filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_31878
# -*- coding: utf-8 -*- class Customer(object): """Implementation of the 'Customer' model. The finicity customer record Attributes: id (string): Finicity’s ID for the customer username (string): The username associated with the customer first_name (string): The first name associated with the customer last_name (string): The last name associated with the customer mtype (CustomerTypeEnum): active or testing created_date (string): The date the customer was created """ # Create a mapping from Model property names to API property names _names = { "id":'id', "username":'username', "first_name":'firstName', "last_name":'lastName', "mtype":'type', "created_date":'createdDate' } def __init__(self, id=None, username=None, first_name=None, last_name=None, mtype=None, created_date=None, additional_properties = {}): """Constructor for the Customer class""" # Initialize members of the class self.id = id self.username = username self.first_name = first_name self.last_name = last_name self.mtype = mtype self.created_date = created_date # Add additional model properties to the instance self.additional_properties = additional_properties @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary id = dictionary.get('id') username = dictionary.get('username') first_name = dictionary.get('firstName') last_name = dictionary.get('lastName') mtype = dictionary.get('type') created_date = dictionary.get('createdDate') # Clean out expected properties from dictionary for key in cls._names.values(): if key in dictionary: del dictionary[key] # Return an object of this model return cls(id, username, first_name, last_name, mtype, created_date, dictionary)
the-stack_106_31882
"""scrapli.driver.network_driver""" import logging import re import warnings from abc import ABC, abstractmethod from collections import namedtuple from typing import Any, Dict, List, Optional, Union from scrapli.driver.generic_driver import GenericDriver from scrapli.exceptions import CouldNotAcquirePrivLevel, UnknownPrivLevel from scrapli.helper import get_prompt_pattern from scrapli.response import Response PrivilegeLevel = namedtuple( "PrivilegeLevel", "pattern " "name " "deescalate_priv " "deescalate " "escalate_priv " "escalate " "escalate_auth " "escalate_prompt " "requestable " "level", ) NoPrivLevel = PrivilegeLevel("", "", "", "", "", "", "", "", "", "") PRIVS: Dict[str, PrivilegeLevel] = {} LOG = logging.getLogger("scrapli_base") class NetworkDriver(GenericDriver, ABC): @abstractmethod def __init__( self, auth_secondary: str = "", **kwargs: Any, ): """ BaseNetworkDriver Object Args: auth_secondary: password to use for secondary authentication (enable) **kwargs: keyword args to pass to inherited class(es) Returns: N/A # noqa: DAR202 Raises: N/A """ super().__init__(**kwargs) self.auth_secondary = auth_secondary self.privs = PRIVS self.default_desired_priv: str = "" self._current_priv_level = NoPrivLevel self.textfsm_platform: str = "" self.genie_platform: str = "" self.failed_when_contains: List[str] = [] def _determine_current_priv(self, current_prompt: str) -> PrivilegeLevel: """ Determine current privilege level from prompt string Args: current_prompt: string of current prompt Returns: PrivilegeLevel: NamedTuple of current privilege level Raises: UnknownPrivLevel: if privilege level cannot be determined """ for priv_level in self.privs.values(): prompt_pattern = get_prompt_pattern("", priv_level.pattern) if re.search(prompt_pattern, current_prompt.encode()): return priv_level raise UnknownPrivLevel def _escalate(self) -> None: """ Escalate to the next privilege level up Args: N/A Returns: N/A # noqa: DAR202 Raises: UnknownPrivLevel: if priv level cant be attained TypeError: if invalid next prompt value """ current_priv = self._determine_current_priv(self.channel.get_prompt()) if not current_priv.escalate: return next_priv = self.privs.get(current_priv.escalate_priv, None) if next_priv is None: raise UnknownPrivLevel( f"Could not get next priv level, current priv is {current_priv.name}" ) next_prompt = next_priv.pattern if current_priv.escalate_auth: if not self.auth_secondary: err = ( "Privilege escalation generally requires an `auth_secondary` password, " "but none is set!" ) msg = f"***** {err} {'*' * (80 - len(err))}" fix = ( "scrapli will try to escalate privilege without entering a password but may " "fail.\nSet an `auth_secondary` password if your device requires a password to " "increase privilege, otherwise ignore this message." ) warning = "\n" + msg + "\n" + fix + "\n" + msg warnings.warn(warning) else: escalate_cmd: str = current_priv.escalate escalate_prompt: str = current_priv.escalate_prompt escalate_auth = self.auth_secondary if not isinstance(next_prompt, str): raise TypeError( f"got {type(next_prompt)} for {current_priv.name} escalate priv, " "expected str" ) self.channel.send_inputs_interact( [escalate_cmd, escalate_prompt, escalate_auth, next_prompt], hidden_response=True, ) self.channel.comms_prompt_pattern = next_priv.pattern return self.channel.comms_prompt_pattern = next_priv.pattern self.channel.send_input(current_priv.escalate) def _deescalate(self) -> None: """ Deescalate to the next privilege level down Args: N/A Returns: N/A # noqa: DAR202 Raises: UnknownPrivLevel: if no default priv level set to deescalate to """ current_priv = self._determine_current_priv(self.channel.get_prompt()) if current_priv.deescalate: next_priv = self.privs.get(current_priv.deescalate_priv, None) if not next_priv: raise UnknownPrivLevel( "NetworkDriver has no default priv levels, set them or use a network driver" ) self.channel.comms_prompt_pattern = next_priv.pattern self.channel.send_input(current_priv.deescalate) def acquire_priv(self, desired_priv: str) -> None: """ Acquire desired priv level Args: desired_priv: string name of desired privilege level (see scrapli.driver.<driver_category.device_type>.driver for levels) Returns: N/A # noqa: DAR202 Raises: CouldNotAcquirePrivLevel: if requested priv level not attained """ priv_attempt_counter = 0 while True: current_priv = self._determine_current_priv(self.channel.get_prompt()) if current_priv == self.privs[desired_priv]: self._current_priv_level = current_priv return if priv_attempt_counter > len(self.privs): raise CouldNotAcquirePrivLevel( f"Could not get to '{desired_priv}' privilege level." ) if current_priv.level > self.privs[desired_priv].level: self._deescalate() else: self._escalate() priv_attempt_counter += 1 def _update_response(self, response: Response) -> None: """ Update response with network driver specific data This happens here as the underlying channel provides a response object but is unaware of any of the network/platform specific attributes that may need to get updated Args: response: response to update Returns: N/A # noqa: DAR202 Raises: N/A """ response.textfsm_platform = self.textfsm_platform response.genie_platform = self.genie_platform def send_command( self, command: str, strip_prompt: bool = True, failed_when_contains: Optional[Union[str, List[str]]] = None, ) -> Response: """ Send a command Super method will raise TypeError if anything but a string is passed here! Args: command: string to send to device in privilege exec mode strip_prompt: True/False strip prompt from returned output failed_when_contains: string or list of strings indicating failure if found in response Returns: Response: Scrapli Response object Raises: N/A """ if self._current_priv_level.name != self.default_desired_priv: self.acquire_priv(self.default_desired_priv) if failed_when_contains is None: failed_when_contains = self.failed_when_contains response = super().send_command( command, strip_prompt=strip_prompt, failed_when_contains=failed_when_contains ) self._update_response(response) return response def send_commands( self, commands: List[str], strip_prompt: bool = True, failed_when_contains: Optional[Union[str, List[str]]] = None, ) -> List[Response]: """ Send multiple commands Super method will raise TypeError if anything but a list of strings is passed here! Args: commands: list of strings to send to device in privilege exec mode strip_prompt: True/False strip prompt from returned output failed_when_contains: string or list of strings indicating failure if found in response Returns: responses: list of Scrapli Response objects Raises: N/A """ if self._current_priv_level.name != self.default_desired_priv: self.acquire_priv(self.default_desired_priv) if failed_when_contains is None: failed_when_contains = self.failed_when_contains responses = super().send_commands( commands, strip_prompt=strip_prompt, failed_when_contains=failed_when_contains ) for response in responses: self._update_response(response) return responses def send_interactive(self, interact: List[str], hidden_response: bool = False) -> Response: """ Send inputs in an interactive fashion; used to handle prompts accepts inputs and looks for expected prompt; sends the appropriate response, then waits for the "finale" returns the results of the interaction could be "chained" together to respond to more than a "single" staged prompt Args: interact: list of four string elements representing... channel_input - initial input to send expected_prompt - prompt to expect after initial input response - response to prompt final_prompt - final prompt to expect hidden_response: True/False response is hidden (i.e. password input) Returns: Response: scrapli Response object Raises: N/A """ if self._current_priv_level.name != self.default_desired_priv: self.acquire_priv(self.default_desired_priv) response = self.channel.send_inputs_interact(interact, hidden_response) return response def send_configs( self, configs: Union[str, List[str]], strip_prompt: bool = True, failed_when_contains: Optional[Union[str, List[str]]] = None, ) -> List[Response]: """ Send configuration(s) Args: configs: string or list of strings to send to device in config mode strip_prompt: True/False strip prompt from returned output failed_when_contains: string or list of strings indicating failure if found in response Returns: responses: List of Scrape Response objects Raises: N/A """ if isinstance(configs, str): configs = [configs] self.acquire_priv("configuration") if failed_when_contains is None: failed_when_contains = self.failed_when_contains responses = [] for config in configs: responses.append( super().send_command( config, strip_prompt=strip_prompt, failed_when_contains=failed_when_contains ) ) for response in responses: self._update_response(response) self.acquire_priv(self.default_desired_priv) return responses
the-stack_106_31883
# # Copyright (c) 2017-2020 cTuning foundation. # See CK COPYRIGHT.txt for copyright details. # # See CK LICENSE for licensing details. # See CK COPYRIGHT for copyright details. # # Convert raw output of a GEMM test program to the CK format. # # Developer(s): # - Anton Lokhmotov, dividiti, 2017, 2020 # import json import os import re import struct def ck_preprocess(i): ck=i['ck_kernel'] rt=i['run_time'] meta=i['meta'] env=i['env'] new_env = {} files_to_push = [] if i['target_os_dict'].get('remote','') == 'yes' and env.get('CK_PUSH_LIBS_TO_REMOTE', 'yes').lower() == 'yes': lib_dir = i['deps']['library']['dict']['env'].get('CK_ENV_LIB_ARMCL') lib_name = i['deps']['library']['dict']['env'].get('CK_ENV_LIB_ARMCL_DYNAMIC_CORE_NAME') new_env['CK_ENV_ARMCL_CORE_LIB_PATH'] = os.path.join(lib_dir, 'lib', lib_name) files_to_push.append("$<<CK_ENV_ARMCL_CORE_LIB_PATH>>$") files_to_push.append("$<<CK_ENV_LIB_STDCPP_DYNAMIC>>$") return {'return': 0, 'new_env': new_env, 'run_input_files': files_to_push} def ck_postprocess(i): ck=i['ck_kernel'] rt=i['run_time'] env=i['env'] deps=i['deps'] # Dictionary to return. d={} # Load xOpenME output. r=ck.load_json_file({'json_file':rt['fine_grain_timer_file']}) if r['return']>0: return r d=r['dict'] drts=d.get('run_time_state',{}) # Save final environment variables (can be changed in the pipeline) d['env']={} for k in env: d['env'][k]=env[k] rr={} rr['return']=0 # Call process output vector r=ck.access({'action':'run', 'module_uoa':'script', 'data_uoa':'process-nntest', 'code':'output', 'func':'process', 'dict':{'file_in':d['env']['CK_OUT_RAW_DATA'], 'file_out':'tmp-ck-output.json', 'data':d, 'env':env, 'deps':deps}}) if r['return']>0: return r # Call dvdt prof script r=ck.access({'action':'run', 'module_uoa':'script', 'data_uoa':'ctuning.process.dvdt-prof', 'code':'dvdt_prof', 'func':'process', 'dict':{'file_in':rt['run_cmd_out1'], 'file_out':'tmp-dvdt-prof.json', 'data':d, 'env':env, 'deps':deps}}) if r['return']>0: return r # Call MALI HWC collector r=ck.access({'action':'run', 'module_uoa':'script', 'data_uoa': 'mali-hwc', 'code':'process', 'func':'read', 'dict':{'data':d, 'env':env, 'deps':deps, 'continue_if_no_file':'yes'}}) if r['return']==0: if env.get('CK_ADD_RAW_MALI_HWC','').lower()=='yes': d['mali_hwc']=r['hwc'] # Process total time total_time=0.0 if drts.get('time_setup',0.0)!=0.0: total_time+=drts['time_setup'] if drts.get('time_test',0.0)!=0.0: total_time+=drts['time_test'] d['execution_time']=total_time d['execution_time_kernel_0']=total_time # Calculate floating-point operations (flops) for C[M][N] = alpha * A[M][K] * B[K][N] + beta * C[M][N] # and then billion flops per second (GFLOPS). alpha = float(env.get('CK_GEMM_ALPHA', '1.0')) beta = float(env.get('CK_GEMM_BETA', '0.0')) K = int(env.get('CK_GEMM_K', '1024')) M = int(env.get('CK_GEMM_M', '1024')) N = int(env.get('CK_GEMM_N', '1024')) flops = 0 if alpha != 0.0: # multiply matrix A by matrix B flops += M * N * 2 * K if alpha != 1.0: # multiply by scalar alpha flops += M * N if beta != 0.0: if beta != 1.0: flops += M * N # multiply matrix C by scalar beta flops += M * N # add matrix (alpha A * B) and matrix (beta * C) Gflops = 1e-9 * flops GFLOPS = Gflops / drts['time_test'] ck.out('GFLOPS = {0:.3f}'.format(GFLOPS)) d['flops'] = flops d['Gflops'] = Gflops d['GFLOPS'] = GFLOPS if d.get('post_processed','')=='yes': r=ck.save_json_to_file({'json_file':rt['fine_grain_timer_file'], 'dict':d, 'sort_keys':'yes'}) if r['return']>0: return r else: rr['return']=1 rr['error']='failed to find required info in test output!' return rr def ck_check_output(i): ck=i['ck_kernel'] env=i.get('env',{}) r=ck.access({'action':'check_numerical', 'module_uoa':'program.output', 'file1':i['file1'], 'file2':i['file2'], 'abs_threshold':env.get('CK_ABS_DIFF_THRESHOLD','')}) return r # Do not add anything here!
the-stack_106_31884
#!/usr/bin/env python # -*- coding: utf-8 -*- from CTFd.utils import set_config from tests.helpers import * from freezegun import freeze_time def test_api_hint_404(): """Are admin protected resources accessible by admins/non-admins""" app = create_ctfd() endpoints = ['/api/v1/configs/{}', '/api/v1/challenges/types', '/api/v1/statistics/teams', '/api/v1/flags/{}', '/api/v1/statistics/users/{}', '/api/v1/configs', '/api/v1/statistics/challenges/solves/percentages', '/api/v1/tags/{}', '/api/v1/pages', '/api/v1/files/{}', '/api/v1/challenges/{}/tags', '/api/v1/hints', '/api/v1/challenges/{}/files', '/api/v1/flags', '/api/v1/submissions/{}', '/api/v1/challenges/{}/flags', '/api/v1/awards/{}', '/api/v1/unlocks', '/api/v1/challenges/{}/hints', '/api/v1/statistics/submissions/{}', '/api/v1/flags/types/{}', '/api/v1/tags', '/api/v1/statistics/challenges/{}', '/api/v1/files', '/api/v1/flags/types', '/api/v1/submissions', '/api/v1/pages/{}'] with app.app_context(): register_user(app) client = login_as_user(app) for endpoint in endpoints: r = client.get(endpoint.format(1)) assert r.status_code == 302 assert r.location.startswith('http://localhost/login') destroy_ctfd(app)
the-stack_106_31888
from django.contrib.postgres.search import SearchVector from celery import shared_task from .models import ProductSKU @shared_task def update_search_vector(obj_id): product = ProductSKU.objects.get(id=obj_id) product.search_vector = ( SearchVector('name', weight='A') + SearchVector('detail', weight='B') + SearchVector('summary', weight='C') ) print('search vector updated!')
the-stack_106_31889
#!/usr/bin/python3 import csv from operator import itemgetter import sys current_venue = "" current_bat = "" current_runs=0 current_deli=0 li=[] tot_list=[] for line in sys.stdin: line = line.strip() line_val = line.split(",") if(len(line_val)==5): venue, bat, runs, deli = line_val[0]+','+line_val[1], line_val[2], line_val[3], line_val[4] else: venue, bat, runs, deli = line_val[0], line_val[1], line_val[2], line_val[3] #print(venue, bat, runs,deli) try: runs=int(runs) deli=int(deli) except ValueError: continue if(current_venue == venue and current_bat == bat): current_runs += runs current_deli += deli else: if current_venue: li.extend([current_venue,current_bat,current_runs,current_deli]) #print(li) tot_list.append(li) current_venue = venue current_bat = bat current_runs = runs current_deli = deli li=[] if current_venue == venue and current_bat == bat: li.extend([current_venue,current_bat,current_runs,current_deli]) #print(li) tot_list.append(li) tot_list.sort() final_list=list(filter(lambda x:x[3]>=10,tot_list)) current_venue = final_list[0][0] hero=final_list[0][1] max_strike=(100*final_list[0][2])/final_list[0][3] max_runs=final_list[0][2] for l in final_list[1:]: strike=(100*l[2])/l[3] if(current_venue == l[0] and strike>max_strike): hero=l[1] max_runs=l[2] max_strike=strike elif(current_venue == l[0] and strike==max_strike and l[2]>max_runs): hero=l[1] max_runs=l[2] elif(l[0]!=current_venue): print(current_venue,',',hero,sep="") current_venue=l[0] hero=l[1] max_runs=l[2] max_strike=strike print(current_venue,',',hero,sep="") #print(l[0],',',l[1],',',l[2],',',l[3],strike)
the-stack_106_31893
import logging from typing import Optional from fastapi import Depends, HTTPException, status from fastapi.param_functions import Header from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials, SecurityScopes from fastapi.security import utils as security_utils from dependency_injector import wiring from karp import bootstrap, services from karp.domain import model from karp.services.auth_service import AuthService # from karp.auth.auth import auth from karp.errors import ClientErrorCodes, KarpError from .containers import WebAppContainer # bus = bootstrap.bootstrap() auth_scheme = HTTPBearer() logger = logging.getLogger("karp") def bearer_scheme(authorization=Header(None)): if not authorization: return None # authorization: str = authorization.get("Authorization") scheme, credentials = security_utils.get_authorization_scheme_param(authorization) if not (scheme and credentials): return None return HTTPAuthorizationCredentials(scheme=scheme, credentials=credentials) @wiring.inject def get_current_user( security_scopes: SecurityScopes, credentials: Optional[HTTPAuthorizationCredentials] = Depends(bearer_scheme), auth_service: AuthService = Depends(wiring.Provide[WebAppContainer.auth_service]), ) -> Optional[model.User]: if not credentials: return None if security_scopes.scopes: authenticate_value = f'Bearer scope="{security_scopes.scope_str}"' else: authenticate_value = "Bearer" credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": authenticate_value}, # code=ClientErrorCodes.NOT_PERMITTED, ) try: logger.debug( "webapp.app_config.get_current_user: Calling auth_service with credentials = %s", credentials, ) return auth_service.authenticate(credentials.scheme, credentials.credentials) except KarpError: raise credentials_exception
the-stack_106_31894
import _plotly_utils.basevalidators class NamelengthsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="namelengthsrc", parent_name="scatterpolargl.hoverlabel", **kwargs ): super(NamelengthsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
the-stack_106_31895
import os import unittest #import satsearch.config as config #from satsearch.scene import Scenes from datetime import datetime from satstac import utils class Test(unittest.TestCase): path = os.path.dirname(__file__) remote_url = 'https://landsat-stac.s3.amazonaws.com/catalog.json' def test_dict_merge(self): dict1 = { 'key1': { 'subkey1': 'val' } } dict2 = { 'key1': { 'subkey2': 'val' }, 'key2': 'val' } _dict = utils.dict_merge(dict1, dict2) assert('key1' in _dict) assert('key2' in _dict) assert('subkey1' in _dict['key1']) assert('subkey2' in _dict['key1']) _dict = utils.dict_merge(dict1, dict2, add_keys=False) assert('key1' in _dict) assert('key2' not in _dict) assert('subkey1' in _dict['key1']) assert('subkey2' not in _dict['key1']) def test_download_nosuchfile(self): with self.assertRaises(Exception): utils.download_file('http://nosuchfile') def test_get_s3_signed_url(self): url = utils.get_s3_signed_url(self.remote_url) assert(len(url) == 2) def test_get_s3_public_url(self): envs = dict(os.environ) if 'AWS_ACCESS_KEY_ID' in envs: del os.environ['AWS_ACCESS_KEY_ID'] if 'AWS_BUCKET_ACCESS_KEY_ID' in envs: del os.environ['AWS_BUCKET_ACCESS_KEY_ID'] url = utils.get_s3_signed_url(self.remote_url) assert(len(url) == 2) assert(url[0] == self.remote_url) assert(url[1] is None) os.environ.clear() os.environ.update(envs) def test_terminal_calendar(self): """ Get calendar """ events = { datetime(2018,1,1).date(): "event1", datetime(2018,4,25).date(): "event2" } cal = utils.terminal_calendar(events) self.assertEqual(len(cal), 1136) self.assertTrue(' 2018 ' in cal) self.assertTrue(' January ' in cal) self.assertTrue(' March ' in cal) def test_empty_terminal_calendar(self): cal = utils.terminal_calendar({}) print(cal)
the-stack_106_31896
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2018, KubeVirt Team <@kubevirt> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' module: k8s_auth short_description: Authenticate to Kubernetes clusters which require an explicit login step author: KubeVirt Team (@kubevirt) description: - "This module handles authenticating to Kubernetes clusters requiring I(explicit) authentication procedures, meaning ones where a client logs in (obtains an authentication token), performs API operations using said token and then logs out (revokes the token). An example of a Kubernetes distribution requiring this module is OpenShift." - "On the other hand a popular configuration for username+password authentication is one utilizing HTTP Basic Auth, which does not involve any additional login/logout steps (instead login credentials can be attached to each and every API call performed) and as such is handled directly by the C(k8s) module (and other resource–specific modules) by utilizing the C(host), C(username) and C(password) parameters. Please consult your preferred module's documentation for more details." options: state: description: - If set to I(present) connect to the API server using the URL specified in C(host) and attempt to log in. - If set to I(absent) attempt to log out by revoking the authentication token specified in C(api_key). default: present choices: - present - absent type: str host: description: - Provide a URL for accessing the API server. required: true type: str username: description: - Provide a username for authenticating with the API server. type: str password: description: - Provide a password for authenticating with the API server. type: str ca_cert: description: - "Path to a CA certificate file used to verify connection to the API server. The full certificate chain must be provided to avoid certificate validation errors." aliases: [ ssl_ca_cert ] type: path validate_certs: description: - "Whether or not to verify the API server's SSL certificates." type: bool default: true aliases: [ verify_ssl ] api_key: description: - When C(state) is set to I(absent), this specifies the token to revoke. type: str requirements: - python >= 2.7 - urllib3 - requests - requests-oauthlib ''' EXAMPLES = r''' - hosts: localhost module_defaults: group/k8s: host: https://k8s.example.com/ ca_cert: ca.pem tasks: - block: # It's good practice to store login credentials in a secure vault and not # directly in playbooks. - include_vars: k8s_passwords.yml - name: Log in (obtain access token) kubernetes.core.k8s_auth: username: admin password: "{{ k8s_admin_password }}" register: k8s_auth_results # Previous task provides the token/api_key, while all other parameters # are taken from module_defaults - name: Get a list of all pods from any namespace kubernetes.core.k8s_info: api_key: "{{ k8s_auth_results.k8s_auth.api_key }}" kind: Pod register: pod_list always: - name: If login succeeded, try to log out (revoke access token) when: k8s_auth_results.k8s_auth.api_key is defined kubernetes.core.k8s_auth: state: absent api_key: "{{ k8s_auth_results.k8s_auth.api_key }}" ''' # Returned value names need to match k8s modules parameter names, to make it # easy to pass returned values of k8s_auth to other k8s modules. # Discussion: https://github.com/ansible/ansible/pull/50807#discussion_r248827899 RETURN = r''' k8s_auth: description: Kubernetes authentication facts. returned: success type: complex contains: api_key: description: Authentication token. returned: success type: str host: description: URL for accessing the API server. returned: success type: str ca_cert: description: Path to a CA certificate file used to verify connection to the API server. returned: success type: str validate_certs: description: "Whether or not to verify the API server's SSL certificates." returned: success type: bool username: description: Username for authenticating with the API server. returned: success type: str ''' import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six.moves.urllib_parse import urlparse, parse_qs, urlencode # 3rd party imports try: import requests HAS_REQUESTS = True except ImportError: HAS_REQUESTS = False try: from requests_oauthlib import OAuth2Session HAS_REQUESTS_OAUTH = True except ImportError: HAS_REQUESTS_OAUTH = False try: from urllib3.util import make_headers HAS_URLLIB3 = True except ImportError: HAS_URLLIB3 = False K8S_AUTH_ARG_SPEC = { 'state': { 'default': 'present', 'choices': ['present', 'absent'], }, 'host': {'required': True}, 'username': {}, 'password': {'no_log': True}, 'ca_cert': {'type': 'path', 'aliases': ['ssl_ca_cert']}, 'validate_certs': { 'type': 'bool', 'default': True, 'aliases': ['verify_ssl'] }, 'api_key': {'no_log': True}, } class KubernetesAuthModule(AnsibleModule): def __init__(self): AnsibleModule.__init__( self, argument_spec=K8S_AUTH_ARG_SPEC, required_if=[ ('state', 'present', ['username', 'password']), ('state', 'absent', ['api_key']), ] ) if not HAS_REQUESTS: self.fail("This module requires the python 'requests' package. Try `pip install requests`.") if not HAS_REQUESTS_OAUTH: self.fail("This module requires the python 'requests-oauthlib' package. Try `pip install requests-oauthlib`.") if not HAS_URLLIB3: self.fail("This module requires the python 'urllib3' package. Try `pip install urllib3`.") def execute_module(self): state = self.params.get('state') verify_ssl = self.params.get('validate_certs') ssl_ca_cert = self.params.get('ca_cert') self.auth_username = self.params.get('username') self.auth_password = self.params.get('password') self.auth_api_key = self.params.get('api_key') self.con_host = self.params.get('host') # python-requests takes either a bool or a path to a ca file as the 'verify' param if verify_ssl and ssl_ca_cert: self.con_verify_ca = ssl_ca_cert # path else: self.con_verify_ca = verify_ssl # bool # Get needed info to access authorization APIs self.openshift_discover() if state == 'present': new_api_key = self.openshift_login() result = dict( host=self.con_host, validate_certs=verify_ssl, ca_cert=ssl_ca_cert, api_key=new_api_key, username=self.auth_username, ) else: self.openshift_logout() result = dict() self.exit_json(changed=False, k8s_auth=result) def openshift_discover(self): url = '{0}/.well-known/oauth-authorization-server'.format(self.con_host) ret = requests.get(url, verify=self.con_verify_ca) if ret.status_code != 200: self.fail_request("Couldn't find OpenShift's OAuth API", method='GET', url=url, reason=ret.reason, status_code=ret.status_code) try: oauth_info = ret.json() self.openshift_auth_endpoint = oauth_info['authorization_endpoint'] self.openshift_token_endpoint = oauth_info['token_endpoint'] except Exception: self.fail_json(msg="Something went wrong discovering OpenShift OAuth details.", exception=traceback.format_exc()) def openshift_login(self): os_oauth = OAuth2Session(client_id='openshift-challenging-client') authorization_url, state = os_oauth.authorization_url(self.openshift_auth_endpoint, state="1", code_challenge_method='S256') auth_headers = make_headers(basic_auth='{0}:{1}'.format(self.auth_username, self.auth_password)) # Request authorization code using basic auth credentials ret = os_oauth.get( authorization_url, headers={'X-Csrf-Token': state, 'authorization': auth_headers.get('authorization')}, verify=self.con_verify_ca, allow_redirects=False ) if ret.status_code != 302: self.fail_request("Authorization failed.", method='GET', url=authorization_url, reason=ret.reason, status_code=ret.status_code) # In here we have `code` and `state`, I think `code` is the important one qwargs = {} for k, v in parse_qs(urlparse(ret.headers['Location']).query).items(): qwargs[k] = v[0] qwargs['grant_type'] = 'authorization_code' # Using authorization code given to us in the Location header of the previous request, request a token ret = os_oauth.post( self.openshift_token_endpoint, headers={ 'Accept': 'application/json', 'Content-Type': 'application/x-www-form-urlencoded', # This is just base64 encoded 'openshift-challenging-client:' 'Authorization': 'Basic b3BlbnNoaWZ0LWNoYWxsZW5naW5nLWNsaWVudDo=' }, data=urlencode(qwargs), verify=self.con_verify_ca ) if ret.status_code != 200: self.fail_request("Failed to obtain an authorization token.", method='POST', url=self.openshift_token_endpoint, reason=ret.reason, status_code=ret.status_code) return ret.json()['access_token'] def openshift_logout(self): url = '{0}/apis/oauth.openshift.io/v1/oauthaccesstokens/{1}'.format(self.con_host, self.auth_api_key) headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer {0}'.format(self.auth_api_key) } json = { "apiVersion": "oauth.openshift.io/v1", "kind": "DeleteOptions" } requests.delete(url, headers=headers, json=json, verify=self.con_verify_ca) # Ignore errors, the token will time out eventually anyway def fail(self, msg=None): self.fail_json(msg=msg) def fail_request(self, msg, **kwargs): req_info = {} for k, v in kwargs.items(): req_info['req_' + k] = v self.fail_json(msg=msg, **req_info) def main(): module = KubernetesAuthModule() try: module.execute_module() except Exception as e: module.fail_json(msg=str(e), exception=traceback.format_exc()) if __name__ == '__main__': main()
the-stack_106_31898
""" Including Other Files ===================== FEE files may contain other files; to load another file, use the ``Include`` verb:: Include anchors.fee; """ from . import FEEVerb import lark import os PARSEOPTS = dict(use_helpers=True) GRAMMAR = """ ?start: action action: ESCAPED_STRING """ VERBS = ["Include", "IncludeFEA"] def _file_to_string_or_error(parser, filename): # Try it relative to current file basedir = os.path.dirname(parser.current_file) trypath = os.path.join(basedir, filename) for p in [trypath, filename]: if os.path.exists(p): with open(p) as f: return f.read() raise ValueError("Could not include file %s" % filename) class Include(FEEVerb): def ESCAPED_STRING(self, tok): return tok.value[1:-1] # slice removes "'s def action(self, args): (filename,) = args return self.parser.parseString(_file_to_string_or_error(self.parser, filename)) from fontFeatures.feaLib import FeaParser class IncludeFEA(Include): def action(self, args): (filename,) = args feaparser = FeaParser(_file_to_string_or_error(self.parser, filename)) feaparser.ff = parser.fontfeatures feaparser.parse()
the-stack_106_31899
import datetime from datetime import datetime import time import requests import pyttsx3 from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.common.keys import Keys import speech_recognition as spreg from selenium.webdriver.chrome.options import Options driver = webdriver.Chrome(executable_path=("D://chromedriver.exe")) username = "your username" userpassword = "your password" # Integrating speech module def speechmod(): recog = spreg.Recognizer() driver.quit() global text with spreg.Microphone() as source: print('Tell Something: ') speech = recog.listen(source) try: text = recog.recognize_google(speech) return text except spreg.UnknownValueError: speak('Unable to recognize the audio') # Integrating speak function def speak(text): engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[1].id) engine.say(text) engine.runAndWait() # Instagram login def instalogin(): try: driver.get("https://www.instagram.com/accounts/login/") time.sleep(2) login_id = driver.find_element_by_xpath('//*[@id="loginForm"]/div/div[1]/div/label/input') login_id.send_keys(username) time.sleep(1) password = driver.find_element_by_xpath('//*[@id="loginForm"]/div/div[2]/div/label/input') password.send_keys(userpassword) clicklog = driver.find_element_by_xpath('//*[@id="loginForm"]/div/div[3]') clicklog.click() time.sleep(3) saveinf = driver.find_element_by_xpath('//*[@id="react-root"]/section/main/div/div/div/section/div/button') saveinf.click() time.sleep(2) notnow = driver.find_element_by_xpath('/html/body/div[5]/div/div/div/div[3]/button[2]') notnow.click() except: speak("login failed") # Integrating count of message on instagram def instamsgcount(): instalogin() global count try: instamsg = driver.find_element_by_xpath( '//*[@id="react-root"]/section/nav/div[2]/div/div/div[3]/div/div[2]/a/div/div/div') count = int(instamsg.get_attribute('innerText')) msgtext = "You have " + str(count) + " total messages" speak(msgtext) print(msgtext) instamsg.click() if (count < 1): speak('you dont haave any new messages') except: speak('you dont have any new messages') # Integrating whose msg is there def messagedperson(): try: instamsgcount() time.sleep(7) arr = [] for i in range(1, count + 1): nameofrecent = driver.find_element_by_xpath( '/html/body/div[1]/section/div/div[2]/div/div/div[1]/div[2]/div/div/div/div/div[' + str( i) + ']/a/div/div[2]/div[1]/div/div/div/div') ++i nameofrecent.click() time.sleep(5) personnn = driver.find_element_by_xpath( '//*[@id="react-root"]/section/div/div[2]/div/div/div[2]/div[1]/div/div/div[2]/div/div[2]/button/div/div/div') personnn.click() time.sleep(3) personname = driver.find_element_by_xpath('//*[@id="react-root"]/section/main/div/header/section/div[2]/h1') PNAME = personname.get_attribute('innerHTML') arr.append(PNAME) speak("you have messages from , ") for i in arr: speak(i) print(i) except: speak('you dont have any new messages') messagedperson()
the-stack_106_31901
import pytest from vending_machine.hoge.vending_machine import VendingMachine # 自販機に金額を投入できることを確認するテスト def test_insert_money(): vending_machine = VendingMachine() vending_machine.insert(100) # 【Vending Machineの機能】10円、100円、XX ## テスト内容:指定された金額は受け入れて、それ以外はErrorを起こすテスト insert_money_list = [ (10), (50), (100), (500), (1000), ] @pytest.mark.parametrize("money", insert_money_list) def test_valid_money(money): """ 正しい金額が設定されていることを確認するテスト関数 """ # 自販機の入力金額を読み取る関数を設置 result = VendingMachine().check_insert_money(money) assert result def test_invalid_money(): """ 不正の金額が設定されていることを確認するテスト関数 """ insert_money = 200 # 自販機の入力金額を読み取る関数を設置 result = VendingMachine().check_insert_money(insert_money) assert not result def test_multi_insert_money(): """ 複数回投入 """ vending_machine = VendingMachine() money = {10: 1, 50: 0, 100: 1, 500: 0, 1000: 0} vending_machine.insert(money) assert True def test_total_money(): """ 投入金額の総計 """ vending_machine = VendingMachine() money = {10: 1, 50: 0, 100: 1, 500: 0, 1000: 0} vending_machine.insert(money) actual = vending_machine.get_total() expected = 0 assert actual == expected # 複数回投入 # 投入・投入金額の総計 # insert_money = [100,100] # def test_get_num_money(): # assert count(insert_mon) # def test_get_total_money(): # assert sum(insert_money) # 複数回メソッドを呼べるようにする。入れた回数分お金を集計できているかテスト ## # 払い戻しXX # 払い戻しができるかテスト、投入金額の数値が返ってくるかテスト
the-stack_106_31902
from datetime import date start = date(2020, 1, 1) today = date.today() delta = today - start if (delta.days < 101): print("Today is day {}".format(delta.days)) else: print('100 Days of Code sprint has ended')
the-stack_106_31903
from django.db.models.fields.related import ManyToOneRel from django.conf import settings from django_filters import FilterSet, Filter from django_filters.filterset import get_model_field from django.contrib.gis import forms from .settings import app_settings, API_SRID from .widgets import HiddenGeometryWidget class PolygonFilter(Filter): field_class = forms.PolygonField def __init__(self, *args, **kwargs): kwargs.setdefault('field_name', app_settings['GEOM_FIELD_NAME']) kwargs.setdefault('widget', HiddenGeometryWidget) kwargs.setdefault('lookup_expr', 'intersects') super(PolygonFilter, self).__init__(*args, **kwargs) class PythonPolygonFilter(PolygonFilter): def filter(self, qs, value): if not value: return qs if not value.srid: value.srid = API_SRID value.transform(settings.SRID) filtered = [] for o in qs.all(): geom = getattr(o, self.field_name) if geom and geom.valid and not geom.empty: if getattr(geom, self.lookup_expr)(value): filtered.append(o.pk) else: filtered.append(o.pk) return qs.filter(pk__in=filtered) class BaseMapEntityFilterSet(FilterSet): def __init__(self, *args, **kwargs): super(BaseMapEntityFilterSet, self).__init__(*args, **kwargs) self.__bypass_labels() def __bypass_labels(self): """ These hacks allow to bypass field labels. Using either placeholders, empty choices label, etc. This allows to greatly save space in form layout, which is required for concise filter forms. """ for fieldname in self.base_filters.keys(): field = self.form.fields[fieldname] if isinstance(field, forms.MultiValueField): for i, widget in enumerate(field.widget.widgets): self.__set_placeholder(field.fields[i], widget) elif isinstance(field, forms.ChoiceField): field.empty_label = field.label self.__set_placeholder(field, field.widget) elif isinstance(field, forms.NullBooleanField): choices = [(u'1', field.label)] + field.widget.choices[1:] field.widget.choices = choices self.__set_placeholder(field, field.widget) else: self.__set_placeholder(field, field.widget) def __set_placeholder(self, field, widget): field.help_text = '' # Hide help text widget.attrs['placeholder'] = field.label widget.attrs['data-placeholder'] = field.label widget.attrs['title'] = field.label widget.attrs['data-label'] = field.label @classmethod def add_filter(cls, name, filter_=None): field = get_model_field(cls._meta.model, name) if filter_ is None: if isinstance(field, ManyToOneRel): filter_ = cls.filter_for_reverse_field(field, name) else: filter_ = cls.filter_for_field(field, name) cls.base_filters[name] = filter_ @classmethod def add_filters(cls, filters): for name, filter_ in filters.items(): filter_.field_name = name cls.add_filter(name, filter_) class MapEntityFilterSet(BaseMapEntityFilterSet): bbox = PolygonFilter() class Meta: fields = ['bbox']
the-stack_106_31904
from itertools import zip_longest from typing import Callable, Dict import urllib3 import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * from gql import Client, gql from gql.transport.requests import RequestsHTTPTransport # Disable insecure warnings urllib3.disable_warnings() CAST_MAPPING: Dict[str, Callable] = { 'string': str, 'boolean': bool, 'number': arg_to_number, } def execute_query(client: Client, args: Dict) -> CommandResults: query = gql(args.get('query')) variables_names = argToList(args.get('variables_names', '')) variables_values = argToList(args.get('variables_values', '')) variables_types = argToList(args.get('variables_types', '')) if len(variables_names) != len(variables_values) or \ (variables_types and len(variables_types) != len(variables_values)): raise ValueError('The variable lists are not in the same length') variables = {} for variable_name, variable_value, variable_type in zip_longest(variables_names, variables_values, variables_types): if variable_type: variable_value = CAST_MAPPING[variable_type](variable_value) elif variable_value.isdigit(): variable_value = int(variable_value) elif variable_value.lower() in {'true', 'false'}: variable_value = bool(variable_value) variables[variable_name] = variable_value result = client.execute(query, variable_values=variables) if (result_size := sys.getsizeof(result)) > (max_result_size := float(args.get('max_result_size', 10))) * 10000: raise ValueError(f'Result size {result_size / 10000} KBs is larger then max result size {max_result_size} KBs') command_results_args = { 'readable_output': tableToMarkdown('GraphQL Query Results', result), 'raw_response': result, 'outputs': result if argToBoolean(args.get('populate_context_data')) else None, 'outputs_prefix': 'GraphQL' } if args.get('outputs_key_field'): command_results_args['outputs_key_field'] = args.get('outputs_key_field') return CommandResults(**command_results_args) def main() -> None: command = demisto.command() try: params = demisto.params() request_params = { 'url': params.get('url'), 'verify': not params.get('insecure', False), 'retries': 3, } if credentials := params.get('credentials'): if (identifier := credentials.get('identifier', '')).startswith('_header:'): header_name = identifier.split('_header:')[1] header_value = credentials.get('password', '') request_params['headers'] = {header_name: header_value} else: request_params['auth'] = (identifier, credentials.get('password')) transport = RequestsHTTPTransport(**request_params) handle_proxy() fetch_schema_from_transport = params.get('fetch_schema_from_transport', True) if fetch_schema_from_transport is None: fetch_schema_from_transport = True client = Client( transport=transport, fetch_schema_from_transport=fetch_schema_from_transport, ) demisto.debug(f'Command being called is {command}') if command == 'test-module': with client as session: session.fetch_schema() return_results('ok') elif command == 'graphql-query': return_results(execute_query(client, demisto.args())) elif command == 'graphql-mutation': return_results(execute_query(client, demisto.args())) else: raise NotImplementedError(f"Received an un-supported command: {command}") except Exception as e: demisto.error(traceback.format_exc()) return_error(f'Failed to execute {command} command. Error: {str(e)}') if __name__ in ('__main__', '__builtin__', 'builtins'): main()
the-stack_106_31905
import os from torch.utils.data import Dataset import numpy as np import torch import torch.nn.functional as F import re class TextDataset(Dataset): def __init__(self, txt_path, mode='train', seq_len=50, n_steps=50): assert os.path.exists(txt_path), f"File not found {txt_path}\n" with open(txt_path, 'r') as txt: data = txt.read() self.int2char, self.char2int = self.get_lookup_tables(data) self.encoded = np.array([self.char2int[ch] for ch in data]) split_element = int(0.8 * len(self.encoded)) if mode == 'train': self.encoded = self.encoded[:split_element] else: self.encoded = self.encoded[split_element:] self.chars = tuple(self.char2int.keys()) self.batches = list(self.get_batches(self.encoded, seq_len, n_steps)) self.n_symbols = len(self.chars) def get_lookup_tables(self, text): chars = tuple(sorted(set(text))) int2char = dict(enumerate(chars)) char2int = {ch: ii for ii, ch in int2char.items()} return int2char, char2int def __len__(self): return len(self.batches) def get_batches(self, arr, n_seqs, n_steps): '''Create a generator that returns batches of size n_seqs x n_steps from arr. ''' batch_size = n_seqs * n_steps n_batches = len(arr) // batch_size # Keep only enough characters to make full batches arr = arr[:n_batches * batch_size] # Reshape into n_seqs rows arr = arr.reshape((n_seqs, -1)) for n in range(0, arr.shape[1], n_steps): # The features x = arr[:, n:n + n_steps] # The targets, shifted by one y = np.zeros_like(x) try: y[:, :-1], y[:, -1] = x[:, 1:], arr[:, n + n_steps] except IndexError: y[:, :-1], y[:, -1] = x[:, 1:], arr[:, 0] yield torch.from_numpy(x), torch.from_numpy(y) def __getitem__(self, item): inp, target = self.batches[item] inp = F.one_hot(inp, self.n_symbols).float() # inp, target = torch.from_numpy(inp), torch.from_numpy(target) return inp, target # TextDataset('data/arxiv_small.txt')
the-stack_106_31906
#!/usr/bin/env python3 import argparse from copy import deepcopy import time from botocore.exceptions import ClientError module_info = { # Name of the module (should be the same as the filename) 'name': 'elb__enum_logging', # Name and any other notes about the author 'author': 'Spencer Gietzen of Rhino Security Labs', # Category of the module. Make sure the name matches an existing category. 'category': 'EVADE', # One liner description of the module functionality. This shows up when a user searches for modules. 'one_liner': 'Collects a list of Elastic Load Balancers without access logging.', # Description about what the module does and how it works 'description': 'This module will enumerate all EC2 Elastic Load Balancers and save their data to the current session, as well as write a list of ELBs with logging disabled to ./sessions/[current_session_name]/downloads/elbs_no_logs_[timestamp].csv.', # A list of AWS services that the module utilizes during its execution 'services': ['ElasticLoadBalancing'], # For prerequisite modules, try and see if any existing modules return the data that is required for your module before writing that code yourself, that way, session data can stay separated and modular. 'prerequisite_modules': [], # Module arguments to autocomplete when the user hits tab 'arguments_to_autocomplete': ['--regions'], } parser = argparse.ArgumentParser(add_help=False, description=module_info['description']) parser.add_argument('--regions', required=False, default=None, help='One or more (comma separated) AWS regions in the format "us-east-1". Defaults to all session regions.') def main(args, pacu_main): session = pacu_main.get_active_session() args = parser.parse_args(args) print = pacu_main.print get_regions = pacu_main.get_regions if not args.regions: regions = get_regions('elasticloadbalancing') else: regions = args.regions.split(',') summary_data = {'load_balancers': 0} if 'LoadBalancers' not in session.EC2.keys(): ec2_data = deepcopy(session.EC2) ec2_data['LoadBalancers'] = [] session.update(pacu_main.database, EC2=ec2_data) load_balancers = list() for region in regions: print('Starting region {}...'.format(region)) client = pacu_main.get_boto3_client('elbv2', region) count = 0 response = None next_marker = False while (response is None or 'NextMarker' in response): try: if next_marker is False: response = client.describe_load_balancers() else: response = client.describe_load_balancers(Marker=next_marker) if 'NextMarker' in response: next_marker = response['NextMarker'] for load_balancer in response['LoadBalancers']: load_balancer['Region'] = region # Adding Attributes to current load balancer database load_balancer['Attributes'] = client.describe_load_balancer_attributes( LoadBalancerArn=load_balancer['LoadBalancerArn'] )['Attributes'] load_balancers.append(load_balancer) except ClientError as error: if error.response['Error']['Code'] == 'AccessDenied': print(' FAILURE: MISSING REQUIRED AWS PERMISSIONS') else: print(' {}'.format(error.response['Error']['Code'])) break if response and 'LoadBalancers' in response: count += len(response['LoadBalancers']) summary_data['load_balancers'] += count print(' {} load balancer(s) found '.format(count)) ec2_data = deepcopy(session.EC2) ec2_data['LoadBalancers'] = deepcopy(load_balancers) session.update(pacu_main.database, EC2=ec2_data) print('\n{} total load balancer(s) found.'.format(len(session.EC2['LoadBalancers']))) now = time.time() csv_file_path = 'sessions/{}/downloads/elbs_no_logs_{}.csv'.format(session.name, now) summary_data['csv_file_path'] = csv_file_path summary_data['logless'] = 0 with open(csv_file_path, 'w+') as csv_file: csv_file.write('Load Balancer Name,Load Balancer ARN,Region\n') for load_balancer in session.EC2['LoadBalancers']: for attribute in load_balancer['Attributes']: if attribute['Key'] == 'access_logs.s3.enabled': if attribute['Value'] is False or attribute['Value'] == 'false': csv_file.write('{},{},{}\n'.format(load_balancer['LoadBalancerName'], load_balancer['LoadBalancerArn'], load_balancer['Region'])) summary_data['logless'] += 1 return summary_data def summary(data, pacu_main): out = ' {} Load balancer(s) have been found\n'.format(data['load_balancers']) if data['logless'] > 0: out += ' {} Load balancer(s) found without logging\n'.format(data['logless']) out += ' List of Load balancers without logging saved to:\n {}\n'.format(data['csv_file_path']) return out
the-stack_106_31907
