seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf rnn_inputs = tf.nn.bias_add(tf.matmul(feats_all, rnn_proj_w), rnn_proj_b) rnn_inputs = tf.reshape(rnn_inputs, [batch_size, rnn_nunroll, rnn_size])
tensorflow.reshape
13,400
import tensorflow as tf Eval: {spacer}Positive count: {eval_pos_ct} {spacer}Batch size: {eval_batch_size} {multiplier} {spacer}Batch count per epoch: {eval_batch_ct}""" _TRAIN_FEATURE_MAP = { movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string), movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string), rconst.MASK_START_INDEX: tf.FixedLenFeature([1], dtype=tf.string), "labels": tf.FixedLenFeature([], dtype=tf.string), }
tensorflow.FixedLenFeature
13,401
import tensorflow as tf # Input tensors feats_audio_nunroll = tf.placeholder(dtype, shape=[batch_size, rnn_nunroll + zack_hack, audio_context_len, audio_nbands, audio_nchannels], name='feats_audio') feats_other_nunroll = tf.placeholder(dtype, shape=[batch_size, rnn_nunroll, nfeats], name='feats_other')
tensorflow.placeholder
13,402
import tensorflow as tf input=activation, input_size=dialogue_state_action_template_size, output_size=num_actions_arguments * actions_arguments_vocabulary_length, name='linear_projection_3_predictions_arguments' ) self.predictions_arguments = softmax_2d( input=projection, n_classifiers=num_actions_arguments, n_classes=actions_arguments_vocabulary_length, name="softmax_2d_predictions_arguments") if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels_action = dense_to_one_hot(actions_template, action_templates_vocabulary_length) one_hot_labels_arguments = dense_to_one_hot(actions_arguments, actions_arguments_vocabulary_length) loss_action = tf.reduce_mean( - one_hot_labels_action * tf.log(tf.clip_by_value(self.predictions_action, 1e-10, 1.0)), name='loss' ) loss_arguments = tf.reduce_mean( - one_hot_labels_arguments * tf.log(tf.clip_by_value(self.predictions_arguments, 1e-10, 1.0)), name='loss' ) self.loss = loss_action + loss_arguments
tensorflow.name_scope
13,403
import tensorflow as tf def _build_sampler(self, prev_c=None, prev_h=None, use_bias=False): """Build the sampler ops and the log_prob ops.""" print ("-" * 80) print ("Build controller sampler") anchors = tf.TensorArray( tf.float32, size=self.num_cells + 2, clear_after_read=False) anchors_w_1 = tf.TensorArray( tf.float32, size=self.num_cells + 2, clear_after_read=False) arc_seq = tf.TensorArray(tf.int32, size=self.num_cells * 4) if prev_c is None: assert prev_h is None, "prev_c and prev_h must both be None" prev_c = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] prev_h = [tf.zeros([1, self.lstm_size], tf.float32) for _ in range(self.lstm_num_layers)] inputs = self.g_emb for layer_id in range(2): next_c, next_h = stack_lstm(inputs, prev_c, prev_h, self.w_lstm) prev_c, prev_h = next_c, next_h anchors = anchors.write(layer_id, tf.zeros_like(next_h[-1])) anchors_w_1 = anchors_w_1.write( layer_id, tf.matmul(next_h[-1], self.w_attn_1))
tensorflow.zeros
13,404
import tensorflow as tf assert self.mean is not None assert self.mean_sq is not None out = tf.nn.relu(self._normalize(x, self.mean, self.mean_sq, "reference")) self.reference_output = out def __call__(self, x, update=False): with tf.variable_scope(self.name) as scope: if not update: new_coeff = 1. / (self.batch_size + 1.) old_coeff = 1. - new_coeff new_mean = tf.reduce_mean(x, [1, 2], keep_dims=True) new_mean_sq = tf.reduce_mean(tf.square(x), [1, 2], keep_dims=True)
tensorflow.variable_scope
13,405
import tensorflow as tf output, state = self._build_rnn_graph(inputs, config, is_training) softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) # Reshape logits to be a 3-D tensor for sequence loss logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size]) # Use the contrib sequence loss and average over the batches
tensorflow.nn.xw_plus_b
13,406
from tensorflow.python.ops import math_ops `recall`. Raises: ValueError: If `ignore_mask` is not `None` and its shape doesn't match `predictions`, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('recall', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions, labels)) as scope: _, top_k_idx = nn.top_k(predictions, k) top_k_idx = math_ops.to_int64(top_k_idx) weights = _mask_weights(ignore_mask, weights) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fn, fn_update = _streaming_sparse_false_negative_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope) update = math_ops.div(
tensorflow.python.ops.math_ops.to_int64
13,407
import tensorflow as tf len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
tensorflow.logging.info
13,408
import tensorflow as tf # break # 结束本回合 # global_step = SESS.run(self.global_AC.global_step) if __name__ == '__main__': SESS = tf.Session() with tf.device('/cpu:0'): OPT = tf.train.AdamOptimizer(1e-4) # 后续主要是使用该optimizer中的apply—gradients操作 # OPT_C = tf.train.RMSPropOptimizer(LR_C, name='RMSPropC') # 定义critic训练过程 GLOBAL_AC = ACnet(scope=GLOBAL_NET_SCOPE) # 创建中央大脑GLOBALE_AC,只创建结构(A和C的参数) workers = [] for i in range(N_workers): # N—workers等于cpu数量 i_name = 'W_%i' % i # worker name workers.append(Worker(name=i_name, globalAC=GLOBAL_AC)) # 创建独立的worker
tensorflow.device
13,409
import tensorflow as tf """ with tf.name_scope(name): predictions.get_shape().assert_is_compatible_with(labels.get_shape()) predictions = tf.to_float(predictions) labels = tf.to_float(labels) losses = -tf.multiply(labels, tf.log(predictions + eps)) - tf.multiply( (1 - labels), tf.log(1 - predictions + eps)) return tf.losses.compute_weighted_loss(losses, weights)
tensorflow.log
13,410
import tensorflow as tf else: conv_bn = cnv biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype) bias = tf.nn.bias_add(conv_bn, biases) conv1 = tf.nn.relu(bias) return conv1 def convLinear(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): with tf.variable_scope(name): l2_regularizer = lambda t: l2_loss(t, weight=weight_decay) kernel = tf.get_variable("weights", [kH, kW, nIn, nOut], initializer=tf.truncated_normal_initializer(stddev=1e-1), regularizer=l2_regularizer, dtype=inpOp.dtype) cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType) if use_batch_norm:
tensorflow.variable_scope
13,411
import tensorflow as tf shape [-1, num_blocks, block_dim]. means: Embedding means of shape. Returns: Tensor with nearest element in mean encoded in one-hot notation. """ x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keep_dims=True) means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keep_dims=True) scalar_prod = tf.matmul( tf.transpose(x, perm=[1, 0, 2]), tf.transpose(means, perm=[0, 2, 1])) scalar_prod = tf.transpose(scalar_prod, perm=[1, 0, 2]) dist = x_norm_sq + tf.transpose( means_norm_sq, perm=[2, 0, 1]) - 2 * scalar_prod
tensorflow.square
13,412
import tensorflow as tf self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0) self.eval_action = pi_eval.mode() self.global_step = tf.train.get_or_create_global_step() self.saver = tf.train.Saver() # Loss functions and training epsilon_decay = tf.train.polynomial_decay(self.EPSILON, self.global_step, self.EPS_LEN, 0.1, power=0) ratio = tf.maximum(pi.prob(batch['actions']), 1e-6) / tf.maximum(pi_old.prob(batch['actions']), 1e-6) ratio = tf.clip_by_value(ratio, 0, 10) surr1 = batch['advantage'] * ratio surr2 = batch['advantage'] * tf.clip_by_value(ratio, 1 - epsilon_decay, 1 + epsilon_decay) loss_pg = - 2.0 * tf.reduce_mean(tf.minimum(surr1, surr2)) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) loss_entropy = - 0.01 * tf.reduce_mean(pi.entropy()) loss = loss_pg + loss_vf + loss_entropy opt = tf.train.AdamOptimizer(self.LR) self.train_op = opt.minimize(loss, global_step=self.global_step, var_list=pi_params + vf_params) self.pi_new_params = [oldp.assign(p) for p, oldp in zip(pi_params, pi_old_params)] self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer())
