seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
relu6 = tf.nn.relu(conv6, name="relu6")
if FLAGS.debug:
utils.add_activation_summary(relu6)
relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)
W7 = utils.weight_variable([1, 1, 4096, 4096], name="W7")
b7 = utils.bias_variable([4096], name="b7")
conv7 = utils.conv2d_basic(relu_dropout6, W7, b7)
relu7 = tf.nn.relu(conv7, name="relu7")
if FLAGS.debug:
utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = utils.weight_variable([1, 1, 4096, NUM_OF_CLASSESS], name="W8")
b8 = utils.bias_variable([NUM_OF_CLASSESS], name="b8")
conv8 = utils.conv2d_basic(relu_dropout7, W8, b8)
# annotation_pred1 = tf.argmax(conv8, dimension=3, name="prediction1")
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
| tensorflow.nn.dropout | 14,000 |
import tensorflow as tf
file. Defaults to binary format unless filename ends
in 'txt'.""")
tf.flags.DEFINE_string('optimizer', 'sgd',
'Optimizer to use: momentum or sgd or rmsprop')
tf.flags.DEFINE_float('learning_rate', None,
"""Initial learning rate for training.""")
tf.flags.DEFINE_float('num_epochs_per_decay', 0,
"""Steps after which learning rate decays.""")
tf.flags.DEFINE_float('learning_rate_decay_factor', 0.94,
"""Learning rate decay factor.""")
tf.flags.DEFINE_float('momentum', 0.9, """Momentum for training.""")
tf.flags.DEFINE_float('rmsprop_decay', 0.9, """Decay term for RMSProp.""")
tf.flags.DEFINE_float('rmsprop_momentum', 0.9, """Momentum in RMSProp.""")
tf.flags.DEFINE_float('rmsprop_epsilon', 1.0, """Epsilon term for RMSProp.""")
tf.flags.DEFINE_float('gradient_clip', None, """Gradient clipping magnitude.
Disabled by default.""")
tf.flags.DEFINE_float('weight_decay', 0.00004,
"""Weight decay factor for training.""")
# Performance tuning flags.
tf.flags.DEFINE_boolean('winograd_nonfused', True,
"""Enable/disable using the Winograd non-fused
algorithms.""")
tf.flags.DEFINE_boolean('sync_on_finish', False,
| tensorflow.flags.DEFINE_float | 14,001 |
from tensorflow.python.ops import math_ops
check_ops.assert_type(values, dtypes.bool)
count = _create_local('count', shape=[])
values = math_ops.to_float(values)
if weights is not None:
weights = math_ops.to_float(weights)
values = math_ops.mul(values, weights)
value_tensor = array_ops.identity(count)
update_op = state_ops.assign_add(count, math_ops.reduce_sum(values))
if metrics_collections:
| tensorflow.python.ops.math_ops.mul | 14,002 |
import tensorflow as tf
out_layer = VariationalDense(n_in=layer_sizes[-2],
n_out=layer_sizes[-1],
dropout_mask_ph=dropout_mask_phs[-1],
model_prob=1.0-dropout_rate,
model_lam=3e-4,
activation=output_activation,
name="Out")
x = out_layer(x)
regularization += out_layer.regularization
return x, regularization
def mlp_dropout(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None, dropout_rate=0):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
x = tf.layers.dropout(x, rate=dropout_rate, training=True)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None):
for h in hidden_sizes[:-1]:
x = tf.layers.dense(x, units=h, activation=activation)
return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation)
def get_vars(scope):
return [x for x in tf.global_variables() if scope in x.name]
def count_vars(scope):
v = get_vars(scope)
return sum([np.prod(var.shape.as_list()) for var in v])
| tensorflow.layers.dropout | 14,003 |
import tensorflow as tf
use_spectral_norm,
is_training,
None,
conv_dims=2)
with tf.variable_scope("g"):
g = convolution(
inputs,
num_outputs // 8,
| tensorflow.variable_scope | 14,004 |
import tensorflow as tf
logits = generate(output, input_, context)
pos = tf.expand_dims(pos, axis=1)
state = tf.concat([state, context, pos, new_weights], axis=1)
return state, logits
| tensorflow.concat | 14,005 |
import tensorflow as tf
A scalar tensor containing the weight decay cost.
Raises:
NotImplementedError: If an unsupported penalty type is requested.
"""
variables = []
# exclude bias variables
for v in tf.trainable_variables():
if v.get_shape().ndims == 2:
variables.append(v)
with tf.name_scope('weight_decay'):
if penalty_type == 'l1':
cost = tf.add_n([tf.reduce_sum(tf.abs(v)) for v in variables])
elif penalty_type == 'l2':
cost = tf.add_n([tf.nn.l2_loss(v) for v in variables])
else:
raise NotImplementedError('Unsupported penalty_type %s' % penalty_type)
cost *= penalty
#tf.scalar_summary('Weight Decay Cost', cost)
return cost
def multitask_logits(features,
num_tasks,
num_classes=2,
weight_init=None,
bias_init=None,
dropout_prob=None,
name=None):
| tensorflow.nn.l2_loss | 14,006 |
from tensorflow.python.ops import variable_scope
@contextlib.contextmanager
def as_default(self):
yield
def create_eager_var_store():
if context.in_eager_mode():
return variable_scope.EagerVariableStore()
else:
return DummyVariableStore()
def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses,
sharded_features, transformed_features, model):
"""Scheduled sampling."""
