seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.train.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name='new_learning_rate') self._lr_update = tf.assign(self._lr, self._new_lr) self.saver = tf.train.Saver(tf.global_variables()) def _get_lstm_cell(self, config, is_training): if config.rnn_mode == BASIC:
tensorflow.assign
11,200
import tensorflow as tf # Calculate loss, which includes softmax cross entropy and L2 regularization. cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.) #cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred) # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name='cross_entropy_loss') tf.summary.scalar('cross_entropy_loss', cross_entropy) loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred)) #loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets)) loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1)) loc_loss = tf.identity(loc_loss, name='location_loss') tf.summary.scalar('location_loss', loc_loss) tf.losses.add_loss(loc_loss) # Add weight decay to the loss. We exclude the batch norm variables because # doing so leads to a small improvement in accuracy. loss = cross_entropy + loc_loss + params['weight_decay'] * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'batch_normalization' not in v.name]) total_loss = tf.identity(loss, name='total_loss') if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step()
tensorflow.summary.scalar
11,201
import tensorflow as tf with tf.Graph().as_default(): config = tf.ConfigProto(inter_op_parallelism_threads=args.num_inter_threads, intra_op_parallelism_threads=args.num_intra_threads) with tf.Session(config = config) as sess: # Read the file containing the pairs used for testing pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs)) # Get the paths for the corresponding images paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs) image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') nrof_preprocess_threads = 4 image_size = (args.image_size, args.image_size) eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1,), (1,), (1,)], shared_name=None, name=None) eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op') image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) # Load the model
tensorflow.placeholder
11,202
import tensorflow as tf for var in self._train_summaries: #添加tf.trainable_variables(),显示张量分布监控数据随着迭代轮数的变化趋势 self._add_train_summary(var) self._summary_op = tf.summary.merge_all() # tf.summary.merge_all()函数来整理所有的日志生成操作 if not testing: self._summary_op_val = tf.summary.merge(val_summaries)
tensorflow.summary.merge_all
11,203
import tensorflow as tf #accuracy1 = tf.reduce_sum( # tf.nn.in_top_k(tf.cast(tf.Variable(predictions2), tf.float32), # tf.cast((tf.constant(np_labels), 1), tf.float32))) accuracy1 = tf.reduce_sum( input_tensor=tf.cast(tf.nn.in_top_k(predictions=tf.constant(predictions1), targets=tf.constant(np_labels), k=1), tf.float32)) accuracy5 = tf.reduce_sum(
tensorflow.constant
11,204
import tensorflow as tf return two_stream_loss(FLAGS, features, labels, mems, is_training) def get_classification_loss( FLAGS, features, n_class, is_training): """Loss for downstream classification tasks.""" bsz_per_core = tf.shape(features["input_ids"])[0] inp = tf.transpose(features["input_ids"], [1, 0]) seg_id = tf.transpose(features["segment_ids"], [1, 0]) inp_mask = tf.transpose(features["input_mask"], [1, 0]) label = tf.reshape(features["label_ids"], [bsz_per_core]) xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path) run_config = xlnet.create_run_config(is_training, True, FLAGS) xlnet_model = xlnet.XLNetModel( xlnet_config=xlnet_config, run_config=run_config, input_ids=inp, seg_ids=seg_id, input_mask=inp_mask)
tensorflow.reshape
11,205
import tensorflow as tf :param mask: [Tensor] Binary mask, 3D or 4D, [N, H, W] or [N, H, W, 1], dtype float32. :param strides: [list] List of 4 int. Convolution strides. :param padding: [string] Convolution padding method, `VALID` or `SAME`. """ assert len(mask.get_shape()) in [3, 4], 'Mask shape must be 3D or 4D.' if len(mask.get_shape()) == 3: mask_ = tf.expand_dims(mask, 3) elif len(mask.get_shape()) == 4: mask_ = mask assert mask.get_shape()[-1] == 1, '4D mask last dimension must be 1.' ksize = [int(ss) for ss in w.get_shape()] psize = [1, ksize[0], ksize[1], 1] mask_ = tf.nn.max_pool(mask_, psize, strides, padding) return tf.nn.conv2d(x, w, strides, padding) * mask_
tensorflow.nn.conv2d
11,206
import tensorflow as tf is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
tensorflow.train.init_from_checkpoint
11,207
import tensorflow as tf # Currently we do not support strides > 1 in this matrix multiplication mode. Could be supported # in the future. assert_strides = tf.assert_equal( tf.cast(tf.stack([strides[1], strides[2]]), tf.int64), tf.constant([1, 1], dtype=tf.int64), message='Strides > 1 not supported.') # Convolution when number of indices is larger than zero. def _conv_nonzero(): # Gather patches. p = tf.gather_nd(x_, blk_indices_) p_ = tf.reshape(p, [-1, ksize[0] * ksize[1] * ksize[2]]) # Convolution on patches. w_ = tf.reshape(w, [ksize[0] * ksize[1] * ksize[2], -1]) q = tf.matmul(p_, w_) # Center locations. blk_indices_crop = blk_indices[:, 0, 0, :] # Project back to an image.
tensorflow.gather_nd
11,208
import tensorflow as tf with tf.name_scope('data'): batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) batch_action_arguments = tf.Variable(data.batch_actions_arguments, name='actions_arguments', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) actions_arguments = tf.gather(batch_action_arguments, self.batch_idx)
tensorflow.Variable
11,209
import tensorflow as tf with self.graph.as_default(): with tf.device('/cpu:0'): embedding = tf.get_variable( 'embedding', [vocab_size, hidden_size], dtype=tf.float32) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) output, state = self._build_rnn_graph(inputs, config, is_training) softmax_w = tf.get_variable( 'softmax_w', [hidden_size, vocab_size], dtype=tf.float32) softmax_b = tf.get_variable('softmax_b', [vocab_size], dtype=tf.float32) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size]) loss = tf.contrib.seq2seq.sequence_loss( logits, input_.targets, tf.ones([self.batch_size, self.num_steps], dtype=tf.float32), average_across_timesteps=False, average_across_batch=True) self._cost = tf.reduce_sum(loss) self._final_state = state
tensorflow.get_variable
11,210
import tensorflow as tf matched_gt_boxes) matched_gt_classes = tf.where( background_indicator, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where( background_indicator, -tf.ones_like(matched_gt_indices), matched_gt_indices) return (matched_gt_boxes, matched_gt_classes, matched_gt_indices, positive_matches, negative_matches, ignored_matches) def get_config(self):
tensorflow.ones_like
11,211
import tensorflow as tf #negtive_mask = tf.logical_and(tf.logical_and(tf.logical_not(positive_mask), gscores < params['neg_threshold']), gscores > 0.) #negtive_mask = tf.logical_and(gscores < params['neg_threshold'], tf.logical_not(positive_mask)) fnegtive_mask = tf.cast(negtive_mask, tf.float32) n_negtives = tf.reduce_sum(fnegtive_mask) n_neg_to_select = tf.cast(params['negative_ratio'] * n_positives, tf.int32)
tensorflow.reduce_sum
11,212