tensorflow.minimum
13,413
import tensorflow as tf self._zeros_slot(v, "g", self._name) def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) if var.dtype.base_dtype == tf.float16: eps = 1e-7 # Can't use 1e-8 due to underflow -- not sure if it makes a big difference. else: eps = 1e-8 v = self.get_slot(var, "v") v_t = v.assign(beta2_t * v + (1. - beta2_t) * tf.square(grad)) m = self.get_slot(var, "m") m_t = m.assign(beta1_t * m + (1. - beta1_t) * grad) v_t_hat = tf.div(v_t, 1. - beta2_t) m_t_hat = tf.div(m_t, 1. - beta1_t) g_t = tf.div(m_t_hat, tf.sqrt(v_t_hat) + eps) g_t_1 = self.get_slot(var, "g") g_t = g_t_1.assign(g_t) var_update = state_ops.assign_sub(var, 2. * lr_t * g_t - lr_t * g_t_1) # Adam would be lr_t * g_t return control_flow_ops.group(*[var_update, m_t, v_t, g_t]) def _apply_sparse(self, grad, var): raise NotImplementedError("Sparse gradient updates are not supported.") class RegularizeGradientDescentOptimizer(optimizer.Optimizer):
tensorflow.div
13,414
import tensorflow as tf #add_layer 函数里面所有的with都是为了tensorboard添加上去的 def add_layer(inputs, in_size, out_size, activation_function=None,nameScope="layer"): # add one more layer and return the output of this layer with tf.name_scope(nameScope): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b') with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) return outputs # 这个就是在tensorboard上可视化的时候的区别: # 使用with tf.name_scope('inputs')可以将xs和ys包含进来 # 形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。
tensorflow.name_scope
13,415
import tensorflow as tf self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] .shape.as_list(), [3, 4]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_classes] .shape.as_list(), [3, 3]) def test_clip_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.groundtruth_boxes: tf.placeholder(tf.float32, [None, 4]), fields.InputDataFields.groundtruth_classes: tf.placeholder(tf.int32, [None, 3]), fields.InputDataFields.num_groundtruth_boxes: tf.placeholder(tf.int32, []) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
tensorflow.placeholder
13,416
import tensorflow as tf h4 = deconv2d(tf.concat([h3, skip_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4', d_h=ns0, d_w=ns0) return h4 with tf.variable_scope("deconv") as scope: output_h4 = decode(trans_z, tgtctx_h3, tgtctx_h2, tgtctx_h1, tgtctx_h0) scope.reuse_variables()
tensorflow.variable_scope
13,417
import tensorflow as tf f_i = distribution_f.prob(self.action_ph) f_i_ = distribution_f.prob(action_) f_polyak_i = f_polyak.prob(self.action_ph) phi_i = strip(train_model.proba_distribution.mean, self.n_envs, self.n_steps) q_value = strip(train_model.value_fn, self.n_envs, self.n_steps) q_i = q_value[:, 0] rho_i = tf.reshape(f_i, [-1, 1]) / (self.mu_ph + eps) rho_i_ = tf.reshape(f_i_, [-1, 1]) / (self.mu_ph + eps) qret = q_retrace(self.reward_ph, self.done_ph, q_i, value, tf.pow(rho_i, 1 / self.n_act), self.n_envs, self.n_steps, self.gamma) else: # strip off last step # f is a distribution, chosen to be Gaussian distributions # with fixed diagonal covariance and mean \phi(x) # in the paper distribution_f, f_polyak, q_value = \
tensorflow.reshape
13,418
import tensorflow as tf self.EPSILON = 0.2 self.EPS_LEN = 100000 # GPU setup os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, device_count={'GPU': gpu}) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.5 # Placeholders self.sess = tf.Session(config=config) self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0] self.a_bound = (env.action_space.high - env.action_space.low) / 2 self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action') self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state') self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage') self.rewards = tf.placeholder(tf.float32, [None, 1], 'rewards') self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
tensorflow.Session
13,419
import tensorflow as tf last_layer = rnn_output last_layer_size = rnn_output_size for i, layer_size in enumerate(dnn_sizes): layer_name = 'dnn_{}'.format(i) with tf.variable_scope(layer_name): dnn_w = tf.get_variable('W', shape=[last_layer_size, layer_size], initializer=dnn_init, dtype=dtype) dnn_b = tf.get_variable('b', shape=[layer_size], initializer=tf.constant_initializer(0.0), dtype=dtype) projected = tf.nn.bias_add(tf.matmul(last_layer, dnn_w), dnn_b) # TODO: argument nonlinearity, change bias to 0.1 if relu if dnn_nonlin == 'tanh': last_layer = tf.nn.tanh(projected) elif dnn_nonlin == 'sigmoid': last_layer = tf.nn.sigmoid(projected) elif dnn_nonlin == 'relu': last_layer = tf.nn.relu(projected) else: raise NotImplementedError() if mode == 'train' and dnn_keep_prob < 1.0: last_layer = tf.nn.dropout(last_layer, dnn_keep_prob) last_layer_size = layer_size print('{}: {}'.format(layer_name, last_layer.get_shape())) export_feat_tensors[layer_name] = last_layer dnn_output = last_layer dnn_output_size = last_layer_size # Logistic regression
tensorflow.nn.relu
13,420
import tensorflow as tf def main(_): tf.logging.set_verbosity(tf.logging.INFO)
tensorflow.logging.set_verbosity
13,421
import tensorflow as tf self._deeplift_ref.clear() ops = [] g = tf.compat.v1.get_default_graph() for op in g.get_operations():
tensorflow.compat.v1.get_default_graph
13,422
import tensorflow as tf def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat()
tensorflow.constant
13,423
import tensorflow as tf self._add_forward_graph() self._add_yolo_interpret_graph() #self._add_yolo_loss_graph() #self._add_train_graph() #self._add_viz_graph() def _add_forward_graph(self): """Build the VGG-16 model.""" if self.mc.LOAD_PRETRAINED_MODEL: assert tf.gfile.Exists(self.mc.PRETRAINED_MODEL_PATH), \ 'Cannot find pretrained model at the given path:' \ ' {}'.format(self.mc.PRETRAINED_MODEL_PATH) self.caffemodel_weight = joblib.load(self.mc.PRETRAINED_MODEL_PATH) with tf.variable_scope('darknet19') as scope: conv1 = self._conv_layer( 'conv1', self.image_input, filters=32, size=3, stride=1, bn=self.BN, act='lrelu', freeze=True) pool1 = self._pooling_layer( 'pool1', conv1, size=2, stride=2) conv2 = self._conv_layer( 'conv2', pool1, filters=64, size=3, stride=1, bn=self.BN, act='lrelu', freeze=True) pool2 = self._pooling_layer( 'pool2', conv2, size=2, stride=2) conv3 = self._conv_layer( 'conv3', pool2, filters=128, size=3, stride=1, bn=self.BN, act='lrelu') conv4 = self._conv_layer( 'conv4', conv3, filters=64, size=1, stride=1, bn=self.BN, act='lrelu') conv5 = self._conv_layer( 'conv5', conv4, filters=128, size=3, stride=1, bn=self.BN, act='lrelu')
tensorflow.variable_scope
13,424
import tensorflow.contrib.eager as tfe hypo = tf.random_uniform( (sequence_length, batch_size), maxval=vocab_size, dtype=tf.int64) hypo_trans = tf.constant(np.array( [[3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2]] * batch_size, dtype=np.int64).T) if tfe.num_gpus(): labels = labels.gpu() prem = prem.gpu() prem_trans = prem_trans.gpu() hypo = hypo.gpu() hypo_trans = hypo_trans.gpu()
