seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf self.global_step = tf.train.get_or_create_global_step() self.saver = tf.train.Saver() # Loss functions and training epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=0) ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6) ratio = tf.clip_by_value(ratio, 0, 10) surr1 = batch['advantage'] * ratio surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay) loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2)) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy()) loss = loss_pg + loss_vf + loss_entropy opt = tf.train.AdamOptimizer(self.LR) self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params) self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)] self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf)
tensorflow.train.AdamOptimizer
13,700
from tensorflow.python.framework import ops def _apply_sparse(self, grad, var): raise NotImplementedError("Sparse gradient updates are not supported.") class RegularizeGradientDescentOptimizer(optimizer.Optimizer): def __init__(self, learning_rate=0.001, lambd=0.5, use_locking=False, name="RGD"): super(RegularizeGradientDescentOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._lambda = lambd # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._lambda_t = None def _prepare(self): self._lr_t = ops.convert_to_tensor(self._lr, name="learning_rate") self._lambda_t = ops.convert_to_tensor(self._lambda, name="lambda") def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) lambda_t = math_ops.cast(self._lambda_t, var.dtype.base_dtype) g_t = grad var_update = state_ops.assign_sub(var, lr_t * (g_t - lambda_t * var) ) return control_flow_ops.group(*[var_update]) def _apply_sparse(self, grad, var): raise NotImplementedError("Sparse gradient updates are not supported.")
tensorflow.python.framework.ops.convert_to_tensor
13,701
import tensorflow as tf is_class_agnostic=False) nms_masks_expected2 = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32) nms_scores_expected2 = tf.constant([], dtype=tf.float32) nms_classes_expected2 = tf.constant([], dtype=tf.int32)
tensorflow.constant
13,702
import tensorflow as tf if __name__ == '__main__': tf.test.main()
tensorflow.test.main
13,703
import tensorflow as tf init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02) filters = tf.get_variable('zero_conv_weights' + id, initializer=init, shape=[size[0], size[1], in_ch, channels]) filters = filters - tf.reduce_mean(filters, axis=[0, 1, 2], keepdims=True) if padding == "PARTIAL": with tf.variable_scope('mask'): _, h, w, _ = input.get_shape().as_list() slide_window = size[0] * size[1] mask = tf.ones(shape=[1, h, w, 1]) update_mask = tf.layers.conv2d(mask, filters=1, name='mask' + id, kernel_size=size, kernel_initializer=tf.constant_initializer(1.0), strides=stride, padding="SAME", use_bias=False, trainable=False, dilation_rate=(dilation, dilation)) mask_ratio = slide_window / (update_mask + 1e-8) update_mask = tf.clip_by_value(update_mask, 0.0, 1.0) mask_ratio = mask_ratio * update_mask
tensorflow.ones
13,704
import tensorflow as tf self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3") self.conv4_4 = self.conv_layer(self.conv4_3, "conv4_4") self.pool4 = self.max_pool(self.conv4_4, 'pool4') self.conv5_1 = self.conv_layer(self.pool4, "conv5_1") self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2") self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3") self.conv5_4 = self.conv_layer(self.conv5_3, "conv5_4") self.pool5 = self.max_pool(self.conv5_4, 'pool5') self.fc6 = self.fc_layer(self.pool5, "fc6") assert self.fc6.get_shape().as_list()[1:] == [4096] self.relu6 = tf.nn.relu(self.fc6) self.fc7 = self.fc_layer(self.relu6, "fc7") self.relu7 = tf.nn.relu(self.fc7) self.fc8 = self.fc_layer(self.relu7, "fc8") log("finished building VGG19 in %ds" % (time.time() - start_time)) return self.fc8 def avg_pool(self, bottom, name):
tensorflow.nn.relu
13,705
import tensorflow as tf with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign( ref=self.episode_indices[-1], value=tf.where(self.memory_index + num_instances > self.capacity, self.episode_indices[self.episode_count - 1], self.capacity - 1) ) with tf.control_dependencies(control_inputs=(assignment,)): assignment = tf.assign(ref=self.memory_index, value=((self.memory_index + num_instances) % self.capacity)) with tf.control_dependencies(control_inputs=(assignment,)): return tf.no_op() def tf_retrieve_indices(self, indices): """ Fetches experiences for given indices. Args: indices: Index tensor Returns: Batch of experiences """
tensorflow.no_op
13,706
import tensorflow as tf with tf.variable_scope('a_grad'): self.a_grads = tf.gradients(self.q, a)[0] # tensor of gradients of each sample (None, a_dim)
tensorflow.gradients
13,707
import tensorflow as tf Returns: a `float` `scalar`, KL divergence. """ if num_classes == 2: q = tf.nn.sigmoid(q_logits) p = tf.nn.sigmoid(p_logits) kl = (-tf.nn.sigmoid_cross_entropy_with_logits(logits=q_logits, labels=q) + f.nn.sigmoid_cross_entropy_with_logits(logits=p_logits, labels=q)) else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits) kl = tf.reduce_sum(q * (tf.log(q) - tf.log(p)), 1) num_labels = tf.reduce_sum(weights) num_labels = tf.where(tf.equal(num_labels, 0.), 1., num_labels) kl.get_shape().assert_has_rank(2) weights.get_shape().assert_has_rank(1) loss = tf.identity(tf.reduce_sum(tf.expand_dims(weights, -1) * kl) / num_labels, name='kl') return loss def cross_entropy_sequence_loss(logits, targets, sequence_length): """Calculates the per-example cross-entropy loss for a sequence of logits and masks out all losses passed the sequence length. Args: logits: Logits of shape `[T, B, vocab_size]`
tensorflow.reduce_sum
13,708
import tensorflow as tf # 第二次[1,2,none,none] to_caffe = tf.transpose(bottom, [0, 3, 1, 2]) # then force it to have channel 2 #[1,2,none.none],将9个anchor的前景得分和背景得分分开 # 第二次[1,18,none,none] reshaped = tf.reshape(to_caffe, tf.concat(axis=0, values=[[self._batch_size], [num_dim, -1], [input_shape[2]]])) # then swap the channel back # [1,none,none,2], 第一个none应该为(行*9) # 第二次[1,none,none,18] to_tf = tf.transpose(reshaped, [0, 2, 3, 1]) return to_tf def _softmax_layer(self, bottom, name): if name == 'rpn_cls_prob_reshape': input_shape = tf.shape(bottom) # tf.reshape()中-1的应用,-1表示不知道该填什么数字合适的情况下,可以选择,由python通过原数组和其他的值推测出来 # 每一行是1个anchor的前景、背景得分,先显示所有点产生的第一种anchor,然后是所有点产生的第二种anchor,........ bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]]) reshaped_score = tf.nn.softmax(bottom_reshaped, name=name) return tf.reshape(reshaped_score, input_shape) # [1,none,none,2] return tf.nn.softmax(bottom, name=name) def _proposal_top_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name): rois, rpn_scores = tf.py_func(proposal_top_layer, [rpn_cls_prob, rpn_bbox_pred, self._im_info, self._feat_stride, self._anchors, self._num_anchors],
tensorflow.shape
13,709
