filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_31720
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright (c) 2021. by Daniel Barrejon, UC3M. + # All rights reserved. This file is part of the Shi-VAE, and is released under the + # "MIT License Agreement". Please see the LICENSE file that should have been included + # as part of this package. + # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import os import sys import numpy as np import torch from lib import utils, datasets as dset from lib.aux import set_device from lib.process_args import get_args, save_args from lib.scalers import HeterogeneousScaler # CPU or GPU Run args = get_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu device = set_device() print("DEVICE: {}".format(device)) dataset = "physionet_burst" args.dataset = dataset args.train = -1 # Shi-VAE args.model_name = '{}_{}_{}z_{}h_{}s'.format(args.model, args.dataset, args.z_dim, args.h_dim, args.K) args.result_dir = os.path.join(args.ckpt_dir, args.experiment, args.model_name) args.ckpt_file = os.path.join(args.result_dir, args.model_name + ".pth") args.best_ckpt_file = os.path.join(args.result_dir, args.model_name + "_best.pth") # Restore training if (args.restore == 1): if (not os.path.isfile(args.ckpt_file)): print('Model not found at {}'.format(args.ckpt_file)) sys.exit() model_dict = torch.load(args.ckpt_file) n = args.n_epochs # Restore args from training args. args = model_dict['params'] args.n_epochs = n args.restore = 1 # Print Arguments print('ARGUMENTS') for arg in vars(args): print('{} = {}'.format(arg, getattr(args, arg))) # Create checkpoint directory if (not os.path.exists(args.ckpt_dir)): os.makedirs(args.ckpt_dir) # Create results directory if (not os.path.exists(args.result_dir)): os.makedirs(args.result_dir) # ============= LOAD DATA ============= # data = np.load(os.path.join(args.data_dir, dataset, dataset + ".npz")) types_csv = os.path.join(args.data_dir, dataset, "data_types_real.csv") types_list = utils.read_csv_types(types_csv) # Train x_train = data["x_train_miss"].astype(np.float32) x_train_full = data["x_train_full"].astype(np.float32) m_train = data["m_train_miss"].astype(bool) m_train_artificial = data["m_train_artificial"].astype(bool) y_train = data["y_train"] # Val x_val = data["x_val_miss"].astype(np.float32) x_val_full = data["x_val_full"].astype(np.float32) m_val = data["m_val_miss"].astype(bool) m_val_artificial = data["m_val_artificial"].astype(bool) y_val = data["y_val"] # Test x_test = data["x_test_miss"].astype(np.float32) x_test_full = data["x_test_full"].astype(np.float32) m_test = data["m_test_miss"].astype(bool) m_test_artificial = data["m_test_artificial"].astype(bool) y_test = data["y_test"] # ===== Scaler ===== # scaler = HeterogeneousScaler(types_list) scaler.fit(x_train, m_train) # ===== Datasets ===== # data_train = dset.HeterDataset(x_train, m_train, x_train_full, m_train_artificial, types_list=types_list) data_valid = dset.HeterDataset(x_val, m_val, x_val_full, m_val_artificial, types_list=types_list) data_test = dset.HeterDataset(x_test, m_test, x_test_full, m_test_artificial, types_list=types_list) # ===== DataLoaders ===== # train_loader = torch.utils.data.DataLoader(data_train, batch_size=64, shuffle=True, collate_fn=dset.standard_collate) valid_loader = torch.utils.data.DataLoader(data_valid, batch_size=64, shuffle=False, collate_fn=dset.standard_collate) test_loader = torch.utils.data.DataLoader(data_test, batch_size=64, shuffle=False, collate_fn=dset.standard_collate) # ============= MODEL ============= # from models.trainers import Trainer from models.shivae import ShiVAE # Shi-VAE model = ShiVAE(h_dim=args.h_dim, z_dim=args.z_dim, s_dim=args.K, types_list=types_list, n_layers=1, learn_std=args.learn_std) optimizer = torch.optim.Adam(model.parameters(), lr=args.l_rate) total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('Trainable params: {}'.format(total_params)) # ============= TRAIN ============= # if args.train == 1 or args.train == -1: trainer = Trainer(model, optimizer, args, scaler=scaler) # Train from pretrained model if (args.restore == 1 and os.path.isfile(args.ckpt_file)): print('Model loaded at {}'.format(args.ckpt_file)) trainer.load_checkpoint(model_dict) print('Training points: {}'.format(len(train_loader.dataset))) trainer.train(train_loader, test_loader) # ============= RESULTS ============= # if args.train == 0 or args.train == -1: from lib.result import Result result_dir = os.path.dirname(args.ckpt_file) print('Save images in: {}'.format(result_dir)) # Load pretrained model model_dict = torch.load(args.best_ckpt_file) model.load_state_dict(model_dict['state_dict']) # Create test loader test_loader = torch.utils.data.DataLoader(data_test, batch_size=64, shuffle=False, collate_fn=dset.standard_collate) # ================== # # Reconstruction and generation # ================== # result = Result(test_loader, scaler, model, result_dir, args) model_name = "ShiVAE" result.avg_error(model_name=model_name) result.reconstruction(types_list=types_list) result.generation(args.result_imgs, types_list=types_list) # ===== Save args ===== # args_path = os.path.join(args.result_dir, args.model_name) + args.model_name + '.json' save_args(args, args_path)
the-stack_106_31722
# -*- coding:utf-8 -*- # Copyright 2015 NEC Corporation. # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # from org.o3project.odenos.remoteobject.transport.message_dispatcher\ import MessageDispatcher from org.o3project.odenos.remoteobject.transport.remote_message_transport\ import RemoteMessageTransport from org.o3project.odenos.remoteobject.object_property import ObjectProperty import unittest from mock import Mock, MagicMock, patch from contextlib import nested class RemoteMessageTransportTest(unittest.TestCase): Dispatcher = MagicMock() value01 = "" value02 = "" result01 = "" result02 = "" def setUp(self): self.target = RemoteMessageTransport( "RemoteMessageTransport", self.Dispatcher) def tearDown(self): self.target = None def test_constructor(self): self.assertEqual(self.target.object_id, "RemoteMessageTransport") self.assertEqual(self.target.seqnoGenerator.counter, 0) self.assertEqual(self.target.responseMap, {}) def test_AtomicInteger_constructor(self): with patch("threading.RLock") as Mock_RLock: Mock_RLock.return_value = "Mock_RLock" self.target = self.target.AtomicInteger(5) self.assertEqual(self.target.counter, 5) self.assertEqual(self.target.lock, "Mock_RLock") def test_AtomicInteger_increase(self): self.target = self.target.AtomicInteger(6) self.target.increase() self.assertEqual(self.target.counter, 7) def test_SynchronousQueue_constructor(self): with nested(patch("threading.RLock"), patch("Queue.Queue")) as (Mock_RLock, Mock_Queue): Mock_Queue.return_value = "Mock_Queue" Mock_RLock.return_value = "Mock_RLock" self.target = self.target.SynchronousQueue() self.assertEqual(self.target.q, "Mock_Queue") self.assertEqual(self.target.put_lock, "Mock_RLock") def test_SynchronousQueue_get(self): self.target = self.target.SynchronousQueue() self.value01 = ObjectProperty("object_type", "object_id") with self.target.put_lock: self.target.q.put(self.value01, block=True) self.result = self.target.get() self.assertEqual(self.result, self.value01) def test_SynchronousQueue_put(self): self.target = self.target.SynchronousQueue() with patch("Queue.Queue.join") as Mock_Queue_join: self.value01 = ObjectProperty("object_type", "object_id") self.result = self.target.put(self.value01) self.assertEqual(self.target.get(), self.value01) def test_send_request_message(self): with patch("org.o3project.odenos.remoteobject.transport." + "remote_message_transport.RemoteMessageTransport." + "SynchronousQueue.get") as q_get: self.value01 = ObjectProperty("object_type", "object_id") q_get.return_value = "get_item" self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock( return_value=False) self.result01 = self.target.send_request_message(self.value01) self.assertEqual(self.result01, "get_item") def test_send_request_message_response_None(self): with patch("org.o3project.odenos.remoteobject.transport." + "remote_message_transport.RemoteMessageTransport." + "SynchronousQueue.get") as q_get: self.value01 = ObjectProperty("object_type", "object_id") q_get.return_value = None self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock( return_value=False) try: self.result = self.target.send_request_message(self.value01) except: pass def test_addRequest_success(self): self.value01 = ObjectProperty("object_type", "object_id") self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock(return_value=False) self.result01 = self.target.addRequet(self.value01) self.assertEqual(len(self.target.responseMap), 1) self.assertEqual(self.target.responseMap[1], self.result01) def test_addRequest_success2(self): self.value01 = ObjectProperty("object_type", "object_id") self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock(return_value=True) self.result01 = self.target.addRequet(self.value01, "object_id") self.assertEqual(len(self.target.responseMap), 1) self.assertEqual(self.target.responseMap[1], self.result01) def test_addRequest_error(self): with nested( patch("org.o3project.odenos.remoteobject.transport." "message_dispatcher.MessageDispatcher." "pushPublishQueue"), patch("logging.exception")) as (Mock_pushPublishQueue, logging_exception): self.value01 = ObjectProperty("object_type", "object_id") self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock( return_value=False) self.target.dispatcher.get_source_dispatcher_id.side_effect =\ Exception() try: self.result01 = self.target.addRequet(self.value01) except: self.assertEqual(logging_exception.call_count, 1) self.assertEqual(len(self.target.responseMap), 0) def test_addRequest_error2(self): with nested( patch("logging.warn")) as (logging_warn): self.value01 = ObjectProperty("object_type", "object_id") self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock(return_value=True) self.result01 = self.target.addRequet(self.value01) self.assertEqual(len(self.target.responseMap), 1) self.assertEqual(self.target.responseMap[1], self.result01) def test_signalResponse(self): with patch("org.o3project.odenos.remoteobject.transport." + "remote_message_transport.RemoteMessageTransport." + "SynchronousQueue.put") as q_put: self.value01 = ObjectProperty("object_type01", "object_id01") self.value02 = ObjectProperty("object_type02", "object_id02") self.target.dispatcher.get_source_dispatcher_id = Mock( return_value="dispatcher_id") self.target.dispatcher.monitor_enabled = Mock( return_value=False) self.result01 = self.target.addRequet(self.value01) self.result02 = self.target.addRequet(self.value02) self.target.signalResponse(1, self.value01) self.assertEqual(len(self.target.responseMap), 1) self.assertEqual(self.target.responseMap[2], self.result02) def test_close(self): self.target.close() if __name__ == "__main__": unittest.main()
the-stack_106_31723
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch from flsim.common.pytest_helper import assertEqual, assertAlmostEqual from flsim.utils.timing.training_duration_distribution import ( PerUserUniformDurationDistribution, PerUserUniformDurationDistributionConfig, PerUserHalfNormalDurationDistribution, PerUserHalfNormalDurationDistributionConfig, DurationDistributionFromListConfig, DurationDistributionFromList, DurationInfo, ) from flsim.utils.timing.training_time_estimator import ( get_training_time, AsyncTrainingTimeEstimator, SyncTrainingTimeEstimator, ) from omegaconf import OmegaConf class TestTrainingTimeEstimator: def test_time_from_list(self) -> None: """ Test training time from list Assuming UPR = 2 Sync would be the sum of slowest user between rounds round 1 user_1: duration = 4 user_2: duration = 3 round 2 user_3: duration = 2 user_4: duration = 1 total = 4 + 2 = 6 Async would be the user_1: duration = 4, start_time = 1 user_2: duration = 3, start_time = 1 user_3: duration = 2, start_time = 2 user_4: duration = 1, start_time = 3 users training @ time 1: user 1, user 2 users training @ time 3: user 2, user 3 users training @ time 4: user 3, user 4 users training @ time 5: user 4 finishes training """ training_events = [ DurationInfo(duration=4), DurationInfo(duration=3), DurationInfo(duration=2), DurationInfo(duration=1), ] async_start_times = [1, 1, 2, 3] sync_training_dist = DurationDistributionFromList( **OmegaConf.structured( DurationDistributionFromListConfig(training_events=training_events) ) ) async_training_dist = DurationDistributionFromList( **OmegaConf.structured( DurationDistributionFromListConfig(training_events=training_events) ) ) num_users = len(training_events) epochs = 1 users_per_round = 2 sync_estimator = SyncTrainingTimeEstimator( total_users=len(training_events), users_per_round=users_per_round, epochs=epochs, training_dist=sync_training_dist, ) async_estimator = AsyncTrainingTimeEstimator( total_users=num_users, users_per_round=users_per_round, epochs=epochs, training_dist=async_training_dist, start_times=async_start_times, ) async_time = async_estimator.training_time() sync_time = sync_estimator.training_time() assertEqual(sync_time, 6) assertEqual(async_time, 5) def test_uniform_training_time(self) -> None: """ Test uniform training time Sync and Async should have the same training time if UPR = 1 and duration_min close to duration_mean """ torch.manual_seed(0) num_users = 1000 epochs = 1 users_per_round = 1 duration_mean = 1.00 duration_min = 0.99999 training_dist = PerUserUniformDurationDistribution( **OmegaConf.structured( PerUserUniformDurationDistributionConfig( training_duration_mean=duration_mean, training_duration_min=duration_min, ) ) ) sync_time, async_time = get_training_time( num_users=num_users, users_per_round=users_per_round, epochs=epochs, training_dist=training_dist, ) assertAlmostEqual(sync_time, async_time, delta=1e-3) def test_per_user_half_normal(self) -> None: """ Test half normal training time Sync and Async should have the following training time sync_training_time = async_training_time = num_users * duration_min if UPR = 1 and duraton_std is close to 0 """ torch.manual_seed(0) num_users = 1000 epochs = 1 users_per_round = 1 duration_std = 1e-6 duration_min = 1.0 training_dist = PerUserHalfNormalDurationDistribution( **OmegaConf.structured( PerUserHalfNormalDurationDistributionConfig( training_duration_sd=duration_std, training_duration_min=duration_min, ) ) ) sync_time, async_time = get_training_time( num_users=num_users, users_per_round=users_per_round, epochs=epochs, training_dist=training_dist, ) assertAlmostEqual(sync_time, async_time, delta=1e-3) assertAlmostEqual(sync_time, num_users * duration_min, delta=1e-3) assertAlmostEqual(async_time, num_users * duration_min, delta=1e-3)
the-stack_106_31725
"""OPP WS2812 wing.""" import logging from mpf.core.platform_batch_light_system import PlatformBatchLight from mpf.platforms.opp.opp_rs232_intf import OppRs232Intf class OPPNeopixelCard: """OPP Neopixel/WS2812 card.""" __slots__ = ["log", "chain_serial", "platform", "addr", "card_num", "num_pixels", "num_color_entries", "color_table_dict"] def __init__(self, chain_serial, addr, neo_card_dict, platform): """Initialise OPP Neopixel/WS2812 card.""" self.log = logging.getLogger('OPPNeopixel') self.chain_serial = chain_serial self.addr = addr self.platform = platform self.card_num = str(addr - ord(OppRs232Intf.CARD_ID_GEN2_CARD)) self.num_pixels = 0 self.num_color_entries = 0 self.color_table_dict = dict() neo_card_dict[chain_serial + '-' + self.card_num] = self self.log.debug("Creating OPP Neopixel card at hardware address: 0x%02x", addr) class OPPLightChannel(PlatformBatchLight): """A channel of a WS2812 LED.""" __slots__ = ["chain_serial", "addr", "pixel_num"] # pylint: disable-msg=too-many-arguments def __init__(self, chain_serial, addr, pixel_num, light_system): """Initialise led channel.""" super().__init__("{}-{}-{}".format(chain_serial, addr, pixel_num), light_system) self.pixel_num = pixel_num self.addr = addr self.chain_serial = chain_serial def get_max_fade_ms(self): """Return largest number which fits two bytes.""" return 65535 def get_board_name(self): """Return OPP chain and addr.""" return "OPP LED {} on Chain {} Board {}".format(self.pixel_num, self.chain_serial, self.addr)
the-stack_106_31726
from dataclasses import replace from typing import Any, Iterator, List from unittest.mock import patch import pytest import black from tests.util import ( DEFAULT_MODE, PY36_VERSIONS, THIS_DIR, assert_format, dump_to_stderr, read_data, ) SIMPLE_CASES: List[str] = [ "attribute_access_on_number_literals", "beginning_backslash", "bracketmatch", "class_blank_parentheses", "class_methods_new_line", "collections", "comments", "comments2", "comments3", "comments4", "comments5", "comments6", "comments_non_breaking_space", "comment_after_escaped_newline", "composition", "composition_no_trailing_comma", "docstring", "empty_lines", "expression", "fmtonoff", "fmtonoff2", "fmtonoff3", "fmtonoff4", "fmtskip", "fmtskip2", "fmtskip3", "fmtskip4", "fmtskip5", "fmtskip6", "fstring", "function", "function2", "function_trailing_comma", "import_spacing", "power_op_spacing", "remove_parens", "slices", "string_prefixes", "torture", "trailing_comma_optional_parens1", "trailing_comma_optional_parens2", "trailing_comma_optional_parens3", "tricky_unicode_symbols", "tupleassign", ] PY310_CASES: List[str] = [ "starred_for_target", "pattern_matching_simple", "pattern_matching_complex", "pattern_matching_extras", "pattern_matching_style", "pattern_matching_generic", "parenthesized_context_managers", ] PREVIEW_CASES: List[str] = [ # string processing "cantfit", "comments7", "long_strings", "long_strings__edge_case", "long_strings__regression", "percent_precedence", ] SOURCES: List[str] = [ "src/black/__init__.py", "src/black/__main__.py", "src/black/brackets.py", "src/black/cache.py", "src/black/comments.py", "src/black/concurrency.py", "src/black/const.py", "src/black/debug.py", "src/black/files.py", "src/black/linegen.py", "src/black/lines.py", "src/black/mode.py", "src/black/nodes.py", "src/black/numerics.py", "src/black/output.py", "src/black/parsing.py", "src/black/report.py", "src/black/rusty.py", "src/black/strings.py", "src/black/trans.py", "src/blackd/__init__.py", "src/black_primer/cli.py", "src/black_primer/lib.py", "src/blib2to3/pygram.py", "src/blib2to3/pytree.py", "src/blib2to3/pgen2/conv.py", "src/blib2to3/pgen2/driver.py", "src/blib2to3/pgen2/grammar.py", "src/blib2to3/pgen2/literals.py", "src/blib2to3/pgen2/parse.py", "src/blib2to3/pgen2/pgen.py", "src/blib2to3/pgen2/tokenize.py", "src/blib2to3/pgen2/token.py", "setup.py", "tests/test_black.py", "tests/test_blackd.py", "tests/test_format.py", "tests/test_primer.py", "tests/optional.py", "tests/util.py", "tests/conftest.py", ] @pytest.fixture(autouse=True) def patch_dump_to_file(request: Any) -> Iterator[None]: with patch("black.dump_to_file", dump_to_stderr): yield def check_file(filename: str, mode: black.Mode, *, data: bool = True) -> None: source, expected = read_data(filename, data=data) assert_format(source, expected, mode, fast=False) @pytest.mark.parametrize("filename", SIMPLE_CASES) def test_simple_format(filename: str) -> None: check_file(filename, DEFAULT_MODE) @pytest.mark.parametrize("filename", PREVIEW_CASES) def test_preview_format(filename: str) -> None: check_file(filename, black.Mode(preview=True)) @pytest.mark.parametrize("filename", SOURCES) def test_source_is_formatted(filename: str) -> None: path = THIS_DIR.parent / filename check_file(str(path), DEFAULT_MODE, data=False) # =============== # # Complex cases # ============= # def test_empty() -> None: source = expected = "" assert_format(source, expected) def test_pep_572() -> None: source, expected = read_data("pep_572") assert_format(source, expected, minimum_version=(3, 8)) def test_pep_572_remove_parens() -> None: source, expected = read_data("pep_572_remove_parens") assert_format(source, expected, minimum_version=(3, 8)) def test_pep_572_do_not_remove_parens() -> None: source, expected = read_data("pep_572_do_not_remove_parens") # the AST safety checks will fail, but that's expected, just make sure no # parentheses are touched assert_format(source, expected, fast=True) @pytest.mark.parametrize("major, minor", [(3, 9), (3, 10)]) def test_pep_572_newer_syntax(major: int, minor: int) -> None: source, expected = read_data(f"pep_572_py{major}{minor}") assert_format(source, expected, minimum_version=(major, minor)) def test_pep_570() -> None: source, expected = read_data("pep_570") assert_format(source, expected, minimum_version=(3, 8)) @pytest.mark.parametrize("filename", PY310_CASES) def test_python_310(filename: str) -> None: source, expected = read_data(filename) mode = black.Mode(target_versions={black.TargetVersion.PY310}) assert_format(source, expected, mode, minimum_version=(3, 10)) def test_python_310_without_target_version() -> None: source, expected = read_data("pattern_matching_simple") mode = black.Mode() assert_format(source, expected, mode, minimum_version=(3, 10)) def test_patma_invalid() -> None: source, expected = read_data("pattern_matching_invalid") mode = black.Mode(target_versions={black.TargetVersion.PY310}) with pytest.raises(black.parsing.InvalidInput) as exc_info: assert_format(source, expected, mode, minimum_version=(3, 10)) exc_info.match("Cannot parse: 10:11") def test_python_2_hint() -> None: with pytest.raises(black.parsing.InvalidInput) as exc_info: assert_format("print 'daylily'", "print 'daylily'") exc_info.match(black.parsing.PY2_HINT) def test_docstring_no_string_normalization() -> None: """Like test_docstring but with string normalization off.""" source, expected = read_data("docstring_no_string_normalization") mode = replace(DEFAULT_MODE, string_normalization=False) assert_format(source, expected, mode) def test_long_strings_flag_disabled() -> None: """Tests for turning off the string processing logic.""" source, expected = read_data("long_strings_flag_disabled") mode = replace(DEFAULT_MODE, experimental_string_processing=False) assert_format(source, expected, mode) def test_numeric_literals() -> None: source, expected = read_data("numeric_literals") mode = replace(DEFAULT_MODE, target_versions=PY36_VERSIONS) assert_format(source, expected, mode) def test_numeric_literals_ignoring_underscores() -> None: source, expected = read_data("numeric_literals_skip_underscores") mode = replace(DEFAULT_MODE, target_versions=PY36_VERSIONS) assert_format(source, expected, mode) def test_stub() -> None: mode = replace(DEFAULT_MODE, is_pyi=True) source, expected = read_data("stub.pyi") assert_format(source, expected, mode) def test_python38() -> None: source, expected = read_data("python38") assert_format(source, expected, minimum_version=(3, 8)) def test_python39() -> None: source, expected = read_data("python39") assert_format(source, expected, minimum_version=(3, 9)) def test_power_op_newline() -> None: # requires line_length=0 source, expected = read_data("power_op_newline") assert_format(source, expected, mode=black.Mode(line_length=0))
the-stack_106_31728
from discord.ext import commands import asyncio from cogs.utils import twitconn from cogs.utils import checks from discord.errors import Forbidden, InvalidArgument import json, os, twitutils, linkutils, discordutils class Streams: bot = None def __init__(self, bot): self.bot = bot self.loop = None self.destinations = None path = os.path.join(os.getcwd(), 'files', 'tweets.json') with open(path) as f: self.destinations = json.load(f) stalk = self.get_stalks() twitconn.init_stream(stalk) @bot.event async def on_ready(): print('Ready') await self.stream() @bot.event async def on_resumed(): print('Resumed') await self.reboot_stream() async def stream(self): if self.loop is None: await self.start() else: await self.reboot_stream() async def start(self): print('Now stalking') self.loop = asyncio.get_event_loop() self.loop.create_task(self.tweet_retriever()) async def end(self): print('Ending stalking') self.stop_loop = True self.loop.stop() self.loop = None async def tweet_retriever(self): print('kek') await self.bot.wait_until_ready() self.stop_loop = False while not self.stop_loop: if not twitconn.poster.running: print('Disconnected') await self.reboot_stream() print('Reconnected') await asyncio.sleep(20) continue statuses = twitconn.stream_new_tweets() while len(statuses) > 0: fstatus = statuses.pop(0) id = str(fstatus.user.id) #status = twitconn.encode_status(fstatus) status = discordutils.encode_status(fstatus) targets = self.destinations['destinations'] try: channels = targets[id] except KeyError: continue if channels == None: continue for channel in channels: if channel in self.destinations['blacklist']: continue try: send = self.bot.get_channel(channel) await self.bot.send_message(send, embed=status) except Forbidden as e: print(send.name) print(e) except InvalidArgument as e: print(send) print(e) await asyncio.sleep(5) @commands.command(hidden=True) @checks.is_owner() async def reboot(self): print('command????') await self.bot.say('Attempting to restart stream!') await self.kill_stream() await self.bot.say('Stream killed!') await self.bot.say('Restarting stream...') await asyncio.sleep(60) await self.restart_stream() await self.bot.say('Restart successful...?') @commands.command(hidden=True) @checks.is_owner() async def kill(self): await self.bot.say('Killing stream...') await self.kill_stream() await self.bot.say('Stream killed!') @commands.command(hidden=True) @checks.is_owner() async def restart(self): await self.bot.say('Restarting stream...') await self.restart_stream() await self.bot.say('Stream started!') @commands.group(hidden=True, pass_context=True, invoke_without_command=True) @checks.is_owner() async def stalk(self, ctx, id): channel = ctx.message.channel.id user = twitutils.get_user(twitconn.api_twitter, id) #user = twitconn.get_user(id) if self.add_channel(user, channel): await self.bot.say('Added user {} to channel {} stalk queue!'.format(user.screen_name, ctx.message.channel.name)) else: await self.bot.say('Added user {} to channel {} unfollow queue!'.format(user.screen_name, ctx.message.channel.name)) @stalk.command(name='list', pass_context=True, hidden=True) async def slist(self, ctx): channel = ctx.message.channel.id stalks = [] for key in self.get_stalks(): channels = self.destinations['destinations'][key] if channel in channels: stalks.append(key) if len(stalks): await self.bot.say('Stalked twitter accounts on this channel: ' + str(stalks)) else: await self.bot.say('This channel is not stalking any twitter accounts.') @commands.command(hidden=True, pass_context=True) @checks.is_owner() async def blacklist(self, ctx): channel = ctx.message.channel.id if not self.blacklist_channel(channel): await self.bot.say("Now blacklisting this channel.") else: await self.bot.say("No longer blacklisting this channel.") async def kill_stream(self): print('killing stream') twitconn.kill_stream() async def restart_stream(self): print('restarting stream') twitconn.restart_stream(self.get_stalks()) async def reboot_stream(self): print('rebooting stream') twitconn.kill_stream() twitconn.restart_stream(self.get_stalks()) def add_channel(self, user, channel_id): twitter_id = user.id_str try: channels = self.destinations['destinations'][twitter_id] if channel_id in channels: channels.remove(channel_id) self.update_json() return False channels.append(channel_id) except KeyError: channels = [channel_id, ] self.destinations['destinations'][twitter_id] = channels self.update_json() return True def blacklist_channel(self, channel_id): try: channels = self.destinations['blacklist'] if channel_id in channels: channels.remove(channel_id) self.update_json() return True channels.append(channel_id) except KeyError: channels = [channel_id, ] self.destinations['blacklist'] = channels self.update_json() return False def update_json(self): path = os.path.join(os.getcwd(), 'files', 'tweets.json') with open(path, 'w') as f: f.seek(0) # <--- should reset file position to the beginning. json.dump(self.destinations, f, indent=4) def get_stalks(self): return list(self.destinations['destinations'].keys()) def setup(bot): bot.add_cog(Streams(bot))
the-stack_106_31730
#!/usr/bin/env python3 # -*-coding:utf-8-*- # @Time : 2017/11/1 ~ 2019/9/1 # @Author : Allen Woo import sys from signal import signal, SIGCHLD, SIG_IGN from pymongo.errors import OperationFailure from apps.configs.config import CONFIG from apps.configs.db_config import DB_CONFIG from apps.core.db.config_mdb import DatabaseConfig from apps.core.utils.sys_tool import update_pylib, add_user as add_user_process __author__ = 'all.woo' """ manage """ # 网站还未启动的时候, 临时连接数据库, 更新collection print("\033[1;36m[OSROOM] Staring...\033[0m") from apps.core.utils.update_sys_data import update_mdb_collections, init_datas, compatible_processing, \ update_mdbcolls_json_file from apps.core.db.mongodb import PyMongo print(" * Check or update the database collection") database = DatabaseConfig() mdbs = {} for k, mdb_acc in DB_CONFIG["mongodb"].items(): mdbs[k] = PyMongo() db_init = 2 while db_init: try: for name, mdb in mdbs.items(): if name not in ["sys", "user", "web"]: print(" *[Error] 由v1.x.x更新到v2.x.x需要请更新你的数据库配置文件apps/configs/db_config.py\n" " 请参考同目录下的db_config_sample.py") sys.exit() mdb.init_app(config_prefix=name.upper(), db_config=database.__dict__["{}_URI".format(name.upper())]) except OperationFailure as e: print("\n[Mongodb] *{}".format(e)) print("Mongodb validation failure, the user name," " password mistake or database configuration errors.\n" "Tip: to open database authentication configuration") sys.exit(-1) if db_init == 2: update_mdb_collections(mdbs=mdbs) db_init -= 1 # 更新配置文件 from apps.core.flask.update_config_file import update_config_file print(" * Update and sync config.py") r = update_config_file(mdbs=mdbs) if not r: print("[Error] Update profile error, check log sys_start.log") sys.exit(-1) del CONFIG["py_venv"] compatible_processing(mdbs=mdbs) init_datas(mdbs=mdbs) for mdb in mdbs.values(): mdb.close() # 启动网站 from flask_script import Manager from apps.app import app from apps.core.flask.module_import import module_import from apps.init_core_module import init_core_module from apps.configs.sys_config import MODULES from apps.sys_startup_info import start_info start_info() init_core_module(app) module_import(MODULES) manager = Manager(app) if "--debug" not in sys.argv and "-D" not in sys.argv: print(" * Signal:(SIGCHLD, SIG_IGN).Prevent child processes from becoming [Defunct processes]." "(Do not need to comment out)") signal(SIGCHLD, SIG_IGN) @manager.command def add_user(): update_mdb_collections(mdbs=mdbs) init_datas(mdbs=mdbs) add_user_process(mdbs=mdbs) @manager.command def dbcoll_to_file(): """ 更新mdb collections到json文件中 :return: """ update_mdbcolls_json_file(mdbs=mdbs) if __name__ == '__main__': """ 使用Flask 自带 server启动网站 """ print(" * Use the Web service that comes with Flask") if "--debug" not in sys.argv and "-D" not in sys.argv: # 更新python第三方类库 print(" * Check or update Python third-party libraries") update_pylib() else: print(" * Using --debug, the system will not check Python dependencies") manager.run()
the-stack_106_31731
"""A wrapper for engaging with the THOR environment.""" import copy import json import os import random from .offline_controller_with_small_rotation import OfflineControllerWithSmallRotation class Environment: """ Abstraction of the ai2thor enviroment. """ def __init__( self, use_offline_controller, grid_size=0.25, fov=100.0, offline_data_dir='/tmp/data_dhm/AI2thor_Dataset/Scene_Data', detection_feature_file_name='det_feature_60_categories.hdf5', images_file_name='resnet18_featuremap.hdf5', visible_object_map_file_name='visible_object_map.json', local_executable_path=None, optimal_action_file_name=None, ): self.offline_data_dir = offline_data_dir self.use_offline_controller = use_offline_controller self.images_file_name = images_file_name self.controller = OfflineControllerWithSmallRotation( grid_size=grid_size, fov=fov, offline_data_dir=offline_data_dir, detection_feature_file_name=detection_feature_file_name, images_file_name=images_file_name, metadata_file_name=visible_object_map_file_name, visualize=False, local_executable_path=local_executable_path, optimal_action_file_name=optimal_action_file_name, ) self.grid_size = grid_size self._reachable_points = None self.start_state = None self.last_action = None self.fov = fov @property def scene_name(self): return self.controller.last_event.metadata["sceneName"] @property def current_frame(self): return self.controller.last_event.frame @property def current_detection_feature(self): return self.controller.get_detection_feature() @property def current_cls_masks(self): return self.controller.get_cls_masks() @property def current_depth(self): return self.controller.get_depth() @property def last_event(self): return self.controller.last_event @property def last_action_success(self): if self.use_offline_controller: return self.controller.last_action_success return self.controller.last_event.metadata["lastActionSuccess"] def object_is_visible(self, objId): if not self.use_offline_controller: objects = self.last_event.metadata["objects"] visible_objects = [o["objectId"] for o in objects if o["visible"]] return objId in visible_objects return self.controller.object_is_visible(objId) def start(self, scene_name): """ Begin the scene. """ self.controller.start() self.reset(scene_name=scene_name) def reset(self, scene_name): """ Reset the scene. """ self.controller.reset(scene_name) self.controller.step( dict(action="Initialize", gridSize=self.grid_size, fieldOfView=self.fov) ) def all_objects(self): if not self.use_offline_controller: objects = self.controller.last_event.metadata["objects"] return [o["objectId"] for o in objects] return self.controller.all_objects() def step(self, action_dict): return self.controller.step(action_dict) def teleport_agent_to(self, x, y, z, rotation, horizon): """ Teleport the agent to (x,y,z) with given rotation and horizon. """ self.controller.step(dict(action="Teleport", x=x, y=y, z=z)) self.controller.step(dict(action="Rotate", rotation=rotation)) self.controller.step(dict(action="Look", horizon=horizon)) def random_reachable_state(self, seed=None): """ Get a random reachable state. """ if seed is not None: random.seed(seed) xyz = random.choice(self.reachable_points) rotation = random.choice([0, 90, 180, 270]) horizon = random.choice([0, 30, 330]) state = copy.copy(xyz) state["rotation"] = rotation state["horizon"] = horizon return state def randomize_agent_location(self, seed=None): """ Put agent in a random reachable state. """ if not self.use_offline_controller: state = self.random_reachable_state(seed=seed) self.teleport_agent_to(**state) self.start_state = copy.deepcopy(state) return self.controller.randomize_state() self.start_state = copy.deepcopy(self.controller.state) def back_to_start(self): if self.start_state is None: self.reset(self.scene_name) return if not self.use_offline_controller: self.teleport_agent_to(**self.start_state) else: self.controller.back_to_start(self.start_state) @property def reachable_points(self): """ Use the JSON file to get the reachable points. """ if self._reachable_points is not None: return self._reachable_points points_path = os.path.join(self.offline_data_dir, self.scene_name, "grid.json") if not os.path.exists(points_path): raise IOError("Path {0} does not exist".format(points_path)) self._reachable_points = json.load(open(points_path)) return self._reachable_points
the-stack_106_31733
from tensorflow.contrib.training import HParams # Default hyperparameters hparams = HParams( # Comma-separated list of cleaners to run on text prior to training and eval. For non-English # text, you may want to use "basic_cleaners" or "transliteration_cleaners". cleaners="english_cleaners", # If you only have 1 GPU or want to use only one GPU, please set num_gpus=0 and specify the # GPU idx on run. example: # expample 1 GPU of index 2 (train on "/gpu2" only): CUDA_VISIBLE_DEVICES=2 python train.py # --model="Tacotron" --hparams="tacotron_gpu_start_idx=2" # If you want to train on multiple GPUs, simply specify the number of GPUs available, # and the idx of the first GPU to use. example: # example 4 GPUs starting from index 0 (train on "/gpu0"->"/gpu3"): python train.py # --model="Tacotron" --hparams="tacotron_num_gpus=4, tacotron_gpu_start_idx=0" # The hparams arguments can be directly modified on this hparams.py file instead of being # specified on run if preferred! # If one wants to train both Tacotron and WaveNet in parallel (provided WaveNet will be # trained on True mel spectrograms), one needs to specify different GPU idxes. # example Tacotron+WaveNet on a machine with 4 or plus GPUs. Two GPUs for each model: # CUDA_VISIBLE_DEVICES=0,1 python train.py --model="Tacotron" # --hparams="tacotron_gpu_start_idx=0, tacotron_num_gpus=2" # Cuda_VISIBLE_DEVICES=2,3 python train.py --model="WaveNet" # --hparams="wavenet_gpu_start_idx=2; wavenet_num_gpus=2" # IMPORTANT NOTE: If using N GPUs, please multiply the tacotron_batch_size by N below in the # hparams! (tacotron_batch_size = 32 * N) # Never use lower batch size than 32 on a single GPU! # Same applies for Wavenet: wavenet_batch_size = 8 * N (wavenet_batch_size can be smaller than # 8 if GPU is having OOM, minimum 2) # Please also apply the synthesis batch size modification likewise. (if N GPUs are used for # synthesis, minimal batch size must be N, minimum of 1 sample per GPU) # We did not add an automatic multi-GPU batch size computation to avoid confusion in the # user"s mind and to provide more control to the user for # resources related decisions. # Acknowledgement: # Many thanks to @MlWoo for his awesome work on multi-GPU Tacotron which showed to work a # little faster than the original # pipeline for a single GPU as well. Great work! # Hardware setup: Default supposes user has only one GPU: "/gpu:0" (Tacotron only for now! # WaveNet does not support multi GPU yet, WIP) # Synthesis also uses the following hardware parameters for multi-GPU parallel synthesis. tacotron_gpu_start_idx=0, # idx of the first GPU to be used for Tacotron training. tacotron_num_gpus=1, # Determines the number of gpus in use for Tacotron training. split_on_cpu=True, # Determines whether to split data on CPU or on first GPU. This is automatically True when # more than 1 GPU is used. ########################################################################################################################################### # Audio # Audio parameters are the most important parameters to tune when using this work on your # personal data. Below are the beginner steps to adapt # this work to your personal data: # 1- Determine my data sample rate: First you need to determine your audio sample_rate (how # many samples are in a second of audio). This can be done using sox: "sox --i <filename>" # (For this small tuto, I will consider 24kHz (24000 Hz), and defaults are 22050Hz, # so there are plenty of examples to refer to) # 2- set sample_rate parameter to your data correct sample rate # 3- Fix win_size and and hop_size accordingly: (Supposing you will follow our advice: 50ms # window_size, and 12.5ms frame_shift(hop_size)) # a- win_size = 0.05 * sample_rate. In the tuto example, 0.05 * 24000 = 1200 # b- hop_size = 0.25 * win_size. Also equal to 0.0125 * sample_rate. In the tuto # example, 0.25 * 1200 = 0.0125 * 24000 = 300 (Can set frame_shift_ms=12.5 instead) # 4- Fix n_fft, num_freq and upsample_scales parameters accordingly. # a- n_fft can be either equal to win_size or the first power of 2 that comes after # win_size. I usually recommend using the latter # to be more consistent with signal processing friends. No big difference to be seen # however. For the tuto example: n_fft = 2048 = 2**11 # b- num_freq = (n_fft / 2) + 1. For the tuto example: num_freq = 2048 / 2 + 1 = 1024 + # 1 = 1025. # c- For WaveNet, upsample_scales products must be equal to hop_size. For the tuto # example: upsample_scales=[15, 20] where 15 * 20 = 300 # it is also possible to use upsample_scales=[3, 4, 5, 5] instead. One must only # keep in mind that upsample_kernel_size[0] = 2*upsample_scales[0] # so the training segments should be long enough (2.8~3x upsample_scales[0] * # hop_size or longer) so that the first kernel size can see the middle # of the samples efficiently. The length of WaveNet training segments is under the # parameter "max_time_steps". # 5- Finally comes the silence trimming. This very much data dependent, so I suggest trying # preprocessing (or part of it, ctrl-C to stop), then use the # .ipynb provided in the repo to listen to some inverted mel/linear spectrograms. That # will first give you some idea about your above parameters, and # it will also give you an idea about trimming. If silences persist, try reducing # trim_top_db slowly. If samples are trimmed mid words, try increasing it. # 6- If audio quality is too metallic or fragmented (or if linear spectrogram plots are # showing black silent regions on top), then restart from step 2. num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality # network rescale=True, # Whether to rescale audio prior to preprocessing rescaling_max=0.9, # Rescaling value # Whether to clip silence in Audio (at beginning and end of audio only, not the middle) # train samples of lengths between 3sec and 14sec are more than enough to make a model capable # of good parallelization. clip_mels_length=True, # For cases of OOM (Not really recommended, only use if facing unsolvable OOM errors, # also consider clipping your samples to smaller chunks) max_mel_frames=900, # Only relevant when clip_mels_length = True, please only use after trying output_per_steps=3 # and still getting OOM errors. # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder # Does not work if n_ffit is not multiple of hop_size!! use_lws=False, # Only used to set as True if using WaveNet, no difference in performance is observed in # either cases. silence_threshold=2, # silence threshold used for sound trimming for wavenet preprocessing # Mel spectrogram n_fft=800, # Extra window size is filled with 0 paddings to match this parameter hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>) frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) # M-AILABS (and other datasets) trim params (these parameters are usually correct for any # data, but definitely must be tuned for specific speakers) trim_fft_size=512, trim_hop_size=128, trim_top_db=23, # Mel and Linear spectrograms normalization/scaling and clipping signal_normalization=True, # Whether to normalize mel spectrograms to some predefined range (following below parameters) allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True symmetric_mels=True, # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, # faster and cleaner convergence) max_abs_value=4., # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not # be too big to avoid gradient explosion, # not too small for fast convergence) normalize_for_wavenet=True, # whether to rescale to [0, 1] for wavenet. (better audio quality) clip_for_wavenet=True, # whether to clip [-max, max] before training/synthesizing with wavenet (better audio quality) # Contribution by @begeekmyfriend # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude # levels. Also allows for better G&L phase reconstruction) preemphasize=True, # whether to apply filter preemphasis=0.97, # filter coefficient. # Limits min_level_db=-100, ref_level_db=20, fmin=55, # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) fmax=7600, # To be increased/reduced depending on data. # Griffin Lim power=1.5, # Only used in G&L inversion, usually values between 1.2 and 1.5 are a good choice. griffin_lim_iters=60, # Number of G&L iterations, typically 30 is enough but we use 60 to ensure convergence. ########################################################################################################################################### # Tacotron outputs_per_step=2, # Was 1 # number of frames to generate at each decoding step (increase to speed up computation and # allows for higher batch size, decreases G&L audio quality) stop_at_any=True, # Determines whether the decoder should stop when predicting <stop> to any frame or to all of # them (True works pretty well) embedding_dim=512, # dimension of embedding space (these are NOT the speaker embeddings) # Encoder parameters enc_conv_num_layers=3, # number of encoder convolutional layers enc_conv_kernel_size=(5,), # size of encoder convolution filters for each layer enc_conv_channels=512, # number of encoder convolutions filters for each layer encoder_lstm_units=256, # number of lstm units for each direction (forward and backward) # Attention mechanism smoothing=False, # Whether to smooth the attention normalization function attention_dim=128, # dimension of attention space attention_filters=32, # number of attention convolution filters attention_kernel=(31,), # kernel size of attention convolution cumulative_weights=True, # Whether to cumulate (sum) all previous attention weights or simply feed previous weights ( # Recommended: True) # Decoder prenet_layers=[256, 256], # number of layers and number of units of prenet decoder_layers=2, # number of decoder lstm layers decoder_lstm_units=1024, # number of decoder lstm units on each layer max_iters=2000, # Max decoder steps during inference (Just for safety from infinite loop cases) # Residual postnet postnet_num_layers=5, # number of postnet convolutional layers postnet_kernel_size=(5,), # size of postnet convolution filters for each layer postnet_channels=512, # number of postnet convolution filters for each layer # CBHG mel->linear postnet cbhg_kernels=8, # All kernel sizes from 1 to cbhg_kernels will be used in the convolution bank of CBHG to act # as "K-grams" cbhg_conv_channels=128, # Channels of the convolution bank cbhg_pool_size=2, # pooling size of the CBHG cbhg_projection=256, # projection channels of the CBHG (1st projection, 2nd is automatically set to num_mels) cbhg_projection_kernel_size=3, # kernel_size of the CBHG projections cbhg_highwaynet_layers=4, # Number of HighwayNet layers cbhg_highway_units=128, # Number of units used in HighwayNet fully connected layers cbhg_rnn_units=128, # Number of GRU units used in bidirectional RNN of CBHG block. CBHG output is 2x rnn_units in # shape # Loss params mask_encoder=True, # whether to mask encoder padding while computing attention. Set to True for better prosody # but slower convergence. mask_decoder=False, # Whether to use loss mask for padded sequences (if False, <stop_token> loss function will not # be weighted, else recommended pos_weight = 20) cross_entropy_pos_weight=20, # Use class weights to reduce the stop token classes imbalance (by adding more penalty on # False Negatives (FN)) (1 = disabled) predict_linear=False, # Whether to add a post-processing network to the Tacotron to predict linear spectrograms ( # True mode Not tested!!) ########################################################################################################################################### # Tacotron Training # Reproduction seeds tacotron_random_seed=5339, # Determines initial graph and operations (i.e: model) random state for reproducibility tacotron_data_random_state=1234, # random state for train test split repeatability # performance parameters tacotron_swap_with_cpu=False, # Whether to use cpu as support to gpu for decoder computation (Not recommended: may cause # major slowdowns! Only use when critical!) # train/test split ratios, mini-batches sizes tacotron_batch_size=36, # number of training samples on each training steps (was 32) # Tacotron Batch synthesis supports ~16x the training batch size (no gradients during # testing). # Training Tacotron with unmasked paddings makes it aware of them, which makes synthesis times # different from training. We thus recommend masking the encoder. tacotron_synthesis_batch_size=128, # DO NOT MAKE THIS BIGGER THAN 1 IF YOU DIDN"T TRAIN TACOTRON WITH "mask_encoder=True"!! tacotron_test_size=0.05, # % of data to keep as test data, if None, tacotron_test_batches must be not None. (5% is # enough to have a good idea about overfit) tacotron_test_batches=None, # number of test batches. # Learning rate schedule tacotron_decay_learning_rate=True, # boolean, determines if the learning rate will follow an exponential decay tacotron_start_decay=50000, # Step at which learning decay starts tacotron_decay_steps=50000, # Determines the learning rate decay slope (UNDER TEST) tacotron_decay_rate=0.5, # learning rate decay rate (UNDER TEST) tacotron_initial_learning_rate=1e-3, # starting learning rate tacotron_final_learning_rate=1e-5, # minimal learning rate # Optimization parameters tacotron_adam_beta1=0.9, # AdamOptimizer beta1 parameter tacotron_adam_beta2=0.999, # AdamOptimizer beta2 parameter tacotron_adam_epsilon=1e-6, # AdamOptimizer Epsilon parameter # Regularization parameters tacotron_reg_weight=1e-7, # regularization weight (for L2 regularization) tacotron_scale_regularization=False, # Whether to rescale regularization weight to adapt for outputs range (used when reg_weight is # high and biasing the model) tacotron_zoneout_rate=0.1, # zoneout rate for all LSTM cells in the network tacotron_dropout_rate=0.5, # dropout rate for all convolutional layers + prenet tacotron_clip_gradients=True, # whether to clip gradients # Evaluation parameters natural_eval=False, # Whether to use 100% natural eval (to evaluate Curriculum Learning performance) or with same # teacher-forcing ratio as in training (just for overfit) # Decoder RNN learning can take be done in one of two ways: # Teacher Forcing: vanilla teacher forcing (usually with ratio = 1). mode="constant" # Curriculum Learning Scheme: From Teacher-Forcing to sampling from previous outputs is # function of global step. (teacher forcing ratio decay) mode="scheduled" # The second approach is inspired by: # Bengio et al. 2015: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. # Can be found under: https://arxiv.org/pdf/1506.03099.pdf tacotron_teacher_forcing_mode="constant", # Can be ("constant" or "scheduled"). "scheduled" mode applies a cosine teacher forcing ratio # decay. (Preference: scheduled) tacotron_teacher_forcing_ratio=1., # Value from [0., 1.], 0.=0%, 1.=100%, determines the % of times we force next decoder # inputs, Only relevant if mode="constant" tacotron_teacher_forcing_init_ratio=1., # initial teacher forcing ratio. Relevant if mode="scheduled" tacotron_teacher_forcing_final_ratio=0., # final teacher forcing ratio. Relevant if mode="scheduled" tacotron_teacher_forcing_start_decay=10000, # starting point of teacher forcing ratio decay. Relevant if mode="scheduled" tacotron_teacher_forcing_decay_steps=280000, # Determines the teacher forcing ratio decay slope. Relevant if mode="scheduled" tacotron_teacher_forcing_decay_alpha=0., # teacher forcing ratio decay rate. Relevant if mode="scheduled" ########################################################################################################################################### # Tacotron-2 integration parameters train_with_GTA=False, # Whether to use GTA mels to train WaveNet instead of ground truth mels. ########################################################################################################################################### # Eval sentences (if no eval text file was specified during synthesis, these sentences are # used for eval) sentences=[ # From July 8, 2017 New York Times: "Scientists at the CERN laboratory say they have discovered a new particle.", "There\"s a way to measure the acute emotional intelligence that has never gone out of " "style.", "President Trump met with other leaders at the Group of 20 conference.", "The Senate\"s bill to repeal and replace the Affordable Care Act is now imperiled.", # From Google"s Tacotron example page: "Generative adversarial network or variational auto-encoder.", "Basilar membrane and otolaryngology are not auto-correlations.", "He has read the whole thing.", "He reads books.", "He thought it was time to present the present.", "Thisss isrealy awhsome.", "Punctuation sensitivity, is working.", "Punctuation sensitivity is working.", "Peter Piper picked a peck of pickled peppers. How many pickled peppers did Peter Piper pick?", "She sells sea-shells on the sea-shore. The shells she sells are sea-shells I'm sure.", "Tajima Airport serves Toyooka.", # From The web (random long utterance) "Sequence to sequence models have enjoyed great success in a variety of tasks such as machine translation, speech recognition, and text summarization.\ This project covers a sequence to sequence model trained to predict a speech representation from an input sequence of characters. We show that\ the adopted architecture is able to perform this task with wild success.", "Thank you so much for your support!", ], ### SV2TTS ### speaker_embedding_size=256, silence_min_duration_split=0.4, # Duration in seconds of a silence for an utterance to be split utterance_min_duration=1.6, # Duration in seconds below which utterances are discarded ) def hparams_debug_string(): values = hparams.values() hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"] return "Hyperparameters:\n" + "\n".join(hp)
the-stack_106_31735
import os import sys try: from setuptools import setup except ImportError: sys.exit('ERROR: setuptools is required.\n') try: # for pip >= 10 from pip._internal.req import parse_requirements except ImportError: # for pip <= 9.0.3 from pip.req import parse_requirements # try: # from pip.req import parse_requirements # except ImportError: # sys.exit('ERROR: pip is required.\n') if os.environ.get('READTHEDOCS', None): # Set empty install_requires to get install to work on readthedocs install_requires = [] else: if sys.version_info[0] > 2: req_file = 'requirements.txt' else: req_file = 'requirements2.txt' try: reqs = parse_requirements(req_file, session=False) except TypeError: reqs = parse_requirements(req_file) try: install_requires = [str(r.req) for r in reqs] except AttributeError: install_requires = [str(r.requirement) for r in reqs] # read version exec(open('abutils/version.py').read()) config = { 'description': 'Utilities for analysis of antibody NGS data', 'author': 'Bryan Briney', 'url': 'https://www.github.com/briney/abutils', 'author_email': '[email protected]', 'version': __version__, 'install_requires': install_requires, 'packages': ['abutils'], 'scripts': ['bin/batch_cellranger'], 'name': 'abutils', 'include_package_data': True, 'classifiers': ['License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Bio-Informatics'] } setup(**config)
the-stack_106_31736
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from django.core import serializers from .models import Event from .serializers import EventSerializer from django.db.models import Q import datetime def get_events(request): startDate = request.GET.get('start') endDate = request.GET.get('end') start=datetime.date.today() end=datetime.date.today() chamber = request.GET.get('chamber') committee = request.GET.get('committee') type = request.GET.get('type') if startDate is not None: start = datetime.datetime.strptime(startDate, '%Y-%m-%dT%H:%M:%S%z') if endDate is not None: end = datetime.datetime.strptime(endDate, '%Y-%m-%dT%H:%M:%S%z') new_end = end + datetime.timedelta(days=1) q = Q() if start: q &= Q(start__gte=start) if end: q &= Q(end__lte=new_end) if chamber and chamber != "all": q &= Q(chamber=chamber) if committee and committee != "all": q &= Q(committee=committee) if type and type != "all": q &= Q(type=type) events = Event.objects.filter(q).order_by('start', 'startTime') serializer = EventSerializer(events, many=True) return JsonResponse(serializer.data, safe = False) def get_committees(request): committees = Event.objects.order_by('committee').values_list('committee', flat=True).distinct() return JsonResponse(list(committees), safe = False)
the-stack_106_31737
import wx import wx.grid import wx.lib.gizmos as gizmos import CustomGridRenderer as cgr import wx.propgrid as wxpg import wx.lib.scrolledpanel as scrolled import sqlite3 import time import os import typing from typing import List from typing import Union from typing import Tuple from typing import Dict from typing import NewType import Utilities as util import KinsectsTab as k wxTreeListItem = NewType('wxTreeListItem', None) kKinsect = NewType('Kinsect', None) class KinsectsTab: def __init__(self, root, mainNotebook): self.root = root self.mainNotebook = mainNotebook self.init = True self.currentlySelectedKinsectID = 1 self.testIcon = wx.Bitmap("images/unknown.png", wx.BITMAP_TYPE_ANY) self.kinsectDetail = { 1: ["images/unknown.png", "Rarity"], 2: ["images/weapon-detail-24/attacktype.png", "Attack Type"], 3: ["images/weapon-detail-24/dusteffect.png", "Dust Effect"], 4: ["images/weapon-detail-24/power.png", "Power"], 5: ["images/weapon-detail-24/speed.png", "Speed"], 6: ["images/weapon-detail-24/heal.png", "Heal"], } self.rarityColors = { 1: "#C2BFBF", 2: "#F3F3F3", 3: "#aac44b", 4: "#57ac4c", 5: "#75b8c2", 6: "#6764d7", 7: "#895edc", 8: "#c47c5e", 9: "#cb7793", 10: "#4fd1f5", 11: "#f5d569", 12: "#d5edfa", } self.initKinsectTab() def initKinsectTab(self): self.kinsectPanel = wx.Panel(self.mainNotebook) self.mainNotebook.AddPage(self.kinsectPanel, "Kinsects") self.kinsectSizer = wx.BoxSizer(wx.HORIZONTAL) self.kinsectTreeSizer = wx.BoxSizer(wx.VERTICAL) self.kinsectDetailedSizer = wx.BoxSizer(wx.VERTICAL) kinsectImage = wx.Bitmap("images/kinsects/Culldrone I.jpg", wx.BITMAP_TYPE_ANY) self.kinsectImageLabel = wx.StaticBitmap(self.kinsectPanel, bitmap=kinsectImage, size=(230, 230)) self.kinsectImageLabel.SetBackgroundColour((0, 0, 0)) self.kinsectDetailsNotebook = wx.Notebook(self.kinsectPanel) self.kinsectDetailPanel = wx.Panel(self.kinsectDetailsNotebook) self.kinsectDetailSizer = wx.BoxSizer(wx.VERTICAL) self.kinsectDetailsNotebook.AddPage(self.kinsectDetailPanel, "Detail") self.kinsectDetailPanel.SetSizer(self.kinsectDetailSizer) self.kinsectDetailedImagesSizer = wx.BoxSizer(wx.HORIZONTAL) self.kinsectDetailedImagesSizer.Add(self.kinsectImageLabel, 1, wx.ALIGN_CENTER) self.kinsectDetailedSizer.Add(self.kinsectDetailedImagesSizer, 1, wx.EXPAND) self.kinsectDetailedSizer.Add(self.kinsectDetailsNotebook, 3, wx.EXPAND) self.kinsectSizer.Add(self.kinsectTreeSizer, 0, wx.EXPAND) self.kinsectSizer.Add(self.kinsectDetailedSizer, 1, wx.EXPAND) self.kinsectPanel.SetSizer(self.kinsectSizer) self.initSearch() self.initKinsectTree() self.initKinsectDetailTab() def initSearch(self): self.search = wx.TextCtrl(self.kinsectPanel) self.search.SetHint(" search by name") self.search.Bind(wx.EVT_TEXT, self.onSearchTextEnter) self.kinsectTreeSizer.Add(697, 0, 0) self.kinsectTreeSizer.Add(self.search, 0, wx.ALIGN_CENTER_VERTICAL) def onSearchTextEnter(self, event): self.loadKinsectTree() def initKinsectTree(self): self.kinsectTree = cgr.HeaderBitmapGrid(self.kinsectPanel) self.kinsectTree.EnableEditing(False) self.kinsectTree.EnableDragRowSize(False) self.kinsectTree.Bind(wx.grid.EVT_GRID_SELECT_CELL, self.onKinsectSelection) self.kinsectTreeSizer.Add(self.kinsectTree, 1, wx.EXPAND) kinsectTreeColumns = { "Name": [472, None], "Attack Type": [45, wx.Bitmap("images/weapon-detail-24/attacktype.png")], "Dust Effect": [57, wx.Bitmap("images/weapon-detail-24/dusteffect.png")], "Power": [35, wx.Bitmap("images/weapon-detail-24/power.png")], "Speed": [35, wx.Bitmap("images/weapon-detail-24/speed.png")], "Heal": [35, wx.Bitmap("images/weapon-detail-24/heal.png")], "id": [0, None], } self.kinsectTree.CreateGrid(1, len(kinsectTreeColumns)) self.kinsectTree.SetDefaultRowSize(27, resizeExistingRows=True) self.kinsectTree.HideRowLabels() self.kinsectTree.SetDefaultCellAlignment(wx.ALIGN_CENTER, wx.ALIGN_CENTER) for col, (k, v) in enumerate(kinsectTreeColumns.items()): if v[1] == None: self.kinsectTree.SetColLabelValue(col, k) else: self.kinsectTree.SetColLabelRenderer(col, cgr.HeaderBitmapColLabelRenderer(v[1], "")) self.kinsectTree.SetColSize(col, v[0]) self.loadKinsectTree() def loadKinsectTree(self): self.init = True try: self.kinsectTree.DeleteRows(0, self.kinsectTree.GetNumberRows()) except: pass searchText = self.search.GetValue().replace("'", "''") if len(searchText) == 0 or searchText == " ": sql = """ SELECT k.*, kt.name FROM kinsect k JOIN kinsect_text kt USING (id) WHERE kt.lang_id = :langId ORDER BY k.id ASC """ else: sql = f""" SELECT k.*, kt.name FROM kinsect k JOIN kinsect_text kt USING (id) WHERE kt.lang_id = :langId AND kt.name LIKE '%{searchText}%' ORDER BY k.id ASC """ conn = sqlite3.connect("mhw.db") data = conn.execute(sql, ("en", )) data = data.fetchall() self.offset = { 0: 0, 1: 223, 2: 198, 3: 176, 4: 151, 5: 127, 6: 103, 7: 78, 8: 55, 9: 30, 10: 0, 11: -25, 12: -50, 13: -75, } kinsectNodes = {} kinsects = [] for row in data: kinsects.append(k.Kinsect(row)) for kin in kinsects: if len(searchText) != 0: self.populateKinsectTree(1, kin, None) else: if kin.previousID == None: self.populateKinsectTree(1, kin, kinsectNodes) else: self.populateKinsectTree(kinsectNodes[kin.previousID], kin, kinsectNodes) self.init = False def populateKinsectTree(self, indent:int, kin: Tuple[str], kinsectNodes: Dict[int, int]) -> None: self.kinsectTree.AppendRows() row = self.kinsectTree.GetNumberRows() - 1 padding = " " * indent img = wx.Bitmap(f"images/kinsects/{kin.attackType.lower()}-rarity-24/{kin.rarity}.png") self.kinsectTree.SetCellRenderer(row, 0, cgr.ImageTextCellRenderer( img, f"{padding}{kin.name}", hAlign=wx.ALIGN_LEFT, imageOffset=self.offset[indent])) self.kinsectTree.SetCellValue(row, 0, str(kin.name)) self.kinsectTree.SetCellValue(row, 1, str(kin.attackType.capitalize())) self.kinsectTree.SetCellValue(row, 2, str(kin.dustEffect.capitalize())) self.kinsectTree.SetCellValue(row, 3, f"Lv {str(kin.power).capitalize()}") self.kinsectTree.SetCellValue(row, 4, f"Lv {str(kin.speed).capitalize()}") self.kinsectTree.SetCellValue(row, 5, f"Lv {str(kin.heal).capitalize()}") self.kinsectTree.SetCellValue(row, 6, str(kin.id)) if len(self.search.GetValue()) == 0: kinsectNodes[kin.id] = indent + 1 def initKinsectDetailTab(self): self.kinsectDetailList = cgr.HeaderBitmapGrid(self.kinsectDetailPanel) self.kinsectDetailList.Bind(wx.EVT_SIZE, self.onSize) self.kinsectDetailList.EnableEditing(False) self.kinsectDetailList.EnableDragRowSize(False) self.kinsectDetailSizer.Add(self.kinsectDetailList, 1, wx.EXPAND) self.kinsectDetailList.CreateGrid(len(self.kinsectDetail) + 1, 2) self.kinsectDetailList.SetDefaultRowSize(24, resizeExistingRows=True) self.kinsectDetailList.SetColSize(0, 302) self.kinsectDetailList.SetColSize(1, 155 - 20) self.kinsectDetailList.SetDefaultCellAlignment(wx.ALIGN_CENTER, wx.ALIGN_CENTER) self.kinsectDetailList.SetColLabelSize(2) self.kinsectDetailList.SetRowLabelSize(1) self.kinsectMaterialList = wx.ListCtrl(self.kinsectDetailPanel, style=wx.LC_REPORT | wx.LC_VRULES | wx.LC_HRULES ) self.il = wx.ImageList(24, 24) self.test = self.il.Add(self.testIcon) self.kinsectMaterialList.SetImageList(self.il, wx.IMAGE_LIST_SMALL) self.kinsectDetailSizer.Add(self.kinsectMaterialList, 1, wx.EXPAND) self.loadKinsectDetails() def loadKinsectDetails(self): self.root.Freeze() self.kinsectDetailList.DeleteRows(0, self.kinsectDetailList.GetNumberRows()) self.kinsectDetailList.AppendRows(len(self.kinsectDetail) + 1) self.kinsectMaterialList.ClearAll() self.il.RemoveAll() sql = """ SELECT k.*, kt.name FROM kinsect k JOIN kinsect_text kt USING (id) WHERE kt.lang_id = :langId AND k.id = :kinId ORDER BY k.id ASC """ conn = sqlite3.connect("mhw.db") data = conn.execute(sql, ("en", self.currentlySelectedKinsectID)) data = data.fetchone() kin = k.Kinsect(data) kinsectDetail = { 0: str(kin.name), 1: str(kin.rarity), 2: str(kin.attackType), 3: str(kin.dustEffect), 4: f"Lv {kin.power}", 5: f"Lv {kin.speed}", 6: f"Lv {kin.heal}", } imageOffset = 55 self.kinsectImageLabel.SetBitmap(wx.Bitmap(f"images/kinsects/{kin.name}.jpg")) rarityIcon = wx.Bitmap(f"images/kinsects/{kin.attackType.lower()}-rarity-24/{kin.rarity}.png") self.kinsectDetailList.SetCellValue(0, 0, "Name") self.kinsectDetailList.SetCellValue(0, 1, kin.name) for num in range(1, len(kinsectDetail)): if num == 1: self.kinsectDetailList.SetCellRenderer(num, 0, cgr.ImageTextCellRenderer( rarityIcon, self.kinsectDetail[num][1], imageOffset=imageOffset, )) self.kinsectDetailList.SetCellBackgroundColour(num, 1, util.hexToRGB(self.rarityColors[kin.rarity])) else: self.kinsectDetailList.SetCellRenderer(num, 0, cgr.ImageTextCellRenderer( wx.Bitmap(self.kinsectDetail[num][0]), self.kinsectDetail[num][1], imageOffset=imageOffset )) if kinsectDetail[num] == None: self.kinsectDetailList.SetCellValue(num, 1, "-") else: self.kinsectDetailList.SetCellValue(num, 1, str(kinsectDetail[num])) self.loadKinsectMaterials() def loadKinsectMaterials(self): info = wx.ListItem() info.Mask = wx.LIST_MASK_TEXT | wx.LIST_MASK_IMAGE | wx.LIST_MASK_FORMAT info.Image = -1 info.Align = wx.LIST_FORMAT_LEFT info.Text = "Req. Materials" self.kinsectMaterialList.InsertColumn(0, info) self.kinsectMaterialList.SetColumnWidth(0, 480) info = wx.ListItem() info.Mask = wx.LIST_MASK_TEXT | wx.LIST_MASK_IMAGE | wx.LIST_MASK_FORMAT info.Image = -1 info.Align = wx.LIST_FORMAT_CENTER info.Text = "" self.kinsectMaterialList.InsertColumn(1, info) self.kinsectMaterialList.SetColumnWidth(1, 200) sql = """ SELECT k.id, kr.item_id, kr.quantity, kt.name, i.category, i.icon_name, i.icon_color, it.name FROM kinsect k JOIN kinsect_recipe kr ON k.id = kr.kinsect_id JOIN item i ON kr.item_id = i.id JOIN item_text it ON kr.item_id = it.id JOIN kinsect_text kt USING (id) WHERE kt.lang_id = :langId AND it.lang_id = :langId AND k.id = :kinId ORDER BY i.id """ conn = sqlite3.connect("mhw.db") data = conn.execute(sql, ("en", self.currentlySelectedKinsectID)) data = data.fetchall() materials = [] for row in data: materials.append(k.KinsectMaterial(row)) for mat in materials: img = self.il.Add(wx.Bitmap(f"images/items-24/{mat.iconName}{mat.iconColor}.png")) index = self.kinsectMaterialList.InsertItem(self.kinsectMaterialList.GetItemCount(), mat.name, img) self.kinsectMaterialList.SetItem(index, 1, f"{mat.quantity}") width, height = self.kinsectPanel.GetSize() self.kinsectPanel.SetSize(width + 1, height + 1) self.kinsectPanel.SetSize(width, height) self.root.Thaw() def onKinsectSelection(self, event): """ When a specific kinsect is selected in the tree, the detail view gets populated with the information from the database. """ if not self.init: self.currentlySelectedKinsectID = self.kinsectTree.GetCellValue(event.GetRow(), 6) if self.currentlySelectedKinsectID != "": self.loadKinsectDetails() def onSize(self, event): """ When the application window is resized some columns's width gets readjusted. """ try: self.kinsectDetailList.SetColSize(0, self.kinsectDetailPanel.GetSize()[0] * 0.66) self.kinsectDetailList.SetColSize(1, self.kinsectDetailPanel.GetSize()[0] * 0.34 - 20) self.kinsectMaterialList.SetColumnWidth(0, self.kinsectDetailPanel.GetSize()[0] * 0.66) self.kinsectMaterialList.SetColumnWidth(1, self.kinsectDetailPanel.GetSize()[0] * 0.34 - 40) except: pass
