filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_32038
# model settings model = dict( type='CenterNet', pretrained='modelzoo://resnet18', backbone=dict( type='ResNet', depth=18, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_eval=False, add_summay_every_n_step=200, style='pytorch'), neck=dict(type='None'), bbox_head=dict( type='CTHead', inplanes=(64, 128, 256, 512), head_conv=128, hm_head_conv_num=2, wh_head_conv_num=2, deconv_with_bias=False, num_classes=81, use_reg_offset=True, use_smooth_l1=False, use_giou=True, use_truncate_gaussia=True, use_shortcut=True, shortcut_cfg=(1, 2, 4), shortcut_attention=(True, True, True), use_rep_points=False, norm_cfg=dict(type='BN'), wh_weight=0.1, off_weight=1., hm_weight=1.)) cudnn_benchmark = True # training and testing settings train_cfg = dict( vis_every_n_iters=100, debug=False) test_cfg = dict( score_thr=0.01, max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=16, workers_per_gpu=3, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='Adam', lr=7.02e-5) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[40, 55]) checkpoint_config = dict(save_every_n_steps=200, max_to_keep=1, keep_every_n_epochs=40) bbox_head_hist_config = dict( model_type=['ConvModule', 'DeformConvPack'], sub_modules=['bbox_head'], save_every_n_steps=200) # yapf:disable log_config = dict(interval=100) # yapf:enable # runtime settings total_epochs = 60 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = 'centernet_r18_nshortcut124a_giou_h2_128c_tru_5x' load_from = None resume_from = None workflow = [('train', 1)]
the-stack_106_32040
# We must redefine it in Py3k if it's not already there def execfile(file, glob=None, loc=None): if glob is None: import sys glob = sys._getframe().f_back.f_globals if loc is None: loc = glob # It seems that the best way is using tokenize.open(): http://code.activestate.com/lists/python-dev/131251/ # (but tokenize.open() is only available for python 3.2) import tokenize if hasattr(tokenize, 'open'): # version 3.2 stream = tokenize.open(file) # @UndefinedVariable else: # version 3.0 or 3.1 detect_encoding = tokenize.detect_encoding(open(file, mode="rb").readline) stream = open(file, encoding=detect_encoding[0]) try: contents = stream.read() finally: stream.close() # execute the script (note: it's important to compile first to have the filename set in debug mode) exec(compile(contents + "\n", file, 'exec'), glob, loc)
the-stack_106_32041
import argparse import logging import os from typing import List, Optional, Text, Dict, Union, Any from rasa.cli import SubParsersAction import rasa.shared.data from rasa.shared.exceptions import YamlException import rasa.shared.utils.io import rasa.shared.utils.cli from rasa.cli.arguments import test as arguments from rasa.core.constants import ( FAILED_STORIES_FILE, SUCCESSFUL_STORIES_FILE, STORIES_WITH_WARNINGS_FILE, ) from rasa.shared.constants import ( CONFIG_SCHEMA_FILE, DEFAULT_E2E_TESTS_PATH, DEFAULT_CONFIG_PATH, DEFAULT_MODELS_PATH, DEFAULT_DATA_PATH, DEFAULT_RESULTS_PATH, DEFAULT_DOMAIN_PATH, ) import rasa.shared.utils.validation as validation_utils import rasa.cli.utils import rasa.utils.common from rasa.shared.importers.importer import TrainingDataImporter logger = logging.getLogger(__name__) def add_subparser( subparsers: SubParsersAction, parents: List[argparse.ArgumentParser] ) -> None: """Add all test parsers. Args: subparsers: subparser we are going to attach to parents: Parent parsers, needed to ensure tree structure in argparse """ test_parser = subparsers.add_parser( "test", parents=parents, conflict_handler="resolve", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="Tests Rasa models using your test NLU data and stories.", ) arguments.set_test_arguments(test_parser) test_subparsers = test_parser.add_subparsers() test_core_parser = test_subparsers.add_parser( "core", parents=parents, conflict_handler="resolve", formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="Tests Rasa Core models using your test stories.", ) arguments.set_test_core_arguments(test_core_parser) test_nlu_parser = test_subparsers.add_parser( "nlu", parents=parents, formatter_class=argparse.ArgumentDefaultsHelpFormatter, help="Tests Rasa NLU models using your test NLU data.", ) arguments.set_test_nlu_arguments(test_nlu_parser) test_core_parser.set_defaults(func=run_core_test) test_nlu_parser.set_defaults(func=run_nlu_test) test_parser.set_defaults(func=test, stories=DEFAULT_E2E_TESTS_PATH) def _print_core_test_execution_info(args: argparse.Namespace) -> None: output = args.out or DEFAULT_RESULTS_PATH if args.successes: rasa.shared.utils.cli.print_info( f"Successful stories written to " f"'{os.path.join(output, SUCCESSFUL_STORIES_FILE)}'" ) if not args.no_errors: rasa.shared.utils.cli.print_info( f"Failed stories written to '{os.path.join(output, FAILED_STORIES_FILE)}'" ) if not args.no_warnings: rasa.shared.utils.cli.print_info( f"Stories with prediction warnings written to " f"'{os.path.join(output, STORIES_WITH_WARNINGS_FILE)}'" ) def run_core_test(args: argparse.Namespace) -> None: """Run core tests.""" from rasa.model_testing import ( test_core_models_in_directory, test_core, test_core_models, ) stories = rasa.cli.utils.get_validated_path( args.stories, "stories", DEFAULT_DATA_PATH ) output = args.out or DEFAULT_RESULTS_PATH args.errors = not args.no_errors args.warnings = not args.no_warnings rasa.shared.utils.io.create_directory(output) if isinstance(args.model, list) and len(args.model) == 1: args.model = args.model[0] if args.model is None: rasa.shared.utils.cli.print_error( "No model provided. Please make sure to specify " "the model to test with '--model'." ) return if isinstance(args.model, str): model_path = rasa.cli.utils.get_validated_path( args.model, "model", DEFAULT_MODELS_PATH ) if args.evaluate_model_directory: test_core_models_in_directory( args.model, stories, output, use_conversation_test_files=args.e2e ) else: test_core( model=model_path, stories=stories, output=output, additional_arguments=vars(args), use_conversation_test_files=args.e2e, ) else: test_core_models( args.model, stories, output, use_conversation_test_files=args.e2e ) _print_core_test_execution_info(args) async def run_nlu_test_async( config: Optional[Union[Text, List[Text]]], data_path: Text, models_path: Text, output_dir: Text, cross_validation: bool, percentages: List[int], runs: int, no_errors: bool, all_args: Dict[Text, Any], ) -> None: """Runs NLU tests. Args: all_args: all arguments gathered in a Dict so we can pass it as one argument to other functions. config: it refers to the model configuration file. It can be a single file or a list of multiple files or a folder with multiple config files inside. data_path: path for the nlu data. models_path: path to a trained Rasa model. output_dir: output path for any files created during the evaluation. cross_validation: indicates if it should test the model using cross validation or not. percentages: defines the exclusion percentage of the training data. runs: number of comparison runs to make. no_errors: indicates if incorrect predictions should be written to a file or not. """ from rasa.model_testing import ( compare_nlu_models, perform_nlu_cross_validation, test_nlu, ) data_path = rasa.cli.utils.get_validated_path(data_path, "nlu", DEFAULT_DATA_PATH) test_data_importer = TrainingDataImporter.load_from_dict( training_data_paths=[data_path], domain_path=DEFAULT_DOMAIN_PATH, ) nlu_data = test_data_importer.get_nlu_data() output = output_dir or DEFAULT_RESULTS_PATH all_args["errors"] = not no_errors rasa.shared.utils.io.create_directory(output) if config is not None and len(config) == 1: config = os.path.abspath(config[0]) if os.path.isdir(config): config = rasa.shared.utils.io.list_files(config) if isinstance(config, list): logger.info( "Multiple configuration files specified, running nlu comparison mode." ) config_files = [] for file in config: try: validation_utils.validate_yaml_schema( rasa.shared.utils.io.read_file(file), CONFIG_SCHEMA_FILE, ) config_files.append(file) except YamlException: rasa.shared.utils.io.raise_warning( f"Ignoring file '{file}' as it is not a valid config file." ) continue await compare_nlu_models( configs=config_files, test_data=nlu_data, output=output, runs=runs, exclusion_percentages=percentages, ) elif cross_validation: logger.info("Test model using cross validation.") config = rasa.cli.utils.get_validated_path( config, "config", DEFAULT_CONFIG_PATH ) config_importer = TrainingDataImporter.load_from_dict(config_path=config) config_dict = config_importer.get_config() perform_nlu_cross_validation(config_dict, nlu_data, output, all_args) else: model_path = rasa.cli.utils.get_validated_path( models_path, "model", DEFAULT_MODELS_PATH ) test_nlu(model_path, data_path, output, all_args) def run_nlu_test(args: argparse.Namespace) -> None: """Runs NLU tests. Args: args: the parsed CLI arguments for 'rasa test nlu'. """ rasa.utils.common.run_in_loop( run_nlu_test_async( args.config, args.nlu, args.model, args.out, args.cross_validation, args.percentages, args.runs, args.no_errors, vars(args), ) ) def test(args: argparse.Namespace) -> None: """Run end-to-end tests.""" setattr(args, "e2e", True) run_core_test(args) run_nlu_test(args)
the-stack_106_32042
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Simulates the Arduino communication stream as expected by demo A and C. """ __author__ = "Dennis van Gils" __authoremail__ = "[email protected]" __url__ = "https://github.com/Dennis-van-Gils/DvG_Arduino_PyQt_multithread_demo" __date__ = "11-08-2020" __version__ = "0.0.1" # pylint: disable=unused-argument import time import numpy as np from PyQt5 import QtCore class FakeArduino: def __init__( self, *args, **kwargs, ): self.serial_settings = dict() self.name = "FakeArd" self.long_name = "FakeArduino" self.is_alive = True self.mutex = QtCore.QMutex() self.wave_freq = 0.3 # [Hz] self.wave_type = "sine" def write(self, msg, *args, **kwargs) -> bool: self.wave_type = msg return True def query_ascii_values(self, *args, **kwargs) -> tuple: t = time.perf_counter() if self.wave_type == "sine": wave = np.sin(2 * np.pi * self.wave_freq * t) elif self.wave_type == "square": wave = 1 if np.mod(self.wave_freq * t, 1.0) > 0.5 else -1 elif self.wave_type == "sawtooth": wave = 2 * np.mod(self.wave_freq * t, 1.0) - 1 return (True, (t, wave)) def close(self): pass def auto_connect(self, *args, **kwargs) -> bool: return True
the-stack_106_32044
# Copyright (c) 2016 The Pybind Development Team, All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # You are under no obligation whatsoever to provide any bug fixes, patches, or # upgrades to the features, functionality or performance of the source code # ("Enhancements") to anyone; however, if you choose to make your Enhancements # available either publicly, or directly to the author of this software, without # imposing a separate written license agreement for such Enhancements, then you # hereby grant the following license: a non-exclusive, royalty-free perpetual # license to install, use, modify, prepare derivative works, incorporate into # other computer software, distribute, and sublicense such enhancements or # derivative works thereof, in binary and source code form. # # This setup.py was taken from https://github.com/pybind/cmake_example # and modified accordingly. Essentially, we assume the underlying CMake # project builds as-is with default arguments. import os import re import sys import platform import subprocess from setuptools import setup, Extension from setuptools.command.build_ext import build_ext from distutils.version import LooseVersion class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions)) if platform.system() == "Windows": cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.5.0': raise RuntimeError("CMake >= 3.5.0 is required on Windows") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = ['-DIMAGECAPTURE_PYTHON_OUTPUT_DIRECTORY=' + extdir, '-DIMAGECAPTURE_PYTHON_MODULE_NAME=' + self.distribution.get_name(), '-DPYTHON_EXECUTABLE=' + sys.executable] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] if platform.system() == "Windows": if sys.maxsize > 2**32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--', '-j2'] env = os.environ.copy() if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) setup( name='imagecapturepython', # must match python module name in your c++ code. version='0.0.1', # must match CMakeLists.txt author='Myself', author_email='[email protected]', description='A software package for capturing images from input devices and rendering to vide outputs.', long_description='', ext_modules=[CMakeExtension('CMakeCatchTemplate')], # must match top-level folder name. cmdclass=dict(build_ext=CMakeBuild), zip_safe=False, )
the-stack_106_32046
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=19 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[0])) # number=16 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[0])) # number=18 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=8 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=9 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=11 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=12 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=13 c.append(cirq.SWAP.on(input_qubit[3],input_qubit[0])) # number=14 c.append(cirq.SWAP.on(input_qubit[3],input_qubit[0])) # number=15 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 circuit = circuit.with_noise(cirq.depolarize(p=0.01)) simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_noisy537.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
the-stack_106_32048
# -*- coding: utf-8 -*- __author__ = 'mika hämäläinen' pronouns = {"SG1" : "minä", "SG2" : "sinä", "SG3" : "se", "PL1" : "me", "PL2": "te", "PL3": "ne"} def pronoun(person, human=True): if human and person is "SG3": return "hän" if human and person is "PL3": return "he" if person in pronouns: return pronouns[person] else: return None def is_personal_pronoun(p_pronoun): if p_pronoun in pronouns.values(): return True else: return False
the-stack_106_32049
#!/usr/bin/python ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import ssl ssl._create_default_https_context = ssl._create_unverified_context from setuptools import setup, find_packages import os import sys """ setup module for dysmsapi. Created on 7/3/2015 @author: alex """ PACKAGE = "aliyunsdkdysmsapi" NAME = "aliyun-python-sdk-dysmsapi" DESCRIPTION = "The dysmsapi module of Aliyun Python sdk." AUTHOR = "Aliyun" AUTHOR_EMAIL = "[email protected]" URL = "http://develop.aliyun.com/sdk/python" TOPDIR = os.path.dirname(__file__) or "." VERSION = __import__(PACKAGE).__version__ desc_file = open("README.rst") try: LONG_DESCRIPTION = desc_file.read() finally: desc_file.close() requires = [] if sys.version_info < (3, 3): requires.append("aliyun-python-sdk-core>=2.0.2") else: requires.append("aliyun-python-sdk-core-v3>=2.3.5") setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, author=AUTHOR, author_email=AUTHOR_EMAIL, license="Apache", url=URL, keywords=["aliyun","sdk","dysmsapi"], packages=find_packages(exclude=["tests*"]), include_package_data=True, platforms="any", install_requires=requires, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Software Development", ] )
the-stack_106_32051
"""SCons.Subst SCons string substitution. """ # # Copyright (c) 2001 - 2019 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. __revision__ = "src/engine/SCons/Subst.py bee7caf9defd6e108fc2998a2520ddb36a967691 2019-12-17 02:07:09 bdeegan" import collections import re import SCons.Errors from SCons.Util import is_String, is_Sequence # Indexed by the SUBST_* constants below. _strconv = [SCons.Util.to_String_for_subst, SCons.Util.to_String_for_subst, SCons.Util.to_String_for_signature] AllowableExceptions = (IndexError, NameError) def SetAllowableExceptions(*excepts): global AllowableExceptions AllowableExceptions = [_f for _f in excepts if _f] def raise_exception(exception, target, s): name = exception.__class__.__name__ msg = "%s `%s' trying to evaluate `%s'" % (name, exception, s) if target: raise SCons.Errors.BuildError(target[0], msg) else: raise SCons.Errors.UserError(msg) class Literal(object): """A wrapper for a string. If you use this object wrapped around a string, then it will be interpreted as literal. When passed to the command interpreter, all special characters will be escaped.""" def __init__(self, lstr): self.lstr = lstr def __str__(self): return self.lstr def escape(self, escape_func): return escape_func(self.lstr) def for_signature(self): return self.lstr def is_literal(self): return 1 def __eq__(self, other): if not isinstance(other, Literal): return False return self.lstr == other.lstr def __neq__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.lstr) class SpecialAttrWrapper(object): """This is a wrapper for what we call a 'Node special attribute.' This is any of the attributes of a Node that we can reference from Environment variable substitution, such as $TARGET.abspath or $SOURCES[1].filebase. We implement the same methods as Literal so we can handle special characters, plus a for_signature method, such that we can return some canonical string during signature calculation to avoid unnecessary rebuilds.""" def __init__(self, lstr, for_signature=None): """The for_signature parameter, if supplied, will be the canonical string we return from for_signature(). Else we will simply return lstr.""" self.lstr = lstr if for_signature: self.forsig = for_signature else: self.forsig = lstr def __str__(self): return self.lstr def escape(self, escape_func): return escape_func(self.lstr) def for_signature(self): return self.forsig def is_literal(self): return 1 def quote_spaces(arg): """Generic function for putting double quotes around any string that has white space in it.""" if ' ' in arg or '\t' in arg: return '"%s"' % arg else: return str(arg) class CmdStringHolder(collections.UserString): """This is a special class used to hold strings generated by scons_subst() and scons_subst_list(). It defines a special method escape(). When passed a function with an escape algorithm for a particular platform, it will return the contained string with the proper escape sequences inserted. """ def __init__(self, cmd, literal=None): collections.UserString.__init__(self, cmd) self.literal = literal def is_literal(self): return self.literal def escape(self, escape_func, quote_func=quote_spaces): """Escape the string with the supplied function. The function is expected to take an arbitrary string, then return it with all special characters escaped and ready for passing to the command interpreter. After calling this function, the next call to str() will return the escaped string. """ if self.is_literal(): return escape_func(self.data) elif ' ' in self.data or '\t' in self.data: return quote_func(self.data) else: return self.data def escape_list(mylist, escape_func): """Escape a list of arguments by running the specified escape_func on every object in the list that has an escape() method.""" def escape(obj, escape_func=escape_func): try: e = obj.escape except AttributeError: return obj else: return e(escape_func) return list(map(escape, mylist)) class NLWrapper(object): """A wrapper class that delays turning a list of sources or targets into a NodeList until it's needed. The specified function supplied when the object is initialized is responsible for turning raw nodes into proxies that implement the special attributes like .abspath, .source, etc. This way, we avoid creating those proxies just "in case" someone is going to use $TARGET or the like, and only go through the trouble if we really have to. In practice, this might be a wash performance-wise, but it's a little cleaner conceptually... """ def __init__(self, list, func): self.list = list self.func = func def _return_nodelist(self): return self.nodelist def _gen_nodelist(self): mylist = self.list if mylist is None: mylist = [] elif not is_Sequence(mylist): mylist = [mylist] # The map(self.func) call is what actually turns # a list into appropriate proxies. self.nodelist = SCons.Util.NodeList(list(map(self.func, mylist))) self._create_nodelist = self._return_nodelist return self.nodelist _create_nodelist = _gen_nodelist class Targets_or_Sources(collections.UserList): """A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a NLWrapper. This class handles the different methods used to access the list, calling the NLWrapper to create proxies on demand. Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this class as a list during variable expansion. We're not really using any collections.UserList methods in practice. """ def __init__(self, nl): self.nl = nl def __getattr__(self, attr): nl = self.nl._create_nodelist() return getattr(nl, attr) def __getitem__(self, i): nl = self.nl._create_nodelist() return nl[i] def __getslice__(self, i, j): nl = self.nl._create_nodelist() i = max(i, 0); j = max(j, 0) return nl[i:j] def __str__(self): nl = self.nl._create_nodelist() return str(nl) def __repr__(self): nl = self.nl._create_nodelist() return repr(nl) class Target_or_Source(object): """A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NLWrapper. This class handles the different methods used to access an individual proxy Node, calling the NLWrapper to create a proxy on demand. """ def __init__(self, nl): self.nl = nl def __getattr__(self, attr): nl = self.nl._create_nodelist() try: nl0 = nl[0] except IndexError: # If there is nothing in the list, then we have no attributes to # pass through, so raise AttributeError for everything. raise AttributeError("NodeList has no attribute: %s" % attr) return getattr(nl0, attr) def __str__(self): nl = self.nl._create_nodelist() if nl: return str(nl[0]) return '' def __repr__(self): nl = self.nl._create_nodelist() if nl: return repr(nl[0]) return '' class NullNodeList(SCons.Util.NullSeq): def __call__(self, *args, **kwargs): return '' def __str__(self): return '' NullNodesList = NullNodeList() def subst_dict(target, source): """Create a dictionary for substitution of special construction variables. This translates the following special arguments: target - the target (object or array of objects), used to generate the TARGET and TARGETS construction variables source - the source (object or array of objects), used to generate the SOURCES and SOURCE construction variables """ dict = {} if target: def get_tgt_subst_proxy(thing): try: subst_proxy = thing.get_subst_proxy() except AttributeError: subst_proxy = thing # probably a string, just return it return subst_proxy tnl = NLWrapper(target, get_tgt_subst_proxy) dict['TARGETS'] = Targets_or_Sources(tnl) dict['TARGET'] = Target_or_Source(tnl) # This is a total cheat, but hopefully this dictionary goes # away soon anyway. We just let these expand to $TARGETS # because that's "good enough" for the use of ToolSurrogates # (see test/ToolSurrogate.py) to generate documentation. dict['CHANGED_TARGETS'] = '$TARGETS' dict['UNCHANGED_TARGETS'] = '$TARGETS' else: dict['TARGETS'] = NullNodesList dict['TARGET'] = NullNodesList if source: def get_src_subst_proxy(node): try: rfile = node.rfile except AttributeError: pass else: node = rfile() try: return node.get_subst_proxy() except AttributeError: return node # probably a String, just return it snl = NLWrapper(source, get_src_subst_proxy) dict['SOURCES'] = Targets_or_Sources(snl) dict['SOURCE'] = Target_or_Source(snl) # This is a total cheat, but hopefully this dictionary goes # away soon anyway. We just let these expand to $TARGETS # because that's "good enough" for the use of ToolSurrogates # (see test/ToolSurrogate.py) to generate documentation. dict['CHANGED_SOURCES'] = '$SOURCES' dict['UNCHANGED_SOURCES'] = '$SOURCES' else: dict['SOURCES'] = NullNodesList dict['SOURCE'] = NullNodesList return dict class StringSubber(object): """A class to construct the results of a scons_subst() call. This binds a specific construction environment, mode, target and source with two methods (substitute() and expand()) that handle the expansion. """ def __init__(self, env, mode, conv, gvars): self.env = env self.mode = mode self.conv = conv self.gvars = gvars def expand(self, s, lvars): """Expand a single "token" as necessary, returning an appropriate string containing the expansion. This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still get re-evaluated separately, not smushed together. """ if is_String(s): try: s0, s1 = s[:2] except (IndexError, ValueError): return s if s0 != '$': return s if s1 == '$': # In this case keep the double $'s which we'll later # swap for a single dollar sign as we need to retain # this information to properly avoid matching "$("" when # the actual text was "$$("" (or "$)"" when "$$)"" ) return '$$' elif s1 in '()': return s else: key = s[1:] if key[0] == '{' or '.' in key: if key[0] == '{': key = key[1:-1] # Store for error messages if we fail to expand the # value old_s = s s = None if key in lvars: s = lvars[key] elif key in self.gvars: s = self.gvars[key] else: try: s = eval(key, self.gvars, lvars) except KeyboardInterrupt: raise except Exception as e: if e.__class__ in AllowableExceptions: return '' raise_exception(e, lvars['TARGETS'], old_s) if s is None and NameError not in AllowableExceptions: raise_exception(NameError(key), lvars['TARGETS'], old_s) elif s is None: return '' # Before re-expanding the result, handle # recursive expansion by copying the local # variable dictionary and overwriting a null # string for the value of the variable name # we just expanded. # # This could potentially be optimized by only # copying lvars when s contains more expansions, # but lvars is usually supposed to be pretty # small, and deeply nested variable expansions # are probably more the exception than the norm, # so it should be tolerable for now. lv = lvars.copy() var = key.split('.')[0] lv[var] = '' return self.substitute(s, lv) elif is_Sequence(s): def func(l, conv=self.conv, substitute=self.substitute, lvars=lvars): return conv(substitute(l, lvars)) return list(map(func, s)) elif callable(s): try: s = s(target=lvars['TARGETS'], source=lvars['SOURCES'], env=self.env, for_signature=(self.mode != SUBST_CMD)) except TypeError: # This probably indicates that it's a callable # object that doesn't match our calling arguments # (like an Action). if self.mode == SUBST_RAW: return s s = self.conv(s) return self.substitute(s, lvars) elif s is None: return '' else: return s def substitute(self, args, lvars): """Substitute expansions in an argument or list of arguments. This serves as a wrapper for splitting up a string into separate tokens. """ if is_String(args) and not isinstance(args, CmdStringHolder): args = str(args) # In case it's a UserString. try: def sub_match(match): return self.conv(self.expand(match.group(1), lvars)) result = _dollar_exps.sub(sub_match, args) except TypeError: # If the internal conversion routine doesn't return # strings (it could be overridden to return Nodes, for # example), then the 1.5.2 re module will throw this # exception. Back off to a slower, general-purpose # algorithm that works for all data types. args = _separate_args.findall(args) result = [] for a in args: result.append(self.conv(self.expand(a, lvars))) if len(result) == 1: result = result[0] else: result = ''.join(map(str, result)) return result else: return self.expand(args, lvars) class ListSubber(collections.UserList): """A class to construct the results of a scons_subst_list() call. Like StringSubber, this class binds a specific construction environment, mode, target and source with two methods (substitute() and expand()) that handle the expansion. In addition, however, this class is used to track the state of the result(s) we're gathering so we can do the appropriate thing whenever we have to append another word to the result--start a new line, start a new word, append to the current word, etc. We do this by setting the "append" attribute to the right method so that our wrapper methods only need ever call ListSubber.append(), and the rest of the object takes care of doing the right thing internally. """ def __init__(self, env, mode, conv, gvars): collections.UserList.__init__(self, []) self.env = env self.mode = mode self.conv = conv self.gvars = gvars if self.mode == SUBST_RAW: self.add_strip = lambda x: self.append(x) else: self.add_strip = lambda x: None self.in_strip = None self.next_line() def expanded(self, s): """Determines if the string s requires further expansion. Due to the implementation of ListSubber expand will call itself 2 additional times for an already expanded string. This method is used to determine if a string is already fully expanded and if so exit the loop early to prevent these recursive calls. """ if not is_String(s) or isinstance(s, CmdStringHolder): return False s = str(s) # in case it's a UserString return _separate_args.findall(s) is None def expand(self, s, lvars, within_list): """Expand a single "token" as necessary, appending the expansion to the current result. This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still get re-evaluated separately, not smushed together. """ if is_String(s): try: s0, s1 = s[:2] except (IndexError, ValueError): self.append(s) return if s0 != '$': self.append(s) return if s1 == '$': self.append('$') elif s1 == '(': self.open_strip('$(') elif s1 == ')': self.close_strip('$)') else: key = s[1:] if key[0] == '{' or key.find('.') >= 0: if key[0] == '{': key = key[1:-1] # Store for error messages if we fail to expand the # value old_s = s s = None if key in lvars: s = lvars[key] elif key in self.gvars: s = self.gvars[key] else: try: s = eval(key, self.gvars, lvars) except KeyboardInterrupt: raise except Exception as e: if e.__class__ in AllowableExceptions: return raise_exception(e, lvars['TARGETS'], old_s) if s is None and NameError not in AllowableExceptions: raise_exception(NameError(), lvars['TARGETS'], old_s) elif s is None: return # If the string is already full expanded there's no # need to continue recursion. if self.expanded(s): self.append(s) return # Before re-expanding the result, handle # recursive expansion by copying the local # variable dictionary and overwriting a null # string for the value of the variable name # we just expanded. lv = lvars.copy() var = key.split('.')[0] lv[var] = '' self.substitute(s, lv, 0) self.this_word() elif is_Sequence(s): for a in s: self.substitute(a, lvars, 1) self.next_word() elif callable(s): try: s = s(target=lvars['TARGETS'], source=lvars['SOURCES'], env=self.env, for_signature=(self.mode != SUBST_CMD)) except TypeError: # This probably indicates that it's a callable # object that doesn't match our calling arguments # (like an Action). if self.mode == SUBST_RAW: self.append(s) return s = self.conv(s) self.substitute(s, lvars, within_list) elif s is None: self.this_word() else: self.append(s) def substitute(self, args, lvars, within_list): """Substitute expansions in an argument or list of arguments. This serves as a wrapper for splitting up a string into separate tokens. """ if is_String(args) and not isinstance(args, CmdStringHolder): args = str(args) # In case it's a UserString. args = _separate_args.findall(args) for a in args: if a[0] in ' \t\n\r\f\v': if '\n' in a: self.next_line() elif within_list: self.append(a) else: self.next_word() else: self.expand(a, lvars, within_list) else: self.expand(args, lvars, within_list) def next_line(self): """Arrange for the next word to start a new line. This is like starting a new word, except that we have to append another line to the result.""" collections.UserList.append(self, []) self.next_word() def this_word(self): """Arrange for the next word to append to the end of the current last word in the result.""" self.append = self.add_to_current_word def next_word(self): """Arrange for the next word to start a new word.""" self.append = self.add_new_word def add_to_current_word(self, x): """Append the string x to the end of the current last word in the result. If that is not possible, then just add it as a new word. Make sure the entire concatenated string inherits the object attributes of x (in particular, the escape function) by wrapping it as CmdStringHolder.""" if not self.in_strip or self.mode != SUBST_SIG: try: current_word = self[-1][-1] except IndexError: self.add_new_word(x) else: # All right, this is a hack and it should probably # be refactored out of existence in the future. # The issue is that we want to smoosh words together # and make one file name that gets escaped if # we're expanding something like foo$EXTENSION, # but we don't want to smoosh them together if # it's something like >$TARGET, because then we'll # treat the '>' like it's part of the file name. # So for now, just hard-code looking for the special # command-line redirection characters... try: last_char = str(current_word)[-1] except IndexError: last_char = '\0' if last_char in '<>|': self.add_new_word(x) else: y = current_word + x # We used to treat a word appended to a literal # as a literal itself, but this caused problems # with interpreting quotes around space-separated # targets on command lines. Removing this makes # none of the "substantive" end-to-end tests fail, # so we'll take this out but leave it commented # for now in case there's a problem not covered # by the test cases and we need to resurrect this. #literal1 = self.literal(self[-1][-1]) #literal2 = self.literal(x) y = self.conv(y) if is_String(y): #y = CmdStringHolder(y, literal1 or literal2) y = CmdStringHolder(y, None) self[-1][-1] = y def add_new_word(self, x): if not self.in_strip or self.mode != SUBST_SIG: literal = self.literal(x) x = self.conv(x) if is_String(x): x = CmdStringHolder(x, literal) self[-1].append(x) self.append = self.add_to_current_word def literal(self, x): try: l = x.is_literal except AttributeError: return None else: return l() def open_strip(self, x): """Handle the "open strip" $( token.""" self.add_strip(x) self.in_strip = 1 def close_strip(self, x): """Handle the "close strip" $) token.""" self.add_strip(x) self.in_strip = None # Constants for the "mode" parameter to scons_subst_list() and # scons_subst(). SUBST_RAW gives the raw command line. SUBST_CMD # gives a command line suitable for passing to a shell. SUBST_SIG # gives a command line appropriate for calculating the signature # of a command line...if this changes, we should rebuild. SUBST_CMD = 0 SUBST_RAW = 1 SUBST_SIG = 2 _rm = re.compile(r'\$[()]') # Note the pattern below only matches $( or $) when there is no # preceeding $. (Thus the (?<!\$)) _rm_split = re.compile(r'(?<!\$)(\$[()])') # Indexed by the SUBST_* constants above. _regex_remove = [ _rm, None, _rm_split ] def _rm_list(list): return [l for l in list if l not in ('$(', '$)')] def _remove_list(list): result = [] depth = 0 for l in list: if l == '$(': depth += 1 elif l == '$)': depth -= 1 if depth < 0: break elif depth == 0: result.append(l) if depth != 0: return None return result # Indexed by the SUBST_* constants above. _list_remove = [ _rm_list, None, _remove_list ] # Regular expressions for splitting strings and handling substitutions, # for use by the scons_subst() and scons_subst_list() functions: # # The first expression compiled matches all of the $-introduced tokens # that we need to process in some way, and is used for substitutions. # The expressions it matches are: # # "$$" # "$(" # "$)" # "$variable" [must begin with alphabetic or underscore] # "${any stuff}" # # The second expression compiled is used for splitting strings into tokens # to be processed, and it matches all of the tokens listed above, plus # the following that affect how arguments do or don't get joined together: # # " " [white space] # "non-white-space" [without any dollar signs] # "$" [single dollar sign] # _dollar_exps_str = r'\$[\$\(\)]|\$[_a-zA-Z][\.\w]*|\${[^}]*}' _dollar_exps = re.compile(r'(%s)' % _dollar_exps_str) _separate_args = re.compile(r'(%s|\s+|[^\s$]+|\$)' % _dollar_exps_str) # This regular expression is used to replace strings of multiple white # space characters in the string result from the scons_subst() function. _space_sep = re.compile(r'[\t ]+(?![^{]*})') def scons_subst(strSubst, env, mode=SUBST_RAW, target=None, source=None, gvars={}, lvars={}, conv=None): """Expand a string or list containing construction variable substitutions. This is the work-horse function for substitutions in file names and the like. The companion scons_subst_list() function (below) handles separating command lines into lists of arguments, so see that function if that's what you're looking for. """ if (isinstance(strSubst, str) and '$' not in strSubst) or isinstance(strSubst, CmdStringHolder): return strSubst if conv is None: conv = _strconv[mode] # Doing this every time is a bit of a waste, since the Executor # has typically already populated the OverrideEnvironment with # $TARGET/$SOURCE variables. We're keeping this (for now), though, # because it supports existing behavior that allows us to call # an Action directly with an arbitrary target+source pair, which # we use in Tool/tex.py to handle calling $BIBTEX when necessary. # If we dropped that behavior (or found another way to cover it), # we could get rid of this call completely and just rely on the # Executor setting the variables. if 'TARGET' not in lvars: d = subst_dict(target, source) if d: lvars = lvars.copy() lvars.update(d) # We're (most likely) going to eval() things. If Python doesn't # find a __builtins__ value in the global dictionary used for eval(), # it copies the current global values for you. Avoid this by # setting it explicitly and then deleting, so we don't pollute the # construction environment Dictionary(ies) that are typically used # for expansion. gvars['__builtins__'] = __builtins__ ss = StringSubber(env, mode, conv, gvars) result = ss.substitute(strSubst, lvars) try: del gvars['__builtins__'] except KeyError: pass res = result if is_String(result): # Remove $(-$) pairs and any stuff in between, # if that's appropriate. remove = _regex_remove[mode] if remove: if mode == SUBST_SIG: result = _list_remove[mode](remove.split(result)) if result is None: raise SCons.Errors.UserError("Unbalanced $(/$) in: " + res) result = ' '.join(result) else: result = remove.sub('', result) if mode != SUBST_RAW: # Compress strings of white space characters into # a single space. result = _space_sep.sub(' ', result).strip() # Now replace escaped $'s currently "$$" # This is needed because we now retain $$ instead of # replacing them during substition to avoid # improperly trying to escape "$$(" as being "$(" result = result.replace('$$','$') elif is_Sequence(result): remove = _list_remove[mode] if remove: result = remove(result) if result is None: raise SCons.Errors.UserError("Unbalanced $(/$) in: " + str(res)) return result def scons_subst_list(strSubst, env, mode=SUBST_RAW, target=None, source=None, gvars={}, lvars={}, conv=None): """Substitute construction variables in a string (or list or other object) and separate the arguments into a command list. The companion scons_subst() function (above) handles basic substitutions within strings, so see that function instead if that's what you're looking for. """ if conv is None: conv = _strconv[mode] # Doing this every time is a bit of a waste, since the Executor # has typically already populated the OverrideEnvironment with # $TARGET/$SOURCE variables. We're keeping this (for now), though, # because it supports existing behavior that allows us to call # an Action directly with an arbitrary target+source pair, which # we use in Tool/tex.py to handle calling $BIBTEX when necessary. # If we dropped that behavior (or found another way to cover it), # we could get rid of this call completely and just rely on the # Executor setting the variables. if 'TARGET' not in lvars: d = subst_dict(target, source) if d: lvars = lvars.copy() lvars.update(d) # We're (most likely) going to eval() things. If Python doesn't # find a __builtins__ value in the global dictionary used for eval(), # it copies the current global values for you. Avoid this by # setting it explicitly and then deleting, so we don't pollute the # construction environment Dictionary(ies) that are typically used # for expansion. gvars['__builtins__'] = __builtins__ ls = ListSubber(env, mode, conv, gvars) ls.substitute(strSubst, lvars, 0) try: del gvars['__builtins__'] except KeyError: pass return ls.data def scons_subst_once(strSubst, env, key): """Perform single (non-recursive) substitution of a single construction variable keyword. This is used when setting a variable when copying or overriding values in an Environment. We want to capture (expand) the old value before we override it, so people can do things like: env2 = env.Clone(CCFLAGS = '$CCFLAGS -g') We do this with some straightforward, brute-force code here... """ if isinstance(strSubst, str) and strSubst.find('$') < 0: return strSubst matchlist = ['$' + key, '${' + key + '}'] val = env.get(key, '') def sub_match(match, val=val, matchlist=matchlist): a = match.group(1) if a in matchlist: a = val if is_Sequence(a): return ' '.join(map(str, a)) else: return str(a) if is_Sequence(strSubst): result = [] for arg in strSubst: if is_String(arg): if arg in matchlist: arg = val if is_Sequence(arg): result.extend(arg) else: result.append(arg) else: result.append(_dollar_exps.sub(sub_match, arg)) else: result.append(arg) return result elif is_String(strSubst): return _dollar_exps.sub(sub_match, strSubst) else: return strSubst # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_106_32053
import unittest import sys import pexpect from vncdotool import rfb class TestLogEvents(object): def setUp(self): cmd = 'vncev -rfbport 5999 -rfbwait 1000' self.server = pexpect.spawn(cmd, timeout=2) self.server.logfile_read = sys.stdout cmd = 'vnclog --listen 1842 -s :99 -' self.recorder = pexpect.spawn(cmd, timeout=2) self.recorder.logfile_read = sys.stdout def tearDown(self): self.server.terminate(force=True) if self.recorder: self.recorder.terminate(force=True) def run_vncdo(self, commands): cmd = 'vncdo -s localhost::1842 ' + commands vnc = pexpect.spawn(cmd, timeout=2) vnc.logfile_read = sys.stdout retval = vnc.wait() assert retval == 0, (retval, str(vnc)) def assertKeyDown(self, key): down = '^.*down:\s+\(%s\)\r' % hex(key) self.server.expect(down) def assertKeyUp(self, key): up = '^.*up:\s+\(%s\)\r' % hex(key) self.server.expect(up) def assertMouse(self, x, y, buttonmask): output = '^.*Ptr: mouse button mask %s at %d,%d' % (hex(buttonmask), x, y) self.server.expect(output) def test_key_alpha(self): self.run_vncdo('key z') self.assertKeyDown(ord('z')) self.assertKeyUp(ord('z')) self.recorder.expect('keydown z') self.recorder.expect('keyup z') def test_key_ctrl_a(self): self.run_vncdo('key ctrl-a') self.assertKeyDown(rfb.KEY_ControlLeft) self.assertKeyDown(ord('a')) self.assertKeyUp(rfb.KEY_ControlLeft) self.assertKeyUp(ord('a')) def test_mouse(self): self.run_vncdo('move 111 222 click 1') self.assertMouse(111, 222, 1) self.recorder.expect('move 111 222') self.recorder.expect('click 1')
the-stack_106_32054
#!/usr/bin/env python # coding: utf-8 import librosa import logging import numpy as np from scipy.spatial import distance from scipy import signal from scipy.ndimage import filters from msaf.algorithms.interface import SegmenterInterface import msaf.utils as U def median_filter(X, M=8): """Median filter along the first axis of the feature matrix X.""" for i in range(X.shape[1]): X[:, i] = filters.median_filter(X[:, i], size=M) return X def gaussian_filter(X, M=8, axis=0): """Gaussian filter along the first axis of the feature matrix X.""" for i in range(X.shape[axis]): if axis == 1: X[:, i] = filters.gaussian_filter(X[:, i], sigma=M / 2.) elif axis == 0: X[i, :] = filters.gaussian_filter(X[i, :], sigma=M / 2.) return X def compute_gaussian_krnl(M): """Creates a gaussian kernel following Serra's paper.""" g = signal.gaussian(M, M / 3., sym=True) G = np.dot(g.reshape(-1, 1), g.reshape(1, -1)) G[M // 2:, :M // 2] = -G[M // 2:, :M // 2] G[:M // 2, M // 1:] = -G[:M // 2, M // 1:] return G def compute_ssm(X, metric="seuclidean"): """Computes the self-similarity matrix of X.""" D = distance.pdist(X, metric=metric) D = distance.squareform(D) D /= float(D.max()) return 1 - D def compute_nc(X): """Computes the novelty curve from the structural features.""" N = X.shape[0] # nc = np.sum(np.diff(X, axis=0), axis=1) # Difference between SF's nc = np.zeros(N) for i in range(N - 1): nc[i] = distance.euclidean(X[i, :], X[i + 1, :]) # Normalize nc += np.abs(nc.min()) nc /= float(nc.max()) return nc def pick_peaks(nc, L=16, offset_denom=0.1): """Obtain peaks from a novelty curve using an adaptive threshold.""" offset = nc.mean() * float(offset_denom) th = filters.median_filter(nc, size=L) + offset #th = filters.gaussian_filter(nc, sigma=L/2., mode="nearest") + offset #import pylab as plt #plt.plot(nc) #plt.plot(th) #plt.show() # th = np.ones(nc.shape[0]) * nc.mean() - 0.08 peaks = [] for i in range(1, nc.shape[0] - 1): # is it a peak? if nc[i - 1] < nc[i] and nc[i] > nc[i + 1]: # is it above the threshold? if nc[i] > th[i]: peaks.append(i) return peaks def circular_shift(X): """Shifts circularly the X squre matrix in order to get a time-lag matrix.""" N = X.shape[0] L = np.zeros(X.shape) for i in range(N): L[i, :] = np.asarray([X[(i + j) % N, j] for j in range(N)]) return L def embedded_space(X, m, tau=1): """Time-delay embedding with m dimensions and tau delays.""" N = X.shape[0] - int(np.ceil(m)) Y = np.zeros((N, int(np.ceil(X.shape[1] * m)))) for i in range(N): # print X[i:i+m,:].flatten().shape, w, X.shape # print Y[i,:].shape rem = int((m % 1) * X.shape[1]) # Reminder for float m Y[i, :] = np.concatenate((X[i:i + int(m), :].flatten(), X[i + int(m), :rem])) return Y class Segmenter(SegmenterInterface): """ This script identifies the boundaries of a given track using the Serrà method: Serrà, J., Müller, M., Grosche, P., & Arcos, J. L. (2012). Unsupervised Detection of Music Boundaries by Time Series Structure Features. In Proc. of the 26th AAAI Conference on Artificial Intelligence (pp. 1613–1619).Toronto, Canada. """ def processFlat(self): """Main process. Returns ------- est_idxs : np.array(N) Estimated times for the segment boundaries in frame indeces. est_labels : np.array(N-1) Estimated labels for the segments. """ # Structural Features params Mp = self.config["Mp_adaptive"] # Size of the adaptive threshold for # peak picking od = self.config["offset_thres"] # Offset coefficient for adaptive # thresholding M = self.config["M_gaussian"] # Size of gaussian kernel in beats m = self.config["m_embedded"] # Number of embedded dimensions k = self.config["k_nearest"] # k*N-nearest neighbors for the # recurrence plot # Preprocess to obtain features, times, and input boundary indeces F = self._preprocess() # Normalize F = U.normalize(F, norm_type=self.config["bound_norm_feats"]) # Check size in case the track is too short if F.shape[0] > 20: if self.framesync: red = 0.1 F_copy = np.copy(F) F = librosa.util.utils.sync( F.T, np.linspace(0, F.shape[0], num=F.shape[0] * red), pad=False).T # Emedding the feature space (i.e. shingle) E = embedded_space(F, m) # plt.imshow(E.T, interpolation="nearest", aspect="auto"); plt.show() # Recurrence matrix R = librosa.segment.recurrence_matrix( E.T, k=k * int(F.shape[0]), width=1, # zeros from the diagonal metric="euclidean", sym=True).astype(np.float32) # Circular shift L = circular_shift(R) #plt.imshow(L, interpolation="nearest", cmap=plt.get_cmap("binary")) #plt.show() # Obtain structural features by filtering the lag matrix SF = gaussian_filter(L.T, M=M, axis=1) SF = gaussian_filter(L.T, M=1, axis=0) # plt.imshow(SF.T, interpolation="nearest", aspect="auto") #plt.show() # Compute the novelty curve nc = compute_nc(SF) # Find peaks in the novelty curve est_bounds = pick_peaks(nc, L=Mp, offset_denom=od) # Re-align embedded space est_bounds = np.asarray(est_bounds) + int(np.ceil(m / 2.)) if self.framesync: est_bounds /= red F = F_copy else: est_bounds = [] # Add first and last frames est_idxs = np.concatenate(([0], est_bounds, [F.shape[0] - 1])) est_idxs = np.unique(est_idxs) assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[0] - 1 # Empty labels est_labels = np.ones(len(est_idxs) - 1) * - 1 # Post process estimations est_idxs, est_labels = self._postprocess(est_idxs, est_labels) # plt.figure(1) # plt.plot(nc); # [plt.axvline(p, color="m", ymin=.6) for p in est_bounds] # [plt.axvline(b, color="b", ymax=.6, ymin=.3) for b in brian_bounds] # [plt.axvline(b, color="g", ymax=.3) for b in ann_bounds] # plt.show() return est_idxs, est_labels
the-stack_106_32055
from . import support from . import tuner from .learner import Learner from .random import Random from .session import Session import json import numpy as np import os import threading class Agent: def __init__(self, session, semaphore, config): self.session = session self.semaphore = semaphore self.scores = Agent._restore(config.output.path) self.output_path = config.output.path self.lock = threading.Lock() self.done = threading.Lock() def collect(self, step_count): with self.done: return self.scores[step_count] def submit(self, step_count): with self.lock: if step_count in self.scores: return self.scores[step_count] = None self.done.acquire() worker = threading.Thread(target=self._run, args=(step_count,), daemon=True) worker.start() def _restore(path): scores = {} for path in support.scan(path, 'meta-*.json'): meta = json.loads(open(path).read()) scores[meta['step_count']] = meta['score'] support.log(Agent, 'Score: {}', path) return scores def _run(self, step_count): with self.semaphore: with self.lock: last_step_count = 0 for key in self.scores: if self.scores[key] is None: continue if key > last_step_count: last_step_count = key assert(last_step_count < step_count) support.log(self, 'Learning start: {}, stop: {}', last_step_count, step_count) self.session.run_training(step_count - last_step_count) score = np.sum(self.session.run_validation()['MSE']) Agent._save(self.output_path, step_count, score) self.session.run_saving() with self.lock: self.scores[step_count] = score support.log(self, 'Learning stop: {}, score: {}', step_count, score) self.done.release() def _save(path, step_count, score): path = os.path.join(path, 'meta-{}.json'.format(step_count)) with open(path, 'w') as file: file.write(json.dumps({ 'step_count': step_count, 'score': score, })) class Explorer: def __init__(self, input, config): self.input = input self.config = config self.tuner = getattr(tuner, config.tuner.name) self.tuner = self.tuner(**config.tuner.options) self.scale = config.max_step_count / self.tuner.resource self.sampler = Sampler(config.sampler) self.semaphore = threading.BoundedSemaphore(config.concurrent_count) self.agents = {} def configure(self, case, restore=True): key = support.tokenize(case) config = self.config.copy() config.output.restore = restore config.output.path = os.path.join(config.output.path, key) for key in case: _adjust(config, key, case[key]) return config def run(self): case, resource, score = self.tuner.run(self._generate, self._assess) step_count = int(round(self.scale * resource)) support.log(self, 'Best case: {}, step: {}, score: {}', case, step_count, score) return (case, step_count) def _assess(self, resource, cases): step_count = int(round(self.scale * resource)) support.log(self, 'Assess cases: {}, stop: {}', len(cases), step_count) agents = [] for case in cases: key = support.tokenize(case) agent = self.agents.get(key) if agent is None: config = self.configure(case) learner = Learner(config.learner.candidate) session = Session(self.input, learner, config) agent = Agent(session, self.semaphore, config) self.agents[key] = agent agent.submit(step_count) agents.append(agent) return [agent.collect(step_count) for agent in agents] def _generate(self, count): support.log(self, 'Generate cases: {}', count) return [self.sampler.get() for _ in range(count)] class Sampler: def __init__(self, config): self.parameters = config support.log(self, 'Cases: {}', self.case_count) @property def case_count(self): return np.prod([len(self.parameters[n]) for n in self.parameters]) def get(self): case = {} for key in sorted(self.parameters.keys()): chosen = Random.get().randint(len(self.parameters[key])) case[key] = self.parameters[key][chosen] return case def _adjust(config, key, value): if key == 'dropout_rate': config.learner.candidate.dropout.options.update({ 'input_keep_prob': 1 - value[0], 'output_keep_prob': 1 - value[1], }) elif key == 'layer_count': config.learner.candidate.layer_count = value elif key == 'learning_rate': config.teacher.trainer.optimizer.options.learning_rate = value elif key == 'unit_count': config.learner.candidate.unit_count = value elif key == 'use_peepholes': config.learner.candidate.cell.options.use_peepholes = value else: assert(False)
the-stack_106_32056
from __future__ import division from __future__ import print_function import os.path as osp import numpy as np from easydict import EasyDict as edict __C = edict() cfg = __C # Dataset name: flowers, birds __C.DATASET_NAME = 'coco' __C.CONFIG_NAME = '' __C.DATA_DIR = '' __C.GPU_ID = 0 __C.CUDA = True __C.WORKERS = 6 __C.RNN_TYPE = 'LSTM' # 'GRU' __C.B_VALIDATION = False __C.TREE = edict() __C.TREE.BRANCH_NUM = 3 __C.TREE.BASE_SIZE = 64 # Training options __C.TRAIN = edict() __C.TRAIN.BATCH_SIZE = 64 __C.TRAIN.MAX_EPOCH = 600 __C.TRAIN.SNAPSHOT_INTERVAL = 2000 __C.TRAIN.DISCRIMINATOR_LR = 2e-4 __C.TRAIN.MEMT_LR = 2e-4 __C.TRAIN.GENERATOR_LR = 2e-4 __C.TRAIN.ENCODER_LR = 2e-4 __C.TRAIN.RNN_GRAD_CLIP = 0.25 __C.TRAIN.FLAG = True __C.TRAIN.NET_E = '' __C.TRAIN.NET_G = '' __C.TRAIN.NET_T = '' __C.TRAIN.B_NET_D = True __C.TRAIN.SMOOTH = edict() __C.TRAIN.SMOOTH.GAMMA1 = 5.0 __C.TRAIN.SMOOTH.GAMMA3 = 10.0 __C.TRAIN.SMOOTH.GAMMA2 = 5.0 __C.TRAIN.SMOOTH.LAMBDA = 1.0 # Modal options __C.GAN = edict() __C.GAN.DF_DIM = 64 __C.GAN.GF_DIM = 128 __C.GAN.Z_DIM = 100 __C.GAN.CONDITION_DIM = 100 __C.GAN.R_NUM = 2 __C.GAN.B_ATTENTION = True __C.GAN.B_DCGAN = False __C.TEXT = edict() __C.TEXT.CAPTIONS_PER_IMAGE = 10 __C.TEXT.EMBEDDING_DIM = 256 __C.TEXT.WORDS_NUM = 18 def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.iteritems(): # a must specify keys that are in b if not b.has_key(k): raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C)
the-stack_106_32058
from tkinter import * class GUI: def __init__(self, master): frame = Frame(master) frame.pack() frame.configure(background='white') self.button1 = Button(frame, bg="white") self.button1.config(image=photo1) self.button2 = Button(frame,bg="white") self.button2.config(image=photo2) self.button1.grid(row=0,column=0) self.button2.grid(row=0, column=1) root= Tk() photo = PhotoImage(file="C:/Users/Reemy/Documents/GitHub/std_googleAssistant/GUI/Icons/Games1.png") label = Label(root,image=photo) photoB = PhotoImage(file="C:/Users/Reemy/Documents/GitHub/std_googleAssistant/GUI/Icons/Back.png") photoE = PhotoImage(file="C:/Users/Reemy/Documents/GitHub/std_googleAssistant/GUI/Icons/Exit.png") photo1 = PhotoImage(file="C:/Users/Reemy/Documents/GitHub/std_googleAssistant/GUI/Icons/tic-tac-toe.png") photo2 = PhotoImage(file="C:/Users/Reemy/Documents/GitHub/std_googleAssistant/GUI/Icons/Color.png") back = Button(root, bg="white") back.config(image=photoB) quitButton = Button(root, command=root.quit, bg="white") quitButton.config(image=photoE) back.pack(side="left",anchor=NW) quitButton.pack(side="right", anchor=NE) label.pack(side="top", anchor=N) b= GUI(root) root.geometry("1000x920") root.title("Intelligent Fellow") root.configure(background='white') root.mainloop()
the-stack_106_32060
# Test script for interaction based messages using DiscordAPI compoments from discord.ext import commands import discord import discord_slash.utils.manage_components as utils from discord_slash.model import ButtonStyle from discord_slash.cog_ext import cog_component class Components(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name="test", help="test command for discord components") async def test(self, ctx): buttons = [ utils.create_button(style=ButtonStyle.green, label="A green button"), utils.create_button(style=ButtonStyle.blue, label="A blue button") ] action_row = utils.create_actionrow(*buttons) await ctx.send("Button test message", components=[action_row]) @cog_component() #figure how to make component callback in cogs async def hello(self, ctx): await ctx.edit_origin(content="Button pressed") def setup(bot): bot.add_cog(Components(bot))
the-stack_106_32062
from django.shortcuts import render, redirect from django.urls import reverse from django.contrib.auth.admin import User from tool.models import Project as ProjectModel, ProjectMember, GroupAccess from tool.forms import UserCreateForm, UserEditForm, ProjectCreationForm, ProjectEditForm from tool.utilies import * import xlrd, json import numpy as np from scipy import optimize from django.core import serializers from django.http import JsonResponse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.contrib import messages import math class Funcs: def count_number_project_status_point(pd, project_status): for i in range(len(project_status)): if project_status[i]['AT'] == pd: return i+1 return len(project_status) def get_index_of_evaluation(project_status, number_project_status_point, evaluation_point): for i in range(number_project_status_point): if project_status[i]['AT'] >= evaluation_point: return i - 1 break return number_project_status_point - 1 def init(X, Y , pd, budget, project_status, evaluation_index, number_project_status_point): for i in range(number_project_status_point): X[i] = project_status[i]['AT']/(pd*1.0) if i > evaluation_index: project_status[i]['EV'] = project_status[i]['PV'] project_status[i]['AC'] = project_status[i]['PV'] Y[i] = project_status[i]['AC']/(budget*1.0) # for gomperzt def gomperzt_func(parameters,xdata): a = parameters[0] b = parameters[1] y = parameters[2] return a * np.exp(-np.exp(b - y*xdata)) # for logistic def logistic_func(parameters,xdata): a = parameters[0] b = parameters[1] y = parameters[2] return a / (1 + np.exp(b - y*xdata)) # for logistic def bass_func(parameters,xdata): a = parameters[0] b = parameters[1] y = parameters[2] return a * ( ( 1 - np.exp(-(b + y)*xdata) ) / ( ( 1 + (y / b)*np.exp(-(b + y)*xdata) ) ) ) # for logistic def weibull_func(parameters,xdata): a = parameters[0] b = parameters[1] y = parameters[2] return a * (1 - np.exp( -( xdata / y )**b )) #log-logistic def log_logistic_func(parameters,xdata): a = parameters[0] b = parameters[1] return ( (xdata/a)**b ) / ( 1 + (xdata/a)**b ) #Compute residuals of y_predicted - y_observed def residuals(parameters,x_data,y_observed,func): return func(parameters,x_data) - y_observed def getES(project_status, evaluation_index): # example: evaluationPoint = 9 -> current EV is: EV[8]. i = 0..8 EV = project_status[evaluation_index]['EV'] t = [ n for n,item in enumerate(project_status) if item['PV']>EV ][0] - 1 return round(project_status[t]['AT'] + (EV - project_status[t]['PV'])/(project_status[t+1]['PV'] - project_status[t]['PV']), 2) def getSPI(project_status, evaluation_index): return round(project_status[evaluation_index]['EV']/project_status[evaluation_index]['PV'], 2) def getCPI(project_status, evaluation_index): return round(project_status[evaluation_index]['EV']/project_status[evaluation_index]['AC'], 2) def getSPIt(project_status, evaluation_index): ES = Funcs.getES(project_status, evaluation_index) return round(ES/project_status[evaluation_index]['AT'], 2) def getSCI(SPI, CPI): return round(SPI*CPI, 2) def getSCIt(SPIt, CPI): return round(SPIt*CPI, 2) def getED(project_status, SPI, evaluation_index): return round(project_status[evaluation_index]['AT']*SPI, 2) def getSV(project_status, evaluation_index): return project_status[evaluation_index]['EV'] - project_status[evaluation_index]['PV'] def getTV(BAC, PD, project_status, evaluation_index): PVrate = BAC/PD SV = Funcs.getSV(project_status, evaluation_index) return round(SV/PVrate, 2) def getEACtPV1(PD, TV): return PD - TV def getEACtPV2(PD, SPI): return round(PD/SPI, 2) def getEACtPV3(PD, SCI): return round(PD/SCI, 2) # return EACt caculated by ED def getEACtED(PD, project_status, ED, PF, evaluation_index): return round(project_status[evaluation_index]['AT'] + (max(PD, project_status[evaluation_index]['AT']) - ED)/PF, 2) # return EACt caculated by ES def getEACtES(PD, project_status, ES, PF, evaluation_index): return round(project_status[evaluation_index]['AT'] + (PD - ES)/PF, 2) def getCI(CPI, w_cpi, SPI, w_spi): return CPI*w_cpi + SPI*w_spi def getCIt(CPI, w_cpi, SPIt, w_spit): return CPI*w_cpi + SPIt*w_spit # EAC caculated by EVM def getEAC(project_status, BAC, evaluation_index, PF): return round(project_status[evaluation_index]['AC'] + (BAC - project_status[evaluation_index]['EV'])/PF, 2) def getEACGM(project_status, xdata, evaluation_index, growModel, parametersEstimated, BAC, index = 1.0): if(growModel == 'gompertz'): restBudget = (Funcs.gomperzt_func(parametersEstimated, index) - Funcs.gomperzt_func(parametersEstimated, xdata[evaluation_index]))*BAC elif(growModel == 'logistic'): restBudget = (Funcs.logistic_func(parametersEstimated, index) - Funcs.logistic_func(parametersEstimated, xdata[evaluation_index]))*BAC elif(growModel == 'bass'): restBudget = (Funcs.bass_func(parametersEstimated, index) - Funcs.bass_func(parametersEstimated, xdata[evaluation_index]))*BAC elif(growModel == 'weibull'): restBudget = (Funcs.weibull_func(parametersEstimated, index) - Funcs.weibull_func(parametersEstimated, xdata[evaluation_index]))*BAC else: restBudget = (Funcs.log_logistic_func(parametersEstimated, index) - Funcs.log_logistic_func(parametersEstimated, xdata[evaluation_index]))*BAC return round(project_status[evaluation_index]['AC'] + restBudget, 2) def optimizeLeastSquares(growModel, xdata, ydata, method = 'trf'): x0 = [0.1, 0.2, 0.3] # max_nfev = 2000 # maxium of function evaluations # bounds = [(0,0,0), (2,2,2)] # lower adn upper bounds on independent variables. # ftol = 1e-8 # default tolerance of termination by the change of cost function. dF < ftol*F if(growModel == 'gompertz'): OptimizeResult = optimize.least_squares(Funcs.residuals, x0,method = method, args = ( xdata, ydata,Funcs.gomperzt_func) ) elif(growModel == 'logistic'): OptimizeResult = optimize.least_squares(Funcs.residuals, x0,method = method, args = ( xdata, ydata,Funcs.logistic_func) ) elif(growModel == 'bass'): OptimizeResult = optimize.least_squares(Funcs.residuals, x0,method = method, args = ( xdata, ydata,Funcs.bass_func) ) elif(growModel == 'log_logistic'): x0 = [0.1, 0.2] OptimizeResult = optimize.least_squares(Funcs.residuals, x0,method = method, args = ( xdata, ydata,Funcs.log_logistic_func) ) else: OptimizeResult = optimize.least_squares(Funcs.residuals, x0,method = method, args = ( xdata, ydata,Funcs.weibull_func) ) parametersEstimated = OptimizeResult.x return parametersEstimated def estimate(project_id, grow_model, evaluation_point, algorithm="trf"): project = get_or_none(ProjectModel, pk=project_id) if project is None: return {} pd = project.pd budget = project.budget project_status = json.loads(project.status) number_project_status_point = Funcs.count_number_project_status_point(pd, project_status) xdata = np.zeros(number_project_status_point) ydata = np.zeros(number_project_status_point) evaluation_index = Funcs.get_index_of_evaluation(project_status, number_project_status_point, evaluation_point) Funcs.init(xdata, ydata, pd, budget, project_status, evaluation_index, number_project_status_point) ES = Funcs.getES(project_status, evaluation_index) SPI = Funcs.getSPI(project_status, evaluation_index) CPI = Funcs.getCPI(project_status, evaluation_index) SPIt = Funcs.getSPIt(project_status, evaluation_index) SCI = Funcs.getSCI(SPI, CPI) SCIt = Funcs.getSCIt(SPIt, CPI) TV = Funcs.getTV(budget, pd, project_status, evaluation_index) ED = Funcs.getED(project_status, SPI, evaluation_index) EACtPV1 = Funcs.getEACtPV1(pd, Funcs.getTV(budget, pd, project_status, evaluation_index)) EACtPV2 = Funcs.getEACtPV2(pd, SPI) EACtPV3 = Funcs.getEACtPV3(pd, SCI) EACtED1 = Funcs.getEACtED(pd, project_status, ED, 1, evaluation_index) EACtED2 = Funcs.getEACtED(pd, project_status, ED, SPI, evaluation_index) EACtED3 = Funcs.getEACtED(pd, project_status, ED, SCI, evaluation_index) EACtES1 = Funcs.getEACtES(pd, project_status, ES, 1, evaluation_index) EACtES2 = Funcs.getEACtES(pd, project_status, ES, SPIt, evaluation_index) EACtES3 = Funcs.getEACtES(pd, project_status, ES, SCIt, evaluation_index) EAC1 = Funcs.getEAC(project_status, budget, evaluation_index, 1) EAC2 = Funcs.getEAC(project_status, budget, evaluation_index, CPI) EAC3 = Funcs.getEAC(project_status, budget, evaluation_index, SPI) EAC3_SPI = Funcs.getEAC(project_status, budget, evaluation_index, SPI) EAC3_SPIt = Funcs.getEAC(project_status, budget, evaluation_index, SPIt) EAC4_SCI = Funcs.getEAC(project_status, budget, evaluation_index, SCI) EAC4_SCIt = Funcs.getEAC(project_status, budget, evaluation_index, SCIt) CI = Funcs.getCI(CPI, 0.8, SPI, 0.2) CIt = Funcs.getCIt(CPI, 0.8, SPIt, 0.2) EAC5_CI = Funcs.getEAC(project_status, budget, evaluation_index, CI) EAC5_CIt = Funcs.getEAC(project_status, budget, evaluation_index, CIt) parametersEstimated = Funcs.optimizeLeastSquares(grow_model, xdata, ydata, method=algorithm) EAC_GM1 = Funcs.getEACGM(project_status, xdata, evaluation_index, grow_model, parametersEstimated, budget, 1.0) EAC_GM2 = Funcs.getEACGM(project_status, xdata, evaluation_index, grow_model, parametersEstimated, budget, 1.0/SPIt) alpha = round(parametersEstimated[0], 6) beta = round(parametersEstimated[1], 6) if(grow_model == 'log_logistic'): gamma = '' else: gamma = round(parametersEstimated[2], 6) data = { 'alpha': alpha, 'beta': beta, 'gamma': gamma, 'ES': ES, 'SPI': SPI, 'CPI': CPI, 'SPIt': SPIt, 'SCI': SCI, 'SCIt': SCIt, 'TV': TV, 'ED': ED, 'EACtPV1': EACtPV1, 'EACtPV2': EACtPV2, 'EACtPV3': EACtPV3, 'EACtED1': EACtED1, 'EACtED2': EACtED2, 'EACtED3': EACtED3, 'EACtES1': EACtES1, 'EACtES2': EACtES2, 'EACtES3': EACtES3, 'EAC1': EAC1, 'EAC2': EAC2, 'EAC3_SPI': EAC3_SPI, 'EAC3_SPIt': EAC3_SPIt, 'EAC4_SCI': EAC4_SCI, 'EAC4_SCIt': EAC4_SCIt, 'EAC5_CI': EAC5_CI, 'EAC5_CIt': EAC5_CIt, 'EAC_GM1': EAC_GM1, 'EAC_GM2': EAC_GM2 } return data def get_pe(project_id, grow_model, evaluation_point): project = get_or_none(ProjectModel, pk=project_id) if project is None: return {} project_ac = project.get_ac() estimate_data = Funcs.estimate(project_id, grow_model, evaluation_point) data = {} data['pe_EAC1'] = round((estimate_data['EAC1'] - project_ac)*100/project_ac, 2) data['pe_EAC2'] = round((estimate_data['EAC2'] - project_ac)*100/project_ac, 2) data['pe_EAC3_SPI'] = round((estimate_data['EAC3_SPI'] - project_ac)*100/project_ac, 2) data['pe_EAC3_SPIt'] = round((estimate_data['EAC3_SPIt'] - project_ac)*100/project_ac, 2) data['pe_EAC4_SCI'] = round((estimate_data['EAC4_SCI'] - project_ac)*100/project_ac, 2) data['pe_EAC4_SCIt'] = round((estimate_data['EAC4_SCIt'] - project_ac)*100/project_ac, 2) data['pe_EAC5_CI'] = round((estimate_data['EAC5_CI'] - project_ac)*100/project_ac, 2) data['pe_EAC5_CIt'] = round((estimate_data['EAC5_CIt'] - project_ac)*100/project_ac, 2) data['pe_EAC_GM1'] = round((estimate_data['EAC_GM1'] - project_ac)*100/project_ac, 2) data['pe_EAC_GM2'] = round((estimate_data['EAC_GM2'] - project_ac)*100/project_ac, 2) return data def get_mape(project_ids, grow_model, evaluation_percent): projects = ProjectModel.objects.filter(pk__in=project_ids) data_mape = {} data_pe = {} for project in projects: evaluation_point = math.ceil(project.pd*evaluation_percent) data_pe['{}'.format(project.id)] = Funcs.get_pe(project.id, grow_model, evaluation_point) sum_pe = [0,0,0,0,0,0,0,0,0,0] for project_id in project_ids: sum_pe[0] += abs(data_pe['{}'.format(project_id)]['pe_EAC1']) sum_pe[1] += abs(data_pe['{}'.format(project_id)]['pe_EAC2']) sum_pe[2] += abs(data_pe['{}'.format(project_id)]['pe_EAC3_SPI']) sum_pe[3] += abs(data_pe['{}'.format(project_id)]['pe_EAC3_SPIt']) sum_pe[4] += abs(data_pe['{}'.format(project_id)]['pe_EAC4_SCI']) sum_pe[5] += abs(data_pe['{}'.format(project_id)]['pe_EAC4_SCIt']) sum_pe[6] += abs(data_pe['{}'.format(project_id)]['pe_EAC5_CI']) sum_pe[7] += abs(data_pe['{}'.format(project_id)]['pe_EAC5_CIt']) sum_pe[8] += abs(data_pe['{}'.format(project_id)]['pe_EAC_GM1']) sum_pe[9] += abs(data_pe['{}'.format(project_id)]['pe_EAC_GM2']) return { 'mape_EAC1': round(sum_pe[0]/len(project_ids), 2), 'mape_EAC2': round(sum_pe[1]/len(project_ids), 2), 'mape_EAC3_SPI': round(sum_pe[2]/len(project_ids), 2), 'mape_EAC3_SPIt': round(sum_pe[3]/len(project_ids), 2), 'mape_EAC4_SCI': round(sum_pe[4]/len(project_ids), 2), 'mape_EAC4_SCIt': round(sum_pe[5]/len(project_ids), 2), 'mape_EAC5_CI': round(sum_pe[6]/len(project_ids), 2), 'mape_EAC5_CIt': round(sum_pe[7]/len(project_ids), 2), 'mape_EAC_GM1': round(sum_pe[8]/len(project_ids), 2), 'mape_EAC_GM2': round(sum_pe[9]/len(project_ids), 2) } class MyIO: def writeResultToFile(project_name, grow_model, evaluation_time, data): static_dir = settings.STATICFILES_DIRS[0] #Creating a folder in static directory new_pro_dir_path = os.path.join(static_dir,'%s'%(project_name)) new_pro_gro_dir_path = os.path.join(static_dir,'%s/%s'%(project_name, grow_model)) new_pro_gro_eva_dir_path = os.path.join(static_dir, '%s/%s/%s'%(project_name, grow_model, evaluation_time)) result_file_path = os.path.join(static_dir, '%s/%s/%s/data.json'%(project_name, grow_model, evaluation_time)) if not os.path.exists(new_pro_dir_path): os.makedirs(new_pro_dir_path) if not os.path.exists(new_pro_gro_dir_path): os.makedirs(new_pro_gro_dir_path) if not os.path.exists(new_pro_gro_eva_dir_path): os.makedirs(new_pro_gro_eva_dir_path) with open(result_file_path, 'w') as f: json.dump(data, f) class EstimateController: def index(request): projects = ProjectModel.get_projects_has_access(request.user.id) return render(request, 'tool/estimate/index.html', {'projects': projects}) def estimate(request): project_id = int(request.GET.get('project_id')) grow_model = request.GET.get('grow_model') evaluation_point = int(request.GET.get('evaluation_point')) algorithm = request.GET.get('algorithm') data = Funcs.estimate(project_id, grow_model, evaluation_point, algorithm) return JsonResponse({'status': 200, 'data': data}) class PeController: def get_pe(request): project_id = request.GET.get('project_id') project = get_or_none(ProjectModel, pk=project_id) project_ac = project.get_ac() evaluation_percents = [0.25, 0.5, 0.75] grow_models = ['gompertz', 'logistic', 'bass', 'weibull'] # grow_models = ['gompertz', 'logistic', 'weibull', 'bass', 'log_logistic'] data = {} for grow_model in grow_models: data['{}'.format(grow_model)] = {} for evaluation_percent in evaluation_percents: evaluation_point = math.ceil(project.pd*evaluation_percent) data['{}'.format(grow_model)]['{}'.format(evaluation_percent)] = Funcs.get_pe(project_id, grow_model, evaluation_point) return JsonResponse({'data': data}) def get_mape(request): project_ids_str = request.GET.get('project_ids') project_ids = json.loads(project_ids_str) evaluation_percents = [0.25, 0.5, 0.75] grow_models = ['gompertz', 'logistic', 'bass', 'weibull'] # grow_models = ['gompertz', 'logistic', 'weibull', 'bass', 'log_logistic'] data = {} for grow_model in grow_models: data['{}'.format(grow_model)] = {} for evaluation_percent in evaluation_percents: data['{}'.format(grow_model)]['{}'.format(evaluation_percent)] = Funcs.get_mape(project_ids, grow_model, evaluation_percent) return JsonResponse({'data': data})
the-stack_106_32063
# coding=utf-8 import pygame from game import * class Pool(object): def __init__(self, x, y, width, height, style='grass'): self.x, self.y = x, y self.Vx, self.Vy = 0, 0 self.width, self.height = width, height # Platform images self.image = pygame.image.load('environment\\main\\' + style + 'Mid.png').convert_alpha() self.plainImage = pygame.image.load('environment\\main\\' + style + 'Center.png') self.leftImage = pygame.image.load('environment\\main\\' + style + 'CliffLeft.png').convert_alpha() self.rightImage = pygame.image.load('environment\\main\\' + style + 'CliffRight.png').convert_alpha() self.tileWidth = pygame.Surface.get_width(self.image) # Water images self.waterFilled = pygame.image.load('environment\\main\\liquidWater.png').convert_alpha() self.waterTop = pygame.image.load('environment\\main\\liquidWaterTop_mid.png').convert_alpha() # Update coordinates self.width -= self.width % self.tileWidth self.height -= self.height % self.tileWidth self.poolStartX = int(self.x + 2 * self.tileWidth) self.poolEndX = int(self.x + self.width - 2 * self.tileWidth) # Other control variables self.tilesOnEitherSide = 2 # ----------------------------------------------------------------------------------------------------------------- def update(self, surface): self.updateMotion() self.draw(surface) # ----------------------------------------------------------------------------------------------------------------- def updateMotion(self): # Increment position by velocity self.x += self.Vx self.y += self.Vy # ----------------------------------------------------------------------------------------------------------------- def draw(self, surface): # Draw edge platforms surface.blit(self.leftImage, (self.x, self.y)) surface.blit(self.rightImage, (self.x + self.width - self.tileWidth, self.y)) # Draw platform tiles on either side of the pool self.poolStartX = int(self.x + self.tilesOnEitherSide * self.tileWidth) self.poolEndX = int(self.x + self.width - (1 + self.tilesOnEitherSide) * self.tileWidth) for x in range(int(self.x) + self.tileWidth, self.poolStartX + self.tileWidth, self.tileWidth): surface.blit(self.image, (x, self.y)) for x in range(self.poolEndX, int(self.x) + self.width - self.tileWidth, self.tileWidth): surface.blit(self.image, (x, self.y)) # Draw pool side columns for y in range(int(self.y + self.tileWidth), int(self.y + self.height), self.tileWidth): surface.blit(self.plainImage, (self.poolStartX, y)) surface.blit(self.plainImage, (self.poolEndX, y)) # Draw bottom of pool for x in range(self.poolStartX, self.poolEndX + self.tileWidth, self.tileWidth): surface.blit(self.plainImage, (x, self.y + self.height)) # Fill with water for y in range(int(self.y + self.tileWidth), int(self.y + self.height), self.tileWidth): for x in range(self.poolStartX + self.tileWidth, self.poolEndX, self.tileWidth): surface.blit(self.waterFilled, (x, y)) for x in range(self.poolStartX + self.tileWidth, self.poolEndX, self.tileWidth): surface.blit(self.waterTop, (x, self.y))
the-stack_106_32064
