seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
conv = tf.nn.conv2d(bottom, kernel, [1, stride, stride, 1], padding='SAME')
biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0))
conv_layer = tf.nn.bias_add(conv, biases)
if bn:
conv_layer = self.batch_norm_layer('batch_norm_layer',conv_layer,training)
if relu:
conv_layer = tf.nn.relu(conv_layer, name=scope.name)
print('Conv layer {0} -> {1}'.format(bottom.get_shape().as_list(),conv_layer.get_shape().as_list()))
return conv_layer
def batch_norm_layer(self, name, input_tensor,training):
with tf.variable_scope(name) as scope:
| tensorflow.nn.relu | 13,900 |
import tensorflow as tf
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def softmax_loss(self,predicts,labels):
predicts=tf.nn.softmax(predicts)
labels=tf.one_hot(labels,classnum)
loss=-tf.reduce_sum(labels*tf.log(predicts))
return loss
def optimer(self,loss,lr=0.001):
train_step=tf.train.GradientDescentOptimizer(lr).minimize(loss)
return train_step
path=r'C:\JC\test\train_model.ckpt'
image,label=getinputs(r'C:\JC\tfrecord\64_shuffle/train.tfrecords')
test_image,test_label=getinputs(r'C:\JC\tfrecord\64_shuffle/test.tfrecords')
valid_image,valid_label= getinputs(r'C:\JC\tfrecord\64_shuffle\validation.tfrecords')
batch_image,batch_label=get_batch(image,label,trainnum,0)
work=trainwork()
inf=work.inference(batch_image)
loss=work.softmax_loss(inf,batch_label)
opti=work.optimer(loss,learnrate)
test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum)
| tensorflow.train.GradientDescentOptimizer | 13,901 |
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten
# final convolutional layer
#removed GOAL_SIZE
conv4 = Conv2D(padding="valid", filters=RNN_SIZE-loc_layer_size, kernel_size=[2, 2], strides=1, data_format='channels_last', kernel_initializer=w_init,activation=None)(pool3)
# FC layers
| tensorflow.keras.layers.Conv2D | 13,902 |
import tensorflow as tf
label_id = label_map[example.label]
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
is_real_example=True)
return feature
| tensorflow.logging.info | 13,903 |
from tensorflow.python.framework import ops as _ops
return result
_ops.RegisterShape("ResourceCreateOp")(None)
_resource_initialized_op_outputs = ["initialized"]
| tensorflow.python.framework.ops.RegisterShape | 13,904 |
import tensorflow as tf
num_topk = config.class_num_joints[(params['model_scope'] if 'all' not in params['model_scope'] else '*')] // 2
gather_col = tf.nn.top_k(temp_loss, k=num_topk, sorted=True)[1]
gather_row = tf.reshape(tf.tile(tf.reshape(tf.range(cur_batch_size), [-1, 1]), [1, num_topk]), [-1, 1])
| tensorflow.nn.top_k | 13,905 |
import tensorflow as tf
if bias:
biases = variable_on_cpu("biases", [dim_out], tf.constant_initializer(0.))
| tensorflow.constant_initializer | 13,906 |
import tensorflow as tf
return forward_fn(inputs, is_train=True, data_format=self.data_format)
def forward_eval(self, inputs):
"""Forward computation at evaluation."""
return forward_fn(inputs, is_train=False, data_format=self.data_format)
def calc_loss(self, labels, outputs, trainable_vars):
"""Calculate loss (and some extra evaluation metrics)."""
loss = tf.losses.softmax_cross_entropy(labels, outputs)
loss_filter = lambda var: 'batch_normalization' not in var.name
loss += FLAGS.loss_w_dcy \
* tf.add_n([tf.nn.l2_loss(var) for var in trainable_vars if loss_filter(var)])
accuracy = tf.reduce_mean(
tf.cast(tf.equal(tf.argmax(labels, axis=1), tf.argmax(outputs, axis=1)), tf.float32))
metrics = {'accuracy': accuracy}
return loss, metrics
def setup_lrn_rate(self, global_step):
"""Setup the learning rate (and number of training iterations)."""
nb_epochs = 250
idxs_epoch = [100, 150, 200]
decay_rates = [1.0, 0.1, 0.01, 0.001]
| tensorflow.nn.l2_loss | 13,907 |
import tensorflow as tf
elif norm == 'B':
X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name)
| tensorflow.layers.batch_normalization | 13,908 |
from tensorflow.contrib import layers as contrib_layers
"epsilon": batch_norm_epsilon,
"updates_collections": batch_norm_updates_collections,
}
if is_training is not None:
batch_norm_params["is_training"] = is_training
# Set weight_decay for weights in Conv and DepthSepConv layers.
weights_init = tf.keras.initializers.glorot_normal()
regularizer = contrib_layers.l2_regularizer(weight_decay)
if regularize_depthwise:
depthwise_regularizer = regularizer
else:
depthwise_regularizer = None
with slim.arg_scope(
[slim.conv2d, slim.separable_conv2d],
weights_initializer=weights_init,
| tensorflow.contrib.layers.l2_regularizer | 13,909 |
from tensorflow.python.ops import rnn_cell
seq_length = config["seq_length"]
with ops.Graph().as_default(), ops.device("/device:GPU:0"):
inputs = seq_length * [
array_ops.zeros([batch_size, num_units], dtypes.float32)
]
initializer = init_ops.random_uniform_initializer(-0.01, 0.01, seed=127)
cell = rnn_cell.LSTMCell(
num_units=num_units, initializer=initializer, state_is_tuple=True)
multi_cell = rnn_cell.MultiRNNCell(
[cell() for _ in range(num_layers)])
outputs, final_state = core_rnn.static_rnn(
multi_cell, inputs, dtype=dtypes.float32)
trainable_variables = ops.get_collection(
ops.GraphKeys.TRAINABLE_VARIABLES)
| tensorflow.python.ops.rnn_cell.LSTMCell | 13,910 |
import tensorflow as tf
stride=1,
reuse=reuse):
with slim.arg_scope([batch_norm], **batch_norm_params):
with tf.variable_scope(DECODER_SCOPE, DECODER_SCOPE, [features]):
decoder_features = features
decoder_stage = 0
| tensorflow.variable_scope | 13,911 |
import tensorflow as tf
"""Select a subset of features from the example dict."""
feature_list = feature_list or ['inputs', 'targets']
return {f: example[f] for f in feature_list if f in example}
def _eager_dataset_iterator(dataset):
for item in dataset:
flat = tf.nest.flatten(item)
flat = [el.numpy() for el in flat]
yield tf.nest.pack_sequence_as(item, flat)
def _train_and_eval_dataset_v1(problem_name, data_dir, train_shuffle_files,
eval_shuffle_files):
| tensorflow.nest.flatten | 13,912 |
import tensorflow as tf
vp = get_variable('vp', [state_size, 1])
pos = tf.nn.sigmoid(tf.matmul(tf.nn.tanh(tf.matmul(state, wp)), vp))
pos = tf.floor(encoder_input_length * pos)
pos = tf.reshape(pos, [-1, 1])
pos = tf.minimum(pos, encoder_input_length - 1)
idx = tf.tile(tf.to_float(tf.range(attn_length)), tf.stack([batch_size]))
idx = tf.reshape(idx, [-1, attn_length])
low = pos - encoder.attn_window_size
high = pos + encoder.attn_window_size
mlow = tf.to_float(idx < low)
| tensorflow.stack | 13,913 |
import tensorflow as tf
dtype=DTYPE)
b = tf.get_variable(
"b_cnn_%s" % i, [num], dtype=DTYPE,
initializer=tf.constant_initializer(0.0))
conv = tf.nn.conv2d(
inp, w,
strides=[1, 1, 1, 1],
padding="VALID") + b
# now max pool
conv = tf.nn.max_pool(
conv, [1, 1, max_chars-width+1, 1],
[1, 1, 1, 1], 'VALID')
# activation
conv = activation(conv)
conv = tf.squeeze(conv, squeeze_dims=[2])
convolutions.append(conv)
| tensorflow.nn.max_pool | 13,914 |
import tensorflow as tf
# Episodes index
self.episode_count = tf.get_variable(
name='episode-count',
dtype=util.tf_dtype('int'),
initializer=0,
trainable=False
)
def tf_store(self, states, internals, actions, terminal, reward):