import tensorflow as tf features = tf.io.parse_single_example(example_proto, features) images = tf.image.decode_png(features['member/encoded'], channels=3) # 注意png原本有4個channel,但執行到下面的處理會出錯,所以前一行先降成3個channel。 images = tf.image.random_brightness(images, 0.1) images = tf.image.random_saturation(images, 0.7, 1.3) images = tf.image.random_contrast(images, 0.6, 1.5)
tensorflow.image.random_brightness
13,710
import tensorflow as tf def build_batch_stats(): """Builds the batch statistics calculation ops.""" # We use the moving mean as an estimate of the mean in order to perform # a more numerically stable calculation of the batch mean. # Copy for better stability. shift = tf.add(self._moving_mean, 0) counts, shifted_sum_x, shifted_sum_x2, _ = tf.nn.sufficient_statistics( input_batch, reduction_indices, keep_dims=True, shift=shift, name="batch_norm_ss") mean, variance = tf.nn.normalize_moments(counts, shifted_sum_x, shifted_sum_x2, shift, name="normalize_moments") return mean, variance def build_moving_stats(): return ( tf.identity(self._moving_mean), tf.identity(self._moving_variance), ) mean, variance = utils.smart_cond(
tensorflow.nn.normalize_moments
13,711
import tensorflow as tf self.b_out_train = params.get('b_out_train', True) self.init_state_train = params.get('init_state_train', True) # Tensorflow initializations self.x = tf.placeholder("float", [N_batch, N_steps, N_in]) self.y = tf.placeholder("float", [N_batch, N_steps, N_out]) self.output_mask = tf.placeholder("float", [N_batch, N_steps, N_out]) # trainable variables with tf.variable_scope("model"):
tensorflow.placeholder
13,712
import tensorflow as tf rate = tf.train.exponential_decay(starter_learning, global_step, 500, 0.9) #exponential learning rate decay #rate = starter_learning tvars = tf.trainable_variables() #list of trainable variables Npar= flatten(tvars).get_shape()[1] #total number of paramters in the network print('there are:', Npar,'parameters in the network') optimizer = tf.train.AdamOptimizer(learning_rate = rate) #Initialize Adam optimizer grads_var = optimizer.compute_gradients(cost, tvars ) #Get gradients layer by layer. Note that this function returns the pair (grads, var) grads = [grads_var[i][0] for i in range(len(grads_var))] #extract the gradients min = optimizer.apply_gradients(grads_and_vars= grads_var, global_step= global_step) #Apply the gradients to look for critical points gradients_and_par = [] #store gradients and training paramters for different epochs
tensorflow.train.AdamOptimizer
13,713
import tensorflow as tf strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) print("w is "+str(w)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b
tensorflow.constant_initializer
13,714
import tensorflow as tf strides = [1, stride, stride, 1] bshape = [1, 1, 1, nf] elif data_format == 'NCHW': channel_ax = 1 strides = [1, 1, stride, stride] bshape = [1, nf, 1, 1] else: raise NotImplementedError bias_var_shape = [nf] if one_dim_bias else [1, nf, 1, 1] nin = x.get_shape()[channel_ax].value wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1])
tensorflow.reshape
13,715
import tensorflow as tf # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
tensorflow.placeholder
13,716
import tensorflow as tf xs_ops = _to_ops(xs) fwd_ops = [op for op in fwd_ops if not op in xs_ops] fwd_ops = [op for op in fwd_ops if not '/assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/Assign' in op.name] fwd_ops = [op for op in fwd_ops if not '/read' in op.name] ts_all = ge.filter_ts(fwd_ops, True) # get the tensors ts_all = [t for t in ts_all if '/read' not in t.name] ts_all = set(ts_all) - set(xs) - set(ys) # construct list of tensors to checkpoint during forward pass, if not # given as input if type(checkpoints) is not list: if checkpoints == 'collection': checkpoints = tf.get_collection('checkpoints') elif checkpoints == 'speed': # checkpoint all expensive ops to maximize running speed checkpoints = ge.filter_ts_from_regex(fwd_ops, 'conv2d|Conv|MatMul') elif checkpoints == 'memory': # remove very small tensors and some weird ops def fixdims(t): # tf.Dimension values are not compatible with int, convert manually try: return [int(e if e.value is not None else 64) for e in t] except:
tensorflow.get_collection
13,717
import tensorflow as tf # https://en.wikipedia.org/wiki/Matthews_correlation_coefficient tp, tp_op = tf.metrics.true_positives( predictions, label_ids, weights=is_real_example) tn, tn_op = tf.metrics.true_negatives( predictions, label_ids, weights=is_real_example) fp, fp_op = tf.metrics.false_positives( predictions, label_ids, weights=is_real_example) fn, fn_op = tf.metrics.false_negatives( predictions, label_ids, weights=is_real_example)
tensorflow.metrics.false_positives
13,718
import tensorflow as tf with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
tensorflow.reduce_sum
13,719
import tensorflow as tf log_scale: a float, used to multiply the clipped log loss, e.g: 0.5 log_cutoff:a float, minimum log loss value; e.g. 0.50 name: Optional scope/name for op_scope. Returns: A tensor with the clipped kappa log loss. """ with tf.name_scope(name): num_classes = labels.get_shape()[-1].value labels = tf.cast(labels, predictions.dtype) if label_smoothing > 0: smooth_positives = 1.0 - label_smoothing smooth_negatives = label_smoothing / num_classes labels = labels * smooth_positives + smooth_negatives log_loss_res = log_loss_tf(predictions, labels) kappa_loss_res = kappa_loss( predictions, labels, y_pow=y_pow, num_ratings=num_classes, batch_size=batch_size) return kappa_loss_res + log_scale * tf.clip_by_value(log_loss_res, log_cutoff, 10**3)
tensorflow.cast
13,720
import tensorflow as tf """Check that we're using a compatible TF version. Raises a warning if either Tensorflow version is less that 2.0 or TF 2.x is not enabled. If TF 2.x is enabled, but version is < TF 2.3, raises a warning to indicate that resources may not be initialized. """ major, minor, _ = tf.version.VERSION.split('.') if not (int(major) >= 2 and tf2.enabled()): tf.compat.v1.logging.warning( 'Tensorflow version (%s) found. TransformFeaturesLayer is supported ' 'only for TF 2.x with TF 2.x behaviors enabled and may not work as ' 'intended.', tf.version.VERSION) elif int(major) == 2 and int(minor) < 3: # TODO(varshaan): Log a more specific warning. tf.compat.v1.logging.warning( 'Tensorflow version (%s) found. TransformFeaturesLayer may not work ' 'as intended if the SavedModel contains an initialization op.', tf.version.VERSION)
tensorflow.compat.v1.logging.warning
13,721
import tensorflow as tf def discriminator_fn(data, generator_inputs): outputs = tf.layers.dense(data, 1) return outputs def model_fn(features, labels, mode, params): # build model global_step = tf.train.get_global_step() generator_inputs = features real_data = labels gan_model = tf.contrib.gan.gan_model(generator_fn, discriminator_fn, real_data, generator_inputs) predictions = gan_model.generated_data
tensorflow.train.get_global_step
13,722
