, engine, typ: AbstractType, universe: xtype.UniverseType ): """Infer the return type of primitive `make_handle`.""" return AbstractTuple( ( AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UniverseType}), AbstractHandle(typ.element), ) )
async def infer_make_handle( self, engine, typ: AbstractType, universe: xtype.UniverseType ): """Infer the return type of primitive `make_handle`.""" return AbstractTuple( ( AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UniverseType}), AbstractHandle(typ.element), ) )
Python
def parse(func, use_universe=False): """Parse a function into a Myia graph. The result of the parsing is cached: multiple calls to parse on the same function will return the same graph. It should therefore be cloned prior to manipulation. """ flags = dict(getattr(func, "_myia_flags", {})) if "use_universe" in flags: use_universe = flags["use_universe"] del flags["use_universe"] key = (func, use_universe) if key in _parse_cache: return _parse_cache[key] if "name" in flags: name = flags["name"] del flags["name"] else: name = None inner_flags = { flag: True for flag, value in flags.items() if value == "inner" } flags.update(inner_flags) parser = Parser(func, recflags=flags, use_universe=use_universe) graph = parser.parse() for flag in inner_flags: del graph.flags[flag] if name is not None: graph.debug.name = name _parse_cache[key] = graph return graph
def parse(func, use_universe=False): """Parse a function into a Myia graph. The result of the parsing is cached: multiple calls to parse on the same function will return the same graph. It should therefore be cloned prior to manipulation. """ flags = dict(getattr(func, "_myia_flags", {})) if "use_universe" in flags: use_universe = flags["use_universe"] del flags["use_universe"] key = (func, use_universe) if key in _parse_cache: return _parse_cache[key] if "name" in flags: name = flags["name"] del flags["name"] else: name = None inner_flags = { flag: True for flag, value in flags.items() if value == "inner" } flags.update(inner_flags) parser = Parser(func, recflags=flags, use_universe=use_universe) graph = parser.parse() for flag in inner_flags: del graph.flags[flag] if name is not None: graph.debug.name = name _parse_cache[key] = graph return graph
Python
def _eval_ast_node(self, node): """Evaluate an AST node as a Python expression in function context.""" # eval() does not accept an AST node, so we first convert AST node # to string code. code = astunparse.unparse(node).strip() # Then we evaluate it with eval(). return eval(code, self.function.__globals__, self.closure_namespace)
def _eval_ast_node(self, node): """Evaluate an AST node as a Python expression in function context.""" # eval() does not accept an AST node, so we first convert AST node # to string code. code = astunparse.unparse(node).strip() # Then we evaluate it with eval(). return eval(code, self.function.__globals__, self.closure_namespace)
Python
def make_location(self, node) -> Location: """Create a Location from an AST node.""" if isinstance(node, (list, tuple)): if len(node) == 0: return None node0 = node[0] node1 = node[-1] else: node0 = node node1 = node if hasattr(node0, "lineno") and hasattr(node0, "col_offset"): li1, col1 = node0.first_token.start li2, col2 = node1.last_token.end li1 += self.line_offset - 1 li2 += self.line_offset - 1 col1 += self.col_offset col2 += self.col_offset return Location(self.filename, li1, col1, li2, col2, node) else: # Some nodes like Index carry no location information, but # we basically just pass through them. return None
def make_location(self, node) -> Location: """Create a Location from an AST node.""" if isinstance(node, (list, tuple)): if len(node) == 0: return None node0 = node[0] node1 = node[-1] else: node0 = node node1 = node if hasattr(node0, "lineno") and hasattr(node0, "col_offset"): li1, col1 = node0.first_token.start li2, col2 = node1.last_token.end li1 += self.line_offset - 1 li2 += self.line_offset - 1 col1 += self.col_offset col2 += self.col_offset return Location(self.filename, li1, col1, li2, col2, node) else: # Some nodes like Index carry no location information, but # we basically just pass through them. return None
Python
def make_condition_blocks(self, block): """Make two blocks for an if statement or expression.""" with About(block.graph.debug, "if_true"): true_block = self.new_block(auxiliary=True) true_block.preds.append(block) true_block.mature() with About(block.graph.debug, "if_false"): false_block = self.new_block(auxiliary=True) false_block.preds.append(block) false_block.mature() return true_block, false_block
def make_condition_blocks(self, block): """Make two blocks for an if statement or expression.""" with About(block.graph.debug, "if_true"): true_block = self.new_block(auxiliary=True) true_block.preds.append(block) true_block.mature() with About(block.graph.debug, "if_false"): false_block = self.new_block(auxiliary=True) false_block.preds.append(block) false_block.mature() return true_block, false_block
Python
def parse(self) -> Graph: """Parse the function into a Myia graph.""" src0 = inspect.getsource(self.function) src = textwrap.dedent(src0) # We need col_offset to compensate for the dedent self.col_offset = len(src0.split("\n")[0]) - len(src.split("\n")[0]) tree = asttokens.ASTTokens(src, parse=True).tree function_def = tree.body[0] assert isinstance(function_def, ast.FunctionDef) main_block, _finalize = self._create_function(None, function_def) _finalize() for node in dfs(main_block.graph.return_, succ_deeper): if node.is_constant_graph(): if node.value.return_ is None: raise MyiaSyntaxError( "Function doesn't return a value in all cases", node.value.debug.find( "location", skip={"while_after", "for_after", "if_after"}, ), ) diff_cache = self.write_cache - self.read_cache if diff_cache: for _, varname, node in diff_cache: if varname != "_": warnings.warn( MyiaDisconnectedCodeWarning( f"{varname} is not used " + f"and will therefore not be computed", node.debug.location, ) ) self.write_cache = OrderedSet() self.read_cache = OrderedSet() return main_block.graph
def parse(self) -> Graph: """Parse the function into a Myia graph.""" src0 = inspect.getsource(self.function) src = textwrap.dedent(src0) # We need col_offset to compensate for the dedent self.col_offset = len(src0.split("\n")[0]) - len(src.split("\n")[0]) tree = asttokens.ASTTokens(src, parse=True).tree function_def = tree.body[0] assert isinstance(function_def, ast.FunctionDef) main_block, _finalize = self._create_function(None, function_def) _finalize() for node in dfs(main_block.graph.return_, succ_deeper): if node.is_constant_graph(): if node.value.return_ is None: raise MyiaSyntaxError( "Function doesn't return a value in all cases", node.value.debug.find( "location", skip={"while_after", "for_after", "if_after"}, ), ) diff_cache = self.write_cache - self.read_cache if diff_cache: for _, varname, node in diff_cache: if varname != "_": warnings.warn( MyiaDisconnectedCodeWarning( f"{varname} is not used " + f"and will therefore not be computed", node.debug.location, ) ) self.write_cache = OrderedSet() self.read_cache = OrderedSet() return main_block.graph
Python
def _create_function( self, block: Optional["Block"], node: ast.FunctionDef ) -> Tuple["Block", "Block"]: """Process a function definition and return block and finalizer. To process the statements in the function the finalizer must be called with no arguments. It should only be called after processing the statements in the parent function so that mutual recursion and forward references can be resolved. """ with DebugInherit(ast=node, location=self.make_location(node)): function_block = self.new_block(type="function") if block: function_block.preds.append(block) else: # This is the top-level function, so we set self.graph self.graph = function_block.graph function_block.mature() function_block.graph.debug.name = node.name # Use the same priority as python where an argument with the # same name will mask the function. graph = function_block.graph function_block.write(node.name, Constant(graph), track=False) def _finalize(): return self._finalize_function(node, function_block) return function_block, _finalize
def _create_function( self, block: Optional["Block"], node: ast.FunctionDef ) -> Tuple["Block", "Block"]: """Process a function definition and return block and finalizer. To process the statements in the function the finalizer must be called with no arguments. It should only be called after processing the statements in the parent function so that mutual recursion and forward references can be resolved. """ with DebugInherit(ast=node, location=self.make_location(node)): function_block = self.new_block(type="function") if block: function_block.preds.append(block) else: # This is the top-level function, so we set self.graph self.graph = function_block.graph function_block.mature() function_block.graph.debug.name = node.name # Use the same priority as python where an argument with the # same name will mask the function. graph = function_block.graph function_block.write(node.name, Constant(graph), track=False) def _finalize(): return self._finalize_function(node, function_block) return function_block, _finalize
Python
def process_statements( self, starting_block: "Block", nodes: List[ast.stmt] ) -> "Block": """Process a sequence of statements. If the list of statements is empty, a new empty block will be constructed and returned. This ensures that empty code blocks (e.g. an empty else branch) still have a corresponding block that can be used to call the continuation from. """ block = starting_block for node in nodes: block = self.process_node(block, node, used=False) return block
def process_statements( self, starting_block: "Block", nodes: List[ast.stmt] ) -> "Block": """Process a sequence of statements. If the list of statements is empty, a new empty block will be constructed and returned. This ensures that empty code blocks (e.g. an empty else branch) still have a corresponding block that can be used to call the continuation from. """ block = starting_block for node in nodes: block = self.process_node(block, node, used=False) return block
Python
def process_Expr(self, block: "Block", node: ast.Expr) -> "Block": """Process an expression statement. This ignores the statement. """ if self.use_universe: self.process_node(block, node.value) else: if self.flag_used == 0 and not isinstance(node.value, ast.Str): warnings.warn( MyiaDisconnectedCodeWarning( f"Expression was not assigned to a variable." + f"\n\tAs a result, it is not connected to the output " + f"and will not be executed.", self.make_location(node), ) ) return block
def process_Expr(self, block: "Block", node: ast.Expr) -> "Block": """Process an expression statement. This ignores the statement. """ if self.use_universe: self.process_node(block, node.value) else: if self.flag_used == 0 and not isinstance(node.value, ast.Str): warnings.warn( MyiaDisconnectedCodeWarning( f"Expression was not assigned to a variable." + f"\n\tAs a result, it is not connected to the output " + f"and will not be executed.", self.make_location(node), ) ) return block
Python
def process_If(self, block: "Block", node: ast.If) -> "Block": """Process a conditional statement. A conditional statement generates 3 functions: The true branch, the false branch, and the continuation. """ # Process the condition cond = self.process_node(block, node.test) # Create two branches true_block, false_block = self.make_condition_blocks(block) true_block.graph.debug.location = self.make_location(node.body) false_block.graph.debug.location = self.make_location(node.orelse) # Create the continuation with About(block.graph.debug, "if_after"): after_block = self.new_block(auxiliary=True) # Process the first branch true_end = self.process_statements(true_block, node.body) # A return statement in the branch might mean that a continuation has # already been set if not true_end.graph.return_: true_end.jump(after_block) # And the second false_end = self.process_statements(false_block, node.orelse) if not false_end.graph.return_: false_end.jump(after_block) # And stich it together block.cond(cond, true_block, false_block) after_block.mature() return after_block
def process_If(self, block: "Block", node: ast.If) -> "Block": """Process a conditional statement. A conditional statement generates 3 functions: The true branch, the false branch, and the continuation. """ # Process the condition cond = self.process_node(block, node.test) # Create two branches true_block, false_block = self.make_condition_blocks(block) true_block.graph.debug.location = self.make_location(node.body) false_block.graph.debug.location = self.make_location(node.orelse) # Create the continuation with About(block.graph.debug, "if_after"): after_block = self.new_block(auxiliary=True) # Process the first branch true_end = self.process_statements(true_block, node.body) # A return statement in the branch might mean that a continuation has # already been set if not true_end.graph.return_: true_end.jump(after_block) # And the second false_end = self.process_statements(false_block, node.orelse) if not false_end.graph.return_: false_end.jump(after_block) # And stich it together block.cond(cond, true_block, false_block) after_block.mature() return after_block