# Memory indices to overwrite.
num_instances = tf.shape(input=terminal)[0]
with tf.control_dependencies([tf.assert_less_equal(num_instances, self.capacity)]):
indices = tf.range(self.memory_index, self.memory_index + num_instances) % self.capacity
# Remove episode indices.
num_episodes = tf.count_nonzero(
input_tensor=tf.gather(params=self.terminal_memory, indices=indices),
axis=0,
dtype=util.tf_dtype('int')
)
num_episodes = tf.minimum(x=num_episodes, y=self.episode_count)
| tensorflow.shape | 13,915 |
import tensorflow as tf
use_bias=False, name='hyper_b_final')
# First layer
w1 = tf.abs(tf.matmul(state, hyper_w_1))
b1 = tf.matmul(state, hyper_b_1)
w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices
b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer])
# [batch, 1, n_h_mixer]
hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped)
# Second layer
w_final = tf.abs(tf.matmul(state, hyper_w_final))
w_final_reshaped = tf.reshape(w_final, [-1, n_h_mixer, 1]) # reshape into batch of matrices
b_final_reshaped = tf.reshape(hyper_b_final, [-1, 1, 1])
# [batch, 1, 1]
y = tf.matmul(hidden, w_final_reshaped) + b_final_reshaped
q_tot = tf.reshape(y, [-1, 1])
return q_tot
class QMix():
| tensorflow.reshape | 13,916 |
import tensorflow as tf
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
"is_real_example": tf.FixedLenFeature([1], tf.int64),
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
| tensorflow.parse_single_example | 13,917 |
import tensorflow as tf
tf.train.start_queue_runners()
self.run_op_benchmark(
name='batching_many_small',
sess=session,
op_or_tensor=op_to_benchmark,
burn_iters=10,
min_iters=50)
def benchmark_batching_large(self):
with tf.Session() as session:
@dynamic_batching.batch_fn
def f(a, b):
return a + b
outputs = []
for _ in xrange(1000):
outputs.append(f(tf.ones([1, 100000]), tf.ones([1, 100000])))
op_to_benchmark = tf.group(*outputs)
| tensorflow.Session | 13,918 |
import tensorflow as tf
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
| tensorflow.nn.sigmoid | 13,919 |
import tensorflow as tf
TFRECORD_PATH = '../tfrecord/member.tfrecord'
def main():
data_set = tf.data.TFRecordDataset(TFRECORD_PATH)
data_set = data_set.map(parse_function)
data_set = data_set.shuffle(buffer_size=9)
data_set = data_set.batch(3)
| tensorflow.data.TFRecordDataset | 13,920 |
import tensorflow as tf
self._assert_all_finite(grads[1].eval())
def test_prob_and_grad_gives_finite_results_for_common_events(self):
with self.test_session():
mu = tf.Variable(0.0, name="mu")
sigma = tf.Variable(1.0, name="sigma")
qdist = distributions.QuantizedDistribution(
base_dist_cls=distributions.Normal,
mu=mu,
sigma=sigma)
| tensorflow.Variable | 13,921 |
import tensorflow as tf
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)
# Keep track of the gradients across all towers.
tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
| tensorflow.get_collection | 13,922 |
import tensorflow as tf
# calculate accuracy
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
print ("done...")
| tensorflow.cast | 13,923 |
import tensorflow as tf
def truncate_example(x):
for key, max_len in len_map.items():
x_len = tf.shape(x[key])[0]
if x_len > max_len:
x[key] = x[key][:max_len, ...]
| tensorflow.shape | 13,924 |
import tensorflow as tf
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
tf.gfile.MakeDirs(FLAGS.output_dir)
input_files = []
for input_pattern in FLAGS.input_file.split(","):
input_files.extend(tf.gfile.Glob(input_pattern))
tf.logging.info("*** Input Files ***")
for input_file in input_files:
tf.logging.info(" %s" % input_file)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project
)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
if FLAGS.use_tpu:
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
| tensorflow.logging.info | 13,925 |
import tensorflow as tf
return fc
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name="biases")
| tensorflow.constant | 13,926 |
import tensorflow as tf
import gym
import os
import shutil
np.random.seed(1)
tf.set_random_seed(1)
MAX_EPISODES = 2000
LR_A = 0.0005 # 1_tensorflow_new rate for actor
LR_C = 0.0005 # 1_tensorflow_new rate for critic
| tensorflow.set_random_seed | 13,927 |
import tensorflow as tf
self.EPS_LEN = 100000
# GPU setup
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu})
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.5
# Placeholders
self.sess = tf.Session(config=config)
self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0]
self.a_bound = (env.action_space.high - env.action_space.low) / 2
self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action')
self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage')
self.rewards = tf.placeholder(tf.float32, [None, 1], 'discounted_r')
# Dateset with experiennce replay
self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions,
'rewards': self.rewards, 'advantage': self.advantage})
self.dataset = self.dataset.shuffle(buffer_size=10000)
self.dataset = self.dataset.batch(self.MINIBATCH)
self.dataset = self.dataset.cache()
self.dataset = self.dataset.repeat(self.EPOCHS)
self.data_iter = self.dataset.make_initializable_iterator()
| tensorflow.placeholder | 13,928 |
import tensorflow as tf
'Learning rate decay boundaries by global_step (comma-separated list).')