"""View Module.""" from jinja2 import ChoiceLoader, Environment, PackageLoader, select_autoescape from jinja2.exceptions import TemplateNotFound from .exceptions import RequiredContainerBindingNotFound, ViewException from .response import Responsable class View(Responsable): """View class. Responsible for handling everything involved with views and view environments.""" _splice = "/" def __init__(self, container): """View constructor. Arguments: container {masonite.app.App} -- Container object. """ self.dictionary = {} self.composers = {} self.container = container # If the cache_for method is declared self.cache = False # Cache time of cache_for self.cache_time = None # Cache type of cache_for self.cache_type = None self.template = None self.environments = [] self.extension = ".html" self._jinja_extensions = ["jinja2.ext.loopcontrols"] self._filters = {} self._tests = {} self._shared = {} def render(self, template, dictionary={}): """Get the string contents of the view. Arguments: template {string} -- Name of the template you want to render. Keyword Arguments: dictionary {dict} -- Data that you want to pass into your view. (default: {{}}) Returns: self """ if not isinstance(dictionary, dict): raise ViewException( "Second parameter to render method needs to be a dictionary, {} passed.".format( type(dictionary).__name__ ) ) self.__load_environment(template) self.dictionary = {} self.dictionary.update(dictionary) self.dictionary.update(self._shared) # Check if use cache and return template from cache if exists if ( self.container.has("Cache") and self.__cached_template_exists() and not self.__is_expired_cache() ): return self.__get_cached_template() # Check if composers are even set for a speed improvement if self.composers: self._update_from_composers() if self._tests: self.env.tests.update(self._tests) self.rendered_template = self._render() return self def _render(self): try: # Try rendering the template with '.html' appended return self.env.get_template(self.filename).render(self.dictionary) except TemplateNotFound: # Try rendering the direct template the user has supplied return self.env.get_template(self.template).render(self.dictionary) def _update_from_composers(self): """Add data into the view from specified composers.""" # Check if the template is directly specified in the composer if self.template in self.composers: self.dictionary.update(self.composers.get(self.template)) # Check if there is just an astericks in the composer if "*" in self.composers: self.dictionary.update(self.composers.get("*")) # We will append onto this string for an easier way to search through wildcard routes compiled_string = "" # Check for wildcard view composers for template in self.template.split(self._splice): # Append the template onto the compiled_string compiled_string += template if self.composers.get("{}*".format(compiled_string)): self.dictionary.update(self.composers["{}*".format(compiled_string)]) else: # Add a slash to symbolize going into a deeper directory structure compiled_string += "/" def composer(self, composer_name, dictionary): """Update composer dictionary. Arguments: composer_name {string} -- Key to bind dictionary of data to. dictionary {dict} -- Dictionary of data to add to controller. Returns: self """ if isinstance(composer_name, str): self.composers[composer_name] = dictionary if isinstance(composer_name, list): for composer in composer_name: self.composers[composer] = dictionary return self def share(self, dictionary): """Share data to all templates. Arguments: dictionary {dict} -- Dictionary of key value pairs to add to all views. Returns: self """ self._shared.update(dictionary) return self def cache_for(self, time=None, cache_type=None): """Set time and type for cache. Keyword Arguments: time {string} -- Time to cache template for (default: {None}) cache_type {string} -- Type of the cache. (default: {None}) Raises: RequiredContainerBindingNotFound -- Thrown when the Cache key binding is not found in the container. Returns: self """ if not self.container.has("Cache"): raise RequiredContainerBindingNotFound( "The 'Cache' container binding is required to use this method and wasn't found in the container. You may be missing a Service Provider" ) self.cache = True self.cache_time = float(time) self.cache_type = cache_type if self.__is_expired_cache(): self.__create_cache_template(self.template) return self def exists(self, template): """Check if a template exists. Arguments: template {string} -- Name of the template to check for. Returns: bool """ self.__load_environment(template) try: self.env.get_template(self.filename) return True except TemplateNotFound: return False def add_environment(self, template_location, loader=PackageLoader): """Add an environment to the templates. Arguments: template_location {string} -- Directory location to attach the environment to. Keyword Arguments: loader {jinja2.Loader} -- Type of Jinja2 loader to use. (default: {jinja2.PackageLoader}) """ if loader == PackageLoader: template_location = template_location.split(self._splice) self.environments.append( loader(template_location[0], "/".join(template_location[1:])) ) else: self.environments.append(loader(template_location)) def filter(self, name, function): """Use to add filters to views. Arguments: name {string} -- Key to bind the filter to. function {object} -- Function used for the template filter. """ self._filters.update({name: function}) def test(self, key, obj): self._tests.update({key: obj}) return self def add_extension(self, extension): self._jinja_extensions.append(extension) return self def __load_environment(self, template): """Private method for loading all the environments. Arguments: template {string} -- Template to load environment from. """ self.template = template self.filename = ( template.replace(self._splice, "/").replace(".", "/") + self.extension ) if template.startswith("/"): # Filter blanks strings from the split location = list(filter(None, template.split("/"))) self.filename = location[-1] + self.extension loader = ChoiceLoader( [PackageLoader(location[0], "/".join(location[1:-1]))] + self.environments ) self.env = Environment( loader=loader, autoescape=select_autoescape(["html", "xml"]), extensions=self._jinja_extensions, line_statement_prefix="@", ) else: loader = ChoiceLoader( [PackageLoader("resources", "templates")] + self.environments ) # Set the searchpath since some packages look for this object # This is sort of a hack for now loader.searchpath = "" self.env = Environment( loader=loader, autoescape=select_autoescape(["html", "xml"]), extensions=self._jinja_extensions, line_statement_prefix="@", ) self.env.filters.update(self._filters) def __create_cache_template(self, template): """Save in the cache the template. Arguments: template {string} -- Creates the cached templates. """ self.container.make("Cache").store_for( template, self.rendered_template, self.cache_time, self.cache_type, ".html", ) def __cached_template_exists(self): """Check if the cache template exists. Returns: bool """ return self.container.make("Cache").exists(self.template) def __is_expired_cache(self): """Check if cache is expired. Returns: bool """ # Check if cache_for is set and configurate if self.cache_time is None or self.cache_type is None and self.cache: return True driver_cache = self.container.make("Cache") # True is expired return not driver_cache.is_valid(self.template) def __get_cached_template(self): """Return the cached version of the template. Returns: self """ driver_cache = self.container.make("Cache") self.rendered_template = driver_cache.get(self.template) return self def set_splice(self, splice): self._splice = splice return self def get_response(self): return self.rendered_template
the-stack_106_32065
from __future__ import print_function import torch from model import highwayNet from utils import ngsimDataset,maskedNLL,maskedMSETest,maskedNLLTest from torch.utils.data import DataLoader import time ## Network Arguments args = {} args['use_cuda'] = True args['encoder_size'] = 64 args['decoder_size'] = 128 args['in_length'] = 16 args['out_length'] = 25 args['grid_size'] = (13,3) args['soc_conv_depth'] = 64 args['conv_3x1_depth'] = 16 args['dyn_embedding_size'] = 32 args['input_embedding_size'] = 32 args['num_lat_classes'] = 3 args['num_lon_classes'] = 2 args['use_maneuvers'] = False args['train_flag'] = False # Evaluation metric: metric = 'nll' #or rmse # Initialize network net = highwayNet(args) net.load_state_dict(torch.load('trained_models/cslstm_m.tar')) if args['use_cuda']: net = net.cuda() tsSet = ngsimDataset('data/TestSet.mat') tsDataloader = DataLoader(tsSet,batch_size=128,shuffle=True,num_workers=8,collate_fn=tsSet.collate_fn) lossVals = torch.zeros(25).cuda() counts = torch.zeros(25).cuda() for i, data in enumerate(tsDataloader): st_time = time.time() hist, nbrs, mask, lat_enc, lon_enc, fut, op_mask = data # Initialize Variables if args['use_cuda']: hist = hist.cuda() nbrs = nbrs.cuda() mask = mask.cuda() lat_enc = lat_enc.cuda() lon_enc = lon_enc.cuda() fut = fut.cuda() op_mask = op_mask.cuda() if metric == 'nll': # Forward pass if args['use_maneuvers']: fut_pred, lat_pred, lon_pred = net(hist, nbrs, mask, lat_enc, lon_enc) l,c = maskedNLLTest(fut_pred, lat_pred, lon_pred, fut, op_mask) else: fut_pred = net(hist, nbrs, mask, lat_enc, lon_enc) l, c = maskedNLLTest(fut_pred, 0, 0, fut, op_mask,use_maneuvers=False) else: # Forward pass if args['use_maneuvers']: fut_pred, lat_pred, lon_pred = net(hist, nbrs, mask, lat_enc, lon_enc) fut_pred_max = torch.zeros_like(fut_pred[0]) for k in range(lat_pred.shape[0]): lat_man = torch.argmax(lat_pred[k, :]).detach() lon_man = torch.argmax(lon_pred[k, :]).detach() indx = lon_man*3 + lat_man fut_pred_max[:,k,:] = fut_pred[indx][:,k,:] l, c = maskedMSETest(fut_pred_max, fut, op_mask) else: fut_pred = net(hist, nbrs, mask, lat_enc, lon_enc) l, c = maskedMSETest(fut_pred, fut, op_mask) lossVals +=l.detach() counts += c.detach() if metric == 'nll': print(lossVals / counts) else: print(torch.pow(lossVals / counts,0.5)*0.3048) # Calculate RMSE and convert from feet to meters
the-stack_106_32066
# -*- coding: utf-8 -*- """ Wind Setbacks tests """ from click.testing import CliRunner import json import numpy as np import os import pytest import shutil import tempfile import traceback from rex.utilities.loggers import LOGGERS from reVX import TESTDATADIR from reVX.handlers.geotiff import Geotiff from reVX.wind_setbacks import (StructureWindSetbacks, RailWindSetbacks) from reVX.wind_setbacks.wind_setbacks_cli import main EXCL_H5 = os.path.join(TESTDATADIR, 'setbacks', 'ri_setbacks.h5') HUB_HEIGHT = 135 ROTOR_DIAMETER = 200 MULTIPLIER = 3 REGS_FPATH = os.path.join(TESTDATADIR, 'setbacks', 'ri_wind_regs_fips.csv') REGS_GPKG = os.path.join(TESTDATADIR, 'setbacks', 'ri_wind_regs_fips.gpkg') @pytest.fixture(scope="module") def runner(): """ cli runner """ return CliRunner() def test_generic_structure(): """ Test generic structures setbacks """ baseline = os.path.join(TESTDATADIR, 'setbacks', 'generic_structures.tif') with Geotiff(baseline) as tif: baseline = tif.values setbacks = StructureWindSetbacks(EXCL_H5, HUB_HEIGHT, ROTOR_DIAMETER, regs_fpath=None, multiplier=MULTIPLIER) structure_path = os.path.join(TESTDATADIR, 'setbacks', 'RhodeIsland.geojson') test = setbacks.compute_setbacks(structure_path) assert np.allclose(baseline, test) @pytest.mark.parametrize('max_workers', [None, 1]) def test_local_structures(max_workers): """ Test local structures setbacks """ baseline = os.path.join(TESTDATADIR, 'setbacks', 'existing_structures.tif') with Geotiff(baseline) as tif: baseline = tif.values setbacks = StructureWindSetbacks(EXCL_H5, HUB_HEIGHT, ROTOR_DIAMETER, regs_fpath=REGS_GPKG, multiplier=None) structure_path = os.path.join(TESTDATADIR, 'setbacks', 'RhodeIsland.geojson') test = setbacks.compute_setbacks(structure_path, max_workers=max_workers) assert np.allclose(baseline, test) def test_generic_railroads(): """ Test generic rail setbacks """ baseline = os.path.join(TESTDATADIR, 'setbacks', 'generic_rails.tif') with Geotiff(baseline) as tif: baseline = tif.values setbacks = RailWindSetbacks(EXCL_H5, HUB_HEIGHT, ROTOR_DIAMETER, regs_fpath=None, multiplier=MULTIPLIER) rail_path = os.path.join(TESTDATADIR, 'setbacks', 'RI_Railroads', 'RI_Railroads.shp') test = setbacks.compute_setbacks(rail_path) assert np.allclose(baseline, test) @pytest.mark.parametrize('max_workers', [None, 1]) def test_local_railroads(max_workers): """ Test local rail setbacks """ baseline = os.path.join(TESTDATADIR, 'setbacks', 'existing_rails.tif') with Geotiff(baseline) as tif: baseline = tif.values setbacks = RailWindSetbacks(EXCL_H5, HUB_HEIGHT, ROTOR_DIAMETER, regs_fpath=REGS_GPKG, multiplier=None) rail_path = os.path.join(TESTDATADIR, 'setbacks', 'RI_Railroads', 'RI_Railroads.shp') test = setbacks.compute_setbacks(rail_path, max_workers=max_workers) assert np.allclose(baseline, test) def test_setback_preflight_check(): """ Test BaseWindSetbacks preflight_checks """ with pytest.raises(RuntimeError): StructureWindSetbacks(EXCL_H5, HUB_HEIGHT, ROTOR_DIAMETER, regs_fpath=None, multiplier=None) def test_cli(runner): """ Test CLI """ structure_dir = os.path.join(TESTDATADIR, 'setbacks') with tempfile.TemporaryDirectory() as td: regs_fpath = os.path.basename(REGS_FPATH) regs_fpath = os.path.join(td, regs_fpath) shutil.copy(REGS_FPATH, regs_fpath) config = { "directories": { "log_directory": td, "output_directory": td }, "execution_control": { "option": "local" }, "excl_fpath": EXCL_H5, "feature_type": "structure", "features_path": structure_dir, "hub_height": HUB_HEIGHT, "log_level": "INFO", "regs_fpath": regs_fpath, "replace": True, "rotor_diameter": ROTOR_DIAMETER } config_path = os.path.join(td, 'config.json') with open(config_path, 'w') as f: json.dump(config, f) result = runner.invoke(main, ['from-config', '-c', config_path]) msg = ('Failed with error {}' .format(traceback.print_exception(*result.exc_info))) assert result.exit_code == 0, msg baseline = os.path.join(TESTDATADIR, 'setbacks', 'generic_structures.tif') with Geotiff(baseline) as tif: baseline = tif.values test = os.path.join(td, 'RhodeIsland.tif') with Geotiff(test) as tif: test = tif.values np.allclose(baseline, test) LOGGERS.clear() def execute_pytest(capture='all', flags='-rapP'): """Execute module as pytest with detailed summary report. Parameters ---------- capture : str Log or stdout/stderr capture option. ex: log (only logger), all (includes stdout/stderr) flags : str Which tests to show logs and results for. """ fname = os.path.basename(__file__) pytest.main(['-q', '--show-capture={}'.format(capture), fname, flags]) if __name__ == '__main__': execute_pytest()
the-stack_106_32068
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import numpy as np from akg.utils import kernel_exec as utils from test_op import add_a_conv from test_run.conv_utils import conv_forward_naive from test_run.conv_utils import random_gaussian def add_a_conv_run(fmap_shape, filter_shape, pad_, stride_, dilation_, use_bias=False, bypass_l1=False, dump_data=False, Tile=None, attrs=None): if Tile is None: Tile = [0, 0, 0, 0, 0] mod = add_a_conv.add_a_conv(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh=Tile[0], tile_coco=Tile[1], tile_mm=Tile[2], tile_kk=Tile[3], tile_nn=Tile[4], bypass_l1=bypass_l1, use_bias=use_bias, block_size=16, conv_dtype='float16') fmap_data, filter_data, bias_data, expect = gen_data(fmap_shape, filter_shape, pad_[0], stride_[0], dilation_[0], use_bias) if dump_data: with open('input.bin', 'wb') as fo: fo.write(fmap_data.astype(np.float16, copy=False)) with open('filter.bin', 'wb') as fo: fo.write(filter_data.astype(np.float16, copy=False)) with open('bias.bin', 'wb') as fo: fo.write(bias_data.astype(np.float16, copy=False)) with open('output.bin', 'wb') as fo: fo.write(expect.astype(np.float16, copy=False)) out_data = np.full(expect.shape, 0, 'float16') if use_bias: input = (fmap_data, filter_data, bias_data) args = (fmap_data, filter_data, bias_data, out_data) else: input = (fmap_data, filter_data) args = (fmap_data, filter_data, out_data) out_data = utils.mod_launch(mod, args, expect=expect) # abs(output, expect) < 5*(10)^(-3) * abs(expect) data_len = expect.size try: actual = out_data N, C1, H, W, C0 = out_data.shape error = 0 count = 0 lastErr = -2 continueErr = 0 maxContinue = -1 maxEnd = 0 partial_debug = 0 for n in range(N): for c1 in range(C1): for h in range(H): for w in range(W): for c0 in range(C0): a = actual[n, c1, h, w, c0] b = expect[n, c1, h, w, c0] if (abs(a - b) > abs(b) * 5e-03): if (partial_debug and (a == 0.0)): continue error += 1 if lastErr + 1 == count: continueErr += 1 else: if continueErr > maxContinue: maxContinue = continueErr maxEnd = lastErr continueErr = 1 lastErr = count # if error < 35: # print ("count: %6d expect: %10f actual: %10f %10.2f%%"%(count, b, a, abs((b-a)/b*100))) count += 1 if continueErr > maxContinue: maxContinue = continueErr maxEnd = lastErr print("error num: %d/%d (%.2f%%)" % (error, count, 100.0 * error / count)) print("longest error range: [%d, %d]" % (maxEnd - maxContinue + 1, maxEnd)) sys.stdout.flush() if maxContinue >= 16: os._exit(-1) else: assert_res = True np.testing.assert_allclose(actual, expect, rtol=5e-03, equal_nan=True, verbose=True) print("\n\n******************** test ok *****************\n\n") except BaseException as e: np.savetxt("actual.txt", out_data.reshape(data_len)) np.savetxt("expect.txt", expect.reshape(data_len)) print(str(e)) return input, out_data, expect, assert_res def gen_data(fm_shape, w_shape, pad, stride, dilation, bias): IN, IC, IH, IW = fm_shape C0 = 16 IC = ((IC + C0 - 1) // C0) * C0 WN, WC, WH, WW = w_shape WN = ((WN + C0 - 1) // C0) * C0 WC = ((WC + C0 - 1) // C0) * C0 ON = IN OC = WN WHD = (WH - 1) * dilation + 1 WWD = (WW - 1) * dilation + 1 OH = (IH + 2 * pad - WHD) // stride + 1 OW = (IW + 2 * pad - WWD) // stride + 1 x = random_gaussian((IN, IC, IH, IW), miu=1, sigma=0.1).astype(np.float16) w = random_gaussian((WN, WC, WH, WW), miu=0.5, sigma=0.01).astype(np.float16) x_add = x + 1.0 if bias: b = np.random.rand(WN).astype(np.float16, copy=False) else: b = (np.array(np.zeros(WN))).astype(np.float16, copy=False) conv_param = {'stride': stride, 'pad': pad, 'dilation': dilation} out = conv_forward_naive(x_add, w, b, conv_param) ''' transpose to 5D - NC1HWC0 ''' feature = x.reshape(IN, IC // C0, C0, IH, IW).transpose(0, 1, 3, 4, 2).copy() ''' transpose to 5D - C1HWNC0 ''' filter = w.reshape(WN, WC // C0, C0, WH, WW).transpose(1, 3, 4, 0, 2).copy() ''' transpose to 5D - NC1HWC0 ''' output = out.reshape(ON, OC // C0, C0, OH, OW).transpose(0, 1, 3, 4, 2).copy() return feature, filter, b, output
the-stack_106_32069
from . import QtCore class RecursiveSortFilterProxyModel(QtCore.QSortFilterProxyModel): """Filters to the regex if any of the children matches allow parent""" def filterAcceptsRow(self, row, parent): regex = self.filterRegExp() if not regex.isEmpty(): pattern = regex.pattern() model = self.sourceModel() source_index = model.index(row, self.filterKeyColumn(), parent) if source_index.isValid(): # Check current index itself key = model.data(source_index, self.filterRole()) if re.search(pattern, key, re.IGNORECASE): return True # Check children rows = model.rowCount(source_index) for i in range(rows): if self.filterAcceptsRow(i, source_index): return True # Otherwise filter it return False return super(RecursiveSortFilterProxyModel, self).filterAcceptsRow(row, parent)
the-stack_106_32071
import threading import time # global variables hero_health = 40 orc_health = 7 dragon_health = 20 def thread_orc(): global hero_health global orc_health while orc_health > 0 and hero_health > 0: time.sleep(1.5) hero_health = hero_health - 1 print("Orc attacked... Hero health: ", hero_health) def thread_dragon(): global hero_health global dragon_health while dragon_health > 0 and hero_health > 0: time.sleep(2.0) hero_health = hero_health - 3 print("Dragon attacked... Hero health: ", hero_health) # making threads for orc and dragon orc = threading.Thread(target=thread_orc) dragon = threading.Thread(target=thread_dragon) # to start the thread orc.start() dragon.start() # main user loop while hero_health > 0 and orc_health > 0 and dragon_health > 0: var = input("attack ") if var == "orc": orc_health = orc_health - 2 print("Hero attack Orc ... Orc health is ", str(orc_health)) elif var == "dragon": dragon_health = dragon_health - 2 print("Hero attack dragon ... Dragon health is ", str(dragon_health)) # Wait for threads to finish orc.join() dragon.join()
the-stack_106_32072
import warnings import attr import cattr from typing import ( Dict, Optional, List, Any, DefaultDict, Mapping, Tuple, Union, ClassVar, ) from enum import Enum import collections import argparse import abc import numpy as np import math import copy from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser from mlagents.trainers.cli_utils import load_config from mlagents.trainers.exception import TrainerConfigError, TrainerConfigWarning from mlagents_envs import logging_util from mlagents_envs.side_channel.environment_parameters_channel import ( EnvironmentParametersChannel, ) logger = logging_util.get_logger(__name__) def check_and_structure(key: str, value: Any, class_type: type) -> Any: attr_fields_dict = attr.fields_dict(class_type) if key not in attr_fields_dict: raise TrainerConfigError( f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid." ) # Apply cattr structure to the values return cattr.structure(value, attr_fields_dict[key].type) def strict_to_cls(d: Mapping, t: type) -> Any: if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} d_copy.update(d) for key, val in d_copy.items(): d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) def defaultdict_to_dict(d: DefaultDict) -> Dict: return {key: cattr.unstructure(val) for key, val in d.items()} def deep_update_dict(d: Dict, update_d: Mapping) -> None: """ Similar to dict.update(), but works for nested dicts of dicts as well. """ for key, val in update_d.items(): if key in d and isinstance(d[key], Mapping) and isinstance(val, Mapping): deep_update_dict(d[key], val) else: d[key] = val class SerializationSettings: convert_to_onnx = True onnx_opset = 9 @attr.s(auto_attribs=True) class ExportableSettings: def as_dict(self): return cattr.unstructure(self) class EncoderType(Enum): MATCH3 = "match3" SIMPLE = "simple" NATURE_CNN = "nature_cnn" RESNET = "resnet" RESNET18 = "resnet18" class ScheduleType(Enum): CONSTANT = "constant" LINEAR = "linear" @attr.s(auto_attribs=True) class NetworkSettings: @attr.s class MemorySettings: sequence_length: int = attr.ib(default=64) memory_size: int = attr.ib(default=128) @memory_size.validator def _check_valid_memory_size(self, attribute, value): if value <= 0: raise TrainerConfigError( "When using a recurrent network, memory size must be greater than 0." ) elif value % 2 != 0: raise TrainerConfigError( "When using a recurrent network, memory size must be divisible by 2." ) normalize: bool = False hidden_units: int = 128 num_layers: int = 2 vis_encode_type: EncoderType = EncoderType.SIMPLE memory: Optional[MemorySettings] = None @attr.s(auto_attribs=True) class BehavioralCloningSettings: demo_path: str steps: int = 0 strength: float = 1.0 samples_per_update: int = 0 # Setting either of these to None will allow the Optimizer # to decide these parameters, based on Trainer hyperparams num_epoch: Optional[int] = None batch_size: Optional[int] = None @attr.s(auto_attribs=True) class HyperparamSettings: batch_size: int = 1024 buffer_size: int = 10240 learning_rate: float = 3.0e-4 learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT @attr.s(auto_attribs=True) class PPOSettings(HyperparamSettings): beta: float = 5.0e-3 epsilon: float = 0.2 lambd: float = 0.95 num_epoch: int = 3 learning_rate_schedule: ScheduleType = ScheduleType.LINEAR @attr.s(auto_attribs=True) class SACSettings(HyperparamSettings): batch_size: int = 128 buffer_size: int = 50000 buffer_init_steps: int = 0 tau: float = 0.005 steps_per_update: float = 1 save_replay_buffer: bool = False init_entcoef: float = 1.0 reward_signal_steps_per_update: float = attr.ib() @reward_signal_steps_per_update.default def _reward_signal_steps_per_update_default(self): return self.steps_per_update # INTRINSIC REWARD SIGNALS ############################################################# class RewardSignalType(Enum): EXTRINSIC: str = "extrinsic" GAIL: str = "gail" CURIOSITY: str = "curiosity" RND: str = "rnd" def to_settings(self) -> type: _mapping = { RewardSignalType.EXTRINSIC: RewardSignalSettings, RewardSignalType.GAIL: GAILSettings, RewardSignalType.CURIOSITY: CuriositySettings, RewardSignalType.RND: RNDSettings, } return _mapping[self] @attr.s(auto_attribs=True) class RewardSignalSettings: gamma: float = 0.99 strength: float = 1.0 @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of RewardSignalSettings classes. """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported reward signal configuration {d}.") d_final: Dict[RewardSignalType, RewardSignalSettings] = {} for key, val in d.items(): enum_key = RewardSignalType(key) t = enum_key.to_settings() d_final[enum_key] = strict_to_cls(val, t) return d_final @attr.s(auto_attribs=True) class GAILSettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 use_actions: bool = False use_vail: bool = False demo_path: str = attr.ib(kw_only=True) @attr.s(auto_attribs=True) class CuriositySettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 @attr.s(auto_attribs=True) class RNDSettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 1e-4 # SAMPLERS ############################################################################# class ParameterRandomizationType(Enum): UNIFORM: str = "uniform" GAUSSIAN: str = "gaussian" MULTIRANGEUNIFORM: str = "multirangeuniform" CONSTANT: str = "constant" def to_settings(self) -> type: _mapping = { ParameterRandomizationType.UNIFORM: UniformSettings, ParameterRandomizationType.GAUSSIAN: GaussianSettings, ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings, ParameterRandomizationType.CONSTANT: ConstantSettings # Constant type is handled if a float is provided instead of a config } return _mapping[self] @attr.s(auto_attribs=True) class ParameterRandomizationSettings(abc.ABC): seed: int = parser.get_default("seed") def __str__(self) -> str: """ Helper method to output sampler stats to console. """ raise TrainerConfigError(f"__str__ not implemented for type {self.__class__}.") @staticmethod def structure( d: Union[Mapping, float], t: type ) -> "ParameterRandomizationSettings": """ Helper method to a ParameterRandomizationSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of ParameterRandomizationSettings classes. """ if isinstance(d, (float, int)): return ConstantSettings(value=d) if not isinstance(d, Mapping): raise TrainerConfigError( f"Unsupported parameter randomization configuration {d}." ) if "sampler_type" not in d: raise TrainerConfigError( f"Sampler configuration does not contain sampler_type : {d}." ) if "sampler_parameters" not in d: raise TrainerConfigError( f"Sampler configuration does not contain sampler_parameters : {d}." ) enum_key = ParameterRandomizationType(d["sampler_type"]) t = enum_key.to_settings() return strict_to_cls(d["sampler_parameters"], t) @staticmethod def unstructure(d: "ParameterRandomizationSettings") -> Mapping: """ Helper method to a ParameterRandomizationSettings class. Meant to be registered with cattr.register_unstructure_hook() and called with cattr.unstructure(). """ _reversed_mapping = { UniformSettings: ParameterRandomizationType.UNIFORM, GaussianSettings: ParameterRandomizationType.GAUSSIAN, MultiRangeUniformSettings: ParameterRandomizationType.MULTIRANGEUNIFORM, ConstantSettings: ParameterRandomizationType.CONSTANT, } sampler_type: Optional[str] = None for t, name in _reversed_mapping.items(): if isinstance(d, t): sampler_type = name.value sampler_parameters = attr.asdict(d) return {"sampler_type": sampler_type, "sampler_parameters": sampler_parameters} @abc.abstractmethod def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the appropriate sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ pass @attr.s(auto_attribs=True) class ConstantSettings(ParameterRandomizationSettings): value: float = 0.0 def __str__(self) -> str: """ Helper method to output sampler stats to console. """ return f"Float: value={self.value}" def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the constant sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_float_parameter(key, self.value) @attr.s(auto_attribs=True) class UniformSettings(ParameterRandomizationSettings): min_value: float = attr.ib() max_value: float = 1.0 def __str__(self) -> str: """ Helper method to output sampler stats to console. """ return f"Uniform sampler: min={self.min_value}, max={self.max_value}" @min_value.default def _min_value_default(self): return 0.0 @min_value.validator def _check_min_value(self, attribute, value): if self.min_value > self.max_value: raise TrainerConfigError( "Minimum value is greater than maximum value in uniform sampler." ) def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the uniform sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_uniform_sampler_parameters( key, self.min_value, self.max_value, self.seed ) @attr.s(auto_attribs=True) class GaussianSettings(ParameterRandomizationSettings): mean: float = 1.0 st_dev: float = 1.0 def __str__(self) -> str: """ Helper method to output sampler stats to console. """ return f"Gaussian sampler: mean={self.mean}, stddev={self.st_dev}" def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the gaussian sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_gaussian_sampler_parameters( key, self.mean, self.st_dev, self.seed ) @attr.s(auto_attribs=True) class MultiRangeUniformSettings(ParameterRandomizationSettings): intervals: List[Tuple[float, float]] = attr.ib() def __str__(self) -> str: """ Helper method to output sampler stats to console. """ return f"MultiRangeUniform sampler: intervals={self.intervals}" @intervals.default def _intervals_default(self): return [[0.0, 1.0]] @intervals.validator def _check_intervals(self, attribute, value): for interval in self.intervals: if len(interval) != 2: raise TrainerConfigError( f"The sampling interval {interval} must contain exactly two values." ) min_value, max_value = interval if min_value > max_value: raise TrainerConfigError( f"Minimum value is greater than maximum value in interval {interval}." ) def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the multirangeuniform sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_multirangeuniform_sampler_parameters( key, self.intervals, self.seed ) # ENVIRONMENT PARAMETERS ############################################################### @attr.s(auto_attribs=True) class CompletionCriteriaSettings: """ CompletionCriteriaSettings contains the information needed to figure out if the next lesson must start. """ class MeasureType(Enum): PROGRESS: str = "progress" REWARD: str = "reward" behavior: str measure: MeasureType = attr.ib(default=MeasureType.REWARD) min_lesson_length: int = 0 signal_smoothing: bool = True threshold: float = attr.ib(default=0.0) require_reset: bool = False @threshold.validator def _check_threshold_value(self, attribute, value): """ Verify that the threshold has a value between 0 and 1 when the measure is PROGRESS """ if self.measure == self.MeasureType.PROGRESS: if self.threshold > 1.0: raise TrainerConfigError( "Threshold for next lesson cannot be greater than 1 when the measure is progress." ) if self.threshold < 0.0: raise TrainerConfigError( "Threshold for next lesson cannot be negative when the measure is progress." ) def need_increment( self, progress: float, reward_buffer: List[float], smoothing: float ) -> Tuple[bool, float]: """ Given measures, this method returns a boolean indicating if the lesson needs to change now, and a float corresponding to the new smoothed value. """ # Is the min number of episodes reached if len(reward_buffer) < self.min_lesson_length: return False, smoothing if self.measure == CompletionCriteriaSettings.MeasureType.PROGRESS: if progress > self.threshold: return True, smoothing if self.measure == CompletionCriteriaSettings.MeasureType.REWARD: if len(reward_buffer) < 1: return False, smoothing measure = np.mean(reward_buffer) if math.isnan(measure): return False, smoothing if self.signal_smoothing: measure = 0.25 * smoothing + 0.75 * measure smoothing = measure if measure > self.threshold: return True, smoothing return False, smoothing @attr.s(auto_attribs=True) class Lesson: """ Gathers the data of one lesson for one environment parameter including its name, the condition that must be fullfiled for the lesson to be completed and a sampler for the environment parameter. If the completion_criteria is None, then this is the last lesson in the curriculum. """ value: ParameterRandomizationSettings name: str completion_criteria: Optional[CompletionCriteriaSettings] = attr.ib(default=None) @attr.s(auto_attribs=True) class EnvironmentParameterSettings: """ EnvironmentParameterSettings is an ordered list of lessons for one environment parameter. """ curriculum: List[Lesson] @staticmethod def _check_lesson_chain(lessons, parameter_name): """ Ensures that when using curriculum, all non-terminal lessons have a valid CompletionCriteria, and that the terminal lesson does not contain a CompletionCriteria. """ num_lessons = len(lessons) for index, lesson in enumerate(lessons): if index < num_lessons - 1 and lesson.completion_criteria is None: raise TrainerConfigError( f"A non-terminal lesson does not have a completion_criteria for {parameter_name}." ) if index == num_lessons - 1 and lesson.completion_criteria is not None: warnings.warn( f"Your final lesson definition contains completion_criteria for {parameter_name}." f"It will be ignored.", TrainerConfigWarning, ) @staticmethod def structure(d: Mapping, t: type) -> Dict[str, "EnvironmentParameterSettings"]: """ Helper method to structure a Dict of EnvironmentParameterSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). """ if not isinstance(d, Mapping): raise TrainerConfigError( f"Unsupported parameter environment parameter settings {d}." ) d_final: Dict[str, EnvironmentParameterSettings] = {} for environment_parameter, environment_parameter_config in d.items(): if ( isinstance(environment_parameter_config, Mapping) and "curriculum" in environment_parameter_config ): d_final[environment_parameter] = strict_to_cls( environment_parameter_config, EnvironmentParameterSettings ) EnvironmentParameterSettings._check_lesson_chain( d_final[environment_parameter].curriculum, environment_parameter ) else: sampler = ParameterRandomizationSettings.structure( environment_parameter_config, ParameterRandomizationSettings ) d_final[environment_parameter] = EnvironmentParameterSettings( curriculum=[ Lesson( completion_criteria=None, value=sampler, name=environment_parameter, ) ] ) return d_final # TRAINERS ############################################################################# @attr.s(auto_attribs=True) class SelfPlaySettings: save_steps: int = 20000 team_change: int = attr.ib() @team_change.default def _team_change_default(self): # Assign team_change to about 4x save_steps return self.save_steps * 5 swap_steps: int = 2000 window: int = 10 play_against_latest_model_ratio: float = 0.5 initial_elo: float = 1200.0 class TrainerType(Enum): PPO: str = "ppo" SAC: str = "sac" def to_settings(self) -> type: _mapping = {TrainerType.PPO: PPOSettings, TrainerType.SAC: SACSettings} return _mapping[self] @attr.s(auto_attribs=True) class TrainerSettings(ExportableSettings): default_override: ClassVar[Optional["TrainerSettings"]] = None trainer_type: TrainerType = TrainerType.PPO hyperparameters: HyperparamSettings = attr.ib() @hyperparameters.default def _set_default_hyperparameters(self): return self.trainer_type.to_settings()() network_settings: NetworkSettings = attr.ib(factory=NetworkSettings) reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib( factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()} ) init_path: Optional[str] = None keep_checkpoints: int = 5 checkpoint_interval: int = 500000 max_steps: int = 500000 time_horizon: int = 64 summary_freq: int = 50000 threaded: bool = True self_play: Optional[SelfPlaySettings] = None behavioral_cloning: Optional[BehavioralCloningSettings] = None cattr.register_structure_hook( Dict[RewardSignalType, RewardSignalSettings], RewardSignalSettings.structure ) @network_settings.validator def _check_batch_size_seq_length(self, attribute, value): if self.network_settings.memory is not None: if ( self.network_settings.memory.sequence_length > self.hyperparameters.batch_size ): raise TrainerConfigError( "When using memory, sequence length must be less than or equal to batch size. " ) @staticmethod def dict_to_defaultdict(d: Dict, t: type) -> DefaultDict: return TrainerSettings.DefaultTrainerDict( cattr.structure(d, Dict[str, TrainerSettings]) ) @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a TrainerSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} # Check if a default_settings was specified. If so, used those as the default # rather than an empty dict. if TrainerSettings.default_override is not None: d_copy.update(cattr.unstructure(TrainerSettings.default_override)) deep_update_dict(d_copy, d) if "framework" in d_copy: logger.warning("Framework option was deprecated but was specified") d_copy.pop("framework", None) for key, val in d_copy.items(): if attr.has(type(val)): # Don't convert already-converted attrs classes. continue if key == "hyperparameters": if "trainer_type" not in d_copy: raise TrainerConfigError( "Hyperparameters were specified but no trainer_type was given." ) else: d_copy[key] = strict_to_cls( d_copy[key], TrainerType(d_copy["trainer_type"]).to_settings() ) elif key == "max_steps": d_copy[key] = int(float(val)) # In some legacy configs, max steps was specified as a float else: d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) class DefaultTrainerDict(collections.defaultdict): def __init__(self, *args): # Depending on how this is called, args may have the defaultdict # callable at the start of the list or not. In particular, unpickling # will pass [TrainerSettings]. if args and args[0] == TrainerSettings: super().__init__(*args) else: super().__init__(TrainerSettings, *args) def __missing__(self, key: Any) -> "TrainerSettings": if TrainerSettings.default_override is not None: return copy.deepcopy(TrainerSettings.default_override) else: return TrainerSettings() # COMMAND LINE ######################################################################### @attr.s(auto_attribs=True) class CheckpointSettings: run_id: str = parser.get_default("run_id") initialize_from: Optional[str] = parser.get_default("initialize_from") load_model: bool = parser.get_default("load_model") resume: bool = parser.get_default("resume") force: bool = parser.get_default("force") train_model: bool = parser.get_default("train_model") inference: bool = parser.get_default("inference") @attr.s(auto_attribs=True) class EnvironmentSettings: env_path: Optional[str] = parser.get_default("env_path") env_args: Optional[List[str]] = parser.get_default("env_args") base_port: int = parser.get_default("base_port") num_envs: int = attr.ib(default=parser.get_default("num_envs")) seed: int = parser.get_default("seed") @num_envs.validator def validate_num_envs(self, attribute, value): if value > 1 and self.env_path is None: raise ValueError("num_envs must be 1 if env_path is not set.") @attr.s(auto_attribs=True) class EngineSettings: width: int = parser.get_default("width") height: int = parser.get_default("height") quality_level: int = parser.get_default("quality_level") time_scale: float = parser.get_default("time_scale") target_frame_rate: int = parser.get_default("target_frame_rate") capture_frame_rate: int = parser.get_default("capture_frame_rate") no_graphics: bool = parser.get_default("no_graphics") @attr.s(auto_attribs=True) class RunOptions(ExportableSettings): default_settings: Optional[TrainerSettings] = None behaviors: DefaultDict[str, TrainerSettings] = attr.ib( factory=TrainerSettings.DefaultTrainerDict ) env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings) engine_settings: EngineSettings = attr.ib(factory=EngineSettings) environment_parameters: Optional[Dict[str, EnvironmentParameterSettings]] = None checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings) # These are options that are relevant to the run itself, and not the engine or environment. # They will be left here. debug: bool = parser.get_default("debug") # Strict conversion cattr.register_structure_hook(EnvironmentSettings, strict_to_cls) cattr.register_structure_hook(EngineSettings, strict_to_cls) cattr.register_structure_hook(CheckpointSettings, strict_to_cls) cattr.register_structure_hook( Dict[str, EnvironmentParameterSettings], EnvironmentParameterSettings.structure ) cattr.register_structure_hook(Lesson, strict_to_cls) cattr.register_structure_hook( ParameterRandomizationSettings, ParameterRandomizationSettings.structure ) cattr.register_unstructure_hook( ParameterRandomizationSettings, ParameterRandomizationSettings.unstructure ) cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure) cattr.register_structure_hook( DefaultDict[str, TrainerSettings], TrainerSettings.dict_to_defaultdict ) cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict) @staticmethod def from_argparse(args: argparse.Namespace) -> "RunOptions": """ Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files from file paths, and converts to a RunOptions instance. :param args: collection of command-line parameters passed to mlagents-learn :return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler configs loaded from files. """ argparse_args = vars(args) config_path = StoreConfigFile.trainer_config_path # Load YAML configured_dict: Dict[str, Any] = { "checkpoint_settings": {}, "env_settings": {}, "engine_settings": {}, } if config_path is not None: configured_dict.update(load_config(config_path)) # Use the YAML file values for all values not specified in the CLI. for key in configured_dict.keys(): # Detect bad config options if key not in attr.fields_dict(RunOptions): raise TrainerConfigError( "The option {} was specified in your YAML file, but is invalid.".format( key ) ) # Override with CLI args # Keep deprecated --load working, TODO: remove argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"] for key, val in argparse_args.items(): if key in DetectDefault.non_default_args: if key in attr.fields_dict(CheckpointSettings): configured_dict["checkpoint_settings"][key] = val elif key in attr.fields_dict(EnvironmentSettings): configured_dict["env_settings"][key] = val elif key in attr.fields_dict(EngineSettings): configured_dict["engine_settings"][key] = val else: # Base options configured_dict[key] = val final_runoptions = RunOptions.from_dict(configured_dict) return final_runoptions @staticmethod def from_dict(options_dict: Dict[str, Any]) -> "RunOptions": # If a default settings was specified, set the TrainerSettings class override if ( "default_settings" in options_dict.keys() and options_dict["default_settings"] is not None ): TrainerSettings.default_override = cattr.structure( options_dict["default_settings"], TrainerSettings ) return cattr.structure(options_dict, RunOptions)
the-stack_106_32075
# -*- coding: utf-8 -*- """ATA over Ethernet Protocol.""" from __future__ import absolute_import import struct from . import dpkt from .compat import iteritems class AOE(dpkt.Packet): """ATA over Ethernet Protocol. See more about the AOE on https://en.wikipedia.org/wiki/ATA_over_Ethernet Attributes: __hdr__: Header fields of AOE. data: Message data. """ __hdr__ = ( ('ver_fl', 'B', 0x10), ('err', 'B', 0), ('maj', 'H', 0), ('min', 'B', 0), ('cmd', 'B', 0), ('tag', 'I', 0), ) _cmdsw = {} @property def ver(self): return self.ver_fl >> 4 @ver.setter def ver(self, ver): self.ver_fl = (ver << 4) | (self.ver_fl & 0xf) @property def fl(self): return self.ver_fl & 0xf @fl.setter def fl(self, fl): self.ver_fl = (self.ver_fl & 0xf0) | fl @classmethod def set_cmd(cls, cmd, pktclass): cls._cmdsw[cmd] = pktclass @classmethod def get_cmd(cls, cmd): return cls._cmdsw[cmd] def unpack(self, buf): dpkt.Packet.unpack(self, buf) try: self.data = self._cmdsw[self.cmd](self.data) setattr(self, self.data.__class__.__name__.lower(), self.data) except (KeyError, struct.error, dpkt.UnpackError): pass AOE_CMD_ATA = 0 AOE_CMD_CFG = 1 AOE_FLAG_RSP = 1 << 3 def _load_cmds(): prefix = 'AOE_CMD_' g = globals() for k, v in iteritems(g): if k.startswith(prefix): name = 'aoe' + k[len(prefix):].lower() try: mod = __import__(name, g, level=1) AOE.set_cmd(v, getattr(mod, name.upper())) except (ImportError, AttributeError): continue def _mod_init(): """Post-initialization called when all dpkt modules are fully loaded""" if not AOE._cmdsw: _load_cmds() def test_creation(): aoe = AOE() # hdr fields assert aoe.ver_fl == 0x10 assert aoe.err == 0 assert aoe.maj == 0 assert aoe.min == 0 assert aoe.cmd == 0 assert aoe.tag == 0 assert bytes(aoe) == b'\x10' + b'\x00'*9 def test_properties(): aoe = AOE() # propery getters assert aoe.ver == 1 assert aoe.fl == 0 # property setters aoe.ver = 2 assert aoe.ver == 2 assert aoe.ver_fl == 0x20 aoe.fl = 12 assert aoe.fl == 12 assert aoe.ver_fl == 0x2C def test_unpack(): from binascii import unhexlify buf = unhexlify( '1000000000' '00' # cmd: AOE_CMD_ATA '00000000' # tag ) aoe = AOE(buf) # AOE_CMD_ATA speficied, but no data supplied assert aoe.data == b'' buf = unhexlify( '1000000000' '00' # cmd: AOE_CMD_ATA '00000000' # tag # AOEDATA specification '030a6b190000000045000028941f0000e30699b4232b2400de8e8442abd100500035e1' '2920d9000000229bf0e204656b' ) aoe = AOE(buf) assert aoe.aoeata == aoe.data def test_cmds(): import dpkt assert AOE.get_cmd(AOE_CMD_ATA) == dpkt.aoeata.AOEATA assert AOE.get_cmd(AOE_CMD_CFG) == dpkt.aoecfg.AOECFG def test_cmd_loading(): # this test checks that failing to load a module isn't catastrophic standard_cmds = AOE._cmdsw # delete the existing code->module mappings AOE._cmdsw = {} assert not AOE._cmdsw # create a new global constant pointing to a module which doesn't exist globals()['AOE_CMD_FAIL'] = "FAIL" _mod_init() # check that the same modules were loaded, ignoring the fail assert AOE._cmdsw == standard_cmds
the-stack_106_32076
#!/usr/bin/env python # -*- coding: utf-8 -*- import sympy import mpmath import math import re from itertools import chain from mathics.core.numbers import get_type, dps, prec, min_prec, machine_precision from mathics.core.convert import sympy_symbol_prefix, SympyExpression def fully_qualified_symbol_name(name): return (isinstance(name, str) and '`' in name and not name.startswith('`') and not name.endswith('`') and '``' not in name) def valid_context_name(ctx, allow_initial_backquote=False): return (isinstance(ctx, str) and ctx.endswith('`') and '``' not in ctx and (allow_initial_backquote or not ctx.startswith('`'))) def ensure_context(name): assert isinstance(name, str) assert name != '' if '`' in name: # Symbol has a context mark -> it came from the parser assert fully_qualified_symbol_name(name) return name # Symbol came from Python code doing something like # Expression('Plus', ...) -> use System` return 'System`' + name def strip_context(name): if '`' in name: return name[name.rindex('`') + 1:] return name # system_symbols('A', 'B', ...) -> ['System`A', 'System`B', ...] def system_symbols(*symbols): return [ensure_context(s) for s in symbols] # system_symbols_dict({'SomeSymbol': ...}) -> {'System`SomeSymbol': ...} def system_symbols_dict(d): return {ensure_context(k): v for k, v in d.items()} class BoxError(Exception): def __init__(self, box, form): super(BoxError, self).__init__( 'Box %s cannot be formatted as %s' % (box, form)) self.box = box self.form = form class ExpressionPointer(object): def __init__(self, parent, position): self.parent = parent self.position = position def replace(self, new): if self.position == 0: self.parent.head = new else: self.parent.leaves[self.position - 1] = new def __str__(self): return '%s[[%s]]' % (self.parent, self.position) def from_python(arg): number_type = get_type(arg) if isinstance(arg, int) or number_type == 'z': return Integer(arg) elif isinstance(arg, float) or number_type == 'f': return Real(arg) elif number_type == 'q': return Rational(arg) elif isinstance(arg, complex): return Complex(Real(arg.real), Real(arg.imag)) elif number_type == 'c': return Complex(arg.real, arg.imag) elif isinstance(arg, str): return String(arg) # if arg[0] == arg[-1] == '"': # return String(arg[1:-1]) # else: # return Symbol(arg) elif isinstance(arg, BaseExpression): return arg elif isinstance(arg, list) or isinstance(arg, tuple): return Expression('List', *[from_python(leaf) for leaf in arg]) else: raise NotImplementedError class KeyComparable(object): def get_sort_key(self): raise NotImplemented def __lt__(self, other): return self.get_sort_key() < other.get_sort_key() def __gt__(self, other): return self.get_sort_key() > other.get_sort_key() def __le__(self, other): return self.get_sort_key() <= other.get_sort_key() def __ge__(self, other): return self.get_sort_key() >= other.get_sort_key() def __eq__(self, other): return self.get_sort_key() == other.get_sort_key() def __ne__(self, other): return self.get_sort_key() != other.get_sort_key() class BaseExpression(KeyComparable): def __new__(cls, *args, **kwargs): self = object.__new__(cls) self.options = None self.pattern_sequence = False self.unformatted = self self.last_evaluated = None return self def sequences(self): return None def flatten_sequence(self): return self def flatten_pattern_sequence(self): return self def get_attributes(self, definitions): return set() def evaluate_next(self, evaluation): return self.evaluate(evaluation), False def evaluate(self, evaluation): evaluation.check_stopped() return self def get_atoms(self, include_heads=True): return [] def get_name(self): " Returns symbol's name if Symbol instance " return '' def is_symbol(self): return False def is_machine_precision(self): return False def get_lookup_name(self): " Returns symbol name of leftmost head " return self.get_name() def get_head(self): return None def get_head_name(self): return self.get_head().get_name() def get_leaves(self): return [] def get_int_value(self): return None def get_float_value(self, permit_complex=False): return None def get_string_value(self): return None def is_atom(self): return False def is_true(self): return False def is_numeric(self): # used by NumericQ and expression ordering return False def flatten(self, head, pattern_only=False, callback=None): return self def __hash__(self): """ To allow usage of expression as dictionary keys, as in Expression.get_pre_choices """ raise NotImplementedError def user_hash(self, update): # whereas __hash__ is for internal Mathics purposes like using Expressions as dictionary keys and fast # comparison of elements, user_hash is called for Hash[]. user_hash should strive to give stable results # across versions, whereas __hash__ must not. user_hash should try to hash all the data available, whereas # __hash__ might only hash a sample of the data available. raise NotImplementedError def same(self, other): pass def get_sequence(self): if self.get_head().get_name() == 'System`Sequence': return self.leaves else: return [self] def evaluate_leaves(self, evaluation): return self def apply_rules(self, rules, evaluation, level=0, options=None): if options: l1, l2 = options['levelspec'] if level < l1: return self, False elif l2 is not None and level > l2: return self, False for rule in rules: result = rule.apply(self, evaluation, fully=False) if result is not None: return result, True return self, False def do_format(self, evaluation, form): formats = system_symbols( 'InputForm', 'OutputForm', 'StandardForm', 'FullForm', 'TraditionalForm', 'TeXForm', 'MathMLForm') evaluation.inc_recursion_depth() try: expr = self head = self.get_head_name() include_form = False if head in formats and len(self.get_leaves()) == 1: expr = self.leaves[0] if not (form == 'System`OutputForm' and head == 'System`StandardForm'): form = head include_form = True unformatted = expr def format_expr(expr): if not(expr.is_atom()) and not(expr.head.is_atom()): # expr is of the form f[...][...] return None name = expr.get_lookup_name() formats = evaluation.definitions.get_formats(name, form) for rule in formats: result = rule.apply(expr, evaluation) if result is not None and result != expr: return result.evaluate(evaluation) return None if form != 'System`FullForm': formatted = format_expr(expr) if formatted is not None: result = formatted.do_format(evaluation, form) if include_form: result = Expression(form, result) result.unformatted = unformatted return result head = expr.get_head_name() if head in formats: expr = expr.do_format(evaluation, form) elif (head != 'System`NumberForm' and not expr.is_atom() and head != 'System`Graphics'): new_leaves = [leaf.do_format(evaluation, form) for leaf in expr.leaves] expr = Expression( expr.head.do_format(evaluation, form), *new_leaves) if include_form: expr = Expression(form, expr) expr.unformatted = unformatted return expr finally: evaluation.dec_recursion_depth() def format(self, evaluation, form): expr = self.do_format(evaluation, form) result = Expression( 'MakeBoxes', expr, Symbol(form)).evaluate(evaluation) return result def is_free(self, form, evaluation): from mathics.builtin.patterns import item_is_free return item_is_free(self, form, evaluation) def is_inexact(self): return self.get_precision() is not None def get_precision(self): return None def get_option_values(self, evaluation, allow_symbols=False, stop_on_error=True): options = self if options.has_form('List', None): options = options.flatten(Symbol('List')) values = options.leaves else: values = [options] option_values = {} for option in values: symbol_name = option.get_name() if allow_symbols and symbol_name: options = evaluation.definitions.get_options(symbol_name) option_values.update(options) else: if not option.has_form(('Rule', 'RuleDelayed'), 2): if stop_on_error: return None else: continue name = option.leaves[0].get_name() if not name and isinstance(option.leaves[0], String): name = ensure_context(option.leaves[0].get_string_value()) if not name: if stop_on_error: return None else: continue option_values[name] = option.leaves[1] return option_values def get_rules_list(self): from mathics.core.rules import Rule list_expr = self.flatten(Symbol('List')) list = [] if list_expr.has_form('List', None): list.extend(list_expr.leaves) else: list.append(list_expr) rules = [] for item in list: if not item.has_form(('Rule', 'RuleDelayed'), 2): return None rule = Rule(item.leaves[0], item.leaves[1]) rules.append(rule) return rules def to_sympy(self, **kwargs): raise NotImplementedError def to_mpmath(self): return None def round_to_float(self, evaluation=None, permit_complex=False): ''' Try to round to python float. Return None if not possible. ''' if evaluation is None: value = self else: value = Expression('N', self).evaluate(evaluation) if isinstance(value, Number): value = value.round() return value.get_float_value(permit_complex=permit_complex) def __abs__(self): return Expression('Abs', self) def __pos__(self): return self def __neg__(self): return Expression('Times', self, -1) def __add__(self, other): return Expression('Plus', self, other) def __sub__(self, other): return Expression('Plus', self, Expression('Times', other, -1)) def __mul__(self, other): return Expression('Times', self, other) def __truediv__(self, other): return Expression('Divide', self, other) def __floordiv__(self, other): return Expression('Floor', Expression('Divide', self, other)) def __pow__(self, other): return Expression('Power', self, other) class Monomial(object): """ An object to sort monomials, used in Expression.get_sort_key and Symbol.get_sort_key. """ def __init__(self, exps_dict): self.exps = exps_dict def __lt__(self, other): return self.__cmp(other) < 0 def __gt__(self, other): return self.__cmp(other) > 0 def __le__(self, other): return self.__cmp(other) <= 0 def __ge__(self, other): return self.__cmp(other) >= 0 def __eq__(self, other): return self.__cmp(other) == 0 def __ne__(self, other): return self.__cmp(other) != 0 def __cmp(self, other): self_exps = self.exps.copy() other_exps = other.exps.copy() for var in self.exps: if var in other.exps: dec = min(self_exps[var], other_exps[var]) self_exps[var] -= dec if not self_exps[var]: del self_exps[var] other_exps[var] -= dec if not other_exps[var]: del other_exps[var] self_exps = sorted((var, exp) for var, exp in self_exps.items()) other_exps = sorted((var, exp) for var, exp in other_exps.items()) index = 0 self_len = len(self_exps) other_len = len(other_exps) while True: if index >= self_len and index >= other_len: return 0 if index >= self_len: return -1 # self < other if index >= other_len: return 1 # self > other self_var, self_exp = self_exps[index] other_var, other_exp = other_exps[index] if self_var < other_var: return -1 if self_var > other_var: return 1 if self_exp != other_exp: if index + 1 == self_len or index + 1 == other_len: # smaller exponents first if self_exp < other_exp: return -1 elif self_exp == other_exp: return 0 else: return 1 else: # bigger exponents first if self_exp < other_exp: return 1 elif self_exp == other_exp: return 0 else: return -1 index += 1 return 0 def _sequences(leaves): for i, leaf in enumerate(leaves): if leaf.get_head_name() == 'System`Sequence' or leaf.sequences(): yield i class Expression(BaseExpression): def __new__(cls, head, *leaves): self = super(Expression, cls).__new__(cls) if isinstance(head, str): head = Symbol(head) self.head = head self.leaves = [from_python(leaf) for leaf in leaves] self._sequences = None return self def sequences(self): seq = self._sequences if seq is None: seq = list(_sequences(self.leaves)) self._sequences = seq return seq def _flatten_sequence(self, sequence): indices = self.sequences() if not indices: return self leaves = self.leaves flattened = [] extend = flattened.extend k = 0 for i in indices: extend(leaves[k:i]) extend(sequence(leaves[i])) k = i + 1 extend(leaves[k:]) return Expression(self.head, *flattened) def flatten_sequence(self): def sequence(leaf): if leaf.get_head_name() == 'System`Sequence': return leaf.leaves else: return [leaf] return self._flatten_sequence(sequence) def flatten_pattern_sequence(self): def sequence(leaf): flattened = leaf.flatten_pattern_sequence() if leaf.get_head_name() == 'System`Sequence' and leaf.pattern_sequence: return flattened.leaves else: return [flattened] expr = self._flatten_sequence(sequence) if hasattr(self, 'options'): expr.options = self.options return expr def copy(self): result = Expression( self.head.copy(), *[leaf.copy() for leaf in self.leaves]) result._sequences = self._sequences result.options = self.options result.original = self # result.last_evaluated = self.last_evaluated return result def shallow_copy(self): # this is a minimal, shallow copy: head, leaves are shared with # the original, only the Expression instance is new. expr = Expression(self.head) expr.leaves = self.leaves expr._sequences = self._sequences expr.options = self.options expr.last_evaluated = self.last_evaluated return expr def set_positions(self, position=None): self.position = position self.head.set_positions(ExpressionPointer(self, 0)) for index, leaf in enumerate(self.leaves): leaf.set_positions(ExpressionPointer(self, index + 1)) def get_head(self): return self.head def get_leaves(self): return self.leaves def get_lookup_name(self): return self.head.get_lookup_name() def has_form(self, heads, *leaf_counts): """ leaf_counts: (,): no leaves allowed (None,): no constraint on number of leaves (n, None): leaf count >= n (n1, n2, ...): leaf count in {n1, n2, ...} """ head_name = self.head.get_name() if isinstance(heads, (tuple, list, set)): if head_name not in [ensure_context(h) for h in heads]: return False else: if head_name != ensure_context(heads): return False if not leaf_counts: return False if leaf_counts and leaf_counts[0] is not None: count = len(self.leaves) if count not in leaf_counts: if (len(leaf_counts) == 2 and # noqa leaf_counts[1] is None and count >= leaf_counts[0]): return True else: return False return True def has_symbol(self, symbol_name): return self.head.has_symbol(symbol_name) or any( leaf.has_symbol(symbol_name) for leaf in self.leaves) def to_sympy(self, **kwargs): from mathics.builtin import mathics_to_sympy if 'converted_functions' in kwargs: functions = kwargs['converted_functions'] if len(self.leaves) > 0 and self.get_head_name() in functions: sym_args = [leaf.to_sympy() for leaf in self.leaves] if None in sym_args: return None func = sympy.Function(str( sympy_symbol_prefix + self.get_head_name()))(*sym_args) return func lookup_name = self.get_lookup_name() builtin = mathics_to_sympy.get(lookup_name) if builtin is not None: sympy_expr = builtin.to_sympy(self, **kwargs) if sympy_expr is not None: return sympy_expr return SympyExpression(self) def to_python(self, *args, **kwargs): """ Convert the Expression to a Python object: List[...] -> Python list DirectedInfinity[1] -> inf DirectedInfinity[-1] -> -inf True/False -> True/False Null -> None Symbol -> '...' String -> '"..."' numbers -> Python number If kwarg n_evaluation is given, apply N first to the expression. """ n_evaluation = kwargs.get('n_evaluation') if n_evaluation is not None: value = Expression('N', self).evaluate(n_evaluation) return value.to_python() head_name = self.head.get_name() if head_name == 'System`List': return [leaf.to_python(*args, **kwargs) for leaf in self.leaves] if head_name == 'System`DirectedInfinity' and len(self.leaves) == 1: direction = self.leaves[0].get_int_value() if direction == 1: return float('inf') if direction == -1: return -float('inf') return self def get_sort_key(self, pattern_sort=False): if pattern_sort: """ Pattern sort key structure: 0: 0/2: Atom / Expression 1: pattern: 0 / 11-31 for blanks / 1 for empty Alternatives / 40 for OptionsPattern 2: 0/1: 0 for PatternTest 3: 0/1: 0 for Pattern 4: 0/1: 1 for Optional 5: head / 0 for atoms 6: leaves / 0 for atoms 7: 0/1: 0 for Condition """ name = self.head.get_name() pattern = 0 if name == 'System`Blank': pattern = 1 elif name == 'System`BlankSequence': pattern = 2 elif name == 'System`BlankNullSequence': pattern = 3 if pattern > 0: if self.leaves: pattern += 10 else: pattern += 20 if pattern > 0: return [2, pattern, 1, 1, 0, self.head.get_sort_key(True), [leaf.get_sort_key(True) for leaf in self.leaves], 1] if name == 'System`PatternTest': if len(self.leaves) != 2: return [3, 0, 0, 0, 0, self.head, self.leaves, 1] sub = self.leaves[0].get_sort_key(True) sub[2] = 0 return sub elif name == 'System`Condition': if len(self.leaves) != 2: return [3, 0, 0, 0, 0, self.head, self.leaves, 1] sub = self.leaves[0].get_sort_key(True) sub[7] = 0 return sub elif name == 'System`Pattern': if len(self.leaves) != 2: return [3, 0, 0, 0, 0, self.head, self.leaves, 1] sub = self.leaves[1].get_sort_key(True) sub[3] = 0 return sub elif name == 'System`Optional': if len(self.leaves) not in (1, 2): return [3, 0, 0, 0, 0, self.head, self.leaves, 1] sub = self.leaves[0].get_sort_key(True) sub[4] = 1 return sub elif name == 'System`Alternatives': min_key = [4] min = None for leaf in self.leaves: key = leaf.get_sort_key(True) if key < min_key: min = leaf min_key = key if min is None: # empty alternatives -> very restrictive pattern return [2, 1] return min_key elif name == 'System`Verbatim': if len(self.leaves) != 1: return [3, 0, 0, 0, 0, self.head, self.leaves, 1] return self.leaves[0].get_sort_key(True) elif name == 'System`OptionsPattern': return [2, 40, 0, 1, 1, 0, self.head, self.leaves, 1] else: # Append [4] to leaves so that longer expressions have higher # precedence return [ 2, 0, 1, 1, 0, self.head.get_sort_key(True), [leaf.get_sort_key(True) for leaf in self.leaves] + [[4]], 1] else: exps = {} head = self.head.get_name() if head == 'System`Times': for leaf in self.leaves: name = leaf.get_name() if leaf.has_form('Power', 2): var = leaf.leaves[0].get_name() exp = leaf.leaves[1].round_to_float() if var and exp is not None: exps[var] = exps.get(var, 0) + exp elif name: exps[name] = exps.get(name, 0) + 1 elif self.has_form('Power', 2): var = self.leaves[0].get_name() exp = self.leaves[1].round_to_float() if var and exp is not None: exps[var] = exps.get(var, 0) + exp if exps: return [1 if self.is_numeric() else 2, 2, Monomial(exps), 1, self.head, self.leaves, 1] else: return [1 if self.is_numeric() else 2, 3, self.head, self.leaves, 1] def same(self, other): if id(self) == id(other): return True if self.get_head_name() != other.get_head_name(): return False if not self.head.same(other.get_head()): return False if len(self.leaves) != len(other.get_leaves()): return False for leaf, other in zip(self.leaves, other.get_leaves()): if not leaf.same(other): return False return True def flatten(self, head, pattern_only=False, callback=None, level=None): if level is not None and level <= 0: return self sub_level = None if level is None else level - 1 do_flatten = False for leaf in self.leaves: if leaf.get_head().same(head) and (not pattern_only or leaf.pattern_sequence): do_flatten = True break if do_flatten: new_leaves = [] for leaf in self.leaves: if leaf.get_head().same(head) and (not pattern_only or leaf.pattern_sequence): new_leaf = leaf.flatten(head, pattern_only, callback, level=sub_level) if callback is not None: callback(new_leaf.leaves, leaf) new_leaves.extend(new_leaf.leaves) else: new_leaves.append(leaf) return Expression(self.head, *new_leaves) else: return self def evaluate(self, evaluation): from mathics.core.evaluation import ReturnInterrupt expr = self reevaluate = True limit = None iteration = 1 names = set() definitions = evaluation.definitions old_options = evaluation.options evaluation.inc_recursion_depth() try: while reevaluate: # changed before last evaluated? if expr.last_evaluated is not None and definitions.last_changed(expr) <= expr.last_evaluated: break names.add(expr.get_lookup_name()) if hasattr(expr, 'options') and expr.options: evaluation.options = expr.options expr, reevaluate = expr.evaluate_next(evaluation) if not reevaluate: break iteration += 1 if limit is None: limit = definitions.get_config_value('$IterationLimit') if limit is None: limit = 'inf' if limit != 'inf' and iteration > limit: evaluation.error('$IterationLimit', 'itlim', limit) return Symbol('$Aborted') # "Return gets discarded only if it was called from within the r.h.s. # of a user-defined rule." # http://mathematica.stackexchange.com/questions/29353/how-does-return-work # Otherwise it propogates up. # except ReturnInterrupt as ret: if names.intersection(definitions.user.keys()): return ret.expr else: raise ret finally: evaluation.options = old_options evaluation.dec_recursion_depth() return expr def evaluate_next(self, evaluation): head = self.head.evaluate(evaluation) attributes = head.get_attributes(evaluation.definitions) leaves = self.leaves[:] def rest_range(indices): if 'System`HoldAllComplete' not in attributes: for index in indices: leaf = leaves[index] if leaf.has_form('Evaluate', 1): leaves[index] = leaf.evaluate(evaluation) def eval_range(indices): for index in indices: leaf = leaves[index] if not leaf.has_form('Unevaluated', 1): leaves[index] = leaf.evaluate(evaluation) if 'System`HoldAll' in attributes or 'System`HoldAllComplete' in attributes: # eval_range(range(0, 0)) rest_range(range(len(leaves))) elif 'System`HoldFirst' in attributes: rest_range(range(0, min(1, len(leaves)))) eval_range(range(1, len(leaves))) elif 'System`HoldRest' in attributes: eval_range(range(0, min(1, len(leaves)))) rest_range(range(1, len(leaves))) else: eval_range(range(len(leaves))) # rest_range(range(0, 0)) new = Expression(head, *leaves) if ('System`SequenceHold' not in attributes and # noqa 'System`HoldAllComplete' not in attributes): new = new.flatten_sequence() leaves = new.leaves for leaf in leaves: leaf.unevaluated = False if 'System`HoldAllComplete' not in attributes: dirty_new = False for index, leaf in enumerate(leaves): if leaf.has_form('Unevaluated', 1): leaves[index] = leaf.leaves[0] leaves[index].unevaluated = True dirty_new = True if dirty_new: new = Expression(head, *leaves) def flatten_callback(new_leaves, old): for leaf in new_leaves: leaf.unevaluated = old.unevaluated if 'System`Flat' in attributes: new = new.flatten(new.head, callback=flatten_callback) if 'System`Orderless' in attributes: new.sort() new.last_evaluated = evaluation.definitions.now if 'System`Listable' in attributes: done, threaded = new.thread(evaluation) if done: if threaded.same(new): new.last_evaluated = evaluation.definitions.now return new, False else: return threaded, True def rules(): rules_names = set() if 'System`HoldAllComplete' not in attributes: for leaf in leaves: name = leaf.get_lookup_name() if len(name) > 0: # only lookup rules if this is a symbol if name not in rules_names: rules_names.add(name) for rule in evaluation.definitions.get_upvalues(name): yield rule lookup_name = new.get_lookup_name() if lookup_name == new.get_head_name(): for rule in evaluation.definitions.get_downvalues(lookup_name): yield rule else: for rule in evaluation.definitions.get_subvalues(lookup_name): yield rule for rule in rules(): result = rule.apply(new, evaluation, fully=False) if result is not None: if result.same(new): new.last_evaluated = evaluation.definitions.now return new, False else: return result, True # Expression did not change, re-apply Unevaluated for index, leaf in enumerate(new.leaves): if leaf.unevaluated: new.leaves[index] = Expression('Unevaluated', leaf) new.unformatted = self.unformatted new.last_evaluated = evaluation.definitions.now return new, False def evaluate_leaves(self, evaluation): leaves = [leaf.evaluate(evaluation) for leaf in self.leaves] head = self.head.evaluate_leaves(evaluation) return Expression(head, *leaves) def __str__(self): return '%s[%s]' % ( self.head, ', '.join([str(leaf) for leaf in self.leaves])) def __repr__(self): return '<Expression: %s>' % self def process_style_box(self, options): if self.has_form('StyleBox', 1, None): rules = self.leaves[1:] for rule in rules: if rule.has_form('Rule', 2): name = rule.leaves[0].get_name() value = rule.leaves[1] if name == 'System`ShowStringCharacters': value = value.is_true() options = options.copy() options['show_string_characters'] = value elif name == 'System`ImageSizeMultipliers': if value.has_form('List', 2): m1 = value.leaves[0].round_to_float() m2 = value.leaves[1].round_to_float() if m1 is not None and m2 is not None: options = options.copy() options['image_size_multipliers'] = (m1, m2) return True, options else: return False, options def boxes_to_text(self, **options): from mathics.builtin import box_constructs from mathics.builtin.base import BoxConstructError is_style, options = self.process_style_box(options) if is_style: return self.leaves[0].boxes_to_text(**options) head = self.head.get_name() box_construct = box_constructs.get(head) if box_construct is not None: try: return box_construct.boxes_to_text(self.leaves, **options) except BoxConstructError: raise BoxError(self, 'text') if (self.has_form('RowBox', 1) and # nopep8 self.leaves[0].has_form('List', None)): return ''.join([leaf.boxes_to_text(**options) for leaf in self.leaves[0].leaves]) elif self.has_form('SuperscriptBox', 2): return '^'.join([leaf.boxes_to_text(**options) for leaf in self.leaves]) else: raise BoxError(self, 'text') def boxes_to_xml(self, **options): from mathics.builtin import box_constructs from mathics.builtin.base import BoxConstructError is_style, options = self.process_style_box(options) if is_style: return self.leaves[0].boxes_to_xml(**options) head = self.head.get_name() box_construct = box_constructs.get(head) if box_construct is not None: try: return box_construct.boxes_to_xml(self.leaves, **options) except BoxConstructError: # raise # uncomment this to see what is going wrong in # constructing boxes raise BoxError(self, 'xml') name = self.head.get_name() if (name == 'System`RowBox' and len(self.leaves) == 1 and # nopep8 self.leaves[0].get_head_name() == 'System`List'): result = [] inside_row = options.get('inside_row') # inside_list = options.get('inside_list') options = options.copy() def is_list_interior(content): if (content.has_form('List', None) and all(leaf.get_string_value() == ',' for leaf in content.leaves[1::2])): return True return False is_list_row = False if (len(self.leaves[0].leaves) == 3 and # nopep8 self.leaves[0].leaves[0].get_string_value() == '{' and self.leaves[0].leaves[2].get_string_value() == '}' and self.leaves[0].leaves[1].has_form('RowBox', 1)): content = self.leaves[0].leaves[1].leaves[0] if is_list_interior(content): is_list_row = True if not inside_row and is_list_interior(self.leaves[0]): is_list_row = True if is_list_row: options['inside_list'] = True else: options['inside_row'] = True for leaf in self.leaves[0].get_leaves(): result.append(leaf.boxes_to_xml(**options)) return '<mrow>%s</mrow>' % ' '.join(result) else: options = options.copy() options['inside_row'] = True if name == 'System`SuperscriptBox' and len(self.leaves) == 2: return '<msup>%s %s</msup>' % ( self.leaves[0].boxes_to_xml(**options), self.leaves[1].boxes_to_xml(**options)) if name == 'System`SubscriptBox' and len(self.leaves) == 2: return '<msub>%s %s</msub>' % ( self.leaves[0].boxes_to_xml(**options), self.leaves[1].boxes_to_xml(**options)) if name == 'System`SubsuperscriptBox' and len(self.leaves) == 3: return '<msubsup>%s %s %s</msubsup>' % ( self.leaves[0].boxes_to_xml(**options), self.leaves[1].boxes_to_xml(**options), self.leaves[2].boxes_to_xml(**options)) elif name == 'System`FractionBox' and len(self.leaves) == 2: return '<mfrac>%s %s</mfrac>' % ( self.leaves[0].boxes_to_xml(**options), self.leaves[1].boxes_to_xml(**options)) elif name == 'System`SqrtBox' and len(self.leaves) == 1: return '<msqrt>%s</msqrt>' % ( self.leaves[0].boxes_to_xml(**options)) else: raise BoxError(self, 'xml') def boxes_to_tex(self, **options): from mathics.builtin import box_constructs from mathics.builtin.base import BoxConstructError def block(tex, only_subsup=False): if len(tex) == 1: return tex else: if not only_subsup or '_' in tex or '^' in tex: return '{%s}' % tex else: return tex is_style, options = self.process_style_box(options) if is_style: return self.leaves[0].boxes_to_tex(**options) head = self.head.get_name() box_construct = box_constructs.get(head) if box_construct is not None: try: return box_construct.boxes_to_tex(self.leaves, **options) except BoxConstructError: raise BoxError(self, 'tex') name = self.head.get_name() if (name == 'System`RowBox' and len(self.leaves) == 1 and # nopep8 self.leaves[0].get_head_name() == 'System`List'): return ''.join([leaf.boxes_to_tex(**options) for leaf in self.leaves[0].get_leaves()]) elif name == 'System`SuperscriptBox' and len(self.leaves) == 2: tex1 = self.leaves[0].boxes_to_tex(**options) sup_string = self.leaves[1].get_string_value() if sup_string == '\u2032': return "%s'" % tex1 elif sup_string == '\u2032\u2032': return "%s''" % tex1 else: return '%s^%s' % ( block(tex1, True), block(self.leaves[1].boxes_to_tex(**options))) elif name == 'System`SubscriptBox' and len(self.leaves) == 2: return '%s_%s' % ( block(self.leaves[0].boxes_to_tex(**options), True), block(self.leaves[1].boxes_to_tex(**options))) elif name == 'System`SubsuperscriptBox' and len(self.leaves) == 3: return '%s_%s^%s' % ( block(self.leaves[0].boxes_to_tex(**options), True), block(self.leaves[1].boxes_to_tex(**options)), block(self.leaves[2].boxes_to_tex(**options))) elif name == 'System`FractionBox' and len(self.leaves) == 2: return '\\frac{%s}{%s}' % ( self.leaves[0].boxes_to_tex(**options), self.leaves[1].boxes_to_tex(**options)) elif name == 'System`SqrtBox' and len(self.leaves) == 1: return '\\sqrt{%s}' % self.leaves[0].boxes_to_tex(**options) else: raise BoxError(self, 'tex') def default_format(self, evaluation, form): return '%s[%s]' % (self.head.default_format(evaluation, form), ', '.join([leaf.default_format(evaluation, form) for leaf in self.leaves])) def sort(self, pattern=False): " Sort the leaves according to internal ordering. " if pattern: self.leaves.sort(key=lambda e: e.get_sort_key(pattern_sort=True)) else: self.leaves.sort() def filter_leaves(self, head_name): # TODO: should use sorting head_name = ensure_context(head_name) return [leaf for leaf in self.leaves if leaf.get_head_name() == head_name] def apply_rules(self, rules, evaluation, level=0, options=None): """for rule in rules: result = rule.apply(self, evaluation, fully=False) if result is not None: return result""" # to be able to access it inside inner function new_applied = [False] def apply_leaf(leaf): new, sub_applied = leaf.apply_rules( rules, evaluation, level + 1, options) new_applied[0] = new_applied[0] or sub_applied return new def descend(expr): return Expression(expr.head, *[apply_leaf(leaf) for leaf in expr.leaves]) if options is None: # default ReplaceAll mode; replace breadth first result, applied = super( Expression, self).apply_rules(rules, evaluation, level, options) if applied: return result, True head, applied = self.head.apply_rules(rules, evaluation, level, options) new_applied[0] = applied return descend(Expression(head, *self.leaves)), new_applied[0] else: # Replace mode; replace depth first expr = descend(self) expr, applied = super( Expression, expr).apply_rules(rules, evaluation, level, options) new_applied[0] = new_applied[0] or applied if not applied and options['heads']: # heads in Replace are treated at the level of the arguments, i.e. level + 1 head, applied = expr.head.apply_rules(rules, evaluation, level + 1, options) new_applied[0] = new_applied[0] or applied expr = Expression(head, *expr.leaves) return expr, new_applied[0] def replace_vars(self, vars, options=None, in_scoping=True, in_function=True): from mathics.builtin.scoping import get_scoping_vars if not in_scoping: if (self.head.get_name() in ('System`Module', 'System`Block', 'System`With') and len(self.leaves) > 0): # nopep8 scoping_vars = set(name for name, new_def in get_scoping_vars(self.leaves[0])) """for var in new_vars: if var in scoping_vars: del new_vars[var]""" vars = {var: value for var, value in vars.items() if var not in scoping_vars} leaves = self.leaves if in_function: if (self.head.get_name() == 'System`Function' and len(self.leaves) > 1 and (self.leaves[0].has_form('List', None) or self.leaves[0].get_name())): if self.leaves[0].get_name(): func_params = [self.leaves[0].get_name()] else: func_params = [leaf.get_name() for leaf in self.leaves[0].leaves] if '' not in func_params: body = self.leaves[1] replacement = {name: Symbol(name + '$') for name in func_params} func_params = [Symbol(name + '$') for name in func_params] body = body.replace_vars(replacement, options, in_scoping) leaves = [Expression('List', *func_params), body] + \ self.leaves[2:] if not vars: # might just be a symbol set via Set[] we looked up here return self.shallow_copy() return Expression( self.head.replace_vars( vars, options=options, in_scoping=in_scoping), *[leaf.replace_vars(vars, options=options, in_scoping=in_scoping) for leaf in leaves]) def replace_slots(self, slots, evaluation): if self.head.get_name() == 'System`Slot': if len(self.leaves) != 1: evaluation.message_args('Slot', len(self.leaves), 1) else: slot = self.leaves[0].get_int_value() if slot is None or slot < 0: evaluation.message('Function', 'slot', self.leaves[0]) elif slot > len(slots) - 1: evaluation.message('Function', 'slotn', slot) else: return slots[int(slot)] elif self.head.get_name() == 'System`SlotSequence': if len(self.leaves) != 1: evaluation.message_args('SlotSequence', len(self.leaves), 1) else: slot = self.leaves[0].get_int_value() if slot is None or slot < 1: evaluation.error('Function', 'slot', self.leaves[0]) return Expression('Sequence', *slots[slot:]) elif (self.head.get_name() == 'System`Function' and len(self.leaves) == 1): # do not replace Slots in nested Functions return self return Expression(self.head.replace_slots(slots, evaluation), *[leaf.replace_slots(slots, evaluation) for leaf in self.leaves]) def thread(self, evaluation, head=None): if head is None: head = Symbol('List') items = [] dim = None for leaf in self.leaves: if leaf.get_head().same(head): if dim is None: dim = len(leaf.leaves) items = [(items + [leaf]) for leaf in leaf.leaves] elif len(leaf.leaves) != dim: evaluation.message('Thread', 'tdlen') return True, self else: for index in range(dim): items[index].append(leaf.leaves[index]) else: if dim is None: items.append(leaf) else: for item in items: item.append(leaf) if dim is None: return False, self else: leaves = [Expression(self.head, *item) for item in items] return True, Expression(head, *leaves) def is_numeric(self): return (self.head.get_name() in system_symbols( 'Sqrt', 'Times', 'Plus', 'Subtract', 'Minus', 'Power', 'Abs', 'Divide', 'Sin') and all(leaf.is_numeric() for leaf in self.leaves)) # TODO: complete list of numeric functions, or access NumericFunction # attribute def numerify(self, evaluation): _prec = None for leaf in self.leaves: if leaf.is_inexact(): leaf_prec = leaf.get_precision() if _prec is None or leaf_prec < _prec: _prec = leaf_prec if _prec is not None: new_leaves = self.leaves[:] for index in range(len(self.leaves)): leaf = self.leaves[index] # Don't "numerify" numbers: they should be numerified # automatically by the processing function, # and we don't want to lose exactness in e.g. 1.0+I. if not isinstance(leaf, Number): n_expr = Expression('N', leaf, Integer(dps(_prec))) n_result = n_expr.evaluate(evaluation) if isinstance(n_result, Number): new_leaves[index] = n_result return Expression(self.head, *new_leaves) else: return self def get_atoms(self, include_heads=True): if include_heads: atoms = self.head.get_atoms() else: atoms = [] for leaf in self.leaves: atoms.extend(leaf.get_atoms()) return atoms def __hash__(self): return hash(('Expression', self.head) + tuple(self.leaves)) def user_hash(self, update): update(("%s>%d>" % (self.get_head_name(), len(self.leaves))).encode('utf8')) for leaf in self.leaves: leaf.user_hash(update) def __getnewargs__(self): return (self.head, self.leaves) class Atom(BaseExpression): def is_atom(self): return True def has_form(self, heads, *leaf_counts): if leaf_counts: return False name = self.get_atom_name() if isinstance(heads, tuple): return name in heads else: return heads == name def has_symbol(self, symbol_name): return False def get_head(self): return Symbol(self.get_atom_name()) def get_atom_name(self): return self.