from tensorflow.python.ops import array_ops thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] (tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op, fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds def compute_auc(tp, fn, tn, fp, name): """Computes the roc-auc or pr-auc based on confusion counts.""" recall = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) x = fp_rate y = recall
tensorflow.python.ops.array_ops.squeeze
11,213
import tensorflow as tf self.color_matrix = tf.convert_to_tensor([[1, 0, 0], [0.494207, 0, 1.24827], [0, 0, 1]]) elif type == 'P': # protanope self.color_matrix = tf.convert_to_tensor([[0, 2.02344, -2.52581], [0, 1, 0], [0, 0, 1]]) elif type == 'T': # tritanope self.color_matrix = tf.convert_to_tensor([[1, 0, 0], [0, 1, 0], [-0.395913, 0.801109, 0]]) else: raise("ERROR: invalid type passed into Simulator class (only accepts 'D', 'P', or 'T')") self.rgb2lms = tf.convert_to_tensor([[17.8824, 43.5161, 4.11935], [3.45565, 27.1554, 3.86714], [0.0299566, 0.184309, 1.46709]]) def simulate_image(self, image): # passes an image through the color-blindness simulator inverted_rgb2lms = tf.linalg.inv(self.rgb2lms) product1 = tf.matmul(inverted_rgb2lms, self.color_matrix) product2 = tf.matmul(product1, self.rgb2lms)
tensorflow.convert_to_tensor
11,214
import tensorflow as tf reconstructor.append(self.call(x)) return tf.stack(reconstructor)
tensorflow.stack
11,215
import tensorflow as tf # We have to wrap this code into a function due to the way tf.cond() works. See # https://stackoverflow.com/questions/37063952/confused-by-the-behavior-of-tf-cond for # a more detailed discussion. def perturb_vars(original_scope, perturbed_scope): all_vars = scope_vars(absolute_scope_name(original_scope)) all_perturbed_vars = scope_vars(absolute_scope_name(perturbed_scope)) assert len(all_vars) == len(all_perturbed_vars) perturb_ops = [] for var, perturbed_var in zip(all_vars, all_perturbed_vars): if param_noise_filter_func(perturbed_var): # Perturb this variable. op = tf.assign(perturbed_var, var + tf.random_normal(shape=tf.shape(var), mean=0., stddev=param_noise_scale)) else: # Do not perturb, just assign. op = tf.assign(perturbed_var, var) perturb_ops.append(op) assert len(perturb_ops) == len(all_vars) return tf.group(*perturb_ops) # Set up functionality to re-compute `param_noise_scale`. This perturbs yet another copy # of the network and measures the effect of that perturbation in action space. If the perturbation # is too big, reduce scale of perturbation, otherwise increase. q_values_adaptive = q_func(observations_ph.get(), num_actions, scope="adaptive_q_func") perturb_for_adaption = perturb_vars(original_scope="q_func", perturbed_scope="adaptive_q_func") kl = tf.reduce_sum(tf.nn.softmax(q_values) * (tf.log(tf.nn.softmax(q_values)) - tf.log(tf.nn.softmax(q_values_adaptive))), axis=-1) mean_kl = tf.reduce_mean(kl) def update_scale(): with tf.control_dependencies([perturb_for_adaption]):
tensorflow.assign
11,216
import tensorflow as tf return logits def create_base_discriminator_network(self, X, params): """Creates base discriminator network. Args: X: tensor, input image to discriminator. params: dict, user passed parameters. Returns: Final logits tensor of discriminator. """ print_obj("\ncreate_base_discriminator_network", "X", X) with tf.variable_scope(name_or_scope=self.name, reuse=tf.AUTO_REUSE): # Only need the first fromRGB conv layer & block for base network. from_rgb_conv_layer = self.from_rgb_conv_layers[0] block_layers = self.conv_layer_blocks[0] # Pass inputs through layer chain. from_rgb_conv = from_rgb_conv_layer(inputs=X) print_obj( "create_base_discriminator_network", "from_rgb_conv", from_rgb_conv )
tensorflow.variable_scope
11,217
import tensorflow as tf # max pool pooled = tf.nn.max_pool(H,
tensorflow.nn.max_pool
11,218
import tensorflow as tf table_values = np.arange(len(vocab), dtype=np.int64) table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer(vocab, table_values), num_oov_buckets=1) def to_ids(example): sentence = tf.reshape(example['tokens'], shape=[1]) words = tf.strings.split(sentence, sep=' ').values truncated_words = words[:max_seq_len] tokens = table.lookup(truncated_words) + 1 tokens = tf.cond( tf.less(tf.size(tokens), max_seq_len), lambda: tf.concat([tokens, [eos]], 0), lambda: tokens) return tf.concat([[bos], tokens], 0) return to_ids def batch_and_split(dataset, max_seq_len, batch_size): return dataset.padded_batch( batch_size, padded_shapes=[max_seq_len + 1]).map(
tensorflow.size
11,219
import tensorflow as tf trainable=False) with tf.device(worker_device): with tf.variable_scope("local"): self.local_network = pi = LSTMPolicy(env.observation_space.shape, env.action_space.n) pi.global_step = self.global_step self.ac = tf.placeholder(tf.float32, [None, env.action_space.n], name="ac") self.adv = tf.placeholder(tf.float32, [None], name="adv") self.r = tf.placeholder(tf.float32, [None], name="r") log_prob_tf = tf.nn.log_softmax(pi.logits) prob_tf = tf.nn.softmax(pi.logits) # the "policy gradients" loss: its derivative is precisely the policy gradient # notice that self.ac is a placeholder that is provided externally. # adv will contain the advantages, as calculated in process_rollout pi_loss = - tf.reduce_sum(tf.reduce_sum(log_prob_tf * self.ac, [1]) * self.adv) # loss of value function vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - self.r)) entropy = - tf.reduce_sum(prob_tf * log_prob_tf)
tensorflow.nn.log_softmax
11,220
import tensorflow as tf total_loss = tf.reduce_mean(per_example_loss) return total_loss, per_example_loss, logits def get_qa_outputs(FLAGS, features, is_training): """Loss for downstream span-extraction QA tasks such as SQuAD.""" inp = tf.transpose(features["input_ids"], [1, 0]) seg_id = tf.transpose(features["segment_ids"], [1, 0]) inp_mask = tf.transpose(features["input_mask"], [1, 0]) cls_index = tf.reshape(features["cls_index"], [-1]) seq_len = tf.shape(inp)[0] xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path) run_config = xlnet.create_run_config(is_training, True, FLAGS) xlnet_model = xlnet.XLNetModel( xlnet_config=xlnet_config,
tensorflow.transpose
11,221
import tensorflow as tf # create saver saver = tf.train.Saver()
tensorflow.train.Saver
11,222
from tensorflow.python.ops import variable_scope w_c = None if options.use_coverage: with variable_scope.variable_scope("coverage"): w_c = variable_scope.get_variable("w_c", [options.attention_vec_size]) w_c = tf.expand_dims(tf.expand_dims(w_c, axis=0), axis=0)
tensorflow.python.ops.variable_scope.get_variable
11,223
import tensorflow as tf tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0., (tgt_larg - tgt_small) - (pred_larg - pred_small)) if hard_ratio < 1.0: hard_num = tf.cast(tools.shape(pred1)[0] * hard_ratio, tf.int32) loss = tf.reshape(loss, [-1]) hard_loss, _ = tf.math.top_k(loss, k=hard_num) return hard_loss return loss def sample_pair(batch): num_sam = tools.shape(batch)[0] index = tf.range(num_sam) tgt1 = tf.slice(batch, [0, 1], [num_sam, 1]) pred1 = tf.slice(batch, [0, 0], [num_sam, 1]) def uniform(): batch2 = tf.gather(batch, tf.random.shuffle(index)) pred2 = tf.slice(batch2, [0, 0], [num_sam, 1]) tgt2 = tf.slice(batch2, [0, 1], [num_sam, 1]) return pred1, pred2, tgt1, tgt2 return uniform def contra_traj_lossV5(pred, tgt, horizon=12, resample=1, hard_ratio=1.0):
tensorflow.range
11,224
from tensorflow.python.platform import tf_logging as logging continue logging.info("op=%s name=%s.", node.op, node.name)
tensorflow.python.platform.tf_logging.info
11,225