"""Test for tmuxp Server object.""" import logging from libtmux import Server from libtmux.common import has_gte_version logger = logging.getLogger(__name__) def test_has_session(server, session): assert server.has_session(session.get("session_name")) assert not server.has_session("asdf2314324321") def test_socket_name(server): """``-L`` socket_name. ``-L`` socket_name file name of socket. which will be stored in env TMUX_TMPDIR or /tmp if unset.) """ myserver = Server(socket_name="test") assert myserver.socket_name == "test" def test_socket_path(server): """``-S`` socket_path (alternative path for server socket).""" myserver = Server(socket_path="test") assert myserver.socket_path == "test" def test_config(server): """``-f`` file for tmux(1) configuration.""" myserver = Server(config_file="test") assert myserver.config_file == "test" def test_256_colors(server): myserver = Server(colors=256) assert myserver.colors == 256 print(myserver.colors) proc = myserver.cmd("list-sessions") print("list-sessions", proc) assert "-2" in proc.cmd assert "-8" not in proc.cmd def test_88_colors(server): myserver = Server(colors=88) assert myserver.colors == 88 proc = myserver.cmd("list-sessions") assert "-8" in proc.cmd assert "-2" not in proc.cmd def test_show_environment(server): """Server.show_environment() returns dict.""" _vars = server.show_environment() assert isinstance(_vars, dict) def test_set_show_environment_single(server, session): """Set environment then Server.show_environment(key).""" server.set_environment("FOO", "BAR") assert "BAR" == server.show_environment("FOO") server.set_environment("FOO", "DAR") assert "DAR" == server.show_environment("FOO") assert "DAR" == server.show_environment()["FOO"] def test_show_environment_not_set(server): """Unset environment variable returns None.""" assert server.show_environment("BAR") is None def test_new_session(server): """Server.new_session creates and returns valid session""" mysession = server.new_session("test_new_session") assert mysession.get("session_name") == "test_new_session" assert server.has_session("test_new_session") def test_new_session_shell(server): """Server.new_session creates and returns valid session running with specified command""" cmd = "sleep 1m" mysession = server.new_session("test_new_session", window_command=cmd) window = mysession.list_windows()[0] pane = window.list_panes()[0] assert mysession.get("session_name") == "test_new_session" assert server.has_session("test_new_session") if has_gte_version("3.2"): assert pane.get("pane_start_command").replace('"', "") == cmd else: assert pane.get("pane_start_command") == cmd
the-stack_106_31908
"""Check whether a file format is supported by BIDS and then load it.""" # Authors: Mainak Jas <[email protected]> # Alexandre Gramfort <[email protected]> # Teon Brooks <[email protected]> # Chris Holdgraf <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) import os.path as op import glob import json import re from datetime import datetime, timezone import numpy as np import mne from mne import io, read_events, events_from_annotations from mne.utils import has_nibabel, logger, warn from mne.coreg import fit_matched_points from mne.transforms import apply_trans from mne_bids.dig import _read_dig_bids from mne_bids.tsv_handler import _from_tsv, _drop from mne_bids.config import ALLOWED_DATATYPE_EXTENSIONS, reader, _map_options from mne_bids.utils import _extract_landmarks, _get_ch_type_mapping from mne_bids.path import (BIDSPath, _parse_ext, _find_matching_sidecar, _infer_datatype) def _read_raw(raw_fpath, electrode=None, hsp=None, hpi=None, allow_maxshield=False, config=None, verbose=None, **kwargs): """Read a raw file into MNE, making inferences based on extension.""" _, ext = _parse_ext(raw_fpath) # KIT systems if ext in ['.con', '.sqd']: raw = io.read_raw_kit(raw_fpath, elp=electrode, hsp=hsp, mrk=hpi, preload=False, **kwargs) # BTi systems elif ext == '.pdf': raw = io.read_raw_bti(raw_fpath, config_fname=config, head_shape_fname=hsp, preload=False, verbose=verbose, **kwargs) elif ext == '.fif': raw = reader[ext](raw_fpath, allow_maxshield, **kwargs) elif ext in ['.ds', '.vhdr', '.set', '.edf', '.bdf']: raw = reader[ext](raw_fpath, **kwargs) # MEF and NWB are allowed, but not yet implemented elif ext in ['.mef', '.nwb']: raise ValueError(f'Got "{ext}" as extension. This is an allowed ' f'extension but there is no IO support for this ' f'file format yet.') # No supported data found ... # --------------------------- else: raise ValueError(f'Raw file name extension must be one ' f'of {ALLOWED_DATATYPE_EXTENSIONS}\n' f'Got {ext}') return raw def _read_events(events_data, event_id, raw, verbose=None): """Retrieve events (for use in *_events.tsv) from FIFF/array & Annotations. Parameters ---------- events_data : str | np.ndarray | None If a string, a path to an events file. If an array, an MNE events array (shape n_events, 3). If None, events will be generated from ``raw.annotations``. event_id : dict | None The event id dict used to create a 'trial_type' column in events.tsv, mapping a description key to an integer-valued event code. raw : mne.io.Raw The data as MNE-Python Raw object. verbose : bool | str | int | None If not None, override default verbose level (see :func:`mne.verbose`). Returns ------- all_events : np.ndarray, shape = (n_events, 3) The first column contains the event time in samples and the third column contains the event id. The second column is ignored for now but typically contains the value of the trigger channel either immediately before the event or immediately after. all_dur : np.ndarray, shape (n_events,) The event durations in seconds. all_desc : dict A dictionary with the keys corresponding to the event descriptions and the values to the event IDs. """ # get events from events_data if isinstance(events_data, str): events = read_events(events_data, verbose=verbose).astype(int) elif isinstance(events_data, np.ndarray): if events_data.ndim != 2: raise ValueError('Events must have two dimensions, ' f'found {events_data.ndim}') if events_data.shape[1] != 3: raise ValueError('Events must have second dimension of length 3, ' f'found {events_data.shape[1]}') events = events_data else: events = np.empty(shape=(0, 3), dtype=int) if events.size > 0: # Only keep events for which we have an ID <> description mapping. ids_without_desc = set(events[:, 2]) - set(event_id.values()) if ids_without_desc: raise ValueError( f'No description was specified for the following event(s): ' f'{", ".join([str(x) for x in sorted(ids_without_desc)])}. ' f'Please add them to the event_id dictionary, or drop them ' f'from the events_data array.' ) del ids_without_desc mask = [e in list(event_id.values()) for e in events[:, 2]] events = events[mask] # Append events to raw.annotations. All event onsets are relative to # measurement beginning. id_to_desc_map = dict(zip(event_id.values(), event_id.keys())) # We don't pass `first_samp`, as set_annotations() below will take # care of this shift automatically. new_annotations = mne.annotations_from_events( events=events, sfreq=raw.info['sfreq'], event_desc=id_to_desc_map, orig_time=raw.annotations.orig_time, verbose=verbose) raw = raw.copy() # Don't alter the original. annotations = raw.annotations.copy() # We use `+=` here because `Annotations.__iadd__()` does the right # thing and also performs a sanity check on `Annotations.orig_time`. annotations += new_annotations raw.set_annotations(annotations) del id_to_desc_map, annotations, new_annotations # Now convert the Annotations to events. all_events, all_desc = events_from_annotations( raw, event_id=event_id, regexp=None, # Include `BAD_` and `EDGE_` Annotations, too. verbose=verbose ) all_dur = raw.annotations.duration if all_events.size == 0 and 'rest' not in raw.filenames[0]: warn('No events found or provided. Please add annotations ' 'to the raw data, or provide the events_data and ' 'event_id parameters. If this is resting state data ' 'it is recommended to name the task "rest".') return all_events, all_dur, all_desc def _handle_participants_reading(participants_fname, raw, subject, verbose=None): participants_tsv = _from_tsv(participants_fname) subjects = participants_tsv['participant_id'] row_ind = subjects.index(subject) # set data from participants tsv into subject_info for infokey, infovalue in participants_tsv.items(): if infokey == 'sex' or infokey == 'hand': value = _map_options(what=infokey, key=infovalue[row_ind], fro='bids', to='mne') # We don't know how to translate to MNE, so skip. if value is None: if infokey == 'sex': info_str = 'subject sex' else: info_str = 'subject handedness' warn(f'Unable to map `{infokey}` value to MNE. ' f'Not setting {info_str}.') else: value = infovalue[row_ind] # add data into raw.Info if raw.info['subject_info'] is None: raw.info['subject_info'] = dict() raw.info['subject_info'][infokey] = value return raw def _handle_scans_reading(scans_fname, raw, bids_path, verbose=False): """Read associated scans.tsv and set meas_date.""" scans_tsv = _from_tsv(scans_fname) fname = bids_path.fpath.name if fname.endswith('.pdf'): # for BTI files, the scan is an entire directory fname = fname.split('.')[0] # get the row corresponding to the file # use string concatenation instead of os.path # to work nicely with windows data_fname = bids_path.datatype + '/' + fname fnames = scans_tsv['filename'] acq_times = scans_tsv['acq_time'] row_ind = fnames.index(data_fname) # check whether all split files have the same acq_time # and throw an error if they don't if '_split-' in fname: split_idx = fname.find('split-') pattern = re.compile(bids_path.datatype + '/' + bids_path.basename[:split_idx] + r'split-\d+_' + bids_path.datatype + bids_path.fpath.suffix) split_fnames = list(filter(pattern.match, fnames)) split_acq_times = [] for split_f in split_fnames: split_acq_times.append(acq_times[fnames.index(split_f)]) if len(set(split_acq_times)) != 1: raise ValueError("Split files must have the same acq_time.") # extract the acquisition time from scans file acq_time = acq_times[row_ind] if acq_time != 'n/a': # microseconds in the acquisition time is optional if '.' not in acq_time: # acquisition time ends with '.%fZ' microseconds string acq_time += '.0Z' acq_time = datetime.strptime(acq_time, '%Y-%m-%dT%H:%M:%S.%fZ') acq_time = acq_time.replace(tzinfo=timezone.utc) if verbose: logger.debug(f'Loaded {scans_fname} scans file to set ' f'acq_time as {acq_time}.') raw.set_meas_date(acq_time) return raw def _handle_info_reading(sidecar_fname, raw, verbose=None): """Read associated sidecar.json and populate raw. Handle PowerLineFrequency of recording. """ with open(sidecar_fname, 'r', encoding='utf-8-sig') as fin: sidecar_json = json.load(fin) # read in the sidecar JSON's line frequency line_freq = sidecar_json.get("PowerLineFrequency") if line_freq == "n/a": line_freq = None if raw.info["line_freq"] is not None and line_freq is None: line_freq = raw.info["line_freq"] # take from file is present if raw.info["line_freq"] is not None and line_freq is not None: # if both have a set Power Line Frequency, then # check that they are the same, else there is a # discrepency in the metadata of the dataset. if raw.info["line_freq"] != line_freq: raise ValueError("Line frequency in sidecar json does " "not match the info datastructure of " "the mne.Raw. " "Raw is -> {} ".format(raw.info["line_freq"]), "Sidecar JSON is -> {} ".format(line_freq)) raw.info["line_freq"] = line_freq return raw def _handle_events_reading(events_fname, raw): """Read associated events.tsv and populate raw. Handle onset, duration, and description of each event. """ logger.info('Reading events from {}.'.format(events_fname)) events_dict = _from_tsv(events_fname) # Get the descriptions of the events if 'trial_type' in events_dict: trial_type_col_name = 'trial_type' elif 'stim_type' in events_dict: # Backward-compat with old datasets. trial_type_col_name = 'stim_type' warn(f'The events file, {events_fname}, contains a "stim_type" ' f'column. This column should be renamed to "trial_type" for ' f'BIDS compatibility.') else: trial_type_col_name = None if trial_type_col_name is not None: # Drop events unrelated to a trial type events_dict = _drop(events_dict, 'n/a', trial_type_col_name) if 'value' in events_dict: # Check whether the `trial_type` <> `value` mapping is unique. trial_types = events_dict[trial_type_col_name] values = np.asarray(events_dict['value'], dtype=str) for trial_type in np.unique(trial_types): idx = np.where(trial_type == np.atleast_1d(trial_types))[0] matching_values = values[idx] if len(np.unique(matching_values)) > 1: # Event type descriptors are ambiguous; create hierarchical # event descriptors. logger.info( f'The event "{trial_type}" refers to multiple event ' f'values. Creating hierarchical event names.') for ii in idx: new_name = f'{trial_type}/{values[ii]}' logger.info(f' Renaming event: {trial_type} -> ' f'{new_name}') trial_types[ii] = new_name descriptions = np.asarray(trial_types, dtype=str) else: descriptions = np.asarray(events_dict[trial_type_col_name], dtype=str) elif 'value' in events_dict: # If we don't have a proper description of the events, perhaps we have # at least an event value? # Drop events unrelated to value events_dict = _drop(events_dict, 'n/a', 'value') descriptions = np.asarray(events_dict['value'], dtype=str) # Worst case, we go with 'n/a' for all events else: descriptions = np.array(['n/a'] * len(events_dict['onset']), dtype=str) # Deal with "n/a" strings before converting to float ons = [np.nan if on == 'n/a' else on for on in events_dict['onset']] dus = [0 if du == 'n/a' else du for du in events_dict['duration']] onsets = np.asarray(ons, dtype=float) durations = np.asarray(dus, dtype=float) # Keep only events where onset is known good_events_idx = ~np.isnan(onsets) onsets = onsets[good_events_idx] durations = durations[good_events_idx] descriptions = descriptions[good_events_idx] del good_events_idx # Add Events to raw as annotations annot_from_events = mne.Annotations(onset=onsets, duration=durations, description=descriptions, orig_time=None) raw.set_annotations(annot_from_events) return raw def _get_bads_from_tsv_data(tsv_data): """Extract names of bads from data read from channels.tsv.""" idx = [] for ch_idx, status in enumerate(tsv_data['status']): if status.lower() == 'bad': idx.append(ch_idx) bads = [tsv_data['name'][i] for i in idx] return bads def _handle_channels_reading(channels_fname, raw): """Read associated channels.tsv and populate raw. Updates status (bad) and types of channels. """ logger.info('Reading channel info from {}.'.format(channels_fname)) channels_dict = _from_tsv(channels_fname) ch_names_tsv = channels_dict['name'] # Now we can do some work. # The "type" column is mandatory in BIDS. We can use it to set channel # types in the raw data using a mapping between channel types channel_type_dict = dict() # Get the best mapping we currently have from BIDS to MNE nomenclature bids_to_mne_ch_types = _get_ch_type_mapping(fro='bids', to='mne') ch_types_json = channels_dict['type'] for ch_name, ch_type in zip(ch_names_tsv, ch_types_json): # Try to map from BIDS nomenclature to MNE, leave channel type # untouched if we are uncertain updated_ch_type = bids_to_mne_ch_types.get(ch_type, None) if updated_ch_type is None: # XXX Try again with uppercase spelling – this should be removed # XXX once https://github.com/bids-standard/bids-validator/issues/1018 # noqa:E501 # XXX has been resolved. # XXX x-ref https://github.com/mne-tools/mne-bids/issues/481 updated_ch_type = bids_to_mne_ch_types.get(ch_type.upper(), None) if updated_ch_type is not None: msg = ('The BIDS dataset contains channel types in lowercase ' 'spelling. This violates the BIDS specification and ' 'will raise an error in the future.') warn(msg) if updated_ch_type is not None: channel_type_dict[ch_name] = updated_ch_type # Rename channels in loaded Raw to match those read from the BIDS sidecar for bids_ch_name, raw_ch_name in zip(ch_names_tsv, raw.ch_names.copy()): if bids_ch_name != raw_ch_name: raw.rename_channels({raw_ch_name: bids_ch_name}) # Set the channel types in the raw data according to channels.tsv raw.set_channel_types(channel_type_dict) # Set bad channels based on _channels.tsv sidecar if 'status' in channels_dict: bads = _get_bads_from_tsv_data(channels_dict) raw.info['bads'] = bads return raw def read_raw_bids(bids_path, extra_params=None, verbose=True): """Read BIDS compatible data. Will attempt to read associated events.tsv and channels.tsv files to populate the returned raw object with raw.annotations and raw.info['bads']. Parameters ---------- bids_path : mne_bids.BIDSPath The file to read. The :class:`mne_bids.BIDSPath` instance passed here **must** have the ``.root`` attribute set. The ``.datatype`` attribute **may** be set. If ``.datatype`` is not set and only one data type (e.g., only EEG or MEG data) is present in the dataset, it will be selected automatically. extra_params : None | dict Extra parameters to be passed to MNE read_raw_* functions. If a dict, for example: ``extra_params=dict(allow_maxshield=True)``. Note that the ``exclude`` parameter, which is supported by some MNE-Python readers, is not supported; instead, you need to subset your channels **after** reading. verbose : bool The verbosity level. Returns ------- raw : mne.io.Raw The data as MNE-Python Raw object. Raises ------ RuntimeError If multiple recording data types are present in the dataset, but ``datatype=None``. RuntimeError If more than one data files exist for the specified recording. RuntimeError If no data file in a supported format can be located. ValueError If the specified ``datatype`` cannot be found in the dataset. """ if not isinstance(bids_path, BIDSPath): raise RuntimeError('"bids_path" must be a BIDSPath object. Please ' 'instantiate using mne_bids.BIDSPath().') bids_path = bids_path.copy() sub = bids_path.subject ses = bids_path.session bids_root = bids_path.root datatype = bids_path.datatype suffix = bids_path.suffix # check root available if bids_root is None: raise ValueError('The root of the "bids_path" must be set. ' 'Please use `bids_path.update(root="<root>")` ' 'to set the root of the BIDS folder to read.') # infer the datatype and suffix if they are not present in the BIDSPath if datatype is None: datatype = _infer_datatype(root=bids_root, sub=sub, ses=ses) bids_path.update(datatype=datatype) if suffix is None: bids_path.update(suffix=datatype) data_dir = bids_path.directory bids_fname = bids_path.fpath.name if op.splitext(bids_fname)[1] == '.pdf': bids_raw_folder = op.join(data_dir, f'{bids_path.basename}') bids_fpath = glob.glob(op.join(bids_raw_folder, 'c,rf*'))[0] config = op.join(bids_raw_folder, 'config') else: bids_fpath = op.join(data_dir, bids_fname) config = None if extra_params is None: extra_params = dict() elif 'exclude' in extra_params: del extra_params['exclude'] logger.info('"exclude" parameter is not supported by read_raw_bids') raw = _read_raw(bids_fpath, electrode=None, hsp=None, hpi=None, config=config, verbose=None, **extra_params) # Try to find an associated events.tsv to get information about the # events in the recorded data events_fname = _find_matching_sidecar(bids_path, suffix='events', extension='.tsv', on_error='warn') if events_fname is not None: raw = _handle_events_reading(events_fname, raw) # Try to find an associated channels.tsv to get information about the # status and type of present channels channels_fname = _find_matching_sidecar(bids_path, suffix='channels', extension='.tsv', on_error='warn') if channels_fname is not None: raw = _handle_channels_reading(channels_fname, raw) # Try to find an associated electrodes.tsv and coordsystem.json # to get information about the status and type of present channels on_error = 'warn' if suffix == 'ieeg' else 'ignore' electrodes_fname = _find_matching_sidecar(bids_path, suffix='electrodes', extension='.tsv', on_error=on_error) coordsystem_fname = _find_matching_sidecar(bids_path, suffix='coordsystem', extension='.json', on_error=on_error) if electrodes_fname is not None: if coordsystem_fname is None: raise RuntimeError(f"BIDS mandates that the coordsystem.json " f"should exist if electrodes.tsv does. " f"Please create coordsystem.json for" f"{bids_path.basename}") if datatype in ['meg', 'eeg', 'ieeg']: _read_dig_bids(electrodes_fname, coordsystem_fname, raw=raw, datatype=datatype, verbose=verbose) # Try to find an associated sidecar .json to get information about the # recording snapshot sidecar_fname = _find_matching_sidecar(bids_path, suffix=datatype, extension='.json', on_error='warn') if sidecar_fname is not None: raw = _handle_info_reading(sidecar_fname, raw, verbose=verbose) # read in associated scans filename scans_fname = BIDSPath( subject=bids_path.subject, session=bids_path.session, suffix='scans', extension='.tsv', root=bids_path.root ).fpath if scans_fname.exists(): raw = _handle_scans_reading(scans_fname, raw, bids_path, verbose=verbose) # read in associated subject info from participants.tsv participants_tsv_fpath = op.join(bids_root, 'participants.tsv') subject = f"sub-{bids_path.subject}" if op.exists(participants_tsv_fpath): raw = _handle_participants_reading(participants_tsv_fpath, raw, subject, verbose=verbose) else: warn("Participants file not found for {}... Not reading " "in any particpants.tsv data.".format(bids_fname)) return raw def get_head_mri_trans(bids_path, extra_params=None): """Produce transformation matrix from MEG and MRI landmark points. Will attempt to read the landmarks of Nasion, LPA, and RPA from the sidecar files of (i) the MEG and (ii) the T1 weighted MRI data. The two sets of points will then be used to calculate a transformation matrix from head coordinates to MRI coordinates. Parameters ---------- bids_path : mne_bids.BIDSPath The path of the recording for which to retrieve the transformation. The :class:`mne_bids.BIDSPath` instance passed here **must** have the ``.root`` attribute set. extra_params : None | dict Extra parameters to be passed to MNE read_raw_* functions when reading the lankmarks from the MEG file. If a dict, for example: ``extra_params=dict(allow_maxshield=True)``. Returns ------- trans : mne.transforms.Transform The data transformation matrix from head to MRI coordinates """ if not has_nibabel(): # pragma: no cover raise ImportError('This function requires nibabel.') import nibabel as nib if not isinstance(bids_path, BIDSPath): raise RuntimeError('"bids_path" must be a BIDSPath object. Please ' 'instantiate using mne_bids.BIDSPath().') # check root available bids_path = bids_path.copy() bids_root = bids_path.root if bids_root is None: raise ValueError('The root of the "bids_path" must be set. ' 'Please use `bids_path.update(root="<root>")` ' 'to set the root of the BIDS folder to read.') # only get this for MEG data bids_path.update(datatype='meg') # Get the sidecar file for MRI landmarks bids_fname = bids_path.update(suffix='meg', root=bids_root) t1w_json_path = _find_matching_sidecar(bids_fname, suffix='T1w', extension='.json') # Get MRI landmarks from the JSON sidecar with open(t1w_json_path, 'r', encoding='utf-8-sig') as f: t1w_json = json.load(f) mri_coords_dict = t1w_json.get('AnatomicalLandmarkCoordinates', dict()) mri_landmarks = np.asarray((mri_coords_dict.get('LPA', np.nan), mri_coords_dict.get('NAS', np.nan), mri_coords_dict.get('RPA', np.nan))) if np.isnan(mri_landmarks).any(): raise RuntimeError('Could not parse T1w sidecar file: "{}"\n\n' 'The sidecar file MUST contain a key ' '"AnatomicalLandmarkCoordinates" pointing to a ' 'dict with keys "LPA", "NAS", "RPA". ' 'Yet, the following structure was found:\n\n"{}"' .format(t1w_json_path, t1w_json)) # The MRI landmarks are in "voxels". We need to convert the to the # neuromag RAS coordinate system in order to compare the with MEG landmarks # see also: `mne_bids.write.write_anat` t1w_path = t1w_json_path.replace('.json', '.nii') if not op.exists(t1w_path): t1w_path += '.gz' # perhaps it is .nii.gz? ... else raise an error if not op.exists(t1w_path): raise RuntimeError('Could not find the T1 weighted MRI associated ' 'with "{}". Tried: "{}" but it does not exist.' .format(t1w_json_path, t1w_path)) t1_nifti = nib.load(t1w_path) # Convert to MGH format to access vox2ras method t1_mgh = nib.MGHImage(t1_nifti.dataobj, t1_nifti.affine) # now extract transformation matrix and put back to RAS coordinates of MRI vox2ras_tkr = t1_mgh.header.get_vox2ras_tkr() mri_landmarks = apply_trans(vox2ras_tkr, mri_landmarks) mri_landmarks = mri_landmarks * 1e-3 # Get MEG landmarks from the raw file _, ext = _parse_ext(bids_fname) if extra_params is None: extra_params = dict() if ext == '.fif': extra_params = dict(allow_maxshield=True) raw = read_raw_bids(bids_path=bids_path, extra_params=extra_params) meg_coords_dict = _extract_landmarks(raw.info['dig']) meg_landmarks = np.asarray((meg_coords_dict['LPA'], meg_coords_dict['NAS'], meg_coords_dict['RPA'])) # Given the two sets of points, fit the transform trans_fitted = fit_matched_points(src_pts=meg_landmarks, tgt_pts=mri_landmarks) trans = mne.transforms.Transform(fro='head', to='mri', trans=trans_fitted) return trans
the-stack_106_31911
from v1_0.user_roles import anonymous_user, authenticated_user, bumblebee_user import time import unittest import adsmutils import datetime #resources as of [email protected] api_resources = { "adsws.accounts": { "base": "/v1/accounts", "endpoints": [ "/oauth/authorize", "/oauth/invalid/", "/oauth/errors/", "/oauth/token", "/oauth/ping/", "/oauth/ping/", "/oauth/info/", "/user/delete", "/change-password", "/change-email", "/bootstrap", "/protected", "/register", "/status", "/logout", "/ready", "/alive", "/token", "/csrf", "/user", "/reset-password/<string:token>", "/verify/<string:token>", "/info/<string:account_data>" ] }, "adsws.api": { "base": "/v1", "endpoints": [ "/alive", "/author-affiliation/alive", "/author-affiliation/export", "/author-affiliation/ready", "/author-affiliation/search", "/biblib/alive", "/biblib/classic", "/biblib/documents/<string:library>", "/biblib/libraries", "/biblib/libraries/operations/<string:library>", "/biblib/libraries/<string:library>", "/biblib/permissions/<string:library>", "/biblib/ready", "/biblib/resources", "/biblib/transfer/<string:library>", "/biblib/twopointoh", "/citation_helper/", "/citation_helper/alive", "/citation_helper/ready", "/export/aastex", "/export/aastex/<bibcode>", "/export/ads", "/export/ads/<bibcode>", "/export/alive", "/export/bibtex", "/export/bibtexabs", "/export/bibtexabs/<bibcode>", "/export/bibtex/<bibcode>", "/export/convert", "/export/csl", "/export/custom", "/export/dcxml", "/export/dcxml/<bibcode>", "/export/endnote", "/export/endnote/<bibcode>", "/export/icarus", "/export/icarus/<bibcode>", "/export/medlars", "/export/medlars/<bibcode>", "/export/mnras", "/export/mnras/<bibcode>", "/export/procite", "/export/procite/<bibcode>", "/export/ready", "/export/refabsxml", "/export/refabsxml/<bibcode>", "/export/refworks", "/export/refworks/<bibcode>", "/export/refxml", "/export/refxml/<bibcode>", "/export/ris", "/export/ris/<bibcode>", "/export/rss", "/export/rss/<bibcode>/", "/export/rss/<bibcode>/<path:link>", "/export/soph", "/export/soph/<bibcode>", "/export/votable", "/export/votable/<bibcode>", "/graphics/alive", "/graphics/ready", "/graphics/<string:bibcode>", "/harbour/alive", "/harbour/auth/classic", "/harbour/auth/twopointoh", "/harbour/export/twopointoh/<export>", "/harbour/libraries/classic/<int:uid>", "/harbour/libraries/twopointoh/<int:uid>", "/harbour/mirrors", "/harbour/myads/classic/<int:uid>", "/harbour/ready", "/harbour/user", "/harbour/version", "/metrics/", "/metrics/alive", "/metrics/ready", "/metrics/<string:bibcode>", "/oauth/authorize", "/oauth/errors/", "/oauth/info/", "/oauth/invalid/", "/oauth/ping/", "/oauth/ping/", "/oauth/token", "/objects/", "/objects/alive", "/objects/nedsrv", "/objects/query", "/objects/ready", "/objects/<string:objects>", "/objects/<string:objects>/<string:source>", "/orcid/alive", "/orcid/exchangeOAuthCode", "/orcid/export/<iso_datestring>", "/orcid/get-profile/<orcid_id>", "/orcid/<orcid_id>/orcid-profile", "/orcid/<orcid_id>/orcid-profile/<type>", "/orcid/<orcid_id>/orcid-work", "/orcid/<orcid_id>/orcid-works", "/orcid/<orcid_id>/orcid-works/<putcode>", "/orcid/orcid-name/<orcid_id>", "/orcid/preferences/<orcid_id>", "/orcid/ready", "/orcid/update-orcid-profile/<orcid_id>", "/orcid/update-status/<orcid_id>", "/protected", "/ready", "/reference/alive", "/reference/ready", "/reference/text", "/reference/text/<reference>", "/reference/xml", "/resolver/alive", "/resolver/<bibcode>", "/resolver/<bibcode>/<link_type>", "/resolver/<bibcode>/<link_type>:<path:id>", "/resolver/delete", "/resolver/ready", "/resolver/resources", "/resolver/update", "/search/alive", "/search/bigquery", "/search/qtree", "/search/query", "/search/ready", "/search/resources", "/search/status", "/search/tvrh", "/status", "/user/<string:identifier>", "/vault/alive", "/vault/configuration", "/vault/configuration/<key>", "/vault/execute_query/<queryid>", "/vault/get-myads/<user_id>", "/vault/myads-import", "/vault/myads-users/<iso_datestring>", "/vault/notifications", "/vault/notifications/<myads_id>", "/vault/query", "/vault/query2svg/<queryid>", "/vault/query/<queryid>", "/vault/ready", "/vault/user-data", "/vis/alive", "/vis/author-network", "/vis/paper-network", "/vis/ready", "/vis/word-cloud", ] }, "adsws.feedback": { "base": "/v1/feedback", "endpoints": [ "/oauth/authorize", "/oauth/invalid/", "/oauth/errors/", "/oauth/token", "/oauth/ping/", "/oauth/ping/", "/oauth/info/", "/ready", "/alive", "/slack" ] } } class CitationHelperServiceTest(unittest.TestCase): def test_resources(self): # /v1/resources doesn't exist (but I think it should exist) r = anonymous_user.get('/resources') assert r.status_code == 404 # the response is organized from the perspective of the ADS developer/ API maintainer # but API users probably expect to see something like: # { # '/v1': { # 'endpoints': [ # '/search/query' # ... # ] # }, # '/v2': { # 'endpoints': [ # '/search/newquery', # ... # ] # } # } # # If we run two versions of the API alongside, I don't see # how the current structure can communicate two different # 'bases' # hack to get to the resources url = '/'.join(anonymous_user.get_config('API_URL').split('/')[0:-1]) r = anonymous_user.get( url + '/resources') resources = r.json() for k, v in list(api_resources.items()): self.assertCountEqual(api_resources[k], resources[k]) def test_limits_authenticated(self): self.check_limits(user=authenticated_user) def test_limits_bbb(self): self.check_limits(user=bumblebee_user) def check_limits(self, user=authenticated_user): # Check the response contains Headers # and the limits are there r = user.get('/search/query', params={'q': 'title:"%s"' % time.time()}) assert r.headers['X-Ratelimit-Limit'] old_limit = int(r.headers['X-RateLimit-Remaining']) r = user.get('/search/query', params={'q': 'title:"%s"' % time.time()}) assert r.headers['X-RateLimit-Remaining'] == str(old_limit-1) assert 'X-RateLimit-Reset' in r.headers def test_bootstrap(self): expires = datetime.datetime.fromordinal(adsmutils.get_date().toordinal() + 5) params = {'expires': expires.isoformat(), 'ratelimit': 0.001, 'create_new' : False} r = authenticated_user.get('/accounts/bootstrap', params=params) a = r.json() r = anonymous_user.get('/accounts/bootstrap', params=params) b = r.json() # currently fails, it returns 'anonymous' for the # authenticated user if the user in db has empty 'is_active' column # also, the ratelimits must allow for more clients (i.e. be not fully # consumed) assert a['username'] != b['username'] assert a['access_token'] != b['access_token'] assert a['username'] == 'tester@ads' assert b['username'] == 'anonymous@ads' # repeating the bootstrap request should give you the # same access token for x in range(5): r = anonymous_user.get('/accounts/bootstrap', params=params, headers={'Authorization': 'Bearer %s' % b['access_token']}) assert r.json()['access_token'] == b['access_token'] for x in range(5): r = authenticated_user.get('/accounts/bootstrap', params=params) assert r.json()['access_token'] == a['access_token'] def test_crossx_headers(self): # XXX: this should be improved (but in general, the microservices # should test for headers that they require (e.g. Orcid-Authorization # is tested in orcid) for endpoint in [ '/accounts/bootstrap' ]: r = bumblebee_user.options(endpoint) # the value of this header will differ between staging and production assert 'access-control-allow-origin' in r.headers assert 'ui.adsabs.harvard.edu' in r.headers['access-control-allow-origin'] assert 'access-control-allow-headers' in r.headers assert r.headers['access-control-allow-headers'] if __name__ == '__main__': unittest.main()
the-stack_106_31912
import unittest import pandas as pd # from sklearn.datasets import load_boston import mesostat.utils.pandas_helper as ph class TestMetricAutocorr(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) data = [ ['cat', 5, 'F', 'Susan'], ['cat', 6, 'M', 'Johnny'], ['dog', 10, 'M', 'Bork'], ['dog', 12, 'F', 'Fufu'], ['rat', 3, 'F', 'Mika'] ] self.df = pd.DataFrame(data, columns=['species', 'weight', 'sex', 'name']) # dataDict = load_boston() # self.dataExample = pd.DataFrame(dataDict['data'], columns=dataDict['feature_names']) def test_first_row(self): row1 = ph.pd_first_row(self.df)[1] row2 = ph.pd_is_one_row(ph.pd_query(self.df, {'name': 'Susan'}))[1] self.assertTrue(row1.equals(row2)) def test_rows_colval(self): df1 = ph.pd_rows_colval(self.df, 'species', 'dog') df2 = ph.pd_query(self.df, {'species': 'dog'}) self.assertTrue(df1.equals(df2)) def test_pd_query(self): # Test no query has no result df1 = ph.pd_query(self.df, {}) self.assertTrue(df1.equals(self.df)) # Test empty dataframe queries to empty dataframe df1 = ph.pd_query(pd.DataFrame(), {'species': 'dog'}) self.assertEqual(len(df1), 0) # Test non-existing column or value df1 = ph.pd_query(pd.DataFrame(), {'house': 10}) df2 = ph.pd_query(pd.DataFrame(), {'species': 'monkey'}) self.assertEqual(len(df1), 0) self.assertEqual(len(df2), 0) # Assert multiquery df1 = ph.pd_query(self.df, {'species': 'dog', 'sex': 'F'}) row = ph.pd_is_one_row(df1)[1] self.assertEqual(row['name'], 'Fufu') def test_row_exists(self): isRowGood = ph.pd_row_exists(self.df, ['dog', 10, 'M', 'Bork']) isRowBad = ph.pd_row_exists(self.df, ['dog', 10, 'M', 'Johnny']) self.assertTrue(isRowGood) self.assertFalse(isRowBad) def test_append_row(self): dfNew = self.df.copy() dfNew = ph.pd_append_row(dfNew, ['rat', 4, 'F', 'Gaga']) self.assertEqual(len(self.df), 5) self.assertEqual(len(dfNew), 6) def test_outer_product(self): pass # outerDict = { # 'aaa': [1, None, 3], # 'bbb': ['cat', 'dog', 'rat', None] # } # # print(pandas_helper.outer_product_df(outerDict)) unittest.main()
the-stack_106_31913
from examples.scheduling.toy_rcpsp_examples import ( MyExampleMRCPSPDomain_WithCost, MyExampleRCPSPDomain, ) from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain # Testing the binding between skdecide and discrete-optimization lib def create_do_from_sk(): rcpsp_domain = MyExampleRCPSPDomain() do_domain = build_do_domain(rcpsp_domain) print("Loading rcpsp domain :resulting class in DO : ", do_domain.__class__) rcpsp_domain = MyExampleMRCPSPDomain_WithCost() do_domain = build_do_domain(rcpsp_domain) print( "Loading multimode-rcpsp domain : resulting class in DO : ", do_domain.__class__ ) from examples.discrete_optimization.rcpsp_multiskill_parser_example import ( get_data_available_ms, ) from skdecide.hub.domain.rcpsp.rcpsp_sk_parser import load_multiskill_domain rcpsp_domain = load_multiskill_domain(get_data_available_ms()[0]) do_domain = build_do_domain(rcpsp_domain) print( "Loading multiskill-rcpsp domain : resulting class in DO : ", do_domain.__class__, ) if __name__ == "__main__": create_do_from_sk()
the-stack_106_31914
from vaccine_feed_ingest_schema import location from vaccine_feed_ingest.stages import enrichment def test_add_provider_from_name_minimal(minimal_location): enrichment._add_provider_from_name(minimal_location) def test_add_provider_from_name(full_location): # Clear parent prganization to check full_location.parent_organization = None assert not full_location.parent_organization links = enrichment._generate_link_map(full_location) assert "rite_aid" not in links enrichment._add_provider_from_name(full_location) links = enrichment._generate_link_map(full_location) assert "rite_aid" in links assert links["rite_aid"] == "5952" assert full_location.parent_organization assert str(full_location.parent_organization.id) == "rite_aid" def test_add_source_link_minimal(minimal_location): enrichment._add_source_link(minimal_location) def test_add_source_link(full_location): # Clear parent prganization to check full_location.links = None enrichment._add_source_link(full_location) links = enrichment._generate_link_map(full_location) assert full_location.source.source in links assert links[full_location.source.source] == full_location.source.id def test_normalize_phone_format(minimal_location): minimal_location.contact = [ location.Contact(phone="(800) 456-7890"), location.Contact(phone="1-415-789-3456"), location.Contact(phone="+1 (415)888-8888"), location.Contact(phone="888-888-8888 x8888888888"), ] enrichment._normalize_phone_format(minimal_location) assert len(minimal_location.contact) == 4 expected = { "(800) 456-7890", "(415) 789-3456", "(415) 888-8888", "888-888-8888 x8888888888", } actual = {entry.phone for entry in minimal_location.contact if entry.phone} assert expected == actual def test_add_provider_tag_minimal(minimal_location): enrichment._add_provider_tag(minimal_location) def test_add_provider_tag(full_location): enrichment._add_provider_tag(full_location) links = enrichment._generate_link_map(full_location) assert enrichment.PROVIDER_TAG in links assert links[enrichment.PROVIDER_TAG] == str(full_location.parent_organization.id) def test_process_location_minimal(minimal_location): assert enrichment._process_location(minimal_location) is None def test_process_location(full_location): assert enrichment._process_location(full_location)
the-stack_106_31915
import numpy as np class HumanOthelloPlayer(): def __init__(self, game): self.game = game def play(self, board): # display(board) valid = self.game.getValidMoves(board, 1) for i in range(len(valid)): if valid[i]: print(int(i/self.game.n), int(i%self.game.n)) while True: a = input() x,y = [int(x) for x in a.split(' ')] a = self.game.n * x + y if x!= -1 else self.game.n ** 2 if valid[a]: break else: print('Invalid') return a class GreedyOthelloPlayer(): def __init__(self, game): self.game = game def play(self, board): valids = self.game.getValidMoves(board, 1) candidates = [] for a in range(self.game.getActionSize()): if valids[a]==0: continue nextBoard, _ = self.game.getNextState(board, 1, a) score = self.game.getScore(nextBoard, 1) candidates += [(-score, a)] candidates.sort() return candidates[0][1]
the-stack_106_31918
#!/usr/bin/env python """End to end tests for lib.flows.general.memory.""" import os from grr.client.components.rekall_support import rekall_types as rdf_rekall_types from grr.endtoend_tests import base from grr.lib import aff4 from grr.lib import config_lib from grr.lib import flow_runner class AbstractTestAnalyzeClientMemory(base.ClientTestBase): """Test AnalyzeClientMemory (Rekall). We use the rekall caching profile server for these tests, since we may not have direct internet access. It may be necessary to manually populate the cache with lib.rekall_profile_server.GRRRekallProfileServer.GetMissingProfiles on the console to make these tests pass. """ flow = "AnalyzeClientMemory" args = {"request": rdf_rekall_types.RekallRequest()} def setUpRequest(self): raise NotImplementedError("Implemented by subclasses") def setUp(self): self.setUpRequest() self.old_config = config_lib.CONFIG.Get("Rekall.profile_server") if "Test Context" in config_lib.CONFIG.context: # We're running in a test context, where the rekall repository server is # set to TestRekallRepositoryProfileServer, which won't actually work for # an end to end test. We change it temporarily to allow the test to pass. config_lib.CONFIG.Set("Rekall.profile_server", "GRRRekallProfileServer") super(AbstractTestAnalyzeClientMemory, self).setUp() def tearDown(self): if "Test Context" in config_lib.CONFIG.context: config_lib.CONFIG.Set("Rekall.profile_server", self.old_config) super(AbstractTestAnalyzeClientMemory, self).tearDown() def CheckFlow(self): self.responses = self.CheckCollectionNotEmptyWithRetry( self.session_id.Add(flow_runner.RESULTS_SUFFIX), self.token) def OpenFlow(self): """Returns the flow used on this test.""" return aff4.FACTORY.Open(str(self.session_id), token=self.token) class AbstractTestAnalyzeClientMemoryWindows(AbstractTestAnalyzeClientMemory, base.AutomatedTest): platforms = ["Windows"] class TestAnalyzeClientMemoryWindowsPSList( AbstractTestAnalyzeClientMemoryWindows): def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="pslist") ] class TestAnalyzeClientMemoryWindowsModules( AbstractTestAnalyzeClientMemoryWindows): def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="modules") ] class TestAnalyzeClientMemoryWindowsDLLList( AbstractTestAnalyzeClientMemoryWindows): """Run rekall DLL list and look for the GRR process.""" def setUpRequest(self): self.binaryname = "svchost.exe" self.args["request"].plugins = [ rdf_rekall_types.PluginRequest( plugin="dlllist", args=dict( proc_regex=self.binaryname, method="PsActiveProcessHead")) ] def CheckFlow(self): super(TestAnalyzeClientMemoryWindowsDLLList, self).CheckFlow() # Make sure the dlllist found our process by regex: response_str = "".join([x.json_messages for x in self.responses]) self.assertIn(self.binaryname, response_str) class TestAnalyzeClientMemoryMac(AbstractTestAnalyzeClientMemory, base.AutomatedTest): """Runs Rekall on Macs.""" platforms = ["Darwin"] def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="pslist") ] def CheckFlow(self): super(TestAnalyzeClientMemoryMac, self).CheckFlow() binary_name = config_lib.CONFIG.Get( "Client.binary_name", context=["Client Context", "Platform:Darwin"]) self.assertTrue( any([ binary_name in response.json_messages for response in self.responses ])) class TestAnalyzeClientMemoryLinux(AbstractTestAnalyzeClientMemory): """Runs Rekall on Linux.""" platforms = ["Linux"] def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="pslist") ] def CheckForInit(self): super(TestAnalyzeClientMemoryLinux, self).CheckFlow() self.assertTrue( any(["\"init\"" in r.json_messages for r in self.responses])) def CheckFlow(self): self.CheckForInit() class TestAnalyzeClientMemoryLoggingWorks(AbstractTestAnalyzeClientMemory): """Runs pslist with DEBUG logging and checks that we got DEBUG messages.""" platforms = ["Linux", "Windows", "Darwin"] def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="pslist") ] self.args["request"].session["logging_level"] = "DEBUG" def CheckFlow(self): super(TestAnalyzeClientMemoryLoggingWorks, self).CheckFlow() self.assertIn("\"level\":\"DEBUG\"", self.responses[0].json_messages) class TestAnalyzeClientMemoryNonexistantPlugin(AbstractTestAnalyzeClientMemory): """Tests flow failure when a plugin doesn't exist.""" platforms = ["Linux", "Windows"] def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="idontexist") ] def CheckForError(self, flow_obj): self.assertEqual(flow_obj.context.state, "ERROR") def CheckForInvalidPlugin(self, flow_obj): self.assertIn("invalid plugin", str(flow_obj.context.backtrace).lower()) def CheckFlow(self): flow = self.OpenFlow() self.CheckForError(flow) self.CheckForInvalidPlugin(flow) class TestAnalyzeClientMemoryPluginBadParamsFails( TestAnalyzeClientMemoryNonexistantPlugin): """Tests flow failure when a plugin is given wrong parameters.""" def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest( plugin="pslist", args=dict(abcdefg=12345)) ] def CheckForInvalidArgs(self, flow_obj): self.assertIn("InvalidArgs", flow_obj.context.backtrace) def CheckFlow(self): flow = self.OpenFlow() # First check that the flow ended up with an error self.CheckForError(flow) self.CheckForInvalidArgs(flow) class TestAnalyzeClientMemoryNonexistantPluginWithExisting( TestAnalyzeClientMemoryLinux, TestAnalyzeClientMemoryNonexistantPlugin): """Tests flow failure when failing and non failing plugins run together.""" def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="pslist"), rdf_rekall_types.PluginRequest(plugin="idontexist") ] def CheckFlow(self): super(TestAnalyzeClientMemoryNonexistantPlugin, self).CheckFlow() flow = self.OpenFlow() # idontexist should throw an error and have invalid plugin in the backtrace. self.CheckForError(flow) self.CheckForInvalidPlugin(flow) # but pslist should still give results. self.CheckForInit() class TestSigScan(AbstractTestAnalyzeClientMemoryWindows): """Tests signature scanning on Windows.""" def setUpRequest(self): # This is a signature for the tcpip.sys driver on Windows 7. If you are # running a different version, a hit is not guaranteed. sig_path = os.path.join(config_lib.CONFIG["Test.end_to_end_data_dir"], "tcpip.sig") signature = open(sig_path, "rb").read().strip() args = {"scan_kernel": True, "signature": [signature]} self.args["request"].plugins = [ rdf_rekall_types.PluginRequest( plugin="sigscan", args=args) ] def CheckFlow(self): super(TestSigScan, self).CheckFlow() self.assertTrue( any([ "Hit in kernel AS:" in response.json_messages for response in self.responses ])) class TestYarascanExists(AbstractTestAnalyzeClientMemory): """Tests the client has been built with yara.""" platforms = ["Linux", "Windows", "Darwin"] def setUpRequest(self): self.args["request"].plugins = [ rdf_rekall_types.PluginRequest(plugin="yarascan") ] def CheckForError(self, flow_obj): # Invoking yarascan without arguments will report an ERROR. self.assertEqual(flow_obj.context.state, "ERROR") def CheckForInvalidPlugin(self, flow_obj): # When a plugin doesn't exist, Rekall raises with an "Invalid plugin" self.assertNotIn("invalid plugin", str(flow_obj.context.backtrace).lower()) # Yarascan without arguments will generate a PluginError as it requires # arguments. self.assertIn("PluginError", flow_obj.context.backtrace) def CheckFlow(self): flow = self.OpenFlow() self.CheckForError(flow) self.CheckForInvalidPlugin(flow)
the-stack_106_31919
from datetime import timedelta from airflow.utils.dates import days_ago from airflow.models import DAG from airflow.operators.bash_operator import BashOperator from airflow.operators.dummy_operator import DummyOperator args = { 'owner': 'Airflow', 'start_date': days_ago(2), } script=""" set -e cd /usr/local/airflow/dags git pull """ with DAG( dag_id='dag-update', default_args=args, schedule_interval='0/30 0 * * *', dagrun_timeout=timedelta(minutes=5), tags=['airflow', 'dag', 'update'] ) as dag: first = DummyOperator(task_id='first') # [START howto_operator_bash] work = BashOperator( task_id='git_pull', bash_command=script ) # [END howto_operator_bash] last = DummyOperator(task_id='last') first >> work >> last if __name__ == "__main__": dag.cli()
the-stack_106_31920
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] import logging import logging.config import os import sys import warnings import socket from os.path import dirname, expanduser from shutil import which import tornado.ioloop from PIL import Image from tornado.httpserver import HTTPServer from tornado.netutil import bind_unix_socket from thumbor.config import Config from thumbor.console import get_server_parameters from thumbor.context import Context from thumbor.importer import Importer from thumbor.signal_handler import setup_signal_handler def get_as_integer(value): try: return int(value) except (ValueError, TypeError): return None def get_config(config_path, use_environment=False): if use_environment: Config.allow_environment_variables() lookup_paths = [os.curdir, expanduser("~"), "/etc/", dirname(__file__)] return Config.load(config_path, conf_name="thumbor.conf", lookup_paths=lookup_paths) def configure_log(config, log_level): if config.THUMBOR_LOG_CONFIG and config.THUMBOR_LOG_CONFIG != "": logging.config.dictConfig(config.THUMBOR_LOG_CONFIG) else: logging.basicConfig( level=getattr(logging, log_level), format=config.THUMBOR_LOG_FORMAT, datefmt=config.THUMBOR_LOG_DATE_FORMAT, ) def get_importer(config): importer = Importer(config) importer.import_modules() if importer.error_handler_class is not None: importer.error_handler = importer.error_handler_class(config) # pylint: disable=not-callable return importer def validate_config(config, server_parameters): if server_parameters.security_key is None: server_parameters.security_key = config.SECURITY_KEY if not isinstance(server_parameters.security_key, (bytes, str)): raise RuntimeError( "No security key was found for this instance of thumbor. " + "Please provide one using the conf file or a security key file." ) if config.ENGINE or config.USE_GIFSICLE_ENGINE: # Error on Image.open when image pixel count is above MAX_IMAGE_PIXELS warnings.simplefilter("error", Image.DecompressionBombWarning) if config.USE_GIFSICLE_ENGINE: server_parameters.gifsicle_path = which("gifsicle") if server_parameters.gifsicle_path is None: raise RuntimeError( "If using USE_GIFSICLE_ENGINE configuration to True," " the `gifsicle` binary must be in the PATH " "and must be an executable." ) def get_context(server_parameters, config, importer): return Context(server=server_parameters, config=config, importer=importer) def get_application(context): return context.modules.importer.import_class(context.app_class)(context) def run_server(application, context): server = HTTPServer(application, xheaders=True) if context.server.fd is not None: fd_number = get_as_integer(context.server.fd) if fd_number is not None: sock = socket.socket(fileno=fd_number) # pylint: disable=too-many-function-args else: sock = bind_unix_socket(context.server.fd) server.add_socket(sock) logging.debug("thumbor starting at fd %s", context.server.fd) else: server.bind(context.server.port, context.server.ip) logging.debug( "thumbor starting at %s:%d", context.server.ip, context.server.port ) server.start(context.server.processes) return server def main(arguments=None): """Runs thumbor server with the specified arguments.""" if arguments is None: arguments = sys.argv[1:] server_parameters = get_server_parameters(arguments) config = get_config( server_parameters.config_path, server_parameters.use_environment ) configure_log(config, server_parameters.log_level.upper()) validate_config(config, server_parameters) importer = get_importer(config) with get_context(server_parameters, config, importer) as context: application = get_application(context) server = run_server(application, context) setup_signal_handler(server, config) tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": main(sys.argv[1:])