__class__.__name__ def __repr__(self): return '<%s: %s>' % (self.get_atom_name(), self) def replace_vars(self, vars, options=None, in_scoping=True): return self def replace_slots(self, slots, evaluation): return self def numerify(self, evaluation): return self def copy(self): result = self.do_copy() result.original = self return result def set_positions(self, position=None): self.position = position def get_sort_key(self, pattern_sort=False): if pattern_sort: return [0, 0, 1, 1, 0, 0, 0, 1] else: raise NotImplementedError def get_atoms(self, include_heads=True): return [self] def atom_to_boxes(self, f, evaluation): raise NotImplementedError class Symbol(Atom): def __new__(cls, name, sympy_dummy=None): self = super(Symbol, cls).__new__(cls) self.name = ensure_context(name) self.sympy_dummy = sympy_dummy return self def __str__(self): return self.name def do_copy(self): return Symbol(self.name) def boxes_to_text(self, **options): return str(self.name) def atom_to_boxes(self, f, evaluation): return String(evaluation.definitions.shorten_name(self.name)) def to_sympy(self, **kwargs): from mathics.builtin import mathics_to_sympy if self.sympy_dummy is not None: return self.sympy_dummy builtin = mathics_to_sympy.get(self.name) if (builtin is None or not builtin.sympy_name or # nopep8 not builtin.is_constant()): return sympy.Symbol(sympy_symbol_prefix + self.name) else: return builtin.to_sympy(self) def to_python(self, *args, **kwargs): if self.name == 'System`True': return True if self.name == 'System`False': return False if self.name == 'System`Null': return None n_evaluation = kwargs.get('n_evaluation') if n_evaluation is not None: value = Expression('N', self).evaluate(n_evaluation) return value.to_python() # return name as string (Strings are returned with quotes) return self.name def default_format(self, evaluation, form): return self.name def get_attributes(self, definitions): return definitions.get_attributes(self.name) def get_name(self): return self.name def is_symbol(self): return True def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(Symbol, self).get_sort_key(True) else: return [1 if self.is_numeric() else 2, 2, Monomial({self.name: 1}), 0, self.name, 1] def same(self, other): return isinstance(other, Symbol) and self.name == other.name def replace_vars(self, vars, options={}, in_scoping=True): assert all(fully_qualified_symbol_name(v) for v in vars) var = vars.get(self.name, None) if var is None: return self else: return var def has_symbol(self, symbol_name): return self.name == ensure_context(symbol_name) def evaluate(self, evaluation): rules = evaluation.definitions.get_ownvalues(self.name) for rule in rules: result = rule.apply(self, evaluation, fully=True) if result is not None and not result.same(self): return result.evaluate(evaluation) return self def is_true(self): return self.name == 'System`True' def is_numeric(self): return self.name in system_symbols( 'Pi', 'E', 'EulerGamma', 'GoldenRatio', 'MachinePrecision', 'Catalan') def __hash__(self): return hash(('Symbol', self.name)) # to distinguish from String def user_hash(self, update): update(b'System`Symbol>' + self.name.encode('utf8')) def __getnewargs__(self): return (self.name, self.sympy_dummy) class Number(Atom): def __str__(self): return str(self.value) @staticmethod def from_mpmath(value, prec=None): 'Converts mpf or mpc to Number.' if isinstance(value, mpmath.mpf): if prec is None: return MachineReal(float(value)) else: # HACK: use str here to prevent loss of precision return PrecisionReal(sympy.Float(str(value), prec)) elif isinstance(value, mpmath.mpc): real = Number.from_mpmath(value.real, prec) imag = Number.from_mpmath(value.imag, prec) return Complex(real, imag) else: raise TypeError(type(value)) def is_numeric(self): return True def _ExponentFunction(value): n = value.get_int_value() if -5 <= n <= 5: return Symbol('Null') else: return value def _NumberFormat(man, base, exp, options): if exp.get_string_value(): if options['_Form'] in ('System`InputForm', 'System`OutputForm', 'System`FullForm'): return Expression('RowBox', Expression('List', man, String('*^'), exp)) else: return Expression('RowBox', Expression('List', man, String(options['NumberMultiplier']), Expression('SuperscriptBox', base, exp))) else: return man _number_form_options = { 'DigitBlock': [0, 0], 'ExponentFunction': _ExponentFunction, 'ExponentStep': 1, 'NumberFormat': _NumberFormat, 'NumberPadding': ['', '0'], 'NumberPoint': '.', 'NumberSigns': ['-', ''], 'SignPadding': False, 'NumberMultiplier': '\u00d7', } class Integer(Number): def __new__(cls, value): n = int(value) self = super(Integer, cls).__new__(cls) self.value = n return self def boxes_to_text(self, **options): return str(self.value) def boxes_to_xml(self, **options): return self.make_boxes('MathMLForm').boxes_to_xml(**options) def boxes_to_tex(self, **options): return str(self.value) def make_boxes(self, form): return String(str(self.value)) def atom_to_boxes(self, f, evaluation): return self.make_boxes(f.get_name()) def default_format(self, evaluation, form): return str(self.value) def to_sympy(self, **kwargs): return sympy.Integer(self.value) def to_mpmath(self): return mpmath.mpf(self.value) def to_python(self, *args, **kwargs): return self.value def round(self, d=None): if d is None: return MachineReal(float(self.value)) else: return PrecisionReal(sympy.Float(self.value, d)) def get_int_value(self): return self.value def same(self, other): return isinstance(other, Integer) and self.value == other.value def evaluate(self, evaluation): evaluation.check_stopped() return self def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(Integer, self).get_sort_key(True) else: return [0, 0, self.value, 0, 1] def do_copy(self): return Integer(self.value) def __hash__(self): return hash(('Integer', self.value)) def user_hash(self, update): update(b'System`Integer>' + str(self.value).encode('utf8')) def __getnewargs__(self): return (self.value,) def __neg__(self): return Integer(-self.value) @property def is_zero(self): return self.value == 0 class Rational(Number): def __new__(cls, numerator, denominator=1): self = super(Rational, cls).__new__(cls) self.value = sympy.Rational(numerator, denominator) return self def atom_to_boxes(self, f, evaluation): return self.format(evaluation, f.get_name()) def to_sympy(self, **kwargs): return self.value def to_mpmath(self): return mpmath.mpf(self.value) def to_python(self, *args, **kwargs): return float(self.value) def round(self, d=None): if d is None: return MachineReal(float(self.value)) else: return PrecisionReal(self.value.n(d)) def same(self, other): return isinstance(other, Rational) and self.value == other.value def numerator(self): return Integer(self.value.as_numer_denom()[0]) def denominator(self): return Integer(self.value.as_numer_denom()[1]) def do_format(self, evaluation, form): assert fully_qualified_symbol_name(form) if form == 'System`FullForm': return Expression( Expression('HoldForm', Symbol('Rational')), self.numerator(), self.denominator()).do_format(evaluation, form) else: numerator = self.numerator() minus = numerator.value < 0 if minus: numerator = Integer(-numerator.value) result = Expression('Divide', numerator, self.denominator()) if minus: result = Expression('Minus', result) result = Expression('HoldForm', result) return result.do_format(evaluation, form) def default_format(self, evaluation, form): return 'Rational[%s, %s]' % self.value.as_numer_denom() def evaluate(self, evaluation): evaluation.check_stopped() return self def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(Rational, self).get_sort_key(True) else: # HACK: otherwise "Bus error" when comparing 1==1. return [0, 0, sympy.Float(self.value), 0, 1] def do_copy(self): return Rational(self.value) def __hash__(self): return hash(("Rational", self.value)) def user_hash(self, update): update(b'System`Rational>' + ('%s>%s' % self.value.as_numer_denom()).encode('utf8')) def __getnewargs__(self): return (self.numerator().get_int_value(), self.denominator().get_int_value()) def __neg__(self): return Rational(-self.numerator().get_int_value(), self.denominator().get_int_value()) @property def is_zero(self): return self.numerator == 0 class Real(Number): def __new__(cls, value, p=None): if isinstance(value, str): value = str(value) if p is None: digits = (''.join(re.findall('[0-9]+', value))).lstrip('0') if digits == '': # Handle weird Mathematica zero case p = max(prec(len(value.replace('0.', ''))), machine_precision) else: p = prec(len(digits.zfill(dps(machine_precision)))) elif isinstance(value, sympy.Float): if p is None: p = value._prec + 1 elif isinstance(value, (Integer, sympy.Number, mpmath.mpf, float, int)): if p is not None and p > machine_precision: value = str(value) else: raise TypeError('Unknown number type: %s (type %s)' % ( value, type(value))) # return either machine precision or arbitrary precision real if p is None or p == machine_precision: return MachineReal.__new__(MachineReal, value) else: return PrecisionReal.__new__(PrecisionReal, value) def boxes_to_text(self, **options): return self.make_boxes('System`OutputForm').boxes_to_text(**options) def boxes_to_xml(self, **options): return self.make_boxes('System`MathMLForm').boxes_to_xml(**options) def boxes_to_tex(self, **options): return self.make_boxes('System`TeXForm').boxes_to_tex(**options) def atom_to_boxes(self, f, evaluation): return self.make_boxes(f.get_name()) def evaluate(self, evaluation): evaluation.check_stopped() return self def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(Real, self).get_sort_key(True) return [0, 0, self.value, 0, 1] def __eq__(self, other): if isinstance(other, Real): # MMA Docs: "Approximate numbers that differ in their last seven # binary digits are considered equal" _prec = min_prec(self, other) with mpmath.workprec(_prec): rel_eps = 0.5 ** (_prec - 7) return mpmath.almosteq(self.to_mpmath(), other.to_mpmath(), abs_eps=0, rel_eps=rel_eps) else: return self.get_sort_key() == other.get_sort_key() def __ne__(self, other): # Real is a total order return not (self == other) def __hash__(self): # ignore last 7 binary digits when hashing _prec = self.get_precision() return hash(("Real", self.to_sympy().n(dps(_prec)))) def user_hash(self, update): # ignore last 7 binary digits when hashing _prec = self.get_precision() update(b'System`Real>' + str(self.to_sympy().n(dps(_prec))).encode('utf8')) def get_atom_name(self): return 'Real' class MachineReal(Real): ''' Machine precision real number. Stored internally as a python float. ''' def __new__(cls, value): self = Number.__new__(cls) self.value = float(value) if math.isinf(self.value) or math.isnan(self.value): raise OverflowError return self def to_python(self, *args, **kwargs): return self.value def to_sympy(self): return sympy.Float(self.value) def to_mpmath(self): return mpmath.mpf(self.value) def round(self, d=None): return self def same(self, other): if isinstance(other, MachineReal): return self.value == other.value elif isinstance(other, PrecisionReal): return self.to_sympy() == other.value return False def is_machine_precision(self): return True def get_precision(self): return machine_precision def get_float_value(self, permit_complex=False): return self.value def make_boxes(self, form): from mathics.builtin.inout import number_form _number_form_options['_Form'] = form # passed to _NumberFormat if form in ('System`InputForm', 'System`FullForm'): n = None else: n = 6 return number_form(self, n, None, None, _number_form_options) def __getnewargs__(self): return (self.value,) def do_copy(self): return MachineReal(self.value) def __neg__(self): return MachineReal(-self.value) @property def is_zero(self): return self.value == 0.0 class PrecisionReal(Real): ''' Arbitrary precision real number. Stored internally as a sympy.Float. ''' def __new__(cls, value): self = Number.__new__(cls) self.value = sympy.Float(value) return self def to_python(self, *args, **kwargs): return float(self.value) def to_sympy(self): return self.value def to_mpmath(self): return mpmath.mpf(self.value) def round(self, d=None): if d is None: return MachineReal(float(self.value)) else: d = min(dps(self.get_precision()), d) return PrecisionReal(self.value.n(d)) def same(self, other): if isinstance(other, PrecisionReal): return self.value == other.value elif isinstance(other, MachineReal): return self.value == other.to_sympy() return False def get_precision(self): return self.value._prec + 1 def make_boxes(self, form): from mathics.builtin.inout import number_form _number_form_options['_Form'] = form # passed to _NumberFormat return number_form(self, dps(self.get_precision()), None, None, _number_form_options) def __getnewargs__(self): return (self.value,) def do_copy(self): return PrecisionReal(self.value) def __neg__(self): return PrecisionReal(-self.value) @property def is_zero(self): return self.value == 0.0 class Complex(Number): ''' Complex wraps two real-valued Numbers. ''' def __new__(cls, real, imag): self = super(Complex, cls).__new__(cls) if isinstance(real, Complex) or not isinstance(real, Number): raise ValueError("Argument 'real' must be a real number.") if isinstance(imag, Complex) or not isinstance(imag, Number): raise ValueError("Argument 'imag' must be a real number.") if imag.same(Integer(0)): return real if isinstance(real, MachineReal) and not isinstance(imag, MachineReal): imag = imag.round() if isinstance(imag, MachineReal) and not isinstance(real, MachineReal): real = real.round() self.real = real self.imag = imag return self def atom_to_boxes(self, f, evaluation): return self.format(evaluation, f.get_name()) def __str__(self): return str(self.to_sympy()) def to_sympy(self, **kwargs): return self.real.to_sympy() + sympy.I * self.imag.to_sympy() def to_python(self, *args, **kwargs): return complex(self.real.to_python(), self.imag.to_python()) def to_mpmath(self): return mpmath.mpc(self.real.to_mpmath(), self.imag.to_mpmath()) def do_format(self, evaluation, form): if form == 'System`FullForm': return Expression(Expression('HoldForm', Symbol('Complex')), self.real, self.imag).do_format(evaluation, form) result = [] if self.is_machine_precision() or not self.real.is_zero: result.append(self.real) if self.imag.same(Integer(1)): result.append(Symbol('I')) else: result.append(Expression('Times', self.imag, Symbol('I'))) if len(result) == 1: result = result[0] else: result = Expression('Plus', *result) return Expression('HoldForm', result).do_format(evaluation, form) def default_format(self, evaluation, form): return 'Complex[%s, %s]' % (self.real.default_format(evaluation, form), self.imag.default_format(evaluation, form)) def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(Complex, self).get_sort_key(True) else: return [0, 0, self.real.get_sort_key()[2], self.imag.get_sort_key()[2], 1] def same(self, other): return (isinstance(other, Complex) and self.real == other.real and self.imag == other.imag) def evaluate(self, evaluation): evaluation.check_stopped() return self def round(self, d=None): real = self.real.round(d) imag = self.imag.round(d) return Complex(real, imag) def is_machine_precision(self): if self.real.is_machine_precision() or self.imag.is_machine_precision(): return True return False def get_float_value(self, permit_complex=False): if permit_complex: real = self.real.get_float_value() imag = self.imag.get_float_value() if real is not None and imag is not None: return complex(real, imag) else: return None def get_precision(self): real_prec = self.real.get_precision() imag_prec = self.imag.get_precision() if imag_prec is None or real_prec is None: return None return min(real_prec, imag_prec) def do_copy(self): return Complex(self.real.do_copy(), self.imag.do_copy()) def __hash__(self): return hash(('Complex', self.real, self.imag)) def user_hash(self, update): update(b'System`Complex>') update(self.real) update(self.imag) def __eq__(self, other): if isinstance(other, Complex): return self.real == other.real and self.imag == other.imag else: return self.get_sort_key() == other.get_sort_key() def __getnewargs__(self): return (self.real, self.imag) def __neg__(self): return Complex(-self.real, -self.imag) @property def is_zero(self): return self.real.is_zero and self.imag.is_zero def encode_mathml(text): text = text.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;') text = text.replace('"', '&quot;').replace(' ', '&nbsp;') return text.replace('\n', '<mspace linebreak="newline" />') TEX_REPLACE = { '{': r'\{', '}': r'\}', '_': r'\_', '$': r'\$', '%': r'\%', '#': r'\#', '&': r'\&', '\\': r'\backslash{}', '^': r'{}^{\wedge}', '~': r'\sim{}', '|': r'\vert{}', } TEX_TEXT_REPLACE = TEX_REPLACE.copy() TEX_TEXT_REPLACE.update({ '<': r'$<$', '>': r'$>$', '~': r'$\sim$', '|': r'$\vert$', '\\': r'$\backslash$', '^': r'${}^{\wedge}$', }) TEX_REPLACE_RE = re.compile('([' + ''.join( [re.escape(c) for c in TEX_REPLACE]) + '])') def encode_tex(text, in_text=False): def replace(match): c = match.group(1) repl = TEX_TEXT_REPLACE if in_text else TEX_REPLACE # return TEX_REPLACE[c] return repl.get(c, c) text = TEX_REPLACE_RE.sub(replace, text) text = text.replace('\n', '\\newline\n') return text extra_operators = set((',', '(', ')', '[', ']', '{', '}', '\u301a', '\u301b', '\u00d7', '\u2032', '\u2032\u2032', ' ', '\u2062', '\u222b', '\u2146')) class String(Atom): def __new__(cls, value): self = super(String, cls).__new__(cls) self.value = str(value) return self def __str__(self): return '"%s"' % self.value def boxes_to_text(self, show_string_characters=False, **options): value = self.value if (not show_string_characters and # nopep8 value.startswith('"') and value.endswith('"')): value = value[1:-1] return value def boxes_to_xml(self, show_string_characters=False, **options): from mathics.core.parser import is_symbol_name from mathics.builtin import builtins operators = set() for name, builtin in builtins.items(): operator = builtin.get_operator_display() if operator is not None: operators.add(operator) text = self.value def render(format, string): return format % encode_mathml(string) if text.startswith('"') and text.endswith('"'): if show_string_characters: return render('<ms>%s</ms>', text[1:-1]) else: return render('<mtext>%s</mtext>', text[1:-1]) elif text and ('0' <= text[0] <= '9' or text[0] == '.'): return render('<mn>%s</mn>', text) else: if text in operators or text in extra_operators: if text == '\u2146': return render( '<mo form="prefix" lspace="0.2em" rspace="0">%s</mo>', text) if text == '\u2062': return render( '<mo form="prefix" lspace="0" rspace="0.2em">%s</mo>', text) return render('<mo>%s</mo>', text) elif is_symbol_name(text): return render('<mi>%s</mi>', text) else: return render('<mtext>%s</mtext>', text) def boxes_to_tex(self, show_string_characters=False, **options): from mathics.builtin import builtins operators = set() for name, builtin in builtins.items(): operator = builtin.get_operator_display() if operator is not None: operators.add(operator) text = self.value def render(format, string, in_text=False): return format % encode_tex(string, in_text) if text.startswith('"') and text.endswith('"'): if show_string_characters: return render(r'\text{"%s"}', text[1:-1], in_text=True) else: return render(r'\text{%s}', text[1:-1], in_text=True) elif text and text[0] in '0123456789-.': return render('%s', text) else: if text == '\u2032': return "'" elif text == '\u2032\u2032': return "''" elif text == '\u2062': return ' ' elif text == '\u221e': return r'\infty ' elif text == '\u00d7': return r'\times ' elif text in ('(', '[', '{'): return render(r'\left%s', text) elif text in (')', ']', '}'): return render(r'\right%s', text) elif text == '\u301a': return r'\left[\left[' elif text == '\u301b': return r'\right]\right]' elif text == ',' or text == ', ': return text elif text == '\u222b': return r'\int' elif text == '\u2146': return r'\, d' elif text == '\u2211': return r'\sum' elif text == '\u220f': return r'\prod' elif len(text) > 1: return render(r'\text{%s}', text, in_text=True) else: return render('%s', text) def atom_to_boxes(self, f, evaluation): return String('"' + str(self.value) + '"') def do_copy(self): return String(self.value) def default_format(self, evaluation, form): value = self.value.replace('\\', '\\\\').replace('"', '\\"') return '"%s"' % value def get_sort_key(self, pattern_sort=False): if pattern_sort: return super(String, self).get_sort_key(True) else: return [0, 1, self.value, 0, 1] def same(self, other): return isinstance(other, String) and self.value == other.value def get_string_value(self): return self.value def to_sympy(self, **kwargs): return None def to_python(self, *args, **kwargs): return '"%s"' % self.value # add quotes to distinguish from Symbols def __hash__(self): return hash(("String", self.value)) def user_hash(self, update): # hashing a String is the one case where the user gets the untampered # hash value of the string's text. this corresponds to MMA behavior. update(self.value.encode('utf8')) def __getnewargs__(self): return (self.value,) def get_default_value(name, evaluation, k=None, n=None): pos = [] if k is not None: pos.append(k) if n is not None: pos.append(n) for pos_len in reversed(list(range(len(pos) + 1))): # Try patterns from specific to general defaultexpr = Expression('Default', Symbol(name), *[Integer(index) for index in pos[:pos_len]]) result = evaluation.definitions.get_value( name, 'System`DefaultValues', defaultexpr, evaluation) if result is not None: if result.same(defaultexpr): result = result.evaluate(evaluation) return result return None def print_parenthesizes(precedence, outer_precedence=None, parenthesize_when_equal=False): return (outer_precedence is not None and ( outer_precedence > precedence or ( outer_precedence == precedence and parenthesize_when_equal)))
the-stack_106_32077
# @TODO instead of using threading, replace with aiohttp! from http.server import BaseHTTPRequestHandler, HTTPServer import threading import json import logging logger = logging.getLogger() logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.DEBUG) def parse_jcu_command(path): duration = None # the logic is slightly weird. The main command is a 'structure' in dot notation, # but there can be more than one "nested" value: # > axis.t.displacement=-57,duration=0 # {"axis":{"t":{"displacement":-32,"duration":0}}} # this is a generic way to parse, but in any case we'll need to interpret the commands at some point """ for some commands (`button`) the normal pattern: a.b.c=3,d=4 => a: b: c is instead: a.b,c=3,d=4 in that case, _command should include the first additional term. """ # print("parsing {}".format(path)) commands = {} # list of all commands _commands = commands # pointer _path = path.split('.') _v = _path[-1].split(',', 1) if '=' not in _v[0]: _command = _path[:-1] + [_v[0]] # I have no examples yet... but there could be no "values". Might need to protect this. _values = _v[1] else: _command = _path[:-1] _values = _path[-1] values = dict(v.split('=') for v in _values.split(',')) while _command: k = _command.pop(0) _commands[k] = {} _commands = _commands[k] for k, v in values.items(): try: # check if this is a number... v = float(v) except: pass _commands[k] = v if k == 'duration': # special case - do we care? duration = v return commands def test_parse_jcu_command(): for (request, response) in [ # "jcu_config", {"config":{"timescale":-3,"magnitudescale":0,"keepalive":2000,"commandrepeat":500,"cameraudn":M-Series,"powerondelay":1000,"shutdowndelay":2000,"backlightdelay":1000,"deadbandatrest_idx":25,"deadbandatrest_idy":25,"deadbandatrest_idz":25, "deadbandatrest_idt":25,"deadbandtranslation_idx":0,"deadbandtranslation_idy":0,"deadbandtranslation_idz":0,"deadbandtranslation_idt":0}}), ("connect.jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6", {"connect": {"jcuudn": "uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6"}}), ("keepalive.jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6", {"keepalive": {"jcuudn": "uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6"}}), ("axis.t.displacement=-32,duration=0", {"axis": {"t": {"displacement": -32, "duration": 0}}}), ("button.F,state=DOWN,duration=0,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6", {"button": {"F": {"state": "DOWN", "duration": 0}}}), ("button.F,state=UP,duration=210,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6", {"button": {"F": {"state": "UP", "duration": 210}}}), # the way things are combined is just... crazy.... ("button.F,state=DOWN,duration=2000,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6,F,state=UP,duration=2010,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6", {}) ]: r = parse_jcu_command(request) # This test will fail if jcuudn is returned for `button` messages... thou that's because it's a crappy api :-( assert r == response, "parsing error: {} != {}".format(r, response) class UPNPHTTPServerHandler(BaseHTTPRequestHandler): """ A HTTP handler that serves the UPnP XML descriptions and responds to the JCU commands. JCU === known requests (and responses) /bi-cgi?connect.jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6 {"connect":{"jcuudn":"uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6"}}\r\n /bi-cgi?jcu_config {"config":{"timescale":-3,"magnitudescale":0,"keepalive":2000,"commandrepeat":500,"cameraudn":M-Series,"powerondelay":1000,"shutdowndelay":2000,"backlightdelay":1000,"deadbandatrest_idx":25,"deadbandatrest_idy":25,"deadbandatrest_idz":25, "deadbandatrest_idt":25,"deadbandtranslation_idx":0,"deadbandtranslation_idy":0,"deadbandtranslation_idz":0,"deadbandtranslation_idt":0}} /bi-cgi?keepalive.jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6 {"keepalive":{"jcuudn":"uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6"}}\r\n /bi-cgi?axis.t.displacement=-57,duration=0 {"axis":{"t":{"displacement":-32,"duration":0}}}\r\n /bi-cgi?button.F,state=DOWN,duration=0,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6 {"button":{"F":{"state":"DOWN","duration":0}}} /bi-cgi?button.F,state=UP,duration=210,jcuudn=uuid:JCU-1_0-1A22-EF16-11DD-84A7-00405F40A3D6 {"button":{"F":{"state":"UP","duration":210}}} # in some cases the jcuudn is sent again... but only in some cases! and it's not replied. # also this command is not conform, as it should be: button.F,state -> button.F.state """ # Handler for the GET requests def do_GET(self): logger.info("Got a `GET` for %s from %s", self.path, self.client_address) if self.path.startswith('/bi-cgi?'): return self.parse_jcu_command(self.path.replace('/bi-cgi?', '')) if self.path == '/description.xml': # this should be parametric... check server.description_url! return self.return_description() # i could centralize sending the response here logger.warning("Unknown request %s", self.path) def respond(self, message, content_type='text/html'): try: self.send_response(200) self.send_header('Content-type', content_type) self.end_headers() self.wfile.write(message) except Exception as e: logger.error('Could not send out a response to the request `%s`: %s', self.path, e) def return_description(self): logger.debug("sending description: %s", self.server.description) self.respond(self.server.description.encode(), 'application/xml') return def parse_jcu_command(self, path): """ process jcu_commands :return: """ # bit of repetition with bi-cgi. Instead, each response could check if it can handle the path. # Or we pass the "command" part to this method if path == 'jcu_config': # this is a bit of an exception so we could take it out of this method # here we should return some config: logger.info("received an SSDP XML config request (%s)", self.path) response = json.dumps(self.camera_config()) else: commands = parse_jcu_command(path) # if k == 'duration': # special case - do we care? response = json.dumps(commands) self.respond(response.encode()) def camera_config(self): # m87 config = { "config": { "timescale": -3, "magnitudescale": 0, "keepalive": 2000, "commandrepeat": 500, "cameraudn": "M-Series", "powerondelay": 1000, "shutdowndelay": 2000, "backlightdelay": 1000, "deadbandatrest_idx": 25, "deadbandatrest_idy": 25, "deadbandatrest_idz": 25, "deadbandatrest_idt": 25, "deadbandtranslation_idx": 0, "deadbandtranslation_idy": 0, "deadbandtranslation_idz": 0, "deadbandtranslation_idt": 0 } } return config class UPNPHTTPServerBase(HTTPServer): """ A simple HTTP server that knows the information about a UPnP device. """ def __init__(self, server_address, request_handler_class, description): HTTPServer.__init__(self, server_address, request_handler_class) self.port = server_address[1] self.description = description class UPNPHTTPServer(threading.Thread): """ A thread that runs UPNPHTTPServerBase. """ def __init__(self, server_address, description): """ :param server_address: (ip_address, port) :param description: (text to be sent back on the description_url """ threading.Thread.__init__(self, daemon=True) self.server = UPNPHTTPServerBase(server_address, UPNPHTTPServerHandler, description) @property def address(self): return self.server.server_address @property def baseurl(self): return 'http://{}:{}'.format(*self.address) @property def description_url(self): return '/'.join([self.baseurl, 'description.xml']) def run(self): self.server.serve_forever()
the-stack_106_32078
def setup_fs(s3, key="", secret="", endpoint="", cert="", passwords={}): """Given a boolean specifying whether to use local disk or S3, setup filesystem Syntax examples: AWS (http://s3.us-east-2.amazonaws.com), MinIO (http://192.168.0.1:9000) The cert input is relevant if you're using MinIO with TLS enabled, for specifying the path to the certficiate. The block_size is set to accomodate files up to 55 MB in size. If your log files are larger, adjust this value accordingly """ if s3: import s3fs block_size = 55 * 1024 * 1024 if "amazonaws" in endpoint: fs = s3fs.S3FileSystem(key=key, secret=secret, default_block_size=block_size) elif cert != "": fs = s3fs.S3FileSystem( key=key, secret=secret, client_kwargs={"endpoint_url": endpoint, "verify": cert}, default_block_size=block_size ) else: fs = s3fs.S3FileSystem( key=key, secret=secret, client_kwargs={"endpoint_url": endpoint}, default_block_size=block_size ) else: from pathlib import Path import canedge_browser base_path = Path(__file__).parent fs = canedge_browser.LocalFileSystem(base_path=base_path, passwords=passwords) return fs # ----------------------------------------------- def load_dbc_files(dbc_paths): """Given a list of DBC file paths, create a list of conversion rule databases """ import can_decoder from pathlib import Path db_list = [] for dbc in dbc_paths: db = can_decoder.load_dbc(Path(__file__).parent / dbc) db_list.append(db) return db_list # ----------------------------------------------- def list_log_files(fs, devices, start_times, verbose=True, passwords={}): """Given a list of device paths, list log files from specified filesystem. Data is loaded based on the list of start datetimes """ import canedge_browser, mdf_iter log_files = [] if len(start_times): for idx, device in enumerate(devices): start = start_times[idx] log_files_device = canedge_browser.get_log_files(fs, [device], start_date=start, passwords=passwords) log_files.extend(log_files_device) if verbose: print(f"Found {len(log_files)} log files\n") return log_files def restructure_data(df_phys, res, full_col_names=False, pgn_names=False): import pandas as pd from J1939_PGN import J1939_PGN df_phys_join = pd.DataFrame({"TimeStamp": []}) if not df_phys.empty: for message, df_phys_message in df_phys.groupby("CAN ID"): for signal, data in df_phys_message.groupby("Signal"): pgn = J1939_PGN(int(message)).pgn if full_col_names == True and pgn_names == False: col_name = str(hex(int(message))).upper()[2:] + "." + signal elif full_col_names == True and pgn_names == True: col_name = str(hex(int(message))).upper()[2:] + "." + str(pgn) + "." + signal elif full_col_names == False and pgn_names == True: col_name = str(pgn) + "." + signal else: col_name = signal df_phys_join = pd.merge_ordered( df_phys_join, data["Physical Value"].rename(col_name).resample(res).pad().dropna(), on="TimeStamp", fill_method="none", ).set_index("TimeStamp") return df_phys_join def add_custom_sig(df_phys, signal1, signal2, function, new_signal): """Helper function for calculating a new signal based on two signals and a function. Returns a dataframe with the new signal name and physical values """ import pandas as pd try: s1 = df_phys[df_phys["Signal"] == signal1]["Physical Value"].rename(signal1) s2 = df_phys[df_phys["Signal"] == signal2]["Physical Value"].rename(signal2) df_new_sig = pd.merge_ordered(s1, s2, on="TimeStamp", fill_method="ffill",).set_index("TimeStamp") df_new_sig = df_new_sig.apply(lambda x: function(x[0], x[1]), axis=1).dropna().rename("Physical Value").to_frame() df_new_sig["Signal"] = new_signal df_phys = df_phys.append(df_new_sig) except: print(f"Warning: Custom signal {new_signal} not created\n") return df_phys # ----------------------------------------------- class ProcessData: def __init__(self, fs, db_list, signals=[], days_offset=None, verbose=True): self.db_list = db_list self.signals = signals self.fs = fs self.days_offset = days_offset self.verbose = verbose return def extract_phys(self, df_raw): """Given df of raw data and list of decoding databases, create new def with physical values (no duplicate signals and optionally filtered/rebaselined) """ import can_decoder import pandas as pd df_phys = pd.DataFrame() for db in self.db_list: df_decoder = can_decoder.DataFrameDecoder(db) df_phys_temp = pd.DataFrame() for length, group in df_raw.groupby("DataLength"): df_phys_group = df_decoder.decode_frame(group) df_phys_temp = df_phys_temp.append(df_phys_group) df_phys = df_phys.append(df_phys_temp.sort_index()) # remove duplicates in case multiple DBC files contain identical signals df_phys["datetime"] = df_phys.index df_phys = df_phys.drop_duplicates(keep="first") df_phys = df_phys.drop("datetime", 1) # optionally filter and rebaseline the data df_phys = self.filter_signals(df_phys) if not df_phys.empty and type(self.days_offset) == int: df_phys = self.rebaseline_data(df_phys) return df_phys def rebaseline_data(self, df_phys): """Given a df of physical values, this offsets the timestamp to be equal to today, minus a given number of days. """ from datetime import datetime, timezone import pandas as pd delta_days = (datetime.now(timezone.utc) - df_phys.index.min()).days - self.days_offset df_phys.index = df_phys.index + pd.Timedelta(delta_days, "day") return df_phys def filter_signals(self, df_phys): """Given a df of physical values, return only signals matched by filter """ if not df_phys.empty and len(self.signals): df_phys = df_phys[df_phys["Signal"].isin(self.signals)] return df_phys def get_raw_data(self, log_file, lin=False, passwords={}): """Extract a df of raw data and device ID from log file. Optionally include LIN bus data by setting lin=True """ import mdf_iter with self.fs.open(log_file, "rb") as handle: mdf_file = mdf_iter.MdfFile(handle, passwords=passwords) device_id = self.get_device_id(mdf_file) if lin: df_raw_lin = mdf_file.get_data_frame_lin() df_raw_lin["IDE"] = 0 df_raw_can = mdf_file.get_data_frame() df_raw = df_raw_can.append(df_raw_lin) else: df_raw = mdf_file.get_data_frame() return df_raw, device_id def get_device_id(self, mdf_file): return mdf_file.get_metadata()["HDComment.Device Information.serial number"]["value_raw"] def print_log_summary(self, device_id, log_file, df_phys): """Print summary information for each log file """ if self.verbose: print( "\n---------------", f"\nDevice: {device_id} | Log file: {log_file.split(device_id)[-1]} [Extracted {len(df_phys)} decoded frames]\nPeriod: {df_phys.index.min()} - {df_phys.index.max()}\n", ) # ----------------------------------------------- class MultiFrameDecoder: """BETA class for handling transport protocol data. For each response ID, identify sequences of subsequent frames and combine the relevant parts of the data payloads into a single payload with the response ID as the ID. The original raw dataframe is then cleansed of the original response ID sequence frames. Instead, the new concatenated frames are inserted. Further, the class supports DBC decoding of the resulting modified raw data :param tp_type: the class supports UDS ("uds"), NMEA 2000 Fast Packets ("nmea") and J1939 ("j1939") :param df_raw: dataframe of raw CAN data from the mdf_iter module SINGLE_FRAME_MASK: mask used in matching single frames FIRST_FRAME_MASK: mask used in matching first frames CONSEQ_FRAME_MASK: mask used in matching consequtive frames SINGLE_FRAME: frame type reflecting a single frame response FIRST_FRAME: frame type reflecting the first frame in a multi frame response CONSEQ_FRAME: frame type reflecting a consequtive frame in a multi frame response ff_payload_start: the combined payload will start at this byte in the FIRST_FRAME bam_pgn: this is used in J1939 and marks the initial BAM message ID in DEC res_id_list_hex: TP 'response CAN IDs' to process. For nmea/j1939, these are provided by default """ def __init__(self, tp_type=""): frame_struct_uds = { "SINGLE_FRAME_MASK": 0xF0, "FIRST_FRAME_MASK": 0xF0, "CONSEQ_FRAME_MASK": 0xF0, "SINGLE_FRAME": 0x00, "FIRST_FRAME": 0x10, "CONSEQ_FRAME": 0x20, "ff_payload_start": 2, "bam_pgn": -1, "res_id_list_hex": ["0x7E0", "0x7E9", "0x7EA", "0x7EB", "0x7EC", "0x7ED", "0x7EE", "0x7EF", "0x7EA", "0x7BB"], } frame_struct_j1939 = { "SINGLE_FRAME_MASK": 0xFF, "FIRST_FRAME_MASK": 0xFF, "CONSEQ_FRAME_MASK": 0x00, "SINGLE_FRAME": 0xFF, "FIRST_FRAME": 0x20, "CONSEQ_FRAME": 0x00, "ff_payload_start": 8, "bam_pgn": int("0xEC00", 16), "res_id_list_hex": ["0xEB00"], } frame_struct_nmea = { "SINGLE_FRAME_MASK": 0xFF, "FIRST_FRAME_MASK": 0x0F, "CONSEQ_FRAME_MASK": 0x00, "SINGLE_FRAME": 0xFF, "FIRST_FRAME": 0x00, "CONSEQ_FRAME": 0x00, "ff_payload_start": 2, "bam_pgn": -1, "res_id_list_hex": [ "0xfed8", "0x1f007", "0x1f008", "0x1f009", "0x1f014", "0x1f016", "0x1f101", "0x1f105", "0x1f201", "0x1f208", "0x1f209", "0x1f20a", "0x1f20c", "0x1f20f", "0x1f210", "0x1f212", "0x1f513", "0x1f805", "0x1f80e", "0x1f80f", "0x1f810", "0x1f811", "0x1f814", "0x1f815", "0x1f904", "0x1f905", "0x1fa04", "0x1fb02", "0x1fb03", "0x1fb04", "0x1fb05", "0x1fb11", "0x1fb12", "0x1fd10", "0x1fe07", "0x1fe12", "0x1ff14", "0x1ff15", ], } if tp_type == "uds": self.frame_struct = frame_struct_uds elif tp_type == "j1939": self.frame_struct = frame_struct_j1939 elif tp_type == "nmea": self.frame_struct = frame_struct_nmea else: self.frame_struct = {} self.tp_type = tp_type return def calculate_pgn(self, frame_id): pgn = (frame_id & 0x03FFFF00) >> 8 pgn_f = (pgn & 0xFF00) >> 8 pgn_s = pgn & 0x00FF if pgn_f < 240: pgn &= 0xFFFFFF00 return pgn def construct_new_tp_frame(self, base_frame, payload_concatenated, can_id): new_frame = base_frame new_frame.at["DataBytes"] = payload_concatenated new_frame.at["DLC"] = 0 new_frame.at["DataLength"] = len(payload_concatenated) if can_id: new_frame.at["ID"] = can_id return new_frame def combine_tp_frames(self, df_raw): import pandas as pd bam_pgn = self.frame_struct["bam_pgn"] res_id_list = [int(res_id, 16) for res_id in self.frame_struct["res_id_list_hex"]] df_list_combined = [] # use PGN matching for J1939 and NMEA and update res_id_list to relevant entries if self.tp_type == "nmea" or self.tp_type == "j1939": res_id_list_incl_bam = res_id_list res_id_list_incl_bam.append(bam_pgn) df_raw_match = df_raw["ID"].apply(self.calculate_pgn).isin(res_id_list_incl_bam) res_id_list = df_raw["ID"][df_raw_match].apply(self.calculate_pgn).drop_duplicates().values.tolist() df_raw_tp = df_raw[df_raw_match] df_raw_excl_tp = df_raw[~df_raw_match] else: df_raw_match = df_raw["ID"].isin(res_id_list) res_id_list = df_raw["ID"][df_raw_match].drop_duplicates().values.tolist() df_raw_tp = df_raw[df_raw_match] df_raw_excl_tp = df_raw[~df_raw["ID"].isin(res_id_list)] if len(df_raw.index) - len(df_raw_tp.index) - len(df_raw_excl_tp.index): print("Warning - total rows does not equal sum of rows incl/excl transport protocol frames") df_list_combined.append(df_raw_excl_tp) for res_id in res_id_list: # filter raw data for response ID and extract a 'base frame' if self.tp_type == "nmea" or self.tp_type == "j1939": df_raw_res_id = df_raw_tp[df_raw_tp["ID"].apply(self.calculate_pgn).isin([res_id, bam_pgn])] else: df_raw_res_id = df_raw_tp[df_raw_tp["ID"].isin([res_id])] if df_raw_res_id.empty: continue for channel, df_channel in df_raw_res_id.groupby("BusChannel"): # if J1939, we can't group by CAN ID (as we need both bam_pgn and response) if self.tp_type == "j1939": group = "DataLength" else: group = "ID" for identifier, df_raw_filter in df_channel.groupby(group): base_frame = df_raw_filter.iloc[0] frame_list = [] frame_timestamp_list = [] payload_concatenated = [] ff_length = 0xFFF can_id = None conseq_frame_prev = None # iterate through rows in filtered dataframe for index, row in df_raw_filter.iterrows(): first_byte = row["DataBytes"][0] # check if first frame (either for UDS/NMEA or J1939 case) if self.tp_type == "j1939" and bam_pgn == self.calculate_pgn(row["ID"]): first_frame_test = True elif (first_byte & self.frame_struct["FIRST_FRAME_MASK"]) == self.frame_struct["FIRST_FRAME"]: first_frame_test = True else: first_frame_test = False # if single frame, save frame directly (excl. 1st byte) if self.tp_type != "nmea" and ( first_byte & self.frame_struct["SINGLE_FRAME_MASK"] == self.frame_struct["SINGLE_FRAME"] ): new_frame = self.construct_new_tp_frame(base_frame, row["DataBytes"], row["ID"]) frame_list.append(new_frame.values.tolist()) frame_timestamp_list.append(index) # if first frame, save info from prior multi frame response sequence, # then initialize a new sequence incl. the first frame payload elif first_frame_test: # create a new frame using information from previous iterations if len(payload_concatenated) >= ff_length: new_frame = self.construct_new_tp_frame(base_frame, payload_concatenated, can_id) frame_list.append(new_frame.values.tolist()) frame_timestamp_list.append(frame_timestamp) # reset and start on next frame payload_concatenated = [] conseq_frame_prev = None frame_timestamp = index # for J1939, extract PGN and convert to 29 bit CAN ID for use in baseframe if self.tp_type == "j1939": pgn_hex = "".join("{:02x}".format(x) for x in reversed(row["DataBytes"][5:8])) pgn = int(pgn_hex, 16) can_id = (6 << 26) | (pgn << 8) | 254 ff_length = (row["DataBytes"][0] & 0x0F) << 8 | row["DataBytes"][1] for byte in row["DataBytes"][self.frame_struct["ff_payload_start"] :]: payload_concatenated.append(byte) # if consequtive frame, extend payload with payload excl. 1st byte elif first_byte & self.frame_struct["CONSEQ_FRAME_MASK"] == self.frame_struct["CONSEQ_FRAME"]: if (conseq_frame_prev == None) or ((first_byte - conseq_frame_prev) == 1): conseq_frame_prev = first_byte for byte in row["DataBytes"][1:]: payload_concatenated.append(byte) df_raw_res_id_new = pd.DataFrame(frame_list, columns=base_frame.index, index=frame_timestamp_list) df_list_combined.append(df_raw_res_id_new) df_raw_combined = pd.concat(df_list_combined) df_raw_combined.index.name = "TimeStamp" df_raw_combined = df_raw_combined.sort_index() return df_raw_combined
the-stack_106_32079
""" pyaud.plugins ============= Main module used for public API. """ import functools as _functools import importlib as _importlib import os as _os import sys as _sys from abc import ABC as _ABC from abc import abstractmethod as _abstractmethod from pathlib import Path as _Path from subprocess import CalledProcessError as _CalledProcessError from typing import Any as _Any from typing import Callable as _Callable from typing import Dict as _Dict from typing import List as _List from typing import Optional as _Optional from typing import Type as _Type from typing import Union as _Union from . import exceptions as _exceptions from ._environ import DEFAULT_PLUGINS as _DEFAULT_PLUGINS from ._environ import NAME as _NAME from ._environ import SITE_PLUGINS as _SITE_PLUGINS from ._environ import TempEnvVar as _TempEnvVar from ._objects import MutableMapping as _MutableMapping from ._utils import HashCap as _HashCap from ._utils import Subprocess as _Subprocess from ._utils import colors as _colors from ._utils import files as _files _plugin_paths: _List[_Path] = [_DEFAULT_PLUGINS, _SITE_PLUGINS] def _check_command(func: _Callable[..., int]) -> _Callable[..., None]: """Run the routine common with all functions in this package. :param func: Function to decorate. :return: Wrapped function. """ @_functools.wraps(func) def _wrapper(*args, **kwargs: bool) -> None: if not _files.reduce(): print("No files found") else: returncode = func(*args, **kwargs) if returncode: _colors.red.bold.print( f"Failed: returned non-zero exit status {returncode}", file=_sys.stderr, ) else: _colors.green.bold.print( f"Success: no issues found in {len(_files)} source files" ) return _wrapper class _SubprocessFactory( # pylint: disable=too-many-ancestors _MutableMapping ): """Instantiate collection of ``Subprocess`` objects.""" def __init__(self, args: _List[str]): super().__init__() for arg in args: self[arg] = _Subprocess(arg) class Plugin(_ABC): # pylint: disable=too-few-public-methods """Base class of all plugins. Raises ``TypeError`` if registered directly. Contains the name attribute assigned upon registration. Subprocesses are stored in the ``subprocess`` dict object :param name: Name assigned to plugin via ``@register`` decorator. """ def __init__(self, name: str) -> None: self.name = name self.subprocess = _SubprocessFactory(self.exe) @staticmethod def audit_error() -> _exceptions.AuditError: """Raise if checks have failed. :return: AuditError instantiated with error message. """ return _exceptions.AuditError(" ".join(_sys.argv)) @property def env(self) -> _Dict[str, str]: """Return environment which will remain active for run. :return: Dict containing any number of str keys and corresponding str values. """ return {} @property def exe(self) -> _List[str]: """List of executables to add to ``subprocess`` dict. :return: List of str object to assign to subprocesses """ return [] def __call__(self, *args: _Any, **kwargs: bool) -> _Any: """Enables calling of all plugin instances.""" class Audit(Plugin): """Blueprint for writing audit-only plugins. Audit will be called from here. Run within context of defined environment variables. If no environment variables are defined nothing will change. :raises CalledProcessError: Will always be raised if something fails that is not to do with the audit condition. Will be excepted and reraised as ``AuditError`` if the audit fails. :raises AuditError: Raised from ``CalledProcessError`` if audit fails. :return: If any error has not been raised for any reason int object must be returned, from subprocess or written, to notify call whether process has succeeded or failed. No value will actually return from __call__ as it will be passed to the decorator. """ @_abstractmethod def audit(self, *args: _Any, **kwargs: bool) -> int: """All audit logic to be written within this method. :param args: Args that can be passed from other plugins. :param kwargs: Boolean flags for subprocesses. :return: If any error has not been raised for any reason int object must be returned, from subprocess or written, to notify call whether process has succeeded or failed. """ @_check_command def __call__(self, *args: _Any, **kwargs: bool) -> int: with _TempEnvVar(_os.environ, **self.env): try: return self.audit(*args, **kwargs) except _CalledProcessError as err: raise self.audit_error() from err class Fix(Audit): """Blueprint for writing audit and fix plugins. Audit will be called from here. Called within context of defined environment variables. If no environment variables are defined nothing will change. If audit fails and the ``-f/--fix`` flag is passed to the commandline the ``fix`` method will be called within the ``CalledProcessError`` try-except block. If ``-f/--fix`` and the audit fails the user is running the audit only and will raise an ``AuditError``. :raises CalledProcessError: Will always be raised if something fails that is not to do with the audit condition. Will be excepted and reraised as ``AuditError`` if the audit fails and ``-f/--fix`` is not passed to the commandline. :raises AuditError: Raised from ``CalledProcessError`` if audit fails and ``-f/--fix`` flag if not passed to the commandline. :return: If any error has not been raised for any reason int object must be returned, from subprocess or written, to notify call whether process has succeeded or failed. No value will actually return from __call__ as it will be passed to the decorator. """ @_abstractmethod def audit(self, *args: _Any, **kwargs: bool) -> int: """All audit logic to be written within this method. :param args: Args that can be passed from other plugins. :param kwargs: Boolean flags for subprocesses. :return: If any error has not been raised for any reason int object must be returned, from subprocess or written, to notify __call__ whether process has succeeded or failed. If non-zero exist if returned and ``-f/--fix`` has been passed to the commandline run the ``fix`` method, otherwise raise ``AuditError``. """ @_abstractmethod def fix(self, *args: _Any, **kwargs: bool) -> int: """Run if audit fails but only if running a fix. :param args: Args that can be passed from other plugins. :param kwargs: Boolean flags for subprocesses. :return: If any error has not been raised for any reason int object must be returned, from subprocess or written, to notify __call__ whether process has succeeded or failed. """ @_check_command def __call__(self, *args: _Any, **kwargs: bool) -> _Any: with _TempEnvVar(_os.environ, **self.env): try: return self.audit(*args, **kwargs) except _CalledProcessError as err: if kwargs.get("fix", False): return self.fix(**kwargs) raise self.audit_error() from err class Action(Plugin): # pylint: disable=too-few-public-methods """Blueprint for writing generic plugins. Called within context of defined environment variables. If no environment variables are defined nothing will change. :raises CalledProcessError: Will always be raised if something fails that is not to do with the action condition. Will be excepted and reraised as ``AuditError`` if the action fails. :raises AuditError: Raised from ``CalledProcessError`` if action fails. :return: Any value and type can be returned. """ @_abstractmethod def action(self, *args: _Any, **kwargs: bool) -> _Any: """All logic to be written within this method. :param args: Args that can be passed from other plugins. :param kwargs: Boolean flags for subprocesses. :return: Any value and type can be returned. """ def __call__(self, *args: _Any, **kwargs: bool) -> _Any: with _TempEnvVar(_os.environ, **self.env): try: return self.action(*args, **kwargs) except _CalledProcessError as err: raise self.audit_error() from err class Parametrize(Plugin): # pylint: disable=too-few-public-methods """Define a list of strings to call multiple plugins. :raises CalledProcessError: Will always be raised if something fails that is not to do with the called plugin's condition. Will be excepted and reraised as ``AuditError`` if the called plugin fails and the called plugin does not specify a ``fix`` method or the ``-f/--fix`` flag is not passed to the commandline. :raises AuditError: Raised from ``CalledProcessError`` if called plugin fails and no ``fix`` method is specified or the ``-f/--fix`` flag is not passed to the commandline. """ @_abstractmethod def plugins(self) -> _List[str]: """List of plugin names to run. :return: List of plugin names, as defined in ``@register``. """ def __call__(self, *args: _Any, **kwargs: bool) -> None: for name in self.plugins(): _colors.cyan.bold.print(f"\n{_NAME} {name}") _plugins[name](*args, **kwargs) class Write(Plugin): """Blueprint for writing file manipulation processes. Announce: - If the file did not exist and a file has been created - If the file did exist and the file has not been changed - If the file did exist and the file has been changed """ def required(self) -> _Optional[_Path]: """Pre-requisite for working on file (if there is one). :return: Path object, otherwise None. """ @property @_abstractmethod def path(self) -> _Path: """Path to file, absolute or relative, that will be worked on. :return: Returned value needs to be a Path object. """ def write(self, *args: _Any, **kwargs: bool) -> _Any: """All write logic to be written within this method. :param args: Args that can be passed from other plugins. :param kwargs: Boolean flags for subprocesses. """ def __call__(self, *args: _Any, **kwargs: bool) -> None: if ( self.required() is None # type: ignore or self.required().exists() # type: ignore ): path = _Path(self.path) print(f"Updating ``{path}``") with _HashCap(path) as cap: self.write(*args, **kwargs) if cap.new: print(f"created ``{path.name}``") elif cap.compare: print(f"``{path.name}`` is already up to date") else: print(f"updated ``{path.name}``") class FixFile(Plugin): """Blueprint for writing audit and fix plugins for individual files. All logic can act on each file that would be passed from __call__. Called within context of defined environment variables. If no environment variables are defined nothing will change. Condition for failure needs to be defined, as the file argument passed from outer loop will not return an exit status. If audit fails and the ``-f/--fix`` flag is passed to the commandline the ``fix`` method will be called within the ``CalledProcessError`` try-except block. If ``-f/--fix`` and the audit fails the user is running the audit only and will raise an ``AuditError``. :raises CalledProcessError: Will always be raised if something fails that is not to do with the audit condition. Will be excepted and reraised as ``AuditError`` if the audit fails and ``-f/--fix`` is not passed to the commandline. :raises AuditError: Raised from ``CalledProcessError`` if audit fails and ``-f/--fix`` flag if not passed to the commandline. :return: Only 0 exit-status can be returned. If process fails error will be raised. """ @_abstractmethod def fail_condition(self) -> _Optional[bool]: """Condition to trigger non-subprocess failure.""" @_abstractmethod def audit(self, file: _Path, **kwargs: bool) -> None: """All logic written within this method for each file's audit. :param file: Individual file. :param kwargs: Boolean flags for subprocesses. """ @_abstractmethod def fix(self, file: _Path, **kwargs: bool) -> None: """All logic written within this method for each file's fix. :param file: Individual file. :param kwargs: Boolean flags for subprocesses. """ @_check_command def __call__(self, *args, **kwargs: bool) -> _Any: files = [p for p in _files if p.is_file()] for file in files: self.audit(file, **kwargs) fail = self.fail_condition() if fail is not None and fail: if kwargs.get("fix", False): self.fix(file, **kwargs) else: raise self.audit_error() # if no error raised return 0 to decorator return 0 # array of plugins PLUGINS = [Audit, Fix, Action, Parametrize, Write, FixFile] # array of plugin names PLUGIN_NAMES = [t.__name__ for t in PLUGINS] # array of plugin types before instantiation PluginType = _Union[ _Type[Audit], _Type[Fix], _Type[Action], _Type[Parametrize], _Type[Write], _Type[FixFile], ] # array of plugin types after instantiation PluginInstance = _Union[Audit, Fix, Action, Parametrize, Write, FixFile] class _Plugins(_MutableMapping): # pylint: disable=too-many-ancestors """Holds registered plugins. Instantiate plugin on running __setitem__. :raise NameConflictError: If name of registered plugin is not unique. :raise TypeError: If non plugin type registered. """ def __setitem__(self, name: str, plugin: PluginType) -> None: # only unique names to be set in `plugins` object # if name is not unique raise `NameConflictError` if name in self: raise _exceptions.NameConflictError(plugin.__name__, name) if ( not hasattr(plugin, "__bases__") or plugin.__bases__[0].__name__ not in PLUGIN_NAMES ): raise TypeError( "can only register one of the following: " + ", ".join(PLUGIN_NAMES) ) super().__setitem__(name, plugin(name)) _plugins = _Plugins() def register(name: str) -> _Callable[..., PluginType]: """Register subclassed plugin to collection. :param name: Name to register plugin as. :return: Return registered plugin to call. """ def _register(plugin: PluginType): _plugins[name] = plugin return plugin return _register def mapping() -> _Dict[str, PluginInstance]: """Get dict of named keys and their corresponding plugin values. :return: Mapping of plugins and their unique names. """ return dict(_plugins) def registered() -> _List[str]: """Get list of registered plugins. :return: List of registered plugins. """ return sorted(list(_plugins)) def get(name: str) -> PluginInstance: """Get plugins by name. :param name: Unique name of plugin. :return: Callable plugin instance. """ return _plugins[name] def load() -> None: """Import all registered plugins from provided plugin paths.""" for plugin_path in _plugin_paths: _sys.path.append(str(plugin_path.parent)) if plugin_path.is_dir(): for path in plugin_path.iterdir(): if ( not path.name.startswith("_") and not path.name.startswith(".") and path.name.endswith(".py") ): _importlib.import_module( f"{plugin_path.name}.{path.name.replace('.py', '')}" )
the-stack_106_32080
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import google.api_core.grpc_helpers from google.cloud.monitoring_v3.proto import metric_service_pb2_grpc class MetricServiceGrpcTransport(object): """gRPC transport class providing stubs for google.monitoring.v3 MetricService API. The transport provides access to the raw gRPC stubs, which can be used to take advantage of advanced features of gRPC. """ # The scopes needed to make gRPC calls to all of the methods defined # in this service. _OAUTH_SCOPES = ( 'https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/monitoring', 'https://www.googleapis.com/auth/monitoring.read', 'https://www.googleapis.com/auth/monitoring.write', ) def __init__(self, channel=None, credentials=None, address='monitoring.googleapis.com:443'): """Instantiate the transport class. Args: channel (grpc.Channel): A ``Channel`` instance through which to make calls. This argument is mutually exclusive with ``credentials``; providing both will raise an exception. credentials (google.auth.credentials.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. address (str): The address where the service is hosted. """ # If both `channel` and `credentials` are specified, raise an # exception (channels come with credentials baked in already). if channel is not None and credentials is not None: raise ValueError( 'The `channel` and `credentials` arguments are mutually ' 'exclusive.', ) # Create the channel. if channel is None: channel = self.create_channel( address=address, credentials=credentials, ) # gRPC uses objects called "stubs" that are bound to the # channel and provide a basic method for each RPC. self._stubs = { 'metric_service_stub': metric_service_pb2_grpc.MetricServiceStub(channel), } @classmethod def create_channel(cls, address='monitoring.googleapis.com:443', credentials=None): """Create and return a gRPC channel object. Args: address (str): The host for the channel to use. credentials (~.Credentials): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. Returns: grpc.Channel: A gRPC channel object. """ return google.api_core.grpc_helpers.create_channel( address, credentials=credentials, scopes=cls._OAUTH_SCOPES, options={ 'grpc.max_send_message_length': -1, 'grpc.max_receive_message_length': -1, }.items(), ) @property def list_monitored_resource_descriptors(self): """Return the gRPC stub for {$apiMethod.name}. Lists monitored resource descriptors that match a filter. This method does not require a Stackdriver account. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs[ 'metric_service_stub'].ListMonitoredResourceDescriptors @property def get_monitored_resource_descriptor(self): """Return the gRPC stub for {$apiMethod.name}. Gets a single monitored resource descriptor. This method does not require a Stackdriver account. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs[ 'metric_service_stub'].GetMonitoredResourceDescriptor @property def list_metric_descriptors(self): """Return the gRPC stub for {$apiMethod.name}. Lists metric descriptors that match a filter. This method does not require a Stackdriver account. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].ListMetricDescriptors @property def get_metric_descriptor(self): """Return the gRPC stub for {$apiMethod.name}. Gets a single metric descriptor. This method does not require a Stackdriver account. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].GetMetricDescriptor @property def create_metric_descriptor(self): """Return the gRPC stub for {$apiMethod.name}. Creates a new metric descriptor. User-created metric descriptors define `custom metrics <https://cloud.google.com/monitoring/custom-metrics>`__. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].CreateMetricDescriptor @property def delete_metric_descriptor(self): """Return the gRPC stub for {$apiMethod.name}. Deletes a metric descriptor. Only user-created `custom metrics <https://cloud.google.com/monitoring/custom-metrics>`__ can be deleted. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].DeleteMetricDescriptor @property def list_time_series(self): """Return the gRPC stub for {$apiMethod.name}. Lists time series that match a filter. This method does not require a Stackdriver account. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].ListTimeSeries @property def create_time_series(self): """Return the gRPC stub for {$apiMethod.name}. Creates or adds data to one or more time series. The response is empty if all time series in the request were written. If any time series could not be written, a corresponding failure message is included in the error response. Returns: Callable: A callable which accepts the appropriate deserialized request object and returns a deserialized response object. """ return self._stubs['metric_service_stub'].CreateTimeSeries
the-stack_106_32082
from .restful_model_collection import RestfulModelCollection from .errors import FileUploadError from six import StringIO import base64 import json class NylasAPIObject(dict): attrs = [] # The Nylas API holds most objects for an account directly under '/', # but some of them are under '/a' (mostly the account-management # and billing code). api_root is a tiny metaprogramming hack to let # us use the same code for both. api_root = 'n' def __init__(self, cls, api): self.id = None self.cls = cls self.api = api __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ __getattr__ = dict.get @classmethod def create(cls, api, **kwargs): object_type = kwargs.get('object') if (object_type and object_type != cls.__name__.lower() and object_type != 'account'): # We were given a specific object type and we're trying to # instantiate something different; abort. (Relevant for folders # and labels API.) # We need a special case for accounts because the /accounts API # is different between the open source and hosted API. return obj = cls(api) obj.cls = cls for attr in cls.attrs: # Support attributes we want to override with properties where # the property names overlap with the JSON names (e.g. folders) attr_name = attr if attr_name.startswith('_'): attr = attr_name[1:] if attr in kwargs: obj[attr_name] = kwargs[attr] if 'id' not in kwargs: obj['id'] = None return obj def as_json(self): dct = {} for attr in self.cls.attrs: if hasattr(self, attr): dct[attr] = getattr(self, attr) return dct def child_collection(self, cls, **filters): return RestfulModelCollection(cls, self.api, **filters) def save(self, **kwargs): if self.id: new_obj = self.api._update_resource(self.cls, self.id, self.as_json(), **kwargs) else: new_obj = self.api._create_resource(self.cls, self.as_json(), **kwargs) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) def update(self): new_obj = self.api._update_resource(self.cls, self.id, self.as_json()) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) class Message(NylasAPIObject): attrs = ["bcc", "body", "cc", "date", "events", "files", "from", "id", "account_id", "object", "snippet", "starred", "subject", "thread_id", "to", "unread", "starred", "_folder", "_labels"] collection_name = 'messages' def __init__(self, api): NylasAPIObject.__init__(self, Message, api) @property def attachments(self): return self.child_collection(File, message_id=self.id) @property def folder(self): # Instantiate a Folder object from the API response if self._folder: return Folder.create(self.api, **self._folder) @property def labels(self): if self._labels: return [Label.create(self.api, **l) for l in self._labels] else: return [] def update_folder(self, folder_id): update = {'folder': folder_id} new_obj = self.api._update_resource(self.cls, self.id, update) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) return self.folder def update_labels(self, label_ids=[]): update = {'labels': label_ids} new_obj = self.api._update_resource(self.cls, self.id, update) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) return self.labels def add_labels(self, label_ids=[]): labels = [l.id for l in self.labels] labels = list(set(labels).union(set(label_ids))) return self.update_labels(labels) def add_label(self, label_id): return self.add_labels([label_id]) def remove_labels(self, label_ids=[]): labels = [l.id for l in self.labels] labels = list(set(labels) - set(label_ids)) return self.update_labels(labels) def remove_label(self, label_id): return self.remove_labels([label_id]) def mark_as_seen(self): self.mark_as_read() def mark_as_read(self): update = {'unread': False} self.api._update_resource(self.cls, self.id, update) self.unread = False def mark_as_unread(self): update = {'unread': True} self.api._update_resource(self.cls, self.id, update) self.unread = True def star(self): update = {'starred': True} self.api._update_resource(self.cls, self.id, update) self.starred = True def unstar(self): update = {'starred': False} self.api._update_resource(self.cls, self.id, update) self.starred = False @property def raw(self): headers = {"Accept": "message/rfc822"} data = self.api._get_resource_data(Message, self.id, headers=headers) return data class Folder(NylasAPIObject): attrs = ["id", "display_name", "name", "object", "account_id"] collection_name = "folders" def __init__(self, api): NylasAPIObject.__init__(self, Folder, api) @property def threads(self): return self.child_collection({'in': self.id}) @property def messages(self): return self.child_collection({'in': self.id}) class Label(NylasAPIObject): attrs = ["id", "display_name", "name", "object", "account_id"] collection_name = "labels" def __init__(self, api): NylasAPIObject.__init__(self, Label, api) @property def threads(self): return self.child_collection({'in': self.id}) @property def messages(self): return self.child_collection({'in': self.id}) class Thread(NylasAPIObject): attrs = ["draft_ids", "id", "message_ids", "account_id", "object", "participants", "snippet", "subject", "subject_date", "last_message_timestamp", "first_message_timestamp", "unread", "starred", "version", "_folders", "_labels", "received_recent_date"] collection_name = 'threads' def __init__(self, api): NylasAPIObject.__init__(self, Thread, api) @property def messages(self): return self.child_collection(Message, thread_id=self.id) @property def drafts(self): return self.child_collection(Draft, thread_id=self.id) @property def folders(self): if self._folders: return [Folder.create(self.api, **f) for f in self._folders] else: return [] @property def labels(self): if self._labels: return [Label.create(self.api, **l) for l in self._labels] else: return [] def update_folder(self, folder_id): update = {'folder': folder_id} new_obj = self.api._update_resource(self.cls, self.id, update) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) return self.folder def update_labels(self, label_ids=[]): update = {'labels': label_ids} new_obj = self.api._update_resource(self.cls, self.id, update) for attr in self.cls.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) return self.labels def add_labels(self, label_ids=[]): labels = [l.id for l in self.labels] labels = list(set(labels).union(set(label_ids))) return self.update_labels(labels) def add_label(self, label_id): return self.add_labels([label_id]) def remove_labels(self, label_ids=[]): labels = [l.id for l in self.labels] labels = list(set(labels) - set(label_ids)) return self.update_labels(labels) def remove_label(self, label_id): return self.remove_labels([label_id]) def mark_as_seen(self): self.mark_as_read() def mark_as_read(self): update = {'unread': False} self.api._update_resource(self.cls, self.id, update) self.unread = False def mark_as_unread(self): update = {'unread': True} self.api._update_resource(self.cls, self.id, update) self.unread = True def star(self): update = {'starred': True} self.api._update_resource(self.cls, self.id, update) self.starred = True def unstar(self): update = {'starred': False} self.api._update_resource(self.cls, self.id, update) self.starred = False def create_reply(self): d = self.drafts.create() d.thread_id = self.id d.subject = self.subject return d # This is a dummy class that allows us to use the create_resource function # and pass in a 'Send' object that will translate into a 'send' endpoint. class Send(Message): collection_name = 'send' def __init__(self, api): NylasAPIObject.__init__(self, Send, api) class Draft(Message): attrs = ["bcc", "cc", "body", "date", "files", "from", "id", "account_id", "object", "subject", "thread_id", "to", "unread", "version", "file_ids", "reply_to_message_id", "reply_to", "starred", "snippet"] collection_name = 'drafts' def __init__(self, api, thread_id=None): Message.__init__(self, api) NylasAPIObject.__init__(self, Thread, api) self.file_ids = [] def attach(self, file): if not file.id: file.save() self.file_ids.append(file.id) def detach(self, file): if file.id in self.file_ids: self.file_ids.remove(file.id) def send(self): if not self.id: data = self.as_json() else: data = {'draft_id': self.id} if hasattr(self, 'version'): data['version'] = self.version msg = self.api._create_resource(Send, data) if msg: return msg def delete(self): if self.id and self.version: data = {'version': self.version} self.api._delete_resource(self.cls, self.id, data=data) class File(NylasAPIObject): attrs = ["content_type", "filename", "id", "content_id", "account_id", "object", "size", "message_ids", ] collection_name = 'files' def save(self): if hasattr(self, 'stream') and self.stream is not None: data = {self.filename: self.stream} elif hasattr(self, 'data') and self.data is not None: data = {self.filename: StringIO(self.data)} else: raise FileUploadError(message=("File object not properly " "formatted, must provide " "either a stream or data.")) new_obj = self.api._create_resources(File, data) new_obj = new_obj[0] for attr in self.attrs: if hasattr(new_obj, attr): setattr(self, attr, getattr(new_obj, attr)) def download(self): if not self.id: raise FileUploadError(message=("Can't download a file that " "hasn't been uploaded.")) return self.api._get_resource_data(File, self.id, extra='download') def __init__(self, api): NylasAPIObject.__init__(self, File, api) class Contact(NylasAPIObject): attrs = ["id", "account_id", "name", "email", "object"] collection_name = 'contacts' def __init__(self, api): NylasAPIObject.__init__(self, Contact, api) class Calendar(NylasAPIObject): attrs = ["id", "account_id", "name", "description", "read_only", "object"] collection_name = 'calendars' def __init__(self, api): NylasAPIObject.__init__(self, Calendar, api) @property def events(self): return self.child_collection(Event, calendar_id=self.id) class Event(NylasAPIObject): attrs = ["id", "account_id", "title", "description", "location", "read_only", "when", "busy", "participants", "calendar_id", "recurrence", "status", "master_event_id", "owner", "original_start_time", "object"] collection_name = 'events' def __init__(self, api): NylasAPIObject.__init__(self, Event, api) def as_json(self): dct = NylasAPIObject.as_json(self) # Filter some parameters we got from the API if dct.get('when'): # Currently, the event (self) and the dict (dct) share the same # reference to the `'when'` dict. We need to clone the dict so # that when we remove the object key, the original event's # `'when'` reference is unmodified. dct['when'] = dct['when'].copy() dct['when'].pop('object', None) return dct class Namespace(NylasAPIObject): attrs = ["account", "email_address", "id", "account_id", "object", "provider", "name", "organization_unit"] collection_name = 'n' def __init__(self, api): NylasAPIObject.__init__(self, Namespace, api) def child_collection(self, cls, **filters): return RestfulModelCollection(cls, self.api, self.id, **filters) class Account(NylasAPIObject): api_root = 'a' attrs = ["account_id", "trial", "trial_expires", "sync_state", "billing_state", "account_id"] collection_name = 'accounts' def __init__(self, api): NylasAPIObject.__init__(self, Account, api) def as_json(self): dct = NylasAPIObject.as_json(self) return dct def upgrade(self): self.api._call_resource_method(self, self.account_id, 'upgrade', None) def downgrade(self): self.api._call_resource_method(self, self.account_id, 'downgrade', None) class APIAccount(NylasAPIObject): attrs = ["email_address", "id", "account_id", "object", "provider", "name", "organization_unit"] collection_name = 'accounts' def __init__(self, api): NylasAPIObject.__init__(self, APIAccount, api) def as_json(self): dct = NylasAPIObject.as_json(self) return dct class SingletonAccount(APIAccount): # This is an APIAccount that lives under /account. collection_name = 'account'