tf.app.flags.DEFINE_string(
'lr_decay_factors', '1, 0.6, 0.1',
'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './model/resnet50',#None,
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', '',
| tensorflow.app.flags.DEFINE_string | 13,929 |
import tensorflow as tf
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
| tensorflow.greater | 13,930 |
import tensorflow as tf
self.top_layer = bn
return bn
def loss_function(logits, labels):
# global cross_entropy # HACK TESTING
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
| tensorflow.nn.sparse_softmax_cross_entropy_with_logits | 13,931 |
import tensorflow as tf
tf.app.flags.DEFINE_integer('loss_scale', 1024, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_string('gpu_list', '1', '')
tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 100, '')
tf.app.flags.DEFINE_string('pretrained_model_path', None, '')
| tensorflow.app.flags.DEFINE_boolean | 13,932 |
import tensorflow as tf
def global_attention(state, hidden_states, encoder, encoder_input_length, scope=None, context=None, **kwargs):
with tf.variable_scope(scope or 'attention_{}'.format(encoder.name)):
if context is not None and encoder.use_context:
state = tf.concat([state, context], axis=1)
e = compute_energy(hidden_states, state, encoder, input_length=encoder_input_length, **kwargs)
mask = tf.sequence_mask(encoder_input_length, maxlen=tf.shape(hidden_states)[1], dtype=tf.float32)
e *= mask
if encoder.attn_norm_fun == 'none':
weights = e
elif encoder.attn_norm_fun == 'sigmoid':
weights = tf.nn.sigmoid(e)
elif encoder.attn_norm_fun == 'max':
weights = tf.one_hot(tf.argmax(e, -1), depth=tf.shape(e)[1])
else:
e -= tf.reduce_max(e, axis=1, keep_dims=True)
T = encoder.attn_temperature or 1.0
exp = tf.exp(e / T) * mask
weights = exp / tf.reduce_sum(exp, axis=-1, keep_dims=True)
weighted_average = tf.reduce_sum(tf.expand_dims(weights, 2) * hidden_states, axis=1)
return weighted_average, weights
def no_attention(state, hidden_states, *args, **kwargs):
batch_size = tf.shape(state)[0]
weighted_average = tf.zeros(shape=tf.stack([batch_size, 0]))
| tensorflow.argmax | 13,933 |
import tensorflow as tf
X = self.conv('DZ1', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ2', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ3', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = self.conv('DZ4', X, 512, 1, 1)
X = tf.nn.leaky_relu(X, 0.2)
X = discrim_conv('d_out', X, 1, 1, norm=False, nonlin=False, init_stddev=0.02)
print('D out:', X.get_shape().as_list())
return X
| tensorflow.nn.leaky_relu | 13,934 |
import tensorflow as tf
for index in non_static_indexes:
shape[index] = dyn_shape[index]
return shape
def reshape_to_matrix(input_tensor):
"""Reshapes a >= rank 2 tensor to a rank 2 tensor (i.e., a matrix)."""
ndims = input_tensor.shape.ndims
if ndims < 2:
raise ValueError("Input tensor must have at least rank 2. Shape = %s" %
(input_tensor.shape))
if ndims == 2:
return input_tensor
width = input_tensor.shape[-1]
output_tensor = tf.reshape(input_tensor, [-1, width])
return output_tensor
def reshape_from_matrix(output_tensor, orig_shape_list):
"""Reshapes a rank 2 tensor back to its original rank >= 2 tensor."""
if len(orig_shape_list) == 2:
return output_tensor
output_shape = get_shape_list(output_tensor)
orig_dims = orig_shape_list[0:-1]
width = output_shape[-1]
return tf.reshape(output_tensor, orig_dims + [width])
| tensorflow.reshape | 13,935 |
import tensorflow as tf
else:
return tf.constant(axes[0])
| tensorflow.constant | 13,936 |
from tensorflow.python.ops import array_ops
if self.num_label_columns == 1:
logits = array_ops.concat([array_ops.zeros_like(logits), logits], 1)
| tensorflow.python.ops.array_ops.zeros_like | 13,937 |
from tensorflow.python.ops import array_ops
kepsilon = 1e-7 # to account for floating point imprecisions
thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds-2)]
thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]
(tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op,
fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights)
assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds
def compute_sensitivity_at_specificity(name):
specificities = math_ops.div(tn, tn + fp + kepsilon)
tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0)
tf_index = math_ops.cast(tf_index, dtypes.int32)
| tensorflow.python.ops.array_ops.squeeze | 13,938 |
import tensorflow as tf
#X:[n_batch_train, 2, n_ctx, 2] -> [n_batch_train*2,n_ctx,2]
X = tf.reshape(X, [-1, n_ctx, 2])
M = tf.reshape(M, [-1, n_ctx])
h = embed(X, we)
#h=[-1,n_ctx,emb]
for layer in range(n_layer):
h = block(h, 'h%d'%layer, train=train, scale=True)
#h=[-1,n_ctx,emb] lm_h [-1,emb]
lm_h = tf.reshape(h[:, :-1], [-1, n_embd])
lm_logits = tf.matmul(lm_h, we, transpose_b=True)
lm_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=lm_logits, labels=tf.reshape(X[:, 1:, 0], [-1]))
lm_losses = tf.reshape(lm_losses, [shape_list(X)[0], shape_list(X)[1]-1])
lm_losses = tf.reduce_sum(lm_losses*M[:, 1:], 1)/tf.reduce_sum(M[:, 1:], 1)
clf_h = tf.reshape(h, [-1, n_embd])
pool_idx = tf.cast(tf.argmax(tf.cast(tf.equal(X[:, :, 0], clf_token), tf.float32), 1), tf.int32)
clf_h = tf.gather(clf_h, tf.range(shape_list(X)[0], dtype=tf.int32)*n_ctx+pool_idx)
clf_h = tf.reshape(clf_h, [-1, 2, n_embd])
if train and clf_pdrop > 0:
shape = shape_list(clf_h)
shape[1] = 1
clf_h = tf.nn.dropout(clf_h, 1-clf_pdrop, shape)
clf_h = tf.reshape(clf_h, [-1, n_embd])
clf_logits = clf(clf_h, 1, train=train)
clf_logits = tf.reshape(clf_logits, [-1, 2])
| tensorflow.reduce_sum | 13,939 |
import tensorflow as tf
})
return model_outputs
if params['use_bfloat16']:
with tf.contrib.tpu.bfloat16_scope():
model_outputs = _model_outputs()
def cast_outputs_to_float(d):
for k, v in sorted(six.iteritems(d)):
if isinstance(v, dict):
cast_outputs_to_float(v)
else:
d[k] = tf.cast(v, tf.float32)
cast_outputs_to_float(model_outputs)
else:
model_outputs = _model_outputs()
# First check if it is in PREDICT mode.
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {}
predictions['detections'] = model_outputs['detections']
predictions['image_info'] = features['image_info']
if params['include_mask']:
| tensorflow.cast | 13,940 |
from tensorflow.python.framework import ops
`int16`, `int8`, or `complex64`.
bias: A 1-D `Tensor` with size matching the last dimension of `value`.
Must be the same type as `value` unless `value` is a quantized type,
in which case a different quantized type may be used.
name: A name for the operation (optional).
Returns:
A `Tensor` with the same type as `value`.
