seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf t = tf.transpose(words, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) outputs_fw, (hidden_fw, output_fw) = lstm_cell_fw(t, dtype=tf.float32, sequence_length=nwords) if bidirectional: lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(num_units=num_units, **kwargs) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw) outputs_bw, (hidden_bw, output_bw) = lstm_cell_bw(t, dtype=tf.float32, sequence_length=nwords) outputs = tf.concat([outputs_fw, outputs_bw], axis=-1) hidden = tf.concat([hidden_fw, hidden_bw], axis=-1)
tensorflow.contrib.rnn.LSTMBlockFusedCell
10,700
import tensorflow as tf """Warmup optimization to reduce overhead.""" samples = tf.random_normal( shape=[n_samples, dynamics.x_dim], dtype=tf.float32)
tensorflow.random_normal
10,701
import tensorflow as tf flat_offsets = tf.reshape( tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1]) flat_positions = tf.reshape(positions + flat_offsets, [-1]) flat_sequence_tensor = tf.reshape(sequence_tensor, [batch_size * seq_length, width])
tensorflow.reshape
10,702
import tensorflow as tf self.feed1 = self.conv4 self.feed2 = self.conv3 self.encoder_1 = self.conv2 self.encoder_2 = self.conv3 self.encoder_3 = self.conv4 self.encoder_4 = self.conv5 print("\nEncoder RESNET is built successfully\n\n") @timeit def load_pretrained_weights(self, sess): print("Loading pretrained weights of resnet18") all_vars = tf.trainable_variables() all_vars += tf.get_collection('mu_sigma_bn') for v in all_vars: if v.op.name in self.pretrained_weights.keys(): assign_op = v.assign(self.pretrained_weights[v.op.name]) sess.run(assign_op) print(v.op.name + " - loaded successfully") print("All pretrained weights of resnet18 is loaded") def _residual_block(self, name, x, filters, pool_first=False, strides=1, dilation=1): print('Building residual unit: %s' % name) with tf.variable_scope(name): # get input channels in_channel = x.shape.as_list()[-1]
tensorflow.get_collection
10,703
import tensorflow as tf # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if task_name != "sts-b": probabilities = tf.nn.softmax(logits, axis=-1) predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) else: probabilities = logits
tensorflow.argmax
10,704
import tensorflow as tf strides = [1] + strides + [1] filter_ = get_variable('filter_{}'.format(k), [filter_height, filter_width, in_channels, out_channels]) encoder_inputs_ = tf.nn.conv2d(encoder_inputs_, filter_, strides, padding='SAME') if encoder.batch_norm: encoder_inputs_ = tf.layers.batch_normalization(encoder_inputs_, training=training, name='conv_batch_norm_{}'.format(k)) if encoder.conv_activation is not None and encoder.conv_activation.lower() == 'relu': encoder_inputs_ = tf.nn.relu(encoder_inputs_) encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / strides[1])) feature_size = encoder_inputs_.shape[2].value channels = encoder_inputs_.shape[3].value time_steps = tf.shape(encoder_inputs_)[1] encoder_inputs_ = tf.reshape(encoder_inputs_, [batch_size, time_steps, feature_size * channels]) conv_outputs_ = encoder_inputs_
tensorflow.nn.relu
10,705
import tensorflow as tf # independent: each GPU has its own copy of the variables, and gradients are # not shared between towers. This can be used to check performance when no # data is moved between GPUs. # distributed_replicated: Distributed training only. Each GPU has a copy of # the variables, and updates its copy after the parameter servers are all # updated with the gradients from all servers. Only works with # cross_replica_sync=true. Unlike 'replicated', currently never uses # nccl all-reduce for replicating within a server. tf.flags.DEFINE_string( 'variable_update', 'parameter_server', ('The method for managing variables: ' 'parameter_server, replicated, distributed_replicated, independent')) tf.flags.DEFINE_boolean( 'use_nccl', True, 'Whether to use nccl all-reduce primitives where possible')
tensorflow.flags.DEFINE_string
10,706
import tensorflow as tf with tf.name_scope('LossA'): # reconstruction loss recon_loss_A = tf.reduce_mean(tf.abs(A - ABA), name='recon_loss') # gan loss G_loss_A, D_loss_A = LSGAN_losses(A_dis_real, A_dis_fake) with tf.name_scope('LossB'): recon_loss_B = tf.reduce_mean(tf.abs(B - BAB), name='recon_loss') G_loss_B, D_loss_B = LSGAN_losses(B_dis_real, B_dis_fake) LAMBDA = 10.0 self.g_loss = tf.add((G_loss_A + G_loss_B), (recon_loss_A + recon_loss_B) * LAMBDA, name='G_loss_total') self.d_loss = tf.add(D_loss_A, D_loss_B, name='D_loss_total') self.collect_variables('gen', 'discrim') add_moving_summary(recon_loss_A, recon_loss_B, self.g_loss, self.d_loss) def _get_optimizer(self): lr = tf.get_variable('learning_rate', initializer=2e-4, trainable=False) return tf.train.AdamOptimizer(lr, beta1=0.5, epsilon=1e-3)
tensorflow.add
10,707
import tensorflow as tf # instead of transfering a word id to one-hot-format vector and then # multiply by the embedding matrix. # embed is the outputs of the hidden layer (embedding layer), it is a # row vector with 'embedding_size' values. with tf.variable_scope(name): embeddings = tf.get_variable( name='embeddings', shape=(vocabulary_size, embedding_size), initializer=E_init, dtype=LayersConfig.tf_dtype, **E_init_args) embed = tf.nn.embedding_lookup(embeddings, self.inputs)
tensorflow.variable_scope
10,708
import tensorflow as tf model_adv = model_name.ResNet(hps, adv_images, FLAGS.mode, Reuse=True) model_adv.build_graph() # Open session and restore checkpoint sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) tf.train.start_queue_runners(sess) sess.run(tf.global_variables_initializer()) ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root) # Choose dir according to rt tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path) saver.restore(sess, ckpt_state.model_checkpoint_path) logits_nor = model_nor.t_SNE_logits logits_adv = model_adv.t_SNE_logits dim_logits = logits_nor.shape[1]
tensorflow.train.get_checkpoint_state
10,709
import tensorflow as tf self.loss = loss_action + loss_arguments tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction_action = tf.equal( tf.argmax(one_hot_labels_action, 1), tf.argmax(self.predictions_action, 1) ) self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float')) tf.scalar_summary('accuracy_action', self.accuracy_action) correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2), tf.argmax(self.predictions_arguments, 2)) self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float')) tf.scalar_summary('accuracy_arguments', self.accuracy_arguments)