import tensorflow as tf return logits, prediction def general_conv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm=True, relu_factor = 0, name="conv2d"): with tf.variable_scope(name): conv = tf.layers.conv2d(input_data, filters, kernel_size, stride, padding, activation=None) if do_norm: conv = tf.layers.batch_normalization(conv, momentum=0.9) if activation_function == "relu": conv = tf.nn.relu(conv, name = 'relu') if activation_function == "leakyrelu": conv = tf.nn.leaky_relu(conv, alpha=relu_factor) if activation_function == "elu": conv = tf.nn.elu(conv, name = 'elu') return conv def general_deconv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm = True, relu_factor = 0, name="deconv2d"): with tf.variable_scope(name): deconv = tf.layers.conv2d_transpose(input_data, filters, kernel_size, (stride, stride), padding, activation = None) if do_norm: deconv = tf.layers.batch_normalization(deconv, momentum = 0.9)
tensorflow.nn.leaky_relu
13,723
import tensorflow as tf def update(state, input_, context=None, symbol=None): if context is not None and decoder.rnn_feed_attn: input_ = tf.concat([input_, context], axis=1) input_size = input_.get_shape()[1].value initializer = CellInitializer(decoder.cell_size) if decoder.orthogonal_init else None with tf.variable_scope(tf.get_variable_scope(), initializer=initializer): try: output, new_state = get_cell(input_size)(input_, state) except ValueError: # auto_reuse doesn't work with LSTM cells output, new_state = get_cell(input_size, reuse=True)(input_, state) if decoder.skip_update and decoder.pred_edits and symbol is not None:
tensorflow.get_variable_scope
13,724
import tensorflow as tf Returns: resized_image: A 3-D tensor containing the resized image. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0]
tensorflow.convert_to_tensor
13,725
import tensorflow as tf predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): if i >= num_actual_predict_examples: break probabilities = prediction["probabilities"] texta=predict_examples[i].text_a texta=tokenizer.tokenize(texta) phrase=[texta[j] if probabilities[j]>=0.5 else ' ' for j in range(min(len(texta),128))] phrase=''.join(phrase).strip() # output_line = "\t".join( # str(class_probability) # for class_probability in probabilities) + "\n" writer.write(phrase+'\n') num_written_lines += 1
tensorflow.logging.info
13,726
import tensorflow as tf batch_size = 128 sequence_length = 15 d_embed = 200 d_out = 4 embed = tf.random_normal((vocab_size, d_embed)) config = _test_spinn_config(d_embed, d_out) model = spinn.SNLIClassifier(config, embed) trainer = spinn.SNLIClassifierTrainer(model, config.lr)
tensorflow.random_normal
13,727
import tensorflow as tf # Trainable parameters facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask
tensorflow.concat
13,728
import tensorflow as tf epsilon = tf.constant(value=1e-7) labels = tf.to_float(labels) # labels = tf.to_float(tf.reshape(labels, (-1, num_classes))) softmax = tf.nn.softmax(logits) + epsilon if head is not None: cross_entropy = -tf.reduce_sum(tf.mul(labels * tf.log(softmax), head), axis=[1])
tensorflow.nn.softmax
13,729
import tensorflow as tf return {self.ENCODED_VALUES_KEY: x + addend} def decode(self, encoded_tensors, decode_params, num_summands=None, shape=None): """See base class.""" del num_summands # Unused. del shape # Unused. x = encoded_tensors[self.ENCODED_VALUES_KEY] addend = dummy_rng_source(decode_params[self.SEED_PARAM_KEY], x.shape.num_elements()) addend = tf.reshape(addend, x.shape) return x - addend @encoding_stage.tf_style_adaptive_encoding_stage class PlusOneOverNEncodingStage(encoding_stage.AdaptiveEncodingStageInterface): """[Example] adaptive encoding stage, adding 1/N in N-th iteration. This is an example implementation of an `AdaptiveEncodingStageInterface` that modifies state, which controls the creation of params. This is also a simple example of how an `EncodingStageInterface` can be wrapped as an `AdaptiveEncodingStageInterface`, without modifying the wrapped encode and decode methods.
tensorflow.reshape
13,730
from tensorflow.python.ops import gen_math_ops name: A name for the operation (optional). Returns: A `Tensor` the same size and type as `x` with absolute values. """ with ops.op_scope([x], name, "Abs") as name: x = ops.convert_to_tensor(x, name="x") if x.dtype == types.complex64: return gen_math_ops.complex_abs(x, name=name) return gen_math_ops._abs(x, name=name) def pow(x, y, name=None): """Computes the power of one value to another. Given a tensor `x` and a tensor `y`, this operation computes \\\\(x^y\\\\) for corresponding elements in `x` and `y`. For example:
tensorflow.python.ops.gen_math_ops._abs
13,731
import tensorflow as tf log_sigmas = self.parameterizer(x1) x2, ildj = half_gaussianize(z2, log_sigmas, inverse=tf.constant(True)) return x2, ildj def exponentiate(x, log_lambdas, inverse=tf.constant(False)): if not inverse: z = tf.math.exp(log_lambdas)*x ldj = tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_lambdas) ldj = -tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) return z, ldj class Exponentiate(Parameterize): """ Implementation of parameterize for an exponetial prior. """ def __init__(self, input_shape=None, name='gaussianize', *args, **kwargs):
tensorflow.math.exp
13,732
import tensorflow as tf def testModelWithBuckets(self): """Larger tests that does full sequence-to-sequence model training.""" # We learn to copy 10 symbols in 2 buckets: length 4 and length 8. classes = 10 buckets = [(4, 4), (8, 8)] perplexities = [[], []] # Results for each bucket. tf.set_random_seed(111) random.seed(111) np.random.seed(111) with self.test_session() as sess: # We use sampled softmax so we keep output projection separate. w = tf.get_variable("proj_w", [24, classes])
tensorflow.set_random_seed
13,733
import tensorflow as tf input_partition_dims = None num_cores_per_replica = None if params.use_tpu: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( params.platform.tpu, zone=params.platform.tpu_zone, project=params.platform.gcp_project) tpu_grpc_url = tpu_cluster_resolver.get_master() tf.Session.reset(tpu_grpc_url) # If the input image is transposed (from NHWC to HWCN), the partition # dimensions also need to be transposed the same way. def _maybe_transpose(input_partition_dims): if input_partition_dims and params.train.transpose_input: return [input_partition_dims[i] for i in [1, 2, 3, 0]] else: return input_partition_dims
tensorflow.Session.reset
13,734
import tensorflow as tf self.model_W = tf.get_variable("{}_W".format(name), initializer=kernel_initializer([n_in, n_out])) # variational parameters self.model_b = tf.get_variable("{}_b".format(name), initializer=tf.zeros([n_out])) self.model_DMW = tf.einsum('pij,jk->pik', self.DM, self.model_W) # Masked weight: p_s * i_s * o_s self.model_tiled_b = tf.tile(tf.reshape(self.model_b, [1, n_out]), [self.p_s, 1]) if activation is None: self.activation = tf.identity
tensorflow.reshape
13,735
import tensorflow as tf def nature_cnn(unscaled_images, **conv_kwargs): """ CNN from Nature paper. """ scaled_images = tf.cast(unscaled_images, tf.float32) / 255. activ = tf.nn.relu h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs))
tensorflow.cast
13,736