Python
def process_While(self, block: "Block", node: ast.While) -> "Block": """Process a while loop. A while loop will generate 3 functions: The test, the body, and the continuation. """ with About(block.graph.debug, "while_header"): header_block = self.new_block(auxiliary=True) with About(block.graph.debug, "while_body"): body_block = self.new_block(auxiliary=True) with About(block.graph.debug, "while_after"): after_block = self.new_block(auxiliary=True) body_block.preds.append(header_block) after_block.preds.append(header_block) block.jump(header_block) cond = self.process_node(header_block, node.test) body_block.mature() header_block.cond(cond, body_block, after_block) after_body = self.process_statements(body_block, node.body) if not after_body.graph.return_: after_body.jump(header_block) header_block.mature() after_block.mature() return after_block
def process_While(self, block: "Block", node: ast.While) -> "Block": """Process a while loop. A while loop will generate 3 functions: The test, the body, and the continuation. """ with About(block.graph.debug, "while_header"): header_block = self.new_block(auxiliary=True) with About(block.graph.debug, "while_body"): body_block = self.new_block(auxiliary=True) with About(block.graph.debug, "while_after"): after_block = self.new_block(auxiliary=True) body_block.preds.append(header_block) after_block.preds.append(header_block) block.jump(header_block) cond = self.process_node(header_block, node.test) body_block.mature() header_block.cond(cond, body_block, after_block) after_body = self.process_statements(body_block, node.body) if not after_body.graph.return_: after_body.jump(header_block) header_block.mature() after_block.mature() return after_block
Python
def apply(self, fn, *args): """Create an application of fn on args.""" if self.use_universe: tget = self.operation("tuple_getitem") usl = self.operation("universal") ufn = self.graph.apply(usl, fn) pair = self.graph.apply(ufn, *args, self.universe) self.universe = self.graph.apply(tget, pair, 0) return self.graph.apply(tget, pair, 1) else: return self.graph.apply(fn, *args)
def apply(self, fn, *args): """Create an application of fn on args.""" if self.use_universe: tget = self.operation("tuple_getitem") usl = self.operation("universal") ufn = self.graph.apply(usl, fn) pair = self.graph.apply(ufn, *args, self.universe) self.universe = self.graph.apply(tget, pair, 0) return self.graph.apply(tget, pair, 1) else: return self.graph.apply(fn, *args)
Python
def add_parameter(self, parameter=None): """Add a parameter to the graph.""" p = parameter or Parameter(self.graph) if self.use_universe: self.graph.parameters.insert(-1, p) else: self.graph.parameters.append(p) return p
def add_parameter(self, parameter=None): """Add a parameter to the graph.""" p = parameter or Parameter(self.graph) if self.use_universe: self.graph.parameters.insert(-1, p) else: self.graph.parameters.append(p) return p
Python
def make_resolve(self, module_name, symbol_name): """Return a subtree that resolves a name in a module.""" return self.graph.apply( operations.resolve, Constant(module_name), Constant(symbol_name) )
def make_resolve(self, module_name, symbol_name): """Return a subtree that resolves a name in a module.""" return self.graph.apply( operations.resolve, Constant(module_name), Constant(symbol_name) )
Python
def make_switch(self, cond, true_block, false_block, op="user_switch"): """Return a subtree that implements a switch operation.""" return self.apply( self.operation(op), cond, true_block.graph, false_block.graph )
def make_switch(self, cond, true_block, false_block, op="user_switch"): """Return a subtree that implements a switch operation.""" return self.apply( self.operation(op), cond, true_block.graph, false_block.graph )
Python
def read(self, varnum: str, resolve_globals=True, lock=False) -> ANFNode: """Read a variable. If this name has defined given in one of the previous statements, it will be trivially resolved. It is possible that the variable was defined in a previous block (e.g. outside of the loop body or the branch). In this case, it will be resolved only if all predecessor blocks are available. If they are not, we will assume that this variable is given as a function argument (which plays the role of a phi node). Args: varnum: The name of the variable to read. resolve_globals: If the name is not resolvable, assume it is a global lock: Either False or the Graph that is reading this variable and for which it should be locked. """ if varnum in self.variables: self.parser.read_cache.add((self, varnum, self.variables[varnum])) node = self.variables[varnum] if ( node.is_constant_graph() and node.value in self.parser.finalizers ): fin = self.parser.finalizers.pop(node.value) fin() if lock: self.lock[varnum] = lock return _fresh(node) nophi = varnum not in self.parser.possible_phis if self.matured or nophi: def _resolve(): if not resolve_globals: return None cn = self.parser.closure_namespace if varnum in cn: return self.make_resolve(cn, varnum) else: ns = self.parser.global_namespace return self.make_resolve(ns, varnum) if not self.preds: return _resolve() if len(self.preds) == 1 or nophi: result = self.preds[0].read( varnum, resolve_globals=False, lock=lock or (self.type == "function" and self.graph.debug.name), ) return result or _resolve() # TODO: point to the original definition with About(NamedDebugInfo(name=varnum), "phi"): phi = Parameter(self.graph) self.add_parameter(phi) self.phi_nodes[phi] = varnum self.write(varnum, phi) if self.matured: self.set_phi_arguments(phi) return phi
def read(self, varnum: str, resolve_globals=True, lock=False) -> ANFNode: """Read a variable. If this name has defined given in one of the previous statements, it will be trivially resolved. It is possible that the variable was defined in a previous block (e.g. outside of the loop body or the branch). In this case, it will be resolved only if all predecessor blocks are available. If they are not, we will assume that this variable is given as a function argument (which plays the role of a phi node). Args: varnum: The name of the variable to read. resolve_globals: If the name is not resolvable, assume it is a global lock: Either False or the Graph that is reading this variable and for which it should be locked. """ if varnum in self.variables: self.parser.read_cache.add((self, varnum, self.variables[varnum])) node = self.variables[varnum] if ( node.is_constant_graph() and node.value in self.parser.finalizers ): fin = self.parser.finalizers.pop(node.value) fin() if lock: self.lock[varnum] = lock return _fresh(node) nophi = varnum not in self.parser.possible_phis if self.matured or nophi: def _resolve(): if not resolve_globals: return None cn = self.parser.closure_namespace if varnum in cn: return self.make_resolve(cn, varnum) else: ns = self.parser.global_namespace return self.make_resolve(ns, varnum) if not self.preds: return _resolve() if len(self.preds) == 1 or nophi: result = self.preds[0].read( varnum, resolve_globals=False, lock=lock or (self.type == "function" and self.graph.debug.name), ) return result or _resolve() # TODO: point to the original definition with About(NamedDebugInfo(name=varnum), "phi"): phi = Parameter(self.graph) self.add_parameter(phi) self.phi_nodes[phi] = varnum self.write(varnum, phi) if self.matured: self.set_phi_arguments(phi) return phi
Python
def write(self, varnum: str, node: ANFNode, track=True) -> None: """Write a variable. When assignment is used to bound a value to a name, we store this mapping in the block to be used by subsequent statements. Args: varnum: The name of the variable to store. node: The node representing this value. track: True if we want to warn about this variable not being used. """ if varnum in self.lock: raise MyiaSyntaxError( f"Trying to modify variable '{varnum}'" f" after it was captured by function '{self.lock[varnum]}'.", loc=current_info().location, ) self.variables[varnum] = node if track and not node.is_parameter(): self.parser.write_cache.add((self, varnum, node))
def write(self, varnum: str, node: ANFNode, track=True) -> None: """Write a variable. When assignment is used to bound a value to a name, we store this mapping in the block to be used by subsequent statements. Args: varnum: The name of the variable to store. node: The node representing this value. track: True if we want to warn about this variable not being used. """ if varnum in self.lock: raise MyiaSyntaxError( f"Trying to modify variable '{varnum}'" f" after it was captured by function '{self.lock[varnum]}'.", loc=current_info().location, ) self.variables[varnum] = node if track and not node.is_parameter(): self.parser.write_cache.add((self, varnum, node))
Python
def jump(self, target: "Block", *args) -> Apply: """Jumping from one block to the next becomes a tail call. This method will generate the tail call by calling the graph corresponding to the target block using an `Apply` node, and returning its value with a `Return` node. It will update the predecessor blocks of the target appropriately. Args: target: The block to jump to from this statement. """ assert self.graph.return_ is None jump = self.apply(target.graph, *args) jump_call = jump if self.use_universe: jump_call = jump.inputs[1] self.jumps[target] = jump_call target.preds.append(self) self.returns(jump)
def jump(self, target: "Block", *args) -> Apply: """Jumping from one block to the next becomes a tail call. This method will generate the tail call by calling the graph corresponding to the target block using an `Apply` node, and returning its value with a `Return` node. It will update the predecessor blocks of the target appropriately. Args: target: The block to jump to from this statement. """ assert self.graph.return_ is None jump = self.apply(target.graph, *args) jump_call = jump if self.use_universe: jump_call = jump.inputs[1] self.jumps[target] = jump_call target.preds.append(self) self.returns(jump)
Python
def cond(self, cond: ANFNode, true: "Block", false: "Block") -> Apply: """Perform a conditional jump. This method will generate the call to the if expression and return its value. The predecessor blocks of the branches will be updated appropriately. Args: cond: The node representing the condition (true or false). true: The block to jump to if the condition is true. false: The block to jump to if the condition is false. """ assert self.graph.return_ is None switch = self.make_switch(cond, true, false) self.returns(self.apply(switch))
def cond(self, cond: ANFNode, true: "Block", false: "Block") -> Apply: """Perform a conditional jump. This method will generate the call to the if expression and return its value. The predecessor blocks of the branches will be updated appropriately. Args: cond: The node representing the condition (true or false). true: The block to jump to if the condition is true. false: The block to jump to if the condition is false. """ assert self.graph.return_ is None switch = self.make_switch(cond, true, false) self.returns(self.apply(switch))
Python
def raises(self, exc): """Raise an exception in this block.""" inputs = [Constant(primops.raise_), exc] raise_ = Apply(inputs, self.graph) self.returns(raise_)
def raises(self, exc): """Raise an exception in this block.""" inputs = [Constant(primops.raise_), exc] raise_ = Apply(inputs, self.graph) self.returns(raise_)
Python
def returns(self, value): """Return a value in this block.""" assert self.graph.return_ is None if self.use_universe: tmake = self.operation("make_tuple") assert self.graph.return_ is None self.graph.output = self.graph.apply(tmake, self.universe, value) else: self.graph.output = value
def returns(self, value): """Return a value in this block.""" assert self.graph.return_ is None if self.use_universe: tmake = self.operation("make_tuple") assert self.graph.return_ is None self.graph.output = self.graph.apply(tmake, self.universe, value) else: self.graph.output = value
Python
async def infer_invert_permutation(self, engine, perm: u64tup_typecheck): """Infer the return type of primitive `invert_permutation`.""" v = [x.xvalue() for x in perm.elements] return AbstractTuple( [ AbstractScalar({VALUE: v.index(i), TYPE: xtype.UInt[64]}) if i in v else AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UInt[64]}) for i in range(len(v)) ] )
async def infer_invert_permutation(self, engine, perm: u64tup_typecheck): """Infer the return type of primitive `invert_permutation`.""" v = [x.xvalue() for x in perm.elements] return AbstractTuple( [ AbstractScalar({VALUE: v.index(i), TYPE: xtype.UInt[64]}) if i in v else AbstractScalar({VALUE: ANYTHING, TYPE: xtype.UInt[64]}) for i in range(len(v)) ] )
Python
async def infer_tagged(self, engine, x, *rest): """Infer the return type of primitive `tagged`.""" if len(rest) == 0: return lib.AbstractUnion([lib.broaden(x, loop=engine.loop)]) elif len(rest) == 1: (tag,) = rest tag_v = self.require_constant(tag, argnum=2) return lib.AbstractTaggedUnion( [[tag_v, lib.broaden(x, loop=engine.loop)]] ) else: raise lib.type_error_nargs(P.tagged, "1 or 2", len(rest) + 1)