the-stack_106_32083
import msgpack import mmap import re import sys file_path = sys.argv[1] out_file_path = sys.argv[2] num_rows = int(sys.argv[3]) discrete_query_col_index = int(sys.argv[4]) num_query_col_index = int(sys.argv[5]) compression_method = sys.argv[6] compression_level = sys.argv[7] if compression_method == "bz2": import bz2 as cmpr elif compression_method == "gz": import gzip as cmpr elif compression_method == "lzma": import lzma as cmpr elif compression_method == "snappy": import snappy as cmpr else: print("No matching compression method") sys.exit(1) def find_col_coords(col_indices): for col_index in col_indices: start_pos = col_index * max_column_coord_length next_start_pos = start_pos + max_column_coord_length yield [int(x) for x in cc_map_file[start_pos:next_start_pos].rstrip().split(b",")] def parse_row(row_index): row_start = row_start_dict[row_index] if row_index == num_rows -1: compressed_line = data_map_file[row_start:len(data_map_file)] else: row_end = row_start_dict[row_index + 1] compressed_line = data_map_file[row_start:row_end] return cmpr.decompress(compressed_line) def parse_row_values(row_index, col_coords): line = parse_row(row_index) for coords in col_coords: yield line[coords[0]:coords[0] + coords[1]].rstrip() def query_cols(row_indices): matching_row_indices = [] discrete_coords = list(find_col_coords([discrete_query_col_index]))[0] num_coords = list(find_col_coords([num_query_col_index]))[0] for row_index in row_indices: discrete_value = parse_row(row_index)[discrete_coords[0]:discrete_coords[0] + discrete_coords[1]].rstrip() num_value = float(parse_row(row_index)[num_coords[0]:num_coords[0] + num_coords[1]].rstrip()) if (discrete_value.startswith(b"A") or discrete_value.endswith(b"Z")) and num_value >= 0.1: matching_row_indices.append(row_index) return matching_row_indices with open(file_path + ".rowdict", 'rb') as rowdict_file: row_start_dict = msgpack.unpackb(rowdict_file.read(), raw=False) with open(file_path + ".ll", 'rb') as ll_file: line_length = int(ll_file.read().rstrip()) with open(file_path + ".mccl", 'rb') as mccl_file: max_column_coord_length = int(mccl_file.read().rstrip()) with open(file_path + ".cc", 'rb') as cc_file: cc_map_file = mmap.mmap(cc_file.fileno(), 0, prot=mmap.PROT_READ) with open(file_path, 'rb') as my_file: data_map_file = mmap.mmap(my_file.fileno(), 0, prot=mmap.PROT_READ) with open(out_file_path, 'wb') as out_file: num_cols = int(len(cc_map_file) / max_column_coord_length) out_col_indices = range(0, num_cols, 100) out_col_coords = list(find_col_coords(out_col_indices)) # Header line out_file.write(b"\t".join(parse_row_values(0, out_col_coords)).rstrip() + b"\n") matching_row_indices = query_cols(range(1, num_rows)) chunk_size = 1000 out_lines = [] for row_index in matching_row_indices: out_lines.append(b"\t".join(parse_row_values(row_index, out_col_coords)).rstrip()) if len(out_lines) % chunk_size == 0: out_file.write(b"\n".join(out_lines) + b"\n") out_lines = [] if len(out_lines) > 0: out_file.write(b"\n".join(out_lines) + b"\n") data_map_file.close() cc_map_file.close()
the-stack_106_32085
"""Script to download the 20 newsgroups text classification set""" import os import tarfile from contextlib import closing try: from urllib import urlopen except ImportError: from urllib.request import urlopen URL = ("http://people.csail.mit.edu/jrennie/" "20Newsgroups/20news-bydate.tar.gz") ARCHIVE_NAME = URL.rsplit('/', 1)[1] TRAIN_FOLDER = "20news-bydate-train" TEST_FOLDER = "20news-bydate-test" if not os.path.exists(TRAIN_FOLDER) or not os.path.exists(TEST_FOLDER): if not os.path.exists(ARCHIVE_NAME): print("Downloading dataset from %s (14 MB)" % URL) opener = urlopen(URL) with open(ARCHIVE_NAME, 'wb') as archive: archive.write(opener.read()) print("Decompressing %s" % ARCHIVE_NAME) with closing(tarfile.open(ARCHIVE_NAME, "r:gz")) as archive: archive.extractall(path='.') os.remove(ARCHIVE_NAME)
the-stack_106_32086
''' * * Copyright (C) 2020 Universitat Politècnica de Catalunya. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ''' # -*- coding: utf-8 -*- """ This module defines a generic way to communicate with the MySQL database. This module takes advantage of the regular database structure to ease the requests and data management. It basically has two different classes: db and Connector. - db: defines some standard methods to create the most basic query structures for accessing database tables. - Connector: uses db class to represent a database table inside the application. To search for an item in the database you have to create a Connector passing as a parameter a string with the table you want to load data from, then call the method 'load' passing as a parameter the id as an integer or the 'hash' as a string to look for, and the Connector creates the request and searches the item in the database. Once you have the item you can just get the related data calling the 'get' function with the table you want to take the data from. The 'get' function looks for the related data using the previously gotten element id and it returns a list of Connectors containing the data. You can then look for other related data using the returned Connectors. Inside each connector there is a parameter called 'values' that contains a list with all the selected table column information (the selected element properties). You can then modify those values and call the method 'save' to update the values in the database table. When you want to create a new row in a table you only need to create a new Connector to that table, call the 'load' method with the new hash you want to insert in the table, and if the element doesn't already exist the method will return a new Connector element with all the columns of the table initialized as None values. You only have to insert the values in the list, and when you call the 'save' method it will insert the row into the table as a new row. There is an extra function called 'get_all' that returns all the elements inside the table of the Connector. If for example you want to take all the domains, you call a new Connector passing 'domain' as the table name, and then call the 'get_all' function to get all the domains. The results are returned as a list of Connectors representing the given data. This way of management simplifies a lot the database requests needed inside the code but clearly overgenerates requests. For the sake of speed and performance there are some other specific requests included in the Connector to get some extensive data that will slow the loading a lot using only the simple methods. Last, there is a function called 'custom' where you can generate a custom request for specific reasons. """ # Basic modules import MySQLdb import re import config import logging import logging.config from utils import hash_string logging.config.fileConfig('../logging.conf') logger = logging.getLogger("DB_MANAGER") CROSS_TABLES = ["domain_subdomain", "domain_category", "domain_third_party", "domain_url", "pattern_url", "resource_fingerprint"] class Db(object): """ This class manages the basic database operations. It defines the most basic requests taking into account the database table definitions to make easier the data management. """ def __init__(self): self.host = config.MYSQL_HOST self.user = config.MYSQL_USER self.password = config.MYSQL_PASSWORD self.db = config.MYSQL_DB self.conn = MySQLdb.connect(host=self.host,port=3306,user=self.user, passwd=self.password, db=self.db, use_unicode=True, charset='utf8mb4') def close(self): """ Closes the connection to the database. """ self.conn.close() def initialize(self, sites, start, timestamp): """ initializes the database with the Alexa's list domain information. """ for i, domain in enumerate(sites, start + 1): # domain = extract_domain(domain) print(str(i) + ": " + domain) hash_key = hash_string(domain) element = {"hash": hash_key, "name": domain, "rank": i, "insert_date": timestamp} element_id = self.custom(query="SELECT id FROM domain WHERE domain.hash = %s", values=[hash_key]) if not element_id: self.insert("domain", element) else: element["id"] = element_id[0]["id"] self.update("domain", element) def __select(self, fields, tables, conditions, order, values, log=None): """ Creates a standard SELECT request. """ request = "SELECT " field_list = ", ".join(fields) request += field_list request += " FROM " + ", ".join(tables) if conditions: cond_list = " WHERE " for index, cond in enumerate(conditions): cond_list += "(" + cond if values[index] == "NULL": cond_list += " IS %s)" values[index] = None elif values[index] == "NOT NULL": cond_list += " IS NOT %s)" values[index] = None else: cond_list += " = %s)" if index < len(conditions) - 1: cond_list += " AND " request += cond_list if order: # request += " ORDER BY '"+"', '".join(order)+"'" request += " ORDER BY " + ", ".join(order) self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) results = [] try: if values: if log: logger.debug(request % tuple(values)) cursor.execute(request, tuple(values)) else: if log: logger.debug(request) cursor.execute(request) except MySQLdb.Error as error: if values: logger.error(request % tuple(values)) else: logger.error(request) logger.error("SQL ERROR: " + str(error) + "\n-----------------") else: for row in cursor.fetchall(): result = {} for key in row.keys(): result[key] = row[key] if row[key] == "NULL": result[key] = None results.append(result) if log: logger.debug("REQUEST OK. Results: " + str(results) + "\n-----------------") cursor.close() return results def __insert(self, table, fields, values, log=None): """ Creates a standard INSERT request. """ if fields and len(fields) != len(values): logger.warning("Incorrect number of field/values") return 0 request = "INSERT INTO " + table if fields: request += " (" + fields[0] if len(fields) > 1: for index in range(1, len(fields)): if "rank" in fields[index]: request += ", `" + fields[index] + "`" else: request += ", " + fields[index] request += ")" request += " VALUES (%s" if len(values) > 1: for index in range(1, len(values)): request += ", %s" request += ")" request += " ON DUPLICATE KEY UPDATE " if fields: request += fields[0]+"=%s" if len(fields) > 1: for index in range(1, len(fields)): if "rank" in fields[index]: request += ", `" + fields[index] + "`=%s" else: request += ", " + fields[index] + "=%s" new_values = values.copy() for value in new_values: values.append(value) self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) try: if log: logger.debug(request % tuple(values)) cursor.execute(request, tuple(values)) except MySQLdb.Error as error: logger.error(request % tuple(values)) logger.error("SQL ERROR: " + str(error) + "\n-----------------") return 0 else: self.conn.commit() if log: logger.debug("REQUEST OK. Id: " + str(cursor.lastrowid) + "\n-----------------") last_row_id = cursor.lastrowid cursor.close() return last_row_id def __update(self, table, fields, conditions, values, log=None): """ Creates a standard UPDATE request. """ if fields and len(fields) + len(conditions) != len(values): logger.warning("Incorrect number of fields/conditions/values") return 0 request = "UPDATE IGNORE " + table request += " SET " + fields[0] + " = %s" if len(fields) > 1: for index in range(1, len(fields)): request += ", " + fields[index] + " = %s" request += " WHERE " + conditions[0] + " = %s" if len(conditions) > 1: for index in range(1, len(conditions)): request += " AND " + conditions[index] + " = %s" self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) try: if log: logger.debug(request % tuple(values)) cursor.execute(request, tuple(values)) except MySQLdb.Error as error: logger.error(request % tuple(values)) logger.error("SQL ERROR: " + str(error) + "\n-----------------") cursor.close() return 0 else: self.conn.commit() if log: logger.debug("REQUEST OK.\n-----------------") cursor.close() return -1 def _delete(self, table, conditions, values, log=None): """ Creates a standard DELETE request. """ request = "DELETE FROM " + table request += " WHERE " + conditions[0] + " = %s" if len(conditions) > 1: for index in range(1, len(conditions)): request += " AND " + conditions[index] + " = %s" self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) try: if log: logger.debug(request % tuple(values)) cursor.execute(request, tuple(values)) except MySQLdb.Error as error: logger.error(request % tuple(values)) logger.error("SQL ERROR: " + str(error) + "\n-----------------") cursor.close() return 0 else: self.conn.commit() if log: logger.debug("REQUEST OK.\n-----------------") cursor.close() return 1 def custom(self, query, values=None, log=None): """ Creates a custom request. """ if values is None: values = [] request = query self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) results = [] try: if values: if log: logger.debug(request % tuple(values)) cursor.execute(request, tuple(values)) else: if log: logger.debug(request) cursor.execute(request) except MySQLdb.Error as error: logger.error("SQL ERROR: " + str(error) + "\n-----------------") else: if re.match("DELETE", request) is not None: self.conn.commit() elif re.match("INSERT", request) is not None: self.conn.commit() elif re.match("UPDATE", request) is not None: self.conn.commit() for row in cursor.fetchall(): result = {} for key in row.keys(): result[key] = row[key] results.append(result) if log: logger.debug("REQUEST OK. Results: " + str(results) + "\n-----------------") cursor.close() return results def call(self, name, values=None, log=None): """ Calls a stored procedure. """ if values is None: values = [] self.conn.ping() cursor = self.conn.cursor(MySQLdb.cursors.DictCursor) results = [] try: if values: if log: logger.debug("PROCEDURE CALL: " + name + "| PARAMETERS: " + str(tuple(values))) cursor.callproc(name, tuple(values)) else: if log: logger.debug("PROCEDURE CALL: " + name) cursor.callproc(name) except MySQLdb.Error as error: logger.error("SQL ERROR: " + str(error) + "\n-----------------") else: self.conn.commit() for row in cursor.fetchall(): result = {} for key in row.keys(): result[key] = row[key] results.append(result) if log: logger.debug("REQUEST OK. Results: " + str(results) + "\n-----------------") cursor.close() return results def select(self, fields, tables, conditions, order, values, log=None): """ Calls the internal __select function. """ result = self.__select(fields, tables, conditions, order, values, log) return result def insert(self, table, element, log=None): """ Insert the element if it can be updated first (doesn't exists). """ update = self.update(table, element, log) if update: return update fields = [] values = [] for key in element.keys(): fields.append(key) values.append(element[key]) result = self.__insert(table, fields, values, log) return result def update(self, table, element, log=None): """ Update the table for the given element id. """ if "id" not in element.keys(): return 0 fields = [] conditions = [] values = [] for key in element.keys(): if key != "id": fields.append(key) values.append(element[key]) conditions.append("id") values.append(element["id"]) result = self.__update(table, fields, conditions, values, log) if result == -1: return element["id"] return result def clicked(self, domain, clicked): if clicked: domain.values["clicked"] = 1 return domain.save() return 0 #domain_name = domain.values["name"] #query = f'UPDATE ORMclick.domain SET ORMclick.domain.clicked = {clicked} WHERE ORMclick.domain.name = "{domain_name}"' #result = self.custom(query) #return result def delete(self, table, element, log=None): """ Removes the element from the table. """ conditions = ["id"] values = element["id"] result = self._delete(table, conditions, [values], log) return result class Connector(object): """ This class defines the basic objects used for accessing the database (one object per table), and the getters and setters for them. This makes the data management a lot easier at the cost of an increased number of database requests. """ def __init__(self, db, table, order=None, log=False): self.table = table self.log = log self.db = db self.db.conn.ping() if order: self.order = [order] else: self.order = [] self.values = {} def __str__(self): return str(self.values) def __eq__(self, other): if not isinstance(other, Connector): # don't attempt to compare against unrelated types return NotImplemented if len(self.values) != len(other.values): return False for key in self.values: if key not in other.values: return False if self.values[key] != other.values[key]: return False return True def load(self, value, args=None): """ Loads the element depending on the given value. """ if args is None: args = {} conditions = ["id"] values = [value] if isinstance(value, str): conditions = ["hash"] self.values[conditions[0]] = value for key in args.keys(): conditions.append(key) values.append(args[key]) result = self.db.select("*", [self.table], conditions, self.order, values, self.log) if not result: pragma = self.db.custom("desc %s" % self.table) for i in pragma: if not i["Default"]: self.values[i["Field"]] = None else: self.values[i["Field"]] = i["Default"] self.values[conditions[0]] = value return 0 if len(result) > 1: logger.warning("Loading " + self.table + " '" + str(value) + "': Too many query results") return 0 self.values = result[0] return self.values["id"] def save(self): """ Saves the element values in the corresponding table. """ # nulls = [] if "id" in self.values.keys() and not self.values["id"]: del self.values["id"] response = self.db.insert(self.table, self.values, self.log) if not response: return 0 self.load(response) return 1 def delete(self): """ Deletes the element inside the Connector. """ response = self.db.delete(self.table, self.values, self.log) if not response: return 0 # self.values = {} return response def get(self, etype, order="id", args=None): """ Get the relatives of the given type. If args is not empty it will get only the elements that comply with the conditions specified as the dict keys and the values inside each condition. """ if args is None: args = {} if etype + "_id" in self.values.keys(): if not self.values[etype + "_id"]: return None element = type(self) element = element(self.db, etype) element.load(self.values[etype + "_id"]) return element requests = [] tables = [] conditions = [self.table + "_id"] orders = [order] values = [self.values["id"]] for key in args.keys(): conditions.append(key) values.append(args[key]) if self.table + "_" + etype in CROSS_TABLES: requests.append("DISTINCT " + etype + "_id") tables.append(self.table + "_" + etype) elif etype + "_" + self.table in CROSS_TABLES: requests.append("DISTINCT " + etype + "_id") tables.append(etype + "_" + self.table) else: requests.append("DISTINCT id") tables.append(etype) ids = self.db.select(requests, tables, conditions, orders, values, self.log) elements = [] for index in ids: element = type(self) element = element(self.db, etype) element.load(index[requests[0].replace("DISTINCT ", "")]) elements.append(element) return elements def add(self, element, args=None): """ Add a new relation with the given element. This function is only used to create relations where exists specific relation tables in the form element1_id, element2_id. """ if args is None: args = {} requests = ["DISTINCT id"] tables = [] conditions = [self.table + "_id", element.table + "_id"] orders = ["id"] values = [self.values["id"], element.values["id"]] if self.table + "_" + element.table in CROSS_TABLES: tables.append(self.table + "_" + element.table) elif element.table + "_" + self.table in CROSS_TABLES: tables.append(element.table + "_" + self.table) else: return 0 ids = self.db.select(requests, tables, conditions, orders, values, self.log) new_element = type(self) new_element = new_element(self.db, tables[0]) if not ids: new_element.values[self.table + "_id"] = self.values["id"] new_element.values[element.table + "_id"] = element.values["id"] else: new_element.load(ids[0]["id"]) for key in args.keys(): if key == "insert_date" and "insert_date" in new_element.values.keys() and \ new_element.values["insert_date"]: continue new_element.values[key] = args[key] if not new_element.save(): new_element.load(ids[0]["id"]) return new_element def add_double(self, element1, element2, args=None): """ Add a new relation with the given element. This function is only used to create relations where exists specific relation tables in the form element1_id, element2_id. """ if args is None: args = {} requests = ["DISTINCT id"] tables = [] conditions = [self.table + "_id", element1.table + "_id", element2.table + "_id"] if "resource_id" in args.keys(): conditions.append("resource_id") orders = ["id"] values = [self.values["id"], element1.values["id"], element2.values["id"]] if "resource_id" in args.keys(): values.append(args["resource_id"]) if self.table + "_" + element1.table in CROSS_TABLES: tables.append(self.table + "_" + element1.table) elif element1.table + "_" + self.table in CROSS_TABLES: tables.append(element1.table + "_" + self.table) elif self.table + "_" + element2.table in CROSS_TABLES: tables.append(self.table + "_" + element2.table) elif element2.table + "_" + self.table in CROSS_TABLES: tables.append(element2.table + "_" + self.table) else: return 0 ids = self.db.select(requests, tables, conditions, orders, values, self.log) new_element = type(self) new_element = new_element(self.db, tables[0]) if not ids: new_element.values[self.table + "_id"] = self.values["id"] new_element.values[element1.table + "_id"] = element1.values["id"] new_element.values[element2.table + "_id"] = element2.values["id"] else: new_element.load(ids[0]["id"]) for key in args.keys(): if key == "insert_date" and "insert_date" in new_element.values.keys() and \ new_element.values["insert_date"]: continue new_element.values[key] = args[key] if not new_element.save(): new_element.load(ids[0]["id"]) return new_element def remove(self, element): """ Removes the relation between two different items. """ requests = ["id"] tables = [] conditions = [self.table + "_id", element.table + "_id"] orders = ["id"] values = [self.values["id"], element.values["id"]] if self.table + "_" + element.table in CROSS_TABLES: tables.append(self.table + "_" + element.table) elif element.table + "_" + self.table in CROSS_TABLES: tables.append(element.table + "_" + self.table) else: return 0 ids = self.db.select(requests, tables, conditions, orders, values, self.log) if not ids: return 1 values = {"id": ids[0]["id"]} return Db().delete(tables[0], values) def clean(self, etype, args=None): """ Removes all the elements of the given type that relates to the Connector. """ if args is None: args = {} conditions = [self.table + "_id"] values = [self.values["id"]] for key in args.keys(): conditions.append(key) values.append(args[key]) if self.table + "_" + etype in CROSS_TABLES: tables = self.table + "_" + etype elif etype + "_" + self.table in CROSS_TABLES: tables = etype + "_" + self.table else: tables = etype result = self.db._delete(tables, conditions, values, self.log) return result def get_all(self, args=None): """ Gets ALL the table items in a collection of Connectors. If args is not empty it will only get the elements that comply with the passed conditions as the 'get' function. """ if args is None: args = {} requests = ["*"] tables = [self.table] conditions = [] orders = self.order values = [] for key in args.keys(): conditions.append(key) values.append(args[key]) ids = self.db.select(requests, tables, conditions, orders, values, self.log) elements = [] for index in ids: element = type(self) element = element(self.db, self.table) element.order = self.order element.values = index elements.append(element) return elements def get_property(self, prop="hash", args=None): """ Gets ALL keys in a collection of Connectors. If args is not empty it will only get the elements that comply with the passed conditions as the 'get' function. """ if args is None: args = {} requests = ["DISTINCT " + prop] tables = [self.table] conditions = [] orders = self.order values = [] for key in args.keys(): conditions.append(key) values.append(args[key]) keys = [] results = self.db.select(requests, tables, conditions, orders, values, self.log) for result in results: keys.append(result[prop]) return keys def count(self, args=None): """ Counts the elements of the Connector table. If args is not empty it will only count the elements that comply with the passed conditions as the 'get' function. """ if args is None: args = {} conditions = [] values = [] for key in args.keys(): conditions.append(key) values.append(args[key]) request = "SELECT COUNT (id) FROM " + self.table if conditions: request = request + " WHERE " for index, cond in enumerate(conditions): if values[index] == "NULL": request += cond + " IS %s" values[index] = None elif values[index] == "NOT NULL": request += cond + " IS NOT %s" values[index] = None else: request += cond + " = %s" if index < len(conditions) - 1: request += " AND " result = self.db.custom(request, values, self.log) return result[0]["COUNT (id)"]
the-stack_106_32087
from inspect import getsource import urllib.request import json # from pkg_resources import SOURCE_DIST from .models import Articles, Sources api_key = None sources_url = None articles_url = None def configure_request(app): global api_key, sources_url, articles_url api_key = app.config['NEWS_API_KEY'] def get_sources(category): getSourcesUrl = sources_url.format(category, api_key) with urllib.request.urlopen(getSourcesUrl) as url: sources_data = url.read() sources_response = json.loads(sources_data) sources_results = None if sources_response['sources']: sources_list = sources_response['sources'] sources_results = process_sources(sources_list) return sources_results def process_sources(sources_list): ''' Function that processesses the source results and turns them to a list of objects ''' sources_results = [] for source in sources_list: id = source.get('id') name = source.get("name") description = source.get('description') url = source.get('url') category = source.get('category') language = source.get('language') if language == 'en': source_object = Sources(id, name, description, url, category, language) sources_results.append(source_object) return sources_results def get_articles(id): ''' function to get json response ''' get_articles_url = articles_url.format(id, api_key) with urllib.request.urlopen(get_articles_url) as url: articles_data = url.read() articles_response = json.loads(articles_data) articles_results = None if articles_response['articles']: articles_list = articles_response['articles'] articles_results = process_articles(articles_list) return articles_results def process_articles(articles_list): articles_results = [] for article in articles_list: id = article['source']['id'] name = article.get('name') author = article.get('author') content = article.get('content') title = article.get('title') description = article.get('description') url = article.get('url') urlToImage = article.get('urlToImage') publishedAt = article.get('publishedAt') if urlToImage: articles_object = Articles( id, name, author, title, description, url, urlToImage, publishedAt, content) articles_results.append(articles_object) return articles_results
the-stack_106_32090
# Tests for parsing of label queries import unittest import os import sys # Insert .. at the beginning of path so we use this version instead # of something that's already been installed sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) import musicbrainzngs from musicbrainzngs import mbxml class GetLabelTest(unittest.TestCase): def setUp(self): self.datadir = os.path.join(os.path.dirname(__file__), "data", "label") def testLabelAliases(self): fn = os.path.join(self.datadir, "022fe361-596c-43a0-8e22-bad712bb9548-aliases.xml") res = mbxml.parse_message(open(fn)) aliases = res["label"]["alias-list"] self.assertEqual(len(aliases), 4) a0 = aliases[0] self.assertEqual(a0["alias"], "EMI") self.assertEqual(a0["sort-name"], "EMI") a1 = aliases[1] self.assertEqual(a1["alias"], "EMI Records (UK)") self.assertEqual(a1["sort-name"], "EMI Records (UK)") fn = os.path.join(self.datadir, "e72fabf2-74a3-4444-a9a5-316296cbfc8d-aliases.xml") res = mbxml.parse_message(open(fn)) aliases = res["label"]["alias-list"] self.assertEqual(len(aliases), 1) a0 = aliases[0] self.assertEqual(a0["alias"], "Ki/oon Records Inc.") self.assertEqual(a0["sort-name"], "Ki/oon Records Inc.") self.assertEqual(a0["begin-date"], "2001-10") self.assertEqual(a0["end-date"], "2012-04")
the-stack_106_32091
import unittest from contextlib import contextmanager from unittest import mock import dbt.flags as flags from dbt.adapters.snowflake import SnowflakeAdapter from dbt.adapters.base.query_headers import MacroQueryStringSetter from dbt.logger import GLOBAL_LOGGER as logger # noqa from dbt.parser.results import ParseResult from snowflake import connector as snowflake_connector from .utils import config_from_parts_or_dicts, inject_adapter, mock_connection class TestSnowflakeAdapter(unittest.TestCase): def setUp(self): flags.STRICT_MODE = False profile_cfg = { 'outputs': { 'test': { 'type': 'snowflake', 'account': 'test_account', 'user': 'test_user', 'database': 'test_database', 'warehouse': 'test_warehouse', 'schema': 'public', }, }, 'target': 'test', } project_cfg = { 'name': 'X', 'version': '0.1', 'profile': 'test', 'project-root': '/tmp/dbt/does-not-exist', 'quoting': { 'identifier': False, 'schema': True, }, 'query-comment': 'dbt', } self.config = config_from_parts_or_dicts(project_cfg, profile_cfg) self.assertEqual(self.config.query_comment.comment, 'dbt') self.assertEqual(self.config.query_comment.append, False) self.handle = mock.MagicMock( spec=snowflake_connector.SnowflakeConnection) self.cursor = self.handle.cursor.return_value self.mock_execute = self.cursor.execute self.patcher = mock.patch( 'dbt.adapters.snowflake.connections.snowflake.connector.connect' ) self.snowflake = self.patcher.start() self.load_patch = mock.patch('dbt.parser.manifest.make_parse_result') self.mock_parse_result = self.load_patch.start() self.mock_parse_result.return_value = ParseResult.rpc() self.snowflake.return_value = self.handle self.adapter = SnowflakeAdapter(self.config) self.adapter.connections.query_header = MacroQueryStringSetter(self.config, mock.MagicMock(macros={})) self.qh_patch = mock.patch.object(self.adapter.connections.query_header, 'add') self.mock_query_header_add = self.qh_patch.start() self.mock_query_header_add.side_effect = lambda q: '/* dbt */\n{}'.format(q) self.adapter.acquire_connection() inject_adapter(self.adapter) def tearDown(self): # we want a unique self.handle every time. self.adapter.cleanup_connections() self.qh_patch.stop() self.patcher.stop() self.load_patch.stop() def test_quoting_on_drop_schema(self): self.adapter.drop_schema( database='test_database', schema='test_schema' ) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\ndrop schema if exists test_database."test_schema" cascade', None) ]) def test_quoting_on_drop(self): relation = self.adapter.Relation.create( database='test_database', schema='test_schema', identifier='test_table', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.drop_relation(relation) self.mock_execute.assert_has_calls([ mock.call( '/* dbt */\ndrop table if exists test_database."test_schema".test_table cascade', None ) ]) def test_quoting_on_truncate(self): relation = self.adapter.Relation.create( database='test_database', schema='test_schema', identifier='test_table', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.truncate_relation(relation) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\ntruncate table test_database."test_schema".test_table', None) ]) def test_quoting_on_rename(self): from_relation = self.adapter.Relation.create( database='test_database', schema='test_schema', identifier='table_a', type='table', quote_policy=self.adapter.config.quoting, ) to_relation = self.adapter.Relation.create( database='test_database', schema='test_schema', identifier='table_b', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.rename_relation( from_relation=from_relation, to_relation=to_relation ) self.mock_execute.assert_has_calls([ mock.call( '/* dbt */\nalter table test_database."test_schema".table_a rename to test_database."test_schema".table_b', None ) ]) @contextmanager def current_warehouse(self, response): # there is probably some elegant way built into mock.patch to do this fetchall_return = self.cursor.fetchall.return_value execute_side_effect = self.mock_execute.side_effect def execute_effect(sql, *args, **kwargs): if sql == '/* dbt */\nselect current_warehouse() as warehouse': self.cursor.description = [['name']] self.cursor.fetchall.return_value = [[response]] else: self.cursor.description = None self.cursor.fetchall.return_value = fetchall_return return self.mock_execute.return_value self.mock_execute.side_effect = execute_effect try: yield finally: self.cursor.fetchall.return_value = fetchall_return self.mock_execute.side_effect = execute_side_effect def _strip_transactions(self): result = [] for call_args in self.mock_execute.call_args_list: args, kwargs = tuple(call_args) is_transactional = ( len(kwargs) == 0 and len(args) == 2 and args[1] is None and args[0] in {'BEGIN', 'COMMIT'} ) if not is_transactional: result.append(call_args) return result def test_pre_post_hooks_warehouse(self): with self.current_warehouse('warehouse'): config = {'snowflake_warehouse': 'other_warehouse'} result = self.adapter.pre_model_hook(config) self.assertIsNotNone(result) calls = [ mock.call('/* dbt */\nselect current_warehouse() as warehouse', None), mock.call('/* dbt */\nuse warehouse other_warehouse', None) ] self.mock_execute.assert_has_calls(calls) self.adapter.post_model_hook(config, result) calls.append(mock.call('/* dbt */\nuse warehouse warehouse', None)) self.mock_execute.assert_has_calls(calls) def test_pre_post_hooks_no_warehouse(self): with self.current_warehouse('warehouse'): config = {} result = self.adapter.pre_model_hook(config) self.assertIsNone(result) self.mock_execute.assert_not_called() self.adapter.post_model_hook(config, result) self.mock_execute.assert_not_called() def test_cancel_open_connections_empty(self): self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_cancel_open_connections_master(self): key = self.adapter.connections.get_thread_identifier() self.adapter.connections.thread_connections[key] = mock_connection('master') self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_cancel_open_connections_single(self): master = mock_connection('master') model = mock_connection('model') model.handle.session_id = 42 key = self.adapter.connections.get_thread_identifier() self.adapter.connections.thread_connections.update({ key: master, 1: model, }) with mock.patch.object(self.adapter.connections, 'add_query') as add_query: query_result = mock.MagicMock() add_query.return_value = (None, query_result) self.assertEqual( len(list(self.adapter.cancel_open_connections())), 1) add_query.assert_called_once_with('select system$abort_session(42)') def test_client_session_keep_alive_false_by_default(self): conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', private_key=None, application='dbt') ]) def test_client_session_keep_alive_true(self): self.config.credentials = self.config.credentials.replace( client_session_keep_alive=True) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=True, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', private_key=None, application='dbt') ]) def test_user_pass_authentication(self): self.config.credentials = self.config.credentials.replace( password='test_password', ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', password='test_password', role=None, schema='public', user='test_user', warehouse='test_warehouse', private_key=None, application='dbt') ]) def test_authenticator_user_pass_authentication(self): self.config.credentials = self.config.credentials.replace( password='test_password', authenticator='test_sso_url', ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', password='test_password', role=None, schema='public', user='test_user', warehouse='test_warehouse', authenticator='test_sso_url', private_key=None, application='dbt') ]) def test_authenticator_externalbrowser_authentication(self): self.config.credentials = self.config.credentials.replace( authenticator='externalbrowser' ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', authenticator='externalbrowser', private_key=None, application='dbt') ]) def test_authenticator_oauth_authentication(self): self.config.credentials = self.config.credentials.replace( authenticator='oauth', token='my-oauth-token', ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', authenticator='oauth', token='my-oauth-token', private_key=None, application='dbt') ]) @mock.patch('dbt.adapters.snowflake.SnowflakeCredentials._get_private_key', return_value='test_key') def test_authenticator_private_key_authentication(self, mock_get_private_key): self.config.credentials = self.config.credentials.replace( private_key_path='/tmp/test_key.p8', private_key_passphrase='p@ssphr@se', ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', private_key='test_key', application='dbt') ]) @mock.patch('dbt.adapters.snowflake.SnowflakeCredentials._get_private_key', return_value='test_key') def test_authenticator_private_key_authentication_no_passphrase(self, mock_get_private_key): self.config.credentials = self.config.credentials.replace( private_key_path='/tmp/test_key.p8', private_key_passphrase=None, ) self.adapter = SnowflakeAdapter(self.config) conn = self.adapter.connections.set_connection_name(name='new_connection_with_new_config') self.snowflake.assert_not_called() conn.handle self.snowflake.assert_has_calls([ mock.call( account='test_account', autocommit=False, client_session_keep_alive=False, database='test_database', role=None, schema='public', user='test_user', warehouse='test_warehouse', private_key='test_key', application='dbt') ])
the-stack_106_32095
""" Multiple plots vignette ======================== Demo multiple plots and style the figure. """ import matplotlib.pyplot as plt ax = plt.subplot(2, 1, 1) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.text(-0.05, 1.02, " Multiplot: plt.subplot(...)\n", horizontalalignment='left', verticalalignment='top', size='xx-large', bbox=dict(facecolor='white', alpha=1.0, width=400, height=65), transform=ax.transAxes) plt.text(-0.05, 1.01, "\n\n Plot several plots at once ", horizontalalignment='left', verticalalignment='top', size='large', transform=ax.transAxes) ax = plt.subplot(2, 2, 3) ax.set_xticklabels([]) ax.set_yticklabels([]) ax = plt.subplot(2, 2, 4) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.show()
the-stack_106_32096
from __future__ import print_function from __future__ import division from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array import os from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def augmentation(image_path, iters, file_list): image_datagen = ImageDataGenerator(rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, rescale=1. / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest', data_format='channels_last') for image_name in file_list: image = load_img(os.path.join(os.path.abspath(image_path), image_name)) try: # Image is converted to array type, because flow() receives numpy array as parameter image_arr = img_to_array(image, data_format="channels_last") image_arr = image_arr.reshape((1,) + image_arr.shape)#flow() requires data to be 4 dimensions i = 0 for _ in image_datagen.flow( image_arr, # this is the target directory batch_size=1, save_to_dir=image_path, save_prefix='aug', save_format='jpg'): i += 1 if i >= iters: break except: print('Skip image ', image_name) continue if __name__ == '__main__': dataset_path = './ChineseFood/images/' filelist = os.listdir(dataset_path) for filename in filelist: if filename.startswith('.'): filelist.remove(file_name) filelist.sort() image_size = 2000 # about 2000 images every classify i = 0 class_num = len(filelist) for filename in filelist: image_path = os.path.join(os.path.abspath(dataset_path), filename) file_list = os.listdir(image_path) for file_name in file_list: if file_name.startswith('.'): file_list.remove(file_name) image_num = len(file_list) iters = (image_size - image_num) // image_num # '//' has the same function as 'floor' print('Have done: {}/{}. Doing: {}.'.format(i, class_num, filename)) augmentation(image_path, iters, file_list) i += 1 print('All done!')
the-stack_106_32097
""" SOILICE to mrfso converter """ from __future__ import absolute_import, division, print_function, unicode_literals import cmor import cdms2 import logging import numpy as np from e3sm_to_cmip.lib import handle_variables # list of raw variable names needed RAW_VARIABLES = [str('SOILICE')] VAR_NAME = str('mrfso') VAR_UNITS = str('kg m-2') TABLE = str('CMIP6_Lmon.json') def write_data(varid, data, timeval, timebnds, index, **kwargs): """ mrfso = verticalSum(SOILICE, capped_at=5000) """ # we only care about data with a value greater then 0 mask = np.greater(data['SOILICE'][index, :], 0.0) # sum the data over the levgrnd axis outdata = np.sum( data['SOILICE'][index, :], axis=0) # replace all values greater then 5k with 5k capped = np.where( np.greater(outdata, 5000.0), 5000.0, outdata) outdata = np.where( mask, capped, outdata) if kwargs.get('simple'): return outdata cmor.write( varid, outdata, time_vals=timeval, time_bnds=timebnds) def handle(infiles, tables, user_input_path, **kwargs): return handle_variables( metadata_path=user_input_path, tables=tables, table=kwargs.get('table', TABLE), infiles=infiles, raw_variables=RAW_VARIABLES, write_data=write_data, outvar_name=VAR_NAME, outvar_units=VAR_UNITS, serial=kwargs.get('serial'), logdir=kwargs.get('logdir'), simple=kwargs.get('simple'), outpath=kwargs.get('outpath')) # ------------------------------------------------------------------
the-stack_106_32098
"""Config flow to configure Coolmaster.""" from pycoolmasternet_async import CoolMasterNet import voluptuous as vol from homeassistant import config_entries, core from homeassistant.const import CONF_HOST, CONF_PORT from .const import AVAILABLE_MODES, CONF_SUPPORTED_MODES, DEFAULT_PORT, DOMAIN MODES_SCHEMA = {vol.Required(mode, default=True): bool for mode in AVAILABLE_MODES} DATA_SCHEMA = vol.Schema({vol.Required(CONF_HOST): str, **MODES_SCHEMA}) async def _validate_connection(hass: core.HomeAssistant, host): cool = CoolMasterNet(host, DEFAULT_PORT) units = await cool.status() return bool(units) class CoolmasterConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a Coolmaster config flow.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_LOCAL_POLL @core.callback def _async_get_entry(self, data): supported_modes = [ key for (key, value) in data.items() if key in AVAILABLE_MODES and value ] return self.async_create_entry( title=data[CONF_HOST], data={ CONF_HOST: data[CONF_HOST], CONF_PORT: DEFAULT_PORT, CONF_SUPPORTED_MODES: supported_modes, }, ) async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" if user_input is None: return self.async_show_form(step_id="user", data_schema=DATA_SCHEMA) errors = {} host = user_input[CONF_HOST] try: result = await _validate_connection(self.hass, host) if not result: errors["base"] = "no_units" except (OSError, ConnectionRefusedError, TimeoutError): errors["base"] = "cannot_connect" if errors: return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors ) return self._async_get_entry(user_input)
the-stack_106_32101
"""tech URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ # url(r'^admin/', include(admin.site.urls)), url(r'^$', 'article.views.index'), url(r'^about$', 'article.views.about'), url(r'^bate$', 'article.views.bate'), url(r'^article/', include('article.urls')), url(r'^admin/', include('admin.urls')), url(r'^ueditor$', 'glue.plug.ueditor.ueditor_action'), url(r'^pic/(?P<pic_name>.+)$', 'glue.plug.ueditor.show_pic'), ]
the-stack_106_32103
from pytorch_lightning.loggers import LoggerCollection from pathlib import Path from typing import Any, List, Optional, Tuple, Union import numpy as np import pytorch_lightning as pl import torch as tr import torch.nn.functional as F from torch import Tensor, nn from torch.optim import Adam from torch.utils.data import DataLoader, TensorDataset from torch.utils.tensorboard.writer import SummaryWriter from detection_utils.boxes import generate_targets from detection_utils.demo.plot import draw_detections, plot_confusion_matrix, plot_img from ..pytorch import softmax_focal_loss from .boxes import DEFAULT_NMS_THRESHOLD, compute_batch_stats def loss( class_predictions: Tensor, regression_predictions: Tensor, class_targets: Tensor, regression_targets: Tensor, ) -> Tuple[Tensor, Tensor]: """ Computes the classification and regression smooth L1 (Huber) loss for regression (only on foreground anchor boxes) softmax focal loss for classification (excluding ignore anchor boxes) Parameters ---------- class_predictions : Tensor, shape-(N, K, num-class) regression_predictions : Tensor, shape-(N, K, 4) class_targets : Tensor, shape-(N, K) regression_targets : Tensor, shape-(N, K, 4) Returns ------- classification_loss, regression_loss: Tuple[Tensor, Tensor], shape-() shape-() The mean classification loss and regression loss, respectively. Notes ----- `N` is the batch size. `K` is the number of anchor boxes associated with each image. """ # shape-(N*K,) class_targets = class_targets.reshape(-1) # shape-(N*K, 4) regression_targets = regression_targets.reshape(-1, 4) # shape-(N*K, num-class) class_predictions = class_predictions.reshape(-1, class_predictions.shape[-1]) # shape-(N*K, 4) regression_predictions = regression_predictions.reshape(-1, 4) is_true_foreground = tr.squeeze(class_targets > 0) num_foreground = is_true_foreground.sum().item() if is_true_foreground.numel() > 0: regression_loss = F.smooth_l1_loss( regression_predictions[is_true_foreground], regression_targets[is_true_foreground], ) else: regression_loss = tr.tensor(0).float() is_not_ignore = tr.squeeze(class_targets > -1) # the sum of focal loss terms is normalized by the number # of anchors assigned to a ground-truth box classification_loss = ( softmax_focal_loss( class_predictions[is_not_ignore], class_targets[is_not_ignore], alpha=0.25, gamma=2, reduction="sum", ) / num_foreground ) return classification_loss, regression_loss class ShapeDetectionModel(pl.LightningModule): def __init__(self, data_experiment_path: Optional[Union[str, Path]] = None): super().__init__() self.confusion_matrices: List[np.ndarray] = [] # stores info for plotting boxes/labels for val-image 0 # at subsequent epoch states of model # [(boxes-epoch0, labels-epoch0, scores-epoch0), ...] self.boxes_labels_scores: List[Tuple[np.ndarray, np.ndarray, np.ndarray]] = [] self.data_path = ( Path(data_experiment_path) if data_experiment_path is not None else None ) self.conv1 = nn.Conv2d(3, 10, 3, padding=1) self.conv2 = nn.Conv2d(10, 20, 3, padding=1) self.conv3 = nn.Conv2d(20, 30, 3, padding=1) self.conv4 = nn.Conv2d(30, 40, 3, padding=1) self.bn1 = nn.BatchNorm2d(10) self.bn2 = nn.BatchNorm2d(20) self.bn3 = nn.BatchNorm2d(30) self.bn4 = nn.BatchNorm2d(40) # background / rectangle / triangle / circle self.classification = nn.Conv2d(40, 4, 1) self.regression = nn.Conv2d(40, 4, 1) for layer in ( self.conv1, self.conv2, self.conv3, self.conv4, self.classification, self.regression, ): nn.init.xavier_normal_(layer.weight, np.sqrt(2)) nn.init.constant_(layer.bias, 0) nn.init.constant_( self.classification.bias[0], -4.6 ) # roughly -log((1-π)/π) for π = 0.01 def forward(self, imgs: Tensor) -> Tuple[Tensor, Tensor]: """" Computes the classification scores and bounding box regression associated with each anchor box of each image. Parameters ---------- imgs : Tensor, shape-(N, 3, H, W) A batch of N images. Returns ------- classifications, regressions : Tuple[Tensor, Tensor] shape-(N, K, N_class), shape-(N, K, 4) For each of N images in the batch, returns the classification scores and bbox regressions associated with each of the K anchor boxes associated with that image. Notes ----- The anchor boxes are flattened in row-major order""" imgs = F.max_pool2d(F.relu(self.bn1(self.conv1(imgs))), 2) imgs = F.max_pool2d(F.relu(self.bn2(self.conv2(imgs))), 2) imgs = F.max_pool2d(F.relu(self.bn3(self.conv3(imgs))), 2) imgs = F.max_pool2d(F.relu(self.bn4(self.conv4(imgs))), 2) # (N, num-classes, R, C) -> (N, R, C, num-classes) classifications = self.classification(imgs).permute(0, 2, 3, 1) # (N, R, C, num-classes) -> (N, R*C, num-classes) classifications = classifications.reshape( imgs.shape[0], -1, classifications.shape[-1] ) # (N, 4, R, C) -> (N, R, C, 4) regressions = self.regression(imgs).permute(0, 2, 3, 1) # (N, R, C, 4) -> (N, R*C, 4) regressions = regressions.reshape(imgs.shape[0], -1, 4) return classifications, regressions def training_step(self, batch: Tuple[Tensor, ...], batch_idx: int) -> Tensor: imgs, class_targets, bbox_targets = batch class_predictions, regression_predictions = self(imgs) total_cls_loss, total_reg_loss = loss( class_predictions, regression_predictions, class_targets, bbox_targets, ) tot_loss = total_cls_loss + total_reg_loss self.log("train_loss", total_cls_loss + total_reg_loss) return tot_loss def validation_step(self, batch: Tuple[Tensor, ...], batch_idx: int) -> Tensor: imgs, class_targets, bbox_targets = batch class_predictions, regression_predictions = self(imgs) total_cls_loss, total_reg_loss = loss( class_predictions, regression_predictions, class_targets, bbox_targets, ) self.log("val_loss", total_cls_loss + total_reg_loss, prog_bar=True) start = len(imgs) * (batch_idx) stop = len(imgs) * (batch_idx + 1) confusion_matrix, precision, recall = compute_batch_stats( class_predictions=class_predictions, regression_predictions=regression_predictions, boxes=self.val_boxes[start:stop], labels=self.val_labels[start:stop], feature_map_width=imgs.shape[2] // 16, # backbone downsamples by factor 16 ) ap = precision.mean() ar = recall.mean() self.log("val_precision", ap) self.log("val_recall", ar) self.log("ap+ar", ap + ar) return confusion_matrix def validation_epoch_end(self, outputs: List[Any]) -> None: """Plots confusion matrix and example validation image with detections""" total_confusion_matrix = sum(outputs) normed_conf_matrix = total_confusion_matrix / tr.sum( total_confusion_matrix, dim=0, keepdim=True ) normed_conf_matrix = np.nan_to_num(normed_conf_matrix.numpy()) self.confusion_matrices.append(normed_conf_matrix) # note: exclude negatives from classification accuracy val_acc = np.einsum("ii", normed_conf_matrix[1:, 1:]) / ( len(normed_conf_matrix) - 1 ) self.log("val_acc", val_acc) boxes, labels, scores = zip( *self.get_detections(self.val_images[:1].to(self.device)) ) self.boxes_labels_scores.append((boxes[0], labels[0], scores[0])) tensorboard: Optional[SummaryWriter] = self._get_tensorboard_logger() if tensorboard is not None: fig, ax = plot_confusion_matrix( normed_conf_matrix, font_size=15, figsize=(8, 8) ) tensorboard.add_figure( "confusion-matrix", fig, global_step=self.current_epoch ) img_id = 0 fig, ax = plot_img(self.val_images[img_id], figsize=(8, 8)) draw_detections(ax, boxes=boxes[img_id], labels=labels[img_id]) tensorboard.add_figure("example-image", fig, global_step=self.current_epoch) def configure_optimizers(self): return Adam(self.parameters(), lr=5e-4) def setup(self, stage: str) -> None: from .boxes import make_anchor_boxes from .data import load_data assert self.data_path is not None images, self.train_boxes, self.train_labels = load_data( self.data_path / "train" ) H, W = images.shape[1:3] val_images, self.val_boxes, self.val_labels = load_data(self.data_path / "val") self.train_images = tr.tensor(images.transpose((0, 3, 1, 2))) self.val_images = tr.tensor(val_images.transpose((0, 3, 1, 2))) self.anchor_boxes = make_anchor_boxes(image_height=H, image_width=W) def train_dataloader(self) -> DataLoader: train_cls_targs, train_reg_targs = zip( *( generate_targets(self.anchor_boxes, bxs, lbls, 0.2, 0.1) for bxs, lbls in zip(self.train_boxes, self.train_labels) ) ) train_reg_targs = tr.tensor(train_reg_targs).float() train_cls_targs = tr.tensor(train_cls_targs).long() return DataLoader( TensorDataset(self.train_images, train_cls_targs, train_reg_targs), batch_size=16, pin_memory=True, num_workers=4, shuffle=True, drop_last=True, ) def val_dataloader(self) -> DataLoader: val_cls_targs, val_reg_targs = zip( *( generate_targets(self.anchor_boxes, bxs, lbls, 0.2, 0.1) for bxs, lbls in zip(self.val_boxes, self.val_labels) ) ) val_reg_targs = tr.tensor(val_reg_targs).float() val_cls_targs = tr.tensor(val_cls_targs).long() return DataLoader( TensorDataset(self.val_images, val_cls_targs, val_reg_targs), batch_size=16, pin_memory=True, num_workers=4, shuffle=False, drop_last=True, ) def get_detections( self, imgs: Tensor, score_threshold: float = None, nms_threshold: float = DEFAULT_NMS_THRESHOLD, ) -> List[Tuple[np.ndarray, np.ndarray, np.ndarray]]: """" Computes the best bounding boxes and classification scores. Parameters ---------- imgs : Tensor, shape-(N, 3, H, W) A batch of N images. score_threshold: Optional[float] If specified, detections with foreground scores below this threshold are ignored nms_threshold: float, optional The IoU threshold to use for NMS, above which one of two box will be suppressed. Returns ------- List[Tuple[np.ndarray, np.ndarray, np.ndarray]] The (boxes, labels, and confidence scores) for each of the N images - boxes: ndarray shape=(N_det, 4) - labels : ndarray shape=(N_det, 1) - scores : ndarray shape=(N_det,)] Notes ----- The anchor boxes are flattened in row-major order. Boxes are reported as (xlo, ylo, xhi, yhi). """ from detection_utils.demo.boxes import compute_detections was_training = self.training self.eval() try: with tr.no_grad(): class_predictions, regression_predictions = self.forward(imgs) finally: if was_training: self.train(mode=True) return [ compute_detections( classifications=cls, regressions=regr, feature_map_width=imgs.shape[-1] // 16, nms_threshold=nms_threshold, score_threshold=score_threshold, ) for cls, regr in zip(class_predictions, regression_predictions) ] def _get_tensorboard_logger(self) -> Optional[SummaryWriter]: if isinstance(self.logger.experiment, SummaryWriter): return self.logger.experiment elif isinstance(self.logger, LoggerCollection): for logger in self.logger.experiment: if isinstance(logger, SummaryWriter): return logger return None
the-stack_106_32104
# -*- coding: utf8 -*- # Copyright (c) 2017-2021 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # CAM签名/鉴权错误。 AUTHFAILURE = 'AuthFailure' # DryRun 操作,代表请求将会是成功的,只是多传了 DryRun 参数。 DRYRUNOPERATION = 'DryRunOperation' # 操作失败。 FAILEDOPERATION = 'FailedOperation' # KMS操作失败。 FAILEDOPERATION_ACCESSKMSERROR = 'FailedOperation.AccessKmsError' # 凭据被禁止轮转。 FAILEDOPERATION_ROTATIONFORBIDDEN = 'FailedOperation.RotationForbidden' # 内部错误。 INTERNALERROR = 'InternalError' # 参数错误。 INVALIDPARAMETER = 'InvalidParameter' # 参数取值错误。 INVALIDPARAMETERVALUE = 'InvalidParameterValue' # 标签键重复。 INVALIDPARAMETERVALUE_TAGKEYSDUPLICATED = 'InvalidParameterValue.TagKeysDuplicated' # 标签键或标签值不存在。 INVALIDPARAMETERVALUE_TAGSNOTEXISTED = 'InvalidParameterValue.TagsNotExisted' # 超过配额限制。 LIMITEXCEEDED = 'LimitExceeded' # 缺少参数错误。 MISSINGPARAMETER = 'MissingParameter' # 操作被拒绝。 OPERATIONDENIED = 'OperationDenied' # AccessKey已经达到上限。 OPERATIONDENIED_ACCESSKEYOVERLIMIT = 'OperationDenied.AccessKeyOverLimit' # 不允许手动更新具有自动轮换功能的凭据。 OPERATIONDENIED_AUTOROTATEDRESOURCE = 'OperationDenied.AutoRotatedResource' # 角色不存在。 OPERATIONDENIED_ROLENOTEXIST = 'OperationDenied.RoleNotExist' # 请求的次数超过了频率限制。 REQUESTLIMITEXCEEDED = 'RequestLimitExceeded' # 资源被占用。 RESOURCEINUSE = 'ResourceInUse' # 凭据名已存在。 RESOURCEINUSE_SECRETEXISTS = 'ResourceInUse.SecretExists' # 版本号已存在。 RESOURCEINUSE_VERSIONIDEXISTS = 'ResourceInUse.VersionIdExists' # 资源不足。 RESOURCEINSUFFICIENT = 'ResourceInsufficient' # 资源不存在。 RESOURCENOTFOUND = 'ResourceNotFound' # 凭据不存在。 RESOURCENOTFOUND_SECRETNOTEXIST = 'ResourceNotFound.SecretNotExist' # 资源不可用。 RESOURCEUNAVAILABLE = 'ResourceUnavailable' # 服务未购买。 RESOURCEUNAVAILABLE_NOTPURCHASED = 'ResourceUnavailable.NotPurchased' # 凭据被禁用。 RESOURCEUNAVAILABLE_RESOURCEDISABLED = 'ResourceUnavailable.ResourceDisabled' # 凭据处于计划删除状态。 RESOURCEUNAVAILABLE_RESOURCEPENDINGDELETED = 'ResourceUnavailable.ResourcePendingDeleted' # 凭据未完成初始化。 RESOURCEUNAVAILABLE_RESOURCEUNINITIALIZED = 'ResourceUnavailable.ResourceUninitialized' # 资源售罄。 RESOURCESSOLDOUT = 'ResourcesSoldOut' # 未授权操作。 UNAUTHORIZEDOPERATION = 'UnauthorizedOperation' # 访问KMS失败。 UNAUTHORIZEDOPERATION_ACCESSKMSERROR = 'UnauthorizedOperation.AccessKmsError' # 未知参数错误。 UNKNOWNPARAMETER = 'UnknownParameter' # 操作不支持。 UNSUPPORTEDOPERATION = 'UnsupportedOperation'
the-stack_106_32105
#!/usr/bin/env python # -*- coding: utf-8 -*- """Debugger to save results during training. """ from __future__ import annotations import threading from queue import Queue from typing import Optional from torch import Tensor from onevision.type import Callable from onevision.utils import console __all__ = [ "Debugger" ] # MARK: - Debugger class Debugger: """ Attributes: every_n_epochs (int): Number of epochs between debugging. To disable, set `every_n_epochs=0`. Default: `1`. run_in_parallel (bool): If `True` runs debugging process in a separated thread. Default: `True`. queue_size (int): Debug queue size. It should equal the value of `save_max_n`. Default: `20`. save_max_n (int): Maximum debugging items to be kept. Default: `20`. save_to_subdir (bool): Save all debug images of the same epoch to a sub-directory naming after the epoch number. Default: `True`. image_quality (int): Image quality to be saved. Default: `95`. verbose (bool): If `True` shows the results on the screen. Default: `False`. show_max_n (int): Maximum debugging items to be shown. Default: `8`. show_func (FunCls, optional): Function to visualize the debug results. Default: `None`. wait_time (float): Pause some times before showing the next image. Default: `0.001`. """ # MARK: Magic Functions def __init__( self, every_n_epochs : int = 1, run_in_parallel: bool = True, queue_size : Optional[int] = 20, save_max_n : int = 20, save_to_subdir : bool = True, image_quality : int = 95, verbose : bool = False, show_max_n : int = 8, show_func : Optional[Callable] = None, wait_time : float = 0.001, *args, **kwargs ): super().__init__() self.every_n_epochs = every_n_epochs self.run_in_parallel = run_in_parallel self.queue_size = queue_size self.save_max_n = save_max_n self.save_to_subdir = save_to_subdir self.image_quality = image_quality self.verbose = verbose self.show_max_n = show_max_n self.show_func = show_func self.wait_time = wait_time self.debug_queue = None self.thread_debugger = None # self.init_thread() # MARK: Configure def init_thread(self): if self.run_in_parallel: self.debug_queue = Queue(maxsize=self.queue_size) self.thread_debugger = threading.Thread( target=self.show_results_parallel ) # MARK: Run def run( self, x : Optional[Tensor] = None, y : Optional[Tensor] = None, yhat : Optional[Tensor] = None, filepath: Optional[str] = None, ): """Run the debugger process.""" if self.show_func: if self.thread_debugger: self.debug_queue.put([x, y, yhat, filepath]) else: self.show_results(x=x, y=y, yhat=yhat, filepath=filepath) def run_routine_start(self): """Perform operations when run routine starts.""" self.init_thread() if self.thread_debugger and not self.thread_debugger.is_alive(): self.thread_debugger.start() def run_routine_end(self): """Perform operations when run routine ends.""" if self.thread_debugger and self.thread_debugger.is_alive(): self.debug_queue.put([None, None, None, None]) def is_alive(self) -> bool: """Return whether the thread is alive.""" if self.thread_debugger: return self.thread_debugger.is_alive() return False # MARK: Visualize def show_results( self, x : Optional[Tensor] = None, y : Optional[Tensor] = None, yhat : Optional[Tensor] = None, filepath: Optional[str] = None, *args, **kwargs ): self.show_func( x = x, y = y, yhat = yhat, filepath = filepath, image_quality = self.image_quality, verbose = self.verbose, show_max_n = self.show_max_n, wait_time = self.wait_time, *args, **kwargs ) def show_results_parallel(self): """Draw `result` in a separated thread.""" while True: (input, target, pred, filepath) = self.debug_queue.get() if input is None: break self.show_results(x=input, y=target, yhat=pred, filepath=filepath) # Stop debugger thread self.thread_debugger.join() # MARK: Utils def print(self): console.log(vars(self))
the-stack_106_32107
import numpy as np # mne imports import mne from mne import io from mne.datasets import sample # EEGNet-specific imports from EEGModels import EEGNet from tensorflow.keras import utils as np_utils from tensorflow.keras.callbacks import ModelCheckpoint # PyRiemann imports from pyriemann.estimation import XdawnCovariances from pyriemann.tangentspace import TangentSpace from pyriemann.utils.viz import plot_confusion_matrix from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression # tools for plotting confusion matrices from matplotlib import pyplot as plt ##################### Process, filter and epoch the data ###################### data_path = sample.data_path() # Set parameters and read data raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0., 1 event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4) # Setup for reading the raw data raw = io.Raw(raw_fname, preload=True, verbose=False) raw.filter(2, None, method='iir') # replace baselining with high-pass events = mne.read_events(event_fname) raw.info['bads'] = ['MEG 2443'] # set bad channels picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) print(epochs) labels = epochs.events[:, -1] # extract raw data. scale by 1000 due to scaling sensitivity in deep learning X = epochs.get_data() * 1000 # format is in (trials, channels, samples) y = labels print(y) kernels, chans, samples = 1, 60, 151 # take 50/25/25 percent of the data to train/validate/test X_train = X[0:144, ] Y_train = y[0:144] X_validate = X[144:216, ] Y_validate = y[144:216] X_test = X[216:, ] Y_test = y[216:] ############################# EEGNet portion ################################## # convert labels to one-hot encodings. Y_train = np_utils.to_categorical(Y_train - 1) Y_validate = np_utils.to_categorical(Y_validate - 1) Y_test = np_utils.to_categorical(Y_test - 1) # convert data to NCHW (trials, kernels, channels, samples) format. Data # contains 60 channels and 151 time-points. Set the number of kernels to 1. X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels) X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels) X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels) print('X_train shape:', X_train.shape) print('X_validate shape:', X_validate.shape) print('X_test shape:', X_test.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # configure the EEGNet-8,2,16 model with kernel length of 32 samples (other # model configurations may do better, but this is a good starting point) model = EEGNet(nb_classes=4, Chans=chans, Samples=samples, dropoutRate=0.5, kernLength=32, F1=8, D=2, F2=16, dropoutType='Dropout') # compile the model and set the optimizers model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # count number of parameters in the model numParams = model.count_params() # set a valid path for your system to record model checkpoints checkpointer = ModelCheckpoint(filepath=r'/home/changhongli/arl-eegmodels-master/examples/EEGNet-8-2-weights.h5', verbose=1, save_best_only=True) ############################################################################### # if the classification task was imbalanced (significantly more trials in one # class versus the others) you can assign a weight to each class during # optimization to balance it out. This data is approximately balanced so we # don't need to do this, but is shown here for illustration/completeness. ############################################################################### # the syntax is {class_1:weight_1, class_2:weight_2,...}. Here just setting # the weights all to be 1 class_weights = {0: 1, 1: 1, 2: 1, 3: 1} ################################################################################ # fit the model. Due to very small sample sizes this can get # pretty noisy run-to-run, but most runs should be comparable to xDAWN + # Riemannian geometry classification (below) ################################################################################ fittedModel = model.fit(X_train, Y_train, batch_size=16, epochs=300, verbose=2, validation_data=(X_validate, Y_validate), callbacks=[checkpointer], class_weight=class_weights) # load optimal weights # model.load_weights('/tmp/checkpoint.h5') ############################################################################### # can alternatively used the weights provided in the repo. If so it should get # you 93% accuracy. Change the WEIGHTS_PATH variable to wherever it is on your # system. ############################################################################### WEIGHTS_PATH = r'/home/changhongli/arl-eegmodels-master/examples/EEGNet-8-2-weights.h5' model.load_weights(WEIGHTS_PATH) ############################################################################### # make prediction on test set. ############################################################################### probs = model.predict(X_test) preds = probs.argmax(axis=-1) acc = np.mean(preds == Y_test.argmax(axis=-1)) print("Classification accuracy: %f " % (acc)) ############################# PyRiemann Portion ############################## # code is taken from PyRiemann's ERP sample script, which is decoding in # the tangent space with a logistic regression n_components = 2 # pick some components # set up sklearn pipeline clf = make_pipeline(XdawnCovariances(n_components), TangentSpace(metric='riemann'), LogisticRegression()) preds_rg = np.zeros(len(Y_test)) # reshape back to (trials, channels, samples) X_train = X_train.reshape(X_train.shape[0], chans, samples) X_test = X_test.reshape(X_test.shape[0], chans, samples) # train a classifier with xDAWN spatial filtering + Riemannian Geometry (RG) # labels need to be back in single-column format clf.fit(X_train, Y_train.argmax(axis=-1)) preds_rg = clf.predict(X_test) # Printing the results acc2 = np.mean(preds_rg == Y_test.argmax(axis=-1)) print("Classification accuracy: %f " % (acc2)) # plot the confusion matrices for both classifiers names = ['audio left', 'audio right', 'vis left', 'vis right'] plt.figure(0) plot_confusion_matrix(preds, Y_test.argmax(axis=-1), names, title='EEGNet-8,2') plt.figure(1) plot_confusion_matrix(preds_rg, Y_test.argmax(axis=-1), names, title='xDAWN + RG')
the-stack_106_32109
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Wazzle Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the listtransactions API.""" from decimal import Decimal from io import BytesIO from test_framework.messages import COIN, CTransaction from test_framework.test_framework import WazzleTestFramework from test_framework.util import ( assert_array_result, assert_equal, hex_str_to_bytes, ) def tx_from_hex(hexstring): tx = CTransaction() f = BytesIO(hex_str_to_bytes(hexstring)) tx.deserialize(f) return tx class ListTransactionsTest(WazzleTestFramework): def set_test_params(self): self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.nodes[0].generate(1) # Get out of IBD self.sync_all() # Simple send, 0 to 1: txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid": txid}, {"category": "send", "amount": Decimal("-0.1"), "confirmations": 0}) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid}, {"category": "receive", "amount": Decimal("0.1"), "confirmations": 0}) # mine a block, confirmations should change: self.nodes[0].generate(1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid": txid}, {"category": "send", "amount": Decimal("-0.1"), "confirmations": 1}) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid}, {"category": "receive", "amount": Decimal("0.1"), "confirmations": 1}) # send-to-self: txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid, "category": "send"}, {"amount": Decimal("-0.2")}) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid, "category": "receive"}, {"amount": Decimal("0.2")}) # sendmany from node1: twice to self, twice to node2: send_to = {self.nodes[0].getnewaddress(): 0.11, self.nodes[1].getnewaddress(): 0.22, self.nodes[0].getnewaddress(): 0.33, self.nodes[1].getnewaddress(): 0.44} txid = self.nodes[1].sendmany("", send_to) self.sync_all() assert_array_result(self.nodes[1].listtransactions(), {"category": "send", "amount": Decimal("-0.11")}, {"txid": txid}) assert_array_result(self.nodes[0].listtransactions(), {"category": "receive", "amount": Decimal("0.11")}, {"txid": txid}) assert_array_result(self.nodes[1].listtransactions(), {"category": "send", "amount": Decimal("-0.22")}, {"txid": txid}) assert_array_result(self.nodes[1].listtransactions(), {"category": "receive", "amount": Decimal("0.22")}, {"txid": txid}) assert_array_result(self.nodes[1].listtransactions(), {"category": "send", "amount": Decimal("-0.33")}, {"txid": txid}) assert_array_result(self.nodes[0].listtransactions(), {"category": "receive", "amount": Decimal("0.33")}, {"txid": txid}) assert_array_result(self.nodes[1].listtransactions(), {"category": "send", "amount": Decimal("-0.44")}, {"txid": txid}) assert_array_result(self.nodes[1].listtransactions(), {"category": "receive", "amount": Decimal("0.44")}, {"txid": txid}) pubkey = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())['pubkey'] multisig = self.nodes[1].createmultisig(1, [pubkey]) self.nodes[0].importaddress(multisig["redeemScript"], "watchonly", False, True) txid = self.nodes[1].sendtoaddress(multisig["address"], 0.1) self.nodes[1].generate(1) self.sync_all() assert len(self.nodes[0].listtransactions(label="watchonly", count=100, include_watchonly=False)) == 0 assert_array_result(self.nodes[0].listtransactions(label="watchonly", count=100, include_watchonly=True), {"category": "receive", "amount": Decimal("0.1")}, {"txid": txid, "label": "watchonly"}) self.run_rbf_opt_in_test() # Check that the opt-in-rbf flag works properly, for sent and received # transactions. def run_rbf_opt_in_test(self): # Check whether a transaction signals opt-in RBF itself def is_opt_in(node, txid): rawtx = node.getrawtransaction(txid, 1) for x in rawtx["vin"]: if x["sequence"] < 0xfffffffe: return True return False # Find an unconfirmed output matching a certain txid def get_unconfirmed_utxo_entry(node, txid_to_match): utxo = node.listunspent(0, 0) for i in utxo: if i["txid"] == txid_to_match: return i return None # 1. Chain a few transactions that don't opt-in. txid_1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) assert not is_opt_in(self.nodes[0], txid_1) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_1}, {"bip125-replaceable": "no"}) self.sync_mempools() assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_1}, {"bip125-replaceable": "no"}) # Tx2 will build off txid_1, still not opting in to RBF. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_1) assert_equal(utxo_to_use["safe"], True) utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) assert_equal(utxo_to_use["safe"], False) # Create tx2 using createrawtransaction inputs = [{"txid": utxo_to_use["txid"], "vout": utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.999} tx2 = self.nodes[1].createrawtransaction(inputs, outputs) tx2_signed = self.nodes[1].signrawtransactionwithwallet(tx2)["hex"] txid_2 = self.nodes[1].sendrawtransaction(tx2_signed) # ...and check the result assert not is_opt_in(self.nodes[1], txid_2) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_2}, {"bip125-replaceable": "no"}) self.sync_mempools() assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_2}, {"bip125-replaceable": "no"}) # Tx3 will opt-in to RBF utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_2) inputs = [{"txid": txid_2, "vout": utxo_to_use["vout"]}] outputs = {self.nodes[1].getnewaddress(): 0.998} tx3 = self.nodes[0].createrawtransaction(inputs, outputs) tx3_modified = tx_from_hex(tx3) tx3_modified.vin[0].nSequence = 0 tx3 = tx3_modified.serialize().hex() tx3_signed = self.nodes[0].signrawtransactionwithwallet(tx3)['hex'] txid_3 = self.nodes[0].sendrawtransaction(tx3_signed) assert is_opt_in(self.nodes[0], txid_3) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_3}, {"bip125-replaceable": "yes"}) self.sync_mempools() assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_3}, {"bip125-replaceable": "yes"}) # Tx4 will chain off tx3. Doesn't signal itself, but depends on one # that does. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_3) inputs = [{"txid": txid_3, "vout": utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.997} tx4 = self.nodes[1].createrawtransaction(inputs, outputs) tx4_signed = self.nodes[1].signrawtransactionwithwallet(tx4)["hex"] txid_4 = self.nodes[1].sendrawtransaction(tx4_signed) assert not is_opt_in(self.nodes[1], txid_4) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable": "yes"}) self.sync_mempools() assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable": "yes"}) # Replace tx3, and check that tx4 becomes unknown tx3_b = tx3_modified tx3_b.vout[0].nValue -= int(Decimal("0.004") * COIN) # bump the fee tx3_b = tx3_b.serialize().hex() tx3_b_signed = self.nodes[0].signrawtransactionwithwallet(tx3_b)['hex'] txid_3b = self.nodes[0].sendrawtransaction(tx3_b_signed, 0) assert is_opt_in(self.nodes[0], txid_3b) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable": "unknown"}) self.sync_mempools() assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable": "unknown"}) # Check gettransaction as well: for n in self.nodes[0:2]: assert_equal(n.gettransaction(txid_1)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_2)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_3)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_3b)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_4)["bip125-replaceable"], "unknown") # After mining a transaction, it's no longer BIP125-replaceable self.nodes[0].generate(1) assert txid_3b not in self.nodes[0].getrawmempool() assert_equal(self.nodes[0].gettransaction(txid_3b)["bip125-replaceable"], "no") assert_equal(self.nodes[0].gettransaction(txid_4)["bip125-replaceable"], "unknown") if __name__ == '__main__': ListTransactionsTest().main()
the-stack_106_32110