the-stack_106_31740
import os import pickle import sqlite3 import subprocess import tempfile import warnings from collections import defaultdict from contextlib import closing from typing import Any, Dict, List import prefect __all__ = ["AirflowTask", "AirflowTriggerDAG"] def custom_query(db: str, query: str, *params: str) -> List: with closing(sqlite3.connect(db)) as connection: with closing(connection.cursor()) as cursor: cursor.execute(query, params) return cursor.fetchall() class AirflowTask(prefect.tasks.shell.ShellTask): """ Task wrapper for executing individual Airflow tasks. Successful execution of this task requires a separate conda environment in which `airflow` is installed. Any XComs this task pushes will be converted to return values for this task. Unless certain CLI flags are provided (e.g., `-A`), execution of this task will respect Airflow trigger rules. Args: - task_id (string): the Airflow `task_id` to execute at runtime - dag_id (string): the Airflow `dag_id` containing the given `task_id` - airflow_env (str, optional): the name of the conda environment in which `airflow` is installed; defaults to `"airflow"` - cli_flags (List[str], optional): a list of CLI flags to provide to `airflow run` at runtime; see [the airflow docs](https://airflow.apache.org/cli.html#run) for options. This can be used to ignore Airflow trigger rules by providing `cli_flags=['-A']` - env (dict, optional): dictionary of environment variables to use for the subprocess (e.g., `AIRFLOW__CORE__DAGS_FOLDER`) - execution_date (str, optional): the execution date for this task run; can also be provided to the run method; if not provided here or to `run()`, the value of `today` in context will be used - db_conn (str, optional): the location of the airflow database; currently only SQLite DBs are supported; defaults to `~/airflow/airflow.db`; used for pulling XComs and inspecting task states - **kwargs: additional keyword arguments to pass to the Task constructor Example: ```python from prefect import Flow from prefect.tasks.airflow import AirflowTask # compare with https://github.com/apache/airflow/blob/master/airflow/example_dags/example_xcom.py puller = AirflowTask( task_id="puller", dag_id="example_xcom", ) push = AirflowTask( task_id="push", dag_id="example_xcom", ) push_by_returning = AirflowTask( task_id="push_by_returning", dag_id="example_xcom", ) with Flow(name="example_xcom") as flow: res = puller(upstream_tasks=[push, push_by_returning]) flow_state = flow.run() # XComs auto-convert to return values assert flow_state.result[push].result == [1, 2, 3] assert flow_state.result[push_by_returning].result == {"a": "b"} ``` """ def __init__( self, task_id: str, dag_id: str, cli_flags: List[str] = None, airflow_env: str = "airflow", env: dict = None, execution_date: str = None, db_conn: str = None, **kwargs: Any ): if cli_flags is None: cli_flags = [] cmd = "airflow run " + " ".join(cli_flags) + " {0} {1} {2}" self.db_conn = db_conn or os.path.expanduser("~/airflow/airflow.db") self.dag_id = dag_id self.task_id = task_id self.execution_date = execution_date kwargs.setdefault("name", task_id) super().__init__( command=cmd, env=env, helper_script="source deactivate && source activate {}".format(airflow_env), **kwargs ) def _state_conversion(self, query: List) -> None: if query: status = query[0][0] if status == "skipped": raise prefect.engine.signals.SKIP( "Airflow task state marked as 'skipped' in airflow db" ) elif status != "success": raise prefect.engine.signals.FAIL( "Airflow task state marked as {} in airflow db".format( status.rstrip() ) ) def _pre_check(self, execution_date: str) -> None: check_query = "select state from task_instance where task_id=? and dag_id=? and execution_date like ?" status = custom_query( self.db_conn, check_query, self.task_id, self.dag_id, "%{}%".format(execution_date), ) self._state_conversion(status) def _post_check(self, execution_date: str) -> None: check_query = "select state from task_instance where task_id=? and dag_id=? and execution_date like ?" status = custom_query( self.db_conn, check_query, self.task_id, self.dag_id, "%{}%".format(execution_date), ) if not status: raise prefect.engine.signals.SKIP( "Airflow task state not present in airflow db, was skipped." ) self._state_conversion(status) def _pull_xcom(self, execution_date: str) -> Any: check_query = "select value from xcom where task_id=? and dag_id=? and execution_date like ?" data = custom_query( self.db_conn, check_query, self.task_id, self.dag_id, "%{}%".format(execution_date), ) if data: return pickle.loads(data[0][0]) @prefect.utilities.tasks.defaults_from_attrs("execution_date") def run(self, execution_date: str = None) -> Any: """ Executes `airflow run` for the provided `task_id`, `dag_id` and `execution_date`. Args: - execution_date (str, optional): the execution date for this task run; if not provided here or at initialization, the value of `today` in context will be used Raises: - prefect.engine.signals.PrefectStateSignal: depending on the state of the task_instance in the Airflow DB Returns: - Any: any data this task pushes as an XCom """ if execution_date is None: execution_date = prefect.context.get("today") self._pre_check(execution_date) self.command = self.command.format( # type: ignore self.dag_id, self.task_id, execution_date ) res = super().run() if "Task is not able to be run" in res.decode(): raise prefect.engine.signals.SKIP("Airflow task was not run.") self._post_check(execution_date) data = self._pull_xcom(execution_date) return data class AirflowTriggerDAG(prefect.tasks.shell.ShellTask): """ Task wrapper for triggering an Airflow DAG run. Successful execution of this task requires a separate conda environment in which `airflow` is installed. Args: - dag_id (string): the Airflow `dag_id` containing the given `task_id` - airflow_env (str, optional): the name of the conda environment in which `airflow` is installed; defaults to `"airflow"` - execution_date (str, optional): the execution date for this task run; can also be provided to the run method; if not provided here or to `run()`, the value of `today` in context will be used - cli_flags (List[str], optional): a list of CLI flags to provide to `airflow trigger_dag` at runtime; this can be used to provide `execution_date` via `["-e 1999-01-01"]`. For a complete list of available options, see the [corresponding Airflow documentation](https://airflow.apache.org/cli.html#trigger_dag) - env (dict, optional): dictionary of environment variables to use for the subprocess (e.g., `AIRFLOW__CORE__DAGS_FOLDER`) - **kwargs: additional keyword arguments to pass to the Task constructor """ def __init__( self, dag_id: str, airflow_env: str = "airflow", execution_date: str = None, cli_flags: List[str] = None, env: dict = None, **kwargs ): if cli_flags is None: cli_flags = [] self.cli_flags = cli_flags self.dag_id = dag_id self.execution_date = execution_date kwargs.setdefault("name", dag_id) super().__init__( env=env, helper_script="source deactivate && source activate {}".format(airflow_env), **kwargs ) @prefect.utilities.tasks.defaults_from_attrs("execution_date") def run(self, execution_date: str = None) -> Any: """ Executes `airflow trigger_dag` for the provided `dag_id` with the provided options. Args: - execution_date (str, optional): the execution date for this task run; if not provided here or at initialization, the value of `today` in context will be used Raises: - prefect.engine.signals.PrefectStateSignal: depending on the state of the task_instance in the Airflow DB Returns: - Any: any data this task pushes as an XCom """ if execution_date is None: execution_date = prefect.context.get("today") cli_flags = self.cli_flags + ["-e {}".format(execution_date)] cmd = "airflow trigger_dag " + " ".join(cli_flags) + " {0}".format(self.dag_id) res = super().run(command=cmd) return res
the-stack_106_31741
from config import denoise_image_config as config from pyimagesearch.denoising.helper import blur_and_threshold from imutils import paths import progressbar import cv2 import random train_paths = sorted(list(paths.list_images(config.TRAIN_PATH))) cleaned_paths = sorted(list(paths.list_images(config.CLEANED_PATH))) widgets = ["Creating Features: ", progressbar.Percentage(), " ", progressbar.Bar(), " ", progressbar.ETA()] pbar = progressbar.ProgressBar(maxval=len(train_paths), widgets=widgets).start() image_paths = zip(train_paths, cleaned_paths) csv = open(config.FEATURES_PATH, 'w') for(i, (train_paths, cleaned_paths)) in enumerate(image_paths): # read images train_image = cv2.imread(train_paths) clean_image = cv2.imread(cleaned_paths) # BRG to gray train_image = cv2.cvtColor(train_image, cv2.COLOR_BGR2GRAY) clean_image = cv2.cvtColor(clean_image, cv2.COLOR_BGR2GRAY) # padding 2px each side for both train and clean images train_image = cv2.copyMakeBorder(train_image, 2, 2, 2, 2, cv2.BORDER_REPLICATE) clean_image = cv2.copyMakeBorder(train_image, 2, 2, 2, 2, cv2.BORDER_REPLICATE) # blur the train image train_image = blur_and_threshold(train_image) # scale to px intensity between 0-1 from 0-255 clean_image = clean_image.astype('float') / 255.0 # 5x5 sliding window throgh images for y in range(0, train_image.shape[0]): for x in range(0, train_image.shape[1]): # extract the region for both clean and train image train_region = train_image[y:y + 5, x:x + 5] clean_region = clean_image[y:y + 5, x:x + 5] (rH, rW) = train_region.shape[:2] # discard region which is not 5x5 if rW != 5 or rH != 5: continue # get features and target features = train_region.flatten() target = clean_region[2, 2] # only write some of feature/target combination to disk if random.random() <= config.SAMPLE_PROB: features = [str(x) for x in features] row = [str(target)] + features row = ', '.join(row) csv.write('{}\n'.format(row)) pbar.update(i) # housekeeping pbar.finish() csv.close()
the-stack_106_31742
from importlib.abc import ExecutionLoader from thingsboard_gateway.storage.sqlite.database import Database from time import time, sleep from queue import Queue from thingsboard_gateway.storage.sqlite.database_request import DatabaseRequest from thingsboard_gateway.storage.sqlite.database_action_type import DatabaseActionType # # No need to import DatabaseResponse, responses come to this component to be deconstructed # from logging import getLogger log = getLogger("storage") class StorageHandler: """ HIGH level api for thingsboard_gateway main loop """ def __init__(self, config): log.info("Sqlite Storage initializing...") # TODO: # Make a init function that checks if database file exists # if it exists load connected deiveces from it self.db = Database(config) # We need queues to stay atomic when multiplle connectors/Threads are # trying to write or read from database log.info("Initializing read and process queues") self.processQueue = Queue(-1) self.readQueue = Queue(-1) self.db.setReadQueue(self.readQueue) self.db.setProcessQueue(self.processQueue) # Create table if not exists for connected devices self.db.create_connected_devices_table() self.connected_devices = self.get_connected_devices() log.info("Sqlite storage initialized!") def get_connected_devices(self): """ Util func, to only parse and store connedted devices names in a list """ _type = DatabaseActionType.READ_CONNECTED_DEVICES data = self req = DatabaseRequest(_type, data) self.processQueue.put(req) self.db.process() return self.connected_devices def readAll(self, deviceName): return self.db.readAll(deviceName) def readFrom(self, deviceName, ts): return self.db.readFrom(deviceName, ts) def put(self, message): try: device_name = message.get("deviceName") if device_name is not None and device_name not in self.connected_devices: self.db.create_device_table(device_name) _type = DatabaseActionType.WRITE_DATA_STORAGE request = DatabaseRequest(_type, message) log.info("Sending data to storage") self.processQueue.put(request) ## Left for discussion ## log.debug("data %s from device %s " % (str(self.connected_devices[device_name]), device_name)) self.connected_devices[device_name]["data_saved_index"] += 1 storageIndex = self.connected_devices[device_name]["data_saved_index"] data = (device_name, storageIndex) _type = DatabaseActionType.WRITE_STORAGE_INDEX log.debug("Index request data: %s" % str(data)) index_request = DatabaseRequest(_type, data) log.debug("Updating device storage index") self.processQueue.put(index_request) self.db.process() ## This call is neccessary return True except Exception as e: log.exception(e) def add_device(self, deviceName, connector, deviceType=None): self.db.add_new_connecting_device(deviceName, connector, deviceType) # Update connected devices list self.connected_devices = self.get_connected_devices() # Create device table self.db.create_device_table(deviceName) def del_device(self, device_name): self.db.del_connected_device(device_name) # Update connected devices list self.connected_devices = self.get_connected_devices() def closeDB(self): self.db.closeDB()
the-stack_106_31744
import random import numpy as np from fedot.core.log import default_log from fedot.core.repository.tasks import Task, TaskTypesEnum, TsForecastingParams from fedot.api.api_utils.presets import OperationsPreset class ApiParams: def __init__(self): self.default_forecast_length = 30 self.api_params = None self.log = None self.task = None self.metric_to_compose = None self.task_params = None self.metric_name = None def check_input_params(self, **input_params): self.metric_to_compose = None self.api_params['problem'] = input_params['problem'] self.log = default_log('FEDOT logger', verbose_level=input_params['verbose_level']) if input_params['seed'] is not None: np.random.seed(input_params['seed']) random.seed(input_params['seed']) if input_params['timeout'] is not None: self.api_params['timeout'] = self.api_params['timeout'] self.api_params['num_of_generations'] = 10000 if 'metric' in self.api_params: self.api_params['composer_metric'] = self.api_params['metric'] del self.api_params['metric'] self.metric_to_compose = self.api_params['composer_metric'] if input_params['problem'] == 'ts_forecasting' and input_params['task_params'] is None: self.log.warn('The value of the forecast depth was set to {}.'.format(self.default_forecast_length)) self.task_params = TsForecastingParams(forecast_length=self.default_forecast_length) if input_params['problem'] == 'clustering': raise ValueError('This type of task is not not supported in API now') def get_initial_params(self, **input_params): if input_params['composer_params'] is None: self.api_params = self.get_default_evo_params(problem=input_params['problem']) else: self.api_params = {**self.get_default_evo_params(problem=input_params['problem']), **input_params['composer_params']} self.check_input_params(**input_params) self.task = self.get_task_params(input_params['problem'], input_params['task_params']) self.metric_name = self.get_default_metric(input_params['problem']) return def initialize_params(self, **input_params): self.get_initial_params(**input_params) preset_operations = OperationsPreset(task=self.task, preset_name=input_params['preset']) self.api_params = preset_operations.composer_params_based_on_preset(composer_params=self.api_params) param_dict = { 'task': self.task, 'logger': self.log, 'metric_name': self.metric_name, 'composer_metric': self.metric_to_compose } return {**param_dict, **self.api_params} @staticmethod def get_default_evo_params(problem: str): """ Dictionary with default parameters for composer """ params = {'max_depth': 3, 'max_arity': 4, 'pop_size': 20, 'num_of_generations': 20, 'timeout': 2, 'with_tuning': False, 'preset': 'light_tun', 'genetic_scheme': None, 'history_folder': None} if problem in ['classification', 'regression']: params['cv_folds'] = 3 return params @staticmethod def get_default_metric(problem: str): default_test_metric_dict = { 'regression': ['rmse', 'mae'], 'classification': ['roc_auc', 'f1'], 'multiclassification': 'f1', 'clustering': 'silhouette', 'ts_forecasting': ['rmse', 'mae'] } return default_test_metric_dict[problem] @staticmethod def get_task_params(problem, task_params): """ Return task parameters by machine learning task """ task_dict = {'regression': Task(TaskTypesEnum.regression, task_params=task_params), 'classification': Task(TaskTypesEnum.classification, task_params=task_params), 'clustering': Task(TaskTypesEnum.clustering, task_params=task_params), 'ts_forecasting': Task(TaskTypesEnum.ts_forecasting, task_params=task_params) } return task_dict[problem]
the-stack_106_31745
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import json import pytest from sagemaker.workflow.condition_step import ConditionStep from sagemaker.workflow.conditions import ConditionEquals from sagemaker.workflow.fail_step import FailStep from sagemaker.workflow.functions import Join from sagemaker.workflow.parameters import ParameterInteger from sagemaker.workflow.pipeline import Pipeline def test_fail_step(): fail_step = FailStep( name="MyFailStep", depends_on=["TestStep"], error_message="Test error message", ) fail_step.add_depends_on(["SecondTestStep"]) assert fail_step.to_request() == { "Name": "MyFailStep", "Type": "Fail", "DependsOn": ["TestStep", "SecondTestStep"], "Arguments": {"ErrorMessage": "Test error message"}, } def test_fail_step_with_no_error_message(): fail_step = FailStep( name="MyFailStep", depends_on=["TestStep"], ) fail_step.add_depends_on(["SecondTestStep"]) assert fail_step.to_request() == { "Name": "MyFailStep", "Type": "Fail", "DependsOn": ["TestStep", "SecondTestStep"], "Arguments": {"ErrorMessage": ""}, } def test_fail_step_with_join_fn_in_error_message(): param = ParameterInteger(name="MyInt", default_value=2) cond = ConditionEquals(left=param, right=1) step_cond = ConditionStep( name="CondStep", conditions=[cond], if_steps=[], else_steps=[], ) step_fail = FailStep( name="FailStep", error_message=Join( on=": ", values=["Failed due to xxx == yyy returns", step_cond.properties.Outcome] ), ) pipeline = Pipeline( name="MyPipeline", steps=[step_cond, step_fail], parameters=[param], ) _expected_dsl = [ { "Name": "CondStep", "Type": "Condition", "Arguments": { "Conditions": [ {"Type": "Equals", "LeftValue": {"Get": "Parameters.MyInt"}, "RightValue": 1} ], "IfSteps": [], "ElseSteps": [], }, }, { "Name": "FailStep", "Type": "Fail", "Arguments": { "ErrorMessage": { "Std:Join": { "On": ": ", "Values": [ "Failed due to xxx == yyy returns", {"Get": "Steps.CondStep.Outcome"}, ], } } }, }, ] assert json.loads(pipeline.definition())["Steps"] == _expected_dsl def test_fail_step_with_properties_ref(): fail_step = FailStep( name="MyFailStep", error_message="Test error message", ) with pytest.raises(Exception) as error: fail_step.properties() assert ( str(error.value) == "FailStep is a terminal step and the Properties object is not available for it." )
the-stack_106_31746
import datetime from sqlalchemy import orm, types, Column, Table, ForeignKey, desc, or_ import ckan.model import meta import types as _types import domain_object __all__ = ['Activity', 'activity_table', 'ActivityDetail', 'activity_detail_table', ] activity_table = Table( 'activity', meta.metadata, Column('id', types.UnicodeText, primary_key=True, default=_types.make_uuid), Column('timestamp', types.DateTime), Column('user_id', types.UnicodeText), Column('object_id', types.UnicodeText), Column('revision_id', types.UnicodeText), Column('activity_type', types.UnicodeText), Column('data', _types.JsonDictType), ) activity_detail_table = Table( 'activity_detail', meta.metadata, Column('id', types.UnicodeText, primary_key=True, default=_types.make_uuid), Column('activity_id', types.UnicodeText, ForeignKey('activity.id')), Column('object_id', types.UnicodeText), Column('object_type', types.UnicodeText), Column('activity_type', types.UnicodeText), Column('data', _types.JsonDictType), ) class Activity(domain_object.DomainObject): def __init__(self, user_id, object_id, revision_id, activity_type, data=None): self.id = _types.make_uuid() self.timestamp = datetime.datetime.now() self.user_id = user_id self.object_id = object_id self.revision_id = revision_id self.activity_type = activity_type if data is None: self.data = {} else: self.data = data meta.mapper(Activity, activity_table) class ActivityDetail(domain_object.DomainObject): def __init__(self, activity_id, object_id, object_type, activity_type, data=None): self.activity_id = activity_id self.object_id = object_id self.object_type = object_type self.activity_type = activity_type if data is None: self.data = {} else: self.data = data @classmethod def by_activity_id(cls, activity_id): return ckan.model.Session.query(cls) \ .filter_by(activity_id = activity_id).all() meta.mapper(ActivityDetail, activity_detail_table, properties = { 'activity':orm.relation ( Activity, backref=orm.backref('activity_detail')) }) def _activities_at_offset(q, limit, offset): '''Return an SQLAlchemy query for all activities at an offset with a limit. ''' import ckan.model as model q = q.order_by(desc(model.Activity.timestamp)) if offset: q = q.offset(offset) if limit: q = q.limit(limit) return q.all() def _activities_from_user_query(user_id): '''Return an SQLAlchemy query for all activities from user_id.''' import ckan.model as model q = model.Session.query(model.Activity) q = q.filter(model.Activity.user_id == user_id) return q def _activities_about_user_query(user_id): '''Return an SQLAlchemy query for all activities about user_id.''' import ckan.model as model q = model.Session.query(model.Activity) q = q.filter(model.Activity.object_id == user_id) return q def _user_activity_query(user_id): '''Return an SQLAlchemy query for all activities from or about user_id.''' q = _activities_from_user_query(user_id) q = q.union(_activities_about_user_query(user_id)) return q def user_activity_list(user_id, limit, offset): '''Return user_id's public activity stream. Return a list of all activities from or about the given user, i.e. where the given user is the subject or object of the activity, e.g.: "{USER} created the dataset {DATASET}" "{OTHER_USER} started following {USER}" etc. ''' q = _user_activity_query(user_id) return _activities_at_offset(q, limit, offset) def _package_activity_query(package_id): '''Return an SQLAlchemy query for all activities about package_id. ''' import ckan.model as model q = model.Session.query(model.Activity) q = q.filter_by(object_id=package_id) return q def package_activity_list(package_id, limit, offset): '''Return the given dataset (package)'s public activity stream. Returns all activities about the given dataset, i.e. where the given dataset is the object of the activity, e.g.: "{USER} created the dataset {DATASET}" "{USER} updated the dataset {DATASET}" etc. ''' q = _package_activity_query(package_id) return _activities_at_offset(q, limit, offset) def _group_activity_query(group_id): '''Return an SQLAlchemy query for all activities about group_id. Returns a query for all activities whose object is either the group itself or one of the group's datasets. ''' import ckan.model as model group = model.Group.get(group_id) if not group: # Return a query with no results. return model.Session.query(model.Activity).filter("0=1") dataset_ids = [dataset.id for dataset in group.packages()] q = model.Session.query(model.Activity) if dataset_ids: q = q.filter(or_(model.Activity.object_id == group_id, model.Activity.object_id.in_(dataset_ids))) else: q = q.filter(model.Activity.object_id == group_id) return q def group_activity_list(group_id, limit, offset): '''Return the given group's public activity stream. Returns all activities where the given group or one of its datasets is the object of the activity, e.g.: "{USER} updated the group {GROUP}" "{USER} updated the dataset {DATASET}" etc. ''' q = _group_activity_query(group_id) return _activities_at_offset(q, limit, offset) def _activites_from_users_followed_by_user_query(user_id): '''Return a query for all activities from users that user_id follows.''' import ckan.model as model # Get a list of the users that the given user is following. follower_objects = model.UserFollowingUser.followee_list(user_id) if not follower_objects: # Return a query with no results. return model.Session.query(model.Activity).filter("0=1") q = _user_activity_query(follower_objects[0].object_id) q = q.union_all(*[_user_activity_query(follower.object_id) for follower in follower_objects[1:]]) return q def _activities_from_datasets_followed_by_user_query(user_id): '''Return a query for all activities from datasets that user_id follows.''' import ckan.model as model # Get a list of the datasets that the user is following. follower_objects = model.UserFollowingDataset.followee_list(user_id) if not follower_objects: # Return a query with no results. return model.Session.query(model.Activity).filter("0=1") q = _package_activity_query(follower_objects[0].object_id) q = q.union_all(*[_package_activity_query(follower.object_id) for follower in follower_objects[1:]]) return q def _activities_from_groups_followed_by_user_query(user_id): '''Return a query for all activities about groups the given user follows. Return a query for all activities about the groups the given user follows, or about any of the group's datasets. This is the union of _group_activity_query(group_id) for each of the groups the user follows. ''' import ckan.model as model # Get a list of the group's that the user is following. follower_objects = model.UserFollowingGroup.followee_list(user_id) if not follower_objects: # Return a query with no results. return model.Session.query(model.Activity).filter("0=1") q = _group_activity_query(follower_objects[0].object_id) q = q.union_all(*[_group_activity_query(follower.object_id) for follower in follower_objects[1:]]) return q def _activities_from_everything_followed_by_user_query(user_id): '''Return a query for all activities from everything user_id follows.''' q = _activites_from_users_followed_by_user_query(user_id) q = q.union(_activities_from_datasets_followed_by_user_query(user_id)) q = q.union(_activities_from_groups_followed_by_user_query(user_id)) return q def activities_from_everything_followed_by_user(user_id, limit, offset): '''Return activities from everything that the given user is following. Returns all activities where the object of the activity is anything (user, dataset, group...) that the given user is following. ''' q = _activities_from_everything_followed_by_user_query(user_id) return _activities_at_offset(q, limit, offset) def _dashboard_activity_query(user_id): '''Return an SQLAlchemy query for user_id's dashboard activity stream.''' q = _user_activity_query(user_id) q = q.union(_activities_from_everything_followed_by_user_query(user_id)) return q def dashboard_activity_list(user_id, limit, offset): '''Return the given user's dashboard activity stream. Returns activities from the user's public activity stream, plus activities from everything that the user is following. This is the union of user_activity_list(user_id) and activities_from_everything_followed_by_user(user_id). ''' q = _dashboard_activity_query(user_id) return _activities_at_offset(q, limit, offset) def _changed_packages_activity_query(): '''Return an SQLAlchemyu query for all changed package activities. Return a query for all activities with activity_type '*package', e.g. 'new_package', 'changed_package', 'deleted_package'. ''' import ckan.model as model q = model.Session.query(model.Activity) q = q.filter(model.Activity.activity_type.endswith('package')) return q def recently_changed_packages_activity_list(limit, offset): '''Return the site-wide stream of recently changed package activities. This activity stream includes recent 'new package', 'changed package' and 'deleted package' activities for the whole site. ''' q = _changed_packages_activity_query() return _activities_at_offset(q, limit, offset)
the-stack_106_31749
#!/usr/bin/env python3 from collections import Counter from copy import deepcopy from itertools import chain, repeat import sys def get_layout(filename): # adding floors lets us not worry about literal edge cases with open(filename, "r") as ifile: # add floor around each edge layout = [["."] + [c for c in l.strip()] + ["."] for l in ifile] # add floor at top and bottom of seats blank_row = ["."] * len(layout[0]) layout.insert(0, blank_row) layout.append(blank_row) return layout def adjacent_seats(layout, r, c): return ( layout[r - 1][c - 1 : c + 2] + [layout[r][c - 1]] + [layout[r][c + 1]] + layout[r + 1][c - 1 : c + 2] ) def adjacent_occupied(layout, r, c): return [s == "#" for s in adjacent_seats(layout, r, c)] def adjacent_empty(layout, r, c): return [s in (".", "L") for s in adjacent_seats(layout, r, c)] def iterate_part_one(layout): new_layout = deepcopy(layout) for row_num, row in enumerate(layout): for col_num, seat in enumerate(row): if seat == "L" and all(adjacent_empty(layout, row_num, col_num)): new_layout[row_num][col_num] = "#" elif seat == "#" and sum(adjacent_occupied(layout, row_num, col_num)) >= 4: new_layout[row_num][col_num] = "L" return new_layout def indexes(direction, r, c, nrows, ncols): return { "n": zip(range(r - 1, -1, -1), repeat(c)), "s": zip(range(r + 1, nrows), repeat(c)), "w": zip(repeat(r), range(c - 1, -1, -1)), "e": zip(repeat(r), range(c + 1, ncols)), "nw": zip(range(r - 1, -1, -1), range(c - 1, -1, -1)), "ne": zip(range(r - 1, -1, -1), range(c + 1, ncols)), "sw": zip(range(r + 1, nrows), range(c - 1, -1, -1)), "se": zip(range(r + 1, nrows), range(c + 1, ncols)), }.get(direction) def first_visible_seats(layout, r, c): directions = ["n", "s", "e", "w", "ne", "nw", "sw", "se"] nrows = len(layout) ncols = len(layout[r]) visible_seats = [] for direction in directions: for i, j in indexes(direction, r, c, nrows, ncols): if (seat := layout[i][j]) in ("L", "#"): visible_seats.append(seat) break return Counter(visible_seats) def no_visible_occupied(layout, r, c): return first_visible_seats(layout, r, c)["#"] == 0 def gets_vacated(layout, r, c): return first_visible_seats(layout, r, c)["#"] >= 5 def iterate_part_two(layout): new_layout = deepcopy(layout) for row_num, row in enumerate(layout): for col_num, seat in enumerate(row): if seat == "L" and no_visible_occupied(layout, row_num, col_num): new_layout[row_num][col_num] = "#" elif seat == "#" and gets_vacated(layout, row_num, col_num): new_layout[row_num][col_num] = "L" return new_layout def occupied_seats(layout): return sum(s == "#" for s in chain.from_iterable(layout)) def solve(layout, iterate_func): while True: n_occupied = occupied_seats(layout) layout = iterate_func(layout) if n_occupied == occupied_seats(layout): return n_occupied def main(): if len(sys.argv) != 2: print("Usage: ./solve.py inputfile") sys.exit(2) layout = get_layout(sys.argv[1]) print(f"Part 1 answer: {solve(layout, iterate_part_one)}") print(f"Part 2 answer: {solve(layout, iterate_part_two)}") if __name__ == "__main__": main()
the-stack_106_31750
""":mod:`asuka.service` --- Service interface ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ import re from .build import BaseBuild from .instance import Instance from .logger import LoggerProviderMixin __all__ = 'DomainService', 'Service' class Service(LoggerProviderMixin): """The inteface of services. :param build: the build object :type build: :class:`~asuka.build.BaseBuild` :param name: the service name :type name: :class:`basestring` :param config: the config mapping object :type config: :class:`collections.Mapping` :param required_apt_repositories: the set of APT repositories the service uses :param required_apt_packages: the set of APT packages the service depends :type required_apt_packages: :class:`collections.Set` :param required_python_packages: the set of Python packages the service depends. elements have to be PyPI names :type required_python_packages: :class:`collections.Set` """ #: (:class:`re.RegexObject`) The pattern of the valid service name. NAME_PATTERN = re.compile('^[a-z_][a-z0-9_]{1,50}$') #: (:class:`~asuka.build.Build`) The build object. build = None #: (:class:`~asuka.branch.Branch`) The branch object. branch = None #: (:class:`~asuka.commit.Commit`) The commit object. commit = None #: (:class:`~asuka.app.App`) The application object. app = None #: (:class:`str`) The service name e.g. ``'web'``. name = None #: (:class:`collections.Sequence`) The shell commands to be invoked #: before services are installed. pre_install = None #: (:class:`collections.Sequence`) The shell commands to be invoked #: after all services are installed. post_install = None #: (:class:`collections.Mapping`) The configuration dictionary. config = None def __init__(self, build, name, config={}, required_apt_repositories=frozenset(), required_apt_packages=frozenset(), required_python_packages=frozenset(), pre_install=[], post_install=[]): if not isinstance(build, BaseBuild): raise TypeError('build must be an instance of asuka.build.' 'BaseBuild, not ' + repr(build)) elif not isinstance(name, basestring): raise TypeError('name must be a string, not ' + repr(name)) elif not self.NAME_PATTERN.search(name): raise TypeError('invalid name: ' + repr(name)) self.build = build self.app = build.app self.branch = build.branch self.commit = build.commit self.name = str(name) self.config = dict(config) self._required_apt_repositories = frozenset(required_apt_repositories) self._required_apt_packages = frozenset(required_apt_packages) self._required_python_packages = frozenset(required_python_packages) self.pre_install = list(pre_install) self.post_install = list(post_install) @property def required_apt_repositories(self): """(:class:`collections.Set`) The set of APT repository source lines to add. It takes source lines :program:`apt-add-repository` can take e.g.:: frozenset([ 'deb http://myserver/path/to/repo stable myrepo', 'http://myserver/path/to/repo myrepo', 'https://packages.medibuntu.org free non-free', 'http://extras.ubuntu.com/ubuntu ', 'ppa:user/repository' ]) """ return self._required_apt_repositories @property def required_apt_packages(self): """(:class:`collections.Set`) The set of APT package names to install e.g. ``frozenset(['python-dev', 'python-greenlet'])``. """ return self._required_apt_packages @property def required_python_packages(self): """(:class:`collections.Set`) The set of PyPI_ package names to install e.g. ``frozenset(['Werkzeug', 'chardet'])``. .. _PyPI: http://pypi.python.org/ """ return self._required_python_packages def install(self, instance): """Installs the service into the ``instance``. :param instance: the instance to install the service :type instance: :class:`asuka.instance.Instance` :returns: values provided by the service. this values are shared to the app via :file:`/etc/<app>/values.json` file. it must be able to be serialized into JSON """ if not isinstance(instance, Instance): raise TypeError('instance must be an asuka.instance.Instance ' 'object, not ' + repr(instance)) elif instance.app is not self.app: raise TypeError('{0!r} is not an instance for {1!r} but {0.app!r}' ''.format(instance, self.app)) app_name = instance.app.name F = app_name, self.name with instance: # Make directories instance.do([ 'sudo', 'mkdir', '-p', '/etc/{0}/{1}'.format(*F), '/var/lib/{0}/{1}'.format(*F), '/var/run/{0}'.format(*F) ]) instance.do([ 'sudo', 'chown', '-R', '{0}:{0}'.format(*F), '/etc/{0}'.format(*F), '/var/lib/{0}'.format(*F), '/var/run/{0}'.format(*F) ]) def uninstall(self): """Uninstalls the service.""" def __repr__(self): cls = type(self) return '<{0.__module__}.{0.__name__} {1!r}>'.format(cls, self.name) class DomainService(Service): """The service subtype mixin which provides domain routing.""" def route_domain(self, name, records): """Routes the service to the zone. :param name: the full domain name to map :type name: :class:`basestring` :param records: the record changeset :type records: :class:`boto.route53.record.ResourceRecordSets` """ def remove_domain(self, name, records): """Removes the records for the service from the zone. :param name: the full domain name to deregister :type name: :class:`basestring` :param records: the record changeset :type records: :class:`boto.route53.record.ResourceRecordSets` """
the-stack_106_31752
# SPDX-FileCopyrightText: 2021 Dan Halbert, written for Adafruit Industries # SPDX-FileCopyrightText: Copyright (c) 2021 Adafruit Industries for Adafruit Industries LLC # # SPDX-License-Identifier: MIT """ `adafruit_ble_lywsd03mmc` ================================================================================ BLE Support for Xiaomi LYWSD03MMC Thermometer/Hygrometer * Author(s): Adafruit Industries Implementation Notes -------------------- **Hardware:** **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ import struct import _bleio from adafruit_ble.services import Service from adafruit_ble.uuid import VendorUUID from adafruit_ble.characteristics import Characteristic, ComplexCharacteristic __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_BLE_LYWSD03MMC.git" class _Readings(ComplexCharacteristic): """Notify-only characteristic of temperature/humidity""" uuid = VendorUUID("ebe0ccc1-7a0a-4b0c-8a1a-6ff2997da3a6") def __init__(self): super().__init__(properties=Characteristic.NOTIFY) def bind(self, service): """Bind to an LYWSD03MMCService.""" bound_characteristic = super().bind(service) bound_characteristic.set_cccd(notify=True) # Use a PacketBuffer that can store one packet to receive the data. return _bleio.PacketBuffer(bound_characteristic, buffer_size=1) class LYWSD03MMCService(Service): """Service for reading from an LYWSD03MMC sensor.""" def __init__(self, service=None): super().__init__(service=service) # Defer creating buffers until needed, since MTU is not known yet. self._settings_result_buf = None self._readings_buf = None uuid = VendorUUID("ebe0ccb0-7a0a-4b0c-8a1a-6ff2997da3a6") readings = _Readings() @property def temperature_humidity(self): """Return a tuple of (temperature, humidity).""" if self._readings_buf is None: self._readings_buf = bytearray(self.readings.incoming_packet_length) data = self._readings_buf length = self.readings.readinto(data) if length > 0: low_temp, high_temp, hum = struct.unpack_from("<BBB", data) sign = high_temp & 0x80 temp = ((high_temp & 0x7F) << 8) | low_temp if sign: temp = temp - 32767 temp = temp / 100 return (temp, hum) # No data. return None
the-stack_106_31755
# -*- encoding: utf-8 -*- """ Created by eniocc at 11/10/2020 """ import os import platform class System: @staticmethod def detect_platform(): """ Method to detect platform. Based on that result the methods can change :return: plat: A string contains the platform name like 'Windows', 'Linux'. """ plat = platform.system() if plat == 0: return 'System cannot be determined' return plat @staticmethod def get_architecture_path(dll_folder): """ Method to detect the architecture of the machine :param dll_folder: Folder that contains dll :return path: A string contains the path based on the architecture """ path = "Nothing was decided about the architecture" if platform.architecture()[0] == "64bit": path = os.path.join(dll_folder, "x64") System.check_path_environment(path) elif platform.architecture()[0] == "32bit": path = os.path.join(dll_folder, "x86") System.check_path_environment(path) else: raise Exception("Make sure you are using the OpenDSS DLL and Python with the same bits") return path @staticmethod def check_path_environment(str_path): if str_path not in os.environ['PATH']: os.environ['PATH'] = str_path + os.pathsep + os.environ['PATH']
the-stack_106_31756
#!/usr/bin/env python3 from sys import argv from re import search from math import log2 import urllib3 import ssl """ Programmed with urllib3. Global RIR IPv4 CIDR prefix extractor, by country. It now searches for a particular CC in all RIRs: RIPE NCC, APNIC, ARIN, LACNIC and AFRINIC Usage: ./program.py countrycode (optional: file) If a file isn't an argument, it prints prefixes to stdout. PEP8 compliant "Explicit is better than implicit." — The Zen of Python """ """ Bypass SSL/TLS checks """ c_reqs = ssl.CERT_NONE urllib3.disable_warnings() h = urllib3.PoolManager( cert_reqs=c_reqs) RIRs = ("https://ftp.lacnic.net/pub/stats/ripencc/delegated-ripencc-latest", "https://ftp.lacnic.net/pub/stats/apnic/delegated-apnic-latest", "https://ftp.lacnic.net/pub/stats/arin/delegated-arin-extended-latest", "https://ftp.lacnic.net/pub/stats/lacnic/delegated-lacnic-latest", "https://ftp.lacnic.net/pub/stats/afrinic/delegated-afrinic-latest") if len(argv) > 1: for url in RIRs: # reads content from URLs one by one for prefix in h.request('GET', url).data.decode('utf-8').splitlines(): regex = search(str(argv[1]) + '.*ipv4', prefix) if regex: # searches for cc and ipv4 strings netaddr = prefix.split("|")[3] # net addr bitmask = int(prefix.split("|")[4]) # bits used by net addr cidrmask = int(32 - log2(bitmask)) # converts bits into CIDR if len(argv) == 2: print(f'{netaddr}/{cidrmask}') # prints to stdout elif len(argv) == 3: with open(f'{argv[2]}.txt', 'a') as file: print(f'{netaddr}/{cidrmask}', file=file) else: print('Please provide at least a universal country code. (Optional: a\ filename descriptor to save the results.)\n\ Ex: ./program.py GB (print to stdout) OR ./program.py GB ipaddr-gb.txt \ (write to file "ipaddr-gb.txt" as an example)')
the-stack_106_31757
from flask import make_response, abort, jsonify, send_from_directory, send_file import sys from io import StringIO import os import re import urllib import matplotlib.style import matplotlib matplotlib.use("Agg") matplotlib.style.use('ggplot') import seaborn as sns import pandas as pd import matplotlib.pyplot as plt COLORS = ["#e6bc17", "#e67017", "#17e670", "#e6177e", "#1739e6", "#17b2e6", "#dd1a21", "#de8b5f", "#cce197", "#901F76"] def plot(csv, delimiter, session, features, labels, problem): replaced = urllib.parse.unquote(csv) features = features.split(',') labels = labels.split(',') features= list(map(int, features)) labels = list(map(int, labels)) data = pd.read_csv(StringIO(replaced), sep=delimiter) plt.figure() if problem == 'classification': colors = list(data.columns.values[labels])[0] print(colors) pairplot = sns.pairplot(data, vars=data[data.columns[features]], hue=colors, palette=sns.color_palette(COLORS)) else: combined = features + labels combined.sort() print(combined) pairplot = sns.pairplot(data[data.columns[combined]], palette=sns.color_palette(COLORS)) plt.savefig('./plots/plot'+ session + '.png') plt.clf() plt.cla() plt.close() image_path = './plots/plot'+ session + '.png' print(os.path.isfile(image_path)) return send_file(image_path, mimetype='image/png') def heatmap(csv, delimiter, session): replaced = urllib.parse.unquote(csv) data = pd.read_csv(StringIO(replaced), sep=delimiter) figure_size = len(data.columns) / 2 if figure_size < 5: figure_size = 5 plt.figure(figsize=(figure_size,figure_size)) cmap = sns.diverging_palette(352, 136, s=96, l=51, n=7) sns.heatmap(data.corr(), annot=True, cmap=cmap, fmt='.1f', square=True) plt.tight_layout() plt.savefig('./plots/heatmap' + session + '.png') plt.clf() plt.cla() plt.close() image_path = './plots/heatmap' + session + '.png' print(os.path.isfile(image_path)) return send_file(image_path, mimetype='image/png')
the-stack_106_31758
from __future__ import print_function import os import sys import pickle import subprocess import nltk import re import time import requests, json from nltk.corpus import stopwords from nltk.tag import StanfordNERTagger from nltk.tokenize import word_tokenize from nltk.tokenize import PunktSentenceTokenizer import requests,json from sutime import SUTime import os import pickle from argparse import ArgumentParser from platform import system from subprocess import Popen from sys import argv from sys import stderr import shlex from subprocess import Popen, PIPE,STDOUT ### SAMPLE COMMAND: ### python rule_based.py /home/raj/nlp_data/Partners_Train/docs /home/raj/Coreference-resolution/rule_based_concepts/clamp_out /home/raj/Downloads/python-sutime-master/jars path1 =sys.argv[1] #path to the docs folder path2=sys.argv[2] #path to the clamp output folder path3=sys.argv[3] #path to the jars folder in SU-Time master folder IS_WINDOWS = True if system() == 'Windows' else False JAVA_BIN_PATH = 'java.exe' if IS_WINDOWS else 'java' STANFORD_NER_FOLDER = 'stanford-ner' #ner=[] stopwords = stopwords.words('english') st = StanfordNERTagger('/home/raj/Downloads/stanford-ner-2018-02-27/classifiers/english.all.3class.distsim.crf.ser.gz', '/home/raj/Downloads/stanford-ner-2018-02-27/stanford-ner.jar', encoding='utf-8') person_list=['patient', 'the patient','doctor','the doctor','the boy','boy','the girl','girl','the man','man','the woman','woman','the lady','lady','person','the person','child','the child','infant','the infant'] sentence_re = r'(?:(?:[A-Z])(?:.[A-Z])+.?)|(?:\w+(?:-\w+)*)|(?:\$?\d+(?:.\d+)?%?)|(?:...|)(?:[][.,;"\'?():-_`])' lemmatizer = nltk.WordNetLemmatizer() stemmer = nltk.stem.porter.PorterStemmer() grammar = r""" NBAR: {<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns NP: {<NBAR>} {<NBAR><IN><NBAR>} # Above, connected with in/of/etc... """ chunker = nltk.RegexpParser(grammar) def arg_parse(): arg_p = ArgumentParser('Stanford NER Python Wrapper') arg_p.add_argument('-f', '--filename', type=str, default=None) arg_p.add_argument('-v', '--verbose', action='store_true') return arg_p def debug_print(log, verbose): if verbose: print(log) def process_entity_relations(entity_relations_str, verbose=True): # format is ollie. entity_relations = list() for s in entity_relations_str: entity_relations.append(s[s.find("(") + 1:s.find(")")].split(';')) return entity_relations def stanford_ner(filename, verbose=True, absolute_path=None): out = 'out.txt' command = '' if absolute_path is not None: command = 'cd {};'.format(absolute_path) else: filename = '../{}'.format(filename) command += 'cd {}; {} -mx1g -cp "*:lib/*" edu.stanford.nlp.ie.NERClassifierCombiner ' \ '-ner.model classifiers/english.all.3class.distsim.crf.ser.gz ' \ '-outputFormat tabbedEntities -textFile {} > ../{}' \ .format(STANFORD_NER_FOLDER, JAVA_BIN_PATH, filename, out) if verbose: debug_print('Executing command = {}'.format(command), verbose) java_process = Popen(command, stdout=stderr, shell=True) else: java_process = Popen(command, stdout=stderr, stderr=open(os.devnull, 'w'), shell=True) java_process.wait() assert not java_process.returncode, 'ERROR: Call to stanford_ner exited with a non-zero code status.' if absolute_path is not None: out = absolute_path + out with open(out, 'r') as output_file: results_str = output_file.readlines() os.remove(out) results = [] for res in results_str: if len(res.strip()) > 0: split_res = res.split('\t') entity_name = split_res[0] entity_type = split_res[1] if len(entity_name) > 0 and len(entity_type) > 0: results.append([entity_name.strip(), entity_type.strip()]) if verbose: pickle.dump(results_str, open('out.pkl', 'wb')) debug_print('wrote to out.pkl', verbose) return results def main(args): ner=[] #arg_p = arg_parse().parse_args(args[1:]) #filename = arg_p.filename filename=args #verbose = args.verbose #debug_print(arg_p, verbose) if filename is None: print('please provide a text file containing your input. Program will exit.') exit(1) #if verbose: #debug_print('filename = {}'.format(filename), verbose) #entities = stanford_ner(filename, verbose) entities = stanford_ner(filename) #print('\n'.join([entity[0].ljust(20) + ',' + entity[1] for entity in entities])) for entity in entities: if(entity[1]=='PERSON'): ner.append(entity[0]) return ner def leaves(tree): """Finds NP (nounphrase) leaf nodes of a chunk tree.""" for subtree in tree.subtrees(filter = lambda t: t.label()=='NP'): yield subtree.leaves() def normalise(word): """Normalises words to lowercase and stems and lemmatizes it.""" word = word.lower() # word = stemmer.stem_word(word) #if we consider stemmer then results comes with stemmed word, but in this case word will not match with comment word = lemmatizer.lemmatize(word) return word def acceptable_word(word): """Checks conditions for acceptable word: length, stopword. We can increase the length if we want to consider large phrase""" accepted = bool(2 <= len(word) <= 40 and word.lower() not in stopwords) return accepted def get_terms(tree): for leaf in leaves(tree): term = [ normalise(w) for w,t in leaf if acceptable_word(w) ] yield term def get_noun_phrases(line): toks = nltk.regexp_tokenize(line, sentence_re) postoks = nltk.tag.pos_tag(toks) #print postoks tree = chunker.parse(postoks) terms = get_terms(tree) noun_list=[] for term in terms: for word in term: noun_list.append(word) return noun_list subprocess.call(['/home/raj/end_to_end/ClampCmd_1.4.0/run_ner_pipeline.sh',path1,'clamp_out']) all_files = os.listdir(path2) all_files = [file for file in all_files if file.endswith('txt')] sem_string = "semantic" noun_pos=['NNP','NNPS','NN', 'NNS'] for i in os.listdir(path2): if i.endswith("txt"): file = open("clamp_out/" + str(i)) fp=open("concepts/"+i+".con","w+") clamp_concept=[] for line in file: if sem_string in line: line_list = line.split("\t") semantic = line_list[3].split("=") ne = line_list[5].split("=") fp.write(semantic[1]+','+ne[1]) clamp_concept.append(ne[1]) fp.write('\n') fp.close() all_files=os.listdir(path1) all_files = [file for file in all_files if file.endswith('txt')] for i in os.listdir(path1): if i.endswith("txt"): print (str(i) + " is being processed") file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") num = 1 for line in file: noun_list=get_noun_phrases(line) for n in noun_list: if n in person_list: #words = n.split() line_list = line.split() #print (words) print (line_list) if (n not in line_list): regex = re.compile(r"\b"+n+"\b",re.IGNORECASE) print (regex) if(n in ll.lower() for ll in line_list): if (regex.search(str(n))): line_list = line.lower().split() start = line_list.index(n) end = line_list.index(n) else: continue else: start = line_list.index(n) end = line_list.index(n) fp.write(n+"|"+str(num)+":" +str(start) + " "+str(num) +":" +str(end) +"|person"+"\n") num += 1 #url = "https://api.genderize.io/?name="+n #response = requests.get(url) #data=json.loads(response.text) #person.append(name) #gender=data['gender'] #if n in person_list or gender !='null': # fp.write('person,'+n+'\n') fp.write('\n') fp.close() file.close() ''' for i in os.listdir(path1): file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") for line in file: tokens = nltk.tokenize.word_tokenize(line) tags = st.tag(tokens) for tag in tags: if tag[1]=='PERSON': fp.write('person,'+tag[0]) ''' pronoun_pos=['PRP','PRP$'] for i in os.listdir(path1): if i.endswith("txt"): file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") print(path1+"/"+i) ner=main(path1+"/"+i) #omp_cmd="python main.py -f %s -v" %(i) #subprocess.call(["python main.py","-f",i,"-v"]) #xmlResult = Popen(shlex.split(omp_cmd), stdout=PIPE, stderr=STDOUT) #with (open("ner.pkl", "rb")) as p: # ner=pickle.load(p) num = 1 for line in file: for n in ner: line_list = line.split() #print (line_list) if n in line_list: print ("*"*40) pp = n.split() print (pp) if (len(pp) == 1): indices = [i for i, x in enumerate(line_list) if x == str(pp[0])] for ind in indices: fp.write(n+"|"+str(num)+":" +str(ind) + " "+str(num) +":" +str(ind) +"|person"+"\n") else: start = line_list.index(str(pp[0])) end = line_list.index(str(pp[-1])) fp.write(n+"|"+str(num)+":" +str(start) + " "+str(num) +":" +str(end) +"|person"+"\n") num += 1 fp.close() file.close() for i in os.listdir(path1): if i.endswith("txt"): file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") pronoun_list=[] person_list=[] num = 1 for line in file: line=re.sub(r'[^\w]', ' ', line) tokenized = nltk.word_tokenize(line) tagged = nltk.pos_tag(tokenized) tsize = len(tagged) for j in range(0,tsize): if (tagged[j][1] == 'PRP$'): pronoun_list.append(tagged[j][0]) if (tagged[j][1] == 'PRP'): person_list.append(tagged[j][0]) for p in pronoun_list: line_list = line.split() #print (line_list) #if (p not in line_list): #regex = re.compile(r"\b"+n+"\b",re.IGNORECASE) #print (regex) #if(p in ll.lower() for ll in line_list): #if (regex.search(str(n))): #line_list = line.lower().split() print (line_list) print (p) if (p in line_list): print ("*"*40) pp = p.split() print (pp) indices = [i for i, x in enumerate(line_list) if x == str(pp[0])] start = line_list.index(str(pp[0])) end = line_list.index(str(pp[-1])) ''' else: start = line_list.index(p) end = line_list.index(p) ''' for ind in indices: fp.write(p+"|"+str(num)+":" +str(ind) + " "+str(num) +":" +str(ind) +"|pronoun"+"\n") #fp.write('pronoun,'+p+'\n') for p in person_list: line_list = line.split() #print (line_list) #if (p not in line_list): #regex = re.compile(r"\b"+n+"\b",re.IGNORECASE) #print (regex) #if(p in ll.lower() for ll in line_list): #if (regex.search(str(n))): #print (line_list) #line_list = line.lower().split() print (line_list) print (p) if p in line_list: print ("*"*40) pp = p.split() print (pp) if (len(pp) == 1): indices = [i for i, x in enumerate(line_list) if x == str(pp[0])] for ind in indices: fp.write(p+"|"+str(num)+":" +str(ind) + " "+str(num) +":" +str(ind) +"|person"+"\n") else: start = line_list.index(str(pp[0])) end = line_list.index(str(pp[-1])) fp.write(p+"|"+str(num)+":" +str(start) + " "+str(num) +":" +str(end) +"|person"+"\n") ''' else: start = line_list.index(p) end = line_list.index(p) ''' #fp.write('person,'+p+'\n') num += 1 fp.close() file.close() ''' jar_files = os.path.join(os.path.dirname(path3), 'jars') sutime = SUTime(jars=jar_files, mark_time_ranges=True) if __name__ == '__main__': for i in os.listdir(path1): if i.endswith("txt"): file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") num = 1 for line in file: data=json.dumps(sutime.parse(line)) list_data=json.loads(data) for l in list_data: line_list = line.split() #print (line_list) #if (l not in line_list): #regex = re.compile(r"\b"+n+"\b",re.IGNORECASE) #print (regex) #if(l in ll.lower() for ll in line_list): #if (regex.search(str(n))): #line_list = line.lower().split() print (line_list) if (l["text"] in line_list): print ("*"*40) ll = l["text"].split() print (ll[0]) print (ll[-1]) start = line_list.index(str(ll[0])) end = line_list.index(str(ll[-1])) fp.write(l["text"]+"|"+str(num)+":" +str(start) + " "+str(num) +":" +str(end) +"|temporal"+"\n") #fp.write('temporal,'+l["text"]+'\n') num += 1 fp.close() file.close() ''' ''' for i in os.listdir(path1): file=open(path1+"/"+i) fp=open("concepts/"+i+".con","a+") for line in file: tokens = nltk.tokenize.word_tokenize(line) tags = st.tag(tokens) for tag in tags: if tag[1]=='PERSON': fp.write('person'+tag[0]+'\n') '''
the-stack_106_31759
""" Utilities for parsing datastore entities. """ import datastore_server from dbconstants import JOURNAL_SCHEMA from dbconstants import JOURNAL_TABLE from dbconstants import KEY_DELIMITER from dbconstants import KIND_SEPARATOR from google.appengine.datastore import entity_pb def get_root_key_from_entity_key(key): """ Extracts the root key from an entity key. We remove any excess children from a string to get to the root key. Args: entity_key: A string representing a row key. Returns: The root key extracted from the row key. """ tokens = key.split(KIND_SEPARATOR) return tokens[0] + KIND_SEPARATOR def get_prefix_from_entity_key(entity_key): """ Extracts the prefix from a key to the entity table. Args: entity_key: A str representing a row key to the entity table. Returns: A str representing the app prefix (app_id and namespace). """ tokens = entity_key.split(KEY_DELIMITER) return tokens[0] + KEY_DELIMITER + tokens[1] def get_kind_from_entity_key(entity_key): """ Extracts the kind from a key to the entity table. Args: entity_key: A str representing a row key to the entity table. Returns: A str representing the kind. """ tokens = entity_key.split(KEY_DELIMITER) return tokens[2].split(":")[0] def fetch_journal_entry(db_access, key): """ Fetches the given key from the journal. Args: db_access: A datastore accessor. keys: A str, the key to fetch. Returns: The entity fetched from the datastore, or None if it was deleted. """ result = db_access.batch_get_entity(JOURNAL_TABLE, [key], JOURNAL_SCHEMA) if len(result.keys()) == 0: return None if JOURNAL_SCHEMA[0] in result.keys()[0]: ent_string = result[0][JOURNAL_SCHEMA[0]] if ent_string == datastore_server.TOMBSTONE: return None return entity_pb.EntityProto().ParseFromString(ent_string) else: return None
the-stack_106_31761
""" stale_sensors.py - Detects devices that haven't checked into CrowdStrike for a specified period of time. - jshcodes@CrowdStrike, 09.01.21 """ from datetime import datetime, timedelta, timezone from argparse import RawTextHelpFormatter import argparse from tabulate import tabulate try: from falconpy import Hosts except ImportError as no_falconpy: raise SystemExit( "CrowdStrike FalconPy must be installed in order to use this application.\n" "Please execute `python3 -m pip install crowdstrike-falconpy` and try again." ) from no_falconpy def parse_command_line() -> object: """ Parses command-line arguments and returns them back as an object. """ header = """ _______ ___ ___ _______ _______ _______ ______ | _ | Y | _ | _ | _ | _ \\ |. 1___|. | | 1___| 1___|. 1___|. | \\ |. |___|. | |____ |____ |. __)_|. | \\ |: 1 |: 1 |: 1 |: 1 |: 1 |: 1 / |::.. . |::.. . |::.. . |::.. . |::.. . |::.. . / `-------`-------`-------`-------`-------`------' CrowdStrike Unattended Stale Sensor Environment Detector """ parser = argparse.ArgumentParser( description=header, formatter_class=RawTextHelpFormatter ) parser.add_argument( '-k', '--client_id', help='CrowdStrike Falcon API key ID', required=True ) parser.add_argument( '-s', '--client_secret', help='CrowdStrike Falcon API key secret', required=True ) parser.add_argument( '-b', '--base_url', help='CrowdStrike API region (us1, us2, eu1, usgov1)', required=False ) parser.add_argument( '-d', '--days', help='Number of days since a host was seen before it is considered stale', required=False ) parser.add_argument( '-r', '--reverse', help='Reverse sort (defaults to ASC)', required=False, action="store_true" ) parser.add_argument( '-x', '--remove', help='Remove hosts identified as stale', required=False, action='store_true' ) return parser.parse_args() def connect_api(key: str, secret: str, base_url: str) -> object: """ Connects to the API and returns an instance of the Hosts Service Class. """ return Hosts(client_id=key, client_secret=secret, base_url=base_url) def get_host_details(id_list: list) -> list: """ Retrieves a list containing device infomration based upon the ID list provided. """ return falcon.get_device_details(ids=id_list)["body"]["resources"] def get_hosts(date_filter: str) -> list: """ Retrieves a list of hosts IDs that match the last_seen date filter. """ return falcon.query_devices_by_filter_scroll( limit=5000, filter=f"last_seen:<='{date_filter}Z'" )["body"]["resources"] def get_sort_key(sorting) -> list: """ Sorting method for table display. Column 4 = Stale Period Column 0 = Hostname """ return (sorting[4], sorting[0]) def calc_stale_date(num_days: int) -> str: """ Calculates the "stale" datetime based upon the number of days provided by the user. """ today = datetime.strptime(str(datetime.now(timezone.utc)), "%Y-%m-%d %H:%M:%S.%f%z") return str(today - timedelta(days=num_days)).replace(" ", "T")[:-6] def parse_host_detail(detail: dict, found: list): """ Parses the returned host detail and adds it to the stale list. """ now = datetime.strptime(str(datetime.now(timezone.utc)), "%Y-%m-%d %H:%M:%S.%f%z") then = datetime.strptime(detail["last_seen"], "%Y-%m-%dT%H:%M:%S%z") distance = (now - then).days found.append([ detail.get("hostname", "Unknown"), detail.get("device_id", "Unknown"), detail.get("local_ip", "Unknown"), detail["last_seen"], f"{distance} days" ]) return found def hide_hosts(id_list: list) -> dict: """ Hides hosts identified as stale. """ return falcon.perform_action(action_name="hide_host", body={"ids": id_list}) # Parse our command line args = parse_command_line() # Default SORT to ASC if not present if not args.reverse: SORT = False else: SORT = bool(args.reverse) if not args.base_url: BASE = "us1" else: BASE = args.base_url # Credentials api_client_id = args.client_id api_client_secret = args.client_secret if not api_client_id and not api_client_secret: raise SystemExit("Invalid API credentials provided.") # Set our stale date to 120 days if not present if not args.days: STALE_DAYS = 120 else: try: STALE_DAYS = int(args.days) except ValueError as bad_day_value: raise SystemExit("Invalid value specified for days. Integer required.") from bad_day_value # Do not hide hosts if it is not requested if not args.remove: HIDE = False else: HIDE = bool(args.remove) # Calculate our stale date filter STALE_DATE = calc_stale_date(STALE_DAYS) # Connect to the API falcon = connect_api(api_client_id, api_client_secret, BASE) # List to hold our identified hosts stale = [] # For each stale host identified try: for host in get_host_details(get_hosts(STALE_DATE)): # Retrieve host detail stale = parse_host_detail(host, stale) except KeyError: raise SystemExit("Unable to communicate with CrowdStrike API, check credentials and try again.") # If we produced stale host results if stale: # Display only if not HIDE: headers = ["Hostname", "Device ID", "Local IP", "Last Seen", "Stale Period"] print(f"\n{tabulate(sorted(stale, key=get_sort_key, reverse=SORT), headers)}") else: # Remove the hosts host_list = [x[1] for x in stale] remove_result = hide_hosts(host_list)["body"]["resources"] for deleted in remove_result: print(f"Removed host {deleted['id']}") else: print("No stale hosts identified for the range specified.")
