seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf if do_norm: deconv = tf.layers.batch_normalization(deconv, momentum = 0.9) if activation_function == "relu": deconv = tf.nn.relu(deconv, name = 'relu') if activation_function == "leakyrelu": deconv = tf.nn.leaky_relu(deconv, alpha=relu_factor) if activation_function == "elu": deconv = tf.nn.elu(deconv, name = 'elu') return deconv
tensorflow.nn.elu
11,000
import tensorflow as tf super().__init__(*args, num_parameters=2, input_shape=input_shape, name=name, **kwargs) self.epsilon = epsilon def _forward(self, x1, x2, **kwargs): """ A log normal RV X = exp(mu + sigma*Z) where Z ~ N(0,I). The forward pass scales to a standard log normal with mu=0, sigma=1 by computing: exp(Z) = (X / exp(mu))^(1/sigma) """ params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] # compute softplus activation z2, ldj = log_gaussianize(x2, mus, log_sigmas) z2 = tf.where(x2 > self.epsilon, z2, x2) ldj = tf.where(x2 > self.epsilon, ldj, tf.zeros_like(ldj)) return z2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def _inverse(self, x1, z2, **kwargs): params = self.parameterizer(x1) mus, log_sigmas = params[:,:,:,0::2], params[:,:,:,1::2] x2, ldj = log_gaussianize(z2, mus, log_sigmas, inverse=tf.constant(True)) x2 = tf.where(z2 > self.epsilon, x2, z2) ldj = tf.where(z2 > self.epsilon, ldj, tf.zeros_like(ldj)) return x2, tf.math.reduce_sum(ldj, axis=[1,2,3]) def half_gaussianize(x, log_sigmas, inverse=tf.constant(False)): if inverse: z = tf.math.exp(log_sigmas)*x
tensorflow.zeros_like
11,001
import tensorflow as tf self.grads_and_vars, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() state=featurize_state(state); return sess.run(self.action, { self.state: [state] })[0]
tensorflow.get_default_session
11,002
import tensorflow as tf self._eval_image_summary('pred', expected) self._eval_image_summary('nois', noisy) def _eval_image_summary(self, name, encdoding_batch): summary = self.image_summaries[name].eval(feed_dict={self.encoding: encdoding_batch}) self.summary_writer.add_summary(summary, global_step=self.get_past_epochs()) def _add_decoding_summary(self, name, var, collection='train'): var = var[:FLAGS.visualiza_max] var = tf.concat(tf.unstack(var), axis=0) var = tf.expand_dims(var, dim=0) color_s = tf.summary.image(name, var[..., :3], max_outputs=FLAGS.visualiza_max) var = tf.expand_dims(var[..., 3], dim=3) bw_s = tf.summary.image('depth_' + name, var, max_outputs=FLAGS.visualiza_max) return tf.summary.merge([color_s, bw_s]) # TRAINING PROGRESS EVENTS def _on_training_start(self, sess): # Writers and savers self.summary_writer = tf.summary.FileWriter(FLAGS.logdir, sess.graph) self.saver = tf.train.Saver() self._build_embedding_saver(sess) self._restore_model(sess)
tensorflow.summary.image
11,003
import tensorflow as tf #add_layer 函数里面所有的with都是为了tensorboard添加上去的 def add_layer(inputs, in_size, out_size, activation_function=None,nameScope="layer"): # add one more layer and return the output of this layer with tf.name_scope(nameScope): with tf.name_scope('weights'): Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W') with tf.name_scope('biases'): biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b') with tf.name_scope('Wx_plus_b'): Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b, ) return outputs # 这个就是在tensorboard上可视化的时候的区别: # 使用with tf.name_scope('inputs')可以将xs和ys包含进来 # 形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。 with tf.name_scope('inputs'):
tensorflow.matmul
11,004
import tensorflow as tf shape = x.get_shape().as_list() with tf.variable_scope(name): beta = tf.get_variable('beta', [shape[-1]], initializer=tf.constant_initializer(0.)) gamma = tf.get_variable('gamma', [shape[-1]], initializer=tf.random_normal_initializer(1., 0.02)) pop_mean = tf.get_variable('pop_mean', [shape[-1]], initializer=tf.constant_initializer(0.), trainable=False) pop_var = tf.get_variable('pop_var', [shape[-1]], initializer=tf.constant_initializer(1.), trainable=False) if pop_mean not in tf.moving_average_variables(): tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_mean) tf.add_to_collection(tf.GraphKeys.MOVING_AVERAGE_VARIABLES, pop_var) def func1(): # execute at training time batch_mean, batch_var = tf.nn.moments(x, range(len(shape) - 1)) update_mean = tf.assign_sub(pop_mean, (1 - decay)*(pop_mean - batch_mean)) update_var = tf.assign_sub(pop_var, (1 - decay)*(pop_var - batch_var)) with tf.control_dependencies([update_mean, update_var]): return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, gamma, epsilon) def func2(): # execute at test time return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, gamma, epsilon) return tf.cond(train, func1, func2) def average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads):
tensorflow.assign_sub
11,005
import tensorflow as tf self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens') self.x = tf.placeholder(tf.int32, [batch_size, max_sequence_len], name='x') self.y = tf.placeholder(tf.float32, [batch_size, out_vocab_size], name='y') self.example_weights = tf.placeholder(tf.float32, [batch_size], name='example_weights')
tensorflow.placeholder
11,006
import tensorflow as tf self.loss_d_sum = tf.summary.scalar("d_loss",self.discriminator_loss) self.db_loss_real_sum = tf.summary.scalar("db_loss_real", self.D_B_loss_real) self.db_loss_fake_sum = tf.summary.scalar("db_loss_fake", self.D_B_loss_fake)
tensorflow.summary.scalar
11,007
import tensorflow as tf "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator."""