"""
with ops.op_scope([value, bias], name, "BiasAddV1") as name:
value = ops.convert_to_tensor(value, name="input")
bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
return gen_nn_ops._bias_add_v1(value, bias, name=name)
ops.RegisterShape("BiasAddV1")(common_shapes.bias_add_shape)
| tensorflow.python.framework.ops.op_scope | 13,941 |
import tensorflow as tf
def test_maximum_batch_size(self):
with self.test_session() as session:
@dynamic_batching.batch_fn_with_options(maximum_batch_size=2)
def f(a, b):
batch_size = tf.shape(a)[0]
return a + b, tf.tile([batch_size], [batch_size])
outputs = [
f(tf.constant([1]), tf.constant([2])),
f(tf.constant([1]), tf.constant([2])),
| tensorflow.tile | 13,942 |
import tensorflow as tf
hyper_b_1 = tf.get_variable('hyper_b_1', [state_dim, n_h_mixer])
hyper_b_final_l1 = tf.layers.dense(inputs=state, units=n_h_mixer, activation=tf.nn.relu,
use_bias=False, name='hyper_b_final_l1')
hyper_b_final = tf.layers.dense(inputs=hyper_b_final_l1, units=1, activation=None,
use_bias=False, name='hyper_b_final')
# First layer
w1 = tf.abs(tf.matmul(state, hyper_w_1))
b1 = tf.matmul(state, hyper_b_1)
w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices
b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer])
# [batch, 1, n_h_mixer]
hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped)
# Second layer
w_final = tf.abs(tf.matmul(state, hyper_w_final))
w_final_reshaped = tf.reshape(w_final, [-1, n_h_mixer, 1]) # reshape into batch of matrices
| tensorflow.matmul | 13,943 |
import tensorflow as tf
cell_bw = GetCell()
rnnout, _, _ = tf.nn.bidirectional_rnn(cell_fw, cell_bw, self._inputs,
dtype=tf.float32,
| tensorflow.nn.bidirectional_rnn | 13,944 |
import tensorflow as tf
args = parser.parse_args()
def model():
x = tf.placeholder(tf.float32, [None, 784], name='x')
gt = tf.placeholder(tf.float32, [None, 10], name='groundtruth')
with tf.variable_scope('layer1'):
w1 = tf.get_variable('weight1', [784, 1024], initializer=tf.random_normal_initializer())
b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0))
h1 = tf.nn.relu(tf.matmul(x, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer())
b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0))
h2 = tf.nn.relu(tf.matmul(h1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer())
b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0))
y = tf.matmul(h2, w3) + b3
# losses
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=gt, logits=y))
# optimizer
optimizer = tf.train.GradientDescentOptimizer(args.lr)
# define one-step train ops
train_op = optimizer.minimize(cross_entropy)
return x, y, gt, train_op
if __name__ == "__main__":
max_train_step = args.max_train_step
batch_size = args.batch_size
| tensorflow.random_normal_initializer | 13,945 |
from tensorflow.python.platform import gfile
return labels_one_hot
def extract_labels(filename, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
| tensorflow.python.platform.gfile.Open | 13,946 |
import tensorflow as tf
# Construct predictions
image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size,
num_channel]) ############MNIST and CIFAR10 are different ar here
adv_image = tf.placeholder(tf.float32, shape=[hps.batch_size, image_size, image_size,
num_channel]) ############MNIST and CIFAR10 are different ar here
predict = tf.placeholder(tf.float32, shape=[hps.batch_size, 10])
predict_nor, tsne_logit_nor = models(hps, image, FLAGS.RCE_train, logits=False, tsne_logits=True)
predict_adv, tsne_logit_adv = models(hps, adv_image, FLAGS.RCE_train, logits=False, tsne_logits=True)
# Calculate entropy
argmax_y_onehot = tf.one_hot(tf.argmax(predict, 1), 10, on_value=0.0, off_value=1.0, axis=-1)
normalized_y_nonmaximal = tf.reduce_sum(predict * argmax_y_onehot, 1)
entropy = tf.reduce_sum(-tf.log(predict) * predict * argmax_y_onehot, 1) / normalized_y_nonmaximal + tf.log(
normalized_y_nonmaximal)
for k in range(10):
adv_image_craft = adv_craft_func(hps, image, FLAGS.attack_method, eps=0.02 * k + 0.02, RCE_train=FLAGS.RCE_train)
#adv_image_craft = adv_craft_func(hps, image, FLAGS.attack_method, eps=0.04,RCE_train=FLAGS.RCE_train)
sess.run(tf.global_variables_initializer())
saver.restore(sess, ckpt_state.model_checkpoint_path)
for i in six.moves.range(FLAGS.eval_batch_count):
time_start = time.time()
(nor_img,true_label) = sess.run([images,labels])
| tensorflow.log | 13,947 |
from tensorflow.python.ops import init_ops
bias_ones = self._bias_initializer
if self._bias_initializer is None:
bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype)
with vs.variable_scope("gates"): # Reset gate and update gate.
| tensorflow.python.ops.init_ops.constant_initializer | 13,948 |
import tensorflow as tf
"output_weights", [hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"output_bias",[], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.reduce_sum(tf.multiply(output_layer,output_weights),-1)
logits = tf.add(logits, output_bias)
probabilities=tf.sigmoid(logits)
# labels=tf.constant(labels,dtype=tf.int32)
per_example_loss=tf.losses.sigmoid_cross_entropy(multi_class_labels=labels, logits=logits,reduction=Reduction.NONE)
per_example_loss=tf.reduce_sum(per_example_loss,axis=-1)
loss = tf.reduce_mean(per_example_loss,name='train_loss')
return (loss, per_example_loss, logits, probabilities)
| tensorflow.add | 13,949 |
import tensorflow as tf
predictions_dict = {
BOX_ENCODINGS: box_encodings,
CLASS_PREDICTIONS_WITH_BACKGROUND: class_predictions_with_background
}
if self._predict_instance_masks:
with slim.arg_scope(self._conv_hyperparams):
upsampled_features = tf.image.resize_bilinear(
image_features,
[self._mask_height, self._mask_width],
align_corners=True)
upsampled_features = slim.conv2d(
upsampled_features,
num_outputs=self._mask_prediction_conv_depth,
kernel_size=[2, 2])
| tensorflow.image.resize_bilinear | 13,950 |
import tensorflow as tf
Lit_q_mu = tf.matrix_triangular_solve(Luu, q_mu, adjoint=True)
e_mean_Kuf = expectation(pXnew, mean_function, (kern, feat)) # N x D x M
# einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor:
e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind])
e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # N x D x D
e_related_to_mean = e_fmean_mean + tf.matrix_transpose(e_fmean_mean) + e_mean_mean
if full_output_cov:
fvar = (
tf.matrix_diag(tf.tile((eKff - tf.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) +
| tensorflow.matrix_transpose | 13,951 |
import tensorflow as tf
num_decoder_symbols=5, embedding_size=2)
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 5), res[0].shape)
res = sess.run([mem])
self.assertEqual((2, 4), res[0].shape)
# Test externally provided output projection.
w = tf.get_variable("proj_w", [2, 5])
b = tf.get_variable("proj_b", [5])
with tf.variable_scope("proj_seq2seq"):
dec, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols=2,
num_decoder_symbols=5, embedding_size=2, output_projection=(w, b))
sess.run([tf.global_variables_initializer()])
res = sess.run(dec)
self.assertEqual(3, len(res))
self.assertEqual((2, 2), res[0].shape)