from django.contrib import admin from .models import User from django.contrib.auth.models import Group class UserAdmin(admin.ModelAdmin): list_display = ( 'user_id', 'name', 'student_id', 'grade', 'circles', 'department', 'level', 'date_joined' ) search_fields = ('user_id', 'name', 'student_id', 'department') admin.site.register(User, UserAdmin) admin.site.unregister(Group)
the-stack_106_32113
#!/usr/bin/env python3 # ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import sys import subprocess import shlex import re import tempfile import os # Subprocess and log parsing related functions def subprocess_exec(cmd_string, log_file_path=None, extract=None): """ Execute the input string as subprocess cmd_string: String Input string to be executed as a sub process extract: String Based on extract as time/dir we extract this information from the logs accordingly log_file_path: String Path to write the log file return: String Based on extract we return the relevant string """ # Debug # print(cmd_string) exec_command = shlex.split(cmd_string) log_file = None is_temp_file = False if log_file_path is not None: log_file_path = log_file_path + '.log' log_file = open(log_file_path, "w+") else: os_log_file, log_file_path = tempfile.mkstemp() log_file = os.fdopen(os_log_file, 'w+') is_temp_file = True log_file.write(' '.join(exec_command)) log_file.write('\n') proc1 = subprocess.Popen(exec_command, stdout=log_file, stderr=subprocess.STDOUT) proc1.wait() return_code = proc1.returncode log_file.close() log_file = open(log_file_path, 'r+') if return_code == 0: if extract == 'time': return_data = parse_time(log_file) if extract == 'dir': return_data = parse_hdfs_paths(log_file) if extract == 'hdfs_base': return_data = parse_hdfs_base(log_file) if extract is None: return_data = 0 if return_code != 0: return_data = 'proc_fail' print('sub-process failed, return code {}'.format(return_code)) if is_temp_file: os.remove(log_file_path) return return_data def parse_hdfs_base(std_outs): """ return: String hdfs base uri """ hdfs_uri = None for line in std_outs: if line.startswith('hdfs://'): hdfs_uri = line.strip() if hdfs_uri is None: sys.exit('HDFS URI not found') return hdfs_uri def write_logs(std_outs, log_file_path): """ Write all logs to the specified location """ with open(log_file_path, 'w')as log: log.write("\n".join(std_outs)) def get_all_logs(process): """ Based on the subprocess capture logs process: Process Process object return: List, List Std out and Error as logs as list """ out_arr = [] while True: nextline = process.stdout.readline().decode('utf8').strip() out_arr.append(nextline) if nextline == '' and process.poll() is not None: break error_arr = [] while True: nextline = process.stderr.readline().decode('utf8').strip() error_arr.append(nextline) if nextline == '' and process.poll() is not None: break return out_arr, error_arr def parse_hdfs_paths(std_outs): """ Extract the hdfs paths from the input std_outs: List Std outs obtained from the subprocess return: List Obtain a list of hdfs paths """ hdfs_dir = [] for i in std_outs: if 'No such file or directory' in i: break elif 'hdfs' in i: current_dir = i.split(' ')[-1].strip() hdfs_dir.append(current_dir) return hdfs_dir def parse_time(raw_logs): """ Parses raw input list and extracts time raw_logs : List Each line obtained from the standard output is in the list return: String Extracted time in seconds or time_not_found """ # Debug # print(raw_logs) for line in raw_logs: if 'ERROR' in line: return 'error' if line.startswith('Total execution time'): extract_time = re.findall(r'\d+', line) total_time = '.'.join(extract_time) return total_time return 'time_not_found'
the-stack_106_32114
import sys import os inputfile=os.path.join(sys.path[0],sys.argv[1]) frequency = 0 frequencies = {0} changes = [] with open(inputfile) as changes_file: for change in changes_file: changes.append(int(change)) while True: for change in changes: frequency += change if frequency in frequencies: print(frequency) sys.exit(0) frequencies.add(frequency)
the-stack_106_32115
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 聯合報 the crawl deal with udn's news Usage: scrapy crawl udn -o <filename.json> """ from datetime import datetime from datetime import timedelta import scrapy TODAY_STR = datetime.now().strftime('%m-%d') class UdnSpider(scrapy.Spider): name = "udn_origin" def start_requests(self): url = 'https://udn.com/news/breaknews/1' meta = {'iter_time': 1} yield scrapy.Request(url, callback=self.parse, meta=meta) def parse(self, response): has_next_page = True is_first_iter = response.meta['iter_time'] == 1 response.meta['iter_time'] += 1 el_selector = '#breaknews_body dt' if is_first_iter else 'dt' target = response.css(el_selector) if not target: has_next_page = False for news in target: url = news.css('a::attr(href)').extract_first() url = response.urljoin(url) date_time = news.css('.info .dt::text').extract_first() if TODAY_STR not in date_time: has_next_page = False break yield scrapy.Request(url, callback=self.parse_news) if has_next_page: iter_time = response.meta['iter_time'] yield scrapy.FormRequest( url='https://udn.com/news/get_breaks_article/%d/1/0' % iter_time, callback=self.parse, meta=response.meta) def parse_news(self, response): title = response.css('h1::text').extract_first() date_of_news = response.css( '.story_bady_info_author span::text').extract_first()[:10] content = "" for p in response.css('p'): p_text = p.css('::text') if p_text: content += ' '.join(p_text.extract()) category_links = response.css('div div div.only_web a') category = category_links[1].css('::text').extract_first() yield { 'website': "聯合報", 'url': response.url, 'title': title, 'date': date_of_news, 'content': content, 'category': category }
the-stack_106_32118
# -*- coding: utf-8 -*- # @Time : 2020/12/01 15:44:11 # @Author : DannyDong # @File : run.py # @Describe: flask应用入口 from factory import create_app if __name__ == "__main__": app = create_app() app.run()
the-stack_106_32119
# Day 12: Subterranean Sustainability from utils import * def main(start: str): rules = load_rules() plants = set() for i in range(len(start)): if start[i] == '#': plants.add(i) for i in range(20): plants = iterate(plants, rules) print('Part 1:', sum(plants)) # By inspection, the difference stabilizes to 53 each generation # At 500 generations, the value is 26966 print('Part 2:', 26966 + (50000000000 - 500) * 53) def iterate(plants, rules): min_p = min(plants) - 3 max_p = max(plants) + 3 plants2 = set() for i in range(min_p, max_p + 1): mp = '' for off in range(-2, 3): mp += '#' if i + off in plants else '.' if mp in rules: plants2.add(i) return plants2 def load_rules(): rules = set() for line in get_input_lines(): args = line.split(' => ') if args[1][0] == '#': rules.add(args[0]) return rules if __name__ == '__main__': main('##.#############........##.##.####..#.#..#.##...###.##......#.#..#####....##..#####..#.#.##.#.##')
the-stack_106_32120
import argparse import os import numpy as np from dagbldr.datasets import fetch_binarized_mnist from dagbldr.utils import convert_to_one_hot, load_checkpoint from dagbldr.utils import interpolate_between_points, make_gif parser = argparse.ArgumentParser() parser.add_argument("saved_functions_file", help="Saved pickle file from vae training") parser.add_argument("--seed", "-s", help="random seed for path calculation", action="store", default=1979, type=int) args = parser.parse_args() if not os.path.exists(args.saved_functions_file): raise ValueError("Please provide a valid path for saved pickle file!") checkpoint_dict = load_checkpoint(args.saved_functions_file) encode_function = checkpoint_dict["encode_function"] decode_function = checkpoint_dict["decode_function"] predict_function = checkpoint_dict["predict_function"] random_state = np.random.RandomState(args.seed) mnist = fetch_binarized_mnist() # visualize against validation so we aren't cheating valid_indices = mnist["valid_indices"] data = mnist["data"] target = mnist["target"] X = data[valid_indices] y = target[valid_indices] n_classes = len(set(y)) # number of samples n_plot_samples = 6 # MNIST dimensions width = 28 height = 28 # Get random data samples ind = np.arange(len(X)) random_state.shuffle(ind) sample_X = X[ind[:n_plot_samples]] sample_y = convert_to_one_hot(y[ind[:n_plot_samples]], n_classes=n_classes) def gen_samples(X, y): mu, log_sig = encode_function(X) # No noise at test time - repeat y twice because y_pred is needed for Theano # But it is not used unless y_sym is all -1 out, = decode_function(mu + np.exp(log_sig), y) return out # VAE specific plotting import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt all_pred_y, = predict_function(X) all_pred_y = np.argmax(all_pred_y, axis=1) accuracy = np.mean(all_pred_y.ravel() == y.ravel()) f, axarr = plt.subplots(n_plot_samples, 2) n_correct_to_show = n_plot_samples // 2 n_incorrect_to_show = n_plot_samples - n_correct_to_show correct_ind = np.where(all_pred_y == y)[0] incorrect_ind = np.where(all_pred_y != y)[0] random_state.shuffle(correct_ind) random_state.shuffle(incorrect_ind) c = correct_ind[:n_correct_to_show] i = incorrect_ind[:n_incorrect_to_show] X_corr = X[c] X_incorr = X[i] X_stack = np.vstack((X_corr, X_incorr)) y_corr = convert_to_one_hot(y[c], n_classes=10) y_incorr = convert_to_one_hot(y[i], n_classes=10) y_stack = np.vstack((y_corr, y_incorr)) generated_X = gen_samples(X_stack, y_stack) predicted_y = convert_to_one_hot(np.hstack((all_pred_y[c], all_pred_y[i])), n_classes=10) for n, (X_i, y_i, sx_i, sy_i) in enumerate(zip(X_stack, y_stack, generated_X, predicted_y)): axarr[n, 0].matshow(X_i.reshape(width, height), cmap="gray") axarr[n, 1].matshow(sx_i.reshape(width, height), cmap="gray") axarr[n, 0].axis('off') axarr[n, 1].axis('off') y_a = np.argmax(y_i) sy_a = np.argmax(sy_i) axarr[n, 0].text(0, 7, str(y_a), color='green') if y_a == sy_a: axarr[n, 1].text(0, 7, str(sy_a), color='green') else: axarr[n, 1].text(0, 7, str(sy_a), color='red') f.suptitle("Validation accuracy: %s" % str(accuracy)) plt.savefig('vae_reconstruction.png') plt.close() # Style plotting f, axarr = plt.subplots(n_plot_samples, n_classes + 1) for n, (X_i, y_i) in enumerate(zip(sample_X, sample_y)): true_rec = gen_samples(X_i[None], y_i[None]) fixed_mu, fixed_sigma = encode_function(X_i[None]) axarr[n, 0].matshow(X_i.reshape(width, height), cmap="gray") axarr[n, 0].axis('off') all_mu = fixed_mu * np.ones((n_classes, fixed_mu.shape[1])).astype( "float32") all_sigma = fixed_sigma * np.ones((n_classes, fixed_sigma.shape[1])).astype( "float32") all_classes = np.eye(n_classes).astype('int32') all_recs, = decode_function(all_mu + np.exp(all_sigma), all_classes) for j in range(1, n_classes + 1): axarr[n, j].matshow(all_recs[j - 1].reshape(width, height), cmap="gray") axarr[n, j].axis('off') f.suptitle("Style variation by changing conditional") plt.savefig('vae_style.png') plt.close() # Calculate noisy linear path between points in space mus, log_sigmas = encode_function(sample_X) n_steps = 20 mu_path = interpolate_between_points(mus, n_steps=n_steps) log_sigma_path = interpolate_between_points(log_sigmas, n_steps=n_steps) # Noisy path across space from one point to another path_X = mu_path + np.exp(log_sigma_path) path_y = np.zeros((len(path_X), n_classes), dtype="int32") for i in range(n_plot_samples): path_y[i * n_steps:(i + 1) * n_steps] = sample_y[i] out, = decode_function(path_X, path_y) text_y = [str(np.argmax(path_y[i])) for i in range(len(path_y))] color_y = ["white"] * len(text_y) make_gif(out, "vae_code.gif", width, height, list_text_per_frame=text_y, list_text_per_frame_color=color_y, delay=1, grayscale=True)
the-stack_106_32121
'''LeNet in PxTorch.''' import torch.nn as nn from src.models.classifiers.general import GeneralNet class Dense(GeneralNet): def __init__(self, n_classes, n_channels_in=1, **kwargs): super(Dense, self).__init__(n_classes, n_channels_in, **kwargs) self.fc1 = nn.Linear(n_channels_in * 32 * 32, 300) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(300, 300) self.relu2 = nn.ReLU() self.fc3 = nn.Linear(300, 300) self.relu3 = nn.ReLU() self.fc4 = nn.Linear(300, n_classes) self.to_transform = [('fc1', 'fc1.bias'), ('fc2', 'fc2.bias'), ('fc3', 'fc3.bias'), ('fc4', 'fc4.bias')] self._finish_init() def forward(self, x): x = x.view(x.shape[0], -1) x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) x = self.relu2(x) x = self.fc3(x) x = self.relu3(x) x = self.fc4(x) return x
the-stack_106_32122
def var(mat,col,population,get,obj,dFrame): from ..customs.objects import Label nullobj = mat.DEFAULT_NULL feats = mat.features.labels if mat.features.level == 1: feats = [row[0] for row in feats] col = feats.index(col)+1 if isinstance(col,(tuple,str)) else col if col != None: if col<=0 or col>mat.d1: raise IndexError(f"Column index is out of range, expected range: [1,{mat.d1}]") s=mat.sdev(col,population) if s == None: raise ValueError("Can't get standard deviations") vs={} for k,v in s.items(): try: vs[k]=v**2 except: vs[k]=nullobj #Return a matrix if get==2: cols = list(vs.keys()) v = [i for i in vs.values()] cdtypes = [complex] if any([1 if isinstance(val,complex) else 0 for val in v]) else [float] return obj((len(cols),1),v,features=["Variance"],dtype=dFrame,coldtypes=cdtypes,index=Label(cols,mat.features.names[:])) #Return a dictionary elif get==1: return vs else: items=list(vs.values()) if len(items)==1: return items[0] if col==None: return items return items[col-1]
the-stack_106_32124
import os from auxpump import TEMP_PATH, CONFIG import time def remote_exec(cmd, *args): temp_ver = 0 fname = None while fname is None or fname in os.listdir(TEMP_PATH): fname = 'tmp' + str(temp_ver) + '.sh' temp_ver += 1 fname = os.path.join(TEMP_PATH, fname) try: cmd = ' '.join([cmd] + [str(a) for a in args]) with open(fname, 'w+') as temp_sh: temp_sh.write(cmd) os.system('plink ' + CONFIG['putty_session'] + ' -m ' + fname) finally: for _ in range(4): try: os.remove(fname) break except OSError: time.sleep(.05) continue
the-stack_106_32127
import setuptools setup_reqs = ['pytest', 'pytest-cov', 'pytest-runner', 'flake8'] setuptools.setup( name="gordian", version="2.1.2", author="Intuit", author_email="[email protected]", description="A tool to search and replace files in a Git repo", url="https://github.com/argoproj-labs/gordian", install_requires=['pygithub', 'pyyaml', 'jsonpatch', 'deepdiff', 'retry'], setup_requires=setup_reqs, extras_require={ 'test': setup_reqs }, tests_require=setup_reqs, packages=['gordian', 'gordian.files'], entry_points={ 'console_scripts': [ 'gordian = gordian.gordian:main', 'pulpo = gordian.pulpo:main', ], }, )
the-stack_106_32130
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Python ops defined in math_grad.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class SquaredDifferenceOpTest(test.TestCase): def _testGrad(self, left_shape, right_shape): if len(left_shape) > len(right_shape): output_shape = left_shape else: output_shape = right_shape l = np.random.randn(*left_shape) r = np.random.randn(*right_shape) with self.test_session(use_gpu=True): left_tensor = constant_op.constant(l, shape=left_shape) right_tensor = constant_op.constant(r, shape=right_shape) output = math_ops.squared_difference(left_tensor, right_tensor) left_err = gradient_checker.compute_gradient_error( left_tensor, left_shape, output, output_shape, x_init_value=l) right_err = gradient_checker.compute_gradient_error( right_tensor, right_shape, output, output_shape, x_init_value=r) self.assertLess(left_err, 1e-10) self.assertLess(right_err, 1e-10) def testGrad(self): self._testGrad([1, 2, 3, 2], [3, 2]) self._testGrad([2, 4], [3, 2, 4]) class AbsOpTest(test.TestCase): def _biasedRandN(self, shape, bias=0.1, sigma=1.0): """Returns samples from a normal distribution shifted `bias` away from 0.""" value = np.random.randn(*shape) * sigma return value + np.sign(value) * bias def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None): np.random.seed(7) if dtype in (dtypes.complex64, dtypes.complex128): value = math_ops.complex( self._biasedRandN( shape, bias=bias, sigma=sigma), self._biasedRandN( shape, bias=bias, sigma=sigma)) else: value = ops.convert_to_tensor( self._biasedRandN( shape, bias=bias), dtype=dtype) with self.test_session(use_gpu=True): output = math_ops.abs(value) error = gradient_checker.compute_gradient_error( value, shape, output, output.get_shape().as_list()) self.assertLess(error, max_error) def testComplexAbs(self): # Bias random test values away from zero to avoid numeric instabilities. self._testGrad( [3, 3], dtype=dtypes.float32, max_error=2e-5, bias=0.1, sigma=1.0) self._testGrad( [3, 3], dtype=dtypes.complex64, max_error=2e-5, bias=0.1, sigma=1.0) # Ensure stability near the pole at zero. self._testGrad( [3, 3], dtype=dtypes.float32, max_error=100.0, bias=0.0, sigma=0.1) self._testGrad( [3, 3], dtype=dtypes.complex64, max_error=100.0, bias=0.0, sigma=0.1) class MinOrMaxGradientTest(test.TestCase): def testMinGradient(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) outputs = math_ops.reduce_min(array_ops.concat([inputs, inputs], 0)) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) def testMaxGradient(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) outputs = math_ops.reduce_max(array_ops.concat([inputs, inputs], 0)) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) class MaximumOrMinimumGradientTest(test.TestCase): def testMaximumGradient(self): inputs = constant_op.constant([1.0, 2.0, 3.0, 4.0], dtype=dtypes.float32) outputs = math_ops.maximum(inputs, 3.0) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [4], outputs, [4]) self.assertLess(error, 1e-4) def testMinimumGradient(self): inputs = constant_op.constant([1.0, 2.0, 3.0, 4.0], dtype=dtypes.float32) outputs = math_ops.minimum(inputs, 2.0) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [4], outputs, [4]) self.assertLess(error, 1e-4) class ProdGradientTest(test.TestCase): def testProdGradient(self): inputs = constant_op.constant([[1., 2.], [3., 4.]], dtype=dtypes.float32) outputs = math_ops.reduce_prod(inputs) with self.test_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) def testProdGradientForNegativeAxis(self): inputs = constant_op.constant([[1., 2.], [3., 4.]], dtype=dtypes.float32) outputs = math_ops.reduce_prod(inputs, -1) with self.test_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) class SegmentMinOrMaxGradientTest(test.TestCase): def testSegmentMinGradient(self): data = constant_op.constant([1.0, 2.0, 3.0], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) segment_min = math_ops.segment_min(data, segment_ids) with self.test_session(): error = gradient_checker.compute_gradient_error(data, [3], segment_min, [2]) self.assertLess(error, 1e-4) def testSegmentMaxGradient(self): data = constant_op.constant([1.0, 2.0, 3.0], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) segment_max = math_ops.segment_max(data, segment_ids) with self.test_session(): error = gradient_checker.compute_gradient_error(data, [3], segment_max, [2]) self.assertLess(error, 1e-4) def testSegmentMinGradientWithTies(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) data = array_ops.concat([inputs, inputs], 0) segment_ids = constant_op.constant([0, 0], dtype=dtypes.int64) segment_min = math_ops.segment_min(data, segment_ids) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [1], segment_min, [1]) self.assertLess(error, 1e-4) def testSegmentMaxGradientWithTies(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) data = array_ops.concat([inputs, inputs], 0) segment_ids = constant_op.constant([0, 0], dtype=dtypes.int64) segment_max = math_ops.segment_max(data, segment_ids) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [1], segment_max, [1]) self.assertLess(error, 1e-4) class FloorModGradientTest(test.TestCase): def testFloorModGradient(self): # Making sure the input is not near the discontinuity point where # x/y == floor(x/y) ns = constant_op.constant([17.], dtype=dtypes.float32) inputs = constant_op.constant([131.], dtype=dtypes.float32) floor_mod = math_ops.floormod(inputs, ns) with self.test_session(): error = gradient_checker.compute_gradient_error(inputs, [1], floor_mod, [1]) self.assertLess(error, 1e-4) if __name__ == "__main__": test.main()
the-stack_106_32136
""" This module defines base classes for events. """ from datetime import timedelta from uuid import UUID from pydantic import BaseModel, Field, validator __all__ = ["Event", "ElementTransportEvent", "PrimitiveEvent"] class Event(BaseModel): """ The base event schema. """ name: str = Field(..., description="The name of the event") type: str = Field(..., title="Type", description="The type of event") priority: int = Field( ..., title="Priority", description="The importance of the mission event", ge=1, le=5, ) mission_time: timedelta = Field( ..., title="Mission Time", description="The time this event starts at, relative to the start of the mission", ) class ElementTransportEvent(Event): """ A schema representing a basic event transporting elements from one node to another. """ origin_node_id: UUID = Field( ..., title="Origin Node ID", description="The ID of the transport event's origin node", ) destination_node_id: UUID = Field( ..., title="Destination Node ID", description="The ID of the transport event's destination node", ) edge_id: UUID = Field( ..., description="The ID of the edge between origin and destination nodes" ) exec_time: timedelta = Field( ..., description="The time this transport event runs for" ) class PrimitiveEvent(Event): """ A schema representing events which other events are decomposed into. """ queued_at: timedelta = None @validator("queued_at", always=True) def _initialize_queued_at(cls, v, values, **kwargs) -> timedelta: if v is None: assert values.get("mission_time") is not None return values.get("mission_time") return v
the-stack_106_32138
from _kratos import Simulator as _Simulator from .generator import Generator, PortType # Python wrapper for the simulator class Simulator: def __init__(self, generator: Generator): self._sim = _Simulator(generator.internal_generator) # get the clock and reset clks = generator.internal_generator.get_ports(PortType.Clock.value) if len(clks) == 1: self._clk = generator.ports[clks[0]] else: self._clk = None resets = generator.internal_generator.get_ports(PortType.AsyncReset.value) if len(resets) == 1: self._reset = generator.ports[resets[0]] else: self._reset = None def set(self, var, value): self._sim.set(var, value) def get(self, var): if len(var.size) > 1 or var.size[0] > 1: return self._sim.get_array(var) else: return self._sim.get(var) def cycle(self, n=1): if self._clk is None: raise RuntimeError("Single clock not found") for _ in range(n): self.set(self._clk, 1) self.set(self._clk, 0) def reset(self, reset_high=True): if self._reset is None: raise RuntimeError("Single reset not found") if reset_high: self.set(self._reset, 1) self.set(self._reset, 0) else: self.set(self._reset, 0) self.set(self._reset, 1)
the-stack_106_32139
''' Test TMCL Parameters of TMCM1161 via RS485 interface and module ID 1. Created on 15.12.2020 @author: LK ''' from PyTrinamicMicro.platforms.motionpy2.connections.rs485_tmcl_interface import rs485_tmcl_interface from PyTrinamic.modules.TMCM1161.TMCM_1161 import TMCM_1161 import logging MODULE_ID = 1 GP_BANK = 0 AP_AXIS = 0 logger = logging.getLogger(__name__) logger.info("Test module TMCM1161 parameters via RS485") logger.info("Initializing interface.") interface = rs485_tmcl_interface(module_id=MODULE_ID) logger.info("Initializing module.") module = TMCM_1161(interface) logger.info("Testing global parameter access.") logger.info("Getting global parameter ({}, {}) ...".format("timer_0", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.timer_0, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("timer_1", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.timer_1, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("timer_2", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.timer_2, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("stopLeft_0", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.stopLeft_0, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("stopRight_0", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.stopRight_0, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("input_0", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.input_0, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("input_1", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.input_1, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("input_2", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.input_2, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("input_3", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.input_3, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("serialBaudRate", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.serialBaudRate, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("serialAddress", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.serialAddress, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("ASCIIMode", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.ASCIIMode, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("serialHeartbeat", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.serialHeartbeat, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("telegramPauseTime", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.telegramPauseTime, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("serialHostAddress", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.serialHostAddress, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("autoStartMode", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.autoStartMode, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("limitSwitchPolarity", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.limitSwitchPolarity, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("protectionMode", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.protectionMode, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("eepromCoordinateStore", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.eepromCoordinateStore, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("zeroUserVariables", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.zeroUserVariables, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("serialSecondaryAddress", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.serialSecondaryAddress, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("reverseShaftDirection", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.reverseShaftDirection, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("applicationStatus", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.applicationStatus, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("downloadMode", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.downloadMode, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("programCounter", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.programCounter, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("lastTmclError", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.lastTmclError, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("tickTimer", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.tickTimer, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("randomNumber", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.randomNumber, GP_BANK))) logger.info("Getting global parameter ({}, {}) ...".format("Intpol", module.GPs.timer_0)) logger.info("{}".format(module.getGlobalParameter(module.GPs.Intpol, GP_BANK))) logger.info("Testing axis parameter access.") logger.info("Getting axis parameter ({}, {}) ...".format("TargetPosition", module.APs.TargetPosition)) logger.info("{}".format(module.getAxisParameter(module.APs.TargetPosition, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ActualPosition", module.APs.ActualPosition)) logger.info("{}".format(module.getAxisParameter(module.APs.ActualPosition, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("TargetVelocity", module.APs.TargetVelocity)) logger.info("{}".format(module.getAxisParameter(module.APs.TargetVelocity, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ActualVelocity", module.APs.ActualVelocity)) logger.info("{}".format(module.getAxisParameter(module.APs.ActualVelocity, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("MaxVelocity", module.APs.MaxVelocity)) logger.info("{}".format(module.getAxisParameter(module.APs.MaxVelocity, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("MaxAcceleration", module.APs.MaxAcceleration)) logger.info("{}".format(module.getAxisParameter(module.APs.MaxAcceleration, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("MaxCurrent", module.APs.MaxCurrent)) logger.info("{}".format(module.getAxisParameter(module.APs.MaxCurrent, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("StandbyCurrent", module.APs.StandbyCurrent)) logger.info("{}".format(module.getAxisParameter(module.APs.StandbyCurrent, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("PositionReachedFlag", module.APs.PositionReachedFlag)) logger.info("{}".format(module.getAxisParameter(module.APs.PositionReachedFlag, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("referenceSwitchStatus", module.APs.referenceSwitchStatus)) logger.info("{}".format(module.getAxisParameter(module.APs.referenceSwitchStatus, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("RightEndstop", module.APs.RightEndstop)) logger.info("{}".format(module.getAxisParameter(module.APs.RightEndstop, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("LeftEndstop", module.APs.LeftEndstop)) logger.info("{}".format(module.getAxisParameter(module.APs.LeftEndstop, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("rightLimitSwitchDisable", module.APs.rightLimitSwitchDisable)) logger.info("{}".format(module.getAxisParameter(module.APs.rightLimitSwitchDisable, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("leftLimitSwitchDisable", module.APs.leftLimitSwitchDisable)) logger.info("{}".format(module.getAxisParameter(module.APs.leftLimitSwitchDisable, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("minimumSpeed", module.APs.minimumSpeed)) logger.info("{}".format(module.getAxisParameter(module.APs.minimumSpeed, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("actualAcceleration", module.APs.actualAcceleration)) logger.info("{}".format(module.getAxisParameter(module.APs.actualAcceleration, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("RampMode", module.APs.RampMode)) logger.info("{}".format(module.getAxisParameter(module.APs.RampMode, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("MicrostepResolution", module.APs.MicrostepResolution)) logger.info("{}".format(module.getAxisParameter(module.APs.MicrostepResolution, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("Ref_SwitchTolerance", module.APs.Ref_SwitchTolerance)) logger.info("{}".format(module.getAxisParameter(module.APs.Ref_SwitchTolerance, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("softStopFlag", module.APs.softStopFlag)) logger.info("{}".format(module.getAxisParameter(module.APs.softStopFlag, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("EndSwitchPowerDown", module.APs.EndSwitchPowerDown)) logger.info("{}".format(module.getAxisParameter(module.APs.EndSwitchPowerDown, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("rampDivisor", module.APs.rampDivisor)) logger.info("{}".format(module.getAxisParameter(module.APs.rampDivisor, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("PulseDivisor", module.APs.PulseDivisor)) logger.info("{}".format(module.getAxisParameter(module.APs.PulseDivisor, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("Intpol", module.APs.Intpol)) logger.info("{}".format(module.getAxisParameter(module.APs.Intpol, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("DoubleEdgeSteps", module.APs.DoubleEdgeSteps)) logger.info("{}".format(module.getAxisParameter(module.APs.DoubleEdgeSteps, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ChopperBlankTime", module.APs.ChopperBlankTime)) logger.info("{}".format(module.getAxisParameter(module.APs.ChopperBlankTime, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ConstantTOffMode", module.APs.ConstantTOffMode)) logger.info("{}".format(module.getAxisParameter(module.APs.ConstantTOffMode, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("DisableFastDecayComparator", module.APs.DisableFastDecayComparator)) logger.info("{}".format(module.getAxisParameter(module.APs.DisableFastDecayComparator, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ChopperHysteresisEnd", module.APs.ChopperHysteresisEnd)) logger.info("{}".format(module.getAxisParameter(module.APs.ChopperHysteresisEnd, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ChopperHysteresisStart", module.APs.ChopperHysteresisStart)) logger.info("{}".format(module.getAxisParameter(module.APs.ChopperHysteresisStart, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("TOff", module.APs.TOff)) logger.info("{}".format(module.getAxisParameter(module.APs.TOff, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("SEIMIN", module.APs.SEIMIN)) logger.info("{}".format(module.getAxisParameter(module.APs.SEIMIN, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("SECDS", module.APs.SECDS)) logger.info("{}".format(module.getAxisParameter(module.APs.SECDS, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergyHysteresis", module.APs.smartEnergyHysteresis)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergyHysteresis, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("SECUS", module.APs.SECUS)) logger.info("{}".format(module.getAxisParameter(module.APs.SECUS, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergyHysteresisStart", module.APs.smartEnergyHysteresisStart)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergyHysteresisStart, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("SG2FilterEnable", module.APs.SG2FilterEnable)) logger.info("{}".format(module.getAxisParameter(module.APs.SG2FilterEnable, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("SG2Threshold", module.APs.SG2Threshold)) logger.info("{}".format(module.getAxisParameter(module.APs.SG2Threshold, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("slopeControlHighSide", module.APs.slopeControlHighSide)) logger.info("{}".format(module.getAxisParameter(module.APs.slopeControlHighSide, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("slopeControlLowSide", module.APs.slopeControlLowSide)) logger.info("{}".format(module.getAxisParameter(module.APs.slopeControlLowSide, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ShortToGroundProtection", module.APs.ShortToGroundProtection)) logger.info("{}".format(module.getAxisParameter(module.APs.ShortToGroundProtection, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ShortDetectionTime", module.APs.ShortDetectionTime)) logger.info("{}".format(module.getAxisParameter(module.APs.ShortDetectionTime, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("VSense", module.APs.VSense)) logger.info("{}".format(module.getAxisParameter(module.APs.VSense, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergyActualCurrent", module.APs.smartEnergyActualCurrent)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergyActualCurrent, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergyStallVelocity", module.APs.smartEnergyStallVelocity)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergyStallVelocity, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergyThresholdSpeed", module.APs.smartEnergyThresholdSpeed)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergyThresholdSpeed, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("smartEnergySlowRunCurrent", module.APs.smartEnergySlowRunCurrent)) logger.info("{}".format(module.getAxisParameter(module.APs.smartEnergySlowRunCurrent, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("RandomTOffMode", module.APs.RandomTOffMode)) logger.info("{}".format(module.getAxisParameter(module.APs.RandomTOffMode, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ReferenceSearchMode", module.APs.ReferenceSearchMode)) logger.info("{}".format(module.getAxisParameter(module.APs.ReferenceSearchMode, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("ReferenceSearchSpeed", module.APs.ReferenceSearchSpeed)) logger.info("{}".format(module.getAxisParameter(module.APs.ReferenceSearchSpeed, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("referenceSwitchSpeed", module.APs.referenceSwitchSpeed)) logger.info("{}".format(module.getAxisParameter(module.APs.referenceSwitchSpeed, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("referenceSwitchDistance", module.APs.referenceSwitchDistance)) logger.info("{}".format(module.getAxisParameter(module.APs.referenceSwitchDistance, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("lastReferenceSwitchPosition", module.APs.lastReferenceSwitchPosition)) logger.info("{}".format(module.getAxisParameter(module.APs.lastReferenceSwitchPosition, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("BoostCurrent", module.APs.BoostCurrent)) logger.info("{}".format(module.getAxisParameter(module.APs.BoostCurrent, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("freewheelingDelay", module.APs.freewheelingDelay)) logger.info("{}".format(module.getAxisParameter(module.APs.freewheelingDelay, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("LoadValue", module.APs.LoadValue)) logger.info("{}".format(module.getAxisParameter(module.APs.LoadValue, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("extendedErrorFlags", module.APs.extendedErrorFlags)) logger.info("{}".format(module.getAxisParameter(module.APs.extendedErrorFlags, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("DrvStatusFlags", module.APs.DrvStatusFlags)) logger.info("{}".format(module.getAxisParameter(module.APs.DrvStatusFlags, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("EncoderPosition", module.APs.EncoderPosition)) logger.info("{}".format(module.getAxisParameter(module.APs.EncoderPosition, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("EncoderResolution", module.APs.EncoderResolution)) logger.info("{}".format(module.getAxisParameter(module.APs.EncoderResolution, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("max_EncoderDeviation", module.APs.max_EncoderDeviation)) logger.info("{}".format(module.getAxisParameter(module.APs.max_EncoderDeviation, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("PowerDownDelay", module.APs.PowerDownDelay)) logger.info("{}".format(module.getAxisParameter(module.APs.PowerDownDelay, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("absoluteResolverValue", module.APs.absoluteResolverValue)) logger.info("{}".format(module.getAxisParameter(module.APs.absoluteResolverValue, AP_AXIS))) logger.info("Getting axis parameter ({}, {}) ...".format("Step_DirectionMode", module.APs.Step_DirectionMode)) logger.info("{}".format(module.getAxisParameter(module.APs.Step_DirectionMode, AP_AXIS))) logger.info("Test completed successfully.")
the-stack_106_32141
#-*- coding:utf-8 _*- """ @author:charlesXu @file: Info_Ext_main.py @desc: 数据预处理 @time: 2018/08/08 """ import sys, pickle, os, random import numpy as np import pdb ## tags, BIO 标注策略 tag2label = {"O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6 } def read_corpus(corpus_path): """ read corpus and return the list of samples :param corpus_path: :return: data """ data = [] with open(corpus_path, encoding='utf-8') as fr: lines = fr.readlines() sent_, tag_ = [], [] for line in lines: if line != '\n': [char, label] = line.strip().split() sent_.append(char) tag_.append(label) else: data.append((sent_, tag_)) sent_, tag_ = [], [] return data def vocab_build(vocab_path, corpus_path, min_count): """ :param vocab_path: :param corpus_path: :param min_count: :return: """ data = read_corpus(corpus_path) word2id = {} for sent_, tag_ in data: for word in sent_: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <='\u005a') or ('\u0061' <= word <='\u007a'): word = '<ENG>' if word not in word2id: word2id[word] = [len(word2id)+1, 1] else: word2id[word][1] += 1 low_freq_words = [] for word, [word_id, word_freq] in word2id.items(): if word_freq < min_count and word != '<NUM>' and word != '<ENG>': low_freq_words.append(word) for word in low_freq_words: del word2id[word] new_id = 1 for word in word2id.keys(): word2id[word] = new_id new_id += 1 word2id['<UNK>'] = new_id word2id['<PAD>'] = 0 print(len(word2id)) with open(vocab_path, 'wb') as fw: pickle.dump(word2id, fw) def sentence2id(sent, word2id): """ :param sent: :param word2id: :return: """ sentence_id = [] for word in sent: if word.isdigit(): word = '<NUM>' elif ('\u0041' <= word <= '\u005a') or ('\u0061' <= word <= '\u007a'): word = '<ENG>' if word not in word2id: word = '<UNK>' sentence_id.append(word2id[word]) return sentence_id def read_dictionary(vocab_path): """ :param vocab_path: :return: """ vocab_path = os.path.join(vocab_path) with open(vocab_path, 'rb') as fr: word2id = pickle.load(fr) print('vocab_size:', len(word2id)) return word2id def random_embedding(vocab, embedding_dim): """ :param vocab: :param embedding_dim: :return: """ embedding_mat = np.random.uniform(-0.25, 0.25, (len(vocab), embedding_dim)) embedding_mat = np.float32(embedding_mat) return embedding_mat def pad_sequences(sequences, pad_mark=0): """ :param sequences: :param pad_mark: :return: """ max_len = max(map(lambda x : len(x), sequences)) seq_list, seq_len_list = [], [] for seq in sequences: seq = list(seq) seq_ = seq[:max_len] + [pad_mark] * max(max_len - len(seq), 0) seq_list.append(seq_) seq_len_list.append(min(len(seq), max_len)) return seq_list, seq_len_list def batch_yield(data, batch_size, vocab, tag2label, shuffle=False): """ :param data: :param batch_size: :param vocab: :param tag2label: :param shuffle: :return: """ if shuffle: random.shuffle(data) seqs, labels = [], [] for (sent_, tag_) in data: sent_ = sentence2id(sent_, vocab) label_ = [tag2label[tag] for tag in tag_] if len(seqs) == batch_size: yield seqs, labels seqs, labels = [], [] seqs.append(sent_) labels.append(label_) if len(seqs) != 0: yield seqs, labels
the-stack_106_32142
"""Module for keeping the value of a RemoteValue from KNX bus up to date.""" import asyncio from enum import Enum import logging from typing import TYPE_CHECKING, Awaitable, Callable, Dict, Optional, Tuple, Union from xknx.remote_value import RemoteValue if TYPE_CHECKING: from xknx.xknx import XKNX logger = logging.getLogger("xknx.state_updater") DEFAULT_UPDATE_INTERVAL = 60 MAX_UPDATE_INTERVAL = 1440 class StateUpdater: """Class for keeping the states of RemoteValues up to date.""" def __init__(self, xknx: "XKNX", parallel_reads: int = 2): """Initialize StateUpdater class.""" self.xknx = xknx self.started = False self._workers: Dict[int, _StateTracker] = {} self._semaphore = asyncio.Semaphore(value=parallel_reads) def register_remote_value( self, remote_value: RemoteValue, tracker_options: Union[bool, int, float, str] = True, ) -> None: """Register a RemoteValue to initialize its state and/or track for expiration.""" def parse_tracker_options( tracker_options: Union[bool, int, float, str] ) -> Tuple[StateTrackerType, Union[int, float]]: """Parse tracker type and expiration time.""" tracker_type = StateTrackerType.EXPIRE update_interval: Union[int, float] = DEFAULT_UPDATE_INTERVAL if isinstance(tracker_options, bool): # `True` would be overwritten by the check for `int` return (tracker_type, update_interval) if isinstance(tracker_options, (int, float)): update_interval = tracker_options elif isinstance(tracker_options, str): _options = tracker_options.split() if _options[0].upper() == "INIT": tracker_type = StateTrackerType.INIT elif _options[0].upper() == "EXPIRE": tracker_type = StateTrackerType.EXPIRE elif _options[0].upper() == "EVERY": tracker_type = StateTrackerType.PERIODICALLY else: logger.warning( 'Could not parse StateUpdater tracker_options "%s" for %s. Using default %s %s minutes.', tracker_options, remote_value, tracker_type, update_interval, ) return (tracker_type, update_interval) try: if _options[1].isdigit(): update_interval = int(_options[1]) except IndexError: pass # No time given (no _options[1]) if update_interval > MAX_UPDATE_INTERVAL: logger.warning( "StateUpdater interval of %s to long for %s. Using maximum of %s minutes (1 day)", tracker_options, remote_value, MAX_UPDATE_INTERVAL, ) update_interval = MAX_UPDATE_INTERVAL return (tracker_type, update_interval) async def read_state_mutex() -> None: """Schedule to read the state from the KNX bus - one at a time.""" async with self._semaphore: # wait until there is nothing else to send to the bus await self.xknx.telegram_queue.outgoing_queue.join() logger.debug( "StateUpdater reading %s for %s - %s", remote_value.group_address_state, remote_value.device_name, remote_value.feature_name, ) # shield from cancellation so update_received() don't cancel the # ValueReader leaving the telegram_received_cb until next telegram await asyncio.shield(remote_value.read_state(wait_for_result=True)) tracker_type, update_interval = parse_tracker_options(tracker_options) tracker = _StateTracker( read_state_awaitable=read_state_mutex, tracker_type=tracker_type, interval_min=update_interval, ) self._workers[id(remote_value)] = tracker logger.debug( "StateUpdater registered %s %s for %s", tracker_type, update_interval, remote_value, ) if self.started: tracker.start() def unregister_remote_value(self, remote_value: RemoteValue) -> None: """Unregister a RemoteValue from StateUpdater.""" self._workers.pop(id(remote_value)).stop() def update_received(self, remote_value: RemoteValue) -> None: """Reset the timer when a state update was received.""" if self.started and id(remote_value) in self._workers: self._workers[id(remote_value)].update_received() def start(self) -> None: """Start StateUpdater. Initialize states.""" logger.debug("StateUpdater initializing values") self.started = True for worker in self._workers.values(): worker.start() def stop(self) -> None: """Stop StateUpdater.""" logger.debug("StateUpdater stopping") self.started = False for worker in self._workers.values(): worker.stop() class StateTrackerType(Enum): """Enum indicating the StateUpdater Type.""" INIT = 1 EXPIRE = 2 PERIODICALLY = 3 class _StateTracker: """Keeps track of the age of the state from one RemoteValue.""" # pylint: disable=too-many-instance-attributes def __init__( self, read_state_awaitable: Callable[[], Awaitable[None]], tracker_type: StateTrackerType = StateTrackerType.EXPIRE, interval_min: float = 60, ): """Initialize StateTracker class.""" # pylint: disable=too-many-arguments self.tracker_type = tracker_type self.update_interval = interval_min * 60 self._read_state = read_state_awaitable self._task: Optional[asyncio.Task[None]] = None def start(self) -> None: """Start StateTracker - read state on call.""" self.stop() self._task = asyncio.create_task(self._start_init()) async def _start_init(self) -> None: """Initialize state, start update loop if appropriate.""" await self._read_state() if self.tracker_type is not StateTrackerType.INIT: self.reset() def reset(self) -> None: """Start / Restart StateTracker timer - wait for value to expire.""" self.stop() self._task = asyncio.create_task(self._update_loop()) def stop(self) -> None: """Stop StateTracker.""" if self._task: self._task.cancel() self._task = None def update_received(self) -> None: """Reset the timer if a telegram was received for a "expire" typed StateUpdater.""" if self.tracker_type == StateTrackerType.EXPIRE: self.reset() async def _update_loop(self) -> None: """Wait for the update_interval to expire. Endless loop for updating states.""" # for StateUpdaterType.EXPIRE: # on successfull read the while loop gets canceled when the callback calls update_received() # when no telegram was received it will try again endlessly while True: await asyncio.sleep(self.update_interval) await self._read_state()
the-stack_106_32146
# This program simulates 10 tosses of a coin. import random # Constants HEADS = 1 TAILS = 2 TOSSES = 10 def main(): for toss in range(TOSSES): # Simulate the coin toss. if random.randint(HEADS, TAILS) == HEADS: print('Heads') else: print('Tails') # Call the main function. main()
the-stack_106_32147
"""Posts URL configuration""" from django.urls import path from .views import ( add_post_view, category_view, delete_post_view, post_detail_view, post_list_view, search_results_view, update_post_view, ) urlpatterns = [ path("post_list/", post_list_view, name="post_list"), path("post_detail/<int:pk>", post_detail_view, name="post_detail"), path("add_post/", add_post_view, name="add_post"), path("post_detail/edit/<int:pk>", update_post_view, name="update_post"), path("post_detail/<int:pk>/remove", delete_post_view, name="delete_post"), path("category/<str:cats>/", category_view, name="category"), path("search/", search_results_view, name="search_results"), ]
the-stack_106_32148
from copy import deepcopy from typing import List, Union, Tuple, Dict import numpy as np import pandas as pd def process_dataframe(X: Union[pd.DataFrame, np.ndarray], copy=True) -> pd.DataFrame: if isinstance(X, pd.DataFrame): if copy: X_ = deepcopy(X) else: X_ = X elif isinstance(X, np.ndarray): X_ = pd.DataFrame(X, columns=range(X.shape[1])) else: raise NotImplementedError return X_ def replace_nan_to_None(df: pd.DataFrame) -> pd.DataFrame: df = deepcopy(df) for column, dtype in zip(df.columns, df.dtypes): if dtype == object: df[column] = df[column].apply(lambda x: None if pd.isna(x) else x) return df def replace_dict(dict_: dict, from_, to_): for k, v in dict_.items(): if v == from_: dict_[k] = to_ def replace_dicts(dicts, from_, to_): for dict_ in dicts: replace_dict(dict_, from_, to_) def get_unique_col_name(columns: Union[pd.Index, pd.Series], wanted: str): cnt = 1 while np.sum(columns == wanted) >= 1: ix = wanted.rfind("_") if ix<0: ix=len(wanted) wanted = wanted[:ix] + f"_{cnt}" cnt += 1 return wanted def process_duplicated_columns(columns: pd.Index) -> Tuple[pd.Index, Dict[str, str]]: # 查看是否有重复列,并去重 if isinstance(columns, pd.Index): columns = pd.Series(columns) else: columns = deepcopy(columns) unq, cnt = np.unique(columns, return_counts=True) if len(unq) == len(columns): return columns, {} duplicated_columns = unq[cnt > 1] index2newName = {} for duplicated_column in duplicated_columns: for ix in reversed(np.where(columns == duplicated_column)[0]): new_name = get_unique_col_name(columns, columns[ix]) columns[ix] = new_name index2newName[ix] = new_name assert len(np.unique(columns)) == len(columns) return columns, index2newName def inverse_dict(dict_: dict): dict_ = deepcopy(dict_) return {v: k for k, v in dict_.items()} def rectify_dtypes(df: pd.DataFrame): # make sure: only (str, int, float, bool) is valid object_columns = get_object_columns(df) for object_column in object_columns: if not np.any(df[object_column].apply(lambda x: isinstance(x, str))): if np.any(df[object_column].apply(lambda x: isinstance(x, float))): df[object_column] = df[object_column].astype(float) else: df[object_column] = df[object_column].astype(int) def get_object_columns(df_: pd.DataFrame) -> List[str]: return list(df_.dtypes[df_.dtypes == object].index) class DataFrameValuesWrapper(): def __init__(self, X: Union[pd.DataFrame, pd.Series, np.ndarray]): if isinstance(X, (pd.DataFrame, pd.Series)): self.array = X.values self.dataframe = X self.origin = "dataframe" elif isinstance(X, np.ndarray): self.array = X self.dataframe = pd.DataFrame(X) self.origin = "array" def wrap_to_dataframe(self, array): return pd.DataFrame(array, columns=self.dataframe.columns, index=self.dataframe.index) # if __name__ == '__main__': # columns = pd.Index([str(x) for x in [1, 2, 3, 2, 3, 4, 5]]) # columns, index2newName = process_duplicated_columns(columns) # print(columns) # print(index2newName)
the-stack_106_32149
# (C) Datadog, Inc. 2013-2017 # (C) Brett Langdon <[email protected]> 2013 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) # stdlib import re import time import warnings from collections import defaultdict # 3p from six.moves.urllib.parse import urlparse, quote_plus, urljoin from six import iteritems import requests from requests.exceptions import RequestException from requests.packages.urllib3.exceptions import InsecureRequestWarning # project from datadog_checks.base import AgentCheck, is_affirmative EVENT_TYPE = SOURCE_TYPE_NAME = 'rabbitmq' EXCHANGE_TYPE = 'exchanges' QUEUE_TYPE = 'queues' NODE_TYPE = 'nodes' CONNECTION_TYPE = 'connections' OVERVIEW_TYPE = 'overview' MAX_DETAILED_EXCHANGES = 50 MAX_DETAILED_QUEUES = 200 MAX_DETAILED_NODES = 100 # Post an event in the stream when the number of queues or nodes to # collect is above 90% of the limit: ALERT_THRESHOLD = 0.9 EXCHANGE_ATTRIBUTES = [ # Path, Name, Operation ('message_stats/ack', 'messages.ack.count', float), ('message_stats/ack_details/rate', 'messages.ack.rate', float), ('message_stats/confirm', 'messages.confirm.count', float), ('message_stats/confirm_details/rate', 'messages.confirm.rate', float), ('message_stats/deliver_get', 'messages.deliver_get.count', float), ('message_stats/deliver_get_details/rate', 'messages.deliver_get.rate', float), ('message_stats/publish', 'messages.publish.count', float), ('message_stats/publish_details/rate', 'messages.publish.rate', float), ('message_stats/publish_in', 'messages.publish_in.count', float), ('message_stats/publish_in_details/rate', 'messages.publish_in.rate', float), ('message_stats/publish_out', 'messages.publish_out.count', float), ('message_stats/publish_out_details/rate', 'messages.publish_out.rate', float), ('message_stats/return_unroutable', 'messages.return_unroutable.count', float), ('message_stats/return_unroutable_details/rate', 'messages.return_unroutable.rate', float), ('message_stats/redeliver', 'messages.redeliver.count', float), ('message_stats/redeliver_details/rate', 'messages.redeliver.rate', float), ] QUEUE_ATTRIBUTES = [ # Path, Name, Operation ('active_consumers', 'active_consumers', float), ('consumers', 'consumers', float), ('consumer_utilisation', 'consumer_utilisation', float), ('memory', 'memory', float), ('messages', 'messages', float), ('messages_details/rate', 'messages.rate', float), ('messages_ready', 'messages_ready', float), ('messages_ready_details/rate', 'messages_ready.rate', float), ('messages_unacknowledged', 'messages_unacknowledged', float), ('messages_unacknowledged_details/rate', 'messages_unacknowledged.rate', float), ('message_stats/ack', 'messages.ack.count', float), ('message_stats/ack_details/rate', 'messages.ack.rate', float), ('message_stats/deliver', 'messages.deliver.count', float), ('message_stats/deliver_details/rate', 'messages.deliver.rate', float), ('message_stats/deliver_get', 'messages.deliver_get.count', float), ('message_stats/deliver_get_details/rate', 'messages.deliver_get.rate', float), ('message_stats/publish', 'messages.publish.count', float), ('message_stats/publish_details/rate', 'messages.publish.rate', float), ('message_stats/redeliver', 'messages.redeliver.count', float), ('message_stats/redeliver_details/rate', 'messages.redeliver.rate', float), ] NODE_ATTRIBUTES = [ ('fd_used', 'fd_used', float), ('disk_free', 'disk_free', float), ('mem_used', 'mem_used', float), ('run_queue', 'run_queue', float), ('sockets_used', 'sockets_used', float), ('partitions', 'partitions', len), ('running', 'running', float), ('mem_alarm', 'mem_alarm', float), ('disk_free_alarm', 'disk_alarm', float), ] OVERVIEW_ATTRIBUTES = [ ("object_totals/connections", "object_totals.connections", float), ("object_totals/channels", "object_totals.channels", float), ("object_totals/queues", "object_totals.queues", float), ("object_totals/consumers", "object_totals.consumers", float), ("queue_totals/messages", "queue_totals.messages.count", float), ("queue_totals/messages_details/rate", "queue_totals.messages.rate", float), ("queue_totals/messages_ready", "queue_totals.messages_ready.count", float), ("queue_totals/messages_ready_details/rate", "queue_totals.messages_ready.rate", float), ("queue_totals/messages_unacknowledged", "queue_totals.messages_unacknowledged.count", float), ("queue_totals/messages_unacknowledged_details/rate", "queue_totals.messages_unacknowledged.rate", float), ('message_stats/ack', 'messages.ack.count', float), ('message_stats/ack_details/rate', 'messages.ack.rate', float), ('message_stats/confirm', 'messages.confirm.count', float), ('message_stats/confirm_details/rate', 'messages.confirm.rate', float), ('message_stats/deliver_get', 'messages.deliver_get.count', float), ('message_stats/deliver_get_details/rate', 'messages.deliver_get.rate', float), ('message_stats/publish', 'messages.publish.count', float), ('message_stats/publish_details/rate', 'messages.publish.rate', float), ('message_stats/publish_in', 'messages.publish_in.count', float), ('message_stats/publish_in_details/rate', 'messages.publish_in.rate', float), ('message_stats/publish_out', 'messages.publish_out.count', float), ('message_stats/publish_out_details/rate', 'messages.publish_out.rate', float), ('message_stats/return_unroutable', 'messages.return_unroutable.count', float), ('message_stats/return_unroutable_details/rate', 'messages.return_unroutable.rate', float), ('message_stats/redeliver', 'messages.redeliver.count', float), ('message_stats/redeliver_details/rate', 'messages.redeliver.rate', float), ] ATTRIBUTES = { EXCHANGE_TYPE: EXCHANGE_ATTRIBUTES, QUEUE_TYPE: QUEUE_ATTRIBUTES, NODE_TYPE: NODE_ATTRIBUTES, OVERVIEW_TYPE: OVERVIEW_ATTRIBUTES, } TAG_PREFIX = 'rabbitmq' TAGS_MAP = { EXCHANGE_TYPE: { 'name': 'exchange', 'vhost': 'vhost', 'exchange_family': 'exchange_family', }, QUEUE_TYPE: { 'node': 'node', 'name': 'queue', 'vhost': 'vhost', 'policy': 'policy', 'queue_family': 'queue_family', }, NODE_TYPE: { 'name': 'node', }, OVERVIEW_TYPE: { 'cluster_name': 'cluster' } } METRIC_SUFFIX = { EXCHANGE_TYPE: "exchange", QUEUE_TYPE: "queue", NODE_TYPE: "node", OVERVIEW_TYPE: "overview", } class RabbitMQException(Exception): pass class RabbitMQ(AgentCheck): """This check is for gathering statistics from the RabbitMQ Management Plugin (http://www.rabbitmq.com/management.html) """ def __init__(self, name, init_config, agentConfig, instances=None): AgentCheck.__init__(self, name, init_config, agentConfig, instances) self.already_alerted = [] self.cached_vhosts = {} # this is used to send CRITICAL rabbitmq.aliveness check if the server goes down def _get_config(self, instance): # make sure 'rabbitmq_api_url' is present and get parameters base_url = instance.get('rabbitmq_api_url', None) if not base_url: raise Exception('Missing "rabbitmq_api_url" in RabbitMQ config.') if not base_url.endswith('/'): base_url += '/' username = instance.get('rabbitmq_user', 'guest') password = instance.get('rabbitmq_pass', 'guest') custom_tags = instance.get('tags', []) parsed_url = urlparse(base_url) if not parsed_url.scheme or "://" not in parsed_url.geturl(): self.log.warning('The rabbit url did not include a protocol, assuming http') # urljoin cannot add a protocol to the rest of the url for some reason. # This still leaves the potential for errors, but such urls would never have been valid, either # and it's not likely to be useful to attempt to catch all possible mistakes people could make. # urlparse also has a known issue parsing url with no schema, but a port in the host section # mistakingly taking the host for the schema, hence the additional validation base_url = 'http://' + base_url parsed_url = urlparse(base_url) suppress_warning = False ssl_verify = is_affirmative(instance.get('ssl_verify', True)) if not ssl_verify and parsed_url.scheme == 'https': # Only allow suppressing the warning if not ssl_verify suppress_warning = instance.get('ignore_ssl_warning', False) self.log.warning('Skipping SSL cert validation for %s based on configuration.' % (base_url)) # Limit of queues/nodes to collect metrics from max_detailed = { EXCHANGE_TYPE: int(instance.get('max_detailed_exchanges', MAX_DETAILED_EXCHANGES)), QUEUE_TYPE: int(instance.get('max_detailed_queues', MAX_DETAILED_QUEUES)), NODE_TYPE: int(instance.get('max_detailed_nodes', MAX_DETAILED_NODES)), } # List of queues/nodes to collect metrics from specified = { EXCHANGE_TYPE: { 'explicit': instance.get('exchanges', []), 'regexes': instance.get('exchanges_regexes', []), }, QUEUE_TYPE: { 'explicit': instance.get('queues', []), 'regexes': instance.get('queues_regexes', []), }, NODE_TYPE: { 'explicit': instance.get('nodes', []), 'regexes': instance.get('nodes_regexes', []), }, } for object_type, filters in iteritems(specified): for _, filter_objects in iteritems(filters): if type(filter_objects) != list: raise TypeError( "{0} / {0}_regexes parameter must be a list".format(object_type)) auth = (username, password) return base_url, max_detailed, specified, auth, ssl_verify, custom_tags, suppress_warning def _get_vhosts(self, instance, base_url, auth=None, ssl_verify=True): vhosts = instance.get('vhosts') if not vhosts: # Fetch a list of _all_ vhosts from the API. vhosts_url = urljoin(base_url, 'vhosts') vhost_proxy = self.get_instance_proxy(instance, vhosts_url) vhosts_response = self._get_data(vhosts_url, auth=auth, ssl_verify=ssl_verify, proxies=vhost_proxy) vhosts = [v['name'] for v in vhosts_response] return vhosts def check(self, instance): base_url, max_detailed, specified, auth, ssl_verify, custom_tags, suppress_warning = self._get_config(instance) try: with warnings.catch_warnings(): vhosts = self._get_vhosts(instance, base_url, auth=auth, ssl_verify=ssl_verify) self.cached_vhosts[base_url] = vhosts limit_vhosts = [] if self._limit_vhosts(instance): limit_vhosts = vhosts # Suppress warnings from urllib3 only if ssl_verify is set to False and ssl_warning is set to False if suppress_warning: warnings.simplefilter('ignore', InsecureRequestWarning) # Generate metrics from the status API. self.get_stats(instance, base_url, EXCHANGE_TYPE, max_detailed[EXCHANGE_TYPE], specified[EXCHANGE_TYPE], limit_vhosts, custom_tags, auth=auth, ssl_verify=ssl_verify) self.get_stats(instance, base_url, QUEUE_TYPE, max_detailed[QUEUE_TYPE], specified[QUEUE_TYPE], limit_vhosts, custom_tags, auth=auth, ssl_verify=ssl_verify) self.get_stats(instance, base_url, NODE_TYPE, max_detailed[NODE_TYPE], specified[NODE_TYPE], limit_vhosts, custom_tags, auth=auth, ssl_verify=ssl_verify) self.get_overview_stats(instance, base_url, custom_tags, auth=auth, ssl_verify=ssl_verify) self.get_connections_stat(instance, base_url, CONNECTION_TYPE, vhosts, limit_vhosts, custom_tags, auth=auth, ssl_verify=ssl_verify) # Generate a service check from the aliveness API. In the case of an invalid response # code or unparseable JSON this check will send no data. self._check_aliveness(instance, base_url, vhosts, custom_tags, auth=auth, ssl_verify=ssl_verify) # Generate a service check for the service status. self.service_check('rabbitmq.status', AgentCheck.OK, custom_tags) except RabbitMQException as e: msg = "Error executing check: {}".format(e) self.service_check('rabbitmq.status', AgentCheck.CRITICAL, custom_tags, message=msg) self.log.error(msg) # tag every vhost as CRITICAL or they would keep the latest value, OK, in case the RabbitMQ server goes down msg = "error while contacting rabbitmq ({}), setting aliveness to CRITICAL for vhosts: {}".format( base_url, self.cached_vhosts ) self.log.error(msg) for vhost in self.cached_vhosts.get(base_url, []): self.service_check('rabbitmq.aliveness', AgentCheck.CRITICAL, ['vhost:{}'.format(vhost)] + custom_tags, message="Could not contact aliveness API") def _get_data(self, url, auth=None, ssl_verify=True, proxies=None): if proxies is None: proxies = {} try: r = requests.get(url, auth=auth, proxies=proxies, timeout=self.default_integration_http_timeout, verify=ssl_verify) r.raise_for_status() return r.json() except RequestException as e: raise RabbitMQException('Cannot open RabbitMQ API url: {} {}'.format(url, str(e))) except ValueError as e: raise RabbitMQException('Cannot parse JSON response from API url: {} {}'.format(url, str(e))) def _filter_list(self, data, explicit_filters, regex_filters, object_type, tag_families): if explicit_filters or regex_filters: matching_lines = [] for data_line in data: name = data_line.get("name") if name in explicit_filters: matching_lines.append(data_line) explicit_filters.remove(name) continue match_found = False for p in regex_filters: match = re.search(p, name) if match: if is_affirmative(tag_families) and match.groups(): if object_type == QUEUE_TYPE: data_line["queue_family"] = match.groups()[0] if object_type == EXCHANGE_TYPE: data_line["exchange_family"] = match.groups()[0] matching_lines.append(data_line) match_found = True break if match_found: continue # Absolute names work only for queues and exchanges if object_type != QUEUE_TYPE and object_type != EXCHANGE_TYPE: continue absolute_name = '{}/{}'.format(data_line.get("vhost"), name) if absolute_name in explicit_filters: matching_lines.append(data_line) explicit_filters.remove(absolute_name) continue for p in regex_filters: match = re.search(p, absolute_name) if match: if is_affirmative(tag_families) and match.groups(): if object_type == QUEUE_TYPE: data_line["queue_family"] = match.groups()[0] if object_type == EXCHANGE_TYPE: data_line["exchange_family"] = match.groups()[0] matching_lines.append(data_line) match_found = True break if match_found: continue return matching_lines return data def _get_tags(self, data, object_type, custom_tags): tags = [] tag_list = TAGS_MAP[object_type] for t in tag_list: tag = data.get(t) if tag: # FIXME 6.x: remove this suffix or unify (sc doesn't have it) tags.append('{}_{}:{}'.format(TAG_PREFIX, tag_list[t], tag)) return tags + custom_tags def get_stats(self, instance, base_url, object_type, max_detailed, filters, limit_vhosts, custom_tags, auth=None, ssl_verify=True): """ instance: the check instance base_url: the url of the rabbitmq management api (e.g. http://localhost:15672/api) object_type: either QUEUE_TYPE or NODE_TYPE or EXCHANGE_TYPE max_detailed: the limit of objects to collect for this type filters: explicit or regexes filters of specified queues or nodes (specified in the yaml file) """ instance_proxy = self.get_instance_proxy(instance, base_url) # Make a copy of this list as we will remove items from it at each # iteration explicit_filters = list(filters['explicit']) regex_filters = filters['regexes'] data = [] # only do this if vhosts were specified, # otherwise it'll just be making more queries for the same data if self._limit_vhosts(instance) and object_type == QUEUE_TYPE: for vhost in limit_vhosts: url = '{}/{}'.format(object_type, quote_plus(vhost)) try: data += self._get_data(urljoin(base_url, url), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy) except Exception as e: self.log.debug("Couldn't grab queue data from vhost, {}: {}".format(vhost, e)) else: data = self._get_data(urljoin(base_url, object_type), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy) """ data is a list of nodes or queues: data = [ { 'status': 'running', 'node': 'rabbit@host', 'name': 'queue1', 'consumers': 0, 'vhost': '/', 'backing_queue_status': { 'q1': 0, 'q3': 0, 'q2': 0, 'q4': 0, 'avg_ack_egress_rate': 0.0, 'ram_msg_count': 0, 'ram_ack_count': 0, 'len': 0, 'persistent_count': 0, 'target_ram_count': 'infinity', 'next_seq_id': 0, 'delta': ['delta', 'undefined', 0, 'undefined'], 'pending_acks': 0, 'avg_ack_ingress_rate': 0.0, 'avg_egress_rate': 0.0, 'avg_ingress_rate': 0.0 }, 'durable': True, 'idle_since': '2013-10-03 13:38:18', 'exclusive_consumer_tag': '', 'arguments': {}, 'memory': 10956, 'policy': '', 'auto_delete': False }, { 'status': 'running', 'node': 'rabbit@host, 'name': 'queue10', 'consumers': 0, 'vhost': '/', 'backing_queue_status': { 'q1': 0, 'q3': 0, 'q2': 0, 'q4': 0, 'avg_ack_egress_rate': 0.0, 'ram_msg_count': 0, 'ram_ack_count': 0, 'len': 0, 'persistent_count': 0, 'target_ram_count': 'infinity', 'next_seq_id': 0, 'delta': ['delta', 'undefined', 0, 'undefined'], 'pending_acks': 0, 'avg_ack_ingress_rate': 0.0, 'avg_egress_rate': 0.0, 'avg_ingress_rate': 0.0 }, 'durable': True, 'idle_since': '2013-10-03 13:38:18', 'exclusive_consumer_tag': '', 'arguments': {}, 'memory': 10956, 'policy': '', 'auto_delete': False }, { 'status': 'running', 'node': 'rabbit@host', 'name': 'queue11', 'consumers': 0, 'vhost': '/', 'backing_queue_status': { 'q1': 0, 'q3': 0, 'q2': 0, 'q4': 0, 'avg_ack_egress_rate': 0.0, 'ram_msg_count': 0, 'ram_ack_count': 0, 'len': 0, 'persistent_count': 0, 'target_ram_count': 'infinity', 'next_seq_id': 0, 'delta': ['delta', 'undefined', 0, 'undefined'], 'pending_acks': 0, 'avg_ack_ingress_rate': 0.0, 'avg_egress_rate': 0.0, 'avg_ingress_rate': 0.0 }, 'durable': True, 'idle_since': '2013-10-03 13:38:18', 'exclusive_consumer_tag': '', 'arguments': {}, 'memory': 10956, 'policy': '', 'auto_delete': False }, ... ] """ if len(explicit_filters) > max_detailed: raise Exception( "The maximum number of {} you can specify is {}.".format(object_type, max_detailed)) # a list of queues/nodes is specified. We process only those data = self._filter_list(data, explicit_filters, regex_filters, object_type, instance.get("tag_families", False)) # if no filters are specified, check everything according to the limits if len(data) > ALERT_THRESHOLD * max_detailed: # Post a message on the dogweb stream to warn self.alert(base_url, max_detailed, len(data), object_type, custom_tags) if len(data) > max_detailed: # Display a warning in the info page msg = ("Too many items to fetch. " "You must choose the {} you are interested in by editing the rabbitmq.yaml configuration file" "or get in touch with Datadog support").format(object_type) self.warning(msg) for data_line in data[:max_detailed]: # We truncate the list if it's above the limit self._get_metrics(data_line, object_type, custom_tags) # get a list of the number of bindings on a given queue # /api/queues/vhost/name/bindings if object_type is QUEUE_TYPE: self._get_queue_bindings_metrics(base_url, custom_tags, data, instance_proxy, instance, object_type, auth, ssl_verify) def get_overview_stats(self, instance, base_url, custom_tags, auth=None, ssl_verify=True): instance_proxy = self.get_instance_proxy(instance, base_url) data = self._get_data(urljoin(base_url, "overview"), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy) self._get_metrics(data, OVERVIEW_TYPE, custom_tags) def _get_metrics(self, data, object_type, custom_tags): tags = self._get_tags(data, object_type, custom_tags) for attribute, metric_name, operation in ATTRIBUTES[object_type]: # Walk down through the data path, e.g. foo/bar => d['foo']['bar'] root = data keys = attribute.split('/') for path in keys[:-1]: root = root.get(path, {}) value = root.get(keys[-1], None) if value is not None: try: self.gauge('rabbitmq.{}.{}'.format( METRIC_SUFFIX[object_type], metric_name), operation(value), tags=tags) except ValueError: self.log.debug("Caught ValueError for {} {} = {} with tags: {}".format( METRIC_SUFFIX[object_type], attribute, value, tags)) def _get_queue_bindings_metrics(self, base_url, custom_tags, data, instance_proxy, instance, object_type, auth=None, ssl_verify=True): for item in data: vhost = item['vhost'] tags = self._get_tags(item, object_type, custom_tags) url = '{}/{}/{}/bindings'.format(QUEUE_TYPE, quote_plus(vhost), quote_plus(item['name'])) bindings_count = len(self._get_data(urljoin(base_url, url), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy)) self.gauge('rabbitmq.queue.bindings.count', bindings_count, tags) def get_connections_stat(self, instance, base_url, object_type, vhosts, limit_vhosts, custom_tags, auth=None, ssl_verify=True): """ Collect metrics on currently open connection per vhost. """ instance_proxy = self.get_instance_proxy(instance, base_url) grab_all_data = True if self._limit_vhosts(instance): grab_all_data = False data = [] for vhost in vhosts: url = "vhosts/{}/{}".format(quote_plus(vhost), object_type) try: data += self._get_data(urljoin(base_url, url), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy) except Exception as e: # This will happen if there is no connection data to grab self.log.debug("Couldn't grab connection data from vhost, {}: {}".format(vhost, e)) # sometimes it seems to need to fall back to this if grab_all_data or not len(data): data = self._get_data(urljoin(base_url, object_type), auth=auth, ssl_verify=ssl_verify, proxies=instance_proxy) stats = {vhost: 0 for vhost in vhosts} connection_states = defaultdict(int) for conn in data: if conn['vhost'] in vhosts: stats[conn['vhost']] += 1 # 'state' does not exist for direct type connections. connection_states[conn.get('state', 'direct')] += 1 for vhost, nb_conn in iteritems(stats): self.gauge('rabbitmq.connections', nb_conn, tags=['{}_vhost:{}'.format(TAG_PREFIX, vhost)] + custom_tags) for conn_state, nb_conn in iteritems(connection_states): self.gauge('rabbitmq.connections.state', nb_conn, tags=['{}_conn_state:{}'.format(TAG_PREFIX, conn_state)] + custom_tags) def alert(self, base_url, max_detailed, size, object_type, custom_tags): key = "{}{}".format(base_url, object_type) if key in self.already_alerted: # We have already posted an event return self.already_alerted.append(key) title = ( "RabbitMQ integration is approaching the limit on the number of {} that can be collected from on {}" ).format(object_type, self.hostname) msg = ( "{} {} are present. The limit is {}. Please get in touch with Datadog support to increase the limit." ).format(size, object_type, max_detailed) event = { "timestamp": int(time.time()), "event_type": EVENT_TYPE, "msg_title": title, "msg_text": msg, "alert_type": 'warning', "source_type_name": SOURCE_TYPE_NAME, "host": self.hostname, "tags": ["base_url:{}".format(base_url), "host:{}".format(self.hostname)] + custom_tags, "event_object": "rabbitmq.limit.{}".format(object_type), } self.event(event) def _limit_vhosts(self, instance): """ Check to see if vhosts were specified in the instance it will return a boolean, True if they were. This allows the check to only query the wanted vhosts. """ vhosts = instance.get('vhosts', []) return len(vhosts) > 0 def _check_aliveness(self, instance, base_url, vhosts, custom_tags, auth=None, ssl_verify=True): """ Check the aliveness API against all or a subset of vhosts. The API will return {"status": "ok"} and a 200 response code in the case that the check passes. """ for vhost in vhosts: tags = ['vhost:{}'.format(vhost)] + custom_tags # We need to urlencode the vhost because it can be '/'. path = u'aliveness-test/{}'.format(quote_plus(vhost)) aliveness_url = urljoin(base_url, path) aliveness_proxy = self.get_instance_proxy(instance, aliveness_url) aliveness_response = self._get_data(aliveness_url, auth=auth, ssl_verify=ssl_verify, proxies=aliveness_proxy) message = u"Response from aliveness API: {}".format(aliveness_response) if aliveness_response.get('status') == 'ok': status = AgentCheck.OK else: status = AgentCheck.CRITICAL self.service_check('rabbitmq.aliveness', status, tags, message=message)
the-stack_106_32150