tensorflow.nn.log_softmax
11,008
import tensorflow as tf with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
tensorflow.nn.softmax_cross_entropy_with_logits
11,009
import tensorflow as tf def main(_, run_eval_loop=True): with tf.name_scope('inputs'): noise, one_hot_labels = _get_generator_inputs(
tensorflow.name_scope
11,010
import tensorflow as tf with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 _, enc_state = tf.nn.rnn( tf.nn.rnn_cell.GRUCell(2), inp, dtype=tf.float32) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 cell = tf.nn.rnn_cell.OutputProjectionWrapper( tf.nn.rnn_cell.GRUCell(2), 4) dec, mem = tf.nn.seq2seq.rnn_decoder(dec_inp, enc_state, cell) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape) res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape)
tensorflow.nn.seq2seq.rnn_decoder
11,011
import tensorflow as tf X = tf.nn.relu(X) X = tf.nn.conv2d(X, W, (1, 1, 1, 1), padding='SAME') X = self._add_batch_norm(X, out_ch, is_train=is_train) X = tf.reshape(X, (-1, w, h, out_ch)) # Sanity shape check return X
tensorflow.reshape
11,012
import tensorflow as tf if decoder.use_dropout: size = tf.shape(output_)[1] noise_shape = [1, size] if decoder.pervasive_dropout else None output_ = tf.nn.dropout(output_, keep_prob=decoder.deep_layer_keep_prob, noise_shape=noise_shape) else: if decoder.pred_maxout_layer:
tensorflow.nn.dropout
11,013
import tensorflow as tf mask=mask ) feature_hidden_size = feature_hidden.shape[-1] # reshape back to original first and second dimension if len(original_feature_hidden.shape) > 2: sequence_length = original_feature_hidden.shape[1] feature_hidden = tf.reshape( feature_hidden, [-1, sequence_length, feature_hidden_size] ) return feature_hidden
tensorflow.reshape
11,014
from tensorflow.python.framework import tensor_util def _TopKShape(op): """Shape function for TopK and TopKV2 ops.""" input_shape = op.inputs[0].get_shape().with_rank_at_least(1) if len(op.inputs) >= 2: k = tensor_util.constant_value(op.inputs[1]) else: k = op.get_attr("k") last = input_shape[-1].value
tensorflow.python.framework.tensor_util.constant_value
11,015
import tensorflow as tf Integer representation of this number. """ x_l = tf.stop_gradient(tf.to_int32(tf.reshape(x_bit, [-1, num_bits]))) x_labels = []
tensorflow.reshape
11,016
import tensorflow as tf # a_fc3 = tf.layers.dense(a_fc2, 64, tf.nn.relu, kernel_initializer=w_initializer, # bias_initializer=b_initializer, name='agent_fc3_e') self.q_eval = tf.layers.dense(a_fc1, self.num_a, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='q_e') # ------------------ build target_net ------------------ with tf.variable_scope('target_net'): a_fc1_ = tf.layers.dense(self.s_, 128, tf.nn.relu, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='agent_fc1_t') # a_fc2_ = tf.layers.dense(a_fc1_, 128, tf.nn.relu, kernel_initializer=w_initializer, # bias_initializer=b_initializer, name='agent_fc2_t') # a_fc3_ = tf.layers.dense(a_fc2_, 64, tf.nn.relu, kernel_initializer=w_initializer, # bias_initializer=b_initializer, name='agent_fc3_t') self.q_next = tf.layers.dense(a_fc1_, self.num_a, kernel_initializer=w_initializer, bias_initializer=b_initializer, name='q_t') # [batch*n_agents, 1] self.q_selected = tf.reduce_sum(tf.multiply(self.q_eval, self.a), axis=1) # ------------------ build mixing_net ------------------ with tf.variable_scope('mixing_net'): # [batch, n_agents] self.q_concat = tf.reshape(self.q_selected, [-1, self.n_agents]) self.q_concat_ =tf.reshape(self.q_m_, [-1, self.n_agents]) with tf.variable_scope('eval_hyper'):
tensorflow.layers.dense
11,017
import tensorflow as tf # [1,none,none,2], 第一个none应该为(行*9) # 第二次[1,none,none,18] to_tf = tf.transpose(reshaped, [0, 2, 3, 1]) return to_tf def _softmax_layer(self, bottom, name): if name == 'rpn_cls_prob_reshape': input_shape = tf.shape(bottom) # tf.reshape()中-1的应用,-1表示不知道该填什么数字合适的情况下,可以选择,由python通过原数组和其他的值推测出来 # 每一行是1个anchor的前景、背景得分,先显示所有点产生的第一种anchor,然后是所有点产生的第二种anchor,........ bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]]) reshaped_score = tf.nn.softmax(bottom_reshaped, name=name) return tf.reshape(reshaped_score, input_shape) # [1,none,none,2] return tf.nn.softmax(bottom, name=name) def _proposal_top_layer(self, rpn_cls_prob, rpn_bbox_pred, name): with tf.variable_scope(name): rois, rpn_scores = tf.py_func(proposal_top_layer, [rpn_cls_prob, rpn_bbox_pred, self._im_info, self._feat_stride, self._anchors, self._num_anchors], [tf.float32, tf.float32]) rois.set_shape([cfg.FLAGS.rpn_top_n, 5]) rpn_scores.set_shape([cfg.FLAGS.rpn_top_n, 1]) return rois, rpn_scores
tensorflow.reshape
11,018
import tensorflow as tf # [time_steps, batch_size, dimension]. chars = tf.transpose(chars, [1, 0, 2]) # The outer loop cycles through the layers of the RNN; the inner loop # executes the time steps for a particular layer. batch_size = int(chars.shape[1]) for l in range(len(self.cells)): cell = self.cells[l] outputs = [] state = cell.zero_state(batch_size, tf.float32) # Unstack the inputs to obtain a list of batches, one for each time step. chars = tf.unstack(chars, axis=0) for ch in chars: output, state = cell(ch, state) outputs.append(output) # The outputs of this layer are the inputs of the subsequent layer. chars = tf.stack(outputs, axis=0) if training: chars = tf.nn.dropout(chars, self.keep_prob) # Extract the correct output (i.e., hidden state) for each example. All the # character sequences in this batch were padded to the same fixed length so
tensorflow.unstack
11,019
import tensorflow as tf num_additional_channels=predict_input_config.num_additional_channels) input_dict = transform_fn(decoder.decode(example)) images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32) images = tf.expand_dims(images, axis=0) true_image_shape = tf.expand_dims( input_dict[fields.InputDataFields.true_image_shape], axis=0)
tensorflow.expand_dims
11,020
import tensorflow as tf # These should hold all of the variables of the Q-function network and target network, # respectively. A convenient way to get these is to make use of TF's "scope" feature. # For example, you can create your Q-function network with the scope "q_func" like this: # <something> = q_func(obs_t_float, num_actions, scope="q_func", reuse=False) # And then you can obtain the variables like this: # q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='q_func') # Older versions of TensorFlow may require using "VARIABLES" instead of "GLOBAL_VARIABLES" # Tip: use huber_loss (from dqn_utils) instead of squared error when defining self.total_error self.Q_vals = q_func(obs_t_float, self.num_actions, 'q_func', reuse = tf.AUTO_REUSE) q_func_ph = tf.gather_nd(self.Q_vals, tf.stack([tf.range(tf.shape(self.Q_vals)[0]), self.act_t_ph], axis=1)) target_q_ph = q_func(obs_tp1_float, self.num_actions, 'target_q_func', reuse = tf.AUTO_REUSE) if double_q: target_index = tf.math.argmax(q_func(obs_tp1_float, self.num_actions, 'q_func', reuse = tf.AUTO_REUSE), axis = 1, output_type = tf.int32) target_v_ph = tf.gather_nd(target_q_ph, tf.stack([tf.range(tf.shape(target_q_ph)[0]), target_index], axis=1)) else: target_v_ph = tf.math.reduce_max(target_q_ph, axis = 1)