import tensorflow as tf tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing # ratio decay when mode = "scheduled" gradient_norms = [tf.norm(grad) for grad in model.gradients] tf.summary.histogram("gradient_norm", gradient_norms) tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize # gradients (in case of explosion)
tensorflow.summary.histogram
13,737
from tensorflow.python.framework import constant_op ]]) with self.test_session() as sess: self._assert_sparse_tensor_equals(expected_out, sess.run(op)) def test_integer_mixed_string_dense(self): """Tests mixed dense inputs. """ op = sparse_feature_cross_op.sparse_feature_cross([ constant_op.constant([[11, 333], [55555, 999999]], dtypes.int64), constant_op.constant([['batch1-FC2-F1', 'batch1-FC2-F2'], ['batch2-FC2-F1', 'batch2-FC2-F2']], dtypes.string), ]) expected_out = self._sparse_tensor([[ '11_X_batch1-FC2-F1', '11_X_batch1-FC2-F2', '333_X_batch1-FC2-F1', '333_X_batch1-FC2-F2' ], [ '55555_X_batch2-FC2-F1', '55555_X_batch2-FC2-F2',
tensorflow.python.framework.constant_op.constant
13,738
import tensorflow as tf dtype = op.inputs[0].dtype return grad * tf.cast(grad > 0., dtype) * \ tf.cast(op.inputs[0] > 0., dtype)
tensorflow.cast
13,739
import tensorflow as tf gradients[i] = (tf.clip_by_norm(grad, grad_norm_clipping), var) with tf.variable_scope("input_info", reuse=False): tf.summary.scalar('rewards', tf.reduce_mean(rew_t_ph)) tf.summary.scalar('importance_weights', tf.reduce_mean(importance_weights_ph)) if full_tensorboard_log: tf.summary.histogram('rewards', rew_t_ph) tf.summary.histogram('importance_weights', importance_weights_ph) if tf_util.is_image(obs_phs[0]): tf.summary.image('observation', obs_phs[0]) elif len(obs_phs[0].shape) == 1: tf.summary.histogram('observation', obs_phs[0])
tensorflow.summary.histogram
13,740
import tensorflow as tf candidate_labels = tf.matmul(tf.expand_dims(labels, 0), tf.to_int32(same_span)) # [1, num_candidates] candidate_labels = tf.squeeze(candidate_labels, 0) # [num_candidates]
tensorflow.squeeze
13,741
import tensorflow as tf train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu, optimizer) output_spec = contrib_tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: if task_name not in ["sts-b", "cola"]: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean( values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } elif task_name == "sts-b": def metric_fn(per_example_loss, label_ids, logits, is_real_example): """Compute Pearson correlations for STS-B.""" # Display labels and predictions
tensorflow.metrics.accuracy
13,742
import tensorflow as tf ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_sigmas) ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) return z, ldj class HalfGaussianize(Parameterize): """ Implementation of parameterize for a half-Gaussian prior. """
tensorflow.math.exp
13,743
import tensorflow as tf import tensorflow_probability as tfp from normalizing_flows.flows import Transform from . import Parameterize def gaussianize(x, mus, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x + mus ldj = tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) else: z = (x - mus)*tf.math.exp(-log_sigmas) ldj = -tf.math.reduce_sum(log_sigmas, axis=[1,2,3]) return z, ldj
tensorflow.math.exp
13,744
import tensorflow as tf def testVariables(self): save_path = os.path.join(self.get_temp_dir(), "variables") with tf.Session("", graph=tf.Graph()) as sess: one = tf.Variable(1.0)
tensorflow.Graph
13,745
import tensorflow as tf # partial derivatives to the checkpointed nodes for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]): if dr is not None: if d_checkpoints[r] is None: d_checkpoints[r] = dr else: d_checkpoints[r] += dr def _unsparsify(x): if not isinstance(x, tf.IndexedSlices): return x assert x.dense_shape is not None, "memory_saving_gradients encountered sparse gradients of unknown shape" indices = x.indices while indices.shape.ndims < x.values.shape.ndims: indices = tf.expand_dims(indices, -1) return tf.scatter_nd(indices, x.values, x.dense_shape) # partial derivatives to xs (usually the params of the neural net) d_xs_new = dv[len(checkpoints_other):] for j in range(len(xs)): if d_xs_new[j] is not None: if d_xs[j] is None: d_xs[j] = _unsparsify(d_xs_new[j]) else: d_xs[j] += _unsparsify(d_xs_new[j])
tensorflow.expand_dims
13,746
from tensorflow.python.ops import array_ops init_shape = [init_size] + fixed_shape array = _create_local( 'array', shape=init_shape, validate_shape=False, dtype=values.dtype) size = _create_local('size', shape=[], dtype=dtypes.int32) perm = [0 if n == axis else n + 1 if n < axis else n for n in range(ndim)] valid_array = array[:size] valid_array.set_shape([None] + fixed_shape) value = array_ops.transpose(valid_array, perm, name='concat') values_size = array_ops.shape(values)[axis] if max_size is None: batch_size = values_size else: batch_size = math_ops.minimum(values_size, max_size - size) perm = [axis] + [n for n in range(ndim) if n != axis] batch_values = array_ops.transpose(values, perm)[:batch_size] def reallocate():
tensorflow.python.ops.array_ops.shape
13,747
import tensorflow as tf flattened_emb = tf.reshape(emb, [num_sentences * max_sentence_length, util.shape(emb, 2)]) else: raise ValueError("Unsupported rank: {}".format(emb_rank)) return tf.boolean_mask(flattened_emb, tf.reshape(text_len_mask, [num_sentences * max_sentence_length])) def lstm_contextualize(self, text_emb, text_len, text_len_mask):
tensorflow.reshape
13,748
import tensorflow as tf include_multiclass_scores=include_multiclass_scores, include_instance_masks=include_instance_masks, include_keypoints=include_keypoints)) tensor_dict[fields.InputDataFields.image] = tf.squeeze( tensor_dict[fields.InputDataFields.image], axis=0) return tensor_dict
tensorflow.squeeze
13,749
import tensorflow as tf if self.demo: self.c = tf.placeholder(tf.int32, [None, self.config.max_p_len], "context") self.q = tf.placeholder(tf.int32, [None, self.config.max_q_len], "question") self.ch = tf.placeholder(tf.int32, [None, self.config.max_p_len, self.config.max_ch_len], "context_char") self.qh = tf.placeholder(tf.int32, [None, self.config.max_q_len, self.config.max_ch_len], "question_char") self.start_label = tf.placeholder(tf.int32, [None], "answer_label1") self.end_label = tf.placeholder(tf.int32, [None], "answer_label2") else: self.c = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len], "context") self.q = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len], "question") self.ch = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_p_len, self.config.max_ch_len], "context_char") self.qh = tf.placeholder(tf.int32, [self.config.batch_size * self.max_p_num, self.config.max_q_len, self.config.max_ch_len], "question_char") self.start_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label1") self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2") self.position_emb = position_embedding(self.c, 2 * self.config.hidden_size) self.c_mask = tf.cast(self.c, tf.bool) # index 0 is padding symbol N x self.max_p_num, max_p_len self.q_mask = tf.cast(self.q, tf.bool) self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1) self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1) self.dropout = tf.placeholder(tf.float32, name="dropout") self.global_step = tf.Variable(0, name="global_step", trainable=False)
