seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
from tensorflow.contrib.framework import deprecated @deprecated( "2016-11-12", "This file will be removed after the deprecation date."
tensorflow.contrib.framework.deprecated
13,500
from tensorflow.contrib.rnn import GRUCell for i in range(4): highway_input = highwaynet(highway_input, 'highway_%d' % (i + 1), half_depth) rnn_input = highway_input # Bidirectional RNN outputs, states = tf.nn.bidirectional_dynamic_rnn( GRUCell(half_depth), GRUCell(half_depth), rnn_input, sequence_length=input_lengths, dtype=tf.float32) return tf.concat(outputs, axis=2) # Concat forward and backward
tensorflow.contrib.rnn.GRUCell
13,501
import tensorflow as tf scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights) next_sentence_log_probs = tf.reshape( next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]]) next_sentence_predictions = tf.argmax( next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions)
tensorflow.metrics.accuracy
13,502
import tensorflow as tf vars_to_restore_imagenet = {} ckpt_var_names = tf.contrib.framework.list_variables(imagenet_ckpt) ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names] model_vars = tf.global_variables() for v in model_vars: if 'global_step' in v.op.name: continue
tensorflow.global_variables
13,503
import tensorflow as tf files = [tempfile.NamedTemporaryFile(prefix=c) for c in cases] with self.test_session(): # Test exact match without wildcards. for f in files: self.assertEqual(tf.matching_files(f.name).eval(), tf.compat.as_bytes(f.name)) # We will look for files matching "ABxDEF.GH*" where "x" is some wildcard. pos = files[0].name.find(cases[0]) pattern = files[0].name[:pos] + 'AB%sDEF.GH*'
tensorflow.compat.as_bytes
13,504
import tensorflow as tf return feature_loss def _tower_loss_semi_supervised(self, inputs, targets, gpu_idx=0, num_classes=11, is_fm_loss=False): with tf.variable_scope("train_specific"): avg_error_rate = tf.get_variable( 'avg_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False) num_error_rate = tf.get_variable( 'num_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False) batch_size_train = self.cnf['batch_size_train'] batch_size_val = self.cnf['batch_size_test'] self.end_points_G = self.model.generator([batch_size_train, 100], True, None, batch_size_val) if gpu_idx == 0: G_means = tf.reduce_mean(self.end_points_G['softmax'], 0, keep_dims=True)
tensorflow.constant_initializer
13,505
import tensorflow as tf next_states, next_tasks = self._task_distribution.split( experience.observation[:, 1]) rewards, dones = self._task_distribution.evaluate(states, experience.action[:, 0], tasks) # Strictly speaking, we don't need to relabel the next rewards and next # dones because they end up being thrown away. Only the current rewards # and dones end up being important. next_rewards, next_dones = self._task_distribution.evaluate( next_states, experience.action[:, 1], next_tasks) new_rewards = tf.concat([rewards[:, None], next_rewards[:, None]], axis=1) new_dones = tf.concat([dones[:, None], next_dones[:, None]], axis=1) # 0 if episode is done, 1 if episode is continuing new_discount = 1.0 - tf.cast(new_dones, tf.float32) assert new_rewards.shape == experience.reward.shape assert new_discount.shape == experience.discount.shape experience = experience.replace(reward=new_rewards, discount=new_discount) return experience def _soft_relabel(self, experience): """Reassigns tasks to each state and next state. Does not recompute the rewards or done flags. Args: experience: The experience that we want to relabel with inverse RL. Returns:
tensorflow.cast
13,506
import tensorflow as tf ops.reset_default_graph() # To find out where placement occurs, set 'log_device_placement' sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Runs the op. print(sess.run(c)) # If we load a graph and want device placement to be forgotten,
tensorflow.matmul
13,507
import tensorflow as tf a = tf.minimum(m_bound, m0) x = 1 - tf.pow(a / m0, 2) primitive = -0.5 * m0 * m0 * (tf.exp(c * x) * tf.sqrt(x) / c + 0.5 / tf.pow(-c, 1.5) * tf.sqrt(pi) * tf.erf(gradsafe_sqrt(-c * x))) # We have to safeguard the sqrt, because otherwise the analytic
tensorflow.exp
13,508
import tensorflow as tf tf.summary.scalar("stop_token_loss", model.stop_token_loss) tf.summary.scalar("loss", model.loss)
tensorflow.summary.scalar
13,509
import tensorflow as tf "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64),
tensorflow.FixedLenFeature
13,510
import tensorflow as tf x = tf.reshape(x, [tf.reduce_prod(s[:-1]), sh[-1]]) x = dense(x, num_units, **kwargs) return tf.reshape(x, [-1] + sh[1:-1] + [num_units]) def dense(x, num_units, scope="dense", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)): with tf.variable_scope(scope): V = tf.get_variable('V', shape=[int(x.get_shape()[1]), num_units], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) g = tf.get_variable('g', shape=[num_units], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) b = tf.get_variable('b', shape=[num_units], dtype=tf.float32, initializer=bias_initializer, trainable=True) def maybe_avg(v): if ema is not None and not init:
tensorflow.random_normal_initializer
13,511
import tensorflow as tf examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train() if __name__ == '__main__': tf.app.run()
tensorflow.gfile.DeleteRecursively
13,512
import tensorflow as tf self.assertEqual((2, 2), res[0][1].c.shape) self.assertEqual((2, 2), res[0][1].h.shape) # pylint: disable=unused-variable,invalid-name def testDynamicAttentionDecoderStateIsTuple(self): with self.test_session() as sess: with tf.variable_scope( "root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell(cells=[cell] * 2, state_is_tuple=True) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3
tensorflow.nn.rnn_cell.BasicLSTMCell
13,513
import tensorflow.contrib as contrib else: stitch1_1, stitch1_2 = fc1_1, fc1_2 fc2_1 = contrib.layers.fully_connected(stitch1_1, 32, scope="fc2_1") fc2_2 = contrib.layers.fully_connected(stitch1_2, 32, scope="fc2_2") if cross_stitch_enabled: with tf.variable_scope("cross_stitch_2"):
tensorflow.contrib.layers.fully_connected
13,514