the-stack_106_31921
"""" 名称:089 童芯派 mBuild点阵屏 计时装置 硬件: 童芯派 mBuild点阵屏 功能介绍: 使用点阵屏实现可视化的计时效果,按下A键以点亮点阵屏的方式进行计时, 按下B键以熄灭点阵屏的方式进行计时。 使用到的API及功能解读: 1.cyberpi.led_matrix.on(x, y, 1) 点亮点阵屏指定x、y坐标的led灯 2.cyberpi.led_matrix.off(x, y, 1) 熄灭点阵屏指定x、y坐标的led灯 3.cyberpi.led_matrix.clear(1) 熄灭点阵屏所有的LED灯 难度:⭐⭐⭐⭐ 支持的模式:上传模式、在线模式 无 """ # ---------程序分割线----------------程序分割线----------------程序分割线---------- import cyberpi import time while True: cyberpi.display.label('按下A键开始计时', 16, 'center') if cyberpi.controller.is_press('a'): cyberpi.display.label('计时中', 24, 'center') for i in range(0, 8): for j in range(0, 16, 1): cyberpi.led_matrix.on(j, i, 1) time.sleep(1) cyberpi.led_matrix.clear(1) cyberpi.display.label('计时结束', '24', 'center') cyberpi.audio.play_until('prompt-tone') if cyberpi.controller.is_press('b'): cyberpi.display.label('计时中', 24, 'center') for i in range(0, 8): for j in range(0, 16, 1): cyberpi.led_matrix.on(j, i, 1) for m in range(0, 8): for n in range(0, 16, 1): cyberpi.led_matrix.off(n, m, 1) time.sleep(1) cyberpi.display.label('计时结束', '24', 'center') cyberpi.audio.play_until('prompt-tone')
the-stack_106_31922
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-节点管理(BlueKing-BK-NODEMAN) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Generated by Django 2.2.8 on 2020-08-12 11:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("node_man", "0012_subscription_name"), ] operations = [ migrations.AddField( model_name="packages", name="deploy_type", field=models.CharField(blank=True, max_length=64, null=True, verbose_name="部署方式"), ), migrations.AddField( model_name="packages", name="source_app_code", field=models.CharField(blank=True, max_length=64, null=True, verbose_name="来源系统APP CODE"), ), migrations.AddField( model_name="packages", name="version_log", field=models.TextField(blank=True, null=True, verbose_name="版本日志"), ), migrations.AddField( model_name="packages", name="version_log_en", field=models.TextField(blank=True, null=True, verbose_name="英文版本日志"), ), migrations.AlterField( model_name="processstatus", name="status", field=models.CharField( choices=[ ("RUNNING", "RUNNING"), ("UNKNOWN", "UNKNOWN"), ("TERMINATED", "TERMINATED"), ("NOT_INSTALLED", "NOT_INSTALLED"), ("UNREGISTER", "UNREGISTER"), ], db_index=True, default="UNKNOWN", max_length=45, verbose_name="进程状态", ), ), ]
the-stack_106_31924
"""Support for Xiaomi water heaters.""" import logging import math from homeassistant.const import * # noqa: F401 from homeassistant.components.water_heater import ( DOMAIN as ENTITY_DOMAIN, WaterHeaterEntity, SUPPORT_TARGET_TEMPERATURE, SUPPORT_OPERATION_MODE, ) from . import ( DOMAIN, CONF_MODEL, XIAOMI_CONFIG_SCHEMA as PLATFORM_SCHEMA, # noqa: F401 MiotToggleEntity, async_setup_config_entry, bind_services_to_entries, ) from .core.miot_spec import ( MiotSpec, MiotService, ) _LOGGER = logging.getLogger(__name__) DATA_KEY = f'{ENTITY_DOMAIN}.{DOMAIN}' DEFAULT_MIN_TEMP = 40 DEFAULT_MAX_TEMP = 65 SERVICE_TO_METHOD = {} async def async_setup_entry(hass, config_entry, async_add_entities): await async_setup_config_entry(hass, config_entry, async_setup_platform, async_add_entities, ENTITY_DOMAIN) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): hass.data.setdefault(DATA_KEY, {}) hass.data[DOMAIN]['add_entities'][ENTITY_DOMAIN] = async_add_entities config['hass'] = hass model = str(config.get(CONF_MODEL) or '') spec = hass.data[DOMAIN]['miot_specs'].get(model) entities = [] if isinstance(spec, MiotSpec): for srv in spec.get_services(ENTITY_DOMAIN, 'kettle'): if not srv.get_property('mode', 'target_temperature'): continue entities.append(MiotWaterHeaterEntity(config, srv)) for entity in entities: hass.data[DOMAIN]['entities'][entity.unique_id] = entity async_add_entities(entities, update_before_add=True) bind_services_to_entries(hass, SERVICE_TO_METHOD) class MiotWaterHeaterEntity(MiotToggleEntity, WaterHeaterEntity): def __init__(self, config, miot_service: MiotService): super().__init__(miot_service, config=config, logger=_LOGGER) self._prop_status = miot_service.get_property('status') self._prop_mode = miot_service.get_property('mode') self._prop_modes = [] if self._prop_mode: self._prop_modes.append(self._prop_mode) self._prop_modes.extend(miot_service.get_properties('water_level')) self._prop_temperature = miot_service.get_property('temperature', 'indoor_temperature') self._prop_target_temp = miot_service.get_property('target_temperature') self._prev_target_temp = None if self._prop_target_temp: self._supported_features |= SUPPORT_TARGET_TEMPERATURE if self._prop_modes: self._supported_features |= SUPPORT_OPERATION_MODE async def async_update(self): await super().async_update() if not self._available: return if self._prop_power: if not self._prop_power.readable and self._prop_status: # https://github.com/al-one/hass-xiaomi-miot/issues/30 val = self._prop_status.from_dict(self._state_attrs) if val is not None: off = val in self._prop_status.list_search('Off') await self.async_update_attrs({ self._prop_power.full_name: not off, }) self._update_sub_entities(self._prop_power.name, domain='switch') @property def state(self): """Return the current state.""" sta = self.current_operation mds = [] if self._prop_mode: mds = self._prop_mode.list_descriptions() if sta is None or sta not in mds: if self._prop_status: val = self._prop_status.from_dict(self._state_attrs) if val is not None: sta = self._prop_status.list_description(val) if sta is None and self._prop_power and self._prop_power.readable: sta = STATE_ON if self._prop_power.from_dict(self._state_attrs) else STATE_OFF if sta: sta = str(sta).lower() return sta @property def current_operation(self): """Return current operation ie. eco, electric, performance, ...""" for p in self._prop_modes: val = p.from_dict(self._state_attrs) if val is not None: return p.list_description(val) return None @property def operation_list(self): """Return the list of available operation modes.""" for p in self._prop_modes: return p.list_descriptions() or [] return None def set_operation_mode(self, mode): """Set new target operation mode.""" for p in self._prop_modes: val = p.list_value(mode) return self.set_property(p, val) raise NotImplementedError() @property def current_temperature(self): """Return the current temperature.""" if self._prop_temperature: return round(self._prop_temperature.from_dict(self._state_attrs) or 0, 2) return None @property def temperature_unit(self): prop = self._prop_temperature or self._prop_target_temp if prop: if prop.unit in ['celsius', TEMP_CELSIUS]: return TEMP_CELSIUS if prop.unit in ['fahrenheit', TEMP_FAHRENHEIT]: return TEMP_FAHRENHEIT if prop.unit in ['kelvin', TEMP_KELVIN]: return TEMP_KELVIN return TEMP_CELSIUS def set_temperature(self, **kwargs): """Set new target temperature.""" if self._prop_target_temp: val = kwargs.get(ATTR_TEMPERATURE) or 0 stp = self._prop_target_temp.range_step() if stp and stp > 1: val = round(val / stp) * stp elif self._prev_target_temp is None: val = round(val) elif val >= self._prev_target_temp: val = math.ceil(val) else: val = int(val) ret = self.set_property(self._prop_target_temp, val) if ret: self._prev_target_temp = val return ret raise NotImplementedError() @property def target_temperature(self): """Return the temperature we try to reach.""" if self._prop_target_temp: val = round(self._prop_target_temp.from_dict(self._state_attrs) or 0, 2) if val: self._prev_target_temp = val elif self._prev_target_temp: val = self._prev_target_temp return val return None @property def target_temperature_high(self): """Return the highbound target temperature we try to reach.""" if self._prop_target_temp: return self._prop_target_temp.range_max() return None @property def target_temperature_low(self): """Return the lowbound target temperature we try to reach.""" if self._prop_target_temp: return self._prop_target_temp.range_min() return None @property def min_temp(self): """Return the minimum temperature.""" return self.target_temperature_low or DEFAULT_MIN_TEMP @property def max_temp(self): """Return the maximum temperature.""" return self.target_temperature_high or DEFAULT_MAX_TEMP @property def is_away_mode_on(self): """Return true if away mode is on.""" return None def turn_away_mode_on(self): """Turn away mode on.""" raise NotImplementedError() def turn_away_mode_off(self): """Turn away mode off.""" raise NotImplementedError()
the-stack_106_31925
# -*- coding: utf-8 -*- # # This file is part of MIEZE simulation. # Copyright (C) 2019, 2020 TUM FRM2 E21 Research Group. # # This is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Conversion from eigenfrequency to indexes of the capacity boxes.""" from scripts.analysis.find_best_capacity_index import compute_index from scripts.compute_values.eigenfrequency_capacity import compute_capacity_for_given_eigenfrequency from scripts.parameters import computed_params from scripts.utils import transform_frequency def main(eigenfrequency_value): capacity = compute_capacity_for_given_eigenfrequency(eigenfrequency_value, computed_params) print(f'For the given eigenfrequency of {eigenfrequency_value}, the desired capacity is: {capacity}\n') numerical_values, message = compute_index(capacity) print(message) hrf = transform_frequency(eigenfrequency_value) print(f'hrf = {str(hrf)}') return numerical_values, message if __name__ == '__main__': frequency_value = int(input('welche frequenz?')) main(frequency_value)
the-stack_106_31926
# Copyright 2022 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from typing import Dict, List, Optional from unittest.mock import Mock import aiounittest from matrix_content_scanner.utils.constants import ErrCodes from matrix_content_scanner.utils.errors import ContentScannerRestError, FileDirtyError from matrix_content_scanner.utils.types import MediaDescription from tests.testutils import ( ENCRYPTED_FILE_METADATA, SMALL_PNG, SMALL_PNG_ENCRYPTED, get_content_scanner, ) class ScannerTestCase(aiounittest.AsyncTestCase): def setUp(self) -> None: self.downloader_res = MediaDescription( content_type="image/png", content=SMALL_PNG, ) async def download_file( media_path: str, thumbnail_params: Optional[Dict[str, List[str]]] = None, ) -> MediaDescription: return self.downloader_res self.downloader_mock = Mock(side_effect=download_file) mcs = get_content_scanner() mcs.file_downloader.download_file = self.downloader_mock # type: ignore[assignment] self.scanner = mcs.scanner async def test_scan(self) -> None: media = await self.scanner.scan_file("foo/bar") self.assertEqual(media.content, SMALL_PNG) async def test_scan_dirty(self) -> None: self.scanner._script = "false" with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar") async def test_encrypted_file(self) -> None: self._setup_encrypted() media = await self.scanner.scan_file("foo/bar", ENCRYPTED_FILE_METADATA) self.assertEqual(media.content, SMALL_PNG_ENCRYPTED) async def test_cache(self) -> None: await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 1) media = await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 1) self.assertEqual(media.content, SMALL_PNG) async def test_cache_encrypted(self) -> None: self._setup_encrypted() await self.scanner.scan_file("foo/bar", ENCRYPTED_FILE_METADATA) self.assertEqual(self.downloader_mock.call_count, 1) media = await self.scanner.scan_file("foo/bar", ENCRYPTED_FILE_METADATA) self.assertEqual(self.downloader_mock.call_count, 1) self.assertEqual(media.content, SMALL_PNG_ENCRYPTED) async def test_cache_download_thumbnail(self) -> None: await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 1) await self.scanner.scan_file("foo/bar", thumbnail_params={"width": ["50"]}) self.assertEqual(self.downloader_mock.call_count, 2) async def test_different_encryption_key(self) -> None: """Tests that if some of the file's metadata changed, we don't match against the cache and we download the file again. Also tests that the scanner fails in the correct way if it can't decrypt a file. """ self._setup_encrypted() await self.scanner.scan_file("foo/bar", ENCRYPTED_FILE_METADATA) self.assertEqual(self.downloader_mock.call_count, 1) modified_metadata = copy.deepcopy(ENCRYPTED_FILE_METADATA) modified_metadata["file"]["key"]["k"] = "somethingelse" with self.assertRaises(ContentScannerRestError) as cm: await self.scanner.scan_file("foo/bar", modified_metadata) self.assertEqual(cm.exception.http_status, 400) self.assertEqual(cm.exception.reason, ErrCodes.FAILED_TO_DECRYPT) self.assertEqual(self.downloader_mock.call_count, 2) async def test_mimetype(self) -> None: self.scanner._allowed_mimetypes = ["image/jpeg"] with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar") async def test_mimetype_encrypted(self) -> None: self._setup_encrypted() self.scanner._allowed_mimetypes = ["image/jpeg"] with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar", ENCRYPTED_FILE_METADATA) async def test_dont_cache_exit_codes(self) -> None: self.scanner._exit_codes_to_ignore = [5] # It's tricky to give a value to `scanner._script` that makes `_run_scan` return 5 # directly, so we just mock it here. run_scan_mock = Mock(return_value=5) self.scanner._run_scan = run_scan_mock # type: ignore[assignment] # Scan the file, we'll check later that it wasn't cached. with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 1) # Update the mock so that the file is cached at the next scan. run_scan_mock.return_value = 1 # Scan the file again to check that the file wasn't cached. with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 2) # The file should be cached now. with self.assertRaises(FileDirtyError): await self.scanner.scan_file("foo/bar") self.assertEqual(self.downloader_mock.call_count, 2) async def test_outside_temp_dir(self) -> None: with self.assertRaises(FileDirtyError): await self.scanner.scan_file("../bar") def _setup_encrypted(self) -> None: self.downloader_res.content_type = "application/octet-stream" self.downloader_res.content = SMALL_PNG_ENCRYPTED
the-stack_106_31927
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UsersOutlookTasksAttachmentsOperations: """UsersOutlookTasksAttachmentsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~users_actions.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def create_upload_session( self, user_id: str, outlook_task_id: str, body: "models.Paths1Urds13UsersUserIdOutlookTasksOutlooktaskIdAttachmentsMicrosoftGraphCreateuploadsessionPostRequestbodyContentApplicationJsonSchema", **kwargs ) -> "models.MicrosoftGraphUploadSession": """Invoke action createUploadSession. Invoke action createUploadSession. :param user_id: key: id of user. :type user_id: str :param outlook_task_id: key: id of outlookTask. :type outlook_task_id: str :param body: Action parameters. :type body: ~users_actions.models.Paths1Urds13UsersUserIdOutlookTasksOutlooktaskIdAttachmentsMicrosoftGraphCreateuploadsessionPostRequestbodyContentApplicationJsonSchema :keyword callable cls: A custom type or function that will be passed the direct response :return: MicrosoftGraphUploadSession, or the result of cls(response) :rtype: ~users_actions.models.MicrosoftGraphUploadSession :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.MicrosoftGraphUploadSession"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_upload_session.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), 'outlookTask-id': self._serialize.url("outlook_task_id", outlook_task_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(body, 'Paths1Urds13UsersUserIdOutlookTasksOutlooktaskIdAttachmentsMicrosoftGraphCreateuploadsessionPostRequestbodyContentApplicationJsonSchema') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('MicrosoftGraphUploadSession', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_upload_session.metadata = {'url': '/users/{user-id}/outlook/tasks/{outlookTask-id}/attachments/microsoft.graph.createUploadSession'} # type: ignore
the-stack_106_31929
from typing import Any, Dict, List, Type, TypeVar, Union import attr from ..types import UNSET, Unset T = TypeVar("T", bound="DataProviderStatus") @attr.s(auto_attribs=True) class DataProviderStatus: """ """ is_active: Union[Unset, bool] = UNSET driver: Union[Unset, str] = UNSET error: Union[Unset, str] = UNSET additional_properties: Dict[str, Any] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: is_active = self.is_active driver = self.driver error = self.error field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update({}) if is_active is not UNSET: field_dict["is_active"] = is_active if driver is not UNSET: field_dict["driver"] = driver if error is not UNSET: field_dict["error"] = error return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() is_active = d.pop("is_active", UNSET) driver = d.pop("driver", UNSET) error = d.pop("error", UNSET) data_provider_status = cls( is_active=is_active, driver=driver, error=error, ) data_provider_status.additional_properties = d return data_provider_status @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
the-stack_106_31930
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model.""" from collections.abc import Iterable import os import math import numpy as np from mindspore import log as logger from ..common.tensor import Tensor from ..nn.metrics import get_metrics from .._checkparam import check_input_data, check_output_data, check_int_positive, check_bool, check_int from .callback import _InternalCallbackParam, RunContext, _CallbackManager from .. import context from ..parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \ _get_parameter_broadcast, _device_number_check, _parameter_broadcast_check from ..nn.metrics import Loss from .. import nn from ..nn.wrap.cell_wrapper import _VirtualDatasetCell from .parallel_utils import ParallelMode from ._utils import _to_full_tensor from ..parallel._utils import _need_to_full from ..common import dtype as mstype from .dataset_helper import DatasetHelper from . import amp class Model: """ High-Level API for Training or Testing. `Model` groups layers into an object with training and inference features. Args: network (Cell): A training or testing network. loss_fn (Cell): Objective function, if loss_fn is None, the network should contain the logic of loss and grads calculation, and the logic of parallel if needed. Default: None. optimizer (Cell): Optimizer for updating the weights. Default: None. metrics (Union[dict, set]): A Dictionary or a set of metrics to be evaluated by the model during training and testing. eg: {'accuracy', 'recall'}. Default: None. eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as `eval_network`. Default: None. eval_indexes (list): When defining the `eval_network`, if `eval_indexes` is None, all outputs of the `eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three elements, including the positions of loss value, predicted value and label. The loss value would be passed to the `Loss` metric, the predicted value and label would be passed to other metric. Default: None. amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed precision training. Supports [O0, O2, O3]. Default: "O0". - O0: Do not change. - O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale. - O3: Cast network to float16, with additional property 'keep_batchnorm_fp32=False'. O2 is recommended on GPU, O3 is recommended on Ascend. loss_scale_manager (Union[None, LossScaleManager]): If it is None, the loss would not be scaled. Otherwise, scale the loss by LossScaleManager. It is a key argument. e.g. Use `loss_scale_manager=None` to set the value. keep_batchnorm_fp32 (bool): Keep Batchnorm running in `float32`. If it is set to true, the level setting before will be overwritten. Default: True. Examples: >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') >>> self.bn = nn.BatchNorm2d(64) >>> self.relu = nn.ReLU() >>> self.flatten = nn.Flatten() >>> self.fc = nn.Dense(64*224*224, 12) # padding=0 >>> >>> def construct(self, x): >>> x = self.conv(x) >>> x = self.bn(x) >>> x = self.relu(x) >>> x = self.flatten(x) >>> out = self.fc(x) >>> return out >>> >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) >>> dataset = get_dataset() >>> model.train(2, dataset) """ def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None, eval_indexes=None, amp_level="O0", **kwargs): self._network = network self._loss_fn = loss_fn self._optimizer = optimizer self._loss_scale_manager = None self._loss_scale_manager_set = False self._keep_bn_fp32 = True self._check_kwargs(kwargs) self._amp_level = amp_level self._process_amp_args(kwargs) self._parallel_mode = _get_parallel_mode() self._device_number = _get_device_num() self._global_rank = _get_global_rank() self._parameter_broadcast = _get_parameter_broadcast() self._train_network = self._build_train_network() self._build_eval_network(metrics, eval_network, eval_indexes) self._build_predict_network() def _process_amp_args(self, kwargs): if self._amp_level in ["O0", "O3"]: self._keep_bn_fp32 = False if 'keep_batchnorm_fp32' in kwargs: self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32'] if 'loss_scale_manager' in kwargs: self._loss_scale_manager = kwargs['loss_scale_manager'] self._loss_scale_manager_set = True def _check_kwargs(self, kwargs): for arg in kwargs: if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']: raise ValueError(f"Unsupport arg '{arg}'") def _build_train_network(self): """Build train network""" network = self._network if self._optimizer: if self._loss_scale_manager_set: network = amp.build_train_network(network, self._optimizer, self._loss_fn, level=self._amp_level, loss_scale_manager=self._loss_scale_manager, keep_batchnorm_fp32=self._keep_bn_fp32) else: network = amp.build_train_network(network, self._optimizer, self._loss_fn, level=self._amp_level, keep_batchnorm_fp32=self._keep_bn_fp32) elif self._loss_fn: network = nn.WithLossCell(network, self._loss_fn) # If need to check if loss_fn is not None, but optimizer is None if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network.set_auto_parallel() return network def _build_eval_network(self, metrics, eval_network, eval_indexes): """Build the network for evaluation.""" self._metric_fns = get_metrics(metrics) if not self._metric_fns: return if eval_network is not None: if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3): raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \ must be three. But got {}".format(eval_indexes)) self._eval_network = eval_network self._eval_indexes = eval_indexes else: if self._loss_fn is None: raise ValueError("loss_fn can not be None.") self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level in ["O2", "O3"]) self._eval_indexes = [0, 1, 2] if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): if self._optimizer: self._eval_network = _VirtualDatasetCell(self._eval_network) self._eval_network.set_auto_parallel() def _build_predict_network(self): """Build the network for prediction.""" self._predict_network = self._network if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): self._predict_network = _VirtualDatasetCell(self._network) self._predict_network.set_auto_parallel() def _clear_metrics(self): """Clear metrics local values.""" for metric in self._metric_fns.values(): metric.clear() def _update_metrics(self, outputs): """Update metrics local values.""" if not isinstance(outputs, tuple): raise ValueError("The `outputs` is not tuple.") if self._eval_indexes is not None and len(outputs) < 3: raise ValueError("The length of `outputs` must be greater than or equal to 3, \ but got {}".format(len(outputs))) for metric in self._metric_fns.values(): if self._eval_indexes is None: metric.update(*outputs) else: if isinstance(metric, Loss): metric.update(outputs[self._eval_indexes[0]]) else: metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]]) def _get_metrics(self): """Get metrics local values.""" metrics = dict() for key, value in self._metric_fns.items(): metrics[key] = value.eval() return metrics def _get_scaling_sens(self): """get the scaling sens""" scaling_sens = 1 if self._loss_scale_manager is not None: scaling_sens = self._loss_scale_manager.get_loss_scale() if self._parallel_mode == ParallelMode.DATA_PARALLEL: scaling_sens /= self._device_number return scaling_sens def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, sink_size=-1, epoch_num=1): """Initializes dataset.""" need_wrap = False if dataset_sink_mode: # remove later to deal with loop sink if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \ and not context.get_context("enable_ge"): need_wrap = True if not is_train: dataset.__loop_size__ = 1 dataset_helper = DatasetHelper(dataset, dataset_sink_mode, sink_size, epoch_num) # remove later to deal with loop sink if need_wrap: network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__) network.set_train(is_train) network.phase = phase if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): network.set_auto_parallel() return dataset_helper, network def init(self, train_dataset=None, valid_dataset=None): """ Initialize compute graphs and data graphs with the sink mode. Note: Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently. Args: train_dataset (Dataset): A training dataset iterator. If `train_dataset` is defined, training graphs will be initialized. Default: None. valid_dataset (Dataset): A evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs will be initialized, and `metrics` in `Model` can not be None. Default: None. Examples: >>> train_dataset = get_train_dataset() >>> valid_dataset = get_valid_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'}) >>> model.init(train_dataset, valid_dataset) >>> model.train(2, train_dataset) >>> model.eval(valid_dataset) """ if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend": raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.') if not train_dataset and not valid_dataset: raise ValueError('Both train_dataset and valid_dataset can not be None or empty.') _device_number_check(self._parallel_mode, self._device_number) if train_dataset: _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) self._train_network.set_train() self._train_network.phase = 'train' if self._parameter_broadcast: self._train_network.set_broadcast_flag() train_dataset.__no_send__ = True train_dataset_helper, train_network = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=True) self._train_network = train_network for inputs in train_dataset_helper: self._train_network.compile(*inputs) break if valid_dataset: if not self._metric_fns: raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.') self._eval_network.set_train(False) self._eval_network.phase = 'eval' valid_dataset.__no_send__ = True valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=True) self._eval_network = eval_network for inputs in valid_dataset_helper: self._eval_network.compile(*inputs) break def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=-1): """ Training. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) will be returned and passed to the network. Otherwise, a tuple (data, label) will be returned. The data and label would be passed to the network and loss function respectively. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determine whether the data should be passed through the dataset channel. Default: True. Configure pynative mode, the training process will be performed with dataset not sink. sink_size (int): Control the amount of data in each sink. Default: -1. """ epoch = check_int_positive(epoch) self._train_network.set_train() if self._parameter_broadcast: self._train_network.set_broadcast_flag() cb_params = _InternalCallbackParam() cb_params.train_network = self._train_network cb_params.epoch_num = epoch if dataset_sink_mode and sink_size > 0: cb_params.batch_num = sink_size else: cb_params.batch_num = train_dataset.get_dataset_size() cb_params.mode = "train" cb_params.loss_fn = self._loss_fn cb_params.optimizer = self._optimizer cb_params.parallel_mode = self._parallel_mode cb_params.device_number = self._device_number cb_params.train_dataset = train_dataset cb_params.list_callback = self._transform_callbacks(callbacks) cb_params.train_dataset_element = None cb_params.network = self._network ms_role = os.getenv("MS_ROLE") if ms_role in ("MS_PSERVER", "MS_SCHED"): epoch = 1 # build callback list with _CallbackManager(callbacks) as list_callback: if not dataset_sink_mode: self._train_process(epoch, train_dataset, list_callback, cb_params) elif context.get_context("mode") == context.PYNATIVE_MODE: logger.warning("The pynative mode cannot support dataset sink mode currently." "So the training process will be performed with dataset not sink.") self._train_process(epoch, train_dataset, list_callback, cb_params) else: self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params, sink_size) @staticmethod def _transform_callbacks(callbacks): """Transform callback to a list.""" if callbacks is None: return [] if isinstance(callbacks, Iterable): return list(callbacks) return [callbacks] def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None, sink_size=-1): """ Training process. The data would be passed to network through dataset channel. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. sink_size (int): Control the amount of data in each sink. Default: -1. """ if sink_size == -1: epoch_num = epoch else: epoch_num = math.ceil(epoch * sink_size / train_dataset.get_dataset_size()) dataset_helper, train_network = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=True, sink_size=sink_size, epoch_num=epoch_num) self._train_network = train_network cb_params.train_network = self._train_network cb_params.cur_step_num = 0 run_context = RunContext(cb_params) list_callback.begin(run_context) # used to stop training for early stop, such as stopAtTIme or stopATStep should_stop = False for i in range(epoch): cb_params.cur_epoch_num = i + 1 list_callback.epoch_begin(run_context) # for data sink dataset_helper only iter once, other wise iter epoch_size times. for inputs in dataset_helper: if _need_to_full() and context.get_context("device_target") == "GPU": inputs = _to_full_tensor(inputs, self._device_number, self._global_rank) list_callback.step_begin(run_context) outputs = self._train_network(*inputs) cb_params.cur_step_num += dataset_helper.sink_size() cb_params.net_outputs = outputs list_callback.step_end(run_context) list_callback.epoch_end(run_context) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break dataset_helper.stop_send() list_callback.end(run_context) def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None): """ Training process. The data would be passed to network directly. Args: epoch (int): Total number of iterations on the data. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. """ dataset_helper, _ = self._exec_preprocess(self._train_network, is_train=True, phase='train', dataset=train_dataset, dataset_sink_mode=False) cb_params.cur_step_num = 0 run_context = RunContext(cb_params) list_callback.begin(run_context) # used to stop training for early stop, such as stopAtTIme or stopATStep should_stop = False for i in range(epoch): cb_params.cur_epoch_num = i + 1 list_callback.epoch_begin(run_context) for next_element in dataset_helper: len_element = len(next_element) if self._loss_fn and len_element != 2: raise ValueError("when loss_fn is not None, train_dataset should" "return two elements, but got {}".format(len_element)) cb_params.cur_step_num += 1 list_callback.step_begin(run_context) overflow = False if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): scaling_sens = self._get_scaling_sens() next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),) cb_params.train_dataset_element = next_element outputs = self._train_network(*next_element) cb_params.net_outputs = outputs if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update(): _, overflow, _ = outputs overflow = np.all(overflow.asnumpy()) self._loss_scale_manager.update_loss_scale(overflow) list_callback.step_end(run_context) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break train_dataset.reset() list_callback.epoch_end(run_context) should_stop = should_stop or run_context.get_stop_requested() if should_stop: break list_callback.end(run_context) def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True, sink_size=-1): """ Training API where the iteration is controlled by python front-end. When setting pynative mode, the training process will be performed with dataset not sink. Note: CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, epoch of training should be equal to the count of repeat operation in dataset processing. Otherwise, errors could occur since the amount of data is not equal to the required amount of training . If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. Args: epoch (int): Generally, total number of iterations on the data per epoch. When dataset_sink_mode is set to true and sink_size>0, each epoch sink sink_size steps on the data instead of total number of iterations. train_dataset (Dataset): A training dataset iterator. If there is no loss_fn, a tuple with multiple data (data1, data2, data3, ...) should be returned and passed to the network. Otherwise, a tuple (data, label) should be returned. The data and label would be passed to the network and loss function respectively. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. Configure pynative mode, the training process will be performed with dataset not sink. sink_size (int): Control the amount of data in each sink. If sink_size=-1, sink the complete dataset for each epoch. If sink_size>0, sink sink_size data for each epoch. If dataset_sink_mode is False, set sink_size as invalid. Default: -1. Examples: >>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> loss_scale_manager = FixedLossScaleManager() >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) >>> model.train(2, dataset) """ check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) _device_number_check(self._parallel_mode, self._device_number) _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) self._train(epoch, train_dataset, callbacks=callbacks, dataset_sink_mode=dataset_sink_mode, sink_size=sink_size) def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None): """ Evaluation. The data would be passed to network through dataset channel. Args: valid_dataset (Dataset): Dataset to evaluate the model. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. """ run_context = RunContext(cb_params) dataset_helper, eval_network = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=True) self._eval_network = eval_network cb_params.eval_network = self._eval_network list_callback.begin(run_context) for inputs in dataset_helper: cb_params.cur_step_num += 1 list_callback.step_begin(run_context) outputs = self._eval_network(*inputs) cb_params.net_outputs = outputs list_callback.step_end(run_context) self._update_metrics(outputs) metrics = self._get_metrics() cb_params.metrics = metrics list_callback.end(run_context) return metrics def _eval_process(self, valid_dataset, list_callback=None, cb_params=None): """ Evaluation. The data would be passed to network directly. Args: valid_dataset (Dataset): Dataset to evaluate the model. list_callback (Callback): Executor of callback list. Default: None. cb_params (_InternalCallbackParam): Callback parameters. Default: None. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. """ run_context = RunContext(cb_params) list_callback.begin(run_context) dataset_helper, _ = self._exec_preprocess(self._eval_network, is_train=False, phase='eval', dataset=valid_dataset, dataset_sink_mode=False) for next_element in dataset_helper: cb_params.cur_step_num += 1 list_callback.step_begin(run_context) outputs = self._eval_network(*next_element) cb_params.net_outputs = outputs list_callback.step_end(run_context) self._update_metrics(outputs) valid_dataset.reset() metrics = self._get_metrics() cb_params.metrics = metrics list_callback.end(run_context) return metrics def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True): """ Evaluation API where the iteration is controlled by python front-end. Configure to pynative mode, the evaluation will be performed with dataset non-sink mode. Note: CPU is not supported when dataset_sink_mode is true. If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features of data will be transferred one by one. The limitation of data transmission per time is 256M. Args: valid_dataset (Dataset): Dataset to evaluate the model. callbacks (list): List of callback objects which should be executed while training. Default: None. dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True. Returns: Dict, which returns the loss value and metrics values for the model in the test mode. Examples: >>> dataset = get_dataset() >>> net = Net() >>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset) """ check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) if not self._metric_fns: raise ValueError("metric fn can not be None or empty.") cb_params = _InternalCallbackParam() cb_params.eval_network = self._eval_network cb_params.valid_dataset = valid_dataset cb_params.batch_num = valid_dataset.get_dataset_size() cb_params.mode = "eval" cb_params.cur_step_num = 0 cb_params.list_callback = self._transform_callbacks(callbacks) cb_params.network = self._network self._eval_network.set_train(mode=False) self._eval_network.phase = 'eval' self._clear_metrics() with _CallbackManager(callbacks) as list_callback: if dataset_sink_mode: return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params) return self._eval_process(valid_dataset, list_callback, cb_params) def predict(self, *predict_data): """ Generate output predictions for the input samples. Data could be a single tensor, a list of tensor, or a tuple of tensor. Note: Batch data should be put together in one tensor. Args: predict_data (Tensor): Tensor of predict data. can be array, list or tuple. Returns: Tensor, array(s) of predictions. Examples: >>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) >>> model = Model(Net()) >>> model.predict(input_data) """ self._predict_network.set_train(False) check_input_data(*predict_data, data_class=Tensor) result = self._predict_network(*predict_data) check_output_data(result) return result __all__ = ["Model"]
the-stack_106_31931
# -*- coding: utf-8 -*- import logging from django.conf import settings from django.contrib.gis.gdal import DataSource from django.contrib.gis.geos import MultiPolygon, Polygon from bims.models.boundary import Boundary from bims.models.boundary_type import BoundaryType logger = logging.getLogger(__name__) class UpdateBoundary(object): """ Update boundaries from shapefile. Boundary that created based on boundary_type. E.g. Country And use column_name as indicator which column to be used for saving name of the boundary. """ help = 'Import boundaries from shp file' def is_ascii(self, s): return all(ord(c) < 128 for c in s) def save_data( self, shapefile, boundary_type, column_name, column_code_name, boundary_level, column_top_boundary=None): """ Saving data boundary from shapefile. :param shapefile: shapefile path data that hold boundaries data :type shapefile: str :param boundary_type: what boundary type that will be generated. :type boundary_type: str :param column_name: column name of boundary name. Needed for naming the boundary. :type column_name: str :param column_code_name: column name of boundary code name. Needed for code name of the boundary. :type column_code_name: str :param boundary_level: Level of boundary in administrative. :type boundary_level: int :param column_top_boundary: column name of top of boundary. It is used for getting which boundary that in top of this boundary. It is codename of that boundary :type column_top_boundary: str """ try: boundary_type = BoundaryType.objects.get( name=boundary_type) except BoundaryType.DoesNotExist: boundary_type = BoundaryType.objects.create( name=boundary_type ) boundary_type.level = boundary_level boundary_type.save() Boundary.objects.filter(type=boundary_type).delete() data_source = DataSource( shapefile) layer = data_source[0] for feature in layer: name = feature[column_name].value if boundary_type.name == 'country' \ and name not in settings.FOCUSED_COUNTRIES: continue # TODO :Fix grapelli that can't handle non ascii if not self.is_ascii(name): continue name = name.encode('utf-8').strip() codename = feature[column_code_name].value codename = codename.strip() print('COPYING %s' % name) # get top boundary top_level_boundary = None if column_top_boundary: top_boundary_codename = feature[ column_top_boundary].value top_boundary_codename = top_boundary_codename.strip() try: top_level = (boundary_level - 1) boundary = Boundary.objects.get( code_name=top_boundary_codename, type__level=top_level ) top_level_boundary = boundary except Boundary.DoesNotExist: print('Top boundary=%s not found' % top_boundary_codename) boundary = Boundary.objects.create( name=name, type=boundary_type, code_name=codename, top_level_boundary=top_level_boundary ) geometry = feature.geom if 'MultiPolygon' not in geometry.geojson: geometry = MultiPolygon( Polygon(geometry.coords[0])).geojson else: geometry = geometry.geojson boundary.geometry = geometry boundary.centroid = boundary.geometry.centroid # Don't save geometry if not municipals # and USE_GEOMETRY_BOUNDARY is false if boundary_type.name != 'municipal' and \ not settings.USE_GEOMETRY_BOUNDARY: boundary.geometry = None boundary.save()
the-stack_106_31932
"""BleBox cover entity.""" from openpeerpower.components.cover import ( ATTR_POSITION, STATE_CLOSED, STATE_CLOSING, STATE_OPENING, SUPPORT_CLOSE, SUPPORT_OPEN, SUPPORT_SET_POSITION, SUPPORT_STOP, CoverEntity, ) from . import BleBoxEntity, create_blebox_entities from .const import BLEBOX_TO_OPP_COVER_STATES, BLEBOX_TO_OPP_DEVICE_CLASSES async def async_setup_entry(opp, config_entry, async_add_entities): """Set up a BleBox entry.""" create_blebox_entities( opp, config_entry, async_add_entities, BleBoxCoverEntity, "covers" ) class BleBoxCoverEntity(BleBoxEntity, CoverEntity): """Representation of a BleBox cover feature.""" @property def state(self): """Return the equivalent OPP cover state.""" return BLEBOX_TO_OPP_COVER_STATES[self._feature.state] @property def device_class(self): """Return the device class.""" return BLEBOX_TO_OPP_DEVICE_CLASSES[self._feature.device_class] @property def supported_features(self): """Return the supported cover features.""" position = SUPPORT_SET_POSITION if self._feature.is_slider else 0 stop = SUPPORT_STOP if self._feature.has_stop else 0 return position | stop | SUPPORT_OPEN | SUPPORT_CLOSE @property def current_cover_position(self): """Return the current cover position.""" position = self._feature.current if position == -1: # possible for shutterBox return None return None if position is None else 100 - position @property def is_opening(self): """Return whether cover is opening.""" return self._is_state(STATE_OPENING) @property def is_closing(self): """Return whether cover is closing.""" return self._is_state(STATE_CLOSING) @property def is_closed(self): """Return whether cover is closed.""" return self._is_state(STATE_CLOSED) async def async_open_cover(self, **kwargs): """Open the cover position.""" await self._feature.async_open() async def async_close_cover(self, **kwargs): """Close the cover position.""" await self._feature.async_close() async def async_set_cover_position(self, **kwargs): """Set the cover position.""" position = kwargs[ATTR_POSITION] await self._feature.async_set_position(100 - position) async def async_stop_cover(self, **kwargs): """Stop the cover.""" await self._feature.async_stop() def _is_state(self, state_name): value = self.state return None if value is None else value == state_name
the-stack_106_31933
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. # ''' A module for helping ban group join spammers. ''' from asyncio import sleep from requests import get from telethon.events import ChatAction from telethon.tl.types import ChannelParticipantsAdmins, Message from userbot import BOTLOG, BOTLOG_CHATID, CMD_HELP, ANTI_SPAMBOT, ANTI_SPAMBOT_SHOUT, bot @bot.on(ChatAction) async def ANTI_SPAMBOT(welcm): try: ''' Ban a recently joined user if it matches the spammer checking algorithm. ''' if not ANTI_SPAMBOT: return if welcm.user_joined or welcm.user_added: adder = None ignore = False users = None if welcm.user_added: ignore = False try: adder = welcm.action_message.from_id except AttributeError: return async for admin in bot.iter_participants( welcm.chat_id, filter=ChannelParticipantsAdmins): if admin.id == adder: ignore = True break if ignore: return elif welcm.user_joined: users_list = hasattr(welcm.action_message.action, "users") if users_list: users = welcm.action_message.action.users else: users = [welcm.action_message.from_id] await sleep(5) spambot = False if not users: return for user_id in users: async for message in bot.iter_messages(welcm.chat_id, from_user=user_id): correct_type = isinstance(message, Message) if not message or not correct_type: break join_time = welcm.action_message.date message_date = message.date if message_date < join_time: continue # The message was sent before the user joined, thus ignore it check_user = await welcm.client.get_entity(user_id) # DEBUGGING. LEAVING IT HERE FOR SOME TIME ### print( f"User Joined: {check_user.first_name} [ID: {check_user.id}]" ) print(f"Chat: {welcm.chat.title}") print(f"Time: {join_time}") print( f"Message Sent: {message.text}\n\n[Time: {message_date}]" ) ############################################## try: cas_url = f"https://combot.org/api/cas/check?user_id={check_user.id}" r = get(cas_url, timeout=3) data = r.json() except BaseException: print( "CAS check failed, falling back to legacy anti_spambot behaviour." ) data = None pass if data and data['ok']: reason = f"[Banned by Combot Anti Spam](https://combot.org/cas/query?u={check_user.id})" spambot = True elif "t.cn/" in message.text: reason = "Match on `t.cn` URLs" spambot = True elif "t.me/joinchat" in message.text: reason = "Potential Promotion Message" spambot = True elif message.fwd_from: reason = "Forwarded Message" spambot = True elif "?start=" in message.text: reason = "Telegram bot `start` link" spambot = True elif "bit.ly/" in message.text: reason = "Match on `bit.ly` URLs" spambot = True else: if check_user.first_name in ("Bitmex", "Promotion", "Information", "Dex", "Announcements", "Info"): if user.last_name == "Bot": reason = "Known spambot" spambot = True if spambot: print(f"Potential Spam Message: {message.text}") await message.delete() break continue # Check the next messsage if spambot: chat = await welcm.get_chat() admin = chat.admin_rights creator = chat.creator if not admin and not creator: if ANTI_SPAMBOT_SHOUT: await welcm.reply( "@admins\n" "`ANTI SPAMBOT DETECTOR!\n" "THIS USER MATCHES MY ALGORITHMS AS A SPAMBOT!`" f"REASON: {reason}") kicked = False reported = True else: try: await welcm.reply( "`Potential Spambot Detected !!`\n" f"`REASON:` {reason}\n" "Kicking away for now, will log the ID for further purposes.\n" f"`USER:` [{check_user.first_name}](tg://user?id={check_user.id})" ) await welcm.client.kick_participant( welcm.chat_id, check_user.id) kicked = True reported = False except BaseException: if ANTI_SPAMBOT_SHOUT: await welcm.reply( "@admins\n" "`ANTI SPAMBOT DETECTOR!\n" "THIS USER MATCHES MY ALGORITHMS AS A SPAMBOT!`" f"REASON: {reason}") kicked = False reported = True if BOTLOG: if kicked or reported: await welcm.client.send_message( BOTLOG_CHATID, "#ANTI_SPAMBOT REPORT\n" f"USER: [{user.first_name}](tg://user?id={check_user.id})\n" f"USER ID: `{check_user.id}`\n" f"CHAT: {welcm.chat.title}\n" f"CHAT ID: `{welcm.chat_id}`\n" f"REASON: {reason}\n" f"MESSAGE:\n\n{message.text}") except ValueError: pass CMD_HELP.update({ 'anti_spambot': "If enabled in config.env or env var,\ \nthis module will ban(or inform the admins of the group about) the\ \nspammer(s) if they match the userbot's anti-spam algorithm." })
the-stack_106_31935