tensorflow.argmax
10,710
import tensorflow as tf """ maybe_log2 = tf.log(2.0) if surrogate_type == 'xent' else 1.0
tensorflow.log
10,711
import tensorflow as tf pred1, pred2 = tf.split(pred, 2, axis=0) tgt1, tgt2 = tf.split(tgt, 2, axis=0)
tensorflow.split
10,712
from tensorflow.python.framework import ops class InverseGammaWithSoftplusAlphaBeta(InverseGamma): """Inverse Gamma with softplus applied to `alpha` and `beta`.""" def __init__(self, alpha, beta, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusAlphaBeta"): parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: super(InverseGammaWithSoftplusAlphaBeta, self).__init__( alpha=nn.softplus(alpha, name="softplus_alpha"), beta=nn.softplus(beta, name="softplus_gamma"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=ns) self._parameters = parameters
tensorflow.python.framework.ops.name_scope
10,713
import tensorflow as tf average_across_batch=True) res = sess.run(average_loss_per_sequence) self.assertAllClose(4.828314, res) total_loss = tf.nn.seq2seq.sequence_loss( logits, targets, weights, average_across_timesteps=False, average_across_batch=False)
tensorflow.nn.seq2seq.sequence_loss
10,714
import tensorflow as tf log_score_t = tf.log(output_t) # [batch_size, vsize] wordidx_t = tf.multinomial(log_score_t, 1) # [batch_size, 1] wordidx_t = tf.reshape(wordidx_t, [-1]) # [batch_size] elif mode_gen in ('ce_train', 'loss',):
tensorflow.reshape
10,715
import tensorflow as tf return outputs # 这个就是在tensorboard上可视化的时候的区别: # 使用with tf.name_scope('inputs')可以将xs和ys包含进来 # 形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。 with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 1], name='x_input') # 这个name的属性,也是为了使用tensorboard,添加上来的 ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # 同上 # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu,nameScope="layerTest1") # add output layer prediction = add_layer(l1, 10, 1, activation_function=None,nameScope="layerTest2") sess = tf.Session()
tensorflow.placeholder
10,716
import tensorflow as tf sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True with tf.Session(config=sess_config) as sess: input_image = tf.constant(input_image, dtype=tf.float32)
tensorflow.Session
10,717
import tensorflow as tf b1 = tf.matmul(state, hyper_b_1) w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer]) # [batch, 1, n_h_mixer] hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped) # Second layer w_final = tf.abs(tf.matmul(state, hyper_w_final)) w_final_reshaped = tf.reshape(w_final, [-1, n_h_mixer, 1]) # reshape into batch of matrices b_final_reshaped = tf.reshape(hyper_b_final, [-1, 1, 1]) # [batch, 1, 1] y = tf.matmul(hidden, w_final_reshaped) + b_final_reshaped q_tot = tf.reshape(y, [-1, 1]) return q_tot
tensorflow.reshape
10,718
from tensorflow.contrib.framework.python.ops import variables as contrib_variables def dnn_bias_(self): """Returns bias of deep neural network part.""" return (self._dnn_model.get_bias(model_dir=self._model_dir) + [self.get_variable_value("centered_bias_weight")]) def _get_feature_dict(self, features): if isinstance(features, dict): return features return {"": features} def _get_train_ops(self, features, targets): """See base class.""" global_step = contrib_variables.get_global_step() assert global_step features = self._get_feature_dict(features) logits = self._logits(features, is_training=True) if self._enable_centered_bias: centered_bias_step = [self._centered_bias_step(targets, features)] else: centered_bias_step = [] with ops.control_dependencies(centered_bias_step): loss = self._target_column.loss(logits, targets, features) logging_ops.scalar_summary("loss", loss)
tensorflow.contrib.framework.python.ops.variables.get_global_step
10,719
import tensorflow as tf out, num_outputs=num_filters, kernel_size=8, stride=4, activation_fn=tf.nn.relu, weights_initializer=gauss_initializer, trainable=False) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out
tensorflow.variable_scope
10,720
from tensorflow.python.ops import math_ops update_mean_label = state_ops.assign_add(mean_label, delta_mean_label) # prev_mean_label is E[y_A] in the update equation prev_mean_label = update_mean_label - delta_mean_label unweighted_batch_coresiduals = ( (predictions - batch_mean_prediction) * (labels - batch_mean_label)) # batch_comoment is C_B in the update equation if weights is None: batch_comoment = math_ops.reduce_sum(unweighted_batch_coresiduals) else: batch_comoment = math_ops.reduce_sum(unweighted_batch_coresiduals * weights) # View delta_comoment as = C_AB - C_A in the update equation above. # Since C_A is stored in a var, by how much do we need to increment that var # to make the var = C_AB? delta_comoment = (batch_comoment + (prev_mean_prediction - batch_mean_prediction) * (prev_mean_label - batch_mean_label) * (prev_count * batch_count / update_count))
tensorflow.python.ops.math_ops.reduce_sum
10,721
import tensorflow as tf with tf.variable_scope("layer_{}".format(layer_id)): w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size]) self.w_lstm.append(w) self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size]) with tf.variable_scope("emb"): self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size]) with tf.variable_scope("softmax"): self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches]) b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
tensorflow.variable_scope
10,722
import tensorflow as tf res = sess.run([mem]) self.assertEqual((2, 2), res[0].shape) def testDynamicAttentionDecoder1(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): cell = tf.nn.rnn_cell.GRUCell(2) inp = tf.constant(0.5, shape=[2, 2, 2]) enc_outputs, enc_state = tf.nn.dynamic_rnn(cell, inp, dtype=tf.float32) attn_states = enc_outputs dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 dec, mem = tf.nn.seq2seq.attention_decoder( dec_inp, enc_state,
tensorflow.nn.rnn_cell.GRUCell
10,723
import tensorflow as tf for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss
tensorflow.summary.scalar
10,724