tensorflow.shape
11,021
from tensorflow.python.framework import tensor_util x = ops.convert_to_tensor(x, name="x") def slice_shape(start_sum, size, name): """Closure to slice out shape.""" start_sum = start_sum if start_sum else ( array_ops.zeros((), dtype=dtypes.int32, name="zero"),) if (x.get_shape().ndims is not None and self._is_all_constant_helper(size, *start_sum)): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) slice_ = x.get_shape()[start:stop].as_list() if all(s is not None for s in slice_): return ops.convert_to_tensor(slice_, dtype=dtypes.int32, name=name) # Fall-through intended. return array_ops.slice(array_ops.shape(x), (sum(start_sum),), (size,))
tensorflow.python.framework.tensor_util.constant_value
11,022
import tensorflow as tf tfe.define_private_input(data_owner.player_name, data_owner.compute_gradient) for data_owner in data_owners )) with tf.name_scope('secure_aggregation'): aggregated_model_grads = [ tfe.add_n(grads) / len(grads) for grads in model_grads
tensorflow.name_scope
11,023
import tensorflow as tf tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
tensorflow.flags.DEFINE_string
11,024
import tensorflow as tf qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout) ch_emb = conv(ch_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=None) qh_emb = conv(qh_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=True) ch_emb = tf.reduce_max(ch_emb, axis=1) qh_emb = tf.reduce_max(qh_emb, axis=1) ch_emb = tf.reshape(ch_emb, [N * self.max_p_num, PL, -1]) qh_emb = tf.reshape(qh_emb, [N * self.max_p_num, QL, -1]) c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) self.c_emb = highway(c_emb, size=d, scope="highway", dropout=self.dropout, reuse=None) self.q_emb = highway(q_emb, size=d, scope="highway", dropout=self.dropout, reuse=True) def _encode(self): N, PL, QL, CL, d, dc, nh = self._params() if self.config.fix_pretrained_vector: dc = self.char_mat.get_shape()[-1]
tensorflow.nn.embedding_lookup
11,025
import tensorflow as tf def l2_loss(tensor, weight=1.0, scope=None): """Define a L2Loss, useful for regularize, i.e. weight decay. Args: tensor: tensor to regularize. weight: an optional weight to modulate the loss. scope: Optional scope for op_scope. Returns: the L2 loss op. """ with tf.name_scope(scope): weight = tf.convert_to_tensor(weight, dtype=tensor.dtype.base_dtype, name='loss_weight') loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value') return loss def lppool(inpOp, pnorm, kH, kW, dH, dW, padding, name): with tf.variable_scope(name): if pnorm == 2: pwr = tf.square(inpOp) else: pwr = tf.pow(inpOp, pnorm) subsamp = tf.nn.avg_pool(pwr, ksize=[1, kH, kW, 1], strides=[1, dH, dW, 1], padding=padding)
tensorflow.nn.l2_loss
11,026
import tensorflow as tf tokens: 1-D integer `Tensor` [num_timesteps*batch_size]. Each element is an id from the vocab. vocab_size: a `int`, vocabular size of the problem Returns: Float 1-D `Tensor` same shape as tokens, whose values are 1.0 on the end of sequence and 0.0 on the others. """ eos_id = vocab_size - 1 return tf.cast(tf.equal(tokens, eos_id), tf.float32) def _kl_divergence_with_logits(q_logits, p_logits, weights, num_classes): """Returns weighted KL divergence between distributions q and p. Args: q_logits: logits for 1st argument of KL divergence shape [num_timesteps * batch_size, num_classes] if num_classes > 2, and
tensorflow.equal
11,027
import tensorflow as tf copy the parameters from optimized Q function to the target Q function. In Q learning we actually optimize the following error: Q(s,a) - (r + gamma * max_a' Q'(s', a')) Where Q' is lagging behind Q to stablize the learning. For example for Atari Q' is set to Q once every 10000 updates training steps. """ import tensorflow as tf import baselines.common.tf_util as U def default_param_noise_filter(var): if var not in tf.trainable_variables(): # We never perturb non-trainable vars. return False if "fully_connected" in var.name: # We perturb fully-connected layers. return True # The remaining layers are likely conv or layer norm layers, which we do not wish to # perturb (in the former case because they only extract features, in the latter case because # we use them for normalization purposes). If you change your network, you will likely want # to re-consider which layers to perturb and which to keep untouched. return False def build_act(make_obs_ph, q_func, num_actions, scope="deepq", reuse=None):
tensorflow.trainable_variables
11,028
from tensorflow.python.framework import ops @ops.RegisterShape("Greater") @ops.RegisterShape("GreaterEqual") @ops.RegisterShape("Less") @ops.RegisterShape("LessEqual") @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum") @ops.RegisterShape("Mod") @ops.RegisterShape("Mul") @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow")
tensorflow.python.framework.ops.RegisterShape
11,029
import tensorflow as tf @tf.function def ctc_decode(inputs, batch_size, seq_length, blank_index, def_val, shift, beam_width=10): """Perform ctc decoding""" # Decode uses time major inputs = tf.transpose(a=inputs, perm=[1, 0, 2]) seq_lengths = tf.fill([batch_size], seq_length) # Perform beam search indices, values, shape, indices_u, values_u, shape_u, log_probs = ctc_ext_beam_search_decoder( inputs=inputs, sequence_length=seq_lengths, beam_width=beam_width, blank_index=blank_index, top_paths=1, blank_label=0)
tensorflow.fill
11,030
import tensorflow as tf return logits def top(self, body_output, features): if isinstance(body_output, dict): logits = {} for k, v in body_output.iteritems(): logits[k] = self._top_single(v, features) return logits else: return self._top_single(body_output, features) def _loss_single(self, logits, features): if not self._problem_hparams: log_warn(_no_problem_err("loss")) return (tf.constant(0., dtype=tf.float32), tf.constant(1., dtype=tf.float32)) target_modality = self._problem_hparams.target_modality loss_num, loss_den = target_modality.loss(logits, features["targets"]) loss_num *= self._problem_hparams.loss_multiplier return loss_num, loss_den def loss(self, logits, features): if isinstance(logits, dict): losses = {} for k, v in logits.iteritems(): losses[k] = self._loss_single(v, features) return tf.add_n([n / d for n, d in logits.values()]) else: return self._loss_single(logits, features)
tensorflow.constant
11,031
import tensorflow as tf def mmd_loss(source_samples, target_samples, weight, name='mmd_loss'): """Adds a similarity loss term, the MMD between two representations. This Maximum Mean Discrepancy (MMD) loss is calculated with a number of different Gaussian kernels. Args: source_samples: a tensor of shape [num_samples, num_features]. target_samples: a tensor of shape [num_samples, num_features]. weight: the weight of the MMD loss. scope: optional name scope for summary tags. Returns: a scalar tensor representing the MMD loss value. """ with tf.name_scope(name): sigmas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] gaussian_kernel = partial(util.gaussian_kernel_matrix, sigmas=tf.constant(sigmas)) loss_value = maximum_mean_discrepancy(source_samples, target_samples, kernel=gaussian_kernel) loss_value = tf.maximum(1e-4, loss_value) * weight assert_op = tf.Assert(tf.is_finite(loss_value), [loss_value]) with tf.control_dependencies([assert_op]): tag = 'MMD_Loss' barrier = tf.no_op(tag) return loss_value