# Test that previous-feeding model ignores inputs after the first.
dec_inp2 = [tf.constant(0, tf.int32, shape=[2]) for _ in range(3)]
with tf.variable_scope("other"):
d3, _ = tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp2, cell, num_encoder_symbols=2,
| tensorflow.nn.seq2seq.embedding_attention_seq2seq | 13,952 |
import tensorflow as tf
self.optimizer_func = tf.train.AdagradOptimizer
if self.hparams.grad_strategy == 'sgd':
self.optimizer_func = tf.train.GradientDescentOptimizer
self.separate_gradient_update()
tf.summary.scalar('Gradient Norm', self.norm, collections=['train'])
tf.summary.scalar('Learning Rate', self.ranker_learning_rate, collections=['train'])
tf.summary.scalar('Final Loss', tf.reduce_mean(self.loss), collections=['train'])
clipped_labels = tf.clip_by_value(reshaped_train_labels, clip_value_min=0, clip_value_max=1)
pad_removed_train_output = self.remove_padding_for_metric_eval(self.docid_inputs, train_output)
for metric in self.exp_settings['metrics']:
for topn in self.exp_settings['metrics_topn']:
| tensorflow.summary.scalar | 13,953 |
import tensorflow as tf
input=activation,
input_size=dialogue_state_action_template_size,
output_size=num_actions_arguments * actions_arguments_vocabulary_length,
name='linear_projection_3_predictions_arguments'
)
self.predictions_arguments = softmax_2d(
input=projection,
n_classifiers=num_actions_arguments,
n_classes=actions_arguments_vocabulary_length,
name="softmax_2d_predictions_arguments")
if FLAGS.print_variables:
for v in tf.trainable_variables():
print(v.name)
with tf.name_scope('loss'):
one_hot_labels_action = dense_to_one_hot(actions_template, action_templates_vocabulary_length)
one_hot_labels_arguments = dense_to_one_hot(actions_arguments, actions_arguments_vocabulary_length)
loss_action = tf.reduce_mean(
- one_hot_labels_action * tf.log(tf.clip_by_value(self.predictions_action, 1e-10, 1.0)),
name='loss'
)
loss_arguments = tf.reduce_mean(
| tensorflow.trainable_variables | 13,954 |
import tensorflow as tf
b_rec_initializer = tf.constant_initializer(0.0)
b_out_initializer = tf.constant_initializer(0.0)
| tensorflow.constant_initializer | 13,955 |
import tensorflow as tf
x = tf.constant([b"hello", b"hi"], tf.string)
y, = tf.py_func(read_fixed_length_numpy_strings, [], [tf.string])
z, = tf.py_func(read_and_return_strings, [x, y], [tf.string])
self.assertListEqual(list(z.eval()), [b"hello there", b"hi there"])
| tensorflow.py_func | 13,956 |
import tensorflow as tf
feed_previous=feed_previous)
def EmbeddingTiedRNNSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_tied_rnn_seq2seq(
enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2,
feed_previous=feed_previous)
def EmbeddingAttentionSeq2Seq(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
num_decoder_symbols, embedding_size=2, feed_previous=feed_previous)
def EmbeddingAttentionSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous):
cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False)
return tf.nn.seq2seq.embedding_attention_seq2seq(
enc_inp, dec_inp, cell, num_encoder_symbols,
| tensorflow.nn.rnn_cell.BasicLSTMCell | 13,957 |
import tensorflow as tf
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
| tensorflow.parse_single_example | 13,958 |
from tensorflow.python.training import moving_averages
return mean, variance, second_moment
def _build_update_ops_variance(self, mean, variance, is_training):
"""Builds the moving average update ops when using moving variance.
Args:
mean: The mean value to update with.
variance: The variance value to update with.
is_training: Boolean Tensor to indicate if we're currently in
training mode.
"""
def build_update_ops():
"""Builds the exponential moving average update ops."""
update_mean_op = moving_averages.assign_moving_average(
variable=self._moving_mean,
value=mean,
decay=self._decay_rate,
name="update_moving_mean").op
update_variance_op = moving_averages.assign_moving_average(
variable=self._moving_variance,
value=variance,
decay=self._decay_rate,
name="update_moving_variance").op
return update_mean_op, update_variance_op
def build_no_ops():
| tensorflow.python.training.moving_averages.assign_moving_average | 13,959 |
import tensorflow as tf
else:
direct_mask = tf.greater(sl_col, sl_row) # bl,bl
direct_mask_tile = tf.tile(
tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl
rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl
rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl
rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2)
attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl
# attention
f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
dependent_head = linear(
rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec
dependent, head = tf.split(dependent_head, 2, 3)
dependent_etd = tf.expand_dims(dependent, 2) # bs,bn,1,bl,vec
head_etd = tf.expand_dims(head, 3) # bs,bn,bl,1,vec
logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,bn,bl,bl,vec
logits_masked = exp_mask_for_high_rank(logits, attn_mask)
attn_score = tf.nn.softmax(logits_masked, 3) # bs,bn,bl,bl,vec
attn_score = mask_for_high_rank(attn_score, attn_mask) # bs,bn,bl,bl,vec
self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec
with tf.variable_scope('source2token_self_attn'):
inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear',
False, wd, keep_prob, is_train) # bs,bn,bl,vec
inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec
| tensorflow.split | 13,960 |
import tensorflow as tf
W_fc1 = self.weight_variable('W_fc1', [1600, 512])
b_fc1 = self.bias_variable('b_fc1', [512])
W_fc2 = self.weight_variable('W_fc2', [512, self.ACTIONS])
b_fc2 = self.bias_variable('b_fc2', [self.ACTIONS])
s = tf.placeholder("float", [None, 80, 80, 4]) # 输入层,输入图像为80x80的4通道图像
h_conv1 = self.conv2d('h_conv1', s, W_conv1, 4, b_conv1) # 构造第一个卷积层输出为conv1
h_pool1 = self.max_pool_2x2('h_pool1', h_conv1)
h_conv2 = self.conv2d('h_conv2', h_pool1, W_conv2, 2, b_conv2)
| tensorflow.placeholder | 13,961 |
from tensorflow.python.ops import control_flow_ops
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold")
var_update = state_ops.assign_sub(var, lr_t*(grad + gold + mu_t*(var-vstar))) #Update 'ref' by subtracting 'value
#Create an op that groups multiple operations.
#When this op finishes, all ops in input have finished
return control_flow_ops.group(*[var_update,])
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold") # glod is not sparse
v_diff = state_ops.assign(vstar, mu_t * (var - vstar), use_locking=self._use_locking)
| tensorflow.python.ops.control_flow_ops.group | 13,962 |
from tensorflow.contrib.framework import deprecated_args
_, top_k_idx = nn.top_k(predictions, k)
return _streaming_sparse_precision_at_k(
top_k_idx=top_k_idx,
labels=labels,
k=k,
class_id=class_id,
ignore_mask=ignore_mask,
weights=weights,
metrics_collections=metrics_collections,
updates_collections=updates_collections,
name=scope)
# TODO(ptucker): Validate range of values in labels?
@deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask')
def streaming_sparse_precision_at_top_k(top_k_predictions,
labels,
class_id=None,
ignore_mask=None,
weights=None,
metrics_collections=None,
updates_collections=None,
name=None):
"""Computes precision@k of top-k predictions with respect to sparse labels.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is in the top-k highest
`predictions`, and computing the fraction of them for which `class_id` is
| tensorflow.contrib.framework.deprecated_args | 13,963 |
import tensorflow as tf
return tf.nn.relu(layer)
with tf.variable_scope('norm_layer_%s%d' % (prefix, id)) as vs:
| tensorflow.variable_scope | 13,964 |
import tensorflow as tf
hist_rater_b = tf.reduce_sum(labels, 0)
conf_mat = tf.matmul(tf.transpose(pred_norm), labels)
nom = tf.reduce_sum(weights * conf_mat)
denom = tf.reduce_sum(weights * tf.matmul(
tf.reshape(hist_rater_a, [num_ratings, 1]), tf.reshape(hist_rater_b, [1, num_ratings])) /
tf.to_float(batch_size))
try:
return -(1 - nom / denom)
except Exception:
return -(1 - nom / (denom + eps))
| tensorflow.to_float | 13,965 |
import tensorflow as tf
beta = tf.get_variable('beta', [ch], initializer=tf.constant_initializer())
beta = tf.reshape(beta, new_shape)
gamma = tf.get_variable('gamma', [ch], initializer=tf.constant_initializer(1.0))
gamma = tf.reshape(gamma, new_shape)
return tf.nn.batch_normalization(inputdata, mean, var, beta, gamma, epsilon, name=name)
@staticmethod
| tensorflow.reshape | 13,966 |
import tensorflow as tf
>>> samples = m.compute_posterior_samples(X, Y, test_points, 2)
>>> samples.dtype
dtype('float32')
"""
mu, var = self.build_posterior_mean_var(X, Y, test_points, True)
jitter = tfhacks.eye(tf.shape(mu)[0], var.dtype) * 1e-06
L = tf.batch_cholesky(tf.transpose(var, (2, 0, 1)) + jitter)
V_shape = [tf.shape(L)[0], tf.shape(L)[1], num_samples]
V = tf.random_normal(V_shape, dtype=L.dtype)
samples = tf.expand_dims(tf.transpose(mu), -1) + tf.batch_matmul(L, V)
return tf.transpose(samples)
| tensorflow.shape | 13,967 |
import tensorflow as tf
Li_eKuffu = tf.matrix_triangular_solve(Luu_tiled, eKuffu, lower=True)
Li_eKuffu_Lit = tf.matrix_triangular_solve(Luu_tiled, tf.matrix_transpose(Li_eKuffu), lower=True) # N x M x M
cov = tf.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True) # D x M x M
if mean_function is None or isinstance(mean_function, mean_functions.Zero):
e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=settings.float_type)
else:
# Update mean: \mu(x) + m(x)
fmean = fmean + expectation(pXnew, mean_function)
| tensorflow.zeros | 13,968 |
import tensorflow as tf
| tensorflow.flags.DEFINE_integer | 13,969 |
import tensorflow as tf
'run_on_cloud', False,
'Wether we will train on cloud.')