import tensorflow as tf tf.app.flags.DEFINE_string('data-dir', os.getcwd() + '/dataset/', 'Directory where the dataset will be stored and checkpoint. (default: %(default)s)') tf.app.flags.DEFINE_integer('max-steps', 10000, 'Number of mini-batches to train on. (default: %(default)d)') tf.app.flags.DEFINE_integer('log-frequency', 10, 'Number of steps between logging results to the console and saving summaries (default: %(default)d)') tf.app.flags.DEFINE_integer('save-model', 1000, 'Number of steps between model saves (default: %(default)d)') # Optimisation hyperparameters tf.app.flags.DEFINE_integer('batch-size', 256, 'Number of examples per mini-batch (default: %(default)d)') tf.app.flags.DEFINE_float('learning-rate', 1e-4, 'Learning rate (default: %(default)d)') tf.app.flags.DEFINE_integer('img-width', 32, 'Image width (default: %(default)d)') tf.app.flags.DEFINE_integer('img-height', 32, 'Image height (default: %(default)d)') tf.app.flags.DEFINE_integer('img-channels', 3, 'Image channels (default: %(default)d)') tf.app.flags.DEFINE_integer('num-classes', 10, 'Number of classes (default: %(default)d)') tf.app.flags.DEFINE_string('log-dir', '{cwd}/logs/'.format(cwd=os.getcwd()), 'Directory where to write event logs and checkpoint. (default: %(default)s)') run_log_dir = os.path.join(FLAGS.log_dir,
tensorflow.app.flags.DEFINE_integer
10,725
import tensorflow as tf trainable=trainable ) sigma = tf.layers.dense(inputs=l1, units=action_dim, # output units activation=tf.nn.softplus, # get action probabilities name='sigma', trainable=trainable ) norm_dist = tf.distributions.Normal(loc=mu, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params def choose_action(self, s): # 決定下一步該怎麼做 # s = s[np.newaxis, :] s = s.reshape(-1, 84, 84, 3) a = self.sess.run(self.sample_op, {self.tfs: s})[0] return np.clip(a, ACTION_BOUND[0], ACTION_BOUND[1])
tensorflow.get_collection
10,726
import tensorflow as tf input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.gfile.Glob(input_pattern)) tf.logging.info("*** Input Files ***") for input_file in input_files: tf.logging.info(" %s" % input_file) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project
tensorflow.logging.info
10,727
from tensorflow.python.framework import ops as _ops _ops.RegisterShape("TestStringOutput")(None) def _InitOpDefLibrary():
tensorflow.python.framework.ops.RegisterShape
10,728
import tensorflow as tf def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] name_to_features = { "input_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "masked_lm_positions": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature([max_predictions_per_seq], tf.float32), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64), } # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. if is_training:
tensorflow.FixedLenFeature
10,729
import tensorflow as tf box_xy, box_wh, obj, cls = tf.split(logits, (2, 2, 1, num_classes), axis=-1) box_xy = tf.sigmoid(box_xy) obj = tf.sigmoid(obj) cls = tf.sigmoid(cls) anchors = anchors.astype(np.float32) grid_shape = x_shape[1:3] # print(grid_shape) grid_h, grid_w = grid_shape[0], grid_shape[1] # print(grid_h,tf.range(grid_h)) grid = tf.meshgrid(tf.range(grid_w), tf.range(grid_h)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, dtype)) * stride box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2. box_x2y2 = box_xy + box_wh / 2. box = tf.concat([box_x1y1, box_x2y2], axis=-1) boxes.append(tf.reshape(box, (x_shape[0], -1, 1, 4))) objects.append(tf.reshape(obj, (x_shape[0], -1, 1)))
tensorflow.range
10,730
import tensorflow as tf attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile, name='attn_mask') # bs,bn,bl,bl # attention f_bias = tf.get_variable('f_bias', [ivec], tf.float32, tf.constant_initializer(0.)) dependent_head = linear( rep_map, 2 * ivec, False, 0., 'linear_dependent_head', False, wd, keep_prob, is_train) # bs,bn,bl,2vec
tensorflow.constant_initializer
10,731
import tensorflow as tf # patches = tf.gather(patches, rand_idx, axis=0) rows = tf.split(patches,n_col//self.size,axis=0)
tensorflow.split
10,732
import tensorflow as tf del reduction_axes[axis] broadcast_shape = [1] * len(input_shape) broadcast_shape[axis] = input_shape[axis] # case: train mode (uses stats of the current batch) mean = tf.reduce_mean(_x, axis=reduction_axes) brodcast_mean = tf.reshape(mean, broadcast_shape) std = tf.reduce_mean(tf.square(_x - brodcast_mean) + epsilon, axis=reduction_axes) std = tf.sqrt(std) brodcast_std = tf.reshape(std, broadcast_shape) x_normed = (_x - brodcast_mean) / (brodcast_std + epsilon) # x_normed = tf.layers.batch_normalization(_x, center=False, scale=False) x_p = tf.sigmoid(x_normed) return alphas * (1.0 - x_p) * _x + x_p * _x
tensorflow.sqrt
10,733
import tensorflow as tf Returns: Either a tf.no_op() when shapes are all static and a tf.assert_equal() op when the shapes are dynamic. Raises: ValueError: When shapes are both static and unequal. """ if (all(isinstance(dim, int) for dim in shape_a) and all(isinstance(dim, int) for dim in shape_b)): if shape_a != shape_b: raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b)) else: return tf.no_op() else: return tf.assert_equal(shape_a, shape_b) def assert_shape_equal_along_first_dimension(shape_a, shape_b): """Asserts that shape_a and shape_b are the same along the 0th-dimension. If the shapes are static, raises a ValueError when the shapes mismatch.
tensorflow.no_op
10,734
import tensorflow as tf Y = tf.placeholder(tf.float32, [None, config.n_classes]) print("-------X Y----------") print(X) X = tf.reshape(X, shape=[-1, 32, 36]) print(X) print(Y) Y = tf.reshape(Y, shape=[-1, 6]) print(Y) # Weight Initialization def weight_variable(shape): # tra ve 1 gia tri random theo thuat toan truncated_ normal initial = tf.truncated_normal(shape, mean=0.0, stddev=0.1, dtype=tf.float32) return tf.Variable(initial) def bias_varibale(shape): initial = tf.constant(0.1, shape=shape, name='Bias') return tf.Variable(initial) # Convolution and Pooling def conv2d(x, W): # Must have `strides[0] = strides[3] = 1 `. # For the most common case of the same horizontal and vertices strides, `strides = [1, stride, stride, 1] `. return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME', name='conv_2d') def max_pool_2x2(x):
tensorflow.truncated_normal
10,735
import tensorflow as tf q_online_tp1 = q_online(obs_tp1_float) q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='online_q_func') q_target = q_func(obs_tp1_float,num_actions,scope="target_q_func",reuse=False) target_q_func_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='target_q_func') # Bellman training error if double_q: q_max = gather_2d(q_target,tf.argmax(q_online_tp1,axis=1,output_type=tf.int32)) else: q_max = tf.reduce_max(q_target,axis=1) target = rew_t_ph + gamma * q_max * (1.0 - done_mask_ph) q_t_act = gather_2d(q_online_t,act_t_ph) total_error = tf.reduce_mean(huber_loss(target - q_t_act)) ###### # construct optimization op (with gradient clipping) learning_rate = tf.placeholder(tf.float32, (), name="learning_rate")
tensorflow.reduce_max
10,736