the-stack_106_31762
""" Details about crypto currencies from CoinMarketCap. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.coinmarketcap/ """ import logging from datetime import timedelta import json from urllib.error import HTTPError import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ATTR_ATTRIBUTION, CONF_CURRENCY from homeassistant.helpers.entity import Entity REQUIREMENTS = ['coinmarketcap==2.0.1'] _LOGGER = logging.getLogger(__name__) ATTR_24H_VOLUME_USD = '24h_volume_usd' ATTR_AVAILABLE_SUPPLY = 'available_supply' ATTR_MARKET_CAP = 'market_cap_usd' ATTR_NAME = 'name' ATTR_PERCENT_CHANGE_24H = 'percent_change_24h' ATTR_PERCENT_CHANGE_7D = 'percent_change_7d' ATTR_PRICE = 'price_usd' ATTR_SYMBOL = 'symbol' ATTR_TOTAL_SUPPLY = 'total_supply' CONF_ATTRIBUTION = "Data provided by CoinMarketCap" DEFAULT_CURRENCY = 'bitcoin' ICON = 'mdi:currency-usd' SCAN_INTERVAL = timedelta(minutes=15) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_CURRENCY, default=DEFAULT_CURRENCY): cv.string, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the CoinMarketCap sensor.""" currency = config.get(CONF_CURRENCY) try: CoinMarketCapData(currency).update() except HTTPError: _LOGGER.warning("Currency %s is not available. Using bitcoin", currency) currency = DEFAULT_CURRENCY add_devices([CoinMarketCapSensor(CoinMarketCapData(currency))], True) class CoinMarketCapSensor(Entity): """Representation of a CoinMarketCap sensor.""" def __init__(self, data): """Initialize the sensor.""" self.data = data self._ticker = None self._unit_of_measurement = 'USD' @property def name(self): """Return the name of the sensor.""" return self._ticker.get('name') @property def state(self): """Return the state of the sensor.""" return round(float(self._ticker.get('price_usd')), 2) @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit_of_measurement @property def icon(self): """Return the icon to use in the frontend, if any.""" return ICON @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_24H_VOLUME_USD: self._ticker.get('24h_volume_usd'), ATTR_ATTRIBUTION: CONF_ATTRIBUTION, ATTR_AVAILABLE_SUPPLY: self._ticker.get('available_supply'), ATTR_MARKET_CAP: self._ticker.get('market_cap_usd'), ATTR_PERCENT_CHANGE_24H: self._ticker.get('percent_change_24h'), ATTR_PERCENT_CHANGE_7D: self._ticker.get('percent_change_7d'), ATTR_SYMBOL: self._ticker.get('symbol'), ATTR_TOTAL_SUPPLY: self._ticker.get('total_supply'), } def update(self): """Get the latest data and updates the states.""" self.data.update() self._ticker = json.loads( self.data.ticker.decode('utf-8').strip('\n '))[0] class CoinMarketCapData(object): """Get the latest data and update the states.""" def __init__(self, currency): """Initialize the data object.""" self.currency = currency self.ticker = None def update(self): """Get the latest data from blockchain.info.""" from coinmarketcap import Market self.ticker = Market().ticker(self.currency)
the-stack_106_31765
import json import re import scrapy from locations.items import GeojsonPointItem class WilcoFarmSpider(scrapy.Spider): name = "wilcofarm" allowed_domains = ["www.farmstore.com"] start_urls = ( 'https://www.farmstore.com/locations/', ) def parse(self, response): pattern = r"(var markers=\[)(.*?)(\]\;)" data = re.search(pattern, response.body_as_unicode(), re.MULTILINE).group(2) data = json.loads('[' + data + ']') for item in data: properties = { 'ref': item['storeId'], 'name': item['storeName'], 'addr_full': item['storeStreet'], 'city': item['storeCity'], 'state': item['storeState'], 'postcode': item['storeZip'], 'lat': item['storeLat'], 'lon': item['storeLng'], 'phone': item['storePhone'], 'opening_hours': item['storeHours'] } yield GeojsonPointItem(**properties)
the-stack_106_31768
from hls4ml.converters.keras_to_hls import parse_default_keras_layer from hls4ml.converters.keras_to_hls import keras_handler from hls4ml.converters.keras.core import TernaryQuantizer @keras_handler('GarNet', 'GarNetStack') def parse_garnet_layer(keras_layer, input_names, input_shapes, data_reader, config): assert(keras_layer['class_name'] in ['GarNet', 'GarNetStack']) if not keras_layer['config']['simplified']: raise Exception('HLS GarNet is compatible only with keras GarNet with simplified=True') if keras_layer['config']['output_activation'] not in [None, 'linear']: raise Exception('HLS GarNet cannot have nonlinear output activation') layer = parse_default_keras_layer(keras_layer, input_names) layer['input_format'] = keras_layer['config']['input_format'] if layer['input_format'] != 'xn': raise NotImplementedError('HLS GarNet currently only implements signed inputs (input_format="xn")') layer['n_vertices'] = input_shapes[0][1] layer['collapse'] = keras_layer['config']['collapse'] layer['mean_by_nvert'] = keras_layer['config']['mean_by_nvert'] if keras_layer['config']['quantize_transforms']: layer['quantizer'] = TernaryQuantizer() layer['n_aggregators'] = keras_layer['config']['n_aggregators'] layer['n_out_features'] = keras_layer['config']['n_filters'] # number of output features layer['n_propagate'] = keras_layer['config']['n_propagate'] # number of latent features if layer['class_name'] == 'GarNet': layer['n_in_features'] = input_shapes[0][2] n_out_features = layer['n_out_features'] elif layer['class_name'] == 'GarNetStack': layer['n_sublayers'] = keras_layer['config']['n_sublayers'] layer['n_in_features'] = [input_shapes[0][2]] for il in range(1, layer['n_sublayers']): layer['n_in_features'].append(layer['n_out_features'][il - 1]) n_out_features = layer['n_out_features'][-1] if layer['collapse'] in ['mean', 'sum', 'max']: output_shape = [input_shapes[0][0], n_out_features] else: output_shape = input_shapes[0][:2] + [n_out_features] return layer, output_shape
the-stack_106_31769
from flask import Flask from redis import Redis app = Flask(__name__) redis = Redis(host="redis") counter_key = "haha_counter" @app.route("/") def index(): ## increae the counter by 1, get outcome. count = redis.incr(counter_key) return "The total number of visit to this page: {0}".format(count) if __name__=="__main__": app.run(host="0.0.0.0",debug=True)
the-stack_106_31770
from __future__ import print_function import pandas as pd import numpy as np from sklearn.neighbors import KNeighborsClassifier val = pd.read_csv('val.csv') #val = pd.read_csv('train.csv') true_labels = val["Id"].values embeddings = pd.read_pickle('trained/embeddings.pkl') labels = embeddings['Id'].values.astype('int') embeddings = embeddings.drop(['Id'], axis=1).values whales = np.load('trained/raw_predictions.npy') KNN = KNeighborsClassifier(n_neighbors=5, metric='sqeuclidean', weights='distance', algorithm='brute') KNN.fit(embeddings, labels) pred = KNN.predict(whales) # dists, neighbours = KNN.kneighbors(whales, n_neighbors=5) # neighbours_labels = labels[neighbours.flat].reshape(neighbours.shape) # pred = neighbours_labels[:, 0].flatten() mapping = np.load('../data/meta/idx_to_whales_mapping.npy').item() pred_labels = [mapping[x][0] for x in pred] print('true labels: \n', true_labels) print('pred labels: \n', pred_labels) acc = sum(true_labels == pred_labels) / len(true_labels) print('accuracy: ', acc)
the-stack_106_31771
import copy import logging from typing import List, Union, Optional from pathlib import Path import shutil import tempfile import tarfile import zipfile import warnings import functools from datetime import datetime from datetime import time as datetime_time from geopandas import GeoDataFrame import shapely from shapely.geometry import Point, Polygon from geojson import Feature, FeatureCollection from geojson import Polygon as geojson_Polygon import requests from tqdm import tqdm def get_logger( name: str, level=logging.INFO, verbose: bool = False, ): """ Use level=logging.CRITICAL to disable temporarily. """ logger = logging.getLogger(name) # pylint: disable=redefined-outer-name logger.setLevel(level) # create console handler and set level to debug ch = logging.StreamHandler() ch.setLevel(level) if verbose: log_format = "%(asctime)s - %(name)s - %(levelname)s - %(message)" else: # hide logger module & level, truncate log messages > 2000 characters (e.g. huge geometries) log_format = "%(asctime)s - %(message).2000s" formatter = logging.Formatter(log_format) ch.setFormatter(formatter) logger.addHandler(ch) logger.propagate = False return logger logger = get_logger(__name__) def deprecation( function_name: str, replacement_name: str, version: str = "0.13.0", extra_message: str = "", ): """ Decorator for custom deprecation warnings. Args: function_name: Name of the to be deprecated function. replacement_name: Name of the replacement function. version: The package version in which the deprecation will happen. extra_message: Optional message after default deprecation warning. """ def actual_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): message = ( f"`{function_name}` will be deprecated in version {version}, " f"use `{replacement_name}` instead! {extra_message}" ) warnings.warn(message, DeprecationWarning, stacklevel=2) return func(*args, **kwargs) return wrapper return actual_decorator def download_results_from_gcs( download_url: str, output_directory: Union[str, Path] ) -> List[str]: """ General download function for results of job and jobtask from cloud storage provider. Args: download_url: The signed gcs url to download. output_directory: The file output directory, defaults to the current working directory. """ output_directory = Path(output_directory) # Download compressed_file = tempfile.mktemp() with open(compressed_file, "wb") as dst_tgz: try: r = requests.get(download_url, stream=True) r.raise_for_status() for chunk in tqdm(r.iter_content(chunk_size=1024)): if chunk: # filter out keep-alive new chunks dst_tgz.write(chunk) except requests.exceptions.HTTPError as err: logger.debug(f"Connection error, please try again! {err}") raise requests.exceptions.HTTPError( f"Connection error, please try again! {err}" ) if tarfile.is_tarfile(compressed_file): unpack = tarfile.open elif zipfile.is_zipfile(compressed_file): unpack = zipfile.ZipFile # type: ignore else: raise ValueError("Downloaded file is not a TAR or ZIP archive.") with unpack(compressed_file) as f: f.extractall(path=output_directory) output_folder_path = output_directory / "output" out_filepaths = [] if output_folder_path.exists(): for src_path in output_folder_path.glob("**/*"): dst_path = output_directory / src_path.relative_to(output_folder_path) shutil.move(str(src_path), str(dst_path)) if dst_path.is_dir(): out_filepaths += [str(x) for x in dst_path.glob("**/*")] elif dst_path.is_file(): out_filepaths.append(str(dst_path)) output_folder_path.rmdir() else: out_filepaths += [str(x) for x in output_directory.glob("**/*")] logger.info( f"Download successful of {len(out_filepaths)} files to output_directory " f"'{output_directory}': {[Path(p).name for p in out_filepaths]}" ) return out_filepaths def download_results_from_gcs_without_unpacking( download_url: str, output_directory: Union[str, Path] ) -> List[str]: """ General download function for results of job and jobtask from cloud storage provider. Args: download_url: The signed gcs url to download. output_directory: The file output directory, defaults to the current working directory. """ output_directory = Path(output_directory) # Download out_filepaths: List[str] = [] out_fp = Path().joinpath(output_directory, "output.tgz") with open(out_fp, "wb") as dst: try: r = requests.get(download_url, stream=True) r.raise_for_status() for chunk in tqdm(r.iter_content(chunk_size=1024)): if chunk: # filter out keep-alive new chunks dst.write(chunk) out_filepaths.append(str(out_fp)) except requests.exceptions.HTTPError as err: logger.debug(f"Connection error, please try again! {err}") raise requests.exceptions.HTTPError( f"Connection error, please try again! {err}" ) logger.info( f"Download successful of {len(out_filepaths)} files to output_directory" f" '{output_directory}': {[Path(p).name for p in out_filepaths]}" ) return out_filepaths def format_time_period( start_date: Optional[Union[str, datetime]], end_date: Optional[Union[str, datetime]] ): """ Formats a time period string from start date and end date. Args: start_date: Query period starting day as iso-format string or datetime object, e.g. "YYYY-MM-DD" or "YYYY-MM-DDTHH:MM:SS". end_date: Query period ending day as iso-format or datetime object, e.g. "YYYY-MM-DD" or "YYYY-MM-DDTHH:MM:SS". Returns: Time period string in the format "2014-01-01T00:00:00Z/2016-12-31T10:11:12Z" """ if start_date is None or end_date is None: raise ValueError( "When using dates, both start_date and end_date need to be provided." ) # Start and end date can be any combination of str ("YYYY-MM-DD" or "YYYY-MM-DDTHH:MM:SS") # or datetime objects. if not isinstance(start_date, datetime): start_dt: datetime = datetime.fromisoformat(start_date) else: start_dt = start_date if not isinstance(end_date, datetime): end_dt: datetime = datetime.fromisoformat(end_date) try: # For "YYYY-MM-DD" string the default datetime conversion sets to # start of day, but image archive query requires end of day. datetime.strptime(end_date, "%Y-%m-%d") # format validation end_dt = datetime.combine(end_dt.date(), datetime_time(23, 59, 59, 999999)) except ValueError: pass else: end_dt = end_date if start_dt > end_dt: raise ValueError("The start_date can not be later than the end_date!") formatting = "%Y-%m-%dT%H:%M:%S" time_period = f"{start_dt.strftime(formatting)}Z/{end_dt.strftime(formatting)}Z" return time_period def any_vector_to_fc( vector: Union[ dict, Feature, FeatureCollection, list, GeoDataFrame, Polygon, Point, ], as_dataframe: bool = False, ) -> Union[dict, GeoDataFrame]: """ Gets a uniform feature collection dictionary (with fc and f bboxes) from any input vector type. Args: vector: One of dict, FeatureCollection, Feature, list of bounds coordinates, GeoDataFrame, shapely.geometry.Polygon, shapely.geometry.Point. All assume EPSG 4326 and Polygons! as_dataframe: GeoDataFrame output with as_dataframe=True. """ if not isinstance( vector, ( dict, FeatureCollection, Feature, geojson_Polygon, list, GeoDataFrame, Polygon, Point, ), ): raise ValueError( "The provided geometry muste be a FeatureCollection, Feature, dict, geopandas " "Dataframe, shapely Polygon, shapely Point or a list of 4 bounds coordinates." ) ## Transform all possible input geometries to a uniform feature collection. vector = copy.deepcopy(vector) # otherwise changes input geometry. if isinstance(vector, (dict, FeatureCollection, Feature)): try: if vector["type"] == "FeatureCollection": df = GeoDataFrame.from_features(vector, crs=4326) elif vector["type"] == "Feature": # TODO: Handle point features? df = GeoDataFrame.from_features(FeatureCollection([vector]), crs=4326) elif vector["type"] == "Polygon": # Geojson geometry df = GeoDataFrame.from_features( FeatureCollection([Feature(geometry=vector)]), crs=4326 ) except KeyError as e: raise ValueError( "Provided geometry dictionary has to include a featurecollection or feature." ) from e else: if isinstance(vector, list): if len(vector) == 4: box_poly = shapely.geometry.box(*vector) df = GeoDataFrame({"geometry": [box_poly]}, crs=4326) else: raise ValueError("The list requires 4 bounds coordinates.") elif isinstance(vector, Polygon): df = GeoDataFrame({"geometry": [vector]}, crs=4326) elif isinstance(vector, Point): df = GeoDataFrame( {"geometry": [vector.buffer(0.00001)]}, crs=4326 ) # Around 1m buffer # TODO: Find better solution than small buffer? elif isinstance(vector, GeoDataFrame): df = vector try: if df.crs.to_string() != "EPSG:4326": df = df.to_crs(epsg=4326) except AttributeError as e: raise AttributeError("GeoDataFrame requires a crs.") from e if as_dataframe: return df else: fc = df.__geo_interface__ return fc def fc_to_query_geometry( fc: Union[dict, FeatureCollection], geometry_operation: str ) -> Union[List, dict]: """ From a feature collection with a single feature, depending on the geometry_operation, returns the feature as a list of bounds coordinates or a geojson Polygon (as dict). Args: fc: feature collection geometry_operation: One of "bbox", "intersects", "contains". Returns: The feature as a list of bounds coordinates or a geojson Polygon (as dict) """ try: if fc["type"] != "FeatureCollection": raise ValueError("Geometry argument only supports Feature Collections!") except (KeyError, TypeError) as e: raise ValueError("Geometry argument only supports Feature Collections!") from e geometry_error = "The provided geometry {}, UP42 only accepts single geometries." if len(fc["features"]) != 1: logger.info(geometry_error.format("contains multiple geometries")) raise ValueError(geometry_error.format("contains multiple geometries")) feature = fc["features"][0] if feature["geometry"]["type"] == "MultiPolygon": logger.info(geometry_error.format("is a MultiPolygon")) raise ValueError(geometry_error.format("is a MultiPolygon")) if geometry_operation == "bbox": try: query_geometry = list(feature["bbox"]) except KeyError: query_geometry = list(shapely.geometry.shape(feature["geometry"]).bounds) elif geometry_operation in ["intersects", "contains"]: query_geometry = feature["geometry"] else: raise ValueError( "geometry_operation needs to be one of bbox, intersects or contains!", ) return query_geometry def filter_jobs_on_mode( jobs_json: List[dict], test_jobs: bool = True, real_jobs: bool = True ) -> List[dict]: """ Filter jobs according to selected mode. Args: jobs_json: List of jobs as returned by /jobs endpoint. test_jobs: If returning test jobs or test queries. real_jobs: If returning real jobs. Returns: List of filtered jobs. Raises: ValueError: When no modes are selected to filter jobs with. """ selected_modes = [] if test_jobs: selected_modes.append("DRY_RUN") if real_jobs: selected_modes.append("DEFAULT") if not selected_modes: raise ValueError("At least one of test_jobs and real_jobs must be True.") jobs_json = [job for job in jobs_json if job["mode"] in selected_modes] logger.info(f"Returning {selected_modes} jobs.") return jobs_json
the-stack_106_31775
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides test suites that can be run to test fused convolutions. Each of the two test suites in this module, FusedConv2DBiasActivationTest and FusedConvInt8Tests, should be "instantiated" by declaring a class which inherits from the FusedConv test and a class that provides the standard test.TestCase API. See e.g. fused_conv2d_bias_activation_op_test.py in this folder. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import numpy as np from tensorflow.contrib.fused_conv.python.ops import fused_conv2d_bias_activation_op from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging def _GetShrunkInceptionShapes(shrink=10): """Iterator for smaller versions of convolution shapes in 2015 Inception. Relative to inception, each depth value is `depth // shrink`. Args: shrink: Factor to shrink each depth value by relative to Inception. Yields: Tuple (input_size, filter_size, out_size, stride, padding), the convolution parameters of Inception layers. """ input_sizes = [[4, 5, 5, 1248], [4, 8, 8, 384], [4, 8, 8, 384], [ 4, 8, 8, 2048 ], [4, 8, 8, 448], [4, 8, 8, 2048], [4, 8, 8, 2048], [4, 8, 8, 2048], [ 4, 8, 8, 1760 ], [4, 8, 8, 1760], [4, 8, 8, 1760], [4, 8, 8, 1760], [4, 17, 17, 192], [ 4, 17, 17, 192 ], [4, 17, 17, 1248], [4, 17, 17, 128], [4, 17, 17, 1248], [4, 17, 17, 224], [ 4, 17, 17, 192 ], [4, 17, 17, 192], [4, 17, 17, 1216], [4, 17, 17, 1216], [4, 17, 17, 224], [ 4, 17, 17, 192 ], [4, 17, 17, 192], [4, 17, 17, 1152], [4, 17, 17, 1152], [4, 17, 17, 192], [ 4, 17, 17, 160 ], [4, 17, 17, 1152], [4, 17, 17, 1024], [4, 17, 17, 128], [4, 17, 17, 1024], [4, 17, 17, 128], [4, 17, 17, 1024], [4, 17, 17, 128], [ 4, 17, 17, 768 ], [4, 17, 17, 128], [4, 17, 17, 128], [4, 17, 17, 768], [4, 17, 17, 768], [4, 35, 35, 96], [4, 35, 35, 288], [ 4, 35, 35, 64 ], [4, 35, 35, 288], [4, 35, 35, 256], [4, 35, 35, 48], [ 4, 35, 35, 256 ], [4, 35, 35, 96], [4, 35, 35, 192], [4, 35, 35, 192], [ 4, 35, 35, 192 ], [4, 73, 73, 64], [4, 73, 73, 64], [4, 147, 147, 24]] filter_sizes = [[1, 1, 1248, 128], [1, 3, 384, 384], [3, 1, 384, 384], [ 1, 1, 2048, 192 ], [3, 3, 448, 384], [1, 1, 2048, 320], [1, 1, 2048, 448], [1, 1, 2048, 384], [1, 1, 1760, 384], [1, 1, 1760, 192], [1, 1, 1760, 448], [ 1, 1, 1760, 320 ], [3, 3, 192, 192], [3, 3, 192, 192], [1, 1, 1248, 192], [ 3, 3, 128, 320 ], [1, 1, 1248, 128], [1, 3, 224, 224], [3, 1, 192, 256], [ 1, 3, 192, 256 ], [1, 1, 1216, 192], [1, 1, 1216, 96], [3, 1, 224, 224], [ 3, 3, 192, 224 ], [1, 3, 192, 192], [1, 1, 1152, 192], [1, 1, 1152, 128], [ 3, 1, 192, 192 ], [3, 3, 160, 192], [1, 1, 1152, 160], [1, 1, 1024, 128], [ 1, 3, 128, 192 ], [1, 1, 1024, 160], [3, 1, 128, 192], [1, 1, 1024, 256], [ 3, 1, 128, 128 ], [1, 1, 768, 192], [1, 3, 128, 128], [3, 3, 128, 128], [ 1, 1, 768, 128 ], [1, 1, 768, 320], [3, 3, 96, 96], [3, 3, 288, 384], [ 3, 3, 64, 96 ], [1, 1, 288, 64], [1, 1, 256, 64], [5, 5, 48, 64], [1, 1, 256, 48], [3, 3, 96, 96], [1, 1, 192, 32], [ 1, 1, 192, 64 ], [1, 1, 192, 48], [3, 3, 64, 192], [1, 1, 64, 64], [1, 1, 24, 64]] out_sizes = [[4, 5, 5, 128], [4, 8, 8, 384], [4, 8, 8, 384], [4, 8, 8, 192], [ 4, 8, 8, 384 ], [4, 8, 8, 320], [4, 8, 8, 448], [4, 8, 8, 384], [4, 8, 8, 384], [ 4, 8, 8, 192 ], [4, 8, 8, 448], [4, 8, 8, 320], [4, 8, 8, 192], [4, 17, 17, 192], [ 4, 17, 17, 192 ], [4, 8, 8, 320], [4, 17, 17, 128], [4, 17, 17, 224], [4, 17, 17, 256], [ 4, 17, 17, 256 ], [4, 17, 17, 192], [4, 17, 17, 96], [4, 17, 17, 224], [4, 17, 17, 224], [ 4, 17, 17, 192 ], [4, 17, 17, 192], [4, 17, 17, 128], [4, 17, 17, 192], [4, 17, 17, 192], [ 4, 17, 17, 160 ], [4, 17, 17, 128], [4, 17, 17, 192], [4, 17, 17, 160], [4, 17, 17, 192], [ 4, 17, 17, 256 ], [4, 17, 17, 128], [4, 17, 17, 192], [4, 17, 17, 128], [4, 17, 17, 128], [ 4, 17, 17, 128 ], [4, 17, 17, 320], [4, 17, 17, 96], [4, 17, 17, 384], [4, 35, 35, 96], [ 4, 35, 35, 64 ], [4, 35, 35, 64], [4, 35, 35, 64], [4, 35, 35, 48], [4, 35, 35, 96], [4, 35, 35, 32], [4, 35, 35, 64], [4, 35, 35, 48], [4, 71, 71, 192], [4, 73, 73, 64], [4, 147, 147, 64]] strides = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] # Shrink sizes to make the test faster for i in input_sizes: i[3] //= shrink for f in filter_sizes: f[2] //= shrink f[3] //= shrink for o in out_sizes: o[3] //= shrink # pylint: disable=invalid-name VALID = "VALID" SAME = "SAME" # pylint: enable=invalid-name paddings = [ SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, VALID, SAME, SAME, VALID, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, VALID, VALID, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME, VALID, VALID, VALID ] for i, f, o, s, p in zip(input_sizes, filter_sizes, out_sizes, strides, paddings): yield i, f, o, s, p def _GetTestConfigs(): """Get all the valid tests configs to run. Returns: all the valid test configs as tuples of data_format and use_gpu. """ test_configs = [("NCHW", True), ("NHWC", True)] return test_configs def _IotaNdF32Constant(dim_sizes): def MakeList(dims): if len(dims) == 1: return [float(1 + f) for f in range(dims[0])] return [MakeList(dims[1:]) for _ in range(dims[0])] return constant_op.constant(MakeList(dim_sizes), dtype=dtypes.float32) def _GetInceptionFwdTest(input_size, filter_size, stride, padding, gpu_only=True): def Test(self): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping InceptionFwd %s", (input_size, filter_size, stride, padding)) return tf_logging.info("Testing InceptionFwd %s", (input_size, filter_size, stride, padding)) self.CompareFwdValues(input_size, filter_size, [stride, stride], padding) return Test class FusedConv2DBiasActivationTest(object): @contextlib.contextmanager def test_scope(self): # pylint: disable=invalid-name """Can be overridden in base classes to provide a test scope.""" yield def _DtypesToTest(self, use_gpu): return [dtypes.float32] def _FilterFormatsToTest(self, use_gpu): return ["HWIO", "OIHW"] def _SetupValuesForDevice(self, tensor_in_sizes, filter_in_sizes, bias, strides, padding, activation_mode, data_format, filter_format, dtype): """Verifies the output values of the convolution function. Args: tensor_in_sizes: Input tensor dimensions in [batch, input_rows, input_cols, input_depth]. filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols, input_depth, output_depth]. bias: 1-D bias tensor of length output_depth. strides: Stride: [col_stride, row_stride] padding: Padding type. activation_mode: Activation mode. data_format: Format of the data tensors. filter_format: Filter format to use for the fused convolution. dtype: Data type for inputs and outputs. Returns: Symbolic tensor value and reference value that can be used to execute the computation and verify the results. """ input_size = np.prod(tensor_in_sizes) filter_size = np.prod(filter_in_sizes) bias_size = filter_in_sizes[-1] # equals to output depth # Initializes the input tensor with array containing incrementing # numbers from 1. x1 = [f * 1.0 for f in range(1, input_size + 1)] x2 = [f * 1.0 for f in range(1, filter_size + 1)] # This is to guarantee that there are always negative values after # bias add so that we can test whether relu works correctly. x3 = bias t1 = constant_op.constant(x1, shape=tensor_in_sizes, dtype=dtype) t2 = constant_op.constant(x2, shape=filter_in_sizes, dtype=dtype) fused_t2 = t2 if filter_format == "OIHW": fused_t2 = _HwioToOihw(t2) t3 = constant_op.constant(x3, shape=[bias_size], dtype=dtype) strides = [1] + strides + [1] if data_format == "NCHW": t1 = test_util.NHWCToNCHW(t1) strides = test_util.NHWCToNCHW(strides) output = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( t1, fused_t2, t3, strides=strides, padding=padding, data_format=data_format, filter_format=filter_format, activation_mode=activation_mode) ref_conv_output = nn_ops.conv2d( t1, t2, strides=strides, padding=padding, data_format=data_format) ref_bias_output = nn_ops.bias_add( ref_conv_output, t3, data_format=data_format) ref_output = nn_ops.relu(ref_bias_output) if data_format == "NCHW": output = test_util.NCHWToNHWC(output) ref_output = test_util.NCHWToNHWC(ref_output) return output, ref_output def CompareFwdValues(self, tensor_in_sizes, filter_in_sizes, conv_strides, padding): """Verifies that CPU and GPU produce the same values. Args: tensor_in_sizes: Input tensor dimensions in [batch, input_rows, input_cols, input_depth]. filter_in_sizes: Filter tensor dimensions in [kernel_rows, kernel_cols, input_depth, output_depth]. conv_strides: [row_stride, col_stride] for the convolution; padding: Padding type. """ x1 = np.random.rand(*tensor_in_sizes).astype(np.float32) x2 = np.random.rand(*filter_in_sizes).astype(np.float32) x3 = np.random.rand(*[filter_in_sizes[-1]]).astype(np.float32) def _SetupVal(data_format, use_gpu): t1 = constant_op.constant(x1, shape=tensor_in_sizes) t2 = constant_op.constant(x2, shape=filter_in_sizes) t3 = constant_op.constant(x3, shape=[filter_in_sizes[-1]]) strides = [1] + conv_strides + [1] if data_format == "NCHW": t1 = test_util.NHWCToNCHW(t1) strides = test_util.NHWCToNCHW(strides) output = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( t1, t2, t3, strides=strides, padding=padding, data_format=data_format, activation_mode="Relu") if data_format == "NCHW": output = test_util.NCHWToNHWC(output) return output with self.session() as sess, self.test_scope(): tensors = [] for (data_format, use_gpu) in _GetTestConfigs(): tensors.append(_SetupVal(data_format, use_gpu)) values = sess.run(tensors) for i in range(1, len(values)): self.assertAllClose(values[0], values[i], rtol=1e-3, atol=1e-3) def _VerifyValues(self, tensor_in_sizes, filter_in_sizes, bias, strides, padding): with self.session() as sess, self.test_scope(): tensors = [] ref_tensors = [] for (data_format, use_gpu) in _GetTestConfigs(): for dtype in self._DtypesToTest(use_gpu): for filter_format in self._FilterFormatsToTest(use_gpu): result, expected = self._SetupValuesForDevice( tensor_in_sizes, filter_in_sizes, bias, strides, padding, "Relu", data_format, filter_format, dtype) tensors.append(result) ref_tensors.append(expected) values = sess.run(tensors) ref_values = sess.run(ref_tensors) for i in range(len(tensors)): conv = tensors[i] value = values[i] ref_value = ref_values[i] tf_logging.info("expected = %s", ref_value) tf_logging.info("actual = %s", value) tol = 1e-5 if value.dtype == np.float16: tol = 1e-3 self.assertAllClose( np.ravel(ref_value), np.ravel(value), atol=tol, rtol=tol) self.assertShapeEqual(value, conv) def testConv2D1x1Filter(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D1x1Filter test.") return # expected_output = [ # 0.0, 0.0, 0.0, 21.0, 0.0, 0.0, 57.0, 0.0, 0.0, 93.0, 41.0, 0.0, 129.0, # 86.0, 43.0, 165.0, 131.0, 97.0 # ] medians = [-45.0, -130.0, -215.0] self._VerifyValues( tensor_in_sizes=[1, 2, 3, 3], filter_in_sizes=[1, 1, 3, 3], bias=medians, strides=[1, 1], padding="VALID") def testConv2DEmpty(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2DEmpty test.") return # expected_output = [] self._VerifyValues( tensor_in_sizes=[0, 2, 3, 3], filter_in_sizes=[1, 1, 3, 3], bias=[0.0, 0.0, 0.0], strides=[1, 1], padding="VALID") def testConv2D2x2Filter(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D2x2Filter test.") return # expected_output = [0.0, 0.0, 0.0, 401.0, 533.0, 665.0] self._VerifyValues( tensor_in_sizes=[1, 2, 3, 3], filter_in_sizes=[2, 2, 3, 3], bias=[-2500.0, -2500.0, -2500.0], strides=[1, 1], padding="VALID") def testConv2D1x2Filter(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D1x2Filter test.") return # expected_output = [ # 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 190.0, 265.0, 340.0, 343.0, 436.0, 529.0 # ] self._VerifyValues( tensor_in_sizes=[1, 2, 3, 3], filter_in_sizes=[1, 2, 3, 3], bias=[-500.0, -500.0, -500.0], strides=[1, 1], padding="VALID") def testConv2D2x2FilterStride2(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D2x2FilterStride2 test.") return # expected_output = [0.0, 67.0, 163.0] self._VerifyValues( tensor_in_sizes=[1, 2, 3, 3], filter_in_sizes=[2, 2, 3, 3], bias=[-2300.0, -2300.0, -2300.0], strides=[2, 2], padding="VALID") def testConv2D2x2FilterStride2Same(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D2x2FilterStride2Same test.") return # expected_output = [0.0, 2367.0, 2463.0, 1230.0, 1305.0, 1380.0] self._VerifyValues( tensor_in_sizes=[1, 2, 3, 3], filter_in_sizes=[2, 2, 3, 3], bias=[-2300.0, -1000.0, -1000.0], strides=[2, 2], padding="SAME") def testConv2D2x2FilterStride1x2(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2D2x2FilterStride1x2 test.") return # expected_output = [0.0, 0.0, 8.0, 28.0, 48.0, 68.0] self._VerifyValues( tensor_in_sizes=[1, 3, 6, 1], filter_in_sizes=[2, 2, 1, 1], bias=[-90.0], strides=[1, 2], padding="VALID") def testConv2DKernelSmallerThanStrideValid(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2DKernelSmallerThanStrideValid test.") return # expected_output = [0, 0, 175, 205] self._VerifyValues( tensor_in_sizes=[1, 7, 7, 1], filter_in_sizes=[2, 2, 1, 1], bias=[-100.0], strides=[3, 3], padding="VALID") def testConv2DKernelSmallerThanStrideSame(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2DKernelSmallerThanStrideSame test.") return # expected = [0, 0, 2, 4] self._VerifyValues( tensor_in_sizes=[1, 3, 3, 1], filter_in_sizes=[1, 1, 1, 1], bias=[-5.0], strides=[2, 2], padding="SAME") # expected = [0, 0, 4, 6] self._VerifyValues( tensor_in_sizes=[1, 4, 4, 1], filter_in_sizes=[1, 1, 1, 1], bias=[-5.0], strides=[2, 2], padding="SAME") # expected = [4, 0, 1, 0] self._VerifyValues( tensor_in_sizes=[1, 4, 4, 1], filter_in_sizes=[2, 2, 1, 1], bias=[-40.0], strides=[3, 3], padding="SAME") def testConv2DKernelSizeMatchesInputSize(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping Conv2DKernelSizeMatchesInputSize test.") return # expected = [0, 5] self._VerifyValues( tensor_in_sizes=[1, 2, 2, 1], filter_in_sizes=[2, 2, 1, 2], bias=[-50.0, -55.0], strides=[1, 1], padding="VALID") # expected = [0, 2, 282, 322] self._VerifyValues( tensor_in_sizes=[1, 8, 8, 1], filter_in_sizes=[2, 2, 1, 1], bias=[-200.0], strides=[4, 4], padding="SAME") def testShapeFunctionEdgeCases(self): # All shapes unknown. c1 = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( array_ops.placeholder(dtypes.float32), array_ops.placeholder(dtypes.float32), array_ops.placeholder(dtypes.float32), strides=[1, 1, 1, 1], padding="SAME", activation_mode="Relu") self.assertEqual([None, None, None, None], c1.get_shape().as_list()) # Incorrect input shape. with self.assertRaises(ValueError): fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( array_ops.placeholder(dtypes.float32, shape=[1, 3]), array_ops.placeholder(dtypes.float32), array_ops.placeholder(dtypes.float32), strides=[1, 1, 1, 1], padding="SAME", activation_mode="Relu") # Incorrect filter shape. with self.assertRaises(ValueError): fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( array_ops.placeholder(dtypes.float32), array_ops.placeholder(dtypes.float32, shape=[1, 3]), array_ops.placeholder(dtypes.float32), strides=[1, 1, 1, 1], padding="SAME", activation_mode="Relu") # Depth mismatch. with self.assertRaises(ValueError): fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( array_ops.placeholder(dtypes.float32, shape=[32, 20, 20, 3]), array_ops.placeholder(dtypes.float32, shape=[4, 4, 2, 2]), array_ops.placeholder(dtypes.float32), strides=[1, 1, 1, 1], padding="SAME", activation_mode="Relu") def testOpEdgeCases(self, gpu_only=True): if gpu_only and not test.is_gpu_available(): tf_logging.info("Skipping OpEdgeCases tests.") return with self.session() as sess, self.test_scope(): # Illegal strides. with self.assertRaisesRegexp( errors_impl.UnimplementedError, ".*strides.*in the batch and depth dimensions"): sess.run( fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1]), strides=[2, 1, 1, 1], padding="SAME", activation_mode="Relu")) with self.assertRaisesRegexp( errors_impl.UnimplementedError, ".*strides.*in the batch and depth dimensions"): sess.run( fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1]), strides=[1, 1, 1, 2], padding="SAME", activation_mode="Relu")) # Illegal activation mode. with self.assertRaisesRegexp(ValueError, "Op passed string 'Tanh' not in:"): sess.run( fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1, 1, 1, 1]), _IotaNdF32Constant([1]), strides=[1, 1, 1, 1], padding="SAME", activation_mode="Tanh")) # Filter larger than input. with self.assertRaisesRegexp(ValueError, "Negative dimension size"): sess.run( fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _IotaNdF32Constant([32, 20, 20, 3]), _IotaNdF32Constant([20, 21, 3, 2]), _IotaNdF32Constant([2]), strides=[1, 1, 1, 1], padding="VALID", activation_mode="Relu")) with self.assertRaisesRegexp(ValueError, "Negative dimension size"): sess.run( fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _IotaNdF32Constant([32, 20, 20, 3]), _IotaNdF32Constant([21, 20, 3, 2]), _IotaNdF32Constant([2]), strides=[1, 1, 1, 1], padding="VALID", activation_mode="Relu")) # Add InceptionFwd tests to FusedConv2DBiasActivationTest. for index, (input_size_, filter_size_, output_size_, stride_, padding_) in enumerate(_GetShrunkInceptionShapes()): setattr(FusedConv2DBiasActivationTest, "testInceptionFwd_" + str(index), _GetInceptionFwdTest(input_size_, filter_size_, stride_, padding_)) # TODO(b/35359731) # Fwd, BckInput, and BackFilter to test that for certain input parameter # set, winograd nonfused algorithm will be excluded from conv autotune. If # in such case, winograd nonfused algorithm is added as one option of the # conv autotune, and cuDNN version is smaller than 7, the following tests # will fail. ishape = [1, 400, 400, 1] fshape = [1, 1, 1, 256] oshape = [1, 400, 400, 256] setattr(FusedConv2DBiasActivationTest, "testInceptionFwd_No_Winograd_Nonfused", _GetInceptionFwdTest(ishape, fshape, 1, "SAME", gpu_only=True)) def _CalculateConvolvedOutputDim(input_dim, filter_dim, stride, padding_type): """Calculates the size of an output dimension of a strided convolution. Given the sizes of the corresponding dimension of the input and filter shapes, and the stride and padding_types, calculates the size of the output dimension. This function can be called separately for each input dimension. Args: input_dim: An `int` specifying the size of the input dimension. filter_dim: An `int` specifying the size of the filter dimension. stride: An `int` specifying the step size of the convolution along the input dimension. padding_type: either 'VALID' or 'SAME'. Returns: The size of the output dimension. """ if padding_type == "VALID": return (input_dim - filter_dim + stride) // stride else: # padding_type == 'SAME' return (input_dim + stride - 1) // stride def _GetFusedConvInt8TestParams(): """Returns test parameters shared by all Int8 FusedConv tests.""" _test_params = [ { "batch_size": 1, "input_channels": 4, "output_channels": 4, "input_height": 8, "input_width": 8, "filter_height": 6, "filter_width": 6, "vertical_stride": 2, "horizontal_stride": 2, "conv_input_scale": 0.002, "side_input_scale": 0.0, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 1, "input_channels": 4, "output_channels": 4, "input_height": 6, "input_width": 6, "filter_height": 6, "filter_width": 6, "vertical_stride": 2, "horizontal_stride": 2, "conv_input_scale": 0.002, "side_input_scale": 0.0, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 2, "input_channels": 8, "output_channels": 16, "input_height": 8, "input_width": 8, "filter_height": 3, "filter_width": 3, "vertical_stride": 2, "horizontal_stride": 2, "conv_input_scale": 0.002, "side_input_scale": 0.0, "bias_scale": 1, "padding_type": "VALID" }, { "batch_size": 2, "input_channels": 8, "output_channels": 16, "input_height": 8, "input_width": 8, "filter_height": 3, "filter_width": 3, "vertical_stride": 2, "horizontal_stride": 2, "conv_input_scale": 0.002, "side_input_scale": 0.0, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 2, "input_channels": 8, "output_channels": 16, "input_height": 8, "input_width": 8, "filter_height": 3, "filter_width": 3, "vertical_stride": 2, "horizontal_stride": 2, "conv_input_scale": 0.002, "side_input_scale": 0.5, "bias_scale": 1, "padding_type": "VALID" }, { "batch_size": 2, "input_channels": 16, "output_channels": 16, "input_height": 9, "input_width": 9, "filter_height": 3, "filter_width": 3, "vertical_stride": 1, "horizontal_stride": 1, "conv_input_scale": 0.001, "side_input_scale": 0.5, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 3, "input_channels": 8, "output_channels": 8, "input_height": 9, "input_width": 9, "filter_height": 5, "filter_width": 5, "vertical_stride": 1, "horizontal_stride": 1, "conv_input_scale": 0.001, "side_input_scale": 0.5, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 3, "input_channels": 8, "output_channels": 8, "input_height": 9, "input_width": 9, "filter_height": 7, "filter_width": 1, "vertical_stride": 2, "horizontal_stride": 1, "conv_input_scale": 0.002, "side_input_scale": 0.5, "bias_scale": 1, "padding_type": "SAME" }, { "batch_size": 3, "input_channels": 8, "output_channels": 8, "input_height": 9, "input_width": 9, "filter_height": 1, "filter_width": 7, "vertical_stride": 1, "horizontal_stride": 1, "conv_input_scale": 0.002, "side_input_scale": 0.5, "bias_scale": 1, "padding_type": "SAME" }, ] return _test_params def _Int8Roundtrip(fn, tensor): return array_ops.bitcast( fn(array_ops.bitcast(tensor, dtypes.int8)), dtypes.qint8) def _NchwVectCToNchw(in_tensor): # [N, C / 4, H, W, 4] => [N, C / 4, 4, H, W] == [N, C, H, W] t = array_ops.transpose(in_tensor, [0, 1, 4, 2, 3]) n = in_tensor.shape.dims[0].value c = in_tensor.shape.dims[1].value * in_tensor.shape.dims[4].value h = in_tensor.shape.dims[2].value w = in_tensor.shape.dims[3].value return array_ops.reshape(t, [n, c, h, w]) def _NchwVectCToNhwc(in_tensor): # [N, C / 4, H, W, 4] => [N, H, W, C / 4, 4] == [N, H, W, C] t = array_ops.transpose(in_tensor, [0, 2, 3, 1, 4]) n = in_tensor.shape.dims[0].value h = in_tensor.shape.dims[2].value w = in_tensor.shape.dims[3].value c = in_tensor.shape.dims[1].value * in_tensor.shape.dims[4].value return array_ops.reshape(t, [n, h, w, c]) def _OihwVectIToHwio(in_tensor): # [O, I / 4, H, W, 4] => [O, I / 4, 4, H, W] == [O, I, H, W] t = array_ops.transpose(in_tensor, [2, 3, 1, 4, 0]) o = in_tensor.shape.dims[0].value i = in_tensor.shape.dims[1].value * in_tensor.shape.dims[4].value h = in_tensor.shape.dims[2].value w = in_tensor.shape.dims[3].value return array_ops.reshape(t, [h, w, i, o]) def _NchwToNchwVectC(in_tensor): n, c, h, w = in_tensor.shape.as_list() assert c % 4 == 0 t = array_ops.reshape(in_tensor, [n, c // 4, 4, h, w]) return array_ops.transpose(t, [0, 1, 3, 4, 2]) def _NhwcToNchwVectC(in_tensor): # [H, H, W, C] => [N, H, W, C //4, 4] => [N, C / 4, H, W, 4] n, h, w, c = in_tensor.shape.as_list() assert c % 4 == 0 t = array_ops.reshape(in_tensor, [n, h, w, c // 4, 4]) return array_ops.transpose(t, [0, 3, 1, 2, 4]) def _HwioToOihw(in_tensor): return array_ops.transpose(in_tensor, [3, 2, 0, 1]) def _SimulateFusedConv2dBiasActivationInt8OnCpu(conv_input_scale, conv_input, kernel, padding, strides, side_input_scale, side_input, biases, apply_relu): """Simulates the int8 fused 2-D convolution op using separate float ops. The arguments and return values have the same format, meanings and restrictions as the actual op. Args: conv_input_scale: A scalar 'float'. conv_input: A `Tensor` of type `qint8` in NHWC layout. kernel: A `Tensor` of type `qint8` in HWIO layout. padding: A `string` from: `"SAME", "VALID"`. strides: A list of `ints`. side_input_scale: A scalar 'float'. side_input: A `Tensor` of type `qint8` in NHWC layout. biases: A `Tensor` of type `float32` in NHWC layout. apply_relu: A boolean to specify whether to apply "Relu" activation function that clips outputs to the range [0, 127], or "None" activation that clips to the range [-128, 127]. Returns: A `Tensor` of type `qint8` in NHWC layout. """ conv_result = nn_ops.conv2d( math_ops.cast(conv_input, dtypes.float32), math_ops.cast(kernel, dtypes.float32), strides=strides, padding=padding, data_format="NHWC") * conv_input_scale conv_and_side_inputs = conv_result + side_input_scale * math_ops.cast( side_input, dtypes.float32) output = nn_ops.bias_add(conv_and_side_inputs, biases, data_format="NHWC") if apply_relu: output = nn_ops.relu(output) # In this case quantization is identical to clipping and casting. result, _, _ = gen_array_ops.quantize_v2(output, -128, 127, dtypes.qint8) return result # FusedConv2DBiasActivation on CPU supports only NHWC/HWIO data format. class FusedConvInt8CPUTests(object): """Verify quantization with CPU kernel.""" _test_params = _GetFusedConvInt8TestParams() @contextlib.contextmanager def test_scope(self): # pylint: disable=invalid-name """Can be overridden in base classes to provide a test scope.""" yield def runTest(self, test_param, apply_relu): """Runs tests for dimensions configured in test_param.""" batch_size = test_param["batch_size"] input_channels = test_param["input_channels"] output_channels = test_param["output_channels"] input_height = test_param["input_height"] input_width = test_param["input_width"] filter_height = test_param["filter_height"] filter_width = test_param["filter_width"] vertical_stride = test_param["vertical_stride"] horizontal_stride = test_param["horizontal_stride"] conv_input_scale = test_param["conv_input_scale"] side_input_scale = test_param["side_input_scale"] bias_scale = test_param["bias_scale"] padding_type = test_param["padding_type"] with self.session() as sess, self.test_scope(): conv_input, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform( [batch_size, input_height, input_width, input_channels], minval=-0.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) kernel, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform( [filter_height, filter_width, input_channels, output_channels], minval=-1.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) output_height = _CalculateConvolvedOutputDim(input_height, filter_height, vertical_stride, padding_type) output_width = _CalculateConvolvedOutputDim(input_width, filter_width, horizontal_stride, padding_type) tf_logging.info("output_height=%s, output_width=%s", output_height, output_width) side_input, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform( [batch_size, output_height, output_width, output_channels], minval=0.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) biases = random_ops.random_uniform([output_channels], minval=-10 * bias_scale, maxval=20 * bias_scale, dtype=dtypes.float32) strides = [1, vertical_stride, horizontal_stride, 1] actual = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( conv_input, kernel, biases, strides=strides, padding=padding_type, conv_input_scale=conv_input_scale, side_input_scale=side_input_scale, side_input=(None if side_input_scale == 0.0 else side_input), activation_mode="Relu" if apply_relu else "None", data_format="NHWC", filter_format="HWIO") expected = _SimulateFusedConv2dBiasActivationInt8OnCpu( conv_input_scale, conv_input, kernel, padding_type, strides, side_input_scale, side_input, biases, apply_relu) actual_y, expected_y = sess.run([actual, expected]) self.assertAllClose(actual_y, expected_y, rtol=0, atol=1) def testFusedConvInt8(self): for apply_relu in [True, False]: for test_param in self._test_params: self.runTest(test_param, apply_relu) # Test that GPU and CPU kernels produce identical results for QInt8 data type. class FusedConvInt8CorrespondenceTests(object): """Verify quantization with CPU kernel.""" _test_params = _GetFusedConvInt8TestParams() @contextlib.contextmanager def test_scope(self): # pylint: disable=invalid-name """Can be overridden in base classes to provide a test scope.""" yield def runTest(self, test_param, apply_relu): """Runs tests for dimensions configured in test_param.""" batch_size = test_param["batch_size"] input_channels = test_param["input_channels"] output_channels = test_param["output_channels"] input_height = test_param["input_height"] input_width = test_param["input_width"] filter_height = test_param["filter_height"] filter_width = test_param["filter_width"] vertical_stride = test_param["vertical_stride"] horizontal_stride = test_param["horizontal_stride"] conv_input_scale = test_param["conv_input_scale"] side_input_scale = test_param["side_input_scale"] bias_scale = test_param["bias_scale"] padding_type = test_param["padding_type"] with self.session() as sess, self.test_scope(): conv_input, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform( [batch_size, input_channels // 4, input_height, input_width, 4], minval=-0.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) kernel, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform([ output_channels, input_channels // 4, filter_height, filter_width, 4 ], minval=-1.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) output_height = _CalculateConvolvedOutputDim(input_height, filter_height, vertical_stride, padding_type) output_width = _CalculateConvolvedOutputDim(input_width, filter_width, horizontal_stride, padding_type) tf_logging.info("output_height=%s, output_width=%s", output_height, output_width) side_input, _, _ = gen_array_ops.quantize_v2( random_ops.random_uniform([ batch_size, output_channels // 4, output_height, output_width, 4 ], minval=0.0, maxval=1.0, dtype=dtypes.float32), -1.0, 1.0, dtypes.qint8) biases = random_ops.random_uniform([output_channels], minval=-10 * bias_scale, maxval=20 * bias_scale, dtype=dtypes.float32) with ops.device("/cpu:0"): t = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( _Int8Roundtrip(_NchwVectCToNhwc, conv_input), _Int8Roundtrip(_OihwVectIToHwio, kernel), biases, strides=[1, vertical_stride, horizontal_stride, 1], padding=padding_type, conv_input_scale=conv_input_scale, side_input_scale=side_input_scale, side_input=(None if side_input_scale == 0.0 else _Int8Roundtrip( _NchwVectCToNhwc, side_input)), activation_mode="Relu" if apply_relu else "None", data_format="NHWC", filter_format="HWIO") cpu_result = _Int8Roundtrip(_NhwcToNchwVectC, t) with ops.device("/gpu:0"): t = fused_conv2d_bias_activation_op.fused_conv2d_bias_activation( conv_input, kernel, biases, strides=[1, 1, vertical_stride, horizontal_stride], padding=padding_type, conv_input_scale=conv_input_scale, side_input_scale=side_input_scale, side_input=(None if side_input_scale == 0.0 else side_input), activation_mode="Relu" if apply_relu else "None", data_format="NCHW_VECT_C", filter_format="OIHW_VECT_I") gpu_result = t cpu_y, gpu_y = sess.run([cpu_result, gpu_result]) self.assertAllClose(cpu_y, gpu_y, rtol=0, atol=0) def testFusedConvInt8(self): if not test.is_gpu_available( cuda_only=True, min_cuda_compute_capability=(6, 1)): tf_logging.info("int8 test skipped because not run with --config=cuda or " "no GPUs with compute capability >= 6.1 are available.") return for apply_relu in [True, False]: for test_param in self._test_params: self.runTest(test_param, apply_relu) if __name__ == "__main__": test.main()
the-stack_106_31777
import codecs import os import re from setuptools import find_packages, setup def get_absolute_path(*args): """Transform relative pathnames into absolute pathnames.""" return os.path.join(os.path.dirname(os.path.abspath(__file__)), *args) def get_contents(*args): """Get the contents of a file relative to the source distribution directory.""" with codecs.open(get_absolute_path(*args), "r", "UTF-8") as handle: return handle.read() def get_version(*args): """Extract the version number from a Python module.""" contents = get_contents(*args) metadata = dict(re.findall("__([a-z]+)__ = ['\"]([^'\"]+)", contents)) return metadata["version"] setup( name="ppln-mlflow", version=get_version("ppln_mlflow", "__init__.py"), author="Miras Amir", author_email="[email protected]", description="MLflow hook for ppln", long_description_content_type="text/markdown", url="https://github.com/ppln-team/ppln-mlflow", packages=find_packages(), install_requires=["mlflow>=1.4"], setup_requires=["pytest-runner"], python_requires=">=3.6.0", )
the-stack_106_31778
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A context for execution based on an embedded executor instance.""" import asyncio import contextlib from typing import Any from typing import Callable from typing import Optional import tensorflow as tf from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import structure from tensorflow_federated.python.common_libs import tracing from tensorflow_federated.python.core.api import computation_base from tensorflow_federated.python.core.impl.compiler import compiler_pipeline from tensorflow_federated.python.core.impl.context_stack import context_base from tensorflow_federated.python.core.impl.executors import cardinalities_utils from tensorflow_federated.python.core.impl.executors import executor_base from tensorflow_federated.python.core.impl.executors import executor_factory from tensorflow_federated.python.core.impl.executors import executor_value_base from tensorflow_federated.python.core.impl.executors import ingestable_base from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import type_conversions from tensorflow_federated.python.core.impl.types import typed_object def _unwrap(value): if isinstance(value, tf.Tensor): return value.numpy() elif isinstance(value, structure.Struct): return structure.Struct( (k, _unwrap(v)) for k, v in structure.iter_elements(value)) else: return value class AsyncExecutionContextValue(typed_object.TypedObject): """Wrapper class for values produced by `ExecutionContext`.""" def __init__(self, value, type_spec): py_typecheck.check_type(type_spec, computation_types.Type) self._value = value self._type_spec = type_spec @property def type_signature(self): return self._type_spec @property def value(self): return self._value async def _ingest(executor, val, type_spec): """A coroutine that handles ingestion. Args: executor: An instance of `executor_base.Executor`. val: The first argument to `context_base.Context.ingest()`. type_spec: The second argument to `context_base.Context.ingest()`. Returns: The result of the ingestion. Raises: TypeError: If the `val` is not a value of type `type_spec`. """ if isinstance(val, executor_value_base.ExecutorValue): return val elif isinstance(val, ingestable_base.Ingestable): val_type = val.type_signature py_typecheck.check_type(val_type, computation_types.Type) type_spec.check_assignable_from(val_type) return await val.ingest(executor) elif (isinstance(val, structure.Struct) and not type_spec.is_federated()): type_spec.check_struct() v_elem = structure.to_elements(val) t_elem = structure.to_elements(type_spec) if len(v_elem) != len(t_elem): raise TypeError( 'Value {} does not match type {}: mismatching tuple length.'.format( val, type_spec)) for ((vk, _), (tk, _)) in zip(v_elem, t_elem): if vk not in [tk, None]: raise TypeError( 'Value {} does not match type {}: mismatching tuple element ' 'names {} vs. {}.'.format(val, type_spec, vk, tk)) ingested = [] for (_, v), (_, t) in zip(v_elem, t_elem): ingested.append(_ingest(executor, v, t)) ingested = await asyncio.gather(*ingested) return await executor.create_struct( structure.Struct( (name, val) for (name, _), val in zip(t_elem, ingested))) else: return await executor.create_value(val, type_spec) async def _invoke(executor, comp, arg, result_type: computation_types.Type): """A coroutine that handles invocation. Args: executor: An instance of `executor_base.Executor`. comp: The first argument to `context_base.Context.invoke()`. arg: The optional second argument to `context_base.Context.invoke()`. result_type: The type signature of the result. This is used to convert the execution result into the proper container types. Returns: The result of the invocation. """ if arg is not None: py_typecheck.check_type(arg, executor_value_base.ExecutorValue) comp = await executor.create_value(comp) result = await executor.create_call(comp, arg) py_typecheck.check_type(result, executor_value_base.ExecutorValue) result_val = _unwrap(await result.compute()) return type_conversions.type_to_py_container(result_val, result_type) def _unwrap_execution_context_value(val): """Recursively removes wrapping from `val` under anonymous tuples.""" if isinstance(val, structure.Struct): value_elements_iter = structure.iter_elements(val) return structure.Struct((name, _unwrap_execution_context_value(elem)) for name, elem in value_elements_iter) elif isinstance(val, AsyncExecutionContextValue): return _unwrap_execution_context_value(val.value) else: return val class AsyncExecutionContext(context_base.Context): """An asynchronous execution context backed by an `executor_base.Executor`. This context's `ingest` and `invoke` methods return Python coroutine objects which represent the actual work of ingestion and invocation in the backing executor. """ def __init__(self, executor_fn: executor_factory.ExecutorFactory, compiler_fn: Optional[Callable[[computation_base.Computation], Any]] = None): """Initializes an execution context. Args: executor_fn: Instance of `executor_factory.ExecutorFactory`. compiler_fn: A Python function that will be used to compile a computation. """ py_typecheck.check_type(executor_fn, executor_factory.ExecutorFactory) self._executor_factory = executor_fn if compiler_fn is not None: py_typecheck.check_callable(compiler_fn) self._compiler_pipeline = compiler_pipeline.CompilerPipeline(compiler_fn) else: self._compiler_pipeline = None async def ingest(self, val, type_spec): return AsyncExecutionContextValue(val, type_spec) async def invoke(self, comp, arg): comp.type_signature.check_function() # Save the type signature before compiling. Compilation currently loses # container types, so we must remember them here so that they can be # restored in the output. result_type = comp.type_signature.result if self._compiler_pipeline is not None: with tracing.span('ExecutionContext', 'Compile', span=True): comp = self._compiler_pipeline.compile(comp) with tracing.span('ExecutionContext', 'Invoke', span=True): @contextlib.contextmanager def reset_factory_on_error(ex_factory, cardinalities): try: yield ex_factory.create_executor(cardinalities) except Exception as e: ex_factory.clean_up_executors() raise e if arg is not None: py_typecheck.check_type(arg, AsyncExecutionContextValue) unwrapped_arg = _unwrap_execution_context_value(arg) cardinalities = cardinalities_utils.infer_cardinalities( unwrapped_arg, arg.type_signature) else: cardinalities = {} with reset_factory_on_error(self._executor_factory, cardinalities) as executor: py_typecheck.check_type(executor, executor_base.Executor) if arg is not None: arg = await tracing.wrap_coroutine_in_current_trace_context( _ingest(executor, unwrapped_arg, arg.type_signature)) return await tracing.wrap_coroutine_in_current_trace_context( _invoke(executor, comp, arg, result_type))
the-stack_106_31779
import re class TokexTokenizer(object): """ Base class for Tokex tokenizers. Uses re.findall & a collection of regular expressions to break up an input string into a sequence of tokens. Can be extended by subclassing this class & implementing a `tokenize` function or creating a custom list of tokenizer_regexes/tweaking tokenize_newlines Use of this function without subclassing will tokenize an input string by breaking up all occurrances of quotes into their own separate token; all sequences of alphanumeric tokens into their own separate token, and all concurrent non-alphanumeric space characters into their own token. """ tokenizer_regexes = ( r'"[^"]*"', r"'[^']*'", r"\b\w+\b", r"[^a-zA-Z0-9_ \t\n\r\f\v]+" ) def __init__(self, tokenizer_regexes=None, tokenize_newlines=False, ignore_empty_lines=False): """ Inputs: tokenizer_regexes - Can be passed to provide a custom list of tokenizer regexes to parse an input string with. tokenize_newlines - A boolean indicating whether newlines should be treated as tokens ignore_empty_lines - A boolean indicating whether we should skip over empty lines or not. Only has an effect if tokenize_newlines is passed and True """ self.tokenize_newlines = tokenize_newlines self.ignore_empty_lines = ignore_empty_lines if tokenizer_regexes: self.tokenizer_regexes = tokenizer_regexes if self.tokenize_newlines: self.tokenizer_regexes = list(self.tokenizer_regexes) + [r"\n"] def tokenize(self, input_string): """ Function which is called by tokex to break an input string into tokens, processed by tokex. Inputs: input_string - A string, to break into tokens. Outputs: A list of tokens from input_string. """ tokens = re.findall( "(%s)" % "|".join(self.tokenizer_regexes), input_string, flags=re.MULTILINE ) if self.tokenize_newlines and self.ignore_empty_lines: for idx in reversed(range(len(tokens))): if tokens[idx] == "\n" and ((idx > 0 and tokens[idx - 1] == "\n") or idx == 0): tokens.pop(idx) return tokens class NumericTokenizer(TokexTokenizer): """ Tokenizers which keeps numeric values together as a single token """ tokenizer_regexes = ( r'"[^"]*"', r"'[^']*'", r"\S+", )
the-stack_106_31780
# -*- coding: utf-8 -*- """ hooks.pre_gen_project ~~~~~~~~~~~~~~~~~~~~~ Hooks to run before project generation. :copyright: (c) 2016 by John P. Neumann. :license: BSD, see LICENSE for more details. """ import re import sys MODULE_REGEX = r'^[_a-zA-Z][_a-zA-Z0-9]+$' module_name = '{{ cookiecutter.project_slug }}' if not re.match(MODULE_REGEX, module_name): sys.stderr.write('ERROR: The project slug ({0}) is not a valid Python module name. Please do not use a - and use ' '_ instead\n'.format(module_name)) sys.exit(1)
the-stack_106_31781
from setuptools import setup requirements = [] with open("requirements.txt", "r") as fh: for line in fh: requirements.append(line.strip()) with open("README.md", encoding="utf-8") as f: long_description = f.read() setup( name = "welearn-bot-iiserkol", description = "A command line client for WeLearn, in the IISER Kolkata domain", long_description=long_description, long_description_content_type="text/markdown", author = "Parth Bibekar", author_email = "[email protected]", url = "https://github.com/ParthBibekar/Welearn-bot", version = "1.0.0", license = "MIT", scripts = ["welearn_bot"], install_requires = requirements )
the-stack_106_31784
import os from virgil_trust_provisioner.core_utils import CRCCCITT from virgil_trust_provisioner.data_types import TrustList class FileKeyStorage: def __init__(self, storage_path): super(FileKeyStorage, self).__init__() self.storage_path = storage_path def __save_key_pair(self, file_name, key_pair): file_prefix = CRCCCITT().calculate(bytes(key_pair.public_key)) file_path_public = os.path.join(self.storage_path, file_name + '_pub_' + str(file_prefix)) file_path_private = os.path.join(self.storage_path, file_name + '_priv_' + str(file_prefix)) open(file_path_public, 'wb').write(bytearray(key_pair.public_key)) open(file_path_private, 'wb').write(bytearray(key_pair.private_key)) def __save_trust_list(self, file_name, trust_list): file_prefix = CRCCCITT().calculate(bytes(trust_list)) if not os.path.exists(self.storage_path): os.makedirs(self.storage_path) file_path = os.path.join( self.storage_path, file_name + '_' + str(file_prefix) + '.tl' ) open(file_path, 'wb').write(bytes(trust_list)) def __save_blob(self, file_name, data): file_path = os.path.join(self.storage_path, file_name) open(file_path, 'wb').write(data) def save(self, data, place): """ Store data to file in hardcoded place. Args: data: Data for storing. place: File name for storing data. """ if isinstance(data, TrustList): self.__save_trust_list(place, data) if isinstance(data, (bytes, bytearray)): self.__save_blob(place, data)
the-stack_106_31786
# Perform the necessary imports import matplotlib.pyplot as plt from sklearn.manifold import TSNE # from rlkit.envs.read_hdf5 import get_dataset, qlearning_dataset import matplotlib.pyplot as plt import numpy as np import h5py import torch from uncertainty_modeling.rl_uncertainty.model import * import gym import d4rl def get_diffs(x, model, batch_size=256): model.eval() with torch.no_grad(): batchified = x.split(batch_size) stacked = [] for _x in batchified: model.eval() diffs = [] _x = _x.to(next(model.parameters()).device).float() x_tilde = model(_x) diffs.append((x_tilde - _x).cpu()) for layer in model.enc_layer_list: _x = layer(_x) x_tilde = layer(x_tilde) diffs.append((x_tilde - _x).cpu()) stacked.append(diffs) stacked = list(zip(*stacked)) diffs = [torch.cat(s, dim=0).numpy() for s in stacked] return diffs def get_keys(h5file): keys = [] def visitor(name, item): if isinstance(item, h5py.Dataset): keys.append(name) h5file.visititems(visitor) return keys def get_dataset(h5path): dataset_file = h5py.File(h5path, 'r') data_dict = {k: dataset_file[k][:] for k in get_keys(dataset_file)} dataset_file.close() return data_dict def qlearning_dataset(dataset): """ Returns datasets formatted for use by standard Q-learning algorithms, with observations, actions, next_observations, rewards, and a terminal flag. Args: dataset: dataset to pass in for processing. Returns: A dictionary containing keys: observations: An N x dim_obs array of observations. actions: An N x dim_action array of actions. next_observations: An N x dim_obs array of next observations. rewards: An N-dim float array of rewards. terminals: An N-dim boolean array of "done" or episode termination flags. """ N = dataset['rewards'].shape[0] obs_ = [] next_obs_ = [] action_ = [] reward_ = [] done_ = [] for i in range(N-1): obs = dataset['observations'][i] new_obs = dataset['observations'][i+1] action = dataset['actions'][i] reward = dataset['rewards'][i] done_bool = bool(dataset['terminals'][i]) obs_.append(obs) next_obs_.append(new_obs) action_.append(action) reward_.append(reward) done_.append(done_bool) return { 'observations': np.array(obs_), 'actions': np.array(action_), 'next_observations': np.array(next_obs_), 'rewards': np.array(reward_), 'terminals': np.array(done_), } file_path = '/home/user/Documents/Workspace-Changyeop/Workspace/AdvancedDL/AI602_Project/bear/online_buffer.hdf5' # offline_buffer_itr_140 file_path2 = '/home/user/Documents/Workspace-Changyeop/Workspace/AdvancedDL/AI602_Project/bear/offline_buffer_itr_140.hdf5' # offline_buffer_itr_140 # Read the saved replay buffer data_dict = get_dataset(file_path) data_dict2 = get_dataset(file_path2) print(data_dict['observations'].shape) print(data_dict['actions'].shape) # feature_sub = np.hstack([data_dict['observations'][::10], data_dict['actions'][::10]]) # # feature_sub2 = np.hstack([data_dict2['observations'][::10], data_dict2['actions'][::10]]) feature_sub = np.hstack([data_dict['observations'], data_dict['actions']]) # feature_sub2 = np.hstack([data_dict2['observations'], data_dict2['actions']]) print(np.max(data_dict['observations'])) print(np.min(data_dict['observations'])) print(np.max(data_dict['actions'])) print(np.min(data_dict['actions'])) a = np.linspace(0, 1, 7) b = np.linspace(0, 1, 7) c = np.linspace(0, 1, 7) d = np.linspace(0, 1, 7) av, bv, cv, dv = np.meshgrid(a,b,c,d) meshgrid_data = torch.from_numpy(np.stack([av,bv,cv,dv], axis=-1)) meshgrid_data = np.reshape(meshgrid_data, [-1, 4]) model = RaPP(4).cuda() model.load_state_dict(torch.load("/home/user/Documents/Workspace-Changyeop/Workspace/AdvancedDL/AI602_Project/bear/uncertainty_modeling/rl_uncertainty/rapp/model/point-robot/model_1980.pt")) # if not handling ensemble # id_dif = get_diffs(meshgrid_data, model) id_dif = get_diffs(torch.from_numpy(feature_sub2), model) id_difs = torch.cat([torch.from_numpy(i) for i in id_dif], dim=-1).numpy() id_dif = (id_difs**2).mean(axis=1) print(np.mean(id_dif), np.max(id_dif), np.min(id_dif)) # # # # feature = np.vstack([feature_sub, feature_sub2, meshgrid_data]) # feature = np.vstack([expert_data, medium_data]) # # model = TSNE(learning_rate=10) # transformed = model.fit_transform(feature) # # # xs = transformed[:,0] # ys = transformed[:,1] # # # plt.scatter(xs[1600:3200],ys[1600:3200],color="g") # plt.scatter(xs[:2000],ys[:2000],color="g") # import seaborn as sns # cmap = sns.diverging_palette(240, 10, l=65, center="dark", as_cmap=True) # vmin= np.min(id_dif) # vmax= np.max(id_dif) # sc = plt.scatter(xs[2000:],ys[2000:], c=id_dif,vmin=vmin, vmax=vmax, cmap=cmap) # plt.colorbar(sc) # plt.show()
the-stack_106_31790
from json import dumps from pathlib import Path from os import getenv path = Path(".") directory = [] origin = getenv("origin", "https://noo.farfrom.world/") for noo_file in path.glob("*/*.noofile.yml"): directory.append(str(noo_file)) # Export as json with open("index.json", "w+") as f: f.write(dumps(directory)) # Export as html # Yes this sucks, I didn't want to add the complexity of svelte. html = "" for noo_file in directory: html += f"<a href=\"/{noo_file}\">{noo_file}</a><br>" with open("index.html", "w+") as f: f.write(html) # Build registry with open("registry.json", "w+") as f: registry = {} for noo_file in directory: name = noo_file.replace(".noofile.yml", "") url = origin + noo_file registry[name] = url f.write(dumps(registry))
the-stack_106_31793
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import signal import sys import traceback import threading from typing import Optional, TYPE_CHECKING, List try: import PyQt5 except Exception: sys.exit("Error: Could not import PyQt5 on Linux systems, you may try 'sudo apt-get install python3-pyqt5'") from PyQt5.QtGui import QGuiApplication from PyQt5.QtWidgets import (QApplication, QSystemTrayIcon, QWidget, QMenu, QMessageBox) from PyQt5.QtCore import QObject, pyqtSignal, QTimer, Qt import PyQt5.QtCore as QtCore from electrum.i18n import _, set_language from electrum.plugin import run_hook from electrum.base_wizard import GoBack from electrum.util import (UserCancelled, profiler, send_exception_to_crash_reporter, WalletFileException, BitcoinException, get_new_wallet_name) from electrum.wallet import Wallet, Abstract_Wallet from electrum.wallet_db import WalletDB from electrum.logging import Logger from .installwizard import InstallWizard, WalletAlreadyOpenInMemory from .util import get_default_language, read_QIcon, ColorScheme, custom_message_box, MessageBoxMixin from .main_window import ElectrumWindow from .network_dialog import NetworkDialog from .stylesheet_patcher import patch_qt_stylesheet from .lightning_dialog import LightningDialog from .watchtower_dialog import WatchtowerDialog from .exception_window import Exception_Hook if TYPE_CHECKING: from electrum.daemon import Daemon from electrum.simple_config import SimpleConfig from electrum.plugin import Plugins class OpenFileEventFilter(QObject): def __init__(self, windows): self.windows = windows super(OpenFileEventFilter, self).__init__() def eventFilter(self, obj, event): if event.type() == QtCore.QEvent.FileOpen: if len(self.windows) >= 1: self.windows[0].pay_to_URI(event.url().toString()) return True return False class QElectrumApplication(QApplication): new_window_signal = pyqtSignal(str, object) class QNetworkUpdatedSignalObject(QObject): network_updated_signal = pyqtSignal(str, object) class ElectrumGui(Logger): network_dialog: Optional['NetworkDialog'] lightning_dialog: Optional['LightningDialog'] watchtower_dialog: Optional['WatchtowerDialog'] @profiler def __init__(self, config: 'SimpleConfig', daemon: 'Daemon', plugins: 'Plugins'): set_language(config.get('language', get_default_language())) Logger.__init__(self) self.logger.info(f"Qt GUI starting up... Qt={QtCore.QT_VERSION_STR}, PyQt={QtCore.PYQT_VERSION_STR}") # Uncomment this call to verify objects are being properly # GC-ed when windows are closed #network.add_jobs([DebugMem([Abstract_Wallet, SPV, Synchronizer, # ElectrumWindow], interval=5)]) QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_X11InitThreads) if hasattr(QtCore.Qt, "AA_ShareOpenGLContexts"): QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_ShareOpenGLContexts) if hasattr(QGuiApplication, 'setDesktopFileName'): QGuiApplication.setDesktopFileName('electrum-bsty.desktop') self.gui_thread = threading.current_thread() self.config = config self.daemon = daemon self.plugins = plugins self.windows = [] # type: List[ElectrumWindow] self.efilter = OpenFileEventFilter(self.windows) self.app = QElectrumApplication(sys.argv) self.app.installEventFilter(self.efilter) self.app.setWindowIcon(read_QIcon("electrum-bsty.png")) self._cleaned_up = False # timer self.timer = QTimer(self.app) self.timer.setSingleShot(False) self.timer.setInterval(500) # msec self.network_dialog = None self.lightning_dialog = None self.watchtower_dialog = None self.network_updated_signal_obj = QNetworkUpdatedSignalObject() self._num_wizards_in_progress = 0 self._num_wizards_lock = threading.Lock() self.dark_icon = self.config.get("dark_icon", False) self.tray = None self._init_tray() self.app.new_window_signal.connect(self.start_new_window) self.set_dark_theme_if_needed() run_hook('init_qt', self) def _init_tray(self): self.tray = QSystemTrayIcon(self.tray_icon(), None) self.tray.setToolTip('Electrum') self.tray.activated.connect(self.tray_activated) self.build_tray_menu() self.tray.show() def set_dark_theme_if_needed(self): use_dark_theme = self.config.get('qt_gui_color_theme', 'default') == 'dark' if use_dark_theme: try: import qdarkstyle self.app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) except BaseException as e: use_dark_theme = False self.logger.warning(f'Error setting dark theme: {repr(e)}') # Apply any necessary stylesheet patches patch_qt_stylesheet(use_dark_theme=use_dark_theme) # Even if we ourselves don't set the dark theme, # the OS/window manager/etc might set *a dark theme*. # Hence, try to choose colors accordingly: ColorScheme.update_from_widget(QWidget(), force_dark=use_dark_theme) def build_tray_menu(self): if not self.tray: return # Avoid immediate GC of old menu when window closed via its action if self.tray.contextMenu() is None: m = QMenu() self.tray.setContextMenu(m) else: m = self.tray.contextMenu() m.clear() network = self.daemon.network m.addAction(_("Network"), self.show_network_dialog) if network and network.lngossip: m.addAction(_("Lightning Network"), self.show_lightning_dialog) if network and network.local_watchtower: m.addAction(_("Local Watchtower"), self.show_watchtower_dialog) for window in self.windows: name = window.wallet.basename() submenu = m.addMenu(name) submenu.addAction(_("Show/Hide"), window.show_or_hide) submenu.addAction(_("Close"), window.close) m.addAction(_("Dark/Light"), self.toggle_tray_icon) m.addSeparator() m.addAction(_("Exit Electrum"), self.app.quit) def tray_icon(self): if self.dark_icon: return read_QIcon('electrum_dark_icon.png') else: return read_QIcon('electrum_light_icon.png') def toggle_tray_icon(self): if not self.tray: return self.dark_icon = not self.dark_icon self.config.set_key("dark_icon", self.dark_icon, True) self.tray.setIcon(self.tray_icon()) def tray_activated(self, reason): if reason == QSystemTrayIcon.DoubleClick: if all([w.is_hidden() for w in self.windows]): for w in self.windows: w.bring_to_top() else: for w in self.windows: w.hide() def _cleanup_before_exit(self): if self._cleaned_up: return self._cleaned_up = True self.app.new_window_signal.disconnect() self.efilter = None # If there are still some open windows, try to clean them up. for window in list(self.windows): window.close() window.clean_up() if self.network_dialog: self.network_dialog.close() self.network_dialog.clean_up() self.network_dialog = None self.network_updated_signal_obj = None if self.lightning_dialog: self.lightning_dialog.close() self.lightning_dialog = None if self.watchtower_dialog: self.watchtower_dialog.close() self.watchtower_dialog = None # Shut down the timer cleanly self.timer.stop() self.timer = None # clipboard persistence. see http://www.mail-archive.com/[email protected]/msg17328.html event = QtCore.QEvent(QtCore.QEvent.Clipboard) self.app.sendEvent(self.app.clipboard(), event) if self.tray: self.tray.hide() self.tray.deleteLater() self.tray = None def _maybe_quit_if_no_windows_open(self) -> None: """Check if there are any open windows and decide whether we should quit.""" # keep daemon running after close if self.config.get('daemon'): return # check if a wizard is in progress with self._num_wizards_lock: if self._num_wizards_in_progress > 0 or len(self.windows) > 0: return self.app.quit() def new_window(self, path, uri=None): # Use a signal as can be called from daemon thread self.app.new_window_signal.emit(path, uri) def show_lightning_dialog(self): if not self.daemon.network.has_channel_db(): return if not self.lightning_dialog: self.lightning_dialog = LightningDialog(self) self.lightning_dialog.bring_to_top() def show_watchtower_dialog(self): if not self.watchtower_dialog: self.watchtower_dialog = WatchtowerDialog(self) self.watchtower_dialog.bring_to_top() def show_network_dialog(self): if self.network_dialog: self.network_dialog.on_update() self.network_dialog.show() self.network_dialog.raise_() return self.network_dialog = NetworkDialog( network=self.daemon.network, config=self.config, network_updated_signal_obj=self.network_updated_signal_obj) self.network_dialog.show() def _create_window_for_wallet(self, wallet): w = ElectrumWindow(self, wallet) self.windows.append(w) self.build_tray_menu() w.warn_if_testnet() w.warn_if_watching_only() return w def count_wizards_in_progress(func): def wrapper(self: 'ElectrumGui', *args, **kwargs): with self._num_wizards_lock: self._num_wizards_in_progress += 1 try: return func(self, *args, **kwargs) finally: with self._num_wizards_lock: self._num_wizards_in_progress -= 1 self._maybe_quit_if_no_windows_open() return wrapper @count_wizards_in_progress def start_new_window(self, path, uri, *, app_is_starting=False) -> Optional[ElectrumWindow]: '''Raises the window for the wallet if it is open. Otherwise opens the wallet and creates a new window for it''' wallet = None try: wallet = self.daemon.load_wallet(path, None) except Exception as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (1):\n' + repr(e)) # if app is starting, still let wizard to appear if not app_is_starting: return if not wallet: try: wallet = self._start_wizard_to_select_or_create_wallet(path) except (WalletFileException, BitcoinException) as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (2):\n' + repr(e)) if not wallet: return # create or raise window try: for window in self.windows: if window.wallet.storage.path == wallet.storage.path: break else: window = self._create_window_for_wallet(wallet) except Exception as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot create window for wallet') + ':\n' + repr(e)) if app_is_starting: wallet_dir = os.path.dirname(path) path = os.path.join(wallet_dir, get_new_wallet_name(wallet_dir)) self.start_new_window(path, uri) return if uri: window.pay_to_URI(uri) window.bring_to_top() window.setWindowState(window.windowState() & ~QtCore.Qt.WindowMinimized | QtCore.Qt.WindowActive) window.activateWindow() return window def _start_wizard_to_select_or_create_wallet(self, path) -> Optional[Abstract_Wallet]: wizard = InstallWizard(self.config, self.app, self.plugins, gui_object=self) try: path, storage = wizard.select_storage(path, self.daemon.get_wallet) # storage is None if file does not exist if storage is None: wizard.path = path # needed by trustedcoin plugin wizard.run('new') storage, db = wizard.create_storage(path) else: db = WalletDB(storage.read(), manual_upgrades=False) wizard.run_upgrades(storage, db) except (UserCancelled, GoBack): return except WalletAlreadyOpenInMemory as e: return e.wallet finally: wizard.terminate() # return if wallet creation is not complete if storage is None or db.get_action(): return wallet = Wallet(db, storage, config=self.config) wallet.start_network(self.daemon.network) self.daemon.add_wallet(wallet) return wallet def close_window(self, window: ElectrumWindow): if window in self.windows: self.windows.remove(window) self.build_tray_menu() # save wallet path of last open window if not self.windows: self.config.save_last_wallet(window.wallet) run_hook('on_close_window', window) self.daemon.stop_wallet(window.wallet.storage.path) def init_network(self): # Show network dialog if config does not exist if self.daemon.network: if self.config.get('auto_connect') is None: wizard = InstallWizard(self.config, self.app, self.plugins, gui_object=self) wizard.init_network(self.daemon.network) wizard.terminate() def main(self): # setup Ctrl-C handling and tear-down code first, so that user can easily exit whenever self.app.setQuitOnLastWindowClosed(False) # so _we_ can decide whether to quit self.app.lastWindowClosed.connect(self._maybe_quit_if_no_windows_open) self.app.aboutToQuit.connect(self._cleanup_before_exit) signal.signal(signal.SIGINT, lambda *args: self.app.quit()) # hook for crash reporter Exception_Hook.maybe_setup(config=self.config) # first-start network-setup try: self.init_network() except UserCancelled: return except GoBack: return except Exception as e: self.logger.exception('') return # start wizard to select/create wallet self.timer.start() path = self.config.get_wallet_path(use_gui_last_wallet=True) try: if not self.start_new_window(path, self.config.get('url'), app_is_starting=True): return except Exception as e: self.logger.error("error loading wallet (or creating window for it)") send_exception_to_crash_reporter(e) # Let Qt event loop start properly so that crash reporter window can appear. # We will shutdown when the user closes that window, via lastWindowClosed signal. # main loop self.logger.info("starting Qt main loop") self.app.exec_() # on some platforms the exec_ call may not return, so use _cleanup_before_exit def stop(self): self.logger.info('closing GUI') self.app.quit()
the-stack_106_31794
import pytest import gym from gym.spaces import MultiDiscrete from regym.environments import Task, EnvType from regym.environments import gym_parser @pytest.fixture def RPS_env(): import gym_rock_paper_scissors return gym.make('RockPaperScissors-v0') @pytest.fixture def Pendulum_env(): return gym.make('Pendulum-v0') def test_multidiscrete_action_flattening(): space = MultiDiscrete([3, 3, 2, 3]) expected_action_space_size = 54 action_space_size = gym_parser.compute_multidiscrete_space_size(space.nvec) assert action_space_size == expected_action_space_size def test_RPS_get_observation_dimensions(RPS_env): expected_observation_dim = [10, 10, 10] expected_observation_size = 30 expected_observation_type = 'Discrete' observation_dims, observation_size, observation_type = \ gym_parser.get_observation_dimensions_and_type(RPS_env) assert expected_observation_dim == observation_dims assert expected_observation_size == observation_size assert expected_observation_type == observation_type def test_RPS_get_action_dimensions(RPS_env): expected_action_dim = 3 expected_action_size = 3 expected_action_type = 'Discrete' a = gym_parser.get_action_dimensions_and_type(RPS_env) action_dims, action_dims_size, action_type = \ gym_parser.get_action_dimensions_and_type(RPS_env) assert expected_action_dim == action_dims assert expected_action_size == action_dims_size assert expected_action_type == action_type def test_creating_single_agent_env_with_multiagent_envtype_raises_value_error(Pendulum_env): with pytest.raises(ValueError) as _: _ = gym_parser.parse_gym_environment(Pendulum_env, env_type=EnvType.MULTIAGENT_SIMULTANEOUS_ACTION) with pytest.raises(ValueError) as _: _ = gym_parser.parse_gym_environment(Pendulum_env, env_type=EnvType.MULTIAGENT_SEQUENTIAL_ACTION) def test_creating_single_agent_env_with_multiagent_envtype_raises_value_error(RPS_env): with pytest.raises(ValueError) as _: _ = gym_parser.parse_gym_environment(RPS_env, env_type=EnvType.SINGLE_AGENT)