async def infer_tagged(self, engine, x, *rest): """Infer the return type of primitive `tagged`.""" if len(rest) == 0: return lib.AbstractUnion([lib.broaden(x, loop=engine.loop)]) elif len(rest) == 1: (tag,) = rest tag_v = self.require_constant(tag, argnum=2) return lib.AbstractTaggedUnion( [[tag_v, lib.broaden(x, loop=engine.loop)]] ) else: raise lib.type_error_nargs(P.tagged, "1 or 2", len(rest) + 1)
Python
def default_convert(env, fn: FunctionType, manage): """Default converter for Python types.""" g = parser.parse(fn) rval = env(g, manage) env.set_cached(fn, rval) return rval
def default_convert(env, fn: FunctionType, manage): """Default converter for Python types.""" g = parser.parse(fn) rval = env(g, manage) env.set_cached(fn, rval) return rval
Python
def activate(self, force=False): """Activate the tracker. If the tracker is already activated, this does nothing. """ if force or not self.activated: self.manager.events.add_node.register(self._on_add_node) self.manager.events.drop_node.register(self._on_drop_node) self.manager.events.post_reset.register( lambda evt: self.activate(force=True) ) self.activated = True
def activate(self, force=False): """Activate the tracker. If the tracker is already activated, this does nothing. """ if force or not self.activated: self.manager.events.add_node.register(self._on_add_node) self.manager.events.drop_node.register(self._on_drop_node) self.manager.events.post_reset.register( lambda evt: self.activate(force=True) ) self.activated = True
Python
def isomorphic(g1, g2, equiv=None): r"""Return whether g1 and g2 are structurally equivalent. Constants are isomorphic iff they contain the same value or are isomorphic graphs. g1.return\_ and g2.return\_ must represent the same node under the isomorphism. Parameters must match in the same order. """ if equiv is None: equiv = {} if (g1, g2) in equiv: return equiv[(g1, g2)] is not False if len(g1.parameters) != len(g2.parameters): return False equiv.update(dict(zip(g1.parameters, g2.parameters))) equiv[(g1, g2)] = "PENDING" rval = _same_subgraph(g1.return_, g2.return_, equiv) equiv[(g1, g2)] = rval return rval
def isomorphic(g1, g2, equiv=None): r"""Return whether g1 and g2 are structurally equivalent. Constants are isomorphic iff they contain the same value or are isomorphic graphs. g1.return\_ and g2.return\_ must represent the same node under the isomorphism. Parameters must match in the same order. """ if equiv is None: equiv = {} if (g1, g2) in equiv: return equiv[(g1, g2)] is not False if len(g1.parameters) != len(g2.parameters): return False equiv.update(dict(zip(g1.parameters, g2.parameters))) equiv[(g1, g2)] = "PENDING" rval = _same_subgraph(g1.return_, g2.return_, equiv) equiv[(g1, g2)] = rval return rval
Python
def print_node(node): """Return a textual representation of a node and its ancestors.""" import io buf = io.StringIO() g = node.graph for n in toposort(node): if n.graph is not None and n.graph is not g: continue _print_node(n, buf) return buf.getvalue()
def print_node(node): """Return a textual representation of a node and its ancestors.""" import io buf = io.StringIO() g = node.graph for n in toposort(node): if n.graph is not None and n.graph is not g: continue _print_node(n, buf) return buf.getvalue()
Python
def print_graph(g, allow_cycles=True): """Returns a textual representation of a graph.""" import io buf = io.StringIO() print(f"graph {str(g)}(", file=buf, end="") print( ", ".join( f"%{str(p)}{' : ' + str(p.abstract) if p.abstract is not None else ''}" for p in g.parameters ), file=buf, end="", ) print(") ", file=buf, end="") if g.abstract is not None: print(f"-> {g.abstract.output} ", file=buf, end="") print("{", file=buf) seen_graphs = set([g]) def _succ_deep_once(node): if node.is_constant_graph(): res = [node.value.return_] if node.value not in seen_graphs else [] seen_graphs.add(node.value) return res else: return node.incoming for node in _toposort(g.output, _succ_deep_once, allow_cycles=allow_cycles): if ( node.graph is not None and node.graph is not g ) or node is g.return_: # There is a bug in coverage which makes it ignore the continue, # even though it is covered. continue # pragma: no cover _print_node(node, buf, offset=2) print(f" return %{str(g.output)}", file=buf) print("}", file=buf) return buf.getvalue()
def print_graph(g, allow_cycles=True): """Returns a textual representation of a graph.""" import io buf = io.StringIO() print(f"graph {str(g)}(", file=buf, end="") print( ", ".join( f"%{str(p)}{' : ' + str(p.abstract) if p.abstract is not None else ''}" for p in g.parameters ), file=buf, end="", ) print(") ", file=buf, end="") if g.abstract is not None: print(f"-> {g.abstract.output} ", file=buf, end="") print("{", file=buf) seen_graphs = set([g]) def _succ_deep_once(node): if node.is_constant_graph(): res = [node.value.return_] if node.value not in seen_graphs else [] seen_graphs.add(node.value) return res else: return node.incoming for node in _toposort(g.output, _succ_deep_once, allow_cycles=allow_cycles): if ( node.graph is not None and node.graph is not g ) or node is g.return_: # There is a bug in coverage which makes it ignore the continue, # even though it is covered. continue # pragma: no cover _print_node(node, buf, offset=2) print(f" return %{str(g.output)}", file=buf) print("}", file=buf) return buf.getvalue()
Python
def lop(op, type, name): """Generate a left hand side method. Returns NotImplemented if the second input has the wrong type. """ @core(name=name, static_inline=True) def protocol(x, y): if hastype(y, type): return op(x, y) else: return NotImplemented return protocol
def lop(op, type, name): """Generate a left hand side method. Returns NotImplemented if the second input has the wrong type. """ @core(name=name, static_inline=True) def protocol(x, y): if hastype(y, type): return op(x, y) else: return NotImplemented return protocol
Python
def rop(op, type, name): """Generate a right hand side method. Returns NotImplemented if the second input has the wrong type. """ @core(name=name, static_inline=True) def protocol(x, y): if hastype(y, type): return op(y, x) else: return NotImplemented return protocol
def rop(op, type, name): """Generate a right hand side method. Returns NotImplemented if the second input has the wrong type. """ @core(name=name, static_inline=True) def protocol(x, y): if hastype(y, type): return op(y, x) else: return NotImplemented return protocol
Python
def reverse_binop(op, name): """Reverse the argument order of a binary function.""" @core(name=name, static_inline=True) def protocol(x, y): return op(y, x) return protocol
def reverse_binop(op, name): """Reverse the argument order of a binary function.""" @core(name=name, static_inline=True) def protocol(x, y): return op(y, x) return protocol
Python
def tentative(self, p: Possibilities, *, loop): # noqa: D417 """Broaden an abstract value and make it tentative. * Concrete values such as 1 or True will be broadened to ANYTHING. * Possibilities will be broadened to PendingTentative. This allows us to avoid resolving them earlier than we would like. Arguments: p: The abstract data to clone. loop: The InferenceLoop, used to broaden Possibilities. """ return loop.create_pending_tentative(tentative=p)
def tentative(self, p: Possibilities, *, loop): # noqa: D417 """Broaden an abstract value and make it tentative. * Concrete values such as 1 or True will be broadened to ANYTHING. * Possibilities will be broadened to PendingTentative. This allows us to avoid resolving them earlier than we would like. Arguments: p: The abstract data to clone. loop: The InferenceLoop, used to broaden Possibilities. """ return loop.create_pending_tentative(tentative=p)
Python
def amerge(self, x1, x2, forced=False, bind_pending=True, accept_pending=True): """Merge two values. If forced is False, amerge will return a superset of x1 and x2, if it exists. If the forced argument is True, amerge will either return x1 or fail. This makes a difference in some situations: * amerge(1, 2, forced=False) => ANYTHING * amerge(1, 2, forced=True) => Error * amerge(ANYTHING, 1234, forced=True) => ANYTHING * amerge(1234, ANYTHING, forced=True) => Error Arguments: x1: The first value to merge x2: The second value to merge forced: Whether we are already committed to returning x1 or not. bind_pending: Whether we bind two Pending, unresolved values. accept_pending: Works the same as bind_pending, but only for the top level call. """ if x1 is x2: return x1 keypair = (id(x1), id(x2)) if keypair in self.state: result = self.state[keypair] if result is ABSENT: # Setting forced=True will set the keypair to x1 (and then check # that x1 and x2 are compatible under forced=True), which lets us # return a result for self-referential data. return amerge( x1, x2, forced=True, bind_pending=bind_pending, accept_pending=accept_pending, ) else: return result def helper(): nonlocal x1, x2 while isinstance(x1, Pending) and x1.done() and not forced: x1 = x1.result() while isinstance(x2, Pending) and x2.done(): x2 = x2.result() isp1 = isinstance(x1, Pending) isp2 = isinstance(x2, Pending) loop = x1.get_loop() if isp1 else x2.get_loop() if isp2 else None if isinstance(x1, PendingTentative): new_tentative = self(x1.tentative, x2, False, True, bind_pending) assert not isinstance(new_tentative, Pending) x1.tentative = new_tentative return x1 if isinstance(x2, PendingTentative): new_tentative = self( x1, x2.tentative, forced, bind_pending, accept_pending ) assert not isinstance(new_tentative, Pending) x2.tentative = new_tentative return new_tentative if forced else x2 if (isp1 or isp2) and (not accept_pending or not bind_pending): if forced and isp1: raise MyiaTypeError("Cannot have Pending here.") if isp1: def chk(a): return self(a, x2, forced, bind_pending) return find_coherent_result_sync(x1, chk) if isp2: def chk(a): return self(x1, a, forced, bind_pending) return find_coherent_result_sync(x2, chk) if isp1 and isp2: return bind(loop, x1 if forced else None, [], [x1, x2]) elif isp1: return bind(loop, x1 if forced else None, [x2], [x1]) elif isp2: return bind(loop, x1 if forced else None, [x1], [x2]) elif isinstance(x2, AbstractBottom): # pragma: no cover return x1 elif isinstance(x1, AbstractBottom): if forced: # pragma: no cover # I am not sure how to trigger this raise TypeMismatchError(x1, x2) return x2 elif x1 is ANYTHING: return x1 elif x2 is ANYTHING: if forced: raise TypeMismatchError(x1, x2) return x2 else: return self[type(x1), type(x2), object, object]( x1, x2, forced, bind_pending ) self.state[keypair] = x1 if forced else ABSENT rval = helper() self.state[keypair] = rval if forced: assert rval is x1 return rval
def amerge(self, x1, x2, forced=False, bind_pending=True, accept_pending=True): """Merge two values. If forced is False, amerge will return a superset of x1 and x2, if it exists. If the forced argument is True, amerge will either return x1 or fail. This makes a difference in some situations: * amerge(1, 2, forced=False) => ANYTHING * amerge(1, 2, forced=True) => Error * amerge(ANYTHING, 1234, forced=True) => ANYTHING * amerge(1234, ANYTHING, forced=True) => Error Arguments: x1: The first value to merge x2: The second value to merge forced: Whether we are already committed to returning x1 or not. bind_pending: Whether we bind two Pending, unresolved values. accept_pending: Works the same as bind_pending, but only for the top level call. """ if x1 is x2: return x1 keypair = (id(x1), id(x2)) if keypair in self.state: result = self.state[keypair] if result is ABSENT: # Setting forced=True will set the keypair to x1 (and then check # that x1 and x2 are compatible under forced=True), which lets us # return a result for self-referential data. return amerge( x1, x2, forced=True, bind_pending=bind_pending, accept_pending=accept_pending, ) else: return result def helper(): nonlocal x1, x2 while isinstance(x1, Pending) and x1.done() and not forced: x1 = x1.result() while isinstance(x2, Pending) and x2.done(): x2 = x2.result() isp1 = isinstance(x1, Pending) isp2 = isinstance(x2, Pending) loop = x1.get_loop() if isp1 else x2.get_loop() if isp2 else None if isinstance(x1, PendingTentative): new_tentative = self(x1.tentative, x2, False, True, bind_pending) assert not isinstance(new_tentative, Pending) x1.tentative = new_tentative return x1 if isinstance(x2, PendingTentative): new_tentative = self( x1, x2.tentative, forced, bind_pending, accept_pending ) assert not isinstance(new_tentative, Pending) x2.tentative = new_tentative return new_tentative if forced else x2 if (isp1 or isp2) and (not accept_pending or not bind_pending): if forced and isp1: raise MyiaTypeError("Cannot have Pending here.") if isp1: def chk(a): return self(a, x2, forced, bind_pending) return find_coherent_result_sync(x1, chk) if isp2: def chk(a): return self(x1, a, forced, bind_pending) return find_coherent_result_sync(x2, chk) if isp1 and isp2: return bind(loop, x1 if forced else None, [], [x1, x2]) elif isp1: return bind(loop, x1 if forced else None, [x2], [x1]) elif isp2: return bind(loop, x1 if forced else None, [x1], [x2]) elif isinstance(x2, AbstractBottom): # pragma: no cover return x1 elif isinstance(x1, AbstractBottom): if forced: # pragma: no cover # I am not sure how to trigger this raise TypeMismatchError(x1, x2) return x2 elif x1 is ANYTHING: return x1 elif x2 is ANYTHING: if forced: raise TypeMismatchError(x1, x2) return x2 else: return self[type(x1), type(x2), object, object]( x1, x2, forced, bind_pending ) self.state[keypair] = x1 if forced else ABSENT rval = helper() self.state[keypair] = rval if forced: assert rval is x1 return rval