tensorflow.contrib.eager.num_gpus
13,425
import tensorflow as tf elmo_module = hub.Module("https://tfhub.dev/google/elmo/2") lm_embeddings = elmo_module( inputs={"tokens": tokens, "sequence_len": text_len}, signature="tokens", as_dict=True) word_emb = lm_embeddings["word_emb"] # [num_sentences, max_sentence_length, 512] lm_emb = tf.stack([tf.concat([word_emb, word_emb], -1), lm_embeddings["lstm_outputs1"], lm_embeddings["lstm_outputs2"]], -1) # [num_sentences, max_sentence_length, 1024, 3] lm_emb_size = util.shape(lm_emb, 2) lm_num_layers = util.shape(lm_emb, 3) with tf.variable_scope("lm_aggregation"): self.lm_weights = tf.nn.softmax(tf.get_variable("lm_scores", [lm_num_layers], initializer=tf.constant_initializer(0.0))) self.lm_scaling = tf.get_variable("lm_scaling", [], initializer=tf.constant_initializer(1.0)) flattened_lm_emb = tf.reshape(lm_emb, [num_sentences * max_sentence_length * lm_emb_size, lm_num_layers]) flattened_aggregated_lm_emb = tf.matmul(flattened_lm_emb, tf.expand_dims(self.lm_weights, 1)) # [num_sentences * max_sentence_length * emb, 1] aggregated_lm_emb = tf.reshape(flattened_aggregated_lm_emb, [num_sentences, max_sentence_length, lm_emb_size]) aggregated_lm_emb *= self.lm_scaling context_emb_list.append(aggregated_lm_emb) context_emb = tf.concat(context_emb_list, 2) # [num_sentences, max_sentence_length, emb] head_emb = tf.concat(head_emb_list, 2) # [num_sentences, max_sentence_length, emb] context_emb = tf.nn.dropout(context_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb] head_emb = tf.nn.dropout(head_emb, self.lexical_dropout) # [num_sentences, max_sentence_length, emb] text_len_mask = tf.sequence_mask(text_len, maxlen=max_sentence_length) # [num_sentence, max_sentence_length] context_outputs = self.lstm_contextualize(context_emb, text_len, text_len_mask) # [num_words, emb] num_words = util.shape(context_outputs, 0)
tensorflow.expand_dims
13,426
import tensorflow as tf images,labels=tf.train.shuffle_batch([image,label], batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size])
tensorflow.reshape
13,427
import tensorflow as tf std = std[::-1] image_mean = tf.constant(mean, dtype=tf.float32) * 255. image_std = tf.constant(std, dtype=tf.float32) * 255. image = (image - image_mean) / image_std return image @staticmethod def compute_loss_and_error(logits, label, label_smoothing=0.): if label_smoothing != 0.: nclass = logits.shape[-1] label = tf.one_hot(label, nclass) if label.shape.ndims == 1 else label if label.shape.ndims == 1: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label) else: loss = tf.losses.softmax_cross_entropy( label, logits, label_smoothing=label_smoothing, reduction=tf.losses.Reduction.NONE) loss = tf.reduce_mean(loss, name='xentropy-loss') def prediction_incorrect(logits, label, topk=1, name='incorrect_vector'): with tf.name_scope('prediction_incorrect'): x = tf.logical_not(tf.nn.in_top_k(logits, label, topk)) return tf.cast(x, tf.float32, name=name) wrong = prediction_incorrect(logits, label, 1, name='wrong-top1') add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1')) wrong = prediction_incorrect(logits, label, 5, name='wrong-top5') add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
tensorflow.losses.softmax_cross_entropy
13,428
import tensorflow as tf if full_cov: # TODO(VD): ``full_cov`` True would return a ``fvar`` of shape N x N x D x D, # encoding the covariance between input datapoints as well. # This is not implemented as this feature is only used for plotting purposes. raise NotImplementedError pXnew = Gaussian(Xnew_mu, Xnew_var) num_data = tf.shape(Xnew_mu)[0] # number of new inputs (N) num_ind = tf.shape(q_mu)[0] # number of inducing points (M) num_func = tf.shape(q_mu)[1] # output dimension (D) q_sqrt_r = tf.matrix_band_part(q_sqrt, -1, 0) # D x M x M eKuf = tf.transpose(expectation(pXnew, (kern, feat))) # M x N (psi1) if Luu is None:
tensorflow.shape
13,429
import tensorflow as tf return auc def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1))
tensorflow.array_ops.transpose
13,430
import tensorflow as tf # squeeze and 2d resize squeeze_b_z = tf.reshape(reoriented, [-1, y_size_new, x_size, c_size], name='reshape_bz')
tensorflow.reshape
13,431
from tensorflow.python.platform import gfile """ with gfile.Open(filename, 'wb') as f: f.write(pickle.dumps(self)) @classmethod def restore(cls, filename): """Restores vocabulary processor from given file. Args: filename: Path to file to load from. Returns: VocabularyProcessor object. """ with gfile.Open(filename, 'rb') as f: return pickle.loads(f.read())
tensorflow.python.platform.gfile.Open
13,432
import tensorflow as tf if self.config["coarse_to_fine"]: top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.coarse_to_fine_pruning(top_span_emb, top_span_mention_scores, c) else: top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets = self.distance_pruning(top_span_emb, top_span_mention_scores, c) dummy_scores = tf.zeros([k, 1]) # [k, 1] for i in range(self.config["coref_depth"]): with tf.variable_scope("coref_layer", reuse=(i > 0)): top_antecedent_emb = tf.gather(top_span_emb, top_antecedents) # [k, c, emb] top_antecedent_scores = top_fast_antecedent_scores + self.get_slow_antecedent_scores(top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb) # [k, c] top_antecedent_weights = tf.nn.softmax(tf.concat([dummy_scores, top_antecedent_scores], 1)) # [k, c + 1] top_antecedent_emb = tf.concat([tf.expand_dims(top_span_emb, 1), top_antecedent_emb], 1) # [k, c + 1, emb] attended_span_emb = tf.reduce_sum(tf.expand_dims(top_antecedent_weights, 2) * top_antecedent_emb, 1) # [k, emb] with tf.variable_scope("f"): f = tf.sigmoid(util.projection(tf.concat([top_span_emb, attended_span_emb], 1), util.shape(top_span_emb, -1))) # [k, emb] top_span_emb = f * attended_span_emb + (1 - f) * top_span_emb # [k, emb] top_antecedent_scores = tf.concat([dummy_scores, top_antecedent_scores], 1) # [k, c + 1] top_antecedent_cluster_ids = tf.gather(top_span_cluster_ids, top_antecedents) # [k, c] top_antecedent_cluster_ids += tf.to_int32(tf.log(tf.to_float(top_antecedents_mask))) # [k, c] same_cluster_indicator = tf.equal(top_antecedent_cluster_ids, tf.expand_dims(top_span_cluster_ids, 1)) # [k, c] non_dummy_indicator = tf.expand_dims(top_span_cluster_ids > 0, 1) # [k, 1]
tensorflow.expand_dims
13,433
import tensorflow as tf mask = tf.equal(mask, tf.ones_like(mask)) key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores return output class VecAttGRUCell(RNNCell): """Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078). Args: num_units: int, The number of units in the GRU cell.
tensorflow.shape
13,434
import tensorflow as tf tf.select(cdf_delta > 1e-5, tf.log(tf.maximum(cdf_delta, 1e-12)), log_pdf_mid - np.log(127.5)))) log_probs = tf.reduce_sum(log_probs, 3) + \ log_prob_from_logits(logit_probs) if sum_all: return -tf.reduce_sum(log_sum_exp(log_probs)) else: return -tf.reduce_sum(log_sum_exp(log_probs), [1, 2]) def mse_loss(pred, labels): try: batch_size = tf.cast(pred.shape[0], tf.float32) except Exception as e: print('Pred is a tf tensor %s' % str(e.message)) batch_size = tf.cast(tf.shape(pred)[0], tf.float32) loss_val = tf.sqrt(2 * tf.nn.l2_loss(pred - labels)) / batch_size return loss_val def pullaway_loss(embeddings, name='pullaway_loss'): """Pull Away loss calculation. Args: embeddings: The embeddings to be orthogonalized for varied faces.