import tensorflow as tf input_props.append((tf.bool, [])) # Is training. input_props.append((tf.int32, [None])) # Gold starts. input_props.append((tf.int32, [None])) # Gold ends. input_props.append((tf.int32, [None])) # Cluster ids. self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props] dtypes, shapes = zip(*input_props) queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes) self.enqueue_op = queue.enqueue(self.queue_input_tensors) self.input_tensors = queue.dequeue() self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors) self.global_step = tf.Variable(0, name="global_step", trainable=False) self.reset_global_step = tf.assign(self.global_step, 0) learning_rate = tf.train.exponential_decay(self.config["learning_rate"], self.global_step, self.config["decay_frequency"], self.config["decay_rate"], staircase=True) trainable_params = tf.trainable_variables() gradients = tf.gradients(self.loss, trainable_params) gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_gradient_norm"]) optimizers = { "adam" : tf.train.AdamOptimizer, "sgd" : tf.train.GradientDescentOptimizer } optimizer = optimizers[self.config["optimizer"]](learning_rate)
tensorflow.Variable
13,515
from tensorflow.contrib.layers.python.layers import utils def build_no_ops(): return (tf.no_op(), tf.no_op()) # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_variance_op = utils.smart_cond( is_training, build_update_ops, build_no_ops, ) # Every new connection creates a new op which adds its contribution
tensorflow.contrib.layers.python.layers.utils.smart_cond
13,516
import tensorflow as tf predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
tensorflow.logging.info
13,517
import tensorflow as tf def wmt_preprocess(dataset, training, max_length=-1, max_eval_length=-1): """Preprocessing for LM1B: filter out targets exceeding maximum length.""" def train_right_length(example, target): l = tf.maximum(tf.shape(example['inputs'])[0], tf.shape(target)[0]) return tf.less(l, max_length + 1) def eval_right_length(example, target):
tensorflow.shape
13,518
import tensorflow as tf padding=padding, kernel_initializer=init, name='tr_conv' + id, use_bias=use_bias) # Traditional U-Net def build_Unet_Arch(self, input_data, name="Unet_Arch"): self.base_number_of_features = 32 with tf.variable_scope(name): # Encoder definition o_c1 = self.general_conv2d(input_data, self.base_number_of_features, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_1') o_mp1 = tf.layers.max_pooling2d(o_c1, 2, 2, name = name + '_maxpooling_1') o_c2 = self.general_conv2d(o_mp1, self.base_number_of_features * 2, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_2') o_mp2 = tf.layers.max_pooling2d(o_c2, 2, 2, name = name + '_maxpooling_2')
tensorflow.variable_scope
13,519
import tensorflow as tf if v.op.name in self.pretrained_weights.keys(): assign_op = v.assign(self.pretrained_weights[v.op.name]) sess.run(assign_op) print(v.op.name + " - loaded successfully") print("All pretrained weights of resnet18 is loaded") def _residual_block(self, name, x, filters, pool_first=False, strides=1, dilation=1): print('Building residual unit: %s' % name) with tf.variable_scope(name): # get input channels in_channel = x.shape.as_list()[-1] # Shortcut connection shortcut = tf.identity(x) if pool_first: if in_channel == filters: if strides == 1: shortcut = tf.identity(x) else: shortcut= tf.pad(x, tf.constant([[0,0],[1,1],[1,1],[0,0]]), "CONSTANT") shortcut = tf.nn.max_pool(shortcut, [1, strides, strides, 1], [1, strides, strides, 1], 'VALID') else: shortcut = self._conv('shortcut_conv', x, padding='VALID', num_filters=filters, kernel_size=(1, 1), stride=(strides, strides), bias=self.bias)
tensorflow.identity
13,520
from tensorflow.python.ops import array_ops if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state if self._candidate_linear is None: with vs.variable_scope("candidate"): self._candidate_linear = _Linear( [inputs, r_state], self._num_units, True, bias_initializer=self._bias_initializer, kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) u = (1.0 - att_score) * u
tensorflow.python.ops.array_ops.split
13,521
import tensorflow as tf with tf.control_dependencies([ema_op]): self.loss = tf.identity(self.loss) self.shadow_vars = [] self.global_vars = [] for var in tf.global_variables(): v = self.var_ema.average(var) if v: self.shadow_vars.append(v) self.global_vars.append(var)
tensorflow.global_variables
13,522
import tensorflow as tf band: str, soft_onehot: Nonlinearity = Nonlinearity.SIGMOID ): batch_size, twice_window_size, channels = map(int, initial_layer_features.shape) nonlinearity = nonlinearity_fcn(soft_onehot) if channels == 3: scales = cutoff_data.dflux_dt_dflux_dtime_scales(band) cutoffs = cutoff_data.dflux_dt_dflux_dtime_cutoffs(band) cutoffs_batch_window = tf.expand_dims(tf.expand_dims(cutoffs, 0), 0) scales_batch_window = tf.expand_dims( tf.expand_dims(tf.expand_dims(scales, 0), 0), -1 ) init_layer_per_cutoff = tf.expand_dims(initial_layer_features, -1) graph_typecheck.assert_shape( cutoffs_batch_window, [1, 1, channels, cutoff_data.embedding_size] ) graph_typecheck.assert_shape(scales_batch_window, [1, 1, channels, 1])
tensorflow.expand_dims
13,523
import tensorflow as tf logits = tf.multiply(logits, 1.0 / math.sqrt(float(get_shape_list(q)[-1]))) if bias is not None: # `attention_mask` = [B, T] from_shape = get_shape_list(q) if len(from_shape) == 4: broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], 1], tf.float32) elif len(from_shape) == 5: # from_shape = [B, N, Block_num, block_size, depth]# broadcast_ones = tf.ones([from_shape[0], 1, from_shape[2], from_shape[3], 1], tf.float32) bias = tf.matmul(broadcast_ones, tf.cast(bias, tf.float32), transpose_b=True) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for
tensorflow.ones
13,524
from tensorflow.python.framework import ops The operation that initializes v. """ with ops.op_scope([v, init], None, v.op.name + "/"): with ops.name_scope(name) as scope: with ops.device(v.device or ops.get_default_graph().get_default_device()): if callable(init):
tensorflow.python.framework.ops.name_scope
13,525
import tensorflow as tf def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def softmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,classnum) loss=-tf.reduce_sum(labels*tf.log(predicts)) return loss def optimer(self,loss,lr=0.001): train_step=tf.train.GradientDescentOptimizer(lr).minimize(loss) return train_step path=r'C:\JC\test\train_model.ckpt'
tensorflow.one_hot
13,526
import tensorflow as tf dep_idxs = tf.tile(tf.expand_dims(dep_org_idx, 1), [1, sl_head, 1]) head_idxs = tf.tile(tf.expand_dims(head_org_idx, 2), [1, 1, sl_dep]) if direction is None: direct_mask = tf.not_equal(head_idxs, dep_idxs) # [bs, slh, sld] else: if direction == 'forward': direct_mask = tf.greater(head_idxs, dep_idxs) # [bs, slh, sld] else: direct_mask = tf.less(head_idxs, dep_idxs) # [bs, slh, sld] # [bs, slh, slh] rep_mask_tile = tf.logical_and(tf.expand_dims(rep_dep_mask, 1), tf.expand_dims(rep_head_mask, 2)) attn_mask = tf.logical_and(direct_mask, rep_mask_tile) # [bs, slh, sld] # tensor tile rep_map_tile = tf.tile(tf.expand_dims(rep_dep_tensor, 1), [1, sl_head, 1, 1]) # bs,slh,sld,vec with tf.variable_scope('attention'): # bs,sl,sl,vec f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.))