Python
def annotation_merge(self, x1: AbstractUnion, x2: AbstractValue, forced, bp): """Special variant to merge an abstract union with an abstract value. Example case: when checking an annotation `list` (without arguments) against a list (AbstractADT), `type_to_abstract(annotation)` will return an union (union of empty and list of anything), and then amerge(annotation: AbstractUnion, abstract: AbstractADT) will fail. This variant is intended to check such cases. """ # We check if at least one option in x1 matches x2. merged = None for option in set(x1.options): try: merged = self(option, x2, forced, bp) break except TypeMismatchError: pass if merged is None: raise TypeMismatchError(x1, x2) # If forced, we return the union. if forced: return x1 # Otherwise, we return the merged type. return merged
def annotation_merge(self, x1: AbstractUnion, x2: AbstractValue, forced, bp): """Special variant to merge an abstract union with an abstract value. Example case: when checking an annotation `list` (without arguments) against a list (AbstractADT), `type_to_abstract(annotation)` will return an union (union of empty and list of anything), and then amerge(annotation: AbstractUnion, abstract: AbstractADT) will fail. This variant is intended to check such cases. """ # We check if at least one option in x1 matches x2. merged = None for option in set(x1.options): try: merged = self(option, x2, forced, bp) break except TypeMismatchError: pass if merged is None: raise TypeMismatchError(x1, x2) # If forced, we return the union. if forced: return x1 # Otherwise, we return the merged type. return merged
Python
def annotation_merge(self, x1: AbstractDict, x2: AbstractDict, forced, bp): """Specific case when annotation (x1) is a dict type hint.""" entries_1 = x1.entries entries_2 = x2.entries if isinstance(entries_1, DictDesc): # Create a dict in entries_1 using keys from entries_2. entries_1 = entries_1.to_dict(entries_2.keys()) # Otherwise, entries_1 and entries_2 should be real dicts. args1 = (entries_1, x1.values) args2 = (entries_2, x2.values) merged = self(args1, args2, forced, bp) return x1 if (forced or merged is args1) else type(x1)(*merged)
def annotation_merge(self, x1: AbstractDict, x2: AbstractDict, forced, bp): """Specific case when annotation (x1) is a dict type hint.""" entries_1 = x1.entries entries_2 = x2.entries if isinstance(entries_1, DictDesc): # Create a dict in entries_1 using keys from entries_2. entries_1 = entries_1.to_dict(entries_2.keys()) # Otherwise, entries_1 and entries_2 should be real dicts. args1 = (entries_1, x1.values) args2 = (entries_2, x2.values) merged = self(args1, args2, forced, bp) return x1 if (forced or merged is args1) else type(x1)(*merged)
Python
def split_type(t, model): """Checks t against the model and return matching/non-matching subtypes. * If t is a Union, return a Union that fully matches model, and a Union that does not match model. No matches in either case returns None for that case. * Otherwise, return (t, None) or (None, t) depending on whether t matches the model. """ if isinstance(t, AbstractUnion): matching = [(opt, typecheck(model, opt)) for opt in set(t.options)] t1 = union_simplify(opt for opt, m in matching if m) t2 = union_simplify(opt for opt, m in matching if not m) return t1, t2 elif typecheck(model, t): return t, None else: return None, t
def split_type(t, model): """Checks t against the model and return matching/non-matching subtypes. * If t is a Union, return a Union that fully matches model, and a Union that does not match model. No matches in either case returns None for that case. * Otherwise, return (t, None) or (None, t) depending on whether t matches the model. """ if isinstance(t, AbstractUnion): matching = [(opt, typecheck(model, opt)) for opt in set(t.options)] t1 = union_simplify(opt for opt, m in matching if m) t2 = union_simplify(opt for opt, m in matching if not m) return t1, t2 elif typecheck(model, t): return t, None else: return None, t
Python
def typecheck(model, abstract): """Check that abstract matches the model.""" try: amerge(model, abstract, forced=True, bind_pending=False) except MyiaTypeError: return False else: return True
def typecheck(model, abstract): """Check that abstract matches the model.""" try: amerge(model, abstract, forced=True, bind_pending=False) except MyiaTypeError: return False else: return True
Python
def glob_to_regex(glob): """Transforms a glob-like expression into a regular expression. * `**` matches any character sequence including the / delimiter * `/**/` can also match `/` * `*` matches any character sequence except / * If glob does not start with /, `/**/` is prepended """ def replacer(m): if m.group() == "/**/": return r"(/.*/|/)" else: return r"[^/]*" if glob.startswith("**"): glob = f"/{glob}" elif not glob.startswith("/"): glob = f"/**/{glob}" if glob.endswith("**"): glob += "/*" patt = r"/\*\*/|\*" glob = re.sub(patt, replacer, glob) return re.compile(glob)
def glob_to_regex(glob): """Transforms a glob-like expression into a regular expression. * `**` matches any character sequence including the / delimiter * `/**/` can also match `/` * `*` matches any character sequence except / * If glob does not start with /, `/**/` is prepended """ def replacer(m): if m.group() == "/**/": return r"(/.*/|/)" else: return r"[^/]*" if glob.startswith("**"): glob = f"/{glob}" elif not glob.startswith("/"): glob = f"/**/{glob}" if glob.endswith("**"): glob += "/*" patt = r"/\*\*/|\*" glob = re.sub(patt, replacer, glob) return re.compile(glob)
Python
def install(self, tracer): """Install the listeners on the tracer.""" for method_name in dir(self): if method_name.startswith("on_"): ev = method_name[3:] patt = f"{self.focus}/{ev}" if self.focus else ev tracer.on(patt, getattr(self, method_name))
def install(self, tracer): """Install the listeners on the tracer.""" for method_name in dir(self): if method_name.startswith("on_"): ev = method_name[3:] patt = f"{self.focus}/{ev}" if self.focus else ev tracer.on(patt, getattr(self, method_name))
Python
def post(self): """Print the events and their arguments.""" for path, keys in self.paths.items(): print(path) for key in sorted(keys): typenames = {v.__qualname__ for v in keys[key]} print(" ", key, "::", " | ".join(typenames))
def post(self): """Print the events and their arguments.""" for path, keys in self.paths.items(): print(path) for key in sorted(keys): typenames = {v.__qualname__ for v in keys[key]} print(" ", key, "::", " | ".join(typenames))
Python
def print(self, *, indent=0): """Print a visualisation of a profile.""" ind = " " * indent if self.name is not None and self.total is not None: print(f"{ind}{self.name:30}{_unit(self.total)}") indent += 3 ind = " " * indent if self.overhead: print(f'{ind}{"[overhead]":30}{_unit(self.overhead)}') for prof2 in self.values(): prof2.print(indent=indent)
def print(self, *, indent=0): """Print a visualisation of a profile.""" ind = " " * indent if self.name is not None and self.total is not None: print(f"{ind}{self.name:30}{_unit(self.total)}") indent += 3 ind = " " * indent if self.overhead: print(f'{ind}{"[overhead]":30}{_unit(self.overhead)}') for prof2 in self.values(): prof2.print(indent=indent)
Python
def on_enter(self, _stack=None, profile=True, **kwargs): """Executed when a block is entered.""" if not profile: return d = self.hierarchical for part in _stack[:-1]: if not part.kwargs.get("profile", True): return d = d[part.name] lpart = _stack[-1] m = ProfileResults(lpart.name) if lpart.name in d: lpart.name = f"{lpart.name}.{self._ctr}" self._ctr += 1 d[lpart.name] = m m.start = perf_counter()
def on_enter(self, _stack=None, profile=True, **kwargs): """Executed when a block is entered.""" if not profile: return d = self.hierarchical for part in _stack[:-1]: if not part.kwargs.get("profile", True): return d = d[part.name] lpart = _stack[-1] m = ProfileResults(lpart.name) if lpart.name in d: lpart.name = f"{lpart.name}.{self._ctr}" self._ctr += 1 d[lpart.name] = m m.start = perf_counter()
Python
def on_exit(self, _stack=None, profile=True, **kwargs): """Executed when a block is exited.""" if not profile: return end = perf_counter() d = self.hierarchical for part in _stack: if not part.kwargs.get("profile", True): return d = d[part.name] d.end = end d.total = d.end - d.start d.parts_total = sum(v.total for v in d.values()) if d.parts_total: d.overhead = d.total - d.parts_total else: d.overhead = 0 self.overhead += d.overhead self.aggregate[d.name].append(d)
def on_exit(self, _stack=None, profile=True, **kwargs): """Executed when a block is exited.""" if not profile: return end = perf_counter() d = self.hierarchical for part in _stack: if not part.kwargs.get("profile", True): return d = d[part.name] d.end = end d.total = d.end - d.start d.parts_total = sum(v.total for v in d.values()) if d.parts_total: d.overhead = d.total - d.parts_total else: d.overhead = 0 self.overhead += d.overhead self.aggregate[d.name].append(d)
Python
def resolve_tracers(spec): """Return a list of (fn, args) pairs from a string specification. The specification has the following forms: * module.function * module.function:arg * module.function:arg1:arg2 * module.function(arg1,arg2) * module.function1;module.function2 The function is not called immediately, the consumer must call function on args when needed. """ def _resolve_single(call): if "(" in call: path, args = call.split("(", 1) assert args.endswith(")") args = eval(f"({args[:-1]},)") elif ":" in call: path, *args = call.split(":") else: path = call args = () modname, field = path.rsplit(".", 1) mod = __import__(modname, fromlist=[field]) fn = getattr(mod, field) return fn, args return [_resolve_single(call.strip()) for call in spec.split(";")]
def resolve_tracers(spec): """Return a list of (fn, args) pairs from a string specification. The specification has the following forms: * module.function * module.function:arg * module.function:arg1:arg2 * module.function(arg1,arg2) * module.function1;module.function2 The function is not called immediately, the consumer must call function on args when needed. """ def _resolve_single(call): if "(" in call: path, args = call.split("(", 1) assert args.endswith(")") args = eval(f"({args[:-1]},)") elif ":" in call: path, *args = call.split(":") else: path = call args = () modname, field = path.rsplit(".", 1) mod = __import__(modname, fromlist=[field]) fn = getattr(mod, field) return fn, args return [_resolve_single(call.strip()) for call in spec.split(";")]
Python
def M(mg): """Create a variable that matches a Metagraph.""" def chk(x): return x.is_constant_graph() and x.value.flags.get("metagraph") == mg return var(chk)
def M(mg): """Create a variable that matches a Metagraph.""" def chk(x): return x.is_constant_graph() and x.value.flags.get("metagraph") == mg return var(chk)
Python
def unfuse_composite(resources, node, equiv): """Tranform array_map on a graph to a graph of array_maps. This must be applied to scalar-only graphs. """ # This has to be defined inline because of circular imports class UnfuseRemapper(BasicRemapper): def __init__(self, g, reference): super().__init__( graphs=g.graphs_used.keys() | {g}, relation="unfused" ) self.reference = reference def asarray(self, ng, i): if i.is_constant(): typ = self.reference.abstract or ng.apply( typeof, self.reference ) return ng.apply( P.distribute, ng.apply(P.scalar_to_array, i, typ), ng.apply(P.shape, self.reference), ) else: return i def link_apply(self, link): ng = link.new_graph node = link.node assert node.inputs[0].is_constant(Primitive) ni = [self.asarray(ng, self.repl[i]) for i in node.inputs[1:]] link.new_node.inputs = [ ng.constant(P.array_map), node.inputs[0], ] + ni def finalize_graph(self, g, ng): # This fails if we set .return_ instead of .output, not sure why. ng.output = self.repl[g.output] g = equiv[G].value xs = equiv[Xs] r = UnfuseRemapper(g, xs[0]) r.run() ng = r.get_graph(g) for param, orig in zip(ng.parameters, xs): param.abstract = orig.abstract _set_out_abstract(ng, node.abstract) return node.graph.apply(ng, *xs)
def unfuse_composite(resources, node, equiv): """Tranform array_map on a graph to a graph of array_maps. This must be applied to scalar-only graphs. """ # This has to be defined inline because of circular imports class UnfuseRemapper(BasicRemapper): def __init__(self, g, reference): super().__init__( graphs=g.graphs_used.keys() | {g}, relation="unfused" ) self.reference = reference def asarray(self, ng, i): if i.is_constant(): typ = self.reference.abstract or ng.apply( typeof, self.reference ) return ng.apply( P.distribute, ng.apply(P.scalar_to_array, i, typ), ng.apply(P.shape, self.reference), ) else: return i def link_apply(self, link): ng = link.new_graph node = link.node assert node.inputs[0].is_constant(Primitive) ni = [self.asarray(ng, self.repl[i]) for i in node.inputs[1:]] link.new_node.inputs = [ ng.constant(P.array_map), node.inputs[0], ] + ni def finalize_graph(self, g, ng): # This fails if we set .return_ instead of .output, not sure why. ng.output = self.repl[g.output] g = equiv[G].value xs = equiv[Xs] r = UnfuseRemapper(g, xs[0]) r.run() ng = r.get_graph(g) for param, orig in zip(ng.parameters, xs): param.abstract = orig.abstract _set_out_abstract(ng, node.abstract) return node.graph.apply(ng, *xs)