tensorflow.placeholder
13,750
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops labels = array_ops.reshape(labels, [-1]) weights = _mask_weights(ignore_mask, weights) if weights is not None: weights_rank = weights.get_shape().ndims if weights_rank > 1: weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix_ops.confusion_matrix( predictions, labels, num_classes, weights=weights, dtype=cm_dtype) update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm))
tensorflow.contrib.metrics.python.ops.confusion_matrix_ops.confusion_matrix
13,751
import tensorflow as tf def _init_session(self, sess, model): w = self._train_params['image_size'] h = self._train_params['image_size'] in_ch = 3 m = model # Do initialization of all variables sess.run(tf.global_variables_initializer()) # Load datasets with defaults sess.run([m.train_dataset_init_op, m.pred_dataset_init_op], feed_dict={ m.ph.train_images: np.zeros((1, w, h, in_ch)), m.ph.train_classes: np.zeros((1,)), m.ph.pred_images: np.zeros((1, w, h, in_ch)),
tensorflow.global_variables_initializer
13,752
import tensorflow as tf """ shape = inputdata.get_shape().as_list()[1:] if None not in shape: inputdata = tf.reshape(inputdata, [-1, int(np.prod(shape))]) else: inputdata = tf.reshape(inputdata, tf.stack([tf.shape(inputdata)[0], -1])) if w_init is None: w_init = tf.contrib.layers.variance_scaling_initializer() if b_init is None: b_init = tf.constant_initializer() ret = tf.layers.dense(inputs=inputdata, activation=lambda x: tf.identity(x, name='output'), use_bias=use_bias, name=name, kernel_initializer=w_init, bias_initializer=b_init, trainable=True, units=out_dim) return ret @staticmethod def layerbn(inputdata, is_training, name, scale=True): """ :param inputdata: :param is_training:
tensorflow.identity
13,753
import tensorflow as tf "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8,
tensorflow.flags.DEFINE_string
13,754
import tensorflow as tf self.assertEqual(np.int64(15), v.eval()) def testSomeErrors(self): with tf.Graph().as_default(): v0 = tf.Variable([10.0], name="v0") v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # By default the name used for "v2" will be "v1" and raise an error. with self.assertRaisesRegexp(ValueError, "same name: v1"): tf.train.Saver([v0, v1, v2]) # The names are different and will work. tf.train.Saver({"vee1": v1, "other": [v2]}) def testBasicsWithListOfVariables(self): save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.test_session(graph=tf.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver([v0, v1]) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized.
tensorflow.train.Saver
13,755
import tensorflow as tf """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"]
tensorflow.logging.info
13,756
import tensorflow as tf head_emb = tf.nn.dropout(head_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb] text_len_mask = tf.sequence_mask(text_len, maxlen=max_sentence_length) # [num_sentence, max_sentence_length] context_outputs = self.lstm_contextualize(context_emb, text_len, text_len_mask) # [num_words, emb] num_words = util.shape(context_outputs, 0) genre_emb = tf.gather(tf.get_variable("genre_embeddings", [len(self.genres), self.config["feature_size"]]), genre) # [emb] sentence_indices = tf.tile(tf.expand_dims(tf.range(num_sentences), 1), [1, max_sentence_length]) # [num_sentences, max_sentence_length] flattened_sentence_indices = self.flatten_emb_by_sentence(sentence_indices, text_len_mask) # [num_words] flattened_head_emb = self.flatten_emb_by_sentence(head_emb, text_len_mask) # [num_words] candidate_starts = tf.tile(tf.expand_dims(tf.range(num_words), 1), [1, self.max_span_width]) # [num_words, max_span_width] candidate_ends = candidate_starts + tf.expand_dims(tf.range(self.max_span_width), 0) # [num_words, max_span_width] candidate_start_sentence_indices = tf.gather(flattened_sentence_indices, candidate_starts) # [num_words, max_span_width] candidate_end_sentence_indices = tf.gather(flattened_sentence_indices, tf.minimum(candidate_ends, num_words - 1)) # [num_words, max_span_width] candidate_mask = tf.logical_and(candidate_ends < num_words, tf.equal(candidate_start_sentence_indices, candidate_end_sentence_indices)) # [num_words, max_span_width] flattened_candidate_mask = tf.reshape(candidate_mask, [-1]) # [num_words * max_span_width] candidate_starts = tf.boolean_mask(tf.reshape(candidate_starts, [-1]), flattened_candidate_mask) # [num_candidates] candidate_ends = tf.boolean_mask(tf.reshape(candidate_ends, [-1]), flattened_candidate_mask) # [num_candidates] candidate_sentence_indices = tf.boolean_mask(tf.reshape(candidate_start_sentence_indices, [-1]), flattened_candidate_mask) # [num_candidates] candidate_cluster_ids = self.get_candidate_labels(candidate_starts, candidate_ends, gold_starts, gold_ends, cluster_ids) # [num_candidates] candidate_span_emb = self.get_span_emb(flattened_head_emb, context_outputs, candidate_starts, candidate_ends) # [num_candidates, emb] candidate_mention_scores = self.get_mention_scores(candidate_span_emb) # [k, 1] candidate_mention_scores = tf.squeeze(candidate_mention_scores, 1) # [k] k = tf.to_int32(tf.floor(tf.to_float(tf.shape(context_outputs)[0]) * self.config["top_span_ratio"]))
tensorflow.gather
13,757
import tensorflow as tf else: self.scope_reuse = None self.param_initializer = { 'moving_mean': tf.constant_initializer(0., dtype=self.dtype), 'moving_variance': tf.constant_initializer(1., dtype=self.dtype), 'gamma': tf.constant_initializer(0.1, dtype=self.dtype) } self.param_trainable = {
tensorflow.constant_initializer
13,758
import tensorflow as tf tf.flags.DEFINE_string('trace_file', None, """Enable TensorFlow tracing and write trace to this file.""") tf.flags.DEFINE_string('graph_file', None, """Write the model's graph definition to this file. Defaults to binary format unless filename ends in 'txt'.""") tf.flags.DEFINE_string('optimizer', 'sgd', 'Optimizer to use: momentum or sgd or rmsprop') tf.flags.DEFINE_float('learning_rate', None, """Initial learning rate for training.""") tf.flags.DEFINE_float('num_epochs_per_decay', 0, """Steps after which learning rate decays.""") tf.flags.DEFINE_float('learning_rate_decay_factor', 0.94, """Learning rate decay factor.""") tf.flags.DEFINE_float('momentum', 0.9, """Momentum for training.""") tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""") tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""") tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""") tf.flags.DEFINE_float('gradient_clip', None, """Gradient clipping magnitude. Disabled by default.""") tf.flags.DEFINE_float('weight_decay', 0.00004,
tensorflow.flags.DEFINE_float
13,759
