seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf self.vf_new_params = [oldp.assign(p) for p, oldp in zip(vf_params, vf_old_params)] self.sess.run(tf.global_variables_initializer()) # Tensorboard if summary_dir is not None: self.writer = tf.summary.FileWriter(summary_dir) tf.summary.scalar('Loss/Policy', loss_pg) tf.summary.scalar('Loss/Value', loss_vf) tf.summary.scalar('Loss/Entropy', loss_entropy) tf.summary.scalar('Loss/Total', loss) tf.summary.scalar('Var/Epsilon', epsilon_decay) tf.summary.scalar('Var/Policy Mode', tf.reduce_mean(pi.mode())) tf.summary.scalar('Var/Policy Sigma', tf.reduce_mean(pi.stddev())) tf.summary.scalar('Var/Value', tf.reduce_mean(self.vf)) self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False, batch_size=64): reg = None with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob) state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_ain = tf.expand_dims(layer_a2, axis=1) out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a) cell_out_a = tf.reshape(out_a, [-1, 256])
tensorflow.get_collection
10,900
import tensorflow as tf num = (1 - self.alpha) * dxt + tf.tensordot(self.alpha * dxt , tf.transpose( tf.matmul(tf.abs(self.W_rec) * self.rec_Connectivity,self.Dale_rec)), axes=1) * \ tf.where(tf.greater(xt, 0), tf.ones_like(xt), tf.zeros_like(xt)) denom = dxt # sum over hidden units num = tf.reduce_sum(tf.square(num), axis=2) denom = tf.reduce_sum(tf.square(denom), axis=2) bounded = tf.where(tf.greater(denom, 1e-20), tf.div(num, 1.0 * denom), tf.ones_like(num)) nelems = tf.reduce_mean(tf.where(tf.greater(denom, 1e-20), 1.0 * tf.ones_like(num), 1.0 * tf.zeros_like(num)), axis=1) # sum mean over each batch by time steps Omega = tf.square(bounded - 1.0) Omega = tf.reduce_sum(tf.reduce_mean(Omega, axis=1)) / (1.0 * tf.reduce_sum(nelems)) out = tf.gradients(Omega, self.W_rec) out[0] = tf.Print(out[0], [out[0], self.W_rec, Omega], "omega grads") out[0] = tf.verify_tensor_all_finite(out[0], "dead omega grad") return out, test
tensorflow.zeros_like
10,901
import tensorflow as tf # self.bc_loss = 0.5 * tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy)) # self.next_loc_loss_il = 0.2 * tf.reduce_sum(tf.sqrt(tf.square(self.next_loc_mean[:-1,:] - self.il_nextloc))) # self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il # Get gradients from local network using local losses and # normalize the gradients using clipping local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues') self.gradients = tf.gradients(self.loss, local_vars) self.var_norms = tf.global_norm(local_vars) grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP) # Apply local gradients to global network global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues') self.apply_grads = trainer.apply_gradients(zip(grads, global_vars))
tensorflow.gradients
10,902
import tensorflow as tf facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag)
tensorflow.shape
10,903
import tensorflow as tf target_names = ['class sg', 'class bm', 'class wd', 'class wt', 'class wj', 'class wo', 'class ym', 'class shq', 'class shj', 'class no', 'class yh', 'class fb'] init = tf.initialize_all_variables() config=tf.ConfigProto() config.gpu_options.allow_growth=True #init=tf.initialize_all_variables() def train(train_num=64,test_num=32,lr=1e-4,loop_count=10000,report_step=100,save_step=1000,restore=False): with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) if restore: tf.train.Saver().restore(sess,path) feed_dict={ testnum: test_num, trainnum: train_num, learnrate:lr
tensorflow.Session
10,904
import tensorflow as tf def test_run_after_error_should_be_cancelled(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(a): return a output = f(tf.constant([1, 2])) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord) with self.assertRaises(tf.errors.CancelledError): session.run(output)
tensorflow.constant
10,905
import tensorflow as tf rho_max_init = tf.log(tf.exp(sigma_max) - 1.0)
tensorflow.exp
10,906
import tensorflow as tf return features_proj def _attention_layer(self, features, features_proj, h, reuse=False): with tf.variable_scope('attention_layer', reuse=reuse): w = tf.get_variable('w', [self.H, self.D], initializer=self.weight_initializer) b = tf.get_variable('b', [self.D], initializer=self.const_initializer) w_att = tf.get_variable('w_att', [self.D, 1], initializer=self.weight_initializer)
tensorflow.get_variable
10,907
import tensorflow as tf # dims for normalization width = tf.to_float(tf.shape(image)[2])
tensorflow.shape
10,908
import tensorflow as tf status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir)) x = tf.convert_to_tensor(x_color, "float32") x_coori = tf.convert_to_tensor(x_coori, "float32") def loop_analysis(element):
tensorflow.convert_to_tensor
10,909
import tensorflow as tf # predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) # ones=tf.get_variable('ones',shape=logits.shape,initializer=tf.ones_initializer) # zeros=tf.get_variable('zeros',shape=logits.shape,initializer=tf.zeros_initializer) predictions=tf.where(logits>=0,tf.ones(tf.shape(logits)),tf.zeros(tf.shape(logits))) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.estimator.EstimatorSpec( mode=mode, loss=total_loss, eval_metric_ops=eval_metrics, scaffold=scaffold_fn) else: output_spec = tf.estimator.EstimatorSpec( mode=mode, predictions={"probabilities": probabilities}, scaffold=scaffold_fn ) return output_spec return model_fn
tensorflow.estimator.EstimatorSpec
10,910
from tensorflow.python.training import moving_averages def build_update_ops(): """Builds the exponential moving average update ops.""" update_mean_op = moving_averages.assign_moving_average( variable=self._moving_mean, value=mean, decay=self._decay_rate,
tensorflow.python.training.moving_averages.assign_moving_average
10,911
import tensorflow as tf class_feature_map = slim.conv2d(net, class_feature_map_depth, [1, 1], activation_fn=None, scope='class_predictions') class_predictions_with_background = ops.position_sensitive_crop_regions( class_feature_map, boxes=tf.reshape(proposal_boxes, [-1, self._box_code_size]), box_ind=get_box_indices(proposal_boxes), crop_size=self._crop_size, num_spatial_bins=self._num_spatial_bins, global_pool=True)
tensorflow.reshape
10,912
from tensorflow.python.framework import ops dimensions of `predictions_idx` and `labels`. Returns: A [D1, ... DN] `Tensor` of false positive counts. """ with ops.name_scope(None, 'false_positives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fp = set_ops.set_size(set_ops.set_difference(
tensorflow.python.framework.ops.name_scope
10,913
import tensorflow as tf return None def apply_attack_loop(hps): #Construct graph images, labels = input_name.build_input( FLAGS.dataset, FLAGS.eval_data_path, hps.batch_size, FLAGS.mode)#FLAGS.mode='attack', batch_size=200 Res = model_name.ResNet(hps, images, FLAGS.mode, Reuse=False) Res.build_graph() saver = tf.train.Saver() #Open session and restore checkpoint sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