#!/usr/bin/env python from __future__ import division from past.utils import old_div import os, sys, json, requests, copy, math from pprint import pprint, pformat from frameMetadata.FrameMetadata import FrameMetadata from utils.UrlUtils import UrlUtils from utils.queryBuilder import postQuery, buildQuery, createMetaObjects def check_reference(dataset, md): """Check reference of this metadata against what's in GRQ.""" # get config uu = UrlUtils() rest_url = uu.rest_url # is this scene a reference? fm_md = copy.deepcopy(md) fm = FrameMetadata() fm.load(fm_md) #sys.stderr.write("fm.reference: %s\n" % fm.reference) #sys.stderr.write("fm.trackNumber: %s\n" % fm.trackNumber) #sys.stderr.write("fm.beamID: %s\n" % fm.beamID) #sys.stderr.write("fm.latitudeIndexMin: %s\n" % fm.latitudeIndexMin) #sys.stderr.write("fm.latitudeIndexMax: %s\n" % fm.latitudeIndexMax) # if not a reference, save if fm.reference == False: return { 'ok_to_save': True, 'suspicious_flag': False, 'suspicious_code': '' } # check if reference exists already extremes = fm.getExtremes(fm.bbox) latMin = extremes[0] latMax = extremes[1] lonMin = extremes[2] lonMax = extremes[3] latDelta = (latMax - latMin) / 3. latitudeResolution = .1 params = { 'sensor': fm.platform, 'dataset_type':dataset, 'trackNumber':fm.trackNumber, 'latitudeIndexMin': int(math.floor(old_div((latMin - latDelta),latitudeResolution))), 'latitudeIndexMax': int(math.ceil(old_div((latMax + latDelta),latitudeResolution))), 'system_version':uu.version, 'direction':fm.direction, 'lookDirection':fm.lookDirection, 'reference':True, } if fm.beamID: params['beamID'] = fm.beamID metList, status = postQuery(buildQuery(params, ['within'])) metObj = createMetaObjects(metList) # if none found, save if len(metObj) == 0: return { 'ok_to_save': True, 'suspicious_flag': False, 'suspicious_code': '' } # loop over frames and check if in this frame's bbox inbbox_count = 0 frames = [] for met_idx, tmp_fm in enumerate(metObj): inbbox = fm.isInBbox(tmp_fm.refbbox) if inbbox: inbbox_count += 1 frames.append({ 'id': os.path.splitext(metList[met_idx]['dfdn']['ProductName'])[0], 'archive_filename': metList[met_idx]['archive_filename'], 'inbbox': inbbox, }) #print "true_count:", true_count # if all not in bbox, okay to save but flag suspicious if inbbox_count == 0: return { 'ok_to_save': True, 'frames': frames, 'suspicious_flag': True, 'suspicious_code': 'no_frames_in_bbox' } # if one is in bbox, not okay to update elif inbbox_count == 1: #return { 'ok_to_save': False, 'reprocess': True, 'suspicious_flag': True, 'suspicious_code': 'one_frame_in_bbox' } # fail for now; it can be eventually reprocessed after the initial re-ingest return { 'ok_to_save': False, 'frames': frames, 'reprocess': False, 'suspicious_flag': True, 'suspicious_code': 'one_frame_in_bbox' } # if more than one is in bbox, not okay to update and flag else: return { 'ok_to_save': False, 'frames': frames, 'reprocess': False, 'suspicious_flag': True, 'suspicious_code': 'more_than_one_frame_in_bbox' } if __name__ == "__main__": dataset = sys.argv[1] md_file = sys.argv[2] json_file = sys.argv[3] with open(md_file) as f: md = json.load(f) with open(json_file, 'w') as f: f.write(json.dumps(check_reference(dataset, md), indent=2))
the-stack_106_31938
import numpy as np import pickle import pdb from src.visualizations.make_pie_chart import make_pie_chart def calc_aic(N: int, log_L: float, num_params: int) -> float: return 2 * num_params - 2 * log_L def calc_bic(N: int, log_L: float, num_params: int) -> float: return -2 * log_L + np.log(N) * num_params def calc_aic_bic_individuals(model_data: dict) -> tuple: if "2NN" in model_data: del model_data["2NN"] if "3NN" in model_data: del model_data["3NN"] if "4NN" in model_data: del model_data["4NN"] if "5NN" in model_data: del model_data["5NN"] if "Exemplar (s=0.001)" in model_data: del model_data["Exemplar (s=0.001)"] if "Exemplar (s=0.1)" in model_data: del model_data["Exemplar (s=0.1)"] if "Exemplar (s=1)" in model_data: del model_data["Exemplar (s=1)"] individual_aic = {} individual_bic = {} for name in model_data["1NN"]: null_LL = model_data["Null"][name] num_papers = model_data["1NN"][name][1] if num_papers < 5: continue model_LL = {model_name: model_data[model_name][name][0] + null_LL for model_name in model_data if model_name != "Null"} aic = {model_name: calc_aic(num_papers, LL, 0) for model_name, LL in model_LL.items() if "Exemplar" not in model_name} aic["Exemplar"] = calc_aic(num_papers, model_LL["Exemplar"], 1) aic["Null"] = calc_aic(num_papers, null_LL, 0) #aic["Exemplar (s=0.001)"] = calc_aic(num_papers, model_LL["Exemplar (s=0.001)"], 1) #aic["Exemplar (s=0.1)"] = calc_aic(num_papers, model_LL["Exemplar (s=0.1)"], 1) #aic["Exemplar (s=1)"] = calc_aic(num_papers, model_LL["Exemplar (s=1)"], 1) bic = {model_name: calc_bic(num_papers, LL, 0) for model_name, LL in model_LL.items() if "Exemplar" not in model_name} bic["Exemplar"] = calc_bic(num_papers, model_LL["Exemplar"], 1) bic["Null"] = calc_bic(num_papers, null_LL, 0) #bic["Exemplar (s=0.001)"] = calc_bic(num_papers, model_LL["Exemplar (s=0.001)"], 1) #bic["Exemplar (s=0.1)"] = calc_bic(num_papers, model_LL["Exemplar (s=0.1)"], 1) #bic["Exemplar (s=1)"] = calc_bic(num_papers, model_LL["Exemplar (s=1)"], 1) individual_aic[name] = aic individual_bic[name] = bic return individual_aic, individual_bic def get_best_model_individual(individual_data: dict) -> dict: best_per_individual = {name: [float("inf"), []] for name in individual_data} for individual in individual_data: for model in individual_data[individual]: if individual_data[individual][model] < best_per_individual[individual][0]: best_per_individual[individual][0] = individual_data[individual][model] best_per_individual[individual][1] = [model] elif individual_data[individual][model] == best_per_individual[individual][0]: best_per_individual[individual][1].append(model) return best_per_individual def calc_aic_bic_overall(model_data: dict) -> dict: if "2NN" in model_data: del model_data["2NN"] if "3NN" in model_data: del model_data["3NN"] if "4NN" in model_data: del model_data["4NN"] if "5NN" in model_data: del model_data["5NN"] aic = {} bic = {} num_papers_overall = 0 log_L_overall = {model_name: 0 for model_name in model_data} for name in model_data["1NN"]: null_LL = model_data["Null"][name] num_papers = model_data["1NN"][name][1] num_papers_overall += num_papers for model_name in model_data: if model_name == "Null": continue model_LL = model_data[model_name][name][0] + null_LL log_L_overall[model_name] += model_LL for model_name in model_data: num_params = 1 if "Exemplar" in model_name else 0 aic[model_name] = calc_aic(num_papers_overall, log_L_overall[model_name], num_params) bic[model_name] = calc_bic(num_papers_overall, log_L_overall[model_name], num_params) return aic, bic if __name__ == "__main__": field = "medicine" num_authors = 2 #model_data = pickle.load(open(f"results/full-2/{field}.p", "rb")) model_data = pickle.load(open(f"results/summary/k-author/authorship-{field}-{num_authors}.p", "rb")) #model_data = pickle.load(open(f"results/summary/k-author/authorship-{field}-{num_authors}.p", "rb")) aic, bic = calc_aic_bic_individuals(model_data) aic_individual = get_best_model_individual(aic) bic_individual = get_best_model_individual(bic) make_pie_chart(aic_individual, include_null=True, len_included=False, filename=f"aic-{field}-{num_authors}") make_pie_chart(bic_individual, include_null=True, len_included=False, filename=f"bic-{field}-{num_authors}") #print(aic) #print(bic) #print(get_best_model_individual(bic))
the-stack_106_31942
# Lint as: python3 # Copyright 2020 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for flax.struct.""" from typing import Any from absl.testing import absltest import dataclasses from flax import struct import jax # Parse absl flags test_srcdir and test_tmpdir. jax.config.parse_flags_with_absl() @struct.dataclass class Point: x: float y: float meta: Any = struct.field(pytree_node=False) class StructTest(absltest.TestCase): def test_no_extra_fields(self): p = Point(x=1, y=2, meta={}) with self.assertRaises(dataclasses.FrozenInstanceError): p.new_field = 1 def test_mutation(self): p = Point(x=1, y=2, meta={}) new_p = p.replace(x=3) self.assertEqual(new_p, Point(x=3, y=2, meta={})) with self.assertRaises(dataclasses.FrozenInstanceError): p.y = 3 def test_pytree_nodes(self): p = Point(x=1, y=2, meta={'abc': True}) leaves = jax.tree_leaves(p) self.assertEqual(leaves, [1, 2]) new_p = jax.tree_map(lambda x: x + x, p) self.assertEqual(new_p, Point(x=2, y=4, meta={'abc': True})) if __name__ == '__main__': absltest.main()
the-stack_106_31943
# -*- coding: utf-8 -*- """The graphical part of a DFTB+ BandStructure node""" import logging import tkinter as tk import dftbplus_step import seamm logger = logging.getLogger(__name__) class TkBandStructure(seamm.TkNode): def __init__( self, tk_flowchart=None, node=None, canvas=None, x=120, y=20, w=200, h=50, my_logger=logger, keyword_metadata=None, ): """Initialize the graphical Tk DFTB+ BandStructure step Keyword arguments: """ self.results_widgets = [] super().__init__( tk_flowchart=tk_flowchart, node=node, canvas=canvas, x=x, y=y, w=w, h=h, my_logger=my_logger, keyword_metadata=keyword_metadata, ) def right_click(self, event): """Probably need to add our dialog...""" super().right_click(event) self.popup_menu.add_command(label="Edit..", command=self.edit) self.popup_menu.tk_popup(event.x_root, event.y_root, 0) def create_dialog(self, title="Edit DFTB+ BandStructure Step"): """Create the dialog!""" self.logger.debug("Creating the dialog") super().create_dialog(title=title, widget="notebook", results_tab=True) # Create all the widgets P = self.node.parameters frame = self["frame"] for key in dftbplus_step.BandStructureParameters.parameters: if key not in ("results", "extra keywords", "create tables"): self[key] = P[key].widget(frame) # self.setup_results(dftbplus_step.properties, calculation=calculation) self.logger.debug("Finished creating the dialog") def reset_dialog(self, widget=None): frame = self["frame"] for slave in frame.grid_slaves(): slave.grid_forget() # Put in the widgets row = 0 self["nPoints"].grid(row=row, column=0, sticky=tk.N) row += 1 return row
the-stack_106_31944
# Simple demo of reading and writing the time for the PCF8523 real-time clock. # Change the if False to if True below to set the time, otherwise it will just # print the current date and time every second. Notice also comments to adjust # for working with hardware vs. software I2C. import time import board # For hardware I2C (M0 boards) use this line: import busio as io # Or for software I2C (ESP8266) use this line instead: #import bitbangio as io import adafruit_pcf8523 # Change to the appropriate I2C clock & data pins here! i2c_bus = io.I2C(board.SCL, board.SDA) # Create the RTC instance: rtc = adafruit_pcf8523.PCF8523(i2c_bus) # Lookup table for names of days (nicer printing). days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday") #pylint: disable-msg=bad-whitespace #pylint: disable-msg=using-constant-test if False: # change to True if you want to set the time! # year, mon, date, hour, min, sec, wday, yday, isdst t = time.struct_time((2017, 10, 29, 10, 31, 0, 0, -1, -1)) # you must set year, mon, date, hour, min, sec and weekday # yearday is not supported, isdst can be set but we don't do anything with it at this time print("Setting time to:", t) # uncomment for debugging rtc.datetime = t print() #pylint: enable-msg=using-constant-test #pylint: enable-msg=bad-whitespace # Main loop: while True: t = rtc.datetime #print(t) # uncomment for debugging print("The date is {} {}/{}/{}".format(days[int(t.tm_wday)], t.tm_mday, t.tm_mon, t.tm_year)) print("The time is {}:{:02}:{:02}".format(t.tm_hour, t.tm_min, t.tm_sec)) time.sleep(1) # wait a second
the-stack_106_31946
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import typing import functools import types from functools import reduce from arch.api.utils import log_utils from federatedml.framework.homo.blocks import has_converged, loss_scatter, model_scatter, model_broadcaster from federatedml.framework.homo.blocks import random_padding_cipher from federatedml.framework.homo.blocks.base import HomoTransferBase from federatedml.framework.homo.blocks.has_converged import HasConvergedTransVar from federatedml.framework.homo.blocks.loss_scatter import LossScatterTransVar from federatedml.framework.homo.blocks.model_broadcaster import ModelBroadcasterTransVar from federatedml.framework.homo.blocks.model_scatter import ModelScatterTransVar from federatedml.framework.homo.blocks.random_padding_cipher import RandomPaddingCipherTransVar from federatedml.framework.weights import Weights, NumericWeights, TransferableWeights from federatedml.transfer_variable.base_transfer_variable import BaseTransferVariables from federatedml.util import consts LOGGER = log_utils.getLogger() class LegacyAggregatorTransVar(HomoTransferBase): def __init__(self, server=(consts.ARBITER,), clients=(consts.GUEST, consts.HOST,), prefix=None): super().__init__(server=server, clients=clients, prefix=prefix) self.loss_scatter = LossScatterTransVar(server=server, clients=clients, prefix=self.prefix) self.has_converged = HasConvergedTransVar(server=server, clients=clients, prefix=self.prefix) self.model_scatter = ModelScatterTransVar(server=server, clients=clients, prefix=self.prefix) self.model_broadcaster = ModelBroadcasterTransVar(server=server, clients=clients, prefix=self.prefix) self.random_padding_cipher = RandomPaddingCipherTransVar(server=server, clients=clients, prefix=self.prefix) class Arbiter(object): def __init__(self, trans_var=LegacyAggregatorTransVar()): self._guest_parties = trans_var.get_parties(roles=[consts.GUEST]) self._host_parties = trans_var.get_parties(roles=[consts.HOST]) self._client_parties = trans_var.client_parties self._loss_sync = loss_scatter.Server(trans_var.loss_scatter) self._converge_sync = has_converged.Server(trans_var.has_converged) self._model_scatter = model_scatter.Server(trans_var.model_scatter) self._model_broadcaster = model_broadcaster.Server(trans_var.model_broadcaster) self._random_padding_cipher = random_padding_cipher.Server(trans_var.random_padding_cipher) # noinspection PyUnusedLocal,PyAttributeOutsideInit,PyProtectedMember def register_aggregator(self, transfer_variables: BaseTransferVariables, enable_secure_aggregate=True): if enable_secure_aggregate: self._random_padding_cipher.exchange_secret_keys() return self def aggregate_model(self, ciphers_dict=None, suffix=tuple()) -> Weights: models = self.get_models_for_aggregate(ciphers_dict, suffix=suffix) total_model, total_degree = reduce(lambda x, y: (x[0] + y[0], x[1] + y[1]), models) total_model /= total_degree LOGGER.debug("In aggregate model, total_model: {}, total_degree: {}".format(total_model.unboxed, total_degree)) return total_model def aggregate_and_broadcast(self, ciphers_dict=None, suffix=tuple()): """ aggregate models from guest and hosts, then broadcast the aggregated model. Args: ciphers_dict: a dict of host id to host cipher suffix: tag suffix """ model = self.aggregate_model(ciphers_dict=ciphers_dict, suffix=suffix) self.send_aggregated_model(model, ciphers_dict=ciphers_dict, suffix=suffix) return model def get_models_for_aggregate(self, ciphers_dict=None, suffix=tuple()): models = self._model_scatter.get_models(suffix=suffix) guest_model = models[0] yield (guest_model.weights, guest_model.get_degree() or 1.0) # host model index = 0 for model in models[1:]: weights = model.weights if ciphers_dict and ciphers_dict.get(index, None): weights = weights.decrypted(ciphers_dict[index]) yield (weights, model.get_degree() or 1.0) index += 1 def send_aggregated_model(self, model: Weights, ciphers_dict: typing.Union[None, typing.Mapping[int, typing.Any]] = None, suffix=tuple()): if ciphers_dict is None: ciphers_dict = {} party_to_cipher = {self._host_parties[idx]: cipher for idx, cipher in ciphers_dict.items()} for party in self._client_parties: cipher = party_to_cipher.get(party) if cipher is None: self._model_broadcaster.send_model(model=model.for_remote(), parties=party, suffix=suffix) else: self._model_broadcaster.send_model(model=model.encrypted(cipher, False).for_remote(), parties=party, suffix=suffix) def aggregate_loss(self, idx=None, suffix=tuple()): if idx is None: parties = None else: parties = [] parties.extend(self._guest_parties) parties.extend([self._host_parties[i] for i in idx]) losses = self._loss_sync.get_losses(parties=parties, suffix=suffix) total_loss = 0.0 total_degree = 0.0 for loss in losses: total_loss += loss.unboxed total_degree += loss.get_degree(1.0) return total_loss / total_degree def send_converge_status(self, converge_func: types.FunctionType, converge_args, suffix=tuple()): is_converge = converge_func(*converge_args) return self._converge_sync.remote_converge_status(is_converge, suffix=suffix) class Client(object): def __init__(self, trans_var=LegacyAggregatorTransVar()): self._enable_secure_aggregate = False self._loss_sync = loss_scatter.Client(trans_var.loss_scatter) self._converge_sync = has_converged.Client(trans_var.has_converged) self._model_scatter = model_scatter.Client(trans_var.model_scatter) self._model_broadcaster = model_broadcaster.Client(trans_var.model_broadcaster) self._random_padding_cipher = random_padding_cipher.Client(trans_var.random_padding_cipher) # noinspection PyAttributeOutsideInit,PyUnusedLocal,PyProtectedMember def register_aggregator(self, transfer_variables: BaseTransferVariables, enable_secure_aggregate=True): self._enable_secure_aggregate = enable_secure_aggregate if enable_secure_aggregate: self._cipher = self._random_padding_cipher.create_cipher() return self def secure_aggregate(self, send_func, weights: Weights, degree: float = None, enable_secure_aggregate=True): # w -> w * degree if degree: weights *= degree # w * degree -> w * degree + \sum(\delta(i, j) * r_{ij}), namely, adding random mask. if enable_secure_aggregate: weights = weights.encrypted(cipher=self._cipher, inplace=True) # maybe remote degree remote_weights = weights.for_remote().with_degree(degree) if degree else weights.for_remote() send_func(remote_weights) def send_model(self, weights: Weights, degree: float = None, suffix=tuple()): def _func(_weights: TransferableWeights): self._model_scatter.send_model(model=_weights, suffix=suffix) return self.secure_aggregate(send_func=_func, weights=weights, degree=degree, enable_secure_aggregate=self._enable_secure_aggregate) def get_aggregated_model(self, suffix=tuple()): return self._model_broadcaster.get_model(suffix=suffix) def aggregate_then_get(self, model: Weights, degree: float = None, suffix=tuple()) -> Weights: self.send_model(weights=model, degree=degree, suffix=suffix) return self.get_aggregated_model(suffix=suffix) def send_loss(self, loss: typing.Union[float, Weights], degree: float = None, suffix=tuple()): if isinstance(loss, float): loss = NumericWeights(loss) return self.secure_aggregate(send_func=functools.partial(self._loss_sync.send_loss, suffix=suffix), weights=loss, degree=degree, enable_secure_aggregate=False) def get_converge_status(self, suffix=tuple()): return self._converge_sync.get_converge_status(suffix=suffix) Guest = Client Host = Client def with_role(role, transfer_variable, enable_secure_aggregate=True): if role == consts.GUEST: return Client().register_aggregator(transfer_variable, enable_secure_aggregate) elif role == consts.HOST: return Client().register_aggregator(transfer_variable, enable_secure_aggregate) elif role == consts.ARBITER: return Arbiter().register_aggregator(transfer_variable, enable_secure_aggregate) else: raise ValueError(f"role {role} not found")
the-stack_106_31947
import os import logging from logging import Formatter from logging.handlers import RotatingFileHandler import json from easydict import EasyDict from pprint import pprint from utils.dirs import create_dirs def setup_logging(log_dir): log_file_format = "[%(levelname)s] - %(asctime)s - %(name)s - : %(message)s in %(pathname)s:%(lineno)d" log_console_format = "[%(levelname)s]: %(message)s" # Main logger main_logger = logging.getLogger() main_logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(Formatter(log_console_format)) exp_file_handler = RotatingFileHandler('{}exp_debug.log'.format(log_dir), maxBytes=10**6, backupCount=5) exp_file_handler.setLevel(logging.DEBUG) exp_file_handler.setFormatter(Formatter(log_file_format)) exp_errors_file_handler = RotatingFileHandler('{}exp_error.log'.format(log_dir), maxBytes=10**6, backupCount=5) exp_errors_file_handler.setLevel(logging.WARNING) exp_errors_file_handler.setFormatter(Formatter(log_file_format)) main_logger.addHandler(console_handler) main_logger.addHandler(exp_file_handler) main_logger.addHandler(exp_errors_file_handler) def get_config_from_json(json_file): """ Get the config from a json file :param json_file: the path of the config file :return: config(namespace), config(dictionary) """ # parse the configurations from the config json file provided with open(json_file, 'r') as config_file: try: config_dict = json.load(config_file) # EasyDict allows to access dict values as attributes (works recursively). config = EasyDict(config_dict) return config, config_dict except ValueError: print("INVALID JSON file format.. Please provide a good json file") exit(-1) def process_config(json_file): """ Get the json file Processing it with EasyDict to be accessible as attributes then editing the path of the experiments folder creating some important directories in the experiment folder Then setup the logging in the whole program Then return the config :param json_file: the path of the config file :return: config object(namespace) """ config, _ = get_config_from_json(json_file) print(" ThE Configuration of your experiment ..") pprint(config) # making sure that you have provided the exp_name. try: print(" *************************************** ") print("The experiment name is {}".format(config.exp_name)) print(" *************************************** ") except AttributeError: print("ERROR!!..Please provide the exp_name in json file..") exit(-1) # create some important directories to be used for that experiment. config.summary_dir = os.path.join("experiments", config.exp_name, "summaries/") config.checkpoint_dir = os.path.join("experiments", config.exp_name, "checkpoints/") config.out_dir = os.path.join("experiments", config.exp_name, "out/") config.log_dir = os.path.join("experiments", config.exp_name, "logs/") create_dirs([config.summary_dir, config.checkpoint_dir, config.out_dir, config.log_dir]) # setup logging in the project setup_logging(config.log_dir) logging.getLogger().info("Hi, This is root.") logging.getLogger().info("After the configurations are successfully processed and dirs are created.") logging.getLogger().info("The pipeline of the project will begin now.") return config
the-stack_106_31950
""" Google provides the defer() call as a wrapper around the taskqueue API. Unfortunately it suffers from serious bugs, and "ticking timebomb" API decisions. Specifically: - defer(_transactional=True) won't work transactionally if your task > 100kb - A working defer() might suddenly start blowing up inside transactions if the task grows > 100kb if you haven't specified xg=True, or you hit the entity group limit This defer is an adapted version of that one, with the following changes: - defer() will *always* use an entity group (even if the task is < 100kb) unless you pass _small_task=True - defer(_transactional=True) works - Adds a _wipe_related_caches option (defaults to True) which wipes out ForeignKey caches if you defer Django model instances (which can result in stale data when the deferred task runs) """ import copy import logging from django.db import models from django.utils import timezone from google.appengine.api.datastore import Delete from google.appengine.ext.deferred import PermanentTaskFailure # noqa from djangae.db import transaction from djangae.environment import task_queue_name from djangae.models import DeferIterationMarker from djangae.processing import find_key_ranges_for_queryset from djangae.utils import retry logger = logging.getLogger(__name__) def _wipe_caches(args, kwargs): # Django related fields (E.g. foreign key) store a "cache" of the related # object when it's first accessed. These caches can drastically bloat up # an instance. If we then defer that instance we're pickling and unpickling a # load of data we likely need to reload in the task anyway. This code # wipes the caches of related fields if any of the args or kwargs are # instances. def _wipe_instance(instance): for field in (f for f in instance._meta.fields if f.rel): cache_name = field.get_cache_name() if hasattr(instance, cache_name): delattr(instance, cache_name) # We have to copy the instances before wiping the caches # otherwise the calling code will suddenly lose their cached things for i, arg in enumerate(args): if isinstance(arg, models.Model): args[i] = copy.deepcopy(arg) _wipe_instance(args[i]) for k, v in list(kwargs.items()): if isinstance(v, models.Model): kwargs[k] = copy.deepcopy(v) _wipe_instance(kwargs[k]) def defer(obj, *args, **kwargs): """ This is a replacement for google.appengine.ext.deferred.defer which doesn't suffer the bug where tasks are deferred non-transactionally when they hit a certain limit. It also *always* uses an entity group, unless you pass _small_task=True in which case it *never* uses an entity group (but you are limited by 100K) """ from google.appengine.ext.deferred.deferred import ( run_from_datastore, serialize, taskqueue, _DeferredTaskEntity, _DEFAULT_URL, _TASKQUEUE_HEADERS, _DEFAULT_QUEUE ) KWARGS = { "countdown", "eta", "name", "target", "retry_options" } taskargs = {x: kwargs.pop(("_%s" % x), None) for x in KWARGS} taskargs["url"] = kwargs.pop("_url", _DEFAULT_URL) transactional = kwargs.pop("_transactional", False) small_task = kwargs.pop("_small_task", False) wipe_related_caches = kwargs.pop("_wipe_related_caches", True) taskargs["headers"] = dict(_TASKQUEUE_HEADERS) taskargs["headers"].update(kwargs.pop("_headers", {})) queue = kwargs.pop("_queue", _DEFAULT_QUEUE) if wipe_related_caches: args = list(args) _wipe_caches(args, kwargs) args = tuple(args) pickled = serialize(obj, *args, **kwargs) key = None try: # Always use an entity group unless this has been # explicitly marked as a small task if not small_task: key = _DeferredTaskEntity(data=pickled).put() # Defer the task task = taskqueue.Task(payload=pickled, **taskargs) ret = task.add(queue, transactional=transactional) # Delete the key as it wasn't needed if key: Delete(key) return ret except taskqueue.TaskTooLargeError: if small_task: raise pickled = serialize(run_from_datastore, str(key)) task = taskqueue.Task(payload=pickled, **taskargs) # This is the line that fixes a bug in the SDK. The SDK # code doesn't pass transactional here. return task.add(queue, transactional=transactional) except: # noqa # Any other exception? Delete the key if key: Delete(key) raise _TASK_TIME_LIMIT = 10 * 60 class TimeoutException(Exception): "Exception thrown to indicate that a new shard should begin and the current one should end" pass def _process_shard(marker_id, model, query, callback, finalize, buffer_time, args, kwargs): args = args or tuple() start_time = timezone.now() try: marker = DeferIterationMarker.objects.get(pk=marker_id) except DeferIterationMarker.DoesNotExist: logger.warning("DeferIterationMarker with ID: %s has vanished, cancelling task", marker_id) return # Redefer if the task isn't ready to begin if not marker.is_ready: defer( _process_shard, marker_id, model, query, callback, finalize, buffer_time=buffer_time, args=args, kwargs=kwargs, _queue=task_queue_name(), _countdown=1 ) return try: qs = model.objects.all() qs.query = query qs.order_by("pk") last_pk = None for instance in qs.all(): last_pk = instance.pk if (timezone.now() - start_time).total_seconds() > _TASK_TIME_LIMIT - buffer_time: raise TimeoutException() callback(instance, *args, **kwargs) else: @transaction.atomic(xg=True) def mark_shard_complete(): try: marker.refresh_from_db() except DeferIterationMarker.DoesNotExist: logger.warning("TaskMarker with ID: %s has vanished, cancelling task", marker_id) return marker.shards_complete += 1 marker.save() if marker.shards_complete == marker.shard_count: # Delete the marker if we were asked to if marker.delete_on_completion: marker.delete() defer( finalize, *args, _transactional=True, _queue=task_queue_name(), **kwargs ) retry(mark_shard_complete, _attempts=6) except (Exception, TimeoutException) as e: # We intentionally don't catch DeadlineExceededError here. There's not enough time to redefer a task # and so the only option is to retry the current shard. It shouldn't happen though, 15 seconds should be # ample time... DeadlineExceededError doesn't subclass Exception, it subclasses BaseException so it'll # never enter here (if it does occur, somehow) if isinstance(e, TimeoutException): logger.debug("Ran out of time processing shard. Deferring new shard to continue from: %s", last_pk) else: logger.exception("Error processing shard. Retrying.") if last_pk: qs = qs.filter(pk__gte=last_pk) defer( _process_shard, marker_id, qs.model, qs.query, callback, finalize, buffer_time=buffer_time, args=args, kwargs=kwargs, _queue=task_queue_name(), _countdown=1 ) def _generate_shards(model, query, callback, finalize, args, kwargs, shards, delete_marker, buffer_time): queryset = model.objects.all() queryset.query = query key_ranges = find_key_ranges_for_queryset(queryset, shards) marker = DeferIterationMarker.objects.create( delete_on_completion=delete_marker, callback_name=callback.__name__, finalize_name=finalize.__name__ ) for i, (start, end) in enumerate(key_ranges): is_last = i == (len(key_ranges) - 1) qs = model.objects.all() qs.query = query filter_kwargs = {} if start: filter_kwargs["pk__gte"] = start if end: filter_kwargs["pk__lt"] = end qs = qs.filter(**filter_kwargs) @transaction.atomic(xg=True) def make_shard(): marker.refresh_from_db() marker.shard_count += 1 if is_last: marker.is_ready = True marker.save() defer( _process_shard, marker.pk, qs.model, qs.query, callback, finalize, args=args, kwargs=kwargs, buffer_time=buffer_time, _queue=task_queue_name(), _transactional=True ) try: retry(make_shard, _attempts=5) except: # noqa marker.delete() # This will cause outstanding tasks to abort raise def defer_iteration_with_finalize( queryset, callback, finalize, _queue='default', _shards=5, _delete_marker=True, _transactional=False, _buffer_time=15, *args, **kwargs): defer( _generate_shards, queryset.model, queryset.query, callback, finalize, args=args, kwargs=kwargs, delete_marker=_delete_marker, shards=_shards, buffer_time=_buffer_time, _queue=_queue, _transactional=_transactional )
the-stack_106_31951
# Copyright 2013 The Emscripten Authors. All rights reserved. # Emscripten is available under two separate licenses, the MIT license and the # University of Illinois/NCSA Open Source License. Both these licenses can be # found in the LICENSE file. from __future__ import print_function import os import platform import shutil import stat import time import re import tempfile from runner import RunnerCore, path_from_root, env_modify, chdir from tools.shared import NODE_JS, PYTHON, EMCC, SPIDERMONKEY_ENGINE, V8_ENGINE, CONFIG_FILE, PIPE, STDOUT, EM_CONFIG, LLVM_ROOT, CANONICAL_TEMP_DIR from tools.shared import run_process, try_delete, run_js, safe_ensure_dirs, expected_llvm_version, generate_sanity from tools.shared import Cache, Settings from tools import jsrun, shared SANITY_FILE = CONFIG_FILE + '_sanity' commands = [[PYTHON, EMCC], [PYTHON, path_from_root('tests', 'runner.py'), 'blahblah']] def restore(): shutil.copyfile(CONFIG_FILE + '_backup', CONFIG_FILE) # restore the config file and set it up for our uses def restore_and_set_up(): restore() with open(CONFIG_FILE, 'a') as f: # don't use the native optimizer from the emsdk - we want to test how it builds f.write('\nEMSCRIPTEN_NATIVE_OPTIMIZER = ""\n') # make LLVM_ROOT sensitive to the LLVM env var, as we test that f.write('\nLLVM_ROOT = os.path.expanduser(os.getenv("LLVM", "%s"))\n' % LLVM_ROOT) # wipe the config and sanity files, creating a blank slate def wipe(): try_delete(CONFIG_FILE) try_delete(SANITY_FILE) def add_to_config(content): with open(CONFIG_FILE, 'a') as f: f.write(content + '\n') def mtime(filename): return os.path.getmtime(filename) def make_fake_clang(filename, version): """Create a fake clang that only handles --version --version writes to stdout (unlike -v which writes to stderr) """ if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) with open(filename, 'w') as f: f.write('#!/bin/sh\n') f.write('echo "clang version %s"\n' % version) f.write('echo "..."\n') shutil.copyfile(filename, filename + '++') os.chmod(filename, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) os.chmod(filename + '++', stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) def make_fake_llc(filename, targets): """Create a fake llc that only handles --version and writes target list to stdout. """ if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) with open(filename, 'w') as f: f.write('#!/bin/sh\n') f.write('echo "llc fake output\nRegistered Targets:\n%s"' % targets) os.chmod(filename, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) SANITY_MESSAGE = 'Emscripten: Running sanity checks' EMBUILDER = path_from_root('embuilder.py') # arguments to build a minimal hello world program, without even libc # (-O1 avoids -O0's default assertions which bring in checking code; # FILESYSTEM=0 avoids bringing libc for that) # (ERROR_ON_UNDEFINED_SYMBOLS=0 is needed because __errno_location is # not included on the native side but needed by a lot of JS libraries.) MINIMAL_HELLO_WORLD = [path_from_root('tests', 'hello_world_em_asm.c'), '-O1', '-s', 'FILESYSTEM=0', '-s', 'ERROR_ON_UNDEFINED_SYMBOLS=0'] class sanity(RunnerCore): @classmethod def setUpClass(cls): super(sanity, cls).setUpClass() shutil.copyfile(CONFIG_FILE, CONFIG_FILE + '_backup') print() print('Running sanity checks.') print('WARNING: This will modify %s, and in theory can break it although it should be restored properly. A backup will be saved in %s_backup' % (EM_CONFIG, EM_CONFIG)) print() print('>>> the original settings file is:') print(open(os.path.expanduser('~/.emscripten')).read()) print('<<<') print() assert os.path.exists(CONFIG_FILE), 'To run these tests, we need a (working!) %s file to already exist' % EM_CONFIG assert 'EMCC_DEBUG' not in os.environ, 'do not run sanity checks in debug mode!' assert 'EMCC_WASM_BACKEND' not in os.environ, 'do not force wasm backend either way in sanity checks!' @classmethod def tearDownClass(cls): super(sanity, cls).tearDownClass() restore() def setUp(self): super(sanity, self).setUp() wipe() self.start_time = time.time() def tearDown(self): super(sanity, self).tearDown() print('time:', time.time() - self.start_time) def do(self, command): print('Running: ' + ' '.join(command)) if type(command) is not list: command = [command] if command[0] == EMCC: command = [PYTHON] + command return run_process(command, stdout=PIPE, stderr=STDOUT, check=False).stdout def check_working(self, command, expected=None): if type(command) is not list: command = [command] if expected is None: if command[0] == EMCC or (len(command) >= 2 and command[1] == EMCC): expected = 'no input files' else: expected = "could not find the following tests: blahblah" output = self.do(command) self.assertContained(expected, output) return output # this should be the very first thing that runs. if this fails, everything else is irrelevant! def test_aaa_normal(self): for command in commands: # Your existing EM_CONFIG should work! restore_and_set_up() self.check_working(command) def test_firstrun(self): for command in commands: wipe() def make_executable(name): with open(os.path.join(temp_bin, name), 'w') as f: os.fchmod(f.fileno(), stat.S_IRWXU) try: temp_bin = tempfile.mkdtemp() old_environ_path = os.environ['PATH'] os.environ['PATH'] = temp_bin + os.pathsep + old_environ_path make_executable('llvm-dis') make_executable('node') make_executable('python2') output = self.do(command) finally: os.environ['PATH'] = old_environ_path shutil.rmtree(temp_bin) self.assertContained('Welcome to Emscripten!', output) self.assertContained('This is the first time any of the Emscripten tools has been run.', output) self.assertContained('A settings file has been copied to %s, at absolute path: %s' % (EM_CONFIG, CONFIG_FILE), output) self.assertContained('It contains our best guesses for the important paths, which are:', output) self.assertContained('LLVM_ROOT', output) self.assertContained('NODE_JS', output) if platform.system() is not 'Windows': # os.chmod can't make files executable on Windows self.assertIdentical(temp_bin, re.search("^ *LLVM_ROOT *= (.*)$", output, re.M).group(1)) possible_nodes = [os.path.join(temp_bin, 'node')] if os.path.exists('/usr/bin/nodejs'): possible_nodes.append('/usr/bin/nodejs') self.assertIdentical(possible_nodes, re.search("^ *NODE_JS *= (.*)$", output, re.M).group(1)) self.assertContained('Please edit the file if any of those are incorrect', output) self.assertContained('This command will now exit. When you are done editing those paths, re-run it.', output) assert output.split()[-1].endswith('===='), 'We should have stopped: ' + output config_file = open(CONFIG_FILE).read() template_file = open(path_from_root('tools', 'settings_template_readonly.py')).read() self.assertNotContained('~/.emscripten', config_file) self.assertContained('~/.emscripten', template_file) self.assertNotContained('{{{', config_file) self.assertNotContained('}}}', config_file) self.assertContained('{{{', template_file) self.assertContained('}}}', template_file) for content in ['EMSCRIPTEN_ROOT', 'LLVM_ROOT', 'NODE_JS', 'TEMP_DIR', 'COMPILER_ENGINE', 'JS_ENGINES']: self.assertContained(content, config_file) # The guessed config should be ok # XXX This depends on your local system! it is possible `which` guesses wrong # try_delete('a.out.js') # output = run_process([PYTHON, EMCC, path_from_root('tests', 'hello_world.c')], stdout=PIPE, stderr=PIPE).output # self.assertContained('hello, world!', run_js('a.out.js'), output) # Second run, with bad EM_CONFIG for settings in ['blah', 'LLVM_ROOT="blarg"; JS_ENGINES=[]; COMPILER_ENGINE=NODE_JS=SPIDERMONKEY_ENGINE=[]']: f = open(CONFIG_FILE, 'w') f.write(settings) f.close() output = self.do(command) if 'LLVM_ROOT' not in settings: self.assertContained('Error in evaluating %s' % EM_CONFIG, output) elif 'runner.py' not in ' '.join(command): self.assertContained('ERROR', output) # sanity check should fail def test_closure_compiler(self): CLOSURE_FATAL = 'fatal: closure compiler' CLOSURE_WARNING = 'does not exist' # Sanity check should find closure restore_and_set_up() output = self.check_working(EMCC) self.assertNotContained(CLOSURE_FATAL, output) self.assertNotContained(CLOSURE_WARNING, output) # Append a bad path for closure, will warn f = open(CONFIG_FILE, 'a') f.write('CLOSURE_COMPILER = "/tmp/nowhere/nothingtoseehere/kjadsfkjwelkjsdfkqgas/nonexistent.txt"\n') f.close() output = self.check_working(EMCC, CLOSURE_WARNING) # And if you actually try to use the bad path, will be fatal f = open(CONFIG_FILE, 'a') f.write('CLOSURE_COMPILER = "/tmp/nowhere/nothingtoseehere/kjadsfkjwelkjsdfkqgas/nonexistent.txt"\n') f.close() output = self.check_working([EMCC, '-s', '--closure', '1'] + MINIMAL_HELLO_WORLD + ['-O2'], CLOSURE_FATAL) # With a working path, all is well restore_and_set_up() try_delete('a.out.js') output = self.check_working([EMCC, '-s', '--closure', '1'] + MINIMAL_HELLO_WORLD + ['-O2'], '') assert os.path.exists('a.out.js'), output def test_llvm(self): LLVM_WARNING = 'LLVM version appears incorrect' restore_and_set_up() # Clang should report the version number we expect, and emcc should not warn assert shared.check_llvm_version() output = self.check_working(EMCC) assert LLVM_WARNING not in output, output # Fake a different llvm version restore_and_set_up() with open(CONFIG_FILE, 'a') as f: f.write('LLVM_ROOT = "' + path_from_root('tests', 'fake') + '"') with env_modify({'EM_IGNORE_SANITY': '1'}): for x in range(-2, 3): for y in range(-2, 3): expected_x, expected_y = (int(x) for x in expected_llvm_version().split('.')) expected_x += x expected_y += y if expected_x < 0 or expected_y < 0: continue # must be a valid llvm version print(expected_llvm_version(), x, y, expected_x, expected_y) make_fake_clang(path_from_root('tests', 'fake', 'clang'), '%s.%s' % (expected_x, expected_y)) if x != 0 or y != 0: output = self.check_working(EMCC, LLVM_WARNING) else: output = self.check_working(EMCC) assert LLVM_WARNING not in output, output def test_emscripten_root(self): # The correct path restore_and_set_up() add_to_config("EMSCRIPTEN_ROOT = '%s'" % path_from_root()) self.check_working(EMCC) # The correct path with extra stuff restore_and_set_up() add_to_config("EMSCRIPTEN_ROOT = '%s'" % (path_from_root() + os.path.sep)) self.check_working(EMCC) def test_llvm_fastcomp(self): WARNING = 'fastcomp in use, but LLVM has not been built with the JavaScript backend as a target' restore_and_set_up() # Should see js backend during sanity check self.assertTrue(shared.check_llvm()) output = self.check_working(EMCC) self.assertNotIn(WARNING, output) # Fake incorrect llc output, no mention of js backend restore_and_set_up() with open(CONFIG_FILE, 'a') as f: f.write('LLVM_ROOT = "' + path_from_root('tests', 'fake', 'bin') + '"') # print '1', open(CONFIG_FILE).read() make_fake_clang(path_from_root('tests', 'fake', 'bin', 'clang'), expected_llvm_version()) make_fake_llc(path_from_root('tests', 'fake', 'bin', 'llc'), 'no j-s backend for you!') self.check_working(EMCC, WARNING) # fake some more for fake in ['llvm-link', 'llvm-ar', 'opt', 'llvm-as', 'llvm-dis', 'llvm-nm', 'lli']: open(path_from_root('tests', 'fake', 'bin', fake), 'w').write('.') try_delete(SANITY_FILE) self.check_working(EMCC, WARNING) # make sure sanity checks notice there is no source dir with version # make_fake_llc(path_from_root('tests', 'fake', 'bin', 'llc'), 'there IZ a js backend: JavaScript (asm.js, emscripten) backend') try_delete(SANITY_FILE) self.check_working(EMCC, 'clang version does not appear to include fastcomp') VERSION_WARNING = 'Emscripten, llvm and clang build versions do not match, this is dangerous' # add version number make_fake_clang(path_from_root('tests', 'fake', 'bin', 'clang'), '%s (emscripten waka : waka)' % expected_llvm_version()) try_delete(SANITY_FILE) self.check_working(EMCC, VERSION_WARNING) restore_and_set_up() self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-s', 'ASM_JS=0'], '''Very old compiler settings (pre-fastcomp) are no longer supported.''') def test_node(self): NODE_WARNING = 'node version appears too old' NODE_WARNING_2 = 'cannot check node version' restore_and_set_up() # Clang should report the version number we expect, and emcc should not warn assert shared.check_node_version() output = self.check_working(EMCC) self.assertNotIn(NODE_WARNING, output) # Fake a different node version restore_and_set_up() f = open(CONFIG_FILE, 'a') f.write('NODE_JS = "' + path_from_root('tests', 'fake', 'nodejs') + '"') f.close() with env_modify({'EM_IGNORE_SANITY': '1'}): for version, succeed in [('v0.8.0', False), ('v4.1.0', False), ('v4.1.1', True), ('v4.2.3-pre', True), ('cheez', False)]: print(version, succeed) f = open(path_from_root('tests', 'fake', 'nodejs'), 'w') f.write('#!/bin/sh\n') f.write('''if [ $1 = "--version" ]; then echo "%s" else %s $@ fi ''' % (version, NODE_JS)) f.close() os.chmod(path_from_root('tests', 'fake', 'nodejs'), stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) if not succeed: if version[0] == 'v': self.check_working(EMCC, NODE_WARNING) else: self.check_working(EMCC, NODE_WARNING_2) else: output = self.check_working(EMCC) assert NODE_WARNING not in output, output def test_emcc(self): SANITY_FAIL_MESSAGE = 'sanity check failed to run' # emcc should check sanity if no ${EM_CONFIG}_sanity restore_and_set_up() time.sleep(1) assert not os.path.exists(SANITY_FILE) # restore is just the settings, not the sanity output = self.check_working(EMCC) self.assertContained(SANITY_MESSAGE, output) assert os.path.exists(SANITY_FILE) # EMCC should have checked sanity successfully assert mtime(SANITY_FILE) > mtime(CONFIG_FILE) assert generate_sanity() == open(SANITY_FILE).read() self.assertNotContained(SANITY_FAIL_MESSAGE, output) # emcc run again should not sanity check, because the sanity file is newer output = self.check_working(EMCC) self.assertNotContained(SANITY_MESSAGE, output) self.assertNotContained(SANITY_FAIL_MESSAGE, output) # correct sanity contents mean we need not check open(SANITY_FILE, 'w').write(generate_sanity()) output = self.check_working(EMCC) self.assertNotContained(SANITY_MESSAGE, output) # incorrect sanity contents mean we *must* check open(SANITY_FILE, 'w').write('wakawaka') output = self.check_working(EMCC) self.assertContained(SANITY_MESSAGE, output) # but with EMCC_DEBUG=1 we should check with env_modify({'EMCC_DEBUG': '1'}): output = self.check_working(EMCC) try_delete(CANONICAL_TEMP_DIR) self.assertContained(SANITY_MESSAGE, output) output = self.check_working(EMCC) self.assertNotContained(SANITY_MESSAGE, output) # also with -v, with or without inputs output = self.check_working([EMCC, '-v'], SANITY_MESSAGE) output = self.check_working([EMCC, '-v'] + MINIMAL_HELLO_WORLD + [], SANITY_MESSAGE) # Make sure the test runner didn't do anything to the setup output = self.check_working(EMCC) self.assertNotContained(SANITY_MESSAGE, output) self.assertNotContained(SANITY_FAIL_MESSAGE, output) # emcc should also check sanity if the file is outdated time.sleep(0.1) restore_and_set_up() assert mtime(SANITY_FILE) < mtime(CONFIG_FILE) output = self.check_working(EMCC) self.assertContained(SANITY_MESSAGE, output) assert mtime(SANITY_FILE) >= mtime(CONFIG_FILE) self.assertNotContained(SANITY_FAIL_MESSAGE, output) # emcc should be configurable directly from EM_CONFIG without any config file restore_and_set_up() config = open(CONFIG_FILE, 'r').read() open('main.cpp', 'w').write(''' #include <stdio.h> int main() { printf("hello from emcc with no config file\\n"); return 0; } ''') wipe() with env_modify({'EM_CONFIG': config}): run_process([PYTHON, EMCC, 'main.cpp', '-o', 'a.out.js']) self.assertContained('hello from emcc with no config file', run_js('a.out.js')) def test_emcc_caching(self): INCLUDING_MESSAGE = 'including X' BUILDING_MESSAGE = 'building X for cache' ERASING_MESSAGE = 'clearing cache' EMCC_CACHE = Cache.dirname restore_and_set_up() Cache.erase() assert not os.path.exists(EMCC_CACHE) with env_modify({'EMCC_DEBUG': '1'}): # Building a file that *does* need something *should* trigger cache # generation, but only the first time for filename, libname in [('hello_libcxx.cpp', 'libc++')]: for i in range(3): print(filename, libname, i) self.clear() output = self.do([EMCC, '-O' + str(i), '-s', '--llvm-lto', '0', path_from_root('tests', filename), '--save-bc', 'a.bc', '-s', 'DISABLE_EXCEPTION_CATCHING=0']) # print '\n\n\n', output assert INCLUDING_MESSAGE.replace('X', libname) in output if libname == 'libc': assert INCLUDING_MESSAGE.replace('X', 'libc++') not in output # we don't need libc++ in this code else: assert INCLUDING_MESSAGE.replace('X', 'libc') in output # libc++ always forces inclusion of libc assert (BUILDING_MESSAGE.replace('X', libname) in output) == (i == 0), 'Must only build the first time' self.assertContained('hello, world!', run_js('a.out.js')) assert os.path.exists(EMCC_CACHE) full_libname = libname + '.bc' if libname != 'libc++' else libname + '.a' assert os.path.exists(os.path.join(EMCC_CACHE, full_libname)) try_delete(CANONICAL_TEMP_DIR) restore_and_set_up() def ensure_cache(): self.do([PYTHON, EMCC, '-O2', path_from_root('tests', 'hello_world.c')]) # Manual cache clearing ensure_cache() self.assertTrue(os.path.exists(EMCC_CACHE)) self.assertTrue(os.path.exists(Cache.root_dirname)) output = self.do([PYTHON, EMCC, '--clear-cache']) self.assertIn(ERASING_MESSAGE, output) self.assertFalse(os.path.exists(EMCC_CACHE)) self.assertFalse(os.path.exists(Cache.root_dirname)) self.assertIn(SANITY_MESSAGE, output) # Changing LLVM_ROOT, even without altering .emscripten, clears the cache ensure_cache() make_fake_clang(path_from_root('tests', 'fake', 'bin', 'clang'), expected_llvm_version()) with env_modify({'LLVM': path_from_root('tests', 'fake', 'bin')}): self.assertTrue(os.path.exists(EMCC_CACHE)) output = self.do([PYTHON, EMCC]) self.assertIn(ERASING_MESSAGE, output) self.assertFalse(os.path.exists(EMCC_CACHE)) def test_nostdincxx(self): restore_and_set_up() Cache.erase() for compiler in [EMCC]: print(compiler) run_process([PYTHON, EMCC] + MINIMAL_HELLO_WORLD + ['-v']) # run once to ensure binaryen port is all ready proc = run_process([PYTHON, EMCC] + MINIMAL_HELLO_WORLD + ['-v'], stdout=PIPE, stderr=PIPE) out = proc.stdout err = proc.stderr proc2 = run_process([PYTHON, EMCC] + MINIMAL_HELLO_WORLD + ['-v', '-nostdinc++'], stdout=PIPE, stderr=PIPE) out2 = proc2.stdout err2 = proc2.stderr self.assertIdentical(out, out2) def focus(e): assert 'search starts here:' in e, e assert e.count('End of search list.') == 1, e return e[e.index('search starts here:'):e.index('End of search list.') + 20] err = focus(err) err2 = focus(err2) assert err == err2, err + '\n\n\n\n' + err2 def test_emconfig(self): restore_and_set_up() fd, custom_config_filename = tempfile.mkstemp(prefix='.emscripten_config_') orig_config = open(CONFIG_FILE, 'r').read() # Move the ~/.emscripten to a custom location. with os.fdopen(fd, "w") as f: f.write(orig_config) # Make a syntax error in the original config file so that attempting to access it would fail. open(CONFIG_FILE, 'w').write('asdfasdfasdfasdf\n\'\'\'' + orig_config) temp_dir = tempfile.mkdtemp(prefix='emscripten_temp_') with chdir(temp_dir): self.do([PYTHON, EMCC, '--em-config', custom_config_filename] + MINIMAL_HELLO_WORLD + ['-O2']) result = run_js('a.out.js') self.assertContained('hello, world!', result) # Clean up created temp files. os.remove(custom_config_filename) if Settings.WASM_BACKEND: os.remove(custom_config_filename + "_sanity_wasm") else: os.remove(custom_config_filename + "_sanity") shutil.rmtree(temp_dir) def test_emcc_ports(self): restore_and_set_up() # listing ports out = self.do([PYTHON, EMCC, '--show-ports']) assert 'Available ports:' in out, out assert 'SDL2' in out, out assert 'SDL2_image' in out, out assert 'SDL2_net' in out, out # using ports RETRIEVING_MESSAGE = 'retrieving port' BUILDING_MESSAGE = 'generating port' from tools import system_libs PORTS_DIR = system_libs.Ports.get_dir() for compiler in [EMCC]: print(compiler) for i in [0, 1]: self.do([PYTHON, EMCC, '--clear-cache']) print(i) if i == 0: try_delete(PORTS_DIR) else: self.do([PYTHON, compiler, '--clear-ports']) assert not os.path.exists(PORTS_DIR) # Building a file that doesn't need ports should not trigger anything # (avoid wasm to avoid the binaryen port) output = self.do([compiler, path_from_root('tests', 'hello_world_sdl.cpp'), '-s', 'WASM=0']) print('no', output) assert RETRIEVING_MESSAGE not in output, output assert BUILDING_MESSAGE not in output assert not os.path.exists(PORTS_DIR) # Building a file that need a port does trigger stuff output = self.do([compiler, path_from_root('tests', 'hello_world_sdl.cpp'), '-s', 'WASM=0', '-s', 'USE_SDL=2']) print('yes', output) assert RETRIEVING_MESSAGE in output, output assert BUILDING_MESSAGE in output, output assert os.path.exists(PORTS_DIR) def second_use(): # Using it again avoids retrieve and build output = self.do([compiler, path_from_root('tests', 'hello_world_sdl.cpp'), '-s', 'WASM=0', '-s', 'USE_SDL=2']) assert RETRIEVING_MESSAGE not in output, output assert BUILDING_MESSAGE not in output, output second_use() # if the version isn't sufficient, we retrieve and rebuild subdir = os.listdir(os.path.join(PORTS_DIR, 'sdl2'))[0] os.rename(os.path.join(PORTS_DIR, 'sdl2', subdir), os.path.join(PORTS_DIR, 'sdl2', 'old-subdir')) import zipfile z = zipfile.ZipFile(os.path.join(PORTS_DIR, 'sdl2' + '.zip'), 'w') if not os.path.exists('old-sub'): os.mkdir('old-sub') open(os.path.join('old-sub', 'a.txt'), 'w').write('waka') open(os.path.join('old-sub', 'b.txt'), 'w').write('waka') z.write(os.path.join('old-sub', 'a.txt')) z.write(os.path.join('old-sub', 'b.txt')) z.close() output = self.do([compiler, path_from_root('tests', 'hello_world_sdl.cpp'), '-s', 'WASM=0', '-s', 'USE_SDL=2']) assert RETRIEVING_MESSAGE in output, output assert BUILDING_MESSAGE in output, output assert os.path.exists(PORTS_DIR) second_use() def test_native_optimizer(self): restore_and_set_up() def build(): return self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-O2', '-s', 'WASM=0'], 'running js post-opts') def test(): self.assertContained('hello, world!', run_js('a.out.js')) with env_modify({'EMCC_DEBUG': '1'}): # basic usage or lack of usage for native in [None, 0, 1]: print('phase 1, part', native) Cache.erase() try: if native is not None: os.environ['EMCC_NATIVE_OPTIMIZER'] = str(native) output = build() assert ('js optimizer using native' in output) == (not not (native or native is None)), output test() if native or native is None: # None means use the default, which is to use the native optimizer assert 'building native optimizer' in output, output # compile again, no rebuild of optimizer output = build() assert 'building native optimizer' not in output assert 'js optimizer using native' in output test() finally: if native is not None: del os.environ['EMCC_NATIVE_OPTIMIZER'] # force a build failure, see we fall back to non-native for native in [1, 'g']: with env_modify({'EMCC_NATIVE_OPTIMIZER': str(native)}): print('phase 2, part', native) Cache.erase() try: # break it f = path_from_root('tools', 'optimizer', 'optimizer-main.cpp') src = open(f).read() bad = src.replace('main', '!waka waka<') assert bad != src open(f, 'w').write(bad) # first try output = build() assert 'failed to build native optimizer' in output, output if native == 1: assert 'to see compiler errors, build with EMCC_NATIVE_OPTIMIZER=g' in output assert 'waka waka' not in output else: assert 'output from attempt' in output, output assert 'waka waka' in output, output assert 'js optimizer using native' not in output test() # still works, without native optimizer # second try, see previous failure output = build() assert 'failed to build native optimizer' not in output assert 'seeing that optimizer could not be built' in output test() # still works, without native optimizer # clear cache, try again Cache.erase() output = build() assert 'failed to build native optimizer' in output test() # still works, without native optimizer finally: open(f, 'w').write(src) Cache.erase() # now it should work again output = build() assert 'js optimizer using native' in output test() # still works try_delete(CANONICAL_TEMP_DIR) def test_d8_path(self): """ Test that running JS commands works for node, d8, and jsc and is not path dependent """ # Fake some JS engines restore_and_set_up() sample_script = path_from_root('tests', 'print_args.js') # Note that the path contains 'd8'. test_path = path_from_root('tests', 'fake', 'abcd8765') if not os.path.exists(test_path): os.makedirs(test_path) with env_modify({'EM_IGNORE_SANITY': '1'}): jsengines = [('d8', V8_ENGINE), ('d8_g', V8_ENGINE), ('js', SPIDERMONKEY_ENGINE), ('node', NODE_JS), ('nodejs', NODE_JS)] for filename, engine in jsengines: if type(engine) is list: engine = engine[0] if engine == '': print('WARNING: Not testing engine %s, not configured.' % (filename)) continue print(filename, engine) test_engine_path = os.path.join(test_path, filename) f = open(test_engine_path, 'w') f.write('#!