the-stack_106_31795
"""IPython terminal interface using prompt_toolkit in place of readline""" from __future__ import print_function import base64 import errno from getpass import getpass from io import BytesIO import os import signal import subprocess import sys import time from warnings import warn try: from queue import Empty # Py 3 except ImportError: from Queue import Empty # Py 2 from zmq import ZMQError from IPython.core import page from IPython.utils.py3compat import cast_unicode_py2, input from ipython_genutils.tempdir import NamedFileInTemporaryDirectory from traitlets import (Bool, Integer, Float, Unicode, List, Dict, Enum, Instance, Any) from traitlets.config import SingletonConfigurable from .completer import ZMQCompleter from .zmqhistory import ZMQHistoryManager from . import __version__ from prompt_toolkit.completion import Completer, Completion from prompt_toolkit.enums import DEFAULT_BUFFER, EditingMode from prompt_toolkit.filters import HasFocus, HasSelection, ViInsertMode, EmacsInsertMode from prompt_toolkit.history import InMemoryHistory from prompt_toolkit.shortcuts import create_prompt_application, create_eventloop, create_output from prompt_toolkit.interface import CommandLineInterface from prompt_toolkit.key_binding.manager import KeyBindingManager from prompt_toolkit.key_binding.vi_state import InputMode from prompt_toolkit.key_binding.bindings.vi import ViStateFilter from prompt_toolkit.keys import Keys from prompt_toolkit.layout.lexers import PygmentsLexer from prompt_toolkit.styles import PygmentsStyle from pygments.styles import get_style_by_name from pygments.lexers import get_lexer_by_name from pygments.util import ClassNotFound from pygments.token import Token def ask_yes_no(prompt, default=None, interrupt=None): """Asks a question and returns a boolean (y/n) answer. If default is given (one of 'y','n'), it is used if the user input is empty. If interrupt is given (one of 'y','n'), it is used if the user presses Ctrl-C. Otherwise the question is repeated until an answer is given. An EOF is treated as the default answer. If there is no default, an exception is raised to prevent infinite loops. Valid answers are: y/yes/n/no (match is not case sensitive).""" answers = {'y':True,'n':False,'yes':True,'no':False} ans = None while ans not in answers.keys(): try: ans = input(prompt+' ').lower() if not ans: # response was an empty string ans = default except KeyboardInterrupt: if interrupt: ans = interrupt except EOFError: if default in answers.keys(): ans = default print() else: raise return answers[ans] def get_pygments_lexer(name): name = name.lower() if name == 'ipython2': from IPython.lib.lexers import IPythonLexer return IPythonLexer elif name == 'ipython3': from IPython.lib.lexers import IPython3Lexer return IPython3Lexer else: try: return get_lexer_by_name(name).__class__ except ClassNotFound: warn("No lexer found for language %r. Treating as plain text." % name) from pygments.lexers.special import TextLexer return TextLexer class JupyterPTCompleter(Completer): """Adaptor to provide kernel completions to prompt_toolkit""" def __init__(self, jup_completer): self.jup_completer = jup_completer def get_completions(self, document, complete_event): if not document.current_line.strip(): return content = self.jup_completer.complete_request( code=document.text, cursor_pos=document.cursor_position ) start_pos = content['cursor_start'] - document.cursor_position for m in content['matches']: yield Completion(m, start_position=start_pos) class ZMQTerminalInteractiveShell(SingletonConfigurable): readline_use = False pt_cli = None _executing = False _execution_state = Unicode('') _pending_clearoutput = False _eventloop = None editing_mode = Unicode('emacs', config=True, help="Shortcut style to use at the prompt. 'vi' or 'emacs'.", ) highlighting_style = Unicode('', config=True, help="The name of a Pygments style to use for syntax highlighting" ) highlighting_style_overrides = Dict(config=True, help="Override highlighting format for specific tokens" ) true_color = Bool(False, config=True, help=("Use 24bit colors instead of 256 colors in prompt highlighting. " "If your terminal supports true color, the following command " "should print 'TRUECOLOR' in orange: " "printf \"\\x1b[38;2;255;100;0mTRUECOLOR\\x1b[0m\\n\"") ) history_load_length = Integer(1000, config=True, help="How many history items to load into memory" ) banner = Unicode('Jupyter console {version}\n\n{kernel_banner}', config=True, help=("Text to display before the first prompt. Will be formatted with " "variables {version} and {kernel_banner}.") ) kernel_timeout = Float(60, config=True, help="""Timeout for giving up on a kernel (in seconds). On first connect and restart, the console tests whether the kernel is running and responsive by sending kernel_info_requests. This sets the timeout in seconds for how long the kernel can take before being presumed dead. """ ) image_handler = Enum(('PIL', 'stream', 'tempfile', 'callable'), 'PIL', config=True, allow_none=True, help= """ Handler for image type output. This is useful, for example, when connecting to the kernel in which pylab inline backend is activated. There are four handlers defined. 'PIL': Use Python Imaging Library to popup image; 'stream': Use an external program to show the image. Image will be fed into the STDIN of the program. You will need to configure `stream_image_handler`; 'tempfile': Use an external program to show the image. Image will be saved in a temporally file and the program is called with the temporally file. You will need to configure `tempfile_image_handler`; 'callable': You can set any Python callable which is called with the image data. You will need to configure `callable_image_handler`. """ ) stream_image_handler = List(config=True, help= """ Command to invoke an image viewer program when you are using 'stream' image handler. This option is a list of string where the first element is the command itself and reminders are the options for the command. Raw image data is given as STDIN to the program. """ ) tempfile_image_handler = List(config=True, help= """ Command to invoke an image viewer program when you are using 'tempfile' image handler. This option is a list of string where the first element is the command itself and reminders are the options for the command. You can use {file} and {format} in the string to represent the location of the generated image file and image format. """ ) callable_image_handler = Any(config=True, help= """ Callable object called via 'callable' image handler with one argument, `data`, which is `msg["content"]["data"]` where `msg` is the message from iopub channel. For exmaple, you can find base64 encoded PNG data as `data['image/png']`. If your function can't handle the data supplied, it should return `False` to indicate this. """ ) mime_preference = List( default_value=['image/png', 'image/jpeg', 'image/svg+xml'], config=True, help= """ Preferred object representation MIME type in order. First matched MIME type will be used. """ ) use_kernel_is_complete = Bool(True, config=True, help="""Whether to use the kernel's is_complete message handling. If False, then the frontend will use its own is_complete handler. """ ) kernel_is_complete_timeout = Float(1, config=True, help="""Timeout (in seconds) for giving up on a kernel's is_complete response. If the kernel does not respond at any point within this time, the kernel will no longer be asked if code is complete, and the console will default to the built-in is_complete test. """ ) confirm_exit = Bool(True, config=True, help="""Set to display confirmation dialog on exit. You can always use 'exit' or 'quit', to force a direct exit without any confirmation. """ ) manager = Instance('jupyter_client.KernelManager', allow_none=True) client = Instance('jupyter_client.KernelClient', allow_none=True) def _client_changed(self, name, old, new): self.session_id = new.session.session session_id = Unicode() def _banner1_default(self): return "Jupyter Console {version}\n".format(version=__version__) simple_prompt = Bool(False, help="""Use simple fallback prompt. Features may be limited.""" ).tag(config=True) def __init__(self, **kwargs): # This is where traits with a config_key argument are updated # from the values on config. super(ZMQTerminalInteractiveShell, self).__init__(**kwargs) self.configurables = [self] self.init_history() self.init_completer() self.init_io() self.init_kernel_info() self.init_prompt_toolkit_cli() self.keep_running = True self.execution_count = 1 def init_completer(self): """Initialize the completion machinery. This creates completion machinery that can be used by client code, either interactively in-process (typically triggered by the readline library), programmatically (such as in test suites) or out-of-process (typically over the network by remote frontends). """ self.Completer = ZMQCompleter(self, self.client, config=self.config) def init_history(self): """Sets up the command history. """ self.history_manager = ZMQHistoryManager(client=self.client) self.configurables.append(self.history_manager) def get_prompt_tokens(self, cli): return [ (Token.Prompt, 'In ['), (Token.PromptNum, str(self.execution_count)), (Token.Prompt, ']: '), ] def get_continuation_tokens(self, cli, width): return [ (Token.Prompt, (' ' * (width - 2)) + ': '), ] def get_out_prompt_tokens(self): return [ (Token.OutPrompt, 'Out['), (Token.OutPromptNum, str(self.execution_count)), (Token.OutPrompt, ']: ') ] def print_out_prompt(self): self.pt_cli.print_tokens(self.get_out_prompt_tokens()) kernel_info = {} def init_kernel_info(self): """Wait for a kernel to be ready, and store kernel info""" timeout = self.kernel_timeout tic = time.time() self.client.hb_channel.unpause() msg_id = self.client.kernel_info() while True: try: reply = self.client.get_shell_msg(timeout=1) except Empty: if (time.time() - tic) > timeout: raise RuntimeError("Kernel didn't respond to kernel_info_request") else: if reply['parent_header'].get('msg_id') == msg_id: self.kernel_info = reply['content'] return def show_banner(self): print(self.banner.format(version=__version__, kernel_banner=self.kernel_info.get('banner', ''))) def init_prompt_toolkit_cli(self): if self.simple_prompt or ('JUPYTER_CONSOLE_TEST' in os.environ): # Simple restricted interface for tests so we can find prompts with # pexpect. Multi-line input not supported. def prompt(): return cast_unicode_py2(input('In [%d]: ' % self.execution_count)) self.prompt_for_code = prompt self.print_out_prompt = \ lambda: print('Out[%d]: ' % self.execution_count, end='') return kbmanager = KeyBindingManager.for_prompt() insert_mode = ViInsertMode() | EmacsInsertMode() # Ctrl+J == Enter, seemingly @kbmanager.registry.add_binding(Keys.ControlJ, filter=(HasFocus(DEFAULT_BUFFER) & ~HasSelection() & insert_mode )) def _(event): b = event.current_buffer d = b.document if not (d.on_last_line or d.cursor_position_row >= d.line_count - d.empty_line_count_at_the_end()): b.newline() return more, indent = self.check_complete(d.text) if (not more) and b.accept_action.is_returnable: b.accept_action.validate_and_handle(event.cli, b) else: b.insert_text('\n' + indent) @kbmanager.registry.add_binding(Keys.ControlC, filter=HasFocus(DEFAULT_BUFFER)) def _(event): event.current_buffer.reset() # Pre-populate history from IPython's history database history = InMemoryHistory() last_cell = u"" for _, _, cell in self.history_manager.get_tail(self.history_load_length, include_latest=True): # Ignore blank lines and consecutive duplicates cell = cell.rstrip() if cell and (cell != last_cell): history.append(cell) style_overrides = { Token.Prompt: '#009900', Token.PromptNum: '#00ff00 bold', Token.OutPrompt: '#ff2200', Token.OutPromptNum: '#ff0000 bold', } if self.highlighting_style: style_cls = get_style_by_name(self.highlighting_style) else: style_cls = get_style_by_name('default') # The default theme needs to be visible on both a dark background # and a light background, because we can't tell what the terminal # looks like. These tweaks to the default theme help with that. style_overrides.update({ Token.Number: '#007700', Token.Operator: 'noinherit', Token.String: '#BB6622', Token.Name.Function: '#2080D0', Token.Name.Class: 'bold #2080D0', Token.Name.Namespace: 'bold #2080D0', }) style_overrides.update(self.highlighting_style_overrides) style = PygmentsStyle.from_defaults(pygments_style_cls=style_cls, style_dict=style_overrides) editing_mode = getattr(EditingMode, self.editing_mode.upper()) langinfo = self.kernel_info.get('language_info', {}) lexer = langinfo.get('pygments_lexer', langinfo.get('name', 'text')) app = create_prompt_application(multiline=True, editing_mode=editing_mode, lexer=PygmentsLexer(get_pygments_lexer(lexer)), get_prompt_tokens=self.get_prompt_tokens, get_continuation_tokens=self.get_continuation_tokens, key_bindings_registry=kbmanager.registry, history=history, completer=JupyterPTCompleter(self.Completer), enable_history_search=True, style=style, ) self._eventloop = create_eventloop() self.pt_cli = CommandLineInterface(app, eventloop=self._eventloop, output=create_output(true_color=self.true_color), ) def prompt_for_code(self): document = self.pt_cli.run(pre_run=self.pre_prompt, reset_current_buffer=True) return document.text def init_io(self): if sys.platform not in {'win32', 'cli'}: return import colorama colorama.init() def check_complete(self, code): if self.use_kernel_is_complete: msg_id = self.client.is_complete(code) try: return self.handle_is_complete_reply(msg_id, timeout=self.kernel_is_complete_timeout) except SyntaxError: return False, "" else: lines = code.splitlines() if len(lines): more = (lines[-1] != "") return more, "" else: return False, "" def ask_exit(self): self.keep_running = False # This is set from payloads in handle_execute_reply next_input = None def pre_prompt(self): if self.next_input: b = self.pt_cli.application.buffer b.text = cast_unicode_py2(self.next_input) self.next_input = None # Move the cursor to the end b.cursor_position += b.document.get_end_of_document_position() def interact(self, display_banner=None): while self.keep_running: print('\n', end='') try: code = self.prompt_for_code() except EOFError: if (not self.confirm_exit) \ or ask_yes_no('Do you really want to exit ([y]/n)?','y','n'): self.ask_exit() else: if code: self.run_cell(code, store_history=True) def mainloop(self): self.keepkernel = False # An extra layer of protection in case someone mashing Ctrl-C breaks # out of our internal code. while True: try: self.interact() break except KeyboardInterrupt: print("\nKeyboardInterrupt escaped interact()\n") if self._eventloop: self._eventloop.close() if self.keepkernel and not self.own_kernel: print('keeping kernel alive') elif self.keepkernel and self.own_kernel : print("owning kernel, cannot keep it alive") self.client.shutdown() else : print("Shutting down kernel") self.client.shutdown() def run_cell(self, cell, store_history=True): """Run a complete IPython cell. Parameters ---------- cell : str The code (including IPython code such as %magic functions) to run. store_history : bool If True, the raw and translated cell will be stored in IPython's history. For user code calling back into IPython's machinery, this should be set to False. """ if (not cell) or cell.isspace(): # pressing enter flushes any pending display self.handle_iopub() return # flush stale replies, which could have been ignored, due to missed heartbeats while self.client.shell_channel.msg_ready(): self.client.shell_channel.get_msg() # execute takes 'hidden', which is the inverse of store_hist msg_id = self.client.execute(cell, not store_history) # first thing is wait for any side effects (output, stdin, etc.) self._executing = True self._execution_state = "busy" while self._execution_state != 'idle' and self.client.is_alive(): try: self.handle_input_request(msg_id, timeout=0.05) except Empty: # display intermediate print statements, etc. self.handle_iopub(msg_id) except ZMQError as e: # Carry on if polling was interrupted by a signal if e.errno != errno.EINTR: raise # after all of that is done, wait for the execute reply while self.client.is_alive(): try: self.handle_execute_reply(msg_id, timeout=0.05) except Empty: pass else: break self._executing = False #----------------- # message handlers #----------------- def handle_execute_reply(self, msg_id, timeout=None): msg = self.client.shell_channel.get_msg(block=False, timeout=timeout) if msg["parent_header"].get("msg_id", None) == msg_id: self.handle_iopub(msg_id) content = msg["content"] status = content['status'] if status == 'aborted': self.write('Aborted\n') return elif status == 'ok': # handle payloads for item in content.get("payload", []): source = item['source'] if source == 'page': page.page(item['data']['text/plain']) elif source == 'set_next_input': self.next_input = item['text'] elif source == 'ask_exit': self.keepkernel = item.get('keepkernel', False) self.ask_exit() elif status == 'error': pass self.execution_count = int(content["execution_count"] + 1) def handle_is_complete_reply(self, msg_id, timeout=None): """ Wait for a repsonse from the kernel, and return two values: more? - (boolean) should the frontend ask for more input indent - an indent string to prefix the input Overloaded methods may want to examine the comeplete source. Its is in the self._source_lines_buffered list. """ ## Get the is_complete response: msg = None try: msg = self.client.shell_channel.get_msg(block=True, timeout=timeout) except Empty: warn('The kernel did not respond to an is_complete_request. ' 'Setting `use_kernel_is_complete` to False.') self.use_kernel_is_complete = False return False, "" ## Handle response: if msg["parent_header"].get("msg_id", None) != msg_id: warn('The kernel did not respond properly to an is_complete_request: %s.' % str(msg)) return False, "" else: status = msg["content"].get("status", None) indent = msg["content"].get("indent", "") ## Return more? and indent string if status == "complete": return False, indent elif status == "incomplete": return True, indent elif status == "invalid": raise SyntaxError() elif status == "unknown": return False, indent else: warn('The kernel sent an invalid is_complete_reply status: "%s".' % status) return False, indent include_other_output = Bool(False, config=True, help="""Whether to include output from clients other than this one sharing the same kernel. Outputs are not displayed until enter is pressed. """ ) other_output_prefix = Unicode("[remote] ", config=True, help="""Prefix to add to outputs coming from clients other than this one. Only relevant if include_other_output is True. """ ) def from_here(self, msg): """Return whether a message is from this session""" return msg['parent_header'].get("session", self.session_id) == self.session_id def include_output(self, msg): """Return whether we should include a given output message""" from_here = self.from_here(msg) if msg['msg_type'] == 'execute_input': # only echo inputs not from here return self.include_other_output and not from_here if self.include_other_output: return True else: return from_here def handle_iopub(self, msg_id=''): """Process messages on the IOPub channel This method consumes and processes messages on the IOPub channel, such as stdout, stderr, execute_result and status. It only displays output that is caused by this session. """ while self.client.iopub_channel.msg_ready(): sub_msg = self.client.iopub_channel.get_msg() msg_type = sub_msg['header']['msg_type'] parent = sub_msg["parent_header"] if self.include_output(sub_msg): if msg_type == 'status': self._execution_state = sub_msg["content"]["execution_state"] elif msg_type == 'stream': if sub_msg["content"]["name"] == "stdout": if self._pending_clearoutput: print("\r", end="") self._pending_clearoutput = False print(sub_msg["content"]["text"], end="") sys.stdout.flush() elif sub_msg["content"]["name"] == "stderr": if self._pending_clearoutput: print("\r", file=sys.stderr, end="") self._pending_clearoutput = False print(sub_msg["content"]["text"], file=sys.stderr, end="") sys.stderr.flush() elif msg_type == 'execute_result': if self._pending_clearoutput: print("\r", end="") self._pending_clearoutput = False self.execution_count = int(sub_msg["content"]["execution_count"]) if not self.from_here(sub_msg): sys.stdout.write(self.other_output_prefix) format_dict = sub_msg["content"]["data"] self.handle_rich_data(format_dict) if 'text/plain' not in format_dict: continue # prompt_toolkit writes the prompt at a slightly lower level, # so flush streams first to ensure correct ordering. sys.stdout.flush() sys.stderr.flush() self.print_out_prompt() text_repr = format_dict['text/plain'] if '\n' in text_repr: # For multi-line results, start a new line after prompt print() print(text_repr) elif msg_type == 'display_data': data = sub_msg["content"]["data"] handled = self.handle_rich_data(data) if not handled: if not self.from_here(sub_msg): sys.stdout.write(self.other_output_prefix) # if it was an image, we handled it by now if 'text/plain' in data: print(data['text/plain']) elif msg_type == 'execute_input': content = sub_msg['content'] if not self.from_here(sub_msg): sys.stdout.write(self.other_output_prefix) sys.stdout.write('In [{}]: '.format(content['execution_count'])) sys.stdout.write(content['code']+'\n') elif msg_type == 'clear_output': if sub_msg["content"]["wait"]: self._pending_clearoutput = True else: print("\r", end="") elif msg_type == 'error': for frame in sub_msg["content"]["traceback"]: print(frame, file=sys.stderr) _imagemime = { 'image/png': 'png', 'image/jpeg': 'jpeg', 'image/svg+xml': 'svg', } def handle_rich_data(self, data): for mime in self.mime_preference: if mime in data and mime in self._imagemime: if self.handle_image(data, mime): return True return False def handle_image(self, data, mime): handler = getattr( self, 'handle_image_{0}'.format(self.image_handler), None) if handler: return handler(data, mime) def handle_image_PIL(self, data, mime): if mime not in ('image/png', 'image/jpeg'): return False try: from PIL import Image, ImageShow except ImportError: return False raw = base64.decodestring(data[mime].encode('ascii')) img = Image.open(BytesIO(raw)) return ImageShow.show(img) def handle_image_stream(self, data, mime): raw = base64.decodestring(data[mime].encode('ascii')) imageformat = self._imagemime[mime] fmt = dict(format=imageformat) args = [s.format(**fmt) for s in self.stream_image_handler] with open(os.devnull, 'w') as devnull: proc = subprocess.Popen( args, stdin=subprocess.PIPE, stdout=devnull, stderr=devnull) proc.communicate(raw) return (proc.returncode == 0) def handle_image_tempfile(self, data, mime): raw = base64.decodestring(data[mime].encode('ascii')) imageformat = self._imagemime[mime] filename = 'tmp.{0}'.format(imageformat) with NamedFileInTemporaryDirectory(filename) as f, \ open(os.devnull, 'w') as devnull: f.write(raw) f.flush() fmt = dict(file=f.name, format=imageformat) args = [s.format(**fmt) for s in self.tempfile_image_handler] rc = subprocess.call(args, stdout=devnull, stderr=devnull) return (rc == 0) def handle_image_callable(self, data, mime): res = self.callable_image_handler(data) if res is not False: # If handler func returns e.g. None, assume it has handled the data. res = True return res def handle_input_request(self, msg_id, timeout=0.1): """ Method to capture raw_input """ req = self.client.stdin_channel.get_msg(timeout=timeout) # in case any iopub came while we were waiting: self.handle_iopub(msg_id) if msg_id == req["parent_header"].get("msg_id"): # wrap SIGINT handler real_handler = signal.getsignal(signal.SIGINT) def double_int(sig,frame): # call real handler (forwards sigint to kernel), # then raise local interrupt, stopping local raw_input real_handler(sig,frame) raise KeyboardInterrupt signal.signal(signal.SIGINT, double_int) content = req['content'] read = getpass if content.get('password', False) else input try: raw_data = read(content["prompt"]) except EOFError: # turn EOFError into EOF character raw_data = '\x04' except KeyboardInterrupt: sys.stdout.write('\n') return finally: # restore SIGINT handler signal.signal(signal.SIGINT, real_handler) # only send stdin reply if there *was not* another request # or execution finished while we were reading. if not (self.client.stdin_channel.msg_ready() or self.client.shell_channel.msg_ready()): self.client.input(raw_data)
the-stack_106_31796
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import sys import ctypes from .logging import get_logger _logger = get_logger(__name__) if sys.platform == 'darwin': name = 'libzbar.dylib' elif sys.platform in ('windows', 'win32'): name = 'libzbar-0.dll' else: name = 'libzbar.so.0' try: libzbar = ctypes.cdll.LoadLibrary(os.path.join(os.path.dirname(__file__), name)) except BaseException as e1: try: libzbar = ctypes.cdll.LoadLibrary(name) except BaseException as e2: libzbar = None if sys.platform != 'darwin': _logger.error(f"failed to load zbar. exceptions: {[e1,e2]!r}") def scan_barcode_ctypes(device='', timeout=-1, display=True, threaded=False): if libzbar is None: raise RuntimeError("Cannot start QR scanner; zbar not available.") libzbar.zbar_symbol_get_data.restype = ctypes.c_char_p libzbar.zbar_processor_create.restype = ctypes.POINTER(ctypes.c_int) libzbar.zbar_processor_get_results.restype = ctypes.POINTER(ctypes.c_int) libzbar.zbar_symbol_set_first_symbol.restype = ctypes.POINTER(ctypes.c_int) # libzbar.zbar_set_verbosity(100) # verbose logs for debugging proc = libzbar.zbar_processor_create(threaded) libzbar.zbar_processor_request_size(proc, 640, 480) if libzbar.zbar_processor_init(proc, device.encode('utf-8'), display) != 0: raise RuntimeError("Can not start QR scanner; initialization failed.") libzbar.zbar_processor_set_visible(proc) if libzbar.zbar_process_one(proc, timeout): symbols = libzbar.zbar_processor_get_results(proc) else: symbols = None libzbar.zbar_processor_destroy(proc) if symbols is None: return if not libzbar.zbar_symbol_set_get_size(symbols): return symbol = libzbar.zbar_symbol_set_first_symbol(symbols) data = libzbar.zbar_symbol_get_data(symbol) return data.decode('utf8') def scan_barcode_osx(*args_ignored, **kwargs_ignored): import subprocess # NOTE: This code needs to be modified if the positions of this file changes with respect to the helper app! # This assumes the built macOS .app bundle which ends up putting the helper app in # .app/contrib/osx/CalinsQRReader/build/Release/CalinsQRReader.app. root_ec_dir = os.path.abspath(os.path.dirname(__file__) + "/../") prog = root_ec_dir + "/" + "contrib/osx/CalinsQRReader/build/Release/CalinsQRReader.app/Contents/MacOS/CalinsQRReader" if not os.path.exists(prog): raise RuntimeError("Cannot start QR scanner; helper app not found.") data = '' try: # This will run the "CalinsQRReader" helper app (which also gets bundled with the built .app) # Just like the zbar implementation -- the main app will hang until the QR window returns a QR code # (or is closed). Communication with the subprocess is done via stdout. # See contrib/CalinsQRReader for the helper app source code. with subprocess.Popen([prog], stdout=subprocess.PIPE) as p: data = p.stdout.read().decode('utf-8').strip() return data except OSError as e: raise RuntimeError("Cannot start camera helper app; {}".format(e.strerror)) scan_barcode = scan_barcode_osx if sys.platform == 'darwin' else scan_barcode_ctypes def _find_system_cameras(): device_root = "/sys/class/video4linux" devices = {} # Name -> device if os.path.exists(device_root): for device in os.listdir(device_root): path = os.path.join(device_root, device, 'name') try: with open(path, encoding='utf-8') as f: name = f.read() except Exception: continue name = name.strip('\n') devices[name] = os.path.join("/dev", device) return devices if __name__ == "__main__": print(scan_barcode())
the-stack_106_31798
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import from argparse import Action, ArgumentTypeError, Namespace, _ActionsContainer from pex import pex_warnings from pex.argparse import HandleBoolAction from pex.network_configuration import NetworkConfiguration from pex.orderedset import OrderedSet from pex.resolve.resolver_configuration import ( PYPI, PexRepositoryConfiguration, PipConfiguration, ReposConfiguration, ResolverVersion, ) from pex.typing import TYPE_CHECKING, cast if TYPE_CHECKING: from typing import Union class _ManylinuxAction(Action): def __init__(self, *args, **kwargs): kwargs["nargs"] = "?" super(_ManylinuxAction, self).__init__(*args, **kwargs) def __call__(self, parser, namespace, value, option_str=None): if option_str.startswith("--no"): setattr(namespace, self.dest, None) elif value.startswith("manylinux"): setattr(namespace, self.dest, value) else: raise ArgumentTypeError( "Please specify a manylinux standard; ie: --manylinux=manylinux1. " "Given {}".format(value) ) class _HandleTransitiveAction(Action): def __init__(self, *args, **kwargs): kwargs["nargs"] = 0 super(_HandleTransitiveAction, self).__init__(*args, **kwargs) def __call__(self, parser, namespace, value, option_str=None): setattr(namespace, self.dest, option_str == "--transitive") def register( parser, # type: _ActionsContainer include_pex_repository=False, # type: bool ): # type: (...) -> None """Register resolver configuration options with the given parser. :param parser: The parser to register resolver configuration options with. :param include_pex_repository: Whether to include the `--pex-repository` option. """ default_resolver_configuration = PipConfiguration() parser.add_argument( "--resolver-version", dest="resolver_version", default=default_resolver_configuration.resolver_version, choices=ResolverVersion.values(), type=ResolverVersion.for_value, help=( "The dependency resolver version to use. Read more at " "https://pip.pypa.io/en/stable/user_guide/#resolver-changes-2020" ), ) register_repos_options(parser) register_network_options(parser) parser.add_argument( "--cache-ttl", metavar="DEPRECATED", default=None, type=int, help="Deprecated: No longer used.", ) parser.add_argument( "-H", "--header", dest="headers", metavar="DEPRECATED", default=None, type=str, action="append", help="Deprecated: No longer used.", ) if include_pex_repository: parser.add_argument( "--pex-repository", dest="pex_repository", metavar="FILE", default=None, type=str, help=( "Resolve requirements from the given PEX file instead of from --index servers or " "--find-links repos." ), ) parser.add_argument( "--pre", "--no-pre", dest="allow_prereleases", default=default_resolver_configuration.allow_prereleases, action=HandleBoolAction, help="Whether to include pre-release and development versions of requirements.", ) parser.add_argument( "--wheel", "--binary", "--no-wheel", "--no-use-wheel", "--no-binary", "--no-use-binary", dest="allow_wheels", default=default_resolver_configuration.allow_wheels, action=HandleBoolAction, help="Whether to allow binary distributions.", ) parser.add_argument( "--build", "--no-build", dest="allow_builds", default=default_resolver_configuration.allow_builds, action=HandleBoolAction, help="Whether to allow building of distributions from source.", ) parser.add_argument( "--prefer-wheel", "--prefer-binary", "--no-prefer-wheel", "--no-prefer-binary", dest="prefer_older_binary", default=default_resolver_configuration.prefer_older_binary, action=HandleBoolAction, help=( "Whether to prefer older binary distributions to newer source distributions (prefer " "not building wheels)." ), ) parser.add_argument( "--force-pep517", "--use-pep517", "--no-use-pep517", dest="use_pep517", default=default_resolver_configuration.use_pep517, action=HandleBoolAction, help=( "Whether to force use of PEP 517 for building source distributions into wheels (" "https://www.python.org/dev/peps/pep-0518) or force direct invocation of" "`setup.py bdist_wheel` (which requires all source distributions have a `setup.py` " "based build). Defaults to using PEP-517 only when a `pyproject.toml` file is present " "with a `build-system` section. If PEP-517 is forced (--use-pep517 is passed) and no " "`pyproject.toml` file is present or one is but does not have a `build-system` section " "defined, then the build is executed as if a `pyproject.toml` was present with a " '`build-system` section comprised of `requires = ["setuptools>=40.8.0", "wheel"]` and ' '`build-backend = "setuptools.build_meta:__legacy__"`.' ), ) parser.add_argument( "--build-isolation", "--no-build-isolation", dest="build_isolation", default=default_resolver_configuration.build_isolation, action=HandleBoolAction, help=( "Disable `sys.path` isolation when building a modern source distribution. Build " "dependencies specified by PEP 518 (https://www.python.org/dev/peps/pep-0518) must " "already be installed on the `sys.path` if this option is used." ), ) parser.add_argument( "--transitive", "--no-transitive", "--intransitive", dest="transitive", default=default_resolver_configuration.transitive, action=_HandleTransitiveAction, help="Whether to transitively resolve requirements.", ) register_max_jobs_option(parser) def register_repos_options(parser): # type: (_ActionsContainer) -> None """Register repos configuration options with the given parser. :param parser: The parser to register repos configuration options with. """ parser.add_argument( "--pypi", "--no-pypi", "--no-index", dest="pypi", action=HandleBoolAction, default=True, help="Whether to use PyPI to resolve dependencies.", ) parser.add_argument( "-f", "--find-links", "--repo", metavar="PATH/URL", action="append", dest="find_links", type=str, help="Additional repository path (directory or URL) to look for requirements.", ) parser.add_argument( "-i", "--index", "--index-url", metavar="URL", action="append", dest="indexes", type=str, help="Additional cheeseshop indices to use to satisfy requirements.", ) def register_network_options(parser): # type: (_ActionsContainer) -> None """Register network configuration options with the given parser. :param parser: The parser to register network configuration options with. """ default_resolver_configuration = PipConfiguration() default_network_configuration = default_resolver_configuration.network_configuration parser.add_argument( "--retries", default=default_network_configuration.retries, type=int, help="Maximum number of retries each connection should attempt.", ) parser.add_argument( "--timeout", metavar="SECS", default=default_network_configuration.timeout, type=int, help="Set the socket timeout in seconds.", ) parser.add_argument( "--proxy", type=str, default=default_network_configuration.proxy, help="Specify a proxy in the form http(s)://[user:passwd@]proxy.server:port.", ) parser.add_argument( "--cert", metavar="PATH", type=str, default=default_network_configuration.cert, help="Path to alternate CA bundle.", ) parser.add_argument( "--client-cert", metavar="PATH", type=str, default=default_network_configuration.client_cert, help=( "Path to an SSL client certificate which should be a single file containing the " "private key and the certificate in PEM format." ), ) def register_max_jobs_option(parser): # type: (_ActionsContainer) -> None """Register the max jobs configuration option with the given parser. :param parser: The parser to register the max job option with. """ default_resolver_configuration = PipConfiguration() parser.add_argument( "-j", "--jobs", metavar="JOBS", dest="max_jobs", type=int, default=default_resolver_configuration.max_jobs, help=( "The maximum number of parallel jobs to use when resolving, building and " "installing distributions. You might want to increase the maximum number of " "parallel jobs to potentially improve the latency of the pex creation process at " "the expense of other processes on your system." ), ) class InvalidConfigurationError(Exception): """Indicates an invalid resolver configuration.""" def configure(options): # type: (Namespace) -> Union[PipConfiguration, PexRepositoryConfiguration] """Creates a resolver configuration from options registered by `register`. :param options: The resolver configuration options. :raise: :class:`InvalidConfigurationError` if the resolver configuration is invalid. """ pex_repository = getattr(options, "pex_repository", None) if pex_repository and (options.indexes or options.find_links): raise InvalidConfigurationError( 'The "--pex-repository" option cannot be used together with the "--index" or ' '"--find-links" options.' ) if pex_repository: return PexRepositoryConfiguration( pex_repository=pex_repository, network_configuration=create_network_configuration(options), transitive=options.transitive, ) return create_pip_configuration(options) def create_pip_configuration(options): # type: (Namespace) -> PipConfiguration """Creates a Pip configuration from options registered by `register`. :param options: The Pip resolver configuration options. """ if options.cache_ttl: pex_warnings.warn("The --cache-ttl option is deprecated and no longer has any effect.") if options.headers: pex_warnings.warn("The --header option is deprecated and no longer has any effect.") repos_configuration = create_repos_configuration(options) return PipConfiguration( resolver_version=options.resolver_version, repos_configuration=repos_configuration, network_configuration=create_network_configuration(options), allow_prereleases=options.allow_prereleases, allow_wheels=options.allow_wheels, allow_builds=options.allow_builds, prefer_older_binary=options.prefer_older_binary, use_pep517=options.use_pep517, build_isolation=options.build_isolation, transitive=options.transitive, max_jobs=get_max_jobs_value(options), ) def create_repos_configuration(options): # type: (Namespace) -> ReposConfiguration """Creates a repos configuration from options registered by `register_repos_options`. :param options: The Pip resolver configuration options. """ indexes = OrderedSet( ([PYPI] if options.pypi else []) + (options.indexes or []) ) # type: OrderedSet[str] find_links = OrderedSet(options.find_links or ()) # type: OrderedSet[str] return ReposConfiguration(indexes=tuple(indexes), find_links=tuple(find_links)) def create_network_configuration(options): # type: (Namespace) -> NetworkConfiguration """Creates a network configuration from options registered by `register_network_options`. :param options: The Pip resolver configuration options. """ return NetworkConfiguration( retries=options.retries, timeout=options.timeout, proxy=options.proxy, cert=options.cert, client_cert=options.client_cert, ) def get_max_jobs_value(options): # type: (Namespace) -> int """Retrieves the max jobs value from the option registered by `register_max_jobs_option`. :param options: The max jobs configuration option. """ return cast(int, options.max_jobs)
the-stack_106_31800
def to_dict(obj, class_key=None): if isinstance(obj, dict): data = {} for (k, v) in obj.items(): data[k] = to_dict(v, class_key) return data elif hasattr(obj, "_ast"): return to_dict(obj._ast()) elif hasattr(obj, "__iter__") and not isinstance(obj, str): return [to_dict(v, class_key) for v in obj] elif hasattr(obj, "__dict__"): data = dict([(key, to_dict(value, class_key)) for key, value in obj.__dict__.items() if not callable(value) and not key.startswith('_')]) if class_key is not None and hasattr(obj, "__class__"): data[class_key] = obj.__class__.__name__ return data else: return obj
the-stack_106_31802
import numpy as np from scipy.linalg import expm from matplotlib.pylab import * sigma_x = 0.5*np.r_[[[0, 1],[1, 0]]] sigma_y = 0.5*np.r_[[[0,-1j],[1j, 0]]] sigma_z = 0.5*np.r_[[[1, 0],[0, -1]]] print(sigma_x) print(sigma_y) print(sigma_z) print('commutator test') print(np.dot(sigma_x,sigma_y) - np.dot(sigma_y,sigma_x)) print(sigma_z * 1j) print(np.allclose(sigma_z * 1j, np.dot(sigma_x,sigma_y) - np.dot(sigma_y,sigma_x))) omega = 2. # frequency offset from carrier, Hz dt = 0.01 # Dwell Time, s pts = 1024 # Points in FID T2 = 2. # T2 used for apodization t = np.r_[0:pts] * dt coil = sigma_x + 1j*sigma_y # Detection Operator (NMR Coil) H = 2*np.pi * omega * sigma_z # Calculate Hamiltonian (only Zeeman) P = expm(1j*H*dt) # Define Propagator sigma = sigma_x # Initial Density Matrix (After 90-pulse) M_list = [] for ix in range(pts): M = np.trace(np.dot(coil,sigma)) # Detect M_list.append(M) # Append to FID array sigma = np.dot(np.dot(P,sigma),np.conjugate(P)) # Propagate Density Matrix M = np.array(M_list) fid = M*np.exp(-1.*t/T2) # Apply Apodization f = np.r_[-0.5/dt:0.5/dt:1j*pts] # Calculate frequency print(f) spec = np.fft.fftshift(np.fft.fft(fid)) # Fourier Transform figure('fid') title('FID') plot(t, np.real(fid), label = 'real') plot(t, np.imag(fid), label = 'imag') legend() xlabel('Time (s)') figure('spec') title('Spectrum') plot(f,spec) xlabel('Frequency (Hz)') show()
the-stack_106_31804
def permutate(elements): if len(elements) == 1: return elements permutations = [] for index, element in enumerate(elements): for suffix in permutate(elements[:index] + elements[index+1:]): permutations.append(element + suffix) return permutations counter = {} for permutation in permutate(list('(())')): word = '(' + "".join(permutation) + ')' if word not in counter: counter[word] = 0 counter[word] += 1 print(counter)
the-stack_106_31807
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model from msrest.exceptions import HttpOperationError class Resource(Model): """The core properties of ARM resources. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, **kwargs): super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None class ProxyResource(Resource): """The resource model definition for a ARM proxy resource. It will have everything other than required location and tags. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, } def __init__(self, **kwargs): super(ProxyResource, self).__init__(**kwargs) class AppResource(ProxyResource): """App resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param properties: Properties of the App resource :type properties: ~azure.mgmt.appplatform.models.AppResourceProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'AppResourceProperties'}, } def __init__(self, **kwargs): super(AppResource, self).__init__(**kwargs) self.properties = kwargs.get('properties', None) class AppResourceProperties(Model): """App resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :param public: Indicates whether the App exposes public endpoint :type public: bool :ivar url: URL of the App :vartype url: str :ivar provisioning_state: Provisioning state of the App. Possible values include: 'Succeeded', 'Failed', 'Creating', 'Updating' :vartype provisioning_state: str or ~azure.mgmt.appplatform.models.AppResourceProvisioningState :param active_deployment_name: Name of the active deployment of the App :type active_deployment_name: str :ivar created_time: Date time when the resource is created :vartype created_time: datetime :param temporary_disk: Temporary disk settings :type temporary_disk: ~azure.mgmt.appplatform.models.TemporaryDisk :param persistent_disk: Persistent disk settings :type persistent_disk: ~azure.mgmt.appplatform.models.PersistentDisk """ _validation = { 'url': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'created_time': {'readonly': True}, } _attribute_map = { 'public': {'key': 'public', 'type': 'bool'}, 'url': {'key': 'url', 'type': 'str'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'active_deployment_name': {'key': 'activeDeploymentName', 'type': 'str'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'temporary_disk': {'key': 'temporaryDisk', 'type': 'TemporaryDisk'}, 'persistent_disk': {'key': 'persistentDisk', 'type': 'PersistentDisk'}, } def __init__(self, **kwargs): super(AppResourceProperties, self).__init__(**kwargs) self.public = kwargs.get('public', None) self.url = None self.provisioning_state = None self.active_deployment_name = kwargs.get('active_deployment_name', None) self.created_time = None self.temporary_disk = kwargs.get('temporary_disk', None) self.persistent_disk = kwargs.get('persistent_disk', None) class BindingResource(ProxyResource): """Binding resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param properties: Properties of the Binding resource :type properties: ~azure.mgmt.appplatform.models.BindingResourceProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'BindingResourceProperties'}, } def __init__(self, **kwargs): super(BindingResource, self).__init__(**kwargs) self.properties = kwargs.get('properties', None) class BindingResourceProperties(Model): """Binding resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :param resource_name: The name of the bound resource :type resource_name: str :param resource_type: The standard Azure resource type of the bound resource :type resource_type: str :param resource_id: The Azure resource id of the bound resource :type resource_id: str :param key: The key of the bound resource :type key: str :param binding_parameters: Binding parameters of the Binding resource :type binding_parameters: dict[str, object] :ivar generated_properties: The generated Spring Boot property file for this binding. The secret will be deducted. :vartype generated_properties: str :ivar created_at: Creation time of the Binding resource :vartype created_at: str :ivar updated_at: Update time of the Binding resource :vartype updated_at: str """ _validation = { 'generated_properties': {'readonly': True}, 'created_at': {'readonly': True}, 'updated_at': {'readonly': True}, } _attribute_map = { 'resource_name': {'key': 'resourceName', 'type': 'str'}, 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'key': {'key': 'key', 'type': 'str'}, 'binding_parameters': {'key': 'bindingParameters', 'type': '{object}'}, 'generated_properties': {'key': 'generatedProperties', 'type': 'str'}, 'created_at': {'key': 'createdAt', 'type': 'str'}, 'updated_at': {'key': 'updatedAt', 'type': 'str'}, } def __init__(self, **kwargs): super(BindingResourceProperties, self).__init__(**kwargs) self.resource_name = kwargs.get('resource_name', None) self.resource_type = kwargs.get('resource_type', None) self.resource_id = kwargs.get('resource_id', None) self.key = kwargs.get('key', None) self.binding_parameters = kwargs.get('binding_parameters', None) self.generated_properties = None self.created_at = None self.updated_at = None class CloudError(Model): """An error response from the service. :param error: :type error: ~azure.mgmt.appplatform.models.CloudErrorBody """ _attribute_map = { 'error': {'key': 'error', 'type': 'CloudErrorBody'}, } def __init__(self, **kwargs): super(CloudError, self).__init__(**kwargs) self.error = kwargs.get('error', None) class CloudErrorException(HttpOperationError): """Server responsed with exception of type: 'CloudError'. :param deserialize: A deserializer :param response: Server response to be deserialized. """ def __init__(self, deserialize, response, *args): super(CloudErrorException, self).__init__(deserialize, response, 'CloudError', *args) class CloudErrorBody(Model): """An error response from the service. :param code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :type code: str :param message: A message describing the error, intended to be suitable for display in a user interface. :type message: str :param target: The target of the particular error. For example, the name of the property in error. :type target: str :param details: A list of additional details about the error. :type details: list[~azure.mgmt.appplatform.models.CloudErrorBody] """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, 'target': {'key': 'target', 'type': 'str'}, 'details': {'key': 'details', 'type': '[CloudErrorBody]'}, } def __init__(self, **kwargs): super(CloudErrorBody, self).__init__(**kwargs) self.code = kwargs.get('code', None) self.message = kwargs.get('message', None) self.target = kwargs.get('target', None) self.details = kwargs.get('details', None) class ClusterResourceProperties(Model): """Service properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar provisioning_state: Provisioning state of the Service. Possible values include: 'Creating', 'Updating', 'Deleting', 'Deleted', 'Succeeded', 'Failed', 'Moving', 'Moved', 'MoveFailed' :vartype provisioning_state: str or ~azure.mgmt.appplatform.models.ProvisioningState :param config_server_properties: Config server git properties of the Service :type config_server_properties: ~azure.mgmt.appplatform.models.ConfigServerProperties :param trace: Trace properties of the Service :type trace: ~azure.mgmt.appplatform.models.TraceProperties :ivar version: Version of the Service :vartype version: int :ivar service_id: ServiceInstanceEntity GUID which uniquely identifies a created resource :vartype service_id: str """ _validation = { 'provisioning_state': {'readonly': True}, 'version': {'readonly': True}, 'service_id': {'readonly': True}, } _attribute_map = { 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'config_server_properties': {'key': 'configServerProperties', 'type': 'ConfigServerProperties'}, 'trace': {'key': 'trace', 'type': 'TraceProperties'}, 'version': {'key': 'version', 'type': 'int'}, 'service_id': {'key': 'serviceId', 'type': 'str'}, } def __init__(self, **kwargs): super(ClusterResourceProperties, self).__init__(**kwargs) self.provisioning_state = None self.config_server_properties = kwargs.get('config_server_properties', None) self.trace = kwargs.get('trace', None) self.version = None self.service_id = None class ConfigServerGitProperty(Model): """Property of git. All required parameters must be populated in order to send to Azure. :param repositories: Repositories of git. :type repositories: list[~azure.mgmt.appplatform.models.GitPatternRepository] :param uri: Required. URI of the repository :type uri: str :param label: Label of the repository :type label: str :param search_paths: Searching path of the repository :type search_paths: list[str] :param username: Username of git repository basic auth. :type username: str :param password: Password of git repository basic auth. :type password: str :param host_key: Public sshKey of git repository. :type host_key: str :param host_key_algorithm: SshKey algorithm of git repository. :type host_key_algorithm: str :param private_key: Private sshKey algorithm of git repository. :type private_key: str :param strict_host_key_checking: Strict host key checking or not. :type strict_host_key_checking: bool """ _validation = { 'uri': {'required': True}, } _attribute_map = { 'repositories': {'key': 'repositories', 'type': '[GitPatternRepository]'}, 'uri': {'key': 'uri', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'search_paths': {'key': 'searchPaths', 'type': '[str]'}, 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'host_key': {'key': 'hostKey', 'type': 'str'}, 'host_key_algorithm': {'key': 'hostKeyAlgorithm', 'type': 'str'}, 'private_key': {'key': 'privateKey', 'type': 'str'}, 'strict_host_key_checking': {'key': 'strictHostKeyChecking', 'type': 'bool'}, } def __init__(self, **kwargs): super(ConfigServerGitProperty, self).__init__(**kwargs) self.repositories = kwargs.get('repositories', None) self.uri = kwargs.get('uri', None) self.label = kwargs.get('label', None) self.search_paths = kwargs.get('search_paths', None) self.username = kwargs.get('username', None) self.password = kwargs.get('password', None) self.host_key = kwargs.get('host_key', None) self.host_key_algorithm = kwargs.get('host_key_algorithm', None) self.private_key = kwargs.get('private_key', None) self.strict_host_key_checking = kwargs.get('strict_host_key_checking', None) class ConfigServerProperties(Model): """Config server git properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar state: State of the config server. Possible values include: 'NotAvailable', 'Deleted', 'Failed', 'Succeeded', 'Updating' :vartype state: str or ~azure.mgmt.appplatform.models.ConfigServerState :param error: Error when apply config server settings. :type error: ~azure.mgmt.appplatform.models.Error :param config_server: Settings of config server. :type config_server: ~azure.mgmt.appplatform.models.ConfigServerSettings """ _validation = { 'state': {'readonly': True}, } _attribute_map = { 'state': {'key': 'state', 'type': 'str'}, 'error': {'key': 'error', 'type': 'Error'}, 'config_server': {'key': 'configServer', 'type': 'ConfigServerSettings'}, } def __init__(self, **kwargs): super(ConfigServerProperties, self).__init__(**kwargs) self.state = None self.error = kwargs.get('error', None) self.config_server = kwargs.get('config_server', None) class ConfigServerSettings(Model): """The settings of config server. :param git_property: Property of git environment. :type git_property: ~azure.mgmt.appplatform.models.ConfigServerGitProperty """ _attribute_map = { 'git_property': {'key': 'gitProperty', 'type': 'ConfigServerGitProperty'}, } def __init__(self, **kwargs): super(ConfigServerSettings, self).__init__(**kwargs) self.git_property = kwargs.get('git_property', None) class DeploymentInstance(Model): """Deployment instance payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: Name of the deployment instance :vartype name: str :ivar status: Status of the deployment instance :vartype status: str :ivar reason: Failed reason of the deployment instance :vartype reason: str :ivar discovery_status: Discovery status of the deployment instance :vartype discovery_status: str """ _validation = { 'name': {'readonly': True}, 'status': {'readonly': True}, 'reason': {'readonly': True}, 'discovery_status': {'readonly': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'reason': {'key': 'reason', 'type': 'str'}, 'discovery_status': {'key': 'discoveryStatus', 'type': 'str'}, } def __init__(self, **kwargs): super(DeploymentInstance, self).__init__(**kwargs) self.name = None self.status = None self.reason = None self.discovery_status = None class DeploymentResource(ProxyResource): """Deployment resource payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param properties: Properties of the Deployment resource :type properties: ~azure.mgmt.appplatform.models.DeploymentResourceProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'DeploymentResourceProperties'}, } def __init__(self, **kwargs): super(DeploymentResource, self).__init__(**kwargs) self.properties = kwargs.get('properties', None) class DeploymentResourceProperties(Model): """Deployment resource properties payload. Variables are only populated by the server, and will be ignored when sending a request. :param source: Uploaded source information of the deployment. :type source: ~azure.mgmt.appplatform.models.UserSourceInfo :ivar app_name: App name of the deployment :vartype app_name: str :ivar provisioning_state: Provisioning state of the Deployment. Possible values include: 'Creating', 'Updating', 'Succeeded', 'Failed' :vartype provisioning_state: str or ~azure.mgmt.appplatform.models.DeploymentResourceProvisioningState :param deployment_settings: Deployment settings of the Deployment :type deployment_settings: ~azure.mgmt.appplatform.models.DeploymentSettings :ivar status: Status of the Deployment. Possible values include: 'Unknown', 'Stopped', 'Running', 'Failed', 'Allocating', 'Upgrading', 'Compiling' :vartype status: str or ~azure.mgmt.appplatform.models.DeploymentResourceStatus :ivar active: Indicates whether the Deployment is active :vartype active: bool :ivar created_time: Date time when the resource is created :vartype created_time: datetime :ivar instances: Collection of instances belong to the Deployment :vartype instances: list[~azure.mgmt.appplatform.models.DeploymentInstance] """ _validation = { 'app_name': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'status': {'readonly': True}, 'active': {'readonly': True}, 'created_time': {'readonly': True}, 'instances': {'readonly': True}, } _attribute_map = { 'source': {'key': 'source', 'type': 'UserSourceInfo'}, 'app_name': {'key': 'appName', 'type': 'str'}, 'provisioning_state': {'key': 'provisioningState', 'type': 'str'}, 'deployment_settings': {'key': 'deploymentSettings', 'type': 'DeploymentSettings'}, 'status': {'key': 'status', 'type': 'str'}, 'active': {'key': 'active', 'type': 'bool'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'instances': {'key': 'instances', 'type': '[DeploymentInstance]'}, } def __init__(self, **kwargs): super(DeploymentResourceProperties, self).__init__(**kwargs) self.source = kwargs.get('source', None) self.app_name = None self.provisioning_state = None self.deployment_settings = kwargs.get('deployment_settings', None) self.status = None self.active = None self.created_time = None self.instances = None class DeploymentSettings(Model): """Deployment settings payload. :param cpu: Required CPU. Default value: 1 . :type cpu: int :param memory_in_gb: Required Memory size in GB. Default value: 1 . :type memory_in_gb: int :param jvm_options: JVM parameter :type jvm_options: str :param instance_count: Instance count. Default value: 1 . :type instance_count: int :param environment_variables: Collection of environment variables :type environment_variables: dict[str, str] :param runtime_version: Runtime version. Possible values include: 'Java_8', 'Java_11' :type runtime_version: str or ~azure.mgmt.appplatform.models.RuntimeVersion """ _validation = { 'cpu': {'maximum': 4, 'minimum': 1}, 'memory_in_gb': {'maximum': 8, 'minimum': 1}, 'instance_count': {'maximum': 20, 'minimum': 1}, } _attribute_map = { 'cpu': {'key': 'cpu', 'type': 'int'}, 'memory_in_gb': {'key': 'memoryInGB', 'type': 'int'}, 'jvm_options': {'key': 'jvmOptions', 'type': 'str'}, 'instance_count': {'key': 'instanceCount', 'type': 'int'}, 'environment_variables': {'key': 'environmentVariables', 'type': '{str}'}, 'runtime_version': {'key': 'runtimeVersion', 'type': 'str'}, } def __init__(self, **kwargs): super(DeploymentSettings, self).__init__(**kwargs) self.cpu = kwargs.get('cpu', 1) self.memory_in_gb = kwargs.get('memory_in_gb', 1) self.jvm_options = kwargs.get('jvm_options', None) self.instance_count = kwargs.get('instance_count', 1) self.environment_variables = kwargs.get('environment_variables', None) self.runtime_version = kwargs.get('runtime_version', None) class Error(Model): """The error code compose of code and message. :param code: The code of error. :type code: str :param message: The message of error. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__(self, **kwargs): super(Error, self).__init__(**kwargs) self.code = kwargs.get('code', None) self.message = kwargs.get('message', None) class GitPatternRepository(Model): """Git repository property payload. All required parameters must be populated in order to send to Azure. :param name: Required. Name of the repository :type name: str :param pattern: Collection of pattern of the repository :type pattern: list[str] :param uri: Required. URI of the repository :type uri: str :param label: Label of the repository :type label: str :param search_paths: Searching path of the repository :type search_paths: list[str] :param username: Username of git repository basic auth. :type username: str :param password: Password of git repository basic auth. :type password: str :param host_key: Public sshKey of git repository. :type host_key: str :param host_key_algorithm: SshKey algorithm of git repository. :type host_key_algorithm: str :param private_key: Private sshKey algorithm of git repository. :type private_key: str :param strict_host_key_checking: Strict host key checking or not. :type strict_host_key_checking: bool """ _validation = { 'name': {'required': True}, 'uri': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'pattern': {'key': 'pattern', 'type': '[str]'}, 'uri': {'key': 'uri', 'type': 'str'}, 'label': {'key': 'label', 'type': 'str'}, 'search_paths': {'key': 'searchPaths', 'type': '[str]'}, 'username': {'key': 'username', 'type': 'str'}, 'password': {'key': 'password', 'type': 'str'}, 'host_key': {'key': 'hostKey', 'type': 'str'}, 'host_key_algorithm': {'key': 'hostKeyAlgorithm', 'type': 'str'}, 'private_key': {'key': 'privateKey', 'type': 'str'}, 'strict_host_key_checking': {'key': 'strictHostKeyChecking', 'type': 'bool'}, } def __init__(self, **kwargs): super(GitPatternRepository, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.pattern = kwargs.get('pattern', None) self.uri = kwargs.get('uri', None) self.label = kwargs.get('label', None) self.search_paths = kwargs.get('search_paths', None) self.username = kwargs.get('username', None) self.password = kwargs.get('password', None) self.host_key = kwargs.get('host_key', None) self.host_key_algorithm = kwargs.get('host_key_algorithm', None) self.private_key = kwargs.get('private_key', None) self.strict_host_key_checking = kwargs.get('strict_host_key_checking', None) class LogFileUrlResponse(Model): """Log file URL payload. All required parameters must be populated in order to send to Azure. :param url: Required. URL of the log file :type url: str """ _validation = { 'url': {'required': True}, } _attribute_map = { 'url': {'key': 'url', 'type': 'str'}, } def __init__(self, **kwargs): super(LogFileUrlResponse, self).__init__(**kwargs) self.url = kwargs.get('url', None) class LogSpecification(Model): """Specifications of the Log for Azure Monitoring. :param name: Name of the log :type name: str :param display_name: Localized friendly display name of the log :type display_name: str :param blob_duration: Blob duration of the log :type blob_duration: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'blob_duration': {'key': 'blobDuration', 'type': 'str'}, } def __init__(self, **kwargs): super(LogSpecification, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.display_name = kwargs.get('display_name', None) self.blob_duration = kwargs.get('blob_duration', None) class MetricDimension(Model): """Specifications of the Dimension of metrics. :param name: Name of the dimension :type name: str :param display_name: Localized friendly display name of the dimension :type display_name: str """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, } def __init__(self, **kwargs): super(MetricDimension, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.display_name = kwargs.get('display_name', None) class MetricSpecification(Model): """Specifications of the Metrics for Azure Monitoring. :param name: Name of the metric :type name: str :param display_name: Localized friendly display name of the metric :type display_name: str :param display_description: Localized friendly description of the metric :type display_description: str :param unit: Unit that makes sense for the metric :type unit: str :param category: Name of the metric category that the metric belongs to. A metric can only belong to a single category. :type category: str :param aggregation_type: Only provide one value for this field. Valid values: Average, Minimum, Maximum, Total, Count. :type aggregation_type: str :param supported_aggregation_types: Supported aggregation types :type supported_aggregation_types: list[str] :param supported_time_grain_types: Supported time grain types :type supported_time_grain_types: list[str] :param fill_gap_with_zero: Optional. If set to true, then zero will be returned for time duration where no metric is emitted/published. :type fill_gap_with_zero: bool :param dimensions: Dimensions of the metric :type dimensions: list[~azure.mgmt.appplatform.models.MetricDimension] """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'display_description': {'key': 'displayDescription', 'type': 'str'}, 'unit': {'key': 'unit', 'type': 'str'}, 'category': {'key': 'category', 'type': 'str'}, 'aggregation_type': {'key': 'aggregationType', 'type': 'str'}, 'supported_aggregation_types': {'key': 'supportedAggregationTypes', 'type': '[str]'}, 'supported_time_grain_types': {'key': 'supportedTimeGrainTypes', 'type': '[str]'}, 'fill_gap_with_zero': {'key': 'fillGapWithZero', 'type': 'bool'}, 'dimensions': {'key': 'dimensions', 'type': '[MetricDimension]'}, } def __init__(self, **kwargs): super(MetricSpecification, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.display_name = kwargs.get('display_name', None) self.display_description = kwargs.get('display_description', None) self.unit = kwargs.get('unit', None) self.category = kwargs.get('category', None) self.aggregation_type = kwargs.get('aggregation_type', None) self.supported_aggregation_types = kwargs.get('supported_aggregation_types', None) self.supported_time_grain_types = kwargs.get('supported_time_grain_types', None) self.fill_gap_with_zero = kwargs.get('fill_gap_with_zero', None) self.dimensions = kwargs.get('dimensions', None) class NameAvailability(Model): """Name availability result payload. :param name_available: Indicates whether the name is available :type name_available: bool :param reason: Reason why the name is not available :type reason: str :param message: Message why the name is not available :type message: str """ _attribute_map = { 'name_available': {'key': 'nameAvailable', 'type': 'bool'}, 'reason': {'key': 'reason', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__(self, **kwargs): super(NameAvailability, self).__init__(**kwargs) self.name_available = kwargs.get('name_available', None) self.reason = kwargs.get('reason', None) self.message = kwargs.get('message', None) class NameAvailabilityParameters(Model): """Name availability parameters payload. All required parameters must be populated in order to send to Azure. :param type: Required. Type of the resource to check name availability :type type: str :param name: Required. Name to be checked :type name: str """ _validation = { 'type': {'required': True}, 'name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, } def __init__(self, **kwargs): super(NameAvailabilityParameters, self).__init__(**kwargs) self.type = kwargs.get('type', None) self.name = kwargs.get('name', None) class OperationDetail(Model): """Operation detail payload. :param name: Name of the operation :type name: str :param data_action: Indicates whether the operation is a data action :type data_action: bool :param display: Display of the operation :type display: ~azure.mgmt.appplatform.models.OperationDisplay :param origin: Origin of the operation :type origin: str :param properties: Properties of the operation :type properties: ~azure.mgmt.appplatform.models.OperationProperties """ _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'data_action': {'key': 'dataAction', 'type': 'bool'}, 'display': {'key': 'display', 'type': 'OperationDisplay'}, 'origin': {'key': 'origin', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'OperationProperties'}, } def __init__(self, **kwargs): super(OperationDetail, self).__init__(**kwargs) self.name = kwargs.get('name', None) self.data_action = kwargs.get('data_action', None) self.display = kwargs.get('display', None) self.origin = kwargs.get('origin', None) self.properties = kwargs.get('properties', None) class OperationDisplay(Model): """Operation display payload. :param provider: Resource provider of the operation :type provider: str :param resource: Resource of the operation :type resource: str :param operation: Localized friendly name for the operation :type operation: str :param description: Localized friendly description for the operation :type description: str """ _attribute_map = { 'provider': {'key': 'provider', 'type': 'str'}, 'resource': {'key': 'resource', 'type': 'str'}, 'operation': {'key': 'operation', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, } def __init__(self, **kwargs): super(OperationDisplay, self).__init__(**kwargs) self.provider = kwargs.get('provider', None) self.resource = kwargs.get('resource', None) self.operation = kwargs.get('operation', None) self.description = kwargs.get('description', None) class OperationProperties(Model): """Extra Operation properties. :param service_specification: Service specifications of the operation :type service_specification: ~azure.mgmt.appplatform.models.ServiceSpecification """ _attribute_map = { 'service_specification': {'key': 'serviceSpecification', 'type': 'ServiceSpecification'}, } def __init__(self, **kwargs): super(OperationProperties, self).__init__(**kwargs) self.service_specification = kwargs.get('service_specification', None) class PersistentDisk(Model): """Persistent disk payload. Variables are only populated by the server, and will be ignored when sending a request. :param size_in_gb: Size of the persistent disk in GB :type size_in_gb: int :ivar used_in_gb: Size of the used persistent disk in GB :vartype used_in_gb: int :param mount_path: Mount path of the persistent disk :type mount_path: str """ _validation = { 'size_in_gb': {'maximum': 50, 'minimum': 0}, 'used_in_gb': {'readonly': True, 'maximum': 50, 'minimum': 0}, } _attribute_map = { 'size_in_gb': {'key': 'sizeInGB', 'type': 'int'}, 'used_in_gb': {'key': 'usedInGB', 'type': 'int'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, } def __init__(self, **kwargs): super(PersistentDisk, self).__init__(**kwargs) self.size_in_gb = kwargs.get('size_in_gb', None) self.used_in_gb = None self.mount_path = kwargs.get('mount_path', None) class RegenerateTestKeyRequestPayload(Model): """Regenerate test key request payload. All required parameters must be populated in order to send to Azure. :param key_type: Required. Type of the test key. Possible values include: 'Primary', 'Secondary' :type key_type: str or ~azure.mgmt.appplatform.models.TestKeyType """ _validation = { 'key_type': {'required': True}, } _attribute_map = { 'key_type': {'key': 'keyType', 'type': 'str'}, } def __init__(self, **kwargs): super(RegenerateTestKeyRequestPayload, self).__init__(**kwargs) self.key_type = kwargs.get('key_type', None) class ResourceUploadDefinition(Model): """Resource upload definition payload. :param relative_path: Source relative path :type relative_path: str :param upload_url: Upload URL :type upload_url: str """ _attribute_map = { 'relative_path': {'key': 'relativePath', 'type': 'str'}, 'upload_url': {'key': 'uploadUrl', 'type': 'str'}, } def __init__(self, **kwargs): super(ResourceUploadDefinition, self).__init__(**kwargs) self.relative_path = kwargs.get('relative_path', None) self.upload_url = kwargs.get('upload_url', None) class TrackedResource(Resource): """The resource model definition for a ARM tracked top level resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param location: The GEO location of the resource. :type location: str :param tags: Tags of the service which is a list of key value pairs that describe the resource. :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, **kwargs): super(TrackedResource, self).__init__(**kwargs) self.location = kwargs.get('location', None) self.tags = kwargs.get('tags', None) class ServiceResource(TrackedResource): """Service resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified resource Id for the resource. :vartype id: str :ivar name: The name of the resource. :vartype name: str :ivar type: The type of the resource. :vartype type: str :param location: The GEO location of the resource. :type location: str :param tags: Tags of the service which is a list of key value pairs that describe the resource. :type tags: dict[str, str] :param properties: Properties of the Service resource :type properties: ~azure.mgmt.appplatform.models.ClusterResourceProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'properties': {'key': 'properties', 'type': 'ClusterResourceProperties'}, } def __init__(self, **kwargs): super(ServiceResource, self).__init__(**kwargs) self.properties = kwargs.get('properties', None) class ServiceSpecification(Model): """Service specification payload. :param log_specifications: Specifications of the Log for Azure Monitoring :type log_specifications: list[~azure.mgmt.appplatform.models.LogSpecification] :param metric_specifications: Specifications of the Metrics for Azure Monitoring :type metric_specifications: list[~azure.mgmt.appplatform.models.MetricSpecification] """ _attribute_map = { 'log_specifications': {'key': 'logSpecifications', 'type': '[LogSpecification]'}, 'metric_specifications': {'key': 'metricSpecifications', 'type': '[MetricSpecification]'}, } def __init__(self, **kwargs): super(ServiceSpecification, self).__init__(**kwargs) self.log_specifications = kwargs.get('log_specifications', None) self.metric_specifications = kwargs.get('metric_specifications', None) class TemporaryDisk(Model): """Temporary disk payload. :param size_in_gb: Size of the temporary disk in GB :type size_in_gb: int :param mount_path: Mount path of the temporary disk :type mount_path: str """ _validation = { 'size_in_gb': {'maximum': 5, 'minimum': 0}, } _attribute_map = { 'size_in_gb': {'key': 'sizeInGB', 'type': 'int'}, 'mount_path': {'key': 'mountPath', 'type': 'str'}, } def __init__(self, **kwargs): super(TemporaryDisk, self).__init__(**kwargs) self.size_in_gb = kwargs.get('size_in_gb', None) self.mount_path = kwargs.get('mount_path', None) class TestKeys(Model): """Test keys payload. :param primary_key: Primary key :type primary_key: str :param secondary_key: Secondary key :type secondary_key: str :param primary_test_endpoint: Primary test endpoint :type primary_test_endpoint: str :param secondary_test_endpoint: Secondary test endpoint :type secondary_test_endpoint: str :param enabled: Indicates whether the test endpoint feature enabled or not :type enabled: bool """ _attribute_map = { 'primary_key': {'key': 'primaryKey', 'type': 'str'}, 'secondary_key': {'key': 'secondaryKey', 'type': 'str'}, 'primary_test_endpoint': {'key': 'primaryTestEndpoint', 'type': 'str'}, 'secondary_test_endpoint': {'key': 'secondaryTestEndpoint', 'type': 'str'}, 'enabled': {'key': 'enabled', 'type': 'bool'}, } def __init__(self, **kwargs): super(TestKeys, self).__init__(**kwargs) self.primary_key = kwargs.get('primary_key', None) self.secondary_key = kwargs.get('secondary_key', None) self.primary_test_endpoint = kwargs.get('primary_test_endpoint', None) self.secondary_test_endpoint = kwargs.get('secondary_test_endpoint', None) self.enabled = kwargs.get('enabled', None) class TraceProperties(Model): """Trace properties payload. Variables are only populated by the server, and will be ignored when sending a request. :ivar state: State of the trace proxy. Possible values include: 'NotAvailable', 'Failed', 'Succeeded', 'Updating' :vartype state: str or ~azure.mgmt.appplatform.models.TraceProxyState :param error: Error when apply trace proxy changes. :type error: ~azure.mgmt.appplatform.models.Error :param enabled: Indicates whether enable the tracing functionality :type enabled: bool :param app_insight_instrumentation_key: Target application insight instrumentation key :type app_insight_instrumentation_key: str """ _validation = { 'state': {'readonly': True}, } _attribute_map = { 'state': {'key': 'state', 'type': 'str'}, 'error': {'key': 'error', 'type': 'Error'}, 'enabled': {'key': 'enabled', 'type': 'bool'}, 'app_insight_instrumentation_key': {'key': 'appInsightInstrumentationKey', 'type': 'str'}, } def __init__(self, **kwargs): super(TraceProperties, self).__init__(**kwargs) self.state = None self.error = kwargs.get('error', None) self.enabled = kwargs.get('enabled', None) self.app_insight_instrumentation_key = kwargs.get('app_insight_instrumentation_key', None) class UserSourceInfo(Model): """Source information for a deployment. :param type: Type of the source uploaded. Possible values include: 'Jar', 'Source' :type type: str or ~azure.mgmt.appplatform.models.UserSourceType :param relative_path: Relative path of the storage which stores the source :type relative_path: str :param version: Version of the source :type version: str :param artifact_selector: Selector for the artifact to be used for the deployment for multi-module projects. This should be the relative path to the target module/project. :type artifact_selector: str """ _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'relative_path': {'key': 'relativePath', 'type': 'str'}, 'version': {'key': 'version', 'type': 'str'}, 'artifact_selector': {'key': 'artifactSelector', 'type': 'str'}, } def __init__(self, **kwargs): super(UserSourceInfo, self).__init__(**kwargs) self.type = kwargs.get('type', None) self.relative_path = kwargs.get('relative_path', None) self.version = kwargs.get('version', None) self.artifact_selector = kwargs.get('artifact_selector', None)
the-stack_106_31808
from typing import Optional from ruptures.base import BaseCost from ruptures.detection import Binseg from sklearn.linear_model import LinearRegression from etna.transforms.change_points_trend import ChangePointsTrendTransform from etna.transforms.change_points_trend import TDetrendModel class BinsegTrendTransform(ChangePointsTrendTransform): """BinsegTrendTransform uses Binseg model as a change point detection model in ChangePointsTrendTransform transform.""" def __init__( self, in_column: str, detrend_model: TDetrendModel = LinearRegression(), model: str = "ar", custom_cost: Optional[BaseCost] = None, min_size: int = 2, jump: int = 1, n_bkps: int = 5, pen: Optional[float] = None, epsilon: Optional[float] = None, ): """Init BinsegTrendTransform. Parameters ---------- in_column: name of column to apply transform to detrend_model: model to get trend in data model: binseg segment model, ["l1", "l2", "rbf",...]. Not used if 'custom_cost' is not None. custom_cost: binseg custom cost function min_size: minimum segment length necessary to decide it is a stable trend segment jump: jump value can speed up computations: if jump==k, the algo will use every k-th value for change points search. n_bkps: number of change points to find pen: penalty value (>0) epsilon: reconstruction budget (>0) """ self.model = model self.custom_cost = custom_cost self.min_size = min_size self.jump = jump self.n_bkps = n_bkps self.pen = pen self.epsilon = epsilon super().__init__( in_column=in_column, change_point_model=Binseg( model=self.model, custom_cost=self.custom_cost, min_size=self.min_size, jump=self.jump ), detrend_model=detrend_model, n_bkps=self.n_bkps, pen=self.pen, epsilon=self.epsilon, )
the-stack_106_31809
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import atexit import os import shutil import signal import subprocess import sys import tempfile import threading import grpc from apache_beam.portability.api import beam_job_api_pb2_grpc from apache_beam.runners.portability import local_job_service from apache_beam.utils import subprocess_server from apache_beam.version import __version__ as beam_version class JobServer(object): def start(self): """Starts this JobServer, returning a grpc service to which to submit jobs. """ raise NotImplementedError(type(self)) def stop(self): """Stops this job server.""" raise NotImplementedError(type(self)) class ExternalJobServer(JobServer): def __init__(self, endpoint): self._endpoint = endpoint def start(self): channel = grpc.insecure_channel(self._endpoint) grpc.channel_ready_future(channel).result() return beam_job_api_pb2_grpc.JobServiceStub(channel) def stop(self): pass class EmbeddedJobServer(JobServer): def start(self): return local_job_service.LocalJobServicer() def stop(self): pass class StopOnExitJobServer(JobServer): """Wraps a JobServer such that its stop will automatically be called on exit. """ def __init__(self, job_server): self._lock = threading.Lock() self._job_server = job_server self._started = False def start(self): with self._lock: if not self._started: self._endpoint = self._job_server.start() self._started = True atexit.register(self.stop) signal.signal(signal.SIGINT, self.stop) return self._endpoint def stop(self): with self._lock: if self._started: self._job_server.stop() self._started = False class SubprocessJobServer(JobServer): """An abstract base class for JobServers run as an external process.""" def __init__(self): self._local_temp_root = None self._server = None def subprocess_cmd_and_endpoint(self): raise NotImplementedError(type(self)) def start(self): if self._server is None: self._local_temp_root = tempfile.mkdtemp(prefix='beam-temp') cmd, endpoint = self.subprocess_cmd_and_endpoint() port = int(endpoint.split(':')[-1]) self._server = subprocess_server.SubprocessServer( beam_job_api_pb2_grpc.JobServiceStub, cmd, port=port) return self._server.start() def stop(self): if self._local_temp_root: shutil.rmtree(self._local_temp_root) self._local_temp_root = None return self._server.stop() def local_temp_dir(self, **kwargs): return tempfile.mkdtemp(dir=self._local_temp_root, **kwargs) class JavaJarJobServer(SubprocessJobServer): MAVEN_REPOSITORY = 'https://repo.maven.apache.org/maven2/org/apache/beam' JAR_CACHE = os.path.expanduser("~/.apache_beam/cache") def java_arguments(self, job_port, artifacts_dir): raise NotImplementedError(type(self)) def path_to_jar(self): raise NotImplementedError(type(self)) @staticmethod def path_to_beam_jar(gradle_target): return subprocess_server.JavaJarServer.path_to_beam_jar(gradle_target) @staticmethod def local_jar(url): return subprocess_server.JavaJarServer.local_jar(url) def subprocess_cmd_and_endpoint(self): jar_path = self.local_jar(self.path_to_jar()) artifacts_dir = self.local_temp_dir(prefix='artifacts') job_port, = subprocess_server.pick_port(None) return ( ['java', '-jar', jar_path] + list( self.java_arguments(job_port, artifacts_dir)), 'localhost:%s' % job_port) class DockerizedJobServer(SubprocessJobServer): """ Spins up the JobServer in a docker container for local execution. """ def __init__(self, job_host="localhost", job_port=None, artifact_port=None, expansion_port=None, harness_port_range=(8100, 8200), max_connection_retries=5): super(DockerizedJobServer, self).__init__() self.job_host = job_host self.job_port = job_port self.expansion_port = expansion_port self.artifact_port = artifact_port self.harness_port_range = harness_port_range self.max_connection_retries = max_connection_retries def subprocess_cmd_and_endpoint(self): # TODO This is hardcoded to Flink at the moment but should be changed job_server_image_name = os.environ['USER'] + \ "-docker-apache.bintray.io/beam/flink-job-server:latest" docker_path = subprocess.check_output( ['which', 'docker']).strip().decode('utf-8') cmd = ["docker", "run", # We mount the docker binary and socket to be able to spin up # "sibling" containers for the SDK harness. "-v", ':'.join([docker_path, "/bin/docker"]), "-v", "/var/run/docker.sock:/var/run/docker.sock"] self.job_port, self.artifact_port, self.expansion_port = ( subprocess_server.pick_port( self.job_port, self.artifact_port, self.expansion_port)) args = ['--job-host', self.job_host, '--job-port', str(self.job_port), '--artifact-port', str(self.artifact_port), '--expansion-port', str(self.expansion_port)] if sys.platform == "darwin": # Docker-for-Mac doesn't support host networking, so we need to explictly # publish ports from the Docker container to be able to connect to it. # Also, all other containers need to be aware that they run Docker-on-Mac # to connect against the internal Docker-for-Mac address. cmd += ["-e", "DOCKER_MAC_CONTAINER=1"] cmd += ["-p", "{}:{}".format(self.job_port, self.job_port)] cmd += ["-p", "{}:{}".format(self.artifact_port, self.artifact_port)] cmd += ["-p", "{}:{}".format(self.expansion_port, self.expansion_port)] cmd += ["-p", "{0}-{1}:{0}-{1}".format( self.harness_port_range[0], self.harness_port_range[1])] else: # This shouldn't be set for MacOS because it detroys port forwardings, # even though host networking is not supported on MacOS. cmd.append("--network=host") cmd.append(job_server_image_name) return cmd + args, '%s:%s' % (self.job_host, self.job_port)