tensorflow.train.Saver
10,914
import tensorflow as tf tf.summary.image(name, im, max_outputs=50) # use the initializers from torch with argscope([Conv2D, Deconv2D], use_bias=False, W_init=tf.random_normal_initializer(stddev=0.02)), \ argscope([Conv2D, Deconv2D, InstanceNorm], data_format='NCHW'), \ argscope(LeakyReLU, alpha=0.2): with tf.variable_scope('gen'): with tf.variable_scope('B'): AB = self.generator(A) with tf.variable_scope('A'): BA = self.generator(B) ABA = self.generator(AB) with tf.variable_scope('B'): BAB = self.generator(BA) viz3('A_recon', A, AB, ABA) viz3('B_recon', B, BA, BAB) with tf.variable_scope('discrim'): with tf.variable_scope('A'): A_dis_real = self.discriminator(A) A_dis_fake = self.discriminator(BA) with tf.variable_scope('B'): B_dis_real = self.discriminator(B)
tensorflow.variable_scope
10,915
import tensorflow as tf if is_max_pool: x = tf.nn.max_pool3d(x, ksize=kernel_size, strides=strides, padding='VALID', name=layer_name)
tensorflow.nn.max_pool3d
10,916
import tensorflow as tf def main(): if not tf.io.gfile.exists(a.output_dir): tf.io.gfile.makedirs(a.output_dir) if a.operation == "edges" and a.crop:
tensorflow.io.gfile.makedirs
10,917
import tensorflow as tf 'depth_renders': tf.io.FixedLenFeature([20, 224, 224, 1], tf.float32), 'mesh_name': tf.io.FixedLenFeature([], tf.string), 'near_surface_samples': tf.io.FixedLenFeature([100000, 4], tf.float32), 'grid': tf.io.FixedLenFeature([32, 32, 32], tf.float32),
tensorflow.io.FixedLenFeature
10,918
import tensorflow as tf # run_config = tf.estimator.RunConfig( # experimental_distribute=tf.contrib.distribute.DistributeConfig( # train_distribute=distribution, # remote_cluster={ # 'worker': ['localhost:5000', 'localhost:5001'], # }, # ) # ) os.environ["TF_CONFIG"] = json.dumps( { "cluster": {"worker": worker}, "task": {"type": "worker", "index": task_index}, } ) strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() run_config = tf.estimator.RunConfig( save_summary_steps=1, train_distribute=strategy, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_ckpt_steps, log_step_count_steps=1, ) else: distribution = tf.contrib.distribute.MirroredStrategy( num_gpus=FLAGS.num_gpus ) run_config = tf.estimator.RunConfig(train_distribute=distribution)
tensorflow.distribute.experimental.MultiWorkerMirroredStrategy
10,919
import tensorflow as tf def norm(layer, norm_type='batch_norm', decay=0.9, id=0, is_training=True, activation_fn=tf.nn.relu, prefix='conv_'): if norm_type != 'batch_norm' and norm_type != 'layer_norm': return tf.nn.relu(layer) with tf.variable_scope('norm_layer_%s%d' % (prefix, id)) as vs: if norm_type == 'batch_norm': if is_training: try: layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True, scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs) # updates_collections=None except ValueError: layer = tf.contrib.layers.batch_norm(layer, is_training=True, center=True, scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None else: layer = tf.contrib.layers.batch_norm(layer, is_training=False, center=True, scale=False, decay=decay, activation_fn=activation_fn, updates_collections=None, scope=vs, reuse=True) # updates_collections=None elif norm_type == 'layer_norm': # layer_norm # Take activation_fn out to apply lrelu try: layer = activation_fn(tf.contrib.layers.layer_norm(layer, center=True, scale=False, scope=vs)) # updates_collections=None
tensorflow.contrib.layers.batch_norm
10,920
import tensorflow as tf training_loss = target_modality.loss_sharded( sharded_logits, sharded_features["targets"], dp) training_loss *= problem_hparams.loss_multiplier losses["training"] = training_loss return new_sharded_logits, losses # Run the above conditionally. prob = hparams.scheduled_sampling_prob prob *= common_layers.inverse_exp_decay( hparams.scheduled_sampling_warmup_steps, min_value=0.001) sharded_logits, losses = tf.cond( tf.less(tf.random_uniform([]), prob), sampled_results, lambda: (sharded_logits, losses)) return sharded_logits, losses def average_sharded_losses(sharded_losses): """Average losses across datashards. Args: sharded_losses: list<dict<str loss_name, Tensor loss>>. The loss can be a single Tensor or a 2-tuple (numerator and denominator).
tensorflow.random_uniform
10,921
import tensorflow as tf # 6. 有时,我们希望代码健壮到可以决定运行多少GPU合适。TensorFlow有内建函数可以探测到。如果我们期望代码在GPU内存合适时利用GPU计算能力,并分配指定操作给GPU,那么该功能是有益的 if tf.test.is_built_with_cuda(): pass # 7. 我们希望分配指定操作给GPU。下面是一个示例代码,做了一些简单的计算,并将它们分配给主CPU和两个副GPU with tf.device('/cpu:0'): a = tf.constant([1.0, 3.0, 5.0], shape=[1,3]) b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1]) with tf.device('/gpu:0'): c = tf.matmul(a,b) c = tf.reshape(c, [-1]) with tf.device('/gpu:1'): d = tf.matmul(b, a) flat_d = tf.reshape(d, [-1]) combined = tf.multiply(c, flat_d) print(sess.run(combined))
tensorflow.reshape
10,922
import tensorflow as tf def loop_hyper_deocder(z): z = tf.expand_dims(z, 0)
tensorflow.expand_dims
10,923
import tensorflow as tf z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t y_t /= z_t x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) d_t_flat = tf.reshape(d_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat([d_t_flat, y_t_flat, x_t_flat, ones], 0) return grid def _transform(theta, input_dim, out_size, z_near, z_far): with tf.variable_scope('_transform'): num_batch = input_dim.get_shape().as_list()[0] num_channels = input_dim.get_shape().as_list()[4] theta = tf.reshape(theta, (-1, 4, 4)) theta = tf.cast(theta, 'float32')
tensorflow.ones_like
10,924
import tensorflow as tf argmax_results = tf.image.resize_nearest_neighbor( tf.expand_dims(argmax_results, 3), tf.shape(images)[1:3], align_corners=True, name='resize_prediction') predictions[output] = tf.squeeze(argmax_results, 3) #predictions[output + PROB_SUFFIX] = tf.image.resize_bilinear( # tf.nn.softmax(logits), # tf.shape(images)[1:3], # align_corners=True,
tensorflow.squeeze
10,925
import tensorflow as tf depth_bottleneck, 1, 1, stride, stride, input_layer=input_layer, num_channels_in=in_size) self.conv(depth_bottleneck, 3, 3, 1, 1, mode='SAME_RESNET') res = self.conv(depth, 1, 1, 1, 1, activation=None) output = tf.nn.relu(shortcut + res) self.top_layer = output self.top_size = depth return output def inception_module(self, name, cols, input_layer=None, in_size=None): if input_layer is None: input_layer = self.top_layer if in_size is None:
tensorflow.nn.relu
10,926
import tensorflow as tf with tf.variable_scope("temp_conv") as scope: filter_shape = [3, embedding_size, 4, 64] W = tf.get_variable(name='W_1', shape=filter_shape, initializer=he_normal, regularizer=regularizer) paddings = [[0, 0], [1, 1], [0, 0], [0, 0]] cnn_inputs = tf.pad(cnn_inputs, paddings, "CONSTANT") #print("cnn_inputs shape:", cnn_inputs.shape) inputs = tf.nn.conv2d(cnn_inputs, W, strides=[1, 1, 1, 1], padding="VALID", name="first_conv") inputs = tf.layers.batch_normalization(inputs, axis=-1, training=self.is_training) inputs = tf.nn.relu(inputs, name="first_relu") #print("temp cnn output shape:", inputs.shape) inputs = tf.squeeze(inputs, axis=2) #print("squeeze shape", inputs.shape) #inputs = tf.nn.relu(inputs) print("Temp Conv", inputs.get_shape()) self.layers.append(inputs)