| tensorflow.python.ops.variable_scope.EagerVariableStore | 14,007 |
import tensorflow as tf
self.conv3 = self._residual_block('conv3_2', self.conv3, 128)
_debug(self.conv3)
with tf.variable_scope('conv4_x'):
self.conv4 = self._residual_block('conv4_1', self.conv3, 256, pool_first=True, strides=2)
_debug(self.conv4)
| tensorflow.variable_scope | 14,008 |
import tensorflow as tf
labels=label,
initializer=xlnet_model.get_initializer(),
scope="regression_{}".format(FLAGS.task_name.lower()),
return_logits=True)
total_loss = tf.reduce_mean(per_example_loss)
return total_loss, per_example_loss, logits
| tensorflow.reduce_mean | 14,009 |
import tensorflow as tf
state = state[:,-cell_output_size:]
projection_input = [state, context]
if decoder.use_previous_word:
projection_input.insert(1, input_) # for back-compatibility
output_ = tf.concat(projection_input, axis=1)
if decoder.pred_deep_layer:
deep_layer_size = decoder.pred_deep_layer_size or decoder.embedding_size
if decoder.layer_norm:
output_ = dense(output_, deep_layer_size, use_bias=False, name='deep_output')
output_ = tf.contrib.layers.layer_norm(output_, activation_fn=tf.nn.tanh, scope='output_layer_norm')
else:
output_ = dense(output_, deep_layer_size, activation=tf.tanh, use_bias=True, name='deep_output')
if decoder.use_dropout:
size = tf.shape(output_)[1]
noise_shape = [1, size] if decoder.pervasive_dropout else None
output_ = tf.nn.dropout(output_, keep_prob=decoder.deep_layer_keep_prob, noise_shape=noise_shape)
else:
if decoder.pred_maxout_layer:
maxout_size = decoder.maxout_size or cell_output_size
output_ = dense(output_, maxout_size, use_bias=True, name='maxout')
| tensorflow.contrib.layers.layer_norm | 14,010 |
import tensorflow as tf
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
| tensorflow.nn.deconv2d | 14,011 |
import tensorflow as tf
config.gpu_options.per_process_gpu_memory_fraction = 0.5
# Placeholders
self.sess = tf.Session(config=config)
self.s_dim, self.a_dim = env.observation_space.shape, env.action_space.shape[0]
self.a_bound = (env.action_space.high - env.action_space.low) / 2
self.actions = tf.placeholder(tf.float32, [None, self.a_dim], 'action')
self.state = tf.placeholder(tf.float32, [None, self.s_dim[0]], 'state')
self.advantage = tf.placeholder(tf.float32, [None, 1], 'advantage')
self.rewards = tf.placeholder(tf.float32, [None, 1], 'rewards')
self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
# Dateset with experiennce replay
self.dataset = tf.data.Dataset.from_tensor_slices({'state': self.state, 'actions': self.actions,
| tensorflow.placeholder | 14,012 |
import tensorflow as tf
fname = os.path.join(tf.resource_loader.get_data_files_path(),
'samples/configs/' + model_name + '.config')
label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
'data/pet_label_map.pbtxt')
data_path = os.path.join(tf.resource_loader.get_data_files_path(),
'test_data/pets_examples.record')
configs = config_util.get_configs_from_pipeline_file(fname)
override_dict = {
| tensorflow.resource_loader.get_data_files_path | 14,013 |
from tensorflow.python.framework import tensor_shape
tensor_dtype = inputs[0].dtype
if shape is not None:
shape = tensor_shape.as_shape(shape)
else:
shape = tensor_shape.unknown_shape()
for input_tensor in inputs:
if isinstance(input_tensor, ops.Tensor):
shape = shape.merge_with(input_tensor.get_shape())
| tensorflow.python.framework.tensor_shape.unknown_shape | 14,014 |
from tensorflow.python.training import server_lib
def _setupCluster(self):
def get_open_port():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except IOError:
s = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
s.bind(("", 0))
port = s.getsockname()[1]
s.close()
return port
port1 = get_open_port()
port2 = get_open_port()
cs = server_lib.ClusterSpec({
"worker": ["localhost:%s" % port1],
"ps": ["localhost:%s" % port2]
})
worker = server_lib.Server(cs, job_name="worker", start=True)
ps = server_lib.Server(cs, job_name="ps", start=True)
return worker, ps
@contextlib.contextmanager
def _maybeWithDevice(self, device):
if device is not None:
with ops.device(device):
| tensorflow.python.training.server_lib.ClusterSpec | 14,015 |
import tensorflow as tf
if w_init is None:
w_init = tf.contrib.layers.variance_scaling_initializer()
| tensorflow.contrib.layers.variance_scaling_initializer | 14,016 |
from tensorflow.contrib.slim.python.slim.data import tfexample_decoder
'image/class/label':
parsing_ops.FixedLenFeature(
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
return dataset.Dataset(
data_sources=data_sources,
reader=io_ops.TFRecordReader,
decoder=decoder,
num_samples=100,
items_to_descriptions=None)
class DatasetDataProviderTest(test.TestCase):
| tensorflow.contrib.slim.python.slim.data.tfexample_decoder.TFExampleDecoder | 14,017 |
import tensorflow as tf
encoded = tokenizer.texts_to_sequences([text])[0]
word2idx = tokenizer.word_index
idx2word = tokenizer.index_word
BATCH_SIZE = 256
embedding_dim = 100
units = 512
vocab_size = len(tokenizer.word_index) + 1
model = MyModel(vocab_size, embedding_dim, units, BATCH_SIZE)
optimizer = tf.optimizers.Adam()
checkpoint_dir = "./models/new_out"
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)).expect_partial()
@app.route("/summary", methods=["POST"])
@cross_origin(headers=['Content-Type'])
def summary():
res = requests.post("https://turkcemetinozetleme.teaddict.net/ozetle/api/new", data={
"contextOfText":request.data.decode()
}, headers={
"content-type": "application/x-www-form-urlencoded; charset=UTF-8;"
})
print(res.text)
response = app.response_class(
| tensorflow.train.Checkpoint | 14,018 |
import tensorflow as tf
with tf.Graph().as_default():
| tensorflow.Graph | 14,019 |
import tensorflow as tf
# Place holder for features and captions
self.features = tf.placeholder(tf.float32, [None, self.L, self.D])
self.captions = tf.placeholder(tf.int32, [None, self.T + 1])
def _get_initial_lstm(self, features):
| tensorflow.placeholder | 14,020 |
import tensorflow as tf
for idx, x in enumerate(xs):
c = c
h = h
z = tf.matmul(x, wx) + tf.matmul(h, wh) + b
i, f, o, u = tf.split(axis=1, num_or_size_splits=4, value=z)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f*c + i*u
| tensorflow.nn.sigmoid | 14,021 |
import tensorflow as tf
neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
if target_weight_strategy == 'rect':
avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
else:
neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
# be careful to have at least one weight be nonzero
# should we be taking the mean elem-wise by batch? i think this is a big bug
avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
neg_log_lhoods_inspect = tf.reshape(neg_log_lhoods, [batch_size, rnn_nunroll])
# Train op
if mode == 'train':
lr = tf.Variable(0.0, trainable=False)
self._lr = lr
self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
tvars = tf.trainable_variables()
grads = tf.gradients(avg_neg_log_lhood, tvars)
if grad_clip > 0.0:
grads, _ = tf.clip_by_global_norm(grads, grad_clip)
if opt == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(lr)
else:
raise NotImplementedError()
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step())
| tensorflow.summary.scalar | 14,022 |
import tensorflow as tf
logits_max = tf.reduce_max(sims_logits,1)
sims_logits = sims_logits - tf.reshape(logits_max, [-1, 1])
sims_probs = tf.nn.softmax(sims_logits)
sim_labels = tf.constant(np.arange(bs * 2, dtype=np.int32))
sims_onehot = tf.one_hot(sim_labels, bs * 2)
c_real_loss = - tf.reduce_mean(
tf.reduce_sum(sims_onehot * tf.log(sims_probs + 1e-10), 1))
| tensorflow.one_hot | 14,023 |
import tensorflow as tf
will be used.
Returns
-------
list(tf.Variable)
List of uninitialized tf variables.