tensorflow.cast
13,435
import tensorflow as tf if encoder.attend_inputs: encoder_outputs.append(encoder_inputs_) elif encoder.attend_both: encoder_outputs.append(tf.concat([encoder_inputs_, encoder_outputs_], axis=2)) else: encoder_outputs.append(encoder_outputs_) encoder_states.append(encoder_state_) new_encoder_input_length.append(encoder_input_length_) encoder_state = tf.concat(encoder_states, 1) return encoder_outputs, encoder_state, new_encoder_input_length def compute_energy(hidden, state, encoder, time=None, input_length=None, prev_weights=None, **kwargs): batch_size = tf.shape(hidden)[0] time_steps = tf.shape(hidden)[1] if encoder.attn_keep_prob is not None: state_noise_shape = [1, tf.shape(state)[1]] if encoder.pervasive_dropout else None
tensorflow.concat
13,436
import tensorflow as tf out=tf.matmul(l3, self.w4)+self.b4 return out def softmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,classnum) loss=-tf.reduce_sum(labels*tf.log(predicts)) return loss
tensorflow.nn.softmax
13,437
import tensorflow as tf Shape [batch_size, embeddings_dim] Return: pull away term loss """ with tf.name_scope(name): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / \ (batch_size * (batch_size - 1)) return pt_loss
tensorflow.matmul
13,438
import tensorflow as tf # Calculate the context vector from attn_dist and encoder_states # shape (batch_size, attn_size). context_vector = tf.reduce_sum(tf.expand_dims(attn_dist, axis=-1) * encoder_states, axis=1) # [batch_size, encoder_dim] return context_vector, attn_dist, coverage def embedding_lookup(self, inputs): ''' inputs: list of [batch_size], int32 ''' if type(inputs) is list: return [tf.nn.embedding_lookup(self.embedding, x) for x in inputs] else: return tf.nn.embedding_lookup(self.embedding, inputs) def one_step_decoder(self, state_t_1, context_t_1, coverage_t_1, word_t, encoder_states, encoder_features, passage_word_idx, passage_mask, v, w_c, vocab): ''' state_t_1: Tuple of [batch_size, gen_hidden_size] context_t_1: [batch_size, encoder_dim] coverage_t_1: [batch_size, passage_len] word_t: [batch_size, word_dim]
tensorflow.nn.embedding_lookup
13,439
import tensorflow as tf self.assertEqual(10.0, v0_2.eval()) self.assertEqual(20.0, v1_2.eval()) def _SaveAndLoad(self, var_name, var_value, other_value, save_path): with self.test_session() as sess: var = tf.Variable(var_value, name=var_name) save = tf.train.Saver({var_name: var}) var.initializer.run() val = save.save(sess, save_path) self.assertEqual(save_path, val) with self.test_session() as sess: var = tf.Variable(other_value, name=var_name) save = tf.train.Saver({var_name: var}) save.restore(sess, save_path) self.assertAllClose(var_value, var.eval()) def testCacheRereadsFile(self): save_path = os.path.join(self.get_temp_dir(), "cache_rereads") # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) # Save and reload one Variable named "var1" in the same file. # The cached readers should know to re-read the file.
tensorflow.Variable
13,440
import tensorflow as tf 'b_transform', [highway_dim], initializer=tf.constant_initializer(0.0), dtype=DTYPE) embedding = high(embedding, W_carry, b_carry, W_transform, b_transform) # finally project down if needed if use_proj: embedding = tf.matmul(embedding, W_proj_cnn) + b_proj_cnn # reshape back to (batch_size, tokens, dim) if use_highway or use_proj: shp = tf.concat([batch_size_n_tokens, [projection_dim]], axis=0) embedding = tf.reshape(embedding, shp) # at last assign attributes for remainder of the model self.embedding = embedding
tensorflow.matmul
13,441
import tensorflow as tf 'mse': 'mse_loss', 'ne': 'ne_mertric', } logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps, formatter=lambda dicts: '{}:'.format(model_scope) + (', '.join(['%s=%.6f' % (k, v) for k, v in dicts.items()]))) # FIXME: augment error:tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[0] = 0 is not in [0, 0) tf.logging.info('Starting a training cycle.') fashionAI.train(input_fn=lambda : input_pipeline(True, model_scope, epochs_per_eval), hooks=[logging_hook], max_steps=(steps_per_epoch*train_epochs)) tf.logging.info('Starting to evaluate.') eval_results = fashionAI.evaluate(input_fn=lambda : input_pipeline(False, model_scope, 1)) tf.logging.info(eval_results) tf.logging.info('Finished model {}.'.format(model_scope))
tensorflow.logging.info
13,442
import tensorflow as tf [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3 mean, var = tf.nn.moments(tgtimg_z, axes=[0]) print(var.get_shape()) # self.simloss /= tf.reduce_mean(var) print(tgtimg_z.get_shape()) self.out = output_h4# + contextimg#tf.nn.tanh(h4) self.out2 = truthoutput_h4 self.recon1 = tf.nn.l2_loss(tgtimg - self.out)
tensorflow.nn.moments
13,443
import tensorflow as tf trainable_vars = tf.trainable_variables() if self.config.clip_weight: # clip_weight tvars = tf.trainable_variables() grads = tf.gradients(self.loss, tvars) grads, _ = tf.clip_by_global_norm(grads, clip_norm=self.config.max_norm_grad) grad_var_pairs = zip(grads, tvars) self.train_op = self.optimizer.apply_gradients(grad_var_pairs, name='apply_grad') else: self.train_op = self.optimizer.minimize(self.loss) def _attention(self, output, name='attn', reuse=None): with tf.variable_scope(name, reuse=reuse): W = tf.get_variable(name="attn_W", shape=[2 * self.config.hidden_size, 2 * self.config.hidden_size], initializer=tf.contrib.layers.xavier_initializer(), # initializer=tf.truncated_normal_initializer(), # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32) V = tf.get_variable(name="attn_V", shape=[2 * self.config.hidden_size, 1], initializer=tf.contrib.layers.xavier_initializer(), # initializer=tf.truncated_normal_initializer(), # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32) U = tf.get_variable(name="attn_U", shape=[2 * self.config.hidden_size, 2 * self.config.hidden_size], initializer=tf.contrib.layers.xavier_initializer(), # initializer=tf.truncated_normal_initializer(), # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32)
tensorflow.contrib.layers.xavier_initializer
13,444
import tensorflow as tf (entropy_test_nor_help,labels_nor_help,confidence_test_nor_help) = sess.run( [entropy,tf.argmax(predict,axis=1),tf.reduce_max(predict, axis=1)],feed_dict={predict:predict_NOR} ) # Local entropy and confidence for adv_img (entropy_test_adv_help, labels_adv_help, confidence_test_adv_help) = sess.run( [entropy, tf.argmax(predict, axis=1), tf.reduce_max(predict, axis=1)], feed_dict={predict: predict_ADV} ) if FLAGS.attack_method == 'carliniL2_specific' or FLAGS.attack_method == 'carliniL2_highden': print('Log-density-ratio in attacking function of nor/adv is %f'%np.sum(log_density_ratio)) m_tsne_logits_adv = (copy.copy(logits_part_adv)).reshape((1, 64))
tensorflow.argmax
13,445
import tensorflow as tf # placeholder for current reward rew_t_ph = tf.placeholder(tf.float32, [None]) # placeholder for next observation (or state) obs_tp1_ph = tf.placeholder(tf.uint8, [None] + list(input_shape)) # placeholder for end of episode mask # this value is 1 if the next state corresponds to the end of an episode, # in which case there is no Q-value at the next state; at the end of an # episode, only the current state reward contributes to the target, not the # next state Q-value (i.e. target is just rew_t_ph, not rew_t_ph + gamma * q_tp1) done_mask_ph = tf.placeholder(tf.float32, [None]) # casting to float on GPU ensures lower data transfer times. obs_t_float = tf.cast(obs_t_ph, tf.float32) / 255.0 obs_tp1_float = tf.cast(obs_tp1_ph, tf.float32) / 255.0 # Here, you should fill in your own code to compute the Bellman error. This requires # evaluating the current and next Q-values and constructing the corresponding error. # TensorFlow will differentiate this error for you, you just need to pass it to the