tf.app.flags.DEFINE_boolean(
'seq_train', False,
'Wether we will train a sequence model.')
tf.app.flags.DEFINE_string(#
'model_to_train', 'blouse, dress, outwear, skirt, trousers', #'all, blouse, dress, outwear, skirt, trousers', 'skirt, dress, outwear, trousers',
'The sub-model to train (comma-separated list).')
FLAGS = tf.app.flags.FLAGS
#--model_scope=blouse --checkpoint_path=./logs/all --data_format=channels_last --batch_size=1
def input_pipeline(is_training=True, model_scope=FLAGS.model_scope, num_epochs=FLAGS.epochs_per_eval):
if 'all' in model_scope:
lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64),
tf.constant(config.global_norm_lvalues, dtype=tf.int64)), 0)
rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.global_norm_key, dtype=tf.int64),
tf.constant(config.global_norm_rvalues, dtype=tf.int64)), 1)
else:
lnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
tf.constant(config.local_norm_lvalues, dtype=tf.int64)), 0)
rnorm_table = tf.contrib.lookup.HashTable(tf.contrib.lookup.KeyValueTensorInitializer(tf.constant(config.local_norm_key, dtype=tf.int64),
tf.constant(config.local_norm_rvalues, dtype=tf.int64)), 1)
preprocessing_fn = lambda org_image, classid, shape, key_x, key_y, key_v: preprocessing.preprocess_image(org_image, classid, shape, FLAGS.train_image_size, FLAGS.train_image_size, key_x, key_y, key_v, (lnorm_table, rnorm_table), is_training=is_training, data_format=('NCHW' if FLAGS.data_format=='channels_first' else 'NHWC'), category=(model_scope if 'all' not in model_scope else '*'), bbox_border=FLAGS.bbox_border, heatmap_sigma=FLAGS.heatmap_sigma, heatmap_size=FLAGS.heatmap_size)
images, shape, classid, targets, key_v, isvalid, norm_value = dataset.slim_get_split(FLAGS.data_dir, preprocessing_fn, (FLAGS.xt_batch_size if 'seresnext50' in FLAGS.backbone else FLAGS.batch_size), FLAGS.num_readers, FLAGS.num_preprocessing_threads, num_epochs=num_epochs, is_training=is_training, file_pattern=FLAGS.dataset_name, category=(model_scope if 'all' not in model_scope else '*'), reader=None)
| tensorflow.constant | 13,970 |
import tensorflow as tf
features_proj = tf.matmul(features_flat, w)
features_proj = tf.reshape(features_proj, [-1, self.L, self.D])
return features_proj
def _attention_layer(self, features, features_proj, h, reuse=False):
with tf.variable_scope('attention_layer', reuse=reuse):
w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer)
b = tf.get_variable('b', [self.D], initializer=self.const_initializer)
w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer)
h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D)
out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L)
alpha = tf.nn.softmax(out_att)
context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D)
return context, alpha
def _selector(self, context, h, reuse=False):
with tf.variable_scope('selector', reuse=reuse):
w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer)
b = tf.get_variable('b', [1], initializer=self.const_initializer)
| tensorflow.matmul | 13,971 |
import tensorflow as tf
expected_rank_dict = {}
if isinstance(expected_rank, six.integer_types):
expected_rank_dict[expected_rank] = True
else:
for x in expected_rank:
expected_rank_dict[x] = True
actual_rank = tensor.shape.ndims
if actual_rank not in expected_rank_dict:
scope_name = tf.get_variable_scope().name
raise ValueError(
"For the tensor `%s` in scope `%s`, the actual rank "
"`%d` (shape = %s) is not equal to the expected rank `%s`" %
(name, scope_name, actual_rank, str(tensor.shape), str(expected_rank)))
| tensorflow.get_variable_scope | 13,972 |
import tensorflow as tf
self.assertEqual(10, v0.eval())
# Restore a different "v1" from shard 1 of the saved files.
with tf.Session(
target="",
config=tf.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
v1 = tf.Variable(222)
save = tf.train.Saver({"v1": v1}, sharded=True)
tf.initialize_all_variables().run()
self.assertEqual(222, v1.eval())
save.restore(sess, save_path + "-00001-of-00002")
self.assertEqual(20, v1.eval())
| tensorflow.Variable | 13,973 |
import tensorflow as tf
)
with tf.variable_scope("loss"):
if is_training:
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
output_layer = tf.reshape(output_layer, [-1, hidden_size])
logits = tf.matmul(output_layer, output_weight, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [-1, FLAGS.max_seq_length, 11])
log_probs = tf.nn.log_softmax(logits, axis=-1)
# labels = tf.cast(labels,dtype=tf.float32)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
| tensorflow.nn.bias_add | 13,974 |
import tensorflow as tf
kk = tf.Variable(0, dtype=tf.int64)
for i in tf.range(start=0, limit=tf.size(vx_keys), delta=1, dtype=None, name='range'):
for j in tf.range(start=0, limit=tf.size(vz_keys), delta=1, dtype=None, name='range'):
to_add = tf.cond(
tf.greater(vz.lookup(vx_keys[i]), -1),
true_fn=lambda: tf.math.multiply(vx.lookup(vx_keys[i]), vz.lookup(vz_keys[j])),
false_fn=lambda: tf.constant(0, dtype=tf.int64)
)
kk = tf.math.add(kk, to_add)
kernel[l][m] = kk
return tf.convert_to_tensor(kernel, dtype=tf.int64)
def dim(self):
return self._dim
| tensorflow.math.add | 13,975 |
import tensorflow as tf
row_blocks.append(tf.pad(
tensor=matrix,
paddings=tf.concat(
[tf.zeros([tf.rank(matrix) - 1, 2], dtype=tf.int32),
[(row_before_length, row_after_length)]],
axis=0)))
blocked = tf.concat(row_blocks, -2)
blocked.set_shape(batch_shape.concatenate((blocked_rows, blocked_cols)))
return blocked | tensorflow.concat | 13,976 |
import tensorflow as tf
scales = tf.convert_to_tensor(scales, dtype=tf.float32)
ratios = tf.convert_to_tensor(ratios, dtype=tf.float32)
offset = tf.convert_to_tensor(offset, dtype=tf.float32)
scales_grid, ratios_grid = tf.meshgrid(scales,
ratios)
scales_grid = tf.reshape(scales_grid, [-1, 1])
ratios_grid = tf.reshape(ratios_grid, [-1, 1])
ratio_sqrts = tf.sqrt(ratios_grid)
heights = scales_grid / ratio_sqrts * base_size[1]
widths = scales_grid * ratio_sqrts * base_size[0]
x_centers = tf.cast(tf.range(features_width), tf.float32)
x_centers = x_centers * stride[1]
y_centers = tf.cast(tf.range(features_height), tf.float32)
y_centers = y_centers * stride[0]
# x_centers = x_centers + offset[1]
| tensorflow.sqrt | 13,977 |
import tensorflow as tf
with tf.variable_scope(args.name):
model = HredModel(data, args, embed)
model.print_parameters()
latest_dir = '%s/checkpoint_latest' % args.model_dir
best_dir = '%s/checkpoint_best' % args.model_dir
if tf.train.get_checkpoint_state(latest_dir) and args.restore == "last":
print("Reading model parameters from %s" % latest_dir)
model.latest_saver.restore(sess, tf.train.latest_checkpoint(latest_dir))
else:
if tf.train.get_checkpoint_state(best_dir) and args.restore == "best":
print('Reading model parameters from %s' % best_dir)
model.best_saver.restore(sess, tf.train.latest_checkpoint(best_dir))
else:
print("Created model with fresh parameters.")