"""
sess = tf.get_default_session()
if variables is None:
variables = tf.global_variables()
else:
variables = list(variables)
if len(variables) == 0:
| tensorflow.get_default_session | 14,024 |
import tensorflow as tf
self.char_mat = tf.concat([self.char_pad_unk_mat, self.pretrained_char_mat], axis=0)
else:
self.word_mat = tf.get_variable(
'word_embeddings',
shape=[self.vocab.word_size(), self.vocab.word_embed_dim],
initializer=tf.constant_initializer(self.vocab.word_embeddings),
trainable=True
)
self.char_mat = tf.get_variable(
'char_embeddings',
shape=[self.vocab.char_size(), self.vocab.char_embed_dim],
initializer=tf.constant_initializer(self.vocab.char_embeddings),
trainable=True
)
self.ch_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1])
self.qh_len = tf.reshape(tf.reduce_sum(
tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1])
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.fix_pretrained_vector:
dc = self.char_mat.get_shape()[-1]
| tensorflow.constant_initializer | 14,025 |
import tensorflow as tf
if policy == 'linear':
hid_size = num_hid_layers = 0
use_bias = False
elif policy == 'simple-nn':
hid_size = [16]
num_hid_layers = 1
use_bias = True
elif policy == 'nn':
hid_size = [100, 50, 25]
num_hid_layers = 3
use_bias = True
if policy_init == 'xavier':
policy_initializer = tf.contrib.layers.xavier_initializer()
elif policy_init == 'zeros':
policy_initializer = U.normc_initializer(0.0)
elif policy_init == 'small-weights':
policy_initializer = U.normc_initializer(0.1)
else:
raise Exception('Unrecognized policy initializer.')
if policy == 'linear' or policy == 'nn' or policy == 'simple-nn':
def make_policy(name, ob_space, ac_space):
return MlpPolicy(name=name, ob_space=ob_space, ac_space=ac_space,
hid_size=hid_size, num_hid_layers=num_hid_layers, gaussian_fixed_var=True, use_bias=use_bias, use_critic=False,
hidden_W_init=policy_initializer, output_W_init=policy_initializer)
elif policy == 'cnn':
| tensorflow.contrib.layers.xavier_initializer | 14,026 |
import tensorflow as tf
# Compute sparse softmax cross entropy loss from logits & labels
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=classes)
loss = tf.reduce_mean(log_probs)
self._mark_for_monitoring('loss', loss)
# Add regularization loss
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
reg_loss = reg_decay * tf.add_n(reg_losses)
self._mark_for_monitoring('reg_loss', reg_loss)
# Add loss from auxiliary logits
aux_loss = tf.constant(0, dtype=tf.float32)
for aux_logits in aux_logits_list:
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=aux_logits, labels=classes)
| tensorflow.add_n | 14,027 |
import tensorflow as tf
w = tf.get_variable("proj_w", [24, classes])
w_t = tf.transpose(w)
| tensorflow.transpose | 14,028 |
import tensorflow as tf
with tf.variable_scope(name):
# change the channel to the caffe format
# 18个通道[,18,none,none],分别显示得分,前9个为前景得分,后9个为背景得分
# 第二次[1,2,none,none]
to_caffe = tf.transpose(bottom, [0, 3, 1, 2])
# then force it to have channel 2
#[1,2,none.none],将9个anchor的前景得分和背景得分分开
# 第二次[1,18,none,none]
reshaped = tf.reshape(to_caffe, tf.concat(axis=0, values=[[self._batch_size], [num_dim, -1], [input_shape[2]]]))
# then swap the channel back
# [1,none,none,2], 第一个none应该为(行*9)
# 第二次[1,none,none,18]
to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
return to_tf
def _softmax_layer(self, bottom, name):
if name == 'rpn_cls_prob_reshape':
input_shape = tf.shape(bottom)
# tf.reshape()中-1的应用,-1表示不知道该填什么数字合适的情况下,可以选择,由python通过原数组和其他的值推测出来
# 每一行是1个anchor的前景、背景得分,先显示所有点产生的第一种anchor,然后是所有点产生的第二种anchor,........
bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]])
reshaped_score = tf.nn.softmax(bottom_reshaped, name=name)
return tf.reshape(reshaped_score, input_shape) # [1,none,none,2]
| tensorflow.transpose | 14,029 |
import tensorflow as tf
protos for object detection.
"""
import tensorflow as tf
class TfExampleDecoder(object):
"""Tensorflow Example proto decoder."""
def __init__(self, include_mask=False):
self._include_mask = include_mask
self._keys_to_features = {
'image/encoded':
tf.io.FixedLenFeature((), tf.string),
'image/source_id':
tf.io.FixedLenFeature((), tf.string),
'image/height':
tf.io.FixedLenFeature((), tf.int64),
'image/width':
tf.io.FixedLenFeature((), tf.int64),
'image/object/bbox/xmin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
| tensorflow.io.FixedLenFeature | 14,030 |
import tensorflow as tf
inputs_list[i][2],
inputs_list[i][3]],
Tout=[tf.float32, tf.float32])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
# Unnecessary, if you have already sorted when making tfrecord and no data augmentation.
gtboxes_and_label_q = tf.py_func(func=re_order,
inp=[tf.reshape(gtboxes_and_label_q, [-1, 9]), True],
Tout=[tf.float32])
gtboxes_and_label_q = tf.reshape(gtboxes_and_label_q, [cfgs.BATCH_SIZE, -1, 9])
img = inputs_list[i][0]
img_shape = inputs_list[i][-2:]
h_crop = tf.reduce_max(img_shape[0])
w_crop = tf.reduce_max(img_shape[1])
img = tf.image.crop_to_bounding_box(image=img,
offset_height=0,
offset_width=0,
| tensorflow.reshape | 14,031 |
import tensorflow as tf
test_dir = self._TestDir("good_collection")
filename = os.path.join(test_dir, "metafile")
with self.test_session():
# Creates a graph.
v0 = tf.Variable(10.0, name="v0")
var = tf.Variable(tf.constant(0, dtype=tf.int64))
count_up_to = var.count_up_to(3)
input_queue = tf.FIFOQueue(30, tf.float32, shared_name="collection_queue")
qr = tf.train.QueueRunner(input_queue, [count_up_to])
tf.initialize_all_variables()
# Creates a saver.
save = tf.train.Saver({"v0": v0})
# Adds a set of collections.
tf.add_to_collection("int_collection", 3)
tf.add_to_collection("float_collection", 3.5)
tf.add_to_collection("string_collection", "hello")
tf.add_to_collection("variable_collection", v0)
# Add QueueRunners.
tf.train.add_queue_runner(qr)
# Adds user_defined proto in three formats: string, bytes and Any.
queue_runner = queue_runner_pb2.QueueRunnerDef(queue_name="test_queue")
tf.add_to_collection("user_defined_string_collection", str(queue_runner))
tf.add_to_collection("user_defined_bytes_collection",
queue_runner.SerializeToString())
any_buf = Any()
any_buf.Pack(queue_runner)
tf.add_to_collection("user_defined_any_collection", any_buf)
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph(filename)
| tensorflow.add_to_collection | 14,032 |
import tensorflow as tf
output_bias = tf.get_variable(
"output_bias",[], initializer=tf.zeros_initializer())
with tf.variable_scope("loss"):
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.reduce_sum(tf.multiply(output_layer,output_weights),-1)
logits = tf.add(logits, output_bias)
probabilities=tf.sigmoid(logits)
# labels=tf.constant(labels,dtype=tf.int32)
per_example_loss=tf.losses.sigmoid_cross_entropy(multi_class_labels=labels, logits=logits,reduction=Reduction.NONE)
per_example_loss=tf.reduce_sum(per_example_loss,axis=-1)
loss = tf.reduce_mean(per_example_loss,name='train_loss')
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
| tensorflow.losses.sigmoid_cross_entropy | 14,033 |
import tensorflow as tf
[slim.model_variable, slim.variable],
device='/device:CPU:0'):
with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane,
slim.conv2d_transpose, slim.separable_conv2d,
slim.fully_connected],
weights_regularizer=weights_regularizer,
biases_regularizer=biases_regularizer,
biases_initializer=tf.constant_initializer(0.0)):
gtboxes_and_label_h, gtboxes_and_label_q = tf.py_func(self.get_gtboxes_and_label,
inp=[inputs_list[i][1],
inputs_list[i][2],
inputs_list[i][3]],
Tout=[tf.float32, tf.float32])
gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [cfgs.BATCH_SIZE, -1, 5])
# Unnecessary, if you have already sorted when making tfrecord and no data augmentation.
gtboxes_and_label_q = tf.py_func(func=re_order,
| tensorflow.py_func | 14,034 |
import tensorflow as tf
"""Takes in an array of states and calculates predictions.