tensorflow.placeholder
13,446
import tensorflow as tf import json from keras.layers import merge from keras.layers.core import Lambda from keras.models import Model import tensorflow as tf def make_parallel(model, gpu_count): def get_slice(data, idx, parts): shape = tf.shape(data) size = tf.concat(0, [shape[:1] // parts, shape[1:]]) stride = tf.concat(0, [shape[:1] // parts, shape[1:] * 0]) start = stride * idx return tf.slice(data, start, size) outputs_all = [] for i in range(len(model.outputs)): outputs_all.append([]) # Place a copy of the model on each GPU, each getting a slice of the batch for i in range(gpu_count): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i) as scope:
tensorflow.concat
13,447
import tensorflow as tf print('------valid_confusion_matrix-----') cm = confusion_matrix(y_true=valid_true_total, y_pred=valid_pre_total) print(cm) print('------valid_confusion_matrix-----') coord.request_stop() coord.join(threads) def predict_time(loop=100): feed_dict={ testnum:1 } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) total=0.0 for i in range(loop): a = datetime.now() accuracy_np = sess.run([accuracy],feed_dict=feed_dict) b = datetime.now() c = (b - a).microseconds total+=c
tensorflow.Session
13,448
import tensorflow as tf function to select and action given observation. ` See the top of the file for details. """ with tf.variable_scope(scope, reuse=reuse): observations_ph = U.ensure_tf_input(make_obs_ph("observation")) stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic") update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps") eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0)) q_values = q_func(observations_ph.get(), num_actions, scope="q_func") deterministic_actions = tf.argmax(q_values, axis=1) batch_size = tf.shape(observations_ph.get())[0] random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=num_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
tensorflow.constant_initializer
13,449
import tensorflow as tf 'saw rank: {}.'.format( rightmost_transposed_ndims.shape.ndims)) elif validate_args: assertions += [tf.compat.v1.assert_rank(rightmost_transposed_ndims, 0)] rightmost_transposed_ndims_ = tf.get_static_value(
tensorflow.compat.v1.assert_rank
13,450
import tensorflow as tf acc_train = [] #store train accuracy for each epoch acc_test = [] #store test accuracy for each epoch if actL == 'sigmoid': #accuracy score for binary class classification Yp = tf.greater(an , 0.5) accuracy = tf.reduce_mean(tf.cast(tf.equal(Yp, tf.equal(Y,1.0)), "float")) elif actL == 'esp' or actL == 'relu': #r2 score
tensorflow.greater
13,451
import tensorflow as tf params.vocabulary["char"], control_symbols ) } return params def get_initializer(params): if params.initializer == "xavier": return tf.contrib.layers.xavier_initializer() elif params.initializer == "uniform": max_val = params.initializer_gain return tf.random_uniform_initializer(-max_val, max_val) elif params.initializer == "normal": return tf.random_normal_initializer(0.0, params.initializer_gain) elif params.initializer == "normal_unit_scaling": return tf.variance_scaling_initializer(params.initializer_gain, mode="fan_avg", distribution="normal")
tensorflow.contrib.layers.xavier_initializer
13,452
import tensorflow as tf def common_conv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',norm=True,name='common_conv2d'): """Layers used during downsampling""" with tf.variable_scope(name): if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=stride,padding=padding) if norm: d = tf.contrib.layers.batch_norm(d) d = lrelu(d,alpha=0.2) return d #def common_deconv2d(layer_input,skip_input, filters,f_size=4,stride=2,dropout_rate=0,name='common_deconv2d'): def common_deconv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',dropout_rate=0,name='common_deconv2d'):
tensorflow.contrib.layers.conv2d
13,453
import tensorflow as tf """ grads_and_vars = [] clones_losses = [] num_clones = len(clones) if regularization_losses is None: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss, clone_grad = _optimize_clone( optimizer, clone, num_clones, regularization_losses, **kwargs) if clone_loss is not None: clones_losses.append(clone_loss) grads_and_vars.append(clone_grad) # Only use regularization_losses for the first clone regularization_losses = None
tensorflow.name_scope
13,454
import tensorflow as tf # Convert inputs to tensors and standardize dtypes. labels, logits, weights, original_shape = _prepare_labels_logits_weights(labels, logits, weights) # Create tensors of pairwise differences for logits and labels, and # pairwise products of weights. These have shape # [batch_size, batch_size, num_labels]. logits_difference = tf.expand_dims(logits, 0) - tf.expand_dims(logits, 1) labels_difference = tf.expand_dims(labels, 0) - tf.expand_dims(labels, 1) weights_product = tf.expand_dims(weights, 0) * tf.expand_dims(weights, 1) signed_logits_difference = labels_difference * logits_difference raw_loss = losses_utils.weighted_surrogate_loss( labels=tf.ones_like(signed_logits_difference), logits=signed_logits_difference, surrogate_type=surrogate_type) weighted_loss = weights_product * raw_loss
tensorflow.expand_dims
13,455
import tensorflow as tf import tensorflow as tf from learners.abstract_learner import AbstractLearner from learners.distillation_helper import DistillationHelper from learners.weight_sparsification.pr_optimizer import PROptimizer from learners.weight_sparsification.utils import get_maskable_vars from utils.multi_gpu_wrapper import MultiGpuWrapper as mgw FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('ws_save_path', './models_ws/model.ckpt', 'WS: model\'s save path') tf.app.flags.DEFINE_float('ws_prune_ratio', 0.75, 'WS: target pruning ratio') tf.app.flags.DEFINE_string('ws_prune_ratio_prtl', 'optimal', 'WS: pruning ratio protocol (\'uniform\' | \'heurist\' | \'optimal\')') tf.app.flags.DEFINE_integer('ws_nb_rlouts', 200, 'WS: # of roll-outs for the RL agent') tf.app.flags.DEFINE_integer('ws_nb_rlouts_min', 50, 'WS: minimal # of roll-outs for the RL agent to start training') tf.app.flags.DEFINE_string('ws_reward_type', 'single-obj', 'WS: reward type (\'single-obj\' OR \'multi-obj\')') tf.app.flags.DEFINE_float('ws_lrn_rate_rg', 3e-2, 'WS: learning rate for layerwise regression') tf.app.flags.DEFINE_integer('ws_nb_iters_rg', 20, 'WS: # of iterations for layerwise regression') tf.app.flags.DEFINE_float('ws_lrn_rate_ft', 3e-4, 'WS: learning rate for global fine-tuning') tf.app.flags.DEFINE_integer('ws_nb_iters_ft', 400, 'WS: # of iterations for global fine-tuning') tf.app.flags.DEFINE_integer('ws_nb_iters_feval', 25, 'WS: # of iterations for fast evaluation') tf.app.flags.DEFINE_float('ws_prune_ratio_exp', 3.0, 'WS: pruning ratio\'s exponent term') tf.app.flags.DEFINE_float('ws_iter_ratio_beg', 0.1, 'WS: iteration ratio (at starting time)') tf.app.flags.DEFINE_float('ws_iter_ratio_end', 0.5, 'WS: iteration ratio (at ending time)') tf.app.flags.DEFINE_float('ws_mask_update_step', 500, 'WS: step size for updating the pruning mask') def calc_prune_ratio(vars_list):
tensorflow.app.flags.DEFINE_integer
13,456
import tensorflow as tf # Optimisation hyperparameters tf.app.flags.DEFINE_integer('batch-size', 256, 'Number of examples per mini-batch (default: %(default)d)') tf.app.flags.DEFINE_float('learning-rate', 1e-4, 'Learning rate (default: %(default)d)') tf.app.flags.DEFINE_integer('img-width', 32, 'Image width (default: %(default)d)') tf.app.flags.DEFINE_integer('img-height', 32, 'Image height (default: %(default)d)')
tensorflow.app.flags.DEFINE_float
13,457