the-stack_106_31810
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # no unicode literals from __future__ import absolute_import, division, print_function import ctypes import os import os.path import platform from pywatchman import compat if os.name == "nt": def open_file_win(path): create_file = ctypes.windll.kernel32.CreateFileW c_path = ctypes.create_unicode_buffer(path) access = 0 mode = 7 # FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE disposition = 3 # OPEN_EXISTING flags = 33554432 # FILE_FLAG_BACKUP_SEMANTICS h = create_file(c_path, access, mode, 0, disposition, flags, 0) if h == -1: raise WindowsError("Failed to open file: " + path) return h def get_canonical_filesystem_path(name): gfpnbh = ctypes.windll.kernel32.GetFinalPathNameByHandleW close_handle = ctypes.windll.kernel32.CloseHandle h = open_file_win(name) try: gfpnbh = ctypes.windll.kernel32.GetFinalPathNameByHandleW numwchars = 1024 while True: buf = ctypes.create_unicode_buffer(numwchars) result = gfpnbh(h, buf, numwchars, 0) if result == 0: raise Exception("unknown error while normalizing path") # The first four chars are //?/ if result <= numwchars: path = buf.value[4:].replace("\\", "/") if compat.PYTHON2: path = path.encode("utf8") return path # Not big enough; the result is the amount we need numwchars = result + 1 finally: close_handle(h) elif platform.system() == "Darwin": import ctypes.util F_GETPATH = 50 libc = ctypes.CDLL(ctypes.util.find_library("c"), use_errno=True) getpath_fcntl = libc.fcntl getpath_fcntl.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_char_p] getpath_fcntl.restype = ctypes.c_int def get_canonical_filesystem_path(name): fd = os.open(name, os.O_RDONLY, 0) try: numchars = 1024 # MAXPATHLEN # The kernel caps this routine to MAXPATHLEN, so there is no # point in over-allocating or trying again with a larger buffer buf = ctypes.create_string_buffer(numchars) ctypes.set_errno(0) result = getpath_fcntl(fd, F_GETPATH, buf) if result != 0: raise OSError(ctypes.get_errno()) # buf is a bytes buffer, so normalize it if necessary ret = buf.value if isinstance(name, compat.UNICODE): ret = os.fsdecode(ret) return ret finally: os.close(fd) else: def get_canonical_filesystem_path(name): return os.path.normpath(name) def norm_relative_path(path): # TODO: in the future we will standardize on `/` as the # dir separator so we can remove the replace call from here. # We do not need to normcase because all of our tests are # using the appropriate case already, and watchman returns # paths in the canonical file replace case anyway. return path.replace("\\", "/") def norm_absolute_path(path): # TODO: in the future we will standardize on `/` as the # dir separator so we can remove the replace call. return path.replace("\\", "/")
the-stack_106_31811
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """This module contains the table found on asrank.caida.org. This table inherits from Generic Table. For more information: https://github.com/jfuruness/lib_bgp_data/wiki/Generic-Table """ __author__ = "Abhinna Adhikari, Justin Furuness" __credits__ = ["Abhinna Adhikari", "Justin Furuness"] __Lisence__ = "BSD" __maintainer__ = "Justin Furuness" __email__ = "[email protected]" __status__ = "Production" from ...utils.database import Generic_Table class AS_Rank_Table(Generic_Table): """ASRankTable class, inherits from Generic_Table. For a more in depth explanation see the top of the file. """ __slots__ = [] name = 'as_rank' columns = ['as_rank', 'asn', 'organization', 'country', 'cone_size'] def _create_tables(self): """Creates new table if it doesn't already exist. The contents will be cleared everytime asrank_website_parser is run because information in the datebase may be out of date. """ sql = f"""CREATE UNLOGGED TABLE IF NOT EXISTS {self.name} ( as_rank bigint, asn bigint, organization varchar (250), country varchar (2), cone_size integer );""" self.cursor.execute(sql) def get_top_100_ases(self): """Returns top 100 ases by as rank""" sql = f"""SELECT * FROM {self.name} ORDER BY as_rank LIMIT 100;""" return [x["asn"] for x in self.execute(sql)]
the-stack_106_31812
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from refinery.units import arg, Unit class group(Unit): """ Group incoming chunks into frames of the given size. """ def __init__(self, size: arg.number(help='Size of each group; must be at least 2.', bound=(2, None))): super().__init__(size=size) def process(self, data): members = data.temp or () if len(members) >= self.args.size: raise RuntimeError(F'received {len(members) + 1} items in group') yield data yield from members def filter(self, chunks): members = [] header = None for chunk in chunks: if not chunk.visible: yield chunk continue if len(members) > self.args.size - 2: yield header header = None if header is None: chunk.temp = members header = chunk members.clear() else: members.append(chunk) if header is not None: yield header
the-stack_106_31814
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Module to contain interpolation functions.""" import warnings import iris import numpy as np from scipy.interpolate import griddata from scipy.spatial.qhull import QhullError from improver import BasePlugin def interpolate_missing_data( data, method="linear", limit=None, limit_as_maximum=True, valid_points=None ): """ Args: data (numpy.ndarray): The field of data to be interpolated across gaps. method (str): The method to use to fill in the data. This is usually "linear" for linear interpolation, and "nearest" for a nearest neighbour approach. It can take any method available to the method scipy.interpolate.griddata. limit (numpy.ndarray): The array containing limits for each grid point that are imposed on any value in the region that has been interpolated. limit_as_maximum (bool): If True the test against the limit array is that if the interpolated values exceed the limit they should be set to the limit value. If False, the test is whether the interpolated values fall below the limit value. valid_points (numpy.ndarray): A boolean array that allows a subset of the unmasked data to be chosen as source data for the interpolation process. True values in this array mark points that can be used for interpolation if they are not otherwise invalid. False values mark points that should not be used, even if they are otherwise valid data points. Returns: numpy.ndarray: The original data plus interpolated data in masked regions where it was possible to fill these in. """ if valid_points is None: valid_points = np.full_like(data, True, dtype=np.bool) # Interpolate linearly across the remaining points index = ~np.isnan(data) index_valid_data = valid_points[index] index[index] = index_valid_data data_filled = data if np.any(index): ynum, xnum = data.shape (y_points, x_points) = np.mgrid[0:ynum, 0:xnum] values = data[index] try: data_updated = griddata( np.where(index), values, (y_points, x_points), method=method ) except QhullError: data_filled = data else: data_filled = data_updated if limit is not None: index = ~np.isfinite(data) & np.isfinite(data_filled) if limit_as_maximum: data_filled[index] = np.clip(data_filled[index], None, limit[index]) else: data_filled[index] = np.clip(data_filled[index], limit[index], None) index = ~np.isfinite(data) data[index] = data_filled[index] return data class InterpolateUsingDifference(BasePlugin): """ Uses interpolation to fill masked regions in the data contained within the input cube. This is achieved by calculating the difference between the input cube and a complete (i.e. complete across the whole domain) reference cube. The difference between the data in regions where they overlap is calculated and this difference field is then interpolated across the domain. Any masked regions in the input cube data are then filled with data calculated as the reference cube data minus the interpolated difference field. """ def __repr__(self): """String representation of plugin.""" return "<InterpolateUsingDifference>" @staticmethod def _check_inputs(cube, reference_cube, limit): """ Check that the input cubes are compatible and the data is complete or masked as expected. """ if np.isnan(reference_cube.data).any(): raise ValueError( "The reference cube contains np.nan data indicating that it " "is not complete across the domain." ) try: reference_cube.convert_units(cube.units) if limit is not None: limit.convert_units(cube.units) except ValueError as err: raise type(err)( "Reference cube and/or limit do not have units compatible with" " cube. " + str(err) ) def process(self, cube, reference_cube, limit=None, limit_as_maximum=True): """ Apply plugin to input data. Args: cube (iris.cube.Cube): Cube for which interpolation is required to fill masked regions. reference_cube (iris.cube.Cube): A cube that covers the entire domain that it shares with cube. limit (iris.cube.Cube or None): A cube of limiting values to apply to the cube that is being filled in. This can be used to ensure that the resulting values do not fall below / exceed the limiting values; whether the limit values should be used as a minima or maxima is determined by the limit_as_maximum option. These values should be on an x-y grid of the same size as an x-y slice of cube. limit_as_maximum (bool): If True the test against the values allowed by the limit array is that if the interpolated values exceed the limit they should be set to the limit value. If False, the test is whether the interpolated values fall below the limit value. Return: iris.cube.Cube: A copy of the input cube in which the missing data has been populated with values obtained through interpolating the difference field and subtracting the result from the reference cube. Raises: ValueError: If the reference cube is not complete across the entire domain. """ if not np.ma.is_masked(cube.data): warnings.warn( "Input cube unmasked, no data to fill in, returning " "unchanged." ) return cube self._check_inputs(cube, reference_cube, limit) filled_cube = iris.cube.CubeList() xaxis, yaxis = cube.coord(axis="x"), cube.coord(axis="y") for cslice, rslice in zip( cube.slices([yaxis, xaxis]), reference_cube.slices([yaxis, xaxis]) ): invalid_points = cslice.data.mask.copy() valid_points = ~invalid_points difference_field = np.subtract( rslice.data, cslice.data, out=np.full(cslice.shape, np.nan), where=valid_points, ) interpolated_difference = interpolate_missing_data( difference_field, valid_points=valid_points ) # If any invalid points remain in the difference field, use nearest # neighbour interpolation to fill these with the nearest difference remain_invalid = np.isnan(interpolated_difference) if remain_invalid.any(): interpolated_difference = interpolate_missing_data( difference_field, valid_points=~remain_invalid, method="nearest" ) result = cslice.copy() result.data[invalid_points] = ( rslice.data[invalid_points] - interpolated_difference[invalid_points] ) if limit is not None: if limit_as_maximum: result.data[invalid_points] = np.clip( result.data[invalid_points], None, limit.data[invalid_points] ) else: result.data[invalid_points] = np.clip( result.data[invalid_points], limit.data[invalid_points], None ) filled_cube.append(result) return filled_cube.merge_cube()
the-stack_106_31815
""" Code here relates to displaying and string-manipulating header dictionaries created by the ABFheader class. """ import os def show(header): """Display the contents of the header in an easy to read format.""" for key in header.keys(): if key.startswith("###"): print("\n%s"%key) else: print("%s = %s"%(key,header[key])) def html(header,fname): """Generate a HTML-formatted document with all header information.""" html="<html><body><code>" for key in header.keys(): if key.startswith("###"): key=key.replace("#","").strip() html+="<br><b style='font-size: 200%%;'>%s</b><br>"%key else: html+="%s = %s<br>"%(key,header[key]) html+="</code></html></body>" with open(fname,'w') as f: f.write(html) print("wrote",os.path.abspath(fname)) def markdown(header,fname): """Generate a markdown-formatted document with all header information.""" out="# ABF Header Contents\n" for key in header.keys(): if key.startswith("###"): key=key.replace("#","").strip() out+="\n## %s\n"%key else: out+="* %s = `%s`\n"%(key,header[key]) with open(fname,'w') as f: f.write(out) print("wrote",os.path.abspath(fname))
the-stack_106_31816
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from avro import schema from avro import io from avro import datafile DATUM = { 'intField': 12, 'longField': 15234324, 'stringField': u'hey', 'boolField': True, 'floatField': 1234.0, 'doubleField': -1234.0, 'bytesField': '12312adf', 'nullField': None, 'arrayField': [5.0, 0.0, 12.0], 'mapField': {'a': {'label': 'a'}, 'bee': {'label': 'cee'}}, 'unionField': 12.0, 'enumField': 'C', 'fixedField': '1019181716151413', 'recordField': {'label': 'blah', 'children': [{'label': 'inner', 'children': []}]}, } if __name__ == "__main__": interop_schema = schema.parse(open(sys.argv[1], 'r').read()) writer = open(sys.argv[2], 'wb') datum_writer = io.DatumWriter() # NB: not using compression dfw = datafile.DataFileWriter(writer, datum_writer, interop_schema) dfw.append(DATUM) dfw.close()
the-stack_106_31818
"""Min temp after, max temp after, count of days""" import datetime from scipy.stats import linregress from pandas.io.sql import read_sql from pyiem.util import get_autoplot_context, get_dbconn from pyiem.plot.use_agg import plt from pyiem.network import Table as NetworkTable BOOLS = { 'yes': 'Yes, fit linear regression', 'no': 'No, do not plot regression' } META = { 'annual_sum_precip': { 'title': 'Annual Precipitation (rain + melted snow)', 'ylabel': 'Precipitation [inches]', 'xlabel': 'Year', 'func': 'sum(precip)', 'month_bounds': '', 'valid_offset': '', }, 'annual_avg_temp': { 'title': 'Annual Average Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg((high+low)/2.)', 'month_bounds': '', 'valid_offset': '', }, 'winter_avg_temp': { 'title': 'Winter [DJF] Average Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg((high+low)/2.)', 'month_bounds': 'and month in (12,1,2)', 'valid_offset': "- '2 month'::interval ", }, 'winter_avg_low': { 'title': 'Winter [DJF] Average Low Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg(low)', 'month_bounds': 'and month in (12,1,2)', 'valid_offset': "- '2 month'::interval ", }, 'winter_avg_high': { 'title': 'Winter [DJF] Average High Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg(high)', 'month_bounds': 'and month in (12,1,2)', 'valid_offset': "- '2 month'::interval ", }, 'summer_avg_temp': { 'title': 'Summer [JJA] Average Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg((high+low)/2.)', 'month_bounds': 'and month in (6,7,8)', 'valid_offset': " ", }, 'summer_avg_high': { 'title': 'Summer [JJA] Average High Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg(high)', 'month_bounds': 'and month in (6,7,8)', 'valid_offset': " ", }, 'summer_avg_low': { 'title': 'Summer [JJA] Average Low Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg(low)', 'month_bounds': 'and month in (6,7,8)', 'valid_offset': " ", }, 'spring_avg_temp': { 'title': 'Spring [MAM] Average Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg((high+low)/2.)', 'month_bounds': 'and month in (3,4,5)', 'valid_offset': " ", }, 'fall_avg_temp': { 'title': 'Fall [SON] Average Temperature', 'ylabel': 'Temperature [F]', 'xlabel': 'Year', 'func': 'avg((high+low)/2.)', 'month_bounds': 'and month in (9,10,11)', 'valid_offset': " ", }, 'frost_free': { 'title': 'Frost Free Days', 'ylabel': 'Days', 'xlabel': 'Year', 'month_bounds': '', 'func': '', 'valid_offset': '', }, 'gdd50': { 'title': 'Growing Degree Days (1 May - 1 Oct) (base=50)', 'ylabel': 'GDD Units [F]', 'xlabel': 'Year', 'func': 'sum(gddxx(50, 86, high, low))', 'month_bounds': 'and month in (5,6,7,8,9)', 'valid_offset': '', }, 'hdd65': { 'title': 'Heating Degree Days (1 Oct - 1 May) (base=65)', 'ylabel': 'HDD Units [F]', 'xlabel': 'Year', 'func': 'sum(hdd65(high,low))', 'month_bounds': 'and month in (10,11,12,1,2,3,4)', 'valid_offset': " - '6 months'::interval ", }, } def yearly_plot(ax, ctx): """ Make a yearly plot of something """ pgconn = get_dbconn('coop', user='nobody') if ctx['plot_type'] == 'frost_free': ctx['st'] = ctx['station'][:2] df = read_sql(""" select fall.year as yr, fall.s - spring.s as data from (select year, max(extract(doy from day)) as s from alldata_%(st)s where station = '%(station)s' and month < 7 and low <= 32 and year >= %(first_year)s and year <= %(last_year)s GROUP by year) as spring, (select year, min(extract(doy from day)) as s from alldata_%(st)s where station = '%(station)s' and month > 7 and low <= 32 and year >= %(first_year)s and year <= %(last_year)s GROUP by year) as fall WHERE spring.year = fall.year ORDER by fall.year ASC """ % ctx, pgconn) else: df = read_sql(""" SELECT extract(year from (day %s)) as yr, %s as data from alldata_%s WHERE station = '%s' %s GROUP by yr ORDER by yr ASC """ % (META[ctx['plot_type']]['valid_offset'], META[ctx['plot_type']]['func'], ctx['station'][:2], ctx['station'], META[ctx['plot_type']]['month_bounds']), pgconn) df = df[(df['yr'] >= ctx['first_year']) & (df['yr'] <= ctx['last_year'])] if df.empty: raise ValueError("no data found, sorry") ax.plot(df['yr'].values, df['data'].values, 'bo-') ax.set_title(("%s (%s - %s)\nLocation Name: %s" ) % (META[ctx['plot_type']].get('title', 'TITLE'), ctx['first_year'], ctx['last_year'], ctx['nt'].sts[ctx['station']]['name'])) ax.set_xlabel(META[ctx['plot_type']].get('xlabel', 'XLABEL')) ax.set_ylabel(META[ctx['plot_type']].get('ylabel', 'YLABEL')) ax.set_xlim(ctx['first_year'] - 1, ctx['last_year'] + 1) miny = df['data'].min() maxy = df['data'].max() ax.set_ylim(miny - ((maxy-miny) / 10.), maxy + ((maxy-miny) / 10.)) ax.grid(True) if ctx['linregress'] == 'yes': (slope, intercept, r_value, _p_value, _std_err) = linregress(df['yr'].values, df['data'].values) ax.plot(df['yr'].values, slope * df['yr'].values + intercept, color='#CC6633') ax.text(ctx['first_year'], maxy, '$R^2$=%.2f' % (r_value ** 2,), color='#CC6633') return df def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['description'] = """Create plots of yearly totals and optionally fit a linear trendline. Here is a brief description of some of the available metrics. <ul> <li><strong>Frost Free Days</strong>: Number of days each year between the last spring sub 32F temperature and first fall sub 32F temperature. </li> </ul> """ pdict = dict() for varname in META: pdict[varname] = META[varname]['title'] today = datetime.date.today() desc['arguments'] = [ dict(type='station', name='station', default='IA0200', label='Select Station:', network='IACLIMATE'), dict(type='select', options=pdict, default='frost_free', label='Which metric to compute', name='plot_type'), dict(type='year', default=1951, name='first_year', label='First Year to Plot'), dict(type='year', default=(today.year - 1), name='last_year', label='Last Year to Plot'), dict(type='select', options=BOOLS, name='linregress', default='no', label='Plot Regression?') ] return desc def plotter(fdict): """ Go """ ctx = get_autoplot_context(fdict, get_description()) ctx['nt'] = NetworkTable(ctx['network']) fig = plt.figure() ax = fig.add_subplot(111) # Transparent background for the plot area ax.patch.set_alpha(1.0) df = yearly_plot(ax, ctx) return fig, df if __name__ == '__main__': plotter(dict())
the-stack_106_31819
#!/usr/bin/env python3 # Copyright (c) 2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test diazd aborts if can't disconnect a block. - Start a single node and generate 3 blocks. - Delete the undo data. - Mine a fork that requires disconnecting the tip. - Verify that diazd AbortNode's. """ from test_framework.test_framework import DiazTestFramework from test_framework.util import wait_until, get_datadir_path, connect_nodes import os class AbortNodeTest(DiazTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def setup_network(self): self.setup_nodes() # We'll connect the nodes later def run_test(self): self.nodes[0].generate(3) datadir = get_datadir_path(self.options.tmpdir, 0) # Deleting the undo file will result in reorg failure os.unlink(os.path.join(datadir, 'regtest', 'blocks', 'rev00000.dat')) # Connecting to a node with a more work chain will trigger a reorg # attempt. self.nodes[1].generate(3) with self.nodes[0].assert_debug_log(["Failed to disconnect block"]): connect_nodes(self.nodes[0], 1) self.nodes[1].generate(1) # Check that node0 aborted self.log.info("Waiting for crash") wait_until(lambda: self.nodes[0].is_node_stopped(), timeout=60) self.log.info("Node crashed - now verifying restart fails") self.nodes[0].assert_start_raises_init_error() if __name__ == '__main__': AbortNodeTest().main()
the-stack_106_31820
""" @author: Thang Nguyen <[email protected]> """ import os import argparse import shutil import cv2 import numpy as np from src.utils import * import pickle from src.yolo_net import Yolo CLASSES = ["person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] def get_args(): parser = argparse.ArgumentParser("You Only Look Once: Unified, Real-Time Object Detection") parser.add_argument("--image_size", type=int, default=448, help="The common width and height for all images") parser.add_argument("--conf_threshold", type=float, default=0.35) parser.add_argument("--nms_threshold", type=float, default=0.5) parser.add_argument("--test_set", type=str, default="val") parser.add_argument("--year", type=str, default="2017", help="The year of dataset (2014 or 2017)") parser.add_argument("--root_path", type=str, default="data/COCO", help="the root folder of dataset") parser.add_argument("--pre_trained_model_type", type=str, choices=["model", "params"], default="model") parser.add_argument("--pre_trained_model_path", type=str, default="trained_models/whole_model_trained_yolo_coco") parser.add_argument("--output", type=str, default="predictions") args = parser.parse_args() return args def test(opt): input_image_folder = os.path.join(opt.root_path, "images", "{}{}".format(opt.test_set, opt.year)) anno_path = os.path.join(opt.root_path, "anno_pickle", "COCO_{}{}.pkl".format(opt.test_set, opt.year)) id_list_path = pickle.load(open(anno_path, "rb")) id_list_path = list(id_list_path.values()) output_folder = os.path.join(opt.output, "COCO_{}{}".format(opt.test_set, opt.year)) colors = pickle.load(open("src/pallete", "rb")) if os.path.isdir(output_folder): shutil.rmtree(output_folder) os.makedirs(output_folder) if torch.cuda.is_available(): if opt.pre_trained_model_type == "model": model = torch.load(opt.pre_trained_model_path) else: model = Yolo(80) model.load_state_dict(torch.load(opt.pre_trained_model_path)) else: if opt.pre_trained_model_type == "model": model = torch.load(opt.pre_trained_model_path, map_location=lambda storage, loc: storage) else: model = Yolo(80) model.load_state_dict(torch.load(opt.pre_trained_model_path, map_location=lambda storage, loc: storage)) model.eval() for id in id_list_path: image_path = os.path.join(input_image_folder, id["file_name"]) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) height, width = image.shape[:2] image = cv2.resize(image, (opt.image_size, opt.image_size)) image = np.transpose(np.array(image, dtype=np.float32), (2, 0, 1)) image = image[None, :, :, :] width_ratio = float(opt.image_size) / width height_ratio = float(opt.image_size) / height data = Variable(torch.FloatTensor(image)) if torch.cuda.is_available(): data = data.cuda() with torch.no_grad(): logits = model(data) predictions = post_processing(logits, opt.image_size, CLASSES, model.anchors, opt.conf_threshold, opt.nms_threshold) if len(predictions) == 0: continue else: predictions = predictions[0] output_image = cv2.imread(image_path) for pred in predictions: xmin = int(max(pred[0] / width_ratio, 0)) ymin = int(max(pred[1] / height_ratio, 0)) xmax = int(min((pred[0] + pred[2]) / width_ratio, width)) ymax = int(min((pred[1] + pred[3]) / height_ratio, height)) color = colors[CLASSES.index(pred[5])] cv2.rectangle(output_image, (xmin, ymin), (xmax, ymax), color, 2) text_size = cv2.getTextSize(pred[5] + ' : %.2f' % pred[4], cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle(output_image, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText( output_image, pred[5] + ' : %.2f' % pred[4], (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) print("Object: {}, Bounding box: ({},{}) ({},{})".format(pred[5], xmin, xmax, ymin, ymax)) cv2.imwrite("{}/{}_prediction.jpg".format(output_folder, id["file_name"][:-4]), output_image) if __name__ == "__main__": opt = get_args() test(opt)
the-stack_106_31821
# Copyright 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ W60X SDK """ from os.path import isfile, isdir, join from SCons.Script import DefaultEnvironment env = DefaultEnvironment() platform = env.PioPlatform() board = env.BoardConfig() FRAMEWORK_DIR = platform.get_package_dir("framework-wm60x-sdk") assert isdir(FRAMEWORK_DIR) mcu = env.BoardConfig().get("build.mcu", "") board_name = env.subst("$BOARD") upload_protocol = env.subst("$UPLOAD_PROTOCOL") def process_standard_library_configuration(cpp_defines): if "PIO_FRAMEWORK_ARDUINO_STANDARD_LIB" in cpp_defines: env['LINKFLAGS'].remove("--specs=nano.specs") if "PIO_FRAMEWORK_ARDUINO_NANOLIB_FLOAT_PRINTF" in cpp_defines: env.Append(LINKFLAGS=["-u_printf_float"]) if "PIO_FRAMEWORK_ARDUINO_NANOLIB_FLOAT_SCANF" in cpp_defines: env.Append(LINKFLAGS=["-u_scanf_float"]) # choice for LWIP_141 vs lwip2.0.3 is ommited. # other flags like COST_DOWN / TLS_COST_DOWN, # which are present in the original makefiles, # are not processed in actual code. def get_arm_math_lib(cpu): core = board.get("build.cpu")[7:9] if core == "m4": return "arm_cortexM4lf_math" elif core == "m7": return "arm_cortexM7lfsp_math" return "arm_cortex%sl_math" % core.upper() env.Append( ASFLAGS=["-x", "assembler-with-cpp", "-mabi=aapcs", "-mthumb-interwork"], CFLAGS=[ "-std=gnu11" ], CXXFLAGS=[ "-std=gnu++14", "-fno-threadsafe-statics", "-fno-rtti", "-fno-exceptions", "-fno-use-cxa-atexit" ], CCFLAGS=[ "-Os", # optimize for size "-mcpu=%s" % env.BoardConfig().get("build.cpu"), "-mthumb", "-mabi=aapcs", "-march=armv7-m", "-ffunction-sections", # place each function in its own section "-fdata-sections", "-Wall", "-nostdlib", "-fno-builtin", "--param", "max-inline-insns-single=500" ], CPPDEFINES=[ ("GCC_COMPILE", 1), ("WM_W600", 1), ("TLS_OS_FREERTOS", 1), #from RTOS Makefile "_IN_ADDR_T_DECLARED", #from toolchain.def "__MACHINE_ENDIAN_H__", "_TIMEVAL_DEFINED", "__INSIDE_CYGWIN_NET__" ], CPPPATH=[ join(FRAMEWORK_DIR, "Src", "OS", "RTOS", "include"), # referenced in makefile but actually not existing #join(FRAMEWORK_DIR, "Src", "Wlan", "Driver"), #join(FRAMEWORK_DIR, "Src", "Wlan", "Supplicant"), join(FRAMEWORK_DIR, "Platform", "Boot", "gcc"), join(FRAMEWORK_DIR, "Platform", "Common", "Params"), join(FRAMEWORK_DIR, "Platform", "Common", "Task"), join(FRAMEWORK_DIR, "Platform", "Common", "mem"), join(FRAMEWORK_DIR, "Platform", "Common", "fwup"), join(FRAMEWORK_DIR, "Platform", "Common", "utils"), join(FRAMEWORK_DIR, "Platform", "Common", "crypto"), join(FRAMEWORK_DIR, "Platform", "Common", "crypto", "symmetric"), join(FRAMEWORK_DIR, "Platform", "Common", "crypto", "digest"), join(FRAMEWORK_DIR, "Platform", "Common", "crypto", "math"), join(FRAMEWORK_DIR, "Platform", "Inc"), join(FRAMEWORK_DIR, "Platform", "Sys"), join(FRAMEWORK_DIR, "Src", "App", "wm_atcmd"), join(FRAMEWORK_DIR, "Src", "App", "matrixssl"), join(FRAMEWORK_DIR, "Src", "App", "libupnp-1.6.19", "ixml", "inc"), join(FRAMEWORK_DIR, "Src", "App", "libupnp-1.6.19", "upnp" "inc"), join(FRAMEWORK_DIR, "Src", "App", "libupnp-1.6.19", "ixml", "include"), join(FRAMEWORK_DIR, "Src", "App", "libupnp-1.6.19", "threadutil", "include"), join(FRAMEWORK_DIR, "Src", "App", "libupnp-1.6.19", "upnp", "include"), join(FRAMEWORK_DIR, "Src", "App", "gmediarender-0.0.6"), join(FRAMEWORK_DIR, "Src", "App", "web"), join(FRAMEWORK_DIR, "Src", "App", "OTA"), join(FRAMEWORK_DIR, "Src", "App", "cloud"), join(FRAMEWORK_DIR, "Src", "App", "cJSON"), join(FRAMEWORK_DIR, "Src", "App", "ajtcl-15.04.00a", "inc"), join(FRAMEWORK_DIR, "Src", "App", "ajtcl-15.04.00a", "target", "winnermicro"), join(FRAMEWORK_DIR, "Src", "App", "ajtcl-15.04.00a", "external", "sha2"), join(FRAMEWORK_DIR, "Src", "App", "cJSON"), join(FRAMEWORK_DIR, "Src", "App", "cloud"), join(FRAMEWORK_DIR, "Src", "App", "oneshotconfig"), join(FRAMEWORK_DIR, "Src", "App", "dhcpserver"), join(FRAMEWORK_DIR, "Src", "App", "dnsserver"), join(FRAMEWORK_DIR, "Src", "App", "ping"), join(FRAMEWORK_DIR, "Src", "App", "iperf"), join(FRAMEWORK_DIR, "Src", "App", "libcoap", "include"), join(FRAMEWORK_DIR, "Src", "App", "polarssl", "include"), join(FRAMEWORK_DIR, "Src", "App", "mDNS", "mDNSCore"), join(FRAMEWORK_DIR, "Src", "App", "mDNS", "mDNSPosix"), join(FRAMEWORK_DIR, "Src", "App", "mqtt"), join(FRAMEWORK_DIR, "Src", "App", "easylogger", "inc"), join(FRAMEWORK_DIR, "Demo"), join(FRAMEWORK_DIR, "Include"), join(FRAMEWORK_DIR, "Include", "App"), join(FRAMEWORK_DIR, "Include", "Net"), join(FRAMEWORK_DIR, "Include", "WiFi"), join(FRAMEWORK_DIR, "Include", "OS"), join(FRAMEWORK_DIR, "Include", "Driver"), join(FRAMEWORK_DIR, "Include", "Platform"), join(FRAMEWORK_DIR, "Src", "App", "matrixssl", "core"), # special case: includes "list.h" which also exists in Include/ join(FRAMEWORK_DIR, "Src", "Network", "api2.0.3"), join(FRAMEWORK_DIR, "Src", "Network", "lwip2.0.3"), join(FRAMEWORK_DIR, "Src", "Network", "lwip2.0.3", "include"), join(FRAMEWORK_DIR, "Src", "Network", "lwip2.0.3", "include", "arch"), join(FRAMEWORK_DIR, "Src", "Network", "lwip2.0.3", "include", "lwip"), join(FRAMEWORK_DIR, "Src", "Network", "lwip2.0.3", "include", "netif"), join(FRAMEWORK_DIR, "Src", "App", "libwebsockets-2.1-stable"), join(FRAMEWORK_DIR, "Src", "App", "httpclient"), join(FRAMEWORK_DIR, "Src", "App", "lwm2m-wakaama", "core"), join(FRAMEWORK_DIR, "Src", "App", "lwm2m-wakaama", "core", "er-coap-13"), join(FRAMEWORK_DIR, "Src", "App", "lwm2m-wakaama", "examples", "shared"), join(FRAMEWORK_DIR, "Src", "App", "lwm2m-wakaama", "examples") ], LINKFLAGS=[ "-Os", "-mthumb", "-mcpu=%s" % env.BoardConfig().get("build.cpu"), "--specs=nano.specs", "-Wl,--gc-sections,--relax", "-Wl,--check-sections", "-Wl,--entry=Reset_Handler", "-Wl,--unresolved-symbols=report-all", "-Wl,--warn-common", "-Wl,--defsym=LD_MAX_SIZE=%d" % board.get("upload.maximum_size"), "-Wl,--defsym=LD_MAX_DATA_SIZE=%d" % board.get( "upload.maximum_ram_size"), "-static", "-nostartfiles" ], LIBS=[ #get_arm_math_lib(env.BoardConfig().get("build.cpu")) "c", "m", "gcc", "stdc++", "wlan", "airkiss_log" ], LIBPATH=[ join(FRAMEWORK_DIR, "Lib", "GNU"), join(FRAMEWORK_DIR, "Src", "App","oneshotconfig", "lib_gcc") ] ) # # Linker requires preprocessing with correct RAM|ROM sizes # if not board.get("build.ldscript", ""): print("Warning! Cannot find linker script for the current target!\n") env.Replace(LDSCRIPT_PATH=join("ldscripts", "ldscript.ld")) # # Process configuration flags # cpp_defines = env.Flatten(env.get("CPPDEFINES", [])) process_standard_library_configuration(cpp_defines) # copy CCFLAGS to ASFLAGS (-x assembler-with-cpp mode) env.Append(ASFLAGS=env.get("CCFLAGS", [])[:]) env.Append( LIBSOURCE_DIRS=[ join(FRAMEWORK_DIR, "libraries") ] ) # # Target: Build Core Library # libs = [] platform_exclude_dirs = [ # not-built source files in crypto stuff "Common/crypto/digest/md5Matrix.c", "Common/crypto/digest/sha1Matrix.c", "Common/crypto/digest/sha256Matrix.c", "Common/crypto/math/pstm_montgomery_reduce.c", "Common/crypto/math/pstm_sqr_comba.c", "Common/crypto/math/pstm.c", "Common/crypto/symmetric/aesMatrix.c", "Common/crypto/symmetric/arc4.c", # bootup files for other compilers "Boot/armcc", "Boot/iccarm", # these files #include ALL .c files --> double definitions; ignore them "Drivers/wm_driver.c", "Common/wm_common.c" ] platform_exclude_dirs_src_filter = " ".join(["-<" + d + ">" for d in platform_exclude_dirs]) # build startup files env.BuildSources( join("$BUILD_DIR", "SDKPlatformBoot"), join(FRAMEWORK_DIR, "Platform"), src_filter="+<*> " + platform_exclude_dirs_src_filter) # build RTOS env.BuildSources( join("$BUILD_DIR", "SDKRTOS"), join(FRAMEWORK_DIR, "Src", "OS", "RTOS"), src_filter="+<*> -<ports/port_m3.c> -<wm_rtos.c>") #exclude port file meant for other compiler network_exclude_dirs = [ "lwip2.0.3.c", "lwip2.0.3/apps/*", "lwip2.0.3/core/timers.c", "lwip2.0.3/netif/ppp/*", "lwip2.0.3/netif/lowpan6.c", "lwip2.0.3/netif/slipif.c", "lwip2.0.3/core/ipv4/ip_frag.c" ] network_exclude_dirs_src_filter = " ".join(["-<" + d + ">" for d in network_exclude_dirs]) env.BuildSources( join("$BUILD_DIR", "SDKNetwork"), join(FRAMEWORK_DIR, "Src", "Network"), src_filter="+<*> " + network_exclude_dirs_src_filter) # Built needed App folders app_exclude_dirs = [ # excludes for httpclient "httpclient/wm_http_compile.c", "httpclient/wm_httpclient_if.c", # excludes for libwebsockets "libwebsockets-2.1-stable/alloc.c", "libwebsockets-2.1-stable/daemonize.c", "libwebsockets-2.1-stable/extension*", "libwebsockets-2.1-stable/extension*", "libwebsockets-2.1-stable/getifaddrs.c", "libwebsockets-2.1-stable/http2.c", "libwebsockets-2.1-stable/hpack.c", "libwebsockets-2.1-stable/lejp.c", "libwebsockets-2.1-stable/lejp-conf.c", "libwebsockets-2.1-stable/libev.c", "libwebsockets-2.1-stable/libuv.c", "libwebsockets-2.1-stable/lws-plat-esp8266.c", "libwebsockets-2.1-stable/lws-plat-mbed3.c", "libwebsockets-2.1-stable/lws-plat-mbed3.cpp", "libwebsockets-2.1-stable/lws-plat-unix.c", "libwebsockets-2.1-stable/lws-plat-win.c", "libwebsockets-2.1-stable/minihuf.c", "libwebsockets-2.1-stable/minilex.c", "libwebsockets-2.1-stable/rewrite.c", "libwebsockets-2.1-stable/server.c", "libwebsockets-2.1-stable/server-handshake.c", "libwebsockets-2.1-stable/sha-1.c", "libwebsockets-2.1-stable/smtp.c", "libwebsockets-2.1-stable/ssl-http2.c", "libwebsockets-2.1-stable/ssl-server.c", # excludes for libcoap "libcoap/coap_io.c", "libcoap/uri_libcoap.c", # excludes for lwm2m-wakaama "lwm2m-wakaama/examples/bootstrap_server/*", "lwm2m-wakaama/examples/client/*", "lwm2m-wakaama/examples/server/*", "lwm2m-wakaama/examples/shared/dtlsconnection.c", "lwm2m-wakaama/tests/*", # excludes for web "web/fsdata_ap_config.c", "web/fsdata.c", # excludes for wm_atmc "wm_atcmd/wm_cmd.c", # includes all c files. "wm_atcmd/wm_uart_timer.c", # excludes for matrixssl "matrixssl/wm_matrixssl_compile.c" ] app_exclude_dirs_src_filter = " ".join(["-<" + d + ">" for d in app_exclude_dirs]) env.BuildSources( join("$BUILD_DIR", "SDKApps"), join(FRAMEWORK_DIR, "Src", "App"), src_filter="+<*> " + app_exclude_dirs_src_filter) #env.Prepend(LIBS=libs)
the-stack_106_31822
from locusts.support import * from locusts.environment import * def create_exec_file(id_list, command_template, indir, outdir, output_filename_templates, exec_filename, shared_inputs=[], inputs_for_clean_environment=[]): with open(exec_filename, "w") as exec_file: for ip, idx in enumerate(id_list): exec_file.write(('c{0}:\t{1}\n'.format(str(ip).zfill(6), command_template.replace("<id>", idx)))) if inputs_for_clean_environment: inls = ' '.join([indir + x.replace("<id>", idx) for x in inputs_for_clean_environment]) exec_file.write('i{0}:\t{1}\n'.format(str(ip).zfill(6), inls)) if shared_inputs: shls = ' '.join([x.replace("<id>", idx).replace(":", ":"+indir) for x in shared_inputs]) exec_file.write('s{0}:\t{1}\n'.format(str(ip).zfill(6), shls)) ols = ' '.join([x.replace("<id>", idx) for x in output_filename_templates]) exec_file.write('o{0}:\t{1}\n'.format(str(ip).zfill(6), ols)) def check_remote_path(remote_machine, root_path): """Checks existence of parent folder of remote root path and non-existence of remote root path itself""" lsdir = subprocess.Popen(["ssh", remote_machine, "ls", root_path], stdout=open('/dev/null', 'w'), stderr=subprocess.PIPE).stderr.read().decode('ascii').strip() lsdirup = subprocess.Popen(["ssh", remote_machine, "ls", os.path.dirname(root_path[:-1])], stdout=open('/dev/null', 'w'), stderr=subprocess.PIPE).stderr.read().decode('ascii').strip() # If parent directory of root path is not there, error if "ls: cannot access" in lsdirup: # If ls on parent directory gives error print('Failed to create {0}\nPath {1} not present' \ .format(root_path, os.path.dirname(root_path[:-1]))) print(lsdirup) exit(1) # If root path already there, error: you must delete it yourself elif "ls: cannot access" not in lsdir: # If ls on the exec directory does not give error print(('Exec path {0} is already present in remote location {1}\n' 'No permission to overwrite it, please delete it manually.') \ .format(root_path, remote_machine)) print('ssh {1} rm -rf {0}'.format(root_path, remote_machine)) exit(1) def generate_exec_filesystem(protocol_triad, cache_dir, job_data, runtime_root_path, batch_job_code, data_transfer_protocol, env_instr=None, build_envroot=None): devnull = open('/dev/null', 'w') # Make sure root_path is in the format "/abspath/to/exec/" or "relpath/to/exec/" (no extra "/" or missing trailing "/") # NOTICE: root_path denotes where the locusts filesystem root directory will be at execution time # if protocol == "remote", it is a path on the remote machine! runtime_root_path = reduceslash(runtime_root_path + "/") # Define localbuild_root_path # NOTICE: localbuild_root_path contains the filesystem root directory *during creation* # It is thus always a local path. # It can be an absolute path or a relative path starting from the current working dir (from where locusts was called) protocol, remote_machine, local_shared_folder = protocol_triad if protocol == "local": # localbuild_root_path <- real filesystem root if not os.path.exists(runtime_root_path): os.mkdir(runtime_root_path) localbuild_root_path = runtime_root_path = os.path.abspath(runtime_root_path) + '/' elif protocol == "remote": # localbuild_root_path <- temporary local path # WARNING: PAY ATTENTION TO THE FORMAT OF cache_dir!!! localbuild_root_path = reduceslash(cache_dir + "/" + batch_job_code + "_tmp_root/") if not os.path.exists(localbuild_root_path): os.mkdir(localbuild_root_path) localbuild_root_path = os.path.abspath(localbuild_root_path) + '/' elif protocol == "remote-sharedfs": # localbuild_root_path <- local shared folder (real filesystem root) localbuild_root_path = local_shared_folder if not os.path.exists(localbuild_root_path): os.mkdir(localbuild_root_path) localbuild_root_path = os.path.abspath(localbuild_root_path) + '/' # If the user provides the instruction file but not the local adress of the environment, # he does not want to replicate the env (she thinks it is already in place) # NOTICE: the snapshot will be taken anyway env_and_do_not_replicate = True if (env_instr and not build_envroot) else False # Filesystem locations dictionary contains the main locations of the environment fs_locations = { "build_root" : localbuild_root_path, "runtime_root" : runtime_root_path, "build_shared" : localbuild_root_path + "shared_contents/", "runtime_shared" : runtime_root_path + "shared_contents/", "build_exec" : localbuild_root_path + "exec_dir/", "runtime_exec" : runtime_root_path+ "exec_dir/", "build_work" : localbuild_root_path + batch_job_code + "/", "runtime_work" : runtime_root_path + batch_job_code + "/" } # Step 1: create local versions of Shared, Exec and Work sub-environments ------------------------ # Create main locations locally build_shared_path = fs_locations["build_shared"] if not os.path.exists(build_shared_path): os.mkdir(build_shared_path) if not os.path.exists(fs_locations["build_exec"]): os.mkdir(fs_locations["build_exec"]) if not os.path.exists(fs_locations["build_work"]): os.mkdir(fs_locations["build_work"]) exec_filesystem = {} # For each task contains remote work path and shared files paths shared = {} # Step 2: create Shared sub-filesystem ------------------- for jdi, jd in enumerate(job_data): batchno = jdi // 10000 exec_filesystem[jd['unique_code']] = [None, {}] for skey in jd['shared_inps']: if skey not in shared: # Create local batch dir, and copy file there batchisp = (len(shared) + 1)//10000 build_shbatch_folder = build_shared_path + 'batch_' + str(batchisp) + '/' # NOTICE: build_shared_path is local if not os.path.exists(build_shbatch_folder): os.mkdir(build_shbatch_folder) build_shdest_path = build_shbatch_folder + os.path.basename(jd['shared_inps'][skey]) shutil.copyfile(jd['shared_inps'][skey], build_shdest_path) # Runtime shared destination dir name runtime_shdest_path = (fs_locations["runtime_shared"] + 'batch_' + str(batchisp) + '/' + os.path.basename(jd['shared_inps'][skey])) shared[skey] = runtime_shdest_path # shared folder path at execution time else: runtime_shdest_path = shared[skey] exec_filesystem[jd['unique_code']][1]["<shared>"+skey] = runtime_shdest_path if protocol == 'remote' and not env_and_do_not_replicate: check_remote_path(remote_machine, fs_locations["runtime_root"]) # """ if env_instr: tr_cmd = ["bash", data_transfer_protocol, fs_locations["build_root"], "{0}:{1}".format(remote_machine, fs_locations["runtime_root"])] if DEBUG: print("COMMAND", " ".join(tr_cmd)) p = subprocess.Popen(tr_cmd) else: p = subprocess.Popen(tr_cmd, stderr=devnull, stdout=devnull) p.wait() else: mkd1_cmd = ["ssh", remote_machine, "mkdir", fs_locations["runtime_root"]] mkd2_cmd = ["ssh", remote_machine, "mkdir", fs_locations["runtime_exec"]] tr_cmd = ["bash", data_transfer_protocol, fs_locations["build_shared"], "{0}:{1}".format(remote_machine, fs_locations["runtime_shared"])] if DEBUG: print("COMMAND", " ".join(mkd1_cmd)) p = subprocess.Popen(mkd1_cmd) p.wait() print("COMMAND", " ".join(mkd2_cmd)) p = subprocess.Popen(mkd2_cmd) p.wait() print("COMMAND", " ".join(tr_cmd)) p = subprocess.Popen(tr_cmd) else: p = subprocess.Popen( mkd1_cmd, stderr=devnull, stdout=devnull) p.wait() p = subprocess.Popen( mkd2_cmd, stderr=devnull, stdout=devnull) p.wait() p = subprocess.Popen( tr_cmd, stderr=devnull, stdout=devnull) p.wait() time.sleep(10) # """ # Step 3: create Work sub-filesystem: "custom" or "locusts" mode ------------------- if env_instr: # "custom" mode: environment is created following instruction file # Replace tags in instruction file lines # Choose replacement whether it is in remote or in local if protocol == "remote": mkdircmd = "ssh {0} mkdir".format(remote_machine) copycmd = "bash {0}".format(data_transfer_protocol) runtime_envroot_cp = "{0}:{1}".format(remote_machine, fs_locations["runtime_work"]) runtime_envroot_mkdir = fs_locations["runtime_work"] workpath = fs_locations["runtime_work"] elif protocol == 'remote-sharedfs': mkdircmd, copycmd = "mkdir", "cp" runtime_envroot_cp = fs_locations["runtime_work"] runtime_envroot_mkdir = fs_locations["runtime_work"] workpath = fs_locations["runtime_work"] elif protocol == "local": workpath = build_envroot # Read the instruction file, replace tags and execute workdir, instructions = parse_fs_tree(env_instr, build_envroot) if protocol != 'local' and not env_and_do_not_replicate: for instr in instructions: cmd = instr.replace("<build_envroot>", build_envroot) \ .replace("<mkdir>", mkdircmd) \ .replace("<runtime_envroot_mkdir>", runtime_envroot_mkdir) \ .replace("<copy>", copycmd) \ .replace("<runtime_envroot_cp>", runtime_envroot_cp) cmdlist = [x for x in cmd.split() if x] if DEBUG: print("COMMAND", cmdlist) p = subprocess.Popen(cmdlist) else: p = subprocess.Popen(cmdlist, stdout=devnull, stderr=devnull) p.wait() time.sleep(10) if not workdir: print(("ERROR (generate_filesystem): Please specify the directory " "from where to launch the specified commands\nOn top of the " "filesystem specifications file, add #WORKDIR <path> where " "<path> is a relative path from the environment root dir")) exit(1) # Task files are in the Work sub-filesystem but outside the imported environment # A cache in the main Work folder is created for containing them build_cache = fs_locations["build_work"] + '.cache/' runtime_cache = fs_locations["runtime_work"] + '.cache/' if os.path.exists(build_cache): shutil.rmtree(build_cache) os.mkdir(build_cache) build_task_dir = build_cache + 'tasks/' runtime_task_dir = runtime_cache + 'tasks/' os.mkdir(build_task_dir) for jdi, jd in enumerate(job_data): batchno = jdi // 10000 # Create local task folders and copy clean env files build_batch_folder = build_task_dir + 'batch_' + str(batchno) + '/' if not os.path.exists(build_batch_folder): os.mkdir(build_batch_folder) runtime_batch_folder = runtime_task_dir + 'batch_' + str(batchno) + '/' build_task_path = build_batch_folder + 'task_' + jd['unique_code'] + '.sh' runtime_task_path = runtime_batch_folder + 'task_' + jd['unique_code'] + '.sh' exec_filesystem[jd['unique_code']][0] = (runtime_batch_folder, os.path.basename(runtime_task_path)) # There, create individual task files # Correctly indent the command, writes it in task.sh and gives it exe privileges new_command = beautify_bash_oneliner( "cd {0}; ".format(workdir) + jd['command'], replacements=exec_filesystem[jd['unique_code']][1]) # print(new_command) with open(build_task_path, "w") as tf: tf.write(new_command) subprocess.call(["chmod", "777", build_task_path]) # This new cache has to be copied remotely, in a separate way if protocol == 'remote': tr_cmd = ["bash", data_transfer_protocol, build_cache, "{0}:{1}".format(remote_machine, runtime_cache)] if DEBUG: print("COMMAND", tr_cmd) p = subprocess.Popen(tr_cmd) else: p = subprocess.Popen(tr_cmd, stderr=devnull, stdout=devnull) p.wait() else: # "locusts" mode: optimized environment for parallel and safe execution # Batch folders for every 10000 tasks for i in range(len(job_data)//10000 + 1): batch_folder = fs_locations["build_work"] + 'batch_' + str(i) + '/' if not os.path.exists(batch_folder): os.mkdir(batch_folder) # Job folders for individual tasks for jdi, jd in enumerate(job_data): batchno = jdi // 10000 # Work sub-environment -------------------------------------------- # Create local task folders and copy clean env files job_folder = fs_locations["build_work"] + 'batch_' + str(batchno) + '/' + 'task_' + jd['unique_code'] + '/' if not os.path.exists(job_folder): os.mkdir(job_folder) for fpath in jd['clean_env_inps']: fdest_path = job_folder + os.path.basename(fpath) shutil.copyfile(fpath, fdest_path) # There, create task.sh file # Correctly indent the command, writes it in task.sh and gives it exe privileges new_command = beautify_bash_oneliner( jd['command'], replacements=exec_filesystem[jd['unique_code']][1]) task_filename = job_folder + "task.sh" with open(task_filename, "w") as tf: tf.write(new_command) subprocess.call(["chmod", "777", task_filename]) # Runtime paths for task folders rem_jf = (fs_locations["runtime_work"] + 'batch_' + str(batchno) + '/' + 'task_' + jd['unique_code'] + '/') exec_filesystem[jd['unique_code']][0] = (rem_jf, "task.sh") if protocol == "remote": # Transfer local temporary filesystem in the remote location tr_cmd = ["bash", data_transfer_protocol, fs_locations["build_work"], "{0}:{1}".format(remote_machine, fs_locations["runtime_work"])] if DEBUG: print("COMMAND", tr_cmd) p = subprocess.Popen(tr_cmd) else: p = subprocess.Popen(tr_cmd, stderr=devnull, stdout=devnull) p.wait() return {k : exec_filesystem[k][0] for k in exec_filesystem}, fs_locations def create_manager_scripts(protocol_triad, cache_dir, task_folders, partition, cpus_per_node, requested_nodes, batch_job_code, fs_locations, data_transfer_protocol, singinfo=(None, None, None), task_cd=None, email_address="", email_type="ALL", tasks_per_core=1, nodescratch_folder="", nodescratch_mem="", walltime="24:00:00", outer_statements="", exclusive=False): protocol, remote_machine, hpc_shared_folder = protocol_triad devnull = open('/dev/null', 'w') # Check consistency of parameters turnon_mailtype, turnon_email_address = "#", "#" if email_address: if "@" not in email_address: print("ERROR (manager): The email address you provided is not valid") print(" "+email_address) exit(1) else: turnon_mailtype, turnon_email_address = "", "" if nodescratch_folder and nodescratch_mem: turnon_nodescratch = "" elif (not nodescratch_folder) and (not nodescratch_mem): turnon_nodescratch = "#" else: print(("ERROR (manager): -nodescratch_folder and -nodescratch_mem options" "must be either both present or absent")) exit(1) turnon_exclusiveness = "#" if exclusive: turnon_exclusiveness = "" if len(walltime) < 7 or walltime[-3] != ":" or walltime[-6] != ":": print("ERROR (manager): walltime is not well formatted: XX:XX:XX") print(" "+walltime) exit(1) # The location of the template file for the 1-node-manager script outer_template_filename = os.path.dirname(os.path.realpath(__file__)) + '/outer_template_manager.txt' inner_template_filename = os.path.dirname(os.path.realpath(__file__)) + '/inner_template_manager.txt' # Is there singularity? Does it use a module? if singinfo[0]: singularitypath, singularitycont, singmodload = singinfo else: singularitypath, singularitycont, singmodload = "", "", "" # List of task ids taskid_list = sorted([k for k in task_folders]) # General method for dividing len(taskid_list) elements in requested_nodes # lists. Ex: 6 jobs in 4 processors = [2,2,1,1] tasks_per_node_list = distribute_items_in_fixed_length_list( requested_nodes, len(taskid_list) ) # Reassess the number of requested nodes for avoiding asking # for too many nodes. For requiring another node, all cpus of all # nodes must have at least 10 tasks assigned to them # WARNING: this does not keep into account the length of a task! if protocol != 'local' and min(tasks_per_node_list) < 10*cpus_per_node: grand = 10*cpus_per_node / max(tasks_per_node_list) rqn = ( int(requested_nodes / grand) + max(tasks_per_node_list) - min(tasks_per_node_list) ) requested_nodes = max(1, rqn) tasks_per_node_list = distribute_items_in_fixed_length_list( requested_nodes, len(taskid_list) ) print("Protocol used:", protocol) print("Actual number of nodes used:", requested_nodes) print("Each with {0} cpus".format(cpus_per_node)) # Each manager script handles one node # The manager reads a file of adresses where it will find the clean # environments to manage, knowing that in each of those folders it will # find a task.sh executable to be run tasks_per_job = [] for jobid in range(requested_nodes): # Define script variables tasks_per_node = tasks_per_node_list[jobid] ik = sum(tasks_per_node_list[:jobid]) tfname = 'taskfile_{0}{1}'.format(batch_job_code, str(jobid).zfill(3)) task_filename = fs_locations["runtime_exec"] + '{0}.txt'.format(tfname) outpath = fs_locations["runtime_exec"] + '{0}.out.txt'.format(tfname) errpath = fs_locations["runtime_exec"] + '{0}.err.txt'.format(tfname) # Compiles outer manager (with the SLURM keywords and possibly singularity) and inner manager (the core manager itself) for prefmng, template_filename in [('outer_', outer_template_filename), ('inner_', inner_template_filename)]: # Compile using the template with open(template_filename) as tempf: text = tempf.read() text = text.replace('<jobd>', batch_job_code) \ .replace('<jobid>', str(jobid).zfill(3)) \ .replace('<time>', str(walltime)) \ .replace('<cpuspertask>', str(cpus_per_node)) \ .replace('<taskspercore>', str(tasks_per_core)) \ .replace('<turnonnodescratch>', turnon_nodescratch) \ .replace('<nodescratchfolder>', nodescratch_folder) \ .replace('<nodescratchmem>', nodescratch_mem) \ .replace('<turnonmailtype>', turnon_mailtype) \ .replace('<mailtype>', email_type) \ .replace('<turnonemailaddress>', turnon_email_address) \ .replace('<turnonexclusiveness>', turnon_exclusiveness) \ .replace('<emailaddress>', email_address) \ .replace('<outpath>', outpath) \ .replace('<errpath>', errpath) \ .replace('<taskfile>', task_filename) \ .replace('<exedir>', fs_locations["runtime_exec"]) \ .replace('<partition>', partition) \ .replace('<main_path>', fs_locations["runtime_root"]) \ .replace('<extra_outer_statements>', outer_statements) \ .replace('<singularity_module_load>', singmodload) \ .replace('<singularity_command>', "{0} exec {1} ".format(singularitypath, singularitycont)) \ .replace('<inner_manager>', "inner_manager_{0}{1}.slurm".format(batch_job_code, str(jobid).zfill(3))) # Write manager file and give it exe privilege manager_filename = ( fs_locations["build_exec"] + prefmng + 'manager_{0}{1}.slurm'.format(batch_job_code, str(jobid).zfill(3)) ) with open(manager_filename, 'w') as mf: mf.write(text) subprocess.call(["chmod", "777", manager_filename]) # Write task file: the file containing the adresses of the clean env folders # the manager has to deal with task_filename = (fs_locations["build_exec"] \ + 'taskfile_{0}{1}.txt').format(batch_job_code, str(jobid).zfill(3)) with open(task_filename, 'w') as tf: tf.write('\n'.join( [(x + '\t' + task_folders[x][0] + '\t' + task_folders[x][1]) for x in taskid_list[ik:ik+tasks_per_node]] ) + '\n') # Job manager identifier and associated tasks tasks_per_job.append((jobid, taskid_list[ik:ik+tasks_per_node])) if protocol == 'remote': # Copy all files in exe dir in the remote counterpart filestocopy = fs_locations["build_exec"]+"/" tr_cmd = ["bash", data_transfer_protocol, filestocopy, "{0}:{1}".format(remote_machine, fs_locations["runtime_exec"])] if DEBUG: print("COMMAND", tr_cmd) p = subprocess.Popen(tr_cmd) else: p = subprocess.Popen(tr_cmd, stderr=devnull, stdout=devnull) p.wait() # Remove the local root directory # p = subprocess.Popen( # ["rm", "-rf", fs_locations["build_root"]], # stderr=devnull, stdout=devnull) # p.wait() # rmhidden_cmd = ["ssh", remote_machine, "rm", fs_locations["runtime_exec"]+".*"] # else: # rmhidden_cmd = ["rm", fs_locations["build_exec"]+".*"] # It is important to remove any hidden file from the runtime exe dir # because locusts relies on those files to understand the degree of # completion # if DEBUG: # p = subprocess.Popen(rmhidden_cmd) # else: # p = subprocess.Popen( # rmhidden_cmd, stderr=devnull, stdout=devnull # ) # p.wait() # List of 2-tuples (job ID, [tasks IDs]) return tasks_per_job def remote_job_control(protocol_triad, batch_job_code, fs_locations, tasks_per_job, waiting_time): # There must be a passwordless connection between the two machines: to # achieve it, ssh-agent and then ssh-add. # If the two machines share a folder - and thus there is no need to ssh to # the remote machine just for checking - it must be stated here protocol, remote_machine, hpc_shared_folder = protocol_triad devnull = open('/dev/null', 'w') if protocol != 'local': for job_id, task_list in tasks_per_job: chk_cmd = [ "ssh", remote_machine, "sbatch", fs_locations["runtime_exec"] + 'outer_manager_{0}{1}.slurm' \ .format(batch_job_code, str(job_id).zfill(3)) ] if DEBUG: print("COMMAND", chk_cmd) p = subprocess.Popen(chk_cmd) else: p = subprocess.Popen(chk_cmd, stderr=devnull, stdout=devnull ) else: # If no hpc, there is only one node, i.e. one manager mname = 'outer_manager_{0}{1}.slurm'.format(batch_job_code, str(0).zfill(3)) nhp_cmd = ["nohup", fs_locations["runtime_exec"] + mname] if DEBUG: print("COMMAND", nhp_cmd) p = subprocess.Popen(nhp_cmd) else: p = subprocess.Popen(nhp_cmd, stderr=devnull, stdout=devnull ) # print(["nohup", fs_locations["runtime_exec"] + mname]) waitcount = {} for job_id, task_list in tasks_per_job: waitcount[job_id] = 0 is_over = False while not is_over: time.sleep(waiting_time) is_over = True for job_id, task_list in tasks_per_job: macname = "{0}/.manager_activity_check_{1}{2}".format( fs_locations["runtime_exec"], batch_job_code, str(job_id).zfill(3) ) macname_sf = "{0}/.manager_activity_check_{1}{2}".format( fs_locations["build_exec"], batch_job_code, str(job_id).zfill(3) ) if protocol == 'remote': manager_cmd = ["ssh", remote_machine, "ls", "-latrh", macname] chk_time_cmd = "ssh " + remote_machine + " echo $(date +%H:%M)" elif protocol == 'remote-sharedfs': manager_cmd = ["ls", "-latrh", macname_sf] chk_time_cmd = "echo $(date +%H:%M)" elif protocol == 'local': manager_cmd = ["ls", "-latrh", macname] chk_time_cmd = "echo $(date +%H:%M)" if DEBUG: print("COMMAND", manager_cmd) touch_time_txt = subprocess.Popen( manager_cmd, stdout=subprocess.PIPE ).stdout.read().decode('ascii') else: touch_time_txt = subprocess.Popen( manager_cmd, stderr=devnull, stdout=subprocess.PIPE ).stdout.read().decode('ascii') if touch_time_txt.strip(): if DEBUG: print("COMMAND", chk_time_cmd) local_time_l = subprocess.Popen( chk_time_cmd, stdout=subprocess.PIPE, shell=True ).stdout.read().decode('ascii').split()[0].split(":") else: local_time_l = subprocess.Popen( chk_time_cmd, stderr=devnull, stdout=subprocess.PIPE, shell=True ).stdout.read().decode('ascii').split()[0].split(":") touch_time_l = touch_time_txt.split()[7].split(":") touch_time = int(touch_time_l[0])*60 + int(touch_time_l[1]) local_time = int(local_time_l[0])*60 + int(local_time_l[1]) coeff = (local_time - touch_time)%(24*60) is_active = False if coeff > 1 else True if is_active: is_over = False print("Job", job_id, "running") else: print("Job", job_id, "ended") else: is_there = False # Check if processes are scehduled. For this you need the job IDs given by the machine... if protocol != 'local': isitthere_cmd = ["ssh " + remote_machine + ' \'squeue --format="%.18i %.9P %.100j %.8u %.2t %.10M %.6D %R"\''] if DEBUG: print("COMMAND", isitthere_cmd) isitthere_txt = subprocess.Popen( isitthere_cmd, stdout=subprocess.PIPE, shell=True ).stdout.read().decode('ascii') else: isitthere_txt = subprocess.Popen( isitthere_cmd, stderr=devnull, stdout=subprocess.PIPE, shell=True ).stdout.read().decode('ascii') for line in isitthere_txt.split("\n")[1:]: if not line.strip(): continue fields = line.split() if fields[2].strip() == '{0}{1}'.format(batch_job_code, str(job_id).zfill(3)): print("Job", job_id, "pending") is_there = True is_over = False break if not is_there: waitcount[job_id] += 1 if waitcount[job_id] > 3: print("Job", job_id, "error/aborted") else: print("Job", job_id, "waiting...") is_over = False else: print("Job", job_id, "error/aborted") print("Jobs are over") def gather_results(protocol_triad, cache_dir, job_data, batch_job_code, task_folders, fs_locations, tasks_per_job, log_dir, data_transfer_protocol, analysis_func=None, build_envroot=None, snapshot=None, noenvrm=False): protocol, remote_machine, hpc_shared_folder = protocol_triad devnull = open('/dev/null', 'w') # The database is now connected with local machine if protocol == 'remote': shutil.rmtree(fs_locations['build_root']) scp_cmd = ["bash", data_transfer_protocol, "{0}:{1}".format(remote_machine, fs_locations["runtime_root"]), fs_locations['build_root']] if DEBUG: print("COMMAND", scp_cmd) p = subprocess.Popen(scp_cmd) else: p = subprocess.Popen(scp_cmd, stderr=devnull, stdout=devnull) p.wait() # Check if some job did not even start and adds it to the reschedule set reschedule = set() for job_id, task_list in tasks_per_job: # Move the mail exec task files to logs/ tfname = "taskfile_{0}{1}.*".format(batch_job_code, str(job_id).zfill(3)) task_filename = fs_locations["build_exec"] + tfname mv_cmd = "mv {0} {1}".format(task_filename, log_dir) #mv_cmd = ["mv", task_filename, log_dir] if DEBUG: print("COMMAND", mv_cmd) p = subprocess.Popen(mv_cmd, shell=True) else: p = subprocess.Popen(mv_cmd, shell=True, stderr=devnull, stdout=devnull ) p.wait() # Check whether any of the task results still pending (not executed) # or running (might have been interrupted). If so, adds to the reschedule set sname = "status_{0}{1}".format(batch_job_code, str(job_id).zfill(3)) status_filename = fs_locations["runtime_exec"] + sname grep_pending_cmd = ["grep", "'pending'", status_filename] if remote_machine: grep_pending_cmd = ["ssh", remote_machine] + grep_pending_cmd if DEBUG: print("COMMAND", grep_pending_cmd) txtlines = subprocess.Popen( grep_pending_cmd, stdout=subprocess.PIPE ).stdout.readlines() else: txtlines = subprocess.Popen( grep_pending_cmd, stderr=devnull, stdout=subprocess.PIPE ).stdout.readlines() for line in txtlines: ( internal_id, task_id, status, task_dirpath ) = line.decode('ascii').split() if status in ['running', 'pending']: reschedule.add(task_id) # For the jobs that have completed, checks the expected outputs if not build_envroot: completed_with_error = set() output_paths = {} for jd in job_data: if jd['unique_code'] in reschedule: continue for output in jd['outputs']: # Get the Work, batch and task output addresses tfuc = task_folders[jd['unique_code']][0] slashlist = re.sub("/(/+)", "/", tfuc).split("/") ( relative_env_folder, relative_batch_folder, relative_task_folder ) = [x+"/" for x in slashlist][-4:-1] output_batch_dir = jd['output_dir'] + relative_batch_folder output_task_dir = (jd['output_dir'] + relative_batch_folder + relative_task_folder) # Create batch and task directories in the output folder if not os.path.exists(output_batch_dir): os.mkdir(output_batch_dir) if not os.path.exists(output_task_dir): os.mkdir(output_task_dir) # Move output from the parsed address to the output folder # and checks if output is there output_path = (fs_locations["build_work"] + relative_batch_folder + relative_task_folder + output) if os.path.exists(output_path) and ((analysis_func == None) or (analysis_func(output_path))): mv_cmd = ["mv", output_path, output_task_dir] if DEBUG: print("COMMAND", mv_cmd) p = subprocess.Popen(mv_cmd) else: p = subprocess.Popen(mv_cmd, stderr=devnull, stdout=devnull ) p.wait() if jd['unique_code'] not in output_paths: output_paths[jd['unique_code']] = {} output_paths[jd['unique_code']][output] = output_task_dir + output else: completed_with_error.add(jd['unique_code']) # Compile the main output file output_logfilename = jd['output_dir'] + "output.log" with open(output_logfilename, "w") as of: for jid, jd in sorted([(k['unique_code'], k) for k in job_data], key=lambda x: x[0]): if jid in output_paths: for output in jd['outputs']: if output in output_paths[jid]: status = "present" path = output_paths[jid][output] elif jid in completed_with_error: status = "error" path = "-" else: status = "missing" path = "-" of.write("{0}\t{1}\t{2}\n".format(output, status, path)) # This will be the new job_data, containing all jobs that # have to be rescheduled output_d = { k['unique_code'] : k for k in job_data if k['unique_code'] in reschedule } elif snapshot: new_snapshot = take_snapshot(protocol_triad, build_envroot) newly_added = compare_snapshots(snapshot, new_snapshot) snap_log = log_dir + 'modified.log' with open(snap_log, 'w') as snapf: # Creates all new folders for d in sorted(newly_added): if not newly_added[d]: snapf.write("Directory created: {0}\n".format(build_envroot+d)) if protocol != 'local': if not os.path.exists(build_envroot+d): os.mkdir(build_envroot+d) # Populates new and old folders for d in sorted(newly_added): for f in sorted(newly_added[d]): snapf.write("File created/modified: {0}\n".format(build_envroot+f)) if protocol != 'local': fname = fs_locations["build_root"] + f # Local copies have been restored at the beginning of this function cpcmd = ["cp", fname, build_envroot+f] if DEBUG: print("COMMAND", cpcmd) p = subprocess.Popen(cpcmd) else: p = subprocess.Popen(cpcmd, stdout=devnull, stderr=devnull) p.wait() output_d, output_paths, completed_with_error = {}, None, None # Remove all repositories if not DEBUG: if protocol != 'local': sshrm_cmd = ["ssh", remote_machine, "rm", "-rf", fs_locations['runtime_root']] if DEBUG: print("COMMAND", sshrm_cmd) p = subprocess.Popen(sshrm_cmd) else: p = subprocess.Popen(sshrm_cmd, stderr=devnull, stdout=devnull) p.wait() rm_cmd = ["rm", "-rf", fs_locations['build_root']] if DEBUG: print("COMMAND", rm_cmd) p = subprocess.Popen(rm_cmd) else: p = subprocess.Popen(rm_cmd, stderr=devnull, stdout=devnull) p.wait() return output_d, output_paths, completed_with_error def take_snapshot(protocol_triad, root_dir): protocol, remote_machine, hpc_shared_folder = protocol_triad devnull = open('/dev/null', 'w') """ for treedir, files in tree: for f in files: if f == "*": lsrcmd = ["ls", "-ltrh",treedir] elif f == "**": lsrcmd = ["ls", "-ltrhR",treedir] ##### ARRIVATO QUI """ lsrcmd = ["ls", "-ltrhR", root_dir] if remote_machine: lsrcmd = ["ssh", remote_machine] + lsrcmd if DEBUG: print("COMMAND", lsrcmd) textlines = subprocess.Popen(lsrcmd, stdout=subprocess.PIPE).stdout.readlines() else: textlines = subprocess.Popen(lsrcmd, stdout=subprocess.PIPE, stderr=devnull).stdout.readlines() snapshot = {} for l in textlines: line = l.decode('ascii') if not line.strip() or line.startswith('total'): continue if len(line.split()) == 1: dirname = line.strip()[:-1] # line terminates with ":" snapshot[dirname] = {} elif len(line.split()) == 9: priv, _, usr1, usr2, s, d1, d2, d3, filename = line.split() if priv.startswith('-'): # If item is not a folder snapshot[dirname][filename] = (priv, usr1, usr2, s, d1, d2, d3) else: print(("WARNING (take_snapshot): output of ls -ltrhR is not" "in the expected format")) print(line) return snapshot def compare_snapshots(snap1, snap2): newtosnap2 = {} for d in snap2: if d not in snap1: newtosnap2[d] = snap2[d] continue for f in snap2[d]: if f not in snap1[d]: if d not in newtosnap2: newtosnap2[d] = [] newtosnap2[d].append(f) return newtosnap2 def highly_parallel_job_manager(options, exec_filename, batch_job_code, locout_dir, env_root_dir=None, env_instr=None, noenvcp=None, noenvrm=None): this_name = highly_parallel_job_manager.__name__ # Creates cache dir # The locout dir is a local directory where outputs will be collected # in the end, but also where caches and local builds of remote filesystems # will be stored cache_dir = locout_dir + ".cache/" if os.path.exists(cache_dir): shutil.rmtree(cache_dir) os.mkdir(cache_dir) cache_dir = os.path.realpath(cache_dir) + '/' # Creates log dir log_dir = locout_dir + "logs/" if os.path.exists(log_dir): shutil.rmtree(log_dir) os.mkdir(log_dir) # Is there singularity? singinfo = (options['singularity'], options['singularity_container'], options['singularity_modload']) # Read exec file and compile job_data job_data = [] jd = {} with open(exec_filename) as exec_file: for line in exec_file: if line.startswith("c"): if jd: if os.path.exists(jd['log_filename']): if options['force_redo']: os.remove(jd['log_filename']) job_data.append(jd) else: job_data.append(jd) jd = { 'command' : '', 'outputs' : [], 'output_dir' : '', 'success' : None, 'issues' : [], 'unique_code' : '', 'log_filename' : '', 'clean_env_inps' : [], 'shared_inps' : [] } jd['command'] = line[8:].strip() fields = line.split() jd['output_dir'] = locout_dir jd['unique_code'] = batch_job_code + fields[0][1:-1] jd['log_filename'] = (log_dir + batch_job_code + fields[0][1:-1] + '_log.txt') elif line.startswith("i"): fields = line.split() jd['clean_env_inps'] = fields[1:] elif line.startswith("s"): # shared inputs must be declared in "s" line as file.txt:/path/of/file.txt, where file.txt is a filename appearing in the "c" line fields = line.split() jd['shared_inps'] = {k : p for (k,p) in [x.split(":") for x in fields[1:]]} elif line.startswith("o"): fields = line.split() jd['outputs'] = fields[1:] if jd: if os.path.exists(jd['log_filename']): if options['force_redo']: os.remove(jd['log_filename']) job_data.append(jd) else: job_data.append(jd) if options['run_on_hpc']: # Copy files in separate location (for hpc the option 'exec location' must be set to '/data/biowulf/sartie/' remote_machine = options['host_name'] requested_nodes = options['requested_nodes'] cpus_per_node = options['cpus_per_node'] if options['local_shared_dir']: # The path specified in hpc_exec_dir must point to the same # folder of local_shared_dir, only from the point of view of # the remote machine protocol = 'remote-sharedfs' runtime_root_path = options['hpc_exec_dir'] local_shared_folder = options['local_shared_dir'] else: protocol = 'remote' runtime_root_path = options['hpc_exec_dir'] local_shared_folder = None else: protocol = 'local' remote_exec_path = False remote_machine = None local_shared_folder = None requested_nodes = 1 cpus_per_node = options['number_of_processors'] runtime_root_path = cache_dir + batch_job_code + "_tmp_root/" if not os.path.exists(runtime_root_path): os.mkdir(runtime_root_path) protocol_triad = (protocol, remote_machine, local_shared_folder) completed_with_error = set() output_paths = {} if env_root_dir: env_root_dir = os.path.abspath(env_root_dir) + '/' gen_env_root_dir = None if noenvcp else env_root_dir else: env_root_dir, gen_env_root_dir = None, None data_transfer_protocol = options['data_transfer_protocol'] email = options['email_address'] nsf = options['nodewise_scratch_folder'] nsm = options['nodewise_scratch_memory'] wt = options['walltime'] out_st = options['extra_outer_statements'] partition = options['partition'] exclusive = options['exclusive'] while job_data: # Create the hosting file system task_folders, fs_locations = generate_exec_filesystem( protocol_triad, cache_dir, job_data, runtime_root_path, batch_job_code, data_transfer_protocol, env_instr=env_instr, build_envroot=gen_env_root_dir ) # Create local manager script that does the mpiq job, launchable on each node. It checks the situation regularly each 10 secs. tasks_per_job = create_manager_scripts( protocol_triad, cache_dir, task_folders, partition, cpus_per_node, requested_nodes, batch_job_code, fs_locations, data_transfer_protocol, singinfo=singinfo, email_address=email, nodescratch_folder=nsf, nodescratch_mem=nsm, walltime=wt, outer_statements=out_st, exclusive=exclusive ) if env_instr: snapshot = take_snapshot( (protocol, "", local_shared_folder), env_root_dir ) if not snapshot: print("ERROR: empty snapshot of {0} was taken".format(env_root_dir)) print(" Locusts needs to take snapshot to compare filesystems") exit(1) else: snapshot = {} # Create extrenal master script that checks out from time to time (each 5 mins or so) # This step is over only when no process is active anymore lenlist = [len(x[1]) for x in tasks_per_job] waiting_time = min(600, 10*(1+len(job_data)//min(lenlist))) remote_job_control( protocol_triad, batch_job_code, fs_locations, tasks_per_job, waiting_time ) # Collect results, update job_data (only processes that remained pending on running are written in job_data again job_data, outp, witherr = gather_results( protocol_triad, cache_dir, job_data, batch_job_code, task_folders, fs_locations, tasks_per_job, log_dir, data_transfer_protocol, build_envroot=env_root_dir, snapshot=snapshot, noenvrm = noenvrm ) if witherr: completed_with_error |= witherr if outp: for x in outp: output_paths[x] = outp[x]
the-stack_106_31823
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'taichi' copyright = '2020, Taichi Developers' author = 'Taichi Developers' version_fn = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'version') with open(version_fn) as f: taichi_version = f.readline().strip() print('Building doc version', taichi_version) # The short X.Y version version = taichi_version # The full version, including alpha/beta/rc tags release = taichi_version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] if os.environ.get('READTHEDOCS', '') != '': css_files = [ '//media.readthedocs.org/css/sphinx_rtd_theme.css', '//media.readthedocs.org/css/readthedocs-doc-embed.css' ] else: css_files = [] html_context = {'css_files': css_files + ['_static/extra.css']} # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'taichidoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'taichi.tex', 'taichi Documentation', 'Taichi Developers', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, 'taichi', 'taichi Documentation', [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'taichi', 'taichi Documentation', author, 'taichi', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
the-stack_106_31828
# Copyright (c) 2021 SUSE LLC # # This program is free software; you can redistribute it and/or # modify it under the terms of version 3 of the GNU General Public License as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, contact SUSE LLC. # # To contact SUSE about this file by physical or electronic mail, # you may find current contact information at www.suse.com from harvester_e2e_tests import utils import json import polling2 import pytest pytest_plugins = [ 'harvester_e2e_tests.fixtures.api_endpoints', 'harvester_e2e_tests.fixtures.session', ] @pytest.fixture(scope='session') def enable_vlan(request, admin_session, harvester_api_endpoints): vlan_nic = request.config.getoption('--vlan-nic') resp = admin_session.get(harvester_api_endpoints.get_vlan) assert resp.status_code == 200, 'Failed to get vlan: %s' % (resp.content) vlan_json = resp.json() if 'config' not in vlan_json: vlan_json['config'] = {} if 'defaultPhysicalNIC' not in vlan_json['config']: vlan_json['config']['defaultPhysicalNIC'] = None if utils.is_marker_enabled(request, 'terraform'): utils.create_clusternetworks_terraform( request, admin_session, harvester_api_endpoints, 'resource_clusternetworks', vlan_nic) else: vlan_json['enable'] = True vlan_json['config']['defaultPhysicalNIC'] = vlan_nic utils.poll_for_update_resource(request, admin_session, harvester_api_endpoints.update_vlan, vlan_json, harvester_api_endpoints.get_vlan) def _cleanup_network(admin_session, harvester_api_endpoints, network_id, wait_timeout): def _delete_network(): resp = admin_session.delete( harvester_api_endpoints.delete_network % (network_id)) if resp.status_code in [200, 204]: return True elif resp.status_code == 400: return False else: assert False, 'Failed to cleanup network %s: %s' % ( network_id, resp.content) # NOTE(gyee): there's no way we know how many VMs the network is currently # attached to. Will need to keep trying till all the VMs had been deleted try: polling2.poll( _delete_network, step=5, timeout=wait_timeout) except polling2.TimeoutException as e: errmsg = 'Unable to cleanup network: %s' % (network_id) raise AssertionError(errmsg) from e def _lookup_network(request, admin_session, harvester_api_endpoints, vlan_id): resp = admin_session.get(harvester_api_endpoints.list_networks) if resp.status_code == 200: for network in resp.json()['data']: if json.loads(network['spec']['config'])['vlan'] == vlan_id: return network return None def _create_network(request, admin_session, harvester_api_endpoints, vlan_id): # NOTE(gyee): will name the network with the following convention as # VLAN ID must be unique. vlan_network_<VLAN ID> network_name = f'vlan-network-{vlan_id}' # If a network with the same VLAN ID already exist, just use it. network_data = _lookup_network(request, admin_session, harvester_api_endpoints, vlan_id) if network_data: return network_data request_json = utils.get_json_object_from_template( 'basic_network', name=network_name, vlan=vlan_id ) resp = admin_session.post(harvester_api_endpoints.create_network, json=request_json) assert resp.status_code == 201, 'Unable to create a network: %s' % ( resp.content) network_data = resp.json() utils.poll_for_resource_ready(request, admin_session, network_data['links']['view']) return network_data @pytest.fixture(scope='session') def network(request, admin_session, harvester_api_endpoints, enable_vlan): vlan_id = request.config.getoption('--vlan-id') # don't create network if VLAN is not correctly specified if vlan_id == -1: return network_data = _create_network(request, admin_session, harvester_api_endpoints, vlan_id) yield network_data if not request.config.getoption('--do-not-cleanup'): _cleanup_network(admin_session, harvester_api_endpoints, network_data['id'], request.config.getoption('--wait-timeout')) @pytest.fixture(scope='class') def bogus_network(request, admin_session, harvester_api_endpoints, enable_vlan): vlan_id = request.config.getoption('--vlan-id') # don't create network if VLAN is not correctly specified if vlan_id == -1: return # change the VLAN ID to an invalid one vlan_id += 1 network_data = _create_network(request, admin_session, harvester_api_endpoints, vlan_id) yield network_data if not request.config.getoption('--do-not-cleanup'): _cleanup_network(admin_session, harvester_api_endpoints, network_data['id'], request.config.getoption('--wait-timeout')) # This fixture is only called by test_create_edit_network # in apis/test_networks.py. # vlan_id is set to vlan_id + 1 @pytest.fixture(scope='class') def network_for_update_test(request, admin_session, harvester_api_endpoints, enable_vlan): vlan_id = request.config.getoption('--vlan-id') # don't create network if VLAN is not correctly specified if vlan_id == -1: return request_json = utils.get_json_object_from_template( 'basic_network', vlan=vlan_id + 1 ) resp = admin_session.post(harvester_api_endpoints.create_network, json=request_json) assert resp.status_code == 201, 'Unable to create a network: %s' % ( resp.content) network_data = resp.json() utils.poll_for_resource_ready(request, admin_session, network_data['links']['view']) yield network_data if not request.config.getoption('--do-not-cleanup'): _cleanup_network(admin_session, harvester_api_endpoints, network_data['id'], request.config.getoption('--wait-timeout')) @pytest.fixture(scope='class') def network_using_terraform(request, admin_session, harvester_api_endpoints, enable_vlan): vlan_id = request.config.getoption('--vlan-id') # don't create network if VLAN is not correctly specified if vlan_id == -1: return # If a network with the same VLAN ID already exist, # don't try to create but import it network_data = _lookup_network(request, admin_session, harvester_api_endpoints, vlan_id) if network_data: import_flag = True else: import_flag = False network_json = utils.create_network_terraform(request, admin_session, harvester_api_endpoints, 'resource_network', vlan_id, import_flag) yield network_json if not request.config.getoption('--do-not-cleanup') and not import_flag: utils.destroy_resource( request, admin_session, 'harvester_network.' + network_json['metadata']['name'])
the-stack_106_31829
import numpy as np import scipy.stats import pytest from .. import bq_c from . import util import logging logger = logging.getLogger("bayesian_quadrature") logger.setLevel("DEBUG") DTYPE = util.DTYPE options = util.options def test_remove_jitter(): n = 2 arr = np.ones((n, n)) jitter = np.zeros(n) idx = np.arange(n) bq_c.improve_covariance_conditioning(arr, jitter, idx) bq_c.remove_jitter(arr, jitter, idx) assert (arr == np.ones((n, n))).all() assert (jitter == np.zeros(n)).all() bq_c.improve_covariance_conditioning(arr, jitter, idx) j = jitter[-1] aj = arr[-1, -1] bq_c.remove_jitter(arr, jitter, idx[:-1]) assert (arr[:-1, :-1] == np.ones((n - 1, n - 1))).all() assert (arr[:-1, -1] == np.ones(n - 1)).all() assert (arr[-1, :-1] == np.ones(n - 1)).all() assert arr[-1, -1] == aj assert (jitter[:-1] == np.zeros(n - 1)).all() assert jitter[-1] == j def test_improve_covariance_conditioning(): util.npseed() bq = util.make_bq() K = bq.gp_l.Kxx K_old = K.copy() jitter = np.zeros(K.shape[0], dtype=DTYPE) bq_c.improve_covariance_conditioning( K, jitter, np.arange(K.shape[0])) assert (K == bq.gp_l.Kxx).all() assert K is bq.gp_l.Kxx assert (K_old == (K - (np.eye(K.shape[0]) * jitter))).all() K = bq.gp_log_l.Kxx K_old = K.copy() jitter = np.zeros(K.shape[0], dtype=DTYPE) bq_c.improve_covariance_conditioning( K, jitter, np.arange(K.shape[0])) assert (K == bq.gp_log_l.Kxx).all() assert K is bq.gp_log_l.Kxx assert (K_old == (K - (np.eye(K.shape[0]) * jitter))).all()