import os from datetime import date from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.http.response import Http404 from django.shortcuts import get_object_or_404 from jinja2 import TemplateSyntaxError from requests.exceptions import ConnectionError, HTTPError from rest_framework import status, viewsets from rest_framework.decorators import action from rest_framework.exceptions import PermissionDenied from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from terra_accounts.permissions import TokenBasedPermission from terracommon.document_generator.helpers import get_media_response from terracommon.trrequests.models import UserRequest from .helpers import DocumentGenerator from .models import DocumentTemplate, DownloadableDocument from .serializers import DocumentTemplateSerializer class DocumentTemplateViewSets(viewsets.ModelViewSet): queryset = DocumentTemplate.objects.none() serializer_class = DocumentTemplateSerializer permission_classes = (IsAuthenticated, ) def get_queryset(self, *args, **kwargs): if self.request.user.has_module_perms('document_generator'): return DocumentTemplate.objects.all() return DocumentTemplate.objects.none() def create(self, request, *args, **kwargs): if not request.user.has_perm( 'document_generator.can_upload_template'): raise PermissionDenied return super().create(request, *args, **kwargs) def update(self, request, *args, **kwargs): if not request.user.has_perm( 'document_generator.can_update_template'): raise PermissionDenied return super().update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): if not request.user.has_perm( 'document_generator.can_delete_template'): raise PermissionDenied return super().destroy(request, *args, **kwargs) @action(detail=True, methods=['get'], permission_classes=(TokenBasedPermission,)) def file(self, request, pk=None): document = self.get_object().documenttemplate if not document: raise Http404('Attachment does not exist') response = get_media_response( request, document, headers={ 'Content-Disposition': ( 'attachment;' f' filename={document.name}'), } ) return response @action(detail=True, methods=['get'], url_name='pdf', url_path='pdf/(?P<request_pk>[^/.]+)', permission_classes=(TokenBasedPermission,)) def pdf_creator(self, request, pk=None, request_pk=None): """ Insert data from user request into a template & convert it to pdf <pk>: template's id <request_pk>: user request's id """ userrequest = get_object_or_404(UserRequest, pk=request_pk) template = get_object_or_404(DocumentTemplate, pk=pk) userrequest_type = ContentType.objects.get_for_model( userrequest) downloadable_properties = { 'document': template, 'content_type': userrequest_type, 'object_id': userrequest.pk, } if not ((request.user.is_superuser or request.user.has_perm('trrequests.can_download_all_pdf') or request.user.downloadabledocument_set.filter( **downloadable_properties).exists())): return Response(status=status.HTTP_404_NOT_FOUND) try: pdf_generator = DocumentGenerator( DownloadableDocument.objects.get(**downloadable_properties) ) pdf_path = pdf_generator.get_pdf() except FileNotFoundError: return Response(status=status.HTTP_404_NOT_FOUND) except (ConnectionError, HTTPError): return Response(status=status.HTTP_503_SERVICE_UNAVAILABLE) except TemplateSyntaxError: return Response( status=status.HTTP_500_INTERNAL_SERVER_ERROR, data='malformed template' ) else: pdf_url = os.path.join(settings.MEDIA_URL, pdf_path) filename = f'document_{date.today().__str__()}.pdf' response = get_media_response( request, {'path': pdf_path, 'url': pdf_url}, headers={ 'Content-Type': 'application/pdf', 'Content-disposition': f'attachment;filename={filename}' } ) return response
the-stack_106_32155
from memrise import Course, Data file = 'test.db' db = Data(file) course = Course(2157577) # Create file database output db = Data(file) # Connect to file database and init db.init_database() # Update information about the course db.update_course(course) # Update IPA for database db.update_ipa() # Translate the vocabulary to your own language db.update_trans('vi') # Close the database db.close()
the-stack_106_32157
import requests import random import sys cat_url = "https://cat-fact.herokuapp.com/facts" r = requests.get(cat_url) r_obj_list = r.json() fact_list = [] for fact in r_obj_list: fact_list.append(fact["text"]) def select_random_fact(fact_arr): return fact_arr[random.randint(0, len(fact_list) + 1)] random_fact = select_random_fact(fact_list) print(random_fact) print(f"::set-output name=fact::{random_fact}")
the-stack_106_32161
''' NOTICE This module was solely developed under MITRE corporation internal funding project code 10AOH630-CA Approved for Public Release; Distribution Unlimited. Public Release Case Number 20-1780. (c) 2020 The MITRE Corporation. ALL RIGHTS RESERVED. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import trace import matplotlib.pyplot def trace_model_demo(population=20, tm=-1): # This demo generates and analyzes a random TRACE model if tm==-1: # If a TRACE model is not provided, generate one. This function # generates a TRACE model directly based on a number of nodes, a # fraction of connections relative to a fully-connected graph, and a # number of unique threat concepts that are randomly distributed # across those connections. Note that all graphs in TRACE are directed # graphs with cycles. print ("Generating random TRACE model") tm = trace.generate.trace_model.random(population, 1.5/population, int(population/2)+1) # Run analyses # The find_time function finds the time that a trace model has any completed # path with a given probability by aging a model to different times # hunt_depth is an optional parameter that is set higher here to give a more # interesting visual and higher accuracy results for the demo, in practice # it's not generally necessary to have high accuracy for most uses of this medianTTC, median_results = trace.montecarlo.find_time(tm, .5, verbose=True, hunt_depth=100) # The find_mean function ages a model to specific set intervals over and # over to characterize the overall distribution # node_details is an optional parameter to capture detailed information on # a per-node basis, which has a mild impact on computation time # cc is an optional parameter which lets the user specify convergence # criteria in terms of (number of consecutive samples that must meet # criteria, max probability delta across those samples, max days % change # across those samples), however the probability delta isn't used for # the find_mean function, only for the find_time function mean, mean_results = trace.montecarlo.find_mean(tm, node_details=True, verbose=True, cc=(100,.01,.01)) # To turn find_mean into an MTTI analysis, just add the optional involvement # parameter and set it to true. This makes the function call the MTTI # algorithm instead of the MTTC algorithm. The MTTC algorithm uses a # simple spanning tree, but MTTI does an exhaustive recursive backtracking # through the entire graph every time step, which is much more work mtti, mtti_results = trace.montecarlo.find_mean(tm, node_details=True, involvement=True, verbose=True, cc=(100,.01,.01), timeframe=mean_results["timeframe"]) # Output some visuals # The trace.plot module provides a few visuals using standard packages print ("\nPlotting data") figure = matplotlib.pyplot.figure() plot=figure.add_subplot(231) plot.set_title('Generated TRACE Graph') # The trace_model function plots a basic trace model with or without results trace.plot.trace_model(tm) plot=figure.add_subplot(234) plot.set_title('Median TTC: ' + str(round(medianTTC, 2)) + '\n\n\nMedian TTC Convergence\n' + str(median_results["histories"]) + " Steps") plot.set_xlabel("Trial") # The find_time and find_mean functions return information about convergence # which is plotted here plot.plot([x for x in range(len(median_results["t"]))], median_results["t"], "b") plot.set_ylabel("Days to compromise (blue)") plot = plot.twinx() plot.plot([x for x in range(len(median_results["p"]))], median_results["p"], "r") plot.set_ylabel('Probability (red)') plot = figure.add_subplot(232) plot.set_title('MTTC Result') # To make the trace.plot.trace_model function plot a gradient color scale # for MTTC analysis results, also pass the results returned by find_mean trace.plot.trace_model(tm, mean_results) plot=figure.add_subplot(235) plot.set_title('MTTC: ' + str(round(mean, 2)) + '\n\n\nMean TTC Convergence\n' + str(mean_results["histories"] * mean_results["resolution"]) + " Steps") plot.set_xlabel("Trial") plot.plot([x for x in range(len(mean_results["t"]))], mean_results["t"], "b") plot.plot([x for x in range(len(mean_results["mu"]))], mean_results["mu"], "r") plot.set_ylabel('Trial compromise time (blue)\nand running average (red)') plot = figure.add_subplot(233) plot.set_title('MTTI Result') # To make trace.plot.trace_model plot the MTTI, use the involvement option trace.plot.trace_model(tm, mtti_results, involvement=True) plot=figure.add_subplot(236) plot.set_title('MTTC from MTTI: ' + str(round(mtti, 2)) + '\n(Should match)\n\nMean TTI Convergence\n' + str(mtti_results["histories"] * mtti_results["resolution"]) + " Steps") plot.set_xlabel("Trial") plot.plot([x for x in range(len(mtti_results["t"]))], mtti_results["t"], "b") plot.plot([x for x in range(len(mtti_results["mu"]))], mtti_results["mu"], "r") plot.set_ylabel('Trial overall compromise time (blue)\nand running average (red)') matplotlib.pyplot.get_current_fig_manager().window.showMaximized() matplotlib.pyplot.tight_layout() matplotlib.pyplot.show() if __name__=="__main__": trace_model_demo()
the-stack_106_32163
""" This is a job script for running NPG/DAPG on hand tasks and other gym envs. Note that DAPG generalizes PG and BC init + PG finetuning. With appropriate settings of parameters, we can recover the full family. """ from mjrl.utils.gym_env import GymEnv from mjrl.policies.gaussian_mlp import MLP from mjrl.baselines.quadratic_baseline import QuadraticBaseline from mjrl.baselines.mlp_baseline import MLPBaseline from mjrl.algos.npg_cg import NPG from mjrl.algos.dapg import DAPG from mjrl.algos.behavior_cloning import BC from mjrl.utils.train_agent import train_agent from mjrl.samplers.core import sample_paths import os import json import mjrl.envs # import mj_envs import time as timer import pickle import argparse # =============================================================================== # Get command line arguments # =============================================================================== parser = argparse.ArgumentParser(description='Policy gradient algorithms with demonstration data.') parser.add_argument('--output', type=str, required=True, help='location to store results') parser.add_argument('--config', type=str, required=True, help='path to config file with exp params') args = parser.parse_args() JOB_DIR = args.output if not os.path.exists(JOB_DIR): os.mkdir(JOB_DIR) with open(args.config, 'r') as f: job_data = eval(f.read()) assert 'algorithm' in job_data.keys() assert any([job_data['algorithm'] == a for a in ['NPG', 'BCRL', 'DAPG']]) job_data['lam_0'] = 0.0 if 'lam_0' not in job_data.keys() else job_data['lam_0'] job_data['lam_1'] = 0.0 if 'lam_1' not in job_data.keys() else job_data['lam_1'] EXP_FILE = JOB_DIR + '/job_config.json' with open(EXP_FILE, 'w') as f: json.dump(job_data, f, indent=4) # =============================================================================== # Train Loop # =============================================================================== e = GymEnv(job_data['env']) spec = e.spec # pickle.dump(e.spec, open('envspec.pickle', 'wb')) # import sys # sys.exit() # spec = pickle.load(open('envspec.pickle','rb')) policy = MLP(spec, hidden_sizes=job_data['policy_size'], seed=job_data['seed'], init_log_std=job_data['init_log_std']) baseline = MLPBaseline(spec, reg_coef=1e-3, batch_size=job_data['vf_batch_size'], epochs=job_data['vf_epochs'], learn_rate=job_data['vf_learn_rate']) # Get demonstration data if necessary and behavior clone if job_data['algorithm'] != 'NPG': print("========================================") print("Collecting expert demonstrations") print("========================================") demo_paths = pickle.load(open(job_data['demo_file'], 'rb')) bc_agent = BC(demo_paths, policy=policy, epochs=job_data['bc_epochs'], batch_size=job_data['bc_batch_size'], lr=job_data['bc_learn_rate'], loss_type='MSE', set_transforms=False) in_shift, in_scale, out_shift, out_scale = bc_agent.compute_transformations() bc_agent.set_transformations(in_shift, in_scale, out_shift, out_scale) bc_agent.set_variance_with_data(out_scale) ts = timer.time() print("========================================") print("Running BC with expert demonstrations") print("========================================") bc_agent.train() print("========================================") print("BC training complete !!!") print("time taken = %f" % (timer.time() - ts)) print("========================================") if job_data['eval_rollouts'] >= 1: # % with constant start state and goal, just 1 episode is sufficient. score = e.evaluate_policy(policy, num_episodes=1, mean_action=True, visual=False) print("Score with behavior cloning = %f" % score[0][0]) if job_data['algorithm'] != 'DAPG': # We throw away the demo data when training from scratch or fine-tuning with RL without explicit augmentation demo_paths = None # =============================================================================== # RL Loop # =============================================================================== # e = GymEnv(job_data['env']) # e=[] rl_agent = DAPG(e, policy, baseline, demo_paths, normalized_step_size=job_data['rl_step_size'], lam_0=job_data['lam_0'], lam_1=job_data['lam_1'], seed=job_data['seed'], save_logs=True ) # import pybullet as p # p.disconnect() # del e print("========================================") print("Starting reinforcement learning phase") print("========================================") ts = timer.time() train_agent(job_name=JOB_DIR, agent=rl_agent, seed=job_data['seed'], niter=job_data['rl_num_iter'], gamma=job_data['rl_gamma'], gae_lambda=job_data['rl_gae'], num_cpu=job_data['num_cpu'], sample_mode='trajectories', num_traj=job_data['rl_num_traj'], save_freq=job_data['save_freq'], evaluation_rollouts=job_data['eval_rollouts']) print("time taken = %f" % (timer.time()-ts))
the-stack_106_32165
'''BlockMacro, define a macro. :copyright: 2015, Jeroen van der Heijden (Cesbit) ''' import re from .exceptions import DefineBlockError from .constants import ALWAYS_ALLOWED, LINE_END class BlockMacro: RE_MACRO = re.compile(r'^\s*#macro\s+([a-zA-Z0-9_]+)\s*:\s*$', re.UNICODE) def __init__(self, lines): '''Initialize #macro.''' from .block import Block self._name = self._compile(lines) self._block = Block(lines, allowed=ALWAYS_ALLOWED | LINE_END) def render(self, namespace): '''Add the macro to the namespace. Note: at this point the macro will be rendered. ''' namespace.add_macro(self._name, self._block) return None @classmethod def _compile(cls, lines): '''Return the macro name from the current line.''' m = cls.RE_MACRO.match(lines.current) if m is None: raise DefineBlockError( 'Incorrect macro definition at line {}, {}\nShould be ' 'something like: #macro my_macro:' .format(lines.pos, lines.current)) return m.group(1)
the-stack_106_32167
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-节点管理(BlueKing-BK-NODEMAN) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.test import TestCase from mock import patch from apps.backend.api.constants import OS from apps.backend.components.collections.job import JobFastPushFileComponent from apps.backend.tests.components.collections.job import utils from pipeline.component_framework.test import ( ComponentTestCase, ComponentTestMixin, ExecuteAssertion, Patcher, ScheduleAssertion, ) class JobFastPushFileComponentTestCase(TestCase, ComponentTestMixin): JOB_CLIENT = {"bk_biz_id": 2, "username": "admin", "os_type": OS.LINUX} TASK_RESULT = { "success": [{"ip": "127.0.0.1", "bk_cloud_id": 0, "log_content": "success", "error_code": 0, "exit_code": 0}], "pending": [], "failed": [], } JOB_FAST_PUSH_FILE = { "job_client": JOB_CLIENT, "ip_list": [{"ip": "127.0.0.1", "bk_supplier_id": 0, "bk_cloud_id": 0}], "file_target_path": "/data/", "file_source": [ { "files": ["/data/dev_pipeline_unit_test"], "account": "root", "ip_list": [{"bk_cloud_id": 0, "ip": "127.0.0.1", "bk_supplier_id": 0}], } ], } def setUp(self): self.job_client = utils.JobMockClient( fast_push_file_return=utils.JOB_EXECUTE_TASK_RETURN, get_job_instance_log_return=utils.JOB_GET_INSTANCE_LOG_RETURN, ) patch(utils.JOB_VERSION_MOCK_PATH, "V3").start() def component_cls(self): # return the component class which should be tested return JobFastPushFileComponent def cases(self): # return your component test cases here return [ ComponentTestCase( name="测试成功快速上传文件", inputs=self.JOB_FAST_PUSH_FILE, parent_data={}, execute_assertion=ExecuteAssertion( success=True, outputs={"job_instance_id": utils.TASK_ID, "polling_time": 0}, ), schedule_assertion=ScheduleAssertion( success=True, outputs={"polling_time": 0, "task_result": self.TASK_RESULT, "job_instance_id": utils.TASK_ID}, callback_data=None, schedule_finished=True, ), patchers=[Patcher(target=utils.JOB_CLIENT_MOCK_PATH, return_value=self.job_client)], ) ]
the-stack_106_32169
''' scan_instances ============== NOTE: not currently tested code. The following methods allow for interaction into the Tenable.sc `Scan Result <https://docs.tenable.com/sccv/api/Scan-Result.html>`_ API. While the Tenable.sc API refers to the model these endpoints interact with as *ScanResult*, were actually interacting with an instance of a scan definition stored within the *Scan* API endpoints. These scan instances could be running scans, stopped scans, errored scans, or completed scans. These items are typically seen under the **Scan Results** section of Tenable.sc. Methods available on ``sc.scan_instances``: .. rst-class:: hide-signature .. autoclass:: ScanResultAPI .. automethod:: copy .. automethod:: delete .. automethod:: details .. .. automethod:: email .. automethod:: export_scan .. automethod:: import_scan .. automethod:: list .. automethod:: pause .. automethod:: reimport_scan .. automethod:: resume .. automethod:: stop ''' from .base import SCEndpoint from tenable.utils import dict_merge from io import BytesIO class ScanResultAPI(SCEndpoint): def copy(self, id, users=None): ''' Clones the scan instance. + `SC ScanResult Copy <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/copy>`_ Args: id (int): The identifier of the scan instance to clone. users (list, optional): A list of user ids to associate to the scan instance. Returns: dict Examples: >>> sc.scan_instances.copy(1) ''' payload = dict() if users: payload['users'] = [{'id': self_check('user:id', u, int)} for u in self._check('users', users, list)] return self._api.post('scanResult/{}/copy'.format( self._check('id', id, int)), json=payload).json()['response'] def delete(self, id): ''' Removes the scan instance from TenableSC. + `SC ScanResult Delete <https://docs.tenable.com/sccv/api/Scan-Result.html#scanResult_id_DELETE>`_ Args: id (int): The identifier of the scan instance to delete. Returns: dict Examples: >>> sc.scan_instances.delete(1) ''' return self._api.delete('scanResult/{}'.format( self._check('id', id, int))).json()['response'] def details(self, id, fields=None): ''' Retreives the details for the specified scan instance. + `SC ScanResult <https://docs.tenable.com/sccv/api/Scan-Result.html#scanResult_id_GET>`_ Args: id (int): The identifier for the scan instance to be retrieved. fields (list, optional): List of fields to return. Refer to the API documentation referenced above for a list of available fields. Returns: dict: The scan instance resource record. Examples: Getting the details of a scan instance with just the default parameters: >>> scan = sc.scan_instances.details(1) >>> pprint(scan) Specifying what fields you'd like to be returned: >>> scan = sc.scan_instances.details(1, ... fields=['name', 'status', 'scannedIPs', 'startTime', 'finishTime']) >>> pprint(scan) ''' params = dict() if fields: params['fields'] = ','.join([self._check('field', f, str) for f in self._check('fields', fields, list)]) return self._api.get('scanResult/{}'.format(self._check('id', id, int)), params=params).json()['response'] def email(self, id, *emails): ''' DOC-ISSUE: SC Api Docs do not explain what this does. + `SC ScanResult Email <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/email>`_ Args: id (int): The identifier for the specified scan instance. *emails (str): Valid email Returns: dict Examples: >>> sc.scan_instances.email(1, ) ''' return self._api.post('scanResult/{}/email'.format( self._check('id', id, int)), json={'email': ','.join( [self._check('address', e, str) for e in self._check('emails', emails, list)])}).json()['response'] def export_scan(self, id, fobj=None, export_format=None): ''' Downloads the results of the scan. + `SC ScanResult Download <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/download>`_ Args: id (int): The scan instance identifier. export_format (str, optional): The format of the resulting data. Allowable values are ``scap1_2`` and ``v2``. ``v2`` is the default value if none are specified. fobj (FileObject, optional): The file-like object to write the resulting file into. If no file-like object is provided, a BytesIO objects with the downloaded file will be returned. Be aware that the default option of using a BytesIO object means that the file will be stored in memory, and it's generally recommended to pass an actual file-object to write to instead. Returns: FileObject: The file-like object with the resulting export. Examples: >>> with open('example.nessus', 'wb') as fobj: ... sc.scan_instances.export(1, fobj) ''' resp = self._api.post('scanResult/{}/download'.format( self._check('id', id, int)), stream=True, json={ 'downloadType': self._check('export_format', export_format, str, choices=['scap1_2', 'v2'], default='v2')}) # if no file-like object was passed, then we will instantiate a BytesIO # object to push the file into. if not fobj: fobj = BytesIO() # Lets stream the file into the file-like object... for chunk in resp.iter_content(chunk_size=1024): if chunk: fobj.write(chunk) fobj.seek(0) return fobj def import_scan(self, fobj, repo, **kw): ''' Imports a nessus file into Tenable.sc. + `SC Scan Import <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/import>`_ Args: fobj (FileObject): The file-like object containing the Nessus file to import. repo (int): The repository id for the scan. auto_mitigation (int, optional): How many days to hold on to data before mitigating it? The default value is 0. host_tracking (bool, optional): Should DHCP host tracking be enabled? The default is False. vhosts (bool, optional): Should virtual host logic be enabled for the scan? The default is ``False``. Returns: str: An emty string response. Examples: >>> with open('example.nessus') as fobj: ... sc.scan_instances.import_scan(fobj, 1) ''' kw['repo'] = repo payload = self._api.scans._constructor(**kw) payload['filename'] = self._api.files.upload(fobj) return self._api.post( 'scanResult/import', json=payload).json()['response'] def reimport_scan(self, id, **kw): ''' Re-imports an existing scan into the cumulative repository. + `SC Scan Re-Import <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/import>`_ Args: id (int): The scan instance identifier. auto_mitigation (int, optional): How many days to hold on to data before mitigating it? The default value is 0. host_tracking (bool, optional): Should DHCP host tracking be enabled? The default is False. vhosts (bool, optional): Should virtual host logic be enabled for the scan? The default is ``False``. Returns: str: An emty string response. Examples: >>> sc.scan_instances.reimport_scan(1) ''' payload = self._api.scans._constructor(kw) return self._api.post('scanResult/{}/import'.format(self._check( 'id', id, int)), json=payload).json()['response'] def list(self, fields=None): ''' Retreives the list of scan instances. + `SC ScanResult List <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult>`_ Args: fields (list, optional): A list of attributes to return. Returns: list: A list of scan instance resources. Examples: >>> for scan in sc.scan_instances.list(): ... pprint(scan) ''' params = dict() if fields: params['fields'] = ','.join([self._check('field', f, str) for f in fields]) return self._api.get('scanResult', params=params).json()['response'] def pause(self, id): ''' Pauses a running scan instance. Note that this will not impact agent scan instances. + SC Scan Pause <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/pause>`_ Args: id (int): The unique identifier for the scan instance. Returns: list: List of scan instances modified. Examples: >>> sc.scan_instances.pause(1) ''' return self._api.post('scanResult/{}/pause'.format(self._check( 'id', id, int))).json()['response']['scanResults'] def resume(self, id): ''' Resumes a paused scan instance. Note that this will not impact agent scan instances. + SC Scan Resume <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/resume>`_ Args: id (int): The unique identifier for the scan instance. Returns: list: List of scan instances modified. Examples: >>> sc.scan_instances.resume(1) ''' return self._api.post('scanResult/{}/resume'.format(self._check( 'id', id, int))).json()['response']['scanResults'] def stop(self, id): ''' Stops a running scan instance. Note that this will not impact agent scan instances. + SC Scan Stop <https://docs.tenable.com/sccv/api/Scan-Result.html#ScanResultRESTReference-/scanResult/{id}/stop>`_ Args: id (int): The unique identifier for the scan instance. Returns: dict: Response dictionary Examples: >>> sc.scan_instances.stop(1) ''' return self._api.post('scanResult/{}/stop'.format(self._check( 'id', id, int))).json()['response']
the-stack_106_32170
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import getpass import logging import optparse import os import subprocess from uuid import uuid1 from apache.aurora.client.base import die """Admin client utility functions shared between admin and maintenance modules.""" # TODO(maxim): Switch to CLI ConfigurationPlugin within AURORA-486. LOGGER_NAME = 'aurora_admin' logger = logging.getLogger(LOGGER_NAME) CLIENT_ID = uuid1() def log_admin_message(sev, msg, *args, **kwargs): """Logs message using the module-defined logger. :param sev: message severity :type sev: The numeric level of the logging event (one of DEBUG, INFO etc.) :param msg: message to log :type msg: string """ extra = kwargs.get('extra', {}) extra['clientid'] = CLIENT_ID extra['user'] = getpass.getuser() extra['logger_name'] = LOGGER_NAME kwargs['extra'] = extra logger.log(sev, msg, *args, **kwargs) FILENAME_OPTION = optparse.Option( '--filename', dest='filename', default=None, help='Name of the file with hostnames') HOSTS_OPTION = optparse.Option( '--hosts', dest='hosts', default=None, help='Comma separated list of hosts') def parse_sla_percentage(percentage): """Parses percentage value for an SLA check. :param percentage: string percentage to parse :type percentage: string :rtype: float """ val = float(percentage) if val <= 0 or val > 100: die('Invalid percentage %s. Must be within (0, 100].' % percentage) return val def _parse_hostname_list(hostname_list): hostnames = [hostname.strip() for hostname in hostname_list.split(",")] if not hostnames: die('No valid hosts found.') return hostnames def _parse_hostname_file(filename): with open(filename, 'r') as hosts: hostnames = [hostname.strip() for hostname in hosts] if not hostnames: die('No valid hosts found in %s.' % filename) return hostnames def parse_hostnames_optional(list_option, file_option): """Parses host names from a comma-separated list or a filename. Does not require either of the arguments (returns None list if no option provided). :param list_option: command option with comma-separated list of host names :type list_option: app.option :param file_option: command option with filename (one host per line) :type file_option: app.option :rtype: list of host names or None. """ if bool(list_option) and bool(file_option): die('Cannot specify both filename and list for the same option.') hostnames = None if file_option: hostnames = _parse_hostname_file(file_option) elif list_option: hostnames = _parse_hostname_list(list_option) return hostnames def parse_hostnames(filename, hostnames): """Parses host names from a comma-separated list or a filename. Fails if neither filename nor hostnames provided. :param filename: filename with host names (one per line) :type filename: string :param hostnames: comma-separated list of host names :type hostnames: string :rtype: list of host names """ if bool(filename) == bool(hostnames): die('Please specify either --filename or --hosts') if filename: hostnames = _parse_hostname_file(filename) elif hostnames: hostnames = _parse_hostname_list(hostnames) if not hostnames: die('No valid hosts found.') return hostnames def parse_script(filename): """Parses shell script from the provided file and wraps it up into a subprocess callback. :param filename: name of the script file :type filename: string :rtype: function """ if filename: if not os.path.exists(filename): die("No such file: %s" % filename) cmd = os.path.abspath(filename) return lambda host: subprocess.Popen([cmd, host]) else: return None def print_results(results): """Prints formatted SLA results. :param results: formatted SLA results :type results: list of string """ for line in results: print(line) def format_sla_results(host_groups, unsafe_only=False): """Formats SLA check result output. :param host_groups: SLA check result groups (grouped by external grouping criteria, e.g. by_host) :type host_groups: list of (defaultdict(list)) :param unsafe_only: If True, includes only SLA-"unsafe" hosts from the results :type unsafe_only: bool :rtype: a tuple of: list of output strings, set of hostnames included in output. """ results = [] include_unsafe_only = lambda d: not d.safe if unsafe_only else True hostnames = set() for group in host_groups: for host, job_details in sorted(group.items()): host_details = '\n'.join( ['%s\t%s\t%.2f\t%s\t%s' % (host, d.job.to_path(), d.predicted_percentage, d.safe, 'n/a' if d.safe_in_secs is None else d.safe_in_secs) for d in sorted(job_details) if include_unsafe_only(d)]) if host_details: results.append(host_details) hostnames.add(host) return results, hostnames
the-stack_106_32172
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of color ops""" import pytest import tensorflow as tf import numpy as np from tensorflow_addons.image import color_ops from PIL import Image, ImageOps, ImageEnhance _DTYPES = { np.uint8, np.int32, np.int64, np.float16, np.float32, np.float64, } _SHAPES = {(5, 5), (5, 5, 1), (5, 5, 3), (4, 5, 5), (4, 5, 5, 1), (4, 5, 5, 3)} @pytest.mark.parametrize("dtype", _DTYPES) @pytest.mark.parametrize("shape", _SHAPES) def test_equalize_dtype_shape(dtype, shape): image = np.ones(shape=shape, dtype=dtype) equalized = color_ops.equalize(tf.constant(image)).numpy() np.testing.assert_equal(equalized, image) assert equalized.dtype == image.dtype @pytest.mark.usefixtures("maybe_run_functions_eagerly") def test_equalize_with_PIL(): np.random.seed(0) image = np.random.randint(low=0, high=255, size=(4, 3, 3, 3), dtype=np.uint8) equalized = np.stack([ImageOps.equalize(Image.fromarray(i)) for i in image]) np.testing.assert_equal(color_ops.equalize(tf.constant(image)).numpy(), equalized) @pytest.mark.parametrize("dtype", _DTYPES) @pytest.mark.parametrize("shape", _SHAPES) def test_sharpness_dtype_shape(dtype, shape): image = np.ones(shape=shape, dtype=dtype) sharp = color_ops.sharpness(tf.constant(image), 0).numpy() np.testing.assert_equal(sharp, image) assert sharp.dtype == image.dtype @pytest.mark.parametrize("factor", [0, 0.25, 0.5, 0.75, 1]) def test_sharpness_with_PIL(factor): np.random.seed(0) image = np.random.randint(low=0, high=255, size=(10, 5, 5, 3), dtype=np.uint8) sharpened = np.stack( [ImageEnhance.Sharpness(Image.fromarray(i)).enhance(factor) for i in image] ) np.testing.assert_allclose( color_ops.sharpness(tf.constant(image), factor).numpy(), sharpened, atol=1 )
the-stack_106_32174
import os import re import subprocess # nosec from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): """ Load schema from remote Heroku PostgreSQL database. This command can be useful to load the Heroku Connect database schema into a local development environment. Example:: python manage.py load_remote_schema --app ninja | psql -a .. note:: This command requires the `Heroku CLI`_ and PostgreSQL_ to be installed. .. _`Heroku CLI`: https://cli.heroku.com/ .. _PostgreSQL: https://www.postgresql.org/ """ help = __doc__.strip().splitlines()[0] url_pattern = ( r"postgres://(?P<user>[\d\w]*):(?P<passwd>[\d\w]*)" r"@(?P<host>[^:]+):(?P<port>\d+)/(?P<dbname>[\d\w]+)" ) def add_arguments(self, parser): parser.add_argument( "--app", "-a", dest="HEROKU_APP", type=str, help="Heroku app name that the schema will be pulled from.", ) parser.add_argument( "--schema", "-s", dest="SCHEMA_NAME", type=str, default="salesforce", help="Name of schema that you want to load.", ) def handle(self, *args, **options): heroku_app = options.get("HEROKU_APP") schema_name = options["SCHEMA_NAME"] url = self.get_database_url(heroku_app) credentials = self.parse_credentials(url) schema = self.get_schema(**credentials, schema_name=schema_name) self.stdout.write(schema) @staticmethod def get_database_url(heroku_app): run_args = ["heroku", "pg:credentials:url"] if heroku_app: run_args += ["-a", heroku_app] try: output = subprocess.check_output(run_args) # nosec except subprocess.SubprocessError as e: raise CommandError("Please provide the correct Heroku app name.") from e else: return output.decode("utf-8") def parse_credentials(self, url): match = re.search(self.url_pattern, url) if not match: raise CommandError("Could not parse DATABASE_URL.") return match.groupdict() @staticmethod def get_schema(user, host, port, dbname, passwd, schema_name): env = os.environ.copy() env["PGPASSWORD"] = passwd run_args = [ "pg_dump", "-sO", "-n", schema_name, "-U", user, "-h", host, "-p", port, "-d", dbname, ] try: output = subprocess.check_output(run_args, env=env) # nosec except subprocess.SubprocessError as e: raise CommandError("Schema not found.") from e else: return output.decode("utf-8")
the-stack_106_32176
import numpy as np import h5py import random import tensorflow as tf import os from typing import List AUTOTUNE = tf.data.experimental.AUTOTUNE def images_in_paths(folder_path: str) -> List[str]: """ Collects paths to all images from one folder and return them as a list :param folder_path: :return: list of path/to/image """ paths = [] folder_path = os.path.join(os.getcwd(), folder_path) for root, dirs, files in os.walk(folder_path): for file in files: paths.append(os.path.join(root, file)) return paths class ImageGenerator: """ ImageGenerator takes care to serve all path/to/images in the right way and to serve the dataset info about mean, standard deviation and the number of items in folder. """ def __init__(self, data_path): """ Open file once. The object ImageGenerator is kept alive for all the training (and evaluation). So lists and file are not loaded to disk yet, waiting for call function. :param data_path: path/to/data folder, in which there are train, val, test folders with images and the file 'info.h5' with std/mean and number of items in dataset """ self.data_path = data_path self.h5f = h5py.File(os.path.join(data_path, 'info.h5'), 'r') # it will be closed when the context will be terminated def __call__(self, dataset_type, num_classes, *args, **kwargs): """ Instance is called with different dataset_type :param dataset_type: :param args: :param kwargs: :return: """ paths = images_in_paths(os.path.join(self.data_path, dataset_type)) labels = [random.randrange(num_classes) for _ in paths] return paths, labels class CropsGenerator: """ CropsGenerator takes care to load images from disk and convert, crop and serve them as a tf.data.Dataset """ def __init__(self, conf, max_hamming_set): self.data_path = conf.data_path # path to dataset folder self.img_generator = ImageGenerator(self.data_path) # generates the instance to dataset files self.numChannels = conf.numChannels # num of input image channels self.numCrops = conf.numCrops # num of jigsaw crops self.original_dim = conf.original_dim # size of the input image self.cropSize = conf.cropSize # size of crop (255) self.cellSize = conf.cellSize # size of each cell (75) self.tileSize = conf.tileSize # size of tile in cell (64) self.colorJitter = conf.colorJitter # number of pixels for color jittering self.batchSize = conf.batchSize # training_batch_size self.val_batch_size = conf.val_batch_size # validation batch size self.meanTensor, self.stdTensor = self.get_stats() # get stats from dataset info # the <max_hamming_set> comes from file generated by <generate_hamming_set>. For further information see it. self.maxHammingSet = np.array(max_hamming_set, dtype=np.uint8) self.numClasses = conf.hammingSetSize # number of different jigsaw classes # do not retrieve info about dataset with h5f['train_img'][:].shape since it loads the whole dataset into RAM self.num_train_batch = self.img_generator.h5f['train_dim'][...].astype(np.int32) // self.batchSize self.num_val_batch = self.img_generator.h5f['val_dim'][...].astype(np.int32) // conf.val_batch_size self.num_test_batch = self.img_generator.h5f['test_dim'][...].astype(np.int32) // self.batchSize def get_stats(self): """ Return mean and std from dataset. It has been memorized. If not mean or std have been saved a KeyError is raised. :return: """ mean = self.img_generator.h5f['train_mean'][:].astype(np.float32) std = self.img_generator.h5f['train_std'][:].astype(np.float32) if self.numChannels == 1: mean = np.expand_dims(mean, axis=-1) std = np.expand_dims(std, axis=-1) return mean, std def one_crop(self, hm_index, crop_x, crop_y, x): """ This function creates one cropping at a time. It's sort of the contrary wrt previous behaviour. Now we find the hm_index crop we want to locate and we create it. As the result is stacked in the first axis, the order is kept as the label requires. :param hm_index: permutation index in the hamming set :param crop_x: x position for the 225 initial crop of the image :param crop_y: x position for the 225 initial crop of the image :param x: original image :return: one crop """ # Define behaviour of col and rows to keep compatibility with previous code col = tf.math.mod(hm_index, 3) row = tf.math.divide(hm_index, 3) # cast to get rid of decimal values. However multiply takes only float32, so we have to re-cast it row = tf.cast(row, tf.int16) row = tf.cast(row, tf.float32) # create tf.constant to keep compatibility crop_x = tf.constant(crop_x, dtype=tf.float32) crop_y = tf.constant(crop_y, dtype=tf.float32) # random_x = tf.constant(random.randrange(self.cellSize - self.tileSize), dtype=tf.float32) random_x = float(random.randrange(self.cellSize - self.tileSize)) # random_y = tf.constant(random.randrange(self.cellSize - self.tileSize), dtype=tf.float32) random_y = float(random.randrange(self.cellSize - self.tileSize)) cell_size = tf.constant(self.cellSize, dtype=tf.float32) tile_size = tf.constant(self.tileSize, dtype=tf.float32) # partial operations col_cellsize = tf.math.multiply(col, cell_size) row_cellsize = tf.math.multiply(row, cell_size) x_start = tf.add(tf.math.add(crop_x, col_cellsize), random_x) y_start = tf.add(tf.math.add(crop_y, row_cellsize), random_y) x_next = tf.math.add(x_start, tile_size) y_next = tf.math.add(y_start, tile_size) # cast every value to int so we can take slices of x x_start = tf.cast(x_start, dtype=tf.int32) y_start = tf.cast(y_start, dtype=tf.int32) x_next = tf.cast(x_next, dtype=tf.int32) y_next = tf.cast(y_next, dtype=tf.int32) crop = x[y_start:y_next, x_start:x_next, :] # spatial jittering of crop crop = self.color_channel_jitter(crop) # ensure that resulting shape is correct tf.ensure_shape(crop, shape=(64, 64, 3)) return crop def create_croppings(self, x: tf.Tensor, y: tf.Tensor, hamming_set: tf.Tensor): """ Makes croppings from image The 3x3 grid is numbered as follows: 0 1 2 3 4 5 6 7 8 :param x: :param y: :param hamming_set: :return: """ # retrieve shape of image y_dim, x_dim = x.shape[:2] # Have the x & y coordinate of the crop if x_dim != self.cropSize: # dimension of x is bigger than cropSize so we can take a square window inside image crop_x = random.randrange(x_dim - self.cropSize) crop_y = random.randrange(y_dim - self.cropSize) else: crop_x, crop_y = 0, 0 # define variable before mapping # create lambda function for mapping one_crop_func = lambda hm_index: self.one_crop(hm_index, crop_x, crop_y, x) # this mapping takes one element at a time from <hamming_set> and serve it to croppings_func. So for # croppings_func hm_index is served from hamming_set, the other parameters from <create_croppings> function body # This map returns a tensor that has the one_crop stacked together in the first dimension croppings = tf.map_fn(one_crop_func, hamming_set) # change order of axis (move one_crop dimension from first to last) x = tf.transpose(croppings, [1, 2, 3, 0]) return x, tf.one_hot(y, self.numClasses) def add_grayscale(self, x: tf.Tensor, perm_index: tf.Tensor, hamming_set): """ Normalize data one image at a time :param x: is a single images. :param perm_index: :param hamming_set: :return: image, normalized wrt dataset mean and std """ # make it greyscale with probability 0.3% if random.random() < 0.3: x = 0.21 * x[..., 2] + 0.72 * x[..., 1] + 0.07 * x[..., 0] # expanding dimension to preserve net layout x = tf.expand_dims(x, axis=-1) x = tf.concat([x, x, x], axis=-1) return x, perm_index, hamming_set def color_channel_jitter(self, img): """ Spatial image jitter, aka movement of color channel in various manners """ r_jit = random.randrange(-self.colorJitter, self.colorJitter) g_jit = random.randrange(-self.colorJitter, self.colorJitter) b_jit = random.randrange(-self.colorJitter, self.colorJitter) return tf.stack(( tf.roll(img[:, :, 0], r_jit, axis=0), tf.roll(img[:, :, 1], g_jit, axis=1), tf.roll(img[:, :, 2], b_jit, axis=0) ), axis=2) def parse_path(self, path: tf.Tensor, label: tf.Tensor) -> (tf.Tensor, tf.Tensor, tf.Tensor): """ Read image from disk and apply a label to it :param path: path to one image. This is a tf.Tensor and contains a string :return: """ # read image from disk img = tf.io.read_file(path) # decode it as jpeg img = tf.image.decode_jpeg(img, channels=3) # data augmentation img = tf.image.random_flip_left_right(img) img = tf.image.random_flip_up_down(img) # cast to tensor with type tf.float32 img = tf.cast(img, dtype=tf.float32) # make the image distant from std deviation of the dataset img = tf.math.subtract(img, self.meanTensor) img = tf.math.divide(img, self.stdTensor) # create hamming set from label hamming_set = tf.cast(tf.gather(self.maxHammingSet, label), dtype=tf.float32) return img, label, hamming_set def generate_train_set(self): """ Generates the actual dataset. It uses all the functions defined above to read images from disk and create croppings. :param mode: train-val-test :return: tf.data.Dataset """ parse_path_func = lambda x, y: self.parse_path(x, y) add_grayscale_func = lambda x, y, z: self.add_grayscale(x, y, z) create_croppings_func = lambda x, y, z: self.create_croppings(x, y, z) batch_size = self.batchSize n_el = self.num_train_batch return (tf.data.Dataset.from_tensor_slices(self.img_generator('train', self.numClasses)) .shuffle(buffer_size=n_el * batch_size) .map(parse_path_func, num_parallel_calls=AUTOTUNE) .map(add_grayscale_func, num_parallel_calls=AUTOTUNE) # add grayscale img w/ p<0.3 in train .map(create_croppings_func, num_parallel_calls=AUTOTUNE) # create actual one_crop .batch(batch_size) # defined batch_size .prefetch(AUTOTUNE) # number of batches to be prefetch. .repeat() # repeats the dataset when it is finished ) def generate_val_set(self): """ Generates the actual dataset. It uses all the functions defined above to read images from disk and create croppings. :param mode: train-val-test :return: tf.data.Dataset """ parse_path_func = lambda x, y: self.parse_path(x, y) create_croppings_func = lambda x, y, z: self.create_croppings(x, y, z) batch_size = self.val_batch_size n_el = self.num_val_batch return (tf.data.Dataset.from_tensor_slices(self.img_generator('val', self.numClasses)) .shuffle(buffer_size=n_el * batch_size) .map(parse_path_func, num_parallel_calls=AUTOTUNE) .map(create_croppings_func, num_parallel_calls=AUTOTUNE) # create actual one_crop .batch(batch_size) # defined batch_size .prefetch(AUTOTUNE) # number of batches to be prefetch. .repeat() # repeats the dataset when it is finished ) def generate_test_set(self): """ Generates the actual dataset. It uses all the functions defined above to read images from disk and create croppings. :param mode: train-val-test :return: tf.data.Dataset """ parse_path_func = lambda x, y: self.parse_path(x, y) create_croppings_func = lambda x, y, z: self.create_croppings(x, y, z) batch_size = self.batchSize n_el = self.num_test_batch return (tf.data.Dataset.from_tensor_slices(self.img_generator('test', self.numClasses)) .shuffle(buffer_size=n_el * batch_size) .map(parse_path_func, num_parallel_calls=AUTOTUNE) .map(create_croppings_func, num_parallel_calls=AUTOTUNE) # create actual one_crop .batch(batch_size) # defined batch_size .prefetch(AUTOTUNE) # number of batches to be prefetch. .repeat() # repeats the dataset when it is finished ) # UNCOMMENT ADDITION AND DIVISION PER MEAN AND STD BEFORE TRY TO SEE IMAGES if __name__ == '__main__': import config as conf from PIL import Image os.chdir(os.pardir) with h5py.File(os.path.join('Dataset', conf.resources, conf.hammingFileName + str(conf.hammingSetSize) + '.h5'), 'r') as h5f: HammingSet = np.array(h5f['max_hamming_set']) data_reader = CropsGenerator(conf, HammingSet) iter = data_reader.generate_train_set().make_initializable_iterator() x, labels = iter.get_next() with tf.Session() as sess: sess.run(iter.initializer) # returns a batch of images tiles, labels = sess.run([x, labels]) # select only one (choose which in [0, batchSize) n_image = 4 image = np.array(tiles[n_image], dtype=np.float32) first_label = np.array(labels[n_image]) # from one_hot to number lbl = np.where(first_label == np.amax(first_label))[0][0] # create complete image with pieces (if label is correct then also will be image) complete = np.zeros((192, 192, 3)) tile_size = data_reader.tileSize for i, v in enumerate(data_reader.maxHammingSet[lbl]): row = int(v / 3) col = v % 3 y_start = row * tile_size x_start = col * tile_size complete[y_start:y_start + tile_size, x_start:x_start + tile_size] = image[:, :, :, i] Image.fromarray(np.array(complete, dtype=np.uint8)).show()
the-stack_106_32177
import string from urllib import urlencode from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt import commonware.log from oauthlib import oauth1 from oauthlib.common import safe_string_equals from mkt.api.models import Access, Nonce, Token, REQUEST_TOKEN, ACCESS_TOKEN from mkt.site.decorators import login_required from mkt.site.utils import urlparams DUMMY_CLIENT_KEY = u'DummyOAuthClientKeyString' DUMMY_REQUEST_TOKEN = u'DummyOAuthRequestToken' DUMMY_ACCESS_TOKEN = u'DummyOAuthAccessToken' DUMMY_SECRET = u'DummyOAuthSecret' log = commonware.log.getLogger('z.api') def get_request_headers(request): return { 'Authorization': request.META.get('HTTP_AUTHORIZATION'), 'Content-Type': request.META.get('CONTENT_TYPE', '') } class MarketplaceOAuthRequestValidator(oauth1.RequestValidator): safe_characters = set(string.printable) nonce_length = (7, 128) access_token_length = (8, 128) request_token_length = (8, 128) verifier_length = (8, 128) client_key_length = (8, 128) enforce_ssl = False # SSL enforcement is handled by ops. :-) def validate_client_key(self, key, request): request.attempted_key = key return Access.objects.filter(key=key).exists() def get_client_secret(self, key, request): # This method returns a dummy secret on failure so that auth # success and failure take a codepath with the same run time, # to prevent timing attacks. try: # OAuthlib needs unicode objects, django-aesfield returns a string. return Access.objects.get(key=key).secret.decode('utf8') except Access.DoesNotExist: return DUMMY_SECRET @property def dummy_client(self): return DUMMY_CLIENT_KEY @property def dummy_request_token(self): return DUMMY_REQUEST_TOKEN @property def dummy_access_token(self): return DUMMY_ACCESS_TOKEN def get_default_realms(self, client_key, request): return [] def validate_timestamp_and_nonce(self, client_key, timestamp, nonce, request, request_token=None, access_token=None): n, created = Nonce.objects.safer_get_or_create( defaults={'client_key': client_key}, nonce=nonce, timestamp=timestamp, request_token=request_token, access_token=access_token) return created def validate_requested_realms(self, client_key, realms, request): return True def validate_realms(self, client_key, token, request, uri=None, realms=None): return True def validate_redirect_uri(self, client_key, redirect_uri, request): return True def validate_request_token(self, client_key, request_token, request): # This method must take the same amount of time/db lookups for # success and failure to prevent timing attacks. return Token.objects.filter(token_type=REQUEST_TOKEN, creds__key=client_key, key=request_token).exists() def validate_access_token(self, client_key, access_token, request): # This method must take the same amount of time/db lookups for # success and failure to prevent timing attacks. return Token.objects.filter(token_type=ACCESS_TOKEN, creds__key=client_key, key=access_token).exists() def validate_verifier(self, client_key, request_token, verifier, request): # This method must take the same amount of time/db lookups for # success and failure to prevent timing attacks. try: t = Token.objects.get(key=request_token, token_type=REQUEST_TOKEN) candidate = t.verifier except Token.DoesNotExist: candidate = '' return safe_string_equals(candidate, verifier) def get_request_token_secret(self, client_key, request_token, request): # This method must take the same amount of time/db lookups for # success and failure to prevent timing attacks. try: t = Token.objects.get(key=request_token, creds__key=client_key, token_type=REQUEST_TOKEN) return t.secret except Token.DoesNotExist: return DUMMY_SECRET def get_access_token_secret(self, client_key, request_token, request): # This method must take the same amount of time/db lookups for # success and failure to prevent timing attacks. try: t = Token.objects.get(key=request_token, creds__key=client_key, token_type=ACCESS_TOKEN) except Token.DoesNotExist: return DUMMY_SECRET return t.secret validator = MarketplaceOAuthRequestValidator() server = oauth1.WebApplicationServer(validator) @csrf_exempt def access_request(request): try: oauth_req = server._create_request(request.build_absolute_uri(), request.method, request.body, get_request_headers(request)) valid, oauth_req = server.validate_access_token_request(oauth_req) except ValueError: valid = False if valid: req_t = Token.objects.get( token_type=REQUEST_TOKEN, key=oauth_req.resource_owner_key) t = Token.generate_new( token_type=ACCESS_TOKEN, creds=req_t.creds, user=req_t.user) # Clean up as we go. req_t.delete() return HttpResponse( urlencode({'oauth_token': t.key, 'oauth_token_secret': t.secret}), content_type='application/x-www-form-urlencoded') else: log.error('Invalid OAuth request for acquiring access token') return HttpResponse(status=401) @csrf_exempt def token_request(request): try: oauth_req = server._create_request(request.build_absolute_uri(), request.method, request.body, get_request_headers(request)) valid, oauth_req = server.validate_request_token_request(oauth_req) except ValueError: valid = False if valid: consumer = Access.objects.get(key=oauth_req.client_key) t = Token.generate_new(token_type=REQUEST_TOKEN, creds=consumer) return HttpResponse( urlencode({'oauth_token': t.key, 'oauth_token_secret': t.secret, 'oauth_callback_confirmed': True}), content_type='application/x-www-form-urlencoded') else: log.error('Invalid OAuth request for acquiring request token') return HttpResponse(status=401) @csrf_exempt @login_required def authorize(request): if request.method == 'GET' and 'oauth_token' in request.GET: try: t = Token.objects.get(token_type=REQUEST_TOKEN, key=request.GET['oauth_token']) except Token.DoesNotExist: log.error('Invalid OAuth request for obtaining user authorization') return HttpResponse(status=401) return render(request, 'developers/oauth_authorize.html', {'app_name': t.creds.app_name, 'oauth_token': request.GET['oauth_token']}) elif request.method == 'POST': token = request.POST.get('oauth_token') try: t = Token.objects.get(token_type=REQUEST_TOKEN, key=token) except Token.DoesNotExist: return HttpResponse(status=401) if 'grant' in request.POST: t.user = request.user t.save() return HttpResponseRedirect( urlparams(t.creds.redirect_uri, oauth_token=token, oauth_verifier=t.verifier)) elif 'deny' in request.POST: t.delete() return HttpResponse(status=200) else: log.error('Invalid OAuth request for user access authorization') return HttpResponse(status=401)
the-stack_106_32180
# pylint:disable=unused-variable # pylint:disable=unused-argument # pylint:disable=redefined-outer-name import json from pathlib import Path from typing import Dict import pytest import yaml @pytest.fixture def port_type() -> str: return "" @pytest.fixture def label_cfg(metadata_file: Path, port_type: str) -> Dict: ports_type = f"{port_type}s" with metadata_file.open() as fp: cfg = yaml.safe_load(fp) assert ports_type in cfg return cfg[ports_type] @pytest.fixture def validation_folder(validation_dir: Path, port_type: str) -> Path: return validation_dir / port_type @pytest.fixture def validation_cfg(validation_dir: Path, port_type: str) -> Dict: validation_file = validation_dir / port_type / (f"{port_type}s.json") if validation_file.exists(): with validation_file.open() as fp: return json.load(fp) # it may not exist if only files are required return None def _find_key_in_cfg(filename: str, value: Dict) -> str: for k, v in value.items(): if k == filename: if isinstance(v, dict): assert "data:" in v["type"] yield k else: yield v elif isinstance(v, dict): for result in _find_key_in_cfg(filename, v): yield result @pytest.mark.parametrize("port_type", ["input", "output"]) def test_validation_data_follows_definition( label_cfg: Dict, validation_cfg: Dict, validation_folder: Path ): for key, value in label_cfg.items(): assert "type" in value # rationale: files are on their own and other types are in inputs.json if not "data:" in value["type"]: # check that keys are available assert key in validation_cfg else: # it's a file and it should be in the folder as well using key as the filename filename_to_look_for = key if "fileToKeyMap" in value: # ...or there is a mapping assert len(value["fileToKeyMap"]) > 0 for filename, mapped_value in value["fileToKeyMap"].items(): assert mapped_value == key filename_to_look_for = filename assert (validation_folder / filename_to_look_for).exists() else: assert (validation_folder / filename_to_look_for).exists() if validation_cfg: for key, value in validation_cfg.items(): # check the key is defined in the labels assert key in label_cfg label2types = { "number": (float, int), "integer": int, "boolean": bool, "string": str, } if not "data:" in label_cfg[key]["type"]: # check the type is correct assert isinstance(value, label2types[label_cfg[key]["type"]]) for path in validation_folder.glob("**/*"): if path.name in ["inputs.json", "outputs.json", ".gitkeep"]: continue assert path.is_file() filename = path.name # this filename shall be available as a key in the labels somewhere key = next(_find_key_in_cfg(str(filename), label_cfg)) assert key in label_cfg
the-stack_106_32181
# # Copyright (c) 2021 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class nsip6(base_resource) : """ Configuration for ip6 resource. """ def __init__(self) : self._ipv6address = None self._scope = None self._type = None self._vlan = None self._nd = None self._icmp = None self._vserver = None self._telnet = None self._ftp = None self._gui = None self._ssh = None self._snmp = None self._mgmtaccess = None self._restrictaccess = None self._dynamicrouting = None self._decrementhoplimit = None self._hostroute = None self._advertiseondefaultpartition = None self._networkroute = None self._tag = None self._ip6hostrtgw = None self._metric = None self._vserverrhilevel = None self._ospf6lsatype = None self._ospfarea = None self._state = None self._map = None self._vrid6 = None self._ownernode = None self._ownerdownresponse = None self._td = None self._ndowner = None self._mptcpadvertise = None self._iptype = None self._curstate = None self._viprtadv2bsd = None self._vipvsercount = None self._vipvserdowncount = None self._systemtype = None self._operationalndowner = None self.___count = None @property def ipv6address(self) : r"""IPv6 address to create on the Citrix ADC.<br/>Minimum length = 1. """ try : return self._ipv6address except Exception as e: raise e @ipv6address.setter def ipv6address(self, ipv6address) : r"""IPv6 address to create on the Citrix ADC.<br/>Minimum length = 1 """ try : self._ipv6address = ipv6address except Exception as e: raise e @property def scope(self) : r"""Scope of the IPv6 address to be created. Cannot be changed after the IP address is created.<br/>Default value: global<br/>Possible values = global, link-local. """ try : return self._scope except Exception as e: raise e @scope.setter def scope(self, scope) : r"""Scope of the IPv6 address to be created. Cannot be changed after the IP address is created.<br/>Default value: global<br/>Possible values = global, link-local """ try : self._scope = scope except Exception as e: raise e @property def type(self) : r"""Type of IP address to be created on the Citrix ADC. Cannot be changed after the IP address is created.<br/>Default value: SNIP<br/>Possible values = NSIP, VIP, SNIP, GSLBsiteIP, ADNSsvcIP, RADIUSListenersvcIP, CLIP. """ try : return self._type except Exception as e: raise e @type.setter def type(self, type) : r"""Type of IP address to be created on the Citrix ADC. Cannot be changed after the IP address is created.<br/>Default value: SNIP<br/>Possible values = NSIP, VIP, SNIP, GSLBsiteIP, ADNSsvcIP, RADIUSListenersvcIP, CLIP """ try : self._type = type except Exception as e: raise e @property def vlan(self) : r"""The VLAN number.<br/>Default value: 0<br/>Maximum length = 4094. """ try : return self._vlan except Exception as e: raise e @vlan.setter def vlan(self, vlan) : r"""The VLAN number.<br/>Default value: 0<br/>Maximum length = 4094 """ try : self._vlan = vlan except Exception as e: raise e @property def nd(self) : r"""Respond to Neighbor Discovery (ND) requests for this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._nd except Exception as e: raise e @nd.setter def nd(self, nd) : r"""Respond to Neighbor Discovery (ND) requests for this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._nd = nd except Exception as e: raise e @property def icmp(self) : r"""Respond to ICMP requests for this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._icmp except Exception as e: raise e @icmp.setter def icmp(self, icmp) : r"""Respond to ICMP requests for this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._icmp = icmp except Exception as e: raise e @property def vserver(self) : r"""Enable or disable the state of all the virtual servers associated with this VIP6 address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._vserver except Exception as e: raise e @vserver.setter def vserver(self, vserver) : r"""Enable or disable the state of all the virtual servers associated with this VIP6 address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._vserver = vserver except Exception as e: raise e @property def telnet(self) : r"""Allow Telnet access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._telnet except Exception as e: raise e @telnet.setter def telnet(self, telnet) : r"""Allow Telnet access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._telnet = telnet except Exception as e: raise e @property def ftp(self) : r"""Allow File Transfer Protocol (FTP) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._ftp except Exception as e: raise e @ftp.setter def ftp(self, ftp) : r"""Allow File Transfer Protocol (FTP) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._ftp = ftp except Exception as e: raise e @property def gui(self) : r"""Allow graphical user interface (GUI) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, SECUREONLY, DISABLED. """ try : return self._gui except Exception as e: raise e @gui.setter def gui(self, gui) : r"""Allow graphical user interface (GUI) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, SECUREONLY, DISABLED """ try : self._gui = gui except Exception as e: raise e @property def ssh(self) : r"""Allow secure Shell (SSH) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._ssh except Exception as e: raise e @ssh.setter def ssh(self, ssh) : r"""Allow secure Shell (SSH) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._ssh = ssh except Exception as e: raise e @property def snmp(self) : r"""Allow Simple Network Management Protocol (SNMP) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._snmp except Exception as e: raise e @snmp.setter def snmp(self, snmp) : r"""Allow Simple Network Management Protocol (SNMP) access to this IP address.<br/>Default value: ENABLED<br/>Possible values = ENABLED, DISABLED """ try : self._snmp = snmp except Exception as e: raise e @property def mgmtaccess(self) : r"""Allow access to management applications on this IP address.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._mgmtaccess except Exception as e: raise e @mgmtaccess.setter def mgmtaccess(self, mgmtaccess) : r"""Allow access to management applications on this IP address.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED """ try : self._mgmtaccess = mgmtaccess except Exception as e: raise e @property def restrictaccess(self) : r"""Block access to nonmanagement applications on this IP address. This option is applicable forMIP6s, SNIP6s, and NSIP6s, and is disabled by default. Nonmanagement applications can run on the underlying Citrix ADC Free BSD operating system.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._restrictaccess except Exception as e: raise e @restrictaccess.setter def restrictaccess(self, restrictaccess) : r"""Block access to nonmanagement applications on this IP address. This option is applicable forMIP6s, SNIP6s, and NSIP6s, and is disabled by default. Nonmanagement applications can run on the underlying Citrix ADC Free BSD operating system.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED """ try : self._restrictaccess = restrictaccess except Exception as e: raise e @property def dynamicrouting(self) : r"""Allow dynamic routing on this IP address. Specific to Subnet IPv6 (SNIP6) address.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._dynamicrouting except Exception as e: raise e @dynamicrouting.setter def dynamicrouting(self, dynamicrouting) : r"""Allow dynamic routing on this IP address. Specific to Subnet IPv6 (SNIP6) address.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED """ try : self._dynamicrouting = dynamicrouting except Exception as e: raise e @property def decrementhoplimit(self) : r"""Decrement Hop Limit by 1 when ENABLED.This setting is applicable only for UDP traffic.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._decrementhoplimit except Exception as e: raise e @decrementhoplimit.setter def decrementhoplimit(self, decrementhoplimit) : r"""Decrement Hop Limit by 1 when ENABLED.This setting is applicable only for UDP traffic.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED """ try : self._decrementhoplimit = decrementhoplimit except Exception as e: raise e @property def hostroute(self) : r"""Option to push the VIP6 to ZebOS routing table for Kernel route redistribution through dynamic routing protocols.<br/>Possible values = ENABLED, DISABLED. """ try : return self._hostroute except Exception as e: raise e @hostroute.setter def hostroute(self, hostroute) : r"""Option to push the VIP6 to ZebOS routing table for Kernel route redistribution through dynamic routing protocols.<br/>Possible values = ENABLED, DISABLED """ try : self._hostroute = hostroute except Exception as e: raise e @property def advertiseondefaultpartition(self) : r"""Advertise VIPs from Shared VLAN on Default Partition.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED. """ try : return self._advertiseondefaultpartition except Exception as e: raise e @advertiseondefaultpartition.setter def advertiseondefaultpartition(self, advertiseondefaultpartition) : r"""Advertise VIPs from Shared VLAN on Default Partition.<br/>Default value: DISABLED<br/>Possible values = ENABLED, DISABLED """ try : self._advertiseondefaultpartition = advertiseondefaultpartition except Exception as e: raise e @property def networkroute(self) : r"""Option to push the SNIP6 subnet to ZebOS routing table for Kernel route redistribution through dynamic routing protocol.<br/>Possible values = ENABLED, DISABLED. """ try : return self._networkroute except Exception as e: raise e @networkroute.setter def networkroute(self, networkroute) : r"""Option to push the SNIP6 subnet to ZebOS routing table for Kernel route redistribution through dynamic routing protocol.<br/>Possible values = ENABLED, DISABLED """ try : self._networkroute = networkroute except Exception as e: raise e @property def tag(self) : r"""Tag value for the network/host route associated with this IP.<br/>Default value: 0. """ try : return self._tag except Exception as e: raise e @tag.setter def tag(self, tag) : r"""Tag value for the network/host route associated with this IP.<br/>Default value: 0 """ try : self._tag = tag except Exception as e: raise e @property def ip6hostrtgw(self) : r"""IPv6 address of the gateway for the route. If Gateway is not set, VIP uses :: as the gateway.<br/>Default value: 0. """ try : return self._ip6hostrtgw except Exception as e: raise e @ip6hostrtgw.setter def ip6hostrtgw(self, ip6hostrtgw) : r"""IPv6 address of the gateway for the route. If Gateway is not set, VIP uses :: as the gateway.<br/>Default value: 0 """ try : self._ip6hostrtgw = ip6hostrtgw except Exception as e: raise e @property def metric(self) : r"""Integer value to add to or subtract from the cost of the route advertised for the VIP6 address.<br/>Minimum length = -16777215. """ try : return self._metric except Exception as e: raise e @metric.setter def metric(self, metric) : r"""Integer value to add to or subtract from the cost of the route advertised for the VIP6 address.<br/>Minimum length = -16777215 """ try : self._metric = metric except Exception as e: raise e @property def vserverrhilevel(self) : r"""Advertise or do not advertise the route for the Virtual IP (VIP6) address on the basis of the state of the virtual servers associated with that VIP6. * NONE - Advertise the route for the VIP6 address, irrespective of the state of the virtual servers associated with the address. * ONE VSERVER - Advertise the route for the VIP6 address if at least one of the associated virtual servers is in UP state. * ALL VSERVER - Advertise the route for the VIP6 address if all of the associated virtual servers are in UP state. * VSVR_CNTRLD. Advertise the route for the VIP address according to the RHIstate (RHI STATE) parameter setting on all the associated virtual servers of the VIP address along with their states. When Vserver RHI Level (RHI) parameter is set to VSVR_CNTRLD, the following are different RHI behaviors for the VIP address on the basis of RHIstate (RHI STATE) settings on the virtual servers associated with the VIP address: * If you set RHI STATE to PASSIVE on all virtual servers, the Citrix ADC always advertises the route for the VIP address. * If you set RHI STATE to ACTIVE on all virtual servers, the Citrix ADC advertises the route for the VIP address if at least one of the associated virtual servers is in UP state. *If you set RHI STATE to ACTIVE on some and PASSIVE on others, the Citrix ADC advertises the route for the VIP address if at least one of the associated virtual servers, whose RHI STATE set to ACTIVE, is in UP state.<br/>Default value: ONE_VSERVER<br/>Possible values = ONE_VSERVER, ALL_VSERVERS, NONE, VSVR_CNTRLD. """ try : return self._vserverrhilevel except Exception as e: raise e @vserverrhilevel.setter def vserverrhilevel(self, vserverrhilevel) : r"""Advertise or do not advertise the route for the Virtual IP (VIP6) address on the basis of the state of the virtual servers associated with that VIP6. * NONE - Advertise the route for the VIP6 address, irrespective of the state of the virtual servers associated with the address. * ONE VSERVER - Advertise the route for the VIP6 address if at least one of the associated virtual servers is in UP state. * ALL VSERVER - Advertise the route for the VIP6 address if all of the associated virtual servers are in UP state. * VSVR_CNTRLD. Advertise the route for the VIP address according to the RHIstate (RHI STATE) parameter setting on all the associated virtual servers of the VIP address along with their states. When Vserver RHI Level (RHI) parameter is set to VSVR_CNTRLD, the following are different RHI behaviors for the VIP address on the basis of RHIstate (RHI STATE) settings on the virtual servers associated with the VIP address: * If you set RHI STATE to PASSIVE on all virtual servers, the Citrix ADC always advertises the route for the VIP address. * If you set RHI STATE to ACTIVE on all virtual servers, the Citrix ADC advertises the route for the VIP address if at least one of the associated virtual servers is in UP state. *If you set RHI STATE to ACTIVE on some and PASSIVE on others, the Citrix ADC advertises the route for the VIP address if at least one of the associated virtual servers, whose RHI STATE set to ACTIVE, is in UP state.<br/>Default value: ONE_VSERVER<br/>Possible values = ONE_VSERVER, ALL_VSERVERS, NONE, VSVR_CNTRLD """ try : self._vserverrhilevel = vserverrhilevel except Exception as e: raise e @property def ospf6lsatype(self) : r"""Type of LSAs to be used by the IPv6 OSPF protocol, running on the Citrix ADC, for advertising the route for the VIP6 address.<br/>Default value: EXTERNAL<br/>Possible values = INTRA_AREA, EXTERNAL. """ try : return self._ospf6lsatype except Exception as e: raise e @ospf6lsatype.setter def ospf6lsatype(self, ospf6lsatype) : r"""Type of LSAs to be used by the IPv6 OSPF protocol, running on the Citrix ADC, for advertising the route for the VIP6 address.<br/>Default value: EXTERNAL<br/>Possible values = INTRA_AREA, EXTERNAL """ try : self._ospf6lsatype = ospf6lsatype except Exception as e: raise e @property def ospfarea(self) : r"""ID of the area in which the Intra-Area-Prefix LSAs are to be advertised for the VIP6 address by the IPv6 OSPF protocol running on the Citrix ADC. When ospfArea is not set, VIP6 is advertised on all areas.<br/>Default value: -1<br/>Maximum length = 4294967294LU. """ try : return self._ospfarea except Exception as e: raise e @ospfarea.setter def ospfarea(self, ospfarea) : r"""ID of the area in which the Intra-Area-Prefix LSAs are to be advertised for the VIP6 address by the IPv6 OSPF protocol running on the Citrix ADC. When ospfArea is not set, VIP6 is advertised on all areas.<br/>Default value: -1<br/>Maximum length = 4294967294LU """ try : self._ospfarea = ospfarea except Exception as e: raise e @property def state(self) : r"""Enable or disable the IP address.<br/>Default value: ENABLED<br/>Possible values = DISABLED, ENABLED. """ try : return self._state except Exception as e: raise e @state.setter def state(self, state) : r"""Enable or disable the IP address.<br/>Default value: ENABLED<br/>Possible values = DISABLED, ENABLED """ try : self._state = state except Exception as e: raise e @property def map(self) : r"""Mapped IPV4 address for the IPV6 address. """ try : return self._map except Exception as e: raise e @map.setter def map(self, map) : r"""Mapped IPV4 address for the IPV6 address. """ try : self._map = map except Exception as e: raise e @property def vrid6(self) : r"""A positive integer that uniquely identifies a VMAC address for binding to this VIP address. This binding is used to set up Citrix ADCs in an active-active configuration using VRRP.<br/>Minimum length = 1<br/>Maximum length = 255. """ try : return self._vrid6 except Exception as e: raise e @vrid6.setter def vrid6(self, vrid6) : r"""A positive integer that uniquely identifies a VMAC address for binding to this VIP address. This binding is used to set up Citrix ADCs in an active-active configuration using VRRP.<br/>Minimum length = 1<br/>Maximum length = 255 """ try : self._vrid6 = vrid6 except Exception as e: raise e @property def ownernode(self) : r"""ID of the cluster node for which you are adding the IP address. Must be used if you want the IP address to be active only on the specific node. Can be configured only through the cluster IP address. Cannot be changed after the IP address is created.<br/>Default value: 255. """ try : return self._ownernode except Exception as e: raise e @ownernode.setter def ownernode(self, ownernode) : r"""ID of the cluster node for which you are adding the IP address. Must be used if you want the IP address to be active only on the specific node. Can be configured only through the cluster IP address. Cannot be changed after the IP address is created.<br/>Default value: 255 """ try : self._ownernode = ownernode except Exception as e: raise e @property def ownerdownresponse(self) : r"""in cluster system, if the owner node is down, whether should it respond to icmp/arp.<br/>Default value: YES<br/>Possible values = YES, NO. """ try : return self._ownerdownresponse except Exception as e: raise e @ownerdownresponse.setter def ownerdownresponse(self, ownerdownresponse) : r"""in cluster system, if the owner node is down, whether should it respond to icmp/arp.<br/>Default value: YES<br/>Possible values = YES, NO """ try : self._ownerdownresponse = ownerdownresponse except Exception as e: raise e @property def td(self) : r"""Integer value that uniquely identifies the traffic domain in which you want to configure the entity. If you do not specify an ID, the entity becomes part of the default traffic domain, which has an ID of 0.<br/>Maximum length = 4094. """ try : return self._td except Exception as e: raise e @td.setter def td(self, td) : r"""Integer value that uniquely identifies the traffic domain in which you want to configure the entity. If you do not specify an ID, the entity becomes part of the default traffic domain, which has an ID of 0.<br/>Maximum length = 4094 """ try : self._td = td except Exception as e: raise e @property def ndowner(self) : r"""NdOwner in Cluster for VIPS and Striped SNIPS.<br/>Default value: 255. """ try : return self._ndowner except Exception as e: raise e @ndowner.setter def ndowner(self, ndowner) : r"""NdOwner in Cluster for VIPS and Striped SNIPS.<br/>Default value: 255 """ try : self._ndowner = ndowner except Exception as e: raise e @property def mptcpadvertise(self) : r"""If enabled, this IP will be advertised by Citrix ADC to MPTCP enabled clients as part of ADD_ADDR option.<br/>Default value: NO<br/>Possible values = YES, NO. """ try : return self._mptcpadvertise except Exception as e: raise e @mptcpadvertise.setter def mptcpadvertise(self, mptcpadvertise) : r"""If enabled, this IP will be advertised by Citrix ADC to MPTCP enabled clients as part of ADD_ADDR option.<br/>Default value: NO<br/>Possible values = YES, NO """ try : self._mptcpadvertise = mptcpadvertise except Exception as e: raise e @property def iptype(self) : r"""The type of the IPv6 address.<br/>Possible values = NSIP, VIP, SNIP, GSLBsiteIP, ADNSsvcIP, RADIUSListenersvcIP, CLIP. """ try : return self._iptype except Exception as e: raise e @property def curstate(self) : r"""Current state of this IP.<br/>Default value: ENABLED<br/>Possible values = DISABLED, ENABLED. """ try : return self._curstate except Exception as e: raise e @property def viprtadv2bsd(self) : r"""Whether this route is advertised to FreeBSD. """ try : return self._viprtadv2bsd except Exception as e: raise e @property def vipvsercount(self) : r"""Number of vservers bound to this VIP. """ try : return self._vipvsercount except Exception as e: raise e @property def vipvserdowncount(self) : r"""Number of vservers bound to this VIP, which are down. """ try : return self._vipvserdowncount except Exception as e: raise e @property def systemtype(self) : r"""The type of the System. Possible Values: Standalone, HA, Cluster. Used for display purpose.<br/>Possible values = Stand-alone, HA, Cluster. """ try : return self._systemtype except Exception as e: raise e @property def operationalndowner(self) : r"""Operational ND6 Owner. """ try : return self._operationalndowner except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(nsip6_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.nsip6 except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.ipv6address is not None : return str(self.ipv6address) return None except Exception as e : raise e @classmethod def filter_add_parameters(cls, resource) : r""" Use this function to create a resource with only add operation specific parameters. """ addresource = nsip6() addresource.ipv6address = resource.ipv6address addresource.scope = resource.scope addresource.type = resource.type addresource.vlan = resource.vlan addresource.nd = resource.nd addresource.icmp = resource.icmp addresource.vserver = resource.vserver addresource.telnet = resource.telnet addresource.ftp = resource.ftp addresource.gui = resource.gui addresource.ssh = resource.ssh addresource.snmp = resource.snmp addresource.mgmtaccess = resource.mgmtaccess addresource.restrictaccess = resource.restrictaccess addresource.dynamicrouting = resource.dynamicrouting addresource.decrementhoplimit = resource.decrementhoplimit addresource.hostroute = resource.hostroute addresource.advertiseondefaultpartition = resource.advertiseondefaultpartition addresource.networkroute = resource.networkroute addresource.tag = resource.tag addresource.ip6hostrtgw = resource.ip6hostrtgw addresource.metric = resource.metric addresource.vserverrhilevel = resource.vserverrhilevel addresource.ospf6lsatype = resource.ospf6lsatype addresource.ospfarea = resource.ospfarea addresource.state = resource.state addresource.map = resource.map addresource.vrid6 = resource.vrid6 addresource.ownernode = resource.ownernode addresource.ownerdownresponse = resource.ownerdownresponse addresource.td = resource.td addresource.ndowner = resource.ndowner addresource.mptcpadvertise = resource.mptcpadvertise return addresource @classmethod def add(cls, client, resource) : r""" Use this API to add nsip6. """ try : if type(resource) is not list : addresource = cls.filter_add_parameters(resource) return addresource.add_resource(client) else : if (resource and len(resource) > 0) : addresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : addresources[i] = cls.filter_add_parameters(resource[i]) result = cls.add_bulk_request(client, addresources) return result except Exception as e : raise e @classmethod def filter_delete_parameters(cls, resource) : r""" Use this function to create a resource with only delete operation specific parameters. """ deleteresource = nsip6() deleteresource.ipv6address = resource.ipv6address deleteresource.td = resource.td return deleteresource @classmethod def delete(cls, client, resource) : r""" Use this API to delete nsip6. """ try : if type(resource) is not list : deleteresource = nsip6() if type(resource) != type(deleteresource): deleteresource.ipv6address = resource else : deleteresource = cls.filter_delete_parameters(resource) return deleteresource.delete_resource(client) else : if type(resource[0]) != cls : if (resource and len(resource) > 0) : deleteresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].ipv6address = resource[i] else : if (resource and len(resource) > 0) : deleteresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i] = cls.filter_delete_parameters(resource) result = cls.delete_bulk_request(client, deleteresources) return result except Exception as e : raise e @classmethod def filter_update_parameters(cls, resource) : r""" Use this function to create a resource with only update operation specific parameters. """ updateresource = nsip6() updateresource.ipv6address = resource.ipv6address updateresource.td = resource.td updateresource.nd = resource.nd updateresource.icmp = resource.icmp updateresource.vserver = resource.vserver updateresource.telnet = resource.telnet updateresource.ftp = resource.ftp updateresource.gui = resource.gui updateresource.ssh = resource.ssh updateresource.snmp = resource.snmp updateresource.mgmtaccess = resource.mgmtaccess updateresource.ownerdownresponse = resource.ownerdownresponse updateresource.restrictaccess = resource.restrictaccess updateresource.state = resource.state updateresource.map = resource.map updateresource.decrementhoplimit = resource.decrementhoplimit updateresource.dynamicrouting = resource.dynamicrouting updateresource.hostroute = resource.hostroute updateresource.advertiseondefaultpartition = resource.advertiseondefaultpartition updateresource.networkroute = resource.networkroute updateresource.ip6hostrtgw = resource.ip6hostrtgw updateresource.metric = resource.metric updateresource.vserverrhilevel = resource.vserverrhilevel updateresource.ospf6lsatype = resource.ospf6lsatype updateresource.ospfarea = resource.ospfarea updateresource.tag = resource.tag updateresource.vrid6 = resource.vrid6 updateresource.ndowner = resource.ndowner updateresource.mptcpadvertise = resource.mptcpadvertise return updateresource @classmethod def update(cls, client, resource) : r""" Use this API to update nsip6. """ try : if type(resource) is not list : updateresource = cls.filter_update_parameters(resource) return updateresource.update_resource(client) else : if (resource and len(resource) > 0) : updateresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i] = cls.filter_update_parameters(resource[i]) result = cls.update_bulk_request(client, updateresources) return result except Exception as e : raise e @classmethod def unset(cls, client, resource, args) : r""" Use this API to unset the properties of nsip6 resource. Properties that need to be unset are specified in args array. """ try : if type(resource) is not list : unsetresource = nsip6() if type(resource) != type(unsetresource): unsetresource.ipv6address = resource else : unsetresource.ipv6address = resource.ipv6address unsetresource.td = resource.td return unsetresource.unset_resource(client, args) else : if type(resource[0]) != cls : if (resource and len(resource) > 0) : unsetresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : unsetresources[i].ipv6address = resource[i] else : if (resource and len(resource) > 0) : unsetresources = [ nsip6() for _ in range(len(resource))] for i in range(len(resource)) : unsetresources[i].ipv6address = resource[i].ipv6address unsetresources[i].td = resource[i].td result = cls.unset_bulk_request(client, unsetresources, args) return result except Exception as e : raise e @classmethod def get(cls, client, name="", option_="") : r""" Use this API to fetch all the nsip6 resources that are configured on netscaler. """ try : if not name : obj = nsip6() response = obj.get_resources(client, option_) else : if type(name) is not list : if type(name) != cls : raise Exception('Invalid parameter name:{0}'.format(type(name))) option_ = options() option_.args = nitro_util.object_to_string_withoutquotes(name) response = name.get_resource(client, option_) else : if name and len(name) > 0 : if type(name[0]) != cls : raise Exception('Invalid parameter name:{0}'.format(type(name[0]))) response = [nsip6() for _ in range(len(name))] for i in range(len(name)) : option_ = options() option_.args = nitro_util.object_to_string_withoutquotes(name[i]) response[i] = name[i].get_resource(client, option_) return response except Exception as e : raise e @classmethod def get_filtered(cls, client, filter_) : r""" Use this API to fetch filtered set of nsip6 resources. filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = nsip6() option_ = options() option_.filter = filter_ response = obj.getfiltered(client, option_) return response except Exception as e : raise e @classmethod def count(cls, client) : r""" Use this API to count the nsip6 resources configured on NetScaler. """ try : obj = nsip6() option_ = options() option_.count = True response = obj.get_resources(client, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e : raise e @classmethod def count_filtered(cls, client, filter_) : r""" Use this API to count filtered the set of nsip6 resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = nsip6() option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(client, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e : raise e class Iptype: NSIP = "NSIP" VIP = "VIP" SNIP = "SNIP" GSLBsiteIP = "GSLBsiteIP" ADNSsvcIP = "ADNSsvcIP" RADIUSListenersvcIP = "RADIUSListenersvcIP" CLIP = "CLIP" class Networkroute: ENABLED = "ENABLED" DISABLED = "DISABLED" class Ssh: ENABLED = "ENABLED" DISABLED = "DISABLED" class State: DISABLED = "DISABLED" ENABLED = "ENABLED" class Ospf6lsatype: INTRA_AREA = "INTRA_AREA" EXTERNAL = "EXTERNAL" class Decrementhoplimit: ENABLED = "ENABLED" DISABLED = "DISABLED" class Mptcpadvertise: YES = "YES" NO = "NO" class Scope: GLOBAL = "global" link_local = "link-local" class Nd: ENABLED = "ENABLED" DISABLED = "DISABLED" class Systemtype: Stand_alone = "Stand-alone" HA = "HA" Cluster = "Cluster" class Gui: ENABLED = "ENABLED" SECUREONLY = "SECUREONLY" DISABLED = "DISABLED" class Dynamicrouting: ENABLED = "ENABLED" DISABLED = "DISABLED" class Type: NSIP = "NSIP" VIP = "VIP" SNIP = "SNIP" GSLBsiteIP = "GSLBsiteIP" ADNSsvcIP = "ADNSsvcIP" RADIUSListenersvcIP = "RADIUSListenersvcIP" CLIP = "CLIP" class Mgmtaccess: ENABLED = "ENABLED" DISABLED = "DISABLED" class Hostroute: ENABLED = "ENABLED" DISABLED = "DISABLED" class Ftp: ENABLED = "ENABLED" DISABLED = "DISABLED" class Ownerdownresponse: YES = "YES" NO = "NO" class Vserverrhilevel: ONE_VSERVER = "ONE_VSERVER" ALL_VSERVERS = "ALL_VSERVERS" NONE = "NONE" VSVR_CNTRLD = "VSVR_CNTRLD" class Icmp: ENABLED = "ENABLED" DISABLED = "DISABLED" class Vserver: ENABLED = "ENABLED" DISABLED = "DISABLED" class Advertiseondefaultpartition: ENABLED = "ENABLED" DISABLED = "DISABLED" class Snmp: ENABLED = "ENABLED" DISABLED = "DISABLED" class Curstate: DISABLED = "DISABLED" ENABLED = "ENABLED" class Restrictaccess: ENABLED = "ENABLED" DISABLED = "DISABLED" class Telnet: ENABLED = "ENABLED" DISABLED = "DISABLED" class nsip6_response(base_response) : def __init__(self, length=1) : self.nsip6 = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.nsip6 = [nsip6() for _ in range(length)]
the-stack_106_32182