import tensorflow as tf 'member/age': tf.io.FixedLenFeature([], tf.int64), 'member/height': tf.io.VarLenFeature(tf.float32), 'member/prefer_prods': tf.io.VarLenFeature(tf.int64)} features = tf.io.parse_single_example(example_proto, features) images = tf.image.decode_png(features['member/encoded'], channels=3) # 注意png原本有4個channel,但執行到下面的處理會出錯,所以前一行先降成3個channel。 images = tf.image.random_brightness(images, 0.1) images = tf.image.random_saturation(images, 0.7, 1.3) images = tf.image.random_contrast(images, 0.6, 1.5) images = tf.image.random_flip_left_right(images) return features, images if __name__ == '__main__': main()
tensorflow.image.random_contrast
13,458
import tensorflow as tf inp = features['inputs'] pad = tf.expand_dims(tf.zeros_like(inp[0]) + pad_symbol, axis=0) concat = tf.concat([pad, inp, pad, targets], axis=0) # Note: we're updating existing features dictionary here, so make sure
tensorflow.concat
13,459
from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc def test_apply_transition(self): """Testing function `Dynamics.apply_transition` in graph and eager mode.""" # Eager mode testing hparams = get_default_hparams() energy_fn, _, _ = l2hmc.get_scg_energy_fn() dynamics = l2hmc.Dynamics( x_dim=hparams.x_dim, minus_loglikelihood_fn=energy_fn, n_steps=hparams.n_steps, eps=hparams.eps)
tensorflow.contrib.eager.python.examples.l2hmc.l2hmc.get_scg_energy_fn
13,460
import tensorflow as tf def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0) return tf.matmul(input_var,w)+self.b def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class SymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) :
tensorflow.nn.l2_normalize
13,461
import tensorflow as tf 'The parent directory where the model will be stored.') tf.app.flags.DEFINE_integer( 'log_every_n_steps', 10, 'The frequency with which logs are print.') tf.app.flags.DEFINE_integer( 'save_summary_steps', 100, 'The frequency with which summaries are saved, in seconds.') tf.app.flags.DEFINE_integer( 'save_checkpoints_secs', 3600, 'The frequency with which the model is saved, in seconds.') # model related configuration tf.app.flags.DEFINE_integer( 'train_image_size', 384, 'The size of the input image for the model to use.') tf.app.flags.DEFINE_integer( 'heatmap_size', 96, 'The size of the output heatmap of the model.') tf.app.flags.DEFINE_string( 'backbone', 'seresnext50',#or seresnext50 seresnet50 'The backbone network to use for feature pyramid.') tf.app.flags.DEFINE_float( 'heatmap_sigma', 1., 'The sigma of Gaussian which generate the target heatmap.') tf.app.flags.DEFINE_float( 'bbox_border', 25., 'The nearest distance of the crop border to al keypoints.') tf.app.flags.DEFINE_integer( 'train_epochs', 50,
tensorflow.app.flags.DEFINE_integer
13,462
import tensorflow as tf pi, self.pi_params = self.build_anet(batch['state'], 'pi') pi_eval, _ = self.build_anet(self.state, 'pi', reuse=True) self.vf, self.vf_params = self.build_cnet(batch['state'], 'vf') self.vf_eval, _ = self.build_cnet(self.state, 'vf', reuse=True) self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0) self.eval_action = pi_eval.mode() self.global_step = tf.train.get_or_create_global_step() self.saver = tf.train.Saver() # Loss functions and training loss_pg = - tf.reduce_mean(pi.log_prob(batch['actions']) * batch['advantage']) - 0.01 * tf.reduce_mean(pi.entropy()) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) self.a_grads = tf.gradients(loss_pg, self.pi_params) self.c_grads = tf.gradients(loss_vf, self.vf_params) self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0)
tensorflow.train.get_or_create_global_step
13,463
from tensorflow.python.ops import gen_math_ops Returns: A `Tensor`. """ with ops.op_scope([x], name, "Pow") as name: return gen_math_ops._pow(x, y, name=name) def complex(real, imag, name=None): """Converts two real numbers to a complex number.
tensorflow.python.ops.gen_math_ops._pow
13,464
import tensorflow as tf fetches: Any nested structure compatible with `tf.nest`. session: Optional. A `tf.Session` object in the context of which the evaluation is to happen. Returns: `fetches` with any `Tensor` objects replaced by numpy values. """ if any((tf.is_tensor(t) for t in tf.nest.flatten(fetches))): if session: fetches = session.run(fetches) else: fetches = self.evaluate(fetches) return fetches
tensorflow.is_tensor
13,465
from tensorflow.contrib.tpu.python.tpu import tpu_estimator with tf.device("cpu:0"), mtf.utils.outside_all_rewrites(): eval_metrics = {} for metric_name, metric_fn in six.iteritems(eval_metrics_fns): if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST: eval_metrics[metric_name] = metric_fn( tf_logits, None, tf.identity(labels)) return eval_metrics return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, evaluation_hooks=[restore_hook], loss=loss, eval_metrics=(metric_fn, [logits, labels])) else: eval_metrics = {}
tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimatorSpec
13,466
import tensorflow as tf collections=[tf.GraphKeys.WEIGHTS, tf.GraphKeys.GLOBAL_VARIABLES]) return var def conv(inp, name, size, out_channels, strides=[1, 1, 1, 1], dilation=None, padding='SAME', apply_relu=True, alpha=0.0,bias=True, initializer=tf.contrib.layers.xavier_initializer_conv2d()): batch_size = inp.get_shape().as_list()[0] res1 = inp.get_shape().as_list()[1] res2 = inp.get_shape().as_list()[1] in_channels = inp.get_shape().as_list()[3] with tf.variable_scope(name): W = get_variable("W", shape=[size, size, in_channels, out_channels], dtype=tf.float32, initializer=initializer, regularizer=tf.nn.l2_loss) b = get_variable("b", shape=[1, 1, 1, out_channels], dtype=tf.float32, initializer=tf.zeros_initializer(),trainable=bias) if dilation: assert(strides == [1, 1, 1, 1]) out = tf.add(tf.nn.atrous_conv2d(inp, W, rate=dilation, padding=padding), b, name='convolution') out.set_shape([batch_size, res1, res2, out_channels]) else: out = tf.add(tf.nn.conv2d(inp, W, strides=strides, padding=padding), b, name='convolution')
tensorflow.variable_scope
13,467
import tensorflow as tf if q_sqrt.get_shape().ndims == 2: LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # R x M x N elif q_sqrt.get_shape().ndims == 3: L = tf.matrix_band_part(q_sqrt, -1, 0) # R x M x M A_tiled = tf.tile(tf.expand_dims(A, 0), tf.stack([num_func, 1, 1])) LTA = tf.matmul(L, A_tiled, transpose_a=True) # R x M x N else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" %
tensorflow.expand_dims
13,468
import tensorflow as tf self.v = tf.layers.dense( inputs=l1, units=1, # output units activation=None, name='V' ) # 計算損益 self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # Actor # 建立網路 action_op, action_op_params = self._build_anet( 'action_op', trainable=True) old_action_op, old_action_op_params = self._build_anet( 'old_action_op', trainable=False)
tensorflow.train.AdamOptimizer
13,469
import tensorflow as tf gating_startat=gating_startat, final_endpoint=final_endpoint, min_depth=min_depth, depth_multiplier=depth_multiplier, data_format=data_format, scope=scope) with tf.variable_scope('Logits'): if data_format.startswith('NC'): net = tf.transpose(net, [0, 2, 3, 4, 1]) kernel_size = i3d_utils.reduced_kernel_size_3d(net, [2, 7, 7]) net = layers.avg_pool3d( net,
tensorflow.variable_scope
13,470
import tensorflow as tf lambda: tf.zeros([bs, sl+1, hn], tf.float32), lambda: tf.scatter_nd( tf.stack([range_unhead, unhead_org_idx], -1), pooling_result, [bs, sl+1, hn]) ) self_attn_input = rep_map context_features = tf.add(scatter_attn[:, :-1], scatter_pooling[:, :-1], 'context_features') output_mask = rep_mask else: self_attn_input = rep_head_tensor context_features = attn_result output_mask = rep_head_mask
tensorflow.add
13,471