import tensorflow as tf ) # Episodes index self.episode_count = tf.get_variable( name='episode-count', dtype=util.tf_dtype('int'), initializer=0, trainable=False ) def tf_store(self, states, internals, actions, terminal, reward): # Memory indices to overwrite. num_instances = tf.shape(input=terminal)[0] with tf.control_dependencies([tf.assert_less_equal(num_instances, self.capacity)]): indices = tf.range(self.memory_index, self.memory_index + num_instances) % self.capacity # Remove episode indices. num_episodes = tf.count_nonzero( input_tensor=tf.gather(params=self.terminal_memory, indices=indices), axis=0, dtype=util.tf_dtype('int') ) num_episodes = tf.minimum(x=num_episodes, y=self.episode_count) assignment = tf.assign( ref=self.episode_indices[:self.episode_count - num_episodes], value=self.episode_indices[num_episodes: self.episode_count]
tensorflow.assert_less_equal
10,737
import tensorflow as tf backward_cell = tf.nn.rnn_cell.LSTMCell(128) encoder_outputs,_ = tf.nn.bidirectional_dynamic_rnn( forward_cell, backward_cell, logits, dtype=tf.float32 ) encoder_outputs = tf.concat(encoder_outputs, axis=2) logits = tf.reshape(tf.layers.dense(encoder_outputs, units=num_classes), [-1, bil_lstm_win_size, num_classes]) return logits def cnn_model(x, amp_factor=1): with tf.variable_scope('model'): conv1 = tf.layers.conv2d(x, filters=32*amp_factor, kernel_size=[5, 3], data_format='channels_last', padding= "same",
tensorflow.layers.dense
10,738
import tensorflow as tf box_diff = bbox_pred - bbox_targets in_box_diff = bbox_inside_weights * box_diff #属于前景的行不为0,其他的行都为0 abs_in_box_diff = tf.abs(in_box_diff)
tensorflow.abs
10,739
from tensorflow.contrib.framework.python.ops import variables as contrib_variables def begin(self): self._last_step = None self._global_step_tensor = contrib_variables.get_global_step() for m in self._monitors:
tensorflow.contrib.framework.python.ops.variables.get_global_step
10,740
import tensorflow as tf lookup_table = tf.get_variable( "lookup_table", dtype=tf.float32, shape=[len(vocab), size_layers], initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01), ) lookup_table = tf.concat((tf.zeros(shape=[1, size_layers]), lookup_table[1:, :]), 0) forward = tf.nn.embedding_lookup(lookup_table, self.X) self.Y = tf.placeholder(tf.float32, (None, None, n_mels * resampled)) self.decoder_inputs = tf.concat((tf.zeros_like(self.Y[:, :1, :]), self.Y[:, :-1, :]), 1) self.decoder_inputs = self.decoder_inputs[:, :, -n_mels:] self.Z = tf.placeholder(tf.float32, (None, None, fourier_window_size // 2 + 1)) batch_size = tf.shape(self.X)[0] seq_lens = tf.count_nonzero(tf.reduce_sum(self.decoder_inputs, -1), 1, dtype=tf.int32) + 1 def cells(reuse=False): return tf.contrib.rnn.DropoutWrapper( tf.nn.rnn_cell.LSTMCell( size_layers, initializer=tf.orthogonal_initializer(), reuse=reuse ), state_keep_prob=dropout, output_keep_prob=dropout, ) def attention(encoder_out, seq_len, reuse=False):
tensorflow.shape
10,741
import tensorflow as tf valid_image_batch,valid_label_batch=get_valid_batch(valid_image,valid_label,validnum) valid_inf=work.valid_inference(valid_image_batch) valid_labels=tf.one_hot(valid_label_batch,classnum) #train_step=tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy) valid_pre = tf.reshape(valid_inf, [validnum, classnum]) valid_correct_prediction=tf.equal(tf.argmax(valid_inf,1),tf.argmax(valid_labels,1)) valid_accuracy=tf.reduce_mean(tf.cast(valid_correct_prediction,tf.float32)) valid_pre = tf.argmax(valid_pre, 1) valid_true = tf.argmax(valid_labels, 1)
tensorflow.reshape
10,742
import tensorflow as tf attn_score = tf.nn.softmax(logits_masked, 3) # bs,bn,bl,bl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) # bs,bn,bl,bl,vec self_attn_result = tf.reduce_sum(attn_score * rep_map_tile, 3) # bs,bn,bl,vec with tf.variable_scope('source2token_self_attn'): inter_block_logits = bn_dense_layer(self_attn_result, ivec, True, 0., 'bn_dense_map', 'linear', False, wd, keep_prob, is_train) # bs,bn,bl,vec inter_block_logits_masked = exp_mask_for_high_rank(inter_block_logits, rep_mask_split) # bs,bn,bl,vec inter_block_soft = tf.nn.softmax(inter_block_logits_masked, 2) # bs,bn,bl,vec inter_block_attn_output = tf.reduce_sum(self_attn_result * inter_block_soft, 2) # bs,bn,vec with tf.variable_scope('self_attn_inter_block'): inter_block_attn_output_mask = tf.cast(tf.ones([bs, bn], tf.int32), tf.bool) block_ct_res = directional_attention_with_dense( inter_block_attn_output, inter_block_attn_output_mask, direction, 'disa', keep_prob, is_train, wd, activation ) # [bs,bn,vec] block_ct_res_tile = tf.tile(tf.expand_dims(block_ct_res, 2), [1, 1, bl, 1])#[bs,bn,vec]->[bs,bn,bl,vec] with tf.variable_scope('combination'): # input:1.rep_map[bs,bn,bl,vec]; 2.self_attn_result[bs,bn,bl,vec]; 3.rnn_res_tile[bs,bn,bl,vec] rep_tensor_with_ct = tf.concat([rep_map, self_attn_result, block_ct_res_tile], -1) # [bs,bn,bl,3vec] new_context_and_gate = linear(rep_tensor_with_ct, 2 * ivec, True, 0., 'linear_new_context_and_gate',
tensorflow.ones
10,743
import tensorflow as tf rconst.MASK_START_INDEX: tf.FixedLenFeature([1], dtype=tf.string), "labels": tf.FixedLenFeature([], dtype=tf.string), } _EVAL_FEATURE_MAP = { movielens.USER_COLUMN: tf.FixedLenFeature([], dtype=tf.string), movielens.ITEM_COLUMN: tf.FixedLenFeature([], dtype=tf.string), rconst.DUPLICATE_MASK: tf.FixedLenFeature([], dtype=tf.string) }
tensorflow.FixedLenFeature
10,744
import tensorflow as tf ch_emb = tf.reshape(tf.nn.embedding_lookup( self.char_mat, self.ch), [N * PL * self.max_p_num, CL, dc]) qh_emb = tf.reshape(tf.nn.embedding_lookup( self.char_mat, self.qh), [N * QL * self.max_p_num, CL, dc]) ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout) qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout) ch_emb = conv(ch_emb, d, bias=True, activation=tf.nn.relu, kernel_size=5, name="char_conv", reuse=None) qh_emb = conv(qh_emb, d,
tensorflow.nn.dropout
10,745
import tensorflow as tf Return: A tuple of `SparseTensor` (neibors, weights). neighbors: A `SparseTensor` of `int64`. weights: A `SparseTensor` of `float`. types: A `SparseTensor` of `int32` """ sp_returns = base._LIB_OP.get_full_neighbor(nodes, edge_types) return tf.SparseTensor(*sp_returns[:3]), tf.SparseTensor(*sp_returns[3:6]), \ tf.SparseTensor(*sp_returns[6:]) def get_sorted_full_neighbor(nodes, edge_types): """ Args:
tensorflow.SparseTensor
10,746