import tensorflow as tf self.paddings = [[size,size],[size,size],[0,0]] elif type=='no_op': self.augment = self.no_op def gaussian_kernel(self,size,mean,std): """Makes 2D gaussian Kernel for convolution.""" d = tfp.distributions.Normal(mean, std) vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32)) gauss_kernel = tf.einsum('i,j->ij',vals,vals) return gauss_kernel / tf.reduce_sum(gauss_kernel) def get_random_patch_size(self): return np.random.choice([1,2,4,8]) def scramble(self,x):
tensorflow.range
11,226
import tensorflow as tf qh_emb = tf.reshape(tf.nn.embedding_lookup( self.char_mat, self.qh), [N * QL, CL, dc]) ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout) qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout) # Bidaf style conv-highway encoder ch_emb = conv(ch_emb, d, bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = None) qh_emb = conv(qh_emb, d, bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True) ch_emb = tf.reduce_max(ch_emb, axis = 1) qh_emb = tf.reduce_max(qh_emb, axis = 1) ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]]) qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]]) c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None) q_emb = highway(q_emb, size = d, scope = "highway", dropout = self.dropout, reuse = True) with tf.variable_scope("Embedding_Encoder_Layer"): c = residual_block(c_emb, num_blocks = 1, num_conv_layers = 4,
tensorflow.reshape
11,227
import tensorflow as tf pad_shape = tf.cond( tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0),
tensorflow.greater
11,228
import tensorflow as tf tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info( " name = %s, shape = %s%s", var.name, var.shape, init_string ) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN:
tensorflow.logging.info
11,229
import tensorflow as tf labels = tf.reshape(labels, [-1]) one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss)
tensorflow.reduce_sum
11,230
import tensorflow as tf if __name__ == '__main__': import numpy as np bboxes = tf.placeholder(tf.float32) bboxes_val = [[10, 10, 20, 22]] gt_boxes = tf.placeholder(tf.float32) gt_boxes_val = [[11, 13, 34, 31]]
tensorflow.placeholder
11,231
import tensorflow as tf cutoff_vf_manager = tf.reshape(tf.stop_gradient(self.manager_vf), [-1]) dot = tf.reduce_sum(tf.multiply(self.s_diff, self.g), axis=1) gcut = tf.stop_gradient(self.g) mag = tf.norm(self.s_diff, axis=1) * tf.norm(gcut, axis=1) + .0001 dcos = dot / mag manager_loss = -tf.reduce_sum((self.r - cutoff_vf_manager) * dcos) cutoff_vf_worker = tf.reshape(tf.stop_gradient(self.worker_vf), [-1]) log_p = tf.reduce_sum(self.log_pi * self.ac, [1]) worker_loss = (self.r + self.alpha * self.ri - cutoff_vf_worker) * log_p worker_loss = -tf.reduce_sum(worker_loss, axis=0) Am = self.r - self.manager_vf manager_vf_loss = .5 * tf.reduce_sum(tf.square(Am)) Aw = (self.r + self.alpha * self.ri) - self.worker_vf worker_vf_loss = .5 * tf.reduce_sum(tf.square(Aw)) entropy = -tf.reduce_sum(self.pi * self.log_pi)
tensorflow.reduce_sum
11,232
import tensorflow as tf estimator=entropy_bottleneck) status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir)) x = tf.convert_to_tensor(x_color, "float32") x_coori = tf.convert_to_tensor(x_coori, "float32") def loop_analysis(element): x = tf.expand_dims(element[0], 0) x_coori = tf.expand_dims(element[1], 0) y = analysis_transform(x_coori,x) return tf.squeeze(y,axis=0) element = [x,x_coori] ys = tf.map_fn(loop_analysis, element, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Analysis Transform") def loop_hyper_encoder(y): y = tf.expand_dims(y, 0) z = hyper_encoder(y) return tf.squeeze(z,axis=0) zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Hyper Encoder") z_hats, _ = entropy_bottleneck(zs, False) print("Quantize hyperprior")
tensorflow.map_fn
11,233
import tensorflow as tf Returns: A tensor of shape [T, B] that contains the loss per example, per time step. """ with tf.name_scope("cross_entropy_sequence_loss"): losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets) loss_mask = tf.sequence_mask(tf.to_int32(sequence_length), tf.to_int32(tf.shape(targets)[0])) losses = losses * tf.transpose(tf.to_float(loss_mask), [1, 0]) return losses def dice_loss(predictions, targets, weights=1., name='dice_loss'): with tf.name_scope(name): # predictions = tf.to_float(predictions) targets = tf.to_float(targets) intersection = 2 * tf.reduce_sum(predictions * targets) + weights union = weights + tf.reduce_sum(predictions) + tf.reduce_sum(targets) loss = -(intersection / (union)) return loss def precision_recall_auc_loss(labels, logits, precision_range=(0.0, 1.0), num_anchors=20,
tensorflow.name_scope
11,234
import tensorflow as tf images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def valid_inference(self,images): images=tf.cast(images,tf.float32)/255.0 l1 = tf.matmul(images, self.w1)+self.b1 l1=tf.nn.relu(l1) out = tf.matmul(l1, self.w2)+self.b2 return out def softmax_loss(self,predicts,labels): predicts=tf.nn.softmax(predicts) labels=tf.one_hot(labels,classnum) loss=-tf.reduce_sum(labels*tf.log(predicts)) return loss
tensorflow.nn.relu
11,235
import tensorflow as tf image: 4D tensor of ``self.input_shape`` in ``self.data_format`` Returns: Nx#class logits """ def optimizer(self): lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False) tf.summary.scalar('learning_rate-summary', lr) return tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True) def image_preprocess(self, image): with tf.name_scope('image_preprocess'): if image.dtype.base_dtype != tf.float32: image = tf.cast(image, tf.float32) mean = [0.485, 0.456, 0.406] # rgb
tensorflow.summary.scalar
11,236
import tensorflow as tf self.IRK_beta = weights[-1:,:] self.IRK_times = tmp[q**2+q:] # tf placeholders and graph self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)) self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))
tensorflow.ConfigProto
11,237
import tensorflow as tf o_c1 = self.general_conv2d(input_data, self.base_number_of_features, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_1') o_mp1 = tf.layers.max_pooling2d(o_c1, 2, 2, name = name + '_maxpooling_1') o_c2 = self.general_conv2d(o_mp1, self.base_number_of_features * 2, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_2') o_mp2 = tf.layers.max_pooling2d(o_c2, 2, 2, name = name + '_maxpooling_2') o_c3 = self.general_conv2d(o_mp2, self.base_number_of_features * 4, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_3') o_mp3 = tf.layers.max_pooling2d(o_c3, 2, 2, name = name + '_maxpooling_3') o_c4 = self.general_conv2d(o_mp3, self.base_number_of_features * 8, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_4') o_mp4 = tf.layers.max_pooling2d(o_c4, 2, 2, name = name + '_maxpooling_4') o_c5 = self.general_conv2d(o_mp4, self.base_number_of_features * 16, 3, stride = 1, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_conv2d_5') # Decoder definition o_d1 = self.general_deconv2d(o_c5, self.base_number_of_features * 8, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_1') o_me1 = tf.concat([o_d1, o_c4], 3) # Skip connection o_d2 = self.general_deconv2d(o_me1, self.base_number_of_features * 4, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_2') o_me2 = tf.concat([o_d2, o_c3], 3) # Skip connection o_d3 = self.general_deconv2d(o_me2, self.base_number_of_features * 2, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_3') o_me3 = tf.concat([o_d3, o_c2], 3) # Skip connection o_d4 = self.general_deconv2d(o_me3, self.base_number_of_features, 3, stride = 2, padding = 'SAME', activation_function = 'relu', do_norm = False, name = name + '_deconv2d_4') o_me4 = tf.concat([o_d4, o_c1], 3) # Skip connection logits = tf.layers.conv2d(o_me4, self.args.num_classes, 1, 1, 'SAME', activation = None) prediction = tf.nn.softmax(logits, name = name + '_softmax') return logits, prediction def general_conv2d(self, input_data, filters = 64, kernel_size = 7, stride = 1, stddev = 0.02, activation_function = "relu", padding = "VALID", do_norm=True, relu_factor = 0, name="conv2d"):