tensorflow.less
13,527
import tensorflow as tf fn=combine_fn, default_accumulator_value=default_accumulator_value, reduce_instance_dims=reduce_instance_dims, key=key_vocab, key_vocabulary_filename=key_vocabulary_filename) if key_vocabulary_filename is not None: return key_values key, minus_x_min, x_max = key_values return ( key, tf.cast(0 - minus_x_min, output_dtype), tf.cast(x_max, output_dtype)) def _sum_combine_fn_and_dtype( input_dtype: tf.DType ) -> Tuple[tf.DType, Callable[[np.ndarray], np.ndarray]]: output_dtype = _SUM_OUTPUT_DTYPE_MAP.get(input_dtype) if output_dtype is None: raise TypeError('Tensor type %r is not supported' % input_dtype) return output_dtype, functools.partial(
tensorflow.cast
13,528
import tensorflow as tf # Convolution on patches. w_ = tf.reshape(w, [ksize[0] * ksize[1] * ksize[2], -1]) q = tf.matmul(p_, w_) # Center locations. blk_indices_crop = blk_indices[:, 0, 0, :] # Project back to an image. y = tf.scatter_nd(blk_indices_crop, q, out_shape) return y with tf.control_dependencies([assert_shape, assert_strides]): return tf.cond( tf.equal(tf.size(blk_indices_), 0), lambda: tf.zeros(out_shape, dtype=x.dtype), _conv_nonzero) def mask_conv2d(x, w, mask, strides, padding): """Masked 2D convolution. Used to check 2D sparse convolution. :param x: [Tensor] Convolution feature map, 4D, dtype float32. :param w: [Tensor] Convolution kernel, 4D, dtype float32. :param mask: [Tensor] Binary mask, 3D or 4D, [N, H, W] or [N, H, W, 1], dtype float32.
tensorflow.control_dependencies
13,529
import tensorflow as tf return tf.keras.layers.StackedRNNCells([ tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, use_peepholes=True, forget_bias=1.0, name="rnn1"), tf.lite.experimental.nn.TFLiteLSTMCell( self.num_units, num_proj=8, forget_bias=1.0, name="rnn2"), tf.lite.experimental.nn.TFLiteLSTMCell(
tensorflow.lite.experimental.nn.TFLiteLSTMCell
13,530
import tensorflow as tf b_init_args = {} if self.inputs.get_shape().ndims != 2: raise Exception("The input dimension must be rank 2, please reshape or flatten it") n_in = int(self.inputs.get_shape()[-1]) with tf.variable_scope(name): W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args) if b_init is not None: try: b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) except Exception: # If initializer is a constant, do not specify shape. b = tf.get_variable(name='b', initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) self.outputs = act(tf.matmul(self.inputs, W) + b) else:
tensorflow.get_variable
13,531
import tensorflow as tf conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME') conv_biases = self.get_bias(name) bias = tf.nn.bias_add(conv, conv_biases) relu = tf.nn.relu(bias) return relu def fc_layer(self, bottom, name): with tf.variable_scope(name): shape = bottom.get_shape().as_list() dim = 1 for d in shape[1:]: dim *= d x = tf.reshape(bottom, [-1, dim]) weights = self.get_fc_weight(name) biases = self.get_bias(name) # Fully connected layer. Note that the '+' operation automatically # broadcasts the biases. fc = tf.nn.bias_add(tf.matmul(x, weights), biases) return fc def get_conv_filter(self, name): return tf.constant(self.data_dict[name][0], name="filter")
tensorflow.reshape
13,532
import tensorflow as tf if self.has_inputs: data_fields["inputs"] = tf.VarLenFeature(tf.int64) # hack: ignoring true targets and putting dist_targets in targets data_items_to_decoders = { "inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"), "targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"), } return (data_fields, data_items_to_decoders) def get_or_create_vocab(self, data_dir, tmp_dir, force_get=False): """Get vocab for distill problems."""
tensorflow.contrib.slim.tfexample_decoder.Tensor
13,533
import tensorflow as tf for grad, var in avg_grads ] else: clipped_grads = avg_grads if FLAGS.optimizer == 'momentum': opt = tf.train.MomentumOptimizer( learning_rate, FLAGS.momentum, use_nesterov=True) elif FLAGS.optimizer == 'sgd': opt = tf.train.GradientDescentOptimizer(learning_rate) elif FLAGS.optimizer == 'rmsprop': opt = tf.train.RMSPropOptimizer(learning_rate, FLAGS.rmsprop_decay,
tensorflow.train.MomentumOptimizer
13,534
import tensorflow as tf img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \ self.reader.next_batch(dataset_name=cfgs.DATASET_NAME, batch_size=cfgs.BATCH_SIZE * num_gpu, shortside_len=shortside_len, is_training=True) # data processing inputs_list = [] for i in range(num_gpu): img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32)
tensorflow.constant
13,535
import tensorflow as tf state = tf.concat([state, context, pos, new_weights], axis=1) return state, logits def _time_step(time, input_, input_symbol, pos, state, output, outputs, states, weights, attns, prev_weights, samples, context): if decoder.conditional_rnn: with tf.variable_scope('conditional_1'): output, state = update(state, input_) elif decoder.update_first: output, state = update(state, input_, None, input_symbol) context, new_weights = look(time, output, input_, pos=pos, prev_weights=prev_weights, context=context)
tensorflow.variable_scope
13,536
import tensorflow as tf train_steps_per_epoch = int( math.ceil(hparams.num_train_images / float(hparams.train_batch_size))) eval_steps = hparams.num_eval_images // hparams.eval_batch_size eval_batch_size = (None if mode == 'train' else hparams.eval_batch_size) model = model_lib.AmoebaNetEstimatorModel(hparams, model_dir) if hparams.use_tpu: run_config = build_run_config() image_classifier = tf.contrib.tpu.TPUEstimator( model_fn=model.model_fn, use_tpu=True, config=run_config, params=estimator_parmas, predict_batch_size=eval_batch_size, train_batch_size=hparams.train_batch_size, eval_batch_size=eval_batch_size, export_to_tpu=FLAGS.export_to_tpu, experimental_exported_model_uses_all_cores=FLAGS
tensorflow.contrib.tpu.TPUEstimator
13,537
import tensorflow as tf def testInitRequiredAssignSub(self): with self.test_session(): p = tf.Variable(tf.fill([1024, 1024], 1), tf.int32) a = tf.assign_sub(p, tf.fill([1024, 1024], 0)) with self.assertRaisesOpError("use uninitialized"): a.op.run() # NOTE(mrry): See also # dense_update_ops_no_tsan_test.AssignOpTest, which contains a benign # data race and must run without TSAN. def testParallelUpdateWithLocking(self): with self.test_session() as sess: zeros_t = tf.fill([1024, 1024], 0.0) ones_t = tf.fill([1024, 1024], 1.0) p = tf.Variable(zeros_t) adds = [tf.assign_add(p, ones_t, use_locking=True) for _ in range(20)] p.initializer.run() def run_add(add_op): sess.run(add_op) threads = [ self.checkedThread(target=run_add, args=(add_op,)) for add_op in adds] for t in threads: t.start() for t in threads:
tensorflow.fill
13,538
from tensorflow.python.ops import array_ops check_ops.assert_type(mask, dtypes.bool) if weights is None: weights = array_ops.ones_like(mask, dtype=dtypes.float32) weights = math_ops.cast(math_ops.logical_not(mask), weights.dtype) * weights
tensorflow.python.ops.array_ops.ones_like
13,539
from tensorflow.python.framework import ops # normalize res = (input_ - used_mean) / tf.sqrt(used_var + epsilon) # de-normalize if scale: res *= gamma res += beta # update variables if train: with tf.name_scope(name, "AssignMovingAvg", [mean, cur_mean, decay]): with ops.colocate_with(mean): new_mean = tf.assign_sub( mean, tf.check_numerics(decay * (mean - cur_mean), "NaN in moving mean.")) with tf.name_scope(name, "AssignMovingAvg", [var, cur_var, decay]): with ops.colocate_with(var): new_var = tf.assign_sub( var, tf.check_numerics(decay * (var - cur_var), "NaN in moving variance."))