tensorflow.layers.batch_normalization
10,927
import tensorflow as tf h_att = tf.nn.relu(features_proj + tf.expand_dims(tf.matmul(h, w), 1) + b) # (N, L, D) out_att = tf.reshape(tf.matmul(tf.reshape(h_att, [-1, self.D]), w_att), [-1, self.L]) # (N, L) alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse):
tensorflow.get_variable
10,928
import tensorflow as tf tf.expand_dims(areas1, 1) + tf.expand_dims(areas2, 0) - intersections) return tf.where( tf.equal(intersections, 0.0), tf.zeros_like(intersections), tf.truediv(intersections, unions))
tensorflow.equal
10,929
import tensorflow as tf img = np.expand_dims(np.asarray(img), axis = 0) # Create a placeholder for the input image input_node = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # Construct the network net = models.ResNet50UpProj({'data': input_node}, batch_size) with tf.Session() as sess: # Load the converted parameters print('Loading the model') net.load(model_data_path, sess) uninitialized_vars = [] for var in tf.global_variables():
tensorflow.Session
10,930
import tensorflow as tf _, serialized_example = reader.read(filename_queue) features = tf.parse_single_example( serialized_example, features={ 'wav_raw': tf.FixedLenFeature([], tf.string), 'noisy_raw': tf.FixedLenFeature([], tf.string), }) wave = tf.decode_raw(features['wav_raw'], tf.int32)
tensorflow.FixedLenFeature
10,931
import tensorflow as tf class TfGraphTestCase: def setup_method(self): tf.reset_default_graph() self.graph = tf.Graph() for c in self.graph.collections:
tensorflow.reset_default_graph
10,932
import tensorflow as tf output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention
tensorflow.while_loop
10,933
from tensorflow.python.framework import constant_op else: return control_flow_ops.with_dependencies([ check_ops.assert_less( constant_op.constant(2., dtype=self.dtype), self.alpha, message="variance not defined for components of alpha <= 2"), ], var)
tensorflow.python.framework.constant_op.constant
10,934
import tensorflow as tf label_priors = losses_utils.convert_and_cast( label_priors, name='label_priors', dtype=labels.dtype.base_dtype) return tf.squeeze(label_priors)
tensorflow.squeeze
10,935
import tensorflow as tf res = tf.concat(x_labels, axis=-1) return tf.to_float(res)
tensorflow.to_float
10,936
import tensorflow as tf filename = os.path.join(test_dir, "metafile") with self.test_session(graph=tf.Graph()): # Creates a graph. tf.Variable(10.0, name="v0") # Exports the graph as binary format. tf.train.export_meta_graph(filename, as_text=False) with self.test_session(graph=tf.Graph()): # Imports the binary format graph. saver = tf.train.import_meta_graph(filename) # Exports the graph as text format. saver.export_meta_graph(filename, as_text=True) with self.test_session(graph=tf.Graph()): # Imports the text format graph. tf.train.import_meta_graph(filename) # Writes wrong contents to the file. tf.train.write_graph(saver.as_saver_def(), os.path.dirname(filename), os.path.basename(filename)) with self.test_session(graph=tf.Graph()): # Import should fail. with self.assertRaisesWithPredicateMatch( IOError, lambda e: "Cannot parse file"): tf.train.import_meta_graph(filename) # Deletes the file gfile.Remove(filename) with self.assertRaisesWithPredicateMatch( IOError, lambda e: "does not exist"):
tensorflow.train.import_meta_graph
10,937
import tensorflow as tf d_layer_4_dim = 16 num_block_layers = 3 dense_layer_depth = 16 def lstm_network(input, scope='lstm_network'): with tf.variable_scope(scope): # tf.nn.rnn_cell lstm_cell1 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer1, forget_bias=1.0) lstm_cell2 = tf.contrib.rnn.BasicLSTMCell(lstm_hidden_size_layer2, forget_bias=1.0) lstm_cells = tf.contrib.rnn.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True) # tf.nn.rnn_cell # lstm_cell1 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer1, forget_bias=1.0) # lstm_cell2 = tf.nn.rnn_cell.LSTMCell(lstm_hidden_size_layer2, forget_bias=1.0) #lstm_cells = tf.nn.rnn_cell.MultiRNNCell(cells=[lstm_cell1, lstm_cell2], state_is_tuple=True)
tensorflow.contrib.rnn.BasicLSTMCell
10,938
import tensorflow as tf same_span = tf.logical_and(same_start, same_end) # [num_labeled, num_candidates] candidate_labels = tf.matmul(tf.expand_dims(labels, 0), tf.to_int32(same_span)) # [1, num_candidates] candidate_labels = tf.squeeze(candidate_labels, 0) # [num_candidates] return candidate_labels def get_dropout(self, dropout_rate, is_training): return 1 - (tf.to_float(is_training) * dropout_rate) def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_span_range = tf.range(k) # [k] antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k] antecedents_mask = antecedent_offsets >= 1 # [k, k] fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k] fast_antecedent_scores += tf.log(tf.to_float(antecedents_mask)) # [k, k] fast_antecedent_scores += self.get_fast_antecedent_scores(top_span_emb) # [k, k] _, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c] top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c] top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c] top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets def distance_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_antecedent_offsets = tf.tile(tf.expand_dims(tf.range(c) + 1, 0), [k, 1]) # [k, c]
tensorflow.expand_dims
10,939
import tensorflow as tf self.summarise = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES)) # AC net def build_anet(self, state_in, name, reuse=False, batch_size=64): reg = None with tf.variable_scope(name, reuse=reuse): layer_a1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_a2 = tf.layers.dense(layer_a1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_a = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_a = tf.nn.rnn_cell.DropoutWrapper(lstm_a, output_keep_prob=self.keep_prob) state_init_a = lstm_a.zero_state(batch_size=batch_size, dtype=tf.float32) lstm_ain = tf.expand_dims(layer_a2, axis=1) out_a, state_final_a = tf.nn.dynamic_rnn(cell=lstm_a, inputs=lstm_ain, initial_state=state_init_a) cell_out_a = tf.reshape(out_a, [-1, 256]) mu = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.tanh, kernel_regularizer=reg) sigma = tf.layers.dense(cell_out_a, self.a_dim, tf.nn.softplus, kernel_regularizer=reg) # sigma = tf.get_variable(name='pi_sigma', shape=self.a_dim, initializer=tf.constant_initializer(0.5)) sigma = tf.clip_by_value(sigma, 0.0, 1.0) norm_dist = tf.distributions.Normal(loc=mu * self.a_bound, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params, state_init_a, state_final_a def build_cnet(self, state_in, name, reuse=False, batch_size=64): reg = tf.contrib.layers.l2_regularizer(1e-3) with tf.variable_scope(name, reuse=reuse): layer_c1 = tf.layers.dense(state_in, 512, tf.nn.relu, kernel_regularizer=reg) layer_c2 = tf.layers.dense(layer_c1, 256, tf.nn.relu, kernel_regularizer=reg) lstm_c = tf.nn.rnn_cell.LSTMCell(num_units=256) lstm_c = tf.nn.rnn_cell.DropoutWrapper(lstm_c, output_keep_prob=self.keep_prob) state_init_c = lstm_c.zero_state(batch_size=batch_size, dtype=tf.float32)