from kivy_ios.toolchain import HostRecipe, shprint from os.path import join import sh import logging logger = logging.getLogger(__name__) arch_mapper = {'x86_64': 'darwin64-x86_64-cc', 'arm64': 'darwin64-arm64-cc'} class HostOpensslRecipe(HostRecipe): version = "1.1.1l" url = "http://www.openssl.org/source/openssl-{version}.tar.gz" def get_build_env(self): build_env = self.ctx.env.copy() self.build_env = build_env return build_env def build_arch(self, arch): build_env = self.get_build_env() configure = sh.Command(join(self.build_dir, "Configure")) shprint(configure, arch_mapper[arch.arch], _env=build_env) shprint(sh.make, "clean") shprint(sh.make, self.ctx.concurrent_make, "build_libs") def install(self): arch = self.archs[0] sh.mkdir('-p', join(self.ctx.dist_dir, 'hostopenssl')) sh.cp('-r', join(self.get_build_dir(arch), 'include'), join(self.ctx.dist_dir, 'hostopenssl', 'include')) sh.mkdir('-p', join(self.ctx.dist_dir, 'hostopenssl', 'lib')) sh.cp(join(self.get_build_dir(arch), 'libssl.a'), join(self.ctx.dist_dir, 'hostopenssl', 'lib')) sh.cp(join(self.get_build_dir(arch), 'libcrypto.a'), join(self.ctx.dist_dir, 'hostopenssl', 'lib')) recipe = HostOpensslRecipe()
the-stack_106_32184
import pytest from django.urls import resolve, reverse from ecommerce.users.models import User pytestmark = pytest.mark.django_db def test_detail(user: User): assert ( reverse("users:detail", kwargs={"username": user.username}) == f"/users/{user.username}/" ) assert resolve(f"/users/{user.username}/").view_name == "users:detail" def test_update(): assert reverse("users:update") == "/users/~update/" assert resolve("/users/~update/").view_name == "users:update" def test_redirect(): assert reverse("users:redirect") == "/users/~redirect/" assert resolve("/users/~redirect/").view_name == "users:redirect"
the-stack_106_32186
from operator import itemgetter cancerlist = ["ACC", "BLCA", "BRCA", "CESC", "CHOL", "COAD", "DLBC", "ESCA", "GBM", "HNSC", "KICH", "KIRC", "KIRP", "LGG", "LIHC", "LUAD", "LUSC", "MESO", "OV", "PAAD", "PCPG", "PRAD", "READ", "SARC", "SKCM", "STAD", "TGCT", "THCA", "THYM", "UCEC", "UCS", "UVM"] #cancerlist = ["PANCANCER"] input_file1 = [] input_file2 = [] probe_count = 485577 p_threshold = [0.05, 0.005, 0.0005, 0.0000001] sample_id = [] cytoact = [] sample_index = [] def GetSample() : cytoact_file = open("TCGA_methylation_cowork_1.txt", 'r') header = cytoact_file.readline().split() # getting header id_posit = header.index("id") # sample ID positioning cytoact_posit = header.index("CytAct") # CytAct positioning cytodata = cytoact_file.readlines() # read data table cytoact_file.close() count = 0 global sample_id global cytoact for line in cytodata : line = line.split() sample_id.append(line[id_posit].replace('_', '')) # sample ID extraction cytoact.append(float(line[cytoact_posit])) # CytAct extraction count += 1 return count # Sample number return sample_number = GetSample() percentage = [0.01, 0.025, 0.05, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275, 0.3] for i in range(0, len(cancerlist)) : input_tumor = open(cancerlist[i] + ".humanmethylation450.tumor.txt", 'r') sample_header1 = input_tumor.readline().split() # sample line input_tumor.readline() # junk line ############################################################################################################################################################################ # make sample index table del sample_header1[0]; del sample_header1[0] sample_index = [] sample_binary_table = [] length = len(sample_header1) for j in range(0, length) : sample_header1[j] = sample_header1[j][:15].replace('-', '') if(sample_header1[j] in sample_id) : sample_index.append(sample_id.index(sample_header1[j])) else : sample_index.append(-1) for j in range(len(p_threshold)) : sample_binary_table.append([]) for k in range(len(percentage)) : sample_binary_table[j].append([]) for l in range(length) : sample_binary_table[j][k].append(0) ############################################################################################################################################################################ whole_skew = []; whole_skew_index = [] for j in range(len(p_threshold)) : input_file = open(str(p_threshold[j]) + "." + cancerlist[i] + ".CpGsites.By.TTest.txt", 'r') input_file.readline() # junk line whole_skew.append([]) lines = input_file.readlines() for line in lines : # Derivation of meaningful CpG sites line = line.split() t_stat = float(line[1]) whole_skew[j].append(line[0]) whole_skew[j].append("END_POINT") whole_skew_index.append(0) for j in range(probe_count) : line1 = input_tumor.readline().split() site_id = line1.pop(0) ############################################################################################################################################################################ # getting betavalue for each cpg site betavalue_row = [] new_length = length for k in range(0, length) : if(line1[k] == "NA" or sample_index[k] == -1) : new_length -= 1 continue betavalue_row.append([float(line1[k]), k]) betavalue_row.sort(key = itemgetter(0)) ############################################################################################################################################################################ if(new_length > 0) : for k in range(len(p_threshold)) : if(whole_skew[k][whole_skew_index[k]] == site_id) : betavalue_median = betavalue_row[new_length / 2][0] if(new_length % 2 == 0) : betavalue_median = (betavalue_median + betavalue_row[new_length / 2 - 1][0]) / 2 if(betavalue_median <= 0.5) : for percentage_i in range(len(percentage)) : threshold = int(new_length * percentage[percentage_i]) for l in range(threshold) : sample_binary_table[k][percentage_i][betavalue_row[new_length - l - 1][1]] += 1 else : for percentage_i in range(len(percentage)) : threshold = int(new_length * percentage[percentage_i]) for l in range(threshold) : sample_binary_table[k][percentage_i][betavalue_row[l][1]] += 1 whole_skew_index[k] += 1 if(j % 10000 == 0) : print(cancerlist[i] + " %d completed." % j) for j in range(len(p_threshold)) : for k in range(len(percentage)) : output_file = open("Pvalue." + str(p_threshold[j]) + ".Percentage." + str(percentage[k]) + "." + cancerlist[i] + ".Negative.Binarization.Summation.Excluding.Invalid.Samples.txt", 'w') for l in range(length) : if(sample_index[l] == -1) : continue printline = sample_header1[l] + "\t%s\n" % str(sample_binary_table[j][k][l]) output_file.write(printline)
the-stack_106_32187
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Union import numpy as np import torch from monai.metrics.utils import do_metric_reduction, get_mask_edges, get_surface_distance, ignore_background from monai.utils import MetricReduction from .metric import CumulativeIterationMetric class SurfaceDistanceMetric(CumulativeIterationMetric): """ Compute Surface Distance between two tensors. It can support both multi-classes and multi-labels tasks. It supports both symmetric and asymmetric surface distance calculation. Input `y_pred` is compared with ground truth `y`. `y_preds` is expected to have binarized predictions and `y` should be in one-hot format. You can use suitable transforms in ``monai.transforms.post`` first to achieve binarized values. `y_preds` and `y` can be a list of channel-first Tensor (CHW[D]) or a batch-first Tensor (BCHW[D]). Args: include_background: whether to skip distance computation on the first channel of the predicted output. Defaults to ``False``. symmetric: whether to calculate the symmetric average surface distance between `seg_pred` and `seg_gt`. Defaults to ``False``. distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``] the metric used to compute surface distance. Defaults to ``"euclidean"``. reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, ``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric. """ def __init__( self, include_background: bool = False, symmetric: bool = False, distance_metric: str = "euclidean", reduction: Union[MetricReduction, str] = MetricReduction.MEAN, get_not_nans: bool = False, ) -> None: super().__init__() self.include_background = include_background self.distance_metric = distance_metric self.symmetric = symmetric self.reduction = reduction self.get_not_nans = get_not_nans def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor): # type: ignore """ Args: y_pred: input data to compute, typical segmentation model output. It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values should be binarized. y: ground truth to compute the distance. It must be one-hot format and first dim is batch. The values should be binarized. Raises: ValueError: when `y` is not a binarized tensor. ValueError: when `y_pred` has less than three dimensions. """ if not isinstance(y_pred, torch.Tensor) or not isinstance(y, torch.Tensor): raise ValueError("y_pred and y must be PyTorch Tensor.") if not torch.all(y_pred.byte() == y_pred): warnings.warn("y_pred should be a binarized tensor.") if not torch.all(y.byte() == y): raise ValueError("y should be a binarized tensor.") dims = y_pred.ndimension() if dims < 3: raise ValueError("y_pred should have at least three dimensions.") # compute (BxC) for each channel for each batch return compute_average_surface_distance( y_pred=y_pred, y=y, include_background=self.include_background, symmetric=self.symmetric, distance_metric=self.distance_metric, ) def aggregate(self): # type: ignore """ Execute reduction logic for the output of `compute_average_surface_distance`. """ data = self.get_buffer() if not isinstance(data, torch.Tensor): raise ValueError("the data to aggregate must be PyTorch Tensor.") # do metric reduction f, not_nans = do_metric_reduction(data, self.reduction) return (f, not_nans) if self.get_not_nans else f def compute_average_surface_distance( y_pred: Union[np.ndarray, torch.Tensor], y: Union[np.ndarray, torch.Tensor], include_background: bool = False, symmetric: bool = False, distance_metric: str = "euclidean", ): """ This function is used to compute the Average Surface Distance from `y_pred` to `y` under the default setting. In addition, if sets ``symmetric = True``, the average symmetric surface distance between these two inputs will be returned. The implementation refers to `DeepMind's implementation <https://github.com/deepmind/surface-distance>`_. Args: y_pred: input data to compute, typical segmentation model output. It must be one-hot format and first dim is batch, example shape: [16, 3, 32, 32]. The values should be binarized. y: ground truth to compute mean the distance. It must be one-hot format and first dim is batch. The values should be binarized. include_background: whether to skip distance computation on the first channel of the predicted output. Defaults to ``False``. symmetric: whether to calculate the symmetric average surface distance between `seg_pred` and `seg_gt`. Defaults to ``False``. distance_metric: : [``"euclidean"``, ``"chessboard"``, ``"taxicab"``] the metric used to compute surface distance. Defaults to ``"euclidean"``. """ if not include_background: y_pred, y = ignore_background(y_pred=y_pred, y=y) if isinstance(y, torch.Tensor): y = y.float() if isinstance(y_pred, torch.Tensor): y_pred = y_pred.float() if y.shape != y_pred.shape: raise ValueError("y_pred and y should have same shapes.") batch_size, n_class = y_pred.shape[:2] asd = np.empty((batch_size, n_class)) for b, c in np.ndindex(batch_size, n_class): (edges_pred, edges_gt) = get_mask_edges(y_pred[b, c], y[b, c]) if not np.any(edges_gt): warnings.warn(f"the ground truth of class {c} is all 0, this may result in nan/inf distance.") if not np.any(edges_pred): warnings.warn(f"the prediction of class {c} is all 0, this may result in nan/inf distance.") surface_distance = get_surface_distance(edges_pred, edges_gt, distance_metric=distance_metric) if surface_distance.shape == (0,): avg_surface_distance = np.nan else: avg_surface_distance = surface_distance.mean() # type: ignore if not symmetric: asd[b, c] = avg_surface_distance else: surface_distance_2 = get_surface_distance(edges_gt, edges_pred, distance_metric=distance_metric) if surface_distance_2.shape == (0,): avg_surface_distance_2 = np.nan else: avg_surface_distance_2 = surface_distance_2.mean() # type: ignore asd[b, c] = np.mean((avg_surface_distance, avg_surface_distance_2)) return torch.from_numpy(asd)
the-stack_106_32191
#!/usr/bin/python # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', }, } INSTALLED_APPS = ['tests.django'] ROOT_URLCONF = 'tests.django.urls' SECRET_KEY = 'commenter_tests_secret_key'
the-stack_106_32193
# name: pyALL # created: May 2018 # by: [email protected] # description: python module to read a Kongsberg ALL sonar file # notes: See main at end of script for example how to use this # based on ALL Revision R October 2013 # https://raw.githubusercontent.com/ausseabed/pyall/master/pyall/pyall.py # See readme.md for more details import ctypes import math import pprint import struct import os.path import time from datetime import datetime from datetime import timedelta import numpy as np def main(): # open the ALL file for reading by creating a new ALLReader class and # passing in the filename to open. filename = "C:/development/Python/Sample.all" r = ALLReader(filename) pingCount = 0 start_time = time.time() # time the process # navigation = r.loadNavigation() # time the process # print("Load Navigation Duration: %.2fs" % (time.time() - start_time)) # print (navigation) while r.moreData(): # read a datagram. If we support it, return the datagram type and a # class for that datagram # The user then needs to call the read() method for the class to # undertake a fileread and binary decode. This keeps the read super # quick. typeOfDatagram, datagram = r.readDatagram() print(typeOfDatagram, end="") rawbytes = r.readDatagramBytes(datagram.offset, datagram.numberOfBytes) # hereis how we compute the checksum # print(sum(rawbytes[5:-3])) if typeOfDatagram == "3": datagram.read() print(datagram.data) continue if typeOfDatagram == "A": datagram.read() # for a in datagram.Attitude: # print ("%.5f, %.3f, %.3f, %.3f, %.3f" % (r.to_timestamp(r.to_DateTime(a[0], a[1])), a[3], a[4], a[5], a[6])) continue if typeOfDatagram == "C": datagram.read() continue if typeOfDatagram == "D": datagram.read() nadirBeam = int(datagram.NBeams / 2) # print (("Nadir Depth: %.3f AcrossTrack %.3f TransducerDepth %.3f Checksum %s" % (datagram.Depth[nadirBeam], datagram.AcrossTrackDistance[nadirBeam], datagram.TransducerDepth, datagram.checksum))) continue if typeOfDatagram == "f": datagram.read() if typeOfDatagram == "H": datagram.read() if typeOfDatagram == "i": datagram.read() continue if typeOfDatagram == "I": datagram.read() # print (datagram.installationParameters) # print ("Lat: %.5f Lon: %.5f" % (datagram.Latitude, datagram.Longitude)) continue if typeOfDatagram == "n": datagram.read() continue if typeOfDatagram == "N": datagram.read() # print ("Raw Travel Times Recorded for %d beams" % datagram.NumReceiveBeams) continue if typeOfDatagram == "O": datagram.read() continue if typeOfDatagram == "R": datagram.read() continue if typeOfDatagram == "U": datagram.read() continue if typeOfDatagram == "X": datagram.read() nadirBeam = int(datagram.NBeams / 2) # print (("Nadir Depth: %.3f AcrossTrack %.3f TransducerDepth %.3f" % (datagram.Depth[nadirBeam], datagram.AcrossTrackDistance[nadirBeam], datagram.TransducerDepth))) pingCount += 1 continue if typeOfDatagram == "Y": datagram.read() continue if typeOfDatagram == "k": datagram.read() continue # print the processing time. It is handy to keep an eye on processing # performance. print( "Read Duration: %.3f seconds, pingCount %d" % (time.time() - start_time, pingCount) ) r.rewind() print("Complete reading ALL file :-)") r.close() class ALLReader: """class to read a Kongsberg EM multibeam .all file""" # `<` means little endian, following note comes from Kongsberg # # Please be aware that the following echo sounders: EM 3002, EM 710, # EM 302, EM 122, EM 2040, EM 2040C and ME70BO use little endian byte # order. ALLPacketHeader_fmt = "<LBBHLLHH" ALLPacketHeader_len = struct.calcsize(ALLPacketHeader_fmt) ALLPacketHeader_unpack = struct.Struct(ALLPacketHeader_fmt).unpack_from def __init__(self, ALLfileName): if not os.path.isfile(ALLfileName): print("file not found:", ALLfileName) self.fileName = ALLfileName self.fileptr = open(ALLfileName, "rb") self.fileSize = os.path.getsize(ALLfileName) self.recordDate = "" self.recordTime = "" self.clockCounter = None self.serialNumber = None self.recordCounter = 0 def __str__(self): return pprint.pformat(vars(self)) def currentRecordDateTime(self): """return a python date object from the current datagram objects raw date and time fields """ date_object = datetime.strptime(str(self.recordDate), "%Y%m%d") + timedelta( 0, self.recordTime ) return date_object def to_DateTime(self, recordDate, recordTime): """return a python date object from a split date and time record""" date_object = datetime.strptime(str(recordDate), "%Y%m%d") + timedelta( 0, recordTime ) return date_object # def to_timestamp(self, dateObject): # '''return a unix timestamp from a python date object''' # return (dateObject - datetime(1970, 1, 1)).total_seconds() def close(self): """close the current file""" self.fileptr.close() def rewind(self): """go back to start of file""" self.fileptr.seek(0, 0) def currentPtr(self): """report where we are in the file reading process""" return self.fileptr.tell() def moreData(self): """report how many more bytes there are to read from the file""" return self.fileSize - self.fileptr.tell() def readDatagramHeader(self): """read the common header for any datagram""" try: curr = self.fileptr.tell() data = self.fileptr.read(self.ALLPacketHeader_len) s = self.ALLPacketHeader_unpack(data) numberOfBytes = s[0] STX = s[1] typeOfDatagram = chr(s[2]) EMModel = s[3] RecordDate = s[4] RecordTime = float(s[5] / 1000.0) ClockCounter = s[6] SerialNumber = s[7] self.recordDate = RecordDate self.recordTime = RecordTime self.clockCounter = ClockCounter self.serialNumber = SerialNumber # now reset file pointer self.fileptr.seek(curr, 0) # we need to add 4 bytes as the message does not contain the # 4 bytes used to hold the size of the message trap corrupt # datagrams at the end of a file. We see this in EM2040 systems. if (curr + numberOfBytes + 4) > self.fileSize: numberOfBytes = self.fileSize - curr - 4 typeOfDatagram = "XXX" return ( numberOfBytes + 4, STX, typeOfDatagram, EMModel, RecordDate, RecordTime, ClockCounter, SerialNumber, ) return ( numberOfBytes + 4, STX, typeOfDatagram, EMModel, RecordDate, RecordTime, ClockCounter, SerialNumber, ) except struct.error: return 0, 0, 0, 0, 0, 0, 0, 0 def readDatagramBytes(self, offset, byteCount): """read the entire raw bytes for the datagram without changing the file pointer. this is used for file conditioning""" curr = self.fileptr.tell() # move the file pointer to the start of the record so we can read # from disc self.fileptr.seek(offset, 0) data = self.fileptr.read(byteCount) self.fileptr.seek(curr, 0) return data def getRecordCount(self): """read through the entire file as fast as possible to get a count of all records. useful for progress bars so user can see what is happening""" count = 0 start = 0 end = 0 self.rewind() ( numberOfBytes, STX, typeOfDatagram, EMModel, RecordDate, RecordTime, ClockCounter, SerialNumber, ) = self.readDatagramHeader() start = to_timestamp(to_DateTime(RecordDate, RecordTime)) self.rewind() while self.moreData(): ( numberOfBytes, STX, typeOfDatagram, EMModel, RecordDate, RecordTime, ClockCounter, SerialNumber, ) = self.readDatagramHeader() self.fileptr.seek(numberOfBytes, 1) count += 1 self.rewind() end = to_timestamp(to_DateTime(RecordDate, RecordTime)) return count, start, end def readDatagram(self): """read the datagram header. This permits us to skip datagrams we do not support""" ( numberOfBytes, STX, typeOfDatagram, EMModel, RecordDate, RecordTime, ClockCounter, SerialNumber, ) = self.readDatagramHeader() self.recordCounter += 1 if typeOfDatagram == "3": # 3_EXTRA PARAMETERS DECIMAL 51 dg = E_EXTRA(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "A": # A ATTITUDE dg = A_ATTITUDE(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "C": # C Clock dg = C_CLOCK(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "D": # D DEPTH dg = D_DEPTH(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "f": # f Raw Range dg = f_RAWRANGE(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "G": # G Speed Sound at Head dg = G_SPEEDSOUNDATHEAD(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "h": # h Height, do not confuse with H_Heading! dg = h_HEIGHT(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "I": # I Installation (Start) dg = I_INSTALLATION(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "i": # i Installation (Stop) dg = I_INSTALLATION(self.fileptr, numberOfBytes) dg.typeOfDatagram = "i" # override with the install stop code return dg.typeOfDatagram, dg if typeOfDatagram == "n": # n ATTITUDE dg = n_ATTITUDE(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "N": # N Angle and Travel Time dg = N_TRAVELTIME(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "O": # O_QUALITYFACTOR dg = O_QUALITYFACTOR(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "R": # R_RUNTIME dg = R_RUNTIME(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "P": # P Position dg = P_POSITION(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "U": # U Sound Velocity dg = U_SVP(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "X": # X Depth dg = X_DEPTH(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "Y": # Y_SeabedImage dg = Y_SEABEDIMAGE(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "k": # k_WaterColumn dg = k_WATERCOLUMN(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg if typeOfDatagram == "S": # S_Seabed Image dg = S_SEABEDIMAGE(self.fileptr, numberOfBytes) return dg.typeOfDatagram, dg else: dg = UNKNOWN_RECORD(self.fileptr, numberOfBytes, typeOfDatagram) return dg.typeOfDatagram, dg # self.fileptr.seek(numberOfBytes, 1) def loadInstallationRecords(self): """loads all the installation into lists""" installStart = None installStop = None # initialMode = None datagram = None self.rewind() while self.moreData(): typeOfDatagram, datagram = self.readDatagram() if typeOfDatagram == "I": installStart = self.readDatagramBytes(datagram.offset, datagram.numberOfBytes) datagram.read() break if typeOfDatagram == "i": installStop = self.readDatagramBytes(datagram.offset, datagram.numberOfBytes) #break self.rewind() return installStart, installStop, datagram def loadCenterFrequency(self): """determine the central frequency of the first record in the file""" centerFrequency = 0 self.rewind() while self.moreData(): typeOfDatagram, datagram = self.readDatagram() if typeOfDatagram == "N": datagram.read() centerFrequency = datagram.CentreFrequency[0] break self.rewind() return centerFrequency def loadDepthMode(self): """determine the central frequency of the first record in the file""" initialDepthMode = "" self.rewind() while self.moreData(): typeOfDatagram, datagram = self.readDatagram() if typeOfDatagram == "R": datagram.read() initialDepthMode = datagram.DepthMode break self.rewind() return initialDepthMode def loadNavigation_runtime(self, firstRecordOnly=False): '''loads all the navigation into lists loads all the runtimes into lists (magia) ''' navigation = [] runtime = {} lat = 0 long = 0 selectedPositioningSystem = None self.rewind() while self.moreData(): typeOfDatagram, datagram = self.readDatagram() if (typeOfDatagram == 'P'): datagram.read() recDate = self.currentRecordDateTime() if (selectedPositioningSystem == None): selectedPositioningSystem = datagram.Descriptor if (selectedPositioningSystem == datagram.Descriptor): # for python 2.7 lat = datagram.Latitude long = datagram.Longitude navigation.append([to_timestamp(recDate), datagram.Latitude, datagram.Longitude]) # for python 3.4 #navigation.append([recDate.timestamp(), datagram.Latitude, datagram.Longitude]) if firstRecordOnly: #we only want the first record, so reset the file pointer and quit self.rewind() return navigation if (typeOfDatagram == 'R'): # Get First datagram.read() recDate = self.currentRecordDateTime().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3] #datagram.parameters() runtime[recDate + ',' + str(datagram.Counter) + ',' + str(lat) + ',' + str(long)] = datagram.parameters() self.rewind() return navigation, runtime def loadNavigation(self, firstRecordOnly=False): """loads all the navigation into lists""" navigation = [] selectedPositioningSystem = None self.rewind() while self.moreData(): typeOfDatagram, datagram = self.readDatagram() if typeOfDatagram == "P": datagram.read() recDate = self.currentRecordDateTime() if selectedPositioningSystem is None: selectedPositioningSystem = datagram.Descriptor if selectedPositioningSystem == datagram.Descriptor: # for python 2.7 navigation.append( [to_timestamp(recDate), datagram.Latitude, datagram.Longitude] ) # for python 3.4 # navigation.append( # [recDate.timestamp(), # datagram.Latitude, # datagram.Longitude # ]) # we only want the first record, so reset the file pointer # and quit if firstRecordOnly: self.rewind() return navigation self.rewind() return navigation def getDatagramName(self, typeOfDatagram): """Convert the datagram type from the code to a user readable string. Handy for displaying to the user""" # Multibeam Data if typeOfDatagram == "D": return "D_Depth" if typeOfDatagram == "X": return "XYZ_Depth" if typeOfDatagram == "K": return "K_CentralBeam" if typeOfDatagram == "F": return "F_RawRange" if typeOfDatagram == "f": return "f_RawRange" if typeOfDatagram == "N": return "N_RawRange" if typeOfDatagram == "S": return "S_SeabedImage" if typeOfDatagram == "Y": return "Y_SeabedImage" if typeOfDatagram == "k": return "k_WaterColumn" if typeOfDatagram == "O": return "O_QualityFactor" # ExternalSensors if typeOfDatagram == "A": return "A_Attitude" if typeOfDatagram == "n": return "network_Attitude" if typeOfDatagram == "C": return "C_Clock" if typeOfDatagram == "h": return "h_Height" if typeOfDatagram == "H": return "H_Heading" if typeOfDatagram == "P": return "P_Position" if typeOfDatagram == "E": return "E_SingleBeam" if typeOfDatagram == "T": return "T_Tide" # SoundSpeed if typeOfDatagram == "G": return "G_SpeedSoundAtHead" if typeOfDatagram == "U": return "U_SpeedSoundProfile" if typeOfDatagram == "W": return "W_SpeedSOundProfileUsed" # Multibeam parameters if typeOfDatagram == "I": return "I_Installation_Start" if typeOfDatagram == "i": return "i_Installation_Stop" if typeOfDatagram == "R": return "R_Runtime" if typeOfDatagram == "J": return "J_TransducerTilt" if typeOfDatagram == "3": return "3_ExtraParameters" # PU information and status if typeOfDatagram == "0": return "0_PU_ID" if typeOfDatagram == "1": return "1_PU_Status" if typeOfDatagram == "B": return "B_BIST_Result" class cBeam: def __init__(self, beamDetail, angle): self.sortingDirection = beamDetail[0] self.detectionInfo = beamDetail[1] self.numberOfSamplesPerBeam = beamDetail[2] self.centreSampleNumber = beamDetail[3] self.sector = 0 self.takeOffAngle = angle # used for ARC computation self.sampleSum = 0 # used for backscatter ARC computation process self.samples = [] class A_ATTITUDE_ENCODER: def __init__(self): self.data = 0 def encode(self, recordsToAdd, counter): """Encode a list of attitude records where the format is timestamp, roll, pitch, heave heading""" if len(recordsToAdd) == 0: return fullDatagram = bytearray() header_fmt = "=LBBHLLHHH" header_len = struct.calcsize(header_fmt) rec_fmt = "HHhhhHB" rec_len = struct.calcsize(rec_fmt) footer_fmt = "=BH" footer_len = struct.calcsize(footer_fmt) STX = 2 typeOfDatagram = 65 model = 2045 systemDescriptor = 0 # set heading is ENABLED (go figure!) systemDescriptor = set_bit(systemDescriptor, 0) serialNumber = 999 numEntries = len(recordsToAdd) fullDatagramByteCount = header_len + (rec_len * len(recordsToAdd)) + footer_len # we need to know the first record timestamp as all observations are # milliseconds from that time firstRecordTimestamp = float(recordsToAdd[0][0]) firstRecordDate = from_timestamp(firstRecordTimestamp) recordDate = int(dateToKongsbergDate(firstRecordDate)) recordTime = int(dateToSecondsSinceMidnight(firstRecordDate) * 1000) # we need to deduct 4 bytes as the field does not account for the # 4-byte message length data which precedes the message try: header = struct.pack( header_fmt, fullDatagramByteCount - 4, STX, typeOfDatagram, model, recordDate, recordTime, counter, serialNumber, numEntries, ) except Exception as ex: print("error encoding attitude") # header = struct.pack( # header_fmt, fullDatagramByteCount-4, STX, typeOfDatagram, # model, recordDate, recordTime, counter, serialNumber, # numEntries # ) fullDatagram = fullDatagram + header # now pack avery record from the list for record in recordsToAdd: # compute the millisecond offset of the record from the first # record in the datagram timeMillisecs = round((float(record[0]) - firstRecordTimestamp) * 1000) sensorStatus = 0 roll = float(record[1]) pitch = float(record[2]) heave = float(record[3]) heading = float(record[4]) try: bodyRecord = struct.pack( rec_fmt, timeMillisecs, sensorStatus, int(roll * 100), int(pitch * 100), int(heave * 100), int(heading * 100), systemDescriptor, ) except Exception as ex: print("error encoding attitude") bodyRecord = struct.pack( rec_fmt, timeMillisecs, sensorStatus, int(roll * 100), int(pitch * 100), int(heave * 100), int(heading * 100), systemDescriptor, ) fullDatagram = fullDatagram + bodyRecord # now do the footer # # set roll is DISABLED # systemDescriptor = set_bit(systemDescriptor, 1) # # set pitch is DISABLED # systemDescriptor = set_bit(systemDescriptor, 2) # # set heave is DISABLED # systemDescriptor = set_bit(systemDescriptor, 3) # # set SENSOR as system 2 # systemDescriptor = set_bit(systemDescriptor, 4) # systemDescriptor = 30 ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer # TEST THE CRC CODE pkpk # c = CRC16() # chk = c.calculate(fullDatagram) return fullDatagram class A_ATTITUDE: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "A" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.NumberEntries = s[8] rec_fmt = "=HHhhhH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # we need to store all the attitude data in a list self.Attitude = [0 for i in range(self.NumberEntries)] i = 0 while i < self.NumberEntries: data = self.fileptr.read(rec_len) s = rec_unpack(data) # time,status,roll,pitch,heave,heading self.Attitude[i] = [ self.RecordDate, self.Time + float(s[0] / 1000.0), s[1], s[2] / 100.0, s[3] / 100.0, s[4] / 100.0, s[5] / 100.0, ] i = i + 1 rec_fmt = "=BBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.systemDescriptor = s[0] self.ETX = s[1] self.checksum = s[2] class C_CLOCK: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "C" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHLLBBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.time = float(s[5] / 1000.0) self.ClockCounter = s[6] self.SerialNumber = s[7] self.ExternalDate = s[8] self.ExternalTime = s[9] / 1000.0 self.PPS = s[10] self.ETX = s[11] self.checksum = s[12] def __str__(self): if self.PPS == 0: ppsInUse = "PPS NOT in use" else: ppsInUse = "PPS in use" s = "%d,%d,%.3f,%.3f,%.3f,%s" % ( self.RecordDate, self.ExternalDate, self.time, self.ExternalTime, self.time - self.ExternalTime, ppsInUse, ) return s class D_DEPTH: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "D" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHHHHBBBBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.Heading = float(s[8] / float(100)) self.SoundSpeedAtTransducer = float(s[9] / float(10)) self.TransducerDepth = float(s[10] / float(100)) self.MaxBeams = s[11] self.NBeams = s[12] self.ZResolution = float(s[13] / float(100)) self.XYResolution = float(s[14] / float(100)) self.SampleFrequency = s[15] self.Depth = [0 for i in range(self.NBeams)] self.AcrossTrackDistance = [0 for i in range(self.NBeams)] self.AlongTrackDistance = [0 for i in range(self.NBeams)] self.BeamDepressionAngle = [0 for i in range(self.NBeams)] self.BeamAzimuthAngle = [0 for i in range(self.NBeams)] self.Range = [0 for i in range(self.NBeams)] self.QualityFactor = [0 for i in range(self.NBeams)] self.LengthOfDetectionWindow = [0 for i in range(self.NBeams)] self.Reflectivity = [0 for i in range(self.NBeams)] self.BeamNumber = [0 for i in range(self.NBeams)] # now read the variable part of the Record if self.EMModel < 700: rec_fmt = "=H3h2H2BbB" else: rec_fmt = "=4h2H2BbB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack i = 0 while i < self.NBeams: data = self.fileptr.read(rec_len) s = rec_unpack(data) self.Depth[i] = float(s[0] / float(100)) self.AcrossTrackDistance[i] = float(s[1] / float(100)) self.AlongTrackDistance[i] = float(s[2] / float(100)) self.BeamDepressionAngle[i] = float(s[3] / float(100)) self.BeamAzimuthAngle[i] = float(s[4] / float(100)) self.Range[i] = float(s[5] / float(100)) self.QualityFactor[i] = s[6] self.LengthOfDetectionWindow[i] = s[7] self.Reflectivity[i] = float(s[8] / float(100)) self.BeamNumber[i] = s[9] # now do some sanity checks. We have examples where the Depth # and Across track values are NaN if math.isnan(self.Depth[i]): self.Depth[i] = 0 if math.isnan(self.AcrossTrackDistance[i]): self.AcrossTrackDistance[i] = 0 if math.isnan(self.AlongTrackDistance[i]): self.AlongTrackDistance[i] = 0 i = i + 1 rec_fmt = "=bBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.RangeMultiplier = s[0] self.ETX = s[1] self.checksum = s[2] def encode(self): """Encode a Depth D datagram record""" header_fmt = "=LBBHLLHHHHHBBBBH" header_len = struct.calcsize(header_fmt) fullDatagram = bytearray() # now read the variable part of the Record if self.EMModel < 700: rec_fmt = "=H3h2H2BbB" else: rec_fmt = "=4h2H2BbB" rec_len = struct.calcsize(rec_fmt) footer_fmt = "=BBH" footer_len = struct.calcsize(footer_fmt) fullDatagramByteCount = header_len + (rec_len * self.NBeams) + footer_len # pack the header recordTime = int(dateToSecondsSinceMidnight(from_timestamp(self.Time)) * 1000) header = struct.pack( header_fmt, fullDatagramByteCount - 4, self.STX, ord(self.typeOfDatagram), self.EMModel, self.RecordDate, recordTime, int(self.Counter), int(self.SerialNumber), int(self.Heading * 100), int(self.SoundSpeedAtTransducer * 10), int(self.TransducerDepth * 100), int(self.MaxBeams), int(self.NBeams), int(self.ZResolution * 100), int(self.XYResolution * 100), int(self.SampleFrequency), ) fullDatagram = fullDatagram + header header_fmt = "=LBBHLLHHHHHBBBBH" # pack the beam summary info for i in range(self.NBeams): bodyRecord = struct.pack( rec_fmt, int(self.Depth[i] * 100), int(self.AcrossTrackDistance[i] * 100), int(self.AlongTrackDistance[i] * 100), int(self.BeamDepressionAngle[i] * 100), int(self.BeamAzimuthAngle[i] * 100), int(self.Range[i] * 100), self.QualityFactor[i], self.LengthOfDetectionWindow[i], int(self.Reflectivity[i] * 100), self.BeamNumber[i], ) fullDatagram = fullDatagram + bodyRecord tmp = struct.pack("=b", self.RangeMultiplier) fullDatagram = fullDatagram + tmp # now pack the footer # systemDescriptor = 1 ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram class E_EXTRA: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "3" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.ExtraData = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.ContentIdentifier = s[8] # now read the variable position part of the Record if self.numberOfBytes % 2 != 0: bytesToRead = self.numberOfBytes - rec_len - 5 # 'sBBH' else: bytesToRead = self.numberOfBytes - rec_len - 4 # 'sBH' # now read the block of data whatever it may contain self.data = self.fileptr.read(bytesToRead) # # now spare byte only if necessary # if self.numberOfBytes % 2 != 0: # self.fileptr.read(1) # read an empty byte self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) ############################################################################### class f_RAWRANGE: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "f" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHH HHLl4H" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.PingCounter = s[6] self.SerialNumber = s[7] self.NumTransmitSector = s[8] self.NumReceiveBeams = s[9] self.SampleFrequency = float(s[10] / 100) self.ROVDepth = s[11] self.SoundSpeedAtTransducer = s[12] / 10 self.MaxBeams = s[13] self.Spare1 = s[14] self.Spare2 = s[15] self.TiltAngle = [0 for i in range(self.NumTransmitSector)] self.FocusRange = [0 for i in range(self.NumTransmitSector)] self.SignalLength = [0 for i in range(self.NumTransmitSector)] self.SectorTransmitDelay = [0 for i in range(self.NumTransmitSector)] self.CentreFrequency = [0 for i in range(self.NumTransmitSector)] self.MeanAbsorption = [0 for i in range(self.NumTransmitSector)] self.SignalWaveformID = [0 for i in range(self.NumTransmitSector)] self.TransmitSectorNumberTX = [0 for i in range(self.NumTransmitSector)] self.SignalBandwidth = [0 for i in range(self.NumTransmitSector)] self.BeamPointingAngle = [0 for i in range(self.NumReceiveBeams)] self.TransmitSectorNumber = [0 for i in range(self.NumReceiveBeams)] self.DetectionInfo = [0 for i in range(self.NumReceiveBeams)] self.DetectionWindow = [0 for i in range(self.NumReceiveBeams)] self.QualityFactor = [0 for i in range(self.NumReceiveBeams)] self.DCorr = [0 for i in range(self.NumReceiveBeams)] self.TwoWayTravelTime = [0 for i in range(self.NumReceiveBeams)] self.Reflectivity = [0 for i in range(self.NumReceiveBeams)] self.RealtimeCleaningInformation = [0 for i in range(self.NumReceiveBeams)] self.Spare = [0 for i in range(self.NumReceiveBeams)] self.BeamNumber = [0 for i in range(self.NumReceiveBeams)] # # now read the variable part of the Transmit Record rec_fmt = "=hHLLLHBB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack for i in range(self.NumTransmitSector): data = self.fileptr.read(rec_len) bytesRead += rec_len s = rec_unpack(data) self.TiltAngle[i] = float(s[0]) / 100.0 self.FocusRange[i] = s[1] / 10 self.SignalLength[i] = s[2] self.SectorTransmitDelay[i] = s[3] self.CentreFrequency[i] = s[4] self.SignalBandwidth[i] = s[5] self.SignalWaveformID[i] = s[6] self.TransmitSectorNumberTX[i] = s[7] # now read the variable part of the recieve record rx_rec_fmt = "=hHBbBBhH" rx_rec_len = struct.calcsize(rx_rec_fmt) rx_rec_unpack = struct.Struct(rx_rec_fmt).unpack for i in range(self.NumReceiveBeams): data = self.fileptr.read(rx_rec_len) rx_s = rx_rec_unpack(data) bytesRead += rx_rec_len self.BeamPointingAngle[i] = float(rx_s[0]) / 100.0 self.TwoWayTravelTime[i] = float(rx_s[1]) / (4 * self.SampleFrequency) self.TransmitSectorNumber[i] = rx_s[2] self.Reflectivity[i] = rx_s[3] / 2.0 self.QualityFactor[i] = rx_s[4] self.DetectionWindow[i] = rx_s[5] self.BeamNumber[i] = rx_s[6] rec_fmt = "=BBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.ETX = s[1] self.checksum = s[2] def encode(self): """Encode a Depth f datagram record""" systemDescriptor = 1 header_fmt = "=LBBHLLHH HHLl4H" header_len = struct.calcsize(header_fmt) fullDatagram = bytearray() # # now read the variable part of the Transmit Record rec_fmt = "=hHLLLHBB" rec_len = struct.calcsize(rec_fmt) # now read the variable part of the recieve record rx_rec_fmt = "=hHBbBBhHB" rx_rec_len = struct.calcsize(rx_rec_fmt) footer_fmt = "=BH" footer_len = struct.calcsize(footer_fmt) fullDatagramByteCount = ( header_len + (rec_len * self.NumTransmitSector) + (rx_rec_len * self.NumReceiveBeams) + footer_len ) # pack the header recordTime = int(dateToSecondsSinceMidnight(from_timestamp(self.Time)) * 1000) header = struct.pack( header_fmt, fullDatagramByteCount - 4, self.STX, ord(self.typeOfDatagram), self.EMModel, self.RecordDate, recordTime, self.PingCounter, self.SerialNumber, self.NumTransmitSector, self.NumReceiveBeams, int(self.SampleFrequency * 100), self.ROVDepth, int(self.SoundSpeedAtTransducer * 10), self.MaxBeams, self.Spare1, self.Spare2, ) fullDatagram = fullDatagram + header for i in range(self.NumTransmitSector): sectorRecord = struct.pack( rec_fmt, int(self.TiltAngle[i] * 100), int(self.FocusRange[i] * 10), self.SignalLength[i], self.SectorTransmitDelay[i], self.CentreFrequency[i], self.SignalBandwidth[i], self.SignalWaveformID[i], self.TransmitSectorNumberTX[i], ) fullDatagram = fullDatagram + sectorRecord # pack the beam summary info for i in range(self.NumReceiveBeams): bodyRecord = struct.pack( rx_rec_fmt, int(self.BeamPointingAngle[i] * 100.0), int(self.TwoWayTravelTime[i] * (4 * self.SampleFrequency)), self.TransmitSectorNumber[i], int(self.Reflectivity[i] * 2.0), self.QualityFactor[i], self.DetectionWindow[i], self.BeamNumber[i], self.Spare1, systemDescriptor, ) fullDatagram = fullDatagram + bodyRecord # now pack the footer ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram class G_SPEEDSOUNDATHEAD: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "G" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHH" + "H" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.NumberOfEntries = s[8] self.SoundSpeedEntries = [] # now read the variable part of the sound speed record ss_entry_fmt = "=HH" ss_entry_len = struct.calcsize(ss_entry_fmt) ss_entry_unpack = struct.Struct(ss_entry_fmt).unpack for i in range(self.NumberOfEntries): data = self.fileptr.read(ss_entry_len) ss_entry_s = ss_entry_unpack(data) bytesRead += ss_entry_len timeInSecondsSinceRecordStart = ss_entry_s[0] # Sound speed in dm/s (incl. offset) soundSpeed = ss_entry_s[1] self.SoundSpeedEntries.append([timeInSecondsSinceRecordStart, soundSpeed]) spare_fmt = "=B" spare_len = struct.calcsize(spare_fmt) spare_unpack = struct.Struct(spare_fmt).unpack spare_data = self.fileptr.read(spare_len) spare_values = spare_unpack(spare_data) assert spare_values[0] == 0 # as stated on kongsberg doc # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) def __repr__(self): entriesstr = "" for entry in self.SoundSpeedEntries: entriesstr += " {}, {}\n".format(*entry) return ( "STX {} \n" "typeOfDatagram {} \n" "NumberOfEntries {} \n" "Sound speed entries: \n{} \n" .format(self.STX, self.typeOfDatagram, self.NumberOfEntries, entriesstr) ) class h_HEIGHT: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "h" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" self.Height = None self.HeightType = None def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHlB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.Height = float(s[8] / float(100)) self.HeightType = s[9] # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) def __repr__(self): return ( "STX {} \n" "typeOfDatagram {} \n" "Height {} \n" "HeightType {} \n" .format(self.STX, self.typeOfDatagram, self.Height, self.HeightType) ) class h_HEIGHT_ENCODER: def __init__(self): self.data = 0 def encode(self, height, recordDate, recordTime, counter): """Encode a Height datagram record""" rec_fmt = "=LBBHLLHHlB" rec_len = struct.calcsize(rec_fmt) # 0 = the height of the waterline at the vertical datum (from KM # # datagram manual) heightType = 0 serialNumber = 999 STX = 2 typeOfDatagram = "h" checksum = 0 # needs to be a sensible value to record is valid. Maybe would be # better to pass this from above model = 2045 try: fullDatagram = struct.pack( rec_fmt, rec_len - 4, STX, ord(typeOfDatagram), model, int(recordDate), int(recordTime), counter, serialNumber, int(height * 100), int(heightType), ) ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer except: print("error encoding height field") # header = struct.pack(rec_fmt, rec_len-4, STX, ord(typeOfDatagram), model, int(recordDate), int(recordTime), counter, serialNumber, int(height * 100), int(heightType), ETX, checksum) return fullDatagram class I_INSTALLATION: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = 'I' # assign the KM code for this datagram type self.offset = fileptr.tell() # remember where this packet resides in the file so we can return if needed self.numberOfBytes = numberOfBytes # remember how many bytes this packet contains. This includes the first 4 bytes represnting the number of bytes inthe datagram self.fileptr = fileptr # remember the file pointer so we do not need to pass from the host process self.fileptr.seek(numberOfBytes, 1) # move the file pointer to the end of the record so we can skip as the default actions self.data = "" def read(self): # move the file pointer to the start of the record so we can read # from disc self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLL3H" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # read the record from disc bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.SurveyLineNumber = s[6] self.SerialNumber = s[7] self.SecondarySerialNumber = s[8] totalAsciiBytes = ( self.numberOfBytes - rec_len ) # we do not need to read the header twice data = self.fileptr.read(totalAsciiBytes) # read the record from disc bytesRead = bytesRead + totalAsciiBytes parameters = data.decode("utf-8", errors="ignore").split(",") self.installationParameters = {} for p in parameters: parts = p.split("=") # print (parts) if len(parts) > 1: self.installationParameters[parts[0]] = parts[1].strip() # read any trailing bytes. We have seen the need for this with some # .all files. if bytesRead < self.numberOfBytes: self.fileptr.read(int(self.numberOfBytes - bytesRead)) class n_ATTITUDE: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "n" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHHbB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.NumberEntries = s[8] self.SystemDescriptor = s[9] rec_fmt = "=HhhhHB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # we need to store all the attitude data in a list self.Attitude = [0 for i in range(self.NumberEntries)] i = 0 while i < self.NumberEntries: data = self.fileptr.read(rec_len) s = rec_unpack(data) inputTelegramSize = s[5] data = self.fileptr.read(inputTelegramSize) self.Attitude[i] = [ self.RecordDate, self.Time + s[0] / 1000, s[1], s[2] / 100.0, s[3] / 100.0, s[4] / 100.0, s[5], data, ] i = i + 1 # # now spare byte only if necessary # if self.numberOfBytes % 2 != 0: # self.fileptr.read(1) # read an empty byte self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) class N_TRAVELTIME: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "N" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHHHHHfL" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.SoundSpeedAtTransducer = s[8] self.NumTransmitSector = s[9] self.NumReceiveBeams = s[10] self.NumValidDetect = s[11] self.SampleFrequency = float(s[12]) self.DScale = s[13] self.TiltAngle = [0 for i in range(self.NumTransmitSector)] self.FocusRange = [0 for i in range(self.NumTransmitSector)] self.SignalLength = [0 for i in range(self.NumTransmitSector)] self.SectorTransmitDelay = [0 for i in range(self.NumTransmitSector)] self.CentreFrequency = [0 for i in range(self.NumTransmitSector)] self.MeanAbsorption = [0 for i in range(self.NumTransmitSector)] self.SignalWaveformID = [0 for i in range(self.NumTransmitSector)] self.TransmitSectorNumberTX = [0 for i in range(self.NumTransmitSector)] self.SignalBandwidth = [0 for i in range(self.NumTransmitSector)] self.BeamPointingAngle = [0 for i in range(self.NumReceiveBeams)] self.TransmitSectorNumber = [0 for i in range(self.NumReceiveBeams)] self.DetectionInfo = [0 for i in range(self.NumReceiveBeams)] self.DetectionWindow = [0 for i in range(self.NumReceiveBeams)] self.QualityFactor = [0 for i in range(self.NumReceiveBeams)] self.DCorr = [0 for i in range(self.NumReceiveBeams)] self.TwoWayTravelTime = [0 for i in range(self.NumReceiveBeams)] self.Reflectivity = [0 for i in range(self.NumReceiveBeams)] self.RealtimeCleaningInformation = [0 for i in range(self.NumReceiveBeams)] self.Spare = [0 for i in range(self.NumReceiveBeams)] # # now read the variable part of the Transmit Record rec_fmt = "=hHfffHBBf" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack for i in range(self.NumTransmitSector): data = self.fileptr.read(rec_len) bytesRead += rec_len s = rec_unpack(data) self.TiltAngle[i] = float(s[0]) / float(100) self.FocusRange[i] = s[1] self.SignalLength[i] = float(s[2]) self.SectorTransmitDelay[i] = float(s[3]) self.CentreFrequency[i] = float(s[4]) self.MeanAbsorption[i] = s[5] self.SignalWaveformID[i] = s[6] self.TransmitSectorNumberTX[i] = s[7] self.SignalBandwidth[i] = float(s[8]) # now read the variable part of the recieve record rx_rec_fmt = "=hBBHBbfhbB" rx_rec_len = struct.calcsize(rx_rec_fmt) rx_rec_unpack = struct.Struct(rx_rec_fmt).unpack for i in range(self.NumReceiveBeams): data = self.fileptr.read(rx_rec_len) rx_s = rx_rec_unpack(data) bytesRead += rx_rec_len self.BeamPointingAngle[i] = float(rx_s[0]) / float(100) self.TransmitSectorNumber[i] = rx_s[1] self.DetectionInfo[i] = rx_s[2] self.DetectionWindow[i] = rx_s[3] self.QualityFactor[i] = rx_s[4] self.DCorr[i] = rx_s[5] self.TwoWayTravelTime[i] = float(rx_s[6]) self.Reflectivity[i] = rx_s[7] self.RealtimeCleaningInformation[i] = rx_s[8] self.Spare[i] = rx_s[9] rec_fmt = "=BBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.ETX = s[1] self.checksum = s[2] class O_QUALITYFACTOR: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "O" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.data = "" self.fileptr.seek(numberOfBytes, 1) def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHHBB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.NBeams = s[8] self.NParPerBeam = s[9] self.Spare = s[10] self.QualityFactor = [0 for i in range(self.NBeams)] rec_fmt = "=" + str(self.NParPerBeam) + "f" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack i = 0 while i < self.NBeams: data = self.fileptr.read(rec_len) s = rec_unpack(data) self.QualityFactor[i] = float(s[0]) i = i + 1 rec_fmt = "=bBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.RangeMultiplier = s[0] self.ETX = s[1] self.checksum = s[2] def encode(self): """Encode an O_QUALITYFACTOR datagram record""" header_fmt = "=LBBHLLHHHBB" header_len = struct.calcsize(header_fmt) fullDatagram = bytearray() # now read the variable part of the Record rec_fmt = "=" + str(self.NParPerBeam) + "f" rec_len = struct.calcsize(rec_fmt) # rec_unpack = struct.Struct(rec_fmt).unpack footer_fmt = "=BBH" footer_len = struct.calcsize(footer_fmt) fullDatagramByteCount = ( header_len + (rec_len * self.NBeams * self.NParPerBeam) + footer_len ) # pack the header recordTime = int(dateToSecondsSinceMidnight(from_timestamp(self.Time)) * 1000) header = struct.pack( header_fmt, fullDatagramByteCount - 4, self.STX, ord(self.typeOfDatagram), self.EMModel, self.RecordDate, recordTime, int(self.Counter), int(self.SerialNumber), int(self.NBeams), int(self.NParPerBeam), int(self.Spare), ) fullDatagram = fullDatagram + header # pack the beam summary info for i in range(self.NBeams): # for j in range (self.NParPerBeam): # for now pack the same value. If we see any .all files with more # than 1, we can test and fix this. pkpk bodyRecord = struct.pack(rec_fmt, float(self.QualityFactor[i])) fullDatagram = fullDatagram + bodyRecord # now pack the footer # systemDescriptor = 1 ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack(footer_fmt, 0, ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram class P_POSITION: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "P" # assign the KM code for this datagram type # remember where this packet resides in the file so we can return if # needed self.offset = fileptr.tell() self.numberOfBytes = ( numberOfBytes # remember how many bytes this packet contains ) # remember the file pointer so we do not need to pass from the host # process self.fileptr = fileptr # move the file pointer to the end of the record so we can skip as # the default actions self.fileptr.seek(numberOfBytes, 1) self.data = "" def read(self): # move the file pointer to the start of the record so we can read # from disc self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHll4HBB" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # bytesRead = rec_len s = rec_unpack(self.fileptr.read(rec_len)) self.numberOfBytes = s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.Latitude = float(s[8] / float(20000000)) self.Longitude = float(s[9] / float(10000000)) self.Quality = float(s[10] / float(100)) self.SpeedOverGround = float(s[11] / float(100)) self.CourseOverGround = float(s[12] / float(100)) self.Heading = float(s[13] / float(100)) self.Descriptor = s[14] self.NBytesDatagram = s[15] # now spare byte only if necessary if (rec_len + self.NBytesDatagram + 3) % 2 != 0: self.NBytesDatagram += 1 # now read the block of data whatever it may contain self.data = self.fileptr.read(self.NBytesDatagram) # # now spare byte only if necessary # if (rec_len + self.NBytesDatagram + 3) % 2 != 0: # self.fileptr.read(1) self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) def readFooter(numberOfBytes, fileptr): rec_fmt = "=BH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(fileptr.read(rec_len)) ETX = s[0] checksum = s[1] # self.DatagramAsReceived = s[0].decode('utf-8').rstrip('\x00') # if numberOfBytes % 2 == 0: # # skip the spare byte # ETX = s[2] # checksum = s[3] # else: # ETX = s[1] # checksum = s[2] # #read any trailing bytes. We have seen the need for this with some .all files. # if bytesRead < self.numberOfBytes: # self.fileptr.read(int(self.numberOfBytes - bytesRead)) return ETX, checksum class P_POSITION_ENCODER: def __init__(self): self.data = 0 def encode( self, recordDate, recordTime, counter, latitude, longitude, quality, speedOverGround, courseOverGround, heading, descriptor, nBytesDatagram, data, ): """Encode a Position datagram record""" rec_fmt = "=LBBHLLHHll4HBB" rec_len = struct.calcsize(rec_fmt) # heightType = 0 #0 = the height of the waterline at the vertical datum (from KM datagram manual) serialNumber = 999 STX = 2 typeOfDatagram = "P" checksum = 0 # needs to be a sensible value to record is valid. Maybe would be # better to pass this from above model = 2045 # for now dont write out the raw position string. I am not sure if # this helps or not. It can be included if we feel it adds value # over confusion data = "" # try: # fullDatagram = struct.pack(rec_fmt, rec_len-4, STX, ord(typeOfDatagram), model, int(recordDate), int(recordTime), counter, serialNumber, int(height * 100), int(heightType)) recordLength = ( rec_len - 4 + len(data) + 3 ) # remove 4 bytes from header and add 3 more for footer fullDatagram = struct.pack( rec_fmt, recordLength, STX, ord(typeOfDatagram), model, int(recordDate), int(recordTime), int(counter), int(serialNumber), int(latitude * float(20000000)), int(longitude * float(10000000)), int(quality * 100), int(speedOverGround * float(100)), int(courseOverGround * float(100)), int(heading * float(100)), int(descriptor), int(len(data)), ) # now add the raw bytes, typically NMEA GGA string fullDatagram = fullDatagram + data.encode("ascii") ETX = 3 checksum = sum(fullDatagram[5:]) % 65536 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram # except: # print ("error encoding POSITION Record") # return ############################################################################### class R_RUNTIME: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "R" # assign the KM code for this datagram type # remember where this packet resides in the file so we can return if # needed self.offset = fileptr.tell() self.numberOfBytes = ( numberOfBytes # remember how many bytes this packet contains ) # remember the file pointer so we do not need to pass from the host # process self.fileptr = fileptr # move the file pointer to the end of the record so we can skip as # the default actions self.fileptr.seek(numberOfBytes, 1) self.data = "" def read(self): # move the file pointer to the start of the record so we can read # from disc self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHBBBBBBHHHHHbBBBBBHBBBBHHBBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack data = self.fileptr.read(rec_len) s = rec_unpack(data) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = s[5] / 1000 self.Counter = s[6] self.SerialNumber = s[7] self.operatorStationStatus = s[8] self.processingUnitStatus = s[9] self.BSPStatus = s[10] self.sonarHeadStatus = s[11] self.mode = s[12] self.filterIdentifier = s[13] self.minimumDepth = s[14] self.maximumDepth = s[15] self.absorptionCoefficient = s[16] / 100 self.transmitPulseLength = s[17] self.transmitBeamWidth = s[18]*0.1 self.transmitPower = s[19] self.receiveBeamWidth = s[20]*0.1 self.receiveBandwidth = s[21] self.mode2 = s[22] self.tvg = s[23] self.SpeedSound = s[24] self.maximumPortWidth = s[25] self.beamSpacing = s[26] self.maximumPortCoverageDegrees = s[27] self.yawMode = s[28] # self.yawAndPitchStabilisationMode= s[28] self.maximumStbdCoverageDegrees = s[29] self.maximumStbdWidth = s[30] self.transmitAAlongTilt = s[31] self.filterIdentifier2 = s[32] self.ETX = s[33] self.checksum = s[34] self.beamSpacingString = "Determined by beamwidth" if isBitSet(self.beamSpacing, 0): self.beamSpacingString = "Equidistant" if isBitSet(self.beamSpacing, 1): self.beamSpacingString = "Equiangular" if isBitSet(self.beamSpacing, 0) and isBitSet(self.beamSpacing, 1): self.beamSpacingString = "High density equidistant" if isBitSet(self.beamSpacing, 7): self.beamSpacingString = self.beamSpacingString + "+Two Heads" self.yawAndPitchStabilisationMode = "Yaw stabilised OFF" if isBitSet(self.yawMode, 0): self.yawAndPitchStabilisationMode = "Yaw stabilised ON" if isBitSet(self.yawMode, 1): self.yawAndPitchStabilisationMode = "Yaw stabilised ON" if isBitSet(self.yawMode, 1) and isBitSet(self.yawMode, 0): self.yawAndPitchStabilisationMode = "Yaw stabilised ON (manual)" if ((not isBitSet(self.filterIdentifier, 2)) & (not isBitSet(self.filterIdentifier, 3))): self.yawAndPitchStabilisationMode += "+Heading filter hard" if (isBitSet(self.yawMode, 2)): self.yawAndPitchStabilisationMode += "+Heading filter medium" if (isBitSet(self.yawMode, 3)): self.yawAndPitchStabilisationMode += "+Heading filter weak" if (isBitSet(self.yawMode, 7)): self.yawAndPitchStabilisationMode += "+Pitch stabilised ON" self.DepthMode = "Very Shallow" if isBitSet(self.mode, 0): self.DepthMode = "Shallow" if isBitSet(self.mode, 1): self.DepthMode = "Medium" if isBitSet(self.mode, 0) & (isBitSet(self.mode, 1)): self.DepthMode = "Deep" if isBitSet(self.mode, 2): self.DepthMode = "Very Deep" if isBitSet(self.mode, 0) & (isBitSet(self.mode, 2)): self.DepthMode = "Extra Deep" if str(self.EMModel) in 'EM2040, EM2045': self.DepthMode = "200kHz" if (isBitSet(self.mode, 0)): self.DepthMode = "300kHz" if (isBitSet(self.mode, 1)): self.DepthMode = "400kHz" if str(self.EMModel) == "EM2040C": parameter = int(format(self.mode, '08b')[3:],2) self.DepthMode = str(180 + (parameter * 10)) + "kHz" self.RXarrayuse = np.nan if str(self.EMModel) in 'EM2040, EM2045': self.RXarrayuse = "Off (RX inactive)" if isBitSet(self.mode2, 0): self.RXarrayuse = "RX1 (port) active" if isBitSet(self.mode2, 1): self.RXarrayuse = "RX2 (starboard) active" if isBitSet(self.mode2, 0) & (isBitSet(self.mode, 1)): self.RXarrayuse = "Both RX units active" self.Sonarheaduse = np.nan if str(self.EMModel) == 'EM2040C': self.Sonarheaduse = "Off (Both inactive)" if isBitSet(self.mode2, 0): self.Sonarheaduse = "SH1 (port) active" if isBitSet(self.mode2, 1): self.Sonarheaduse = "SH2 (starboard) active" if isBitSet(self.mode2, 0) & (isBitSet(self.mode, 1)): self.Sonarheaduse = "Both active" self.Pulselength = np.nan if str(self.EMModel) in 'EM2040, EM2045': self.Pulselength = "Short CW" if isBitSet(self.mode2, 2): self.Pulselength = "Medium CW" if isBitSet(self.mode2, 3): self.Pulselength = "Long CW" if isBitSet(self.mode2, 3) & (isBitSet(self.mode, 2)): self.Pulselength = "FM" #if ((not isBitSet(self.filterIdentifier, 4)) & (not isBitSet(self.filterIdentifier, 7))): if str(self.EMModel) == 'EM2040C': self.Pulselength = "Very Short CW" if isBitSet(self.mode2, 4): self.Pulselength = "Short CW" if isBitSet(self.mode2, 5): self.Pulselength = "Medium CW" if isBitSet(self.mode2, 5) & (isBitSet(self.mode, 4)): self.Pulselength = "Long CW" if isBitSet(self.mode2, 6): self.Pulselength = "Very Long CW" if isBitSet(self.mode2, 5) & (isBitSet(self.mode, 4)): self.Pulselength = "Extra Long CW" self.RXfixedgain = np.nan if str(self.EMModel) not in 'EM2040, EM2045, EM2040C': self.RXfixedgain = self.mode2 self.TXPulseForm = "CW" if isBitSet(self.mode, 4): self.TXPulseForm = "Mixed" if isBitSet(self.mode, 5): self.TXPulseForm = "FM" self.dualSwathMode = "Off" if isBitSet(self.mode, 6): self.dualSwathMode = "Fixed" if isBitSet(self.mode, 7): self.dualSwathMode = "Dynamic" self.sourceOfSpeedSound = "From realtime sensor" if isBitSet(self.SpeedSound, 0): self.sourceOfSpeedSound = "Manually entered by operator" if isBitSet(self.SpeedSound, 1): self.sourceOfSpeedSound = "Interpolated from currently used SSP" if isBitSet(self.SpeedSound, 0) and isBitSet(self.SpeedSound, 1): self.sourceOfSpeedSound = "Calculated by ME70BO TRU" if isBitSet(self.SpeedSound, 4): self.sourceOfSpeedSound += "Extra Detections ON" if isBitSet(self.SpeedSound, 5): self.sourceOfSpeedSound += "Sonar Mode ON" if isBitSet(self.SpeedSound, 6): self.sourceOfSpeedSound += "Passive Mode ON" if isBitSet(self.SpeedSound, 7): self.sourceOfSpeedSound += "3D Scanning ON" self.filterSetting = "Spike Filter Off" if (isBitSet(self.filterIdentifier, 0)): self.filterSetting = "Spike Filter Weak" if (isBitSet(self.filterIdentifier, 1)): self.filterSetting = "Spike Filter Medium" if (isBitSet(self.filterIdentifier, 0) & (isBitSet(self.filterIdentifier, 1))): self.filterSetting = "Spike Filter Strong" if (isBitSet(self.filterIdentifier, 2)): self.filterSetting += "+Slope ON" if (isBitSet(self.filterIdentifier, 3)): self.filterSetting += "+Sector Tracking ON" if ((not isBitSet(self.filterIdentifier, 4)) & (not isBitSet(self.filterIdentifier, 7))): self.filterSetting += "+Range Gates Normal" if ((isBitSet(self.filterIdentifier, 4)) & (not isBitSet(self.filterIdentifier, 7))): self.filterSetting += "+Range Gates Large" if ((not isBitSet(self.filterIdentifier, 4)) & (isBitSet(self.filterIdentifier, 7))): self.filterSetting += "+Range Gates Small" if (isBitSet(self.filterIdentifier, 5)): self.filterSetting += "+Aeration Filter ON" if (isBitSet(self.filterIdentifier, 6)): self.filterSetting += "+Interference Filter ON" self.Penetrationfilter = np.nan if ((not isBitSet(self.filterIdentifier2, 0)) & (not isBitSet(self.filterIdentifier2, 1))): self.Penetrationfilter = "Off" if (isBitSet(self.filterIdentifier2, 0)): self.Penetrationfilter = "Weak" if (isBitSet(self.filterIdentifier2, 1)): self.Penetrationfilter = "Medium" if (isBitSet(self.filterIdentifier2, 0) & (isBitSet(self.filterIdentifier2, 1))): self.Penetrationfilter = "Strong" self.Detectmode = np.nan if ((not isBitSet(self.filterIdentifier2, 2)) & (not isBitSet(self.filterIdentifier2, 3))): self.Detectmode = "Normal" if (isBitSet(self.filterIdentifier2, 2)): self.Detectmode = "Waterway" if (isBitSet(self.filterIdentifier2, 3)): self.Detectmode = "Tracking" if (isBitSet(self.filterIdentifier2, 2) & (isBitSet(self.filterIdentifier2, 3))): self.Detectmode = "Minimum depth" self.Phaseramp = np.nan if ((not isBitSet(self.filterIdentifier2, 4)) & (not isBitSet(self.filterIdentifier2, 5))): self.Phaseramp = "Short" if (isBitSet(self.filterIdentifier2, 4)): self.Phaseramp = "Normal" if (isBitSet(self.filterIdentifier2, 5)): self.Phaseramp = "Long" self.SpecialTVG = np.nan if (not isBitSet(self.filterIdentifier2, 6)): self.SpecialTVG = "Normal" if (isBitSet(self.filterIdentifier2, 6)): self.SpecialTVG = "Special" self.Specialampdetect = np.nan if (not isBitSet(self.filterIdentifier2, 7)): self.Specialampdetect = "Normal" if (isBitSet(self.filterIdentifier2, 7)): self.Specialampdetect = "Special" if str(self.EMModel) == 'EM3002': if (isBitSet(self.filterIdentifier2, 7)): self.Specialampdetect = "Soft sediments" self.HiLo = np.nan if str(self.EMModel) == 'EM1002': self.HiLo = self.filterIdentifier2 def header(self): header = "" header += "typeOfDatagram," header += "EMModel," header += "RecordDate," header += "Time," header += "Counter," header += "SerialNumber," header += "operatorStationStatus," header += "processingUnitStatus," header += "BSPStatus," header += "sonarHeadStatus," header += "mode," header += "dualSwathMode," header += "TXPulseForm," header += "filterIdentifier," header += "filterSetting," header += "minimumDepth," header += "maximumDepth," header += "absorptionCoefficient," header += "transmitPulseLength," header += "transmitBeamWidth," header += "transmitPower," header += "receiveBeamWidth," header += "receiveBandwidth," header += "mode2," header += "tvg," header += "sourceOfSpeedSound," header += "maximumPortWidth," header += "beamSpacing," header += "maximumPortCoverageDegrees," header += "yawMode," header += "yawAndPitchStabilisationMode," header += "maximumStbdCoverageDegrees," header += "maximumStbdWidth," header += "transmitAAlongTilt," header += "filterIdentifier2," header += "DepthMode," header += "RXarrayuse," header += "Sonarheaduse," header += "Pulselength," header += "RXfixedgain," header += "Penetrationfilter," header += "Detectmode," header += "Phaseramp," header += "SpecialTVG," header += "Specialampdetect," header += "HiLofrequencyabsorptioncoefficientratio" return header def parameters(self): """this function returns the runtime record in a human readmable format. there are 2 strings returned, teh header which changes with every record and the paramters which only change when the user changes a setting. this means we can reduce duplicate records by testing the parameters string for changes""" s = "%s,%d," % (self.operatorStationStatus, self.processingUnitStatus) s += "%d,%d," % (self.BSPStatus, self.sonarHeadStatus) s += "%d,%s,%s,%d,%s," % ( self.mode, self.dualSwathMode, self.TXPulseForm, self.filterIdentifier, self.filterSetting, ) s += "%.3f,%.3f," % (self.minimumDepth, self.maximumDepth) s += "%.3f,%.3f," % (self.absorptionCoefficient, self.transmitPulseLength) s += "%.3f,%.3f," % (self.transmitBeamWidth, self.transmitPower) s += "%.3f,%.3f," % (self.receiveBeamWidth, self.receiveBandwidth) s += "%d,%.3f," % (self.mode2, self.tvg) s += "%s,%d," % (self.sourceOfSpeedSound, self.maximumPortWidth) s += "%s,%d," % (self.beamSpacingString, self.maximumPortCoverageDegrees) s += "%s,%s,%d," % ( self.yawMode, self.yawAndPitchStabilisationMode, self.maximumStbdCoverageDegrees, ) s += "%d,%d," % (self.maximumStbdWidth, self.transmitAAlongTilt) s += "%s,%s,%s," % (self.filterIdentifier2, self.DepthMode, self.RXarrayuse) s += "%s,%s,%s," % (self.Sonarheaduse, self.Pulselength, self.RXfixedgain) s += "%s,%s,%s," % (self.Penetrationfilter, self.Detectmode, self.Phaseramp) s += "%s,%s,%s" % (self.SpecialTVG, self.Specialampdetect, self.HiLo) return s def __str__(self): """this function returns