/bin/sh\n') f.write('%s $@\n' % (engine)) f.close() os.chmod(test_engine_path, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) try: out = jsrun.run_js(sample_script, engine=test_engine_path, args=['--foo'], full_output=True, assert_returncode=0, skip_check=True) except Exception as e: if 'd8' in filename: assert False, 'Your d8 version does not correctly parse command-line arguments, please upgrade or delete from ~/.emscripten config file: %s' % (e) else: assert False, 'Error running script command: %s' % (e) self.assertEqual('0: --foo', out.strip()) def test_wacky_env(self): restore_and_set_up() def build(): return self.check_working([EMCC] + MINIMAL_HELLO_WORLD, '') def test(): self.assertContained('hello, world!', run_js('a.out.js')) print('normal build') with env_modify({'EMCC_FORCE_STDLIBS': None}): Cache.erase() build() test() print('wacky env vars, these should not mess our bootstrapping') with env_modify({'EMCC_FORCE_STDLIBS': '1'}): Cache.erase() build() test() def test_vanilla(self): restore_and_set_up() Cache.erase() with env_modify({'EMCC_DEBUG': '1'}): # see that we test vanilla status, and just once TESTING = 'testing for asm.js target' self.check_working(EMCC, TESTING) for i in range(3): output = self.check_working(EMCC, 'check tells us to use') assert TESTING not in output # if env var tells us, do what it says with env_modify({'EMCC_WASM_BACKEND': '1'}): self.check_working(EMCC, 'EMCC_WASM_BACKEND tells us to use wasm backend') with env_modify({'EMCC_WASM_BACKEND': '0'}): self.check_working(EMCC, 'EMCC_WASM_BACKEND tells us to use asm.js backend') def make_fake(report): with open(CONFIG_FILE, 'a') as f: f.write('LLVM_ROOT = "' + path_from_root('tests', 'fake', 'bin') + '"\n') # BINARYEN_ROOT needs to exist in the config, even though this test # doesn't actually use it. f.write('BINARYEN_ROOT= "%s"\n' % path_from_root('tests', 'fake', 'bin')) make_fake_llc(path_from_root('tests', 'fake', 'bin', 'llc'), report) with open(path_from_root('tests', 'fake', 'bin', 'wasm-ld'), 'w') as f: f.write('#!/bin/sh\n') f.write('exit 0\n') os.chmod(path_from_root('tests', 'fake', 'bin', 'wasm-ld'), stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) with env_modify({'EMCC_DEBUG': '1'}): make_fake('wasm32-unknown-unknown-elf') # see that we request the right backend from llvm with env_modify({'EMCC_WASM_BACKEND': '1'}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'wasm32-unknown-unknown-elf') make_fake('asmjs-unknown-emscripten') with env_modify({'EMCC_WASM_BACKEND': '0'}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'asmjs-unknown-emscripten') # check the current installed one is ok restore_and_set_up() self.check_working(EMCC) output = self.check_working(EMCC, 'check tells us to use') if 'wasm backend' in output: self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'wasm32-unknown-unknown-elf') else: assert 'asm.js backend' in output self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'asmjs-unknown-emscripten') # fake llc output def test_with_fake(report, expected): make_fake(report) with env_modify({'EMCC_DEBUG': '1'}): output = self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], expected) self.assertContained('config file changed since we checked vanilla', output) test_with_fake('got js backend! JavaScript (asm.js, emscripten) backend', 'check tells us to use asm.js backend') test_with_fake('got wasm32 backend! WebAssembly 32-bit', 'check tells us to use wasm backend') # use LLVM env var to modify LLVM between vanilla checks assert not os.environ.get('LLVM'), 'we need to modify LLVM env var for this' f = open(CONFIG_FILE, 'a') f.write('LLVM_ROOT = os.getenv("LLVM", "' + path_from_root('tests', 'fake1', 'bin') + '")\n') f.close() safe_ensure_dirs(path_from_root('tests', 'fake1', 'bin')) f = open(path_from_root('tests', 'fake1', 'bin', 'llc'), 'w') f.write('#!/bin/sh\n') f.write('echo "llc fake1 output\nRegistered Targets:\n%s"' % 'got js backend! JavaScript (asm.js, emscripten) backend') f.close() os.chmod(path_from_root('tests', 'fake1', 'bin', 'llc'), stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) safe_ensure_dirs(path_from_root('tests', 'fake2', 'bin')) f = open(path_from_root('tests', 'fake2', 'bin', 'llc'), 'w') f.write('#!/bin/sh\n') f.write('echo "llc fake2 output\nRegistered Targets:\n%s"' % 'got wasm32 backend! WebAssembly 32-bit') f.close() os.chmod(path_from_root('tests', 'fake2', 'bin', 'llc'), stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) with env_modify({'EMCC_DEBUG': '1'}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'use asm.js backend') with env_modify({'LLVM': path_from_root('tests', 'fake2', 'bin')}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD + ['-c'], 'regenerating vanilla check since other llvm') try_delete(CANONICAL_TEMP_DIR) return # TODO: the rest of this # check separate cache dirs are used restore_and_set_up() self.check_working([EMCC], '') root_cache = os.path.expanduser('~/.emscripten_cache') if os.path.exists(os.path.join(root_cache, 'asmjs')): shutil.rmtree(os.path.join(root_cache, 'asmjs')) if os.path.exists(os.path.join(root_cache, 'wasm')): shutil.rmtree(os.path.join(root_cache, 'wasm')) with env_modify({'EMCC_WASM_BACKEND': '1'}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD, '') assert os.path.exists(os.path.join(root_cache, 'wasm')) with env_modify({'EMCC_WASM_BACKEND': '0'}): self.check_working([EMCC] + MINIMAL_HELLO_WORLD, '') assert os.path.exists(os.path.join(root_cache, 'asmjs')) shutil.rmtree(os.path.join(root_cache, 'asmjs')) self.check_working([EMCC] + MINIMAL_HELLO_WORLD, '') assert os.path.exists(os.path.join(root_cache, 'asmjs')) def test_wasm_backend_builds(self): # we can build a program using the wasm backend, rebuilding binaryen etc. as needed restore_and_set_up() def check(): print(self.do([PYTHON, EMCC, '--clear-cache'])) print(self.do([PYTHON, EMCC, '--clear-ports'])) with env_modify({'EMCC_WASM_BACKEND': '1'}): self.check_working([EMCC, path_from_root('tests', 'hello_world.c')], '') print('normally') check() print('with no BINARYEN_ROOT') open(CONFIG_FILE, 'a').write(''' BINARYEN_ROOT = '' ''') print(open(CONFIG_FILE).read()) check() def test_binaryen(self): import tools.ports.binaryen as binaryen tag_file = Cache.get_path('binaryen_tag_' + binaryen.TAG + '.txt') assert not os.environ.get('BINARYEN') # must not have binaryen env var set # test in 2 modes - with BINARYEN_ROOT in the config file, set to '', and without it entirely for binaryen_root_in_config in [1, 0]: print('binaryen_root_in_config:', binaryen_root_in_config) def prep(): restore_and_set_up() print('clearing ports...') print(self.do([PYTHON, EMCC, '--clear-ports'])) wipe() self.do([PYTHON, EMCC]) # first run stage try_delete(tag_file) # if BINARYEN_ROOT is set, we don't build the port. Check we do build it if not if binaryen_root_in_config: config = open(CONFIG_FILE).read() assert '''BINARYEN_ROOT = os.path.expanduser(os.getenv('BINARYEN', ''))''' in config, config # setup created it to be '' print('created config:') print(config) restore_and_set_up() config = open(CONFIG_FILE).read() config = config.replace('BINARYEN_ROOT', '''BINARYEN_ROOT = os.path.expanduser(os.getenv('BINARYEN', '')) # ''') else: restore_and_set_up() config = open(CONFIG_FILE).read() config = config.replace('BINARYEN_ROOT', '#') print('modified config:') print(config) open(CONFIG_FILE, 'w').write(config) print('build using embuilder') prep() run_process([PYTHON, EMBUILDER, 'build', 'binaryen']) assert os.path.exists(tag_file) run_process([PYTHON, EMCC] + MINIMAL_HELLO_WORLD + ['-s', 'BINARYEN=1']) self.assertContained('hello, world!', run_js('a.out.js')) print('see we show an error for emmake (we cannot build natively under emmake)') prep() try_delete('a.out.js') out = self.do([PYTHON, path_from_root('emmake.py'), EMCC] + MINIMAL_HELLO_WORLD + ['-s', 'BINARYEN=1']) assert not os.path.exists(tag_file) assert not os.path.exists('a.out.js') self.assertContained('For example, for binaryen, do "python embuilder.py build binaryen"', out) if not binaryen_root_in_config: print('build on demand') for side_module in (False, True): print(side_module) prep() assert not os.path.exists(tag_file) try_delete('a.out.js') try_delete('a.out.wasm') cmd = [PYTHON, EMCC] if not side_module: cmd += MINIMAL_HELLO_WORLD else: # EM_ASM doesn't work in a wasm side module, build a normal program cmd += [path_from_root('tests', 'hello_world.c'), '-s', 'SIDE_MODULE=1'] cmd += ['-s', 'BINARYEN=1'] run_process(cmd) assert os.path.exists(tag_file) assert os.path.exists('a.out.wasm') if not side_module: assert os.path.exists('a.out.js') self.assertContained('hello, world!', run_js('a.out.js'))
the-stack_106_31955
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import sys import random import time import math import distutils.util from functools import partial import numpy as np import paddle from paddle.io import DataLoader from paddle.metric import Metric, Accuracy, Precision, Recall from paddlenlp.datasets import load_dataset from paddlenlp.data import Stack, Tuple, Pad, Dict from paddlenlp.data.sampler import SamplerHelper from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer from paddlenlp.transformers import ElectraForSequenceClassification, ElectraTokenizer from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer from paddlenlp.transformers import LinearDecayWithWarmup from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) METRIC_CLASSES = { "cola": Mcc, "sst-2": Accuracy, "mrpc": AccuracyAndF1, "sts-b": PearsonAndSpearman, "qqp": AccuracyAndF1, "mnli": Accuracy, "qnli": Accuracy, "rte": Accuracy, } MODEL_CLASSES = { "bert": (BertForSequenceClassification, BertTokenizer), "ernie": (ErnieForSequenceClassification, ErnieTokenizer), } def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(METRIC_CLASSES.keys()), ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--learning_rate", default=1e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--logging_steps", type=int, default=100, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.") parser.add_argument( "--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion" ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help="Linear warmup proportion over total steps.") parser.add_argument( "--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--seed", default=42, type=int, help="random seed for initialization") parser.add_argument( "--device", default="gpu", type=str, choices=["cpu", "gpu", "xpu"], help="The device to select to train the model, is must be cpu/gpu/xpu.") parser.add_argument( "--use_amp", type=distutils.util.strtobool, default=False, help="Enable mixed precision training.") parser.add_argument( "--scale_loss", type=float, default=2**15, help="The value of scale_loss for fp16.") args = parser.parse_args() return args def set_seed(args): # Use the same data seed(for data shuffle) for all procs to guarantee data # consistency after sharding. random.seed(args.seed) np.random.seed(args.seed) # Maybe different op seeds(for dropout) for different procs is better. By: # `paddle.seed(args.seed + paddle.distributed.get_rank())` paddle.seed(args.seed) @paddle.no_grad() def evaluate(model, loss_fct, metric, data_loader): model.eval() metric.reset() for batch in data_loader: input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) correct = metric.compute(logits, labels) metric.update(correct) res = metric.accumulate() if isinstance(metric, AccuracyAndF1): print( "eval loss: %f, acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s, " % ( loss.numpy(), res[0], res[1], res[2], res[3], res[4], ), end='') elif isinstance(metric, Mcc): print("eval loss: %f, mcc: %s, " % (loss.numpy(), res[0]), end='') elif isinstance(metric, PearsonAndSpearman): print( "eval loss: %f, pearson: %s, spearman: %s, pearson and spearman: %s, " % (loss.numpy(), res[0], res[1], res[2]), end='') else: print("eval loss: %f, acc: %s, " % (loss.numpy(), res), end='') model.train() def convert_example(example, tokenizer, label_list, max_seq_length=512, is_test=False): """convert a glue example into necessary features""" if not is_test: # `label_list == None` is for regression task label_dtype = "int64" if label_list else "float32" # Get the label label = example['labels'] label = np.array([label], dtype=label_dtype) # Convert raw text to feature if (int(is_test) + len(example)) == 2: example = tokenizer(example['sentence'], max_seq_len=max_seq_length) else: example = tokenizer( example['sentence1'], text_pair=example['sentence2'], max_seq_len=max_seq_length) if not is_test: return example['input_ids'], example['token_type_ids'], label else: return example['input_ids'], example['token_type_ids'] def do_train(args): paddle.set_device(args.device) if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() metric_class = METRIC_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_ds = load_dataset('glue', args.task_name, splits="train") tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial( convert_example, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=args.max_seq_length) train_ds = train_ds.map(trans_func, lazy=True) train_batch_sampler = paddle.io.DistributedBatchSampler( train_ds, batch_size=args.batch_size, shuffle=True) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader = DataLoader( dataset=train_ds, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) if args.task_name == "mnli": dev_ds_matched, dev_ds_mismatched = load_dataset( 'glue', args.task_name, splits=["dev_matched", "dev_mismatched"]) dev_ds_matched = dev_ds_matched.map(trans_func, lazy=True) dev_ds_mismatched = dev_ds_mismatched.map(trans_func, lazy=True) dev_batch_sampler_matched = paddle.io.BatchSampler( dev_ds_matched, batch_size=args.batch_size, shuffle=False) dev_data_loader_matched = DataLoader( dataset=dev_ds_matched, batch_sampler=dev_batch_sampler_matched, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_batch_sampler_mismatched = paddle.io.BatchSampler( dev_ds_mismatched, batch_size=args.batch_size, shuffle=False) dev_data_loader_mismatched = DataLoader( dataset=dev_ds_mismatched, batch_sampler=dev_batch_sampler_mismatched, collate_fn=batchify_fn, num_workers=0, return_list=True) else: dev_ds = load_dataset('glue', args.task_name, splits='dev') dev_ds = dev_ds.map(trans_func, lazy=True) dev_batch_sampler = paddle.io.BatchSampler( dev_ds, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader( dataset=dev_ds, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) num_classes = 1 if train_ds.label_list == None else len(train_ds.label_list) model = model_class.from_pretrained( args.model_name_or_path, num_classes=num_classes) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else ( len(train_data_loader) * args.num_train_epochs) warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps, warmup) # Generate parameter names needed to perform weight decay. # All bias and LayerNorm parameters are excluded. decay_params = [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ] optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, beta1=0.9, beta2=0.999, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in decay_params) loss_fct = paddle.nn.loss.CrossEntropyLoss( ) if train_ds.label_list else paddle.nn.loss.MSELoss() metric = metric_class() if args.use_amp: scaler = paddle.amp.GradScaler(init_loss_scaling=args.scale_loss) global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, segment_ids, labels = batch with paddle.amp.auto_cast( args.use_amp, custom_white_list=["layer_norm", "softmax", "gelu"]): logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) if args.use_amp: scaler.scale(loss).backward() scaler.minimize(optimizer, loss) else: loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_grad() if global_step % args.logging_steps == 0: print( "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s" % (global_step, num_training_steps, epoch, step, paddle.distributed.get_rank(), loss, optimizer.get_lr(), args.logging_steps / (time.time() - tic_train))) tic_train = time.time() if global_step % args.save_steps == 0 or global_step == num_training_steps: tic_eval = time.time() if args.task_name == "mnli": evaluate(model, loss_fct, metric, dev_data_loader_matched) evaluate(model, loss_fct, metric, dev_data_loader_mismatched) print("eval done total : %s s" % (time.time() - tic_eval)) else: evaluate(model, loss_fct, metric, dev_data_loader) print("eval done total : %s s" % (time.time() - tic_eval)) if paddle.distributed.get_rank() == 0: output_dir = os.path.join(args.output_dir, "%s_ft_model_%d.pdparams" % (args.task_name, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) if global_step >= num_training_steps: return def print_arguments(args): """print arguments""" print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": args = parse_args() print_arguments(args) do_train(args)
the-stack_106_31956
"""Network layer for MRP.""" from abc import abstractmethod import asyncio import logging from pyatv import exceptions from pyatv.core.net import tcp_keepalive from pyatv.interface import StateProducer from pyatv.protocols.mrp import protobuf from pyatv.support import chacha20, log_binary, log_protobuf from pyatv.support.variant import read_variant, write_variant _LOGGER = logging.getLogger(__name__) class AbstractMrpConnection(asyncio.Protocol, StateProducer): """Abstract base class for an MRP connection.""" @abstractmethod async def connect(self) -> None: """Connect to device.""" @property @abstractmethod def connected(self) -> bool: """If a connection is open or not.""" @abstractmethod def close(self) -> None: """Close connection to device.""" @abstractmethod def send(self, message: protobuf.ProtocolMessage) -> None: """Send protobuf message to device.""" class MrpConnection( AbstractMrpConnection ): # pylint: disable=too-many-instance-attributes # noqa """Network layer that encryptes/decryptes and (de)serializes messages.""" def __init__(self, host, port, loop, atv=None): """Initialize a new MrpConnection.""" super().__init__() self.host = str(host) self.port = port self.atv = atv self.loop = loop self._log_str = "" self._buffer = b"" self._chacha = None self._transport = None def connection_made(self, transport): """Device connection was made.""" _LOGGER.debug("Connection made to device") self._transport = transport sock = transport.get_extra_info("socket") try: tcp_keepalive(sock) except exceptions.NotSupportedError as ex: _LOGGER.warning("Keep-alive not supported: %s", str(ex)) dstaddr, dstport = sock.getpeername() srcaddr, srcport = sock.getsockname() self._log_str = f"{srcaddr}:{srcport}<->{dstaddr}:{dstport} " _LOGGER.debug("%s Connection established", self._log_str) def connection_lost(self, exc): """Device connection was dropped.""" _LOGGER.debug("%s Disconnected from device: %s", self._log_str, exc) self._transport = None self.listener.stop() # pylint: disable=no-member if self.atv: if exc is None: self.atv.listener.connection_closed() else: self.atv.listener.connection_lost(exc) def eof_received(self): """Device sent EOF (no more data).""" _LOGGER.debug("%s Received EOF from server", self._log_str) if self._transport.can_write_eof(): self._transport.write_eof() self._transport.close() def enable_encryption(self, output_key, input_key): """Enable encryption with the specified keys.""" self._chacha = chacha20.Chacha20Cipher(output_key, input_key) @property def connected(self) -> bool: """If a connection is open or not.""" return self._transport is not None async def connect(self) -> None: """Connect to device.""" await self.loop.create_connection(lambda: self, self.host, self.port) def close(self) -> None: """Close connection to device.""" _LOGGER.debug("%s Closing connection", self._log_str) if self._transport: self._transport.close() self._transport = None self._chacha = None def send(self, message: protobuf.ProtocolMessage) -> None: """Send protobuf message to device.""" serialized = message.SerializeToString() log_binary(_LOGGER, self._log_str + ">> Send", Data=serialized) if self._chacha: serialized = self._chacha.encrypt(serialized) log_binary(_LOGGER, self._log_str + ">> Send", Encrypted=serialized) data = write_variant(len(serialized)) + serialized self._transport.write(data) log_protobuf(_LOGGER, self._log_str + ">> Send: Protobuf", message) def send_raw(self, data): """Send message to device.""" log_binary(_LOGGER, self._log_str + ">> Send raw", Data=data) if self._chacha: data = self._chacha.encrypt(data) log_binary(_LOGGER, self._log_str + ">> Send raw", Encrypted=data) data = write_variant(len(data)) + data self._transport.write(data) def data_received(self, data): """Message was received from device.""" # A message might be split over several reads, so we store a buffer and # try to decode messages from that buffer self._buffer += data log_binary(_LOGGER, self._log_str + "<< Receive", Data=data) while self._buffer: # The variant tells us how much data must follow length, raw = read_variant(self._buffer) if len(raw) < length: _LOGGER.debug( "%s Require %d bytes but only %d in buffer", self._log_str, length, len(raw), ) break data = raw[:length] # Incoming message (might be encrypted) self._buffer = raw[length:] # Buffer, might contain more messages try: self._handle_message(data) except Exception: # pylint: disable=broad-except _LOGGER.exception("%s Failed to handle message", self._log_str) def _handle_message(self, data): if self._chacha: data = self._chacha.decrypt(data) log_binary(_LOGGER, self._log_str + "<< Receive", Decrypted=data) parsed = protobuf.ProtocolMessage() parsed.ParseFromString(data) log_protobuf(_LOGGER, self._log_str + "<< Receive: Protobuf", parsed) self.listener.message_received(parsed, data) # pylint: disable=no-member def __str__(self): """Return string representation of connection object.""" return f"MRP:{self.host}"
the-stack_106_31958
import json import plotly import pandas as pd from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar from sklearn.externals import joblib from sqlalchemy import create_engine app = Flask(__name__) def tokenize(text): tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens # load data engine = create_engine('sqlite:///../data/DisasterResponse.db') df = pd.read_sql_table('CategorizedMessages', engine) # load model model = joblib.load("../models/classifier.pkl") # index webpage displays cool visuals and receives user input text for model @app.route('/') @app.route('/index') def index(): # extract data needed for visuals # TODO: Below is an example - modify to extract data for your own visuals genre_counts = df.groupby('genre').count()['message'] genre_names = list(genre_counts.index) ## Statistics per genre df_genre = df.drop('id', axis=1).groupby(['genre']).sum()#.reset_index() df_genre = df_genre.transpose().reset_index() df_genre.columns = ['genre', 'direct', 'news', 'social'] # create visuals # TODO: Below is an example - modify to create your own visuals graphs = [ { 'data': [ Bar( x=genre_names, y=genre_counts ) ], 'layout': { 'title': 'Distribution of Message Genres', 'yaxis': { 'title': "Count" }, 'xaxis': { 'title': "Genre" } } }, { 'data': [ # Bar( # x=label_names, # y=label_values, # marker = dict(color='green') # ) Bar( name="direct", x=df_genre["genre"], y=df_genre["direct"] #offsetgroup=0, ), Bar( name="news", x=df_genre["genre"], y=df_genre["news"] #offsetgroup=1, ), Bar( name="social", x=df_genre["genre"], y=df_genre["social"] #offsetgroup=2, ) ], 'layout': { 'title': "Chart Categories per Genre", 'yaxis': { 'title':"Number of Messages" }, 'xaxis': { 'title': "Categories" } } } ] # encode plotly graphs in JSON ids = ["graph-{}".format(i) for i, _ in enumerate(graphs)] graphJSON = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) # render web page with plotly graphs return render_template('master.html', ids=ids, graphJSON=graphJSON) # web page that handles user query and displays model results @app.route('/go') def go(): # save user input in query query = request.args.get('query', '') # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) # This will render the go.html Please see that file. return render_template( 'go.html', query=query, classification_result=classification_results ) def main(): app.run(host='0.0.0.0', port=3001, debug=True) if __name__ == '__main__': main()
the-stack_106_31959
import threading import shared import time import sys import os import pickle import tr#anslate from helper_sql import * from helper_threading import * from debug import logger """ The singleCleaner class is a timer-driven thread that cleans data structures to free memory, resends messages when a remote node doesn't respond, and sends pong messages to keep connections alive if the network isn't busy. It cleans these data structures in memory: inventory (moves data to the on-disk sql database) inventorySets (clears then reloads data out of sql database) It cleans these tables on the disk: inventory (clears expired objects) pubkeys (clears pubkeys older than 4 weeks old which we have not used personally) knownNodes (clears addresses which have not been online for over 3 days) It resends messages when there has been no response: resends getpubkey messages in 5 days (then 10 days, then 20 days, etc...) resends msg messages in 5 days (then 10 days, then 20 days, etc...) """ class singleCleaner(threading.Thread, StoppableThread): def __init__(self): threading.Thread.__init__(self, name="singleCleaner") self.initStop() def run(self): timeWeLastClearedInventoryAndPubkeysTables = 0 try: shared.maximumLengthOfTimeToBotherResendingMessages = (float(shared.config.get('bitmessagesettings', 'stopresendingafterxdays')) * 24 * 60 * 60) + (float(shared.config.get('bitmessagesettings', 'stopresendingafterxmonths')) * (60 * 60 * 24 *365)/12) except: # Either the user hasn't set stopresendingafterxdays and stopresendingafterxmonths yet or the options are missing from the config file. shared.maximumLengthOfTimeToBotherResendingMessages = float('inf') while shared.shutdown == 0: shared.UISignalQueue.put(( 'updateStatusBar', 'Doing housekeeping (Flushing inventory in memory to disk...)')) shared.inventory.flush() shared.UISignalQueue.put(('updateStatusBar', '')) shared.broadcastToSendDataQueues(( 0, 'pong', 'no data')) # commands the sendData threads to send out a pong message if they haven't sent anything else in the last five minutes. The socket timeout-time is 10 minutes. # If we are running as a daemon then we are going to fill up the UI # queue which will never be handled by a UI. We should clear it to # save memory. if shared.safeConfigGetBoolean('bitmessagesettings', 'daemon'): shared.UISignalQueue.queue.clear() if timeWeLastClearedInventoryAndPubkeysTables < int(time.time()) - 7380: timeWeLastClearedInventoryAndPubkeysTables = int(time.time()) shared.inventory.clean() # pubkeys sqlExecute( '''DELETE FROM pubkeys WHERE time<? AND usedpersonally='no' ''', int(time.time()) - shared.lengthOfTimeToHoldOnToAllPubkeys) # Let us resend getpubkey objects if we have not yet heard a pubkey, and also msg objects if we have not yet heard an acknowledgement queryreturn = sqlQuery( '''select toaddress, ackdata, status FROM sent WHERE ((status='awaitingpubkey' OR status='msgsent') AND folder='sent' AND sleeptill<? AND senttime>?) ''', int(time.time()), int(time.time()) - shared.maximumLengthOfTimeToBotherResendingMessages) for row in queryreturn: if len(row) < 2: logger.error('Something went wrong in the singleCleaner thread: a query did not return the requested fields. ' + repr(row)) self.stop.wait(3) break toAddress, ackData, status = row if status == 'awaitingpubkey': resendPubkeyRequest(toAddress) elif status == 'msgsent': resendMsg(ackData) # cleanup old nodes now = int(time.time()) toDelete = [] shared.knownNodesLock.acquire() for stream in shared.knownNodes: for node in shared.knownNodes[stream].keys(): if now - shared.knownNodes[stream][node] > 2419200: # 28 days shared.needToWriteKownNodesToDisk = True del shared.knownNodes[stream][node] shared.knownNodesLock.release() # Let us write out the knowNodes to disk if there is anything new to write out. if shared.needToWriteKnownNodesToDisk: shared.knownNodesLock.acquire() output = open(shared.appdata + 'knownnodes.dat', 'wb') try: pickle.dump(shared.knownNodes, output) output.close() except Exception as err: if "Errno 28" in str(err): logger.fatal('(while receiveDataThread shared.needToWriteKnownNodesToDisk) Alert: Your disk or data storage volume is full. ') shared.UISignalQueue.put(('alert', (tr._translate("MainWindow", "Disk full"), tr._translate("MainWindow", 'Alert: Your disk or data storage volume is full. Bitmessage will now exit.'), True))) if shared.daemon: os._exit(0) shared.knownNodesLock.release() shared.needToWriteKnownNodesToDisk = False self.stop.wait(300) def resendPubkeyRequest(address): logger.debug('It has been a long time and we haven\'t heard a response to our getpubkey request. Sending again.') try: del shared.neededPubkeys[ address] # We need to take this entry out of the shared.neededPubkeys structure because the shared.workerQueue checks to see whether the entry is already present and will not do the POW and send the message because it assumes that it has already done it recently. except: pass shared.UISignalQueue.put(( 'updateStatusBar', 'Doing work necessary to again attempt to request a public key...')) sqlExecute( '''UPDATE sent SET status='msgqueued' WHERE toaddress=?''', address) shared.workerQueue.put(('sendmessage', '')) def resendMsg(ackdata): logger.debug('It has been a long time and we haven\'t heard an acknowledgement to our msg. Sending again.') sqlExecute( '''UPDATE sent SET status='msgqueued' WHERE ackdata=?''', ackdata) shared.workerQueue.put(('sendmessage', '')) shared.UISignalQueue.put(( 'updateStatusBar', 'Doing work necessary to again attempt to deliver a message...'))
the-stack_106_31961
# https://adventofcode.com/2018/day/10 import re from time import sleep point = re.compile(r'^position=<\s*(-?\d+),\s*(-?\d+)> velocity=<\s*(-?\d+),\s*(-?\d+)>$') with open('day10.txt') as file: points = [tuple(map(int, point.match(line).groups())) for line in file] def bounding_box(t, plot=False): current = [(p[0] + t * p[2], p[1] + t * p[3]) for p in points] minx = min(p[0] for p in current) maxx = max(p[0] for p in current) miny = min(p[1] for p in current) maxy = max(p[1] for p in current) height = maxy-miny+1 width = maxx-minx+1 if plot: for y in range(height): for x in range(width): if any(p[0]-minx == x and p[1]-miny == y for p in current): print('#', end='') else: print('.', end='') print() return height*width candidate = min(range(20000), key=bounding_box) bounding_box(candidate, True) print(candidate)
the-stack_106_31962
import random from random import randrange import time import colorama from colorama import Fore, Style Alphabet = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" def conv(num, to = 32, froM = 16): if isinstance(num, str): n = int(num, froM) else: n = int(num) if n < to: return Alphabet[n] else: return conv(n // to, to) + Alphabet[n % to] def comp(a, b): if len(a) > len(b): return 1 elif len(a) < len(b): return 0 else: for i in range(len(b)): if a[i] > b[i]: return 1 if a[i] < b[i]: return 0 return 1 def LongAdd(a, b, c = '', carry = 0): n = len(a) m = len(b) if n > m: i = n - m b = lshift(b, i) if n < m: i = m - n a = lshift(a, i) n = m for i in range(n - 1, -1, -1): if isinstance(a[i], str): n_A = int(a[i], 32) else: n_A = int(a[i]) if isinstance(b[i], str): n_B = int(b[i], 32) else: n_B = int(b[i]) temp = n_A + n_B + carry c = Alphabet[temp % 32] + c carry = temp // 32 return Alphabet[carry] + c def LongSub(a, b, c = '', borrow = 0): n = len(a) m = len(b) if n > m: i = n - m b = lshift(b, i) if n < m: i = m - n a = lshift(a, i) n = m for i in range(n-1, -1,-1): if isinstance(a[i], str): n_A = int(a[i], 32) else: n_A = int(a[i]) if isinstance(b[i], str): n_B = int(b[i], 32) else: n_B = int(b[i]) temp = n_A - n_B - borrow if temp >= 0: c = Alphabet[temp % 32] + c borrow = 0 else: c = Alphabet[(32 + temp) % 32] + c borrow = 1 return Alphabet[borrow] + c def LongMulOneDigit (a, b, c = ''): carry = 0 n = len(a) if isinstance(b, str): n_b = int(b, 32) else: n_b = int(b) for i in range(n-1, -1,-1): if isinstance(a[i], str): n_A = int(a[i], 32) else: n_A = int(a[i]) temp = n_A * n_b + carry c = Alphabet[temp % 32] + c carry = temp // 32 if carry == 0: return c else: c = Alphabet[carry] + c return c def shift(temp, i): for j in range(i): temp = temp + '0' return temp def lshift(tmp, k): for i in range(k): tmp = '0' + tmp return tmp def rlshift(tmp): k = 0 if tmp[0] == '0': for i in range(len(tmp)): if tmp[i] == '0' and tmp[i + 1] == '0': k += 1 else: tmp = tmp[k+1::] break return tmp def rshiftBin(tmp, k): if tmp is None: return tmp else: for i in range(0, k): del tmp[-i+1] return tmp def LongMul(a, b, c = ''): n = len(a) m = len(b) if n > m: i = n - m b = lshift(b, i) if n < m: i = m - n a = lshift(a, i) n = m for i in range(n-1, -1,-1): tmp = LongMulOneDigit(a, b[i], '') k = abs(i - n + 1) tmp = shift(tmp, k) if i == n - 1: c = tmp else: if len(c) < len(tmp): c = '0' + c c = LongAdd( c, tmp, '') return c def power1(a, b): res = '1' b.reverse() for i in b: if i == 1: res = rlshift(LongMul(res, a)) a = rlshift(LongMul(a, a)) return res def power2(a, b): res = '1' for i in range(len(b)): if b[i] == 1: res = rlshift(LongMul(res, a)) if i != len(b) - 1: res = rlshift(LongMul(res, res)) return res def convf(a): b = [] for i in range(0, len(a), 8): b.append(int(a[i:i+8], 16)) return b def rconvf(a): b = [] k = '' c = '' if len(a) == 0: return 0 else: for i in a: k = str(hex(i)) k = k[2::].upper() b.append(k) for i in b: c = c + i return c def lcmp(a, b): if len(a) > len(b): return 1 elif len(a) < len(b): return -1 else: for i in range(len(b)): if a[i] > b[i]: return 1 if a[i] < b[i]: return -1 return 0 def BinConv(num, beta = 16): b = [] num = conv(num, 2, beta) for i in num: b.append(int(i)) d = b.copy() return d def sdth(n, i): N = n.copy() for i in range(i): N.append(0) return N def ins(n, i): N = n.copy() if len(N) > i: N.reverse() N[i] = 1 N.reverse() else: N.append(1) N = sdth(N, i) return N def subBin(a, b): res = [] b.reverse() a.reverse() borrow = 0 for i in range(len(a)): if len(b) > i: num = b[i] temp = a[i] - num - borrow if temp >= 0: res.append(temp) borrow = 0 else: res.append(temp + 2) borrow = 1 num = 0 res.reverse() while(len(res) != 0): if res[0] == 0: del res[0] else: break b.reverse() a.reverse() return res def div(a, b): k = len(b) r = a q = [] while lcmp(r, b) == 1 or lcmp(r, b) == 0: t = len(r) c = sdth(b, t-k) if lcmp(r,c) == -1: t = t - 1 c = sdth(b, t-k) r = subBin(r, c) q = ins(q, t-k) return q, r def rBinConv(num, beta): Num = '' if num == []: num.append(0) for i in num: Num = Num + str(i) num = conv(Num, beta, 2) return num def diV(num1, num2): q, r = div(BinConv(num1), BinConv(num2)) q = rBinConv(q, 16) r = conv(LongSub(conv(num1), LongMul(conv(num2), conv(q))), 16, 32) return [q, r] def rev(n): for i in n: n.reverse() def tests(A, B, C): test1(A, B, C) print('--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------') test2(A) def test1(A, B, C): print("( A + B ) * C =", rlshift(conv(LongMul(rlshift(LongAdd(conv(A), conv(B))), conv(C)), 16, 32))) print("C * ( A + B ) =", rlshift(conv(LongMul(conv(C), rlshift(LongAdd(conv(A), conv(B)))), 16, 32))) print("A * C + B * C =", rlshift(conv(LongAdd(rlshift(LongMul(conv(C), conv(B))), rlshift(LongMul(conv(A), conv(C)))), 16, 32))) def test2(A): n = random.randrange(101) print("n =", n) print("n * A =", rlshift(conv(LongMul(conv(A), conv(conv(str(n), 16, 10))), 16, 32))) d = conv(A) for i in range(n-1): d = LongAdd(conv(A), d) print("A + A + ... + A = ", rlshift(conv(d,16,32))) def poW(A, B): print('---------------------------------------------------------------------------------------------------------------------------------------------------------------------------') pow1_time = time.time() print("A ^ B = " + conv(str(power1(conv(A), BinConv(B))), 16, 32) + Fore.BLUE +"\n Время выполнения power1(): %s seconds" % (time.time() - pow1_time) + Style.RESET_ALL) pow2_time = time.time() print("A ^ B = " + conv(str(power2(conv(A), BinConv(B))), 16, 32) + Fore.BLUE + "\n Время выполнения power2(): %s seconds" % (time.time() - pow2_time)+ Style.RESET_ALL) print('---------------------------------------------------------------------------------------------------------------------------------------------------------------------------') #LABA2 def gcd(a, b): while lcmp(BinConv(a), BinConv(b)) == 1 or lcmp(BinConv(a), BinConv(b)) == -1: if lcmp(BinConv(a), BinConv(b)) == 1: a = LongSub(conv(a), conv(b)) a = conv(a, 16, 32) else: b = LongSub(conv(b), conv(a)) b = conv(b, 16, 32) return a def addBin(a, b): if len(b) > len(a): x = a a = b b = x res = [] a.reverse() b.reverse() carry = 0 for i in range(len(a)): tmp = 0 if len(b) > i: tmp = b[i] temp = a[i] + tmp + carry res.append(temp % 2) carry = temp // 2 if carry != 0: res.append(carry) res.reverse() return res def mulOneDigitBin(bigNum, a): bigNum.reverse() carry = 0 res = [] for i in range(len(bigNum)): temp = carry + a * bigNum[i] res.append(temp % 2) carry = temp // 2 if carry != 0: res.append(carry) res.reverse() bigNum.reverse() return res def mulBin(a, b): if len(b) > len(a): x = a a = b b = x res = [] b.reverse() for i in range(len(b)): tmp = mulOneDigitBin(a, b[i]) tmp = sdth(tmp, i) res = addBin(tmp, res) return res def lcm(a, b): if lcmp(BinConv(a), BinConv(b)) == -1: d = a a = b b = d gcD = gcd(a, b) a = diV(a, gcD)[0] res = LongMul(conv(b), conv(a)) return conv(res, 16, 32) def barret(x, n, mu): if len(x) == 2 * len(n): q = rshiftBin(x, len(n) - 1) q = mulBin(q, mu) q = rshiftBin(q, len(n) + 1) r = subBin(x, mulBin(q, n)) while comp(r, n) == 1: r = subBin(r, n) if r == []: return [0] return r else: return div(x,n)[1] def addMod(a = 'D852D3A2099FA0EF4', b ='047A091AC46AFE31', n = '047A091AC46CBE30'): summ = conv(LongAdd(conv(a), conv(b)), 10, 32) mu = BinConv(conv(str(2**(2*len(summ))), 16, 10)) summ = BinConv(summ, 10) mu = div(mu, BinConv(n))[0] n = BinConv(n) Barret = rBinConv(barret(summ, n, mu), 16) return Barret def subMod(a = 'D852D3A2099FA0EF4', b ='047A091AC46AFE31', n = '047A091AC46CBE30'): sub = conv(LongSub(conv(a), conv(b)), 10, 32) mu = BinConv(conv(str(2**(2*len(sub))), 16, 10)) sub = BinConv(sub, 10) mu = div(mu, BinConv(n))[0] n = BinConv(n) Barret = rBinConv(barret(sub, n, mu), 16) return Barret def mulMod(a = '47A091AC', b ='D852D3A2', n = '047A091AC46CBE30'): mul = conv(LongMul(conv(a), conv(b)), 10, 32) mu = BinConv(conv(str(2**(2*len(mul))), 16, 10)) mul = BinConv(mul, 10) mu = div(mu, BinConv(n))[0] n = BinConv(n) Barret = rBinConv(barret(mul, n, mu), 16) return Barret def powMod(): a = '1EAEDD395588036066915AF60F3F84502967BD8617DC' b = '1253FBED85830A10694A33E1C0DF38E62C8F6B2575B1' n = '247A' a = BinConv(a) b = BinConv(b) n = BinConv(n) return gorner(a, b, n) def test11(): a = "1EAEDD395588036066915AF60F3F84502967BD8617DC" b = "1253FBED85830A10694A33E1C0DF38E62C8F6B2575B1" c = "1253FBEF85830A10694A33E1C0DF38E62C8F6B2575B1" n = "247A" add = conv(LongAdd(conv(a), conv(b)), 16, 32) m1 = mulMod(add, c, n) m2 = mulMod(c, add , n) num1 = mulBin(BinConv(a), BinConv(c)) num2 = mulBin(BinConv(b), BinConv(c)) resAdd = addMod(rBinConv(num1, 16), rBinConv(num2, 16), n) if m1 == m2 or m1 == resAdd: print("Yes") else: print("Nu ne polyshilos") def test22(): a = "1EAEDD39558803" n = random.randrange(101) print("n =", n) mod = "A" res1 = conv(a) for i in range(n-1): res1 = rlshift(LongAdd(conv(a), res1)) mu = BinConv(conv(str(2**(2*len(res1))), 16, 10)) mu = div(mu, BinConv(str(n)))[0] res1 = rBinConv(barret(BinConv(res1, 32), BinConv(mod), mu), 16) #res1 = rlshift(conv(res1, 16, 32)) #res1 = diV(res1, mod)[1] res2 = mulMod(a, conv(str(n), 16, 10), mod) if res1 == res2: print("Yes") print(res1) else: print("Nu ne polyshilos") def ArithmeticMod(): s = time.time() add = addMod() print(add, Fore.BLUE + "\nTime: " + str(time.time() - s) + " seconds" + Style.RESET_ALL ) s = time.time() sub = subMod() print(sub, Fore.BLUE + "\nTime: " + str(time.time() - s) + " seconds" + Style.RESET_ALL ) s = time.time() mul = mulMod() print(mul, Fore.BLUE + "\nTime: " + str(time.time() - s) + " seconds"+ Style.RESET_ALL ) s = time.time() p = rBinConv(powMod(), 16) print(p, Fore.BLUE + "\nTime: " + str(time.time() - s) + " seconds" + Style.RESET_ALL) def stb(s): tmp = [] for i in range(len(s)): tmp.append(int(s[i])) return tmp def bts(b): binary = '' for i in b: binary = binary + str(i) if binary == '' or binary == None: return '0' else: return binary def gorner(a, b, n): c = [1] mu = BinConv(conv(str(2**(len(n))), 16, 10)) mu = div(mu, n)[0] b.reverse() for i in b: if i == 1: c = barret(mulBin(c.copy(), a.copy()), n, mu) a = barret(mulBin(a.copy(), a.copy()), n, mu) return c
the-stack_106_31963