tensorflow.layers.dense
10,940
import tensorflow as tf per_example_loss=per_example_loss) # Now we construct the copy model. inp = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] out = [tf.placeholder(tf.int32, shape=[None]) for _ in range(8)] weights = [tf.ones_like(inp[0], dtype=tf.float32) for _ in range(8)] with tf.variable_scope("root"): _, losses1 = SampleGRUSeq2Seq(inp, out, weights, per_example_loss=False) # Now check that we did not accidentally set reuse. self.assertEqual(False, tf.get_variable_scope().reuse)
tensorflow.ones_like
10,941
import tensorflow as tf def dense_maxnorm_update(var_matrix, maxnorm=1.0): '''Dense update operation that ensures all rows in var_matrix do not have a Euclidean norm greater than maxnorm. Rows that exceed it are scaled to length. Args: var_matrix: 2D mutable tensor (Variable) to operate on maxnorm: the maximum Euclidean norm Returns: An operation that will update var_matrix when run in a Session ''' row_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1)) scaling = maxnorm / tf.maximum(row_norms, maxnorm) scaled = var_matrix * tf.expand_dims(scaling, 1) return tf.assign(var_matrix, scaled) def dense_maxnorm(var_matrix, maxnorm=1.0): '''Similar to dense_maxnorm_update(), except this returns a new Tensor instead of an operation that modifies var_matrix. Args: var_matrix: 2D tensor (Variable) maxnorm: the maximum Euclidean norm
tensorflow.square
10,942
import tensorflow as tf w = tf.get_variable('w', [self.fc2.get_shape()[1], num_classes], initializer=initializer, regularizer=regularizer) b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(1.0)) self.fc3 = tf.matmul(self.fc2, w) + b # Calculate Mean cross-entropy loss with tf.name_scope("loss"): self.predictions = tf.argmax(self.fc3, 1, name="predictions") losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.fc3, labels=self.input_y) regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.loss = tf.reduce_mean(losses) + sum(regularization_losses) # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
tensorflow.argmax
10,943
import tensorflow as tf pos = files[0].name.find(cases[0]) pattern = files[0].name[:pos] + 'AB%sDEF.GH*' self.assertEqual(set(tf.matching_files(pattern % 'z').eval()), self._subset(files, [1])) self.assertEqual(set(tf.matching_files(pattern % '?').eval()), self._subset(files, [0, 1, 3, 4])) self.assertEqual(set(tf.matching_files(pattern % '*').eval()), self._subset(files, [0, 1, 2, 3, 4, 5])) self.assertEqual(set(tf.matching_files(pattern % '[cxz]').eval()), self._subset(files, [0, 1])) self.assertEqual(set(tf.matching_files(pattern % '[0-9]').eval()), self._subset(files, [3, 4])) if __name__ == '__main__': tf.test.main()
tensorflow.matching_files
10,944
import tensorflow as tf assert not self._exported_as_v1 # TODO(b/149997088): Raise an exception once we no longer support using # the Keras layer with estimator based Trainer. tf.compat.v1.logging.warning('Loading a TF2 SavedModel but eager mode ' 'seems disabled.') # If exported as TF2 SavedModel but not invoked in eager mode,
tensorflow.compat.v1.logging.warning
10,945
from tensorflow.python.ops import array_ops keep_prob = ops.convert_to_tensor( keep_prob, dtype=x.dtype, name="keep_prob") keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar()) noise_shape = noise_shape or array_ops.shape(x) # uniform [keep_prob, 1.0 + keep_prob) random_tensor = keep_prob random_tensor += random_ops.random_uniform(
tensorflow.python.ops.array_ops.shape
10,946
import tensorflow as tf if FLAGS.do_train: tf.logging.info("***** Running training *****")
tensorflow.logging.info
10,947
import tensorflow as tf # tf.decode_raw does not support bool as a decode type. As a result it is # necessary to decode to int8 (7 of the bits will be ignored) and then # cast to bool. return tf.reshape(tf.cast(tf.decode_raw(data_bytes, tf.int8), tf.bool), (batch_size,)) if self._is_training: mask_start_index = tf.decode_raw( features[rconst.MASK_START_INDEX], tf.int32)[0] valid_point_mask = tf.less(tf.range(batch_size), mask_start_index) return { movielens.USER_COLUMN: users, movielens.ITEM_COLUMN: items,
tensorflow.decode_raw
10,948
import tensorflow as tf activation = map # print(activation.get_shape().as_list()) return activation def batch_norm_conv(x, b_train, scope): with tf.variable_scope(scope, reuse=tf.AUTO_REUSE): n_out = x.get_shape().as_list()[-1] beta = tf.get_variable('beta', initializer=tf.constant(0.0, shape=[n_out])) gamma = tf.get_variable('gamma', initializer=tf.constant(1.0, shape=[n_out])) batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = tf.cond(b_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) return normed
tensorflow.train.ExponentialMovingAverage
10,949
import tensorflow as tf Ref: http://stackoverflow.com/questions/33949786/how-could-i-use-batch-normalization-in-tensorflow/33950177 """ name = 'batch_norm' with tf.variable_scope(name): phase_train = tf.convert_to_tensor(phase_train, dtype=tf.bool) n_out = int(x.get_shape()[3]) beta = tf.Variable(tf.constant(0.0, shape=[n_out], dtype=x.dtype), name=name+'/beta', trainable=True, dtype=x.dtype) gamma = tf.Variable(tf.constant(1.0, shape=[n_out], dtype=x.dtype), name=name+'/gamma', trainable=True, dtype=x.dtype) batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments') ema = tf.train.ExponentialMovingAverage(decay=0.9) def mean_var_with_update(): ema_apply_op = ema.apply([batch_mean, batch_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(batch_mean), tf.identity(batch_var) mean, var = control_flow_ops.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var))) normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3) return normed def inception(inp, inSize, ks, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2, o4s3, poolType, name,
tensorflow.train.ExponentialMovingAverage
10,950
import tensorflow as tf image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: resized_image: A 3-D tensor containing the resized image. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0] width = shape[1] new_height, new_width = _smallest_size_at_least(height, width, smallest_side) image = tf.expand_dims(image, 0) resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False) resized_image = tf.squeeze(resized_image) resized_image.set_shape([None, None, 3]) return resized_image def preprocess_for_train(image, output_height, output_width, resize_side_min=_RESIZE_SIDE_MIN, resize_side_max=_RESIZE_SIDE_MAX): """Preprocesses the given image for training.