Python
def simplify_array_map(resources, node, equiv): """Simplify array_map on certain graphs. If the graph cannot be eliminated, it is marked with the flag `inline_inside`, meaning that all calls within it must be inlined. Examples: array_map(lambda x, y: f(x, y), xs, ys) => array_map(f, xs, ys) array_map(lambda x, y: f(y, x), xs, ys) => array_map(f, ys, xs) array_map(lambda x, y: x, xs, ys) => xs array_map(lambda x: f(x, 3), xs) => array_map(f, xs, distribute(scalar_to_array(3), shape(xs))) """ g = equiv[G].value xs = equiv[Xs] def to_outer(x): if x.is_parameter(): idx = g.parameters.index(x) return xs[idx] elif x.is_constant() and issubclass(x.abstract.xtype(), Number): shp = (P.shape, xs[0]) typ = xs[0].abstract or (typeof, xs[0]) sexp = (P.distribute, (P.scalar_to_array, x, typ), shp) return sexp_to_node(sexp, node.graph) else: # Raise a semi-rare exception that won't hide bugs raise NotImplementedError() if len(g.scope) > 1: return node out = g.output try: if out.is_parameter() or out.is_constant(): return to_outer(out) elif out.inputs[0].is_constant(): args = [to_outer(arg) for arg in out.inputs[1:]] return node.graph.apply(P.array_map, out.inputs[0], *args) else: return node # pragma: no cover except NotImplementedError: if g.has_flags("inline_inside"): return node else: g.set_flags("inline_inside") return True
def simplify_array_map(resources, node, equiv): """Simplify array_map on certain graphs. If the graph cannot be eliminated, it is marked with the flag `inline_inside`, meaning that all calls within it must be inlined. Examples: array_map(lambda x, y: f(x, y), xs, ys) => array_map(f, xs, ys) array_map(lambda x, y: f(y, x), xs, ys) => array_map(f, ys, xs) array_map(lambda x, y: x, xs, ys) => xs array_map(lambda x: f(x, 3), xs) => array_map(f, xs, distribute(scalar_to_array(3), shape(xs))) """ g = equiv[G].value xs = equiv[Xs] def to_outer(x): if x.is_parameter(): idx = g.parameters.index(x) return xs[idx] elif x.is_constant() and issubclass(x.abstract.xtype(), Number): shp = (P.shape, xs[0]) typ = xs[0].abstract or (typeof, xs[0]) sexp = (P.distribute, (P.scalar_to_array, x, typ), shp) return sexp_to_node(sexp, node.graph) else: # Raise a semi-rare exception that won't hide bugs raise NotImplementedError() if len(g.scope) > 1: return node out = g.output try: if out.is_parameter() or out.is_constant(): return to_outer(out) elif out.inputs[0].is_constant(): args = [to_outer(arg) for arg in out.inputs[1:]] return node.graph.apply(P.array_map, out.inputs[0], *args) else: return node # pragma: no cover except NotImplementedError: if g.has_flags("inline_inside"): return node else: g.set_flags("inline_inside") return True
Python
def force_constants(resources, node, equiv): """Replace nodes with a constant value if the value is in its type.""" node = equiv[X] if ( node.is_constant() or node.is_parameter() or node.graph and node is node.graph.return_ ): return None try: val = build_value(node.abstract) except Exception: return None with untested(): if val is DEAD: return None ct = Constant(val) ct.abstract = node.abstract return ct
def force_constants(resources, node, equiv): """Replace nodes with a constant value if the value is in its type.""" node = equiv[X] if ( node.is_constant() or node.is_parameter() or node.graph and node is node.graph.return_ ): return None try: val = build_value(node.abstract) except Exception: return None with untested(): if val is DEAD: return None ct = Constant(val) ct.abstract = node.abstract return ct
Python
def replace_applicator(resources, node, equiv): """Replace a function that applies another by the other function. For example, `lambda x, y: f(x, y)` is replaced by f. The inner function must be applied on all the outer function's parameters in the exact same order, and it must be either a Primitive or a global function. """ g = equiv[G].value out = g.output if out.is_apply() and out.inputs[1:] == g.parameters: inner = out.inputs[0] # NOTE: it is likely correct to use `inner.value.parent is not g` as # the condition instead of `is None`, the current code is just playing # it safe. if ( inner.is_constant(Primitive) or inner.is_constant_graph() and inner.value.parent is None ): return inner return node
def replace_applicator(resources, node, equiv): """Replace a function that applies another by the other function. For example, `lambda x, y: f(x, y)` is replaced by f. The inner function must be applied on all the outer function's parameters in the exact same order, and it must be either a Primitive or a global function. """ g = equiv[G].value out = g.output if out.is_apply() and out.inputs[1:] == g.parameters: inner = out.inputs[0] # NOTE: it is likely correct to use `inner.value.parent is not g` as # the condition instead of `is None`, the current code is just playing # it safe. if ( inner.is_constant(Primitive) or inner.is_constant_graph() and inner.value.parent is None ): return inner return node
Python
def specialize_transform(graph, args): """Specialize on provided non-None args. Parameters that are specialized on are removed. """ mng = graph.manager graph = transformable_clone(graph, relation=f"sp") mng.add_graph(graph) for p, arg in zip(graph.parameters, args): if arg is not None: mng.replace(p, Constant(arg)) new_parameters = [ p for p, arg in zip(graph.parameters, args) if arg is None ] mng.set_parameters(graph, new_parameters) return graph
def specialize_transform(graph, args): """Specialize on provided non-None args. Parameters that are specialized on are removed. """ mng = graph.manager graph = transformable_clone(graph, relation=f"sp") mng.add_graph(graph) for p, arg in zip(graph.parameters, args): if arg is not None: mng.replace(p, Constant(arg)) new_parameters = [ p for p, arg in zip(graph.parameters, args) if arg is None ] mng.set_parameters(graph, new_parameters) return graph
Python
def specialize_on_graph_arguments(resources, node, equiv): """Specialize a call on constant graph arguments.""" g = equiv[G].value xs = equiv[Xs] specialize = [x.is_constant((Graph, Primitive)) for x in xs] if not any(specialize): return node specialize_map = tuple( x.value if s else None for x, s in zip(xs, specialize) ) new_xs = [x for x, s in zip(xs, specialize) if not s] g2 = specialize_transform(g, specialize_map) return node.graph.apply(g2, *new_xs)
def specialize_on_graph_arguments(resources, node, equiv): """Specialize a call on constant graph arguments.""" g = equiv[G].value xs = equiv[Xs] specialize = [x.is_constant((Graph, Primitive)) for x in xs] if not any(specialize): return node specialize_map = tuple( x.value if s else None for x, s in zip(xs, specialize) ) new_xs = [x for x, s in zip(xs, specialize) if not s] g2 = specialize_transform(g, specialize_map) return node.graph.apply(g2, *new_xs)
Python
def env_getitem_transform(orig_graph, key, default): """Map to a graph that incorporates a call to env_getitem.""" rel = getattr(key, "node", key) graph = transformable_clone(orig_graph, relation=f"[{rel}]") out = graph.output while out.is_apply(P.env_setitem): _, out, key2, value = out.inputs if key == key2.value: graph.output = value break else: with untested(): graph.output = graph.apply(P.env_getitem, out, key, default) graph.return_.abstract = key.abstract return graph
def env_getitem_transform(orig_graph, key, default): """Map to a graph that incorporates a call to env_getitem.""" rel = getattr(key, "node", key) graph = transformable_clone(orig_graph, relation=f"[{rel}]") out = graph.output while out.is_apply(P.env_setitem): _, out, key2, value = out.inputs if key == key2.value: graph.output = value break else: with untested(): graph.output = graph.apply(P.env_getitem, out, key, default) graph.return_.abstract = key.abstract return graph
Python
def incorporate_env_getitem(resources, node, equiv): """Incorporate an env_getitem into a call.""" g = equiv[G].value key = equiv[C].value dflt = equiv[Y] if check_used_once(g): return node.graph.apply(env_getitem_transform(g, key, dflt), *equiv[Xs])
def incorporate_env_getitem(resources, node, equiv): """Incorporate an env_getitem into a call.""" g = equiv[G].value key = equiv[C].value dflt = equiv[Y] if check_used_once(g): return node.graph.apply(env_getitem_transform(g, key, dflt), *equiv[Xs])
Python
def call_output_transform(orig_graph, abstracts): """Map to a graph that calls its output. ((*args1) -> (*args2) -> f) => (*args1, *args2) -> f(*args2) """ graph = transformable_clone(orig_graph, relation="call") newp = [] for a in abstracts: assert a is not None p = graph.add_parameter() p.abstract = a newp.append(p) graph.output = graph.apply(graph.output, *newp) _set_out_abstract(graph, orig_graph.return_.abstract.output) return graph
def call_output_transform(orig_graph, abstracts): """Map to a graph that calls its output. ((*args1) -> (*args2) -> f) => (*args1, *args2) -> f(*args2) """ graph = transformable_clone(orig_graph, relation="call") newp = [] for a in abstracts: assert a is not None p = graph.add_parameter() p.abstract = a newp.append(p) graph.output = graph.apply(graph.output, *newp) _set_out_abstract(graph, orig_graph.return_.abstract.output) return graph
Python
def incorporate_call(resources, node, equiv): """Incorporate a call into the graph that returns the function. Example: g(x)(y) => g2(x, y) Where g2 is a modified copy of g that incorporates the call on y. """ g = equiv[G].value xs = equiv[Xs] ys = equiv[Ys] if check_used_once(g): g2 = call_output_transform(g, tuple(y.abstract for y in ys)) return node.graph.apply(g2, *xs, *ys)
def incorporate_call(resources, node, equiv): """Incorporate a call into the graph that returns the function. Example: g(x)(y) => g2(x, y) Where g2 is a modified copy of g that incorporates the call on y. """ g = equiv[G].value xs = equiv[Xs] ys = equiv[Ys] if check_used_once(g): g2 = call_output_transform(g, tuple(y.abstract for y in ys)) return node.graph.apply(g2, *xs, *ys)
Python
def incorporate_call_through_switch(resources, node, equiv): """Incorporate a call to both branches. Example: switch(x, f, g)(y)(z) => switch(x, f2, g2)(y, z) Where f2 and g2 are modified copies of f and g that incorporate the call on both y and z. """ g1 = equiv[G1].value g2 = equiv[G2].value xs = equiv[Xs] ys = equiv[Ys] if check_used_once(g1) and check_used_once(g2): g1t = call_output_transform(g1, tuple(y.abstract for y in ys)) g2t = call_output_transform(g2, tuple(y.abstract for y in ys)) new = ((P.switch, equiv[X], g1t, g2t), *xs, *ys) return sexp_to_node(new, node.graph)
def incorporate_call_through_switch(resources, node, equiv): """Incorporate a call to both branches. Example: switch(x, f, g)(y)(z) => switch(x, f2, g2)(y, z) Where f2 and g2 are modified copies of f and g that incorporate the call on both y and z. """ g1 = equiv[G1].value g2 = equiv[G2].value xs = equiv[Xs] ys = equiv[Ys] if check_used_once(g1) and check_used_once(g2): g1t = call_output_transform(g1, tuple(y.abstract for y in ys)) g2t = call_output_transform(g2, tuple(y.abstract for y in ys)) new = ((P.switch, equiv[X], g1t, g2t), *xs, *ys) return sexp_to_node(new, node.graph)
Python
def has_inner_j_on_function(node): """Check if given node is a graph containing itself a J on a sub-graph.""" if isinstance(node, Graph): seen = {node} todo = [node.output] while todo: n = todo.pop() if n.inputs: for inp in n.inputs: if inp.is_apply(P.J) and inp.inputs[1].is_constant(Graph): return True else: todo.append(inp) elif n.is_constant_graph() and n.value not in seen: seen.add(n.value) todo.append(n.value.output) return False
def has_inner_j_on_function(node): """Check if given node is a graph containing itself a J on a sub-graph.""" if isinstance(node, Graph): seen = {node} todo = [node.output] while todo: n = todo.pop() if n.inputs: for inp in n.inputs: if inp.is_apply(P.J) and inp.inputs[1].is_constant(Graph): return True else: todo.append(inp) elif n.is_constant_graph() and n.value not in seen: seen.add(n.value) todo.append(n.value.output) return False
Python
def opt_jelim(resources): """Eliminate J, iff it is only applied to non-functions.""" mng = resources.opt_manager args = dict(opt=opt_jelim, node=None, manager=mng) with tracer("opt", **args) as tr: tr.set_results(success=False, **args) nodes = [] typesubs = [] for node in mng.all_nodes: try: newtype = _jelim_retype(node.abstract) except TypeError: return {"changes": False} if node.is_apply(P.J) or node.is_apply(P.Jinv): if not _jelim_nofunc(node.abstract): return {"changes": False} _, x = node.inputs nodes.append((node, x)) if newtype is not node.abstract: typesubs.append((node, newtype)) with mng.transact() as tr: for node, repl in nodes: tr.replace(node, repl) for node, newtype in typesubs: node.abstract = newtype if len(nodes) > 0: tracer().emit_success(**args, new_node=None) return {"changes": len(nodes) > 0}