Get the cross-entropy for each example in the vector self._xent.
Args:
in_size: size of the hidden state vectors
mats: list of hidden state vectors
"""
pred_mat = tf.get_variable('pred_mat',
[in_size, self._out_vocab_size])
pred_bias = tf.get_variable('pred_bias', [self._out_vocab_size])
# Make a prediction on every word.
def GetWordPred(o_):
logits = tf.nn.xw_plus_b(o_, pred_mat, pred_bias)
return tf.nn.softmax(logits)
#self.preds_by_word1 = tf.pack([GetWordPred(o_) for o_ in mats])
#self.preds_by_word = tf.reshape(self.preds_by_word1, self.y.get_shape())
#self.probs = tf.mul(tf.expand_dims(self._mask,2), self.preds_by_word)
| tensorflow.get_variable | 14,035 |
import tensorflow as tf
dual_variable: The underlying variable itself.
"""
# We disable partitioning while constructing dual variables because they will
# be updated with assign, which is not available for partitioned variables.
partitioner = tf.get_variable_scope().partitioner
try:
tf.get_variable_scope().set_partitioner(None)
dual_variable = tf.contrib.framework.model_variable(
name=name,
shape=shape,
dtype=dtype,
initializer=initializer,
collections=collections,
trainable=trainable)
| tensorflow.contrib.framework.model_variable | 14,036 |
import tensorflow as tf
valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum)
valid_inf=work.valid_inference(valid_image_batch)
valid_labels=tf.one_hot(valid_label_batch,classnum)
#train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
valid_pre = tf.reshape(valid_inf, [validnum, classnum])
| tensorflow.one_hot | 14,037 |
from tensorflow.contrib.eager.python.examples.spinn import data
f.write("\n")
return fake_train_file
def testInferSpinnWorks(self):
"""Test inference with the spinn model."""
snli_1_0_dir = os.path.join(self._temp_data_dir, "snli/snli_1.0")
self._create_test_data(snli_1_0_dir)
vocab = data.load_vocabulary(self._temp_data_dir)
word2index, embed = data.load_word_vectors(self._temp_data_dir, vocab)
config = _test_spinn_config(
data.WORD_VECTOR_LEN, 4,
logdir=os.path.join(self._temp_data_dir, "logdir"),
inference_sentences=("( foo ( bar . ) )", "( bar ( foo . ) )"))
logits = spinn.train_or_infer_spinn(
embed, word2index, None, None, None, config)
self.assertEqual(tf.float32, logits.dtype)
self.assertEqual((3,), logits.shape)
| tensorflow.contrib.eager.python.examples.spinn.data.load_word_vectors | 14,038 |
from tensorflow.python.client import timeline
pred_boxes = pred_boxes[inv_index, :]
if cfg.TEST.DEBUG_TIMELINE:
trace = timeline.Timeline(step_stats=run_metadata.step_stats)
trace_file = open(str(int(time.time() * 1000)) + '-test-timeline.ctf.json', 'w')
trace_file.write(trace.generate_chrome_trace_format(show_memory=False))
| tensorflow.python.client.timeline.Timeline | 14,039 |
import tensorflow as tf
self.assertEqual(y.shape, [self.config.batch_size, self.config.n_classes])
def _check_grad_angle_combined(self, grads, grads_true):
"""Verify that the reconstructed gradients has correct direction.
Due to numerical imprecision, the magnitude may be slightly different.
Yet according to the paper, the angle should be roughly the same.
Args:
grads: list of gradients from reconstruction
grads_true: list of true gradients
"""
def _combine(gs):
return [tf.reshape(g, [-1]) for g in gs]
g1_all = tf.concat(_combine(grads), axis=0)
g2_all = tf.concat(_combine(grads_true), axis=0)
self.assertEqual(len(g1_all.shape), 1)
self.assertEqual(len(g2_all.shape), 1)
degree = blocks_test.compute_degree(g1_all, g2_all)
self.assertLessEqual(degree, 1e0)
def test_compute_gradients(self):
"""Test `compute_gradients` function."""
_, saved_hidden = self.model(self.x) # Initialize model
| tensorflow.reshape | 14,040 |
import tensorflow as tf
def serving_input_fn():
label_ids = tf.placeholder(tf.int32, [None], name='label_ids')
input_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_ids')
input_mask = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='input_mask')
segment_ids = tf.placeholder(tf.int32, [None, FLAGS.max_seq_length], name='segment_ids')
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
'label_ids': label_ids,
| tensorflow.placeholder | 14,041 |
import tensorflow as tf
dtype=tf.string,
)
images = tf.map_fn(
_preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
| tensorflow.map_fn | 14,042 |
import tensorflow as tf
with tf.variable_scope('project_features'):
w = tf.get_variable('w', [self.D, self.D], initializer=self.weight_initializer)
| tensorflow.get_variable | 14,043 |
import tensorflow as tf
output = tf.matmul(scores, facts) # [B, 1, H]
# output = tf.reshape(output, [-1, tf.shape(facts)[-1]])
else:
scores = tf.reshape(scores, [-1, tf.shape(facts)[1]])
output = facts * tf.expand_dims(scores, -1)
output = tf.reshape(output, tf.shape(facts))
return output
def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False):
if isinstance(facts, tuple):
| tensorflow.shape | 14,044 |
import tensorflow as tf
mult_result = tf.matmul(vector_batch_as_matricies, matrix)
squeezed_result = tf.squeeze(mult_result, [1])
return squeezed_result
def euclidean_loss_layer(a, b, multiplier=100.0, use_l1=False, eps=0.01):
""" Math: out = (action - mlp_out)'*precision*(action-mlp_out)
= (u-uhat)'*A*(u-uhat)"""
multiplier = tf.constant(multiplier, dtype='float') #for bc #10000
uP =a*multiplier-b*multiplier
if use_l1:
return tf.reduce_mean(eps*tf.square(uP) + tf.abs(uP))
return tf.reduce_mean(tf.square(uP))
def conv2d(img, w, b, strides=[1, 1, 1, 1], is_dilated=False):
if is_dilated:
layer = tf.nn.atrous_conv2d(img, w, rate=2, padding='SAME') + b
else:
layer = tf.nn.conv2d(img, w, strides=strides, padding='SAME') + b
return layer
| tensorflow.abs | 14,045 |
import tensorflow.contrib as contrib
if cross_stitch_enabled:
with tf.variable_scope("cross_stitch_2"):
stitch2_1, stitch2_2 = apply_cross_stitch(fc2_1, fc2_2)
else:
stitch2_1, stitch2_2 = fc2_1, fc2_2
dropout2_1 = contrib.layers.dropout(stitch2_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_1")
dropout2_2 = contrib.layers.dropout(stitch2_2, keep_prob=keep_prob, is_training=is_training,
scope="dropout2_2")
fc3_1 = contrib.layers.fully_connected(dropout2_1, 32, scope="fc3_1")
fc3_2 = contrib.layers.fully_connected(dropout2_2, 32, scope="fc3_2")
if cross_stitch_enabled:
with tf.variable_scope("cross_stitch_3"):
stitch3_1, stitch3_2 = apply_cross_stitch(fc3_1, fc3_2)
else:
stitch3_1, stitch3_2 = fc3_1, fc3_2
dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout3_1")
| tensorflow.contrib.layers.fully_connected | 14,046 |
import tensorflow as tf
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
| tensorflow.flags.DEFINE_string | 14,047 |
import tensorflow as tf
with self.test_session(use_gpu=use_gpu):
p = tf.Variable(x)
assign = tf.assign(p, y)
p.initializer.run()
new_value = assign.eval()
return p.eval(), new_value
def _initAssignAddFetch(self, x, y, use_gpu=False):
"""Initialize a param to init, and compute param += y."""