tensorflow.python.framework.ops.colocate_with
13,540
import tensorflow as tf grl = tf.reshape(grl, (-1, samples.get_shape().as_list()[1])) grl = fc(grl, 100, True, None, activation=relu, name='fc1') logits = fc(grl, 1, True, None, activation=None, name='fc2') domain_predictions = tf.sigmoid(logits) domain_loss = tf.losses.log_loss(domain_selection_mask, domain_predictions, weights=weight) domain_accuracy = util.accuracy_tf(domain_selection_mask, tf.round(domain_predictions)) assert_op = tf.Assert(tf.is_finite(domain_loss), [domain_loss]) with tf.control_dependencies([assert_op]): tag_loss = 'losses/domain_loss'
tensorflow.losses.log_loss
13,541
import tensorflow as tf [1], minval=0, maxval=NUMBER_OF_CLASSES, dtype=tf.int32) box_label = tf.random_uniform(
tensorflow.random_uniform
13,542
import tensorflow as tf def _mask_by_length(t, length): maxlen = t.get_shape().as_list()[1] mask = tf.sequence_mask(length, maxlen=maxlen) mask = tf.expand_dims(tf.cast(mask, tf.float32), -1) return t * mask def _scale_l2(x, norm_length): alpha = tf.reduce_max(tf.abs(x), (1, 2), keep_dims=True) + 1e-12 l2_norm = alpha * tf.sqrt(tf.reduce_sum(tf.pow(x / alpha, 2), (1, 2), keep_dims=True) + 1e-6) x_unit = x / l2_norm return norm_length * x_unit def _end_of_seq_mask(tokens, vocab_size): """Generate a mask for the EOS token (1.0 on EOS, 0.0 otherwise). Args:
tensorflow.pow
13,543
from tensorflow.python.platform import tf_logging as logging input_feature_key=self._input_feature_key, use_deprecated_input_fn=self._use_deprecated_input_fn) except RuntimeError: # Currently we are not syncronized with saving checkpoints, which leads to # runtime errors when we are calling export on the same global step. # Exports depend on saved checkpoints for constructing the graph and # getting the global step from the graph instance saved in the checkpoint. # If the checkpoint is stale with respect to current step, the global step # is taken to be the last saved checkpoint's global step and exporter # doesn't export the same checkpoint again with the following error. logging.info("Skipping exporting because the existing checkpoint has " "already been exported. " "Consider exporting less frequently.") def end(self, session=None): super(ExportMonitor, self).end(session=session) latest_path = saver_lib.latest_checkpoint(self._estimator.model_dir) if latest_path is None: logging.info("Skipping export at the end since model has not been saved " "yet.")
tensorflow.python.platform.tf_logging.info
13,544
import tensorflow as tf # Step-wise contrastive loss pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV3(pred, tgt, margin=1.0):
tensorflow.where
13,545
import tensorflow as tf viz3('B_recon', B, BA, BAB) with tf.variable_scope('discrim'): with tf.variable_scope('A'):
tensorflow.variable_scope
13,546
import tensorflow as tf 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0))) var_a = task.theta.a # Make a NaN gradient. var_grads = py_utils.NestedMap(a=(var_a, 0. * tf.log(0.))) has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads) with self.session(): tf.global_variables_initializer().run() with self.assertRaisesRegexp(tf.errors.InvalidArgumentError, 'is not finite'): self.assertTrue(has_nan_or_inf.eval()) self.assertEqual(0., grad_scale.eval()) # The final gradient must be finite. self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval()) self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval()) class TeacherTask(base_model.BaseTask): @base_layer.initializer def __init__(self, params): super(TeacherTask, self).__init__(params) p = self.params with tf.variable_scope(p.name): self.CreateVariable('x', py_utils.WeightParams( shape=[], init=py_utils.WeightInit.Constant(0)))
tensorflow.is_nan
13,547
import tensorflow as tf epoch = tf.where(rand < 0.1, tf.zeros_like(epoch), epoch) # Embed the epoch number. emb_epoch = common_layers.embedding(epoch, 32, 32) # [batch, 32] flat_x = tf.concat([flat_x, emb_epoch], axis=1) flat_x = tf.layers.dropout(flat_x, rate=dropout) x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu) logits = tf.layers.dense( x, self.hparams.problem.num_actions, name="dense2" )
tensorflow.layers.dense
13,548
import tensorflow as tf weight: the weight of the MMD loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the MMD loss value. """ with tf.name_scope(name): sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] gaussian_kernel = partial(util.gaussian_kernel_matrix, sigmas=tf.constant(sigmas)) loss_value = maximum_mean_discrepancy(source_samples, target_samples, kernel=gaussian_kernel) loss_value = tf.maximum(1e-4, loss_value) * weight assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value]) with tf.control_dependencies([assert_op]): tag = 'MMD_Loss' barrier = tf.no_op(tag) return loss_value def dann_loss(source_samples, target_samples, weight, name='dann_loss'): """Adds the domain adversarial (DANN) loss. Args: source_samples: a tensor of shape [num_samples, num_features]. target_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the loss. scope: optional name scope for summary tags.