the-stack_106_31830
"""Calculate distances and shortest paths and find nearest node/edge(s) to point(s).""" import itertools import multiprocessing as mp import warnings import networkx as nx import numpy as np import pandas as pd import pyproj from rtree.index import Index as RTreeIndex from shapely.geometry import Point from . import projection from . import utils from . import utils_geo from . import utils_graph # scipy is optional dependency for projected nearest-neighbor search try: from scipy.spatial import cKDTree except ImportError: # pragma: no cover cKDTree = None # scikit-learn is optional dependency for unprojected nearest-neighbor search try: from sklearn.neighbors import BallTree except ImportError: # pragma: no cover BallTree = None EARTH_RADIUS_M = 6_371_009 def great_circle_vec(lat1, lng1, lat2, lng2, earth_radius=EARTH_RADIUS_M): """ Calculate great-circle distances between pairs of points. Vectorized function to calculate the great-circle distance between two points' coordinates or between arrays of points' coordinates using the haversine formula. Expects coordinates in decimal degrees. Parameters ---------- lat1 : float or numpy.array of float first point's latitude coordinate lng1 : float or numpy.array of float first point's longitude coordinate lat2 : float or numpy.array of float second point's latitude coordinate lng2 : float or numpy.array of float second point's longitude coordinate earth_radius : float earth's radius in units in which distance will be returned (default is meters) Returns ------- dist : float or numpy.array of float distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius """ y1 = np.deg2rad(lat1) y2 = np.deg2rad(lat2) dy = y2 - y1 x1 = np.deg2rad(lng1) x2 = np.deg2rad(lng2) dx = x2 - x1 h = np.sin(dy / 2) ** 2 + np.cos(y1) * np.cos(y2) * np.sin(dx / 2) ** 2 h = np.minimum(1, h) # protect against floating point errors arc = 2 * np.arcsin(np.sqrt(h)) # return distance in units of earth_radius return arc * earth_radius def euclidean_dist_vec(y1, x1, y2, x2): """ Calculate Euclidean distances between pairs of points. Vectorized function to calculate the Euclidean distance between two points' coordinates or between arrays of points' coordinates. For accurate results, use projected coordinates rather than decimal degrees. Parameters ---------- y1 : float or numpy.array of float first point's y coordinate x1 : float or numpy.array of float first point's x coordinate y2 : float or numpy.array of float second point's y coordinate x2 : float or numpy.array of float second point's x coordinate Returns ------- dist : float or numpy.array of float distance from each (x1, y1) to each (x2, y2) in coordinates' units """ # pythagorean theorem return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 def add_edge_lengths(G, precision=3): """ Add `length` attribute (in meters) to each edge. Vectorized function to calculate great-circle distance between each edge's incident nodes. Ensure graph is in unprojected coordinates, and unsimplified to get accurate distances. Note: this function is run by all the `graph.graph_from_x` functions automatically to add `length` attributes to all edges. Parameters ---------- G : networkx.MultiDiGraph unprojected, unsimplified input graph precision : int decimal precision to round lengths Returns ------- G : networkx.MultiDiGraph graph with edge length attributes """ # extract edge IDs and corresponding coordinates from their nodes uvk = tuple(G.edges) x = G.nodes(data="x") y = G.nodes(data="y") try: # two-dimensional array of coordinates: y0, x0, y1, x1 c = np.array([(y[u], x[u], y[v], x[v]) for u, v, k in uvk]) except KeyError: # pragma: no cover raise KeyError("some edges missing nodes, possibly due to input data clipping issue") # calculate great circle distances, round, and fill nulls with zeros dists = great_circle_vec(c[:, 0], c[:, 1], c[:, 2], c[:, 3]).round(precision) dists[np.isnan(dists)] = 0 nx.set_edge_attributes(G, values=dict(zip(uvk, dists)), name="length") utils.log("Added length attributes to graph edges") return G def nearest_nodes(G, X, Y, return_dist=False): """ Find the nearest node to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest node to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest node to each point. If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an optional dependency. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest nodes X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls return_dist : bool optionally also return distance between points and nearest nodes Returns ------- nn or (nn, dist) : int/list or tuple nearest node IDs or optionally a tuple where `dist` contains distances between the points and their nearest nodes """ is_scalar = False if not (hasattr(X, "__iter__") and hasattr(Y, "__iter__")): # make coordinates arrays if user passed non-iterable values is_scalar = True X = np.array([X]) Y = np.array([Y]) if np.isnan(X).any() or np.isnan(Y).any(): # pragma: no cover raise ValueError("`X` and `Y` cannot contain nulls") nodes = utils_graph.graph_to_gdfs(G, edges=False, node_geometry=False)[["x", "y"]] if projection.is_projected(G.graph["crs"]): # if projected, use k-d tree for euclidean nearest-neighbor search if cKDTree is None: # pragma: no cover raise ImportError("scipy must be installed to search a projected graph") dist, pos = cKDTree(nodes).query(np.array([X, Y]).T, k=1) nn = nodes.index[pos] else: # if unprojected, use ball tree for haversine nearest-neighbor search if BallTree is None: # pragma: no cover raise ImportError("scikit-learn must be installed to search an unprojected graph") # haversine requires lat, lng coords in radians nodes_rad = np.deg2rad(nodes[["y", "x"]]) points_rad = np.deg2rad(np.array([Y, X]).T) dist, pos = BallTree(nodes_rad, metric="haversine").query(points_rad, k=1) dist = dist[:, 0] * EARTH_RADIUS_M # convert radians -> meters nn = nodes.index[pos[:, 0]] # convert results to correct types for return nn = nn.tolist() dist = dist.tolist() if is_scalar: nn = nn[0] dist = dist[0] if return_dist: return nn, dist else: return nn def nearest_edges(G, X, Y, interpolate=None, return_dist=False, ref=None): """ Find the nearest edge to a point or to each of several points. If `X` and `Y` are single coordinate values, this will return the nearest edge to that point. If `X` and `Y` are lists of coordinate values, this will return the nearest edge to each point. If `interpolate` is None, search for the nearest edge to each point, one at a time, using an r-tree and minimizing the euclidean distances from the point to the possible matches. For accuracy, use a projected graph and points. This method is precise and also fastest if searching for few points relative to the graph's size. For a faster method if searching for many points relative to the graph's size, use the `interpolate` argument to interpolate points along the edges and index them. If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy is installed as an optional dependency. If graph is unprojected, this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an optional dependency. Parameters ---------- G : networkx.MultiDiGraph graph in which to find nearest edges X : float or list points' x (longitude) coordinates, in same CRS/units as graph and containing no nulls Y : float or list points' y (latitude) coordinates, in same CRS/units as graph and containing no nulls interpolate : float spacing distance between interpolated points, in same units as graph. smaller values generate more points. return_dist : bool optionally also return distance between points and nearest edges Returns ------- ne or (ne, dist) : tuple or list nearest edges as (u, v, key) or optionally a tuple where `dist` contains distances between the points and their nearest edges """ is_scalar = False if not (hasattr(X, "__iter__") and hasattr(Y, "__iter__")): # make coordinates arrays if user passed non-iterable values is_scalar = True X = np.array([X]) Y = np.array([Y]) if np.isnan(X).any() or np.isnan(Y).any(): # pragma: no cover raise ValueError("`X` and `Y` cannot contain nulls") geoms = utils_graph.graph_to_gdfs(G, nodes=False)["geometry"] crs = None if ref is not None: crs = pyproj.Proj(proj='aeqd', ellps='WGS84', datum='WGS84', lat_0=ref[0], lon_0=ref[1]).srs # if no interpolation distance was provided if interpolate is None: # build the r-tree spatial index by position for subsequent iloc rtree = RTreeIndex() for pos, bounds in enumerate(geoms.bounds.values): rtree.insert(pos, bounds) # use r-tree to find possible nearest neighbors, one point at a time, # then minimize euclidean distance from point to the possible matches ne_dist = list() for xy in zip(X, Y): if crs is not None: dists = geoms.iloc[list(rtree.nearest(xy))].to_crs(crs).distance(Point(xy)) else: dists = geoms.iloc[list(rtree.nearest(xy))].distance(Point(xy)) ne_dist.append((dists.idxmin(), dists.min())) ne, dist = zip(*ne_dist) # otherwise, if interpolation distance was provided else: # interpolate points along edges to index with k-d tree or ball tree uvk_xy = list() for uvk, geom in zip(geoms.index, geoms.values): uvk_xy.extend((uvk, xy) for xy in utils_geo.interpolate_points(geom, interpolate)) labels, xy = zip(*uvk_xy) vertices = pd.DataFrame(xy, index=labels, columns=["x", "y"]) if projection.is_projected(G.graph["crs"]): # if projected, use k-d tree for euclidean nearest-neighbor search if cKDTree is None: # pragma: no cover raise ImportError("scipy must be installed to search a projected graph") dist, pos = cKDTree(vertices).query(np.array([X, Y]).T, k=1) ne = vertices.index[pos] else: # if unprojected, use ball tree for haversine nearest-neighbor search if BallTree is None: # pragma: no cover raise ImportError("scikit-learn must be installed to search an unprojected graph") # haversine requires lat, lng coords in radians vertices_rad = np.deg2rad(vertices[["y", "x"]]) points_rad = np.deg2rad(np.array([Y, X]).T) dist, pos = BallTree(vertices_rad, metric="haversine").query(points_rad, k=1) dist = dist[:, 0] * EARTH_RADIUS_M # convert radians -> meters ne = vertices.index[pos[:, 0]] # convert results to correct types for return ne = list(ne) dist = list(dist) if is_scalar: ne = ne[0] dist = dist[0] if return_dist: return ne, dist else: return ne def get_nearest_node(G, point, method=None, return_dist=False): """ Do not use, deprecated. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use point : tuple deprecated, do not use method : string deprecated, do not use return_dist : bool deprecated, do not use Returns ------- int or tuple """ msg = ( "The `get_nearest_node` function has been deprecated and will be removed in a " "future release. Use the more efficient `distance.nearest_nodes` instead." ) warnings.warn(msg) nn, dist = nearest_nodes(G, X=[point[1]], Y=[point[0]], return_dist=True) if return_dist: return nn[0], dist[0] else: return nn[0] def get_nearest_edge(G, point, return_geom=False, return_dist=False): """ Do not use, deprecated. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use point : tuple deprecated, do not use return_geom : bool deprecated, do not use return_dist : bool deprecated, do not use Returns ------- tuple """ msg = ( "The `get_nearest_edge` function has been deprecated and will be removed in a " "future release. Use the more efficient `distance.nearest_edges` instead." ) warnings.warn(msg) ne, dist = nearest_edges(G, X=[point[1]], Y=[point[0]], return_dist=True) u, v, key = ne[0] geom = utils_graph.graph_to_gdfs(G, nodes=False).loc[(u, v, key), "geometry"] if return_dist and return_geom: return u, v, key, geom, dist[0] elif return_dist: return u, v, key, dist[0] elif return_geom: return u, v, key, geom else: return u, v, key def get_nearest_nodes(G, X, Y, method=None, return_dist=False): """ Do not use, deprecated. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use X : list deprecated, do not use Y : list deprecated, do not use method : string deprecated, do not use return_dist : bool deprecated, do not use Returns ------- numpy.array or tuple of numpy.array """ msg = ( "The `get_nearest_nodes` function has been deprecated and will be removed in a " "future release. Use the more efficient `distance.nearest_nodes` instead." ) warnings.warn(msg) return nearest_nodes(G, X=X, Y=Y, return_dist=return_dist) def get_nearest_edges(G, X, Y, method=None, dist=None): """ Do not use, deprecated. Parameters ---------- G : networkx.MultiDiGraph deprecated, do not use X : list-like deprecated, do not use Y : list-like deprecated, do not use method : string deprecated, do not use dist : float deprecated, do not use Returns ------- numpy.array """ msg = ( "The `get_nearest_edges` function has been deprecated and will be removed in a " "future release. Use the more efficient `distance.nearest_edges` instead." ) warnings.warn(msg) return nearest_edges(G, X, Y, dist) def _single_shortest_path(G, orig, dest, weight): """ Solve the shortest path from an origin node to a destination node. This function is a convenience wrapper around networkx.shortest_path, with exception handling for unsolvable paths. Parameters ---------- G : networkx.MultiDiGraph input graph orig : int origin node ID dest : int destination node ID weight : string edge attribute to minimize when solving shortest path Returns ------- path : list list of node IDs constituting the shortest path """ try: return nx.shortest_path(G, orig, dest, weight=weight) except nx.exception.NetworkXNoPath: # pragma: no cover utils.log(f"Cannot solve path from {orig} to {dest}") return None def shortest_path(G, orig, dest, weight="length", cpus=1): """ Solve shortest path from origin node(s) to destination node(s). If `orig` and `dest` are single node IDs, this will return a list of the nodes constituting the shortest path between them. If `orig` and `dest` are lists of node IDs, this will return a list of lists of the nodes constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return None for that path. You can parallelize solving multiple paths with the `cpus` parameter, but be careful to not exceed your available RAM. See also `k_shortest_paths` to solve multiple shortest paths between a single origin and destination. For additional functionality or different solver algorithms, use NetworkX directly. Parameters ---------- G : networkx.MultiDiGraph input graph orig : int or list origin node ID, or a list of origin node IDs dest : int or list destination node ID, or a list of destination node IDs weight : string edge attribute to minimize when solving shortest path cpus : int how many CPU cores to use; if None, use all available Returns ------- path : list list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of path lists """ if not (hasattr(orig, "__iter__") or hasattr(dest, "__iter__")): # if neither orig nor dest is iterable, just return the shortest path return _single_shortest_path(G, orig, dest, weight) else: # if orig/dest are iterable, ensure they have same lengths if len(orig) != len(dest): # pragma: no cover raise ValueError("orig and dest must contain same number of elements") if cpus is None: cpus = mp.cpu_count() utils.log(f"Solving {len(orig)} paths with {cpus} CPUs...") if cpus == 1: # if single-threading, calculate each shortest path one at a time paths = [_single_shortest_path(G, o, d, weight) for o, d in zip(orig, dest)] else: # if multi-threading, calculate shortest paths in parallel args = ((G, o, d, weight) for o, d in zip(orig, dest)) pool = mp.Pool(cpus) sma = pool.starmap_async(_single_shortest_path, args) paths = sma.get() pool.close() pool.join() return paths def k_shortest_paths(G, orig, dest, k, weight="length"): """ Solve `k` shortest paths from an origin node to a destination node. See also `shortest_path` to get just the one shortest path. Parameters ---------- G : networkx.MultiDiGraph input graph orig : int origin node ID dest : int destination node ID k : int number of shortest paths to get weight : string edge attribute to minimize when solving shortest paths. default is edge length in meters. Returns ------- paths : generator a generator of `k` shortest paths ordered by total weight. each path is a list of node IDs. """ paths_gen = nx.shortest_simple_paths(utils_graph.get_digraph(G, weight), orig, dest, weight) for path in itertools.islice(paths_gen, 0, k): yield path
the-stack_106_31833
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags related to distributed execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from official.utils.flags._conventions import help_wrap def define_distribution(worker_hosts=True, task_index=True): """Register distributed execution flags. Args: worker_hosts: Create a flag for specifying comma-separated list of workers. task_index: Create a flag for specifying index of task. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if worker_hosts: flags.DEFINE_string( name='worker_hosts', default=None, help=help_wrap( 'Comma-separated list of worker ip:port pairs for running ' 'multi-worker models with DistributionStrategy. The user would ' 'start the program on each host with identical value for this ' 'flag.')) if task_index: flags.DEFINE_integer( name='task_index', default=-1, help=help_wrap('If multi-worker training, the task_index of this ' 'worker.')) return key_flags
the-stack_106_31834
# Copyright (c) 2020 by Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. # Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. from pandapipes import pandapipesNet from pandapipes.multinet.control.run_control_multinet import prepare_run_ctrl, run_control from pandapipes.timeseries.run_time_series import init_default_outputwriter as init_default_ow_pps from pandapower import pandapowerNet from pandapower.control.util.diagnostic import control_diagnostic from pandapower.timeseries.run_time_series import get_recycle_settings, init_time_steps, output_writer_routine, \ print_progress_bar, cleanup, run_loop, init_default_outputwriter as init_default_ow_pp, init_output_writer try: import pandaplan.core.pplog as pplog except ImportError: import logging as pplog logger = pplog.getLogger(__name__) logger.setLevel(level=pplog.WARNING) def _call_output_writer(multinet, time_step, pf_converged, ctrl_converged, ts_variables): """ Calling the output writer routine for each net in multinet. :param multinet: multinet with multinet controllers, net distinct controllers and several pandapipes/pandapower nets :type multinet: pandapipes.Multinet :param time_step: the results of each time step, which shall be retrieved by the output writer :type time_step: sequence of array_like :param pf_converged: did powerflow converge :type pf_converged: bool :param ctrl_converged: did all controller converge :type ctrl_converged: bool :param ts_variables: contains all relevant information and boundaries required for time series and control analyses :type ts_variables: dict :return: calling each output writer in order to save the results which are retrieved :rtype: None """ for net_name in multinet['nets'].keys(): net = multinet['nets'][net_name] output_writer_routine(net, time_step, pf_converged, ctrl_converged, ts_variables[net_name]["recycle_options"]) def init_time_series(multinet, time_steps, continue_on_divergence=False, verbose=True, **kwargs): """ Initializes the time series calculation. Besides it creates the dict ts_variables, which includes necessary variables for the time series / control loop. :param multinet: multinet with multinet controllers, net distinct controllers and several pandapipes/pandapower nets :type multinet: pandapipes.Multinet :param time_steps: the number of times a time series calculation shall be conducted :type time_steps: sequence of array_like :param continue_on_divergence: What to do if loadflow/pipeflow is not converging, fires control_repair :type continue_on_divergence: bool, default: False :param verbose: prints progess bar or logger debug messages :type verbose: bool, default: True :param kwargs: additional keyword arguments handed to each run function :type kwargs: dict :return: ts_variables which contains all relevant information and boundaries required for time series and control analyses :rtype: dict """ time_steps = init_time_steps(multinet, time_steps, **kwargs) run = kwargs.get('run', None) ts_variables = prepare_run_ctrl(multinet, None, **kwargs) for net_name in multinet['nets'].keys(): net = multinet['nets'][net_name] if isinstance(net, pandapowerNet): init_default_ow_pp(net, time_steps, **kwargs) elif isinstance(net, pandapipesNet): init_default_ow_pps(net, time_steps, **kwargs) else: raise ValueError('the given nets are neither pandapipes nor pandapower nets') recycle_options = None if hasattr(run, "__name__") and run.__name__ == "runpp": # use faster runpp options if possible recycle_options = get_recycle_settings(net, **kwargs) ts_variables[net_name]['run'] = run['net_name'] if run is not None else ts_variables[net_name]['run'] ts_variables[net_name]['recycle_options'] = recycle_options init_output_writer(net, time_steps) # time steps to be calculated (list or range) ts_variables["time_steps"] = time_steps # If True, a diverged run is ignored and the next step is calculated ts_variables["continue_on_divergence"] = continue_on_divergence # print settings ts_variables["verbose"] = verbose if logger.level != 10 and verbose: # simple progress bar print_progress_bar(0, len(time_steps), prefix='Progress:', suffix='Complete', length=50) return ts_variables def run_timeseries(multinet, time_steps=None, continue_on_divergence=False, verbose=True, **kwargs): """ Time Series main function. Runs multiple run functions for each net in multinet. Within each time step several controller loops are conducted till all controllers and each net is converged. A normal pp.runpp/pps.pipeflow can be optionally replaced by other run functions by setting the run function in kwargs. :param multinet: multinet with multinet controllers, net distinct controllers and several pandapipes/pandapower nets :type multinet: pandapipes.Multinet :param time_steps: the number of times a time series calculation shall be conducted :type time_steps: sequence of array_like, default: None :param continue_on_divergence: What to do if loadflow/pipeflow is not converging, fires control_repair :type continue_on_divergence: bool, default: False :param verbose: prints progess bar or logger debug messages :type verbose: bool, default: True :param kwargs: additional keyword arguments handed to each run function :type kwargs: dict :return: runs the time series loop :rtype: None """ ts_variables = init_time_series(multinet, time_steps, continue_on_divergence, verbose, **kwargs) for net_name in multinet['nets'].keys(): control_diagnostic(multinet['nets'][net_name]) run_loop(multinet, ts_variables, run_control, _call_output_writer, **kwargs) # cleanup functions after the last time step was calculated for net_name in multinet['nets'].keys(): cleanup(ts_variables[net_name])
the-stack_106_31836
import torch import torch.nn as nn import ops.create5Dimages as create5D import ops.create4Dimages as create4D # 新加模块 class Self_Attn(nn.Module): """Self attention Layer""" # (2048,4,16,7,7,4096) (2048,4,16,7,7,256) # 调用:self.Attention = attention.Self_Attn(2048,4,16,7,7,256) def __init__(self, in_dim, batch_size, num_frames, width, height, channels): super(Self_Attn, self).__init__() self.chanel_in = in_dim self.r = 8 self.conv1 = nn.Conv2d(in_channels=self.chanel_in, out_channels=self.chanel_in // self.r, kernel_size=1) self.conv2 = nn.Conv2d(in_channels=self.chanel_in, out_channels=self.chanel_in // self.r, kernel_size=1) self.conv3 = nn.Conv2d(in_channels=self.chanel_in, out_channels=self.chanel_in // self.r, kernel_size=1) self.value_conv = nn.Conv3d(in_channels=self.chanel_in // self.r, out_channels=self.chanel_in, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bias=True) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) self.batch_size = batch_size self.num_frames = num_frames self.width = width self.height = height self.channels = channels def forward(self, x): # [64,2048,7,7] # 此处的x是不带位置编码的,并且没有经过自注意力运算,是最原始的输入x temp = x '''如果是先加PE再处理C,残差的是带位置编码,没有经过学习的feature map''' '''此时,第二种方案就是先处理C,然后再添加PE,残差的是不带位置编码,没有经过学习的feature map,并且qkv单独编码''' # Q q = self.conv1(x) # [64,4096,7,7] [64,512,7,7] [64,1024,7,7] [64,4096,7,7] # print('q.shape = ',q.shape) #[64,4096,7,7] x1 = q[0:4, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) # [1,16,256,7,7] [1,16,4096,7,7] x2 = q[4:8, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x3 = q[8:12, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x4 = q[12:16, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) q = torch.cat([x1, x2, x3, x4], dim=0).permute(0, 1, 3, 4, 2) # [4,16,256,7,7]->[4,16,7,7,256] q = q.reshape(self.batch_size, self.num_frames * self.width * self.height, self.channels) # q.shape = [B,THW,256] = [4,784,256] # print(q.shape,'q') # K k = self.conv2(x) x1 = k[0:4, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) # [1,16,256,7,7] [1,16,4096,7,7] x2 = k[4:8, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x3 = k[8:12, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x4 = k[12:16, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) k = torch.cat([x1, x2, x3, x4], dim=0).permute(0, 1, 3, 4, 2) # [4,16,256,7,7]->[4,16,7,7,256] k = k.permute(0, 2, 1, 3, 4).reshape(self.batch_size, self.channels, self.num_frames * self.width * self.height) # k.shape = [B,256,THW] = [4,256,784] # print(k.shape,'k') # V v = self.conv3(x) # [64,256,7,7] x1 = v[0:4, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) # [1,16,256,7,7] [1,16,4096,7,7] x2 = v[4:8, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x3 = v[8:12, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) x4 = v[12:16, :, :, :].view(1, self.num_frames, self.channels, self.width, self.height) v = torch.cat([x1, x2, x3, x4], dim=0).permute(0, 1, 3, 4, 2) # [4,16,256,7,7]->[4,16,7,7,256] v = v.reshape(self.batch_size, self.num_frames * self.width * self.height, self.channels) # q.shape = [B,THW,256] = [4,784,256] # print(v.shape,'er') # Q*K^T # print(q.shape) # print(k.shape) energy = torch.bmm(q, k) # energy.shape = [B,THW,THW] = [4,784,784] # softmax(Q*K^T) attention = self.softmax(energy) # attentio.shape = [B,THW,THW] = [4,784,784] # softmax(Q*K^T)*V out = torch.bmm(attention, v).view(self.batch_size, self.num_frames, self.width, self.height, self.channels).permute(0, 4, 1, 2, 3) # out.shape = [B,THW,256] = [4,784,256] -> [4,256,16,7,7] out = self.value_conv(out).permute(0, 2, 1, 3, 4) # [4,2048,16,7,7] -> [4,16,2048,7,7] out1 = out[0:1, :, :, :, :].view(self.num_frames, self.chanel_in, self.width, self.height) # [1,16,2048,7,7] [1,16,4096,7,7] out2 = out[1:2, :, :, :, :].view(self.num_frames, self.chanel_in, self.width, self.height) out3 = out[2:3, :, :, :, :].view(self.num_frames, self.chanel_in, self.width, self.height) out4 = out[3:4, :, :, :, :].view(self.num_frames, self.chanel_in, self.width, self.height) out = torch.cat([out1, out2, out3, out4], dim=0) # [64,2048,7,7] out = self.gamma * out + temp #print(out.shape,'......')[16,2048,7,7] return out
the-stack_106_31839
import os import tensorflow as tf from model import get_model from dataset import dataset def main(): """ Get the dataset, model Set the callback Train and save the best weights based on validation accuracy """ train_images, train_labels, test_images, test_labels = dataset() model = get_model() model.summary() checkpoint_path = "training/cp-{epoch:04d}.ckpt" os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, verbose=1, monitor="val_accuracy", save_best_only=True, save_weights_only=True) # Save the weights using the `checkpoint_path` format model.save_weights(checkpoint_path.format(epoch=0)) # Train the model with the new callback model.fit(train_images, train_labels, epochs=100, validation_data=(test_images, test_labels), callbacks=[cp_callback], verbose=2) if __name__ == '__main__': main()
the-stack_106_31840
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' This is a socket implementation of http server ''' # Import socket module from socket import socket from socket import AF_INET from socket import SOCK_STREAM from socket import SOL_SOCKET, SO_REUSEADDR from wsgiref.handlers import format_date_time from datetime import datetime from time import mktime import os # Put in your codes here to create a TCP sever socket # and bind it to your server address and port number HOST, PORT_NUM = "0.0.0.0", 4000 CLRF = '\r\n' class Request(object): ''' A simple http request object" ''' def __init__(self, raw_request): self._raw_request = raw_request self._method, self._path, self._protocol, self._headers = self.parse_request() def getpath(self): ''' return the url path ''' if self._path == "/": # default index.html self._path = "/index.html" return self._path, self.start_byte def parse_request(self): ''' trun request into structured data ''' temp = [i.strip() for i in self._raw_request.splitlines()] self.start_byte = -1 # print(temp) if -1 == temp[0].find('HTTP'): raise Exception('Incorrect Protocol') # Extract the range part of http request if -1 != self._raw_request.find('\r\nRange'): import re # print(self._raw_request) # r"Range: bytes=(\d*)-(\d*)" re_result = re.search( r"Range: bytes=(\d*)-(\d*)", self._raw_request) # print(re_result) if re_result != None: # print(re_result.group(1), re_result.group(2)) self.start_byte = int(re_result.group(1)) # Figure out our request method, path, and which version of HTTP we're using method, path, protocol = [i.strip() for i in temp[0].split()] # Create the headers, but only if we have a GET reqeust headers = {} if method == "GET": for k, value in [i.split(':', 1) for i in temp[1:-1]]: headers[k.strip()] = value.strip() else: raise Exception('Only accepts GET requests') return method, path, protocol, headers def __repr__(self): return repr({'method': self._method, 'path': self._path, 'protocol': self._protocol, 'headers': self._headers}) class Response(object): ''' Process the response of http ''' def __init__(self, filedes): self.status = 200 self.offset = 0 # Range request and partial responce if filedes>=0 if filedes[1] >= 0: self.status = 206 self.offset = filedes[1] try: self.file = open('.' + filedes[0], mode='rb') self.filename = '.' + filedes[0] except IOError: self.status = 404 self.file = open('./Err404.html', mode='rb') self.filename = './Err404.html' finally: self.filelen = int(os.stat(self.filename).st_size) # print(self.filelen, self.not_found) def get_resp_header(self): ''' return the http header ''' # get fommated time now = datetime.now() stamp = mktime(now.timetuple()) timestr = format_date_time(stamp) # 404 header if self.status == 404: header = "HTTP/1.1 404 Not Found\r\n" + \ "Server: nginx\r\n" +\ "Date: %s\r\n" % timestr +\ "Content-Type: text/html\r\n" +\ "Content-Length: %d\r\n" % self.filelen +\ "Connection: keep-alive\r\n\r\n" return header if self.status == 200: # 200 OK header header = "HTTP/1.1 200 OK\r\n" +\ "Date: %s\r\n" % timestr +\ "Server: nginx\r\n" +\ "Last-Modified: %s\r\n" % timestr +\ "Accept-Ranges: bytes\r\n" +\ "Content-Length: %d\r\n" % self.filelen +\ "Keep-Alive: timeout=5, max=100\r\n" +\ "Connection: Keep-Alive\r\n" +\ "Content-Type: %s; charset=UTF-8\r\n\r\n" % self.get_content_type() return header if self.status == 206: header = "HTTP/1.1 206 Partial Content\r\n" +\ "Accept-Ranges: bytes\r\n" +\ "Content-Range: bytes %d-%d/%d\r\n" \ % (self.offset, self.filelen - 1, self.filelen) +\ "Content-Length: %d\r\n" % (self.filelen - self.offset) +\ "Content-Type: %s\r\n\r\n" % self.get_content_type() return header def get_content_type(self): ''' Use built in function to get filetype and map them ''' _, extension = os.path.splitext(self.filename) mapping = {'html': 'text/html', 'htm': 'text/html', 'txt': 'text/plain', 'mp4': 'video/mp4', 'ogg': 'audio/ogg', 'mp3': 'audio/mpeg', 'jpg': 'image/jpeg'} # print(extension) if extension[1:] in mapping.keys(): return mapping[extension[1:]] else: return 'text/plain' def send_file(self, connection): ''' send the main body ''' # Send HTTP content body if self.offset <= self.filelen: self.file.seek(self.offset) else: return buff = self.file.read(1024) total = 0 while buff: total += len(buff) try: connection.send(buff) except BrokenPipeError as err: # print("Detected remote disconnect", err) break buff = self.file.read(1024) # print(total, self.filename) self.file.close() return def main(): ''' main entrance ''' # (SOCK_STREAM) is used for TCP server_socket = socket(AF_INET, SOCK_STREAM) try: # Bind the socket to server address and server port #server_socket.bind((HOST, PORT_NUM)) server_socket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) server_socket.bind((HOST, PORT_NUM)) server_socket.listen(10) except OSError: print("Port number in use. Exiting....") exit() # Server should be up and running and listening to the incoming connections try: while True: connection_socket = None # If an exception occurs during the execution of try clause # the rest of the clause is skipped # If the exception type matches the word after except # the except clause is executed try: print('Ready to serve...') # Set up a new connection from the client connection_socket, addr = server_socket.accept() # Receives the request message from the client # connection-oriented # For best match with hardware and network realities # the value of bufsize should be a relatively small power of 2 # for example, 4096. http_request = connection_socket.recv(1024).decode() if not http_request: raise OSError # print(http_request) # print(http_request) http_request = Request(http_request) # print(repr(http_request), http_request.getpath()) resp = Response(http_request.getpath()) print("Request from %s, path: %s" % (addr, http_request.getpath())) header = resp.get_resp_header() # print(header) connection_socket.send(header.encode()) resp.send_file(connection_socket) except OSError: print("Detect error (Connection closed)") finally: if connection_socket: connection_socket.close() finally: # Put your code here to close the socket server_socket.close() if __name__ == "__main__": main()
the-stack_106_31841
# Copyright 2018 Google LLC. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Tests for vcf_reader CLIF python wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest from third_party.nucleus.io.python import vcf_reader from third_party.nucleus.protos import reference_pb2 from third_party.nucleus.protos import variants_pb2 from third_party.nucleus.testing import test_utils from third_party.nucleus.util import ranges expected_sites_contigs = [ reference_pb2.ContigInfo(name='chr1', pos_in_fasta=0, n_bases=248956422), reference_pb2.ContigInfo(name='chr2', pos_in_fasta=1, n_bases=242193529), reference_pb2.ContigInfo(name='chr3', pos_in_fasta=2, n_bases=198295559), reference_pb2.ContigInfo(name='chr4', pos_in_fasta=3, n_bases=190214555), reference_pb2.ContigInfo(name='chr5', pos_in_fasta=4, n_bases=181538259), reference_pb2.ContigInfo(name='chr6', pos_in_fasta=5, n_bases=170805979), reference_pb2.ContigInfo(name='chr7', pos_in_fasta=6, n_bases=159345973), reference_pb2.ContigInfo(name='chr8', pos_in_fasta=7, n_bases=145138636), reference_pb2.ContigInfo(name='chr9', pos_in_fasta=8, n_bases=138394717), reference_pb2.ContigInfo(name='chr10', pos_in_fasta=9, n_bases=133797422), reference_pb2.ContigInfo(name='chr11', pos_in_fasta=10, n_bases=135086622), reference_pb2.ContigInfo(name='chr12', pos_in_fasta=11, n_bases=133275309), reference_pb2.ContigInfo(name='chr13', pos_in_fasta=12, n_bases=114364328), reference_pb2.ContigInfo(name='chr14', pos_in_fasta=13, n_bases=107043718), reference_pb2.ContigInfo(name='chr15', pos_in_fasta=14, n_bases=101991189), reference_pb2.ContigInfo(name='chr16', pos_in_fasta=15, n_bases=90338345), reference_pb2.ContigInfo(name='chr17', pos_in_fasta=16, n_bases=83257441), reference_pb2.ContigInfo(name='chr18', pos_in_fasta=17, n_bases=80373285), reference_pb2.ContigInfo(name='chr19', pos_in_fasta=18, n_bases=58617616), reference_pb2.ContigInfo(name='chr20', pos_in_fasta=19, n_bases=64444167), reference_pb2.ContigInfo(name='chr21', pos_in_fasta=20, n_bases=46709983), reference_pb2.ContigInfo(name='chr22', pos_in_fasta=21, n_bases=50818468), reference_pb2.ContigInfo(name='chrX', pos_in_fasta=22, n_bases=156040895), reference_pb2.ContigInfo(name='chrY', pos_in_fasta=23, n_bases=57227415), reference_pb2.ContigInfo(name='chrM', pos_in_fasta=24, n_bases=16569), ] # pylint: disable=line-too-long expected_samples_filters = [ variants_pb2.VcfFilterInfo(id='PASS', description='All filters passed'), variants_pb2.VcfFilterInfo(id='LowQual', description='Low quality'), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL95.00to96.00', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: 0.9364 <= x < 1.0415' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL96.00to97.00', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: 0.8135 <= x < 0.9364' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL97.00to99.00', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: 0.323 <= x < 0.8135' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL99.00to99.50', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: -0.1071 <= x < 0.323' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL99.50to99.90', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: -1.845 <= x < -0.1071' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL99.90to99.95', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: -3.2441 <= x < -1.845' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL99.95to100.00+', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod < -57172.0693' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheINDEL99.95to100.00', description= 'Truth sensitivity tranche level for INDEL model at VQS Lod: -57172.0693 <= x < -3.2441' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.50to99.60', description= 'Truth sensitivity tranche level for SNP model at VQS Lod: -0.751 <= x < -0.6681' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.60to99.80', description= 'Truth sensitivity tranche level for SNP model at VQS Lod: -1.0839 <= x < -0.751' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.80to99.90', description= 'Truth sensitivity tranche level for SNP model at VQS Lod: -1.7082 <= x < -1.0839' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.90to99.95', description= 'Truth sensitivity tranche level for SNP model at VQS Lod: -3.0342 <= x < -1.7082' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.95to100.00+', description= 'Truth sensitivity tranche level for SNP model at VQS Lod < -40235.9641' ), variants_pb2.VcfFilterInfo( id='VQSRTrancheSNP99.95to100.00', description= 'Truth sensitivity tranche level for SNP model at VQS Lod: -40235.9641 <= x < -3.0342' ) ] # pylint: enable=line-too-long class WrapVcfReaderTests(absltest.TestCase): def setUp(self): self.sites_vcf = test_utils.genomics_core_testdata('test_sites.vcf') self.samples_vcf = test_utils.genomics_core_testdata('test_samples.vcf.gz') self.options = variants_pb2.VcfReaderOptions() self.sites_reader = vcf_reader.VcfReader.from_file(self.sites_vcf, self.options) self.samples_reader = vcf_reader.VcfReader.from_file( self.samples_vcf, self.options) def test_vcf_iterate(self): iterable = self.sites_reader.iterate() self.assertEqual(test_utils.iterable_len(iterable), 5) def test_vcf_header(self): header = self.sites_reader.header expected1 = variants_pb2.VcfStructuredExtra( key='ALT', fields=[ variants_pb2.VcfExtra(key='ID', value='NON_REF'), variants_pb2.VcfExtra( key='Description', value='Represents any possible alternative allele at th' 'is location') ]) expected2 = variants_pb2.VcfStructuredExtra( key='META', fields=[ variants_pb2.VcfExtra(key='ID', value='TESTMETA'), variants_pb2.VcfExtra(key='Description', value='blah') ]) self.assertLen(header.structured_extras, 2) self.assertEqual(header.structured_extras[1], expected2) self.assertEqual(header.structured_extras[0], expected1) def test_vcf_contigs(self): self.assertEqual(expected_sites_contigs, list(self.sites_reader.header.contigs)) def test_vcf_filters(self): self.assertEqual(expected_samples_filters, list(self.samples_reader.header.filters)) def test_vcf_samples(self): self.assertEqual(list(self.sites_reader.header.sample_names), []) self.assertEqual( list(self.samples_reader.header.sample_names), ['NA12878_18_99']) def test_vcf_query(self): range1 = ranges.parse_literal('chr3:100,000-500,000') iterable = self.samples_reader.query(range1) self.assertEqual(test_utils.iterable_len(iterable), 4) def test_vcf_from_string(self): v = self.samples_reader.from_string( 'chr3\t370537\trs142286746\tC\tCA,CAA\t350.73\tPASS\t' 'AC=1,1;AF=0.500,0.500;AN=2;DB;DP=16;ExcessHet=3.0103;' 'FS=0.000;MLEAC=1,1;MLEAF=0.500,0.500;MQ=60.00;QD=26.98;' 'SOR=1.179;VQSLOD=2.88;culprit=FS\tGT:AD:DP:GQ:PL\t' '1/2:0,6,7:13:99:388,188,149,140,0,116') self.assertEqual(v.reference_name, 'chr3') self.assertEqual(v.start, 370536) self.assertEqual(list(v.names), ['rs142286746']) self.assertEqual(v.reference_bases, 'C') self.assertEqual(list(v.alternate_bases), ['CA', 'CAA']) self.assertEqual(len(v.calls), 1) def test_vcf_from_string_raises_on_bad_input(self): with self.assertRaises(ValueError): self.samples_reader.from_string('BAD NOT A VCF RECORD\n;;') def test_from_file_raises_with_missing_source(self): with self.assertRaisesRegexp(ValueError, 'Not found: Could not open missing.vcf'): vcf_reader.VcfReader.from_file('missing.vcf', self.options) def test_ops_on_closed_reader_raise(self): with self.samples_reader: pass # At this point the reader is closed. with self.assertRaisesRegexp(ValueError, 'Cannot Iterate a closed'): self.samples_reader.iterate() with self.assertRaisesRegexp(ValueError, 'Cannot Query a closed'): self.samples_reader.query( ranges.parse_literal('chr1:10,000,000-10,000,100')) def test_query_on_unindexed_reader_raises(self): window = ranges.parse_literal('chr1:10,000,000-10,000,100') unindexed_file = test_utils.genomics_core_testdata('test_samples.vcf') with vcf_reader.VcfReader.from_file(unindexed_file, self.options) as reader: with self.assertRaisesRegexp(ValueError, 'Cannot query without an index'): reader.query(window) def test_query_raises_with_bad_range(self): with self.assertRaisesRegexp(ValueError, 'Unknown reference_name'): self.samples_reader.query(ranges.parse_literal('XXX:1-10')) with self.assertRaisesRegexp(ValueError, 'Malformed region'): self.samples_reader.query(ranges.parse_literal('chr1:0-5')) with self.assertRaisesRegexp(ValueError, 'Malformed region'): self.samples_reader.query(ranges.parse_literal('chr1:6-5')) with self.assertRaisesRegexp(ValueError, 'Malformed region'): self.samples_reader.query(ranges.parse_literal('chr1:10-5')) def test_context_manager(self): with vcf_reader.VcfReader.from_file(self.sites_vcf, self.options) as f: self.assertEqual(expected_sites_contigs, list(f.header.contigs)) # Commented out because we in fact don't detect the malformed VCF yet. It is # unclear if it's even possible to detect the issue with the API provided by # htslib. # def test_vcf_iterate_raises_on_malformed_record(self): # malformed = test_utils.genomics_core_testdata('malformed.vcf') # reader = vcf_reader.VcfReader.from_file(malformed, self.unindexed_options) # iterable = iter(reader.iterate()) # self.assertIsNotNone(next(iterable)) # with self.assertRaises(ValueError): # print(list(iterable)) if __name__ == '__main__': absltest.main()
the-stack_106_31842
import os import struct import threading from collections import namedtuple from io import BytesIO from tarfile import TarFile, TarInfo from c3nav.mapdata.utils.cache import AccessRestrictionAffected, GeometryIndexed, MapHistory CachePackageLevel = namedtuple('CachePackageLevel', ('history', 'restrictions')) class CachePackage: def __init__(self, bounds, levels=None): self.bounds = bounds self.levels = {} if levels is None else levels def add_level(self, level_id: int, history: MapHistory, restrictions: AccessRestrictionAffected): self.levels[level_id] = CachePackageLevel(history, restrictions) def save(self, filename=None, compression=None): if filename is None: from django.conf import settings filename = os.path.join(settings.CACHE_ROOT, 'package.tar') if compression is not None: filename += '.' + compression filemode = 'w' if compression is not None: filemode += ':' + compression with TarFile.open(filename, filemode) as f: self._add_bytesio(f, 'bounds', BytesIO(struct.pack('<iiii', *(int(i*100) for i in self.bounds)))) for level_id, level_data in self.levels.items(): self._add_geometryindexed(f, 'history_%d' % level_id, level_data.history) self._add_geometryindexed(f, 'restrictions_%d' % level_id, level_data.restrictions) def _add_bytesio(self, f: TarFile, filename: str, data: BytesIO): data.seek(0, os.SEEK_END) tarinfo = TarInfo(name=filename) tarinfo.size = data.tell() data.seek(0) f.addfile(tarinfo, data) def _add_geometryindexed(self, f: TarFile, filename: str, obj: GeometryIndexed): data = BytesIO() obj.write(data) self._add_bytesio(f, filename, data) def save_all(self, filename=None): for compression in (None, 'gz', 'xz'): self.save(filename, compression) @classmethod def read(cls, f): f = TarFile.open(fileobj=f) files = {info.name: info for info in f.getmembers()} bounds = tuple(i/100 for i in struct.unpack('<iiii', f.extractfile(files['bounds']).read())) levels = {} for filename in files: if not filename.startswith('history_'): continue level_id = int(filename[8:]) levels[level_id] = CachePackageLevel( history=MapHistory.read(f.extractfile(files['history_%d' % level_id])), restrictions=AccessRestrictionAffected.read(f.extractfile(files['restrictions_%d' % level_id])) ) return cls(bounds, levels) @classmethod def open(cls, filename=None): if filename is None: from django.conf import settings filename = os.path.join(settings.CACHE_ROOT, 'package.tar') return cls.read(open(filename, 'rb')) cached = None cache_key = None cache_lock = threading.Lock() @classmethod def open_cached(cls): with cls.cache_lock: from c3nav.mapdata.models import MapUpdate cache_key = MapUpdate.current_processed_cache_key() if cls.cache_key != cache_key: cls.cache_key = cache_key cls.cached = None if cls.cached is None: cls.cached = cls.open() return cls.cached def bounds_valid(self, minx, miny, maxx, maxy): return (minx <= self.bounds[2] and maxx >= self.bounds[0] and miny <= self.bounds[3] and maxy >= self.bounds[1])
the-stack_106_31843
from abc import ABC import tensorflow as tf print(tf.__version__) class Controller(tf.keras.layers.Layer): def __init__(self, init): super(Controller, self).__init__(name='Controller') self.w = tf.Variable(initial_value=init, dtype='float32', trainable=True) def call(self, Model, x): y = Model(x, tf.math.tanh(self.w)) return y # resolution^2 deve essere divisibile per num_heads class LHC_Module(tf.keras.layers.Layer): def __init__(self, pool_size, head_emb_dim, num_heads, num_channels, resolution, kernel_size, norm_c, name): super(LHC_Module, self).__init__() self.pool_size = pool_size self.head_emb_dim = head_emb_dim self.num_heads = num_heads self.num_channels = num_channels self.resolution = resolution self.kernel_size = kernel_size self.norm_c = norm_c self.Poolq = tf.keras.layers.AvgPool2D(pool_size=(self.pool_size, self.pool_size), strides=(1, 1), padding='same') self.Poolk = tf.keras.layers.MaxPool2D(pool_size=(self.pool_size, self.pool_size), strides=(1, 1), padding='same') self.Wqk = [tf.keras.layers.Dense(units=self.head_emb_dim, activation='linear') for _ in range(self.num_heads)] self.Wp = tf.keras.layers.Dense(units=self.num_channels, activation='sigmoid') self.Wv = tf.keras.layers.Conv2D(filters=self.num_channels, kernel_size=self.kernel_size, strides=(1, 1), padding='same', activation='linear') self.Poolv = tf.keras.layers.AvgPool2D(pool_size=(3, 3), strides=(1, 1), padding='same') self.sum = tf.keras.layers.Add() self.Name_1_ = 'LHC_1_'+name def VectScaledDotProdAttention(self, query, key, value): scores = tf.linalg.matmul(query, key, transpose_b=True) # (batch_size, num_heads, num_channels, num_channels) scores_p = tf.math.reduce_mean(scores, axis=3) # (batch_size, num_heads, num_channels) scores_p = self.Wp(scores_p) # (batch_size, num_heads, num_channels) scores_p = tf.expand_dims(scores_p, axis=-1) # (batch_size, num_heads, num_channels, 1) norm_scores = tf.math.divide(scores, tf.math.pow(tf.dtypes.cast(key.shape[3], tf.float32), self.norm_c + scores_p)) # (batch_size, num_heads, num_channels, num_channels) weights = tf.nn.softmax(norm_scores, axis=3) # (batch_size, num_heads, num_channels, num_channels) attentions = tf.linalg.matmul(weights, value) # (batch_size, num_heads, num_channels, head_res_dim) return attentions def call(self, x, weight_att=0): batch_size = tf.shape(x)[0] num_channels = self.num_channels resolution = self.resolution head_res_dim = (resolution * resolution) // self.num_heads query = x # (batch_size, resolution, resolution, num_channels) query = self.Poolq(query) # (batch_size, resolution, resolution, num_channels) query = tf.reshape(query, shape=(batch_size, resolution * resolution, num_channels)) # (batch_size, resolution^2, num_channels) query = tf.transpose(query, perm=[0, 2, 1]) # (batch_size, num_channels, resolution^2) query = tf.reshape(query, shape=(batch_size, num_channels, self.num_heads, head_res_dim)) # (batch_size, num_channels, num_heads, head_res_dim) query = tf.transpose(query, perm=[0, 2, 1, 3]) # (batch_size, num_heads, num_channels, head_res_dim) q = [None] * self.num_heads for i in range(self.num_heads): q[i] = self.Wqk[i](query[:, i, :, :]) # (batch_size, num_channels, head_emb_dim) q[i] = tf.expand_dims(q[i], axis=1) # (batch_size, 1, num_channels, head_emb_dim) query = tf.concat(q, axis=1) # (batch_size, num_heads, num_channels, head_emb_dim) key = x # (batch_size, resolution, resolution, num_channels) key = self.Poolk(key) # (batch_size, resolution, resolution, num_channels) key = tf.reshape(key, shape=(batch_size, resolution * resolution, num_channels)) # (batch_size, resolution^2, num_channels) key = tf.transpose(key, perm=[0, 2, 1]) # (batch_size, num_channels, resolution^2) key = tf.reshape(key, shape=(batch_size, num_channels, self.num_heads, head_res_dim)) # (batch_size, num_channels, num_heads, head_res_dim) key = tf.transpose(key, perm=[0, 2, 1, 3]) # (batch_size, num_heads, num_channels, head_res_dim) k = [None] * self.num_heads for i in range(self.num_heads): k[i] = self.Wqk[i](key[:, i, :, :]) # (batch_size, num_channels, head_emb_dim) k[i] = tf.expand_dims(k[i], axis=1) # (batch_size, 1, num_channels, head_emb_dim) key = tf.concat(k, axis=1) # (batch_size, num_heads, num_channels, head_emb_dim) value = self.Wv(x) # (batch_size, resolution, resolution, num_channels) value = self.Poolv(value) # (batch_size, resolution, resolution, num_channels) value = tf.reshape(value, shape=(batch_size, resolution * resolution, num_channels)) # (batch_size, resolution^2, num_channels) value = tf.transpose(value, perm=[0, 2, 1]) # (batch_size, num_channels, resolution^2) value = tf.reshape(value, shape=(batch_size, num_channels, self.num_heads, head_res_dim)) # (batch_size, num_channels, num_heads, head_res_dim) value = tf.transpose(value, perm=[0, 2, 1, 3]) # (batch_size, num_heads, num_channels, head_res_dim) attentions = self.VectScaledDotProdAttention(query, key, value) # (batch_size, num_heads, num_channels, head_res_dim) attentions = tf.transpose(attentions, perm=[0, 2, 1, 3]) # (batch_size, num_channels, num_heads, head_res_dim) attention = tf.reshape(attentions, shape=(batch_size, num_channels, resolution * resolution)) # (batch_size, num_channels, resolution^2) attention = tf.transpose(attention, perm=[0, 2, 1]) # (batch_size, resolution^2, num_channels) attention = tf.reshape(attention, shape=(batch_size, resolution, resolution, num_channels)) # (batch_size, resolution, resolution, num_channels) out = self.sum([x, attention*(1 + weight_att)]) # (batch_size, resolution, resolution, num_channels) return out class LHCResBlockSmall(tf.keras.Model, ABC): def __init__(self, filters, kernels, strides, identity, resolution, att_num_channel, num_heads, att_embed_dim, att_kernel_size, pool_size, norm_c, name): super(LHCResBlockSmall, self).__init__(name='LHCResBlockSmall') self.Identity = identity self.bn1 = tf.keras.layers.BatchNormalization(epsilon=2e-05, name=name+"_BN1") self.relu1 = tf.keras.layers.Activation(activation='relu', name=name+"_Relu1") self.pad1 = tf.keras.layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name+'_Padding1') self.conv1 = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[0], strides=strides[0], padding='valid', activation='linear', use_bias=False, name=name+'_Conv1') self.bn2 = tf.keras.layers.BatchNormalization(epsilon=2e-05, name=name+"_BN2") self.relu2 = tf.keras.layers.Activation(activation='relu', name=name+"_Relu2") self.pad2 = tf.keras.layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name+'_Padding2') self.conv2 = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[1], strides=strides[1], padding='valid', activation='linear', use_bias=False, name=name+'_Conv2') if self.Identity: self.convId = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[2], strides=strides[2], padding='valid', activation='linear', use_bias=False, name=name+'_ConvId') self.LHC_Module = LHC_Module(pool_size=pool_size, resolution=resolution, num_channels=att_num_channel, num_heads=num_heads, head_emb_dim=att_embed_dim, kernel_size=att_kernel_size, norm_c=norm_c, name=name) self.add = tf.keras.layers.Add() def call(self, x, weight_att): if self.Identity: y = self.bn1(x) y = self.relu1(y) xb = y y = self.pad1(y) y = self.conv1(y) y = self.bn2(y) y = self.relu2(y) y = self.pad2(y) y = self.conv2(y) y2 = self.convId(xb) y = self.add([y, y2]) y = self.LHC_Module(y, weight_att) return y else: y = self.bn1(x) y = self.relu1(y) y = self.pad1(y) y = self.conv1(y) y = self.bn2(y) y = self.relu2(y) y = self.pad2(y) y = self.conv2(y) y = self.add([y, x]) y = self.LHC_Module(y, weight_att) return y def import_w(self, layers): for i in range(len(layers)): for j in range(len(layers[i].weights)): self.layers[i].weights[j].assign(layers[i].weights[j]) class LHCResBlockSmall0(tf.keras.Model, ABC): def __init__(self, input_shape, resolution, att_num_channel, num_heads, att_embed_dim, att_kernel_size, pool_size, norm_c): super(LHCResBlockSmall0, self).__init__(name='LHCResBlockSmall0') self.Input = tf.keras.layers.InputLayer(input_shape=input_shape) self.bn1 = tf.keras.layers.BatchNormalization(epsilon=2e-05, scale=False, name='Block0_BN1') self.pad1 = tf.keras.layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name='Block0_Padding1') self.conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), padding='valid', activation='linear', use_bias=False, name='Block0_Conv1') self.bn2 = tf.keras.layers.BatchNormalization(epsilon=2e-05, name='Block0_BN2') self.relu1 = tf.keras.layers.Activation(activation='relu', name='Block0_Relu1') self.pad2 = tf.keras.layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name='Block0_Padding2') self.pool1 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2), name='Block0_MaxPool1') self.LHC_Module = LHC_Module(pool_size=pool_size, resolution=resolution, num_channels=att_num_channel, num_heads=num_heads, head_emb_dim=att_embed_dim, kernel_size=att_kernel_size, norm_c=norm_c, name='Module_0') def call(self, x, weight_att): x1 = self.Input(x) x1 = self.bn1(x1) x1 = self.pad1(x1) x1 = self.conv1(x1) x1 = self.bn2(x1) x1 = self.relu1(x1) x1 = self.pad2(x1) x1 = self.pool1(x1) x1 = self.LHC_Module(x1, weight_att) return x1 def import_w(self, layers): for i in range(len(layers)): for j in range(len(layers[i].weights)): self.layers[i].weights[j].assign(layers[i].weights[j]) class ResBlockSmall(tf.keras.Model, ABC): def __init__(self, filters, kernels, strides, identity, name): super(ResBlockSmall, self).__init__(name='ResBlockSmall') self.Identity = identity self.bn1 = tf.keras.layers.BatchNormalization(epsilon=2e-05, name=name+"_BN1") self.relu1 = tf.keras.layers.Activation(activation='relu', name=name+"_Relu1") self.pad1 = tf.keras.layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name+'_Padding1') self.conv1 = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[0], strides=strides[0], padding='valid', activation='linear', use_bias=False, name=name+'_Conv1') self.bn2 = tf.keras.layers.BatchNormalization(epsilon=2e-05, name=name+"_BN2") self.relu2 = tf.keras.layers.Activation(activation='relu', name=name+"_Relu2") self.pad2 = tf.keras.layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name+'_Padding2') self.conv2 = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[1], strides=strides[1], padding='valid', activation='linear', use_bias=False, name=name+'_Conv2') if self.Identity: self.convId = tf.keras.layers.Conv2D(filters=filters, kernel_size=kernels[2], strides=strides[2], padding='valid', activation='linear', use_bias=False, name=name+'_ConvId') self.add = tf.keras.layers.Add() def call(self, x): if self.Identity: y = self.bn1(x) y = self.relu1(y) xb = y y = self.pad1(y) y = self.conv1(y) y = self.bn2(y) y = self.relu2(y) y = self.pad2(y) y = self.conv2(y) y2 = self.convId(xb) y = self.add([y, y2]) return y else: y = self.bn1(x) y = self.relu1(y) y = self.pad1(y) y = self.conv1(y) y = self.bn2(y) y = self.relu2(y) y = self.pad2(y) y = self.conv2(y) y = self.add([y, x]) return y def import_w(self, layers): for i in range(len(layers)): for j in range(len(layers[i].weights)): self.layers[i].weights[j].assign(layers[i].weights[j]) class LHC_ResNet34(tf.keras.Model, ABC): def __init__(self, input_shape, num_classes, att_params, controller_init): super(LHC_ResNet34, self).__init__(name='LHC_ResNet34') self.bypass_controller = False self.Input = tf.keras.layers.InputLayer(input_shape=input_shape) self.conv1 = LHCResBlockSmall0(input_shape=input_shape, resolution=56, att_num_channel=64, num_heads=att_params['num_heads'][0], att_embed_dim=att_params['att_embed_dim'][0], att_kernel_size=att_params['kernel_size'][0], pool_size=att_params['pool_size'][0], norm_c=att_params['norm_c'][0]) self.conv2_1 = ResBlockSmall(filters=64, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=True, name='stage1_unit1') self.conv2_2 = ResBlockSmall(filters=64, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage1_unit2') self.conv2_3 = LHCResBlockSmall(filters=64, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, resolution=56, att_num_channel=64, num_heads=att_params['num_heads'][1], att_embed_dim=att_params['att_embed_dim'][1], att_kernel_size=att_params['kernel_size'][1], pool_size=att_params['pool_size'][1], norm_c=att_params['norm_c'][1], name='stage1_unit3') self.conv3_1 = ResBlockSmall(filters=128, kernels=((3, 3), (3, 3), (1, 1)), strides=((2, 2), (1, 1), (2, 2)), identity=True, name='stage2_unit1') self.conv3_2 = ResBlockSmall(filters=128, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage2_unit2') self.conv3_3 = ResBlockSmall(filters=128, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage2_unit3') self.conv3_4 = LHCResBlockSmall(filters=128, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, resolution=28, att_num_channel=128, num_heads=att_params['num_heads'][2], att_embed_dim=att_params['att_embed_dim'][2], att_kernel_size=att_params['kernel_size'][2], pool_size=att_params['pool_size'][2], norm_c=att_params['norm_c'][2], name='stage2_unit4') self.conv4_1 = ResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((2, 2), (1, 1), (2, 2)), identity=True, name='stage3_unit1') self.conv4_2 = ResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage3_unit2') self.conv4_3 = ResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage3_unit3') self.conv4_4 = ResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage3_unit4') self.conv4_5 = ResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage3_unit5') self.conv4_6 = LHCResBlockSmall(filters=256, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, resolution=14, att_num_channel=256, num_heads=att_params['num_heads'][3], att_embed_dim=att_params['att_embed_dim'][3], att_kernel_size=att_params['kernel_size'][3], pool_size=att_params['pool_size'][3], norm_c=att_params['norm_c'][3], name='stage3_unit6') self.conv5_1 = ResBlockSmall(filters=512, kernels=((3, 3), (3, 3), (1, 1)), strides=((2, 2), (1, 1), (2, 2)), identity=True, name='stage4_unit1') self.conv5_2 = ResBlockSmall(filters=512, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, name='stage4_unit2') self.conv5_3 = LHCResBlockSmall(filters=512, kernels=((3, 3), (3, 3), (1, 1)), strides=((1, 1), (1, 1), (1, 1)), identity=False, resolution=7, att_num_channel=512, num_heads=att_params['num_heads'][4], att_embed_dim=att_params['att_embed_dim'][4], att_kernel_size=att_params['kernel_size'][4], pool_size=att_params['pool_size'][4], norm_c=att_params['norm_c'][4], name='stage4_unit3') self.bn = tf.keras.layers.BatchNormalization(epsilon=2e-05, name='bn') self.relu = tf.keras.layers.Activation(activation='relu', name='relu') self.pool = tf.keras.layers.GlobalAveragePooling2D() self.fc1 = tf.keras.layers.Dense(units=4096, activation='relu') self.dp1 = tf.keras.layers.Dropout(0.4) self.fc2 = tf.keras.layers.Dense(units=1024, activation='relu') self.dp2 = tf.keras.layers.Dropout(0.4) self.fc3 = tf.keras.layers.Dense(units=num_classes, activation='softmax') # a = [0, -0.2, -0.4, -0.4, -1] # a = [0, -0.2, -0.4, -0.4, -0.8] # a = [0, -0.2, -0.4, -0.4, 0.2] # a = [0, 0, 0, -1, 0] self.controller1 = Controller(init=controller_init[0]) self.controller2 = Controller(init=controller_init[1]) self.controller3 = Controller(init=controller_init[2]) self.controller4 = Controller(init=controller_init[3]) self.controller5 = Controller(init=controller_init[4]) def import_w(self, model): self.conv1.import_w(model.layers[1].layers[0:8]) self.conv2_1.import_w(model.layers[1].layers[8:18-1]) self.conv2_2.import_w(model.layers[1].layers[18:27-1]) self.conv2_3.import_w(model.layers[1].layers[27:36-1]) self.conv3_1.import_w(model.layers[1].layers[36:46-1]) self.conv3_2.import_w(model.layers[1].layers[46:55-1]) self.conv3_3.import_w(model.layers[1].layers[55:64-1]) self.conv3_4.import_w(model.layers[1].layers[64:73-1]) self.conv4_1.import_w(model.layers[1].layers[73:83-1]) self.conv4_2.import_w(model.layers[1].layers[83:92-1]) self.conv4_3.import_w(model.layers[1].layers[92:101-1]) self.conv4_4.import_w(model.layers[1].layers[101:110-1]) self.conv4_5.import_w(model.layers[1].layers[110:119-1]) self.conv4_6.import_w(model.layers[1].layers[119:128-1]) self.conv5_1.import_w(model.layers[1].layers[128:138-1]) self.conv5_2.import_w(model.layers[1].layers[138:147-1]) self.conv5_3.import_w(model.layers[1].layers[147:156-1]) for i in range(len(self.bn.weights)): self.bn.weights[i].assign(model.layers[1].layers[156].weights[i]) for i in range(len(self.relu.weights)): self.relu.weights[i].assign(model.layers[1].layers[157].weights[i]) for i in range(len(self.pool.weights)): self.pool.weights[i].assign(model.layers[2].weights[i]) for i in range(len(self.fc1.weights)): self.fc1.weights[i].assign(model.layers[3].weights[i]) for i in range(len(self.dp1.weights)): self.dp1.weights[i].assign(model.layers[4].weights[i]) for i in range(len(self.fc2.weights)): self.fc2.weights[i].assign(model.layers[5].weights[i]) for i in range(len(self.dp2.weights)): self.dp2.weights[i].assign(model.layers[6].weights[i]) for i in range(len(self.fc3.weights)): self.fc3.weights[i].assign(model.layers[7].weights[i]) def import_weights_from_lhc(self, model): self.conv1.set_weights(model.conv1.get_weights()) self.conv2_1.set_weights(model.conv2_1.get_weights()) self.conv2_2.set_weights(model.conv2_2.get_weights()) self.conv2_3.set_weights(model.conv2_3.get_weights()) self.conv3_1.set_weights(model.conv3_1.get_weights()) self.conv3_2.set_weights(model.conv3_2.get_weights()) self.conv3_3.set_weights(model.conv3_3.get_weights()) self.conv3_4.set_weights(model.conv3_4.get_weights()) self.conv4_1.set_weights(model.conv4_1.get_weights()) self.conv4_2.set_weights(model.conv4_2.get_weights()) self.conv4_3.set_weights(model.conv4_3.get_weights()) self.conv4_4.set_weights(model.conv4_4.get_weights()) self.conv4_5.set_weights(model.conv4_5.get_weights()) self.conv4_6.set_weights(model.conv4_6.get_weights()) self.conv5_1.set_weights(model.conv5_1.get_weights()) self.conv5_2.set_weights(model.conv5_2.get_weights()) self.conv5_3.set_weights(model.conv5_3.get_weights()) self.bn.set_weights(model.bn.get_weights()) self.relu.set_weights(model.relu.get_weights()) self.pool.set_weights(model.pool.get_weights()) self.fc1.set_weights(model.fc1.get_weights()) self.dp1.set_weights(model.dp1.get_weights()) self.fc2.set_weights(model.fc2.get_weights()) self.dp2.set_weights(model.dp2.get_weights()) self.fc3.set_weights(model.fc3.get_weights()) def freeze_lhc(self): self.conv1.trainable = False self.conv2_1.trainable = False self.conv2_2.trainable = False self.conv2_3.trainable = False self.conv3_1.trainable = False self.conv3_2.trainable = False self.conv3_3.trainable = False self.conv3_4.trainable = False self.conv4_1.trainable = False self.conv4_2.trainable = False self.conv4_3.trainable = False self.conv4_4.trainable = False self.conv4_5.trainable = False self.conv4_6.trainable = False self.conv5_1.trainable = False self.conv5_2.trainable = False self.conv5_3.trainable = False self.bn.trainable = False self.relu.trainable = False self.pool.trainable = False self.fc1.trainable = False self.dp1.trainable = False self.fc2.trainable = False self.dp2.trainable = False self.fc3.trainable = False self.controller1.trainable = True self.controller2.trainable = True self.controller3.trainable = True self.controller4.trainable = True self.controller5.trainable = True def call(self, x): x = self.Input(x) x = self.controller1(self.conv1, x) x = self.conv2_1(x) x = self.conv2_2(x) x = self.controller2(self.conv2_3, x) x = self.conv3_1(x) x = self.conv3_2(x) x = self.conv3_3(x) x = self.controller3(self.conv3_4, x) x = self.conv4_1(x) x = self.conv4_2(x) x = self.conv4_3(x) x = self.conv4_4(x) x = self.conv4_5(x) x = self.controller4(self.conv4_6, x) x = self.conv5_1(x) x = self.conv5_2(x) x = self.controller5(self.conv5_3, x) x = self.bn(x) x = self.relu(x) x = self.pool(x) x = self.fc1(x) x = self.dp1(x) x = self.fc2(x) x = self.dp2(x) x = self.fc3(x) return x
the-stack_106_31844
from collections import Iterable def as_iterable(object): if isinstance(object, Iterable): return object else: return [object] class Logger: def __init__(self, source, processors, sink, timer): self.source = source self.processors = as_iterable(processors) self.sink = sink self.timer = timer def run(self): self.timer.reset() success = True while self.timer(success): data = self.source.read() for proc in self.processors: data = proc(data) success = self.sink.write(data) def abort(self): self.timer.abort()
the-stack_106_31846
# -*- coding: UTF-8 -*- ################################################################################ # # Copyright (c) 2020 Baidu, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################# import sys import os import datetime import logging import math import pickle sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import LAC import numpy as np from paddle import fluid from paddle.fluid import dygraph from paddle.fluid import layers from ddparser.parser import epoch_train from ddparser.parser import epoch_evaluate from ddparser.parser import epoch_predict from ddparser.parser import save from ddparser.parser import load from ddparser.parser import decode from ddparser.parser import ArgConfig from ddparser.parser import Environment from ddparser.parser import Model from ddparser.parser.data_struct import Corpus from ddparser.parser.data_struct import TextDataset from ddparser.parser.data_struct import batchify from ddparser.parser.data_struct import Field from ddparser.parser.data_struct import utils from ddparser.parser.data_struct import Metric """ 程序入口,定义了训练,评估,预测等函数 """ def train(env): """Train""" args = env.args logging.info("loading data.") train = Corpus.load(args.train_data_path, env.fields) dev = Corpus.load(args.valid_data_path, env.fields) test = Corpus.load(args.test_data_path, env.fields) logging.info("init dataset.") train = TextDataset(train, env.fields, args.buckets) dev = TextDataset(dev, env.fields, args.buckets) test = TextDataset(test, env.fields, args.buckets) logging.info("set the data loaders.") train.loader = batchify(train, args.batch_size, args.use_data_parallel, True) dev.loader = batchify(dev, args.batch_size) test.loader = batchify(test, args.batch_size) logging.info(f"{'train:':6} {len(train):5} sentences, " f"{len(train.loader):3} batches, " f"{len(train.buckets)} buckets") logging.info(f"{'dev:':6} {len(dev):5} sentences, " f"{len(dev.loader):3} batches, " f"{len(train.buckets)} buckets") logging.info(f"{'test:':6} {len(test):5} sentences, " f"{len(test.loader):3} batches, " f"{len(train.buckets)} buckets") logging.info("Create the model") model = Model(args, env.WORD.embed) # init parallel strategy if args.use_data_parallel: strategy = dygraph.parallel.prepare_context() model = dygraph.parallel.DataParallel(model, strategy) if args.use_cuda: grad_clip = fluid.clip.GradientClipByNorm(clip_norm=args.clip) else: grad_clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=args.clip) decay = dygraph.ExponentialDecay(learning_rate=args.lr, decay_steps=args.decay_steps, decay_rate=args.decay) optimizer = fluid.optimizer.AdamOptimizer( learning_rate=decay, beta1=args.mu, beta2=args.nu, epsilon=args.epsilon, parameter_list=model.parameters(), grad_clip=grad_clip) total_time = datetime.timedelta() best_e, best_metric = 1, Metric() puncts = dygraph.to_variable(env.puncts) logging.info("start training.") for epoch in range(1, args.epochs + 1): start = datetime.datetime.now() # train one epoch and update the parameter logging.info(f"Epoch {epoch} / {args.epochs}:") epoch_train(args, model, optimizer, train.loader, epoch) if args.local_rank == 0: loss, dev_metric = epoch_evaluate(args, model, dev.loader, puncts) logging.info(f"{'dev:':6} Loss: {loss:.4f} {dev_metric}") loss, test_metric = epoch_evaluate(args, model, test.loader, puncts) logging.info(f"{'test:':6} Loss: {loss:.4f} {test_metric}") t = datetime.datetime.now() - start # save the model if it is the best so far if dev_metric > best_metric and epoch > args.patience // 10: best_e, best_metric = epoch, dev_metric save(args.model_path, args, model, optimizer) logging.info(f"{t}s elapsed (saved)\n") else: logging.info(f"{t}s elapsed\n") total_time += t if epoch - best_e >= args.patience: break if args.local_rank == 0: model = load(args.model_path) loss, metric = epoch_evaluate(args, model, test.loader, puncts) logging.info( f"max score of dev is {best_metric.score:.2%} at epoch {best_e}") logging.info( f"the score of test at epoch {best_e} is {metric.score:.2%}") logging.info(f"average time of each epoch is {total_time / epoch}s") logging.info(f"{total_time}s elapsed") def evaluate(env): """Evaluate""" args = env.args puncts = dygraph.to_variable(env.puncts) logging.info("Load the dataset") evaluates = Corpus.load(args.test_data_path, env.fields) dataset = TextDataset(evaluates, env.fields, args.buckets) # set the data loader dataset.loader = batchify(dataset, args.batch_size) logging.info(f"{len(dataset)} sentences, " f"{len(dataset.loader)} batches, " f"{len(dataset.buckets)} buckets") logging.info("Load the model") model = load(args.model_path) logging.info("Evaluate the dataset") start = datetime.datetime.now() loss, metric = epoch_evaluate(args, model, dataset.loader, puncts) total_time = datetime.datetime.now() - start logging.info(f"Loss: {loss:.4f} {metric}") logging.info(f"{total_time}s elapsed, " f"{len(dataset) / total_time.total_seconds():.2f} Sents/s") def predict(env): """Predict""" args = env.args logging.info("Load the dataset") if args.prob: env.fields = env.fields._replace(PHEAD=Field('prob')) predicts = Corpus.load(args.infer_data_path, env.fields) dataset = TextDataset(predicts, [env.WORD, env.FEAT], args.buckets) # set the data loader dataset.loader = batchify(dataset, args.batch_size) logging.info(f"{len(dataset)} sentences, " f"{len(dataset.loader)} batches") logging.info("Load the model") model = load(args.model_path) model.args = args logging.info("Make predictions on the dataset") start = datetime.datetime.now() pred_arcs, pred_rels, pred_probs = epoch_predict(env, args, model, dataset.loader) total_time = datetime.datetime.now() - start # restore the order of sentences in the buckets indices = np.argsort( np.array([i for bucket in dataset.buckets.values() for i in bucket])) predicts.head = [pred_arcs[i] for i in indices] predicts.deprel = [pred_rels[i] for i in indices] if args.prob: predicts.prob = [pred_probs[i] for i in indices] logging.info(f"Save the predicted result to {args.infer_result_path}") predicts.save(args.infer_result_path) logging.info(f"{total_time}s elapsed, " f"{len(dataset) / total_time.total_seconds():.2f} Sents/s") def predict_query(env): """Predict one query""" args = env.args logging.info("Load the model") model = load(args.model_path) lac_mode = "seg" if args.feat != "pos" else "lac" lac = LAC.LAC(mode=lac_mode) if args.prob: env.fields = env.fields._replace(PHEAD=Field('prob')) while True: query = input() if not query: logging.info("quit!") return if len(query) > 200: logging.info("The length of the query should be less than 200!") continue start = datetime.datetime.now() lac_results = lac.run([query]) predicts = Corpus.load_lac_results(lac_results, env.fields) dataset = TextDataset(predicts, [env.WORD, env.FEAT]) # set the data loader dataset.loader = batchify(dataset, args.batch_size, use_multiprocess=False, sequential_sampler=True) pred_arcs, pred_rels, pred_probs = epoch_predict( env, args, model, dataset.loader) predicts.head = pred_arcs predicts.deprel = pred_rels if args.prob: predicts.prob = pred_probs predicts.print() total_time = datetime.datetime.now() - start logging.info( f"{total_time}s elapsed, " f"{len(dataset) / total_time.total_seconds():.2f} Sents/s, {total_time.total_seconds() / len(dataset) * 1000:.2f} ms/Sents" ) class DDParser(object): """ DDParser Args: use_cuda: BOOL, 是否使用gpu tree: BOOL, 是否返回树结构 prob: BOOL, 是否返回弧的概率 use_pos: BOOL, 是否返回词性标签(仅parse函数生效) model_files_path: str, 模型地址, 为None时下载默认模型 buckets: BOOL, 是否对样本分桶. 若buckets=True,则会对inputs按长度分桶,处理长度不均匀的输入速度更新快,default=False batch_size: INT, 批尺寸, 当buckets为False时,每个batch大小均等于batch_size; 当buckets为True时,每个batch的大小约为'batch_size / 当前桶句子的平均长度'。 当default=None时,分桶batch_size默认等于1000,不分桶默认等于50。 """ def __init__(self, use_cuda=False, tree=True, prob=False, use_pos=False, model_files_path=None, buckets=False, batch_size=None): if model_files_path is None: model_files_path = self._get_abs_path('./model_files/baidu') if not os.path.exists(model_files_path): try: utils.download_model_from_url(model_files_path) except Exception as e: logging.error("Failed to download model, please try again") logging.error(f"error: {e}") return args = [ f"--model_files={model_files_path}", f"--config_path={self._get_abs_path('config.ini')}" ] if use_cuda: args.append("--use_cuda") if tree: args.append("--tree") if prob: args.append("--prob") if batch_size: args.append(f"--batch_size={batch_size}") args = ArgConfig(args) # Don't instantiate the log handle args.log_path = None self.env = Environment(args) self.args = self.env.args fluid.enable_imperative(self.env.place) self.model = load(self.args.model_path) self.lac = None self.use_pos = use_pos # buckets=None if not buckets else defaults if not buckets: self.args.buckets = None if args.prob: self.env.fields = self.env.fields._replace(PHEAD=Field('prob')) if self.use_pos: self.env.fields = self.env.fields._replace(CPOS=Field('postag')) # set default batch size if batch_size is None and not buckets if batch_size is None and not buckets: self.args.batch_size = 50 def parse(self, inputs): """ 预测未切词的句子。 Args: x: list(str) | str, 未分词的句子,类型为str或list Returns: outputs: list, 依存分析结果 Example: >>> ddp = DDParser() >>> inputs = "百度是一家高科技公司" >>> ddp.parse(inputs) [{'word': ['百度', '是', '一家', '高科技', '公司'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB']}] >>> inputs = ["百度是一家高科技公司", "他送了一本书"] >>> ddp.parse(inputs) [{'word': ['百度', '是', '一家', '高科技', '公司'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB']}, {'word': ['他', '送', '了', '一本', '书'], 'head': [2, 0, 2, 5, 2], 'deprel': ['SBV', 'HED', 'MT', 'ATT', 'VOB']}] >>> ddp = DDParser(prob=True, use_pos=True) >>> inputs = "百度是一家高科技公司" >>> ddp.parse(inputs) [{'word': ['百度', '是', '一家', '高科技', '公司'], 'postag': ['ORG', 'v', 'm', 'n', 'n'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB'], 'prob': [1.0, 1.0, 1.0, 1.0, 1.0]}] """ if not self.lac: self.lac = LAC.LAC(mode='lac' if self.use_pos else "seg", use_cuda=self.args.use_cuda) if not inputs: return if isinstance(inputs, str): inputs = [inputs] if all([isinstance(i, str) and i for i in inputs]): lac_results = [] position = 0 while position < len(inputs): lac_results += self.lac.run(inputs[position:position + self.args.batch_size]) position += self.args.batch_size predicts = Corpus.load_lac_results(lac_results, self.env.fields) else: logging.warning("please check the foramt of your inputs.") return dataset = TextDataset(predicts, [self.env.WORD, self.env.FEAT], self.args.buckets) # set the data loader dataset.loader = batchify( dataset, self.args.batch_size, use_multiprocess=False, sequential_sampler=True if not self.args.buckets else False) pred_arcs, pred_rels, pred_probs = epoch_predict( self.env, self.args, self.model, dataset.loader) if self.args.buckets: indices = np.argsort( np.array([ i for bucket in dataset.buckets.values() for i in bucket ])) else: indices = range(len(pred_arcs)) predicts.head = [pred_arcs[i] for i in indices] predicts.deprel = [pred_rels[i] for i in indices] if self.args.prob: predicts.prob = [pred_probs[i] for i in indices] outputs = predicts.get_result() return outputs def parse_seg(self, inputs: list): """ 预测已切词的句子。 Args: x: list(list(str)), 已分词的句子,类型为list Returns: outputs: list, 依存分析结果 Example: >>> ddp = DDParser() >>> inputs = [['百度', '是', '一家', '高科技', '公司'], ['他', '送', '了', '一本', '书']] >>> ddp.parse_seg(inputs) [{'word': ['百度', '是', '一家', '高科技', '公司'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB']}, {'word': ['他', '送', '了', '一本', '书'], 'head': [2, 0, 2, 5, 2], 'deprel': ['SBV', 'HED', 'MT', 'ATT', 'VOB']}] >>> ddp = DDParser(prob=True) >>> inputs = [['百度', '是', '一家', '高科技', '公司']] >>> ddp.parse_seg(inputs) [{'word': ['百度', '是', '一家', '高科技', '公司'], 'head': [2, 0, 5, 5, 2], 'deprel': ['SBV', 'HED', 'ATT', 'ATT', 'VOB'], 'prob': [1.0, 1.0, 1.0, 1.0, 1.0]}] """ if not inputs: return if all([isinstance(i, list) and i for i in inputs]): predicts = Corpus.load_word_segments(inputs, self.env.fields) else: logging.warning("please check the foramt of your inputs.") return dataset = TextDataset(predicts, [self.env.WORD, self.env.FEAT], self.args.buckets) # set the data loader dataset.loader = batchify( dataset, self.args.batch_size, use_multiprocess=False, sequential_sampler=True if not self.args.buckets else False) pred_arcs, pred_rels, pred_probs = epoch_predict( self.env, self.args, self.model, dataset.loader) if self.args.buckets: indices = np.argsort( np.array([ i for bucket in dataset.buckets.values() for i in bucket ])) else: indices = range(len(pred_arcs)) predicts.head = [pred_arcs[i] for i in indices] predicts.deprel = [pred_rels[i] for i in indices] if self.args.prob: predicts.prob = [pred_probs[i] for i in indices] outputs = predicts.get_result() if outputs[0].get("postag", None): for output in outputs: del output["postag"] return outputs def _get_abs_path(self, path): return os.path.normpath( os.path.join(os.path.dirname(os.path.abspath(__file__)), path)) if __name__ == '__main__': logging.info("init arguments.") args = ArgConfig() logging.info("init environment.") env = Environment(args) logging.info(f"Override the default configs\n{env.args}") logging.info(f"{env.WORD}\n{env.FEAT}\n{env.ARC}\n{env.REL}") logging.info(f"Set the max num of threads to {env.args.threads}") logging.info( f"Set the seed for generating random numbers to {env.args.seed}") logging.info(f"Run the subcommand in mode {env.args.mode}") fluid.enable_imperative(env.place) mode = env.args.mode if mode == "train": train(env) elif mode == "evaluate": evaluate(env) elif mode == "predict": predict(env) elif mode == "predict_q": predict_query(env) else: logging.error(f"Unknown task mode: {mode}.")