with self.test_session(use_gpu=use_gpu):
p = tf.Variable(x)
add = tf.assign_add(p, y)
p.initializer.run()
new_value = add.eval()
return p.eval(), new_value
def _initAssignSubFetch(self, x, y, use_gpu=False):
"""Initialize a param to init, and compute param -= y."""
with self.test_session(use_gpu=use_gpu):
p = tf.Variable(x)
| tensorflow.Variable | 14,048 |
import tensorflow as tf
output = model.build_server_graph(FLAGS, input_image)
output = (output + 1.) * 127.5
output = tf.reverse(output, [-1])
output = tf.saturate_cast(output, tf.uint8)
# load pretrained model
vars_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
assign_ops = []
for var in vars_list:
vname = var.name
from_name = vname
var_value = tf.contrib.framework.load_variable(checkpoint_dir, from_name)
assign_ops.append(tf.assign(var, var_value))
sess.run(assign_ops)
result = sess.run(output)
tf.reset_default_graph()
return result[0][:, :, ::-1]
| tensorflow.reset_default_graph | 14,049 |
import tensorflow as tf
import tensorflow as tf
import numpy as np
class Model(object):
def __init__(self, vars):
self.saver = tf.train.Saver(vars)
def session(self, sess):
if sess is not None:
self.sess = sess
else:
config_proto = tf.ConfigProto()
config_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=config_proto)
def initialize(self):
self.sess.run(tf.global_variables_initializer())
def save(self, path):
self.saver.save(self.sess, path)
def restore(self, path):
self.saver.restore(self.sess, path)
def close(self):
self.sess.close()
| tensorflow.Session | 14,050 |
import tensorflow as tf
return inputs, feat
# image_size = 32, img_channels = 3, class_num = 10 in cifar10
x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels])
label = tf.placeholder(tf.float32, shape=[None,])
one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num)
training_flag = tf.placeholder(tf.bool)
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
| tensorflow.cast | 14,051 |
import tensorflow as tf
# Compute examination loss
self.relevance_weights = self.get_normalized_weights(self.logits_to_prob(train_output))
self.exam_loss = self.loss_func(self.propensity, reshaped_train_labels, self.relevance_weights)
rw_list = tf.unstack(self.relevance_weights, axis=1) # Compute propensity weights
for i in range(len(rw_list)):
tf.summary.scalar('Relevance weights %d' % i, tf.reduce_mean(rw_list[i]), collections=['train'])
tf.summary.scalar('Exam Loss', tf.reduce_mean(self.exam_loss), collections=['train'])
# Gradients and SGD update operation for training the model.
self.loss = self.exam_loss + self.hparams.ranker_loss_weight * self.rank_loss
# Select optimizer
self.optimizer_func = tf.train.AdagradOptimizer
| tensorflow.reduce_mean | 14,052 |
import tensorflow as tf
Operation.
"""
with tf.name_scope('environment/simulate'):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._batch_env.step(a)[:3], [action],
| tensorflow.check_numerics | 14,053 |
import tensorflow as tf
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
| tensorflow.expand_dims | 14,054 |
import tensorflow as tf
import tensorflow as tf
import numpy as np
import math
# weights initializers
he_normal = tf.contrib.keras.initializers.he_normal()
#he_normal = tf.contrib.layers.variance_scaling_initializer()
regularizer = tf.contrib.layers.l2_regularizer(1e-4)
def Convolutional_Block(inputs, shortcut, num_filters, name, is_training):
| tensorflow.contrib.keras.initializers.he_normal | 14,055 |
import tensorflow as tf
# Set default vals
decoded = tf.where(tf.equal(decoded, 0), def_val, decoded)
| tensorflow.equal | 14,056 |
import tensorflow as tf
D_int = tf.cast(D, tf.int32)
N_int = tf.cast(N, tf.int32)
if y is None:
y = silverman_rule_of_thumb(N)
YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32),
scale_diag=tf.ones(D_int, tf.float32))
Y = YDistr.sample(N_int)
T = 1.0/(2.0*N*tf.sqrt(m.pi*y))
A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2)
A = tf.reduce_sum(phi_sampling(A0/(4*y), D))
B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2)
B = tf.reduce_sum(phi_sampling(B0/(4*y), D))
C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2)
C = tf.reduce_sum(phi_sampling(C0/(4*y), D))
return T*(A + B - 2*C)
| tensorflow.expand_dims | 14,057 |
import tensorflow as tf
name: (Optional) A name for this operation.
output_dtype: (Optional) If not None, casts the output tensor to this type.
Returns:
A `Tensor` containing the mean. If `x` is floating point, the mean will have
the same type as `x`. If `x` is integral, the output is cast to float32.
NaNs and infinite input values are ignored.
Raises:
TypeError: If the type of `x` is not supported.
"""
with tf.compat.v1.name_scope(name, 'mean'):
return _mean_and_var(x, reduce_instance_dims, output_dtype)[0]
@common.log_api_use(common.ANALYZER_COLLECTION)
def var(x: common_types.TensorType,
reduce_instance_dims: bool = True,
name: Optional[str] = None,
output_dtype: Optional[tf.DType] = None) -> tf.Tensor:
"""Computes the variance of the values of a `Tensor` over the whole dataset.
| tensorflow.compat.v1.name_scope | 14,058 |
import tensorflow as tf
def _to_dict(self, dataset: tf.data.Dataset, to_dict=True, **kwargs) -> tf.data.Dataset:
num_parallel_calls = kwargs.get("num_parallel_calls", utils.AUTOTUNE)
if not to_dict:
dataset = dataset.map(
lambda a, b, c, y: ((a, b, c), y),
num_parallel_calls=num_parallel_calls,
)
return dataset
dataset = dataset.map(
lambda a, b, c, y: ({self.input_ids: a, self.token_type_ids: b, self.attention_mask: c}, {self.labels: y}),
num_parallel_calls=num_parallel_calls,
).prefetch(kwargs.get("buffer_size", utils.AUTOTUNE))
return dataset
def _fixed_padding(self, dataset: tf.data.Dataset, pad_id=0, max_sequence_length=512, **kwargs) -> tf.data.Dataset:
maxlen = tf.constant(max_sequence_length, dtype=tf.int32)
pad_id = tf.constant(pad_id, dtype=tf.int32)
# fmt: off
padded_shapes = kwargs.get("padded_shapes", ([maxlen, ], [maxlen, ], [maxlen, ], [maxlen, ]))
padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id))
# fmt: on
dataset = utils.batching_and_padding(dataset, padded_shapes, padding_values, **kwargs)
return dataset
def _batch_padding(self, dataset: tf.data.Dataset, pad_id=0, **kwargs) -> tf.data.Dataset:
pad_id = tf.constant(pad_id, dtype=tf.int32)
# fmt: off
padded_shapes = kwargs.get("padded_shapes", ([None, ], [None, ], [None, ], [None, ]))
padding_values = kwargs.get("padding_values", (pad_id, pad_id, pad_id, pad_id))
# fmt: on
| tensorflow.constant | 14,059 |
import tensorflow as tf
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
init_op=tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
scaffold_fn=tf.train.Scaffold(init_op=init_op)
| tensorflow.train.init_from_checkpoint | 14,060 |
import tensorflow as tf
def _get_generator_inputs(num_images_per_class, num_classes, noise_dims):