tensorflow.control_dependencies
13,549
import tensorflow as tf tf.summary.scalar("stop_token_loss", model.stop_token_loss) tf.summary.scalar("loss", model.loss) tf.summary.scalar("learning_rate", model.learning_rate) # Control learning rate decay speed if hparams.tacotron_teacher_forcing_mode == "scheduled": tf.summary.scalar("teacher_forcing_ratio", model.ratio) # Control teacher forcing # ratio decay when mode = "scheduled" gradient_norms = [tf.norm(grad) for grad in model.gradients] tf.summary.histogram("gradient_norm", gradient_norms) tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize # gradients (in case of explosion) return tf.summary.merge_all()
tensorflow.norm
13,550
import tensorflow as tf sdf_values += tf.math.sign(tf.nn.relu(interpolated + self.tol)) status2 = False if status2: a = 2 values = interpolated inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution]) inter = tf.transpose(tf.reduce_max(inter, axis=a)) im = axs[fig_obj_count, mtype * 2 + 0].matshow(inter.numpy()) plt.colorbar(im, ax=axs[fig_obj_count, mtype * 2 + 0]) print(mtype, fig_obj_count, 0) values = tf.math.sign(tf.nn.relu(interpolated + self.tol)) inter = tf.reshape(values, [self.resolution, self.resolution, self.resolution])
tensorflow.reduce_max
13,551
import tensorflow as tf matched_gt_boxes) matched_gt_classes = tf.where( background_indicator, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where(
tensorflow.zeros_like
13,552
import tensorflow as tf batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [ update_eps_expr, tf.cond(reset_ph, lambda: perturb_vars(original_scope="q_func", perturbed_scope="perturbed_q_func"), lambda: tf.group(*[])), tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)), update_param_noise_threshold_expr, ] act = U.function(inputs=[observations_ph, stochastic_ph, update_eps_ph, reset_ph, update_param_noise_threshold_ph, update_param_noise_scale_ph], outputs=output_actions, givens={update_eps_ph: -1.0, stochastic_ph: True, reset_ph: False, update_param_noise_threshold_ph: False, update_param_noise_scale_ph: False}, updates=updates) return act
tensorflow.Variable
13,553
import tensorflow as tf while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False
tensorflow.logging.info
13,554
import tensorflow as tf var = tf.Variable(other_value, name=var_name) save = tf.train.Saver({var_name: var}) save.restore(sess, save_path) self.assertAllClose(var_value, var.eval()) def testCacheRereadsFile(self): save_path = os.path.join(self.get_temp_dir(), "cache_rereads") # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) # Save and reload one Variable named "var1" in the same file. # The cached readers should know to re-read the file. self._SaveAndLoad("var1", 1.1, 2.2, save_path) def testGPU(self): if not tf.test.is_built_with_cuda(): return save_path = os.path.join(self.get_temp_dir(), "gpu") with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_1 = tf.Variable(123.45) save = tf.train.Saver({"v0": v0_1}) tf.initialize_all_variables().run() save.save(sess, save_path) with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_2 = tf.Variable(543.21) save = tf.train.Saver({"v0": v0_2})
tensorflow.test.is_built_with_cuda
13,555
import tensorflow as tf self._activation_fn = tf.nn.relu self._embedding_initializers = { 'embeddings': tf.truncated_normal_initializer(stddev=0.01), } self._embedding_regularizers = {} self._initializers = { "w": tf.contrib.layers.xavier_initializer(), } self._regularizers = { 'w': tf.contrib.layers.l2_regularizer(config.l2) } self._construct_placeholders()
tensorflow.contrib.layers.xavier_initializer
13,556
import tensorflow as tf # Generates a new MetaGraphDef. new_saver.export_meta_graph() # Restores from checkpoint. new_saver.restore(sess, saver0_ckpt) # Addes loss and train. labels = tf.constant(0, tf.int32, shape=[100], name="labels") batch_size = tf.size(labels) labels = tf.expand_dims(labels, 1) indices = tf.expand_dims(tf.range(0, batch_size), 1) concated = tf.concat(1, [indices, labels]) onehot_labels = tf.sparse_to_dense( concated, tf.pack([batch_size, 10]), 1.0, 0.0) logits = tf.get_collection("logits")[0] cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, onehot_labels, name="xentropy") loss = tf.reduce_mean(cross_entropy, name="xentropy_mean") tf.scalar_summary(loss.op.name, loss) # Creates the gradient descent optimizer with the given learning rate. optimizer = tf.train.GradientDescentOptimizer(0.01)
tensorflow.pack
13,557
import tensorflow as tf tf.app.flags.DEFINE_float('ws_prune_ratio', 0.75, 'WS: target pruning ratio') tf.app.flags.DEFINE_string('ws_prune_ratio_prtl', 'optimal', 'WS: pruning ratio protocol (\'uniform\' | \'heurist\' | \'optimal\')') tf.app.flags.DEFINE_integer('ws_nb_rlouts', 200, 'WS: # of roll-outs for the RL agent') tf.app.flags.DEFINE_integer('ws_nb_rlouts_min', 50, 'WS: minimal # of roll-outs for the RL agent to start training') tf.app.flags.DEFINE_string('ws_reward_type', 'single-obj', 'WS: reward type (\'single-obj\' OR \'multi-obj\')') tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression') tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression') tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning') tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning')
tensorflow.app.flags.DEFINE_string
13,558
import tensorflow as tf cdf_min = tf.nn.sigmoid(min_in) log_cdf_plus = plus_in - tf.nn.softplus(plus_in) log_one_minus_cdf_min = -tf.nn.softplus(min_in) cdf_delta = cdf_plus - cdf_min mid_in = inv_stdv * centered_inputs log_pdf_mid = mid_in - log_scales - 2. * tf.nn.softplus(mid_in) log_probs = tf.select( inputs < -0.999, log_cdf_plus, tf.select( inputs > 0.999, log_one_minus_cdf_min, tf.select(cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)), log_pdf_mid - np.log(127.5)))) log_probs = tf.reduce_sum(log_probs, 3) + \ log_prob_from_logits(logit_probs) if sum_all: return -tf.reduce_sum(log_sum_exp(log_probs)) else: return -tf.reduce_sum(log_sum_exp(log_probs), [1, 2])
tensorflow.maximum
13,559
import tensorflow as tf def _project_features(self, features): with tf.variable_scope('project_features'): w = tf.get_variable('w', [self.D, self.D], initializer=self.weight_initializer) features_flat = tf.reshape(features, [-1, self.D]) features_proj = tf.matmul(features_flat, w) features_proj = tf.reshape(features_proj, [-1, self.L, self.D]) return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer) h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse):
tensorflow.reshape
13,560
import tensorflow as tf "segment_ids": tf.constant(
tensorflow.constant
13,561
import tensorflow as tf self.train_step = self.opt.minimize(self.loss) if self.maxnorm is not None: # Post-processing to limit embedding vars to L2 ball rel_maxnorm = self.maxnorm * self.rel_maxnorm_mult unique_ent_indices = tf.unique(tf.concat(0, [self.head_input, self.tail_input]))[0] unique_rel_indices = tf.unique(self.rel_input)[0] entity_constraint = self._norm_constraint_op(self.entity_embedding_vars, unique_ent_indices, self.maxnorm) rel_constraint = self._norm_constraint_op(self.rel_embedding_vars,
tensorflow.unique
13,562
import tensorflow as tf def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial, name='weights') def bias_variable(shape): """bias_variable generates a bias variable of a given shape.""" initial = tf.constant(0.1, shape=shape) return tf.Variable(initial, name='biases') def deepnn(x, train): """deepnn builds the graph for a deep net for classifying CIFAR10 images. Args: x: an input tensor with the dimensions (N_examples, 3072), where 3072 is the number of pixels in a standard CIFAR10 image.
tensorflow.Variable
13,563
from tensorflow.python.framework import ops mean = _safe_div(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = _safe_div(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean, update_op def streaming_mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors.