tensorflow.image.resize_bilinear
10,951
import tensorflow as tf return tf.reshape(x, [-1] + sh[1:-1] + [num_units]) def dense(x, num_units, scope="dense", training=True, ema=None, init=False, bias_initializer=tf.constant_initializer(0.)): with tf.variable_scope(scope): V = tf.get_variable('V', shape=[int(x.get_shape()[1]), num_units], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) g = tf.get_variable('g', shape=[num_units], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) b = tf.get_variable('b', shape=[num_units], dtype=tf.float32, initializer=bias_initializer, trainable=True) def maybe_avg(v): if ema is not None and not init: v = tf.cond(training, lambda: v, lambda: ema.average(v)) return v if init:
tensorflow.get_variable
10,952
import tensorflow as tf log("Tacotron training set to a maximum of {} steps".format(args.tacotron_train_steps)) # Memory allocation on the GPU as needed config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True
tensorflow.ConfigProto
10,953
import tensorflow as tf v_grads_and_vars = v_grad_clip_fn(grads_and_vars) v_grads, _ = zip(*v_grads_and_vars) v_grads_true = tf.clip_by_value(grads, hparams["kwargs"]["clip_value_min"], hparams["kwargs"]["clip_value_max"]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) gn_grads_, gn_grads_true_, v_grads_, v_grads_true_ = sess.run( [gn_grads, gn_grads_true, v_grads, v_grads_true]) np.testing.assert_array_equal(gn_grads_, gn_grads_true_) np.testing.assert_array_equal(v_grads_, v_grads_true_) def test_get_train_op(self):
tensorflow.global_variables_initializer
10,954
import tensorflow as tf ul_u_eval_train = placeholder_like(ul_images_eval_train, "ul_u_eval_train") ul_u_eval_test = placeholder_like(images_eval_test, "ul_u_eval_test") with tf.device(FLAGS.device): lr = tf.placeholder(tf.float32, shape=[], name="learning_rate") mom = tf.placeholder(tf.float32, shape=[], name="momentum")
tensorflow.device
10,955
import tensorflow as tf with tf.contrib.summary.record_summaries_every_n_global_steps( 100, global_step=step): tf.contrib.summary.scalar(prefix + name, scalar, step=step) return tf.contrib.summary.all_summary_ops() global_step_tensor = tf.reshape(tf.train.get_or_create_global_step(), [1]) other_tensors = [tf.reshape(monitor_dict[key], [1]) for key in metric_names] return host_call_fn, [global_step_tensor] + other_tensors
tensorflow.train.get_or_create_global_step
10,956
import tensorflow as tf logits, feat = resnet_model_fn(x, training=training_flag) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits)) Focal_loss = tf.reduce_mean(focal_loss(one_hot_labels, logits, alpha=0.5)) l2_loss = weight_decay * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()]) Center_loss, Centers = center_loss(feat, tf.cast(label, dtype=tf.int32), 0.95, class_num) Total_loss = cost + l2_loss optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=momentum, use_nesterov=True) # Batch norm requires update_ops to be added as a train_op dependency. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = optimizer.minimize(Total_loss) correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(one_hot_labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # val_dir = '/data0/AIChallenger/ai_challenger_scene_validation_20170908/scene_validation_images_20170908/' # annotations = '/data0/AIChallenger/ai_challenger_scene_validation_20170908/scene_validation_annotations_20170908.json' # # a DataFlow you implement to produce [tensor1, tensor2, ..] lists from whatever sources:
tensorflow.get_collection
10,957
import tensorflow as tf # Call A2C net pi, self.pi_params = self.build_anet(batch['state'], 'pi') pi_eval, _ = self.build_anet(self.state, 'pi', reuse=True) self.vf, self.vf_params = self.build_cnet(batch['state'], 'vf') self.vf_eval, _ = self.build_cnet(self.state, 'vf', reuse=True) self.sample_action = tf.squeeze(pi_eval.sample(1), axis=0) self.eval_action = pi_eval.mode() self.global_step = tf.train.get_or_create_global_step() self.saver = tf.train.Saver() # Loss functions and training loss_pg = - tf.reduce_mean(pi.log_prob(batch['actions']) * batch['advantage']) - 0.01 * tf.reduce_mean(pi.entropy()) loss_vf = 0.5 * tf.reduce_mean(tf.square(batch['rewards'] - self.vf)) self.a_grads = tf.gradients(loss_pg, self.pi_params) self.c_grads = tf.gradients(loss_vf, self.vf_params) self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0) self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0) opt = tf.train.AdamOptimizer(self.LR) self.update_a_op = opt.apply_gradients(zip(self.a_grads, self.pi_params))
tensorflow.train.Saver
10,958
import tensorflow as tf def body(self, features): observations = features["inputs"] x = tf.transpose(observations, [0, 2, 3, 1, 4]) x_shape = common_layers.shape_list(x) x = tf.reshape(x, x_shape[:-2] + [-1]) dropout = getattr(self.hparams, "dropout_ppo", 0.0) with tf.variable_scope("feed_forward_cnn_small"): x = tf.cast(x, tf.float32) / 255.0 x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 32, (4, 4), strides=(2, 2), name="conv1", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 64, (4, 4), strides=(2, 2), name="conv2", activation=common_layers.belu, padding="SAME") x = tf.nn.dropout(x, rate=dropout) x = tf.layers.conv2d( x, 128, (4, 4), strides=(2, 2), name="conv3", activation=common_layers.belu, padding="SAME") flat_x = tf.layers.flatten(x) flat_x = tf.nn.dropout(flat_x, rate=dropout) x = tf.layers.dense(flat_x, 128, activation=tf.nn.relu, name="dense1") logits = tf.layers.dense( x, self.hparams.problem.num_actions, name="dense2"
tensorflow.layers.conv2d
10,959
import tensorflow as tf def cw_sampling(X, y=None): def phi_sampling(s, D): return tf.pow(1.0 + 4.0*s/(2.0*D-3), -0.5) D = tf.cast(tf.shape(X)[1], tf.float32) N = tf.cast(tf.shape(X)[0], tf.float32) D_int = tf.cast(D, tf.int32) N_int = tf.cast(N, tf.int32) if y is None: y = silverman_rule_of_thumb(N) YDistr = tf.contrib.distributions.MultivariateNormalDiag(loc=tf.zeros(D_int, tf.float32), scale_diag=tf.ones(D_int, tf.float32)) Y = YDistr.sample(N_int) T = 1.0/(2.0*N*tf.sqrt(m.pi*y)) A0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(X, 1)), axis=2) A = tf.reduce_sum(phi_sampling(A0/(4*y), D)) B0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(Y, 0), tf.expand_dims(Y, 1)), axis=2) B = tf.reduce_sum(phi_sampling(B0/(4*y), D)) C0 = euclidean_norm_squared(tf.subtract(tf.expand_dims(X, 0), tf.expand_dims(Y, 1)), axis=2) C = tf.reduce_sum(phi_sampling(C0/(4*y), D))
tensorflow.ones
10,960
import tensorflow as tf enc_outputs, enc_state = tf.nn.rnn(cell, inp, dtype=tf.float32) attn_states = tf.concat(1, [tf.reshape(e, [-1, 1, cell.output_size]) for e in enc_outputs]) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state,
tensorflow.constant
10,961
import tensorflow as tf if params['data_format'] == 'channels_first': cls_pred = tf.transpose(cls_pred, [0, 2, 3, 1]) location_pred = tf.transpose(location_pred, [0, 2, 3, 1]) bboxes_pred = labels['decode_fn'](location_pred)#(tf.reshape(location_pred, tf.shape(location_pred).as_list()[0:-1] + [-1, 4])) cls_pred = tf.reshape(cls_pred, [-1, params['num_classes']]) location_pred = tf.reshape(location_pred, [-1, 4]) glabels = tf.reshape(glabels, [-1]) gscores = tf.reshape(gscores, [-1]) gtargets = tf.reshape(gtargets, [-1, 4]) # raw mask for positive > 0.5, and for negetive < 0.3
tensorflow.reshape
10,962
import tensorflow as tf def import_ops(self): if self._is_training: self._train_op = tf.get_collection_ref('train_op')[0] self._lr = tf.get_collection_ref('lr')[0]