| tensorflow.train.latest_checkpoint | 13,978 |
import tensorflow as tf
lang1_resfile.write(source)
lang1_resfile.write("\n")
lang2_resfile.write(target)
lang2_resfile.write("\n")
else:
lang1_filename, lang2_filename = dataset[1]
lang1_filepath = os.path.join(tmp_dir, lang1_filename)
lang2_filepath = os.path.join(tmp_dir, lang2_filename)
is_sgm = (
lang1_filename.endswith("sgm") and lang2_filename.endswith("sgm"))
if not (tf.gfile.Exists(lang1_filepath) and
tf.gfile.Exists(lang2_filepath)):
# For .tar.gz and .tgz files, we read compressed.
mode = "r:gz" if compressed_filepath.endswith("gz") else "r"
with tarfile.open(compressed_filepath, mode) as corpus_tar:
corpus_tar.extractall(tmp_dir)
if lang1_filepath.endswith(".gz"):
new_filepath = lang1_filepath.strip(".gz")
generator_utils.gunzip_file(lang1_filepath, new_filepath)
lang1_filepath = new_filepath
if lang2_filepath.endswith(".gz"):
| tensorflow.gfile.Exists | 13,979 |
import tensorflow as tf
self.assertFalse(task.teacher.params.is_eval)
self.assertIsNotNone(task.teacher.params.input)
self.assertFalse(task.student.params.is_eval)
self.assertIsNotNone(task.student.params.input)
metrics = task.FPropDefaultTheta()
self.assertItemsEqual(['loss', 'num_samples_in_batch'],
list(metrics.keys()))
task.BProp()
# Expected side effects of BProp().
self.assertIsNotNone(task.train_op)
self.assertIsNotNone(task.total_examples)
with self.session() as sess:
tf.global_variables_initializer().run()
variables = {}
values_before_training = {}
values_after_training = {}
for child in ('teacher', 'student'):
variables[child] = {
k: v
for k, v in getattr(task, child).vars.FlattenItems()
}
values_before_training[child] = sess.run(variables[child])
# Train for a few steps.
| tensorflow.global_variables_initializer | 13,980 |
import tensorflow as tf
flags.DEFINE_integer("iterations_per_loop", 1,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
| tensorflow.flags.DEFINE_string | 13,981 |
import tensorflow as tf
def cw_sampling(X, y=None):
def phi_sampling(s, D):
return tf.pow(1.0 + 4.0*s/(2.0*D-3), -0.5)
D = tf.cast(tf.shape(X)[1], tf.float32)
N = tf.cast(tf.shape(X)[0], tf.float32)
D_int = tf.cast(D, tf.int32)
N_int = tf.cast(N, tf.int32)
if y is None:
y = silverman_rule_of_thumb(N)
| tensorflow.shape | 13,982 |
import tensorflow as tf
def _global_keep_prob(keep_prob):
keep_prob = tf.convert_to_tensor(keep_prob, dtype=tf.float32)
keep_prob = tf.cond(_phase, lambda: keep_prob, lambda: keep_prob * 0.0 + 1.0)
return keep_prob
| tensorflow.cond | 13,983 |
import tensorflow as tf
values = tf.math.sign(tf.nn.relu(interpolated + self.tol))
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 1].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, 1])
values = sdf_values
inter = tf.reshape(values, [self.resolution,
self.resolution,
self.resolution])
inter = tf.transpose(tf.reduce_max(inter, axis=a))
im = axs[fig_obj_count, 2].matshow(inter.numpy())
plt.colorbar(im, ax=axs[fig_obj_count, 2])
fig_obj_count += 1
intersection = tf.reduce_sum(tf.math.sign(tf.nn.relu(sdf_values - 1)))
union = tf.reduce_sum(tf.math.sign(sdf_values))
iou = intersection / union
self.collisions.append(num_collisions)
self.intersections.append(intersection)
self.ious.append(iou)
return num_collisions, intersection, iou
| tensorflow.reduce_max | 13,984 |
import tensorflow as tf
pad_w1 = tf.mod(-w + bsize[2], bstrides[2])
return tf.cond(
tf.logical_or(tf.greater(pad_h1, 0), tf.greater(pad_w1, 0)),
lambda: tf.pad(x, [[0, 0], [0, pad_h1], [0, pad_w1], [0, 0]]), lambda: x)
else:
return x
| tensorflow.pad | 13,985 |
import tensorflow as tf
seed: set random state.
Returns:
L2DeepSurv Class.
"""
# Prepare data
self.train_data = {}
self.train_data['X'], self.train_data['E'], \
self.train_data['T'], self.train_data['failures'], \
self.train_data['atrisk'], self.train_data['ties'] = utils.parse_data(X, label)
# New Graph
G = tf.Graph()
with G.as_default():
# Data input
X = tf.placeholder(tf.float32, [None, input_node], name = 'x-Input')
y_ = tf.placeholder(tf.float32, [None, output_node], name = 'label-Input')
# hidden layers
self.nnweights = [] # collect weights of network
prev_node = input_node
prev_x = X
for i in range(len(hidden_layers_node)):
layer_name = 'layer' + str(i+1)
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
weights = tf.get_variable('weights', [prev_node, hidden_layers_node[i]],
initializer=tf.truncated_normal_initializer(stddev=0.1))
self.nnweights.append(weights)
| tensorflow.placeholder | 13,986 |
import tensorflow as tf
Raises
------
ValueError
If input tensor is not 2D.