# Since we want a grid of numbers for the conditional generator, manually
# construct the desired class labels.
num_images_generated = num_images_per_class * num_classes
noise = tf.random_normal([num_images_generated, noise_dims])
labels = [lbl for lbl in range(num_classes) for _
in range(num_images_per_class)]
one_hot_labels = tf.one_hot(tf.constant(labels), num_classes)
return noise, one_hot_labels
if __name__ == '__main__':
app.run(main)
| tensorflow.constant | 14,061 |
import tensorflow as tf
)
tf.flags.DEFINE_string(
"tpu_zone",
| tensorflow.flags.DEFINE_string | 14,062 |
import tensorflow as tf
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
| tensorflow.placeholder | 14,063 |
import tensorflow as tf
return (loss, per_example_loss, log_probs)
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions over a minibatch."""
sequence_shape = modeling.get_shape_list(sequence_tensor, expected_rank=3)
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]
)
flat_positions = tf.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
def input_fn_builder(
input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4
):
| tensorflow.range | 14,064 |
import tensorflow as tf
from tensorflow_examples.lite.model_maker.third_party.efficientdet.keras import efficientdet_keras
def create_mask(pred_mask):
pred_mask = tf.argmax(pred_mask, axis=-1)
pred_mask = pred_mask[..., tf.newaxis]
return pred_mask[0]
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)
def normalize(input_image, input_mask):
input_image = tf.cast(input_image, tf.float32) / 255.0
input_mask -= 1
return input_image, input_mask
def load_image_train(datapoint):
"""Load images for training."""
input_image = tf.image.resize(datapoint['image'], (512, 512))
input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128))
if tf.random.uniform(()) > 0.5:
input_image = tf.image.flip_left_right(input_image)
input_mask = tf.image.flip_left_right(input_mask)
| tensorflow.cast | 14,065 |
import tensorflow as tf
with open(options_file, 'r') as fin:
options = json.load(fin)
max_word_length = options['char_cnn']['max_characters_per_token']
vocab = UnicodeCharsVocabulary(vocab_file, max_word_length)
batcher = Batcher(vocab_file, max_word_length)
ids_placeholder = tf.placeholder('int32',
shape=(None, None, max_word_length)
)
model = BidirectionalLanguageModel(options_file, weight_file)
ops = model(ids_placeholder)
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
sentence_id = 0
with open(dataset_file, 'r') as fin, h5py.File(outfile, 'w') as fout:
for line in fin:
sentence = line.strip().split()
char_ids = batcher.batch_sentences([sentence])
embeddings = sess.run(
ops['lm_embeddings'], feed_dict={ids_placeholder: char_ids}
)
ds = fout.create_dataset(
'{}'.format(sentence_id),
| tensorflow.ConfigProto | 14,066 |
import tensorflow as tf
if isinstance(facts, tuple):
# In case of Bi-RNN, concatenate the forward and the backward RNN outputs.
facts = tf.concat(facts, 2)
if time_major:
# (T,B,D) => (B,T,D)
facts = tf.array_ops.transpose(facts, [1, 0, 2])
# Trainable parameters
mask = tf.equal(mask, tf.ones_like(mask))
facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer
querry_size = query.get_shape().as_list()[-1]
query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag)
query = prelu(query)
queries = tf.tile(query, [1, tf.shape(facts)[1]])
queries = tf.reshape(queries, tf.shape(facts))
din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
| tensorflow.ones_like | 14,067 |
from tensorflow.contrib.losses.python.losses import loss_ops
def __init__(self, label_name, weight_column_name):
def loss_fn(logits, target):
check_shape_op = control_flow_ops.Assert(
math_ops.less_equal(array_ops.rank(target), 2),
["target's shape should be either [batch_size, 1] or [batch_size]"])
with ops.control_dependencies([check_shape_op]):
target = array_ops.reshape(
target, shape=[array_ops.shape(target)[0], 1])
return loss_ops.hinge_loss(logits, target)
super(_BinarySvmTargetColumn, self).__init__(
loss_fn=loss_fn,
n_classes=2,
label_name=label_name,
weight_column_name=weight_column_name)
def logits_to_predictions(self, logits, proba=False):
| tensorflow.contrib.losses.python.losses.loss_ops.hinge_loss | 14,068 |
import tensorflow as tf
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
| tensorflow.logging.info | 14,069 |
import tensorflow as tf
def make_metric_fn(metric_fn):
def wrapped_metric_fn(logits, labels):
num, den = metric_fn(logits, labels, weights_fn=weights_fn)
return tf.metrics.mean(num, den)
return wrapped_metric_fn
| tensorflow.metrics.mean | 14,070 |
import tensorflow as tf
:return: ([TensorFlow Tensor]) the target Q-retrace
"""
rho_bar = batch_to_seq(tf.minimum(1.0, rho_i), n_envs, n_steps, True) # list of len steps, shape [n_envs]
reward_seq = batch_to_seq(rewards, n_envs, n_steps, True) # list of len steps, shape [n_envs]
| tensorflow.minimum | 14,071 |
import tensorflow as tf
n_row,n_col,n_channel = x.shape
n_patch = n_row*n_col // (patch_size**2)
patches = tf.image.extract_patches(tf.expand_dims(x,0),sizes=window,strides=window,rates=[1, 1, 1, 1],padding='VALID')
patches = tf.reshape(patches,[n_patch,patch_size,patch_size,n_channel])
patches = tf.random.shuffle(patches)
rows = tf.split(patches,n_col//patch_size,axis=0)
rows = [tf.concat(tf.unstack(x),axis=1) for x in rows]
x_aug = tf.concat(rows,axis=0)
x_aug = tf.convert_to_tensor(x_aug)
return tf.concat([x, x_aug],axis=2)
def gaussian_blur(self,x):
#create random gaussian blur filter
mean = 0
std = tf.random.uniform(shape=[],minval=5,maxval=10,dtype=tf.float32) # std [5-10]
size = tf.random.uniform(shape=[],minval=3,maxval=7,dtype=tf.int32) # size [7-15]
self.kernel = self.gaussian_kernel(size,mean,std)
self.kernel = tf.tile(self.kernel[:, :, tf.newaxis, tf.newaxis], [1, 1, 3, 1])
self.paddings = tf.convert_to_tensor([[size,size],[size,size],[0,0]])
x_aug = tf.nn.separable_conv2d(tf.expand_dims(tf.pad(x,self.paddings,'SYMMETRIC'), 0), self.kernel, self.pointwise_filter,strides=[1, 1, 1, 1], padding='VALID')
| tensorflow.concat | 14,072 |
from tensorflow.python.client import session
[image] = provider.get(['image'])
[label] = provider.get(['label'])
image = _resize_image(image, height, width)
with session.Session('') as sess:
with queues.QueueRunners(sess):
image, label = sess.run([image, label])
self.assertListEqual([height, width, 3], list(image.shape))
| tensorflow.python.client.session.Session | 14,073 |
import tensorflow as tf
def build(self, rgb):