import tensorflow as tf # compute RHS of bellman equation q_t_selected_target = rew_t_ph + gamma * q_tp1_best_masked # compute the error (potentially clipped) td_error = q_t_selected - tf.stop_gradient(q_t_selected_target) errors = tf_util.huber_loss(td_error) weighted_error = tf.reduce_mean(importance_weights_ph * errors) tf.summary.scalar("td_error", tf.reduce_mean(td_error)) tf.summary.scalar("loss", weighted_error) if full_tensorboard_log: tf.summary.histogram("td_error", td_error) # update_target_fn will be called periodically to copy Q network to target Q network update_target_expr = [] for var, var_target in zip(sorted(q_func_vars, key=lambda v: v.name),
tensorflow.reduce_mean
10,747
import tensorflow as tf segment_ids.append(0) label_ids.append(0) # print(len(input_ids)) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids])) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask,
tensorflow.logging.info
10,748
import tensorflow as tf def _word_embedding(self, inputs, reuse=False): with tf.variable_scope('word_embedding', reuse=reuse): w = tf.get_variable('w', [self.V, self.M], initializer=self.emb_initializer)
tensorflow.variable_scope
10,749
import tensorflow as tf a `float` `scalar`, KL divergence. """ logits = tf.stop_gradient(logits) weights = _end_of_seq_mask(labels, vocab_size) d = _mask_by_length(tf.random_normal(shape=tf.shape(embedded)), length) for _ in range(num_power_iteration): d = _scale_l2(d, small_constant_for_finite_diff) d_logits = logits_from_embedding_fn(embedded + d) kl = _kl_divergence_with_logits(logits, d_logits, weights, num_classes) d, = tf.gradients(kl, d, aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N) d = tf.stop_gradient(d) perturb = _scale_l2(_mask_by_length(d, length), perturb_norm_length) vadv_logits = logits_from_embedding_fn(embedded + perturb) return _kl_divergence_with_logits(logits, vadv_logits, weights, num_classes) def random_perturbation_loss_brnn(embedded, length, loss_fn, perturb_norm_length=0.1): """Adds noise to embeddings and recomputes classification loss fir bidirectional rnn models.
tensorflow.gradients
10,750
import tensorflow as tf location_pred = tf.reshape(location_pred, [-1, 4]) glabels = tf.reshape(glabels, [-1]) gscores = tf.reshape(gscores, [-1]) gtargets = tf.reshape(gtargets, [-1, 4]) # raw mask for positive > 0.5, and for negetive < 0.3
tensorflow.reshape
10,751
import tensorflow as tf def _norm(x, g=None, b=None, e=1e-5, axis=[1]): u = tf.reduce_mean(x, axis=axis, keep_dims=True)
tensorflow.reduce_mean
10,752
import tensorflow as tf 'A flag to override the data format used in the model. channels_first ' 'provides a performance boost on GPU but is not always compatible ' 'with CPU. If left unspecified, the data format will be chosen ' 'automatically based on whether TensorFlow was built for CPU or GPU.') tf.app.flags.DEFINE_float( 'negative_ratio', 3., 'Negative ratio in the loss function.') tf.app.flags.DEFINE_float( 'match_threshold', 0.56, 'Matching threshold in the loss function.') tf.app.flags.DEFINE_float( 'neg_threshold', 0.4, 'Matching threshold for the negtive examples in the loss function.') # optimizer related configuration tf.app.flags.DEFINE_float( 'weight_decay', 0.0005, 'The weight decay on the model weights.') tf.app.flags.DEFINE_float( 'momentum', 0.9, 'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tensorflow.app.flags.DEFINE_float
10,753
import tensorflow as tf self.strides = [1, d_h, d_w, 1] self.padding = padding self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops):
tensorflow.nn.conv2d
10,754
import tensorflow as tf # hss(s): eta * (\varphi(s)^T * K^T * \Sigma^{-1} * K * \varphi(s)) varphisKt = tf.matmul(varphis, Kt)
tensorflow.matmul
10,755
import tensorflow as tf while_loop = tf.contrib.tpu.while_loop if params['use_tpu'] else tf.while_loop # train the discriminator 100 steps inputs = [tf.constant(0), tf.constant(0.0)] cond = lambda i, x: tf.less(i, 100) def body(i, x):
tensorflow.constant
10,756
import tensorflow as tf items = sorted(items, key=lambda x: x[0]) existing = {} for name, params in items: outdir = params.save_episode_dir tf.gfile.MakeDirs(outdir) if outdir not in existing: existing[outdir] = len(tf.gfile.Glob(os.path.join(outdir, '*.npz'))) if params.num_episodes <= existing[outdir]:
tensorflow.gfile.MakeDirs
10,757
from tensorflow.python.ops import array_ops zeros = array_ops.zeros_like(logits, dtype=logits.dtype) pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros) neg_p_sub = array_ops.where(labels > zeros, zeros, logits) cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \
tensorflow.python.ops.array_ops.where
10,758
import tensorflow as tf self.assertEqual(len(meta_graph_def.collection_def), 0) def _testMultiSaverCollectionSave(self): test_dir = self._TestDir("saver_collection") filename = os.path.join(test_dir, "metafile") saver0_ckpt = os.path.join(test_dir, "saver0.ckpt") saver1_ckpt = os.path.join(test_dir, "saver1.ckpt") with self.test_session(graph=tf.Graph()) as sess: # Creates a graph. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(11.0, name="v1") # Creates 2 savers. saver0 = tf.train.Saver({"v0": v0}, name="saver0") saver1 = tf.train.Saver({"v1": v1}, name="saver1") tf.add_to_collection("savers", saver0) tf.add_to_collection("savers", saver1) tf.initialize_all_variables().run() # Saves to different checkpoints. saver0.save(sess, saver0_ckpt) saver1.save(sess, saver1_ckpt) # Generates MetaGraphDef. meta_graph_def = tf.train.export_meta_graph(filename) meta_graph_def0 = saver0.export_meta_graph() meta_graph_def1 = saver1.export_meta_graph() # Verifies that there is no saver_def in meta_graph_def. self.assertFalse(meta_graph_def.HasField("saver_def")) # Verifies that there is saver_def in meta_graph_def0 and 1.
tensorflow.add_to_collection
10,759
import tensorflow as tf if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
tensorflow.nn.softmax
10,760
import tensorflow as tf shape = np.array(shape) tt_rank = np.array(tt_rank) _validate_input_parameters(is_tensor=True, shape=shape, tt_rank=tt_rank, batch_size=batch_size) num_dims = shape.size if tt_rank.size == 1: tt_rank = tt_rank * np.ones(num_dims - 1) tt_rank = np.insert(tt_rank, 0, 1) tt_rank = np.append(tt_rank, 1) tt_rank = tt_rank.astype(int) cr_exponent = -1.0 / (2 * num_dims) var = np.prod(tt_rank ** cr_exponent) cr_stddev = stddev ** (1.0 / num_dims) * var with tf.name_scope(name): tt = tensor_batch_with_random_cores(shape, tt_rank=tt_rank, stddev=cr_stddev, batch_size=batch_size, dtype=dtype) if np.abs(mean) < 1e-8: return tt else: raise NotImplementedError('non-zero mean is not supported yet') def random_matrix(shape, tt_rank=2, mean=0., stddev=1., dtype=tf.float32, name='t3f_random_matrix'): """Generate a random TT-matrix of the given shape with given mean and stddev.