tensorflow.concat
11,238
import tensorflow as tf images, labels = batch['image'], batch['label'] num_channels = tf.shape(images)[3] image_height, image_width = tf.shape(images)[1], tf.shape(images)[2]
tensorflow.shape
11,239
import tensorflow as tf embedding = tf.get_variable( "embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) output, state = self._build_rnn_graph(inputs, config, is_training) softmax_w = tf.get_variable(
tensorflow.nn.dropout
11,240
import tensorflow as tf l2_loss = [] for v in tf.trainable_variables(): if 'batch_normalization' not in v.name and 'rl_controller' not in v.name: l2_loss.append(tf.nn.l2_loss(v)) l2_loss = FLAGS.dst_weight_decay * tf.add_n(l2_loss) enable_pretrain = tf.cast( tf.greater_equal(global_step, FLAGS.first_pretrain_steps), tf.float32)
tensorflow.add_n
11,241
import tensorflow as tf if encoder.final_state == 'concat_last': # concats last states of all backward layers (full LSTM states) encoder_state_ = tf.concat(encoder_states_, axis=1) elif encoder.final_state == 'average': mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_outputs_)[1], dtype=tf.float32) mask = tf.expand_dims(mask, axis=2) encoder_state_ = tf.reduce_sum(mask * encoder_outputs_, axis=1) / tf.reduce_sum(mask, axis=1) elif encoder.final_state == 'average_inputs': mask = tf.sequence_mask(encoder_input_length_, maxlen=tf.shape(encoder_inputs_)[1], dtype=tf.float32) mask = tf.expand_dims(mask, axis=2)
tensorflow.expand_dims
11,242
import tensorflow as tf scales_to_logits = outputs_to_scales_to_logits[output] logits = tf.image.resize_bilinear( scales_to_logits[_MERGED_LOGITS_SCOPE], tf.shape(images)[1:3], align_corners=True) predictions[output] = tf.argmax(logits, 3) return predictions
tensorflow.argmax
11,243
import tensorflow as tf one_hot_spare_rep = one_hot_spare_rep * passage_mask one_hot_spare_rep = tf.sparse_reduce_sum(one_hot_spare_rep, axis=1) # [batch_size, extended_vsize] vocab_dist = tf.add(vocab_dist, one_hot_spare_rep) if self.options.add_first_word_prob_for_phrase: vocab_dist = tf.nn.softmax(vocab_dist) # normalize return vocab_dist # [batch_size, extended_vsize] def linear(args, output_size, bias=True, bias_start=0.0, scope=None): if args is None or (isinstance(args, (list, tuple)) and not args):
tensorflow.nn.softmax
11,244
import tensorflow as tf """Add prediction layer""" with tf.variable_scope('softmax'): W = tf.get_variable('W', [state_size, input_size_y]) b = tf.get_variable('b', [input_size_y], initializer=tf.constant_initializer(0.0)) rnn_outputs = tf.reshape(rnn_outputs, [-1, state_size]) predictions = tf.matmul(rnn_outputs, W) + b yy = tf.reshape(y, [-1, input_size_y]) #batch_size*num_steps when yo udefine a placeholder in Tensorflow, the shape of the input during the session should be the same as the shape of the plcae holder "Mean squared error loss" loss=tf.reduce_mean(tf.square(tf.reshape(predictions,[-1])-tf.reshape(yy,[-1]))) "Adding regularization" if lambda_l2_reg > 0 : cell_l2 = tf.reduce_sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not ("noreg" in tf_var.name or "Bias" in tf_var.name)]) Predict_l2 = tf.nn.l2_loss(W) #+ tf.nn.l2_loss(b) total_loss = tf.reduce_sum(loss + lambda_l2_reg* tf.reduce_sum(cell_l2+Predict_l2) ) else: total_loss = loss "Define the train_step" train_step = tf.train.AdamOptimizer(learning_rate).minimize(total_loss) return dict(x=x, y=y,
tensorflow.nn.l2_loss
11,245
import tensorflow as tf def testEmbeddingRNNDecoder(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
tensorflow.constant_initializer
11,246
import tensorflow as tf update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): optimiser = tf.train.AdamOptimizer(decayed_learning_rate, name="Adam").minimize(cross_entropy) # calculate the prediction and the accuracy accuracy, acc_op = tf.metrics.accuracy(labels=tf.argmax(y_, axis=1), predictions=tf.argmax(y_conv, axis=1)) loss_summary = tf.summary.scalar('Loss', cross_entropy) acc_summary = tf.summary.scalar('Accuracy', accuracy) # summaries for TensorBoard visualisation validation_summary = tf.summary.merge([img_summary, acc_summary]) training_summary = tf.summary.merge([img_summary, loss_summary]) test_summary = tf.summary.merge([img_summary, acc_summary]) # saver for checkpoints
tensorflow.summary.scalar
11,247
import tensorflow as tf aspp_features = split_separable_conv2d( features, filters=depth, rate=rate, weight_decay=weight_decay, scope=scope) else: aspp_features = slim.conv2d( features, depth, 3, rate=rate, scope=scope) branch_logits.append(aspp_features) # Merge branch logits. concat_logits = tf.concat(branch_logits, 3) if model_options.aspp_with_concat_projection: concat_logits = slim.conv2d( concat_logits, depth, 1, scope=CONCAT_PROJECTION_SCOPE) concat_logits = slim.dropout( concat_logits, keep_prob=0.9, is_training=is_training, scope=CONCAT_PROJECTION_SCOPE + '_dropout') if model_options.aspp_with_squeeze_and_excitation: concat_logits *= image_feature
tensorflow.concat
11,248
import tensorflow as tf # loss of value function vf_loss = 0.5 * tf.reduce_sum(tf.square(pi.vf - self.r)) entropy = - tf.reduce_sum(prob_tf * log_prob_tf) bs = tf.to_float(tf.shape(pi.x)[0]) self.loss = pi_loss + 0.5 * vf_loss - entropy * 0.01 # 20 represents the number of "local steps": the number of timesteps
tensorflow.shape
11,249
from tensorflow.python.util.deprecation import deprecated @deprecated("2018-06-30", "TensorLayer relies on TensorFlow to check naming.") def clear_layers_name():
tensorflow.python.util.deprecation.deprecated
11,250
import tensorflow as tf the preference for slonger translations. Returns: samples: an integer `Tensor`. Top samples from the beam search """ batch_size = common_layers.shape_list(features["inputs"])[0] def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) ids = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0], [0, 0]]) if "partial_targets" in features: pt = features["partial_targets"] pt_length = common_layers.shape_list(pt)[1] pt = tf.tile(pt, [1, beam_size]) pt = tf.reshape(pt, [batch_size * beam_size, pt_length, 1, 1]) ids = tf.concat([pt, ids], axis=1) features["targets"] = ids self._coverage = None logits, _ = self(features) # pylint: disable=not-callable # now self._coverage is a coverage tensor for the first datashard. # it has shape [batch_size] and contains floats between 0 and # source_length. if self._problem_hparams: modality = self._problem_hparams.target_modality if modality.top_is_pointwise: return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1
tensorflow.reshape
11,251
import tensorflow as tf update_second_moment_op = moving_averages.assign_moving_average( variable=self._moving_second_moment, value=second_moment, decay=self._decay_rate, name="update_moving_second_moment").op return update_mean_op, update_second_moment_op def build_no_ops(): return (tf.no_op(), tf.no_op()) # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_second_moment_op = utils.smart_cond( is_training, build_update_ops,