"""
load variable from npy to build the VGG
:param rgb: rgb image [batch, height, width, 3] values scaled [0, 1]
"""
start_time = time.time()
log('Building VGG19. Started at: %ds' % start_time)
rgb_scaled = rgb * 255.0
# Convert RGB to BGR
red, green, blue = tf.split(axis=3, num_or_size_splits=3, value=rgb_scaled)
assert red.get_shape().as_list()[1:] == [224, 224, 1]
assert green.get_shape().as_list()[1:] == [224, 224, 1]
assert blue.get_shape().as_list()[1:] == [224, 224, 1]
bgr = tf.concat(axis=3, values=[
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
| tensorflow.split | 14,074 |
from tensorflow.python.client import session
hash_key=layers.SPARSE_FEATURE_CROSS_DEFAULT_HASH_KEY)
cross_dense = sparse_ops.sparse_tensor_to_dense(cross)
with session.Session():
values = cross_dense.eval()
| tensorflow.python.client.session.Session | 14,075 |
import tensorflow as tf
self.updates = tf.group(denoise_updates, ranker_updates)
def DenoisingNet(self, list_size, forward_only=False, scope=None):
with tf.variable_scope(scope or "denoising_model"):
# If we are in testing, do not compute propensity
if forward_only:
return tf.ones_like(self.output)#, tf.ones_like(self.output)
| tensorflow.variable_scope | 14,076 |
import tensorflow as tf
return images, sparse_labels
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
| tensorflow.Variable | 14,077 |
import tensorflow as tf
name="batch_norm_ss")
mean, variance = tf.nn.normalize_moments(counts,
shifted_sum_x,
shifted_sum_x2,
shift,
name="normalize_moments")
second_moment = variance + tf.square(mean)
return mean, variance, second_moment
def build_moving_stats():
return (
tf.identity(self._moving_mean),
tf.identity(self._moving_variance),
tf.identity(self._moving_second_moment),
)
mean, variance, second_moment = utils.smart_cond(
use_batch_stats,
build_batch_stats,
build_moving_stats,
)
return mean, variance, second_moment
def _build_update_ops_variance(self, mean, variance, is_training):
"""Builds the moving average update ops when using moving variance.
| tensorflow.identity | 14,078 |
import tensorflow as tf
)
masked_lm_predictions = tf.argmax(
masked_lm_log_probs, axis=-1, output_type=tf.int32
)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
| tensorflow.reshape | 14,079 |
import tensorflow as tf
num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt ,
tf.transpose(
tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)),
axes=1) * \
tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt))
denom = dxt
# sum over hidden units
num = tf.reduce_sum(tf.square(num), axis=2)
denom = tf.reduce_sum(tf.square(denom), axis=2)
bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num))
nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1)
# sum mean over each batch by time steps
Omega = tf.square(bounded - 1.0)
Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems))
out = tf.gradients(Omega, self.W_rec)
out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads")
out[0] = tf.verify_tensor_all_finite(out[0], "dead omega grad")
| tensorflow.greater | 14,080 |
from tensorflow.python.platform import tf_logging as logging
def every_n_step_begin(self, step):
super(NanLoss, self).every_n_step_begin(step)
return [self._loss_tensor]
def every_n_step_end(self, step, outputs):
super(NanLoss, self).every_n_step_end(step, outputs)
if np.isnan(_extract_output(outputs, self._loss_tensor)):
failure_message = "Model diverged with loss = NaN."
if self._fail_on_nan_loss:
logging.error(failure_message)
raise NanLossDuringTrainingError
else:
logging.warning(failure_message)
# We don't raise an error but we return "should stop" so we stop, but
# without an exception.
return True
class RunHookAdapterForMonitors(session_run_hook.SessionRunHook):
| tensorflow.python.platform.tf_logging.error | 14,081 |
import tensorflow as tf
A tensor of shape [T, B] that contains the loss per example, per time step.
"""
with tf.name_scope("cross_entropy_sequence_loss"):
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)
loss_mask = tf.sequence_mask(tf.to_int32(sequence_length), tf.to_int32(tf.shape(targets)[0]))
losses = losses * tf.transpose(tf.to_float(loss_mask), [1, 0])
return losses
def dice_loss(predictions, targets, weights=1., name='dice_loss'):
with tf.name_scope(name):
# predictions = tf.to_float(predictions)
targets = tf.to_float(targets)
intersection = 2 * tf.reduce_sum(predictions * targets) + weights
union = weights + tf.reduce_sum(predictions) + tf.reduce_sum(targets)
loss = -(intersection / (union))
return loss
def precision_recall_auc_loss(labels,
logits,
precision_range=(0.0, 1.0),
num_anchors=20,
weights=1.0,
dual_rate_factor=0.1,
label_priors=None,
surrogate_type='xent',
lambdas_initializer=tf.constant_initializer(1.0),
reuse=None,
| tensorflow.reduce_sum | 14,082 |
import tensorflow as tf
for i in range(len(pw_list)):
tf.summary.scalar('Inverse Propensity weights %d' % i, tf.reduce_mean(pw_list[i]), collections=['train'])
| tensorflow.reduce_mean | 14,083 |
import tensorflow as tf
tf.assign(target, (1 - self.tau) * target + self.tau * source)
for target, source in zip(target_params, source_params)
]
# Initializing target to match source variables
target_init_op = [
tf.assign(target, source)
for target, source in zip(target_params, source_params)
]
# Control flow is used because sess.run otherwise evaluates in nondeterministic order
| tensorflow.assign | 14,084 |
import tensorflow as tf
sess.run(tf.global_variables_initializer())
print(f'\nl1={sess.run(l1)} l2={sess.run(l2)}')
a = np.array([1, 2, 3], dtype=np.float32)
tf_v = tf.Variable(5, dtype=tf.float32)
sess.run(tf.global_variables_initializer())
print(f'a * tf_v = {sess.run(a * tf_v)}')
weights = tf.constant([[1.0, -2], [-3, 4]]);
regular_l1 = tf.contrib.layers.l1_regularizer(0.5)(weights)
regular_l2 = tf.contrib.layers.l2_regularizer(0.5)(weights)
print(f'\nregular_l1={sess.run(regular_l1)} regular_l2={sess.run(regular_l2)}')
| tensorflow.global_variables_initializer | 14,085 |
import tensorflow as tf
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
| tensorflow.nn.moments | 14,086 |
import tensorflow as tf
def image_preprocess(self, image):
with tf.name_scope('image_preprocess'):
if image.dtype.base_dtype != tf.float32:
image = tf.cast(image, tf.float32)
mean = [0.485, 0.456, 0.406] # rgb
std = [0.229, 0.224, 0.225]
if self.image_bgr:
| tensorflow.cast | 14,087 |
from tensorflow.python.ops import logging_ops
Returns:
Numpy array of predicted probabilities.