r""" Projective plane conics over a field AUTHORS: - Marco Streng (2010-07-20) - Nick Alexander (2008-01-08) """ #***************************************************************************** # Copyright (C) 2008 Nick Alexander <[email protected]> # Copyright (C) 2009/2010 Marco Streng <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** from sage.rings.all import PolynomialRing from sage.rings.complex_mpfr import is_ComplexField from sage.rings.real_mpfr import is_RealField from sage.modules.free_module_element import vector from sage.structure.sequence import Sequence from sage.structure.element import is_Vector from sage.schemes.projective.projective_space import ProjectiveSpace from sage.matrix.constructor import Matrix from sage.structure.element import is_Matrix from sage.schemes.curves.projective_curve import ProjectivePlaneCurve from sage.categories.fields import Fields _Fields = Fields() class ProjectiveConic_field(ProjectivePlaneCurve): r""" Create a projective plane conic curve over a field. See ``Conic`` for full documentation. EXAMPLES:: sage: K = FractionField(PolynomialRing(QQ, 't')) sage: P.<X, Y, Z> = K[] sage: Conic(X^2 + Y^2 - Z^2) Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by X^2 + Y^2 - Z^2 TESTS:: sage: K = FractionField(PolynomialRing(QQ, 't')) sage: Conic([K(1), 1, -1])._test_pickling() """ def __init__(self, A, f): r""" See ``Conic`` for full documentation. EXAMPLES: :: sage: c = Conic([1, 1, 1]); c Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 """ ProjectivePlaneCurve.__init__(self, A, f) self._coefficients = [f[(2,0,0)], f[(1,1,0)], f[(1,0,1)], f[(0,2,0)], f[(0,1,1)], f[(0,0,2)]] self._parametrization = None self._diagonal_matrix = None self._rational_point = None def _repr_type(self): r""" Returns ``'Projective Conic'``, which is the first part of the plain text representation of this object as output by the function ``_repr_`` of the class ``Curve_generic``. EXAMPLES:: sage: c = Conic([1, 1, 1]); c Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 sage: c._repr_() 'Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2' sage: c._repr_type() 'Projective Conic' """ return "Projective Conic" def base_extend(self, S): r""" Returns the conic over ``S`` given by the same equation as ``self``. EXAMPLES:: sage: c = Conic([1, 1, 1]); c Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 sage: c.has_rational_point() False sage: d = c.base_extend(QuadraticField(-1, 'i')); d Projective Conic Curve over Number Field in i with defining polynomial x^2 + 1 with i = 1*I defined by x^2 + y^2 + z^2 sage: d.rational_point(algorithm = 'rnfisnorm') (i : 1 : 0) """ if S in _Fields: B = self.base_ring() if B == S: return self if not S.has_coerce_map_from(B): raise ValueError("No natural map from the base ring of self " \ "(= %s) to S (= %s)" % (self, S)) from .constructor import Conic con = Conic([S(c) for c in self.coefficients()], \ self.variable_names()) if self._rational_point is not None: pt = [S(c) for c in Sequence(self._rational_point)] if not pt == [0,0,0]: # The following line stores the point in the cache # if (and only if) there is no point in the cache. pt = con.point(pt) return con return ProjectivePlaneCurve.base_extend(self, S) def cache_point(self, p): r""" Replace the point in the cache of ``self`` by ``p`` for use by ``self.rational_point()`` and ``self.parametrization()``. EXAMPLES:: sage: c = Conic([1, -1, 1]) sage: c.point([15, 17, 8]) (15/8 : 17/8 : 1) sage: c.rational_point() (15/8 : 17/8 : 1) sage: c.cache_point(c.rational_point(read_cache = False)) sage: c.rational_point() (-1 : 1 : 0) """ if isinstance(p, (tuple, list)): p = self.point(p) self._rational_point = p def coefficients(self): r""" Gives a the `6` coefficients of the conic ``self`` in lexicographic order. EXAMPLES:: sage: Conic(QQ, [1,2,3,4,5,6]).coefficients() [1, 2, 3, 4, 5, 6] sage: P.<x,y,z> = GF(13)[] sage: a = Conic(x^2+5*x*y+y^2+z^2).coefficients(); a [1, 5, 0, 1, 0, 1] sage: Conic(a) Projective Conic Curve over Finite Field of size 13 defined by x^2 + 5*x*y + y^2 + z^2 """ return self._coefficients def derivative_matrix(self): r""" Gives the derivative of the defining polynomial of the conic ``self``, which is a linear map, as a `3 \times 3` matrix. EXAMPLES: In characteristic different from `2`, the derivative matrix is twice the symmetric matrix: :: sage: c = Conic(QQ, [1,1,1,1,1,0]) sage: c.symmetric_matrix() [ 1 1/2 1/2] [1/2 1 1/2] [1/2 1/2 0] sage: c.derivative_matrix() [2 1 1] [1 2 1] [1 1 0] An example in characteristic `2`: :: sage: P.<t> = GF(2)[] sage: c = Conic([t, 1, t^2, 1, 1, 0]); c Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X) defined by t*x^2 + x*y + y^2 + t^2*x*z + y*z sage: c.is_smooth() True sage: c.derivative_matrix() [ 0 1 t^2] [ 1 0 1] [t^2 1 0] """ a, b, c, d, e, f = self.coefficients() return Matrix([[ 2*a , b , c ], [ b , 2*d , e ], [ c , e , 2*f ]]) def determinant(self): r""" Returns the determinant of the symmetric matrix that defines the conic ``self``. This is defined only if the base field has characteristic different from `2`. EXAMPLES: :: sage: C = Conic([1,2,3,4,5,6]) sage: C.determinant() 41/4 sage: C.symmetric_matrix().determinant() 41/4 Determinants are only defined in characteristic different from `2`:: sage: C = Conic(GF(2), [1, 1, 1, 1, 1, 0]) sage: C.is_smooth() True sage: C.determinant() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2 """ return self.symmetric_matrix().determinant() def diagonal_matrix(self): r""" Returns a diagonal matrix `D` and a matrix `T` such that `T^t A T = D` holds, where `(x, y, z) A (x, y, z)^t` is the defining polynomial of the conic ``self``. EXAMPLES: :: sage: c = Conic(QQ, [1,2,3,4,5,6]) sage: d, t = c.diagonal_matrix(); d, t ( [ 1 0 0] [ 1 -1 -7/6] [ 0 3 0] [ 0 1 -1/3] [ 0 0 41/12], [ 0 0 1] ) sage: t.transpose()*c.symmetric_matrix()*t [ 1 0 0] [ 0 3 0] [ 0 0 41/12] Diagonal matrices are only defined in characteristic different from `2`: :: sage: c = Conic(GF(4, 'a'), [0, 1, 1, 1, 1, 1]) sage: c.is_smooth() True sage: c.diagonal_matrix() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field in a of size 2^2 defined by x*y + y^2 + x*z + y*z + z^2) has no symmetric matrix because the base field has characteristic 2 """ A = self.symmetric_matrix() B = self.base_ring() basis = [vector(B,{2:0,i:1}) for i in range(3)] for i in range(3): zerovalue = (basis[i]*A*basis[i].column()== 0) if zerovalue: for j in range(i+1,3): if basis[j]*A*basis[j].column() != 0: b = basis[i] basis[i] = basis[j] basis[j] = b zerovalue = False if zerovalue: for j in range(i+1,3): if basis[i]*A*basis[j].column() != 0: basis[i] = basis[i]+basis[j] zerovalue = False if not zerovalue: l = (basis[i]*A*basis[i].column()) for j in range(i+1,3): basis[j] = basis[j] - \ (basis[i]*A*basis[j].column())/l * basis[i] T = Matrix(basis).transpose() return T.transpose()*A*T, T def diagonalization(self, names=None): r""" Returns a diagonal conic `C`, an isomorphism of schemes `M: C` -> ``self`` and the inverse `N` of `M`. EXAMPLES:: sage: Conic(GF(5), [1,0,1,1,0,1]).diagonalization() (Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2, Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 2*z : y : z), Scheme morphism: From: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + x*z + z^2 To: Projective Conic Curve over Finite Field of size 5 defined by x^2 + y^2 + 2*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x - 2*z : y : z)) The diagonalization is only defined in characteristic different from 2: :: sage: Conic(GF(2), [1,1,1,1,1,0]).diagonalization() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z) has no symmetric matrix because the base field has characteristic 2 An example over a global function field: :: sage: K = FractionField(PolynomialRing(GF(7), 't')) sage: (t,) = K.gens() sage: C = Conic(K, [t/2,0, 1, 2, 0, 3]) sage: C.diagonalization() (Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2, Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 6/t*z : y : z), Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + x*z + 3*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 7 defined by 4*t*x^2 + 2*y^2 + ((3*t + 3)/t)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + 1/t*z : y : z)) """ if names is None: names = self.defining_polynomial().parent().variable_names() from .constructor import Conic D, T = self.diagonal_matrix() con = Conic(D, names = names) return con, con.hom(T, self), self.hom(T.inverse(), con) def gens(self): r""" Returns the generators of the coordinate ring of ``self``. EXAMPLES: :: sage: P.<x,y,z> = QQ[] sage: c = Conic(x^2+y^2+z^2) sage: c.gens() (xbar, ybar, zbar) sage: c.defining_polynomial()(c.gens()) 0 The function ``gens()`` is required for the following construction: :: sage: C.<a,b,c> = Conic(GF(3), [1, 1, 1]) sage: C Projective Conic Curve over Finite Field of size 3 defined by a^2 + b^2 + c^2 """ return self.coordinate_ring().gens() def has_rational_point(self, point = False, algorithm = 'default', read_cache = True): r""" Returns True if and only if the conic ``self`` has a point over its base field `B`. If ``point`` is True, then returns a second output, which is a rational point if one exists. Points are cached whenever they are found. Cached information is used if and only if ``read_cache`` is True. ALGORITHM: The parameter ``algorithm`` specifies the algorithm to be used: - ``'default'`` -- If the base field is real or complex, use an elementary native Sage implementation. - ``'magma'`` (requires Magma to be installed) -- delegates the task to the Magma computer algebra system. EXAMPLES:: sage: Conic(RR, [1, 1, 1]).has_rational_point() False sage: Conic(CC, [1, 1, 1]).has_rational_point() True sage: Conic(RR, [1, 2, -3]).has_rational_point(point = True) (True, (1.73205080756888 : 0.000000000000000 : 1.00000000000000)) Conics over polynomial rings can be solved internally:: sage: R.<t> = QQ[] sage: C = Conic([-2,t^2+1,t^2-1]) sage: C.has_rational_point() True And they can also be solved with Magma:: sage: C.has_rational_point(algorithm='magma') # optional - magma True sage: C.has_rational_point(algorithm='magma', point=True) # optional - magma (True, (-t : 1 : 1)) sage: D = Conic([t,1,t^2]) sage: D.has_rational_point(algorithm='magma') # optional - magma False TESTS: One of the following fields comes with an embedding into the complex numbers, one does not. Check that they are both handled correctly by the Magma interface. :: sage: K.<i> = QuadraticField(-1) sage: K.coerce_embedding() Generic morphism: From: Number Field in i with defining polynomial x^2 + 1 with i = 1*I To: Complex Lazy Field Defn: i -> 1*I sage: Conic(K, [1,1,1]).rational_point(algorithm='magma') # optional - magma (-i : 1 : 0) sage: x = QQ['x'].gen() sage: L.<i> = NumberField(x^2+1, embedding=None) sage: Conic(L, [1,1,1]).rational_point(algorithm='magma') # optional - magma (-i : 1 : 0) sage: L == K False """ if read_cache: if self._rational_point is not None: if point: return True, self._rational_point else: return True B = self.base_ring() if algorithm == 'magma': from sage.interfaces.magma import magma M = magma(self) b = M.HasRationalPoint().sage() if not point: return b if not b: return False, None M_pt = M.HasRationalPoint(nvals=2)[1] # Various attempts will be made to convert `pt` to # a Sage object. The end result will always be checked # by self.point(). pt = [M_pt[1], M_pt[2], M_pt[3]] # The first attempt is to use sequences. This is efficient and # succeeds in cases where the Magma interface fails to convert # number field elements, because embeddings between number fields # may be lost on conversion to and from Magma. # This should deal with all absolute number fields. try: return True, self.point([B(c.Eltseq().sage()) for c in pt]) except TypeError: pass # The second attempt tries to split Magma elements into # numerators and denominators first. This is necessary # for the field of rational functions, because (at the moment of # writing) fraction field elements are not converted automatically # from Magma to Sage. try: return True, self.point( \ [B(c.Numerator().sage()/c.Denominator().sage()) for c in pt]) except (TypeError, NameError): pass # Finally, let the Magma interface handle conversion. try: return True, self.point([B(c.sage()) for c in pt]) except (TypeError, NameError): pass raise NotImplementedError("No correct conversion implemented for converting the Magma point %s on %s to a correct Sage point on self (=%s)" % (M_pt, M, self)) if algorithm != 'default': raise ValueError("Unknown algorithm: %s" % algorithm) if is_ComplexField(B): if point: [_,_,_,d,e,f] = self._coefficients if d == 0: return True, self.point([0,1,0]) return True, self.point([0, ((e**2-4*d*f).sqrt()-e)/(2*d), 1], check = False) return True if is_RealField(B): D, T = self.diagonal_matrix() [a, b, c] = [D[0,0], D[1,1], D[2,2]] if a == 0: ret = True, self.point(T*vector([1,0,0]), check = False) elif a*c <= 0: ret = True, self.point(T*vector([(-c/a).sqrt(),0,1]), check = False) elif b == 0: ret = True, self.point(T*vector([0,1,0]), check = False) elif b*c <= 0: ret = True, self.point(T*vector([0,(-c/b).sqrt(),0,1]), check = False) else: ret = False, None if point: return ret return ret[0] raise NotImplementedError("has_rational_point not implemented for " \ "conics over base field %s" % B) def has_singular_point(self, point = False): r""" Return True if and only if the conic ``self`` has a rational singular point. If ``point`` is True, then also return a rational singular point (or ``None`` if no such point exists). EXAMPLES: :: sage: c = Conic(QQ, [1,0,1]); c Projective Conic Curve over Rational Field defined by x^2 + z^2 sage: c.has_singular_point(point = True) (True, (0 : 1 : 0)) sage: P.<x,y,z> = GF(7)[] sage: e = Conic((x+y+z)*(x-y+2*z)); e Projective Conic Curve over Finite Field of size 7 defined by x^2 - y^2 + 3*x*z + y*z + 2*z^2 sage: e.has_singular_point(point = True) (True, (2 : 4 : 1)) sage: Conic([1, 1, -1]).has_singular_point() False sage: Conic([1, 1, -1]).has_singular_point(point = True) (False, None) ``has_singular_point`` is not implemented over all fields of characteristic `2`. It is implemented over finite fields. :: sage: F.<a> = FiniteField(8) sage: Conic([a, a+1, 1]).has_singular_point(point = True) (True, (a + 1 : 0 : 1)) sage: P.<t> = GF(2)[] sage: C = Conic(P, [t,t,1]); C Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Finite Field of size 2 (using GF2X) defined by t*x^2 + t*y^2 + z^2 sage: C.has_singular_point(point = False) Traceback (most recent call last): ... NotImplementedError: Sorry, find singular point on conics not implemented over all fields of characteristic 2. """ if not point: ret = self.has_singular_point(point = True) return ret[0] B = self.base_ring() if B.characteristic() == 2: [a,b,c,d,e,f] = self.coefficients() if b == 0 and c == 0 and e == 0: for i in range(3): if [a, d, f][i] == 0: return True, self.point(vector(B, {2:0, i:1})) if hasattr(a/f, 'is_square') and hasattr(a/f, 'sqrt'): if (a/f).is_square(): return True, self.point([1,0,(a/f).sqrt()]) if (d/f).is_square(): return True, self.point([0,1,(d/f).sqrt()]) raise NotImplementedError("Sorry, find singular point on conics not implemented over all fields of characteristic 2.") pt = [e, c, b] if self.defining_polynomial()(pt) == 0: return True, self.point(pt) return False, None D = self.symmetric_matrix() if D.determinant() == 0: return True, self.point(Sequence(D.right_kernel().gen())) return False, None def hom(self, x, Y=None): r""" Return the scheme morphism from ``self`` to ``Y`` defined by ``x``. Here ``x`` can be a matrix or a sequence of polynomials. If ``Y`` is omitted, then a natural image is found if possible. EXAMPLES: Here are a few Morphisms given by matrices. In the first example, ``Y`` is omitted, in the second example, ``Y`` is specified. :: sage: c = Conic([-1, 1, 1]) sage: h = c.hom(Matrix([[1,1,0],[0,1,0],[0,0,1]])); h Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by -x^2 + 2*x*y + z^2 Defn: Defined on coordinates by sending (x : y : z) to (x + y : y : z) sage: h([-1, 1, 0]) (0 : 1 : 0) sage: c = Conic([-1, 1, 1]) sage: d = Conic([4, 1, -1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), d) Scheme morphism: From: Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2 To: Projective Conic Curve over Rational Field defined by 4*x^2 + y^2 - z^2 Defn: Defined on coordinates by sending (x : y : z) to (1/2*z : y : x) ``ValueError`` is raised if the wrong codomain ``Y`` is specified: :: sage: c = Conic([-1, 1, 1]) sage: c.hom(Matrix([[0, 0, 1/2], [0, 1, 0], [1, 0, 0]]), c) Traceback (most recent call last): ... ValueError: The matrix x (= [ 0 0 1/2] [ 0 1 0] [ 1 0 0]) does not define a map from self (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) to Y (= Projective Conic Curve over Rational Field defined by -x^2 + y^2 + z^2) The identity map between two representations of the same conic: :: sage: C = Conic([1,2,3,4,5,6]) sage: D = Conic([2,4,6,8,10,12]) sage: C.hom(identity_matrix(3), D) Scheme morphism: From: Projective Conic Curve over Rational Field defined by x^2 + 2*x*y + 4*y^2 + 3*x*z + 5*y*z + 6*z^2 To: Projective Conic Curve over Rational Field defined by 2*x^2 + 4*x*y + 8*y^2 + 6*x*z + 10*y*z + 12*z^2 Defn: Defined on coordinates by sending (x : y : z) to (x : y : z) An example not over the rational numbers: :: sage: P.<t> = QQ[] sage: C = Conic([1,0,0,t,0,1/t]) sage: D = Conic([1/t^2, 0, -2/t^2, t, 0, (t + 1)/t^2]) sage: T = Matrix([[t,0,1],[0,1,0],[0,0,1]]) sage: C.hom(T, D) Scheme morphism: From: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by x^2 + t*y^2 + 1/t*z^2 To: Projective Conic Curve over Fraction Field of Univariate Polynomial Ring in t over Rational Field defined by 1/t^2*x^2 + t*y^2 + (-2/t^2)*x*z + ((t + 1)/t^2)*z^2 Defn: Defined on coordinates by sending (x : y : z) to (t*x + z : y : z) """ if is_Matrix(x): from .constructor import Conic y = x.inverse() A = y.transpose()*self.matrix()*y im = Conic(A) if Y is None: Y = im elif not Y == im: raise ValueError("The matrix x (= %s) does not define a " \ "map from self (= %s) to Y (= %s)" % \ (x, self, Y)) x = Sequence(x*vector(self.ambient_space().gens())) return self.Hom(Y)(x, check = False) return ProjectivePlaneCurve.hom(self, x, Y) def is_diagonal(self): r""" Return True if and only if the conic has the form `a*x^2 + b*y^2 + c*z^2`. EXAMPLES: :: sage: c=Conic([1,1,0,1,0,1]); c Projective Conic Curve over Rational Field defined by x^2 + x*y + y^2 + z^2 sage: d,t = c.diagonal_matrix() sage: c.is_diagonal() False sage: c.diagonalization()[0].is_diagonal() True """ return all(self.coefficients()[i] == 0 for i in [1, 2, 4]) def is_smooth(self): r""" Returns True if and only if ``self`` is smooth. EXAMPLES: :: sage: Conic([1,-1,0]).is_smooth() False sage: Conic(GF(2),[1,1,1,1,1,0]).is_smooth() True """ if self.base_ring().characteristic() == 2: [a,b,c,d,e,f] = self.coefficients() if b == 0 and c == 0 and e == 0: return False return self.defining_polynomial()([e, c, b]) != 0 return self.determinant() != 0 def _magma_init_(self, magma): """ Internal function. Returns a string to initialize this conic in the Magma subsystem. EXAMPLES:: sage: C = Conic(QQ, [1,2,3]) sage: C._magma_init_(magma) # optional - magma 'Conic([_sage_ref...|1/1,2/1,3/1,0/1,0/1,0/1])' sage: C = Conic(GF(41), [-1,2,5]) # optional - magma sage: C._magma_init_(magma) # optional - magma 'Conic([_sage_ref...|GF(41)!40,GF(41)!2,GF(41)!5,GF(41)!0,GF(41)!0,GF(41)!0])' sage: F.<a> = GF(25) sage: C = Conic([3,0,1,4,a,2]) sage: C Projective Conic Curve over Finite Field in a of size 5^2 defined by -2*x^2 - y^2 + x*z + (a)*y*z + 2*z^2 sage: magma(C) # optional - magma Conic over GF(5^2) defined by 3*X^2 + 4*Y^2 + X*Z + a*Y*Z + 2*Z^2 sage: magma(Conic([1/2,2/3,-4/5,6/7,8/9,-10/11])) # optional - magma Conic over Rational Field defined by 1/2*X^2 + 2/3*X*Y + 6/7*Y^2 - 4/5*X*Z + 8/9*Y*Z - 10/11*Z^2 sage: R.<x> = Frac(QQ['x']) sage: magma(Conic([x,1+x,1-x])) # optional - magma Conic over Univariate rational function field over Rational Field defined by x*X^2 + (x + 1)*Y^2 + (-x + 1)*Z^2 sage: P.<x> = QQ[] sage: K.<b> = NumberField(x^3+x+1) sage: magma(Conic([b,1,2])) # optional - magma Conic over Number Field with defining polynomial x^3 + x + 1 over the Rational Field defined by b*X^2 + Y^2 + 2*Z^2 """ kmn = magma(self.base_ring())._ref() coeffs = self.coefficients() magma_coeffs = [coeffs[i]._magma_init_(magma) for i in [0, 3, 5, 1, 4, 2]] return 'Conic([%s|%s])' % (kmn,','.join(magma_coeffs)) def matrix(self): r""" Returns a matrix `M` such that `(x, y, z) M (x, y, z)^t` is the defining equation of ``self``. The matrix `M` is upper triangular if the base field has characteristic `2` and symmetric otherwise. EXAMPLES:: sage: R.<x, y, z> = QQ[] sage: C = Conic(x^2 + x*y + y^2 + z^2) sage: C.matrix() [ 1 1/2 0] [1/2 1 0] [ 0 0 1] sage: R.<x, y, z> = GF(2)[] sage: C = Conic(x^2 + x*y + y^2 + x*z + z^2) sage: C.matrix() [1 1 1] [0 1 0] [0 0 1] """ if self.base_ring().characteristic() == 2: return self.upper_triangular_matrix() return self.symmetric_matrix() _matrix_ = matrix def parametrization(self, point=None, morphism=True): r""" Return a parametrization `f` of ``self`` together with the inverse of `f`. .. warning:: The second map is currently broken and neither the inverse nor well-defined. If ``point`` is specified, then that point is used for the parametrization. Otherwise, use ``self.rational_point()`` to find a point. If ``morphism`` is True, then `f` is returned in the form of a Scheme morphism. Otherwise, it is a tuple of polynomials that gives the parametrization. EXAMPLES: An example over a finite field :: sage: c = Conic(GF(2), [1,1,1,1,1,0]) sage: f, g = c.parametrization(); f, g (Scheme morphism: From: Projective Space of dimension 1 over Finite Field of size 2 To: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z Defn: Defined on coordinates by sending (x : y) to ..., Scheme morphism: From: Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z To: Projective Space of dimension 1 over Finite Field of size 2 Defn: Defined on coordinates by sending (x : y : z) to ...) sage: set(f(p) for p in f.domain()) {(0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1)} sage: (g*f).is_one() # known bug (see :trac:`31892`) True An example with ``morphism = False`` :: sage: R.<x,y,z> = QQ[] sage: C = Curve(7*x^2 + 2*y*z + z^2) sage: (p, i) = C.parametrization(morphism = False); (p, i) ([-2*x*y, x^2 + 7*y^2, -2*x^2], [-1/2*x, 1/7*y + 1/14*z]) sage: C.defining_polynomial()(p) 0 sage: i[0](p) / i[1](p) x/y A ``ValueError`` is raised if ``self`` has no rational point :: sage: C = Conic(x^2 + y^2 + 7*z^2) sage: C.parametrization() Traceback (most recent call last): ... ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + 7*z^2 has no rational points over Rational Field! A ``ValueError`` is raised if ``self`` is not smooth :: sage: C = Conic(x^2 + y^2) sage: C.parametrization() Traceback (most recent call last): ... ValueError: The conic self (=Projective Conic Curve over Rational Field defined by x^2 + y^2) is not smooth, hence does not have a parametrization. """ if (not self._parametrization is None) and not point: par = self._parametrization else: if not self.is_smooth(): raise ValueError("The conic self (=%s) is not smooth, hence does not have a parametrization." % self) if point is None: point = self.rational_point() point = Sequence(point) B = self.base_ring() Q = PolynomialRing(B, 'x,y') [x, y] = Q.gens() gens = self.ambient_space().gens() P = PolynomialRing(B, 4, ['X', 'Y', 'T0', 'T1']) [X, Y, T0, T1] = P.gens() c3 = [j for j in range(2,-1,-1) if point[j] != 0][0] c1 = [j for j in range(3) if j != c3][0] c2 = [j for j in range(3) if j != c3 and j != c1][0] L = [0,0,0] L[c1] = Y*T1*point[c1] + Y*T0 L[c2] = Y*T1*point[c2] + X*T0 L[c3] = Y*T1*point[c3] bezout = P(self.defining_polynomial()(L) / T0) t = [bezout([x,y,0,-1]),bezout([x,y,1,0])] par = (tuple([Q(p([x,y,t[0],t[1]])/y) for p in L]), tuple([gens[m]*point[c3]-gens[c3]*point[m] for m in [c2,c1]])) if self._parametrization is None: self._parametrization = par if not morphism: return par P1 = ProjectiveSpace(self.base_ring(), 1, 'x,y') return P1.hom(par[0],self), self.Hom(P1)(par[1], check = False) def point(self, v, check=True): r""" Constructs a point on ``self`` corresponding to the input ``v``. If ``check`` is True, then checks if ``v`` defines a valid point on ``self``. If no rational point on ``self`` is known yet, then also caches the point for use by ``self.rational_point()`` and ``self.parametrization()``. EXAMPLES:: sage: c = Conic([1, -1, 1]) sage: c.point([15, 17, 8]) (15/8 : 17/8 : 1) sage: c.rational_point() (15/8 : 17/8 : 1) sage: d = Conic([1, -1, 1]) sage: d.rational_point() (-1 : 1 : 0) """ if is_Vector(v): v = Sequence(v) p = ProjectivePlaneCurve.point(self, v, check=check) if self._rational_point is None: self._rational_point = p return p def random_rational_point(self, *args1, **args2): r""" Return a random rational point of the conic ``self``. ALGORITHM: 1. Compute a parametrization `f` of ``self`` using ``self.parametrization()``. 2. Computes a random point `(x:y)` on the projective line. 3. Output `f(x:y)`. The coordinates x and y are computed using ``B.random_element``, where ``B`` is the base field of ``self`` and additional arguments to ``random_rational_point`` are passed to ``random_element``. If the base field is a finite field, then the output is uniformly distributed over the points of self. EXAMPLES:: sage: c = Conic(GF(2), [1,1,1,1,1,0]) sage: [c.random_rational_point() for i in range(10)] # output is random [(1 : 0 : 1), (1 : 0 : 1), (1 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (0 : 0 : 1), (1 : 0 : 1), (1 : 0 : 1), (0 : 0 : 1), (1 : 0 : 1)] sage: d = Conic(QQ, [1, 1, -1]) sage: d.random_rational_point(den_bound = 1, num_bound = 5) # output is random (-24/25 : 7/25 : 1) sage: Conic(QQ, [1, 1, 1]).random_rational_point() Traceback (most recent call last): ... ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2 has no rational points over Rational Field! """ if not self.is_smooth(): raise NotImplementedError("Sorry, random points not implemented " \ "for non-smooth conics") par = self.parametrization() x = 0 y = 0 B = self.base_ring() while x == 0 and y == 0: x = B.random_element(*args1, **args2) y = B.random_element(*args1, **args2) return par[0]([x,y]) def rational_point(self, algorithm = 'default', read_cache = True): r""" Return a point on ``self`` defined over the base field. Raises ``ValueError`` if no rational point exists. See ``self.has_rational_point`` for the algorithm used and for the use of the parameters ``algorithm`` and ``read_cache``. EXAMPLES: Examples over `\QQ` :: sage: R.<x,y,z> = QQ[] sage: C = Conic(7*x^2 + 2*y*z + z^2) sage: C.rational_point() (0 : 1 : 0) sage: C = Conic(x^2 + 2*y^2 + z^2) sage: C.rational_point() Traceback (most recent call last): ... ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + z^2 has no rational points over Rational Field! sage: C = Conic(x^2 + y^2 + 7*z^2) sage: C.rational_point(algorithm = 'rnfisnorm') Traceback (most recent call last): ... ValueError: Conic Projective Conic Curve over Rational Field defined by x^2 + y^2 + 7*z^2 has no rational points over Rational Field! Examples over number fields :: sage: P.<x> = QQ[] sage: L.<b> = NumberField(x^3-5) sage: C = Conic(L, [3, 2, -b]) sage: p = C.rational_point(algorithm = 'rnfisnorm') sage: p # output is random (1/3*b^2 - 4/3*b + 4/3 : b^2 - 2 : 1) sage: C.defining_polynomial()(list(p)) 0 sage: K.<i> = QuadraticField(-1) sage: D = Conic(K, [3, 2, 5]) sage: D.rational_point(algorithm = 'rnfisnorm') # output is random (-3 : 4*i : 1) sage: L.<s> = QuadraticField(2) sage: Conic(QQ, [1, 1, -3]).has_rational_point() False sage: E = Conic(L, [1, 1, -3]) sage: E.rational_point() # output is random (-1 : -s : 1) Currently Magma is better at solving conics over number fields than Sage, so it helps to use the algorithm 'magma' if Magma is installed:: sage: q = C.rational_point(algorithm = 'magma', read_cache=False) # optional - magma sage: q # output is random, optional - magma (1/5*b^2 : 1/5*b^2 : 1) sage: C.defining_polynomial()(list(p)) # optional - magma 0 sage: len(str(p)) > 1.5*len(str(q)) # optional - magma True sage: D.rational_point(algorithm = 'magma', read_cache=False) # random, optional - magma (1 : 2*i : 1) sage: E.rational_point(algorithm='magma', read_cache=False) # random, optional - magma (-s : 1 : 1) sage: F = Conic([L.gen(), 30, -20]) sage: q = F.rational_point(algorithm='magma') # optional - magma sage: q # output is random, optional - magma (-10/7*s + 40/7 : 5/7*s - 6/7 : 1) sage: p = F.rational_point(read_cache=False) sage: p # output is random (788210*s - 1114700 : -171135*s + 242022 : 1) sage: len(str(p)) > len(str(q)) # optional - magma True sage: Conic([L.gen(), 30, -21]).has_rational_point(algorithm='magma') # optional - magma False Examples over finite fields :: sage: F.<a> = FiniteField(7^20) sage: C = Conic([1, a, -5]); C Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + (a)*y^2 + 2*z^2 sage: C.rational_point() # output is random (4*a^19 + 5*a^18 + 4*a^17 + a^16 + 6*a^15 + 3*a^13 + 6*a^11 + a^9 + 3*a^8 + 2*a^7 + 4*a^6 + 3*a^5 + 3*a^4 + a^3 + a + 6 : 5*a^18 + a^17 + a^16 + 6*a^15 + 4*a^14 + a^13 + 5*a^12 + 5*a^10 + 2*a^9 + 6*a^8 + 6*a^7 + 6*a^6 + 2*a^4 + 3 : 1) Examples over `\RR` and `\CC` :: sage: Conic(CC, [1, 2, 3]).rational_point() (0 : 1.22474487139159*I : 1) sage: Conic(RR, [1, 1, 1]).rational_point() Traceback (most recent call last): ... ValueError: Conic Projective Conic Curve over Real Field with 53 bits of precision defined by x^2 + y^2 + z^2 has no rational points over Real Field with 53 bits of precision! """ bl,pt = self.has_rational_point(point = True, algorithm = algorithm, read_cache = read_cache) if bl: return pt raise ValueError("Conic %s has no rational points over %s!" % \ (self, self.ambient_space().base_ring())) def singular_point(self): r""" Returns a singular rational point of ``self`` EXAMPLES: :: sage: Conic(GF(2), [1,1,1,1,1,1]).singular_point() (1 : 1 : 1) ``ValueError`` is raised if the conic has no rational singular point :: sage: Conic(QQ, [1,1,1,1,1,1]).singular_point() Traceback (most recent call last): ... ValueError: The conic self (= Projective Conic Curve over Rational Field defined by x^2 + x*y + y^2 + x*z + y*z + z^2) has no rational singular point """ b = self.has_singular_point(point = True) if not b[0]: raise ValueError("The conic self (= %s) has no rational " \ "singular point" % self) return b[1] def symmetric_matrix(self): r""" The symmetric matrix `M` such that `(x y z) M (x y z)^t` is the defining equation of ``self``. EXAMPLES:: sage: R.<x, y, z> = QQ[] sage: C = Conic(x^2 + x*y/2 + y^2 + z^2) sage: C.symmetric_matrix() [ 1 1/4 0] [1/4 1 0] [ 0 0 1] sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2) sage: v = vector([x, y, z]) sage: v * C.symmetric_matrix() * v x^2 + 2*x*y + y^2 + 3*x*z + z^2 """ a, b, c, d, e, f = self.coefficients() if self.base_ring().characteristic() == 2: if b == 0 and c == 0 and e == 0: return Matrix([[a,0,0],[0,d,0],[0,0,f]]) raise ValueError("The conic self (= %s) has no symmetric matrix " \ "because the base field has characteristic 2" % \ self) return Matrix([[ a , b/2, c/2 ], [ b/2, d , e/2 ], [ c/2, e/2, f ]]) def upper_triangular_matrix(self): r""" The upper-triangular matrix `M` such that `(x y z) M (x y z)^t` is the defining equation of ``self``. EXAMPLES:: sage: R.<x, y, z> = QQ[] sage: C = Conic(x^2 + x*y + y^2 + z^2) sage: C.upper_triangular_matrix() [1 1 0] [0 1 0] [0 0 1] sage: C = Conic(x^2 + 2*x*y + y^2 + 3*x*z + z^2) sage: v = vector([x, y, z]) sage: v * C.upper_triangular_matrix() * v x^2 + 2*x*y + y^2 + 3*x*z + z^2 """ from sage.matrix.constructor import matrix [a,b,c,d,e,f] = self.coefficients() return matrix([[ a, b, c ], [ 0, d, e ], [ 0, 0, f ]]) def variable_names(self): r""" Returns the variable names of the defining polynomial of ``self``. EXAMPLES: :: sage: c=Conic([1,1,0,1,0,1], 'x,y,z') sage: c.variable_names() ('x', 'y', 'z') sage: c.variable_name() 'x' The function ``variable_names()`` is required for the following construction: :: sage: C.<p,q,r> = Conic(QQ, [1, 1, 1]) sage: C Projective Conic Curve over Rational Field defined by p^2 + q^2 + r^2 """ return self.defining_polynomial().parent().variable_names()
the-stack_106_31964
"""This module provides a way to work with and enumerate implementation configurations.""" from dataclasses import dataclass from enum import Enum from itertools import product from typing import ( get_type_hints, Union, get_origin, get_args, Generator, FrozenSet, Any, ) from public import public from .coordinates import CoordinateModel from .formula import Formula from .model import CurveModel from .mult import ScalarMultiplier @public class EnumDefine(Enum): def __str__(self): return self.value def __repr__(self): return self.value @classmethod def names(cls): return [e.name for e in cls] @classmethod def values(cls): return [e.value for e in cls] @public class Multiplication(EnumDefine): """Base multiplication algorithm to use.""" TOOM_COOK = "MUL_TOOM_COOK" KARATSUBA = "MUL_KARATSUBA" COMBA = "MUL_COMBA" BASE = "MUL_BASE" @public class Squaring(EnumDefine): """Base squaring algorithm to use.""" TOOM_COOK = "SQR_TOOM_COOK" KARATSUBA = "SQR_KARATSUBA" COMBA = "SQR_COMBA" BASE = "SQR_BASE" @public class Reduction(EnumDefine): """Modular reduction method used.""" BARRETT = "RED_BARRETT" MONTGOMERY = "RED_MONTGOMERY" BASE = "RED_BASE" @public class Inversion(EnumDefine): """Inversion algorithm used.""" GCD = "INV_GCD" EULER = "INV_EULER" @public class HashType(EnumDefine): """Hash algorithm used in ECDH and ECDSA.""" NONE = "HASH_NONE" SHA1 = "HASH_SHA1" SHA224 = "HASH_SHA224" SHA256 = "HASH_SHA256" SHA384 = "HASH_SHA384" SHA512 = "HASH_SHA512" @public class RandomMod(EnumDefine): """Method of sampling a uniform integer modulo order.""" SAMPLE = "MOD_RAND_SAMPLE" REDUCE = "MOD_RAND_REDUCE" @public @dataclass(frozen=True) class Configuration: """An ECC implementation configuration.""" model: CurveModel coords: CoordinateModel formulas: FrozenSet[Formula] scalarmult: ScalarMultiplier hash_type: HashType mod_rand: RandomMod mult: Multiplication sqr: Squaring red: Reduction inv: Inversion @public def all_configurations(**kwargs) -> Generator[Configuration, Configuration, None]: """ Get all implementation configurations that match the given `kwargs`. The keys in :paramref:`~.all_configurations.kwargs` should be some of the attributes in the :py:class:`Configuration`, and the values limit the returned configurations to configuration matching them. .. note:: The ``formulas`` attribute is unsupported and formulas should be provided using the ``scalarmult`` attribute, which is either a subclass of the :py:class:`~.mult.ScalarMultiplier` class or an instance of it or a dictionary giving arguments to a constructor of some :py:class:`~.mult.ScalarMultiplier` subclass. .. warning:: The returned number of configurations might be quite large and take up significant memory space. :param kwargs: The configuration parameters to match. :return: A generator of the configurations. """ def is_optional(arg_type): return ( get_origin(arg_type) == Union and len(get_args(arg_type)) == 2 and get_args(arg_type)[1] is type(None) # noqa ) def leaf_subclasses(cls): subs = cls.__subclasses__() result = [] for subclass in subs: if subclass.__subclasses__(): result.extend(leaf_subclasses(subclass)) else: result.append(subclass) return result def independents(kwargs): options = { "hash_type": HashType, "mod_rand": RandomMod, "mult": Multiplication, "sqr": Squaring, "red": Reduction, "inv": Inversion, } keys = list(filter(lambda key: key not in kwargs, options.keys())) values = [options[key] for key in keys] fixed_args = {key: kwargs[key] for key in kwargs if key in options} for value_choice in product(*values): yield dict(zip(keys, value_choice), **fixed_args) def multipliers(mult_classes, coords_formulas, fixed_args=None): for mult_cls in mult_classes: if ( fixed_args is not None and "cls" in fixed_args and mult_cls != fixed_args["cls"] ): continue arg_options = {} for name, required_type in get_type_hints(mult_cls.__init__).items(): if fixed_args is not None and name in fixed_args: arg_options[name] = [fixed_args[name]] continue if is_optional(required_type): opt_type = get_args(required_type)[0] if issubclass(opt_type, Formula): options = [ formula for formula in coords_formulas if isinstance(formula, opt_type) ] + [None] else: options = [None] # TODO: anything here? elif get_origin(required_type) is None and issubclass( required_type, Formula ): options = [ formula for formula in coords_formulas if isinstance(formula, required_type) ] elif get_origin(required_type) is None and issubclass( required_type, bool ): options = [True, False] elif ( get_origin(required_type) is None and issubclass(required_type, int) and name == "width" ): options = [3, 5] else: options = [] arg_options[name] = options keys = arg_options.keys() values = arg_options.values() for combination in product(*values): try: mult = mult_cls(**dict(zip(keys, combination))) except Exception: continue yield mult for model_cls in leaf_subclasses(CurveModel): model = model_cls() if "model" in kwargs and model != kwargs["model"]: continue for coords in model.coordinates.values(): if "coords" in kwargs and coords != kwargs["coords"]: continue coords_formulas = coords.formulas.values() mult_classes = leaf_subclasses(ScalarMultiplier) if "scalarmult" in kwargs: if isinstance(kwargs["scalarmult"], ScalarMultiplier): mults = [kwargs["scalarmult"]] if not set(kwargs["scalarmult"].formulas.values()).issubset( coords_formulas ): continue elif isinstance(kwargs["scalarmult"], type) and issubclass( kwargs["scalarmult"], ScalarMultiplier ): mult_classes = list( filter( lambda mult: issubclass(mult, kwargs["scalarmult"]), mult_classes, ) ) mults = multipliers(mult_classes, coords_formulas) else: mults = multipliers( mult_classes, coords_formulas, kwargs["scalarmult"] ) else: mults = multipliers(mult_classes, coords_formulas) for mult in mults: formulas = frozenset(mult.formulas.values()) for independent_args in independents(kwargs): yield Configuration( model, coords, formulas, mult, **independent_args )
the-stack_106_31965
#!/usr/bin/env python3 """Figure 6.5, page 135""" import random import multiprocessing as mp from copy import deepcopy import numpy as np import matplotlib.pyplot as plt from tqdm.contrib.concurrent import process_map ACTIONS_A = 2 ACTIONS_B = 10 INITIAL_Q = {'terminal': np.zeros(2), 'a': np.zeros(ACTIONS_A), 'b': np.zeros(ACTIONS_B)} TRANSITIONS = {'a': ['b', 'terminal'], 'b': ['terminal'] * 10} def random_argmax(arr): """Standart numpy argmax returns the first maximal element, so if there are several maximal elements in array the result will be biased""" # returns an array of bools, True = max element arr_bool_max = arr == arr.max() # Indies of max elements indices_of_max = np.flatnonzero(arr_bool_max) # Random index random_maximal_element = np.random.choice(indices_of_max) return random_maximal_element def epsilon_greedy_policy(action_values, eps=0.1): """Epsilon greedy policy with random tie breaking in argmax. Returns index of the chosen action""" if random.random() > eps: action = random_argmax(action_values) else: action = random.randint(0, len(action_values) - 1) return action def q_learning(a, episodes=300, alpha=0.1): """Q-learning algorithm for a number of episodes :param a: placeholder parameter to make possible the usage of map while in multiprocessing :type a: None :return: How many times LEFT action from A was chosen in each episode :rtype: numpy.array """ q = deepcopy(INITIAL_Q) left_actions_from_a = np.zeros(episodes, dtype=int) for episode in range(episodes): state = 'a' while state != 'terminal': action = epsilon_greedy_policy(q[state]) if state == 'a': reward = 0 if action == 0: left_actions_from_a[episode] += 1 else: reward = np.random.normal(-0.1, 1) next_state = TRANSITIONS[state][action] q[state][action] += alpha * (reward + max(q[next_state]) - q[state][action]) state = next_state return left_actions_from_a def double_q_learning(a, episodes=300, alpha=0.1, eps=0.1): """Double Q-learning algorithm for a number of episodes, page 136 :param a: placeholder parameter to make possible the usage of map while in multiprocessing :type a: None :return: How many times LEFT action from A was chosen in each episode :rtype: numpy.array """ q1 = deepcopy(INITIAL_Q) q2 = deepcopy(INITIAL_Q) left_actions_from_a = np.zeros(episodes, dtype=int) for episode in range(episodes): state = 'a' while state != 'terminal': q12_state = q1[state] + q2[state] action = epsilon_greedy_policy(q12_state) if state == 'a': reward = 0 if action == 0: left_actions_from_a[episode] += 1 else: reward = np.random.normal(-0.1, 1) next_state = TRANSITIONS[state][action] if random.choice([True, False]): next_action = random_argmax(q1[next_state]) q1[state][action] += alpha * (reward + q2[next_state][next_action] - q1[state][action]) else: next_action = random_argmax(q2[next_state]) q2[state][action] += alpha * (reward + q1[next_state][next_action] - q2[state][action]) state = next_state return left_actions_from_a def fig6_5(): # This option is needed to get lower dispersion if run from Linux. Default for Windows 10 and MacOS. mp.set_start_method('spawn') runs = 10_000 workers = mp.cpu_count() print('Q-learning') q = np.array(process_map(q_learning, range(runs), max_workers=workers, chunksize=1)).mean(axis=0) print('Double Q-learning') double_q = np.array(process_map(double_q_learning, range(runs), max_workers=workers, chunksize=1)).mean(axis=0) plt.plot(q * 100, label='Q-learning') plt.plot(double_q * 100, label='Double Q-learning') plt.legend() plt.xlabel('Episodes') plt.ylabel('% left actions from A') plt.show() if __name__ == '__main__': fig6_5()
the-stack_106_31966
try: #import default dependencies import sys import subprocess import os except Exception as p: print(p) import discord from discord.ext import commands class clone(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def clone(self, ctx, clonned: discord.User): ''' Clone your account based on someone elses syntax: clone @useridk#1337 ''' try: await ctx.message.delete() except Exception as w: print(w) try: avatar = await clonned.avatar_url_as(format='png', size=2048).read() except Exception as m: print(m) try: await self.bot.user.edit(password=self.bot.password, username=clonned.name, avatar=avatar) await ctx.send("Enjoy your new identity :wink:", delete_after=7) except Exception as j: if "You are changing your username or Discord Tag too fast. Try again later." in str(j): await ctx.send("`Error:` You are changing your username too fast", delete_after=7) else: print(str(j)) await ctx.send("An error occured, check console for more details") @clone.error async def clone_error(self, ctx, error): if isinstance(error, commands.MissingRequiredArgument): await ctx.send("Missing required argument: `User to clone`", delete_after=5) else: print(error) def setup(bot): bot.add_cog(clone(bot))
the-stack_106_31967
#!/usr/bin/env python3 import subprocess import os import sys import json sys.path.append("../") sys.path.append("../../system/lib/") sys.path.append("../array/") import json_parser import pos import cli import api import pos_constant import CREATE_VOL_BASIC_1 ARRAYNAME = CREATE_VOL_BASIC_1.ARRAYNAME def clear_result(): if os.path.exists( __file__ + ".result"): os.remove( __file__ + ".result") def check_result(detail): data = json.loads(detail) description = data['Response']['result']['status']['description'] if "no any" in description: return "pass" return "fail" def set_result(detail): result = check_result(detail) code = json_parser.get_response_code(detail) with open(__file__ + ".result", "w") as result_file: result_file.write(result + " (" + str(code) + ")" + "\n" + detail) def execute(): clear_result() CREATE_VOL_BASIC_1.execute() cli.unmount_array(ARRAYNAME) out = cli.list_volume(ARRAYNAME) return out if __name__ == "__main__": if len(sys.argv) >= 2: pos.set_addr(sys.argv[1]) out = execute() set_result(out) pos.flush_and_kill_pos()
the-stack_106_31971
"""Utilities functions file""" import json import re def load_json(filename: str): """Loads a json file""" with open(filename, encoding="utf-8", mode="r") as file: data = json.load(file) return data def save_json(data: json, filename: str, should_be_sorted=True): """Saves a json file""" with open(filename, encoding="utf-8", mode="w") as file: json.dump(data, file, indent=4, sort_keys=should_be_sorted, separators=(',', ': ')) def convert_seconds_to_str(sec: float): """Returns a str representing a number of seconds""" msg = "" sec = round(sec) years = sec // 31536000 if years != 0: msg += str(int(years)) + "y " sec -= years * 31536000 days = sec // 86400 if days != 0: msg += str(int(days)) + "d " sec -= days * 86400 hours = sec // 3600 if hours != 0: msg += str(int(hours)) + "h " sec -= hours * 3600 minutes = sec // 60 sec -= minutes * 60 if minutes != 0: msg += str(int(minutes)) + "m " if sec != 0: msg += str(int(sec)) + "s " return msg[:-1] SECONDS_VALUES = [31536000, 86400, 3600, 60, 1] def convert_str_to_seconds(duration: str): """Converts a duration (format %Yy %dd %Hh %Mm %Ss) to the total number of corresponding seconds. If the format of duration isn't correct, returns -1.""" regex = re.compile("(?=.*[ydhms])( *[0-9]+y *)?( *[0-9]+d *)?( *[0-9]+h *)?( *[0-9]+m *)?( *[0-9]+s *)?") #pylint: disable=line-too-long if not regex.fullmatch(duration): return -1 total_seconds = 0 matches = regex.findall(duration) for i in range(5): match = matches[0][i] if match != "": end_of_match = match.find(" ") - 1 if match.find(" ") != -1 else len(match) - 1 value = int(match[:end_of_match]) total_seconds += SECONDS_VALUES[i] * value return total_seconds def convert_int_to_str(number: int, char: str = "'"): """Converts an ugly int into a beautiful and sweet str Parameters: nb: The number which is gonna be converted. char: The characters which are gonna be inserted between every 3 digits. Example: 2364735247 --> 2'364'735'247""" number = str(number) for index in range(len(number) - 3, 0, -3): number = number[:index] + char + number[index:] return number
the-stack_106_31972
import numpy as np from scipy.spatial import distance def _gt_weights(W): """Computes the weights V for a Guttman transform V X = B(X) Z.""" V = -W V[np.diag_indices(V.shape[0])] = W.sum(axis=1) - W.diagonal() return V def _gt_mapping(D, W, Z): """Computes the mapping B(X) for a Guttman transform V X = B(X) Z.""" # Compute the Euclidean distances between all pairs of points Dz = distance.cdist(Z, Z) # Fill the diagonal of Dz, because *we don't want a division by zero* np.fill_diagonal(Dz, 1e-5) B = - W * D / Dz np.fill_diagonal(B, 0.0) B[np.diag_indices(B.shape[0])] = -np.sum(B, axis=1) return B def _guttman_transform(D, W, Zu, Xa, V): """Applies the Guttman transform with anchors. See Di Franco, Carmelo, et al. "Multidimensional scaling localization with anchors." Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on. IEEE, 2017. """ n, m = Zu.shape[0], Xa.shape[0] Z = np.vstack([Zu, Xa]) V11, V12 = V[0:n, 0:n], V[0:n, n:] B = _gt_mapping(D, W, Z) B11, B12 = B[0:n, 0:n], B[0:n, n:] #return np.linalg.solve( # V11, # np.dot(B11, Zu) + np.dot(B12, Za) - np.dot(V12, Xa) # ) return np.dot( np.linalg.pinv(V11), np.dot(B11, Zu) + np.dot(B12, Xa) - np.dot(V12, Xa) ) def _stress(D, W, X): """Computes the value of the weighted stress function of the MDS.""" Dx = distance.cdist(X, X) S = W * (D - Dx)**2 return np.triu(S, 1).sum() def _smacof_single(dissimilarities, weights, init=None, anchors=None, n_components=2, maxitr=300, eps=1e-6, random_state=None): # Pre-compute the weights of the Guttman transform V = _gt_weights(weights) if random_state is None: random_state = np.random.RandomState() # Initial positions are random by default if init is None: init = random_state.randn(dissimilarities.shape[0]-anchors.shape[0], n_components) X = init Sprev = _stress(dissimilarities, weights, np.vstack([X, anchors])) # Stress at previous iteration for itr in range(maxitr): X = _guttman_transform(dissimilarities, weights, X, anchors, V) S = _stress(dissimilarities, weights, np.vstack([X, anchors])) if np.abs(S - Sprev) < eps: break Sprev = S return X, Sprev def smacof(dissimilarities, weights=None, init=None, anchors=None, n_components=2, n_init=8, maxitr=300, eps=1e-6, random_state=None): """Executes the SMACOF with anchors algorithm to find a Euclidean embedding of dissimilarities between n samples in a d-dimensional space. Parameters ---------- dissimilarities : n-by-n matrix The distances/dissimilarities between each pair sample, as a two-dimensional square matrix. weights : None or n-by-n matrix The weight of each distance. The greater the weight on a distance, the harder SMACOF will try to respect this distance in its solutions. If None, a matrix of ones is assumed. init : None or n-by-d matrix A starting position for the algorithm. If None, `n_init` different random positions will be tried, and the best fitting solution will be kept. anchors : None or m-by-d matrix The positions of the m anchors. If None, it is assumed that there are no anchors. n_components : int The size (i.e. dimensions) of the embedding space. n_init : int The number of initial random positions to try. maxitr : int The maximum number of iterations to run. eps : float The threshold on the stress change between iterations below which convergence is attained. random_state : None, int or np.RandomState The state for the random numbers generator. Returns ------- n-by-d array : The positions of the n samples in the d-dimensional Euclidean space. """ # Default weights are 1's if weights is None: weights = np.ones(dissimilarities.shape) if anchors is None: anchors = np.zeros((0, n_components)) if random_state is None: random_state = np.random.RandomState() elif type(random_state) == int: random_state = np.random.RandomState(random_state) # Pre-compute the weights of the Guttman transform V = _gt_weights(weights) # Only run SMACOF once if an initial position is passed if init is not None: n_init = 1 Xbest = None Sbest = np.inf for itr in range(n_init): X, S = _smacof_single(dissimilarities, weights, init, anchors, n_components, maxitr, eps, random_state) if S < Sbest: Xbest, Sbest = X, S return Xbest
the-stack_106_31973