tensorflow.get_collection_ref
10,963
import tensorflow as tf from alpharotate.libs.utils.coordinate_convert import coordinate_present_convert from alpharotate.utils.pretrain_zoo import PretrainModelZoo os.environ["CUDA_VISIBLE_DEVICES"] = cfgs.GPU_GROUP class TrainR3DetDCL(Train): def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects): return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \ gtboxes_and_label_r[:int(num_objects), :].astype(np.float32) def main(self): with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) r3det_dcl = build_whole_network.DetectionNetworkR3DetDCL(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'): if cfgs.IMAGE_PYRAMID:
tensorflow.device
10,964
from tensorflow.python.framework import ops dimension of the input tensor. padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm. name: Optional name for the returned tensor. Returns: A `Tensor` with the same type as `value`. Raises: ValueError: If input/output depth does not match `filter`'s shape, or if padding is other than `'VALID'` or `'SAME'`. """ with ops.op_scope([value, filter, output_shape], name, "conv2d_transpose") as name: value = ops.convert_to_tensor(value, name="value") filter = ops.convert_to_tensor(filter, name="filter") if not value.get_shape()[3].is_compatible_with(filter.get_shape()[3]): raise ValueError( "input channels does not match filter's input channels, " "{} != {}".format(value.get_shape()[3], filter.get_shape()[3])) output_shape_ = ops.convert_to_tensor(output_shape, name="output_shape") if not output_shape_.get_shape().is_compatible_with(tensor_shape.vector(4)): raise ValueError("output_shape must have shape (4,), got {}" .format(output_shape_.get_shape())) if isinstance(output_shape, (list, np.ndarray)):
tensorflow.python.framework.ops.convert_to_tensor
10,965
import tensorflow as tf self.embedded_characters = tf.nn.embedding_lookup(self.embedding_W, self.input_x) embedded_text_expand = tf.expand_dims(self.embedded_characters, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_tags"): W_tags = tf.get_variable("embed_W_tags", [tags_vocab_size, embedding_size], initializer=initializer) embedded_tags = tf.nn.embedding_lookup(W_tags, self.input_tags) embedded_tags_expanded = tf.expand_dims(embedded_tags, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_deps"): W_deps = tf.get_variable("embed_W_deps", [deps_vocab_size, embedding_size], initializer=initializer) embedded_deps = tf.nn.embedding_lookup(W_deps, self.input_deps) embedded_deps_expanded = tf.expand_dims(embedded_deps, -1) with tf.device('/cpu:0'), tf.name_scope("embedding_head"): W_head = tf.get_variable("embed_W_head", [num_quantized_chars, embedding_size], initializer=initializer) embedded_head = tf.nn.embedding_lookup(W_head, self.input_head) embedded_head_expanded = tf.expand_dims(embedded_head, -1)
tensorflow.get_variable
10,966
import tensorflow as tf with tf.variable_scope("loss", reuse=False): # Take the min of the two Q-Values (Double-Q Learning) min_qf_pi = tf.minimum(qf1_pi, qf2_pi)
tensorflow.minimum
10,967
from tensorflow.python.ops import array_ops with self._name_scope(name, values=[x, sample_shape]): x = ops.convert_to_tensor(x, name="x") sample_shape = ops.convert_to_tensor(sample_shape, name="sample_shape") x = distribution_util.rotate_transpose(x, shift=1) if self._is_all_constant_helper(self.batch_ndims, self.event_ndims): if self._batch_ndims_is_0 or self._event_ndims_is_0: b = ((min(-2, -1 - self._event_ndims_static),) if self._batch_ndims_is_0 else ()) e = (-1,) if self._event_ndims_is_0 else () x = array_ops.squeeze(x, squeeze_dims=b + e) _, batch_shape, event_shape = self.get_shape(x) else: s = (x.get_shape().as_list() if x.get_shape().is_fully_defined() else array_ops.shape(x)) batch_shape = array_ops.slice(s, (1,), (self.batch_ndims,)) # Since sample_dims=1 and is left-most, we add 1 to the number of # batch_ndims to get the event start dim. event_start = array_ops.where( self._batch_ndims_is_0, 2, 1 + self.batch_ndims) event_shape = array_ops.slice(s, (event_start,), (self.event_ndims,)) new_shape = array_ops.concat(0, (sample_shape, batch_shape, event_shape)) x = array_ops.reshape(x, shape=new_shape) return x @contextlib.contextmanager def _name_scope(self, name=None, values=None):
tensorflow.python.ops.array_ops.shape
10,968
import tensorflow as tf learning_rate=learning_rate, clip_gradients=params.clip_grad_norm or None, optimizer=opt, colocate_gradients_with_ops=True ) zero_op = tf.no_op("zero_op") collect_op = tf.no_op("collect_op") else: grads_and_vars = opt.compute_gradients( loss, colocate_gradients_with_ops=True)
tensorflow.no_op
10,969
import tensorflow as tf export_path = image_classifier.export_saved_model( export_dir_base=FLAGS.export_dir, serving_input_receiver_fn=build_image_serving_input_receiver_fn( serving_shape), as_text=True) if FLAGS.add_warmup_requests: write_warmup_requests( export_path, FLAGS.model_name, hparams.image_size, batch_sizes=FLAGS.inference_batch_sizes) if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) app.run(main)
tensorflow.logging.set_verbosity
10,970
import tensorflow as tf [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) output_h4 = deconv2d(tf.concat([output_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') scope.reuse_variables() truthoutput_z_ = lrelu(linear(tgtimg_z, self.gf_dim*8*s_h16*s_w16, 'd_h0_lin')) truthoutput_h0 = tf.reshape(truthoutput_z_, [-1, s_h16, s_w16, self.gf_dim * 8]) truthoutput_h1 = lrelu(deconv2d(tf.concat([truthoutput_h0, tgtctx_h3], 3), [self.batch_size, s_h8, s_w8, self.gf_dim*4], name='d_h1')) truthoutput_h2 = lrelu(deconv2d(tf.concat([truthoutput_h1, tgtctx_h2], 3), [self.batch_size, s_h4, s_w4, self.gf_dim*2], name='d_h2')) truthoutput_h3 = lrelu(deconv2d(tf.concat([truthoutput_h2, tgtctx_h1], 3), [self.batch_size, s_h2, s_w2, self.gf_dim*1], name='d_h3')) truthoutput_h4 = deconv2d(tf.concat([truthoutput_h3, tgtctx_h0], 3), [self.batch_size, s_h, s_w, self.c_dim], name='d_h4') self.simloss = tf.reduce_mean((trans_z - tgtimg_z) ** 2) * 1e3 mean, var = tf.nn.moments(tgtimg_z, axes=[0]) print(var.get_shape())
tensorflow.concat
10,971
import tensorflow as tf kernel_initializer=xlnet_model.get_initializer()) logits = tf.reshape(logits, [bsz_per_core, 4]) one_hot_target = tf.one_hot(label, 4) per_example_loss = -tf.reduce_sum( tf.nn.log_softmax(logits) * one_hot_target, -1) total_loss = tf.reduce_mean(per_example_loss) return total_loss, per_example_loss, logits
tensorflow.reduce_mean
10,972
import tensorflow as tf outputs, _ = tf.lite.experimental.nn.dynamic_rnn( lstm_layer, lstm_input, dtype="float32") outputs = tf.unstack(outputs, axis=0) else: lstm_input = tf.unstack(x, self.time_steps, 1) outputs, _ = tf.nn.static_rnn(lstm_layer, lstm_input, dtype="float32") # Compute logits by multiplying outputs[-1] of shape [batch_size,num_units]
tensorflow.unstack
10,973
import tensorflow as tf self.r: batch.r, self.local_network.state_in[0]: batch.features[0], self.local_network.state_in[1]: batch.features[1], } fetched = sess.run(fetches, feed_dict=feed_dict) if should_compute_summary: self.summary_writer.add_summary(tf.Summary.FromString(fetched[0]), fetched[-1]) self.summary_writer.flush() self.local_steps += 1
tensorflow.Summary.FromString
10,974