tensorflow.no_op
11,252
import tensorflow as tf result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****")
tensorflow.gfile.GFile
11,253
import tensorflow as tf self.s = tf.layers.dense(inputs=self.z, units=self.g_dim, activation=tf.nn.elu) # Calculate manager output g x = tf.expand_dims(self.s, [0]) self.manager_lstm = SingleStepLSTM(x, self.g_dim, step_size=tf.shape(self.obs)[:1]) g_hat = self.manager_lstm.output self.g = tf.nn.l2_normalize(g_hat, dim=1) self.manager_vf = self.build_value(g_hat) def build_worker(self): with tf.variable_scope('worker'): num_acts = self.act_space # Calculate U self.worker_lstm = SingleStepLSTM(tf.expand_dims(self.z, [0]), size=num_acts * self.k, step_size=tf.shape(self.obs)[:1]) flat_logits = self.worker_lstm.output self.worker_vf = self.build_value(flat_logits) U = tf.reshape(flat_logits, [-1, num_acts, self.k]) # Calculate w cut_g = tf.stop_gradient(self.g)
tensorflow.variable_scope
11,254
import tensorflow as tf print() net = [] with tf.variable_scope(name): with tf.variable_scope('branch1_1x1'): if o1s>0: conv1 = conv(inp, inSize, o1s, 1, 1, 1, 1, 'SAME', 'conv1x1', phase_train=phase_train, use_batch_norm=use_batch_norm, weight_decay=weight_decay)
tensorflow.variable_scope
11,255
import tensorflow as tf def calc_prune_ratio(vars_list): """Calculate the overall pruning ratio for the given list of variables. Args: * vars_list: list of variables Returns: * prune_ratio: overall pruning ratio of the given list of variables """ nb_params_nnz = tf.add_n([tf.count_nonzero(var) for var in vars_list]) nb_params_all = tf.add_n([tf.size(var) for var in vars_list]) prune_ratio = 1.0 - tf.cast(nb_params_nnz, tf.float32) / tf.cast(nb_params_all, tf.float32) return prune_ratio class WeightSparseLearner(AbstractLearner): # pylint: disable=too-many-instance-attributes """Weight sparsification learner.""" def __init__(self, sm_writer, model_helper): """Constructor function. Args: * sm_writer: TensorFlow's summary writer
tensorflow.cast
11,256
import tensorflow as tf inputs, labels = train_iterator.get_next() graph_results = _train_step(inputs, labels, training=True) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) if "plugin" in args.optimizer: init_op = tf.group(init_op, emb_opt.initializer)
tensorflow.local_variables_initializer
11,257
import tensorflow as tf return h def minibatch_discrimination(x, n_kernels, dim_per_kernel, name): with tf.variable_scope(name): batch_size, nf = x.get_shape().as_list() h = linear(x, [nf, n_kernels*dim_per_kernel], 'h1') activation = tf.reshape(h, (batch_size, n_kernels, dim_per_kernel)) big = tf.eye(batch_size) big = tf.expand_dims(big, 1) abs_dif = tf.reduce_sum(tf.abs(tf.expand_dims(activation, 3) - tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)), 2) mask = 1. - big masked = tf.exp(-abs_dif) * mask def half(tens, second):
tensorflow.eye
11,258
import tensorflow as tf with tf.variable_scope("translate") as scope: trans_h0 = lrelu(linear(tf.concat([srcimg_z, tgtctx_z], 1), featsize, 'trans_h0')) trans_z = linear(trans_h0, featsize, 'trans_z') self.translated_z = trans_z with tf.variable_scope("deconv") as scope: s_h, s_w = self.output_height, self.output_width s_h2, s_h4, s_h8, s_h16 = \ int(s_h/2), int(s_h/4), int(s_h/8), int(s_h/16) s_w2, s_w4, s_w8, s_w16 = \ int(s_w/2), int(s_w/4), int(s_w/8), int(s_w/16) output_z_ = lrelu(linear(trans_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) output_h0 = tf.reshape(output_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) output_h1 = lrelu(deconv2d(tf.concat([output_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) output_h2 = lrelu(deconv2d(tf.concat([output_h1, tgtctx_h2], 3), [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) output_h3 = lrelu(deconv2d(tf.concat([output_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) output_h4 = deconv2d(tf.concat([output_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') scope.reuse_variables() truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3),
tensorflow.concat
11,259
import tensorflow as tf with tf.name_scope('S_'): S_ = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s_') ############################### Actor #################################### class Actor(object): def __init__(self, sess, action_dim, action_bound, learning_rate, t_replace_iter): self.sess = sess self.a_dim = action_dim self.action_bound = action_bound self.lr = learning_rate self.t_replace_iter = t_replace_iter self.t_replace_counter = 0 with tf.variable_scope('Actor'): # input s, output a self.a = self._build_net(S, scope='eval_net', trainable=True) # input s_, output a, get a_ for critic self.a_ = self._build_net(S_, scope='target_net', trainable=False) self.e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval_net') self.t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target_net') def _build_net(self, s, scope, trainable): with tf.variable_scope(scope): init_w = tf.random_normal_initializer(0., 0.01) init_b = tf.constant_initializer(0.01)
tensorflow.variable_scope
11,260
import tensorflow as tf box_xy, box_wh, obj, cls = tf.split(logits, (2, 2, 1, num_classes), axis=-1) box_xy = tf.sigmoid(box_xy) obj = tf.sigmoid(obj) cls = tf.sigmoid(cls) anchors = anchors.astype(np.float32)
tensorflow.sigmoid
11,261
import tensorflow as tf self.num_a = num_a self.lr = lr self.gamma = gamma self.replace_target_iter = replace_target_iter self.memory_size = memory_size self.batch_size = batch_size self.epsilon = epsilon self.epsilon_decay = epsilon_decay self.epsilon_min = 0.1 self.learn_step_cnt = 0 # total learning step self.episode_cnt = 0 self.memory = [] self.memory_counter = 0 self._build_net() t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/target_net') e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/eval_net') e_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/eval_hyper') t_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/target_hyper') with tf.variable_scope('soft_replacement'): self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)] self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") train_log_dir = 'logs/' + current_time self.summary_writer = tf.summary.FileWriter(train_log_dir, self.sess.graph)
tensorflow.get_collection
11,262
import tensorflow as tf if max_iterations: pbar.close() # List of dicts to dict of lists metrics = dict(zip(metrics[0], zip(*[m.values() for m in metrics]))) metrics = {m: np.nanmean(metrics[m], axis=0) for m in metrics} return metrics def _checkpoint_var_search(self, checkpoint_path): reader = tf.train.NewCheckpointReader(checkpoint_path) saved_shapes = reader.get_variable_to_shape_map() model_names = tf.model_variables() # Used by tf.slim layers if not len(tf.model_variables()): model_names = tf.global_variables() # Fallback when slim is not used model_names = set([v.name.split(':')[0] for v in model_names]) checkpoint_names = set(saved_shapes.keys()) found_names = model_names & checkpoint_names missing_names = model_names - checkpoint_names
tensorflow.train.NewCheckpointReader
11,263