# -*- coding: utf-8 -*- """Compute statistical description of datasets""" import multiprocessing import itertools from functools import partial import numpy as np import pandas as pd import matplotlib from pkg_resources import resource_filename import pandas_profiling.formatters as formatters import pandas_profiling.base as base from pandas_profiling.plot import histogram, mini_histogram def describe_numeric_1d(series, **kwargs): """Compute summary statistics of a numerical (`TYPE_NUM`) variable (a Series). Also create histograms (mini an full) of its distribution. Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ # Format a number as a percentage. For example 0.25 will be turned to 25%. _percentile_format = "{:.0%}" stats = dict() stats['type'] = base.TYPE_NUM stats['mean'] = series.mean() stats['std'] = series.std() stats['variance'] = series.var() stats['min'] = series.min() stats['max'] = series.max() stats['range'] = stats['max'] - stats['min'] # To avoid to compute it several times _series_no_na = series.dropna() for percentile in np.array([0.05, 0.25, 0.5, 0.75, 0.95]): # The dropna() is a workaround for https://github.com/pydata/pandas/issues/13098 stats[_percentile_format.format(percentile)] = _series_no_na.quantile(percentile) stats['iqr'] = stats['75%'] - stats['25%'] stats['kurtosis'] = series.kurt() stats['skewness'] = series.skew() stats['sum'] = series.sum() stats['mad'] = series.mad() stats['cv'] = stats['std'] / stats['mean'] if stats['mean'] else np.NaN stats['n_zeros'] = (len(series) - np.count_nonzero(series)) stats['p_zeros'] = stats['n_zeros'] * 1.0 / len(series) # Histograms stats['histogram'] = histogram(series, **kwargs) stats['mini_histogram'] = mini_histogram(series, **kwargs) return pd.Series(stats, name=series.name) def describe_date_1d(series): """Compute summary statistics of a date (`TYPE_DATE`) variable (a Series). Also create histograms (mini an full) of its distribution. Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ stats = dict() stats['type'] = base.TYPE_DATE stats['min'] = series.min() stats['max'] = series.max() stats['range'] = stats['max'] - stats['min'] # Histograms stats['histogram'] = histogram(series) stats['mini_histogram'] = mini_histogram(series) return pd.Series(stats, name=series.name) def describe_categorical_1d(series): """Compute summary statistics of a categorical (`TYPE_CAT`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ # Only run if at least 1 non-missing value value_counts, distinct_count = base.get_groupby_statistic(series) top, freq = value_counts.index[0], value_counts.iloc[0] names = [] result = [] if base.get_vartype(series) == base.TYPE_CAT: names += ['top', 'freq', 'type'] result += [top, freq, base.TYPE_CAT] return pd.Series(result, index=names, name=series.name) def describe_boolean_1d(series): """Compute summary statistics of a boolean (`TYPE_BOOL`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ value_counts, distinct_count = base.get_groupby_statistic(series) top, freq = value_counts.index[0], value_counts.iloc[0] # The mean of boolean is an interesting information mean = series.mean() names = [] result = [] names += ['top', 'freq', 'type', 'mean'] result += [top, freq, base.TYPE_BOOL, mean] return pd.Series(result, index=names, name=series.name) def describe_constant_1d(series): """Compute summary statistics of a constant (`S_TYPE_CONST`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ return pd.Series([base.S_TYPE_CONST], index=['type'], name=series.name) def describe_unique_1d(series): """Compute summary statistics of a unique (`S_TYPE_UNIQUE`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ return pd.Series([base.S_TYPE_UNIQUE], index=['type'], name=series.name) def describe_supported(series, **kwargs): """Compute summary statistics of a supported variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ leng = len(series) # number of observations in the Series count = series.count() # number of non-NaN observations in the Series n_infinite = count - series.count() # number of infinte observations in the Series value_counts, distinct_count = base.get_groupby_statistic(series) if count > distinct_count > 1: mode = series.mode().iloc[0] else: mode = series[0] results_data = {'count': count, 'distinct_count': distinct_count, 'p_missing': 1 - count * 1.0 / leng, 'n_missing': leng - count, 'p_infinite': n_infinite * 1.0 / leng, 'n_infinite': n_infinite, 'is_unique': distinct_count == leng, 'mode': mode, 'p_unique': distinct_count * 1.0 / leng} try: # pandas 0.17 onwards results_data['memorysize'] = series.memory_usage() except: results_data['memorysize'] = 0 return pd.Series(results_data, name=series.name) def describe_unsupported(series, **kwargs): """Compute summary statistics of a unsupported (`S_TYPE_UNSUPPORTED`) variable (a Series). Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ leng = len(series) # number of observations in the Series count = series.count() # number of non-NaN observations in the Series n_infinite = count - series.count() # number of infinte observations in the Series results_data = {'count': count, 'p_missing': 1 - count * 1.0 / leng, 'n_missing': leng - count, 'p_infinite': n_infinite * 1.0 / leng, 'n_infinite': n_infinite, 'type': base.S_TYPE_UNSUPPORTED} try: # pandas 0.17 onwards results_data['memorysize'] = series.memory_usage() except: results_data['memorysize'] = 0 return pd.Series(results_data, name=series.name) def describe_1d(data, **kwargs): """Compute summary statistics of a variable (a Series). The description is different according to the type of the variable. However a set of common stats is also computed. Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys. """ # Replace infinite values with NaNs to avoid issues with # histograms later. data.replace(to_replace=[np.inf, np.NINF, np.PINF], value=np.nan, inplace=True) result = pd.Series({}, name=data.name) vartype = base.get_vartype(data) if vartype == base.S_TYPE_UNSUPPORTED: result = result.append(describe_unsupported(data)) else: result = result.append(describe_supported(data)) if vartype == base.S_TYPE_CONST: result = result.append(describe_constant_1d(data)) elif vartype == base.TYPE_BOOL: result = result.append(describe_boolean_1d(data)) elif vartype == base.TYPE_NUM: result = result.append(describe_numeric_1d(data, **kwargs)) elif vartype == base.TYPE_DATE: result = result.append(describe_date_1d(data)) elif vartype == base.S_TYPE_UNIQUE: result = result.append(describe_unique_1d(data)) else: # TYPE_CAT result = result.append(describe_categorical_1d(data)) return result def multiprocess_func(x, **kwargs): return x[0], describe_1d(x[1], **kwargs) def describe(df, dataframe_name='', statement='', bins=10, check_correlation=True, correlation_threshold=0.9, correlation_overrides=None, check_recoded=False, pool_size=multiprocessing.cpu_count(), **kwargs): """Generates a dict containing summary statistics for a given dataset stored as a pandas `DataFrame`. Used has is it will output its content as an HTML report in a Jupyter notebook. Parameters ---------- df : DataFrame Data to be analyzed bins : int Number of bins in histogram. The default is 10. check_correlation : boolean Whether or not to check correlation. It's `True` by default. correlation_threshold: float Threshold to determine if the variable pair is correlated. The default is 0.9. correlation_overrides : list Variable names not to be rejected because they are correlated. There is no variable in the list (`None`) by default. check_recoded : boolean Whether or not to check recoded correlation (memory heavy feature). Since it's an expensive computation it can be activated for small datasets. `check_correlation` must be true to disable this check. It's `False` by default. pool_size : int Number of workers in thread pool The default is equal to the number of CPU. Returns ------- dict Containing the following keys: * table: general statistics on the dataset * variables: summary statistics for each variable * freq: frequency table Notes: ------ * The section dedicated to check the correlation should be externalized """ if not isinstance(df, pd.DataFrame): raise TypeError("df must be of type pandas.DataFrame") if df.empty: raise ValueError("df can not be empty") try: # reset matplotlib style before use # Fails in matplotlib 1.4.x so plot might look bad matplotlib.style.use("default") except: pass matplotlib.style.use(resource_filename(__name__, "pandas_profiling.mplstyle")) # Clearing the cache before computing stats base.clear_cache() if not pd.Index(np.arange(0, len(df))).equals(df.index): # Treat index as any other column df = df.reset_index() kwargs.update({'bins': bins}) # Describe all variables in a univariate way if pool_size == 1: local_multiprocess_func = partial(multiprocess_func, **kwargs) ldesc = {col: s for col, s in map(local_multiprocess_func, df.iteritems())} else: pool = multiprocessing.Pool(pool_size) local_multiprocess_func = partial(multiprocess_func, **kwargs) ldesc = {col: s for col, s in pool.map(local_multiprocess_func, df.iteritems())} pool.close() # Get correlations dfcorrPear = df.corr(method="pearson") dfcorrSpear = df.corr(method="spearman") # Check correlations between variable if check_correlation is True: ''' TODO: corr(x,y) > 0.9 and corr(y,z) > 0.9 does not imply corr(x,z) > 0.9 If x~y and y~z but not x~z, it would be better to delete only y Better way would be to find out which variable causes the highest increase in multicollinearity. ''' corr = dfcorrPear.copy() for x, corr_x in corr.iterrows(): if correlation_overrides and x in correlation_overrides: continue for y, corr in corr_x.iteritems(): if x == y: break if corr > correlation_threshold: ldesc[x] = pd.Series(['CORR', y, corr], index=['type', 'correlation_var', 'correlation']) if check_recoded: categorical_variables = [(name, data) for (name, data) in df.iteritems() if base.get_vartype(data)=='CAT'] for (name1, data1), (name2, data2) in itertools.combinations(categorical_variables, 2): if correlation_overrides and name1 in correlation_overrides: continue confusion_matrix=pd.crosstab(data1,data2) if confusion_matrix.values.diagonal().sum() == len(df): ldesc[name1] = pd.Series(['RECODED', name2], index=['type', 'correlation_var']) # Convert ldesc to a DataFrame names = [] ldesc_indexes = sorted([x.index for x in ldesc.values()], key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) variable_stats = pd.concat(ldesc, join_axes=pd.Index([names]), axis=1) variable_stats.columns.names = df.columns.names # General statistics table_stats = {} table_stats['n'] = len(df) table_stats['nvar'] = len(df.columns) table_stats['total_missing'] = variable_stats.loc['n_missing'].sum() / (table_stats['n'] * table_stats['nvar']) unsupported_columns = variable_stats.transpose()[variable_stats.transpose().type != base.S_TYPE_UNSUPPORTED].index.tolist() table_stats['n_duplicates'] = sum(df.duplicated(subset=unsupported_columns)) if len(unsupported_columns) > 0 else 0 memsize = df.memory_usage(index=True).sum() table_stats['memsize'] = formatters.fmt_bytesize(memsize) table_stats['recordsize'] = formatters.fmt_bytesize(memsize / table_stats['n']) table_stats.update({k: 0 for k in ("NUM", "DATE", "CONST", "CAT", "UNIQUE", "CORR", "RECODED", "BOOL", "UNSUPPORTED")}) table_stats.update(dict(variable_stats.loc['type'].value_counts())) table_stats['REJECTED'] = table_stats['CONST'] + table_stats['CORR'] + table_stats['RECODED'] return { 'table': table_stats, 'variables': variable_stats.T, 'freq': {k: (base.get_groupby_statistic(df[k])[0] if variable_stats[k].type != base.S_TYPE_UNSUPPORTED else None) for k in df.columns}, 'correlations': {'pearson': dfcorrPear, 'spearman': dfcorrSpear} }
the-stack_106_31974
import json import time from tools import logger as log import strategies def bank_open(**kwargs): """ A strategy to open a bank :param kwargs: strategy, listener, and orders_queue :return: the input strategy with a report """ strategy = kwargs['strategy'] listener = kwargs['listener'] orders_queue = kwargs['orders_queue'] assets = kwargs['assets'] logger = log.get_logger(__name__, strategy['bot']) global_start, start = time.time(), time.time() if listener.game_state['storage_open']: logger.info('Opened bank in {}s'.format(0)) strategy['report'] = { 'success': True, 'details': {'Execution time': 0} } log.close_logger(logger) return strategy # Open NPC order = { 'command': 'open_npc', 'parameters': { 'map_id': listener.game_state['map_id'], 'npc_id': -20001, 'action_id': 3 } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if listener.game_state['npc_dialog_open']: waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warning('Failed to open NPC dialog in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Timeout'} } log.close_logger(logger) return strategy # Answer question order = { 'command': 'answer_npc', 'parameters': { 'reply_id': listener.game_state['npc_possible_replies'][0] } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'storage_open' in listener.game_state.keys(): if listener.game_state['storage_open']: waiting = False time.sleep(0.05) if waiting: logger.warning('Failed to answer NPC to open storage in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Failed to answer NPC to open storage in {}s'.format(execution_time)} } log.close_logger(logger) return strategy execution_time = time.time() - global_start logger.info('Opened bank in {}s'.format(execution_time)) strategy['report'] = { 'success': True, 'details': {'Execution time': execution_time} } log.close_logger(logger) return strategy
the-stack_106_31975
""" example cmdline: python test/reproduction/so/benchmark_so_litebo_math.py --problem branin --n 200 --init 3 --surrogate gp --optimizer scipy --rep 1 --start_id 0 """ import os import sys import time import numpy as np import argparse import pickle as pkl sys.path.insert(0, os.getcwd()) from test.reproduction.so.so_benchmark_function import get_problem from litebo.optimizer.generic_smbo import SMBO from test.reproduction.test_utils import timeit, seeds parser = argparse.ArgumentParser() parser.add_argument('--problem', type=str) parser.add_argument('--n', type=int, default=100) parser.add_argument('--init', type=int, default=3) parser.add_argument('--init_strategy', type=str, default='random_explore_first') parser.add_argument('--surrogate', type=str, default='gp', choices=['gp', 'prf']) parser.add_argument('--optimizer', type=str, default='scipy', choices=['scipy', 'local']) parser.add_argument('--rep', type=int, default=1) parser.add_argument('--start_id', type=int, default=0) args = parser.parse_args() problem_str = args.problem max_runs = args.n initial_runs = args.init init_strategy = args.init_strategy surrogate_type = args.surrogate if args.optimizer == 'scipy': acq_optimizer_type = 'random_scipy' elif args.optimizer == 'local': acq_optimizer_type = 'local_random' else: raise ValueError('Unknown optimizer %s' % args.optimizer) rep = args.rep start_id = args.start_id mth = 'litebo' problem = get_problem(problem_str) cs = problem.get_configspace(optimizer='smac') time_limit_per_trial = 600 task_id = '%s_%s' % (mth, problem_str) def evaluate(mth, run_i, seed): print(mth, run_i, seed, '===== start =====', flush=True) def objective_function(config): y = problem.evaluate_config(config) res = dict() res['config'] = config res['objs'] = (y,) res['constraints'] = None return res bo = SMBO(objective_function, cs, surrogate_type=surrogate_type, # default: gp acq_optimizer_type=acq_optimizer_type, # default: random_scipy initial_runs=initial_runs, # default: 3 init_strategy=init_strategy, # default: random_explore_first max_runs=max_runs, time_limit_per_trial=time_limit_per_trial, task_id=task_id, random_state=seed) # bo.run() config_list = [] perf_list = [] time_list = [] global_start_time = time.time() for i in range(max_runs): config, trial_state, objs, trial_info = bo.iterate() global_time = time.time() - global_start_time print(seed, i, objs, config, trial_state, trial_info, 'time=', global_time) config_list.append(config) perf_list.append(objs[0]) time_list.append(global_time) return config_list, perf_list, time_list with timeit('%s all' % (mth,)): for run_i in range(start_id, start_id + rep): seed = seeds[run_i] with timeit('%s %d %d' % (mth, run_i, seed)): # Evaluate config_list, perf_list, time_list = evaluate(mth, run_i, seed) # Save result print('=' * 20) print(seed, mth, config_list, perf_list, time_list) print(seed, mth, 'best perf', np.min(perf_list)) timestamp = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())) dir_path = 'logs/so_benchmark_%s_%d/%s/' % (problem_str, max_runs, mth) file = 'benchmark_%s_%04d_%s.pkl' % (mth, seed, timestamp) if not os.path.exists(dir_path): os.makedirs(dir_path) with open(os.path.join(dir_path, file), 'wb') as f: save_item = (config_list, perf_list, time_list) pkl.dump(save_item, f) print(dir_path, file, 'saved!', flush=True)
the-stack_106_31978
# -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Axon.Component import component class Translator(component): Inboxes = {"inbox" : " standard inbox", "control": "shutdown messages"} Outboxes = {"outbox": "", "signal" : ""} def __init__(self, nick): super(Translator, self).__init__() self.nick = nick def main(self): while 1: if not self.anyReady(): self.pause() yield 1 data = "" if self.dataReady('privmsg'): formatted = self.formatPrivmsg(self.recv('privmsg')) self.send(formatted) if self.dataReady('channel'): formatted = self.formatChannelMsg(self.recv('channel')) self.send(formatted) if self.dataReady('nonPrivmsg'): formatted = self.formatMisc(self.recv('channel')) self.send(formatted) if self.dataReady('notice'): formatted = self.formatNotice(self.recv('notice')) self.send(formatted) if self.dataReady('ERR'): formatted = self.formatError(self.recv('ERR')) self.send(formatted) if self.dataReady('RPL'): formatted = self.formatNumReply(self.recv('RPL')) self.send(formatted) def formatPrivmsg(self, msg): temp, sender, recipient, body = msg if body[0] == 'ACTION': send = "*** %s %s" % (sender, body[body.find('ACTION') + 7]) else: send = "%s: %s" % (sender, body) return send def formatChannelMsg(self, msg): return msg def formatMisc(self, msg): return msg def formatNotice(self, msg): return msg def formatError(self, msg): return msg def formatNumReply(self, msg): return msg if __name__ == '__main__': from Kamaelia.Util.Console import ConsoleReader, ConsoleEchoer from Kamaelia.Chassis.Graphline import Graphline from Kamaelia.Chassis.Pipeline import Pipeline from Prefab import ComplexIRCClientPrefab client = Graphline( prefab = ComplexIRCClientPrefab(host="irc.freenode.net", nick="kamaeliabot", defaultChannel="#kamtest"), formatter = Translator("kamaeliabot"), linkages = {("prefab", "outbox") : ("formatter", "privmsg")} ) Pipeline(ConsoleReader(), client, ConsoleEchoer()).run()
the-stack_106_31979
import math import sys import numpy as np from numba.core.compiler import compile_isolated import unittest class TestAutoConstants(unittest.TestCase): def test_numpy_nan(self): def pyfunc(): return np.nan cres = compile_isolated(pyfunc, ()) cfunc = cres.entry_point self.assertTrue(math.isnan(pyfunc())) self.assertTrue(math.isnan(cfunc())) def test_sys_constant(self): def pyfunc(): return sys.hexversion cres = compile_isolated(pyfunc, ()) cfunc = cres.entry_point self.assertEqual(pyfunc(), cfunc()) if __name__ == '__main__': unittest.main()
the-stack_106_31980
# Copyright (c) 2015 [email protected] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import logging import datetime # Configuration class class Config: DEVICE_MAC = '<ADD DEVICE IDENTIFIER HERE>' # ADD DEVICE IDENTIFIER HERE DEVICE_NAME = 'ArduWeather' # SET YOUR DEVICE NAME HERE COM_PORT = 'COM4' # SET YOUR PORT HERE COM_SPEED = 115200 # SET YOUR PORT SPEED HERE LOGGING_LEVEL = logging.INFO # SET TO "DEBUG" TO SEE MORE LOGS SEND_INTERVAL = datetime.timedelta(minutes = 5) # SET YOUR SEND INTERVAL HERE
the-stack_106_31983
from collections import namedtuple from logging import basicConfig, warning, error from os.path import getmtime, abspath, dirname, join from datetime import datetime as dt from sys import argv from jinja2 import Environment, FileSystemLoader basicConfig() Enum = namedtuple('Enum', 'name fields underlying_type') class Def(namedtuple('Definition', 'name read write address fields enums width doc')): @property def needs_constructor(self): if len(self.fields) > 1: return True if not self.fields: return False field = self.fields[0] return field.width <= 32 class Field(namedtuple('Field', 'name width offset enum')): @property def type(self): if self.enum: return self.enum.name if self.width == 1: return 'bool' for width in [32, 64]: if self.width <= width: return f'uint{width}_t' @property def mask(self): return hex(mask(self)) def mask(field_or_def): return (2 << (field_or_def.width - 1)) - 1 def cut(field_or_def, value): value >>= getattr(field_or_def, 'offset', 0) value &= mask(field_or_def) if field_or_def.width == 1: return str(bool(value)).lower() return hex(value) def prepare_scope(): class ReadOnly: READ = True TRIGGER = False class WriteOnly: WRITE = True TRIGGER = False class ReadWrite(ReadOnly, WriteOnly): pass class Trigger: READ = False WRITE = False TRIGGER = True def addr(address): class Address: ADDRESS = address return Address def width(w): class Width: WIDTH = w return Width globals_ = 'ReadOnly WriteOnly ReadWrite Address Trigger'.split() scope = dict(ReadOnly=ReadOnly, WriteOnly=WriteOnly, ReadWrite=ReadWrite, Trigger=Trigger, Address=addr, Width=width) local = {} return scope, local, globals_ def read_meta(file_name, local): try: namespace = local['NAMESPACE'] except KeyError: warning("no namespace given, defaulting to empty namespace") namespace = () if isinstance(namespace, str): namespace = [namespace] if not isinstance(namespace, (tuple, list)): error("namespace must be a str, list or tuple, defaulting to empty namespace") namespace = () if not all(part.isidentifier() for part in namespace): error("namespace parts must be valid identifiert, defaulting to empty namespace") namespace = () try: test_includes = local['TEST_INCLUDE'] except KeyError: warning("no test include given, compiling the test will probably fail") test_includes = '' if not isinstance(test_includes, str): error("test include must be a str") exit() return namespace, dt.fromtimestamp(getmtime(file_name)), test_includes def is_dunder(string): return string.startswith('__') and string.endswith('__') def find_enum(cls): for key, value in cls.__dict__.items(): if not is_dunder(key): fields = value.__dict__.copy() underlying_type = fields.pop('UNDERLYING_TYPE', None) yield Enum(key, { name: value for name, value in fields.items() if not is_dunder(name) and isinstance(value, int) }, underlying_type) def cleanup_definitions(local): for key, value in list(local.items()): if not isinstance(value, type): continue if not hasattr(value, 'ADDRESS'): error(f"{key} has no 'Address'") continue address = getattr(value, 'ADDRESS') if not hasattr(value, 'READ') and not hasattr(value, 'WRITE'): error(f"{key} is neither readable nor writeable") continue read = getattr(value, 'READ', False) write = getattr(value, 'WRITE', False) fields = getattr(value, '__annotations__', {}) if not all(isinstance(width, int) for width in fields.values()): error(f"{key}: field widths must be integers") continue if sum(fields.values()) > 64: error(f"{key}: total field width may not exceed 64") continue enums = list(find_enum(value)) doc = [line.strip() for line in (value.__doc__ or '').strip().splitlines()] fields_tuples = [] offset = 0 for name, width in fields.items(): cap = name.capitalize() matching_enum = None for enum in enums: if enum.name == cap: matching_enum = enum break fields_tuples.append(Field(name, width, offset, matching_enum)) offset += width if offset == 0: offset = getattr(value, 'WIDTH') yield Def(key, bool(read), bool(write), int(address), fields_tuples, enums, offset, doc) def read_definition(file_name): scope, local, globals_ = prepare_scope() with open(file_name) as fin: exec(fin.read(), scope, local) definitions = list(cleanup_definitions(local)) no_duplicate_dict = {} for d in definitions: if d.address in no_duplicate_dict: dup = no_duplicate_dict[d.address] raise RuntimeError(f"{d.name} and {dup.name} have the same address: {d.address}") else: no_duplicate_dict[d.address] = d meta = read_meta(file_name, local) return definitions, meta def main(): if len(argv) != 2: print("usage: {} DEFINITION_FILE".format(argv[0])) exit(1) defs, meta = read_definition(argv[1]) path = dirname(abspath(__file__)) env = Environment(loader=FileSystemLoader(path)) env.filters['hex'] = hex env.filters['bitand'] = int.__and__ env.filters['cut'] = cut env.filters['mask'] = mask ns, datetime, test_include = meta test_values = [ 0, 0xffffffffffffffff, 0xaaaaaaaaaaaaaaaa, 0x5555555555555555, 0xcafedeadbabebeef ] base = argv[1][:-3] target = join(dirname(path), 'include', 'extoll', f'{base}_definitions.h') with open(target, 'w') as fout: template = env.get_template(f'{base}_definitions.h') fout.write(template.render(**locals())) target = join(dirname(path), 'tests', f'{base}_definitions.cpp') with open(target, 'w') as fout: template = env.get_template(f'{base}_definitions.cpp') fout.write(template.render(**locals())) if __name__ == '__main__': main()
the-stack_106_31984
import shutil from pathlib import Path from simplegallery_bulkcreation import core def cleanup_after_tests(): path = Path("example/gallery") shutil.rmtree(path) return True def test_read_config_empty(): defaults, galleries = core.read_config("file_which_does_not_exists") assert defaults == { "gallery_root": ".", "title": "A Photo Gallery", "description": "This is a cool Photo gallery", "title_photo": "", "title_photo_offset": "", } assert galleries == [] def test_read_config(): defaults, galleries = core.read_config("example/config-example.ini") assert defaults == { "gallery_root": "example/gallery", "title": "My vacations", "description": "The best days of the year", "title_photo": "example/pictures/mexico2017/2017-11-01_15-20-23.jpg", "title_photo_offset": "20", } assert galleries == [ { "name": "Oman 2020", "pathname": "Oman_2020", "image_source": "example/pictures/oman2020", "description": "Some days in the orient", "background_photo": "2020-02-02_18-40-33.jpg", "background_photo_offset": 30, "overview_photo": "2020-02-02_18-40-33.jpg", "url": "", }, { "name": "Greece 2019", "pathname": "Greece_2019", "image_source": "example/pictures/greece2019", "description": "Island hoping in Greece", "background_photo": "2019-08-29_10-19-43.jpg", "background_photo_offset": "40", "overview_photo": "2019-08-29_10-19-43.jpg", "url": "", }, ] def test_create_overview_public(): data_path = "src/simplegallery_bulkcreation/data" defaults, galleries = core.read_config(config_path="example/config-example.ini") root_dir = defaults["gallery_root"] core.create_overview_public(root_dir, data_path, defaults, galleries) assert Path("example/gallery/public/index.html").exists() assert Path("example/gallery/public/css/main.css").exists() assert Path("example/gallery/public/css/default-skin.css").exists() assert ( Path("example/gallery/public/css/main.css").read_text() == Path("src/simplegallery_bulkcreation/data/public/css/main.css").read_text() ) assert ( Path("example/gallery/public/css/default-skin.css").read_text() == Path( "src/simplegallery_bulkcreation/data/public/css/default-skin.css" ).read_text() ) cleanup_after_tests()
the-stack_106_31985
#!/usr/bin/env python3 import queue as q from typing import List class Node(): def __init__(self, value): self.visited = False self.neighbours: List[Node] = [] self.value = value def __repr__(self): return str(self.value) class Graph(): def __init__(self, nodes): self.nodes: List[Node] = nodes def reset(self): for n in self.nodes: n.visited = False def bfs(self, n_start: Node) -> List[Node]: result = [] work_queue = q.Queue() work_queue.put(n_start) result.append(n_start) n_start.visited = True while not work_queue.empty(): cur = work_queue.get() for n in cur.neighbours: if not n.visited: work_queue.put(n) n.visited = True result.append(n) return result def dfs(self, n_start: Node) -> List[Node]: result = [] result.append(n_start) n_start.visited = True for n in n_start.neighbours: if not n.visited: for r in self.dfs(n): result.append(r) return result def topo_visit(self, node, stack = [], visited : set = set()) -> List[Node]: if node not in visited: visited.add(node) for neighbour in node.neighbours: self.topo_visit(neighbour, stack, visited) stack.append(node) def topo(self): stack = [] visited = set() for node in self.nodes: self.topo_visit(node, stack, visited) return stack a, b, c, d, e, f = Node("A"), Node("B"), Node("C"), Node("D"), Node("E"), Node("F") h = Node("H") a.neighbours = [b, c, e] b.neighbours = [d, a] c.neighbours = [a, d, h] d.neighbours = [b, c, f] e.neighbours = [a] f.neighbours = [d] h.neighbours = [c, f] #g = Graph([a, b, c, d, e, f, h]) #assert(g.bfs(a) == ['A', 'B', 'C', 'E', 'D', 'H', 'F']) #assert(g.bfs(h) == ['H', 'C', 'F', 'A', 'D', 'B', 'E']) #print(f"BFS from A:{g.bfs(a)}") #print(f"BFS from A:{g.dfs(a)}") a.neighbours = [b, c, e] b.neighbours = [d] c.neighbours = [h, d] d.neighbours = [f] e.neighbours = [] f.neighbours = [] h.neighbours = [f] g = Graph([a, b, c, d, e, f, h]) print(f"Topological sort:{g.topo()}")
the-stack_106_31986
import django_filters from dal import autocomplete from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.db.models import Q from django.urls import reverse import operator from functools import reduce from .models import AbstractRelation # TODO __sresch__ : Change this whole module according to the same logic as in apis_core/apis_entities/filters.py def get_excluded_fields(model): modelname = model.__name__ base_list = getattr(settings, "APIS_RELATIONS_FILTER_EXCLUDE", []) rel_model_conf = getattr(settings, "APIS_RELATIONS", {}) if "exclude" in rel_model_conf.keys(): if isinstance(rel_model_conf["exclude"], list): base_list.extend(rel_model_conf["exclude"]) if modelname in rel_model_conf.keys(): if "exclude" in rel_model_conf[modelname].keys(): if isinstance(rel_model_conf[modelname]["exclude"], list): base_list.extend(rel_model_conf[modelname]["exclude"]) return set(base_list) def get_included_fields(model): modelname = model.__name__ rel_model_conf = getattr(settings, "APIS_RELATIONS", {}) if modelname in rel_model_conf.keys(): return rel_model_conf[modelname].get("include", False) else: return False FIELD_TO_FILTER = { "ForeignKey": "MultipleChoiceFilter", "ManyToManyField": "MultipleChoiceFilter", "TextField": "CharFilter", "CharField": "CharFilter", "DateField": "DateFromToRangeFilter", "BooleanField": "BooleanFilter" } def get_field_dicts(model, include_parents=False): fields = [ { "f_name": x.name, "f_v_name": getattr(x, 'verbose_name', None), "f_help_text": getattr(x, 'helptext', None), "f_class_name": "{}".format(x.__class__.__name__), "f_model": getattr(x, 'related_model', None) } for x in model._meta.get_fields(include_parents=include_parents) ] return fields def get_filters(model, exclude=False, include=False, include_parents=False): filters = [] field_dicts = get_field_dicts(model, include_parents=include_parents) for x in field_dicts: filters.append(x['f_name']) if x['f_model']: rel_fields = get_field_dicts(x['f_model'], include_parents) for y in rel_fields: if 'apis_relations' in "{}".format(y['f_model']): pass else: rel_field_name = "{}__{}".format(x['f_name'], y['f_name']) filters.append(rel_field_name) if include: filters = [x for x in filters if x in include] elif exclude: for x in exclude: if x.startswith("*") and not x.endswith("*"): filters = [f for f in filters if not f.lower().endswith(x[1:].lower())] elif x.startswith("*") and x.endswith("*"): filters = [f for f in filters if not x[1:-1].lower() in f] elif not x.startswith("*") and x.endswith("*"): filters = [f for f in filters if not f.lower().startswith(x[:-1].lower())] else: filters = [f for f in filters if not x.lower() == f.lower()] return filters def get_generic_relation_filter(entity): class GenericListFilter(django_filters.FilterSet): #search = django_filters.CharFilter(method='search_filter_method') def name_label_filter(self, queryset, name, value): """ Filter for including the alternative names in the names search.\ The types of labels included in the query are currently hardcoded in a list. :param queryset: queryset that the filters are applied on :param name: name of the attribute to filter on (not used as label types are hardcoded) :param value: value for the filter :return: filtered queryset """ alternate_names = getattr(settings, "APIS_ALTERNATE_NAMES", ['alternative name']) res = [] orig_value = value for n in ['name', 'label__label']: value = orig_value f = '{}__'.format(n) if value.startswith('"') and value.endswith('"'): value = value[1:-1] else: f += 'i' if value.startswith('*') and value.endswith('*'): f += 'contains' value = value[1:-1] elif value.startswith('*'): f += 'endswith' value = value[1:] elif value.endswith('*'): f += 'startswith' value = value[:-1] else: f += 'exact' if n == 'label__label': res.append(Q(**{f: value, 'label__label_type__name__in': alternate_names})) else: res.append(Q(**{f: value})) return queryset.filter(res[0] | res[1]).distinct() def wildcard_filter(self, queryset, name, value): f = '{}__'.format(name) if value.startswith('"') and value.endswith('"'): value = value[1:-1] else: f += 'i' if value.startswith('*') and value.endswith('*'): f += 'contains' value = value[1:-1] elif value.startswith('*'): f += 'endswith' value = value[1:] elif value.endswith('*'): f += 'startswith' value = value[:-1] else: f += 'exact' return queryset.filter(**{f: value}) def search_filter_method(self, queryset, name, value): cls = queryset.model.__name__ sett_filters = getattr(settings, "APIS_RELATIONS", {}) if cls.lower() in sett_filters.keys(): filter_attr = sett_filters[cls.lower()].get("search", ["name"]) query = reduce(operator.or_, [ Q(**{attr: value}) for attr in filter_attr ] ) class Meta: model = AbstractRelation.get_relation_class_of_name(entity) fields = get_filters( model, exclude=get_excluded_fields(model), include=get_included_fields(model), include_parents=True ) def __init__(self, *args, **kwargs): attrs = {'data-placeholder': 'Type to get suggestions', 'data-minimum-input-length': getattr(settings, "APIS_MIN_CHAR", 3), 'data-html': True} super(GenericListFilter, self).__init__(*args, **kwargs) for x in self.filters.keys(): if type(self.filters[x].field).__name__ == "ModelChoiceField": current_model_name = str(self.filters[x].queryset.model.__name__).lower() current_qs = self.filters[x].queryset if ContentType.objects.filter(app_label='apis_entities', model=current_model_name).count() > 0: self.filters[x] = django_filters.ModelMultipleChoiceFilter( field_name=x, queryset=current_qs, widget=autocomplete.ModelSelect2Multiple( url=reverse( 'apis:apis_entities:generic_network_entities_autocomplete', kwargs={ 'entity': current_model_name } ), ) ) elif ContentType.objects.filter(app_label='apis_vocabularies', model=current_model_name).count() > 0: self.filters[x] = django_filters.ModelMultipleChoiceFilter( field_name=x, queryset=current_qs, widget=autocomplete.ModelSelect2Multiple( url=reverse( 'apis:apis_vocabularies:generic_vocabularies_autocomplete', kwargs={ 'vocab': current_model_name, 'direct': 'normal' } ), ) ) if type(self.filters[x].field).__name__ == "DateField": self.filters[x] = django_filters.DateFromToRangeFilter( field_name=x, ) if type(self.filters[x].field).__name__ == "CharField": self.filters[x] = django_filters.CharFilter( lookup_expr='icontains', field_name=x, ) if type(self.filters[x].field).__name__ == "ModelMultipleChoiceField": current_model_name = str(self.filters[x].queryset.model.__name__).lower() current_qs = self.filters[x].queryset self.filters[x] = django_filters.ModelMultipleChoiceFilter( field_name=x, queryset=current_qs, widget=autocomplete.ModelSelect2Multiple( url=reverse( 'apis:apis_entities:generic_network_entities_autocomplete', kwargs={ 'entity': current_model_name } ), ) ) return GenericListFilter
the-stack_106_31987
#!/usr/bin/python # import json import os import sqlite3 from datetime import datetime import requests from tornado import web, ioloop, httpserver from .configuration import PlotmanConfig, get_db_path def PostDat(dp: dict, cfg: PlotmanConfig): print(dp) # sending post request and saving response as response object payload = json.dumps(dp) r = requests.post(url=f'{cfg.apis.target}:{cfg.apis.port}/report', data=payload) print(r.text) """ from prometheus_client.core import GaugeMetricFamily class PlotmanCollector: def collect(self): cfg = configuration.get_validated_configs() jobs = Job.get_running_jobs(cfg.directories.log) count = len(sorted(jobs, key=job.Job.get_time_wall)) yield GaugeMetricFamily("plotman_jobs_count", "Number of plotting jobs running", value=count) if __name__ == "__main__": start_http_server(8001) REGISTRY.register(PlotmanCollector()) while True: time.sleep(1) """ class MainHandler(web.RequestHandler): def prepare(self): if self.request.headers.get("Content-Type", "").startswith("application/json"): self.json_args = json.loads(self.request.body) else: self.json_args = None def post(self): self.set_header("Content-Type", "text/plain") req_body = self.json_args remote_addr = os.environ.get('REMOTE_ADDR', '-') ts = datetime.now().strftime('%m-%d %H:%M:%S') con = sqlite3.connect(get_db_path) cur = con.cursor() cur.execute('''CREATE TABLE IF NOT EXISTS systemchia ( tid text PRIMARY KEY, block text NOT NULL, ip text NOT NULL );''') # Insert a row of data cur.execute(f"INSERT INTO systemchia VALUES ('{ts}','{req_body}','{remote_addr}')") con.commit() con.close() print(req_body) def apiOpen(cfg: PlotmanConfig): print(f"api port {cfg.apis.port} is now listening") application = web.Application([(r"/report", MainHandler)]) http_server = httpserver.HTTPServer(application) http_server.listen(cfg.apis.port) ioloop.IOLoop.current().start()
the-stack_106_31988
import pytest import numpy as np from aos.solver import Solver, SensitivitySolver def test_abstract_solver(): with pytest.raises(TypeError): Solver() def test_sensitivity_solver_nominal(): solver = SensitivitySolver() y0 = np.zeros(len(solver.y0) + 1) # hack because Noll (1976) indexing starts from j=1 y0[1:] = solver.y0 xest = solver.solve(y0) ref = np.zeros(20) np.testing.assert_allclose(xest.array, ref)
the-stack_106_31989
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The RelaxedBernoulli distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tensorflow_probability.python import util as tfp_util from tensorflow_probability.python.bijectors import sigmoid as sigmoid_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import logistic from tensorflow_probability.python.distributions import transformed_distribution from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import class RelaxedBernoulli(distribution.Distribution): """RelaxedBernoulli distribution with temperature and logits parameters. The RelaxedBernoulli is a distribution over the unit interval (0,1), which continuously approximates a Bernoulli. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedBernoulli becomes discrete with a distribution described by the `logits` or `probs` parameters, as the temperature goes to infinity the RelaxedBernoulli becomes the constant distribution that is identically 0.5. The RelaxedBernoulli distribution is a reparameterized continuous distribution that is the binary special case of the RelaxedOneHotCategorical distribution (Maddison et al., 2016; Jang et al., 2016). For details on the binary special case see the appendix of Maddison et al. (2016) where it is referred to as BinConcrete. If you use this distribution, please cite both papers. Some care needs to be taken for loss functions that depend on the log-probability of RelaxedBernoullis, because computing log-probabilities of the RelaxedBernoulli can suffer from underflow issues. In many case loss functions such as these are invariant under invertible transformations of the random variables. The KL divergence, found in the variational autoencoder loss, is an example. Because RelaxedBernoullis are sampled by a Logistic random variable followed by a `tf.sigmoid` op, one solution is to treat the Logistic as the random variable and `tf.sigmoid` as downstream. The KL divergences of two Logistics, which are always followed by a `tf.sigmoid` op, is equivalent to evaluating KL divergences of RelaxedBernoulli samples. See Maddison et al., 2016 for more details where this distribution is called the BinConcrete. An alternative approach is to evaluate Bernoulli log probability or KL directly on relaxed samples, as done in Jang et al., 2016. In this case, guarantees on the loss are usually violated. For instance, using a Bernoulli KL in a relaxed ELBO is no longer a lower bound on the log marginal probability of the observation. Thus care and early stopping are important. #### Examples Creates three continuous distributions, which approximate 3 Bernoullis with probabilities (0.1, 0.5, 0.4). Samples from these distributions will be in the unit interval (0,1). ```python temperature = 0.5 p = [0.1, 0.5, 0.4] dist = RelaxedBernoulli(temperature, probs=p) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). ```python temperature = 0.5 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis with logits (-2, 2, 0). ```python temperature = 0.5 logits = [-2, 2, 0] dist = Logistic(logits/temperature, 1./temperature) samples = dist.sample() sigmoid_samples = tf.sigmoid(samples) # sigmoid_samples has the same distribution as samples from # RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very low, samples from these distributions are almost discrete, usually taking values very close to 0 or 1. ```python temperature = 1e-5 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very high, samples from these distributions are usually close to the (0.5, 0.5, 0.5) vector. ```python temperature = 100 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016. Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016. """ def __init__(self, temperature, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name='RelaxedBernoulli'): """Construct RelaxedBernoulli distributions. Args: temperature: A `Tensor`, representing the temperature of a set of RelaxedBernoulli distributions. The temperature values should be positive. logits: An N-D `Tensor` representing the log-odds of a positive event. Each entry in the `Tensor` parametrizes an independent RelaxedBernoulli distribution where the probability of an event is sigmoid(logits). Only one of `logits` or `probs` should be passed in. probs: An N-D `Tensor` representing the probability of a positive event. Each entry in the `Tensor` parameterizes an independent Bernoulli distribution. Only one of `logits` or `probs` should be passed in. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: If both `probs` and `logits` are passed, or if neither. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([logits, probs, temperature], tf.float32) self._temperature = tensor_util.convert_nonref_to_tensor( temperature, name='temperature', dtype=dtype) self._probs = tensor_util.convert_nonref_to_tensor( probs, name='probs', dtype=dtype) self._logits = tensor_util.convert_nonref_to_tensor( logits, name='logits', dtype=dtype) if logits is None: logits_parameter = tfp_util.DeferredTensor( lambda x: tf.math.log(x) - tf.math.log1p(-x), self._probs) else: logits_parameter = self._logits shape = tf.broadcast_static_shape(logits_parameter.shape, self._temperature.shape) logistic_scale = tfp_util.DeferredTensor( tf.math.reciprocal, self._temperature) logistic_loc = tfp_util.DeferredTensor( lambda x: x * logistic_scale, logits_parameter, shape=shape) self._transformed_logistic = ( transformed_distribution.TransformedDistribution( distribution=logistic.Logistic( logistic_loc, logistic_scale, allow_nan_stats=allow_nan_stats, name=name + '/Logistic'), bijector=sigmoid_bijector.Sigmoid())) super(RelaxedBernoulli, self).__init__( dtype=dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) @staticmethod def _param_shapes(sample_shape): return {'logits': tf.convert_to_tensor(sample_shape, dtype=tf.int32)} @classmethod def _params_event_ndims(cls): return dict(temperature=0, logits=0, probs=0) @property def temperature(self): """Distribution parameter for the location.""" return self._temperature @property def logits(self): """Input argument `logits`.""" if self._logits is None: return self._logits_deprecated_behavior() return self._logits @property def probs(self): """Input argument `probs`.""" if self._probs is None: return self._probs_deprecated_behavior() return self._probs def logits_parameter(self, name=None): """Logits computed from non-`None` input arg (`probs` or `logits`).""" with self._name_and_control_scope(name or 'logits_parameter'): return self._logits_parameter_no_checks() def _logits_parameter_no_checks(self): if self._logits is None: probs = tf.convert_to_tensor(self._probs) return tf.math.log(probs) - tf.math.log1p(-probs) return tf.identity(self._logits) def probs_parameter(self, name=None): """Probs computed from non-`None` input arg (`probs` or `logits`).""" with self._name_and_control_scope(name or 'probs_parameter'): return self._probs_parameter_no_checks() def _probs_parameter_no_checks(self): if self._logits is None: return tf.identity(self._probs) return tf.math.sigmoid(self._logits) def _event_shape_tensor(self): return tf.constant([], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([]) def _batch_shape_tensor(self): return self._transformed_logistic.batch_shape_tensor() def _batch_shape(self): return self._transformed_logistic.batch_shape def _sample_n(self, n, seed=None, **kwargs): return self._transformed_logistic.sample(n, seed=seed, **kwargs) def _log_prob(self, y, **kwargs): return self._transformed_logistic.log_prob(y, **kwargs) def _prob(self, y, **kwargs): return self._transformed_logistic.prob(y, **kwargs) def _log_survival_function(self, y, **kwargs): return self._transformed_logistic.log_survival_function(y, **kwargs) def _cdf(self, y, **kwargs): return self._transformed_logistic.cdf(y, **kwargs) def _log_cdf(self, y, **kwargs): return self._transformed_logistic.log_cdf(y, **kwargs) @deprecation.deprecated( '2019-10-01', 'The `logits` property will return `None` when the distribution is ' 'parameterized with `logits=None`. Use `logits_parameter()` instead.', warn_once=True) def _logits_deprecated_behavior(self): return self.logits_parameter() @deprecation.deprecated( '2019-10-01', 'The `probs` property will return `None` when the distribution is ' 'parameterized with `probs=None`. Use `probs_parameter()` instead.', warn_once=True) def _probs_deprecated_behavior(self): return self.probs_parameter() def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self._temperature): msg1 = 'Argument `temperature` must be positive.' temperature = tf.convert_to_tensor(self._temperature) assertions.append(assert_util.assert_positive(temperature, message=msg1)) if self._probs is not None: if is_init != tensor_util.is_ref(self._probs): probs = tf.convert_to_tensor(self._probs) one = tf.constant(1., probs.dtype) assertions.extend([ assert_util.assert_non_negative( probs, message='Argument `probs` has components less than 0.'), assert_util.assert_less_equal( probs, one, message='Argument `probs` has components greater than 1.') ]) return assertions
the-stack_106_31990