import tensorflow as tf embeddings: The embeddings to be orthogonalized for varied faces. Shape [batch_size, embeddings_dim] Return: pull away term loss """ with tf.name_scope(name): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / \ (batch_size * (batch_size - 1))
tensorflow.square
13,760
import tensorflow as tf width_assert = tf.Assert( tf.equal(width, image_width), ['Wrong width for tensor %s [expected][actual]', image.name, width, image_width]) asserts.extend([height_assert, width_assert]) # Create a random bounding box. # # Use tf.random_uniform and not numpy.random.rand as doing the former would # generate random numbers at graph eval time, unlike the latter which # generates random numbers at graph definition time. max_offset_height = control_flow_ops.with_dependencies( asserts, tf.reshape(image_height - crop_height + 1, [])) max_offset_width = control_flow_ops.with_dependencies( asserts, tf.reshape(image_width - crop_width + 1, [])) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform( [], maxval=max_offset_width, dtype=tf.int32) return [_crop(image, offset_height, offset_width, crop_height, crop_width) for image in image_list]
tensorflow.reshape
13,761
import tensorflow as tf class SetFromFlat(object): def __init__(self, var_list, dtype=tf.float32): assigns = [] shapes = list(map(var_shape, var_list)) total_size = np.sum([intprod(shape) for shape in shapes]) self.theta = theta = tf.placeholder(dtype, [total_size]) start = 0 assigns = [] for (shape, v) in zip(shapes, var_list): size = intprod(shape) assigns.append(tf.assign(v, tf.reshape(theta[start:start + size], shape))) start += size self.op = tf.group(*assigns) def __call__(self, theta): get_session().run(self.op, feed_dict={self.theta: theta}) class GetFlat(object): def __init__(self, var_list): self.op = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) def __call__(self): return get_session().run(self.op) def get_monte_carlo(reward, y, trace_length, batch_size):
tensorflow.group
13,762
import tensorflow as tf data_format='channels_last', padding= "same", strides=(2, 1), activation=tf.nn.relu) pool5 = conv5 pool5 = tf.transpose(pool5, [0, 3, 1, 2]) size = pool5.shape[-1] * pool5.shape[-2] * pool5.shape[-3] logits = tf.layers.dense(tf.reshape(pool5,(-1, size)), units=256*amp_factor)
tensorflow.transpose
13,763
import tensorflow as tf tgtimg_h0 = lrelu(conv2d(tgtimg, self.df_dim, name='h0_conv')) tgtimg_h1 = lrelu(conv2d(tgtimg_h0, self.df_dim*2, name='h1_conv')) tgtimg_h2 = lrelu(conv2d(tgtimg_h1, self.df_dim*4, name='h2_conv')) tgtimg_h3 = lrelu(conv2d(tgtimg_h2, self.df_dim*8, name='h3_conv')) tgtimg_h4 = lrelu(linear(tf.reshape(tgtimg_h3, [self.batch_size, -1]), featsize, 'h4_lin')) tgtimg_z = lrelu(linear(tgtimg_h4, featsize, 'hz_lin')) with tf.variable_scope("translate") as scope: trans_h0 = lrelu(linear(tf.concat([srcimg_z, tgtctx_z], 1), featsize, 'trans_h0'))
tensorflow.reshape
13,764
import tensorflow as tf self.c_mask = tf.cast(self.c, tf.bool) self.q_mask = tf.cast(self.q, tf.bool) self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1) self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1)
tensorflow.cast
13,765
import tensorflow as tf regularizers=self._embedding_regularizers, name="ItemMemory") # [batch, embedding size] self._cur_user = self.user_memory(self.input_users) # Item memories a query self._cur_item = self.item_memory(self.input_items) self._cur_item_negative = self.item_memory(self.input_items_negative) def _construct_placeholders(self): self.input_users = tf.placeholder(tf.int32, [None], 'UserID') self.input_items = tf.placeholder(tf.int32, [None], 'ItemID') self.input_items_negative = tf.placeholder(tf.int32, [None], 'NegativeItemID') # Add our placeholders add_to_collection(GraphKeys.PLACEHOLDER, [self.input_users, self.input_items, self.input_items_negative])
tensorflow.placeholder
13,766
import tensorflow as tf self.a = self._build_net(S, scope='eval_net', trainable=True) # input s_, output a, get a_ for critic self.a_ = self._build_net(S_, scope='target_net', trainable=False) self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net') def _build_net(self, s, scope, trainable): with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01) net = tf.layers.dense(s, 500, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l1', trainable=trainable) net = tf.layers.dense(net, 200, activation=tf.nn.relu, kernel_initializer=init_w, bias_initializer=init_b, name='l2', trainable=trainable) with tf.variable_scope('a'): actions = tf.layers.dense(net, self.a_dim, activation=tf.nn.tanh, kernel_initializer=init_w, bias_initializer=init_b, name='a', trainable=trainable) scaled_a = tf.multiply(actions, self.action_bound, name='scaled_a') # Scale output to -action_bound to action_bound return scaled_a
tensorflow.constant_initializer
13,767
import tensorflow as tf def test_instance_non_maximum_suppression_1d_scores_empty_inputs(self): masks = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32) scores = tf.constant([], dtype=tf.float32) classes = tf.constant([], dtype=tf.int32) (nms_masks1, nms_scores1, nms_classes1, _) = isu.instance_non_maximum_suppression_1d_scores( masks, scores, classes, min_score_thresh=0.65, min_iou_thresh=0.5, is_class_agnostic=True) nms_masks_expected1 = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32) nms_scores_expected1 = tf.constant([], dtype=tf.float32) nms_classes_expected1 = tf.constant([], dtype=tf.int32) (nms_masks2, nms_scores2, nms_classes2, _) = isu.instance_non_maximum_suppression_1d_scores( masks, scores, classes, min_score_thresh=0.65, min_iou_thresh=0.5, is_class_agnostic=False) nms_masks_expected2 = tf.constant(1.0, shape=[0, 2, 2], dtype=tf.float32)
tensorflow.constant
13,768
import tensorflow as tf from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class AssignOpTest(tf.test.TestCase): # NOTE(mrry): We exclude thess tests from the TSAN TAP target, because they # contain benign and deliberate data races when multiple threads update # the same parameters without a lock. def testParallelUpdateWithoutLocking(self): with self.test_session() as sess: ones_t = tf.fill([1024, 1024], 1.0) p = tf.Variable(tf.zeros([1024, 1024])) adds = [tf.assign_add(p, ones_t, use_locking=False) for _ in range(20)] tf.initialize_all_variables().run() def run_add(add_op): sess.run(add_op) threads = [self.checkedThread(target=run_add, args=(add_op,)) for add_op in adds] for t in threads: t.start() for t in threads: t.join()
tensorflow.fill
13,769
import tensorflow as tf # Intentionally using tf.Session() instead of self.test_session() to have # control over closing the session. test_session() is a cached session. with tf.Session(): coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) # Sleep to make sure the queue runner has started the first run call. time.sleep(_SLEEP_TIME)
tensorflow.train.Coordinator
13,770