tensorflow.name_scope
11,032
import tensorflow as tf wshape = [rf, rf, nin, nf] with tf.variable_scope(scope): w = tf.get_variable("w", wshape, initializer=ortho_init(init_scale)) b = tf.get_variable("b", bias_var_shape, initializer=tf.constant_initializer(0.0)) if not one_dim_bias and data_format == 'NHWC': b = tf.reshape(b, bshape) return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale))
tensorflow.nn.conv2d
11,033
import tensorflow as tf context_vectors.append(context_vector) weights.append(weights_) context_vector = tf.concat(context_vectors, axis=-1) weights = sum(weights) / len(weights) if encoder.attn_mapping: with tf.variable_scope(scope): context_vector = dense(context_vector, encoder.attn_mapping, use_bias=False, name='output') return context_vector, weights def multi_attention(state, hidden_states, encoders, encoder_input_length, pos=None, aggregation_method='sum',
tensorflow.variable_scope
11,034
import tensorflow as tf dtype=tensor.dtype.base_dtype, name='loss_weight') loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value') return loss def lppool(inpOp, pnorm, kH, kW, dH, dW, padding, name): with tf.variable_scope(name): if pnorm == 2: pwr = tf.square(inpOp) else: pwr = tf.pow(inpOp, pnorm)
tensorflow.variable_scope
11,035
import tensorflow as tf channels: scalar, size of timing embeddings to create. The number of different timescales is equal to channels / 2. position: a Tensor with shape [batch, seq_len] min_timescale: a float max_timescale: a float Returns: a Tensor of timing signals [batch, seq_len, channels] """ num_timescales = channels // 2 log_timescale_increment = ( math.log(float(max_timescale) / float(min_timescale)) / (tf.to_float(num_timescales) - 1)) inv_timescales = min_timescale * tf.exp( tf.to_float(tf.range(num_timescales)) * -log_timescale_increment) scaled_time = ( tf.expand_dims(tf.to_float(position), 2) * tf.expand_dims( tf.expand_dims(inv_timescales, 0), 0)) signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=2) signal = tf.pad(signal, [[0, 0], [0, 0], [0, tf.mod(channels, 2)]]) return signal def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings",
tensorflow.range
11,036
import tensorflow as tf if __name__ == '__main__': tf.test.main()
tensorflow.test.main
11,037
import tensorflow as tf loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small) + margin)
tensorflow.maximum
11,038
import tensorflow as tf Return: A tuple of list: (nodes, adjcents) nodes: A list of N + 1 `tf.Tensor` of `int64`, N is the number of hops. Specify node set of each hop, including the root. adjcents: A list of N `tf.SparseTensor` of `int64`. Specify adjacent matrix between hops. """ nodes = tf.reshape(nodes, [-1]) nodes_list = [nodes] adj_list = [] for hop_edge_types in edge_types: neighbor, weight, _ = get_full_neighbor(nodes, hop_edge_types) next_nodes, next_idx = tf.unique(neighbor.values, out_idx=tf.int64) next_indices = tf.stack([neighbor.indices[:, 0], next_idx], 1) next_values = weight.values next_shape = [tf.size(nodes), tf.size(next_nodes)] next_adj = tf.sparse.SparseTensor(next_indices, next_values, next_shape) next_adj = tf.sparse.reorder(next_adj) nodes_list.append(next_nodes) adj_list.append(next_adj) nodes = next_nodes return nodes_list, adj_list
tensorflow.unique
11,039
import tensorflow as tf #print(image.shape) #print(label.shape) images,labels=tf.train.shuffle_batch([image,label], batch_size=batch_size,num_threads=10,capacity=10000,min_after_dequeue=200) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_test_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'): self.w1=tf.get_variable('w1', [4096,1024],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w2=tf.get_variable('w2', [1024,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [1024],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [classnum],initializer=tf.constant_initializer(0.0)) def inference(self,images): images=tf.cast(images,tf.float32)/255.0
tensorflow.reshape
11,040
import tensorflow as tf tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn def main(_):
tensorflow.constant
11,041
import tensorflow as tf def add_train_stats(model, hparams): with tf.variable_scope("stats") as scope: for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_mel_outputs[i]) tf.summary.histogram("mel_targets %d" % i, model.tower_mel_targets[i]) tf.summary.scalar("before_loss", model.before_loss) tf.summary.scalar("after_loss", model.after_loss) if hparams.predict_linear: tf.summary.scalar("linear_loss", model.linear_loss) for i in range(hparams.tacotron_num_gpus): tf.summary.histogram("mel_outputs %d" % i, model.tower_linear_outputs[i])
tensorflow.summary.scalar
11,042
import tensorflow as tf if categorical: x_dtype = x.dtype x = x if x_dtype == tf.string else tf.strings.as_string(x) elements, counts = count_per_key(x) if x_dtype != elements.dtype: elements = tf.strings.to_number(elements, tf.int64) return counts, elements if boundaries is None: boundaries = tf.range(11, dtype=tf.float32) / 10.0 elif isinstance(boundaries, int) or (isinstance(boundaries, tf.Tensor) and boundaries.get_shape().ndims == 0): min_value, max_value = _min_and_max(x, True) boundaries = tf.linspace( tf.cast(min_value, tf.float32), tf.cast(max_value, tf.float32), tf.cast(boundaries, tf.int64)) # Shift the boundaries slightly to account for floating point errors, # and due to the fact that the rightmost boundary is essentially ignored. boundaries = tf.expand_dims(tf.cast(boundaries, tf.float32), 0) - 0.0001 bucket_indices = tf_utils.assign_buckets( tf.cast(x, tf.float32), remove_leftmost_boundary(boundaries)) bucket_vocab, counts = count_per_key(tf.strings.as_string(bucket_indices)) counts = tf_utils.reorder_histogram(bucket_vocab, counts, tf.size(boundaries) - 1) return counts, boundaries
tensorflow.cast
11,043
import tensorflow as tf class Model(object): def __init__(self, vars): self.saver = tf.train.Saver(vars) def session(self, sess): if sess is not None: self.sess = sess else: config_proto = tf.ConfigProto() config_proto.gpu_options.allow_growth = True self.sess = tf.Session(config=config_proto) def initialize(self): self.sess.run(tf.global_variables_initializer()) def save(self, path): self.saver.save(self.sess, path)
tensorflow.ConfigProto
11,044
import tensorflow as tf @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines @classmethod def _read_csv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter=",") lines = [] for line in reader: lines.append(line) return lines class FAQProcessor(DataProcessor): def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_csv(os.path.join(data_dir, "train.csv")), "train")
tensorflow.gfile.Open
11,045