tensorflow.python.framework.ops.add_to_collections
13,564
from tensorflow.python.framework import ops x: `Tensor` numerator of real numeric type. y: `Tensor` numerator of real numeric type. name: A name for the operation (optional). Returns: `x / y` rounded down (except possibly for integers in C). Raises: TypeError: If the inputs are complex. """ with ops.op_scope([x, y], name, "floordiv") as name: x = ops.convert_to_tensor(x, name="x") dtype = x.dtype if dtype.is_floating: return floor(div(x, y), name=name) else: if not dtype.is_integer: raise TypeError("Expected floating point or integer, got %r" % dtype) return div(x, y, name=name) _OverrideBinaryOperatorHelper(add, "add")
tensorflow.python.framework.ops.convert_to_tensor
13,565
import tensorflow.contrib.graph_editor as ge break copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {})
tensorflow.contrib.graph_editor.sgv
13,566
import tensorflow as tf logits=self.end_points_D['class_logits'], labels=tf.to_int64(targets)) self.test_loss = 1. - \ tf.reduce_mean(tf.to_float(tf.nn.in_top_k( self.end_points_D_val['logits'], targets, 1))) self.error_rate = 1. - \ tf.reduce_mean(tf.to_float(tf.nn.in_top_k( self.end_points_D['class_logits'], targets, 1))) if gpu_idx == 0: update = tf.assign(num_error_rate, num_error_rate + 1.) with tf.control_dependencies([update]): tc = tf.maximum(.01, 1. / num_error_rate) update = tf.assign(avg_error_rate, (1. - tc) * avg_error_rate + tc * self.error_rate) with tf.control_dependencies([update]): self.d_loss_class = tf.identity(self.d_loss_class) self.d_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.end_points_D['D_on_G_logits'],
tensorflow.assign
13,567
import tensorflow as tf elif method=='tgsm': print('Attacking method is tgsm') adversarial_sample = attacks.tgsm.tgsm(models, images, hps, RCE_train, y=None, eps=eps/10, epochs=10, clip_min=-0.5, clip_max=0.5) elif method=='jsma': print('Attacking method is jsma') if target_labels==None: print('Target label is the argmin label') model_target_y = models(hps, images, FLAGS.RCE_train, logits=False) target_y64 = tf.argmin(model_target_y,axis=1) else: target_y64=target_labels target_y = tf.cast(target_y64, tf.int32) adversarial_sample = attacks.jsma.jsma(models, images, hps, RCE_train, target_y,epochs=epoch_jsma, eps=eps, clip_min=-0.5, clip_max=0.5, pair=False, min_proba=0.0) elif method=='smda': print('Attacking method is smda') if target_labels==None: print('Target label is the argmin label') model_target_y = models(hps, images, FLAGS.RCE_train, logits=False) target_y64 = tf.argmin(model_target_y,axis=1) else: target_y64=target_labels target_y = tf.cast(target_y64, tf.int32)
tensorflow.cast
13,568
import tensorflow as tf print (policy.parameters()) print (warmup_policy.parameters()) sync_warmup_policy = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_policy.parameters(), policy.parameters())]) # batched noises noise = OUNoise(env.action_space, theta=FLAGS.OUNoise.theta, sigma=FLAGS.OUNoise.sigma, shape=(1, dim_action)) vfn = MLPVFunction(dim_state, [64, 64], normalizers.state) warmup_vfn = MLPVFunction(dim_state, [64, 64], normalizers.state) sync_warmup_vfn = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_vfn.parameters(), vfn.parameters())]) model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes) lazy_model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes) warmup_model = DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes) sync_warmup_model = tf.group(*[tf.assign(w_v, p_v) for w_v, p_v in zip(warmup_model.parameters(), model.parameters())]) shadow_models = [DynamicsModel(dim_state, dim_action, normalizers, FLAGS.model.hidden_sizes) for n in range(FLAGS.warmup.n_shadow_models)]
tensorflow.assign
13,569
import tensorflow as tf print("------------------pred_Y-------------------") print(pred_Y) # Loss,train_step,evaluation l2 = config.lambda_loss_amount * \ sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) # Softmax loss and L2 cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(pred_Y, Y)) + l2 train_step = tf.train.AdamOptimizer(
tensorflow.nn.l2_loss
13,570
import tensorflow as tf correct = tf.equal( tf.cast(tf.zeros_like(label_ids, dtype=tf.int32), tf.int32), tf.cast(pred_label, tf.int32) ) te_accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) except: te_accuracy = tf.constant(0.0) st_accuracy = tf.constant(0.0) try: st_accuracy = tf.reduce_mean(distillation_loss["src_f1_prob"]) te_accuracy = tf.reduce_mean(distillation_loss["tgt_f1_prob"]) except: te_accuracy = tf.constant(0.0) st_accuracy = tf.constant(0.0) return { "train":{ "loss":loss, "logits":logits, "train_op":train_op, "cross_entropy":label_loss,
tensorflow.reduce_mean
13,571
import tensorflow as tf def training(self, cost): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) # train_op = optimizer.minimize(cost) trainables = tf.trainable_variables() grads = tf.gradients(cost, trainables) grads, _ = tf.clip_by_global_norm(grads, clip_norm=self.clip_norm) capped_gvs = zip(grads, trainables) train_op = optimizer.apply_gradients(capped_gvs) return train_op
tensorflow.gradients
13,572
import tensorflow as tf return features def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "cola": ColaProcessor,
tensorflow.logging.set_verbosity
13,573
import tensorflow as tf with tf.variable_scope(name) as scope: if scale > 1: X = self.conv(name + '_downsample', X, filter, scale, scale, (not norm) and use_bias, "VALID", stddev) else: X = self.conv(name + '_conf', X, filter, f_size, 1, (not norm) and use_bias, "VALID", stddev) if norm == 'I': X = tf.contrib.layers.instance_norm(X, scope=scope, reuse=reuse) elif norm == 'B': X = tf.layers.batch_normalization(X, reuse=reuse, training=is_train, name=name) elif norm == 'G': X = tf.contrib.layers.group_norm(X, groups=16, scope=scope, reuse=reuse) if dropout > 0.0:
tensorflow.contrib.layers.instance_norm
13,574
import tensorflow as tf else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits) kl = tf.reduce_sum(q * (tf.log(q) - tf.log(p)), 1) num_labels = tf.reduce_sum(weights) num_labels = tf.where(tf.equal(num_labels, 0.), 1., num_labels)
tensorflow.log
13,575
import tensorflow as tf """Tensorflow Example proto decoder.""" def __init__(self, include_mask=False): self._include_mask = include_mask self._keys_to_features = { 'image/encoded': tf.io.FixedLenFeature((), tf.string), 'image/source_id': tf.io.FixedLenFeature((), tf.string), 'image/height': tf.io.FixedLenFeature((), tf.int64), 'image/width': tf.io.FixedLenFeature((), tf.int64), 'image/object/bbox/xmin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymin': tf.io.VarLenFeature(tf.float32), 'image/object/bbox/ymax':
tensorflow.io.FixedLenFeature
13,576
import tensorflow as tf "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): """A single training/test example for simple sequence classification."""