import tensorflow as tf else: raise("ERROR: invalid type passed into Simulator class (only accepts 'D', 'P', or 'T')") self.rgb2lms = tf.convert_to_tensor([[17.8824, 43.5161, 4.11935], [3.45565, 27.1554, 3.86714], [0.0299566, 0.184309, 1.46709]]) def simulate_image(self, image): # passes an image through the color-blindness simulator inverted_rgb2lms = tf.linalg.inv(self.rgb2lms) product1 = tf.matmul(inverted_rgb2lms, self.color_matrix) product2 = tf.matmul(product1, self.rgb2lms) original_image_shape = image.shape simulated_image = tf.transpose(tf.matmul(product2, tf.reshape(tf.transpose(image, perm=[2, 0, 1]), (image.shape[2], image.shape[0] * image.shape[1]))), perm=[1, 0])
tensorflow.linalg.inv
13,771
import tensorflow as tf if FLAGS.use_tpu: output_spec = tf.contrib.tpu.TPUEstimatorSpec(
tensorflow.contrib.tpu.TPUEstimatorSpec
13,772
import tensorflow as tf head_selection, head_org_idx, sl_head, rep_head_mask, dep_selection, dep_org_idx, sl_dep, rep_dep_mask, rep_map, rep_dep_tensor, keep_prob, is_train, direction, ivec ): # data for self-attention rep_map_dp = dropout(rep_map, keep_prob, is_train) rep_dep_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, dep_selection) rep_head_tensor_dp, _, _ = reduce_data_rep_max_len(rep_map_dp, head_selection) # mask generation dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1]) head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep]) if direction is None: direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld] else: if direction == 'forward': direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld] else: direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld] # [bs, slh, slh] rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2))
tensorflow.expand_dims
13,773
import tensorflow as tf epoch_size = batch_patition_length // num_steps # ->5000/5=1000 就是每一轮的大小 for i in range(epoch_size): # 抽取 epoch_size 个数据 x = data_x[:, i * num_steps:(i + 1) * num_steps] # ->(200, 5) y = data_y[:, i * num_steps:(i + 1) * num_steps] yield (x, y) # yield 是生成器,生成器函数在生成值后会自动挂起并暂停他们的执行和状态(最后就是for循环结束后的结果,共有1000个(x, y)) def gen_epochs(n, num_steps): for i in range(n): yield gen_batch(gen_data(), batch_size, num_steps) '''定义placeholder''' x = tf.placeholder(tf.int32, [batch_size, num_steps], name="x") y = tf.placeholder(tf.int32, [batch_size, num_steps], name='y') init_state = tf.zeros([batch_size, state_size]) '''RNN输入''' rnn_inputs = tf.one_hot(x, num_classes) #rnn_inputs = tf.unstack(x_one_hot, axis=1) '''不需要了,使用tensorflow中定义好的cell即可''' #'''定义RNN cell''' #with tf.variable_scope('rnn_cell'):
tensorflow.placeholder
13,774
import tensorflow as tf def inputs(self): return [tf.TensorSpec([None, self.image_shape, self.image_shape, 3], self.image_dtype, 'input'),
tensorflow.TensorSpec
13,775
import tensorflow as tf if is_training and config.keep_prob < 1: cell = tf.contrib.rnn.DropoutWrapper( cell, output_keep_prob=config.keep_prob) return cell cell = tf.contrib.rnn.MultiRNNCell( [make_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(config.batch_size, tf.float32) state = self._initial_state outputs = [] with tf.variable_scope('RNN'): for time_step in range(self.num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(outputs, 1), [-1, config.hidden_size]) return output, state def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) def with_prefix(self, prefix, name): return '/'.join((prefix, name))
tensorflow.get_variable_scope
13,776
import tensorflow as tf self.runner = RunnerThread(env, pi, 20) grads = tf.gradients(self.loss, pi.var_list) tf.summary.scalar("model/policy_loss", pi_loss / bs) tf.summary.scalar("model/value_loss", vf_loss / bs) tf.summary.scalar("model/entropy", entropy / bs) tf.summary.image("model/state", pi.x) tf.summary.scalar("model/grad_global_norm", tf.global_norm(grads)) tf.summary.scalar("model/var_global_norm", tf.global_norm(pi.var_list)) self.summary_op = tf.summary.merge_all() grads, _ = tf.clip_by_global_norm(grads, 40.0) # copy weights from the parameter server to the local model self.sync = tf.group(*[v1.assign(v2) for v1, v2 in zip(pi.var_list, self.network.var_list)]) grads_and_vars = list(zip(grads, self.network.var_list))
tensorflow.global_norm
13,777
import tensorflow as tf def _initialize_weights(self): with tf.name_scope('parameters'): self.w0 = tf.Variable(tf.random_normal([28 * 28, 512])) self.b0 = tf.Variable(tf.zeros([512])) self.w1 = tf.Variable(tf.random_normal([512, 10])) self.b1 = tf.Variable(tf.zeros([10])) def _build_model(self, x, y): w0 = self.w0.read_value() b0 = self.b0.read_value()
tensorflow.zeros
13,778
import tensorflow as tf def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :], ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1 output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) def cond(batch, output, i): return tf.less(i, tf.shape(batch)[1])
tensorflow.while_loop
13,779
import tensorflow as tf with tf.variable_scope(scope, reuse=reuse): if param_noise: act_f, obs_phs = build_act_with_param_noise(q_func, ob_space, ac_space, stochastic_ph, update_eps_ph, sess, param_noise_filter_func=param_noise_filter_func) else: act_f, obs_phs = build_act(q_func, ob_space, ac_space, stochastic_ph, update_eps_ph, sess, layers=layers) # q network evaluation with tf.variable_scope("step_model", reuse=True, custom_getter=tf_util.outer_scope_getter("step_model")): step_model = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=True, obs_phs=obs_phs, layers=layers) q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/model") # target q network evaluation with tf.variable_scope("target_q_func", reuse=False): target_policy = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=False, layers=layers) target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name + "/target_q_func") # compute estimate of best possible value starting from state at t + 1 double_q_values = None double_obs_ph = target_policy.obs_ph if double_q: with tf.variable_scope("double_q", reuse=True, custom_getter=tf_util.outer_scope_getter("double_q")): double_policy = q_func(sess, ob_space, ac_space, 1, 1, None, reuse=True, layers=layers) double_q_values = double_policy.q_values double_obs_ph = double_policy.obs_ph
tensorflow.variable_scope
13,780
import tensorflow as tf with tf.variable_scope(name): moving_mean = get_variable("mean", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(0.0), trainable=False) moving_variance = get_variable("var", shape=[channels], dtype=tf.float32, initializer=tf.constant_initializer(1.0), trainable=False)
tensorflow.constant_initializer
13,781
from tensorflow.python.ops import math_ops weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fp), name=name) update = math_ops.div(
tensorflow.python.ops.math_ops.add
13,782
import tensorflow as tf q_t_selected = tf.reduce_sum(step_model.q_values * tf.one_hot(act_t_ph, n_actions), axis=1) # compute estimate of best possible value starting from state at t + 1 if double_q: q_tp1_best_using_online_net = tf.argmax(double_q_values, axis=1) q_tp1_best = tf.reduce_sum(target_policy.q_values * tf.one_hot(q_tp1_best_using_online_net, n_actions), axis=1) else: q_tp1_best = tf.reduce_max(target_policy.q_values, axis=1) q_tp1_best_masked = (1.0 - done_mask_ph) * q_tp1_best
tensorflow.one_hot
13,783
import tensorflow as tf "metadata.") tf.flags.DEFINE_string( "gcp_project", None,