from tensorflow.python.framework import ops return math_ops.div( math_ops.reduce_sum(loss_vec), math_ops.to_float(math_ops.reduce_sum(weight_tensor)), name="loss") def _get_linear_vars(self): if self._get_linear_feature_columns(): return ops.get_collection(self._linear_weight_collection) return [] def _get_linear_training_ops(self, linear_grads, linear_vars): if self._get_linear_feature_columns(): self._linear_optimizer = self._get_optimizer( self._linear_optimizer,
tensorflow.python.framework.ops.get_collection
13,472
import tensorflow as tf batch_per_thread, hard_code_batch_size=False, validation_file_path=None): import tensorflow as tf g = tf.Graph() with g.as_default():
tensorflow.Graph
13,473
import tensorflow as tf encoder_input_length = [tf.to_int32(tf.reduce_sum(weights, axis=1))] attention_states, encoder_state, encoder_input_length = multi_encoder( encoder_input_length=encoder_input_length, encoders=encoders, encoder_inputs=encoder_inputs, training=training) outputs, attention_weights, states, _, samples, beam_fun, initial_data = attention_decoder( attention_states=attention_states, initial_state=encoder_state, feed_previous=feed_previous, decoder_inputs=targets[0][:, :-1], encoder_input_length=encoder_input_length, decoder=decoders[0], training=training, encoders=encoders ) target_weights = get_weights(targets[0][:, 1:], utils.EOS_ID, include_first_eos=True) target_length = [tf.to_int32(tf.reduce_sum(target_weights, axis=1))] xent_loss = sequence_loss(logits=outputs, targets=targets[0][:, 1:], weights=target_weights) reconstructed_outputs, reconstructed_weights, _, _, _, _, _ = attention_decoder( attention_states=[states], initial_state=states[:,-1,:], feed_previous=feed_previous, decoder_inputs=targets[1][:, :-1], encoder_input_length=target_length, decoder=decoders[1], training=training, encoders=decoders[:1] ) target_weights = get_weights(targets[1][:, 1:], utils.EOS_ID, include_first_eos=True) xent_loss += reconstruction_weight * sequence_loss(logits=reconstructed_outputs, targets=targets[1][:, 1:], weights=target_weights)
tensorflow.reduce_sum
13,474
import tensorflow as tf alphas_all = tf.reduce_sum(alphas, 1) # (N, L) alpha_reg = self.alpha_c * tf.reduce_sum((16./196 - alphas_all) ** 2) loss += alpha_reg return loss / tf.to_float(batch_size) def build_sampler(self, max_len=20): features = self.features
tensorflow.to_float
13,475
import tensorflow as tf if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else:
tensorflow.shape
13,476
import tensorflow as tf z = tf.py_func(lambda x: x * 2, [x], [tf.float32]) for _ in xrange(100): sess.run([y[0].op, z[0].op]) def testNoInput(self): with self.test_session(): x, = tf.py_func(lambda: 42.0, [], [tf.float64]) self.assertAllClose(x.eval(), 42.0) def testCleanup(self): for _ in xrange(1000): g = tf.Graph()
tensorflow.py_func
13,477
import tensorflow as tf tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1) mask = tf.cast(mask, dtype=tf.float32) mask.set_shape([None, None]) return mask height = parsed_tensors['image/height'] width = parsed_tensors['image/width'] masks = parsed_tensors['image/object/mask'] return tf.cond( pred=tf.greater(tf.size(input=masks), 0), true_fn=lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32), false_fn=lambda: tf.zeros([0, height, width], dtype=tf.float32)) def _decode_areas(self, parsed_tensors): xmin = parsed_tensors['image/object/bbox/xmin'] xmax = parsed_tensors['image/object/bbox/xmax'] ymin = parsed_tensors['image/object/bbox/ymin'] ymax = parsed_tensors['image/object/bbox/ymax'] return tf.cond( tf.greater(tf.shape(parsed_tensors['image/object/area'])[0], 0), lambda: parsed_tensors['image/object/area'], lambda: (xmax - xmin) * (ymax - ymin))
tensorflow.zeros
13,478
import tensorflow as tf self.end_label = tf.placeholder(tf.int32, [self.config.batch_size], "answer_label2") self.position_emb = position_embedding(self.c, 2 * self.config.hidden_size) self.c_mask = tf.cast(self.c, tf.bool) # index 0 is padding symbol N x self.max_p_num, max_p_len self.q_mask = tf.cast(self.q, tf.bool) self.c_len = tf.reduce_sum(tf.cast(self.c_mask, tf.int32), axis=1) self.q_len = tf.reduce_sum(tf.cast(self.q_mask, tf.int32), axis=1) self.dropout = tf.placeholder(tf.float32, name="dropout") self.global_step = tf.Variable(0, name="global_step", trainable=False) """
tensorflow.cast
13,479
import tensorflow as tf sequence_length=self.seq_len, ) ## (batch_size, seq_len, num_hidden) # rnn_outputs = tf.transpose(rnn_outputs, perm=[1,0,2]) ## (seq_len, batch_size, num_hidden) NOT NEEDED ANY MORE last_outputs = self.last_relevant(rnn_outputs, self.seq_len) ## (batch_size, num_hidden) with tf.variable_scope('output', reuse=forward_only): with tf.variable_scope('softmax'): W = tf.get_variable('W', [self.num_hidden, self.num_classes], # initializer=tf.random_uniform_initializer(-0.003, 0.003)) initializer=tf.contrib.layers.xavier_initializer()) # initializer=tf.truncated_normal_initializer(stddev=0.1)) b = tf.get_variable('b', [self.num_classes], initializer=tf.constant_initializer(0.1)) logits = tf.matmul(last_outputs, W) + b self.embed_inputs = embed_inputs return logits def loss(self, logits, forward_only=None): cost = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.cast(self.y, tf.float32)) mean_cost = tf.reduce_mean(cost) y_pred = tf.argmax(logits, 1) correct_pred = tf.equal(y_pred, tf.argmax(self.y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if forward_only:
tensorflow.matmul
13,480
import tensorflow as tf summary = tf.summary.merge_all()
tensorflow.summary.merge_all
13,481
import tensorflow as tf _evaluate_legendre_polynomial_branch(degree_l, order_m, x, pmm)) def _spherical_harmonics_normalization(l, m, var_type=tf.float64): l = tf.cast(l, dtype=var_type) m = tf.cast(m, dtype=var_type) numerator = (2.0 * l + 1.0) * factorial(l - tf.abs(m)) denominator = 4.0 * np.pi * factorial(l + tf.abs(m)) return tf.sqrt(numerator / denominator) def _evaluate_spherical_harmonics_branch(degree, order, theta, phi, sign_order,
tensorflow.sqrt
13,482
import tensorflow as tf batch_size = 100 n_epochs = 1000 learning_rate = 0.001 beta1 = 0.9 results_path = './Results/Semi_Supervised' n_labels = 10 n_labeled = 1000 # Placeholders for input data and the targets x_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Input') x_input_l = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Labeled_Input') y_input = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Labels') x_target = tf.placeholder(dtype=tf.float32, shape=[batch_size, input_dim], name='Target') real_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, z_dim], name='Real_distribution') categorial_distribution = tf.placeholder(dtype=tf.float32, shape=[batch_size, n_labels], name='Categorical_distribution') manual_decoder_input = tf.placeholder(dtype=tf.float32, shape=[1, z_dim + n_labels], name='Decoder_input') def form_results():
tensorflow.placeholder
13,483
import tensorflow as tf [2, self.pretrained_char_mat.get_shape()[1]], dtype=tf.float32, initializer=tf.constant_initializer( self.vocab.char_embeddings[:2], dtype=tf.float32), trainable=True) self.char_mat = tf.concat([self.char_pad_unk_mat, self.pretrained_char_mat], axis=0) else: self.word_mat = tf.get_variable( 'word_embeddings', shape=[self.vocab.word_size(), self.vocab.word_embed_dim], initializer=tf.constant_initializer(self.vocab.word_embeddings), trainable=True ) self.char_mat = tf.get_variable( 'char_embeddings', shape=[self.vocab.char_size(), self.vocab.char_embed_dim], initializer=tf.constant_initializer(self.vocab.char_embeddings), trainable=True ) self.ch_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1])
tensorflow.constant_initializer
13,484
import tensorflow as tf method=1) tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img) loss_dict = outputs[-1] total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(r3det_gwd, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph) if __name__ == '__main__': trainer = TrainR3DetGWD(cfgs) trainer.main()