"""
if weight_init is None:
num_features = tensor.get_shape()[-1].value
weight_init = tf.truncated_normal([num_features, size], stddev=0.01)
if bias_init is None:
bias_init = tf.zeros([size])
with tf.name_scope(name, 'fully_connected', [tensor]):
w = tf.Variable(weight_init, name='w', dtype=tf.float32)
b = tf.Variable(bias_init, name='b', dtype=tf.float32)
| tensorflow.truncated_normal | 13,987 |
import tensorflow as tf
enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32)
attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size])
| tensorflow.reshape | 13,988 |
import tensorflow as tf
train_dataset_reader = dataset.BatchDatset(train_records, image_options)
validation_dataset_reader = dataset.BatchDatset(valid_records, image_options)
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
# create two summary writers to show training loss and validation loss in the same graph
# need to create two folders 'train' and 'validation' inside FLAGS.logs_dir
train_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/train', sess.graph)
validation_writer = tf.summary.FileWriter(FLAGS.logs_dir + '/validation')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...")
if FLAGS.mode == "train":
for itr in xrange(MAX_ITERATION):
train_images, train_annotations = train_dataset_reader.next_batch(FLAGS.batch_size)
z_ = np.random.uniform(low=-1.0, high=1.0, size=(FLAGS.batch_size,4,4,128))
# print(train_images)
feed_dict = {image: train_images, annotation: train_annotations, keep_probability: 0.85, z: z_}
| tensorflow.global_variables_initializer | 13,989 |
import tensorflow as tf
return bias
def conv_bn_relu(self, bottom,name, kernel_size, output_channels, initializer,stride=1, bn=False,training=False,relu=True):
input_channels = bottom.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
kernel = self.variable('weights', [kernel_size, kernel_size, input_channels, output_channels], initializer, regularizer=tf.contrib.layers.l2_regularizer(0.0005))
conv = tf.nn.conv2d(bottom, kernel, [1, stride, stride, 1], padding='SAME')
biases = self.variable('biases', [output_channels], tf.constant_initializer(0.0))
conv_layer = tf.nn.bias_add(conv, biases)
| tensorflow.variable_scope | 13,990 |
import tensorflow as tf
_, axs = plt.subplots(labeled_translations.shape[0], 5)
fig_obj_count = 0
for class_id in range(self.max_num_classes):
# Do the same for the ground truth and predictions
sdf_values = tf.zeros_like(samples_world)[:, 0:1]
for mtype, (classes, sdfs, poses) in enumerate([
(labeled_classes, labeled_sdfs, labeled_poses),
(predicted_classes, predicted_sdfs, predicted_poses)]):
for i in range(classes.shape[0]):
if class_id == classes[i]:
sdf = tf.expand_dims(sdfs[i], -1)
sdf = sdf * -1.0 # inside positive, outside zero
samples_object = centernet_utils.transform_pointcloud(
tf.reshape(samples_world, [1, 1, -1, 3]),
tf.reshape(poses[2][i], [1, 1, 3]),
tf.reshape(poses[0][i], [1, 1, 3, 3]),
tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0
samples_object = \
(samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5
samples = tf.squeeze(samples_object)
| tensorflow.expand_dims | 13,991 |
import tensorflow as tf
indicator = tf.less(range_tiled, lengths_tiled+1) #i.e. where seq len is less than index
trim = np.ones(indicator.get_shape())
trim[:,0] = 0 #ignore start symbol
indicator = tf.logical_and(indicator, trim.astype(bool))
self.indicator = indicator
sz = [batch_size, max_sequence_len]
self._mask = tf.select(indicator, tf.ones(sz), tf.zeros(sz))
#-------------------------------#
self.weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
hidden_size = model_params['model_hidden_size']
| tensorflow.zeros | 13,992 |
import tensorflow as tf
def benchmarkEagerLinearRegression(self):
num_epochs = 10
num_batches = 200
batch_size = 64
dataset = linear_regression.synthetic_dataset(
w=tf.random_uniform([3, 1]),
b=tf.random_uniform([1]),
noise_level=0.01,
batch_size=batch_size,
num_batches=num_batches)
burn_in_dataset = dataset.take(10)
| tensorflow.random_uniform | 13,993 |
import tensorflow as tf
Returns:
float Tensor of shape [batch_size, seq_length, embedding_size].
"""
# This function assumes that the input is of shape [batch_size, seq_length,
# num_inputs].
#
# If the input is a 2D tensor of shape [batch_size, seq_length], we
# reshape to [batch_size, seq_length, 1].
if input_ids.shape.ndims == 2:
input_ids = tf.expand_dims(input_ids, axis=[-1])
embedding_table = tf.get_variable(
name=word_embedding_name,
shape=[vocab_size, embedding_size],
initializer=create_initializer(initializer_range))
if use_one_hot_embeddings:
flat_input_ids = tf.reshape(input_ids, [-1])
one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
| tensorflow.expand_dims | 13,994 |
import tensorflow as tf
use_tpu=FLAGS.use_tpu,
bsz=FLAGS.predict_batch_size)
checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best")
result = estimator.predict(
input_fn=predict_input_fn,
checkpoint_path=checkpoint_path)
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\
tf.gfile.GFile(output_submit_file, "w") as sub_writer:
sub_writer.write("index" + "\t" + "prediction\n")
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, (example, prediction)) in\
enumerate(zip(predict_examples, result)):
probabilities = prediction["probabilities"]
if i >= num_actual_predict_examples:
break
| tensorflow.gfile.GFile | 13,995 |
import tensorflow as tf
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
rpn_score_loss_t = tf.reshape(rpn_score_loss, [1])
rpn_box_loss_t = tf.reshape(rpn_box_loss, [1])
total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1])
fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1])
fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1])
mask_loss_t = tf.reshape(mask_loss, [1])
learning_rate_t = tf.reshape(learning_rate, [1])
host_call = (host_call_fn,
[global_step_t, total_loss_t, total_rpn_loss_t,
| tensorflow.reshape | 13,996 |
import tensorflow as tf
drop_remainder=True))
return d
return input_fn
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.use_hvd:
hvd.init()
if FLAGS.reduce_log and (hvd.rank() != 0):
tf.logging.set_verbosity(tf.logging.ERROR)
| tensorflow.to_int32 | 13,997 |
import tensorflow as tf
# Capture *.tgz and *.tar.gz too.
mode = "r:gz" if compressed_filepath.endswith("gz") else "r"
with tarfile.open(compressed_filepath, mode) as corpus_tar:
corpus_tar.extractall(tmp_dir)
filenames = tf.gfile.Glob(os.path.join(tmp_dir, glob_pattern))
for tsv_filename in filenames:
if tsv_filename.endswith(".gz"):
new_filename = tsv_filename.strip(".gz")
generator_utils.gunzip_file(tsv_filename, new_filename)
tsv_filename = new_filename
with tf.gfile.Open(tsv_filename) as tsv_file:
for line in tsv_file:
if line and "\t" in line:
parts = line.split("\t")
source, target = parts[src_column], parts[trg_column]
source, target = source.strip(), target.strip()
clean_pairs = [(source, target)]
if "tsv" in datatypes_to_clean:
clean_pairs = cleaner_en_xx.clean_en_xx_pairs(clean_pairs)
for source, target in clean_pairs:
| tensorflow.gfile.Open | 13,998 |
from tensorflow.python.framework import ops
last = input_shape[-1].value
if last is not None and k is not None and last < k:
raise ValueError("input.shape %s must have last dimension >= k = %d" %
(input_shape, k))
output_shape = input_shape[:-1].concatenate([k])
return [output_shape, output_shape]
@ops.RegisterShape("BatchNormWithGlobalNormalization")
def _BatchNormShape(op):
"""Shape function for BatchNormWithGlobalNormalization op."""
input_shape = op.inputs[0].get_shape().with_rank(4)
mean_shape = op.inputs[1].get_shape().with_rank(1)
var_shape = op.inputs[2].get_shape().with_rank(1)
beta_shape = op.inputs[3].get_shape().with_rank(1)
gamma_shape = op.inputs[4].get_shape().with_rank(1)
| tensorflow.python.framework.ops.RegisterShape | 13,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.