tensorflow.name_scope
10,761
import tensorflow as tf "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model_bak " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels()
tensorflow.gfile.MakeDirs
10,762
import tensorflow as tf def testInvalidConcentration(self): scale = 1. invalid_concentrations = [-.01, 0., -2.] for concentration in invalid_concentrations: with self.assertRaisesOpError("Condition x > 0"): pareto = tfd.Pareto(concentration, scale, validate_args=True) self.evaluate(pareto.concentration) def testParetoLogPdf(self): batch_size = 6 scale = tf.constant([3.] * batch_size) scale_v = 3. concentration = tf.constant([2.]) concentration_v = 2. x = [3., 3.1, 4., 5., 6., 7.] pareto = tfd.Pareto(concentration, scale) log_prob = pareto.log_prob(x) self.assertEqual(log_prob.shape, (6,)) self.assertAllClose( self.evaluate(log_prob), self._scipy_pareto(concentration_v, scale_v).logpdf(x))
tensorflow.constant
10,763
import tensorflow as tf # Read image img = Image.open(image_path) img = img.resize([width,height], Image.ANTIALIAS) img = np.array(img).astype('float32') img = np.expand_dims(np.asarray(img), axis = 0) # Create a placeholder for the input image input_node = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # Construct the network net = models.ResNet50UpProj({'data': input_node}, batch_size) with tf.Session() as sess: # Load the converted parameters
tensorflow.placeholder
10,764
import tensorflow as tf val_losses_warmup = deque(maxlen=warmup_n_model_iters // FLAGS.model.validation_freq) val_losses_slbo = deque(maxlen=slbo_n_model_iters // FLAGS.model.validation_freq) # NOTE: For each test task, we should reset model to the loaded one, and randomly initialize policy and vfn #if test: # saver.load_state_dict(np.load(model_load, allow_pickle=True)[()]) # logger.warning('Load model from %s', model_load) if test: logger.info("################################################## TESTING TASK %d ################################################", TEST_TASK_NUM) logger.info(f'TEST_TASK_NUM={TEST_TASK_NUM}, TASK_NUM={TASK_NUM}') logger.warning('Revert model and normalizers') tf.get_default_session().run(sync_model_from_lazymodel) tf.get_default_session().run(revert_normalizers) else: logger.info("################################################## TRAINING TASK %d ################################################", TASK_NUM) if test: test_returns = [] test_summary['warmupprocess'].append([]) test_summary['slbo'].append([]) if not test: #and FLAGS.task.method == 'random': if inittask != 'none' and TASK_NUM == 1:
tensorflow.get_default_session
10,765
from tensorflow.python.framework import ops arguments are always checked.) name: `String`. The name prepended to Ops created by this class. Raises: ValueError: if either `batch_ndims` or `event_ndims` are: `None`, negative, not `int32`. """ if batch_ndims is None: raise ValueError("batch_ndims cannot be None") if event_ndims is None: raise ValueError("event_ndims cannot be None") self._batch_ndims = batch_ndims self._event_ndims = event_ndims self._validate_args = validate_args with ops.name_scope(name) as ns: self._name = ns with ops.name_scope("init"): self._batch_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( batch_ndims, name="batch_ndims")) self._batch_ndims_static, self._batch_ndims_is_0 = ( self._introspect_ndims(self._batch_ndims)) self._event_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( event_ndims, name="event_ndims")) self._event_ndims_static, self._event_ndims_is_0 = (
tensorflow.python.framework.ops.name_scope
10,766
from tensorflow.contrib.learn.python.learn import monitors as monitor_lib def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): """See trainable.Trainable.""" # TODO(roumposg): Remove when deprecated monitors are removed. hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) self._estimator.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=hooks, max_steps=max_steps) return self def evaluate(self,
tensorflow.contrib.learn.python.learn.monitors.replace_monitors_with_hooks
10,767
import tensorflow as tf outputs = tf.nn.conv3d(inputs, kernel, [1, stride_d, stride_h, stride_w, 1], padding=padding) biases = _variable_on_cpu('biases', [num_output_channels], tf.constant_initializer(0.0)) outputs = tf.nn.bias_add(outputs, biases) if bn:
tensorflow.constant_initializer
10,768
import tensorflow as tf # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. output_bias = tf.get_variable( "output_bias", shape=[bert_config.vocab_size], initializer=tf.zeros_initializer()) logits = tf.matmul(input_tensor, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) if clip: log_probs = tf.log(tf.clip_by_value(tf.nn.softmax(logits, axis=-1), 1e-6, 1.0 - 1e-6)) else: log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1])
tensorflow.nn.bias_add
10,769
import tensorflow as tf self.a_grads, _ = tf.clip_by_global_norm(self.a_grads, 20.0) self.c_grads, _ = tf.clip_by_global_norm(self.c_grads, 20.0)
tensorflow.clip_by_global_norm
10,770
import tensorflow as tf activation=None, name='V' ) # 計算損益 self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # Actor # 建立網路
tensorflow.square
10,771
import tensorflow as tf from metric import tf_metrics from optimizer import distributed_optimizer as optimizer from model_io import model_io from distillation import knowledge_distillation as distill def correlation(x, y): x = x - tf.reduce_mean(x, axis=-1, keepdims=True) y = y - tf.reduce_mean(y, axis=-1, keepdims=True) x = tf.nn.l2_normalize(x, -1) y = tf.nn.l2_normalize(y, -1) return -tf.reduce_sum(x*y, axis=-1) # higher the better def kd(x, y): x_prob = tf.nn.softmax(x)
tensorflow.reduce_mean
10,772
import tensorflow as tf if decoder.use_lstm is False: decoder.cell_type = 'GRU' embedding_shape = [decoder.vocab_size, decoder.embedding_size] weight_scale = decoder.embedding_weight_scale or decoder.weight_scale if weight_scale is None: initializer = None # FIXME elif decoder.embedding_initializer == 'uniform' or (decoder.embedding_initializer is None and decoder.initializer == 'uniform'): initializer = tf.random_uniform_initializer(minval=-weight_scale, maxval=weight_scale) else: initializer = tf.random_normal_initializer(stddev=weight_scale) with tf.device('/cpu:0'): embedding = get_variable('embedding_{}'.format(decoder.name), shape=embedding_shape, initializer=initializer) input_shape = tf.shape(decoder_inputs) batch_size = input_shape[0] time_steps = input_shape[1] scope_name = 'decoder_{}'.format(decoder.name) scope_name += '/' + '_'.join(encoder.name for encoder in encoders) def embed(input_): embedded_input = tf.nn.embedding_lookup(embedding, input_) if decoder.use_dropout and decoder.word_keep_prob is not None:
tensorflow.device
10,773
import tensorflow as tf rightmost_transposed_ndims = tf.size( input=perm, name='rightmost_transposed_ndims') rightmost_transposed_ndims_ = tf.get_static_value( rightmost_transposed_ndims)
tensorflow.get_static_value
10,774
import tensorflow as tf # set some important options if self._gpu == -1: sess_config = tf.ConfigProto(device_count = {'GPU': 0}, allow_soft_placement=True) else: #config = tf.ConfigProto(log_device_placement=True) sess_config = tf.ConfigProto(allow_soft_placement=True) sess_config.gpu_options.allow_growth = True # self.sess = tf.Session(config=config) # self.sess = tf.InteractiveSession()
tensorflow.ConfigProto
10,775
import tensorflow as tf if trainable: self.lr = tf.minimum(config.learning_rate, 0.001 / tf.log(999.) * tf.log(tf.cast(self.global_step, tf.float32) + 1)) self.opt = tf.train.AdamOptimizer(learning_rate = self.lr, beta1 = 0.8, beta2 = 0.999, epsilon = 1e-7) grads = self.opt.compute_gradients(self.loss) gradients, variables = zip(*grads) capped_grads, _ = tf.clip_by_global_norm( gradients, config.grad_clip) self.train_op = self.opt.apply_gradients( zip(capped_grads, variables), global_step=self.global_step) def forward(self):
tensorflow.clip_by_global_norm
10,776
import tensorflow as tf final_loss = tf.reduce_mean(loss) return final_loss, cstr_pct def contra_traj_lossV7(pred, tgt, horizon=12, temp=100): horizon_pred, horizon_tgt = horizon_sumV1(pred, horizon), horizon_sumV1(tgt, horizon) # horizon_pred, horizon_tgt = horizon_sumV2(pred, tgt, horizon) pred_flat1, pred_flat2 = tf.reshape(horizon_pred, [-1, 1]), tf.reshape(horizon_pred, [1, -1]) tgt_flat1, tgt_flat2 = tf.reshape(horizon_tgt, [-1, 1]), tf.reshape(horizon_tgt, [1, -1]) tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32)
tensorflow.reshape
10,777
import tensorflow as tf tf.tile(tf.linspace(-1.0, 1.0, width), [height * depth]), [depth, height, width]) y_t = tf.reshape( tf.tile(tf.linspace(-1.0, 1.0, height), [width * depth]), [depth, width, height]) y_t = tf.transpose(y_t, [0, 2, 1]) sample_grid = tf.tile( tf.linspace(float(z_near), float(z_far), depth), [width * height]) z_t = tf.reshape(sample_grid, [height, width, depth]) z_t = tf.transpose(z_t, [2, 0, 1]) z_t = 1 / z_t d_t = 1 / z_t x_t /= z_t y_t /= z_t
tensorflow.reshape
10,778
import tensorflow as tf tgt_dif = tgt_flat1 - tgt_flat2 pred_dif = pred_flat1 - pred_flat2 geq = tf.cast(tgt_dif > 0, tf.bool) tgt_posi_dif = tf.where(geq, tgt_dif, -tgt_dif) pred_posi_dif = tf.where(geq, pred_dif, -pred_dif) loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) unorm_w = tf.exp((tgt_flat1 + tgt_flat2)/temp) loss = unorm_w * loss / (tf.reduce_sum(unorm_w)) a = tf.print(tf.reduce_sum(unorm_w))
tensorflow.shape
10,779
import tensorflow as tf mask_neg = tf.equal(class_true, 0) mask_landm = tf.logical_and(tf.equal(landm_valid, 1), mask_pos) # landm loss (smooth L1) mask_landm_b = tf.broadcast_to(mask_landm, tf.shape(landm_true)) loss_landm = _smooth_l1_loss(tf.boolean_mask(landm_true, mask_landm_b), tf.boolean_mask(landm_pred, mask_landm_b)) loss_landm = tf.reduce_mean(loss_landm) # localization loss (smooth L1) mask_pos_b = tf.broadcast_to(mask_pos, tf.shape(loc_true)) loss_loc = _smooth_l1_loss(tf.boolean_mask(loc_true, mask_pos_b), tf.boolean_mask(loc_pred, mask_pos_b)) loss_loc = tf.reduce_mean(loss_loc) # classification loss (crossentropy) # 1. compute max conf across batch for hard negative mining loss_class = tf.where(mask_neg, 1 - class_pred[:, 0][..., tf.newaxis], 0) # 2. hard negative mining loss_class = tf.reshape(loss_class, [num_batch, num_prior]) loss_class_idx = tf.argsort(loss_class, axis=1, direction='DESCENDING') loss_class_idx_rank = tf.argsort(loss_class_idx, axis=1) mask_pos_per_batch = tf.reshape(mask_pos, [num_batch, num_prior]) num_pos_per_batch = tf.reduce_sum(
tensorflow.reduce_mean
10,780
import tensorflow as tf qh_emb = conv(qh_emb, d, bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True) ch_emb = tf.reduce_max(ch_emb, axis = 1) qh_emb = tf.reduce_max(qh_emb, axis = 1) ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]]) qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]]) c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout) q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout) c_emb = tf.concat([c_emb, ch_emb], axis=2) q_emb = tf.concat([q_emb, qh_emb], axis=2) c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None) q_emb = highway(q_emb, size = d, scope = "highway", dropout = self.dropout, reuse = True) with tf.variable_scope("Embedding_Encoder_Layer"): c = residual_block(c_emb, num_blocks = 1, num_conv_layers = 4, kernel_size = 7, mask = self.c_mask, num_filters = d, num_heads = nh,
tensorflow.concat
10,781
import tensorflow as tf # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) return output def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple):
tensorflow.matmul
10,782
import tensorflow as tf max_val = params.initializer_gain return tf.random_uniform_initializer(-max_val, max_val) elif params.initializer == "normal": return tf.random_normal_initializer(0.0, params.initializer_gain) elif params.initializer == "normal_unit_scaling": return tf.variance_scaling_initializer(params.initializer_gain,
tensorflow.random_normal_initializer
10,783
import tensorflow as tf tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn # This function is not used by this file but is still used by the Colab and
tensorflow.constant
10,784
import tensorflow as tf self.assertEqual((2, 2), res[0].shape) def testEmbeddingAttentionSeq2Seq(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): enc_inp = [tf.constant(1, tf.int32, shape=[2]) for i in range(2)] dec_inp = [tf.constant(i, tf.int32, shape=[2]) for i in range(3)] cell = tf.nn.rnn_cell.BasicLSTMCell(2, state_is_tuple=True)
tensorflow.constant_initializer
10,785
import tensorflow.contrib.graph_editor as ge debug_print("Processing list %s", ts) checkpoints_other = [r for r in checkpoints if r not in ts] checkpoints_disconnected_other = [checkpoints_disconnected[r] for r in checkpoints_other] # copy part of the graph below current checkpoint node, stopping at # other checkpoints nodes ops_to_copy = fast_backward_ops(within_ops=fwd_ops, seed_ops=[r.op for r in ts], stop_at_ts=checkpoints_other) debug_print("Found %s ops to copy within %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ts], checkpoints_other) debug_print("ops_to_copy = %s", ops_to_copy) if not ops_to_copy: # we're done! break copied_sgv, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts(checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected_other, checkpoints_other, copied_ops) # gradient flowing through the checkpointed node boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts] substitute_backprops = [d_checkpoints[r] for r in ts] dv = tf_gradients(boundary,