the runtime record in a human readmable format. there are 2 strings returned, teh header which changes with every record and the paramters which only change when the user changes a setting. this means we can reduce duplicate records by testing the parameters string for changes""" s = "%s,%d," % (self.typeOfDatagram, self.EMModel) s += "%s,%.3f," % (self.RecordDate, self.Time) s += "%d,%d," % (self.Counter, self.SerialNumber) s += "%s,%d," % (self.operatorStationStatus, self.processingUnitStatus) s += "%d,%d," % (self.BSPStatus, self.sonarHeadStatus) s += "%d,%s,%s,%d,%s," % ( self.mode, self.dualSwathMode, self.TXPulseForm, self.filterIdentifier, self.filterSetting, ) s += "%.3f,%.3f," % (self.minimumDepth, self.maximumDepth) s += "%.3f,%.3f," % (self.absorptionCoefficient, self.transmitPulseLength) s += "%.3f,%.3f," % (self.transmitBeamWidth, self.transmitPower) s += "%.3f,%.3f," % (self.receiveBeamWidth, self.receiveBandwidth) s += "%d,%.3f," % (self.mode2, self.tvg) s += "%d,%d," % (self.sourceOfSpeedSound, self.maximumPortWidth) s += "%.3f,%d," % (self.beamSpacingString, self.maximumPortCoverageDegrees) s += "%s,%s,%d," % ( self.yawMode, self.yawAndPitchStabilisationMode, self.maximumStbdCoverageDegrees, ) s += "%d,%d," % (self.maximumStbdWidth, self.transmitAAlongTilt) s += "%s,%s,%s," % (self.filterIdentifier2, self.DepthMode, self.RXarrayuse) s += "%s,%s,%s," % (self.Sonarheaduse, self.Pulselength, self.RXfixedgain) s += "%s,%s,%s," % (self.Penetrationfilter, self.Detectmode, self.Phaseramp) s += "%s,%s,%s" % (self.SpecialTVG, self.Specialampdetect, self.HiLo) return s # return pprint.pformat(vars(self)) class UNKNOWN_RECORD: """used as a convenience tool for datagrams we have no bespoke classes. Better to make a bespoke class""" def __init__(self, fileptr, numberOfBytes, typeOfDatagram): self.typeOfDatagram = typeOfDatagram self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" def read(self): self.data = self.fileptr.read(self.numberOfBytes) class U_SVP: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "U" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = [] def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHLLHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.ProfileDate = s[8] self.ProfileTime = s[9] self.NEntries = s[10] self.DepthResolution = s[11] rec_fmt = "=LL" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack # i = 0 for i in range(self.NEntries): data = self.fileptr.read(rec_len) s = rec_unpack(data) self.data.append( [float(s[0]) / float(100 / self.DepthResolution), float(s[1] / 10)] ) # read an empty byte self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) class X_DEPTH: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "X" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLL4Hf2Hf4B" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = s[5] / 1000.0 self.Counter = s[6] self.SerialNumber = s[7] self.Heading = s[8] / 100.0 self.SoundSpeedAtTransducer = s[9] / 10.0 self.TransducerDepth = s[10] self.NBeams = s[11] self.NValidDetections = s[12] self.SampleFrequency = s[13] self.ScanningInfo = s[14] self.spare1 = s[15] self.spare2 = s[16] self.spare3 = s[17] self.Depth = [0 for i in range(self.NBeams)] self.AcrossTrackDistance = [0 for i in range(self.NBeams)] self.AlongTrackDistance = [0 for i in range(self.NBeams)] self.DetectionWindowsLength = [0 for i in range(self.NBeams)] self.QualityFactor = [0 for i in range(self.NBeams)] self.BeamIncidenceAngleAdjustment = [0 for i in range(self.NBeams)] self.DetectionInformation = [0 for i in range(self.NBeams)] self.RealtimeCleaningInformation = [0 for i in range(self.NBeams)] self.Reflectivity = [0 for i in range(self.NBeams)] # # now read the variable part of the Record rec_fmt = "=fffHBBBbh" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack for i in range(self.NBeams): data = self.fileptr.read(rec_len) s = rec_unpack(data) self.Depth[i] = s[0] self.AcrossTrackDistance[i] = s[1] self.AlongTrackDistance[i] = s[2] self.DetectionWindowsLength[i] = s[3] self.QualityFactor[i] = s[4] self.BeamIncidenceAngleAdjustment[i] = s[5] / 10.0 self.DetectionInformation[i] = s[6] self.RealtimeCleaningInformation[i] = s[7] self.Reflectivity[i] = s[8] / 10.0 # now do some sanity checks. We have examples where the Depth # and Across track values are NaN if math.isnan(self.Depth[i]): self.Depth[i] = 0 if math.isnan(self.AcrossTrackDistance[i]): self.AcrossTrackDistance[i] = 0 if math.isnan(self.AlongTrackDistance[i]): self.AlongTrackDistance[i] = 0 rec_fmt = "=BBH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from data = self.fileptr.read(rec_len) s = rec_unpack(data) self.ETX = s[1] self.checksum = s[2] def encode(self): """Encode a Depth XYZ datagram record""" header_fmt = "=LBBHLL4Hf2Hf4B" header_len = struct.calcsize(header_fmt) fullDatagram = bytearray() rec_fmt = "=fffHBBBbh" rec_len = struct.calcsize(rec_fmt) footer_fmt = "=BBH" footer_len = struct.calcsize(footer_fmt) fullDatagramByteCount = header_len + (rec_len * self.NBeams) + footer_len # pack the header recordTime = int(dateToSecondsSinceMidnight(from_timestamp(self.Time)) * 1000) header = struct.pack( header_fmt, fullDatagramByteCount - 4, self.STX, ord(self.typeOfDatagram), self.EMModel, self.RecordDate, recordTime, self.Counter, self.SerialNumber, int(self.Heading * 100), int(self.SoundSpeedAtTransducer * 10), self.TransducerDepth, self.NBeams, self.NValidDetections, self.SampleFrequency, self.ScanningInfo, self.spare1, self.spare2, self.spare3, ) fullDatagram = fullDatagram + header # pack the beam summary info for i in range(self.NBeams): bodyRecord = struct.pack( rec_fmt, self.Depth[i], self.AcrossTrackDistance[i], self.AlongTrackDistance[i], self.DetectionWindowsLength[i], self.QualityFactor[i], int(self.BeamIncidenceAngleAdjustment[i] * 10), self.DetectionInformation[i], self.RealtimeCleaningInformation[i], int(self.Reflectivity[i] * 10), ) fullDatagram = fullDatagram + bodyRecord systemDescriptor = 1 tmp = struct.pack("=B", systemDescriptor) fullDatagram = fullDatagram + tmp # now pack the footer ETX = 3 checksum = 0 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram class Y_SEABEDIMAGE: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "Y" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" self.ARC = {} self.BeamPointingAngle = [] def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHfHhhHHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.SampleFrequency = s[8] self.RangeToNormalIncidence = s[9] self.NormalIncidence = float(s[10] * 0.1) # [dB] self.ObliqueBS = float(s[11] * 0.1) # [dB] self.TxBeamWidth = float(s[12] * 0.1) # [deg] self.TVGCrossOver = float(s[13] * 0.1) # [deg] self.NumBeams = s[14] self.beams = [] self.numSamples = 0 self.samples = [] rec_fmt = "=bBHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack self.numSamples = 0 for i in range(self.NumBeams): s = rec_unpack(self.fileptr.read(rec_len)) b = cBeam(s, 0) self.numSamples = self.numSamples + b.numberOfSamplesPerBeam self.beams.append(b) rec_fmt = "=" + str(self.numSamples) + "h" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack self.samples = rec_unpack(self.fileptr.read(rec_len)) # allocate the samples to the correct beams so it is easier to use sampleIDX = 0 for b in self.beams: b.samples = self.samples[sampleIDX : sampleIDX + b.numberOfSamplesPerBeam] sampleIDX = sampleIDX + b.numberOfSamplesPerBeam # read an empty byte self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) ############################################################################### def encode(self): """Encode a seabed image datagram record""" header_fmt = "=LBBHLLHHfHhhHHH" header_len = struct.calcsize(header_fmt) fullDatagram = bytearray() rec_fmt = "=bBHH" rec_len = struct.calcsize(rec_fmt) sample_fmt = "=" + str(self.numSamples) + "h" sample_len = struct.calcsize(sample_fmt) footer_fmt = "=BBH" footer_len = struct.calcsize(footer_fmt) fullDatagramByteCount = ( header_len + (rec_len * self.NumBeams) + sample_len + footer_len ) # pack the header recordTime = int(dateToSecondsSinceMidnight(from_timestamp(self.Time)) * 1000) header = struct.pack( header_fmt, fullDatagramByteCount - 4, self.STX, ord(self.typeOfDatagram), self.EMModel, self.RecordDate, recordTime, self.Counter, self.SerialNumber, self.SampleFrequency, self.RangeToNormalIncidence, self.NormalIncidence, self.ObliqueBS, self.TxBeamWidth, self.TVGCrossOver, self.NumBeams, ) fullDatagram = fullDatagram + header # pack the beam summary info s = [] for i, b in enumerate(self.beams): bodyRecord = struct.pack( rec_fmt, b.sortingDirection, b.detectionInfo, b.numberOfSamplesPerBeam, b.centreSampleNumber, ) fullDatagram = fullDatagram + bodyRecord # using the takeoffangle, we need to look up the correction from # the ARC and apply it to the samples. a = round(self.BeamPointingAngle[i], 0) correction = self.ARC[a] for sample in b.samples: s.append(int(sample + correction)) sampleRecord = struct.pack(sample_fmt, *s) fullDatagram = fullDatagram + sampleRecord systemDescriptor = 1 tmp = struct.pack("=B", systemDescriptor) fullDatagram = fullDatagram + tmp # now pack the footer ETX = 3 checksum = 0 footer = struct.pack("=BH", ETX, checksum) fullDatagram = fullDatagram + footer return fullDatagram class k_WATERCOLUMN: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "k" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" self.ARC = {} self.BeamPointingAngle = [] def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=LBBHLLHHHHHHHHLhBbBxxx" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] # Number of datagrams to complete the diagram self.NumberOfDatagrams = s[8] self.DatagramNumbers = s[9] # Current datagram index self.NumTransmitSector = s[10] # 1 to 20 (Ntx) self.NumReceiveBeamsTotal = s[11] # Nrx for all datagrams self.NumReceiveBeams = s[12] # Nrx current datagram self.SoundSpeed = s[13] / 10.0 self.SampleFrequency = s[14] / 100.0 self.TransmitHeave = s[15] / 100.0 self.TVGFunction = s[16] self.TVGOffset = s[17] self.ScanningInfo = s[18] # TX record rec_fmt = "=hHBx" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack self.TX_TiltAngle = [] self.TX_CenterFrequency = [] self.TX_SectorNumber = [] for i in range(self.NumTransmitSector): data = self.fileptr.read(rec_len) tx = rec_unpack(data) self.TX_TiltAngle.append(tx[0]) self.TX_CenterFrequency.append(tx[1]) self.TX_SectorNumber.append(tx[2]) # read an empty byte # self.fileptr.read(1) # RX record rx_rec_fmt = "=hHHHBB" rx_rec_len = struct.calcsize(rx_rec_fmt) rx_rec_unpack = struct.Struct(rx_rec_fmt).unpack self.RX_PointingAngle = [] self.RX_StartRange = [] self.RX_NumSamples = [] self.RX_DetectedRange = [] self.RX_TransmitSector = [] self.RX_BeamNumber = [] self.RX_Samples = [] # List of lists tmp = [] for i in range(self.NumReceiveBeams): data = self.fileptr.read(rx_rec_len) rx = rx_rec_unpack(data) tmp.append(rx[3]) self.RX_PointingAngle.append(rx[0] / 100.0) self.RX_StartRange.append(rx[1]) self.RX_NumSamples.append(rx[2]) self.RX_DetectedRange.append(rx[3]) self.RX_TransmitSector.append(rx[4]) self.RX_BeamNumber.append(rx[5]) rxs_rec_fmt = "={}b".format(rx[2]) rxs_rec_len = struct.calcsize(rxs_rec_fmt) rxs_rec_unpack = struct.Struct(rxs_rec_fmt).unpack data = self.fileptr.read(rxs_rec_len) rxs = rxs_rec_unpack(data) self.RX_Samples.append(rxs) # read an empty byte self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) def encode(self): """Encode a water column datagram record""" raise NotImplementedError("Not implemented") def dr_meters(self): return [ self.SoundSpeed * dr / (self.SampleFrequency * 2) for dr in self.RX_DetectedRange ] def r_max(self): return self.SoundSpeed * max(self.RX_DetectedRange) / (self.SampleFrequency * 2) class S_SEABEDIMAGE: def __init__(self, fileptr, numberOfBytes): self.typeOfDatagram = "S" self.offset = fileptr.tell() self.numberOfBytes = numberOfBytes self.fileptr = fileptr self.fileptr.seek(numberOfBytes, 1) self.data = "" self.ARC = {} self.BeamPointingAngle = [] def read(self): self.fileptr.seek(self.offset, 0) rec_fmt = "=L2BH2L7H2bH2B" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack_from s = rec_unpack(self.fileptr.read(rec_len)) # self.numberOfBytes= s[0] self.STX = s[1] self.typeOfDatagram = chr(s[2]) self.EMModel = s[3] self.RecordDate = s[4] self.Time = float(s[5] / 1000.0) self.Counter = s[6] self.SerialNumber = s[7] self.MeanAbsorption = float(s[8] * 0.01) # [dB/km] self.PulseLength = s[9] self.RangeToNormalIncidence = s[10] self.StartRangeSampleOfTVGRamp = s[11] self.StopRangeSampleOfTVGRamp = s[12] self.NormalIncidence = float(s[13] * 0.1) # [dB] self.ObliqueBS = float(s[14] * 0.1) # [dB] self.TxBeamWidth = float(s[15] * 0.1) # [deg] self.TVGCrossOver = float(s[16] * 0.1) # [deg] self.NumBeams = s[17] self.beams = [] self.numSamples = 0 self.samples = [] rec_fmt = "=bBHH" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack self.numSamples = 0 for i in range(self.NumBeams): s = rec_unpack(self.fileptr.read(rec_len)) b = cBeam(s, 0) self.numSamples = self.numSamples + b.numberOfSamplesPerBeam self.beams.append(b) rec_fmt = "=" + str(self.numSamples) + "b" rec_len = struct.calcsize(rec_fmt) rec_unpack = struct.Struct(rec_fmt).unpack self.samples = rec_unpack(self.fileptr.read(rec_len)) # allocate the samples to the correct beams so it is easier to use sampleIDX = 0 for b in self.beams: b.samples = self.samples[sampleIDX : sampleIDX + b.numberOfSamplesPerBeam] sampleIDX = sampleIDX + b.numberOfSamplesPerBeam # read an empty byte if necessary if (rec_len + self.numberOfBytes + 3) % 2 != 0: self.fileptr.read(1) # now read the footer self.ETX, self.checksum = readFooter(self.numberOfBytes, self.fileptr) # TIME HELPER FUNCTIONS def to_timestamp(dateObject): return (dateObject - datetime(1970, 1, 1)).total_seconds() def to_DateTime(recordDate, recordTime): """return a python date object from a split date and time record. works with kongsberg date and time structures""" date_object = datetime.strptime(str(recordDate), "%Y%m%d") + timedelta( 0, recordTime ) return date_object def from_timestamp(unixtime): return datetime.utcfromtimestamp(unixtime) def dateToKongsbergDate(dateObject): return dateObject.strftime("%Y%m%d") def dateToKongsbergTime(dateObject): return dateObject.strftime("%H%M%S") def dateToSecondsSinceMidnight(dateObject): return ( dateObject - dateObject.replace(hour=0, minute=0, second=0, microsecond=0) ).total_seconds() # bitwise helper functions def isBitSet(int_type, offset): """testBit() returns a nonzero result, 2**offset, if the bit at 'offset' is one.""" mask = 1 << offset return (int_type & (1 << offset)) != 0 def set_bit(value, bit): return value | (1 << bit) if __name__ == "__main__": main() # exit()
the-stack_106_32195
# -*- coding: utf-8 -*- """ Unit tests for landlab.components.soil_moisture.SoilInfiltrationGreenAmpt last updated: 3/14/16 """ import numpy as np from landlab import RasterModelGrid from landlab.components.soil_moisture import SoilInfiltrationGreenAmpt (_SHAPE, _SPACING, _ORIGIN) = ((10, 10), (25, 25), (0.0, 0.0)) _ARGS = (_SHAPE, _SPACING, _ORIGIN) def test_SI_name(si): assert si.name == "SoilInfiltrationGreenAmpt" def test_SI_input_var_names(si): assert si.input_var_names == ( "soil_water_infiltration__depth", "surface_water__depth", ) def test_SI_output_var_names(si): assert si.output_var_names == ( "soil_water_infiltration__depth", "surface_water__depth", ) def test_SI_var_units(si): assert set(si.input_var_names) | set(si.output_var_names) == set( dict(si.units).keys() ) assert si.var_units("surface_water__depth") == "m" assert si.var_units("soil_water_infiltration__depth") == "m" def test_grid_shape(si): assert si.grid.number_of_node_rows == _SHAPE[0] assert si.grid.number_of_node_columns == _SHAPE[1] def test_calc_soil_pressure(si): np.testing.assert_almost_equal( si.calc_soil_pressure("silt loam"), 0.1647870740305523, decimal=6 ) def test_calc_soil_head(si): soil_props = SoilInfiltrationGreenAmpt.SOIL_PROPS["loam"] np.testing.assert_almost_equal( si.calc_pressure_head(soil_props[0], soil_props[1]), 0.087498292, decimal=6 ) def test_calc_moisture_deficit(si): np.testing.assert_almost_equal( si.calc_moisture_deficit( soil_bulk_density=1700.0, rock_density=2650.0, volume_fraction_coarse_fragments=0.0, soil_moisture_content=0.2, ), 0.15849056603, decimal=6, ) def test_run_one_step(): grid = RasterModelGrid((10, 10), xy_spacing=25) grid.add_ones("soil_water_infiltration__depth", at="node", dtype=float) grid.add_ones("surface_water__depth", at="node") hydraulic_conductivity = 2.5 * (10**-6) grid["node"]["surface_water__depth"] *= 5.0 grid["node"]["soil_water_infiltration__depth"] *= 10**-5 SI = SoilInfiltrationGreenAmpt( grid, hydraulic_conductivity=hydraulic_conductivity, soil_bulk_density=1700.0, rock_density=2650.0, initial_soil_moisture_content=0.2, soil_type="silt loam", volume_fraction_coarse_fragments=0.6, coarse_sed_flag=False, surface_water_minimum_depth=1.0e-7, soil_pore_size_distribution_index=None, soil_bubbling_pressure=None, wetting_front_capillary_pressure_head=None, ) SI.run_one_step(dt=5) np.testing.assert_almost_equal( grid["node"]["surface_water__depth"][0], 3.97677483519, decimal=6 )
the-stack_106_32196
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Summary collector callback.""" import os import re import json from importlib import import_module import numpy as np from mindspore import log as logger from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter from mindspore.train.summary.summary_record import SummaryRecord from mindspore.train.summary.enum import PluginEnum, ModeEnum from mindspore.train.callback import Callback, ModelCheckpoint from mindspore.train import lineage_pb2 from mindspore.train.callback._dataset_graph import DatasetGraph from mindspore.nn.optim.optimizer import Optimizer from mindspore.nn.loss.loss import _Loss from mindspore.train._utils import check_value_type class LineageMetadata: """Initialize parameters used in model lineage management.""" train_dataset_path = 'train_dataset_path' valid_dataset_path = 'valid_dataset_path' train_network = 'train_network' loss_function = 'loss_function' loss = 'loss' optimizer = 'optimizer' learning_rate = 'learning_rate' epoch = 'epoch' step_num = 'step_num' parallel_mode = 'parallel_mode' device_num = 'device_num' batch_size = 'batch_size' model_path = 'model_path' model_ckpt = 'model_ckpt' model_size = 'model_size' metrics = 'metrics' train_dataset_size = 'train_dataset_size' valid_dataset_size = 'valid_dataset_size' class SummaryCollector(Callback): """ SummaryCollector can help you to collect some common information. It can help you to collect loss, learning late, computational graph and so on. SummaryCollector also persists data collected by the summary operator into a summary file. Note: 1. Multiple SummaryCollector instances in callback list are not allowed. 2. Not all information is collected at the training phase or at the eval phase. 3. SummaryCollector always record the data collected by the summary operator. Args: summary_dir (str): The collected data will be persisted to this directory. If the directory does not exist, it will be created automatically. collect_freq (int): Set the frequency of data collection, it should be greater then zero, and the unit is `step`. Default: 10. If a frequency is set, we will collect data at (current steps % freq) == 0, and the first step will be collected at any time. It is important to note that if the data sink mode is used, the unit will become the `epoch`. It is not recommended to collect data too frequently, which can affect performance. collect_specified_data (Union[None, dict]): Perform custom operations on the collected data. Default: None. By default, if set to None, all data is collected as the default behavior. If you want to customize the data collected, you can do so with a dictionary. Examples,you can set {'collect_metric': False} to control not collecting metrics. The data that supports control is shown below. - collect_metric: Whether to collect training metrics, currently only loss is collected. The first output will be treated as loss, and it will be averaged. Optional: True/False. Default: True. - collect_graph: Whether to collect computational graph, currently only training computational graph is collected. Optional: True/False. Default: True. - collect_train_lineage: Whether to collect lineage data for the training phase, this field will be displayed on the lineage page of Mindinsight. Optional: True/False. Default: True. - collect_eval_lineage: Whether to collect lineage data for the eval phase, this field will be displayed on the lineage page of Mindinsight. Optional: True/False. Default: True. - collect_input_data: Whether to collect dataset for each training. Currently only image data is supported. Optional: True/False. Default: True. - collect_dataset_graph: Whether to collect dataset graph for the training phase. Optional: True/False. Default: True. - histogram_regular: Collect weight and bias for parameter distribution page display in MindInsight. This field allows regular strings to control which parameters to collect. Default: None, it means only the first five parameters are collected. It is not recommended to collect too many parameters at once, as it can affect performance. Note that if you collect too many parameters and run out of memory, the training will fail. keep_default_action (bool): This field affects the collection behavior of the 'collect_specified_data' field. Optional: True/False, Default: True. True: means that after specified data is set, non-specified data is collected as the default behavior. False: means that after specified data is set, only the specified data is collected, and the others are not collected. custom_lineage_data (Union[dict, None]): Allows you to customize the data and present it on the MingInsight lineage page. In the custom data, the key type support str, and the value type support str/int/float. Default: None, it means there is no custom data. collect_tensor_freq (Optional[int]): Same semantic as the `collect_freq`, but controls TensorSummary only. Because TensorSummary data is too large compared to other summary data, this parameter is used to reduce its collection. By default, TensorSummary data will be collected at most 20 steps, but not more than how many steps other summary data will be collected. Default: None, which means to follow the behavior as described above. For example, given `collect_freq=10`, when the total steps is 600, TensorSummary will be collected 20 steps, while other summary data 61 steps, but when the total steps is 20, both TensorSummary and other summary will be collected 3 steps. Also note that when in parallel mode, the total steps will be splitted evenly, which will affect how many steps TensorSummary will be collected. max_file_size (Optional[int]): The maximum size in bytes each file can be written to the disk. Default: None, which means no limit. For example, to write not larger than 4GB, specify `max_file_size=4 * 1024**3`. Raises: ValueError: If the parameter value is not expected. TypeError: If the parameter type is not expected. RuntimeError: If an error occurs during data collection. Examples: >>> # Simple usage: >>> summary_collector = SummaryCollector(summary_dir='./summary_dir') >>> model.train(epoch, dataset, callbacks=summary_collector) >>> >>> # Do not collect metric and collect the first layer parameter, others are collected by default >>> specified={'collect_metric': False, 'histogram_regular': '^conv1.*'} >>> summary_collector = SummaryCollector(summary_dir='./summary_dir', collect_specified_data=specified) >>> model.train(epoch, dataset, callbacks=summary_collector) >>> >>> # Only collect metric, custom lineage data and record data that collected by the summary operator, >>> # others are not collected >>> specified = {'collect_metric': True} >>> summary_collector = SummaryCollector('./summary_dir', >>> collect_specified_data=specified, >>> keep_default_action=False, >>> custom_lineage_data={'version': 'resnet50_v1'} >>> ) >>> model.train(epoch, dataset, callbacks=summary_collector) """ _DEFAULT_SPECIFIED_DATA = { 'collect_metric': True, 'collect_graph': True, 'collect_train_lineage': True, 'collect_eval_lineage': True, 'collect_input_data': True, 'collect_dataset_graph': True, 'histogram_regular': None } def __init__(self, summary_dir, collect_freq=10, collect_specified_data=None, keep_default_action=True, custom_lineage_data=None, collect_tensor_freq=None, max_file_size=None): super(SummaryCollector, self).__init__() self._summary_dir = self._process_summary_dir(summary_dir) self._record = None self._check_positive('collect_freq', collect_freq) self._collect_freq = collect_freq self._check_positive('collect_tensor_freq', collect_tensor_freq, allow_none=True) self._collect_tensor_freq = collect_tensor_freq self._tensor_collect_range = None self._check_positive('max_file_size', max_file_size, allow_none=True) self._max_file_size = max_file_size self._check_action(keep_default_action) self._collect_specified_data = self._process_specified_data(collect_specified_data, keep_default_action) msg = f"For 'collect_specified_data' the value after processing is: {self._collect_specified_data}." logger.info(msg) self._check_custom_lineage_data(custom_lineage_data) self._custom_lineage_data = custom_lineage_data self._temp_optimizer = None self._has_saved_graph = False self._has_saved_custom_data = False self._is_parse_loss_success = True self._first_step = True self._dataset_sink_mode = True def __enter__(self): self._record = SummaryRecord(log_dir=self._summary_dir, max_file_size=self._max_file_size) self._first_step, self._dataset_sink_mode = True, True return self def __exit__(self, *err): self._record.close() @staticmethod def _process_summary_dir(summary_dir): """Check the summary dir, and create a new directory if it not exists.""" check_value_type('summary_dir', summary_dir, str) summary_dir = summary_dir.strip() if not summary_dir: raise ValueError('For `summary_dir` the value should be a valid string of path, but got empty string.') summary_dir = os.path.realpath(summary_dir) if not os.path.exists(summary_dir): os.makedirs(summary_dir, exist_ok=True) else: if not os.path.isdir(summary_dir): raise NotADirectoryError('For `summary_dir` it should be a directory path.') return summary_dir @staticmethod def _check_positive(name, value, allow_none=False): """Check if the value to be int type and positive.""" if allow_none and value is None: return check_value_type(name, value, int) if value <= 0: raise ValueError(f'For `{name}` the value should be greater than 0, but got `{value}`.') @staticmethod def _check_custom_lineage_data(custom_lineage_data): """ Check user custom lineage data. Args: custom_lineage_data (dict): The user custom defined data. Raises: TypeError: If the type of parameters is invalid. """ if custom_lineage_data is None: return check_value_type('custom_lineage_data', custom_lineage_data, [dict, type(None)]) for key, value in custom_lineage_data.items(): check_value_type(f'custom_lineage_data -> {key}', key, str) check_value_type(f'the value of custom_lineage_data -> {key}', value, (int, str, float)) @staticmethod def _check_action(action): """Check action type.""" check_value_type('keep_default_action', action, bool) def _process_specified_data(self, specified_data, action): """Check specified data type and value.""" if specified_data is None: if action: return self._DEFAULT_SPECIFIED_DATA return dict() check_value_type('collect_specified_data', specified_data, [dict, type(None)]) for param_name in specified_data: check_value_type(param_name, param_name, [str]) unexpected_params = set(specified_data) - set(self._DEFAULT_SPECIFIED_DATA) if unexpected_params: raise ValueError(f'For `collect_specified_data` the keys {unexpected_params} are unsupported, ' f'expect the follow keys: {list(self._DEFAULT_SPECIFIED_DATA.keys())}') if 'histogram_regular' in specified_data: check_value_type('histogram_regular', specified_data.get('histogram_regular'), (str, type(None))) bool_items = set(self._DEFAULT_SPECIFIED_DATA) - {'histogram_regular'} for item in bool_items: if item in specified_data: check_value_type(item, specified_data.get(item), bool) if action: result = dict(self._DEFAULT_SPECIFIED_DATA) result.update(specified_data) else: result = specified_data return result def begin(self, run_context): cb_params = run_context.original_args() self._check_callbacks(cb_params) if cb_params.mode not in ModeEnum.to_list(): raise ValueError('Only support `train` (model.train) and `eval` (model.eval) mode, ' 'but got `{cb_params.mode}` mode.') self._record.set_mode(cb_params.mode) def step_end(self, run_context): cb_params = run_context.original_args() if cb_params.mode != ModeEnum.TRAIN.value: return if not self._has_saved_graph: self._collect_graphs(cb_params) self._collect_dataset_graph(cb_params) self._has_saved_graph = True self._record.record(cb_params.cur_step_num) if self._custom_lineage_data and not self._has_saved_custom_data: packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data) self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data) self._has_saved_custom_data = True self._record.record(cb_params.cur_step_num) if self._first_step: # Notice: This way of determining whether dataset sink mode is True does not work in the eval scenario self._dataset_sink_mode = cb_params.cur_step_num == cb_params.batch_num self._tensor_collect_range = self._get_tensor_collect_range(cb_params, self._dataset_sink_mode) self._collect_at_step_end(cb_params, plugin_filter=None) self._first_step = False else: current = cb_params.cur_epoch_num if self._dataset_sink_mode else cb_params.cur_step_num if current % self._collect_freq == 0 and current in self._tensor_collect_range: self._collect_at_step_end(cb_params, plugin_filter=None) elif current in self._tensor_collect_range: self._collect_at_step_end(cb_params, lambda plugin: plugin == PluginEnum.TENSOR.value) elif current % self._collect_freq == 0: self._collect_at_step_end(cb_params, lambda plugin: plugin != PluginEnum.TENSOR.value) def _get_tensor_collect_range(self, cb_params, dataset_sink_mode): """Get tensor collect range.""" total_step = cb_params.epoch_num if not dataset_sink_mode: total_step *= cb_params.batch_num if self._collect_tensor_freq is not None: # `total_step + 1`: `total_step` would be a value of `cb_params.cur_step_num`. return range(0, total_step + 1, self._collect_tensor_freq) summary_to_collect = len(range(0, total_step + 1, self._collect_freq)) default_tensor_summary_limit = 20 if summary_to_collect > default_tensor_summary_limit: tensor_freq = total_step // (default_tensor_summary_limit - 1) if tensor_freq > 1: return range(0, total_step + 1, tensor_freq)[:default_tensor_summary_limit] # `cb_params.cur_step_num` counting from `1`, when `1` is in the range, take `1` more steps. return range(0, total_step + 1)[:default_tensor_summary_limit + 1] return range(0, total_step + 1, self._collect_freq) def _collect_at_step_end(self, cb_params, plugin_filter): self._collect_input_data(cb_params) self._collect_metric(cb_params) self._collect_histogram(cb_params) self._record.record(cb_params.cur_step_num, plugin_filter=plugin_filter) def end(self, run_context): cb_params = run_context.original_args() if cb_params.mode == ModeEnum.TRAIN.value: self._collect_train_lineage(cb_params) else: self._collect_eval_lineage(cb_params) # This is a workaround to avoid record '_summary_tensor_cache'. self._record.set_mode('eval') # There's nothing special about setting step to 0 here, just to satisfy the interface call self._record.record(step=0) def _check_callbacks(self, cb_params): """Check there if there are duplicate instances of SummaryCollector.""" callbacks = cb_params.list_callback is_find = False for callback in callbacks: if type(callback).__name__ == self.__class__.__name__: if not is_find: is_find = True continue raise ValueError(f"There are more than one {self.__class__.__name__} instance in callback list," f"but expected only one {self.__class__.__name__} instance.") @staticmethod def _package_custom_lineage_data(custom_lineage_data): """ Package user-defined lineage data into binary data. Args: custom_lineage_data (dict): User custom lineage data. Returns: UserDefinedInfo, a object of lineage_pb2.UserDefinedInfo. """ user_defined_info = lineage_pb2.UserDefinedInfo() for key, value in custom_lineage_data.items(): if isinstance(value, int): attr_name = "map_int32" elif isinstance(value, float): attr_name = "map_double" else: attr_name = "map_str" user_info = user_defined_info.user_info.add() getattr(user_info, attr_name)[key] = value return user_defined_info def _collect_input_data(self, cb_params): """Only support to collect image data.""" if not self._collect_specified_data.get('collect_input_data'): return input_data = getattr(cb_params, 'train_dataset_element', None) if input_data is None: self._collect_specified_data['collect_input_data'] = False logger.info("The 'train_dataset_element' in cb_params is None, maybe there is dataset sink mode.") return if isinstance(input_data, (list, tuple)): input_data = input_data[0] try: self._record.add_value(PluginEnum.IMAGE.value, 'input_data/auto', input_data) except ValueError: logger.warning('The input data of network are not image, so will not collect by SummaryCollector.') self._collect_specified_data['collect_input_data'] = False return def _collect_dataset_graph(self, cb_params): """Only collect train dataset graph.""" if not self._collect_specified_data.get('collect_dataset_graph'): return # After analysis, we think that the validated dataset graph and the training dataset graph # should be consistent under normal scenarios, so only the training dataset graph is collected. if cb_params.mode == ModeEnum.TRAIN.value: train_dataset = cb_params.train_dataset dataset_graph = DatasetGraph() graph_bytes = dataset_graph.package_dataset_graph(train_dataset) self._record.add_value('dataset_graph', 'train_dataset', graph_bytes) def _collect_graphs(self, cb_params): """Collect the graph of train network and eval network.""" if not self._collect_specified_data.get('collect_graph'): return network = cb_params.train_network if cb_params.mode == ModeEnum.TRAIN.value else cb_params.eval_network graph_proto = network.get_func_graph_proto() if graph_proto is None: return self._record.add_value(PluginEnum.GRAPH.value, 'train_network/auto', graph_proto) def _collect_metric(self, cb_params): """Collect metric, currently only collection Loss is supported.""" if not self._collect_specified_data.get('collect_metric'): return loss = self._get_loss(cb_params) if loss is None: return try: self._record.add_value(PluginEnum.SCALAR.value, 'loss/auto', loss) except ValueError: logger.warning("The output of network is not a scalar, so will not collect loss in SummaryCollector.") self._collect_specified_data['collect_metric'] = False def _get_loss(self, cb_params): """ Get loss from the network output. Args: cb_params (_InternalCallbackParam): Callback parameters. Returns: Union[Tensor, None], if parse loss success, will return a Tensor value(shape is [1]), else return None. """ if not self._is_parse_loss_success: # If parsing has failed before, avoid repeating it return None output = cb_params.net_outputs if output is None: logger.warning("Can not find any output by this network, so will not collect loss in SummaryCollector.") self._is_parse_loss_success = False return None if isinstance(output, (int, float, Tensor)): loss = output elif isinstance(output, (list, tuple)) and output: # If the output is a list, since the default network returns loss first, # we assume that the first one is loss. loss = output[0] else: logger.warning("The output type could not be identified, so no loss was recorded in SummaryCollector.") self._is_parse_loss_success = False return None if not isinstance(loss, Tensor): loss = Tensor(loss) precision = 4 loss = Tensor(round(np.mean(loss.asnumpy()), precision)) return loss def _get_optimizer(self, cb_params): """ Get optimizer from the cb_params or parse from the network. Args: cb_params (_InternalCallbackParam): Callback parameters. Returns: Union[Optimizer, None], if parse optimizer success, will return a optimizer, else return None. """ # 'optimizer_failed' means find optimizer failed, so we will not collect data about optimizer. optimizer_failed = 'Failed' if self._temp_optimizer == optimizer_failed: return None if self._temp_optimizer is not None: return self._temp_optimizer optimizer = cb_params.optimizer if optimizer is None: network = cb_params.train_network if cb_params.mode == 'train' else cb_params.eval_network optimizer = self._parse_optimizer_by_network(network) if optimizer is None or not isinstance(optimizer, Optimizer): logger.warning("Can not find optimizer in network, or the optimizer does not inherit MindSpore's " "optimizer, so we will not collect data about optimizer in SummaryCollector.") optimizer = None self._temp_optimizer = optimizer if optimizer is not None else optimizer_failed return optimizer @staticmethod def _parse_optimizer_by_network(network): """Parse optimizer from network, if parse success will return a optimizer, else return None.""" optimizer = None for _, cell in network.cells_and_names(): if isinstance(cell, Optimizer): return cell try: optimizer = getattr(cell, 'optimizer') except AttributeError: continue if not isinstance(optimizer, Optimizer): continue # Optimizer found successfully break return optimizer def _collect_histogram(self, cb_params): """Collect histogram data, contain the parameter weight and bias.""" # Note: if there is not a key named `histogram_regular` in `self._collect_specified_data`, # it means we will not collect histogram data. if 'histogram_regular' not in self._collect_specified_data: return optimizer = self._get_optimizer(cb_params) if optimizer is None: return parameters = optimizer.parameters regular = self._collect_specified_data.get('histogram_regular') if regular is not None: for parameter in parameters: if re.match(regular, parameter.name): self._record.add_value(PluginEnum.HISTOGRAM.value, parameter.name+'/auto', parameter.data) return # Note: If `histogram_regular` in `self._collect_specified_data` and the value is None, # we will collect the first five parameters. default_parameter_count = 5 for parameter in parameters[:default_parameter_count]: self._record.add_value(PluginEnum.HISTOGRAM.value, parameter.name+'/auto', parameter.data) @staticmethod def _get_learning_rate(optimizer): """ parse the learning rate from optimizer. Args: optimizer (Optimizer): A optimizer which inherit the MindSpore Optimizer class. Returns: Union[Tensor, None], if parse learning rate success, will return a Tensor, else return None. """ learning_rate = optimizer.learning_rate if not isinstance(learning_rate, Parameter): logger.warning("The learning rate detected in the optimizer " "is not a Parameter type, so it is not recorded.") return None return learning_rate.data def _collect_train_lineage(self, cb_params): """Collect train lineage data, the detail refer to lineage_pb2.TrainLineage.""" if not self._collect_specified_data.get('collect_train_lineage'): return train_lineage = {} loss = self._get_loss(cb_params) if loss: loss_numpy = loss.asnumpy() loss = float(np.atleast_1d(loss_numpy)[0]) train_lineage[LineageMetadata.loss] = loss else: train_lineage[LineageMetadata.loss] = None optimizer = self._get_optimizer(cb_params) learning_rate = self._get_learning_rate(optimizer) if optimizer is not None else None if learning_rate is not None: train_lineage[LineageMetadata.learning_rate] = list(np.atleast_1d(learning_rate.asnumpy()))[0] else: train_lineage[LineageMetadata.learning_rate] = None train_lineage[LineageMetadata.optimizer] = type(optimizer).__name__ if optimizer else None train_lineage[LineageMetadata.train_network] = type(cb_params.network).__name__ loss_fn = self._get_loss_fn(cb_params) train_lineage[LineageMetadata.loss_function] = type(loss_fn).__name__ if loss_fn else None train_lineage[LineageMetadata.epoch] = cb_params.epoch_num train_lineage[LineageMetadata.step_num] = cb_params.cur_step_num train_lineage[LineageMetadata.parallel_mode] = cb_params.parallel_mode train_lineage[LineageMetadata.device_num] = cb_params.device_number ckpt_file_path = self._get_ckpt_file_path(cb_params) train_lineage[LineageMetadata.model_path] = json.dumps(dict(ckpt=ckpt_file_path)) model_size = os.path.getsize(ckpt_file_path) if ckpt_file_path else 0 train_lineage[LineageMetadata.model_size] = model_size self._parse_dataset(cb_params, train_lineage) train_lineage_message = self._package_train_lineage_message(train_lineage) self._record.add_value(PluginEnum.TRAIN_LINEAGE.value, 'train_lineage', train_lineage_message) @staticmethod def _package_train_lineage_message(train_lineage): """ Package train lineage data into binary data. Args: train_lineage (dict): The train lineage dict, refer to the attribute of `_collect_train_lineage` method. Returns: TrainLineage, a object of lineage_pb2.TrainLineage. """ lineage_message = lineage_pb2.TrainLineage() if train_lineage.get(LineageMetadata.train_network) is not None: lineage_message.algorithm.network = train_lineage.get(LineageMetadata.train_network) if train_lineage.get(LineageMetadata.loss) is not None: lineage_message.algorithm.loss = train_lineage.get(LineageMetadata.loss) # Construct train_dataset message. if train_lineage.get(LineageMetadata.train_dataset_path) is not None: lineage_message.train_dataset.train_dataset_path = train_lineage.get(LineageMetadata.train_dataset_path) if train_lineage.get(LineageMetadata.train_dataset_size) is not None: lineage_message.train_dataset.train_dataset_size = train_lineage.get(LineageMetadata.train_dataset_size) # Construct model message lineage_message.model.path = train_lineage.get(LineageMetadata.model_path) lineage_message.model.size = train_lineage.get(LineageMetadata.model_size) # Construct hyper_parameters message. if train_lineage.get(LineageMetadata.learning_rate) is not None: lineage_message.hyper_parameters.learning_rate = train_lineage.get(LineageMetadata.learning_rate) if train_lineage.get(LineageMetadata.optimizer) is not None: lineage_message.hyper_parameters.optimizer = train_lineage.get(LineageMetadata.optimizer) if train_lineage.get(LineageMetadata.loss_function) is not None: lineage_message.hyper_parameters.loss_function = train_lineage.get(LineageMetadata.loss_function) if train_lineage.get(LineageMetadata.parallel_mode) is not None: lineage_message.hyper_parameters.parallel_mode = train_lineage.get(LineageMetadata.parallel_mode) lineage_message.hyper_parameters.epoch = train_lineage.get(LineageMetadata.epoch) lineage_message.hyper_parameters.device_num = train_lineage.get(LineageMetadata.device_num) lineage_message.hyper_parameters.batch_size = train_lineage.get(LineageMetadata.batch_size) return lineage_message def _parse_dataset(self, cb_params, lineage_dict): """ Analyze Dataset to get the dataset path and dataset size. Args: cb_params (_InternalCallbackParam): Callback parameters. lineage_dict (dict): The lineage dict, refer to the attribute of `_collect_train_lineage` method or `_collect_eval_lineage`. Returns: dict, the lineage metadata. """ dataset = cb_params.train_dataset if cb_params.mode == ModeEnum.TRAIN.value else cb_params.valid_dataset try: dataset_path = self._get_dataset_path(dataset) except IndexError: dataset_path = None if dataset_path and os.path.isfile(dataset_path): dataset_dir = os.path.dirname(dataset_path) else: dataset_dir = dataset_path batch_num = dataset.get_dataset_size() batch_size = dataset.get_batch_size() dataset_size = int(batch_num * batch_size) lineage_dict[LineageMetadata.batch_size] = batch_size if cb_params.mode == ModeEnum.TRAIN.value: lineage_dict[LineageMetadata.train_dataset_path] = dataset_dir lineage_dict[LineageMetadata.train_dataset_size] = dataset_size else: lineage_dict[LineageMetadata.valid_dataset_path] = dataset_dir lineage_dict[LineageMetadata.valid_dataset_size] = dataset_size return lineage_dict def _get_dataset_path(self, output_dataset): """ Get dataset path of MindDataset object. Args: output_dataset (Union[Dataset, ImageFolderDatasetV2, MnistDataset, Cifar10Dataset, Cifar100Dataset, VOCDataset, CelebADataset, MindDataset, ManifestDataset, TFRecordDataset, TextFileDataset]): Refer to mindspore.dataset.Dataset. Returns: str, dataset path. Raises: IndexError: it means get dataset path failed. """ dataset_package = import_module('mindspore.dataset') dataset_dir_set = (dataset_package.ImageFolderDatasetV2, dataset_package.MnistDataset, dataset_package.Cifar10Dataset, dataset_package.Cifar100Dataset, dataset_package.VOCDataset, dataset_package.CelebADataset) dataset_file_set = (dataset_package.MindDataset, dataset_package.ManifestDataset) dataset_files_set = (dataset_package.TFRecordDataset, dataset_package.TextFileDataset) if isinstance(output_dataset, dataset_file_set): return output_dataset.dataset_file if isinstance(output_dataset, dataset_dir_set): return output_dataset.dataset_dir if isinstance(output_dataset, dataset_files_set): return output_dataset.dataset_files[0] return self._get_dataset_path(output_dataset.children[0]) @staticmethod def _get_ckpt_file_path(cb_params): """ Get checkpoint file path from MindSpore callback list. Args: cb_params (_InternalCallbackParam): Callback parameters. Returns: Union[str, None], if parse success will checkpoint file absolute path, else return None. """ callbacks = cb_params.list_callback ckpt_file_path = None for callback in callbacks: if isinstance(callback, ModelCheckpoint): ckpt_file_path = callback.latest_ckpt_file_name if ckpt_file_path: ckpt_file_path = os.path.realpath(ckpt_file_path) return ckpt_file_path @staticmethod def _get_loss_fn(cb_params): """ Get loss function by cb_params and analyzing network. Args: cb_params (_InternalCallbackParam): Callback parameters. Returns: Union[Cell, None], a Cell object, if parse failed, will return None. """ loss_fn = cb_params.loss_fn if loss_fn is not None: return loss_fn if cb_params.mode == ModeEnum.TRAIN.value: network = cb_params.train_network else: network = cb_params.eval_network for _, cell in network.cells_and_names(): if isinstance(cell, _Loss): loss_fn = cell break return loss_fn def _collect_eval_lineage(self, cb_params): """Collect eval lineage data, the detail refer to lineage_pb2.EvaluationLineage.""" if not self._collect_specified_data.get('collect_eval_lineage'): return eval_lineage = dict() eval_lineage[LineageMetadata.metrics] = json.dumps(cb_params.metrics) self._parse_dataset(cb_params, eval_lineage) eval_lineage_message = self._package_eval_lineage_message(eval_lineage) self._record.add_value(PluginEnum.EVAL_LINEAGE.value, 'eval_lineage', eval_lineage_message) @staticmethod def _package_eval_lineage_message(eval_lineage): """ Package eval lineage data into binary data. Args: eval_lineage (dict): The eval lineage dict, refer to the attribute of `_collect_eval_lineage` method. Returns: EvaluationLineage, a object of lineage_pb2.EvaluationLineage. """ lineage_message = lineage_pb2.EvaluationLineage() if eval_lineage.get(LineageMetadata.metrics) is not None: lineage_message.metric = eval_lineage.get(LineageMetadata.metrics) if eval_lineage.get(LineageMetadata.valid_dataset_path) is not None: lineage_message.valid_dataset.valid_dataset_path = eval_lineage.get(LineageMetadata.valid_dataset_path) if eval_lineage.get(LineageMetadata.valid_dataset_size) is not None: lineage_message.valid_dataset.valid_dataset_size = eval_lineage.get(LineageMetadata.valid_dataset_size) return lineage_message
the-stack_106_32197
import random import time print('Welcome to the game. I hope you know the rules. \n') # time.sleep(3) print('The game begins now!\n') # time.sleep(2) isoc = 'Heads' cc = ['Flip', 'Not Flip'] ui1 = input("Choose to 'Flip' or 'Not Flip' the coin. I choose to ") ci1 = random.choice(cc) if ci1 == 'Flip': isoc = 'Tales' else: isoc = 'Heads' if ui1 == 'Flip' and isoc == 'Heads': isoc = 'Tales' elif ui1 == 'Flip' and isoc == 'Tales': isoc = 'Heads' else: isoc = isoc ci2 = random.choice(cc) if ci2 == 'Flip' and isoc=='Heads': isoc = 'Tales' elif ci2=='Flip' and isoc=='Tales': isoc = 'Heads' if isoc == 'Tales': print('Congrats, you made it. You Win') if isoc == 'Heads': print('Sorry, but the computer won.')
the-stack_106_32199
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import Any, TYPE_CHECKING, Union, Optional from .iterators import ReactionIterator __all__ = ( 'Reaction', ) if TYPE_CHECKING: from .types.message import Reaction as ReactionPayload from .message import Message from .partial_emoji import PartialEmoji from .emoji import Emoji from .abc import Snowflake class Reaction: """Represents a reaction to a message. Depending on the way this object was created, some of the attributes can have a value of ``None``. .. container:: operations .. describe:: x == y Checks if two reactions are equal. This works by checking if the emoji is the same. So two messages with the same reaction will be considered "equal". .. describe:: x != y Checks if two reactions are not equal. .. describe:: hash(x) Returns the reaction's hash. .. describe:: str(x) Returns the string form of the reaction's emoji. Attributes ----------- emoji: Union[:class:`Emoji`, :class:`PartialEmoji`, :class:`str`] The reaction emoji. May be a custom emoji, or a unicode emoji. count: :class:`int` Number of times this reaction was made me: :class:`bool` If the user sent this reaction. message: :class:`Message` Message this reaction is for. """ __slots__ = ('message', 'count', 'emoji', 'me') def __init__(self, *, message: Message, data: ReactionPayload, emoji: Optional[Union[PartialEmoji, Emoji, str]] = None): self.message: Message = message self.emoji: Union[PartialEmoji, Emoji, str] = emoji or message._state.get_reaction_emoji(data['emoji']) self.count: int = data.get('count', 1) self.me: bool = data.get('me') # TODO: typeguard def is_custom_emoji(self) -> bool: """:class:`bool`: If this is a custom emoji.""" return not isinstance(self.emoji, str) def __eq__(self, other: Any) -> bool: return isinstance(other, self.__class__) and other.emoji == self.emoji def __ne__(self, other: Any) -> bool: if isinstance(other, self.__class__): return other.emoji != self.emoji return True def __hash__(self) -> int: return hash(self.emoji) def __str__(self) -> str: return str(self.emoji) def __repr__(self) -> str: return f'<Reaction emoji={self.emoji!r} me={self.me} count={self.count}>' async def remove(self, user: Snowflake) -> None: """|coro| Remove the reaction by the provided :class:`User` from the message. If the reaction is not your own (i.e. ``user`` parameter is not you) then the :attr:`~Permissions.manage_messages` permission is needed. The ``user`` parameter must represent a user or member and meet the :class:`abc.Snowflake` abc. Parameters ----------- user: :class:`abc.Snowflake` The user or member from which to remove the reaction. Raises ------- HTTPException Removing the reaction failed. Forbidden You do not have the proper permissions to remove the reaction. NotFound The user you specified, or the reaction's message was not found. """ await self.message.remove_reaction(self.emoji, user) async def clear(self) -> None: """|coro| Clears this reaction from the message. You need the :attr:`~Permissions.manage_messages` permission to use this. .. versionadded:: 1.3 Raises -------- HTTPException Clearing the reaction failed. Forbidden You do not have the proper permissions to clear the reaction. NotFound The emoji you specified was not found. InvalidArgument The emoji parameter is invalid. """ await self.message.clear_reaction(self.emoji) def users(self, *, limit: Optional[int] = None, after: Optional[Snowflake] = None) -> ReactionIterator: """Returns an :class:`AsyncIterator` representing the users that have reacted to the message. The ``after`` parameter must represent a member and meet the :class:`abc.Snowflake` abc. Examples --------- Usage :: # I do not actually recommend doing this. async for user in reaction.users(): await channel.send(f'{user} has reacted with {reaction.emoji}!') Flattening into a list: :: users = await reaction.users().flatten() # users is now a list of User... winner = random.choice(users) await channel.send(f'{winner} has won the raffle.') Parameters ------------ limit: Optional[:class:`int`] The maximum number of results to return. If not provided, returns all the users who reacted to the message. after: Optional[:class:`abc.Snowflake`] For pagination, reactions are sorted by member. Raises -------- HTTPException Getting the users for the reaction failed. Yields -------- Union[:class:`User`, :class:`Member`] The member (if retrievable) or the user that has reacted to this message. The case where it can be a :class:`Member` is in a guild message context. Sometimes it can be a :class:`User` if the member has left the guild. """ if not isinstance(self.emoji, str): emoji = f'{self.emoji.name}:{self.emoji.id}' else: emoji = self.emoji if limit is None: limit = self.count return ReactionIterator(self.message, emoji, limit, after)
the-stack_106_32204
#!/usr/bin/env python """ Simple example that sets a key, and retrieves it again. """ import asyncio from asyncio_redis import RedisProtocol async def main(): # Create connection transport, protocol = await loop.create_connection(RedisProtocol, "localhost", 6379) # Set a key await protocol.set("key", "value") # Retrieve a key result = await protocol.get("key") # Print result print("Succeeded", result == "value") transport.close() if __name__ == "__main__": loop = asyncio.get_event_loop() loop.run_until_complete(main())
the-stack_106_32205
# Copyright (c) 2012, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) # Only difference from the original (hence the above Copyright): .variances -> .variance import numpy as np from GPy.kern.src.kern import Kern from GPy.util.linalg import tdot from GPy.core.parameterization import Param from paramz.transformations import Logexp from paramz.caching import Cache_this from GPy.kern.src.psi_comp import PSICOMP_Linear class Linear(Kern): """ Linear kernel .. math:: k(x,y) = \sum_{i=1}^{\\text{input_dim}} \sigma^2_i x_iy_i :param input_dim: the number of input dimensions :type input_dim: int :param variance: the vector of variance :math:`\sigma^2_i` :type variance: array or list of the appropriate size (or float if there is only one variance parameter) :param ARD: Auto Relevance Determination. If False, the kernel has only one variance parameter \sigma^2, otherwise there is one variance parameter per dimension. :type ARD: Boolean :rtype: kernel object """ def __init__(self, input_dim, variance=None, ARD=False, active_dims=None, name='linear'): super(Linear, self).__init__(input_dim, active_dims, name) self.ARD = ARD if not ARD: if variance is not None: variance = np.asarray(variance) assert variance.size == 1, "Only one variance needed for non-ARD kernel" else: variance = np.ones(1) else: if variance is not None: variance = np.asarray(variance) assert variance.size == self.input_dim, "bad number of variance, need one ARD variance per input_dim" else: variance = np.ones(self.input_dim) self.variance = Param('variance', variance, Logexp()) self.link_parameter(self.variance) self.psicomp = PSICOMP_Linear() def to_dict(self): input_dict = super(Linear, self)._save_to_input_dict() input_dict["class"] = "GPy.kern.Linear" input_dict["variance"] = self.variance.values.tolist() input_dict["ARD"] = self.ARD return input_dict @staticmethod def _build_from_input_dict(kernel_class, input_dict): useGPU = input_dict.pop('useGPU', None) return Linear(**input_dict) @Cache_this(limit=3) def K(self, X, X2=None): if self.ARD: if X2 is None: return tdot(X*np.sqrt(self.variance)) else: rv = np.sqrt(self.variance) return np.dot(X*rv, (X2*rv).T) else: return self._dot_product(X, X2) * self.variance @Cache_this(limit=3, ignore_args=(0,)) def _dot_product(self, X, X2=None): if X2 is None: return tdot(X) else: return np.dot(X, X2.T) def Kdiag(self, X): return np.sum(self.variance * np.square(X), -1) def update_gradients_full(self, dL_dK, X, X2=None): if X2 is None: dL_dK = (dL_dK+dL_dK.T)/2 if self.ARD: if X2 is None: #self.variance.gradient = np.array([np.sum(dL_dK * tdot(X[:, i:i + 1])) for i in range(self.input_dim)]) self.variance.gradient = (dL_dK.dot(X)*X).sum(0) #np.einsum('ij,iq,jq->q', dL_dK, X, X) else: #product = X[:, None, :] * X2[None, :, :] #self.variance.gradient = (dL_dK[:, :, None] * product).sum(0).sum(0) self.variance.gradient = (dL_dK.dot(X2)*X).sum(0) #np.einsum('ij,iq,jq->q', dL_dK, X, X2) else: self.variance.gradient = np.sum(self._dot_product(X, X2) * dL_dK) def update_gradients_diag(self, dL_dKdiag, X): tmp = dL_dKdiag[:, None] * X ** 2 if self.ARD: self.variance.gradient = tmp.sum(0) else: self.variance.gradient = np.atleast_1d(tmp.sum()) def gradients_X(self, dL_dK, X, X2=None): if X2 is None: dL_dK = (dL_dK+dL_dK.T)/2 if X2 is None: return dL_dK.dot(X)*(2*self.variance) #np.einsum('jq,q,ij->iq', X, 2*self.variance, dL_dK) else: #return (((X2[None,:, :] * self.variance)) * dL_dK[:, :, None]).sum(1) return dL_dK.dot(X2)*self.variance #np.einsum('jq,q,ij->iq', X2, self.variance, dL_dK) def gradients_XX(self, dL_dK, X, X2=None): """ Given the derivative of the objective K(dL_dK), compute the second derivative of K wrt X and X2: returns the full covariance matrix [QxQ] of the input dimensionfor each pair or vectors, thus the returned array is of shape [NxNxQxQ]. ..math: \frac{\partial^2 K}{\partial X2 ^2} = - \frac{\partial^2 K}{\partial X\partial X2} ..returns: dL2_dXdX2: [NxMxQxQ] for X [NxQ] and X2[MxQ] (X2 is X if, X2 is None) Thus, we return the second derivative in X2. """ if X2 is None: X2 = X return np.zeros((X.shape[0], X2.shape[0], X.shape[1], X.shape[1])) #if X2 is None: dL_dK = (dL_dK+dL_dK.T)/2 #if X2 is None: # return np.ones(np.repeat(X.shape, 2)) * (self.variance[None,:] + self.variance[:, None])[None, None, :, :] #else: # return np.ones((X.shape[0], X2.shape[0], X.shape[1], X.shape[1])) * (self.variance[None,:] + self.variance[:, None])[None, None, :, :] def gradients_X_diag(self, dL_dKdiag, X): return 2.*self.variance*dL_dKdiag[:,None]*X def gradients_XX_diag(self, dL_dKdiag, X): return np.zeros((X.shape[0], X.shape[1], X.shape[1])) #dims = X.shape #if cov: # dims += (X.shape[1],) #return 2*np.ones(dims)*self.variance def input_sensitivity(self, summarize=True): return np.ones(self.input_dim) * self.variance #---------------------------------------# # PSI statistics # #---------------------------------------# def psi0(self, Z, variational_posterior): return self.psicomp.psicomputations(self, Z, variational_posterior)[0] def psi1(self, Z, variational_posterior): return self.psicomp.psicomputations(self, Z, variational_posterior)[1] def psi2(self, Z, variational_posterior): return self.psicomp.psicomputations(self, Z, variational_posterior)[2] def psi2n(self, Z, variational_posterior): return self.psicomp.psicomputations(self, Z, variational_posterior, return_psi2_n=True)[2] def update_gradients_expectations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior): dL_dvar = self.psicomp.psiDerivativecomputations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior)[0] if self.ARD: self.variance.gradient = dL_dvar else: self.variance.gradient = dL_dvar.sum() def gradients_Z_expectations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior): return self.psicomp.psiDerivativecomputations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior)[1] def gradients_qX_expectations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior): return self.psicomp.psiDerivativecomputations(self, dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, variational_posterior)[2:]
the-stack_106_32206
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import itertools from typing import List from fairseq.data.legacy.masked_lm_dictionary import BertDictionary from pytext.config.component import ComponentType, create_component from pytext.data.tensorizers import TokenTensorizer from pytext.data.tokenizers import Tokenizer, WordPieceTokenizer from pytext.data.utils import BOS, EOS, MASK, PAD, UNK, Vocabulary, pad_and_tensorize class BERTTensorizer(TokenTensorizer): """ Tensorizer for BERT tasks. Works for single sentence, sentence pair, triples etc. """ __EXPANSIBLE__ = True class Config(TokenTensorizer.Config): #: The tokenizer to use to split input text into tokens. columns: List[str] = ["text"] tokenizer: Tokenizer.Config = WordPieceTokenizer.Config() add_bos_token: bool = False add_eos_token: bool = True bos_token: str = "[CLS]" eos_token: str = "[SEP]" pad_token: str = "[PAD]" unk_token: str = "[UNK]" mask_token: str = "[MASK]" vocab_file: str = WordPieceTokenizer.Config().wordpiece_vocab_path @classmethod def from_config(cls, config: Config, **kwargs): tokenizer = create_component(ComponentType.TOKENIZER, config.tokenizer) replacements = { config.unk_token: UNK, config.pad_token: PAD, config.bos_token: BOS, config.eos_token: EOS, config.mask_token: MASK, } if isinstance(tokenizer, WordPieceTokenizer): vocab = Vocabulary( [token for token, _ in tokenizer.vocab.items()], replacements=replacements, ) else: dictionary = BertDictionary.load(config.vocab_file) vocab = Vocabulary( dictionary.symbols, dictionary.count, replacements=replacements ) return cls( columns=config.columns, tokenizer=tokenizer, add_bos_token=config.add_bos_token, add_eos_token=config.add_eos_token, use_eos_token_for_bos=config.use_eos_token_for_bos, max_seq_len=config.max_seq_len, vocab=vocab, **kwargs, ) def __init__(self, columns, **kwargs): super().__init__(text_column=None, **kwargs) self.columns = columns # Manually initialize column_schema since we are sending None to TokenTensorizer @property def column_schema(self): return [(column, str) for column in self.columns] def numberize(self, row): """Tokenize, look up in vocabulary.""" sentences = [self._lookup_tokens(row[column])[0] for column in self.columns] sentences[0] = [self.vocab.idx[BOS]] + sentences[0] seq_lens = (len(sentence) for sentence in sentences) segment_labels = ([i] * seq_len for i, seq_len in enumerate(seq_lens)) tokens = list(itertools.chain(*sentences)) segment_labels = list(itertools.chain(*segment_labels)) seq_len = len(tokens) # tokens, segment_label, seq_len return tokens, segment_labels, seq_len def sort_key(self, row): return row[2] def tensorize(self, batch): tokens, segment_labels, seq_lens = zip(*batch) tokens = pad_and_tensorize(tokens, self.vocab.get_pad_index()) pad_mask = (tokens != self.vocab.get_pad_index()).long() segment_labels = pad_and_tensorize(segment_labels, self.vocab.get_pad_index()) return tokens, pad_mask, segment_labels
the-stack_106_32207
"""Expectation values and other statistical measures for operators: ``<A>""" from __future__ import print_function, division from sympy import Expr, Add, Mul, Integer, Symbol, Integral from sympy.physics.quantum import Dagger from sympy.physics.quantum import qapply __all__ = [ 'Expectation', 'Covariance' ] #----------------------------------------------------------------------------- # Expectation #----------------------------------------------------------------------------- class Expectation(Expr): """ Expectation Value of an operator, expressed in terms of bracket <A>. If the second argument, 'is_normal_order' is 'True', the normal ordering notation (<: :>) is attached. doit() returns the normally ordered operator inside the bracket. Parameters ========== A : Expr The argument of the expectation value <A> is_normal_order : bool A bool that indicates if the operator inside the Expectation value bracket should be normally ordered (True) or left untouched (False, default value) Examples ======== >>> a = BosonOp("a") >>> Expectation(a * Dagger(a)) <a a†> >>> Expectation(a * Dagger(a), True) <:a a†:> >>> Expectation(a * Dagger(a), True).doit() <a† a> """ is_commutative = True @property def expression(self): return self.args[0] @property def is_normal_order(self): return bool(self.args[1]) @classmethod def default_args(self): return (Symbol("A"), False) def __new__(cls, *args): if not len(args) in [1, 2]: raise ValueError('1 or 2 parameters expected, got %s' % str(args)) if len(args) == 1: args = (args[0], Integer(0)) if len(args) == 2: args = (args[0], Integer(args[1])) return Expr.__new__(cls, *args) def _eval_expand_expectation(self, **hints): A = self.args[0] if isinstance(A, Add): # <A + B> = <A> + <B> return Add(*(Expectation(a, self.is_normal_order).expand(expectation=True) for a in A.args)) if isinstance(A, Mul): # <c A> = c<A> where c is a commutative term A = A.expand() cA, ncA = A.args_cnc() return Mul(Mul(*cA), Expectation(Mul._from_args(ncA), self.is_normal_order).expand()) if isinstance(A, Integral): # <∫adx> -> ∫<a>dx func, lims = A.function, A.limits new_args = [Expectation(func, self.is_normal_order).expand()] for lim in lims: new_args.append(lim) return Integral(*new_args) return self def doit(self, **hints): """ return the expectation value normally ordered operator if is_normal_order=True """ from sympsi.operatorordering import normal_order if self.is_normal_order == True: return Expectation(normal_order(self.args[0]), False) return self def eval_state(self, state): return qapply(Dagger(state) * self.args[0] * state, dagger=True).doit() def _latex(self, printer, *args): if self.is_normal_order: return r"\left\langle: %s :\right\rangle" % printer._print(self.args[0], *args) else: return r"\left\langle %s \right\rangle" % printer._print(self.args[0], *args) #----------------------------------------------------------------------------- # Covariance #----------------------------------------------------------------------------- class Covariance(Expr): """Covariance of two operators, expressed in terms of bracket <A, B> If the third argument, 'is_normal_order' is 'True', the normal ordering notation (<: , :>) is attached. doit() returns the expression in terms of expectation values. < A, B > --> < AB > - < A >< B > Parameters ========== A : Expr The first argument of the expectation value B : Expr The second argument of the expectation value is_normal_order : bool A bool that indicates if the operator inside the Expectation value bracket should be normally ordered (True) or left untouched (False, default value) Examples ======== >>> A, B = Operator("A"), Operator("B") >>> Covariance(A, B) < A, B > >>> Covariance(A, B, True) <:A, B:> >>> Covariance(A, B).doit() < AB > - < A >< B > >>> Covariance(A, B, True).doit() <:AB:> - <:A:><:B:> """ is_commutative = True @property def is_normal_order(self): return bool(self.args[2]) @classmethod def default_args(self): return (Symbol("A"), Symbol("B"), False) def __new__(cls, *args, **hints): if not len(args) in [2, 3]: raise ValueError('2 or 3 parameters expected, got %s' % args) if len(args) == 2: args = (args[0], args[1], Integer(0)) if len(args) == 3: args = (args[0], args[1], Integer(args[2])) return Expr.__new__(cls, *args) def _eval_expand_covariance(self, **hints): A, B = self.args[0], self.args[1] # <A + B, C> = <A, C> + <B, C> if isinstance(A, Add): return Add(*(Covariance(a, B, self.is_normal_order).expand() for a in A.args)) # <A, B + C> = <A, B> + <A, C> if isinstance(B, Add): return Add(*(Covariance(A, b, self.is_normal_order).expand() for b in B.args)) if isinstance(A, Mul): A = A.expand() cA, ncA = A.args_cnc() return Mul(Mul(*cA), Covariance(Mul._from_args(ncA), B, self.is_normal_order).expand()) if isinstance(B, Mul): B = B.expand() cB, ncB = B.args_cnc() return Mul(Mul(*cB), Covariance(A, Mul._from_args(ncB), self.is_normal_order).expand()) if isinstance(A, Integral): # <∫adx, B> -> ∫<a, B>dx func, lims = A.function, A.limits new_args = [Covariance(func, B, self.is_normal_order).expand()] for lim in lims: new_args.append(lim) return Integral(*new_args) if isinstance(B, Integral): # <A, ∫bdx> -> ∫<A, b>dx func, lims = B.function, B.limits new_args = [Covariance(A, func, self.is_normal_order).expand()] for lim in lims: new_args.append(lim) return Integral(*new_args) return self def doit(self, **hints): """ Evaluate covariance of two operators A and B """ A = self.args[0] B = self.args[1] no = self.is_normal_order return Expectation(A*B, no) - Expectation(A, no) * Expectation(B, no) def _latex(self, printer, *args): if self.is_normal_order: return r"\left\langle: %s, %s :\right\rangle" % tuple([ printer._print(self.args[0], *args), printer._print(self.args[1], *args)]) else: return r"\left\langle %s, %s \right\rangle" % tuple([ printer._print(self.args[0], *args), printer._print(self.args[1], *args)])
the-stack_106_32209
import unittest def midpoint(linked_list): slow = linked_list.head fast = linked_list.head while slow.next_node is not None and fast.next_node is not None and fast.next_node.next_node is not None: slow = slow.next_node fast = fast.next_node.next_node return slow class TestMidpoint(unittest.TestCase): def test_odd_numbered_linked_list(self): linked_list = LinkedList() linked_list.insert_last('a') linked_list.insert_last('b') linked_list.insert_last('c') self.assertEqual('b', midpoint(linked_list).data) linked_list = LinkedList() linked_list.insert_last('a') linked_list.insert_last('b') linked_list.insert_last('c') linked_list.insert_last('d') linked_list.insert_last('e') self.assertEqual('c', midpoint(linked_list).data) def test_even_numbered_linked_list(self): linked_list = LinkedList() linked_list.insert_last('a') linked_list.insert_last('b') self.assertEqual('a', midpoint(linked_list).data) linked_list = LinkedList() linked_list.insert_last('a') linked_list.insert_last('b') linked_list.insert_last('c') linked_list.insert_last('d') self.assertEqual('b', midpoint(linked_list).data) class Node: def __init__(self, data, next_node=None): self.data = data self.next_node = next_node class LinkedList: def __init__(self): self.head = None def insert_first(self, data): self.insert_at(data, 0) def size(self): size = 0 node = self.head while node is not None: size = size + 1 node = node.next_node return size def get_first(self): return self.get_at(0) def get_last(self): return self.get_at(self.size() - 1) def clear(self): self.head = None def remove_first(self): if self.head is not None: self.head = self.head.next_node def remove_last(self): size_of_linked_list = self.size() if size_of_linked_list is 0: return elif size_of_linked_list is 1: self.head = None else: previous = self.head last = self.head while last is not None and last.next_node is not None: previous = last last = last.next_node previous.next_node = None def insert_last(self, data): self.insert_at(data, self.size()) def get_at(self, index): if index >= self.size() or index < 0 or self.head is None: return None else: node = self.head counter = 0 while counter < index: node = node.next_node counter = counter + 1 return node def remove_at(self, index): if self.size() is 0: return elif index is 0: self.head = self.head.next_node elif 0 < index < self.size(): counter = 0 previous_node = self.get_at(index - 1) previous_node.next_node = previous_node.next_node.next_node def insert_at(self, data, index): new_node = Node(data) if self.size() == 0: self.head = new_node elif index <= 0: new_node.next_node = self.head self.head = new_node elif index >= self.size(): last_node = self.get_last() last_node.next_node = new_node else: previous_node = self.get_at(index - 1) new_node.next_node = previous_node.next_node previous_node.next_node = new_node
the-stack_106_32211
# This file comes originally from https://github.com/google-research/bert/blob/master/tokenization.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re import unicodedata import six import tensorflow as tf def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): """Checks whether the casing config is consistent with the checkpoint name.""" # The casing has to be passed in by the user and there is no explicit check # as to whether it matches the checkpoint. The casing information probably # should have been stored in the bert_config.json file, but it's not, so # we have to heuristically detect it to validate. if not init_checkpoint: return m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) if m is None: return model_name = m.group(1) lower_models = [ "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" ] cased_models = [ "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", "multi_cased_L-12_H-768_A-12" ] is_bad_config = False if model_name in lower_models and not do_lower_case: is_bad_config = True actual_flag = "False" case_name = "lowercased" opposite_flag = "True" if model_name in cased_models and do_lower_case: is_bad_config = True actual_flag = "True" case_name = "cased" opposite_flag = "False" if is_bad_config: raise ValueError( "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " "However, `%s` seems to be a %s model, so you " "should pass in `--do_lower_case=%s` so that the fine-tuning matches " "how the model was pre-training. If this error is wrong, please " "just comment out this check." % (actual_flag, init_checkpoint, model_name, case_name, opposite_flag)) def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with tf.gfile.GFile(vocab_file, "r") as reader: while True: token = convert_to_unicode(reader.readline()) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item]) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True): self.vocab = load_vocab(vocab_file) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat in ("Cc", "Cf"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
the-stack_106_32213
import pyttsx3 import datetime import speech_recognition as sr import wikipedia import webbrowser import random import os print("FRIDAY") engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices') engine.setProperty('voice',voices[1].id) chrome_path = 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s' def speak(audio): engine.say(audio) engine.runAndWait() def wishme(): hour = int(datetime.datetime.now().hour) if hour >=0 and hour<=12: speak("good morning! ") elif hour>=12 and hour <18: speak("good aftenoon!") else: speak("good evening! ") speak("How may i help you ?") def takecommand(): r = sr.Recognizer() with sr.Microphone() as source: r.adjust_for_ambient_noise(source,duration=1) #r.pause_threshold = 1 print("Listening....") audio = r.listen(source,phrase_time_limit=4) #print("m done ") try : print("Recognizing....") query =r.recognize_google(audio,language='en-in') #print("user said : ",query) #speak(query) except Exception : print("Say that again please !! ") return "none" return query if __name__ == "__main__": wishme() while True: query = takecommand().lower() #TASKS if 'wikipedia' in query : try: speak ('searching wikipedia.....') query = query.replace("wikipedia","") results = wikipedia.summary (query,sentences=2) speak("according to wikipedia") speak(results) except : speak("i did not get it.Try saying that again") elif "open youtube" in query: speak("opening youtube") webbrowser. get(chrome_path). open_new_tab("youtube.com") elif "study time" in query: speak("starting lofi hiphop") webbrowser. get(chrome_path). open_new_tab("https://www.youtube.com/watch?v=hHW1oY26kxQ") elif "github" in query: speak("opening github") webbrowser. get(chrome_path). open_new_tab("https://github.com/") elif "play music" in query: speak("playing music ") music_dir = "C:\\Users\\shikh\\Desktop\\music" songs = os.listdir(music_dir) num = random.randint(0,len(songs)) os.startfile(os.path.join(music_dir,songs[num-1])) elif "the time" in query: strtime = datetime.datetime.now().strftime("%I%p") speak(f"It's {strtime} ") elif "open code" in query : speak("opening visual studio code") codepath = "C:\\Users\\shikh\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe" os.startfile(codepath) elif "open c plus plus" in query : speak("opening codeblocks") codepath = "C:\\Program Files (x86)\\CodeBlocks\\codeblocks.exe" os.startfile(codepath) elif "open word" in query : speak("opening microsoft word") codepath = "C:\\Program Files (x86)\\Microsoft Office\\root\\Office16\\WINWORD.EXE" os.startfile(codepath) elif "google" in query: query = query.replace("google search","") speak ('searching on google.....') url = "https://www.google.co.in/search?q=" +(str(query))+ "&oq="+(str(query))+"&gs_l=serp.12..0i71l8.0.0.0.6391.0.0.0.0.0.0.0.0..0.0....0...1c..64.serp..0.0.0.UiQhpfaBsuU" webbrowser.open_new_tab(url) elif "exit" in query: speak("see you later") exit()