the-stack_106_31848
#!usr/bin/python3 """ThreadMessage object representation. Documentation example: .. code-block:: javascript { "id": 67, "type": "message", "attributes": { "message": "I choose you!", "message_html": "I choose you!", "posted_at": "2019-04-03T09:33:05+03:00", "attachments": [], "participants": { "from": { "id": 38444, "type": "employer", "login": "jeweller", "first_name": "Oleg", "last_name": "V.", "avatar": { "small": { "url": "https://content.freelancehunt.com/profile/photo/50/jeweller.png", "width": 50, "height": 50 }, "large": { "url": "https://content.freelancehunt.com/profile/photo/225/jeweller.png", "width": 255, "height": 255 } }, "self": "https://api.freelancehunt.com/v2/employers/38444" }, "to": { "id": 5725, "type": "freelancer", "login": "alex_yar", "first_name": "Andrey", "last_name": "Y.", "avatar": { "small": { "url": "https://content.freelancehunt.com/profile/photo/50/alex_yar.png", "width": 50, "height": 50 }, "large": { "url": "https://content.freelancehunt.com/profile/photo/225/alex_yar.png", "width": 255, "height": 255 } }, "self": "https://api.freelancehunt.com/v2/freelancers/5725" } } } } """ from datetime import datetime from typing import Type, Optional from ..core import FreelancehuntObject from ..utils.errors import BadRequestError from .user import Profile __all__ = ('ThreadMessage',) class ThreadMessage(FreelancehuntObject): """Provide operations with ThreadMessage. :param int id: thread unique identifier :param str message: message text :param str message_html: message text in html :param datetime posted_at: the message post date :param dict attachments: message's attachments :param Profile sender: message creator information :param Profile recipient: message recipient information """ def __init__(self, id: int, posted_at: str, message: str, message_html: str, sender: Profile, recipient: Profile, attachments: Optional[list] = None, thread: Optional[dict] = None, **kwargs): """Create object to provide operations with ThreadMessage. :param int id: thread unique identifier :param str message: message text :param str message_html: message text in html :param str posted_at: string representation of the message post date :param dict attachments: message's attachments :param Profile sender: message creator information :param Profile recipient: message recipient information """ super().__init__(**kwargs) self.id = id self.posted_at = datetime.fromisoformat(posted_at) self.message = message self.message_html = message_html self.attachments = attachments # TODO: Implement attachments parsing # Framework objects self.sender = sender self.recipient = recipient # Will be parsed to objects self._thread = thread # Custom attributes self._create_msg_url = f"/threads/{self._thread.get('id')}" if self._thread else None def answer(self, message_html: str) -> Type["ThreadMessage"]: """Answer to this message in current thread. :param str message_html: message text to send :raises ValueError: Thread not linked to this message! :raises BadRequestError: Message not sended! :return: new message object """ if not self._create_msg_url: raise ValueError('Thread not linked to this message!') message = self._post(self._create_msg_url, {"message_html": message_html}) if not message: raise BadRequestError( f"Message not send to '{self._create_msg_url}' with text '{message_html}'!" ) message.update({"thread": self._thread}) return ThreadMessage.de_json(**message) @classmethod def de_json(cls, **data) -> Type["ThreadMessage"]: """Parse json data from API responce and make object of this class. :return: object of this class. :rtype: `ThreadMessage` """ if not data: return None participants = data["participants"] sender = participants.get("from") if sender: data["sender"] = Profile.de_json(**sender) recipient = participants.get("to") if recipient: data["recipient"] = Profile.de_json(**recipient) meta = data.get("meta") if meta: data["thread"] = meta["thread"] return cls(**data)
the-stack_106_31851
# -*- coding: utf-8 -*- """ This module defines images used by image reader, image properties are set by user or read from image header. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from abc import ABCMeta, abstractmethod import nibabel as nib import numpy as np import tensorflow as tf from six import with_metaclass, string_types import niftynet.io.misc_io as misc from niftynet.io.misc_io import resolve_file_name from niftynet.utilities.niftynet_global_config import NiftyNetGlobalConfig class Loadable(with_metaclass(ABCMeta, object)): """ interface of loadable data """ @abstractmethod def get_data(self): """ loads a numpy array from the image object if the array has less than 5 dimensions it extends the array to 5d (corresponding to 3 spatial dimensions, temporal dim, modalities) ndims > 5 not currently supported """ raise NotImplementedError class DataFromFile(Loadable): """ Data from file should have a valid file path (are files on hard drive) and a name. """ def __init__(self, file_path, name='loadable_data'): self._name = None self._file_path = None # assigning using property setters self.file_path = file_path self.name = name self._dtype = None @property def dtype(self): """ data type property of the input images. :return: a tuple of input image data types ``len(self.dtype) == len(self.file_path)`` """ if not self._dtype: try: self._dtype = tuple( misc.load_image(_file).header.get_data_dtype() for _file in self.file_path) except (IOError, TypeError, AttributeError): tf.logging.warning('could not decide image data type') self._dtype = (np.dtype(np.float32),) * len(self.file_path) return self._dtype @property def file_path(self): """ A tuple of valid image filenames, this property always returns a tuple, length of the tuple is one for single image, length of the tuple is larger than one for single image from multiple files. :return: a tuple of file paths """ return self._file_path @file_path.setter def file_path(self, path_array): if isinstance(path_array, string_types): path_array = (path_array,) home_folder = NiftyNetGlobalConfig().get_niftynet_home_folder() try: self._file_path = tuple(resolve_file_name(path, ('.', home_folder)) for path in path_array) except (TypeError, AssertionError, AttributeError, IOError): tf.logging.fatal( "unrecognised file path format, should be a valid filename," "or a sequence of filenames %s", path_array) raise IOError @property def name(self): """ A tuple of image names, this property always returns a tuple, length of the tuple is one for single image, length of the tuple is larger than one for single image from multiple files. :return: a tuple of image name tags """ return self._name @name.setter def name(self, name_array): try: if len(self.file_path) == len(name_array): self._name = name_array return except (TypeError, AssertionError): pass self._name = (name_array,) def get_data(self): raise NotImplementedError class SpatialImage2D(DataFromFile): """ 2D images, axcodes specifications are ignored when loading. (Resampling to new pixdims is currently not supported). """ def __init__(self, file_path, name, interp_order, output_pixdim, output_axcodes): DataFromFile.__init__(self, file_path=file_path, name=name) self._original_affine = None self._original_pixdim = None self._original_shape = None self._interp_order = None self._output_pixdim = None self._output_axcodes = None # assigning with property setters self.interp_order = interp_order self.output_pixdim = output_pixdim self.output_axcodes = output_axcodes self._load_header() @property def shape(self): """ This function read image shape info from the headers The lengths in the fifth dim of multiple images are summed as a multi-mod representation. The fourth dim corresponding to different time sequences is ignored. :return: a tuple of integers as image shape """ if self._original_shape is None: try: self._original_shape = tuple( misc.load_image(_file).header['dim'][1:6] for _file in self.file_path) except (IOError, KeyError, AttributeError, IndexError): tf.logging.fatal( 'unknown image shape from header %s', self.file_path) raise ValueError try: non_modality_shapes = set( [tuple(shape[:4].tolist()) for shape in self._original_shape]) assert len(non_modality_shapes) == 1 except (TypeError, IndexError, AssertionError): tf.logging.fatal("could not combining multimodal images: " "shapes not consistent %s -- %s", self.file_path, self._original_shape) raise ValueError n_modalities = \ np.sum([int(shape[4]) for shape in self._original_shape]) self._original_shape = non_modality_shapes.pop() + (n_modalities,) return self._original_shape def _load_header(self): """ read original header for pixdim and affine info :return: """ self._original_pixdim = [] self._original_affine = [] for file_i in self.file_path: _obj = misc.load_image(file_i) try: misc.correct_image_if_necessary(_obj) self._original_pixdim.append(_obj.header.get_zooms()[:3]) self._original_affine.append(_obj.affine) except (TypeError, IndexError, AttributeError): tf.logging.fatal('could not read header from %s', file_i) raise ValueError # self._original_pixdim = tuple(self._original_pixdim) # self._original_affine = tuple(self._original_affine) @property def original_pixdim(self): """ pixdim info from the image header. :return: a tuple of pixdims, with each element as pixdims of an image file """ try: assert self._original_pixdim[0] is not None except (IndexError, AssertionError): self._load_header() return self._original_pixdim @property def original_affine(self): """ affine info from the image header. :return: a tuple of affine, with each element as an affine matrix of an image file """ try: assert self._original_affine[0] is not None except (IndexError, AssertionError): self._load_header() return self._original_affine @property def original_axcodes(self): """ axcodes info from the image header more info: http://nipy.org/nibabel/image_orientation.html :return: a tuple of axcodes, with each element as axcodes of an image file """ try: return tuple(nib.aff2axcodes(affine) for affine in self.original_affine) except IndexError: tf.logging.fatal('unknown affine in header %s: %s', self.file_path, self.original_affine) raise @property def interp_order(self): """ interpolation order specified by user. :return: a tuple of integers, with each element as an interpolation order of an image file """ return self._interp_order @interp_order.setter def interp_order(self, interp_order): try: if len(interp_order) == len(self.file_path): self._interp_order = tuple(int(order) for order in interp_order) return except (TypeError, ValueError): pass try: interp_order = int(interp_order) self._interp_order = (int(interp_order),) * len(self.file_path) except (TypeError, ValueError): tf.logging.fatal( "output interp_order should be an integer or" "a sequence of integers that matches len(self.file_path)") raise ValueError @property def output_pixdim(self): """ output pixdim info specified by user set to None for using the original pixdim in image header otherwise get_data() transforms image array according to this value. :return: a tuple of pixdims, with each element as pixdims of an image file """ tf.logging.warning("resampling 2D images not implemented") return (None,) * len(self.file_path) @output_pixdim.setter def output_pixdim(self, output_pixdim): try: if len(output_pixdim) == len(self.file_path): self._output_pixdim = [] for i, _ in enumerate(self.file_path): if output_pixdim[i] is None: self._output_pixdim.append(None) else: self._output_pixdim.append( tuple(float(pixdim) for pixdim in output_pixdim[i])) # self._output_pixdim = tuple(self._output_pixdim) return except (TypeError, ValueError): pass try: if output_pixdim is not None: output_pixdim = tuple(float(pixdim) for pixdim in output_pixdim) self._output_pixdim = (output_pixdim,) * len(self.file_path) except (TypeError, ValueError): tf.logging.fatal( 'could not set output pixdim ' '%s for %s', output_pixdim, self.file_path) raise @property def output_axcodes(self): """ output axcodes info specified by user set to None for using the original axcodes in image header, otherwise get_data() change axes of the image array according to this value. :return: a tuple of pixdims, with each element as pixdims of an image file """ tf.logging.warning("reorienting 2D images not implemented") return (None,) * len(self.file_path) @output_axcodes.setter def output_axcodes(self, output_axcodes): try: if len(output_axcodes) == len(self.file_path): self._output_axcodes = [] for i, _ in enumerate(self.file_path): if output_axcodes[i] is None: self._output_axcodes.append(None) else: self._output_axcodes.append( tuple(output_axcodes[i])) # self._output_axcodes = tuple(self._output_axcodes) return except (TypeError, ValueError): pass try: if output_axcodes is None: output_axcodes = (None,) else: output_axcodes = (output_axcodes,) self._output_axcodes = output_axcodes * len(self.file_path) except (TypeError, ValueError): tf.logging.fatal( 'could not set output pixdim ' '%s for %s', output_axcodes, self.file_path) raise def get_data(self): if len(self._file_path) > 1: # 2D image from multiple files raise NotImplementedError image_obj = misc.load_image(self.file_path[0]) image_data = image_obj.get_data() image_data = misc.expand_to_5d(image_data) return image_data class SpatialImage3D(SpatialImage2D): """ 3D image from a single, supports resampling and reorientation (3D image from a set of 2D slices is currently not supported). """ def __init__(self, file_path, name, interp_order, output_pixdim, output_axcodes): SpatialImage2D.__init__(self, file_path=file_path, name=name, interp_order=interp_order, output_pixdim=output_pixdim, output_axcodes=output_axcodes) self._load_header() # pylint: disable=no-member @SpatialImage2D.output_pixdim.getter def output_pixdim(self): if self._output_pixdim is None: self.output_pixdim = None return self._output_pixdim # pylint: disable=no-member @SpatialImage2D.output_axcodes.getter def output_axcodes(self): if self._output_axcodes is None: self.output_axcodes = None return self._output_axcodes @property def shape(self): image_shape = super(SpatialImage3D, self).shape spatial_shape = image_shape[:3] rest_shape = image_shape[3:] if self.original_affine[0] is not None and self.output_axcodes[0]: src_ornt = nib.orientations.axcodes2ornt(self.original_axcodes[0]) dst_ornt = nib.orientations.axcodes2ornt(self.output_axcodes[0]) if np.any(np.isnan(dst_ornt)) or np.any(np.isnan(src_ornt)): tf.logging.fatal( 'unknown output axcodes %s for %s', self.output_axcodes, self.original_axcodes) raise ValueError transf = nib.orientations.ornt_transform(src_ornt, dst_ornt) spatial_transf = transf[:, 0].astype(np.int).tolist() new_shape = [0, 0, 0] for i, k in enumerate(spatial_transf): new_shape[k] = spatial_shape[i] spatial_shape = tuple(new_shape) if self.original_pixdim[0] and self.output_pixdim[0]: try: zoom_ratio = np.divide(self.original_pixdim[0][:3], self.output_pixdim[0][:3]) spatial_shape = tuple(int(round(ii * jj)) for ii, jj in zip(spatial_shape, zoom_ratio)) except (ValueError, IndexError): tf.logging.fatal( 'unknown pixdim %s: %s', self.original_pixdim, self.output_pixdim) raise ValueError return spatial_shape + rest_shape def get_data(self): if len(self._file_path) > 1: # 3D image from multiple 2d files mod_list = [] for mod in range(len(self.file_path)): mod_2d = SpatialImage2D( file_path=(self.file_path[mod],), name=(self.name[mod],), interp_order=(self.interp_order[mod],), output_pixdim=(self.output_pixdim[mod],), output_axcodes=(self.output_axcodes[mod],)) mod_data_5d = mod_2d.get_data() mod_list.append(mod_data_5d) try: image_data = np.concatenate(mod_list, axis=4) except ValueError: tf.logging.fatal( "multi-modal data shapes not consistent -- trying to " "concat {}.".format([mod.shape for mod in mod_list])) raise return image_data # assuming len(self._file_path) == 1 image_obj = misc.load_image(self.file_path[0]) image_data = image_obj.get_data() image_data = misc.expand_to_5d(image_data) if self.original_axcodes[0] and self.output_axcodes[0]: image_data = misc.do_reorientation( image_data, self.original_axcodes[0], self.output_axcodes[0]) if self.original_pixdim[0] and self.output_pixdim[0]: # verbose: warning when interpolate_order>1 for integers image_data = misc.do_resampling(image_data, self.original_pixdim[0], self.output_pixdim[0], self.interp_order[0]) return image_data class SpatialImage4D(SpatialImage3D): """ 4D image from a set of 3D volumes, supports resampling and reorientation. The 3D volumes are concatenated in the fifth dim (modality dim) (4D image from a single file is currently not supported) """ def __init__(self, file_path, name, interp_order, output_pixdim, output_axcodes): SpatialImage3D.__init__(self, file_path=file_path, name=name, interp_order=interp_order, output_pixdim=output_pixdim, output_axcodes=output_axcodes) def get_data(self): if len(self.file_path) == 1: # 4D image from a single file raise NotImplementedError( "loading 4D image (time sequence) is not supported") # assuming len(self._file_path) > 1 mod_list = [] for mod in range(len(self.file_path)): mod_3d = SpatialImage3D(file_path=(self.file_path[mod],), name=(self.name[mod],), interp_order=(self.interp_order[mod],), output_pixdim=(self.output_pixdim[mod],), output_axcodes=(self.output_axcodes[mod],)) mod_data_5d = mod_3d.get_data() mod_list.append(mod_data_5d) try: image_data = np.concatenate(mod_list, axis=4) except ValueError: tf.logging.fatal( "multi-modal data shapes not consistent -- trying to " "concatenate {}.".format([mod.shape for mod in mod_list])) raise return image_data class SpatialImage5D(SpatialImage3D): """ 5D image from a single file, resampling and reorientation are implemented as operations on each 3D slice individually. (5D image from a set of 4D files is currently not supported) """ def __init__(self, file_path, name, interp_order, output_pixdim, output_axcodes): SpatialImage3D.__init__(self, file_path=file_path, name=name, interp_order=interp_order, output_pixdim=output_pixdim, output_axcodes=output_axcodes) def _load_single_5d(self, idx=0): if len(self._file_path) > 1: # 3D image from multiple 2d files raise NotImplementedError # assuming len(self._file_path) == 1 image_obj = misc.load_image(self.file_path[idx]) image_data = image_obj.get_data() image_data = misc.expand_to_5d(image_data) assert image_data.shape[3] == 1, "time sequences not supported" if self.original_axcodes[idx] and self.output_axcodes[idx]: output_image = [] for t_pt in range(image_data.shape[3]): mod_list = [] for mod in range(image_data.shape[4]): spatial_slice = image_data[..., t_pt:t_pt + 1, mod:mod + 1] spatial_slice = misc.do_reorientation( spatial_slice, self.original_axcodes[idx], self.output_axcodes[idx]) mod_list.append(spatial_slice) output_image.append(np.concatenate(mod_list, axis=4)) image_data = np.concatenate(output_image, axis=3) if self.original_pixdim[idx] and self.output_pixdim[idx]: assert len(self._original_pixdim[idx]) == \ len(self.output_pixdim[idx]), \ "wrong pixdim format original {} output {}".format( self._original_pixdim[idx], self.output_pixdim[idx]) # verbose: warning when interpolate_order>1 for integers output_image = [] for t_pt in range(image_data.shape[3]): mod_list = [] for mod in range(image_data.shape[4]): spatial_slice = image_data[..., t_pt:t_pt + 1, mod:mod + 1] spatial_slice = misc.do_resampling( spatial_slice, self.original_pixdim[idx], self.output_pixdim[idx], self.interp_order[idx]) mod_list.append(spatial_slice) output_image.append(np.concatenate(mod_list, axis=4)) image_data = np.concatenate(output_image, axis=3) return image_data def get_data(self): if len(self._file_path) == 1: return self._load_single_5d() else: raise NotImplementedError('concatenating 5D images not supported.') # image_data = [] # for idx in range(len(self._file_path)): # image_data.append(self._load_single_5d(idx)) # image_data = np.concatenate(image_data, axis=4) # return image_data class ImageFactory(object): """ Create image instance according to number of dimensions specified in image headers. """ INSTANCE_DICT = {2: SpatialImage2D, 3: SpatialImage3D, 4: SpatialImage4D, 5: SpatialImage5D} @classmethod def create_instance(cls, file_path, **kwargs): """ Read image headers and create image instance. :param file_path: a file path or a sequence of file paths :param kwargs: output properties for transforming the image data array into a desired format :return: an image instance """ if file_path is None: tf.logging.fatal('No file_path provided, ' 'please check input sources in config file') raise ValueError image_type = None try: if os.path.isfile(file_path): ndims = misc.infer_ndims_from_file(file_path) image_type = cls.INSTANCE_DICT.get(ndims, None) except TypeError: pass if image_type is None: try: home_folder = NiftyNetGlobalConfig().get_niftynet_home_folder() file_path = [resolve_file_name(path, ('.', home_folder)) for path in file_path] ndims = misc.infer_ndims_from_file(file_path[0]) ndims = ndims + (1 if len(file_path) > 1 else 0) image_type = cls.INSTANCE_DICT.get(ndims, None) except AssertionError: tf.logging.fatal('Could not load file: %s', file_path) raise IOError if image_type is None: tf.logging.fatal('Not supported image type: %s', file_path) raise NotImplementedError return image_type(file_path, **kwargs)
the-stack_106_31852
import argparse import collections import torch import numpy as np import data_loader.data_loaders as module_data import model.loss as module_loss import model.metric as module_metric import model.model as module_arch from parse_config import ConfigParser from trainer import Trainer from utils import prepare_device # fix random seeds for reproducibility SEED = 123 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(SEED) def main(config): logger = config.get_logger('train') # setup data_loader instances data_loader = config.init_obj('data_loader', module_data) valid_data_loader = data_loader.split_validation() # build models architecture, then print to console model = config.init_obj('arch', module_arch) logger.info(model) # model load state dict state_dict = torch.load(config.resume) model.load_state_dict(state_dict) # prepare for (multi-device) GPU training device, device_ids = prepare_device(config['n_gpu']) model = model.to(device) if len(device_ids) > 1: model = torch.nn.DataParallel(model, device_ids=device_ids) # get function handles of loss and metrics criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler # freeze some layers for transfer learning # for name, param in model.named_parameters(): # if not ('output' in name): # param.requires_grad = False # add the requires_grad parameter to optimizer trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer) trainer = Trainer(model, criterion, metrics, optimizer, config=config, device=device, data_loader=data_loader, valid_data_loader=None, lr_scheduler=lr_scheduler) trainer.train() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)') # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [ CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'), CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size') ] config = ConfigParser.from_args(args, options) main(config)
the-stack_106_31853
"""Downloading data from the M4 competition """ import os import requests def download(datapath, url, name, split=None): os.makedirs(datapath, exist_ok=True) if split is not None: namesplit = split + "/" + name else: namesplit = name url = url.format(namesplit) file_path = os.path.join(datapath, name) + ".csv" if os.path.exists(file_path): print(name+" already exists") return print('Downloading ' + url) r = requests.get(url, stream=True) with open(file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=16 * 1024 ** 2): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() return if __name__ == "__main__": data_frequencies = ['Yearly', 'Quarterly', 'Monthly', 'Weekly', 'Daily', 'Hourly'] datapath = "./dataset/" url = "https://github.com/Mcompetitions/M4-methods/raw/master/Dataset/{}.csv" download(datapath, url, 'M4-info') for freq in data_frequencies: for split in ['train', 'test']: download(datapath+split, url, '{}-{}'.format(freq, split), split.capitalize())
the-stack_106_31856
# -*- coding: utf-8 -*- # Copyright (C) 2020-2021 by SCICO Developers # All rights reserved. BSD 3-clause License. # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. r"""Extensions of numpy ndarray class. .. testsetup:: >>> import scico.numpy as snp >>> from scico.blockarray import BlockArray >>> import numpy as np >>> import jax.numpy The class :class:`.BlockArray` is a `jagged array <https://en.wikipedia.org/wiki/Jagged_array>`_ that aims to mimic the :class:`numpy.ndarray` interface where appropriate. A :class:`.BlockArray` object consists of a tuple of `DeviceArray` objects that share their memory buffers with non-overlapping, contiguous regions of a common one-dimensional `DeviceArray`. A :class:`.BlockArray` contains the following size attributes: * `shape`: A tuple of tuples containing component dimensions. * `size`: The sum of the size of each component block; this is the length of the underlying one-dimensional `DeviceArray`. * `num_blocks`: The number of components (blocks) that comprise the :class:`.BlockArray`. Motivating Example ------------------ Consider a two dimensional array :math:`\mb{x} \in \mathbb{R}^{n \times m}`. We compute the discrete differences of :math:`\mb{x}` in the horizontal and vertical directions, generating two new arrays: :math:`\mb{x}_h \in \mathbb{R}^{n \times (m-1)}` and :math:`\mb{x}_v \in \mathbb{R}^{(n-1) \times m}`. As these arrays are of different sizes, we cannot combine them into a single `ndarray`. Instead, we might vectorize each array and concatenate the resulting vectors, leading to :math:`\mb{\bar{x}} \in \mathbb{R}^{n(m-1) + m(n-1)}`, which can be stored as a one-dimensional `ndarray`. Unfortunately, this makes it hard to access the individual components :math:`\mb{x}_h` and :math:`\mb{x}_v`. Instead, we can form a :class:`.BlockArray`: :math:`\mb{x}_B = [\mb{x}_h, \mb{x}_v]` :: >>> n = 32 >>> m = 16 >>> x_h = np.random.randn(n, m-1) >>> x_v = np.random.randn(n-1, m) # Form the blockarray >>> x_B = BlockArray.array([x_h, x_v]) # The blockarray shape is a tuple of tuples >>> x_B.shape ((32, 15), (31, 16)) # Each block component can be easily accessed >>> x_B[0].shape (32, 15) >>> x_B[1].shape (31, 16) Constructing a BlockArray ------------------------- Construct from a tuple of arrays (either `ndarray` or `DeviceArray`) #################################################################### .. doctest:: >>> from scico.blockarray import BlockArray >>> import numpy as np >>> x0 = np.random.randn(32, 32) >>> x1 = np.random.randn(16) >>> X = BlockArray.array((x0, x1)) >>> X.shape ((32, 32), (16,)) >>> X.size 1040 >>> X.num_blocks 2 | While :func:`.BlockArray.array` will accept either `ndarray` or `DeviceArray` as input, the resulting :class:`.BlockArray` will be backed by a `DeviceArray` memory buffer. | **Note**: constructing a :class:`.BlockArray` always involves a copy to a new `DeviceArray` memory buffer. | **Note**: by default, the resulting :class:`.BlockArray` cast to single precision and will have dtype `float32` or `complex64`. Construct from a single vector and tuple of shapes ################################################## :: >>> x_flat = np.random.randn(1040) >>> shape_tuple = ((32, 32), (16,)) >>> X = BlockArray.array_from_flattened(x_flat, shape_tuple=shape_tuple) >>> X.shape ((32, 32), (16,)) Operating on a BlockArray ------------------------- Indexed Updating ---------------- BlockArrays support the JAX DeviceArray `indexed update syntax <https://jax.readthedocs.io/en/latest/jax.ops.html#indexed-update-operators>`_ The index must be of the form [ibk] or [ibk,idx], where `ibk` is the index of the block to be updated, and `idx` is a general index of the elements to be updated in that block. In particular, `ibk` cannot be a `slice`. The general index `idx` can be omitted, in which case an entire block is updated. ============================== ============================================== Alternate syntax Equivalent in-place expression ============================== ============================================== ``x.at[ibk, idx].set(y)`` ``x[ibk, idx] = y`` ``x.at[ibk, idx].add(y)`` ``x[ibk, idx] += y`` ``x.at[ibk, idx].multiply(y)`` ``x[ibk, idx] *= y`` ``x.at[ibk, idx].divide(y)`` ``x[ibk, idx] /= y`` ``x.at[ibk, idx].power(y)`` ``x[ibk, idx] **= y`` ``x.at[ibk, idx].min(y)`` ``x[ibk, idx] = np.minimum(x[idx], y)`` ``x.at[ibk, idx].max(y)`` ``x[ibk, idx] = np.maximum(x[idx], y)`` ============================== ============================================== Arithmetic and Broadcasting ########################### Suppose :math:`\mb{x}` is a BlockArray with shape :math:`((n, n), (m,))`. :: >>> x1 = np.random.randn(4, 4) >>> x2 = np.random.randn(5) >>> x = BlockArray.array( (x1, x2) ) >>> x.shape ((4, 4), (5,)) >>> x.num_blocks 2 >>> x.size # 4*4 + 5 21 Illustrated for the operation ``+``, but equally valid for operators ``+, -, *, /, //, **, <, <=, >, >=, ==`` Operations with BlockArrays with same number of blocks ****************************************************** Let :math:`\mb{y}` be a BlockArray with the same number of blocks as :math:`\mb{x}`. .. math:: \mb{x} + \mb{y} = \begin{bmatrix} \mb{x}[0] + \mb{y}[0] \\ \mb{x}[1] + \mb{y}[1] \\ \end{bmatrix} This operation depends on pair of blocks from :math:`\mb{x}` and :math:`\mb{y}` being broadcastable against each other. Operations with a scalar ************************ The scalar is added to each element of the :class:`.BlockArray`: .. math:: \mb{x} + 1 = \begin{bmatrix} \mb{x}[0] + 1 \\ \mb{x}[1] + 1\\ \end{bmatrix} :: >>> y = x + 1 >>> np.testing.assert_allclose(y[0], x[0] + 1) >>> np.testing.assert_allclose(y[1], x[1] + 1) Operations with a 1D `ndarray` of size equal to `num_blocks` ************************************************************ The *i*\th scalar is added to the *i*\th block of the :class:`.BlockArray`: .. math:: \mb{x} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \mb{x}[0] + 1 \\ \mb{x}[1] + 2\\ \end{bmatrix} :: >>> y = x + np.array([1, 2]) >>> np.testing.assert_allclose(y[0], x[0] + 1) >>> np.testing.assert_allclose(y[1], x[1] + 2) Operations with an ndarray of `size` equal to :class:`.BlockArray` size *********************************************************************** We first cast the `ndarray` to a BlockArray with same shape as :math:`\mb{x}`, then apply the operation on the resulting BlockArrays. With ``y.size = x.size``, we have: .. math:: \mb{x} + \mb{y} = \begin{bmatrix} \mb{x}[0] + \mb{y}[0] \\ \mb{x}[1] + \mb{y}[1]\\ \end{bmatrix} Equivalently, the BlockArray is first flattened, then added to the flattened `ndarray`, and the result is reformed into a BlockArray with the same shape as :math:`\mb{x}` MatMul ###### Between two BlockArrays *********************** The matmul is computed between each block of the two BlockArrays. The BlockArrays must have the same number of blocks, and each pair of blocks must be broadcastable. .. math:: \mb{x} @ \mb{y} = \begin{bmatrix} \mb{x}[0] @ \mb{y}[0] \\ \mb{x}[1] @ \mb{y}[1]\\ \end{bmatrix} Between BlockArray and Ndarray/DeviceArray ****************************************** This operation is not defined. Between BlockArray and :class:`.LinearOperator` *********************************************** .. todo:: Improve this The :class:`.Operator` and :class:`.LinearOperator` classes are designed to work on :class:`.BlockArray`. The shapes must conform: :: x = BlockArray.array((np.random.randn(32, 32), np.random.randn(16))) A # LinearOperator with A.shape[1] == x.shape A @ x NumPy ufuncs ############ `NumPy universal functions (ufuncs) <https://numpy.org/doc/stable/reference/ufuncs.html>`_ are functions that operate on an `ndarray` on an element-by-element fashion and support array broadcasting. Examples of ufuncs are ``abs``, ``sign``, ``conj``, and ``exp``. The JAX library implements most NumPy ufuncs in the :mod:`jax.numpy` module. However, as JAX does not support subclassing of `DeviceArray`, the JAX ufuncs cannot be used on :class:`.BlockArray`. As a workaround, we have wrapped several JAX ufuncs for use on :class:`.BlockArray`; these are located in the :mod:`scico.numpy` module. Reductions ########## Reductions are functions that take an array-like as an input and return an array of lower dimension. Examples include ``mean``, ``sum``, ``norm``. BlockArray reductions are located in the :mod:`scico.numpy` module :class:`.BlockArray` tries to mirror `ndarray` reduction semantics where possible, but cannot provide a one-to-one match as the block components may be of different size. Consider the example BlockArray .. math:: \mb{x} = \begin{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix}. We have .. doctest:: >>> import scico.numpy as snp >>> x = BlockArray.array((np.ones((2,2)), 2*np.ones((2)))) >>> x.shape ((2, 2), (2,)) >>> x.size 6 >>> x.num_blocks 2 If no axis is specified, the reduction is applied to the flattened array: .. doctest:: >>> snp.sum(x, axis=None).item() 8.0 Reducing along the 0-th axis crushes the `BlockArray` down into a single `DeviceArray` and requires all blocks to have the same shape otherwise, an error is raised. .. doctest:: >>> snp.sum(x, axis=0) Traceback (most recent call last): ValueError: Evaluating sum of BlockArray along axis=0 requires all blocks to be same shape; got ((2, 2), (2,)) >>> y = BlockArray.array((np.ones((2,2)), 2*np.ones((2, 2)))) >>> snp.sum(y, axis=0) DeviceArray([[3., 3.], [3., 3.]], dtype=float32) Reducing along axis :math:`n` is equivalent to reducing each component along axis :math:`n-1`: .. math:: \text{sum}(x, axis=1) = \begin{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \\ \begin{bmatrix} 4 \\ \end{bmatrix} \end{bmatrix} If a component does not have axis :math:`n-1`, the reduction is not applied to that component. In this example, ``x[1].ndim == 1``, so no reduction is applied to block ``x[1]``. .. math:: \text{sum}(x, axis=2) = \begin{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \\ \begin{bmatrix} 2 \\ 2 \end{bmatrix} \end{bmatrix} Code version .. doctest:: >>> snp.sum(x, axis=1) # doctest: +SKIP BlockArray([[2, 2], [4,] ]) >>> snp.sum(x, axis=2) # doctest: +SKIP BlockArray([ [2, 2], [2,] ]) """ from __future__ import annotations from functools import wraps from typing import Iterator, List, Optional, Tuple, Union import numpy as np import jax import jax.numpy as jnp from jax import core from jax.interpreters import xla from jax.interpreters.xla import DeviceArray from jax.tree_util import register_pytree_node, tree_flatten from jaxlib.xla_extension import Buffer from scico.typing import Axes, BlockShape, DType, JaxArray, Shape from scico.util import is_nested _arraylikes = (Buffer, DeviceArray, np.ndarray) __author__ = """\n""".join(["Luke Pfister <[email protected]>", "Brendt Wohlberg <[email protected]>"]) def atleast_1d(*arys): """Convert inputs to arrays with at least one dimension. BlockArrays are returned unmodified. LAX-backend implementation of :func:`atleast_1d`. The JAX version of this function will return a copy rather than a view of the input. *Original docstring below.* Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Args: arys1, arys2, ... : One or more input arrays (array_like). Returns: An array, or list of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. """ if len(arys) == 1: arr = arys[0] return arr if isinstance(arr, BlockArray) else jnp.atleast_1d(arr) else: out = [] for arr in arys: if isinstance(arr, BlockArray): out.append(arr) else: out.append(jnp.atleast_1d(arr)) return out def reshape( a: Union[JaxArray, BlockArray], newshape: Union[Shape, BlockShape] ) -> Union[JaxArray, BlockArray]: """Gives a new shape to an array without changing its data. Args: a : Array to be reshaped. newshape: The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions. If a tuple of tuple of ints, a :class:`.BlockArray` is returned. Returns: The reshaped array. Unlike :func:`numpy.reshape`, a copy is always returned. """ if is_nested(newshape): # x is a blockarray return BlockArray.array_from_flattened(a, newshape) else: return jnp.reshape(a, newshape) def block_sizes(shape: Union[Shape, BlockShape]) -> Axes: r"""Computes the 'sizes' of (possibly nested) block shapes. This function computes ``block_sizes(z.shape) == (_.size for _ in z)`` Args: shape: A shape tuple; possibly containing nested tuples. Examples: .. doctest:: >>> import scico.numpy as snp >>> x = BlockArray.ones( ( (4, 4), (2,))) >>> x.size 18 >>> y = snp.ones((3, 3)) >>> y.size 9 >>> z = BlockArray.array([x, y]) >>> block_sizes(z.shape) (18, 9) >>> zz = BlockArray.array([z, z]) >>> block_sizes(zz.shape) (27, 27) """ if isinstance(shape, BlockArray): raise TypeError( "Expected a `shape` (possibly nested tuple of ints); got :class:`.BlockArray`." ) out = [] if is_nested(shape): # shape is nested -> at least one element came from a blockarray for y in shape: if is_nested(y): # recursively calculate the block size until we arrive at # a tuple (shape of a non-block array) while is_nested(y): y = block_sizes(y) out.append(np.sum(y)) # adjacent block sizes are added together else: # this is a tuple; size given by product of elements out.append(np.prod(y)) return tuple(out) else: # shape is a non-nested tuple; return the product return np.prod(shape) def _flatten_blockarrays(inp, *args, **kwargs): """Flattens any blockarrays present in inp, args, or kwargs""" def _flatten_if_blockarray(inp): if isinstance(inp, BlockArray): return inp._data else: return inp inp_ = _flatten_if_blockarray(inp) args_ = (_flatten_if_blockarray(_) for _ in args) kwargs_ = {key: _flatten_if_blockarray(val) for key, val in kwargs.items()} return inp_, args_, kwargs_ def _block_array_ufunc_wrapper(func): """Wraps a "ufunc" to allow for joint operation on `DeviceArray` and `BlockArray`""" @wraps(func) def wrapper(inp, *args, **kwargs): all_args = (inp,) + args + tuple(kwargs.items()) if any([isinstance(_, BlockArray) for _ in all_args]): # If 'inp' is a BlockArray, call func on inp._data # Then return a BlockArray of the same shape as inp inp_, args_, kwargs_ = _flatten_blockarrays(inp, *args, **kwargs) flat_out = func(inp_, *args_, **kwargs_) return BlockArray.array_from_flattened(flat_out, inp.shape) else: # Otherwise call the function normally return func(inp, *args, **kwargs) if not hasattr(func, "__doc__") or func.__doc__ is None: return wrapper else: wrapper.__doc__ = ( f":func:`{func.__name__}` wrapped to operate on :class:`BlockArray`" + "\n\n" + func.__doc__ ) return wrapper def _block_array_reduction_wrapper(func): """Wraps a reduction (eg sum, norm) to allow for joint operation on `DeviceArray` and `BlockArray`""" @wraps(func) def wrapper(inp, *args, axis=None, **kwargs): all_args = (inp,) + args + tuple(kwargs.items()) if any([isinstance(_, BlockArray) for _ in all_args]): if axis is None: # Treat as a single long vector inp_, args_, kwargs_ = _flatten_blockarrays(inp, *args, **kwargs) return func(inp_, *args_, **kwargs_) elif type(axis) == tuple: raise Exception( f"""Evaluating {func.__name__} on a BlockArray with a tuple argument to axis is not currently supported""" ) else: if axis == 0: # reduction along block axis # reduction along axis=0 only makes sense if all blocks are the same shape # so we can convert to a standard DeviceArray of shape (inp.num_blocks, ...) # and reduce along axis = 0 if all([bk_shape == inp.shape[0] for bk_shape in inp.shape]): view_shape = (inp.num_blocks,) + inp.shape[0] return func(inp._data.reshape(view_shape), *args, axis=0, **kwargs) else: raise ValueError( f"Evaluating {func.__name__} of BlockArray along axis=0 requires " f"all blocks to be same shape; got {inp.shape}" ) else: # Reduce each block individually along axis-1 out = [] for bk in inp: if isinstance(bk, BlockArray): # This block is itself a blockarray, so call this wrapped reduction # on axis-1 tmp = _block_array_reduction_wrapper(func)( bk, *args, axis=axis - 1, **kwargs ) else: if axis - 1 >= bk.ndim: # Trying to reduce along a dim that doesn't exist for this block, # so just return the block. # ie broadcast to shape (..., 1) and reduce along axis=-1 tmp = bk else: tmp = func(bk, *args, axis=axis - 1, **kwargs) out.append(atleast_1d(tmp)) return BlockArray.array(out) elif axis is None: # 'axis' might not be a valid kwarg (eg dot, vdot), so don't pass it return func(inp, *args, **kwargs) else: return func(inp, *args, axis=axis, **kwargs) if not hasattr(func, "__doc__") or func.__doc__ is None: return wrapper else: wrapper.__doc__ = ( f":func:`{func.__name__}` wrapped to operate on :class:`BlockArray`" + "\n\n" + func.__doc__ ) return wrapper def _block_array_matmul_wrapper(func): @wraps(func) def wrapper(self, other): if isinstance(self, BlockArray): if isinstance(other, BlockArray): # Both blockarrays, work block by block return BlockArray.array([func(x, y) for x, y in zip(self, other)]) else: raise TypeError( f"Operation {func.__name__} not implemented between {type(self)} and {type(other)}" ) else: return func(self, other) if not hasattr(func, "__doc__") or func.__doc__ is None: return wrapper else: wrapper.__doc__ = ( f":func:`{func.__name__}` wrapped to operate on :class:`BlockArray`" + "\n\n" + func.__doc__ ) return wrapper def _block_array_binary_op_wrapper(func): """Returns a decorator that performs type and shape checking for :class:`.BlockArray` arithmetic """ @wraps(func) def wrapper(self, other): if isinstance(other, BlockArray): if other.shape == self.shape: # Same shape blocks, can operate on flattened arrays return BlockArray.array_from_flattened(func(self._data, other._data), self.shape) elif other.num_blocks == self.num_blocks: # Will work as long as the shapes are broadcastable return BlockArray.array([func(x, y) for x, y in zip(self, other)]) else: raise ValueError( f"operation not valid on operands with shapes {self.shape} {other.shape}" ) elif any([isinstance(other, _) for _ in _arraylikes]): if other.size == 1: # Same as operating on a scalar return BlockArray.array_from_flattened(func(self._data, other), self.shape) elif other.size == self.size: # A little fast and loose, treat the block array as a length self.size vector return BlockArray.array_from_flattened(func(self._data, other), self.shape) elif other.size == self.num_blocks: return BlockArray.array([func(blk, other_) for blk, other_ in zip(self, other)]) else: raise ValueError( f"operation not valid on operands with shapes {self.shape} {other.shape}" ) elif jnp.isscalar(other) or isinstance(other, core.Tracer): return BlockArray.array_from_flattened(func(self._data, other), self.shape) else: raise TypeError( f"Operation {func.__name__} not implemented between {type(self)} and {type(other)}" ) if not hasattr(func, "__doc__") or func.__doc__ is None: return wrapper else: wrapper.__doc__ = ( f":func:`{func.__name__}` wrapped to operate on :class:`BlockArray`" + "\n\n" + func.__doc__ ) return wrapper class _AbstractBlockArray(core.ShapedArray): """Abstract BlockArray class for JAX tracing. See https://jax.readthedocs.io/en/latest/notebooks/How_JAX_primitives_work.html """ array_abstraction_level = 0 # Same as jax.core.ConcreteArray def __init__(self, shapes, dtype): sizes = block_sizes(shapes) size = np.sum(sizes) super(_AbstractBlockArray, self).__init__((size,), dtype) #: Abstract data value self._data_aval: core.ShapedArray = core.ShapedArray((size,), dtype) #: Array dtype self.dtype: DType = dtype #: Shape of each block self.shapes: BlockShape = shapes #: Size of each block self.sizes: Shape = sizes #: Array specifying boundaries of components as indices in base array self.bndpos: np.ndarray = np.r_[0, np.cumsum(sizes)] @core.aval_property def data(self): return bk_data_p.bind(self) # Register BlockArray._data as a primitive bk_data_p = core.Primitive("bk_data") @bk_data_p.def_impl def _bk_data_impl(mat): return mat._data # The Jax class is heavily inspired by SparseArray/AbstractSparseArray here: # https://github.com/google/jax/blob/7724322d1c08c13008815bfb52759a29c2a6823b/tests/custom_object_test.py class BlockArray: """A tuple of :class:`jax.interpreters.xla.DeviceArray` objects. A tuple of `DeviceArray` objects that all share their memory buffers with non-overlapping, contiguous regions of a common one-dimensional `DeviceArray`. It can be used as the common one-dimensional array via the :func:`BlockArray.ravel` method, or individual component arrays can be accessed individually. """ # Ensure we use BlockArray.__radd__,__rmul__, etc for binary operations of the form # op(np.ndarray, BlockArray) # See https://docs.scipy.org/doc/numpy-1.10.1/user/c-info.beyond-basics.html#ndarray.__array_priority__ __array_priority__ = 1 def __init__(self, aval: _AbstractBlockArray, data: JaxArray): """BlockArray init method. Args: aval: `Abstract value`_ associated to this array (shape+dtype+weak_type) data: The underlying contiguous, flattened `DeviceArray`. .. _Abstract value: https://jax.readthedocs.io/en/latest/notebooks/How_JAX_primitives_work.html """ self._aval = aval self._data = data def __repr__(self): return "scico.blockarray.BlockArray: \n" + self._data.__repr__() def __getitem__(self, idx: Union[int, Ellipsis]) -> JaxArray: if isinstance(idx, slice): raise TypeError(f"Slicing not supported on block index") elif idx == Ellipsis: return reshape(self._data, self.shape) elif idx < 0: idx = self.num_blocks + idx return reshape(self._data[self.bndpos[idx] : self.bndpos[idx + 1]], self.shape[idx]) @_block_array_matmul_wrapper def __matmul__(self, other: Union[np.ndarray, BlockArray, JaxArray]) -> JaxArray: return self @ other @_block_array_matmul_wrapper def __rmatmul__(self, other: Union[np.ndarray, BlockArray, JaxArray]) -> JaxArray: return other @ self @_block_array_binary_op_wrapper def __sub__(a, b): return a - b @_block_array_binary_op_wrapper def __rsub__(a, b): return b - a @_block_array_binary_op_wrapper def __mul__(a, b): return a * b @_block_array_binary_op_wrapper def __rmul__(a, b): return a * b @_block_array_binary_op_wrapper def __add__(a, b): return a + b @_block_array_binary_op_wrapper def __radd__(a, b): return a + b @_block_array_binary_op_wrapper def __truediv__(a, b): return a / b @_block_array_binary_op_wrapper def __rtruediv__(a, b): return b / a @_block_array_binary_op_wrapper def __floordiv__(a, b): return a // b @_block_array_binary_op_wrapper def __rfloordiv__(a, b): return b // a @_block_array_binary_op_wrapper def __pow__(a, b): return a ** b @_block_array_binary_op_wrapper def __rpow__(a, b): return b ** a @_block_array_binary_op_wrapper def __gt__(a, b): return a > b @_block_array_binary_op_wrapper def __ge__(a, b): return a >= b @_block_array_binary_op_wrapper def __lt__(a, b): return a < b @_block_array_binary_op_wrapper def __le__(a, b): return a <= b @_block_array_binary_op_wrapper def __eq__(a, b): return a == b @_block_array_binary_op_wrapper def __ne__(a, b): return a != b def __iter__(self) -> Iterator[int]: for i in range(self.num_blocks): yield self[i] @property def blocks(self) -> Iterator[int]: """Returns an iterator yielding component blocks.""" return self.__iter__() @property def bndpos(self) -> np.ndarray: """Array specifying boundaries of components as indices in base array.""" return self._aval.bndpos @property def dtype(self) -> DType: """Array dtype""" return self._data.dtype @property def device_buffer(self) -> Buffer: """The :class:`jaxlib.xla_extension.Buffer` that backs the underlying data array""" return self._data.device_buffer @property def size(self) -> int: """Total number of elements in the array.""" return self._aval.size @property def num_blocks(self) -> int: """Number of :class:`.BlockArray` components.""" return len(self.shape) @property def ndim(self) -> Shape: """Tuple of component ndims.""" return tuple(len(c) for c in self.shape) @property def shape(self) -> BlockShape: """Tuple of component shapes.""" return self._aval.shapes @property def split(self) -> Tuple[JaxArray, ...]: """Tuple of component arrays.""" return tuple(self[k] for k in range(self.num_blocks)) def conj(self) -> BlockArray: """Returns a :class:`.BlockArray` with complex-conjugated elements.""" # Much faster than BlockArray.array([_.conj() for _ in self.blocks]) return BlockArray.array_from_flattened(self.ravel().conj(), self.shape) @property def real(self) -> BlockArray: """Returns a :class:`.BlockArray` with the real part of this array.""" return BlockArray.array_from_flattened(self.ravel().real, self.shape) @property def imag(self) -> BlockArray: """Returns a :class:`.BlockArray` with the imaginary part of this array.""" return BlockArray.array_from_flattened(self.ravel().imag, self.shape) @classmethod def array( cls, alst: List[Union[np.ndarray, JaxArray]], dtype: Optional[np.dtype] = None ) -> BlockArray: """Construct a :class:`.BlockArray` from a list or tuple of existing array-like. Args: alst : Initializers for array components. Can be :class:`numpy.ndarray` or :class:`jax.interpreters.xla.DeviceArray` dtype : Data type of array. If none, dtype is derived from dtype of initializers Returns: :class:`.BlockArray` initialized from `alst` tuple """ if isinstance(alst, (tuple, list)) is False: raise TypeError("Input to `array` must be a list or tuple of existing arrays") if dtype is None: present_types = jax.tree_flatten(jax.tree_map(lambda x: x.dtype, alst))[0] dtype = np.find_common_type(present_types, []) # alst can be a list/tuple of arrays, or a list/tuple containing list/tuples of arrays # consider alst to be a tree where leaves are arrays (possibly abstract arrays) # use tree_map to find the shape of each leaf # `shapes` will be a tuple of ints and tuples containing ints (possibly nested further) # ensure any scalar leaves are converted to (1,) arrays def shape_atleast_1d(x): return x.shape if x.shape != () else (1,) shapes = tuple( jax.tree_map(shape_atleast_1d, alst, is_leaf=lambda x: not isinstance(x, (list, tuple))) ) _aval = _AbstractBlockArray(shapes, dtype) data_ravel = jnp.hstack(jax.tree_map(lambda x: x.ravel(), jax.tree_flatten(alst)[0])) return cls(_aval, data_ravel) @classmethod def array_from_flattened( cls, data_ravel: Union[np.ndarray, JaxArray], shape_tuple: BlockShape ) -> BlockArray: """Construct a :class:`.BlockArray` from a flattened array and tuple of shapes. Args: data_ravel: Flattened data array shape_tuple: Tuple of tuples containing desired block shapes. Returns: :class:`.BlockArray` initialized from `data_ravel` and `shape_tuple` """ if not isinstance(data_ravel, DeviceArray): data_ravel = jax.device_put(data_ravel) shape_tuple_size = np.sum(block_sizes(shape_tuple)) if shape_tuple_size != data_ravel.size: raise ValueError( f"""The specified shape_tuple is incompatible with provided data_ravel shape_tuple = {shape_tuple} shape_tuple_size = {shape_tuple_size} len(data_ravel) = {len(data_ravel)} """ ) _aval = _AbstractBlockArray(shape_tuple, dtype=data_ravel.dtype) return cls(_aval, data_ravel) @classmethod def ones(cls, shape_tuple: BlockShape, dtype: DType = np.float32) -> BlockArray: """ Return a new :class:`.BlockArray` with given block shapes and type, filled with ones. Args: shape_tuple: Tuple of shapes for component blocks dtype: Desired data-type for the :class:`.BlockArray`. Default is `numpy.float32`. Returns: :class:`.BlockArray` of ones with the given component shapes and dtype """ _aval = _AbstractBlockArray(shape_tuple, dtype=dtype) data_ravel = jnp.ones(_aval.size, dtype=dtype) return cls(_aval, data_ravel) @classmethod def zeros(cls, shape_tuple: BlockShape, dtype: DType = np.float32) -> BlockArray: """ Return a new :class:`.BlockArray` with given block shapes and type, filled with zeros. Args: shape_tuple: Tuple of shapes for component blocks dtype: Desired data-type for the :class:`.BlockArray`. Default is `numpy.float32`. Returns: :class:`.BlockArray` of zeros with the given component shapes and dtype """ _aval = _AbstractBlockArray(shape_tuple, dtype=dtype) data_ravel = jnp.zeros(_aval.size, dtype=dtype) return cls(_aval, data_ravel) @classmethod def empty(cls, shape_tuple: BlockShape, dtype: DType = np.float32) -> BlockArray: """ Return a new :class:`.BlockArray` with given block shapes and type, filled with zeros. Note: like :func:`jax.numpy.empty`, this does not return an uninitalized array. Args: shape_tuple: Tuple of shapes for component blocks dtype: Desired data-type for the :class:`.BlockArray`. Default is `numpy.float32`. Returns: :class:`.BlockArray` of zeros with the given component shapes and dtype. """ _aval = _AbstractBlockArray(shape_tuple, dtype=dtype) data_ravel = jnp.empty(_aval.size, dtype=dtype) return cls(_aval, data_ravel) @classmethod def full( cls, shape_tuple: BlockShape, fill_value: Union[float, complex, int], dtype: DType = np.float32, ) -> BlockArray: """ Return a new :class:`.BlockArray` with given block shapes and type, filled with `fill_value`. Args: shape_tuple: Tuple of shapes for component blocks. fill_value: Fill value dtype: Desired data-type for the BlockArray. The default, None, means `np.array(fill_value).dtype`. Returns: :class:`.BlockArray` with the given component shapes and dtype and all entries equal to `fill_value`. """ if dtype is None: dtype = np.asarray(fill_value).dtype _aval = _AbstractBlockArray(shape_tuple, dtype=dtype) data_ravel = jnp.full(_aval.size, fill_value=fill_value, dtype=dtype) return cls(_aval, data_ravel) def copy(self) -> BlockArray: """Returns a copy of this :class:`.BlockArray`. This method is not implemented for BlockArray. See Also: :meth:`.to_numpy`: Converts a :class:`.BlockArray` into a flattened NumPy array. """ # jax DeviceArray copies return a NumPy ndarray. This blockarray class must be backed # by a DeviceArray, so cannot be converted to a NumPy-backed BlockArray. The BlockArray # .to_numpy() method returns a flattened ndarray. # # This method may be implemented in the future if jax DeviceArray .copy() is modified to # returns another DeviceArray. raise NotImplementedError def to_numpy(self) -> np.ndarray: """Returns a :class:`numpy.ndarray` containing the flattened form of this :class:`.BlockArray`.""" if isinstance(self._data, DeviceArray): host_arr = jax.device_get(self._data.copy()) else: host_arr = self._data.copy() return host_arr def blockidx(self, idx: int) -> jax._src.ops.scatter._Indexable: """Returns :class:`jax.ops.index` for a given component block. Args: idx: Desired block index Returns: :class:`jax.ops.index` pointing to desired block """ return jax.ops.index[self.bndpos[idx] : self.bndpos[idx + 1]] def ravel(self) -> JaxArray: """Return a copy of ``self._data`` as a contiguous, flattened `DeviceArray`. Note that a copy, rather than a view, of the underlying array is returned. This is consistent with :func:`jax.numpy.ravel`. Returns: Copy of underlying flattened array """ return self._data[:] def flatten(self) -> JaxArray: """Return a copy of ``self._data`` as a contiguous, flattened `DeviceArray`. Note that a copy, rather than a view, of the underlying array is returned. This is consistent with :func:`jax.numpy.ravel`. Returns: Copy of underlying flattened array """ return self._data[:] def sum(self, axis=None, keepdims=False): """Return the sum of the blockarray elements over the given axis. Refer to :func:`scico.numpy.sum` for full documentation. """ # Can't just call scico.numpy.sum due to pesky circular import... return _block_array_reduction_wrapper(jnp.sum)(self, axis=axis, keepdims=keepdims) ## Register BlockArray as a Jax type # Our BlockArray is just a single large vector with some extra sugar class _ConcreteBlockArray(_AbstractBlockArray): pass def _block_array_result_handler(device, _aval): def build_block_array(data_buf): data = xla.DeviceArray(_aval._data_aval, device, None, data_buf) return BlockArray(_aval, data) return build_block_array def _block_array_shape_handler(a): return (xla.xc.Shape.array_shape(a._data_aval.dtype, a._data_aval.shape),) def _block_array_device_put_handler(a, device): return (xla.xb.get_device_backend(device).buffer_from_pyval(a._data, device),) core.pytype_aval_mappings[BlockArray] = lambda x: x._aval core.raise_to_shaped_mappings[_AbstractBlockArray] = lambda _aval, _: _aval xla.pytype_aval_mappings[BlockArray] = lambda x: x._aval xla.canonicalize_dtype_handlers[BlockArray] = lambda x: x xla.device_put_handlers[BlockArray] = _block_array_device_put_handler xla.xla_result_handlers[_AbstractBlockArray] = _block_array_result_handler xla.xla_shape_handlers[_AbstractBlockArray] = _block_array_shape_handler ## Handlers to use jax.device_put on BlockArray def _block_array_tree_flatten(block_arr): """Flattens a :class:`.BlockArray` pytree. See :func:`jax.tree_util.tree_flatten`. Args: block_arr (:class:`.BlockArray`): :class:`.BlockArray` to flatten Returns: children (tuple): :class:`.BlockArray` leaves aux_data (tuple): Extra metadata used to reconstruct BlockArray. """ data_children, data_aux_data = tree_flatten(block_arr._data) return (data_children, block_arr._aval) def _block_array_tree_unflatten(aux_data, children): """Constructs a :class:`.BlockArray` from a flattened pytree. See jax.tree_utils.tree_unflatten Args: aux_data (tuple): Metadata needed to construct block array children (tuple): Contains block array elements Returns: block_arr: Constructed :class:`.BlockArray` """ return BlockArray(aux_data, children[0]) register_pytree_node(BlockArray, _block_array_tree_flatten, _block_array_tree_unflatten) # Syntactic sugar for the .at operations # see https://github.com/google/jax/blob/56e9f7cb92e3a099adaaca161cc14153f024047c/jax/_src/numpy/lax_numpy.py#L5900 class _BlockArrayIndexUpdateHelper: """The helper class for the `at` property to call indexed update functions. The `at` property is syntactic sugar for calling the indexed update functions as is done in jax. The index must be of the form [ibk] or [ibk,idx], where `ibk` is the index of the block to be updated, and `idx` is a general index of the elements to be updated in that block. In particular: - ``x = x.at[ibk].set(y)`` is an equivalent of ``x[ibk] = y``. - ``x = x.at[ibk,idx].set(y)`` is an equivalent of ``x[ibk,idx] = y``. The methods ``set, add, multiply, divide, power, maximum, minimum`` are supported. """ __slots__ = ("_block_array",) def __init__(self, block_array): self._block_array = block_array def __getitem__(self, index): if isinstance(index, tuple): if isinstance(index[0], slice): raise TypeError(f"Slicing not supported along block index") return _BlockArrayIndexUpdateRef(self._block_array, index) def __repr__(self): print(f"_BlockArrayIndexUpdateHelper({repr(self._block_array)})") class _BlockArrayIndexUpdateRef: """Helper object to call indexed update functions for an (advanced) index. This object references a source block array and a specific indexer, with the first integer specifying the block being updated, and rest being the indexer into the array of that block. Methods on this object return copies of the source block array that have been modified at the positions specified by the indexer in the given block. """ __slots__ = ("_block_array", "bk_index", "index") def __init__(self, block_array, index): self._block_array = block_array if isinstance(index, int): self.bk_index = index self.index = Ellipsis elif index == Ellipsis: self.bk_index = Ellipsis self.index = Ellipsis else: self.bk_index = index[0] self.index = index[1:] def __repr__(self): return f"_BlockArrayIndexUpdateRef({repr(self._block_array)}, {repr(self.bk_index)}, {repr(self.index)})" def _index_wrapper(self, func_str, values): bk_index = self.bk_index index = self.index arr_tuple = self._block_array.split if bk_index == Ellipsis: # TODO does this result in multiple copies? One per sub-blockarray, # then one to combine into a nested BA? retval = BlockArray.array([getattr(_.at[index], func_str)(values) for _ in arr_tuple]) else: retval = BlockArray.array( arr_tuple[:bk_index] + (getattr(arr_tuple[bk_index].at[index], func_str)(values),) + arr_tuple[bk_index + 1 :] ) return retval def set(self, values): """Pure equivalent of ``x[idx] = y``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] = y``. See :mod:`jax.ops` for details. """ return self._index_wrapper("set", values) def add(self, values): """Pure equivalent of ``x[idx] += y``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] += y``. See :mod:`jax.ops` for details. """ return self._index_wrapper("add", values) def multiply(self, values): """Pure equivalent of ``x[idx] *= y``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] *= y``. See :mod:`jax.ops` for details. """ return self._index_wrapper("multiply", values) def divide(self, values): """Pure equivalent of ``x[idx] /= y``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] /= y``. See :mod:`jax.ops` for details. """ return self._index_wrapper("divide", values) def power(self, values): """Pure equivalent of ``x[idx] **= y``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] **= y``. See :mod:`jax.ops` for details. """ return self._index_wrapper("power", values) def min(self, values): """Pure equivalent of ``x[idx] = minimum(x[idx], y)``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] = minimum(x[idx], y)``. See :mod:`jax.ops` for details. """ return self._index_wrapper("min", values) def max(self, values): """Pure equivalent of ``x[idx] = maximum(x[idx], y)``. Returns the value of ``x`` that would result from the NumPy-style :mod:indexed assignment <numpy.doc.indexing>` ``x[idx] = maximum(x[idx], y)``. See :mod:`jax.ops` for details. """ return self._index_wrapper("max", values) setattr(BlockArray, "at", property(_BlockArrayIndexUpdateHelper))
the-stack_106_31857
# -*- coding: utf-8 -*- from django.db import models, migrations def add_cache(apps, schema_editor): Article = apps.get_model("news", "Article") for article in Article.objects.all(): version_count = article.version_set.count() if version_count == 0: article.delete() continue article._latest_date = \ article.version_set.latest('date').date article._sum_versions = version_count article.save() class Migration(migrations.Migration): dependencies = [ ('news', '0016_auto_20160407_1442'), ] operations = [ migrations.RunPython(add_cache), ]
the-stack_106_31858
#name: KNN #description: Imputes (numerical) missing values using the kNN algorithm #reference: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm #language: python #tags: demo, hide-suggestions #sample: demog.csv #input: dataframe data [Input data table with NA elements] #input: column_list imputeColumns {type:numerical} [Impute data table columns] #input: column_list dataColumns [Input data table columns] #input: int neighbours = 5 [Number of Nearest Neighbours used] #output: dataframe data_out {action:replace(data)} [Output data table without NA elements] import numpy as np import pandas as pd from fancyimpute import KNN # Convert categories into numbers for col in data.columns: if (data[col].dtype == 'object'): data[col]= data[col].astype('category') data[col] = data[col].cat.codes # Convert to numpy array columns = data.columns data = data.as_matrix() data_out = KNN(k=neighbours).fit_transform(data) # Convert back to Pandas DataFrame data_out = pd.DataFrame(data_out, columns=columns) data_out = data_out[imputeColumns]
the-stack_106_31859
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os from functools import lru_cache from typing import Optional, Set import jinja2 from docutils import nodes from docutils.nodes import Element from docutils.parsers.rst import Directive, directives from docutils.statemachine import StringList from provider_yaml_utils import ( # pylint: disable=no-name-in-module get_provider_yaml_paths, load_package_data, ) from sphinx.util import nested_parse_with_titles from sphinx.util.docutils import switch_source_input CMD_OPERATORS_AND_HOOKS = "operators-and-hooks" CMD_TRANSFERS = 'transfers' """ Directives for rendering tables with operators. To test the template rendering process, you can also run this script as a standalone program. PYTHONPATH=$PWD/../ python exts/operators_and_hooks_ref.py --help """ DEFAULT_HEADER_SEPARATOR = "=" CURRENT_DIR = os.path.dirname(__file__) ROOT_DIR = os.path.abspath(os.path.join(CURRENT_DIR, os.pardir, os.pardir)) DOCS_DIR = os.path.join(ROOT_DIR, 'docs') @lru_cache(maxsize=None) def _get_jinja_env(): loader = jinja2.FileSystemLoader(CURRENT_DIR, followlinks=True) env = jinja2.Environment(loader=loader, undefined=jinja2.StrictUndefined) return env def _render_template(template_name, **kwargs): return _get_jinja_env().get_template(template_name).render(**kwargs) def _docs_path(filepath: str): if not filepath.startswith("/docs/"): raise Exception(f"The path must starts with '/docs/'. Current value: {filepath}") if not filepath.endswith(".rst"): raise Exception(f"The path must ends with '.rst'. Current value: {filepath}") len_rst = len(".rst") filepath = filepath[:-len_rst] filepath = os.path.join(ROOT_DIR, filepath.lstrip('/')) return os.path.relpath(filepath, DOCS_DIR) def _prepare_resource_index(package_data, resource_type): return { integration["integration-name"]: {**integration, 'package-name': provider['package-name']} for provider in package_data for integration in provider.get(resource_type, []) } def _prepare_operators_data(tags: Optional[Set[str]]): package_data = load_package_data() all_integrations = _prepare_resource_index(package_data, "integrations") if tags is None: to_display_integration = all_integrations else: to_display_integration = [ integration for integration in all_integrations.values() if tags.intersection(integration["tags"]) ] all_operators_by_integration = _prepare_resource_index(package_data, "operators") all_hooks_by_integration = _prepare_resource_index(package_data, "hooks") all_sensors_by_integration = _prepare_resource_index(package_data, "hooks") results = [] for integration in to_display_integration: item = { "integration": integration, } operators = all_operators_by_integration.get(integration['integration-name']) sensors = all_sensors_by_integration.get(integration['integration-name']) hooks = all_hooks_by_integration.get(integration['integration-name']) if 'how-to-guide' in item['integration']: item['integration']['how-to-guide'] = [_docs_path(d) for d in item['integration']['how-to-guide']] if operators: item['operators'] = operators if sensors: item['hooks'] = sensors if hooks: item['hooks'] = hooks if operators or sensors or hooks: results.append(item) return sorted(results, key=lambda d: d["integration"]["integration-name"].lower()) def _render_operator_content(*, tags: Optional[Set[str]], header_separator: str = DEFAULT_HEADER_SEPARATOR): tabular_data = _prepare_operators_data(tags) return _render_template( "operators_and_hooks_ref.rst.jinja2", items=tabular_data, header_separator=header_separator ) def _prepare_transfer_data(tags: Optional[Set[str]]): package_data = load_package_data() all_operators_by_integration = _prepare_resource_index(package_data, "integrations") # Add edge case for name in ["SQL", "Local"]: all_operators_by_integration[name] = {"integration-name": name} all_transfers = [ { **transfer, 'package-name': provider['package-name'], 'source-integration': all_operators_by_integration[transfer['source-integration-name']], 'target-integration': all_operators_by_integration[transfer['target-integration-name']], } for provider in package_data for transfer in provider.get("transfers", []) ] if tags is None: to_display_transfers = all_transfers else: to_display_transfers = [ transfer for transfer in all_transfers if tags.intersection(transfer['source-integration'].get('tags', set())) or tags.intersection(transfer['target-integration'].get('tags', set())) ] for transfer in to_display_transfers: if 'how-to-guide' not in transfer: continue transfer['how-to-guide'] = _docs_path(transfer['how-to-guide']) return to_display_transfers def _render_transfer_content(*, tags: Optional[Set[str]], header_separator: str = DEFAULT_HEADER_SEPARATOR): tabular_data = _prepare_transfer_data(tags) return _render_template( "operators_and_hooks_ref-transfers.rst.jinja2", items=tabular_data, header_separator=header_separator ) class BaseJinjaReferenceDirective(Directive): """The base directive for OperatorsHooksReferenceDirective and TransfersReferenceDirective""" optional_arguments = 1 option_spec = {"tags": directives.unchanged, 'header-separator': directives.unchanged_required} def run(self): tags_arg = self.options.get("tags") tags = {t.strip() for t in tags_arg.split(",")} if tags_arg else None header_separator = self.options.get('header-separator') new_content = self.render_content(tags=tags, header_separator=header_separator) with switch_source_input(self.state, self.content): new_content = StringList(new_content.splitlines(), source='') node = nodes.section() # type: Element # necessary so that the child nodes get the right source/line set node.document = self.state.document nested_parse_with_titles(self.state, new_content, node) # record all filenames as dependencies -- this will at least # partially make automatic invalidation possible for filepath in get_provider_yaml_paths(): self.state.document.settings.record_dependencies.add(filepath) return node.children def render_content(self, *, tags: Optional[Set[str]], header_separator: str = DEFAULT_HEADER_SEPARATOR): """Return content in RST format""" raise NotImplementedError("Tou need to override render_content method.") class OperatorsHooksReferenceDirective(BaseJinjaReferenceDirective): """Generates a list of operators, sensors, hooks""" def render_content(self, *, tags: Optional[Set[str]], header_separator: str = DEFAULT_HEADER_SEPARATOR): return _render_operator_content( tags=tags, header_separator=header_separator, ) class TransfersReferenceDirective(BaseJinjaReferenceDirective): """Generate a list of transfer operators""" def render_content(self, *, tags: Optional[Set[str]], header_separator: str = DEFAULT_HEADER_SEPARATOR): return _render_transfer_content( tags=tags, header_separator=header_separator, ) def setup(app): """Setup plugin""" app.add_directive('operators-hooks-ref', OperatorsHooksReferenceDirective) app.add_directive('transfers-ref', TransfersReferenceDirective) return {'parallel_read_safe': True, 'parallel_write_safe': True} if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Render tables with integrations.') parser.add_argument( '--tag', dest='tags', action="append", help='If passed, displays integrations that have a matching tag.', ) parser.add_argument('--header-separator', default=DEFAULT_HEADER_SEPARATOR) subparsers = parser.add_subparsers(help='sub-command help', metavar="COMMAND") subparsers.required = True parser_a = subparsers.add_parser(CMD_OPERATORS_AND_HOOKS) parser_a.set_defaults(cmd=CMD_OPERATORS_AND_HOOKS) parser_b = subparsers.add_parser(CMD_TRANSFERS) parser_b.set_defaults(cmd=CMD_TRANSFERS) args = parser.parse_args() print(args) if args.cmd == CMD_OPERATORS_AND_HOOKS: content = _render_operator_content( tags=set(args.tags) if args.tags else None, header_separator=args.header_separator ) else: content = _render_transfer_content( tags=set(args.tags) if args.tags else None, header_separator=args.header_separator ) print(content)