def opt_jelim(resources): """Eliminate J, iff it is only applied to non-functions.""" mng = resources.opt_manager args = dict(opt=opt_jelim, node=None, manager=mng) with tracer("opt", **args) as tr: tr.set_results(success=False, **args) nodes = [] typesubs = [] for node in mng.all_nodes: try: newtype = _jelim_retype(node.abstract) except TypeError: return {"changes": False} if node.is_apply(P.J) or node.is_apply(P.Jinv): if not _jelim_nofunc(node.abstract): return {"changes": False} _, x = node.inputs nodes.append((node, x)) if newtype is not node.abstract: typesubs.append((node, newtype)) with mng.transact() as tr: for node, repl in nodes: tr.replace(node, repl) for node, newtype in typesubs: node.abstract = newtype if len(nodes) > 0: tracer().emit_success(**args, new_node=None) return {"changes": len(nodes) > 0}
Python
def map_tuples(self, g, params, tups): """Map each element of each tuple to a getitem on the parameter.""" rval = [] for tup, param in zip(tups, params): if not isinstance(tup, AbstractTuple): raise MyiaTypeError(f"Expected AbstractTuple, not {tup}") rval.append( [ g.apply(P.tuple_getitem, param, i) for i, elem in enumerate(tup.elements) ] ) return rval
def map_tuples(self, g, params, tups): """Map each element of each tuple to a getitem on the parameter.""" rval = [] for tup, param in zip(tups, params): if not isinstance(tup, AbstractTuple): raise MyiaTypeError(f"Expected AbstractTuple, not {tup}") rval.append( [ g.apply(P.tuple_getitem, param, i) for i, elem in enumerate(tup.elements) ] ) return rval
Python
def tuple_getslice(self, g, args): """Metagraph for getting a slice from a tuple.""" tuparg, start, stop, step = check_nargs("tail", 4, args) try: start = build_value(start) stop = build_value(stop) step = build_value(step) except ValueError: raise MyiaTypeError("Slice start, stop and step must be static") (tup,) = self.map_tuples(g, g.parameters[:1], [tuparg]) return g.apply(P.make_tuple, *tup[start:stop:step])
def tuple_getslice(self, g, args): """Metagraph for getting a slice from a tuple.""" tuparg, start, stop, step = check_nargs("tail", 4, args) try: start = build_value(start) stop = build_value(stop) step = build_value(step) except ValueError: raise MyiaTypeError("Slice start, stop and step must be static") (tup,) = self.map_tuples(g, g.parameters[:1], [tuparg]) return g.apply(P.make_tuple, *tup[start:stop:step])
Python
async def infer_scatter_add( self, engine, input: lib.AbstractArray, dim: xtype.UInt[64], index: lib.AbstractArray, src: lib.AbstractArray, ): """Infer the return type of primitive `scatter_add`.""" return input
async def infer_scatter_add( self, engine, input: lib.AbstractArray, dim: xtype.UInt[64], index: lib.AbstractArray, src: lib.AbstractArray, ): """Infer the return type of primitive `scatter_add`.""" return input
Python
def process_string(self, sequence, remove_repetitions=False): """ Given a string, removes blanks and replace space character with space. Option to remove repetitions (e.g. 'abbca' -> 'abca'). Arguments: sequence (array of int): 1-d array of integers remove_repetitions (boolean, optional): If true, repeating characters are removed. Defaults to False. """ string = '' for i, char in enumerate(sequence): if(char != self.int_to_char[self.blank_index]): # if this char is a repetition and remove_repetitions=true, # skip. if(remove_repetitions and i != 0 and char == sequence[i - 1]): pass elif(char == self.alphabet[self.space_index]): string = string + ' ' else: string = string + char return string
def process_string(self, sequence, remove_repetitions=False): """ Given a string, removes blanks and replace space character with space. Option to remove repetitions (e.g. 'abbca' -> 'abca'). Arguments: sequence (array of int): 1-d array of integers remove_repetitions (boolean, optional): If true, repeating characters are removed. Defaults to False. """ string = '' for i, char in enumerate(sequence): if(char != self.int_to_char[self.blank_index]): # if this char is a repetition and remove_repetitions=true, # skip. if(remove_repetitions and i != 0 and char == sequence[i - 1]): pass elif(char == self.alphabet[self.space_index]): string = string + ' ' else: string = string + char return string
Python
def log_sum(self, list_of_probs): """ Computes the sum of log-probabilities. Arguments: list_of_probs (iterable): list of log-probabilities """ return np.log(np.sum([np.exp(p) for p in list_of_probs]))
def log_sum(self, list_of_probs): """ Computes the sum of log-probabilities. Arguments: list_of_probs (iterable): list of log-probabilities """ return np.log(np.sum([np.exp(p) for p in list_of_probs]))
Python
def wer(self, s1, s2): """ Computes the Word Error Rate, defined as the edit distance between the two provided sentences after tokenizing to words. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ # build mapping of words to integers b = set(s1.split() + s2.split()) word2char = dict(zip(b, range(len(b)))) # map the words to a char array (Levenshtein packages only accepts # strings) w1 = [chr(word2char[w]) for w in s1.split()] w2 = [chr(word2char[w]) for w in s2.split()] return Lev.distance(''.join(w1), ''.join(w2))
def wer(self, s1, s2): """ Computes the Word Error Rate, defined as the edit distance between the two provided sentences after tokenizing to words. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ # build mapping of words to integers b = set(s1.split() + s2.split()) word2char = dict(zip(b, range(len(b)))) # map the words to a char array (Levenshtein packages only accepts # strings) w1 = [chr(word2char[w]) for w in s1.split()] w2 = [chr(word2char[w]) for w in s2.split()] return Lev.distance(''.join(w1), ''.join(w2))
Python
def cer(self, s1, s2): """ Computes the Character Error Rate, defined as the edit distance. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ return Lev.distance(s1, s2)
def cer(self, s1, s2): """ Computes the Character Error Rate, defined as the edit distance. Arguments: s1 (string): space-separated sentence s2 (string): space-separated sentence """ return Lev.distance(s1, s2)
Python
def decode(self, probs): """ Given a matrix of character probabilities, returns the decoder's best guess of the transcription Arguments: probs (ndarray): Matrix of character probabilities, where probs[c,t] is the probability of character c at time t Returns: string: sequence of the model's best guess for the transcription """ raise NotImplementedError
def decode(self, probs): """ Given a matrix of character probabilities, returns the decoder's best guess of the transcription Arguments: probs (ndarray): Matrix of character probabilities, where probs[c,t] is the probability of character c at time t Returns: string: sequence of the model's best guess for the transcription """ raise NotImplementedError
Python
def decode(self, probs): """ Returns the argmax decoding given the probability matrix. Removes repeated elements in the sequence, as well as blanks. """ string = self.convert_to_string(np.argmax(probs, axis=0)) return self.process_string(string, remove_repetitions=True)
def decode(self, probs): """ Returns the argmax decoding given the probability matrix. Removes repeated elements in the sequence, as well as blanks. """ string = self.convert_to_string(np.argmax(probs, axis=0)) return self.process_string(string, remove_repetitions=True)
Python
def write_manifest(output_file, *filenames): """ Writes out a manifest file from a series of lists of filenames """ with open(output_file, "w") as fid: fid.write("@{}\n".format("\t".join(["FILE"] * len(filenames)))) for line in zip(*filenames): fid.write("\t".join(line) + "\n") return True
def write_manifest(output_file, *filenames): """ Writes out a manifest file from a series of lists of filenames """ with open(output_file, "w") as fid: fid.write("@{}\n".format("\t".join(["FILE"] * len(filenames)))) for line in zip(*filenames): fid.write("\t".join(line) + "\n") return True
Python
def main(input_directory, transcript_directory, manifest_file): """ Finds all .flac files recursively in input_directory, then extracts the transcript from the nearby .trans.txt file and stores it in transcript_directory. Writes a manifest file referring to each .flac file and its paired transcript. Arguments: input_directory (string): Path to librispeech directory transcript_directory (string): Path to directory in which to write individual transcript files. manifest_file (string): Path to manifest file to output. """ def librispeech_flac_filename(filestr): parts = filestr.split("-") return os.path.join(input_directory, parts[0], parts[1], "{}.flac".format(filestr)) if not os.path.isdir(input_directory): raise IOError("Data directory does not exist! {}".format(input_directory)) if not os.path.exists(transcript_directory): os.makedirs(transcript_directory) transcript_files = glob.glob(os.path.join(input_directory, '*/*/*.txt')) if len(transcript_files) == 0: logger.error("No .txt files were found in {}".format(input_directory)) return logger.info("Beginning audio conversions") audio_files = list() txt_files = list() for ii, tfile in enumerate(transcript_files): # transcript file specifies transcript and flac filename for all librispeech files logger.info("Converting audio corresponding to transcript " "{} of {}".format(ii, len(transcript_files))) with open(tfile, "r") as fid: lines = fid.readlines() for line in lines: filestr, transcript = line.split(" ", 1) try: flac_file = librispeech_flac_filename(filestr) except IndexError: # filestr is not the format we are expecting print("filestr of unexpected formatting: {}".format(filestr)) print("error in {}".format(tfile)) continue txt_file = os.path.join(transcript_directory, "{}.txt".format(filestr)) # Write out short transcript file with open(txt_file, "w") as fid: fid.write(transcript.strip()) # Add to output lists to be written to manifest audio_files.append(flac_file) txt_files.append(txt_file) logger.info("Writing manifest file to {}".format(manifest_file)) return write_manifest(manifest_file, audio_files, txt_files)
def main(input_directory, transcript_directory, manifest_file): """ Finds all .flac files recursively in input_directory, then extracts the transcript from the nearby .trans.txt file and stores it in transcript_directory. Writes a manifest file referring to each .flac file and its paired transcript. Arguments: input_directory (string): Path to librispeech directory transcript_directory (string): Path to directory in which to write individual transcript files. manifest_file (string): Path to manifest file to output. """ def librispeech_flac_filename(filestr): parts = filestr.split("-") return os.path.join(input_directory, parts[0], parts[1], "{}.flac".format(filestr)) if not os.path.isdir(input_directory): raise IOError("Data directory does not exist! {}".format(input_directory)) if not os.path.exists(transcript_directory): os.makedirs(transcript_directory) transcript_files = glob.glob(os.path.join(input_directory, '*/*/*.txt')) if len(transcript_files) == 0: logger.error("No .txt files were found in {}".format(input_directory)) return logger.info("Beginning audio conversions") audio_files = list() txt_files = list() for ii, tfile in enumerate(transcript_files): # transcript file specifies transcript and flac filename for all librispeech files logger.info("Converting audio corresponding to transcript " "{} of {}".format(ii, len(transcript_files))) with open(tfile, "r") as fid: lines = fid.readlines() for line in lines: filestr, transcript = line.split(" ", 1) try: flac_file = librispeech_flac_filename(filestr) except IndexError: # filestr is not the format we are expecting print("filestr of unexpected formatting: {}".format(filestr)) print("error in {}".format(tfile)) continue txt_file = os.path.join(transcript_directory, "{}.txt".format(filestr)) # Write out short transcript file with open(txt_file, "w") as fid: fid.write(transcript.strip()) # Add to output lists to be written to manifest audio_files.append(flac_file) txt_files.append(txt_file) logger.info("Writing manifest file to {}".format(manifest_file)) return write_manifest(manifest_file, audio_files, txt_files)
Python
def wrap_dataloader(dl): """ Data is loaded from Aeon as a 4-tuple. We need to cast the audio (index 0) from int8 to float32 and repack the data into (audio, 3-tuple). """ dl = TypeCast(dl, index=0, dtype=np.float32) dl = Retuple(dl, data=(0,), target=(2, 3, 1)) return dl
def wrap_dataloader(dl): """ Data is loaded from Aeon as a 4-tuple. We need to cast the audio (index 0) from int8 to float32 and repack the data into (audio, 3-tuple). """ dl = TypeCast(dl, index=0, dtype=np.float32) dl = Retuple(dl, data=(0,), target=(2, 3, 1)) return dl
Python
def cpu_ctc_np(acts, act_lens, labels, label_lens): """ acts: 3-d numpy float array, same as c++ bindings act_lens: 1-d int array of input length of each example labels: list of 1-d int array for each example in minibatch label_lens: 1-d int array of label length of each example """ # make sure correct types acts = np.array(acts, dtype=np.float32) act_lens = np.array(act_lens, dtype=np.int32) labels = np.array(labels, dtype=np.int32) label_lens = np.array(label_lens, dtype=np.int32) # C needs sizes alphabet_size = acts.shape[2] minibatch = acts.shape[1] # create return variables grads = np.zeros_like(acts, dtype=np.float32) cost = np.zeros((minibatch,), dtype=np.float32) # compute libwarpctc.cpu_ctc(acts, grads, labels, label_lens, act_lens, alphabet_size, minibatch, cost, 1) return cost, grads