tensorflow.get_variable_scope
13,485
import tensorflow as tf output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***")
tensorflow.reduce_sum
13,486
import tensorflow as tf for sample in range(self.num_samples): with tf.control_dependencies(control_inputs=deltas): perturbations = [ tf.random_normal(shape=util.shape(variable)) * learning_rate for variable in variables ] perturbation_deltas = [ pert - prev_pert for pert, prev_pert in zip(perturbations, previous_perturbations) ] applied = self.apply_step(variables=variables, deltas=perturbation_deltas) previous_perturbations = perturbations with tf.control_dependencies(control_inputs=(applied,)): perturbed_loss = fn_loss(**arguments) direction = tf.sign(x=(unperturbed_loss - perturbed_loss)) deltas = [ delta + direction * perturbation for delta, perturbation in zip(deltas, perturbations) ] else: # TensorFlow while loop def body(deltas, previous_perturbations): with tf.control_dependencies(control_inputs=deltas): perturbations = [
tensorflow.control_dependencies
13,487
import tensorflow as tf with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = PTBInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"):
tensorflow.variable_scope
13,488
import tensorflow as tf w = w*tf.rsqrt(tf.cast(n_state, tf.float32)) w = mask_attn_weights(w) w = tf.nn.softmax(w) w = dropout(w, attn_pdrop, train) #w=[-1,head,n_ctx,n_ctx],v=[-1,head,n_ctx,emb] a = tf.matmul(w, v) return a def split_states(x, n): x_shape = shape_list(x) m = x_shape[-1] new_x_shape = x_shape[:-1]+[n, m//n] return tf.reshape(x, new_x_shape) def merge_states(x): x_shape = shape_list(x) new_x_shape = x_shape[:-2]+[np.prod(x_shape[-2:])] return tf.reshape(x, new_x_shape) def split_heads(x, n, k=False): #[-1,n_ctx,head,head_emb] if k: return tf.transpose(split_states(x, n), [0, 2, 3, 1]) else: return tf.transpose(split_states(x, n), [0, 2, 1, 3]) def merge_heads(x):
tensorflow.reshape
13,489
from tensorflow.python.framework import ops @ops.RegisterShape("SparseSegmentSum") def _SparseSegmentReductionShape(op): """Common shape function for sparse segment reduction ops.""" data_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape() indices_shape.assert_has_rank(1) segment_ids_shape = op.inputs[2].get_shape() segment_ids_shape.assert_has_rank(1) indices_shape.assert_is_compatible_with(segment_ids_shape) return [tensor_shape.TensorShape([None]).concatenate(data_shape[1:])] @ops.RegisterShape("SparseSegmentMeanGrad") def _SparseSegmentMeanGradShape(op): """Shape function for the SparseSegmentMeanGrad op.""" input_shape = op.inputs[0].get_shape() indices_shape = op.inputs[1].get_shape().with_rank(1) unused_segment_ids_shape = op.inputs[2].get_shape().merge_with(indices_shape) unused_output_dim0_shape = op.inputs[3].get_shape().merge_with( tensor_shape.scalar()) output_dim0 = tensor_util.ConstantValue(op.inputs[3]) if output_dim0 is not None: dim0 = output_dim0[0] else:
tensorflow.python.framework.ops.RegisterShape
13,490
import tensorflow as tf df = PrefetchDataZMQ(df, nr_proc=10) df.reset_state() scene_data = df.get_data() saver = tf.train.Saver(tf.global_variables()) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state('./model_pretrain') if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): print("loading checkpoint...") saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter('./logs_pretrain', sess.graph) _x = x[:, :, :, ::-1] tf.summary.image('x', _x, 4) summary_op = tf.summary.merge_all() epoch_learning_rate = init_learning_rate for epoch in range(1, total_epochs + 1): if epoch % 10 == 0 :
tensorflow.global_variables_initializer
13,491
import tensorflow as tf for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern))
tensorflow.gfile.Glob
13,492
import tensorflow as tf left_candidates = tf.cond(tf.equal(best_id, 0), lambda: empty, _MergeLeft) def _MergeRight(): return tf.concat( [_MergeOneToken(tokens, best_id), candidates[best_id + 2:]], axis=0) right_candidates = tf.cond( tf.greater_equal(best_id, tf.size(tokens) - 1), lambda: empty, _MergeRight) candidates = tf.concat([left_candidates, right_candidates], axis=0) return tokens, candidates return tf.while_loop( _ShouldMerge, _MergeCandidates, (tokens, candidates), parallel_iterations=1, back_prop=False)[0] def Encode(self, text): """Converts string `text` to integer ids and the encoded string.
tensorflow.concat
13,493
import tensorflow as tf momentum=FLAGS.rmsprop_momentum, epsilon=FLAGS.rmsprop_epsilon) else: raise ValueError('Optimizer "%s" was not recognized', FLAGS.optimizer) self.variable_mgr.append_apply_gradients_ops( gradient_state, opt, clipped_grads, training_ops) train_op = tf.group(*(training_ops + update_ops + extra_nccl_ops)) with tf.device(self.cpu_device): if self.task_index == 0 and FLAGS.summary_verbosity > 0: tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('total_loss', total_loss) for grad, var in avg_grads: if grad is not None: tf.summary.histogram(var.op.name + '/gradients', grad) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var)
tensorflow.device
13,494
import tensorflow as tf # Create fake embedding matrix. embed = tf.random_normal((vocab_size, d_embed))
tensorflow.random_normal
13,495
import tensorflow as tf strides[1], bsize[1], ksize[0]) assert (bsize[2] - ksize[1]) % strides[2] == 0, ERR_MSG_DIV.format( strides[2], bsize[2], ksize[1]) assert strides[0] == strides[3] == 1, ERR_MSG_DIM.format(strides) bstrides = _calc_block_strides(bsize, ksize, strides) # Pad mask. mask_ = tf.expand_dims(mask, 3) mask_ = _pad_input(mask_, ksize, strides, padding, bsize=bsize, bstrides=bstrides) mask_ = tf.nn.max_pool(mask_, bsize, bstrides, 'VALID') # Blocks are always valid conv. mask_ = tf.squeeze(mask_, [3]) indices = tf.where(tf.greater(mask_, tol)) indices = tf.cast(indices, tf.int32) return indices def convert_mask_to_block_indices(mask, bsize, ksize, strides, padding, tol): """ Converts a binary mask to block sparse indices. :param mask: [Tensor] [N, H, W]. 1 indicates non-sparse locations. Dtype float32.
tensorflow.squeeze
13,496
from tensorflow.python.ops import state_ops (prev_count * batch_count / update_count)) update_comoment = state_ops.assign_add(comoment, delta_comoment)
tensorflow.python.ops.state_ops.assign_add
13,497
from tensorflow.python.ops import control_flow_ops else: update_ops = set(update_ops) # Make sure update_ops are computed before total_loss. if update_ops: with tf.control_dependencies(update_ops): barrier = tf.no_op(name='update_barrier') self.d_losses[-1] = control_flow_ops.with_dependencies([barrier], self.d_losses[-1]) self.g_losses[-1] = control_flow_ops.with_dependencies([barrier], self.g_losses[-1]) self.d_loss_real = control_flow_ops.with_dependencies([barrier], self.d_loss_real) self.d_loss_fake = control_flow_ops.with_dependencies([barrier], self.d_loss_fake) self.d_loss_class = control_flow_ops.with_dependencies([barrier], self.d_loss_class) t_vars = self._get_vars_semi_supervised() if self.clip_by_global_norm: self.capped_d_grads = self._clip_grad_global_norms( t_vars['d_vars'], self.d_losses[-1], d_optimizer, gradient_noise_scale=0.0) self.capped_g_grads = self._clip_grad_global_norms( t_vars['g_vars'], self.g_losses[-1], g_optimizer, gradient_noise_scale=0.0) else: self.capped_d_grads = self._clip_grad_norms( d_optimizer.compute_gradients(self.d_losses[-1], t_vars['d_vars']))
tensorflow.python.ops.control_flow_ops.with_dependencies
13,498
import tensorflow as tf eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={"probabilities": probabilities}, scaffold_fn=scaffold_fn) return output_spec return model_fn
tensorflow.contrib.tpu.TPUEstimatorSpec
13,499