import tensorflow as tf self.D_B_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_B_real),self.D_B_real) self.D_B_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_B_fake),self.D_B_fake) self.D_B_loss = (self.D_B_loss_real + self.D_B_loss_fake) / 2.0 self.D_A_loss_real = binary_cross_entropy_loss(tf.ones_like(self.D_A_real),self.D_A_real) self.D_A_loss_fake = binary_cross_entropy_loss(tf.zeros_like(self.D_A_fake),self.D_A_fake) self.D_A_loss = (self.D_A_loss_real + self.D_A_loss_fake) / 2.0 self.discriminator_loss = self.D_B_loss + self.D_A_loss self.loss_GABA_sum = tf.summary.scalar("g_loss_a2b", self.loss_GABA)
tensorflow.zeros_like
11,264
import tensorflow as tf 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0))) var_a = task.theta.a # Infinite gradient. var_grads = py_utils.NestedMap(a=(var_a, tf.log(0.))) has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads) with self.session(): tf.global_variables_initializer().run() self.assertTrue(has_nan_or_inf.eval()) self.assertEqual(0., grad_scale.eval()) # The final gradient must be finite. self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval()) self.assertTrue(tf.is_finite(final_var_grads.a[1]).eval()) def testScaleGradientsNaN(self): FLAGS.enable_check_numerics = False p = self.TestParams() p.input = base_input_generator.BaseSequenceInputGenerator.Params() task = p.cls(p) task.CreateVariable( 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0))) var_a = task.theta.a
tensorflow.is_nan
11,265
import tensorflow as tf # first_token_tensor = tf.squeeze(sequence_output[:, -1:, :], axis=1) last_token_tensor = tf.squeeze(sequence_output[:, -1:, :], axis=1) output_layer = tf.layers.dense( last_token_tensor, config.hidden_size, activation=tf.tanh, kernel_initializer=modeling.create_initializer(config.initializer_range)) hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b":
tensorflow.truncated_normal_initializer
11,266
import tensorflow as tf preprocessed_resized_image, true_image_shape = model_preprocess_fn( tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0)) if use_bfloat16: preprocessed_resized_image = tf.cast( preprocessed_resized_image, tf.bfloat16) tensor_dict[fields.InputDataFields.image] = tf.squeeze( preprocessed_resized_image, axis=0) tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze( true_image_shape, axis=0) if fields.InputDataFields.groundtruth_instance_masks in tensor_dict: masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks] _, resized_masks, _ = image_resizer_fn(image, masks) if use_bfloat16: resized_masks = tf.cast(resized_masks, tf.bfloat16)
tensorflow.squeeze
11,267
import tensorflow as tf query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1)
tensorflow.shape
11,268
from tensorflow.python.framework import ops assert isinstance(x, ops.Tensor) y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y") return func(x, y, name=name) ops.Tensor._override_operator("__%s__" % op_name, binary_op_wrapper) del binary_op_wrapper def r_binary_op_wrapper(y, x):
tensorflow.python.framework.ops.Tensor._override_operator
11,269
import tensorflow as tf #For Imitation Learning Part # self.bc_loss = 0.5 * tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy)) # self.next_loc_loss_il = 0.2 * tf.reduce_sum(tf.sqrt(tf.square(self.next_loc_mean[:-1,:] - self.il_nextloc))) # self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il # Get gradients from local network using local losses and # normalize the gradients using clipping local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues') self.gradients = tf.gradients(self.loss, local_vars) self.var_norms = tf.global_norm(local_vars) grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP) # Apply local gradients to global network global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues') self.apply_grads = trainer.apply_gradients(zip(grads, global_vars)) #now the gradients for imitation loss # self.i_gradients = tf.gradients(self.imitation_loss, local_vars) # self.i_var_norms = tf.global_norm(local_vars) # i_grads, self.i_grad_norms = tf.clip_by_global_norm(self.i_gradients, GRAD_CLIP) # Apply local gradients to global network
tensorflow.clip_by_global_norm
11,270
from tensorflow.python.ops import state_ops with ops.op_scope(inputs, name, "AccumulateN") as name: var = gen_state_ops._temporary_variable(shape=shape, dtype=tensor_dtype) var_name = var.op.name var = state_ops.assign(var, array_ops.zeros_like(inputs[0])) update_ops = [] for input_tensor in inputs: op = state_ops.assign_add(var, input_tensor, use_locking=True) update_ops.append(op) with ops.control_dependencies(update_ops): return gen_state_ops._destroy_temporary_variable(var, var_name=var_name, name=name)
tensorflow.python.ops.state_ops.assign_add
11,271
import tensorflow as tf env_floor=0) for i in range(N_WORKER)] # 觀察者 # workers.append(Worker(envpath='./ObstacleTower/obstacletower.exe', # wid=N_WORKER + 1, # retro=False, # realtime_mode=True, # env_seed=0, # env_floor=0)) GLOBAL_UPDATE_COUNTER, GLOBAL_EP = 0, 0 GLOBAL_RUNNING_R = [] COORD = tf.train.Coordinator() # 宣告共用記憶體 QUEUE = queue.Queue() threads = [] for worker in workers: # worker threads t = threading.Thread(target=worker.work, args=()) t.start() # training threads.append(t) # 建立模型更新的執行緒 threads.append(threading.Thread(target=GLOBAL_KPRUN.update, )) threads[-1].start() COORD.join(threads)
tensorflow.train.Coordinator
11,272
import tensorflow as tf reduction_arch = [cell_archs[(4 * i):(4 * i + 4)] for i in range(b, b + b)] return (normal_arch, reduction_arch) def _add_aux_head(self, X, in_w, in_h, in_ch, K, is_train): pool_ksize = 5 pool_stride = 3 conv_ch = 128 global_conv_ch = 768 w = in_w h = in_h ch = in_ch # Pool with tf.variable_scope('pool'): X = tf.nn.relu(X) X = tf.nn.avg_pool(X, ksize=(1, pool_ksize, pool_ksize, 1), strides=(1, pool_stride, pool_stride, 1), padding='VALID') w //= pool_stride h //= pool_stride # Conv 1x1 with tf.variable_scope('conv_0'): X = self._do_conv(X, w, h, ch, conv_ch, filter_size=1, no_reg=True, is_train=is_train) ch = conv_ch # Global conv with tf.variable_scope('conv_1'): X = self._do_conv(X, w, h, ch, global_conv_ch, filter_size=w, no_reg=True, is_train=is_train) ch = global_conv_ch
tensorflow.nn.relu
11,273
import tensorflow as tf weighted_loss = loss_weight * loss summaries = { 'regularization_loss/KL/PriorMean/Mean': tf.math.reduce_mean(tf.constant(prior_mean)), 'regularization_loss/KL/PriorVar/Mean': tf.math.reduce_mean(tf.constant(prior_stddev)**2),
tensorflow.constant
11,274
import tensorflow as tf def get_conv_dimension(filter_list): with tf.Graph().as_default(): with tf.Session() as sess: """Model function for CNN.""" features = tf.placeholder( tf.float32, shape=[None, IMAGE_SIZE * IMAGE_SIZE], name='features') labels = tf.placeholder(tf.int64, shape=[None], name='labels') input_layer = tf.reshape(features, [-1, IMAGE_SIZE, IMAGE_SIZE, 1]) conv1 = tf.layers.conv2d( inputs=input_layer, filters=filter_list[0], kernel_size=[5, 5], padding="same", activation=tf.nn.relu) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) conv2 = tf.layers.conv2d(
tensorflow.layers.conv2d
11,275