tensorflow.flags.DEFINE_string
13,577
from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils 'loss', 'precision/positive_threshold_0.500000_mean', 'recall/positive_threshold_0.500000_mean', } class DNNLinearCombinedClassifierBenchmark(test.Benchmark): def _assertSingleClassMetrics(self, metrics): estimator_test_utils.assert_in_range(0.9, 1.0, 'auc', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy/threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'precision/positive_threshold_0.500000_mean', metrics) estimator_test_utils.assert_in_range( 0.9, 1.0, 'recall/positive_threshold_0.500000_mean', metrics) self._assertCommonMetrics(metrics) def _assertCommonMetrics(self, metrics): estimator_test_utils.assert_in_range(_ITERS, _ITERS + 5, 'global_step', metrics) estimator_test_utils.assert_in_range(0.9, 1.0, 'accuracy', metrics) estimator_test_utils.assert_in_range(0.0, 0.2, 'loss', metrics) self.report_benchmark( iters=metrics['global_step'],
tensorflow.contrib.learn.python.learn.estimators.estimator_test_utils.assert_in_range
13,578
import tensorflow as tf def _build_net(self): # we use parameter sharing among agents with tf.variable_scope(self.name): # ------------------ all inputs ------------------------ self.S = tf.placeholder(tf.float32, [None, self.num_global_s], name='S') # input Global State self.s = tf.placeholder(tf.float32, [None, self.num_s], name='s1') # input state for agent1 self.S_ = tf.placeholder(tf.float32, [None, self.num_global_s], name='S_') # input Next Global State self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_') # input next state for agent1 self.R = tf.placeholder(tf.float32, [None, ], name='R') # input Reward self.a = tf.placeholder(tf.float32, [None, self.num_a], name='a') # input Action onehot for agent1 self.done = tf.placeholder(tf.float32, [None, ], name='done') # input Done info ??? self.q_m_ = tf.placeholder(tf.float32, [None, ], name='q_value_next_max')
tensorflow.placeholder
13,579
import tensorflow as tf w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) print("w is "+str(w)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh])
tensorflow.reshape
13,580
import tensorflow as tf tf.add_to_collection('mu_sigma_bn', sigma) beta = tf.get_variable('beta', batch_mean.shape, dtype=tf.float32, initializer=tf.zeros_initializer()) gamma = tf.get_variable('gamma', batch_var.shape, dtype=tf.float32, initializer=tf.ones_initializer()) # BN when training update = 1.0 - decay update_mu = mu.assign_sub(update * (mu - batch_mean)) update_sigma = sigma.assign_sub(update * (sigma - batch_var)) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mu) tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_sigma) mean, var = tf.cond(self.train_flag, lambda: (batch_mean, batch_var), lambda: (mu, sigma)) bn = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-5) tf.add_to_collection('debug_layers', bn) return bn
tensorflow.cond
13,581
import tensorflow as tf u = tf.random_uniform(tf.shape(means), minval=1e-5, maxval=1. - 1e-5) x = means + tf.exp(log_scales) * (tf.log(u) - tf.log(1. - u))
tensorflow.log
13,582
from tensorflow.python.ops import gen_nn_ops " {}".format(padding)) return gen_nn_ops.conv2d_backprop_input(input_sizes=output_shape_, filter=filter,
tensorflow.python.ops.gen_nn_ops.conv2d_backprop_input
13,583
import tensorflow as tf regularization_penalty_pi = tf.contrib.layers.apply_regularization(regularizerpi, all_trainable_weights_pi) policy_loss = policy_kl_loss + regularization_penalty_pi + self.actor_loss_di # Target for value fn regression # We update the vf towards the min of two Q-functions in order to # reduce overestimation bias from function approximation error. v_backup = tf.stop_gradient(min_qf_pi - self.ent_coef * logp_pi) value_loss = 0.5 * tf.reduce_mean(((value_fn - v_backup) ** 2)*self.weight_ph) #value_for_priority = tf.reduce_mean((value_fn - v_backup) ** 2,1) regularizervf = tf.contrib.layers.l1_l2_regularizer(scale_l1=0.0, scale_l2=1e-5, scope='model/values_fn') all_trainable_weights_vf = tf_util.get_trainable_vars('model/values_fn') regularization_penalty_vf = tf.contrib.layers.apply_regularization(regularizervf, all_trainable_weights_vf) if self.n_step: values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf + qf1_loss_n + qf2_loss_n else: values_losses = qf1_loss + qf2_loss + value_loss + regularization_penalty_vf # Policy train op # (has to be separate from value train op, because min_qf_pi appears in policy_loss) policy_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph) policy_train_op = policy_optimizer.minimize(policy_loss, var_list=tf_util.get_trainable_vars('model/pi')) # Value train op value_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate_ph)
tensorflow.contrib.layers.apply_regularization
13,584
import tensorflow as tf # Center each group using the mean. # shape = ( # cur_batch_size, # image_size, # image_size, # num_channels # ) centered_image = tf.subtract( x=X, y=mean, name="centered_image" ) print_obj( "ungrouped_minibatch_stddev", "centered_image", centered_image
tensorflow.subtract
13,585
import tensorflow as tf tf.summary.histogram("gradient_norm", gradient_norms) tf.summary.scalar("max_gradient_norm", tf.reduce_max(gradient_norms)) # visualize # gradients (in case of explosion) return tf.summary.merge_all() def add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss, loss): values = [ tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_before_loss", simple_value=before_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_after_loss", simple_value=after_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/stop_token_loss", simple_value=stop_token_loss), tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_loss", simple_value=loss), ] if linear_loss is not None: values.append(tf.Summary.Value(tag="Tacotron_eval_model/eval_stats/eval_linear_loss", simple_value=linear_loss)) test_summary = tf.Summary(value=values) summary_writer.add_summary(test_summary, step) def time_string(): return datetime.now().strftime("%Y-%m-%d %H:%M")
tensorflow.Summary.Value
13,586
import tensorflow as tf dtype=tensor.dtype.base_dtype, name='loss_weight') loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value') return loss def lppool(inpOp, pnorm, kH, kW, dH, dW, padding, name): with tf.variable_scope(name): if pnorm == 2: pwr = tf.square(inpOp) else: pwr = tf.pow(inpOp, pnorm) subsamp = tf.nn.avg_pool(pwr, ksize=[1, kH, kW, 1], strides=[1, dH, dW, 1], padding=padding) subsamp_sum = tf.multiply(subsamp, kH*kW) if pnorm == 2: out = tf.sqrt(subsamp_sum)
tensorflow.pow
13,587
import tensorflow as tf tf.stop_gradient(indicator_matrix), distance_matrix, tf.fill(tf.shape(distance_matrix), distance_matrix.dtype.max)) hard_distances = tf.math.reduce_min(distance_matrix, axis=-1) return hard_distances
tensorflow.math.reduce_min
13,588