import tensorflow as tf # Extract 8 most features as mentioned in paper self.k_pooled = tf.nn.top_k(tf.transpose(self.layers[-1], [0,2,1]), k=8, name='k_pool', sorted=False)[0] print("8-maxpooling:", self.k_pooled.get_shape()) self.flatten = tf.reshape(self.k_pooled, (-1, 512*8)) # fc1 with tf.variable_scope('fc1'): w = tf.get_variable('w', [self.flatten.get_shape()[1], 2048], initializer=he_normal, regularizer=regularizer) b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0)) out = tf.matmul(self.flatten, w) + b self.fc1 = tf.nn.relu(out) # fc2 with tf.variable_scope('fc2'): w = tf.get_variable('w', [self.fc1.get_shape()[1], 2048], initializer=he_normal, regularizer=regularizer) b = tf.get_variable('b', [2048], initializer=tf.constant_initializer(1.0)) out = tf.matmul(self.fc1, w) + b self.fc2 = tf.nn.relu(out)
tensorflow.matmul
11,046
import tensorflow as tf image = self._decode_image(parsed_tensors) boxes = self._decode_boxes(parsed_tensors) areas = self._decode_areas(parsed_tensors) is_crowds = tf.cond( tf.greater(tf.shape(parsed_tensors['image/object/is_crowd'])[0], 0), lambda: tf.cast(parsed_tensors['image/object/is_crowd'], dtype=tf.bool), lambda: tf.zeros_like(parsed_tensors['image/object/class/label'], dtype=tf.bool)) # pylint: disable=line-too-long if self._include_mask: masks = self._decode_masks(parsed_tensors)
tensorflow.shape
11,047
import tensorflow.contrib.graph_editor as ge # partial derivatives to the checkpointed tensors and xs ops_to_copy = fast_backward_ops(seed_ops=[y.op for y in ys], stop_at_ts=checkpoints, within_ops=fwd_ops) debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints) debug_print("ops_to_copy = %s", ops_to_copy) debug_print("Processing list %s", ys) copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops)
tensorflow.contrib.graph_editor.sgv
11,048
import tensorflow as tf (next_sentence_loss, next_sentence_example_loss, next_sentence_log_probs) = get_next_sentence_output( bert_config, model.get_pooled_output(), next_sentence_labels) total_loss = masked_lm_loss + next_sentence_loss tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tensorflow.trainable_variables
11,049
import tensorflow as tf """ For Pendulum-v0 """ class PolicyEstimator_Pendulum(): def __init__(self, entropy_beta=0.01, learning_rate=0.01, par_idx=0,scope="policy_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state, target and action self.state = tf.placeholder(tf.float32, [None,num_state], name="state") self.target = tf.placeholder(tf.float32,[None,1], name="target") self.a_his = tf.placeholder(tf.float32, [None, num_action], name="action_hist") # layers l_a = tf.layers.dense(self.state, 200, tf.nn.relu6, kernel_initializer=w_init, name='la') self.mu = tf.layers.dense(l_a, num_action, tf.nn.tanh, kernel_initializer=w_init, name='mu') # estimated action value self.sigma = tf.layers.dense(l_a, num_action, tf.nn.softplus, kernel_initializer=w_init, name='sigma') # estimated variance
tensorflow.placeholder
11,050
from tensorflow.contrib import metrics as contrib_metrics concat1 = contrib_metrics.streaming_concat(logits) concat2 = contrib_metrics.streaming_concat(label_ids)
tensorflow.contrib.metrics.streaming_concat
11,051
import tensorflow as tf # data input pipeline with tf.variable_scope(self.data_scope):
tensorflow.variable_scope
11,052
import tensorflow as tf tail_embed = tf.nn.embedding_lookup(self.tail_embedding_vars, self.tail_input) # Model output raw_output = tf.reduce_sum(tf.mul(tf.mul(head_embed, rel_embed), tail_embed), 1) self.output, self.loss = self._create_output_and_loss(raw_output) # Optimization self.train_step = self.opt.minimize(self.loss) if self.maxnorm is not None: # Post-processing to limit embedding vars to L2 ball head_constraint = self._norm_constraint_op(self.head_embedding_vars, tf.unique(self.head_input)[0], self.maxnorm) rel_constraint = self._norm_constraint_op(self.rel_embedding_vars, tf.unique(self.rel_input)[0], self.maxnorm) tail_constraint = self._norm_constraint_op(self.tail_embedding_vars, tf.unique(self.tail_input)[0], self.maxnorm) self.post_step = [head_constraint, rel_constraint, tail_constraint]
tensorflow.unique
11,053
import tensorflow as tf self.rewards_ph = tf.placeholder(tf.float32, shape=(None, 1), name='rewards') self.is_demo_ph = tf.placeholder(tf.float32, shape=(None, 1), name='is_demonstrations') self.weight_ph = tf.placeholder(tf.float32, shape=(None, 1), name='importance_weight') self.actions_ph = tf.placeholder(tf.float32, shape=(None,) + self.action_space.shape, name='actions') self.learning_rate_ph = tf.placeholder(tf.float32, [], name="learning_rate_ph") if self.n_step: self.next_observations_ph_n = self.target_policy.obs_ph self.processed_next_obs_ph_n = self.target_policy.processed_obs self.rewards_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_rewards') self.terminals_ph_n = tf.placeholder(tf.float32, shape=(None, 1), name='n_step_terminals') with tf.variable_scope("model", reuse=False): # Create the policy # first return value corresponds to deterministic actions # policy_out corresponds to stochastic actions, used for training # logp_pi is the log probability of actions taken by the policy self.deterministic_action, policy_out, logp_pi = self.policy_tf.make_actor(self.processed_obs_ph) # Monitor the entropy of the policy, # this is not used for training self.entropy = tf.reduce_mean(self.policy_tf.entropy) self.obs_ph, self.actions_ph, self.deterministic_actions_ph = self._get_pretrain_placeholders() # Use two Q-functions to improve performance by reducing overestimation bias. qf1, qf2, value_fn = self.policy_tf.make_critics(self.processed_obs_ph, self.actions_ph, create_qf=True, create_vf=True)
tensorflow.variable_scope
11,054
import tensorflow as tf self.y = tf.placeholder(tf.float32, [batch_size, max_sequence_len, out_vocab_size], name='y') # The bidirectional rnn code requires seq_lens as int64 self.seq_lens = tf.placeholder(tf.int64, [batch_size], name='seq_lens') self.example_weights = tf.placeholder(tf.float32, [batch_size], name='example_weights') embeddings = c2v.GetEmbeddings(self.x) self._inputs = [tf.squeeze(input_, [1]) for input_ in
tensorflow.placeholder
11,055
import tensorflow as tf self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1])) self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1])) self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))
tensorflow.placeholder
11,056
import tensorflow as tf is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tensorflow.trainable_variables
11,057
import tensorflow as tf with tf.variable_scope(decoderscope) as scope: if reuse_decoder: scope.reuse_variables() # print('vnet scope', is_train, reuse_unet) # print('VNET Latent:', X.get_shape().as_list()) with tf.variable_scope('decoder'): X = decoder_conf('d3', X, 512, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 12 > 14 if self.args.skip_connections: X = tf.concat((X, X2), axis=-1) X = decoder_conf('u4', X, 256, F, 2, norm, reuse_decoder, is_train, self.args.dropout) # 14 > 28 X = decoder_conf('d4', X, 256, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 28 > 30 if self.args.skip_connections: X = tf.concat((X, X1), axis=-1) X = decoder_conf('u5', X, 128, F, 2, norm, reuse_decoder, is_train, self.args.dropout) # 30 > 60 X_LATE = X X = decoder_conf('d5', X, 128, F, 1, norm, reuse_decoder, is_train, self.args.dropout) # 60 > 62 if self.args.skip_connections: X = tf.concat((X, X0), axis=-1) X = decoder_conf('u6', X, 64, F, 2, norm, reuse_decoder, is_train, self.args.dropout) # 62 > 124 X = decoder_conf('d6', X, 64, 5, 1, norm, reuse_decoder, is_train, self.args.dropout) # 124 > 128 X = decoder_conf('out', X, self.args.num_classes, 1, 1, '', reuse_decoder, is_train, slope=1.0, stddev=0.02, use_bias=False)