import tensorflow as tf if ltype == 'conv': self.conv(*args, **kwargs) elif ltype == 'mpool': self.mpool(*args, **kwargs) elif ltype == 'apool': self.apool(*args, **kwargs) elif ltype == 'share': # Share matching layer from previous column self.top_layer = col_layers[c - 1][l] self.top_size = col_layer_sizes[c - 1][l] else: raise KeyError('Invalid layer type for inception module: \'%s\'' % ltype) col_layers[c].append(self.top_layer) col_layer_sizes[c].append(self.top_size) catdim = 3 if self.data_format == 'NHWC' else 1 self.top_layer = tf.concat([layers[-1] for layers in col_layers], catdim) self.top_size = sum([sizes[-1] for sizes in col_layer_sizes]) return self.top_layer def residual(self, nout, net, scale=1.0): inlayer = self.top_layer net(self) self.conv(nout, 1, 1, activation=None) self.top_layer = tf.nn.relu(inlayer + scale * self.top_layer) def spatial_mean(self, keep_dims=False): name = 'spatial_mean' + str(self.counts['spatial_mean']) self.counts['spatial_mean'] += 1 axes = [1, 2] if self.data_format == 'NHWC' else [2, 3] self.top_layer = tf.reduce_mean(
tensorflow.concat
11,276
import tensorflow as tf self.update_c_op = opt.apply_gradients(zip(self.c_grads, self.vf_params)) self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', - 0.01 * tf.reduce_mean(pi.entropy())) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES))
tensorflow.summary.scalar
11,277
import tensorflow as tf mapping_strings, name=name ) word_strings = reverse_vocab_tags.lookup(tf.to_int64(word_ids)) return word_strings def loss_layer(self, preds, ground_true, nwords, crf_params): with tf.name_scope("CRF_log_likelihood"): log_likelihood, _ = tf.contrib.crf.crf_log_likelihood( preds, ground_true, nwords, crf_params ) loss = tf.reduce_mean(-log_likelihood) # regularizer = tf.contrib.layers.l2_regularizer(0.001) # reg = regularizer(embedding_variable) # loss += reg return loss def crf_decode_layer(self, logits, crf_params, nwords): with tf.name_scope("CRF_decode"): pred_ids, _ = tf.contrib.crf.crf_decode(logits, crf_params, nwords) return pred_ids
tensorflow.reduce_mean
11,278
import tensorflow as tf for i, xs in enumerate(zip(*xs)): do_reuse = True if i > 0 else None with tf.device(assign_to_gpu(i, "/gpu:0")), tf.variable_scope(tf.get_variable_scope(), reuse=do_reuse): clf_logits, clf_losses, lm_losses = model(*xs, train=True, reuse=do_reuse) if lm_coef > 0: train_loss = tf.reduce_mean(clf_losses) + lm_coef*tf.reduce_mean(lm_losses) else: train_loss = tf.reduce_mean(clf_losses) params = find_trainable_variables("model") grads = tf.gradients(train_loss, params) grads = list(zip(grads, params)) gpu_grads.append(grads) gpu_ops.append([clf_logits, clf_losses, lm_losses]) ops = [tf.concat(op, 0) for op in zip(*gpu_ops)]
tensorflow.reduce_mean
11,279
import tensorflow as tf axes = [np.arange(-cc, int(ss) - cc).astype(np.int32) for cc, ss in zip(center, shape)] if len(shape) > 1: for jj in range(len(shape)): for ii in range(len(shape) + 1): if ii != jj: axes[jj] = np.expand_dims(axes[jj], ii) for jj in range(len(shape)): shape_ = [int(ss) for ss in shape] + [1] shape_[jj] = 1 axes[jj] = np.tile(axes[jj], shape_) offset = np.concatenate(axes, len(shape)) return tf.constant(offset) else: return tf.constant(axes[0]) def _calc_block_strides(bsize, ksize, strides): """Calculates strides for blocks. :param bsize: [list] List of 4 int. Size of blocks, or downsample ratio. :param ksize: [list] List of 4 int. Sparse convolution kernel size. :param strides: [list] List of 4 int. Sparse convolution strides.
tensorflow.constant
11,280
import tensorflow as tf if w > 1: right = (w - 1) // 2 left = (w - 1) - right pad_right = tf.tile(pad, [1, right, 1]) pad_left = tf.tile(pad, [1, left, 1]) inputs_ = tf.concat([pad_left, encoder_inputs_, pad_right], axis=1) else: inputs_ = encoder_inputs_ inputs_ = tf.nn.convolution(inputs_, filter=filter_, padding='VALID') inputs.append(inputs_) encoder_inputs_ = tf.concat(inputs, axis=2) # if encoder.convolution_activation.lower() == 'relu': encoder_inputs_ = tf.nn.relu(encoder_inputs_) if encoder.maxout_stride: if encoder.binary: raise NotImplementedError
tensorflow.nn.convolution
11,281
import tensorflow as tf input_var = tf.reshape(input_var,[-1,dims]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0) return tf.matmul(input_var,w)+self.b def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class SymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
tensorflow.matmul
11,282
import tensorflow as tf accuracy_1 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_1, axis=-1), tf.argmax(y_1, axis=-1)), tf.float32), name="accuracy_1") accuracy_2 = tf.reduce_mean(tf.cast(tf.equal( tf.argmax(output_2, axis=-1), tf.argmax(y_2, axis=-1)), tf.float32), name="accuracy_2") accuracy = tf.divide(accuracy_1 + accuracy_2, 2.0, name="accuracy") with tf.variable_scope("train"): global_step = tf.get_variable("global_step", shape=(), dtype=tf.int32, trainable=False) train_op = tf.train.AdamOptimizer(learning_rate=lr).minimize(loss_total, global_step=global_step) with tf.variable_scope("summary"): summary_loss_total = tf.summary.scalar("loss_total", loss_total) summary_accuracy_test = tf.summary.scalar("accuracy_test", accuracy) summary_accuracy_train = tf.summary.scalar("accuracy_train", accuracy) # standardization train_X_reshaped = train_X.reshape([train_X.shape[0], -1]) train_X_means = np.mean(train_X_reshaped, axis=0, keepdims=True)
tensorflow.train.AdamOptimizer
11,283
import tensorflow as tf class PadInputDataToStaticShapesFnTest(test_case.TestCase): def test_pad_images_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.image: tf.placeholder(tf.float32, [None, None, 3]), fields.InputDataFields.groundtruth_boxes: tf.placeholder(tf.float32, [None, 4]), fields.InputDataFields.groundtruth_classes: tf.placeholder(tf.int32, [None, 3]), fields.InputDataFields.true_image_shape: tf.placeholder(tf.int32, [3]), fields.InputDataFields.original_image_spatial_shape: tf.placeholder(tf.int32, [2]) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
tensorflow.placeholder
11,284
import tensorflow as tf if encoder.mult_attn: state = dense(state, encoder.attn_size, use_bias=False, name='state') hidden = dense(hidden, encoder.attn_size, use_bias=False, name='hidden') return tf.einsum('ijk,ik->ij', hidden, state) y = dense(state, encoder.attn_size, use_bias=not encoder.layer_norm, name='W_a') y = tf.expand_dims(y, axis=1) if encoder.layer_norm: y = tf.contrib.layers.layer_norm(y, scope='layer_norm_state') hidden = tf.contrib.layers.layer_norm(hidden, center=False, scope='layer_norm_hidden') y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a') if encoder.position_bias and input_length is not None and time is not None: src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1]) trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps]) src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1 pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2)) pos_feats = tf.log(1 + pos_feats)
tensorflow.contrib.layers.layer_norm
11,285
import tensorflow as tf rgb = tf.image.decode_png(tf.read_file(img_path), channels=3, dtype=tf.uint8) h = config.model.data.dimensions.h w = config.model.data.dimensions.w c = config.model.data.dimensions.c # rgb.set_shape([h,w,c]) # variable size per example # crop for lsun 96 rgb = tf.image.random_crop(rgb,size=[h,w,c]) # crop for patch training crop_h = h//self.crop_factor crop_w = w//self.crop_factor rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c]) # cast, bit conversion, compress domain, center rgb = tf.cast(rgb, tf.float32) if n_bits < 8: rgb = tf.floor(rgb/(2**(8-n_bits))) rgb = rgb/(n_bins) - 0.5 return rgb def post_process(self, rgb, add_dequantization_noise=True): n_bits = config.model.data.n_bits n_bins = 2**n_bits
tensorflow.image.random_crop
11,286