tensorflow.flags.DEFINE_string
13,784
import tensorflow as tf mask0 = tf.constant([[1, 0], [0, 1]], dtype=tf.float32) mask1 = tf.constant([[1, 1], [0, 1]], dtype=tf.float32) mask2 = tf.constant([[1, 0], [1, 1]], dtype=tf.float32) mask3 = tf.constant([[1, 1], [1, 1]], dtype=tf.float32)
tensorflow.constant
13,785
import tensorflow as tf with tf.variable_scope("network_parameters"): with tf.variable_scope("policy"): x = flat_observations for size in config.policy_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) mean = tf.layers.dense( x, action_space.shape[0], activation=tf.tanh, kernel_initializer=mean_weights_initializer) logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer) logstd = tf.tile( logstd[None, None], [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2)) with tf.variable_scope("value"): x = flat_observations for size in config.value_layers:
tensorflow.get_variable
13,786
import tensorflow as tf tokens = self._StringToToken(chars) tokens = tf.where( tf.equal(tokens, NO_TOKEN), # Unseen character. tf.broadcast_to(self.unk_id, tf.shape(tokens)), tokens) # Create initial candidate list. candidates = tf.map_fn(
tensorflow.shape
13,787
import tensorflow as tf string, out_string will contain a random integer casted to a string. Otherwise string_tensor is returned unchanged. """ empty_string = tf.constant('', dtype=tf.string, name='EmptyString') random_source_id = tf.as_string( tf.random_uniform(shape=[], maxval=2 ** 63 - 1, dtype=tf.int64)) out_string = tf.cond( tf.equal(string_tensor, empty_string), true_fn=lambda: random_source_id, false_fn=lambda: string_tensor) return out_string
tensorflow.random_uniform
13,788
from tensorflow.python.framework import ops
tensorflow.python.framework.ops.reset_default_graph
13,789
import tensorflow as tf # either the Tower was originally created with reuse, # or a training tower without vs has to use reuse. reuse = (self.is_training and self._index > 0 and not self.has_own_variables) or self._initial_vs_reuse if len(self._vs_name): ret.append(tf.variable_scope(self._vs_name, reuse=reuse)) else: if reuse: ret.append(tf.variable_scope( tf.get_variable_scope(), reuse=True)) else:
tensorflow.variable_scope
13,790
import tensorflow as tf self.epsilon = epsilon self.data_format = data_format self.name = name def __call__(self,input_var,**kwargs) : mean, var = tf.nn.moments(input_var, self.axis, keep_dims=True) ret = (input_var - mean) / tf.sqrt(var+self.epsilon) if self.gamma is None : return ret else: return tf.nn.bias_add(ret*self.gamma,
tensorflow.sqrt
13,791
import tensorflow as tf # non-linear rep_map = bn_dense_layer(rep_tensor_split, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) # bs,bn,bl,vec rep_map_tile = tf.tile(tf.expand_dims(rep_map, 2), [1, 1, block_len, 1, 1]) # bs,bn,bl,bl,vec # rep_map_dp = dropout(rep_map, keep_prob, is_train) bn = block_num bl = block_len with tf.variable_scope('self_attention'): # @2.self-attention in block # mask generation sl_indices = tf.range(block_len, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) # bl,bl else: direct_mask = tf.greater(sl_col, sl_row) # bl,bl direct_mask_tile = tf.tile( tf.expand_dims(tf.expand_dims(direct_mask, 0), 0), [bs, bn, 1, 1]) # bs,bn,bl,bl rep_mask_tile_1 = tf.tile(tf.expand_dims(rep_mask_split, 2), [1, 1, bl, 1]) # bs,bn,bl,bl rep_mask_tile_2 = tf.tile(tf.expand_dims(rep_mask_split, 3), [1, 1, 1, bl]) # bs,bn,bl,bl rep_mask_tile = tf.logical_and(rep_mask_tile_1, rep_mask_tile_2) attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent_head = linear( rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec
tensorflow.greater
13,792
import tensorflow as tf filter_h, filter_w = filter_dims stride_h, stride_w = stride_dims with tf.variable_scope(scope): pool = tf.nn.avg_pool(input, ksize=[1, filter_h, filter_w, 1], strides=[1, stride_h, stride_w, 1], padding=padding) return pool
tensorflow.nn.avg_pool
13,793
import tensorflow as tf def contra_traj_lossV4(pred, tgt, horizon=12, resample=1, hard_ratio=1.0): horizon_pred = horizon_sumV1(pred, horizon) horizon_tgt = horizon_sumV1(tgt, horizon) pred_flat = tf.reshape(horizon_pred, [-1]) tgt_flat = tf.reshape(horizon_tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) sample_func = sample_pair(batch) def sample_compute(_):
tensorflow.reshape
13,794
import tensorflow as tf tf.app.flags.DEFINE_integer('save-model', 1000, 'Number of steps between model saves (default: %(default)d)') # Optimisation hyperparameters tf.app.flags.DEFINE_integer('batch-size', 256, 'Number of examples per mini-batch (default: %(default)d)') tf.app.flags.DEFINE_float('learning-rate', 1e-4, 'Learning rate (default: %(default)d)') tf.app.flags.DEFINE_integer('img-width', 32, 'Image width (default: %(default)d)') tf.app.flags.DEFINE_integer('img-height', 32, 'Image height (default: %(default)d)') tf.app.flags.DEFINE_integer('img-channels', 3, 'Image channels (default: %(default)d)') tf.app.flags.DEFINE_integer('num-classes', 10, 'Number of classes (default: %(default)d)') tf.app.flags.DEFINE_string('log-dir', '{cwd}/logs/'.format(cwd=os.getcwd()), 'Directory where to write event logs and checkpoint. (default: %(default)s)') run_log_dir = os.path.join(FLAGS.log_dir, 'exp_BN_bs_{bs}_lr_{lr}_aug_flip_brightness'.format(bs=FLAGS.batch_size, lr=FLAGS.learning_rate))
tensorflow.app.flags.DEFINE_integer
13,795
import tensorflow as tf # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape
tensorflow.ones_like
13,796
import tensorflow as tf return tf.nn.seq2seq.embedding_tied_rnn_seq2seq( enc_inp, dec_inp, cell, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingAttentionSeq2Seq(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) def EmbeddingAttentionSeq2SeqNoTuple(enc_inp, dec_inp, feed_previous): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=False) return tf.nn.seq2seq.embedding_attention_seq2seq( enc_inp, dec_inp, cell, num_encoder_symbols, num_decoder_symbols, embedding_size=2, feed_previous=feed_previous) for model in (EmbeddingRNNSeq2SeqF, EmbeddingRNNSeq2SeqNoTupleF, EmbeddingTiedRNNSeq2Seq, EmbeddingTiedRNNSeq2SeqNoTuple, EmbeddingAttentionSeq2Seq, EmbeddingAttentionSeq2SeqNoTuple): TestModel(model)
tensorflow.nn.rnn_cell.BasicLSTMCell
13,797
import tensorflow as tf random.seed(i) def get_session(): tf.reset_default_graph() tf_config = tf.ConfigProto( inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) session = tf.Session(config=tf_config) print("AVAILABLE GPUS: ", get_available_gpus())
tensorflow.ConfigProto
13,798
import tensorflow as tf if not elems_shape or not elems_shape[0]: return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop) outputs = [fn(arg) for arg in tf.unstack(elems)] # Stack `outputs`, which is a list of Tensors or list of lists of Tensors if all([isinstance(output, tf.Tensor) for output in outputs]): return tf.stack(outputs) else: if all([isinstance(output, list) for output in outputs]): if all([all( [isinstance(entry, tf.Tensor) for entry in output_list])
tensorflow.stack
13,799