"""
return self._infer_model(x=x, input_fn=input_fn, batch_size=batch_size)
def _get_train_ops(self, features, targets):
"""See base class."""
global_step = variables.get_global_step()
assert global_step
loss = self._loss(
self._logits(features), targets, self._get_weight_tensor(features))
logging_ops.scalar_summary("loss", loss)
linear_vars = self._get_linear_vars()
dnn_vars = self._get_dnn_vars()
grads = gradients.gradients(loss, dnn_vars + linear_vars)
dnn_grads = grads[0:len(dnn_vars)]
linear_grads = grads[len(dnn_vars):]
train_ops = self._get_linear_training_ops(
linear_grads, linear_vars) + self._get_dnn_training_ops(dnn_grads,
dnn_vars)
| tensorflow.python.ops.logging_ops.scalar_summary | 14,088 |
import tensorflow as tf
scale = tf.constant([[2., 4., 5.]] * batch_size)
scale_v = [2., 4., 5.]
concentration = tf.constant([[1.]] * batch_size)
concentration_v = 1.
| tensorflow.constant | 14,089 |
import tensorflow as tf
return losses, [outputs], encoder_state, attention_states, attention_weights, samples, beam_fun, initial_data
def reconstruction_encoder_decoder(encoders, decoders, encoder_inputs, targets, feed_previous,
encoder_input_length=None, training=True, reconstruction_weight=1.0,
reconstruction_attn_weight=0.05, **kwargs):
encoders = encoders[:1]
if encoder_input_length is None:
weights = get_weights(encoder_inputs[0], utils.EOS_ID, include_first_eos=True)
encoder_input_length = [tf.to_int32(tf.reduce_sum(weights, axis=1))]
attention_states, encoder_state, encoder_input_length = multi_encoder(
encoder_input_length=encoder_input_length, encoders=encoders, encoder_inputs=encoder_inputs,
training=training)
outputs, attention_weights, states, _, samples, beam_fun, initial_data = attention_decoder(
attention_states=attention_states, initial_state=encoder_state, feed_previous=feed_previous,
decoder_inputs=targets[0][:, :-1], encoder_input_length=encoder_input_length,
decoder=decoders[0], training=training, encoders=encoders
)
| tensorflow.reduce_sum | 14,090 |
import tensorflow as tf
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=tftrain,
scope=self.name)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
bias = tf.get_variable("bias", [output_size],
| tensorflow.contrib.layers.batch_norm | 14,091 |
import tensorflow as tf
return y
def check_shape(ts,shapes):
i = 0
for (t,shape) in zip(ts,shapes):
assert t.get_shape().as_list()==shape, "id " + str(i) + " shape " + str(t.get_shape()) + str(shape)
i += 1
def avg_norm(t):
return tf.reduce_mean(tf.sqrt(tf.reduce_sum(tf.square(t), axis=-1)))
def gradient_add(g1, g2, param):
print([g1, g2, param.name])
assert (not (g1 is None and g2 is None)), param.name
if g1 is None:
return g2
elif g2 is None:
return g1
| tensorflow.square | 14,092 |
import tensorflow as tf
def _deserialize(self, serialized_data, batch_size):
"""Convert serialized TFRecords into tensors.
Args:
serialized_data: A tensor containing serialized records.
batch_size: The data arrives pre-batched, so batch size is needed to
deserialize the data.
"""
feature_map = _TRAIN_FEATURE_MAP if self._is_training else _EVAL_FEATURE_MAP
features = tf.parse_single_example(serialized_data, feature_map)
users = tf.reshape(tf.decode_raw(
features[movielens.USER_COLUMN], rconst.USER_DTYPE), (batch_size,))
items = tf.reshape(tf.decode_raw(
features[movielens.ITEM_COLUMN], rconst.ITEM_DTYPE), (batch_size,))
def decode_binary(data_bytes):
# tf.decode_raw does not support bool as a decode type. As a result it is
# necessary to decode to int8 (7 of the bits will be ignored) and then
# cast to bool.
return tf.reshape(tf.cast(tf.decode_raw(data_bytes, tf.int8), tf.bool),
(batch_size,))
if self._is_training:
mask_start_index = tf.decode_raw(
features[rconst.MASK_START_INDEX], tf.int32)[0]
valid_point_mask = tf.less(tf.range(batch_size), mask_start_index)
| tensorflow.decode_raw | 14,093 |
import tensorflow as tf
p = tf.cond(tf.random_uniform((), dtype=tf.float32) < 1e-4,
lambda: tf.print('csrt acc ', [pct]),
| tensorflow.print | 14,094 |
import tensorflow as tf
tf.app.flags.DEFINE_string(
'dataset_name', '{}_????', 'The pattern of the dataset name to load.')
tf.app.flags.DEFINE_string(
'model_dir', './logs_sext_cpn/',
'The parent directory where the model will be stored.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer(
'save_summary_steps', 100,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_checkpoints_secs', 3600,
'The frequency with which the model is saved, in seconds.')
# model related configuration
tf.app.flags.DEFINE_integer(
'train_image_size', 384,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'heatmap_size', 96,
'The size of the output heatmap of the model.')
tf.app.flags.DEFINE_string(
| tensorflow.app.flags.DEFINE_integer | 14,095 |
import tensorflow as tf
h = tf.nn.tanh(tf.matmul(features_mean, w_h) + b_h)
w_c = tf.get_variable('w_c', [self.D, self.H], initializer=self.weight_initializer)
b_c = tf.get_variable('b_c', [self.H], initializer=self.const_initializer)
c = tf.nn.tanh(tf.matmul(features_mean, w_c) + b_c)
return c, h
def _word_embedding(self, inputs, reuse=False):
with tf.variable_scope('word_embedding', reuse=reuse):
w = tf.get_variable('w', [self.V, self.M], initializer=self.emb_initializer)
x = tf.nn.embedding_lookup(w, inputs, name='word_vector') # (N, T, M) or (N, M)
return x
def _project_features(self, features):
with tf.variable_scope('project_features'):
w = tf.get_variable('w', [self.D, self.D], initializer=self.weight_initializer)
features_flat = tf.reshape(features, [-1, self.D])
features_proj = tf.matmul(features_flat, w)
features_proj = tf.reshape(features_proj, [-1, self.L, self.D])
return features_proj
| tensorflow.nn.embedding_lookup | 14,096 |
import tensorflow as tf
ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]])
qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]])
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
| tensorflow.nn.embedding_lookup | 14,097 |
import tensorflow as tf
else:
start_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[2]], axis=-1), 1, bias=False, name="start_pointer"), -1)
end_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[3]], axis=-1), 1, bias=False, name="end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask=tf.reshape(self.c_mask, [N, -1])),
mask_logits(end_logits, mask=tf.reshape(self.c_mask, [N, -1]))]
self.logits1, self.logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
def _compute_loss(self):
def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2):
logits = tf.nn.sigmoid(logits)
zeros = array_ops.zeros_like(logits, dtype=logits.dtype)
| tensorflow.nn.softmax | 14,098 |
import tensorflow as tf
input_tensor = gather_indexes(input_tensor, positions)
with tf.variable_scope("cls/predictions"):
# We apply one more non-linear transformation before the output layer.
# This matrix is not used after pre-training.
with tf.variable_scope("transform"):
input_tensor = tf.layers.dense(
input_tensor,
units=bert_config.hidden_size,
activation=modeling.get_activation(bert_config.hidden_act),
| tensorflow.variable_scope | 14,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.