import tensorflow as tf # Flatten CNN and concat with other features zack_hack_div_2 = 0 if cnn_rnn_zack: zack_hack_div_2 = zack_hack // 2 cnn_output = tf.slice(cnn_output, [0, zack_hack_div_2, 0, 0], [-1, rnn_nunroll, -1, -1]) nfeats_conv = reduce(lambda x, y: x * y, [int(x) for x in cnn_output.get_shape()[-2:]]) else: nfeats_conv = reduce(lambda x, y: x * y, [int(x) for x in cnn_output.get_shape()[-3:]]) feats_conv = tf.reshape(cnn_output, [batch_size * rnn_nunroll, nfeats_conv]) nfeats_tot = nfeats_conv + nfeats feats_all = tf.concat(1, [feats_conv, feats_other]) print('feats_cnn: {}'.format(feats_conv.get_shape())) print('feats_all: {}'.format(feats_all.get_shape())) # Project to RNN size rnn_output = feats_all
tensorflow.reshape
10,975
import tensorflow as tf if model_io_config.fix_lm == True: scope = model_config.scope + "_finetuning" else: scope = model_config.scope with tf.variable_scope(scope, reuse=model_reuse): (loss, per_example_loss, logits) = classifier.classifier(model_config, model.get_pooled_output(), num_labels, label_ids, dropout_prob) label_loss = tf.reduce_sum(per_example_loss * features["label_ratio"]) / (1e-10+tf.reduce_sum(features["label_ratio"])) tf.get_variable_scope().reuse_variables() (tgt_loss, tgt_per_example_loss, tgt_logits) = classifier.classifier(model_config, features["distillation_feature"], num_labels, label_ids, dropout_prob) if mode == tf.estimator.ModeKeys.TRAIN: distillation_api = distill.KnowledgeDistillation(kargs.get("disitllation_config", Bunch({ "logits_ratio_decay":"constant", "logits_ratio":0.5,
tensorflow.get_variable_scope
10,976
import tensorflow as tf with tf.variable_scope('X1'): X1 = self._add_op_dynamic(cell_inputs, blocks, idx1, op1, w, h, block_ch, is_train=is_train) X1 = self._add_drop_path(X1, drop_path_keep_prob) with tf.variable_scope('X2'): X2 = self._add_op_dynamic(cell_inputs, blocks, idx2, op2, w, h, block_ch, is_train=is_train) X2 = self._add_drop_path(X2, drop_path_keep_prob) X = tf.add_n([X1, X2]) blocks.append(X) (X, comb_ch) = self._combine_cell_blocks_dynamic(cell_inputs, blocks, cell_arch, w, h, block_ch, is_train) X = tf.reshape(X, (-1, w, h, comb_ch)) # Sanity shape check layers.append((X, w, h, comb_ch)) def _add_static_cell(self, cell_arch, layers, w, h, block_ch, drop_path_keep_prob, is_train=False, is_reduction=False): b = CELL_NUM_BLOCKS # Calibrate inputs as necessary to last input layer's dimensions and add them to hidden states cell_inputs = [layers[-2] if len(layers) > 1 else layers[-1], layers[-1]] (_, w_inp_last, h_inp_last, _) = cell_inputs[-1] for (i, (inp, w_inp, h_inp, ch_inp)) in enumerate(cell_inputs): with tf.variable_scope('input_{}_calibrate'.format(i)): inp = self._calibrate(inp, w_inp, h_inp, ch_inp, w_inp_last, h_inp_last, block_ch, is_train=is_train) # Apply conv 1x1 on last input
tensorflow.reshape
10,977
import tensorflow as tf """ target_global_step = get_global_step('train_rl_global_step') rl_reward = acc rl_step_baseline = rl_reward rl_baseline_momentum = 0.9 rl_entropy_regularization = 0.001 def update_rl_baseline(): return model_utils.update_exponential_moving_average( rl_step_baseline, momentum=rl_baseline_momentum) rl_baseline = update_rl_baseline() rl_advantage = rl_reward - rl_baseline rl_empirical_loss = -tf.stop_gradient(rl_advantage) * log_prob rl_entropy_loss = -rl_entropy_regularization * rl_entropy enable_rl_optimizer = tf.cast( tf.greater_equal(target_global_step, FLAGS.first_pretrain_steps), tf.float32) rl_learning_rate = FLAGS.rl_learning_rate * enable_rl_optimizer rl_learning_rate = tf.train.piecewise_constant( target_global_step, [800,], [rl_learning_rate, rl_learning_rate * 0.1]) optimizer = tf.train.AdamOptimizer(rl_learning_rate) target_train_op = optimizer.minimize(
tensorflow.stop_gradient
10,978
import tensorflow as tf bboxes = np.vstack((bboxes, tmp_bboxes)) # <class 'tuple'>: (5265, 5) # non maximum suppression # refind_idx = util.nms(bboxes, nms_thresh) refind_idx = tf.image.non_max_suppression(tf.convert_to_tensor(bboxes[:, :4], dtype=tf.float32), tf.convert_to_tensor(bboxes[:, 4], dtype=tf.float32), max_output_size=bboxes.shape[0], iou_threshold=nms_thresh) refind_idx = sess.run(refind_idx)
tensorflow.convert_to_tensor
10,979
import tensorflow as tf path='save/' ckpt_name = 'save/model.ckpt' fname = 'model.tf' dst_nodes = ['output/predictions'] saver = tf.train.Saver() # Create a session and init with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("training started!!") print("******************") # Now iterate over our dataset n_epoch times for epoch_i in range(epoch): this_loss = 0
tensorflow.Session
10,980
import tensorflow as tf self.assertAllEqual([[3, 5]], result) self.assertAllEqual([1], batch_size) def test_two(self): with self.test_session() as session: @dynamic_batching.batch_fn def f(a, b): batch_size = tf.shape(a)[0] return a + b, tf.tile([batch_size], [batch_size]) output0 = f(tf.constant([1]), tf.constant([2])) output1 = f(tf.constant([2]), tf.constant([3])) tp = pool.ThreadPool(2) f0 = tp.apply_async(session.run, [output0]) f1 = tp.apply_async(session.run, [output1]) # Make sure both inputs are in the batcher before starting it. time.sleep(_SLEEP_TIME) tf.train.start_queue_runners()
tensorflow.constant
10,981
from tensorflow.contrib.framework import deprecated def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name @deprecated('2016-11-08', 'Please use `streaming_sparse_recall_at_k`, ' 'and reshape labels from [batch_size] to [batch_size, 1].') @deprecated_args(IGNORE_MASK_DATE, IGNORE_MASK_INSTRUCTIONS, 'ignore_mask') def streaming_recall_at_k(predictions, labels, k, ignore_mask=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall@k of the predictions with respect to dense labels. The `streaming_recall_at_k` function creates two local variables, `total` and `count`, that are used to compute the recall@k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply
tensorflow.contrib.framework.deprecated
10,982
import tensorflow as tf parser.add_argument('--max_train_step', type=int, default=50000, help='the maximum training step') parser.add_argument('--model_path', type=str, default='', help='the path of checkpoint file') args = parser.parse_args() def model(): x = tf.placeholder(tf.float32, [None, 784], name='x') gt = tf.placeholder(tf.float32, [None, 10], name='groundtruth') with tf.variable_scope('layer1'): w1 = tf.get_variable('weight1', [784, 1024], initializer=tf.random_normal_initializer()) b1 = tf.get_variable('bias1', [1024], initializer=tf.constant_initializer(0.0)) h1 = tf.nn.relu(tf.matmul(x, w1) + b1) with tf.variable_scope('layer2'): w2 = tf.get_variable('weight2', [1024, 1024], initializer=tf.random_normal_initializer()) b2 = tf.get_variable('bias2', [1024], initializer=tf.constant_initializer(0.0)) h2 = tf.nn.relu(tf.matmul(h1, w2) + b2) with tf.variable_scope('layer3'): w3 = tf.get_variable('weight3', [1024, 10], initializer=tf.random_normal_initializer()) b3 = tf.get_variable('bias3', [10], initializer=tf.constant_initializer(0.0)) y = tf.matmul(h2, w3) + b3 # losses
tensorflow.matmul
10,983
import tensorflow as tf alpha_std = tf.exp(alpha_logstd) # Compute epsilon from {n_samples} standard Gaussian # epsilon = tf.random_normal([n_samples, 1, n_out*2, n_out]) epsilon = tf.random_uniform([n_samples, 1, n_basis, n_out]) hyp_params = tf.get_variable('hyp_params_layer'+str(h), shape=[2], initializer=tf.random_normal_initializer()) l1, l2 = tf.nn.sigmoid(hyp_params[0]), tf.exp(hyp_params[1]) epsilon = tf.sinh(epsilon*l2)/tf.cosh(epsilon*l2)**l1/l2 # Compute A_{h+1} A = tf.tile(alpha_mean+epsilon*alpha_std, [1, tf.shape(X)[0], 1, 1]) # Compute z_{h}A_{h+1} Z1 = tf.matmul(Z, A[:,:,:n_basis//2,:])/tf.sqrt(n_basis*.5) Z2 = tf.matmul(Z, A[:,:,n_basis//2:,:])/tf.sqrt(n_basis*.5) # Compute u_{h+1} and v_{h+1} U, V = tf.cos(Z1)+tf.cos(Z2), tf.sin(Z1)+tf.sin(Z2) Z = tf.concat([U, V], 3)/tf.sqrt(n_out*1.) KL += tf.reduce_mean(alpha_std**2+alpha_mean**2-2*alpha_logstd-1)/2. # Output layer else: F = tf.squeeze(tf.layers.dense(Z, n_out), [2]) return F, KL