import tensorflow as tf input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps') if FLAGS.geometry == 'RBOX': input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps') else: input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps') input_training_masks = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_training_masks') global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps=10000, decay_rate=0.94, staircase=True) # add summary tf.summary.scalar('learning_rate', learning_rate) opt = tf.train.AdamOptimizer(learning_rate) opt = MixedPrecisionOptimizer(opt, scale=FLAGS.loss_scale) from npu_bridge.estimator.npu.npu_optimizer import NPUDistributedOptimizer opt = NPUDistributedOptimizer(opt) # split input_images_split = tf.split(input_images, len(gpus)) input_score_maps_split = tf.split(input_score_maps, len(gpus)) input_geo_maps_split = tf.split(input_geo_maps, len(gpus)) input_training_masks_split = tf.split(input_training_masks, len(gpus)) tower_grads = []
tensorflow.train.AdamOptimizer
13,589
import tensorflow as tf predictions = tf.reshape(predictions, [1, -1, heatmap_size*heatmap_size]) pred_max = tf.reduce_max(predictions, axis=-1) pred_indices = tf.argmax(predictions, axis=-1) pred_x, pred_y = tf.cast(tf.floormod(pred_indices, heatmap_size), tf.float32), tf.cast(tf.floordiv(pred_indices, heatmap_size), tf.float32) width, height = tf.cast(width, tf.float32), tf.cast(height, tf.float32) pred_x, pred_y = pred_x * width / tf.cast(heatmap_size, tf.float32), pred_y * height / tf.cast(heatmap_size, tf.float32) if clip_at_zero: pred_x, pred_y = pred_x * tf.cast(pred_max>0, tf.float32), pred_y * tf.cast(pred_max>0, tf.float32) pred_x = pred_x * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (width / 2.) pred_y = pred_y * tf.cast(pred_max>0, tf.float32) + tf.cast(pred_max<=0, tf.float32) * (height / 2.) if config.PRED_DEBUG: pred_indices_ = tf.squeeze(pred_indices) image_ = tf.squeeze(image) * 255. pred_heatmap = tf.one_hot(pred_indices_, heatmap_size*heatmap_size, on_value=1., off_value=0., axis=-1, dtype=tf.float32) pred_heatmap = tf.reshape(pred_heatmap, [-1, heatmap_size, heatmap_size]) if data_format == 'channels_first': image_ = tf.transpose(image_, perm=(1, 2, 0))
tensorflow.cast
13,590
import tensorflow as tf test_inf=work.test_inference(test_image_batch) test_labels=tf.one_hot(test_label_batch,classnum) test_pre = tf.reshape(test_inf, [testnum, classnum]) correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) test_pre = tf.argmax(test_pre, 1) test_true = tf.argmax(test_labels, 1) valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum) #train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) valid_pre = tf.reshape(valid_inf, [validnum, classnum]) valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1) target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True
tensorflow.reshape
13,591
import tensorflow as tf vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
tensorflow.contrib.tpu.TPUConfig
13,592
import tensorflow as tf identity = (registry.Modalities.GENERIC, None) if self.has_inputs: p.input_modality["inputs_segmentation"] = identity p.input_modality["inputs_position"] = identity p.input_modality["targets_segmentation"] = identity p.input_modality["targets_position"] = identity def example_reading_spec(self): data_fields = {"targets": tf.VarLenFeature(tf.int64)} if self.has_inputs: data_fields["inputs"] = tf.VarLenFeature(tf.int64) if self.packed_length: if self.has_inputs: data_fields["inputs_segmentation"] = tf.VarLenFeature(tf.int64) data_fields["inputs_position"] = tf.VarLenFeature(tf.int64) data_fields["targets_segmentation"] = tf.VarLenFeature(tf.int64) data_fields["targets_position"] = tf.VarLenFeature(tf.int64) data_items_to_decoders = None
tensorflow.VarLenFeature
13,593
import tensorflow as tf self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target_net') with tf.variable_scope('target_q'): self.target_q = R + self.gamma * self.q_ with tf.variable_scope('abs_TD'):
tensorflow.variable_scope
13,594
import tensorflow as tf for sample in range(self.num_samples): with tf.control_dependencies(control_inputs=deltas): perturbations = [ tf.random_normal(shape=util.shape(variable)) * learning_rate for variable in variables ] perturbation_deltas = [ pert - prev_pert for pert, prev_pert in zip(perturbations, previous_perturbations) ] applied = self.apply_step(variables=variables, deltas=perturbation_deltas) previous_perturbations = perturbations with tf.control_dependencies(control_inputs=(applied,)): perturbed_loss = fn_loss(**arguments) direction = tf.sign(x=(unperturbed_loss - perturbed_loss)) deltas = [ delta + direction * perturbation for delta, perturbation in zip(deltas, perturbations) ] else: # TensorFlow while loop def body(deltas, previous_perturbations): with tf.control_dependencies(control_inputs=deltas): perturbations = [ tf.random_normal(shape=util.shape(variable)) * learning_rate for variable in variables ] perturbation_deltas = [
tensorflow.sign
13,595
import tensorflow as tf init_state_initializer = tf.constant_initializer(weights['init_state']) W_in_initializer = tf.constant_initializer(weights['W_in']) W_rec_initializer = tf.constant_initializer(weights['W_rec']) W_out_initializer = tf.constant_initializer(weights['W_out'])
tensorflow.constant_initializer
13,596
import tensorflow as tf with self._write_locks[index % rconst.NUM_FILE_SHARDS]: self._writers[index % rconst.NUM_FILE_SHARDS].write(example_bytes) else: if self._is_training: mask_start_index = data.pop(rconst.MASK_START_INDEX) batch_size = data[movielens.ITEM_COLUMN].shape[0] data[rconst.VALID_POINT_MASK] = np.less(np.arange(batch_size), mask_start_index) data = (data, data.pop("labels")) self._result_queue.put(data) def start_construction(self): if self._stream_files: tf.gfile.MakeDirs(self.current_data_root) template = os.path.join(self.current_data_root, rconst.SHARD_TEMPLATE) self._writers = [tf.io.TFRecordWriter(template.format(i)) for i in range(rconst.NUM_FILE_SHARDS)] def end_construction(self): if self._stream_files: [writer.close() for writer in self._writers] self._writers = [] self._result_queue.put(self.current_data_root) self._epochs_completed += 1 def data_generator(self, epochs_between_evals):
tensorflow.gfile.MakeDirs
13,597
import tensorflow as tf if filter_type == "laplacian": supports.append(calculate_scaled_laplacian(adj_mx, lambda_max=None)) for support in supports: self._supports.append(self._build_sparse_matrix(support)) @staticmethod def _build_sparse_matrix(L): L = L.tocoo() indices = np.column_stack((L.row, L.col)) L = tf.SparseTensor(indices, L.data, L.shape) return tf.sparse_reorder(L) @property def output_size(self): output_size = self._num_nodes * self._num_units if self._num_proj is not None: output_size = self._num_nodes * self._num_proj return output_size
tensorflow.SparseTensor
13,598
import tensorflow as tf # This works because we use sparse_softmax_cross_entropy nclass = 1001 else: nclass = 1001 input_shape = [batch_size, image_size, image_size, input_nchan] images = tf.truncated_normal( input_shape, dtype=input_data_type, stddev=1e-1, name='synthetic_images')
tensorflow.truncated_normal
13,599