tensorflow.concat
11,058
import tensorflow as tf scope_name = str(micros) op_list = [] with tf.name_scope(scope_name): yield op_list g = tf.get_default_graph() op_list.extend(ge.select_ops(scope_name+"/.*", graph=g)) def _to_op(tensor_or_op): if hasattr(tensor_or_op, "op"):
tensorflow.get_default_graph
11,059
import tensorflow as tf initializer=tf.constant_initializer(self.dale_out), trainable=False) # Connectivity weight matrices: self.input_Connectivity = tf.get_variable('input_Connectivity', [N_rec, N_in], initializer=tf.constant_initializer( self.input_connectivity_mask), trainable=False) self.rec_Connectivity = tf.get_variable('rec_Connectivity', [N_rec, N_rec], initializer=tf.constant_initializer( self.recurrent_connectivity_mask), trainable=False) self.output_Connectivity = tf.get_variable('output_Connectivity', [N_out, N_rec], initializer=tf.constant_initializer( self.output_connectivity_mask), trainable=False) # ------------------------------------------------ # Network loss # ------------------------------------------------ self.predictions, self.states = self.compute_predictions() self.error = self.mean_square_error() self.loss = self.error + self.regularization() # regularized loss function def reg_loss(self):
tensorflow.constant_initializer
11,060
import tensorflow as tf if __name__ == "__main__": flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
tensorflow.app.run
11,061
from tensorflow.python.ops import array_ops with ops.Graph().as_default(), ops.device("/device:GPU:0"): model = cudnn_rnn_ops.CudnnLSTM(num_layers, num_units, num_units) params_size_t = model.params_size() input_data = variables.Variable( array_ops.ones([seq_length, batch_size, num_units])) input_h = variables.Variable( array_ops.ones([num_layers, batch_size, num_units])) input_c = variables.Variable( array_ops.ones([num_layers, batch_size, num_units])) params = variables.Variable( array_ops.ones([params_size_t]), validate_shape=False) output, output_h, output_c = model( is_training=True,
tensorflow.python.ops.array_ops.ones
11,062
import tensorflow as tf rnn_state=self.rnn_cell.zero_state(batch_size, dtype), latent_encoded=tf.zeros(
tensorflow.zeros
11,063
import tensorflow as tf with tf.name_scope('local_grad'): grads = tf.gradients(self.loss, self.var_list) grads, _ = tf.clip_by_global_norm(grads, 40) with tf.name_scope('sync'): # worker和global的同步过程 with tf.name_scope('pull'): # 获取global参数,复制到local—net self.pull_params_op = tf.group(*[v1.assign(v2) for v1, v2 in zip(self.var_list, globalAC.var_list)]) with tf.name_scope('push'): # 将参数传送到gloabl中去 self.update_params_op = OPT.apply_gradients(zip(grads, globalAC.var_list)) # 其中传送的是local—net的actor和critic的参数梯度grads,具体计算在上面定义
tensorflow.name_scope
11,064
import tensorflow as tf all_params = [] all_drop = {} @deprecated_alias(layer='prev_layer', end_support_version=1.9) # TODO remove this line for the 1.9 release def __init__(self, prev_layer, name=None): if name is None: raise ValueError('Layer must have a name.') scope_name = tf.get_variable_scope().name if scope_name: name = scope_name + '/' + name self.name = name # get all properties of previous layer(s) if isinstance(prev_layer, Layer): # 1. for normal layer have only 1 input i.e. DenseLayer # Hint : list(), dict() is pass by value (shallow), without them, # it is pass by reference.
tensorflow.get_variable_scope
11,065
import tensorflow as tf input_tensor: The input tensor of tensorflow graph. output_tensor: The output tensor of tensorflow graph. use_mlir_converter: Whether or not to use MLIRConverter to convert the model. Returns: The tflite inference result. """ converter = tf.lite.TFLiteConverter.from_session(sess, [input_tensor], [output_tensor]) tflite = converter.convert() converter.experimental_enable_mlir_converter = use_mlir_converter interpreter = tf.lite.Interpreter(model_content=tflite) try: interpreter.allocate_tensors() except ValueError: assert False input_index = (interpreter.get_input_details()[0]["index"]) interpreter.set_tensor(input_index, test_inputs) interpreter.invoke() output_index = (interpreter.get_output_details()[0]["index"]) result = interpreter.get_tensor(output_index) # Reset all variables so it will not pollute other inferences.
tensorflow.lite.Interpreter
11,066
import tensorflow as tf target_samples = tf.nn.l2_normalize(target_samples, 1) source_cov = tf.matmul(tf.transpose(source_samples), source_samples) target_cov = tf.matmul(tf.transpose(target_samples), target_samples) corr_loss = tf.reduce_mean(tf.square(source_cov - target_cov)) * weight assert_op = tf.Assert(tf.is_finite(corr_loss), [corr_loss]) with tf.control_dependencies([assert_op]): tag = 'Correlation Loss' barrier = tf.no_op(tag) return corr_loss def maximum_mean_discrepancy(x, y, kernel=util.gaussian_kernel_matrix,
tensorflow.no_op
11,067
import tensorflow as tf # The name of placeholder for keep_prob is the same with the name # of the Layer. if is_fix: self.outputs = tf.nn.dropout(self.inputs, keep, seed=seed, name=name) else: LayersConfig.set_keep[name] = tf.placeholder(tf.float32) self.outputs = tf.nn.dropout(self.inputs, LayersConfig.set_keep[name], seed=seed, name=name) # 1.2 # self.all_layers = list(layer.all_layers) # self.all_params = list(layer.all_params)
tensorflow.placeholder
11,068
import tensorflow as tf z = tf.random_normal([2, 10], dtype=tf.float32) x, _ = networks.generator( z, progress, _num_filters_stub, networks.ResolutionSchedule( start_resolutions=(4, 4), scale_base=2, num_resolutions=3)) fake_loss = tf.reduce_sum(tf.square(x)) grad_norms = [ _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_1/.*')), _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_2/.*')), _get_grad_norm( fake_loss, tf.trainable_variables('.*/progressive_gan_block_3/.*')) ] grad_norms_output = None with self.test_session(use_gpu=True) as sess: sess.run(tf.global_variables_initializer()) x1_np = sess.run(x, feed_dict={current_image_id_ph: 0.12}) x2_np = sess.run(x, feed_dict={current_image_id_ph: 1.8})
tensorflow.trainable_variables
11,069
import tensorflow as tf logit_probs = predictions[:, :, :, :nr_mix] predictions = tf.reshape(predictions[:, :, :, nr_mix:], inputs_shape + [nr_mix * 3]) means = predictions[:, :, :, :, :nr_mix] log_scales = tf.maximum(predictions[:, :, :, :, nr_mix:2 * nr_mix], -7.) coeffs = tf.nn.tanh(predictions[:, :, :, :, 2 * nr_mix:3 * nr_mix]) inputs = tf.reshape(inputs, inputs_shape + [1]) + tf.zeros(inputs_shape + [nr_mix]) m2 = tf.reshape(means[:, :, :, 1, :] + coeffs[:, :, :, 0, :] * inputs[:, :, :, 0, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]) m3 = tf.reshape( means[:, :, :, 2, :] + coeffs[:, :, :, 1, :] * inputs[:, :, :, 0, :] + coeffs[:, :, :, 2, :] * inputs[:, :, :, 1, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]) means = tf.concat([ tf.reshape(means[:, :, :, 0, :], [inputs_shape[0], inputs_shape[1], inputs_shape[2], 1, nr_mix]), m2, m3 ], axis=3) centered_inputs = inputs - means inv_stdv = tf.exp(-log_scales) plus_in = inv_stdv * (centered_inputs + 1. / 255.) cdf_plus = tf.nn.sigmoid(plus_in) min_in = inv_stdv * (centered_inputs - 1. / 255.) cdf_min = tf.nn.sigmoid(min_in) log_cdf_plus = plus_in - tf.nn.softplus(plus_in) log_one_minus_cdf_min = -tf.nn.softplus(min_in) cdf_delta = cdf_plus - cdf_min