the-stack_106_31860
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/1/26 10:58 Desc: 金融期权数据 http://www.sse.com.cn/assortment/options/price/ """ import pandas as pd import requests from akshare.option.cons import ( SH_OPTION_URL_50, SH_OPTION_PAYLOAD, SH_OPTION_PAYLOAD_OTHER, SH_OPTION_URL_KING_50, SH_OPTION_URL_300, SH_OPTION_URL_KING_300, CFFEX_OPTION_URL_300, ) def option_finance_underlying(symbol: str = "50ETF") -> pd.DataFrame: """ 期权标的当日行情, 目前只有 华夏上证50ETF, 华泰柏瑞沪深300ETF 两个产品 http://www.sse.com.cn/assortment/options/price/ :param symbol: 50ETF 或 300ETF :type symbol: str :return: 期权标的当日行情 :rtype: pandas.DataFrame """ if symbol == "50ETF": res = requests.get(SH_OPTION_URL_50, params=SH_OPTION_PAYLOAD) data_json = res.json() raw_data = pd.DataFrame(data_json["list"]) raw_data.at[0, 0] = "510050" raw_data.at[0, 8] = pd.to_datetime( str(data_json["date"]) + str(data_json["time"]), format="%Y%m%d%H%M%S" ) raw_data.columns = [ "代码", "名称", "当前价", "涨跌", "涨跌幅", "振幅", "成交量(手)", "成交额(万元)", "更新日期", ] return raw_data else: res = requests.get(SH_OPTION_URL_300, params=SH_OPTION_PAYLOAD) data_json = res.json() raw_data = pd.DataFrame(data_json["list"]) raw_data.at[0, 0] = "510300" raw_data.at[0, 8] = pd.to_datetime( str(data_json["date"]) + str(data_json["time"]), format="%Y%m%d%H%M%S" ) raw_data.columns = [ "代码", "名称", "当前价", "涨跌", "涨跌幅", "振幅", "成交量(手)", "成交额(万元)", "更新日期", ] return raw_data def option_finance_board(symbol: str = "嘉实沪深300ETF期权", end_month: str = "2103") -> pd.DataFrame: """ 期权的当日具体的行情数据, 主要为三个: 华夏上证50ETF期权, 华泰柏瑞沪深300ETF期权, 嘉实沪深300ETF期权, 沪深300股指期权 http://www.sse.com.cn/assortment/options/price/ http://www.szse.cn/market/product/option/index.html http://www.cffex.com.cn/hs300gzqq/ :param symbol: 华夏上证50ETF期权 or 华泰柏瑞沪深300ETF期权 or 嘉实沪深300ETF期权 or 沪深300股指期权 :type symbol: str :param end_month: 2003; 2020年3月到期的期权 :type end_month: str :return: 当日行情 :rtype: pandas.DataFrame """ end_month = end_month[-2:] if symbol == "华夏上证50ETF期权": res = requests.get( SH_OPTION_URL_KING_50.format(end_month), params=SH_OPTION_PAYLOAD_OTHER ) data_json = res.json() raw_data = pd.DataFrame(data_json["list"]) raw_data.index = [str(data_json["date"]) + str(data_json["time"])] * data_json[ "total" ] raw_data.columns = ["合约交易代码", "当前价", "涨跌幅", "前结价", "行权价"] raw_data["数量"] = [data_json["total"]] * data_json["total"] return raw_data elif symbol == "华泰柏瑞沪深300ETF期权": res = requests.get( SH_OPTION_URL_KING_300.format(end_month), params=SH_OPTION_PAYLOAD_OTHER ) data_json = res.json() raw_data = pd.DataFrame(data_json["list"]) raw_data.index = [str(data_json["date"]) + str(data_json["time"])] * data_json[ "total" ] raw_data.columns = ["合约交易代码", "当前价", "涨跌幅", "前结价", "行权价"] raw_data["数量"] = [data_json["total"]] * data_json["total"] return raw_data elif symbol == "嘉实沪深300ETF期权": url = "http://www.szse.cn/api/report/ShowReport/data" params = { "SHOWTYPE": "JSON", "CATALOGID": "ysplbrb", "TABKEY": "tab1", "PAGENO": "1", "random": "0.10642298535346595", } r = requests.get(url, params=params) data_json = r.json() page_num = data_json[0]["metadata"]["pagecount"] big_df = pd.DataFrame() for page in range(1, page_num+1): params = { "SHOWTYPE": "JSON", "CATALOGID": "ysplbrb", "TABKEY": "tab1", "PAGENO": page, "random": "0.10642298535346595", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json[0]["data"]) big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "合约编码", "合约简称", "标的名称", "类型", "行权价", "合约单位", "期权行权日", "行权交收日", ] big_df["期权行权日"] = pd.to_datetime(big_df["期权行权日"]) big_df["end_month"] = big_df["期权行权日"].dt.month.astype(str).str.zfill(2) big_df = big_df[big_df["end_month"] == end_month] del big_df["end_month"] return big_df elif symbol == "沪深300股指期权": raw_df = pd.read_table(CFFEX_OPTION_URL_300, sep=",") raw_df["end_month"] = ( raw_df["instrument"].str.split("-", expand=True).iloc[:, 0].str.slice(4,) ) raw_df = raw_df[raw_df["end_month"] == end_month] del raw_df["end_month"] return raw_df if __name__ == "__main__": option_finance_underlying_df = option_finance_underlying(symbol="300ETF") print(option_finance_underlying_df) option_finance_board_df = option_finance_board(symbol="华夏上证50ETF期权", end_month="2003") print(option_finance_board_df) option_finance_board_df = option_finance_board(symbol="嘉实沪深300ETF期权", end_month="2103") print(option_finance_board_df) option_finance_board_df = option_finance_board(symbol="华泰柏瑞沪深300ETF期权", end_month="2103") print(option_finance_board_df) option_finance_board_df = option_finance_board(symbol="沪深300股指期权", end_month="2003") print(option_finance_board_df)
the-stack_106_31861
""" CircuitPython Touch Input Example - Blinking an LED using a capacitive touch pad. This example is meant for boards that have capacitive touch pads, and no simple way to wire up a button. If there is a simple way to wire up a button, or a button built into the board, use the standard Digital Input template and example. Update TOUCH_PAD_PIN to the pin for the capacitive touch pad you wish you use. For example: If are using a BLM Badge and plan to use the first pad, change TOUCH_PAD_PIN to CAP1. """ import board import digitalio import touchio led = digitalio.DigitalInOut(board.D13) led.direction = digitalio.Direction.OUTPUT touch = touchio.TouchIn(board.TOUCH_PAD_PIN) while True: if touch.value: led.value = True else: led.value = False
the-stack_106_31863
"""Implementation of the Perdomo et. al model of strategic classification. The data is from the Kaggle Give Me Some Credit dataset: https://www.kaggle.com/c/GiveMeSomeCredit/data, and the dynamics are taken from: Perdomo, Juan C., Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. "Performative Prediction." arXiv preprint arXiv:2002.06673 (2020). """ import copy import dataclasses from typing import Callable, List import whynot as wn import whynot.traceable_numpy as np from whynot.dynamics import BaseConfig, BaseIntervention, BaseState from whynot.simulators.credit.dataloader import CreditData @dataclasses.dataclass class Config(BaseConfig): # pylint: disable-msg=too-few-public-methods """Parameterization of Credit simulator dynamics. Examples -------- >>> # Configure simulator for run for 10 iterations >>> config = Config(start_time=0, end_time=10, delta_t=1) """ # Dynamics parameters #: Subset of the features that can be manipulated by the agent changeable_features: np.ndarray = np.array([0, 5, 7]) #: Model how much the agent adapt her features in response to a classifier epsilon: float = 0.1 #: Parameters for logistic regression classifier used by the institution theta: np.ndarray = np.ones((11, 1)) #: L2 penalty on the logistic regression loss l2_penalty: float = 0.0 #: Whether or not dynamics have memory memory: bool = False # Simulator book-keeping #: Start time of the simulator start_time: int = 0 #: End time of the simulator end_time: int = 5 #: Spacing of the evaluation grid delta_t: int = 1 @dataclasses.dataclass class State(BaseState): # pylint: disable-msg=too-few-public-methods """State of the Credit model.""" #: Matrix of agent features (see https://www.kaggle.com/c/GiveMeSomeCredit/data) features: np.ndarray = np.ones((13, 11)) #: Vector indicating whether or not the agent experiences financial distress labels: np.ndarray = np.zeros((13, 1)) def values(self): """Return the state as a dictionary of numpy arrays.""" return {name: getattr(self, name) for name in self.variable_names()} class Intervention(BaseIntervention): # pylint: disable-msg=too-few-public-methods """Parameterization of an intervention in the Credit model. An intervention changes a subset of the configuration variables in the specified year. The remaining variables are unchanged. Examples -------- >>> # Starting at time 25, update the classifier to random chance. >>> config = Config() >>> Intervention(time=25, theta=np.zeros_like(config.theta)) """ def __init__(self, time=30, **kwargs): """Specify an intervention in credit. Parameters ---------- time: int Time of intervention in simulator dynamics. kwargs: dict Only valid keyword arguments are parameters of Config. """ super(Intervention, self).__init__(Config, time, **kwargs) def strategic_logistic_loss(config, features, labels, theta): """Evaluate the performative loss for logistic regression classifier.""" config = config.update(Intervention(theta=theta)) # Compute adjusted data strategic_features = agent_model(features, config) # compute log likelihood num_samples = strategic_features.shape[0] logits = strategic_features @ config.theta log_likelihood = (1.0 / num_samples) * np.sum( -1.0 * np.multiply(labels, logits) + np.log(1 + np.exp(logits)) ) # Add regularization (without considering the bias) regularization = (config.l2_penalty / 2.0) * np.linalg.norm(config.theta[:-1]) ** 2 return log_likelihood + regularization def agent_model(features, config): """Compute agent reponse to the classifier and adapt features accordingly. TODO: For now, the best-response model corresponds to best-response with linear utility and quadratic costs. We should expand this to cover a rich set of agent models beyond linear/quadratic, and potentially beyond best-response. """ # Move everything by epsilon in the direction towards better classification strategic_features = np.copy(features) theta_strat = config.theta[config.changeable_features].flatten() strategic_features[:, config.changeable_features] -= config.epsilon * theta_strat return strategic_features def dynamics(state, time, config, intervention=None): """Perform one round of interaction between the agents and the credit scorer. Parameters ---------- state: whynot.simulators.credit.State Agent state at time TIME time: int Current round of interaction config: whynot.simulators.credit.Config Configuration object controlling the interaction, e.g. classifier and agent model intervention: whynot.simulators.credit.Intervention Intervention object specifying when and how to update the dynamics. Returns ------- state: whynot.simulators.credit.State Agent state after one step of strategic interaction. """ if intervention and time >= intervention.time: config = config.update(intervention) if config.memory: features, labels = state else: features, labels = CreditData.features, CreditData.labels # Update features in response to classifier. Labels are fixed. strategic_features = agent_model(features, config) return strategic_features, labels def simulate(initial_state, config, intervention=None, seed=None): """Simulate a run of the Credit model. Parameters ---------- initial_state: whynot.credit.State config: whynot.credit.Config Base parameters for the simulator run intervention: whynot.credit.Intervention (Optional) Parameters specifying a change in dynamics seed: int Unused since the simulator is deterministic. Returns ------- run: whynot.dynamics.Run Simulator rollout """ # Iterate the discrete dynamics times = [config.start_time] states = [initial_state] state = copy.deepcopy(initial_state) for step in range(config.start_time, config.end_time): next_state = dynamics(state.values(), step, config, intervention) state = State(*next_state) states.append(state) times.append(step + 1) return wn.dynamics.Run(states=states, times=times) if __name__ == "__main__": print(simulate(State(), Config(end_time=2)))
the-stack_106_31864
from typing import Dict, List, Optional, Any, Union from pydantic import BaseModel, validator from tracardi.service.plugin.domain.register import Plugin, Spec, MetaData, Documentation, PortDoc from tracardi.service.plugin.domain.result import Result from tracardi.service.plugin.runner import ActionRunner from tracardi.domain.event import Event from tracardi.domain.profile import Profile from tracardi.domain.session import Session class Configuration(BaseModel): append: Optional[Dict[str, Any]] = {} remove: Optional[Dict[str, Union[Any, List[Any]]]] = {} @validator("remove") def validate_remove(cls, value, values): if 'append' not in values and 'remove' not in values: raise ValueError("Please define `append` or `remove` in config section.") return value def validate(config: dict): return Configuration(**config) class AppendTraitAction(ActionRunner): def __init__(self, **kwargs): self.config = validate(kwargs) async def run(self, payload: dict): dot = self._get_dot_accessor(payload if isinstance(payload, dict) else None) for destination, value in self.config.append.items(): value = dot[value] if destination in dot: if not isinstance(dot[destination], list): # Make it a list with original value dot[destination] = [dot[destination]] if value not in dot[destination]: dot[destination].append(value) else: dot[destination] = value for destination, value in self.config.remove.items(): value = dot[value] if destination in dot: if not isinstance(dot[destination], list): raise ValueError("Can not remove from non-list data.") if isinstance(value, list): for v in value: if v in dot[destination]: dot[destination].remove(v) elif value in dot[destination]: dot[destination].remove(value) if self.event.metadata.profile_less is False: if not isinstance(dot.profile['traits']['private'], dict): raise ValueError("Error when appending [email protected] to value `{}`. " "Private must have key:value pair. " "E.g. `name`: `{}`".format(dot.profile['traits']['private'], dot.profile['traits']['private'])) if not isinstance(dot.profile['traits']['public'], dict): raise ValueError( "Error when appending [email protected] to value `{}`. Public must have key:value pair. " "E.g. `name`: `{}`".format(dot.profile['traits']['public'], dot.profile['traits']['public'])) profile = Profile(**dot.profile) self.profile.replace(profile) else: if dot.profile: self.console.warning("Profile changes were discarded in node `Append/Remove Trait`. " "This event is profile less so there is no profile.") event = Event(**dot.event) self.event.replace(event) if 'id' in dot.session: session = Session(**dot.session) self.session.replace(session) self.update_profile() return Result(port="payload", value=payload) def register() -> Plugin: return Plugin( start=False, spec=Spec( module='tracardi.process_engine.action.v1.traits.append_trait_action', className='AppendTraitAction', inputs=['payload'], outputs=["payload"], init={ "append": { "target1": "source1", "target2": "source2", }, "remove": { "target": ["item1", "item2"] } }, version='0.1', license="MIT", author="Risto Kowaczewski" ), metadata=MetaData( name='Append/Remove Trait', desc='Appends/Removes trait to/from existing profile trait.', icon='append', group=["Data processing"], documentation=Documentation( inputs={ "payload": PortDoc(desc="This port takes any JSON-like object.") }, outputs={ "payload": PortDoc(desc="This port returns given payload with traits appended or removed according" " to configuration.") } ) ) )
the-stack_106_31865
import cv2 import os.path as op import numpy as np import pandas as pd from PIL import Image import torch import torch.nn as nn from torchvision import transforms, datasets from torch.utils.data import Dataset from torch.utils.data.sampler import BatchSampler from torchvision.datasets import ImageFolder import random from .align import Alignment from universal_utils import read_lines_into_list cos = nn.CosineSimilarity(dim=0, eps=1e-6) class myImageFolder(ImageFolder): @property def train_labels(self): warnings.warn("train_labels has been renamed targets") return self.targets def __init__(self, root, transform=None, target_transform=None): super(myImageFolder, self).__init__(root, transform, target_transform) class SiameseDFWImageFolder(Dataset): """ Train: For each sample creates randomly a positive or a negative pair Test: Creates fixed pairs for testing """ def __init__(self, imgs_folder_dir, transform, dataset_type="training"): assert dataset_type in ["training", "testing"] print('>>> In SIFolder, imgfolderdir=', imgs_folder_dir) self.root = imgs_folder_dir self.dataset_type = dataset_type matrix_txt_path = os.path.join(self.root, 'Mask_matrices', dataset_type, f"{dataset_type}_data_mask_matrix.txt") self.data_mask_matrix = np.loadtxt(matrix_txt_path) img_path_list_path = os.path.join(self.root, f"{dataset_type.capitalize()}_data_face_name.txt") self.img_path_list = read_lines_into_list(img_path_list_path) self.img_label_list, self.name2label = self.img_path_to_label_list(self.img_path_list) self.transform = transform # ############################################ # self.wFace_dataset = ImageFolder(imgs_folder_dir, transform) self.class_num = len(self.name2label) # ################################## # # self.memoryAll = False # self.train_labels = np.array(self.wFace_dataset.targets, dtype=int) # print('>>> self.train_labels:', self.train_labels[1000:1010]) # self.train_data = self.wFace_dataset # self.labels_set = set(self.train_labels) # self.label_to_indices = {label: # np.where(self.train_labels # == label)[0] # for label in self.labels_set} # print('>>> Init SiameseDFWImageFolder done!') def __getitem__(self, idx): ''' img1 = (feat_fc, feat_grid) ''' # print('>>> In getItem, idx = ', idx) # Sample the 1-st image img1_path = os.path.join(self.root, self.img_path_list[idx]) img1 = self.load_transformed_img_tensor(img1_path) label1 = self.img_label_list[idx] # Sample the 2-nd image # is_the_same_id is a bool that determines whether returning one pair with the same identity. is_the_same_id = np.random.randint(0, 2) ############ img2_path = self.get_siamese_path(idx, is_the_same_id) img2_path = os.path.join(self.root, img2_path) # print("In getitem, img2_path: ", img2_path) # print("In getitem, img1_path: ", img1_path) img2 = self.load_transformed_img_tensor(img2_path) label2 = self.img_path_to_label(img2_path) ################################### # img1, label1 = self.train_data[index] # , self.train_labels[index].item() # if target == 1: # siamese_index = index # while siamese_index == index: # siamese_index = np.random.choice(self.label_to_indices[label1]) # else: # siamese_label = np.random.choice( # list(self.labels_set - set([label1]))) # siamese_index = np.random.choice( # self.label_to_indices[siamese_label]) # img2, label2 = self.train_data[siamese_index] return img1, img2, label1, label2 def __len__(self): return len(self.img_path_list) def img_path_to_label_list(self, path_list): label_list = [] name_list = [] name2label = {} for path in path_list: # path e.g. Training_data/Matthew_McConaughey/Matthew_McConaughey_h_002.jpg # Assume that Imposter Impersonator is one unique identity if "_I_" in path: name = path.split('/')[-1][:-8] else: name = path.split('/')[1] if not name in name_list: name_list.append(name) name2label[name] = len(name_list) - 1 label = name2label[name] label_list.append(label) return label_list, name2label def img_path_to_label(self, path): # path e.g. data/dfw/Training_data/Matthew_McConaughey/Matthew_McConaughey_h_003.jpg if "_I_" in path: name = path.split('/')[-1][:-8] else: name = path.split('/')[3] return self.name2label[name] def load_transformed_img_tensor(self, path): img = datasets.folder.default_loader(path) # XXX t = transforms.Resize([112, 112]) img = t(img) # print(img) # print('>>>>> In load_tr, img.size =', img.size()) if self.transform is not None: img = self.transform(img) else: raise NotImplementedError return img def get_siamese_path(self, idx, is_the_same_id): ''' Input: ''' candidate = self.data_mask_matrix[idx] positions = [] # print(">>>> Is the same", is_the_same_id) if is_the_same_id: targets = [1, 2] for target in targets: pos = np.where(candidate == target)[0] pos = list(pos) # print(">>>> candidate=", candidate) # print(">>>> pos= ", pos) positions += pos # _I.jpg case (no identical id) if len(positions) == 0: pos3 = np.where(candidate == 3)[0] pos3 = list(pos3) positions += pos3 else: pos3 = np.where(candidate == 3)[0] pos4 = np.where(candidate == 4)[0] pos3 = list(pos3) pos4 = list(pos4) # print(">>>> candidate=", candidate) # print(">>>> pos3= ", pos3) # print(">>>> pos4= ", pos4) # _I.jpg case if len(pos4) > 0: pos4 = random.sample(pos4, max(len(pos3), 1)) # at least take 1 sample positions += pos4 positions += pos3 assert len(positions) > 0 siamese_idx = random.choice(positions) return self.img_path_list[siamese_idx] class SiameseImageFolder(Dataset): """ Train: For each sample creates randomly a positive or a negative pair Test: Creates fixed pairs for testing """ def __init__(self, imgs_folder_dir, transform): print('>>> In SIFolder, imgfolderdir=', imgs_folder_dir) self.root = imgs_folder_dir self.wFace_dataset = ImageFolder(imgs_folder_dir, transform) self.class_num = len(self.wFace_dataset.classes) print('>>> self.class_num = ', self.class_num) # self.memoryAll = False self.train_labels = np.array(self.wFace_dataset.targets, dtype=int) print('>>> self.train_labels:', self.train_labels[1000:1010]) self.train_data = self.wFace_dataset # XXX # if self.memoryAll: # self.train_data = self.wFace_dataset.train_data self.labels_set = set(self.train_labels) self.label_to_indices = {label: np.where(self.train_labels == label)[0] for label in self.labels_set} print('>>> Init SiameseImageFolder done!') def __getitem__(self, index): ''' img1 = (feat_fc, feat_grid) ''' target = np.random.randint(0, 2) img1, label1 = self.train_data[index] # , self.train_labels[index].item() if target == 1: siamese_index = index while siamese_index == index: siamese_index = np.random.choice(self.label_to_indices[label1]) else: siamese_label = np.random.choice( list(self.labels_set - set([label1]))) siamese_index = np.random.choice( self.label_to_indices[siamese_label]) img2, label2 = self.train_data[siamese_index] # XXX stack # stack (img1, img2), (label1, label2), cos_gt return img1, img2, label1, label2 def __len__(self): return len(self.wFace_dataset) class SiameseWholeFace(Dataset): """ Train: For each sample creates randomly a positive or a negative pair Test: Creates fixed pairs for testing """ # @property # def train_data(self): # warnings.warn("train_data has been renamed data") # return self.wFace_dataset # @property # def test_data(self): # warnings.warn("test_data has been renamed data") # return self.wFace_dataset def __init__(self, wFace_dataset): self.wFace_dataset = wFace_dataset self.train = self.wFace_dataset.train self.memoryAll = self.wFace_dataset.memoryAll if self.train: self.train_labels = self.wFace_dataset.train_labels self.train_data = self.wFace_dataset if self.memoryAll: self.train_data = self.wFace_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: # generate fixed pairs for testing # TODO: @property like MNIST self.test_labels = self.wFace_dataset.test_labels self.test_data = self.wFace_dataset if self.memoryAll: self.test_data = self.wFace_dataset.test_data self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) positive_pairs = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), 1] for i in range(0, len(self.test_data), 2)] negative_pairs = [[i, random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]), 0] for i in range(1, len(self.test_data), 2)] self.test_pairs = positive_pairs + negative_pairs print('>>> Init SiameseWholeFace done!') def __getitem__(self, index): ''' img1 = (feat_fc, feat_grid) ''' if self.train: target = np.random.randint(0, 2) img1, label1 = self.train_data[index], self.train_labels[index].item() if target == 1: siamese_index = index while siamese_index == index: siamese_index = np.random.choice(self.label_to_indices[label1]) else: siamese_label = np.random.choice(list(self.labels_set - set([label1]))) siamese_index = np.random.choice(self.label_to_indices[siamese_label]) img2 = self.train_data[siamese_index] else: img1 = self.test_data[self.test_pairs[index][0]] img2 = self.test_data[self.test_pairs[index][1]] target = self.test_pairs[index][2] # [Depreciated] feat1 1 is of size [21504] # feat1, feat2 = img1.view(-1), img2.view(-1) # cosine = cos(feat1, feat2).numpy() # target = cosine feat_grid_1 , feat_fc_1 = img1 feat_grid_2 , feat_fc_2 = img2 return (feat_grid_1, feat_fc_1, feat_grid_2, feat_fc_2), target def __len__(self): return len(self.wFace_dataset) class SiameseENM(Dataset): """ Train: For each sample creates randomly a positive or a negative pair Test: Creates fixed pairs for testing """ def __init__(self, ENM_dataset): self.ENM_dataset = ENM_dataset self.train = self.ENM_dataset.train # self.train = False if self.train: self.train_labels = self.ENM_dataset.train_labels self.train_data = self.ENM_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: # generate fixed pairs for testing # TODO: @property like MNIST self.test_labels = self.ENM_dataset.test_labels self.test_data = self.ENM_dataset.test_data self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) positive_pairs = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), 1] for i in range(0, len(self.test_data), 2)] negative_pairs = [[i, random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]), 0] for i in range(1, len(self.test_data), 2)] self.test_pairs = positive_pairs + negative_pairs def __getitem__(self, index): if self.train: target = np.random.randint(0, 2) img1, label1 = self.train_data[index], self.train_labels[index].item() if target == 1: siamese_index = index while siamese_index == index: siamese_index = np.random.choice(self.label_to_indices[label1]) else: siamese_label = np.random.choice(list(self.labels_set - set([label1]))) siamese_index = np.random.choice(self.label_to_indices[siamese_label]) img2 = self.train_data[siamese_index] else: img1 = self.test_data[self.test_pairs[index][0]] img2 = self.test_data[self.test_pairs[index][1]] target = self.test_pairs[index][2] return (img1, img2), target def __len__(self): return len(self.ENM_dataset) class TripletENM(Dataset): """ Train: For each sample (anchor) randomly chooses a positive and negative samples Test: Creates fixed triplets for testing """ def __init__(self, ENM_dataset): self.ENM_dataset = ENM_dataset self.train = self.ENM_dataset.train if self.train: self.train_labels = self.ENM_dataset.train_labels self.train_data = self.ENM_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: self.test_labels = self.ENM_dataset.test_labels self.test_data = self.ENM_dataset.test_data # generate fixed triplets for testing self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) triplets = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]) ] for i in range(len(self.test_data))] self.test_triplets = triplets def __getitem__(self, index): if self.train: img1, label1 = self.train_data[index], self.train_labels[index].item() positive_index = index while positive_index == index: positive_index = np.random.choice(self.label_to_indices[label1]) negative_label = np.random.choice(list(self.labels_set - set([label1]))) negative_index = np.random.choice(self.label_to_indices[negative_label]) img2 = self.train_data[positive_index] img3 = self.train_data[negative_index] else: img1 = self.test_data[self.test_triplets[index][0]] img2 = self.test_data[self.test_triplets[index][1]] img3 = self.test_data[self.test_triplets[index][2]] return (img1, img2, img3), [] def __len__(self): return len(self.ENM_dataset) class SiameseMNIST(Dataset): """ Train: For each sample creates randomly a positive or a negative pair Test: Creates fixed pairs for testing """ def __init__(self, mnist_dataset): self.mnist_dataset = mnist_dataset self.train = self.mnist_dataset.train self.transform = self.mnist_dataset.transform if self.train: self.train_labels = self.mnist_dataset.train_labels self.train_data = self.mnist_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: # generate fixed pairs for testing self.test_labels = self.mnist_dataset.test_labels self.test_data = self.mnist_dataset.test_data self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) positive_pairs = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), 1] for i in range(0, len(self.test_data), 2)] negative_pairs = [[i, random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]), 0] for i in range(1, len(self.test_data), 2)] self.test_pairs = positive_pairs + negative_pairs def __getitem__(self, index): if self.train: target = np.random.randint(0, 2) img1, label1 = self.train_data[index], self.train_labels[index].item() if target == 1: siamese_index = index while siamese_index == index: siamese_index = np.random.choice(self.label_to_indices[label1]) else: siamese_label = np.random.choice(list(self.labels_set - set([label1]))) siamese_index = np.random.choice(self.label_to_indices[siamese_label]) img2 = self.train_data[siamese_index] else: img1 = self.test_data[self.test_pairs[index][0]] img2 = self.test_data[self.test_pairs[index][1]] target = self.test_pairs[index][2] img1 = Image.fromarray(img1.numpy(), mode='L') img2 = Image.fromarray(img2.numpy(), mode='L') if self.transform is not None: img1 = self.transform(img1) img2 = self.transform(img2) return (img1, img2), target def __len__(self): return len(self.mnist_dataset) class TripletMNIST(Dataset): """ Train: For each sample (anchor) randomly chooses a positive and negative samples Test: Creates fixed triplets for testing """ def __init__(self, mnist_dataset): self.mnist_dataset = mnist_dataset self.train = self.mnist_dataset.train self.transform = self.mnist_dataset.transform if self.train: self.train_labels = self.mnist_dataset.train_labels self.train_data = self.mnist_dataset.train_data self.labels_set = set(self.train_labels.numpy()) self.label_to_indices = {label: np.where(self.train_labels.numpy() == label)[0] for label in self.labels_set} else: self.test_labels = self.mnist_dataset.test_labels self.test_data = self.mnist_dataset.test_data # generate fixed triplets for testing self.labels_set = set(self.test_labels.numpy()) self.label_to_indices = {label: np.where(self.test_labels.numpy() == label)[0] for label in self.labels_set} random_state = np.random.RandomState(29) triplets = [[i, random_state.choice(self.label_to_indices[self.test_labels[i].item()]), random_state.choice(self.label_to_indices[ np.random.choice( list(self.labels_set - set([self.test_labels[i].item()])) ) ]) ] for i in range(len(self.test_data))] self.test_triplets = triplets def __getitem__(self, index): if self.train: img1, label1 = self.train_data[index], self.train_labels[index].item() positive_index = index while positive_index == index: positive_index = np.random.choice(self.label_to_indices[label1]) negative_label = np.random.choice(list(self.labels_set - set([label1]))) negative_index = np.random.choice(self.label_to_indices[negative_label]) img2 = self.train_data[positive_index] img3 = self.train_data[negative_index] else: img1 = self.test_data[self.test_triplets[index][0]] img2 = self.test_data[self.test_triplets[index][1]] img3 = self.test_data[self.test_triplets[index][2]] img1 = Image.fromarray(img1.numpy(), mode='L') img2 = Image.fromarray(img2.numpy(), mode='L') img3 = Image.fromarray(img3.numpy(), mode='L') if self.transform is not None: img1 = self.transform(img1) img2 = self.transform(img2) img3 = self.transform(img3) return (img1, img2, img3), [] def __len__(self): return len(self.mnist_dataset) class BalancedBatchSampler(BatchSampler): """ BatchSampler - from a MNIST-like dataset, samples n_classes and within these classes samples n_samples. Returns batches of size n_classes * n_samples """ def __init__(self, labels, n_classes, n_samples): self.labels = labels self.labels_set = list(set(self.labels.numpy())) self.label_to_indices = {label: np.where(self.labels.numpy() == label)[0] for label in self.labels_set} for l in self.labels_set: np.random.shuffle(self.label_to_indices[l]) self.used_label_indices_count = {label: 0 for label in self.labels_set} self.count = 0 self.n_classes = n_classes self.n_samples = n_samples self.n_dataset = len(self.labels) self.batch_size = self.n_samples * self.n_classes def __iter__(self): self.count = 0 while self.count + self.batch_size < self.n_dataset: classes = np.random.choice(self.labels_set, self.n_classes, replace=False) indices = [] for class_ in classes: indices.extend(self.label_to_indices[class_][ self.used_label_indices_count[class_]:self.used_label_indices_count[ class_] + self.n_samples]) self.used_label_indices_count[class_] += self.n_samples if self.used_label_indices_count[class_] + self.n_samples > len(self.label_to_indices[class_]): np.random.shuffle(self.label_to_indices[class_]) self.used_label_indices_count[class_] = 0 yield indices self.count += self.n_classes * self.n_samples def __len__(self): return self.n_dataset // self.batch_size import os import pickle import torch import warnings from glob import glob from sklearn.model_selection import train_test_split from tqdm import tqdm from joblib import Parallel, delayed class ENMDataset: @property def train_labels(self): warnings.warn("train_labels has been renamed targets") return self.targets @property def test_labels(self): warnings.warn("test_labels has been renamed targets") return self.targets @property def train_data(self): warnings.warn("train_data has been renamed data") return self.data @property def test_data(self): warnings.warn("test_data has been renamed data") return self.data def __init__(self, root_dir, featType='nose', train=True, valSize=0.2): print('>>> Init ENM dataset for', featType, root_dir, 'isTrain:', train) self.featType = featType self.id_paths = glob(os.path.join(root_dir, '*/')) dataPaths = [glob(d + '*.pkl') for d in self.id_paths] dataPaths = [item for sublist in dataPaths for item in sublist] train_ps, val_ps = train_test_split(dataPaths, test_size=valSize, random_state=42) self.train_id_paths, self.val_id_paths = train_ps, val_ps # print(len(self.train_id_paths), len(self.val_id_paths)) # print(self.train_id_paths[:4]) # print(self.val_id_paths[:4]) self.train = train if self.train: dataPaths = self.train_id_paths else: dataPaths = self.val_id_paths # print(len(dataPaths), dataPaths[:4]) trainFlag = 'train' if self.train else 'val' self.pkl_fname = os.path.join(config.FEAT_DIR, self.featType + '_' + trainFlag + '.pkl') if os.path.isfile(self.pkl_fname): print('>>> Loading:', self.pkl_fname) with open(self.pkl_fname, 'rb') as h: self.data, self.targets = pickle.load(h) else: self.data, self.targets = self.loadData(dataPaths) def loadData(self, paths): # XXX train set: 12 min; val set: 3 min data = [] targets = [] def loadPkl(p): with open(p, 'rb') as h: feat = pickle.load(h) data.append(feat[self.featType]) targets.append(feat['label']) Parallel(n_jobs=config.WORKERS, require='sharedmem', prefer="threads")(delayed(loadPkl)(p) for p in tqdm(paths)) # for p in tqdm(paths): # with open(p, 'rb') as h: # feat = pickle.load(h) # data.append(feat[self.featType]) # targets.append(feat['label']) # print(data[0]) # print(targets[0]) data = torch.stack(data, 0) targets = torch.stack(targets, 0) # print(data.size()) # print(targets.size()) # Save pkl with open(self.pkl_fname, 'wb') as h: pickle.dump((data, targets), h, protocol=pickle.HIGHEST_PROTOCOL) return data, targets def __getitem__(self, key): # XXX It seems useless? return self.data[key], self.targets[key] def __len__(self): return len(self.data) class FaceFeatDataset: # XXX: self.target contain all labels; # while _getitem_ can only get image feat @property def train_labels(self): warnings.warn("train_labels has been renamed targets") return self.targets @property def test_labels(self): warnings.warn("test_labels has been renamed targets") return self.targets @property def train_data(self): warnings.warn("train_data has been renamed data") return self.data_mix @property def test_data(self): warnings.warn("test_data has been renamed data") return self.data_mix def __init__(self, root_dir, train=True, valSize=0.2, memoryAll=False): print('>>> Init FaceFeat dataset for', root_dir, 'isTrain:', train, 'memoryAll:', memoryAll) self.memoryAll = memoryAll self.id_paths = glob(os.path.join(root_dir, '*/')) dataPaths = [glob(d + '*.pkl') for d in self.id_paths] dataPaths = [item for sublist in dataPaths for item in sublist] train_ps, val_ps = train_test_split(dataPaths, test_size=valSize, random_state=42) self.train_id_paths, self.val_id_paths = train_ps, val_ps # print(len(self.train_id_paths), len(self.val_id_paths)) # print(self.train_id_paths[:4]) # print(self.val_id_paths[:4]) self.train = train if self.train: self.dataPaths = self.train_id_paths else: self.dataPaths = self.val_id_paths trainFlag = 'train' if self.train else 'val' # Load target labels if not self.memoryAll: self.pkl_fname = os.path.join(config.FEAT_DIR, 'target_' + trainFlag + '.pkl') if os.path.isfile(self.pkl_fname): print('>>> Loading:', self.pkl_fname) with open(self.pkl_fname, 'rb') as h: self.targets = pickle.load(h) else: self.targets = self.loadTargets(self.dataPaths) else: self.pkl_fname = os.path.join(config.FEAT_DIR, 'targetAndData_' + trainFlag + '.pkl') if os.path.isfile(self.pkl_fname): print('>>> Loading:', self.pkl_fname) with open(self.pkl_fname, 'rb') as h: self.data, self.data_fc, self.targets = pickle.load(h) self.data_mix = DataMix(self.data, self.data_fc) else: self.data, self.data_fc, self.targets = self.loadData(self.dataPaths) self.data_mix = DataMix(self.data, self.data_fc) print('>>> Init done!') def loadData(self, paths): # XXX train set: 12 min; val set: 3 min data = [] data_fc = [] targets = [] def loadPkl(p): with open(p, 'rb') as h: feat = pickle.load(h) data.append(feat['wholeFaceFeat_42grid']) data_fc.append(feat['wholeFaceFeat']) targets.append(feat['label']) del feat print('>>> In faceFeatDataset, Loading ALL datas') Parallel(n_jobs=6, require='sharedmem', prefer="threads")(delayed(loadPkl)(p) for p in tqdm(paths)) # for p in tqdm(paths): # with open(p, 'rb') as h: # feat = pickle.load(h) # data.append(feat[self.featType]) # targets.append(feat['label']) # print(data[0]) # print(targets[0]) data = torch.stack(data, 0) data_fc = torch.stack(data_fc, 0) targets = torch.stack(targets, 0) # print(data.size()) # print(targets.size()) # Save pkl with open(self.pkl_fname, 'wb') as h: pickle.dump((data, data_fc, targets), h, protocol=pickle.HIGHEST_PROTOCOL) return data, data_fc, targets def loadPkl(self, p): with open(p, 'rb') as h: feat = pickle.load(h) return feat['wholeFaceFeat_42grid'], feat['wholeFaceFeat'], feat['label'] def loadFeat(self, p): with open(p, 'rb') as h: feat = pickle.load(h) return feat['wholeFaceFeat_42grid'], feat['wholeFaceFeat'] def loadTargets(self, paths): # XXX train set: 12 min; val set: 3 min targets = [] def loadpkl(p): with open(p, 'rb') as h: feat = pickle.load(h) targets.append(feat['label']) Parallel(n_jobs=config.WORKERS, require='sharedmem', prefer="threads")(delayed(loadpkl)(p) for p in tqdm(paths)) # print(targets[0]) targets = torch.stack(targets, 0) # print(targets.size()) # Save pkl with open(self.pkl_fname, 'wb') as h: pickle.dump(targets, h, protocol=pickle.HIGHEST_PROTOCOL) return targets def __getitem__(self, key): # XXX raise NotImplementedError if not self.memoryAll: return self.loadFeat(self.dataPaths[key]) else: return self.data[key], self.data_fc[key], self.targets[key] def __len__(self): return len(self.dataPaths) class DataMix: def __init__(self, data_grid, data_fc): self.data_grid = data_grid self.data_fc = data_fc self._data_len = len(self.data_grid) def __getitem__(self, key): return (self.data_grid[key], self.data_fc[key]) def __len__(self): return self._data_len class CArrayDataset(Dataset): def __init__(self, carray): self.carray = carray def __getitem__(self, idx): return self.carray[idx] def __len__(self): return len(self.carray) class IJBCVerificationBaseDataset(Dataset): """ Base class of IJB-C verification dataset to read neccesary csv files and provide general functions. """ def __init__(self, ijbc_data_root, leave_ratio=1.0): # read all csvs neccesary for verification self.ijbc_data_root = ijbc_data_root dtype_sid_tid = {'SUBJECT_ID': str, 'TEMPLATE_ID': str} self.metadata = pd.read_csv(op.join(ijbc_data_root, 'protocols', 'ijbc_metadata_with_age.csv'), dtype=dtype_sid_tid) test1_dir = op.join(ijbc_data_root, 'protocols', 'test1') self.enroll_templates = pd.read_csv(op.join(test1_dir, 'enroll_templates.csv'), dtype=dtype_sid_tid) self.verif_templates = pd.read_csv(op.join(test1_dir, 'verif_templates.csv'), dtype=dtype_sid_tid) self.match = pd.read_csv(op.join(test1_dir, 'match.csv'), dtype=str) if leave_ratio < 1.0: # shrink the number of verified pairs indice = np.arange(len(self.match)) np.random.seed(0) np.random.shuffle(indice) left_number = int(len(self.match) * leave_ratio) self.match = self.match.iloc[indice[:left_number]] def _get_both_entries(self, idx): enroll_tid = self.match.iloc[idx]['ENROLL_TEMPLATE_ID'] verif_tid = self.match.iloc[idx]['VERIF_TEMPLATE_ID'] enroll_entries = self.enroll_templates[self.enroll_templates.TEMPLATE_ID == enroll_tid] verif_entries = self.verif_templates[self.verif_templates.TEMPLATE_ID == verif_tid] return enroll_entries, verif_entries def _get_cropped_path_suffix(self, entry): sid = entry['SUBJECT_ID'] filepath = entry['FILENAME'] img_or_frames, fname = op.split(filepath) fname_index, _ = op.splitext(fname) cropped_path_suffix = op.join(img_or_frames, f'{sid}_{fname_index}.jpg') return cropped_path_suffix def __len__(self): return len(self.match) class IJBCVerificationDataset(IJBCVerificationBaseDataset): """ IJB-C verification dataset (`test1` in the folder) who transforms the cropped faces into tensors. Note that entries in this verification dataset contains lots of repeated faces. A better way to evaluate a model's score is to precompute all faces features and store them into disks. ( see `IJBCAllCroppedFacesDataset` and `IJBCVerificationPathDataset`) """ def __init__(self, ijbc_data_root): super().__init__(ijbc_data_root) self.transforms = transforms.Compose([ transforms.Resize([112, 112]), transforms.ToTensor(), transforms.Normalize([.5, .5, .5], [.5, .5, .5]), ]) def _get_cropped_face_image_by_entry(self, entry): cropped_path_suffix = self._get_cropped_path_suffix(entry) cropped_path = op.join(self.ijbc_data_root, 'cropped_faces', cropped_path_suffix) return Image.open(cropped_path) def _get_tensor_by_entries(self, entries): faces_imgs = [self._get_cropped_face_image_by_entry(e) for idx, e in entries.iterrows()] faces_tensors = [self.transforms(img) for img in faces_imgs] return torch.stack(faces_tensors, dim=0) def __getitem__(self, idx): enroll_entries, verif_entries = self._get_both_entries(idx) enroll_faces_tensor = self._get_tensor_by_entries(enroll_entries) verif_faces_tensor = self._get_tensor_by_entries(verif_entries) return { "enroll_faces_tensor": enroll_faces_tensor, "verif_faces_tensor": verif_faces_tensor } class IJBCVerificationPathDataset(IJBCVerificationBaseDataset): """ This dataset read the match file of verification set in IJB-C (in the `test1` directory) and output the cropped faces' paths of both enroll_template and verif_template for each match. Models outside can use the path information to read their stored features and compute the similarity score of enroll_template and verif_template. """ def __init__(self, ijbc_data_root, occlusion_lower_bound=0, leave_ratio=1.0): super().__init__(ijbc_data_root, leave_ratio=leave_ratio) self.occlusion_lower_bound = occlusion_lower_bound self.metadata['OCC_sum'] = self.metadata[[f'OCC{i}' for i in range(1, 19)]].sum(axis=1) self.reindexed_meta = self.metadata.set_index(['SUBJECT_ID', 'FILENAME']) def _filter_out_occlusion_insufficient_entries(self, entries): if self.occlusion_lower_bound == 0: return [entry for _, entry in entries.iterrows()] out = [] for _, entry in entries.iterrows(): occlusion_sum = self.reindexed_meta.loc[(entry['SUBJECT_ID'], entry['FILENAME']), 'OCC_sum'] if occlusion_sum.values[0] >= self.occlusion_lower_bound: out.append(entry) return out def __getitem__(self, idx): enroll_entries, verif_entries = self._get_both_entries(idx) is_same = (enroll_entries['SUBJECT_ID'].iloc[0] == verif_entries['SUBJECT_ID'].iloc[0]) is_same = 1 if is_same else 0 enroll_template_id = enroll_entries['TEMPLATE_ID'].iloc[0], verif_template_id = verif_entries['TEMPLATE_ID'].iloc[0], enroll_entries = self._filter_out_occlusion_insufficient_entries(enroll_entries) verif_entries = self._filter_out_occlusion_insufficient_entries(verif_entries) def path_suffixes(entries): return [self._get_cropped_path_suffix(entry) for entry in entries] return { "enroll_template_id": enroll_template_id, "verif_template_id": verif_template_id, "enroll_path_suffixes": path_suffixes(enroll_entries), "verif_path_suffixes": path_suffixes(verif_entries), "is_same": is_same } class IJBVerificationPathDataset(Dataset): """ This dataset read the match file of verification set in ijb_dataset_root (in the `meta` directory, the filename is sth. like "ijbc_template_pair_label.txt") and output the cropped faces' paths of both enroll_template and verif_template for each match. Models outside can use the path information to read their stored features and compute the similarity score of enroll_template and verif_template. """ def __init__(self, ijb_dataset_root, leave_ratio=1.0, dataset_type='IJBB'): # TODO implement the leave_ratio method if dataset_type == 'IJBB': match_filename = op.join(ijb_dataset_root, 'meta', 'ijbb_template_pair_label.txt') elif dataset_type == 'IJBC': match_filename = op.join(ijb_dataset_root, 'meta', 'ijbc_template_pair_label.txt') else: raise NotImplementedError col_name = ["TEMPLATE_ID1", "TEMPLATE_ID2", "IS_SAME"] self.match = pd.read_csv(match_filename, delim_whitespace=True, header=None, dtype=str, names=col_name) if leave_ratio < 1.0: # shrink the number of verified pairs indice = np.arange(len(self.match)) np.random.seed(0) np.random.shuffle(indice) left_number = int(len(self.match) * leave_ratio) self.match = self.match.iloc[indice[:left_number]] def __getitem__(self, idx): def path_suffixes(id_str): path = f'{id_str}.jpg' return [path] id1 = self.match.iloc[idx]["TEMPLATE_ID1"] id2 = self.match.iloc[idx]["TEMPLATE_ID2"] return { "enroll_template_id": id1, "verif_template_id": id2, "enroll_path_suffixes": path_suffixes(id1), "verif_path_suffixes": path_suffixes(id2), "is_same": self.match.iloc[idx]["IS_SAME"] } def __len__(self): return len(self.match) class IJBCAllCroppedFacesDataset(Dataset): """ This dataset loads all faces available in IJB-C and transform them into tensors. The path for that face is output along with its tensor. This is for models to compute all faces' features and store them into disks, otherwise the verification testing set contains too many repeated faces that should not be computed again and again. """ def __init__(self, ijbc_data_root): self.ijbc_data_root = ijbc_data_root self.transforms = transforms.Compose([ transforms.Resize([112, 112]), transforms.ToTensor(), transforms.Normalize([.5, .5, .5], [.5, .5, .5]), ]) self.all_cropped_paths_img = sorted(glob( op.join(self.ijbc_data_root, 'cropped_faces', 'img', '*.jpg'))) self.len_set1 = len(self.all_cropped_paths_img) self.all_cropped_paths_frames = sorted(glob( op.join(self.ijbc_data_root, 'cropped_faces', 'frames', '*.jpg'))) def __getitem__(self, idx): if idx < self.len_set1: path = self.all_cropped_paths_img[idx] else: path = self.all_cropped_paths_frames[idx - self.len_set1] img = Image.open(path).convert('RGB') tensor = self.transforms(img) return { "tensor": tensor, "path": path, } def __len__(self): return len(self.all_cropped_paths_frames) + len(self.all_cropped_paths_img) class IJBCroppedFacesDataset(Dataset): """ This dataset loads all faces available in IJB-B/C, align them, and transform them into tensors. The path for that face is output along with its tensor. This is for models to compute all faces' features and store them into disks, otherwise the verification testing set contains too many repeated faces that should not be computed again and again. """ def __init__(self, ijbc_data_root, is_ijbb=True): self.ijbc_data_root = ijbc_data_root self.transforms = transforms.Compose([ transforms.Resize([112, 112]), transforms.ToTensor(), transforms.Normalize([.5, .5, .5], [.5, .5, .5]), ]) self.img_dir = op.join(self.ijbc_data_root, 'loose_crop') if is_ijbb: landmark_txt = 'ijbb_name_5pts_score.txt' else: landmark_txt = 'ijbc_name_5pts_score.txt' landmark_path = op.join(self.ijbc_data_root, 'meta', landmark_txt) self.imgs_list, self.landmarks_list = self.loadImgPathAndLandmarks(landmark_path) self.alignment = Alignment() def loadImgPathAndLandmarks(self, path): imgs_list = [] landmarks_list = [] with open(path) as img_list: lines = img_list.readlines() for line in lines: name_lmk_score = line.strip().split(' ') img_name = os.path.join(self.img_dir, name_lmk_score[0]) lmk = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32) lmk = lmk.reshape( (5,2) ) imgs_list.append(img_name) landmarks_list.append(lmk) landmarks_list = np.array(landmarks_list) return imgs_list, landmarks_list def __getitem__(self, idx): img_path = self.imgs_list[idx] landmark = self.landmarks_list[idx] img = cv2.imread(img_path) # XXX cv2.cvtColor(img, cv2.COLOR_BGR2RGB) in the align function img = self.alignment.align(img, landmark) # img_feats.append(embedng.get(img,lmk)) img = Image.fromarray(img) tensor = self.transforms(img) return { "tensor": tensor, "path": img_path, } def __len__(self): return len(self.imgs_list) from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True def make_square_box(box): width = box[2] - box[0] height = box[3] - box[1] if width > height: diff = width - height box[1] -= diff // 2 box[3] += diff // 2 elif height > width: diff = height - width box[0] -= diff // 2 box[2] += diff // 2 return box class IJBAVerificationDataset(Dataset): def __init__(self, ijba_data_root='/tmp3/zhe2325138/IJB/IJB-A/', split_name='split1', only_first_image=False, aligned_facial_3points=False, crop_face=True): self.ijba_data_root = ijba_data_root split_root = op.join(ijba_data_root, 'IJB-A_11_sets', split_name) self.only_first_image = only_first_image self.metadata = pd.read_csv(op.join(split_root, f'verify_metadata_{split_name[5:]}.csv')) self.metadata = self.metadata.set_index('TEMPLATE_ID') self.comparisons = pd.read_csv(op.join(split_root, f'verify_comparisons_{split_name[5:]}.csv'), header=None) self.transform = transforms.Compose([ transforms.Resize([112, 112]), transforms.ToTensor(), transforms.Normalize([.5, .5, .5], [.5, .5, .5]), ]) self.aligned_facial_3points = aligned_facial_3points self.src_facial_3_points = self._get_source_facial_3points() self.crop_face = crop_face def _get_source_facial_3points(self, output_size=(112, 112)): # set source landmarks based on 96x112 size src = np.array([ [30.2946, 51.6963], # left eye [65.5318, 51.5014], # right eye [48.0252, 71.7366], # nose # [33.5493, 92.3655], # left mouth # [62.7299, 92.2041], # right mouth ], dtype=np.float32) # scale landmarkS to match output size src[:, 0] *= (output_size[0] / 96) src[:, 1] *= (output_size[1] / 112) return src def _get_face_img_from_entry(self, entry, square=True): fname = entry["FILE"] if fname[:5] == 'frame': fname = 'frames' + fname[5:] # to fix error in annotation =_= img = Image.open(op.join(self.ijba_data_root, 'images', fname)).convert('RGB') if self.aligned_facial_3points: raise NotImplementedError else: if self.crop_face: # left, upper, right, lower face_box = [entry['FACE_X'], entry['FACE_Y'], entry['FACE_X'] + entry['FACE_WIDTH'], entry['FACE_Y'] + entry['FACE_HEIGHT']] face_box = make_square_box(face_box) if square else face_box face_img = img.crop(face_box) else: face_img = img return face_img def _get_tensor_from_entries(self, entries): imgs = [self._get_face_img_from_entry(entry) for _, entry in entries.iterrows()] tensors = torch.stack([ self.transform(img) for img in imgs ]) return tensors def __getitem__(self, idx): t1, t2 = self.comparisons.iloc[idx] t1_entries, t2_entries = self.metadata.loc[[t1]], self.metadata.loc[[t2]] if self.only_first_image: t1_entries, t2_entries = t1_entries.iloc[:1], t2_entries.iloc[:1] t1_tensors = self._get_tensor_from_entries(t1_entries) t2_tensors = self._get_tensor_from_entries(t2_entries) if self.only_first_image: t1_tensors, t2_tensors = t1_tensors.squeeze(0), t2_tensors.squeeze(0) s1, s2 = t1_entries['SUBJECT_ID'].iloc[0], t2_entries['SUBJECT_ID'].iloc[0] is_same = 1 if (s1 == s2) else 0 return { "comparison_idx": idx, "t1_tensors": t1_tensors, "t2_tensors": t2_tensors, "is_same": is_same, } def __len__(self): return len(self.comparisons) class ARVerificationAllPathDataset(Dataset): '/tmp3/biolin/datasets/face/ARFace/test2' def __init__(self, dataset_root='/tmp2/zhe2325138/dataset/ARFace/mtcnn_aligned_and_cropped/'): self.dataset_root = dataset_root self.face_image_paths = sorted(glob(op.join(self.dataset_root, '*.png'))) self.transforms = transforms.Compose([ transforms.Resize([112, 112]), transforms.ToTensor(), transforms.Normalize([.5, .5, .5], [.5, .5, .5]), ]) def __getitem__(self, idx): fpath = self.face_image_paths[idx] fname, _ = op.splitext(op.basename(fpath)) image = Image.open(fpath) image_tensor = self.transforms(image) return { 'image_tensor': image_tensor, 'fname': fname } def __len__(self): return len(self.face_image_paths) if __name__ == "__main__": with torch.no_grad(): # dataset = ENMDataset(config.FEAT_DIR, train=False, valSize=0.05) dataset = FaceFeatDataset(config.FEAT_DIR, train=False, valSize=0.2) print(dataset.train) print(dataset) # dataset1 = FaceFeatDataset(config.FEAT_DIR, train=True, valSize=0.2) siamese_val_dataset = SiameseWholeFace(dataset) (img1, img2), label = siamese_val_dataset[-1] print(img1.size(), img2.size(), label) for i in range(len(siamese_val_dataset)): if i == 5: break (img1, img2), label = siamese_val_dataset[i] print(img1.size(), img2.size(), label)
the-stack_106_31867
from pathlib import Path from typing import Dict def get_system_extra_hosts(extra_host_domain: str) -> Dict: extra_hosts = {} hosts_path = Path("/etc/hosts") if hosts_path.exists() and extra_host_domain != "undefined": with hosts_path.open() as hosts: for line in hosts: if extra_host_domain in line: host = line.split()[1] ip = line.split()[0] extra_hosts[host] = ip return extra_hosts
the-stack_106_31868
# -*- coding: utf-8 -*- """This module is deprecated.""" from cloudant.client import Cloudant from cloudant.error import CloudantException from cloudant.result import Result, ResultByKey from cloudant.query import Query from cloudant.document import Document import array_comparison as ac import time def get_database(dbname, user_name, password, url): client = Cloudant(user_name, password, url=url) client.connect() return client.get(dbname, remote=True) def add_gamestate_to_database(db, gamestate): # Adds a new gamestate to the database. print("Creating new entry to db") gamestate_dict = { "state": gamestate.state.tolist(), "rounds": gamestate.rounds_played, "weight": 0.7, "play_count": 0 } newDocument = db.create_document(gamestate_dict) if newDocument.exists(): print("Document {0} created".format(gamestate.id)) def get_states_for_round(database, round_number): # Query that returns all known moves for given round. selector = { "rounds": round_number } fields = [ "_id", "state", "weight", "play_count" ] query = Query(database, selector=selector, fields=fields) return [{ "_id": res["_id"], "state": res["state"], "weight": res["weight"], "play_count": res["play_count"] } for res in query.result] def get_state_from_database(db, gamestate): states = get_states_for_round(db, gamestate.rounds_played) for state in states: if ac.are_sqr_arrays_equal(state["state"], gamestate.state): return state def update_document(db, state_dict): with Document(db, state_dict["_id"]) as doc: doc["weight"] = state_dict["weight"] doc["play_count"] = state_dict["play_count"] time.sleep(1)
the-stack_106_31869
""" Copyright 2019-present Han Seokhyeon. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ #-*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from datetime import datetime def save_data(loss_acc, test_loss, test_acc): data = np.array(loss_acc) test = np.zeros((2, data.shape[1])) data = np.concatenate((data, test)) data[4, 0] = test_loss data[5, 0] = test_acc now = datetime.now() filename = "./result/{}.csv".format(str(now)[:-7]) np.savetxt(filename, data, delimiter=',', newline='\n') return def plot_data(loss_acc, test_loss, test_acc): data = np.array(loss_acc) fig, ax1 = plt.subplots() plt.title("Train data") ax1.set_xlabel("Epoch") # ax1.set_xticks(range(data.shape[1])) ax1.set_ylabel("Loss") ax1.plot(data[0], label='train') ax1.plot(data[2], label='valid') ax2 = ax1.twinx() ax2.set_ylabel("Accuracy") ax2.plot(data[1], label='train') ax2.plot(data[3], label='valid') plt.text(0.85, 0.5, "Test acc:{:.4f}".format(test_acc), ha='center', va='center', transform=ax2.transAxes) plt.grid() plt.legend() plt.show() now = datetime.now() filename = "./result/{}.png".format(str(now)[:-7]) fig.savefig(filename) return
the-stack_106_31870
# Copyright 2022, Lefebvre Dalloz Services # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import zlib import requests from transformers import AutoTokenizer, PreTrainedTokenizer, TensorType from transformer_deploy.benchmarks.utils import print_timings, setup_logging, track_infer_time setup_logging() tokenizer: PreTrainedTokenizer = AutoTokenizer.from_pretrained("philschmid/MiniLM-L6-H384-uncased-sst2") tokens = tokenizer( text="This live event is great. I will sign-up for Infinity.", max_length=16, truncation=True, return_tensors=TensorType.NUMPY, ) # https://github.com/triton-inference-server/server/blob/main/docs/protocol/extension_classification.md url = "http://127.0.0.1:8000/v2/models/transformer_onnx_model/versions/1/infer" message = { "id": "42", "inputs": [ { "name": "input_ids", "shape": tokens["input_ids"].shape, "datatype": "INT64", "data": tokens["input_ids"].tolist(), }, { "name": "token_type_ids", "shape": tokens["token_type_ids"].shape, "datatype": "INT64", "data": tokens["token_type_ids"].tolist(), }, { "name": "attention_mask", "shape": tokens["attention_mask"].shape, "datatype": "INT64", "data": tokens["attention_mask"].tolist(), }, ], "outputs": [ { "name": "output", "parameters": {"binary_data": False}, } ], } time_buffer = list() session = requests.Session() for _ in range(10000): bytes_message = bytes(json.dumps(message), encoding="raw_unicode_escape") request_body = zlib.compress(bytes_message) _ = session.post( url, data=request_body, headers={ "Content-Encoding": "gzip", "Accept-Encoding": "gzip", "Inference-Header-Content-Length": str(len(bytes_message)), }, ) for _ in range(100): with track_infer_time(time_buffer): bytes_message = bytes(json.dumps(message), encoding="raw_unicode_escape") request_body = zlib.compress(bytes_message) _ = session.post( url, data=request_body, headers={ "Content-Encoding": "gzip", "Accept-Encoding": "gzip", "Inference-Header-Content-Length": str(len(bytes_message)), }, ) print_timings(name="triton (onnx backend) - requests", timings=time_buffer)
the-stack_106_31871
#!/usr/bin/env python3 import re import sys def imm_to_bin(num: str, bits: int, signed: bool=False) -> str: """Convert a number to a binary string Args: num: The number to be converted to binary. Can be either Hexadecimal, decimal or binary. bits: The number of bits of the binary value returned signed: True if the resulting value should be signed Returns: String representing the number in binary """ # hexadecimal if "0x" in num: num = int(num, 16) # binary elif "0b" in num: num = int(num, 2) # decimal else: num = int(num) # check that the immediate is in range to fit in the bits if signed: maximum = 2 ** (bits - 1) - 1 minimum = -1 * maximum - 1 else: maximum = 2 ** bits - 1 minimum = 0 if not minimum <= int(num) <= maximum: raise ValueError("Immediate {} out of range {} to {}" .format(num, minimum, maximum)) # convert to binary if num < 0: bitmask = 2 ** bits - 1 num = -num return bin((bitmask ^ num) + 1)[2:] else: return bin(num)[2:].zfill(bits) def convert_pseudoinstructions(code: [str]) -> [str]: """Convert .spaces to .fill 0's and movis to lui+llis""" newcode = [] for line in code: m = re.match(r"^(\w+:)?(?:\s+)?(\.?\w+)\s?(.*)\s?", line) label, operation, args = m[1], m[2], m[3] if label is None: label = "" if operation == ".space": newcode.append("{} .fill 0".format(label)) for i in range(int(args) - 1): newcode.append(".fill 0") elif operation == "movi": regA, imm = args.split(",") newcode.append("{} lui {},{}".format(label, regA, int(imm) // 64)) newcode.append("lli {},{}".format(regA, int(imm) % 64)) else: newcode.append(line) return newcode def assemble_line(line: str) -> str: """Convert the assembly instruction to executable machine code Args: line: The instruction to be assembled Returns: The machine code value as a binary string """ m = re.match(r"^(\w+:)?(?:\s+)?(\.?\w+)\s?(.*)\s?", line) label, operation, args = m[1], m[2], m[3] opcode = {"add": "000", "addi": "001", "nand": "010", "lui": "011", "sw": "100", "lw": "101", "beq": "110", "jalr": "111"}.get(operation) # RRR-type if operation in ("add", "nand"): regA, regB, regC = (imm_to_bin(n, 3) for n in args.split(",")) return opcode + regA + regB + "0000" + regC # RRI-type elif operation in ("addi", "sw", "lw", "beq", "jalr"): regA, regB, imm = args.split(",") return opcode + imm_to_bin(regA, 3) + imm_to_bin(regB, 3)\ + imm_to_bin(imm, 7, True) # RI-type elif operation == "lui": regA, imm = args.split(",") return opcode + imm_to_bin(regA, 3) + imm_to_bin(imm, 10) # pseudo-instructions elif operation == "nop": return "00000000000000000" elif operation == "halt": return "111000000" + imm_to_bin("1", 7) elif operation == "lli": regA, imm = args.split(",") return "001" + imm_to_bin(regA, 3) * 2 + "0" + imm_to_bin(imm, 6) elif operation == ".fill": return imm_to_bin(args, 16, True) def has_code(line: str) -> bool: """ Return True if there's code on the line (so it's not a comment or an empty line). """ return not line.strip().startswith("#") or (line.strip() == "") def assemble_code(code: [str]) -> [str]: """Convert the assembly source code to machine code Args: code: the source code in RiSC-16 assembly Returns: RiSC-16 machine code """ # strip empty lines and unnecessary whitespace code = (line.strip() for line in code if has_code(line)) code = convert_pseudoinstructions(code) # find the linenumbers for all the labels in the code for branching LABELS = dict(map(lambda x: (x[1].partition(":")[0], x[0]), list(filter(lambda x: x[1].partition(" ")[0].endswith(":"), enumerate(code))))) machinecode = [] for line in code: try: print("assembling '{}'".format(line)) machinecode.append(assemble_line(line)) print(machinecode[-1]) except Exception as e: print("Error on line '{}': {}".format(line, e)) return return machinecode def main(): if len(sys.argv) <= 1: print("Missing arguments") return with open(sys.argv[1]) as f: code = f.read().splitlines() try: outfile = sys.argv[2] except IndexError: outfile = sys.argv[1].partition(".")[0] with open(outfile, "w") as f: f.write("\n".join(assemble_code(code))) if __name__ == "__main__": main()
the-stack_106_31872
from django.db import models, transaction from django.forms.models import model_to_dict from .element import Element from .team import Team from typing import List, Dict, Any import hashlib import json class ElementGroupManager(models.Manager): def _hash_elements(self, elements: List) -> str: elements_list: List[Dict] = [] for element in elements: el_dict = model_to_dict(element) [el_dict.pop(key) for key in ["event", "id", "group"]] elements_list.append(el_dict) return hashlib.md5(json.dumps(elements_list, sort_keys=True, default=str).encode("utf-8")).hexdigest() def create(self, *args: Any, **kwargs: Any): elements = kwargs.pop("elements") with transaction.atomic(): kwargs["hash"] = self._hash_elements(elements) try: with transaction.atomic(): group = super().create(*args, **kwargs) except: return ElementGroup.objects.get( hash=kwargs["hash"], team_id=kwargs["team"].pk if kwargs.get("team") else kwargs["team_id"], ) for element in elements: element.group = group for element in elements: setattr(element, "pk", None) Element.objects.bulk_create(elements) return group class ElementGroup(models.Model): class Meta: constraints = [models.UniqueConstraint(fields=["team", "hash"], name="unique hash for each team")] team: models.ForeignKey = models.ForeignKey(Team, on_delete=models.CASCADE) hash: models.CharField = models.CharField(max_length=400, null=True, blank=True) objects = ElementGroupManager()
the-stack_106_31873
# # Command Generator # # Send SNMP GET request using the following options: # # * with SNMPv3 with user 'usr-md5-des', MD5 auth and DES privacy protocols # * use remote SNMP Engine ID 0x80004fb805636c6f75644dab22cc (USM # autodiscovery will run) # * over IPv4/UDP # * to an Agent at demo.snmplabs.com:161 # * setting SNMPv2-MIB::sysName.0 to new value (type taken from MIB) # from pysnmp.entity.rfc3413.oneliner import cmdgen from pysnmp.proto import rfc1902 cmdGen = cmdgen.CommandGenerator() errorIndication, errorStatus, errorIndex, varBinds = cmdGen.setCmd( cmdgen.UsmUserData( 'usr-md5-des', 'authkey1', 'privkey1', securityEngineId=rfc1902.OctetString( hexValue='80004fb805636c6f75644dab22cc' ) ), cmdgen.UdpTransportTarget(('demo.snmplabs.com', 161)), (cmdgen.MibVariable('SNMPv2-MIB', 'sysORDescr', 1), 'new system name'), ) # Check for errors and print out results if errorIndication: print(errorIndication) else: if errorStatus: print('%s at %s' % ( errorStatus.prettyPrint(), errorIndex and varBinds[int(errorIndex)-1][0] or '?' ) ) else: for name, val in varBinds: print('%s = %s' % (name.prettyPrint(), val.prettyPrint()))
the-stack_106_31875
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Super class to handle all operations related to base schema.""" from marshmallow import fields, post_dump from auth_api.models import ma class BaseSchema(ma.ModelSchema): # pylint: disable=too-many-ancestors """Base Schema.""" class Meta: # pylint: disable=too-few-public-methods """Meta class to declare any class attributes.""" datetimeformat = '%Y-%m-%dT%H:%M:%S+00:00' # Default output date format. created_by = fields.Function( lambda obj: f'{obj.created_by.firstname} {obj.created_by.lastname}' if obj.created_by else None ) modified_by = fields.Function( lambda obj: f'{obj.modified_by.firstname} {obj.modified_by.lastname}' if obj.modified_by else None ) @post_dump(pass_many=True) def _remove_empty(self, data, many): # pylint: disable=no-self-use """Remove all empty values and versions from the dumped dict.""" if not many: for key in list(data): if key == 'versions': data.pop(key) return { key: value for key, value in data.items() if value is not None } for item in data: for key in list(item): if (item[key] is None) or (key == 'versions'): item.pop(key) return data
the-stack_106_31877
from galaxy.workflow import render from .workflow_support import yaml_to_model TEST_WORKFLOW_YAML = """ steps: - type: "data_input" order_index: 0 tool_inputs: {"name": "input1"} position: {"top": 3, "left": 3} - type: "data_input" order_index: 1 tool_inputs: {"name": "input2"} position: {"top": 6, "left": 4} - type: "tool" tool_id: "cat1" order_index: 2 inputs: input1: connection: - "@output_step": 0 output_name: "di1" position: {"top": 13, "left": 10} - type: "tool" tool_id: "cat1" order_index: 3 inputs: input1: connection: - "@output_step": 0 output_name: "di1" position: {"top": 33, "left": 103} """ def test_render(): # Doesn't check anything about the render code - just exercises to # ensure that obvious errors aren't thrown. workflow_canvas = render.WorkflowCanvas() workflow = yaml_to_model(TEST_WORKFLOW_YAML) step_0, step_1, step_2, step_3 = workflow.steps workflow_canvas.populate_data_for_step( step_0, "input1", [], [{"name": "di1"}], ) workflow_canvas.populate_data_for_step( step_1, "input2", [], [{"name": "di1"}], ) workflow_canvas.populate_data_for_step( step_2, "cat wrapper", [{"name": "input1", "label": "i1"}], [{"name": "out1"}] ) workflow_canvas.populate_data_for_step( step_3, "cat wrapper", [{"name": "input1", "label": "i1"}], [{"name": "out1"}] ) workflow_canvas.add_steps() workflow_canvas.finish() assert workflow_canvas.canvas.tostring()