def cpu_ctc_np(acts, act_lens, labels, label_lens): """ acts: 3-d numpy float array, same as c++ bindings act_lens: 1-d int array of input length of each example labels: list of 1-d int array for each example in minibatch label_lens: 1-d int array of label length of each example """ # make sure correct types acts = np.array(acts, dtype=np.float32) act_lens = np.array(act_lens, dtype=np.int32) labels = np.array(labels, dtype=np.int32) label_lens = np.array(label_lens, dtype=np.int32) # C needs sizes alphabet_size = acts.shape[2] minibatch = acts.shape[1] # create return variables grads = np.zeros_like(acts, dtype=np.float32) cost = np.zeros((minibatch,), dtype=np.float32) # compute libwarpctc.cpu_ctc(acts, grads, labels, label_lens, act_lens, alphabet_size, minibatch, cost, 1) return cost, grads
Python
def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 8 (self.num,) = _get_struct_q().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.first_name = str[start:end].decode('utf-8') else: self.first_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.last_name = str[start:end].decode('utf-8') else: self.last_name = str[start:end] _x = self start = end end += 5 (_x.age, _x.score,) = _get_struct_BI().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 8 (self.num,) = _get_struct_q().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.first_name = str[start:end].decode('utf-8') else: self.first_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.last_name = str[start:end].decode('utf-8') else: self.last_name = str[start:end] _x = self start = end end += 5 (_x.age, _x.score,) = _get_struct_BI().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
Python
def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_q().pack(self.num)) _x = self.first_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.last_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_BI().pack(_x.age, _x.score)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self)))))
def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_q().pack(self.num)) _x = self.first_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self.last_name length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_BI().pack(_x.age, _x.score)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self)))))
Python
def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 8 (self.num,) = _get_struct_q().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.first_name = str[start:end].decode('utf-8') else: self.first_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.last_name = str[start:end].decode('utf-8') else: self.last_name = str[start:end] _x = self start = end end += 5 (_x.age, _x.score,) = _get_struct_BI().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 8 (self.num,) = _get_struct_q().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.first_name = str[start:end].decode('utf-8') else: self.first_name = str[start:end] start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.last_name = str[start:end].decode('utf-8') else: self.last_name = str[start:end] _x = self start = end end += 5 (_x.age, _x.score,) = _get_struct_BI().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e)
Python
def check_for_extrapolations(ane_heights, RSD_heights): """ Check if columns are specified for other anemometer heights, and extract the column names. :param ane_heights: dictionary of height labels and values for anemometers :param RSD_heights: dictionary of height labels and values for RSD :return extrapolation_type: None or str to decide what type of extrapolation to perform Notes on what we need for extrapolation analysis """ unique_ane_hts = set(ane_heights.values()).difference(set(['unknown'])) unique_RSD_hts = set(RSD_heights.values()).difference(set(['unknown'])) overlapping_hts = unique_ane_hts.intersection(unique_RSD_hts) extrapolation_type = None if len(unique_ane_hts) == 2 and (max(unique_RSD_hts) > max(unique_ane_hts)): print ('simple') extrapolation_type = 'simple' elif len(unique_ane_hts) > 2: # We still need at least two ane heights that are lower than one RSD height tmp = [sum([ht > a for a in unique_ane_hts]) >= 2 for ht in unique_RSD_hts] if any(tmp): extrapolation_type = 'simple' # Otherwise we can have two ane heights that are lower than one overlapping height tmp = [sum([ht > a for a in unique_ane_hts]) >= 2 for ht in overlapping_hts] if any(tmp): extrapolation_type = 'truth' return extrapolation_type
def check_for_extrapolations(ane_heights, RSD_heights): """ Check if columns are specified for other anemometer heights, and extract the column names. :param ane_heights: dictionary of height labels and values for anemometers :param RSD_heights: dictionary of height labels and values for RSD :return extrapolation_type: None or str to decide what type of extrapolation to perform Notes on what we need for extrapolation analysis """ unique_ane_hts = set(ane_heights.values()).difference(set(['unknown'])) unique_RSD_hts = set(RSD_heights.values()).difference(set(['unknown'])) overlapping_hts = unique_ane_hts.intersection(unique_RSD_hts) extrapolation_type = None if len(unique_ane_hts) == 2 and (max(unique_RSD_hts) > max(unique_ane_hts)): print ('simple') extrapolation_type = 'simple' elif len(unique_ane_hts) > 2: # We still need at least two ane heights that are lower than one RSD height tmp = [sum([ht > a for a in unique_ane_hts]) >= 2 for ht in unique_RSD_hts] if any(tmp): extrapolation_type = 'simple' # Otherwise we can have two ane heights that are lower than one overlapping height tmp = [sum([ht > a for a in unique_ane_hts]) >= 2 for ht in overlapping_hts] if any(tmp): extrapolation_type = 'truth' return extrapolation_type
Python
def perform_TI_extrapolation(inputdata, extrap_metadata, extrapolation_type, height): """ Perform the TI extrapolation on anemometer data. :param inputdata: input data (dataframe) :param extrap_metadata: DataFrame with metadata required for TI extrapolation :param extrapolation_type: str to decide what type of extrapolation to perform :param height: Primary comparison height (m) :return inputdata: input data (dataframe) with additional columns v2 = v1(z2/z1)^alpha """ # Calculate shear exponent shearTimeseries = get_shear_exponent(inputdata, extrap_metadata, height) # TI columns and heights row = extrap_metadata.loc[extrap_metadata['type'] == 'extrap', :].squeeze() col_extrap_ane, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='Ane', var='TI') col_extrap_RSD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='RSD', var='TI') col_extrap_RSD_SD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='RSD', var='SD') col_extrap_ane_SD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='Ane', var='SD') # Select reference height just below extrapolation height hts = extrap_metadata.loc[extrap_metadata['height'] < ht_extrap, :] ref = hts.loc[hts['height'] == max(hts['height']), :].squeeze() col_ref, ht_ref = get_extrap_col_and_ht(ref['height'], ref['num'], height, 'Ane') col_ref_sd, ht_ref = get_extrap_col_and_ht(ref['height'], ref['num'], height, 'Ane', var='SD') # Extrapolate wind speed and st. dev. and calculate extrapolated TI WS_ane_extrap = power_law(inputdata[col_ref], ht_extrap, ht_ref, shearTimeseries) SD_ane_extrap = power_law(inputdata[col_ref_sd], ht_extrap, ht_ref, -shearTimeseries) TI_ane_extrap = SD_ane_extrap / WS_ane_extrap # Extract available TI values TI_RSD = inputdata[col_extrap_RSD].values SD_RSD = inputdata[col_extrap_RSD_SD].values if extrapolation_type == 'truth': TI_ane_truth = inputdata[col_extrap_ane].values # Insert new columns into DataFrame inputdata['TI_RSD'] = TI_RSD inputdata['TI_ane_extrap'] = TI_ane_extrap if extrapolation_type == 'truth': inputdata['TI_ane_truth'] = TI_ane_truth results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) results = post_correction_stats(inputdata,results, 'TI_RSD','TI_ane_extrap') restults = post_correction_stats(inputdata,results, 'TI_ane_truth', 'TI_RSD') if extrapolation_type == 'truth': results = post_correction_stats(inputdata,results, 'TI_ane_truth','TI_ane_extrap') return inputdata, results, shearTimeseries
def perform_TI_extrapolation(inputdata, extrap_metadata, extrapolation_type, height): """ Perform the TI extrapolation on anemometer data. :param inputdata: input data (dataframe) :param extrap_metadata: DataFrame with metadata required for TI extrapolation :param extrapolation_type: str to decide what type of extrapolation to perform :param height: Primary comparison height (m) :return inputdata: input data (dataframe) with additional columns v2 = v1(z2/z1)^alpha """ # Calculate shear exponent shearTimeseries = get_shear_exponent(inputdata, extrap_metadata, height) # TI columns and heights row = extrap_metadata.loc[extrap_metadata['type'] == 'extrap', :].squeeze() col_extrap_ane, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='Ane', var='TI') col_extrap_RSD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='RSD', var='TI') col_extrap_RSD_SD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='RSD', var='SD') col_extrap_ane_SD, ht_extrap = get_extrap_col_and_ht(row['height'], row['num'], height, sensor='Ane', var='SD') # Select reference height just below extrapolation height hts = extrap_metadata.loc[extrap_metadata['height'] < ht_extrap, :] ref = hts.loc[hts['height'] == max(hts['height']), :].squeeze() col_ref, ht_ref = get_extrap_col_and_ht(ref['height'], ref['num'], height, 'Ane') col_ref_sd, ht_ref = get_extrap_col_and_ht(ref['height'], ref['num'], height, 'Ane', var='SD') # Extrapolate wind speed and st. dev. and calculate extrapolated TI WS_ane_extrap = power_law(inputdata[col_ref], ht_extrap, ht_ref, shearTimeseries) SD_ane_extrap = power_law(inputdata[col_ref_sd], ht_extrap, ht_ref, -shearTimeseries) TI_ane_extrap = SD_ane_extrap / WS_ane_extrap # Extract available TI values TI_RSD = inputdata[col_extrap_RSD].values SD_RSD = inputdata[col_extrap_RSD_SD].values if extrapolation_type == 'truth': TI_ane_truth = inputdata[col_extrap_ane].values # Insert new columns into DataFrame inputdata['TI_RSD'] = TI_RSD inputdata['TI_ane_extrap'] = TI_ane_extrap if extrapolation_type == 'truth': inputdata['TI_ane_truth'] = TI_ane_truth results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) results = post_correction_stats(inputdata,results, 'TI_RSD','TI_ane_extrap') restults = post_correction_stats(inputdata,results, 'TI_ane_truth', 'TI_RSD') if extrapolation_type == 'truth': results = post_correction_stats(inputdata,results, 'TI_ane_truth','TI_ane_extrap') return inputdata, results, shearTimeseries
Python
def power_law(uref, h, href, shear): """ Extrapolate wind speed (or other) according to power law. NOTE: see https://en.wikipedia.org/wiki/Wind_profile_power_law :param uref: wind speed at reference height (same units as extrapolated wind speed, u) :param h: height of extrapolated wind speed (same units as href) :param href: reference height (same units as h) :param shear: shear exponent alpha (1/7 in neutral stability) (unitless) :return u: extrapolated wind speed (same units as uref) """ u = np.array(uref) * np.array(h / href) ** np.array(shear) return u
def power_law(uref, h, href, shear): """ Extrapolate wind speed (or other) according to power law. NOTE: see https://en.wikipedia.org/wiki/Wind_profile_power_law :param uref: wind speed at reference height (same units as extrapolated wind speed, u) :param h: height of extrapolated wind speed (same units as href) :param href: reference height (same units as h) :param shear: shear exponent alpha (1/7 in neutral stability) (unitless) :return u: extrapolated wind speed (same units as uref) """ u = np.array(uref) * np.array(h / href) ** np.array(shear) return u
Python
def perform_G_C_correction(inputdata): ''' Note: comprehensive empirical correction from a dozen locations. Focuses on std. deviation ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN inputdata_test = inputdata.copy() inputdata = False else: inputdata_test, results = empirical_stdAdjustment(inputdata,results,'Ref_TI', 'RSD_TI', 'Ref_SD', 'RSD_SD', 'Ref_WS', 'RSD_WS') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht1','RSD_TI_Ht1', 'Ane_SD_Ht1', 'RSD_SD_Ht1','Ane_WS_Ht1', 'RSD_WS_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht2','RSD_TI_Ht2', 'Ane_SD_Ht2', 'RSD_SD_Ht2','Ane_WS_Ht2', 'RSD_WS_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht3','RSD_TI_Ht3', 'Ane_SD_Ht3', 'RSD_SD_Ht3','Ane_WS_Ht3', 'RSD_WS_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht4','RSD_TI_Ht4', 'Ane_SD_Ht4', 'RSD_SD_Ht4','Ane_WS_Ht4', 'RSD_WS_Ht4') results['correction'] = ['G-C'] * len(results) results = results.drop(columns=['sensor','height']) m = np.NaN c = np.NaN return inputdata_test, results, m, c