import tensorflow as tf z_ = lrelu(linear(tf.nn.dropout(z, keep_prob), nf3*s_h3*s_w3, 'd_h0_lin')) h0 = tf.nn.dropout(tf.reshape(z_, [-1, s_h3, s_w3, nf3]), keep_prob) import IPython IPython.embed() h1 = lrelu(deconv2d(tf.concat([h0, skip_h3], 3), [self.batch_size, s_h2, s_w2, nf2], name='d_h1', d_h=ns3, d_w=ns3)) h2 = lrelu(deconv2d(tf.concat([h1, skip_h2], 3), [self.batch_size, s_h1, s_w1, nf1], name='d_h2', d_h=ns2, d_w=ns2)) h3 = lrelu(deconv2d(tf.concat([h2, skip_h1], 3), [self.batch_size, s_h0, s_w0, nf0], name='d_h3', d_h=ns1, d_w=ns1)) print(h3.get_shape()) h4 = deconv2d(tf.concat([h3, skip_h0], 3),
tensorflow.concat
11,287
import tensorflow as tf 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature([1], tf.int64), 'image/width': tf.FixedLenFeature([1], tf.int64), 'image/channels': tf.FixedLenFeature([1], tf.int64), 'image/shape': tf.FixedLenFeature([3], tf.int64), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32),
tensorflow.FixedLenFeature
11,288
import tensorflow as tf features.append(feature) return features def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor,
tensorflow.logging.set_verbosity
11,289
import tensorflow as tf labeled_classes = tf.cast(sample['groundtruth_valid_classes'], tf.int64)
tensorflow.cast
11,290
import tensorflow as tf def neural_net(self, X, weights, biases): num_layers = len(weights) + 1 H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0 for l in range(0,num_layers-2): W1, W2 = weights[l] b = biases[l] H1 = tf.add(tf.matmul(H, W1), b) H2 = tf.matmul(H, W2) H = tf.tanh(tf.add(H1 * H2, H1)) W1, W2 = weights[-1] b = biases[-1] H1 = tf.add(tf.matmul(H, W1), b) H2 = tf.matmul(H, W2) Y = tf.add(H1 * H2, H1)
tensorflow.matmul
11,291
import tensorflow as tf self.assertTrue(gfile.Exists(s4)) class SaveRestoreWithVariableNameMap(tf.test.TestCase): def testNonReshape(self): save_path = os.path.join(self.get_temp_dir(), "basics") with self.test_session() as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" # Use a variable name map to set the saved tensor names val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types))
tensorflow.Variable
11,292
import tensorflow as tf def test_prob_and_grad_gives_finite_results_for_common_events(self): with self.test_session(): mu = tf.Variable(0.0, name="mu") sigma = tf.Variable(1.0, name="sigma") qdist = distributions.QuantizedDistribution( base_dist_cls=distributions.Normal, mu=mu, sigma=sigma) x = tf.ceil(4 * self._rng.rand(100).astype(np.float32) - 2) tf.initialize_all_variables().run() proba = qdist.prob(x) self._assert_all_finite(proba.eval()) grads = tf.gradients(proba, [mu, sigma]) self._assert_all_finite(grads[0].eval()) self._assert_all_finite(grads[1].eval()) def test_lower_cutoff_must_be_below_upper_cutoff_or_we_raise(self): with self.test_session():
tensorflow.initialize_all_variables
11,293
import tensorflow as tf # Categorical Discrimminator Loss dc_c_loss_real = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_real), logits=d_c_real)) dc_c_loss_fake = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(d_c_fake), logits=d_c_fake)) dc_c_loss = dc_c_loss_fake + dc_c_loss_real # Generator loss generator_g_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_g_fake), logits=d_g_fake)) generator_c_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(d_c_fake), logits=d_c_fake)) generator_loss = generator_c_loss + generator_g_loss # Supervised Encoder Loss supervised_encoder_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=encoder_output_label_)) all_variables = tf.trainable_variables()
tensorflow.ones_like
11,294
import tensorflow as tf ) assert mode == tf.estimator.ModeKeys.TRAIN with tf.variable_scope('learning_rate'): global_step = tf.train.get_global_step() learning_rate = tf.train.cosine_decay( params['initial_learning_rate'], global_step, decay_steps=params['num_steps'] ) tf.summary.scalar('learning_rate', learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops), tf.variable_scope('optimizer'): optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(total_loss) train_op = optimizer.apply_gradients(grads_and_vars, global_step) for g, v in grads_and_vars: tf.summary.histogram(v.name[:-2] + '_hist', v) tf.summary.histogram(v.name[:-2] + '_grad_hist', g) with tf.control_dependencies([train_op]), tf.name_scope('ema'): ema = tf.train.ExponentialMovingAverage(decay=MOVING_AVERAGE_DECAY, num_updates=global_step) train_op = ema.apply(tf.trainable_variables()) return tf.estimator.EstimatorSpec(mode, loss=total_loss, train_op=train_op)
tensorflow.train.AdamOptimizer
11,295
import tensorflow as tf of the bboxes are outside the image. """ with tf.name_scope('BoundingBoxTransform/clip_bboxes'): bboxes = tf.cast(bboxes, dtype=tf.float32) imshape = tf.cast(imshape, dtype=tf.float32) x1, y1, x2, y2 = tf.split(bboxes, 4, axis=1) width = imshape[1] height = imshape[0] x1 = tf.maximum(tf.minimum(x1, width - 1.0), 0.0) x2 = tf.maximum(tf.minimum(x2, width - 1.0), 0.0)
tensorflow.split
11,296
import tensorflow as tf from tensorflow.python.client import timeline from tensorflow.python.layers import convolutional as conv_layers from tensorflow.python.layers import core as core_layers from tensorflow.python.layers import pooling as pooling_layers from tensorflow.python.ops import data_flow_ops from tensorflow.python.platform import gfile import benchmark_storage import cnn_util import datasets import model_config import preprocessing import variable_mgr tf.flags.DEFINE_string('model', 'trivial', 'name of the model to run') # The code will first check if it's running under benchmarking mode # or evaluation mode, depending on FLAGS.eval: # Under the evaluation mode, this script will read a saved model, # and compute the accuracy of the model against a validation dataset. # Additional ops for accuracy and top_k predictors are only used under this # mode. # Under the benchmarking mode, user can specify whether nor not to use # the forward-only option, which will only compute the loss function. # forward-only cannot be enabled with eval at the same time. tf.flags.DEFINE_boolean('eval', False, 'whether use eval or benchmarking') tf.flags.DEFINE_boolean('forward_only', False, """whether use forward-only or training for benchmarking""")
tensorflow.flags.DEFINE_string
11,297
import tensorflow as tf if reuse: tf.get_variable_scope().reuse_variables() else: assert tf.get_variable_scope().reuse is False d = tf.contrib.layers.conv2d(layer_input,filters,kernel_size=f_size,stride=stride,padding=padding) if norm: d = tf.contrib.layers.batch_norm(d) d = lrelu(d,alpha=0.2) return d #def common_deconv2d(layer_input,skip_input, filters,f_size=4,stride=2,dropout_rate=0,name='common_deconv2d'): def common_deconv2d(layer_input,filters,f_size=4,stride=2,padding='SAME',dropout_rate=0,name='common_deconv2d'): """Layers used during upsampling""" with tf.variable_scope(name):
tensorflow.contrib.layers.batch_norm
11,298
import tensorflow.contrib.slim as slim img_h = img_h_batch[i] img_w = img_w_batch[i] inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w]) tower_grads = [] biases_regularizer = tf.no_regularizer weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY) with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer, biases_initializer=tf.constant_initializer(0.0)): gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(self.get_gtboxes_and_label, inp=[inputs_list[i][1], inputs_list[i][2],
tensorflow.contrib.slim.arg_scope
11,299