tensorflow.sin
10,984
import tensorflow as tf ignored_matches = tf.logical_and( ignored_matches, tf.less( matched_iou, self._config_dict['foreground_iou_threshold']))
tensorflow.less
10,985
import tensorflow as tf ''' def gaussian_pdf(mean, loc_std, sample): Z = 1.0 / (loc_std * tf.sqrt(2.0 * np.pi)) a = - tf.square(sample - mean) / (2.0 * tf.square(loc_std)) return Z * tf.exp(a) class ACNet: def __init__(self, scope, GRID_SIZE, a_size, trainer,TRAINING, GLOBAL_NET_SCOPE):
tensorflow.exp
10,986
import tensorflow as tf self._on_training_abort(sess) def inference(self, max=10^6): self.fetch_datasets() self.build_ae_model() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # nut.print_model_info() # nut.list_checkpoint_vars(self.get_latest_checkpoint().replace(EMB_SUFFIX, '')) self.saver = tf.train.Saver()
tensorflow.Session
10,987
import tensorflow as tf for layer in range(self.config["contextualization_layers"]): with tf.variable_scope("layer_{}".format(layer)): with tf.variable_scope("fw_cell"): cell_fw = util.CustomLSTMCell(self.config["contextualization_size"], num_sentences, self.lstm_dropout) with tf.variable_scope("bw_cell"):
tensorflow.variable_scope
10,988
import tensorflow as tf # state, target and action self.state = tf.placeholder(tf.float32, [None,400], name="state") self.target = tf.placeholder(tf.float32,[None,1], name="target") self.a_his = tf.placeholder(tf.float32, [None, num_action], name="action_hist") # layers # wrap output self.mu = self.mu * action_bound[1]; self.sigma = self.sigma + 1e-5 self.normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma) self.action = tf.squeeze(self.normal_dist.sample(1),axis=0); self.action = tf.clip_by_value(self.action, action_bound[0], action_bound[1]) # Loss and train op self.loss = -self.normal_dist.log_prob(self.a_his) * self.target # Add cross entropy cost to encourage exploration self.loss -= entropy_beta * self.normal_dist.entropy() self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.grads=[]; self.vars=[]; for i in range(len(self.grads_and_vars)): self.grads.append(self.grads_and_vars[i][0]); self.vars.append(self.grads_and_vars[i][1]);
tensorflow.clip_by_value
10,989
import tensorflow as tf next_sentence_log_probs) = get_next_sentence_output( bert_config, model.get_pooled_output(), next_sentence_labels, clip) total_loss = masked_lm_loss + next_sentence_loss tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
tensorflow.train.init_from_checkpoint
10,990
import tensorflow as tf def force_cpu(): '''Force CPU on a GPU system ''' import keras.backend as K import tensorflow as tf config = tf.ConfigProto(device_count={'GPU': 0}) session = tf.Session(config=config) K.set_session(session)
tensorflow.Session
10,991
import tensorflow as tf tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y)) # Optimization opt = tf.train.AdamOptimizer( learning_rate=self.learning_rate).minimize(loss)
tensorflow.train.AdamOptimizer
10,992
import tensorflow as tf # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1)
tensorflow.nn.bias_add
10,993
import tensorflow as tf #print(predictions1) predictions2 = tf.argmax(input=predictions1, axis=1) predictions = sess.run(predictions2) top1 += batch_size - (np.count_nonzero(predictions - np_labels)) #print(top1/num_processed_images) #print(num_processed_images) #print(predictions) #accuracy1 = tf.reduce_sum( # tf.nn.in_top_k(tf.cast(tf.Variable(predictions2), tf.float32), # tf.cast((tf.constant(np_labels), 1), tf.float32))) accuracy1 = tf.reduce_sum( input_tensor=tf.cast(tf.nn.in_top_k(predictions=tf.constant(predictions1), targets=tf.constant(np_labels), k=1), tf.float32)) accuracy5 = tf.reduce_sum( input_tensor=tf.cast(tf.nn.in_top_k(predictions=tf.constant(predictions1), targets=tf.constant(np_labels), k=5), tf.float32)) np_accuracy1, np_accuracy5 = sess.run([accuracy1, accuracy5]) ##print(labels) total_accuracy1 += np_accuracy1 total_accuracy5 += np_accuracy5 print("Processed %d images. (Top1 accuracy, Top5 accuracy) = (%0.4f, %0.4f)" \ % (num_processed_images, total_accuracy1/num_processed_images,
tensorflow.constant
10,994
from tensorflow.python.ops import sparse_ops t1 = constant_op.constant([[359], [359 + 1024]]) t2 = constant_op.constant([list(range(10)), list(range(10))]) cross = sparse_feature_cross_op.sparse_feature_cross( [t2, t1], hashed_output=True, num_buckets=1024) cross_dense = sparse_ops.sparse_tensor_to_dense(cross) with session.Session(): values = cross_dense.eval() self.assertTrue(numpy.equal(values[0], values[1]).all())
tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense
10,995
import tensorflow as tf import random from tensorflow.contrib import slim from npu_bridge.estimator import npu_ops from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig tf.app.flags.DEFINE_integer('input_size', 512, '') tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '') tf.app.flags.DEFINE_integer('num_readers', 16, '') tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 100000, '') tf.app.flags.DEFINE_integer('loss_scale', 1024, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '1', '') tf.app.flags.DEFINE_string('checkpoint_path', '/tmp/east_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to resotre from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 1000, '') tf.app.flags.DEFINE_integer('save_summary_steps', 100, '') tf.app.flags.DEFINE_string('pretrained_model_path', None, '') tf.app.flags.DEFINE_boolean('allow_mix_precision', False, 'whether to allow mix precision') tf.app.flags.DEFINE_boolean('auto_tune', False, 'whether to autotune') tf.app.flags.DEFINE_boolean('use_processed_data', False, 'whether to use processed data') tf.app.flags.DEFINE_string('processed_data', './processed_dataset/', 'where to save preprocessed datasets') import model import icdar
tensorflow.app.flags.DEFINE_string
10,996
import tensorflow as tf # during inference, compute the end logits based on beam search start_top_log_probs, start_top_index = tf.nn.top_k( start_log_probs, k=FLAGS.start_n_top) start_index = tf.one_hot(start_top_index, depth=seq_len, axis=-1, dtype=tf.float32) start_features = tf.einsum("lbh,bkl->bkh", output, start_index) end_input = tf.tile(output[:, :, None], [1, 1, FLAGS.start_n_top, 1]) start_features = tf.tile(start_features[None], [seq_len, 1, 1, 1]) end_input = tf.concat([end_input, start_features], axis=-1) end_logits = tf.layers.dense( end_input, xlnet_config.d_model, kernel_initializer=initializer, activation=tf.tanh, name="dense_0") end_logits = tf.contrib.layers.layer_norm(end_logits, begin_norm_axis=-1) end_logits = tf.layers.dense( end_logits, 1, kernel_initializer=initializer,
tensorflow.layers.dense
10,997
import tensorflow as tf name="parameterized_shape" + shape_str, iters=num_iters, wall_time=p_dt) self.report_benchmark( name="naive_shape" + shape_str, iters=num_iters, wall_time=n_dt) if __name__ == "__main__": tf.test.main()
tensorflow.test.main
10,998
import tensorflow as tf else: self.c_maxlen, self.q_maxlen = config.para_limit, config.ques_limit self.ch_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.ch, tf.bool), tf.int32), axis=2), [-1]) self.qh_len = tf.reshape(tf.reduce_sum( tf.cast(tf.cast(self.qh, tf.bool), tf.int32), axis=2), [-1])
tensorflow.cast
10,999