tensorflow.reshape
11,070
import tensorflow as tf with tf.variable_scope('source2token_self_attn'): inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear', False, wd, keep_prob, is_train) # bs,bn,bl,vec inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec with tf.variable_scope('self_attn_inter_block'): inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool)
tensorflow.nn.softmax
11,071
import tensorflow as tf return 1.0 if x == 0.0 else 0.0 x = tf.constant(0.0, tf.float64) y, = tf.py_func(literal, [x], [tf.float64]) self.assertAllClose(y.eval(), 1.0)
tensorflow.py_func
11,072
import tensorflow as tf zero_debias=False) n = tf.reduce_sum(updated_ema_count, axis=-1, keep_dims=True)
tensorflow.reduce_sum
11,073
import tensorflow as tf "train":{ "loss":loss, "logits":logits, "train_op":train_op, "cross_entropy":label_loss, "distillation_loss":distillation_loss["distillation_loss"], "kd_num":tf.reduce_sum(features["distillation_ratio"]), "ce_num":tf.reduce_sum(features["label_ratio"]), "teacher_logit":teacher_logit, "student_logit":student_logit, "label_ratio":features["label_ratio"], "distilaltion_logits_loss":distillation_loss["distillation_logits_loss"],
tensorflow.reduce_sum
11,074
import tensorflow as tf return loss class ValueEstimator_MountainCarContinuous(): def __init__(self, learning_rate=0.1, par_idx=0,scope="value_estimator"): w_init = tf.random_normal_initializer(0.,.1); with tf.variable_scope(scope+"_"+str(par_idx)): # state and target self.state = tf.placeholder(tf.float32, [None,400], "state") self.target = tf.placeholder(tf.float32, [None,1], name="target") # layers self.value_estimate = tf.layers.dense(self.state, 1, kernel_initializer=w_init, name='v') # estimated value for state # loss and optimizer self.loss = tf.squared_difference(self.value_estimate, self.target) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.contrib.framework.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() state=featurize_state(state); return sess.run(self.value_estimate, { self.state: [state] })[0][0] def update(self, state, target, sess=None): sess = sess or tf.get_default_session() for st_idx in range(len(state)): state[st_idx]=featurize_state(state[st_idx]); feed_dict = { self.state: state, self.target: target } _, loss = sess.run([self.train_op, self.loss], feed_dict)
tensorflow.train.AdamOptimizer
11,075
import tensorflow as tf private_samples = tf.nn.l2_normalize(private_samples, 1) shared_samples = tf.nn.l2_normalize(shared_samples, 1) correlation_matrix = tf.matmul(private_samples, shared_samples, transpose_a=True) cost = tf.reduce_mean(tf.square(correlation_matrix)) * weight cost = tf.where(cost > 0, cost, 0, name='value') assert_op = tf.Assert(tf.is_finite(cost), [cost]) with tf.control_dependencies([assert_op]): barrier = tf.no_op(name) return cost def log_quaternion_loss_batch(predictions, labels, name='log_quaternion_batch_loss'): """A helper function to compute the error between quaternions.
tensorflow.is_finite
11,076
import tensorflow as tf model.fit( train_dataset, epochs=20, steps_per_epoch=steps_per_epoch, validation_steps=val_steps, validation_data=test_dataset, callbacks=[]) model.save_weights('./test/segmentation') print(create_mask(model(tf.ones((1, 512, 512, 3)), False))) if __name__ == '__main__': logging.set_verbosity(logging.WARNING) app.run(main)
tensorflow.ones
11,077
import tensorflow as tf for class_id in range(self.max_num_classes): # Do the same for the ground truth and predictions sdf_values = tf.zeros_like(samples_world)[:, 0:1] for mtype, (classes, sdfs, poses) in enumerate([ (labeled_classes, labeled_sdfs, labeled_poses), (predicted_classes, predicted_sdfs, predicted_poses)]): for i in range(classes.shape[0]): if class_id == classes[i]: sdf = tf.expand_dims(sdfs[i], -1) sdf = sdf * -1.0 # inside positive, outside zero samples_object = centernet_utils.transform_pointcloud( tf.reshape(samples_world, [1, 1, -1, 3]), tf.reshape(poses[2][i], [1, 1, 3]), tf.reshape(poses[0][i], [1, 1, 3, 3]), tf.reshape(poses[1][i], [1, 1, 3]), inverse=True) * 2.0 samples_object = \ (samples_object * (29.0/32.0) / 2.0 + 0.5) * 32.0 - 0.5 samples = tf.squeeze(samples_object) interpolated = trilinear.interpolate(sdf, samples) sdf_values += tf.math.sign(tf.nn.relu(interpolated + self.tol)) status2 = False if status2: a = 2
tensorflow.reshape
11,078
import tensorflow as tf total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids, masked_lm_weights, next_sentence_example_loss, next_sentence_log_probs, next_sentence_labels): """Computes the loss and accuracy of the model.""" masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]]) masked_lm_predictions = tf.argmax( masked_lm_log_probs, axis=-1, output_type=tf.int32) masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1]) masked_lm_ids = tf.reshape(masked_lm_ids, [-1]) masked_lm_weights = tf.reshape(masked_lm_weights, [-1]) masked_lm_accuracy = tf.metrics.accuracy( labels=masked_lm_ids, predictions=masked_lm_predictions, weights=masked_lm_weights) masked_lm_mean_loss = tf.metrics.mean( values=masked_lm_example_loss, weights=masked_lm_weights)
tensorflow.reshape
11,079
import tensorflow.contrib.eager as tfe dataset = random_dataset() if defun: model.call = tfe.defun(model.call) with tf.device(device()):
tensorflow.contrib.eager.defun
11,080
import tensorflow as tf v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3]) t = tf.nn.conv2d_transpose(input_var,v_norm, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,w, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC'),
tensorflow.cond
11,081
import tensorflow as tf else: q = tf.nn.softmax(q_logits) p = tf.nn.softmax(p_logits)
tensorflow.nn.softmax
11,082
from tensorflow.contrib.layers.python.layers import initializers normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None,
tensorflow.contrib.layers.python.layers.initializers.xavier_initializer
11,083
import tensorflow as tf return model_fn def get_masked_lm_output(bert_config, input_tensor, output_weights, positions, label_ids): """Get loss and log probs for the masked LM.""" input_tensor = gather_indexes(input_tensor, positions) with tf.variable_scope("cls/predictions"): # We apply one more non-linear transformation before the output layer. # This matrix is not used after pre-training. with tf.variable_scope("transform"): input_tensor = tf.layers.dense( input_tensor, units=bert_config.hidden_size, activation=modeling.get_activation(bert_config.hidden_act), kernel_initializer=modeling.create_initializer( bert_config.initializer_range)) input_tensor = modeling.layer_norm(input_tensor) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias",