tensorflow.contrib.graph_editor.sgv
10,786
import tensorflow as tf if self.inputs.get_shape().ndims != 2: raise Exception("The input dimension must be rank 2") n_in = int(self.inputs.get_shape()[-1]) self.n_units = n_units with tf.variable_scope(name): W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args) b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args) # self.outputs = act(tf.matmul(self.inputs, W) + b)
tensorflow.variable_scope
10,787
import tensorflow as tf def _tower_loss_semi_supervised(self, inputs, targets, gpu_idx=0, num_classes=11, is_fm_loss=False): with tf.variable_scope("train_specific"): avg_error_rate = tf.get_variable( 'avg_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False) num_error_rate = tf.get_variable( 'num_error_rate', [], initializer=tf.constant_initializer(0.), trainable=False) batch_size_train = self.cnf['batch_size_train']
tensorflow.constant_initializer
10,788
import tensorflow as tf random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions) stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions, lambda: deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps)) updates = [
tensorflow.cond
10,789
import tensorflow as tf logger.info('Update all copies! (lazymodel, normalizers_copy)') tf.get_default_session().run(sync_model_to_lazymodel) tf.get_default_session().run(copy_normalizers)
tensorflow.get_default_session
10,790
import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("batch_size", "2", "batch size for training") tf.flags.DEFINE_string("logs_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\logs", "path to logs directory") tf.flags.DEFINE_string("data_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Data_zoo\STEM", "path to dataset") tf.flags.DEFINE_float("learning_rate", "1e-4", "Learning rate for Adam Optimizer") tf.flags.DEFINE_string("model_dir", r"E:\work\01-Myproject\imag_division\FCN.tensorflow-master\Model_zoo", "Path to vgg model mat")
tensorflow.flags.DEFINE_string
10,791
import tensorflow as tf p.input.cur_iter_in_seed = False p.input.bucket_batch_limit = [ b * 2 / num_splits for b in p.input.bucket_batch_limit ] with cluster_factory.ForTestingWorker(gpus=num_splits): mdl = p.Instantiate() metrics = mdl.FPropDefaultTheta()[0] tf.global_variables_initializer().run() return sess.run(metrics['loss']) res1, res2 = Run(1), Run(2) self.assertAllClose(res1[0], res2[0]) self.assertAllEqual(res1[1], res2[1])
tensorflow.global_variables_initializer
10,792
import tensorflow as tf # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores return output def self_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) def cond(batch, output, i): return tf.less(i, tf.shape(batch)[1]) def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :], ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1 output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape()))
tensorflow.shape
10,793
import tensorflow as tf the dual variable is scaled by this factor. Returns: dual_value: An op that computes the absolute value of the dual variable and reverses its gradient. dual_variable: The underlying variable itself. """ # We disable partitioning while constructing dual variables because they will # be updated with assign, which is not available for partitioned variables. partitioner = tf.get_variable_scope().partitioner try: tf.get_variable_scope().set_partitioner(None) dual_variable = tf.contrib.framework.model_variable( name=name, shape=shape, dtype=dtype, initializer=initializer, collections=collections, trainable=trainable) finally: tf.get_variable_scope().set_partitioner(partitioner)
tensorflow.get_variable_scope
10,794
from tensorflow.python.framework import ops if self._grad_func: self._grad_func.add_to_graph(g) def __call__(self, *args, **kwargs): self.add_to_graph(ops.get_default_graph()) args = [ops.convert_to_tensor(_) for _ in args] + self._extra_inputs return _call(self._definition.signature, *args, **kwargs)
tensorflow.python.framework.ops.get_default_graph
10,795
import tensorflow as tf return gauc / pv_sum def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1))
tensorflow.array_ops.transpose
10,796
import tensorflow as tf def get_valid_batch(image,label,batch_size): images,labels=tf.train.batch([image,label],batch_size=batch_size) return tf.reshape(images,[batch_size,4096]),tf.reshape(labels,[batch_size]) class trainwork(object): def __init__(self): with tf.variable_scope('scop'): self.w1=tf.get_variable('w1', [4096,2048],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w2=tf.get_variable('w2', [2048,3072],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w3=tf.get_variable('w3', [3072,512],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.w4=tf.get_variable('w4', [512,classnum],initializer=tf.contrib.layers.xavier_initializer_conv2d()) self.b1 = tf.get_variable('b1', [2048],initializer=tf.constant_initializer(0.0)) self.b2 = tf.get_variable('b2', [3072],initializer=tf.constant_initializer(0.0))
tensorflow.variable_scope
10,797
import tensorflow as tf return input_tensor with tf.variable_scope(name_or_scope=name):
tensorflow.variable_scope
10,798
import tensorflow as tf # Step-wise contrastive loss even = [2 * i for i in range(25)] odd = [2 * i + 1 for i in range(25)] pred1 = tf.gather(pred, even) pred2 = tf.gather(pred, odd) tgt1 = tf.gather(tgt, even) tgt2 = tf.gather(tgt, odd) geq = tf.cast((tgt1 - tgt2) > 0, tf.bool) tgt_larg = tf.where(geq, tgt1, tgt2) tgt_small = tf.where(geq, tgt2, tgt1) pred_larg = tf.where(geq, pred1, pred2) pred_small = tf.where(geq, pred2, pred1) loss = tf.maximum(0.0, (tgt_larg - tgt_small) - (pred_larg - pred_small)) # loss = tf.maximum(0.0, tf.math.abs(tgt_larg - pred_larg) - tf.math.abs(tgt_small - pred_small)) loss = tf.reduce_mean(loss) return loss def contra_step_lossV5(pred, tgt, resample=1): # p = tf.print('begin loss v5', [resample, pred.shape,tgt.shape]) # with tf.control_dependencies([p]): pred_flat = tf.reshape(pred, [-1]) tgt_flat = tf.reshape(tgt, [-1]) batch = tf.stack([pred_flat, tgt_flat], 1) num_sam = tools.shape(batch)[0] index = tf.range(num_sam)
tensorflow.maximum
10,799