def perform_G_C_correction(inputdata): ''' Note: comprehensive empirical correction from a dozen locations. Focuses on std. deviation ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN inputdata_test = inputdata.copy() inputdata = False else: inputdata_test, results = empirical_stdAdjustment(inputdata,results,'Ref_TI', 'RSD_TI', 'Ref_SD', 'RSD_SD', 'Ref_WS', 'RSD_WS') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht1','RSD_TI_Ht1', 'Ane_SD_Ht1', 'RSD_SD_Ht1','Ane_WS_Ht1', 'RSD_WS_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht2','RSD_TI_Ht2', 'Ane_SD_Ht2', 'RSD_SD_Ht2','Ane_WS_Ht2', 'RSD_WS_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht3','RSD_TI_Ht3', 'Ane_SD_Ht3', 'RSD_SD_Ht3','Ane_WS_Ht3', 'RSD_WS_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: inputdata_test, results = empirical_stdAdjustment(inputdata_test,results,'Ane_TI_Ht4','RSD_TI_Ht4', 'Ane_SD_Ht4', 'RSD_SD_Ht4','Ane_WS_Ht4', 'RSD_WS_Ht4') results['correction'] = ['G-C'] * len(results) results = results.drop(columns=['sensor','height']) m = np.NaN c = np.NaN return inputdata_test, results, m, c
Python
def perform_G_SFc_correction(inputdata): ''' simple filtered regression results from phase 2 averages used ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) m = 0.7086 c = 0.0225 if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') inputdata = False else: full = pd.DataFrame() full['Ref_TI'] = inputdata['Ref_TI'] full['RSD_TI'] = inputdata['RSD_TI'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') else: RSD_TI = inputdata['RSD_TI'].copy() RSD_TI = (float(m)*RSD_TI) + float(c) inputdata['corrTI_RSD_TI'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht1'] = inputdata['Ane_TI_Ht1'] full['RSD_TI_Ht1'] = inputdata['RSD_TI_Ht1'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') else: RSD_TI = inputdata['RSD_TI_Ht1'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht1'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht2'] = inputdata['Ane_TI_Ht2'] full['RSD_TI_Ht2'] = inputdata['RSD_TI_Ht2'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') else: RSD_TI = inputdata['RSD_TI_Ht2'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht2'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht3'] = inputdata['Ane_TI_Ht3'] full['RSD_TI_Ht3'] = inputdata['RSD_TI_Ht3'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') else: RSD_TI = inputdata['RSD_TI_Ht3'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht3'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht4'] = inputdata['Ane_TI_Ht4'] full['RSD_TI_Ht4'] = inputdata['RSD_TI_Ht4'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') else: RSD_TI = inputdata['RSD_TI_Ht4'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht4'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') results['correction'] = ['G-SFa'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata, results, m, c
def perform_G_SFc_correction(inputdata): ''' simple filtered regression results from phase 2 averages used ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) m = 0.7086 c = 0.0225 if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') inputdata = False else: full = pd.DataFrame() full['Ref_TI'] = inputdata['Ref_TI'] full['RSD_TI'] = inputdata['RSD_TI'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') else: RSD_TI = inputdata['RSD_TI'].copy() RSD_TI = (float(m)*RSD_TI) + float(c) inputdata['corrTI_RSD_TI'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht1'] = inputdata['Ane_TI_Ht1'] full['RSD_TI_Ht1'] = inputdata['RSD_TI_Ht1'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') else: RSD_TI = inputdata['RSD_TI_Ht1'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht1'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht2'] = inputdata['Ane_TI_Ht2'] full['RSD_TI_Ht2'] = inputdata['RSD_TI_Ht2'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') else: RSD_TI = inputdata['RSD_TI_Ht2'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht2'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht3'] = inputdata['Ane_TI_Ht3'] full['RSD_TI_Ht3'] = inputdata['RSD_TI_Ht3'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') else: RSD_TI = inputdata['RSD_TI_Ht3'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht3'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: full = pd.DataFrame() full['Ane_TI_Ht4'] = inputdata['Ane_TI_Ht4'] full['RSD_TI_Ht4'] = inputdata['RSD_TI_Ht4'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') else: RSD_TI = inputdata['RSD_TI_Ht4'].copy() RSD_TI = (m*RSD_TI) + c inputdata['corrTI_RSD_TI_Ht4'] = RSD_TI results = post_correction_stats(inputdata,results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') results['correction'] = ['G-SFa'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata, results, m, c
Python
def perform_SS_SS_correction(inputdata,All_class_data,primary_idx): ''' simple site specific correction, but adjust each TKE class differently ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) className = 1 items_corrected = [] for item in All_class_data: temp = item[primary_idx] if temp.empty: pass else: inputdata_test = temp[temp['split'] == True].copy() inputdata_train = temp[temp['split'] == False].copy() if inputdata_test.empty or len(inputdata_test) < 2 or inputdata_train.empty or len(inputdata_train) < 2: pass items_corrected.append(inputdata_test) else: # get te correction for this TKE class full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ref_TI'] full['RSD_TI'] = inputdata_test['RSD_TI'] full = full.dropna() if len(full) < 2: pass else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) m = model[0] c = model[1] RSD_TI = inputdata_test['RSD_TI'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI'] = RSD_TI items_corrected.append(inputdata_test) del temp className += 1 correctedData = items_corrected[0] for item in items_corrected[1:]: correctedData = pd.concat([correctedData, item]) results = post_correction_stats(inputdata_test,results, 'Ref_TI','corrTI_RSD_TI') results['correction'] = ['SS-SS'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata_test, results, m, c
def perform_SS_SS_correction(inputdata,All_class_data,primary_idx): ''' simple site specific correction, but adjust each TKE class differently ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) className = 1 items_corrected = [] for item in All_class_data: temp = item[primary_idx] if temp.empty: pass else: inputdata_test = temp[temp['split'] == True].copy() inputdata_train = temp[temp['split'] == False].copy() if inputdata_test.empty or len(inputdata_test) < 2 or inputdata_train.empty or len(inputdata_train) < 2: pass items_corrected.append(inputdata_test) else: # get te correction for this TKE class full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ref_TI'] full['RSD_TI'] = inputdata_test['RSD_TI'] full = full.dropna() if len(full) < 2: pass else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) m = model[0] c = model[1] RSD_TI = inputdata_test['RSD_TI'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI'] = RSD_TI items_corrected.append(inputdata_test) del temp className += 1 correctedData = items_corrected[0] for item in items_corrected[1:]: correctedData = pd.concat([correctedData, item]) results = post_correction_stats(inputdata_test,results, 'Ref_TI','corrTI_RSD_TI') results['correction'] = ['SS-SS'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata_test, results, m, c
Python
def perform_SS_S_correction(inputdata): ''' Note: Representative TI computed with original RSD_SD ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) inputdata_train = inputdata[inputdata['split'] == True].copy() inputdata_test = inputdata[inputdata['split'] == False].copy() if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN inputdata = False else: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ref_TI'] full['RSD_TI'] = inputdata_test['RSD_TI'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) m = model[0] c = model[1] RSD_TI = inputdata_test['RSD_TI'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht1'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht1'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) RSD_TI = inputdata_test['RSD_TI_Ht1'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht1'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht2'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht2'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht2'],inputdata_train['Ane_TI_Ht2']) RSD_TI = inputdata_test['RSD_TI_Ht2'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht2'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht3'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht3'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht3'], inputdata_train['Ane_TI_Ht3']) RSD_TI = inputdata_test['RSD_TI_Ht3'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht3'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht4'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht4'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht4'], inputdata_train['Ane_TI_Ht4']) RSD_TI = inputdata_test['RSD_TI_Ht4'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht4'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') results['correction'] = ['SS-S'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata_test, results, m, c
def perform_SS_S_correction(inputdata): ''' Note: Representative TI computed with original RSD_SD ''' results = pd.DataFrame(columns=['sensor', 'height', 'correction', 'm', 'c', 'rsquared', 'difference','mse', 'rmse']) inputdata_train = inputdata[inputdata['split'] == True].copy() inputdata_test = inputdata[inputdata['split'] == False].copy() if inputdata.empty or len(inputdata) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN inputdata = False else: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ref_TI'] full['RSD_TI'] = inputdata_test['RSD_TI'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ref_TI','corrTI_RSD_TI') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) m = model[0] c = model[1] RSD_TI = inputdata_test['RSD_TI'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ref_TI','corrTI_RSD_TI') if 'Ane_TI_Ht1' in inputdata.columns and 'RSD_TI_Ht1' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht1'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht1'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI'], inputdata_train['Ref_TI']) RSD_TI = inputdata_test['RSD_TI_Ht1'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht1'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht1','corrTI_RSD_TI_Ht1') if 'Ane_TI_Ht2' in inputdata.columns and 'RSD_TI_Ht2' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht2'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht2'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht2'],inputdata_train['Ane_TI_Ht2']) RSD_TI = inputdata_test['RSD_TI_Ht2'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht2'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht2','corrTI_RSD_TI_Ht2') if 'Ane_TI_Ht3' in inputdata.columns and 'RSD_TI_Ht3' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht3'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht3'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht3'], inputdata_train['Ane_TI_Ht3']) RSD_TI = inputdata_test['RSD_TI_Ht3'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht3'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht3','corrTI_RSD_TI_Ht3') if 'Ane_TI_Ht4' in inputdata.columns and 'RSD_TI_Ht4' in inputdata.columns: full = pd.DataFrame() full['Ref_TI'] = inputdata_test['Ane_TI_Ht4'] full['RSD_TI'] = inputdata_test['RSD_TI_Ht4'] full = full.dropna() if len(full) < 2: results = post_correction_stats([None],results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') m = np.NaN c = np.NaN else: model = get_regression(inputdata_train['RSD_TI_Ht4'], inputdata_train['Ane_TI_Ht4']) RSD_TI = inputdata_test['RSD_TI_Ht4'].copy() RSD_TI = (model[0]*RSD_TI) + model[1] inputdata_test['corrTI_RSD_TI_Ht4'] = RSD_TI results = post_correction_stats(inputdata_test,results, 'Ane_TI_Ht4','corrTI_RSD_TI_Ht4') results['correction'] = ['SS-S'] * len(results) results = results.drop(columns=['sensor','height']) return inputdata_test, results, m, c
Python
def _log_ascend(data): """ Compute natural logarithm of x element-wise. Args: data (tvm.tensor.Tensor): Tensor of type float16, float32, int8, uint8, int32. Returns: tvm.tensor.Tensor of same type and shape as data """ in_data = data dtype = in_data.dtype utils.ops_dtype_check(dtype, utils.DtypeForDavinci.ALL_FLOAT) if dtype == "float32" and product_is_mini(): in_data = akg.tvm.compute(in_data.shape, lambda *indice: in_data(*indice).astype("float16"), name='type_cast') output = akg.tvm.compute(in_data.shape, lambda *index: akg.tvm.log(in_data(*index)), name='log') if dtype == "float32" and product_is_mini(): output = akg.tvm.compute(in_data.shape, lambda *indice: output(*indice).astype("float32"), name='res') return output
def _log_ascend(data): """ Compute natural logarithm of x element-wise. Args: data (tvm.tensor.Tensor): Tensor of type float16, float32, int8, uint8, int32. Returns: tvm.tensor.Tensor of same type and shape as data """ in_data = data dtype = in_data.dtype utils.ops_dtype_check(dtype, utils.DtypeForDavinci.ALL_FLOAT) if dtype == "float32" and product_is_mini(): in_data = akg.tvm.compute(in_data.shape, lambda *indice: in_data(*indice).astype("float16"), name='type_cast') output = akg.tvm.compute(in_data.shape, lambda *index: akg.tvm.log(in_data(*index)), name='log') if dtype == "float32" and product_is_mini(): output = akg.tvm.compute(in_data.shape, lambda *indice: output(*indice).astype("float32"), name='res') return output