tensorflow.variable_scope
11,084
import tensorflow as tf (summary_op, monitored_values) = self._add_monitoring_of_values() # Add saver tf_vars = tf.global_variables() saver = tf.train.Saver(tf_vars)
tensorflow.global_variables
11,085
import tensorflow as tf inf=work.inference(batch_image) loss=work.softmax_loss(inf,batch_label) opti=work.optimer(loss,learnrate) test_image_batch,test_label_batch=get_test_batch(test_image,test_label,testnum) test_inf=work.test_inference(test_image_batch) test_labels=tf.one_hot(test_label_batch,classnum) test_pre = tf.reshape(test_inf, [testnum, classnum]) correct_prediction=tf.equal(tf.argmax(test_inf,1),tf.argmax(test_labels,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) test_pre = tf.argmax(test_pre, 1) test_true = tf.argmax(test_labels, 1) valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum)
tensorflow.argmax
11,086
import tensorflow as tf shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length],
tensorflow.constant
11,087
import tensorflow as tf w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape
tensorflow.tensordot
11,088
import tensorflow as tf output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings, do_serve):
tensorflow.nn.softmax
11,089
import tensorflow as tf # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32) V = tf.get_variable(name="attn_V", shape=[2 * self.config.hidden_size, 1], initializer=tf.contrib.layers.xavier_initializer(), # initializer=tf.truncated_normal_initializer(), # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32) U = tf.get_variable(name="attn_U", shape=[2 * self.config.hidden_size, 2 * self.config.hidden_size], initializer=tf.contrib.layers.xavier_initializer(), # initializer=tf.truncated_normal_initializer(), # initializer=tf.keras.initializers.lecun_normal(), dtype=tf.float32) self.position_emb = tf.reshape(self.position_emb, [-1, 2 * self.config.hidden_size]) shape = tf.shape(output) output = tf.reshape(output, [-1, 2 * self.config.hidden_size]) atten_hidden = tf.tanh( tf.add( tf.matmul(self.position_emb, W), tf.matmul(output, U))) alpha = tf.nn.softmax( tf.reshape(tf.matmul(atten_hidden, V), [-1, shape[1], 1]), axis=1) output = tf.reshape(output, [-1, shape[1], 2 * self.config.hidden_size]) C = tf.multiply(alpha, output) return tf.concat([output, C], axis=-1)
tensorflow.reshape
11,090
import tensorflow as tf tft_layer = self.transform_features_layer() if not drop_unused_features: tf.compat.v1.logging.warning( 'Unused features are always dropped in the TF 2.x '
tensorflow.compat.v1.logging.warning
11,091
import tensorflow as tf API.""" import inspect from collections.abc import Iterable from typing import Optional try: import tensorflow as tf from tensorflow.keras.layers import Layer CORRECT_TF_VERSION = int(tf.__version__.split(".")[0]) > 1 except ImportError: # The following allows this module to be imported even if TensorFlow is not installed. Users # will instead see an ImportError when instantiating the KerasLayer. from abc import ABC Layer = ABC CORRECT_TF_VERSION = False
tensorflow.__version__.split
11,092
import tensorflow as tf return X def _add_fully_connected(self, X, in_shape, out_ch, no_reg=False): ch = np.prod(in_shape) X = tf.reshape(X, (-1, ch)) W = self._make_var('W', (ch, out_ch), no_reg=no_reg) X = tf.matmul(X, W) X = tf.reshape(X, (-1, out_ch)) # Sanity shape check return X def _add_factorized_reduction(self, X, in_w, in_h, in_ch, out_ch, is_train=False): ''' Output is of shape (in_w // 2, in_h // 2, out_ch) '''
tensorflow.reshape
11,093
import tensorflow as tf if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if not reader: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='png'), 'image/class/label': tf.FixedLenFeature( [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(shape=[32, 32, 3]), 'label': slim.tfexample_decoder.Tensor('image/class/label'), }
tensorflow.FixedLenFeature
11,094
import tensorflow as tf ) tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
tensorflow.flags.DEFINE_string
11,095
from tensorflow.contrib.learn.python.learn.estimators import composable_model """ super(_DNNLinearCombinedBaseEstimator, self).__init__( model_dir=model_dir, config=config) num_ps_replicas = config.num_ps_replicas if config else 0 self._linear_model = composable_model.LinearComposableModel( num_label_columns=target_column.num_label_columns, optimizer=linear_optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas)
tensorflow.contrib.learn.python.learn.estimators.composable_model.LinearComposableModel
11,096
from tensorflow.python.framework import ops def _move_tensors(tensors, device): """Moves a list of tensors to a device by concatenating/splitting them.""" # Reset the device setting to avoid weird interactions with device merging # logic. with ops.device(None): if all(tensor.shape == tensor_shape.scalar() for tensor in tensors): with ops.device(tensors[0].device): values = array_ops.stack(tensors) with ops.device(device): return array_ops.unstack(values) else: with ops.device(tensors[0].device):
tensorflow.python.framework.ops.device
11,097
import tensorflow as tf tf.int64, "global_epoch") tf.add_to_collection("global_epoch", self.global_epoch) # this creates an operation to add to all trainable variables a white noise of param # std = tf.sqrt(variance)/10 def create_random_update_op(self): vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) update_opts = [] for var in vars: _, variance = tf.nn.moments(tf.reshape(var,[-1]),axes=[0]) normal = tf.distributions.Normal(loc=0.0, scale=tf.sqrt(variance)/10) white_noise = normal.sample(var.get_shape()) update_opts.append(var.assign(var + white_noise)) self.random_update_op = tf.group(update_opts) #apply clipping def _clip_gradients(self, grads_and_vars, grad_clipping_tuple): clipping_method, clipping_kwargs = grad_clipping_tuple grads_and_vars_not_none = [(g, v) for (g, v) in grads_and_vars if g is not None] grads = [g for (g, v) in grads_and_vars_not_none] variables = [v for (g, v) in grads_and_vars_not_none]
tensorflow.sqrt
11,098
import tensorflow as tf # upsampling the logits followed by argmax, or (2) argmax followed by # nearest neighbor upsampling. The second option may introduce the "blocking # effect" but is computationally efficient. if model_options.prediction_with_upsampled_logits: logits = _resize_bilinear(logits, #tf.shape(images)[1:3], tf.TensorShape([512,512]), scales_to_logits[MERGED_LOGITS_SCOPE].dtype) predictions[output] = tf.argmax(logits, 3, output_type=tf.dtypes.int32) #predictions[output + PROB_SUFFIX] = tf.nn.softmax(logits) else: argmax_results = tf.argmax(logits, 3, output_type=tf.dtypes.int32) argmax_results = tf.image.resize_nearest_neighbor( tf.expand_dims(argmax_results, 3), tf.shape(images)[1:3], align_corners=True, name='resize_prediction') predictions[output] = tf.squeeze(argmax_results, 3) #predictions[output + PROB_SUFFIX] = tf.image.resize_bilinear( # tf.nn.softmax(logits), # tf.shape(images)[1:3], # align_corners=True, # name='resize_prob') return predictions def multi_scale_logits(images, model_options,
tensorflow.shape
11,099