import json from unittest.mock import MagicMock, patch import pytest from django.core.exceptions import PermissionDenied from order import views from order.models import Product class TestBundleDetailView: def test_get_active_group(self, rf): """ Test without any data to a group. """ request = rf.get('/') request.session = MagicMock() request.session.get.return_value = None view = views.BundleDetailView() assert view.get_active_group(request) is None def test_get_active_group_session(self, rf): """ Test with group data in session. """ request = rf.get('/') request.session = MagicMock() request.session.get.return_value = 1 view = views.BundleDetailView() with patch('order.models.Group.objects') as group_manager: group_manager.get.return_value = 'My test group' assert view.get_active_group(request) == 'My test group' group_manager.get.assert_called_once_with(pk=1) def test_get_active_group_GET(self, rf): """ Test with group data in Get Argument. """ request = rf.get('/?group=1') request.session = MagicMock() view = views.BundleDetailView() with patch('order.views.GroupChooseForm') as mock_form: group_mock = MagicMock() group_mock.pk = 99 mock_form.is_valid.return_value = True mock_form().cleaned_data.get.return_value = group_mock assert view.get_active_group(request) == group_mock # TODO: test 99 in session @patch('order.models.Order.objects') @patch('order.models.Product.objects') def test_ajax(self, product_manager, order_manager, rf): """ Test to send order data via ajax """ order_mock = MagicMock() order_manager.get_or_create.return_value = (order_mock, None) product_manager.get.return_value = 'My test product' request = rf.post('/?group=1', {'product': 1, 'amount': 300}) view = views.BundleDetailView() view.object = bundle_mock = MagicMock() view.active_group = group_mock = MagicMock() bundle_mock.price_for_group.return_value = 666.6666 response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == {'price_for_group': '666.67'} assert order_mock.amount == 300 order_mock.save.assert_called_with() order_manager.get_or_create.assert_called_with( product='My test product', bundle=bundle_mock, group=group_mock) @patch('order.models.Product.objects') def test_ajax_no_product(self, product_manager, rf): """ Test to send order data via ajax, unkonwn product. """ product_manager.get.side_effect = Product.DoesNotExist('Product does not exist') view = views.BundleDetailView() view.active_group = MagicMock() request = rf.post('/?group=1', {'product': 1, 'amount': 300}) response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == {'error': 'product 1 not found'} def test_ajax_wrong_data(self, rf): """ Test to send data via ajax, but without data. """ view = views.BundleDetailView() request = rf.post('/', {}) response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == {'error': 'no product data in request'} def test_get(self, rf): """ Test the normal get method. """ view = views.BundleDetailView() view.request = request = rf.get('/') request.session = MagicMock() request.session.get.return_value = False bundle_mock = MagicMock() bundle_mock.price_for_group.return_value = 333.333 view.get_object = MagicMock(return_value=bundle_mock) response = view.get(request) assert response.status_code == 200 def test_post(self, rf): view = views.BundleDetailView() view.request = request = rf.post('/', {}) request.session = MagicMock() request.session.get.return_value = False bundle_mock = MagicMock() bundle_mock.price_for_group.return_value = 333.333 view.get_object = MagicMock(return_value=bundle_mock) response = view.post(request) assert response.status_code == 200 def test_post_on_closed_bundles(self, rf): view = views.BundleDetailView() view.request = request = rf.post('/', {}) request.session = MagicMock() request.session.get.return_value = False bundle_mock = MagicMock() bundle_mock.open = False view.get_object = MagicMock(return_value=bundle_mock) with pytest.raises(PermissionDenied): view.post(request) class TestBundleOrderView: def test_get_products(self, rf): product1, product2, order1, order2, order3 = (MagicMock() for __ in range(5)) order1.product = order2.product = product1 order3.product = product2 order1.amount, order2.amount, order3.amount = (1, 2, 4) product1.name, product2.name = ('zzz', 'aaa') product1.multiplier, product2.multiplier = (2, 4) view = views.BundleOrderView() view.request = rf.get('/') view.object = MagicMock() view.object.orders.all().select_related.return_value = [order1, order2, order3] products = view.get_products() assert products == [product2, product1] assert product1.amount == 3 assert product2.amount == 4 assert product1.order_price == 6 assert product2.order_price == 16 class TestBundleOutputView: @patch('order.models.Group.objects') @patch('order.models.Order.objects') @patch('order.models.Product.objects') def test_ajax(self, product_manager, order_manager, group_manager, rf): """ Test to send order data via ajax """ order_mock = MagicMock() product_manager.get.return_value = 'My test product' group_manager.get.return_value = 'My test group' order_manager.get_or_create.return_value = (order_mock, None) order_manager.filter().aggregate.return_value = {'delivered': 999} request = rf.post('/', {'product': 1, 'group': 1, 'delivered': 300}) view = views.BundleOutputView() view.object = MagicMock() view.object.price_for_group.return_value = 500 view.object.price_for_all.return_value = 1000 response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == { 'price_for_group': '500.00', 'price_for_all': '1000.00', 'product_delivered': 999} assert order_mock.delivered == '300' order_mock.save.assert_called_with() order_manager.get_or_create.assert_called_with( product='My test product', bundle=view.object, group='My test group') @patch('order.models.Product.objects') def test_ajax_no_product(self, product_manager, rf): """ Test to send order data via ajax, unkonwn product. """ product_manager.get.side_effect = Product.DoesNotExist('Product does not exist') view = views.BundleOutputView() request = rf.post('/', {'product': 1, 'group': 1, 'delivered': 300}) response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == {'error': 'Group or product not found'} def test_ajax_wrong_data(self, rf): """ Test to send data via ajax, but without data. """ view = views.BundleOutputView() request = rf.post('/', {}) response = view.ajax(request) assert response.status_code == 200 assert json.loads(response.content.decode('utf-8')) == {'error': 'No product or group data in request'} def test_get_context_data(self, rf): product = [MagicMock(name='p0'), MagicMock(name='p1'), MagicMock(name='p2')] order = [MagicMock(name='o0'), MagicMock(name='o1'), MagicMock(name='o2')] # Group1 orders product0 and 1 # Group2 orders product0 # Noone orders product2 order[0].group = order[1].group = 'Group1' order[2].group = 'Group2' order[0].product = order[2].product = product[0] order[1].product = product[1] for i in range(3): order[i].get_delivered.return_value = (i + 1) * 2 order[i].amount = (i + 1) * 2 order[i].product.multiplier = 1 product[i].name = 'product%d' % i view = views.BundleOutputView() view.object = MagicMock() view.object.orders.all().select_related.return_value = order context = view.get_context_data() assert context == { 'groups': {'Group1': [{product[1]: order[1], product[0]: order[0]}, 6], 'Group2': [{product[0]: order[2]}, 6]}, 'object': view.object, 'price_for_all': 12, 'products': [product[0], product[1]], 'view': view} assert context['products'][0].delivered == 8 assert context['products'][1].delivered == 4
the-stack_106_31993
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import re import ipaddress from functools import cached_property from hashlib import sha256 from ansible_collections.arista.avd.plugins.module_utils.utils import AristaAvdError, get, default, template_var, AristaAvdMissingVariableError class EosDesignsFacts: def __init__( self, hostvars=None, combine=None, list_compress=None, convert_dicts=None, natural_sort=None, template_lookup_module=None ): if hostvars: self._hostvars = hostvars if combine: self._combine = combine if list_compress: self._list_compress = list_compress if convert_dicts: self._convert_dicts = convert_dicts if natural_sort: self._natural_sort = natural_sort if template_lookup_module: self._template_lookup_module = template_lookup_module @classmethod def keys(cls): ''' Return the list of "keys" Actually the returned list are the names of attributes not starting with "_" and using cached_property class. The "_" check is added to allow support for "internal" cached_properties storing temporary values. ''' return [key for key in dir(cls) if not key.startswith('_') and isinstance(getattr(cls, key), cached_property)] @classmethod def internal_keys(cls): ''' Return the list of "keys" starting with _ Actually the returned list are the names of attributes starting with "_" and using cached_property class. The "_" check is added to only include "internal" cached_properties storing temporary values. ''' return [key for key in dir(cls) if key.startswith('_') and isinstance(getattr(cls, key), cached_property)] def get(self, key, default_value=None): ''' Emulate the builtin dict .get method ''' if key in self.keys(): return getattr(self, key) return default_value def reset(self): ''' Reset the cached attribute values ''' self.__dict__ = {} def render(self): ''' Return a dictionary of all @cached_property values. If the value is cached, it will automatically get returned from cache If the value is not cached, it will be resolved by the attribute function first. Empty values are removed from the returned data. ''' return {key: getattr(self, key) for key in self.keys() if getattr(self, key) is not None} ''' ------------------------------------------------ Example function to set a fact based on hostvars ------------------------------------------------ @cached_property def foo(self): """ "switch.foo" fact set based on "bar" data model """ return get(self._hostvars, "bar.foo", default="zoo") ----------------------------------------------------------------------------------------------------- Example function to set a fact based on a required key under ex "l3leaf.node_groups.<>.nodes.<>.<key> Notice the variable _switch_data_combined starts with _ meaning it is an internal variable which will not be returned as part of the facts. We can load such variables with commonly used data, leveraged by multiple facts functions. ----------------------------------------------------------------------------------------------------- @cached_property def foo(self): """ "switch.foo" fact set based on "<node_type_key>.*" data model Example l3leaf.defaults.foo -> switch.foo """ return get(self._switch_data_combined, "foo", required=True) ''' @cached_property def type(self): """ switch.type fact set based on type variable """ return get(self._hostvars, "type", required=True) @cached_property def hostname(self): """ switch.hostname fact set based on inventory_hostname variable """ return get(self._hostvars, "inventory_hostname", required=True) @cached_property def node_type_key(self): """ switch.node_type_key fact set by finding a matching "type" in "node_type_keys" variable """ return self._node_type_key_data['key'] @cached_property def _node_type_key_data(self): """ internal _node_type_key_data containing settings for this node_type. """ node_type_keys = get(self._hostvars, "node_type_keys", required=True) node_type_keys = self._convert_dicts(node_type_keys, 'key') for node_type in node_type_keys: if node_type['type'] == self.type: return node_type # Not found raise AristaAvdMissingVariableError(f"node_type_keys.<>.type=={type}") @cached_property def connected_endpoints(self): """ switch.connected_endpoints set based on node_type_keys.<node_type_key>.connected_endpoints """ return get(self._node_type_key_data, "connected_endpoints", default=False) @cached_property def default_evpn_role(self): """ switch.default_evpn_role set based on node_type_keys.<node_type_key>.default_evpn_role """ return get(self._node_type_key_data, "default_evpn_role", default="none") @cached_property def default_underlay_routing_protocol(self): """ switch.default_underlay_routing_protocol set based on node_type_keys.<node_type_key>.default_underlay_routing_protocol """ return get(self._node_type_key_data, "default_underlay_routing_protocol", default="ebgp") @cached_property def default_overlay_routing_protocol(self): """ switch.default_overlay_routing_protocol set based on node_type_keys.<node_type_key>.default_overlay_routing_protocol """ return get(self._node_type_key_data, "default_overlay_routing_protocol", default="ebgp") @cached_property def default_overlay_address_families(self): """ switch.default_overlay_address_families set based on node_type_keys.<node_type_key>.default_overlay_address_families """ return get(self._node_type_key_data, "default_overlay_address_families", default=["evpn"]) @cached_property def default_mpls_overlay_role(self): """ switch.default_mpls_overlay_role set based on node_type_keys.<node_type_key>.default_mpls_overlay_role """ return get(self._node_type_key_data, "default_mpls_overlay_role", default="none") @cached_property def mpls_lsr(self): """ switch.mpls_lsr set based on node_type_keys.<node_type_key>.mpls_lsr """ return get(self._node_type_key_data, "mpls_lsr", default=False) @cached_property def mlag_support(self): """ switch.mlag_support set based on node_type_keys.<node_type_key>.mlag_support """ return get(self._node_type_key_data, "mlag_support", default=False) @cached_property def network_services_l1(self): """ switch.network_services_l1 set based on node_type_keys.<node_type_key>.network_services.l1 """ return get(self._node_type_key_data, "network_services.l1", default=False) @cached_property def network_services_l2(self): """ switch.network_services_l2 set based on node_type_keys.<node_type_key>.network_services.l2 """ return get(self._node_type_key_data, "network_services.l2", default=False) @cached_property def network_services_l3(self): """ switch.network_services_l3 set based on node_type_keys.<node_type_key>.network_services.l3 and <node_type_key>.<defaults | node_groups.<> | nodes.<> >.evpn_services_l2_only """ if self.vtep is True: # switch.network_services_l3 override based on evpn_services_l2_only if get(self._switch_data_combined, "evpn_services_l2_only") is True: return False return get(self._node_type_key_data, "network_services.l3", default=False) @cached_property def underlay_router(self): """ switch.underlay_router set based on node_type_keys.<node_type_key>.underlay_router """ return get(self._node_type_key_data, "underlay_router", default=True) @cached_property def uplink_type(self): """ switch.uplink_type set based on node_type_keys.<node_type_key>.uplink_type """ return get(self._node_type_key_data, "uplink_type", default="p2p") @cached_property def vtep(self): """ switch.vtep set based on node_type_keys.<node_type_key>.vtep """ return get(self._node_type_key_data, "vtep", default=False) @cached_property def mpls_ler(self): """ switch.mpls_ler set based on node_type_keys.<node_type_key>.mpls_ler """ return get(self._node_type_key_data, "mpls_ler", default=False) @cached_property def ip_addressing(self): """ switch.ip_addressing.* set based on templates.ip_addressing.* combined with (overridden by) node_type_keys.<node_type_key>.ip_addressing.* """ hostvar_templates = get(self._hostvars, "templates.ip_addressing", default={}) node_type_templates = get(self._node_type_key_data, "ip_addressing", default={}) if hostvar_templates or node_type_templates: return self._combine(hostvar_templates, node_type_templates, recursive=True, list_merge='replace') else: return {} @cached_property def interface_descriptions(self): """ switch.interface_descriptions.* set based on templates.interface_descriptions.* combined with (overridden by) node_type_keys.<node_type_key>.interface_descriptions.* """ hostvar_templates = get(self._hostvars, "templates.interface_descriptions", default={}) node_type_templates = get(self._node_type_key_data, "interface_descriptions", default={}) if hostvar_templates or node_type_templates: return self._combine(hostvar_templates, node_type_templates, recursive=True, list_merge='replace') else: return {} @cached_property def _switch_data(self): """ internal _switch_data containing inherited vars from fabric_topology data model Vars are inherited like: <node_type_key>.defaults -> <node_type_key>.node_groups.<group> -> <node_type_key>.node_groups.<group>.nodes.<node> -> <node_type_key>.nodes.<node> Returns ------- dict node_group : dict Configuration set at the node_group level - including the "nodes" dict. Empty dict if the node is not defined under a node_group. group : str Optional - Name of the matching node_group. Not set if the node is not defined under a node_group. combined : dict Combined configuration after inheritance from all levels """ switch_data = {} hostname = self.hostname node_type_config = get(self._hostvars, f"{self.node_type_key}", required=True) if hostname in node_type_config.get('nodes', {}): node_config = node_type_config['nodes'][hostname] switch_data['node_group'] = {} else: for node_group in node_type_config.get('node_groups', {}): if hostname in node_type_config['node_groups'][node_group].get('nodes', {}): node_config = node_type_config['node_groups'][node_group]['nodes'][hostname] switch_data['node_group'] = node_type_config['node_groups'][node_group] switch_data['group'] = node_group break if not node_config: raise AristaAvdMissingVariableError(f"{self.node_type_key}.(node_groups.)nodes.{hostname}") # Load defaults defaults_config = node_type_config.get('defaults', {}) # Merge node_group data on top of defaults into combined switch_data['combined'] = self._combine(defaults_config, switch_data['node_group'], recursive=True, list_merge='replace') # Merge node data on top of combined switch_data['combined'] = self._combine(switch_data['combined'], node_config, recursive=True, list_merge='replace') return switch_data @cached_property def _switch_data_combined(self): """ internal _switch_data_combined pointing to self._switch_data['combined'] for easier reference. """ return get(self._switch_data, "combined", required=True) @cached_property def _switch_data_node_group_nodes(self): """ internal _switch_data_node_group_nodes pointing to self._switch_data['node_group']['nodes'] for easier reference. """ return get(self._switch_data, "node_group.nodes", default=[]) @cached_property def group(self): """ switch.group set to "node_group" name or None """ return get(self._switch_data, "group") @cached_property def id(self): return get(self._switch_data_combined, "id", required=True) @cached_property def mgmt_ip(self): return get(self._switch_data_combined, "mgmt_ip") @cached_property def platform(self): return get(self._switch_data_combined, "platform") @cached_property def max_parallel_uplinks(self): return get(self._switch_data_combined, "max_parallel_uplinks", default=1) @cached_property def uplink_switches(self): return get(self._switch_data_combined, "uplink_switches") @cached_property def uplink_interfaces(self): return get(self._switch_data_combined, "uplink_interfaces") @cached_property def uplink_switch_interfaces(self): return get(self._switch_data_combined, "uplink_switch_interfaces") @cached_property def uplink_interface_speed(self): return get(self._switch_data_combined, "uplink_interface_speed") @cached_property def uplink_bfd(self): return get(self._switch_data_combined, "uplink_bfd") @cached_property def uplink_ptp(self): return get(self._switch_data_combined, "uplink_ptp") @cached_property def uplink_macsec(self): return get(self._switch_data_combined, "uplink_macsec") @cached_property def short_esi(self): ''' If short_esi is set to "auto" we will use sha256 to create a unique short_esi value based on various uplink information. ''' short_esi = get(self._switch_data_combined, "short_esi") if short_esi == "auto": esi_seed_1 = ''.join(default(self.uplink_switches, [])[:2]) esi_seed_2 = ''.join(default(self.uplink_switch_interfaces, [])[:2]) esi_seed_3 = ''.join(default(self.uplink_interfaces, [])[:2]) esi_seed_4 = default(self.group, '') esi_hash = sha256(f"{esi_seed_1}{esi_seed_2}{esi_seed_3}{esi_seed_4}".encode('utf-8')).hexdigest() short_esi = re.sub(r'([0-9a-f]{4})', r'\1:', esi_hash)[:14] return short_esi @cached_property def rack(self): return get(self._switch_data_combined, "rack") @cached_property def raw_eos_cli(self): return get(self._switch_data_combined, "raw_eos_cli") @cached_property def struct_cfg(self): return get(self._switch_data_combined, "structured_config") @cached_property def max_uplink_switches(self): """ max_uplink_switches will default to the length of uplink_switches """ return default( get(self._switch_data_combined, "max_uplink_switches"), len(get(self._switch_data_combined, "uplink_switches", default=[])) ) @cached_property def is_deployed(self): return get(self._hostvars, "is_deployed", default=True) @cached_property def platform_settings(self): platform_settings = get(self._hostvars, "platform_settings", default=[]) # First look for a matching platform setting specifying our platform for platform_setting in platform_settings: if self.platform in platform_setting.get('platforms', []): return platform_setting # If not found, then look for a default platform setting for platform_setting in platform_settings: if 'default' in platform_setting.get('platforms', []): return platform_setting return {} @cached_property def mgmt_interface(self): """ mgmt_interface is inherited from Global var mgmt_interface -> Platform Settings management_interface -> Fabric Topology data model mgmt_interface """ return default( get(self._switch_data_combined, "mgmt_interface"), self.platform_settings.get("management_interface"), get(self._hostvars, "mgmt_interface") ) @cached_property def underlay_routing_protocol(self): underlay_routing_protocol = str(get(self._hostvars, "underlay_routing_protocol", default=self.default_underlay_routing_protocol)).lower() if underlay_routing_protocol not in ['ebgp', 'isis', 'isis-ldp', 'isis-sr', 'isis-sr-ldp', 'ospf', 'ospf-ldp']: underlay_routing_protocol = self.default_underlay_routing_protocol return underlay_routing_protocol @cached_property def overlay_routing_protocol(self): overlay_routing_protocol = str(get(self._hostvars, "overlay_routing_protocol", default=self.default_overlay_routing_protocol)).lower() if overlay_routing_protocol not in ['ebgp', 'ibgp']: overlay_routing_protocol = self.default_overlay_routing_protocol return overlay_routing_protocol @cached_property def overlay_address_families(self): return get(self._switch_data_combined, "overlay_address_families", default=self.default_overlay_address_families) @cached_property def link_tracking_groups(self): if get(self._switch_data_combined, "link_tracking.enabled") is True: link_tracking_groups = [] default_recovery_delay = get(self.platform_settings, 'reload_delay.mlag', 300) lt_groups = get(self._switch_data_combined, "link_tracking.groups", default=[]) if len(lt_groups) > 0: for lt_group in lt_groups: lt_group['recovery_delay'] = lt_group.get('recovery_delay', default_recovery_delay) link_tracking_groups.append(lt_group) else: link_tracking_groups.append({"name": "LT_GROUP1", "recovery_delay": default_recovery_delay}) return link_tracking_groups return None @cached_property def lacp_port_id(self): if get(self._switch_data_combined, "lacp_port_id_range.enabled") is True: node_group_length = max(len(self._switch_data_node_group_nodes), 1) lacp_port_id = {} switch_id = self.id port_range = int(get(self._switch_data_combined, 'lacp_port_id_range.size', default=128)) port_offset = int(get(self._switch_data_combined, 'lacp_port_id_range.offset', default=0)) lacp_port_id['begin'] = 1 + (((switch_id - 1) % node_group_length) * port_range) + port_offset lacp_port_id['end'] = (((switch_id - 1) % node_group_length + 1) * port_range) + port_offset return lacp_port_id return None @cached_property def _any_network_services(self): ''' Returns True if either L1, L2 or L3 network_services are enabled ''' return ( self.network_services_l1 is True or self.network_services_l2 is True or self.network_services_l3 is True ) @cached_property def filter_tenants(self): if self._any_network_services: return get(self._switch_data_combined, "filter.tenants", default=["all"]) return None @cached_property def always_include_vrfs_in_tenants(self): if self._any_network_services: return get(self._switch_data_combined, "filter.always_include_vrfs_in_tenants") return None @cached_property def filter_tags(self): if self._any_network_services: return get(self._switch_data_combined, "filter.tags", default=["all"]) return None @cached_property def virtual_router_mac_address(self): if self._any_network_services: return get(self._switch_data_combined, "virtual_router_mac_address") return None @cached_property def _vlans(self): if self._any_network_services: vlans = [] match_tags = self.filter_tags if self.group is not None: match_tags.append(self.group) network_services_keys = get(self._hostvars, "network_services_keys", default=[]) for network_services_key in self._natural_sort(network_services_keys, "name"): network_services_key_name = network_services_key.get("name") if network_services_key_name is None or get(self._hostvars, network_services_key_name) is None: # Invalid network_services_key.name. Skipping. continue tenants = get(self._hostvars, network_services_key_name) # Support legacy data model by converting nested dict to list of dict tenants = self._convert_dicts(tenants, 'name') for tenant in self._natural_sort(tenants, 'name'): if not set(self.filter_tenants).intersection([tenant['name'], 'all']): # Not matching tenant filters. Skipping this tenant. continue vrfs = tenant.get('vrfs', []) # Support legacy data model by converting nested dict to list of dict vrfs = self._convert_dicts(vrfs, 'name') for vrf in self._natural_sort(vrfs, 'name'): svis = vrf.get('svis', []) # Support legacy data model by converting nested dict to list of dict svis = self._convert_dicts(svis, 'id') for svi in self._natural_sort(svis, 'id'): svi_tags = svi.get('tags', ['all']) if "all" in match_tags or set(svi_tags).intersection(match_tags): vlans.append(int(svi['id'])) l2vlans = tenant.get('l2vlans', []) # Support legacy data model by converting nested dict to list of dict l2vlans = self._convert_dicts(l2vlans, 'id') for l2vlan in self._natural_sort(l2vlans, 'id'): l2vlan_tags = l2vlan.get('tags', ['all']) if "all" in match_tags or set(l2vlan_tags).intersection(match_tags): vlans.append(int(l2vlan['id'])) return vlans return [] @cached_property def vlans(self): return self._list_compress(self._vlans) @cached_property def spanning_tree_mode(self): if self.network_services_l2 is True: return get(self._switch_data_combined, "spanning_tree_mode") return "none" @cached_property def spanning_tree_priority(self): if self.network_services_l2 is True: return get(self._switch_data_combined, "spanning_tree_priority") return None @cached_property def spanning_tree_root_super(self): if self.network_services_l2 is True: return get(self._switch_data_combined, "spanning_tree_root_super") return None @cached_property def igmp_snooping_enabled(self): if self.network_services_l2 is True: default_igmp_snooping_enabled = get(self._hostvars, "default_igmp_snooping_enabled") return get(self._switch_data_combined, "igmp_snooping_enabled", default=default_igmp_snooping_enabled) return None @cached_property def loopback_ipv4_pool(self): if self.underlay_router is True: return get(self._switch_data_combined, "loopback_ipv4_pool", required=True) return None @cached_property def loopback_ipv4_offset(self): if self.underlay_router is True: return get(self._switch_data_combined, "loopback_ipv4_offset", default=0) return None @cached_property def uplink_ipv4_pool(self): if self.underlay_router is True: return get(self._switch_data_combined, "uplink_ipv4_pool") return None @cached_property def _ansible_search_path(self): return get(self._hostvars, "ansible_search_path", required=True) @cached_property def router_id(self): ''' Run template lookup to render ipv4 address for router_id Since some templates might contain certain legacy variables (switch_*), those are mapped from the switch.* model ''' if self.underlay_router is True: template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id template_vars['loopback_ipv4_pool'] = self.loopback_ipv4_pool template_vars['loopback_ipv4_offset'] = self.loopback_ipv4_offset template_path = get(self.ip_addressing, "router_id", required=True) return template_var(template_path, template_vars, self._template_lookup_module) return None @cached_property def evpn_gateway_vxlan_l2(self): if self.underlay_router is True: return get(self._switch_data_combined, "evpn_gateway.evpn_l2.enabled", default=False) return None @cached_property def evpn_gateway_vxlan_l3(self): if self.underlay_router is True: return get(self._switch_data_combined, "evpn_gateway.evpn_l3.enabled", default=False) return None @cached_property def evpn_gateway_vxlan_l3_inter_domain(self): if self.underlay_router is True: return get(self._switch_data_combined, "evpn_gateway.evpn_l3.inter_domain", default=True) return None @cached_property def evpn_gateway_remote_peers(self): if self.underlay_router is True: return get(self._switch_data_combined, "evpn_gateway.remote_peers") return None @cached_property def bgp_defaults(self): if self.underlay_router is True: return get(self._switch_data_combined, "bgp_defaults", default=[]) return None @cached_property def bgp_cluster_id(self): if self.underlay_router is True: return get(self._switch_data_combined, "bgp_cluster_id") return None @cached_property def bgp_peer_groups(self): ''' Get bgp_peer_groups configurations or fallback to defaults Supporting legacy uppercase keys as well. ''' if self.underlay_router is True: return { "ipv4_underlay_peers": { "name": default( get(self._hostvars, "bgp_peer_groups.ipv4_underlay_peers.name"), get(self._hostvars, "bgp_peer_groups.IPv4_UNDERLAY_PEERS.name"), "IPv4-UNDERLAY-PEERS" ), "password": default( get(self._hostvars, "bgp_peer_groups.ipv4_underlay_peers.password"), get(self._hostvars, "bgp_peer_groups.IPv4_UNDERLAY_PEERS.password") ), }, "mlag_ipv4_underlay_peer": { "name": default( get(self._hostvars, "bgp_peer_groups.mlag_ipv4_underlay_peer.name"), get(self._hostvars, "bgp_peer_groups.MLAG_IPv4_UNDERLAY_PEER.name"), "MLAG-IPv4-UNDERLAY-PEER" ), "password": default( get(self._hostvars, "bgp_peer_groups.mlag_ipv4_underlay_peer.password"), get(self._hostvars, "bgp_peer_groups.MLAG_IPv4_UNDERLAY_PEER.password") ), }, "evpn_overlay_peers": { "name": default( get(self._hostvars, "bgp_peer_groups.evpn_overlay_peers.name"), get(self._hostvars, "bgp_peer_groups.EVPN_OVERLAY_PEERS.name"), "EVPN-OVERLAY-PEERS" ), "password": default( get(self._hostvars, "bgp_peer_groups.evpn_overlay_peers.password"), get(self._hostvars, "bgp_peer_groups.EVPN_OVERLAY_PEERS.password") ), }, "evpn_overlay_core": { "name": get(self._hostvars, "bgp_peer_groups.evpn_overlay_core.name", default="EVPN-OVERLAY-CORE"), "password": get(self._hostvars, "bgp_peer_groups.evpn_overlay_core.password") }, "mpls_overlay_peers": { "name": get(self._hostvars, "bgp_peer_groups.mpls_overlay_peers.name", default="MPLS-OVERLAY-PEERS"), "password": get(self._hostvars, "bgp_peer_groups.mpls_overlay_peers.password") }, "rr_overlay_peers": { "name": get(self._hostvars, "bgp_peer_groups.rr_overlay_peers.name", default="RR-OVERLAY-PEERS"), "password": get(self._hostvars, "bgp_peer_groups.rr_overlay_peers.password") }, } return None @cached_property def evpn_role(self): if self.underlay_router is True: return get(self._switch_data_combined, "evpn_role", default=self.default_evpn_role) return None @cached_property def mpls_overlay_role(self): if self.underlay_router is True: return get(self._switch_data_combined, "mpls_overlay_role", default=self.default_mpls_overlay_role) return None @cached_property def bgp_as(self): ''' Get global bgp_as or fabric_topology bgp_as. This will fail if none of these are found. ''' if self.underlay_router is True: if self.underlay_routing_protocol == 'ebgp' or self.evpn_role != 'none' or self.mpls_overlay_role != 'none': if get(self._hostvars, "bgp_as") is not None: return str(get(self._hostvars, "bgp_as")) else: return str(get(self._switch_data_combined, "bgp_as", required=True)) # Hack to make mpls PR non-breaking, adds empty bgp to igp topology spines # TODO: Remove this as part of AVD4.0 elif ( self.underlay_routing_protocol in ['isis', 'ospf'] and self.evpn_role == 'none' and get(self._hostvars, "bgp_as") is not None ): return str(get(self._hostvars, "bgp_as")) return None @cached_property def evpn_route_servers(self): ''' For evpn clients the default value for EVPN Route Servers is the content of the uplink_switches variable set elsewhere. For all other evpn roles there is no default. ''' if self.underlay_router is True: if self.evpn_role == "client": return get(self._switch_data_combined, "evpn_route_servers", default=self.uplink_switches) else: return get(self._switch_data_combined, "evpn_route_servers") return [] @cached_property def mpls_route_reflectors(self): if self.underlay_router is True: if self.mpls_overlay_role in ["client", "server"]: return get(self._switch_data_combined, "mpls_route_reflectors") return None @cached_property def isis_net(self): if self.underlay_router is True: if self.underlay_routing_protocol in ['isis', 'isis-ldp', 'isis-sr', 'isis-sr-ldp']: isis_system_id_prefix = get(self._switch_data_combined, "isis_system_id_prefix") if isis_system_id_prefix is not None: isis_area_id = get(self._hostvars, "isis_area_id", required=True) switch_id = self.id return f"{isis_area_id}.{isis_system_id_prefix}.{switch_id:04d}.00" return None @cached_property def is_type(self): if self.underlay_router is True: if self.underlay_routing_protocol in ['isis', 'isis-ldp', 'isis-sr', 'isis-sr-ldp']: default_is_type = get(self._hostvars, "isis_default_is_type", default="level-2") is_type = str(get(self._switch_data_combined, "is_type", default=default_is_type)).lower() if is_type not in ["level-1", "level-2", "level-1-2"]: is_type = "level-2" return is_type return None @cached_property def isis_instance_name(self): if self.underlay_router is True: if self.underlay_routing_protocol in ['isis', 'isis-ldp', 'isis-sr', 'isis-sr-ldp']: if self.mpls_lsr is True: default_isis_instance_name = "CORE" else: default_isis_instance_name = "EVPN_UNDERLAY" return get(self._hostvars, "underlay_isis_instance_name", default=default_isis_instance_name) return None @cached_property def node_sid(self): if self.underlay_router is True: if self.underlay_routing_protocol in ['isis-sr', 'isis-sr-ldp']: node_sid_base = int(get(self._switch_data_combined, "node_sid_base", 0)) return self.id + node_sid_base return None @cached_property def underlay_ipv6(self): if self.underlay_router is True: return get(self._hostvars, "underlay_ipv6") return None @cached_property def loopback_ipv6_pool(self): if self.underlay_ipv6 is True: return get(self._switch_data_combined, "loopback_ipv6_pool", required=True) return None @cached_property def loopback_ipv6_offset(self): if self.underlay_ipv6 is True: return get(self._switch_data_combined, "loopback_ipv6_offset", default=0) return None @cached_property def ipv6_router_id(self): ''' Run template lookup to render ipv6 address for router_id Since some templates might contain certain legacy variables (switch_*), those are mapped from the switch.* model ''' if self.underlay_ipv6 is True: template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id template_vars['loopback_ipv6_pool'] = self.loopback_ipv6_pool template_vars['loopback_ipv6_offset'] = self.loopback_ipv6_offset template_path = get(self.ip_addressing, "ipv6_router_id", required=True) return template_var(template_path, template_vars, self._template_lookup_module) return None @cached_property def mlag(self): return ( self.mlag_support is True and get(self._switch_data_combined, "mlag", default=True) is True and len(self._switch_data_node_group_nodes) == 2 ) @cached_property def mlag_ibgp_origin_incomplete(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_ibgp_origin_incomplete", default=True) return None @cached_property def mlag_peer_vlan(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_peer_vlan", default=4094) return None @cached_property def mlag_peer_link_allowed_vlans(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_peer_link_allowed_vlans", default="2-4094") return None @cached_property def mlag_dual_primary_detection(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_dual_primary_detection", default=False) return None @cached_property def mlag_interfaces(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_interfaces") return None @cached_property def mlag_interfaces_speed(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_interfaces_speed") return None @cached_property def mlag_peer_ipv4_pool(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_peer_ipv4_pool") return None @cached_property def mlag_peer_l3_ipv4_pool(self): if self.mlag is True: return get(self._switch_data_combined, "mlag_peer_l3_ipv4_pool") return None @cached_property def mlag_role(self): if self.mlag is True: index = list(self._switch_data_node_group_nodes.keys()).index(self.hostname) if index == 0: return "primary" elif index == 1: return "secondary" return None @cached_property def mlag_peer(self): if self.mlag is True: if self.mlag_role == "primary": return list(self._switch_data_node_group_nodes.keys())[1] if self.mlag_role == "secondary": return list(self._switch_data_node_group_nodes.keys())[0] return None @cached_property def mlag_l3(self): if self.mlag is True and self.underlay_router is True: return True return None @cached_property def mlag_peer_l3_vlan(self): if self.mlag_l3 is True: mlag_peer_vlan = self.mlag_peer_vlan mlag_peer_l3_vlan = get(self._switch_data_combined, "mlag_peer_l3_vlan", default=4093) if mlag_peer_l3_vlan not in [None, False, mlag_peer_vlan]: return mlag_peer_l3_vlan return None @cached_property def mlag_port_channel_id(self): if self.mlag is True: default_mlag_port_channel_id = ''.join(re.findall(r'\d', self.mlag_interfaces[0])) return get(self._switch_data_combined, "mlag_port_channel_id", default_mlag_port_channel_id) return None @cached_property def vtep_loopback_ipv4_pool(self): if self.vtep is True: return get(self._switch_data_combined, "vtep_loopback_ipv4_pool", required=True) return None @cached_property def vtep_loopback(self): if self.vtep is True: return get(self._switch_data_combined, "vtep_loopback", default="Loopback1") @cached_property def inband_management_subnet(self): return get(self._switch_data_combined, "inband_management_subnet") @cached_property def inband_management_role(self): if self.inband_management_subnet is not None and self.uplink_type == 'port-channel': return "child" return None @cached_property def inband_management_parents(self): if self.inband_management_role == "child": return self.uplink_switches return None @cached_property def inband_management_vlan(self): if self.inband_management_role == "child": return get(self._switch_data_combined, "inband_management_vlan", default=4092) return None @cached_property def inband_management_ip(self): if self.inband_management_role == "child": subnet = ipaddress.ip_network(self.inband_management_subnet, strict=False) hosts = list(subnet.hosts()) inband_management_ip = str(hosts[2 + self.id]) inband_management_prefix = str(subnet.prefixlen) return f"{inband_management_ip}/{inband_management_prefix}" return None @cached_property def inband_management_gateway(self): if self.inband_management_role == "child": subnet = ipaddress.ip_network(self.inband_management_subnet, strict=False) hosts = list(subnet.hosts()) return str(hosts[0]) return None @cached_property def inband_management_interface(self): if self.inband_management_role == "child": return f"Vlan{self.inband_management_vlan}" return None @cached_property def uplinks(self): ''' List of uplinks with all parameters These facts are leveraged by templates for this device when rendering uplinks and by templates for peer devices when rendering downlinks ''' uplinks = [] if self.uplink_type == 'p2p': uplink_interfaces = default(self.uplink_interfaces, []) uplink_switches = default(self.uplink_switches, []) uplink_switch_interfaces = default(self.uplink_switch_interfaces, []) fabric_name = get(self._hostvars, "fabric_name", required=True) inventory_group = get(self._hostvars, f"groups.{fabric_name}", required=True) template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id for uplink_index, uplink_interface in enumerate(uplink_interfaces): if len(uplink_switches) <= uplink_index or len(uplink_switch_interfaces) <= uplink_index: # Invalid length of input variables. Skipping continue uplink_switch = uplink_switches[uplink_index] if uplink_switch is None or uplink_switch not in inventory_group: # Invalid uplink_switch. Skipping. continue uplink_switch_facts: EosDesignsFacts = get(self._hostvars, f"avd_switch_facts..{uplink_switch}..switch", required=True, org_key=f"avd_switch_facts.({uplink_switch}).switch", separator="..") uplink = {} uplink['interface'] = uplink_interface uplink['peer'] = uplink_switch uplink['peer_interface'] = uplink_switch_interfaces[uplink_index] uplink['peer_type'] = uplink_switch_facts.type uplink['peer_is_deployed'] = uplink_switch_facts.is_deployed uplink['peer_bgp_as'] = uplink_switch_facts.bgp_as uplink['type'] = 'underlay_p2p' if self.uplink_interface_speed is not None: uplink['speed'] = self.uplink_interface_speed if self.uplink_bfd is True: uplink['bfd'] = True if self.uplink_ptp is not None: uplink['ptp'] = self.uplink_ptp if self.uplink_macsec is not None: uplink['mac_security'] = self.uplink_macsec if get(self._hostvars, "underlay_rfc5549") is True: uplink['ipv6_enable'] = True else: template_vars['uplink_switch_index'] = uplink_index template_path = get(self.ip_addressing, "p2p_uplinks_ip", required=True) uplink['ip_address'] = template_var(template_path, template_vars, self._template_lookup_module) template_path = get(self.ip_addressing, "p2p_uplinks_peer_ip", required=True) uplink['peer_ip_address'] = template_var(template_path, template_vars, self._template_lookup_module) if self.link_tracking_groups is not None: uplink['link_tracking_groups'] = [] for lt_group in self.link_tracking_groups: uplink['link_tracking_groups'].append({"name": lt_group["name"], "direction": "upstream"}) uplinks.append(uplink) return uplinks elif self.uplink_type == 'port-channel': uplink_interfaces = default(self.uplink_interfaces, []) uplink_switches = default(self.uplink_switches, []) uplink_switch_interfaces = default(self.uplink_switch_interfaces, []) fabric_name = get(self._hostvars, "fabric_name", required=True) inventory_group = get(self._hostvars, f"groups.{fabric_name}", required=True) for uplink_index, uplink_interface in enumerate(uplink_interfaces): if len(uplink_switches) <= uplink_index or len(uplink_switch_interfaces) <= uplink_index: # Invalid length of input variables. Skipping continue uplink_switch = uplink_switches[uplink_index] if uplink_switch is None or uplink_switch not in inventory_group: # Invalid uplink_switch. Skipping. continue uplink_switch_facts: EosDesignsFacts = get(self._hostvars, f"avd_switch_facts..{uplink_switch}..switch", required=True, org_key=f"avd_switch_facts.({uplink_switch}).switch", separator="..") uplink = {} uplink['interface'] = uplink_interface uplink['peer'] = uplink_switch uplink['peer_interface'] = uplink_switch_interfaces[uplink_index] uplink['peer_type'] = uplink_switch_facts.type uplink['peer_is_deployed'] = uplink_switch_facts.is_deployed uplink['type'] = 'underlay_l2' if self.uplink_interface_speed is not None: uplink['speed'] = self.uplink_interface_speed if uplink_switch_facts.mlag is True or self.short_esi is not None: # Override our description on port-channel to be peer's group name if they are mlag pair or A/A #} uplink['channel_description'] = uplink_switch_facts.group if self.mlag is True: # Override the peer's description on port-channel to be our group name if we are mlag pair #} uplink['peer_channel_description'] = self.group if self.mlag_role == 'secondary': mlag_peer_switch_facts: EosDesignsFacts = get(self._hostvars, f"avd_switch_facts.{self.mlag_peer}.switch", required=True) uplink['channel_group_id'] = ''.join(re.findall(r'\d', mlag_peer_switch_facts.uplink_interfaces[0])) uplink['peer_channel_group_id'] = ''.join(re.findall(r'\d', mlag_peer_switch_facts.uplink_switch_interfaces[0])) else: uplink['channel_group_id'] = ''.join(re.findall(r'\d', uplink_interfaces[0])) uplink['peer_channel_group_id'] = ''.join(re.findall(r'\d', uplink_switch_interfaces[0])) # Remove vlans if upstream switch does not have them #} switch_vlans = self._vlans uplink_switch_vlans = uplink_switch_facts._vlans uplink_vlans = list(set(switch_vlans).intersection(uplink_switch_vlans)) if self.inband_management_vlan is not None: uplink_vlans.append(int(self.inband_management_vlan)) uplink['vlans'] = self._list_compress(uplink_vlans) if self.short_esi is not None: uplink['peer_short_esi'] = self.short_esi if self.link_tracking_groups is not None: uplink['link_tracking_groups'] = [] for lt_group in self.link_tracking_groups: uplink['link_tracking_groups'].append({"name": lt_group["name"], "direction": "upstream"}) uplinks.append(uplink) return uplinks @cached_property def uplink_peers(self): ''' List of all uplink peers These are used to generate the "avd_topology_peers" fact covering downlinks for all devices. ''' if self.uplinks is not None: return [uplink['peer'] for uplink in self.uplinks] @cached_property def _mlag_peer_id(self): if self.mlag is True: return get(self._hostvars, f"avd_switch_facts..{self.mlag_peer}..switch..id", required=True, org_key=f"avd_switch_facts.({self.mlag_peer}).switch.id", separator="..") @cached_property def vtep_ip(self): ''' Run template lookup to render ipv4 address for vtep_ip Since some templates might contain certain legacy variables (switch_*), those are mapped from the switch.* model ''' if self.vtep is True: template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id template_vars['switch_vtep_loopback_ipv4_pool'] = self.vtep_loopback_ipv4_pool template_vars['loopback_ipv4_offset'] = self.loopback_ipv4_offset if self.mlag is True: if self.mlag_role == 'primary': template_vars['mlag_primary_id'] = self.id template_vars['mlag_secondary_id'] = self._mlag_peer_id elif self.mlag_role == 'secondary': template_vars['mlag_secondary_id'] = self.id template_vars['mlag_primary_id'] = self._mlag_peer_id template_path = get(self.ip_addressing, "vtep_ip_mlag", required=True) return template_var(template_path, template_vars, self._template_lookup_module) else: template_path = get(self.ip_addressing, "vtep_ip", required=True) return template_var(template_path, template_vars, self._template_lookup_module) return None @cached_property def mlag_ip(self): ''' Run template lookup to render ipv4 address for mlag_ip Since some templates might contain certain legacy variables (switch_*), those are mapped from the switch.* model ''' if self.mlag is True: template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id template_vars['switch_data'] = { "combined": { "mlag_peer_ipv4_pool": self.mlag_peer_ipv4_pool } } if self.mlag_role == 'primary': template_vars['mlag_primary_id'] = self.id template_vars['mlag_secondary_id'] = self._mlag_peer_id template_path = get(self.ip_addressing, "mlag_ip_primary", required=True) elif self.mlag_role == 'secondary': template_vars['mlag_secondary_id'] = self.id template_vars['mlag_primary_id'] = self._mlag_peer_id template_path = get(self.ip_addressing, "mlag_ip_secondary", required=True) return template_var(template_path, template_vars, self._template_lookup_module) return None @cached_property def mlag_peer_ip(self): if self.mlag is True: return get(self._hostvars, f"avd_switch_facts..{self.mlag_peer}..switch..mlag_ip", required=True, org_key=f"avd_switch_facts.({self.mlag_peer}).switch.mlag_ip", separator="..") return None @cached_property def mlag_l3_ip(self): ''' Run template lookup to render ipv4 address for mlag_l3_ip Since some templates might contain certain legacy variables (switch_*), those are mapped from the switch.* model ''' if self.mlag_l3 is True and self.mlag_peer_l3_vlan is not None: template_vars = {"ansible_search_path": self._ansible_search_path} # Copying __dict__ will expose all switch facts cached up until this function is run. # TODO: We should probably find and document a list of supported context variables instead. template_vars['switch'] = {key: self.__dict__.get(key) for key in self.keys()} template_vars['switch_id'] = self.id template_vars['switch_data'] = { "combined": { "mlag_peer_l3_ipv4_pool": self.mlag_peer_l3_ipv4_pool } } if self.mlag_role == 'primary': template_vars['mlag_primary_id'] = self.id template_vars['mlag_secondary_id'] = self._mlag_peer_id template_path = get(self.ip_addressing, "mlag_l3_ip_primary", required=True) elif self.mlag_role == 'secondary': template_vars['mlag_secondary_id'] = self.id template_vars['mlag_primary_id'] = self._mlag_peer_id template_path = get(self.ip_addressing, "mlag_l3_ip_secondary", required=True) return template_var(template_path, template_vars, self._template_lookup_module) return None @cached_property def mlag_peer_l3_ip(self): if self.mlag_l3 is True and self.mlag_peer_l3_vlan is not None: return get(self._hostvars, f"avd_switch_facts..{self.mlag_peer}..switch..mlag_l3_ip", required=True, org_key=f"avd_switch_facts.({self.mlag_peer}).switch.mlag_l3_ip", separator="..") return None @cached_property def mlag_peer_mgmt_ip(self): if self.mlag is True: peer_mgmt_ip = get(self._hostvars, f"avd_switch_facts..{self.mlag_peer}..switch..mgmt_ip", org_key=f"avd_switch_facts.({self.mlag_peer}).switch.mgmt_ip", separator="..") if peer_mgmt_ip is not None: return str(ipaddress.ip_interface(peer_mgmt_ip).ip) return None @cached_property def overlay_routing_protocol_address_family(self): overlay_routing_protocol_address_family = get(self._hostvars, "overlay_routing_protocol_address_family", default="ipv4") if overlay_routing_protocol_address_family == "ipv6": if not ( get(self._hostvars, "underlay_ipv6") is True and get(self._hostvars, "underlay_rfc5549") is True ): raise AristaAvdError( "'overlay_routing_protocol_address_family: ipv6' is only supported in" "combination with 'underlay_ipv6: True' and 'underlay_rfc5549: True'" ) return overlay_routing_protocol_address_family
the-stack_106_31994
import logging import sendgrid import azure.functions as func import simplejson as json from os import environ from sendgrid.helpers.mail import * def main(req: func.QueueMessage) -> func.HttpResponse: try: logging.info("SendGrid email triggered.") logging.debug("Parsing message data from request body") body = req.get_json() from_email = Email(body["from"]) to_email = To(body["to"]) subject = Subject(body["subject"]) template_id = TemplateId(body["template_id"]) logging.debug("Getting template value substitutions") substitutions = [] for substitution_key in body["substitutions"].keys(): message_substitution = Substitution( key=substitution_key, value=body["substitutions"][substitution_key]) substitutions.append(message_substitution) logging.info("Message contents parsed from request input.") sg = sendgrid.SendGridAPIClient( api_key=environ.get('SENDGRID_API_KEY')) logging.info("SendGrid client initialized") mail = Mail(from_email=from_email, to_email=to_email, subject=subject, global_substitutions=substitutions) mail.template_id = template_id logging.info("Message initialized") response = sg.client.mail.send.post(request_body=mail.get()) logging.info("Message sent!") return func.HttpResponse(body=json.dumps(response.body), status_code=response.status_code, mimetype="application/json") except Exception as email_exception: logging.error("Error sending email!") logging.error(email_exception)
the-stack_106_31995
######################################################################### # _________ ___. ______________________ ___ # \_ ___ \___.__.\_ |__ ___________ / _____/\______ \ \/ / # / \ \< | | | __ \_/ __ \_ __ \/ \ ___ | _/\ / # \ \___\___ | | \_\ \ ___/| | \/\ \_\ \| | \/ \ # \______ / ____| |___ /\___ >__| \______ /|____|_ /___/\ \ # \/\/ \/ \/ \/ \/ \_/ # # from setuptools import find_packages from setuptools import setup def requirements(f): with open(f) as fd: return [ l for l in [r.strip() for r in fd.readlines()] if l and not l.startswith('-') and not l.startswith("#") ] install_requires = requirements('requirements.txt') setup( name='bulk-api-excel-export', url='https://github.com/CyberGRX/api-connector-bulk/examples/excel-export', author='CyberGRX Engineering Team', author_email='[email protected]', version="1.0.0", packages=find_packages("."), install_requires=install_requires, extras_require={ 'license': 'pip-licenses==1.7.1', }, )
the-stack_106_31996
from django import forms from django.utils.translation import gettext_lazy as _ from oscar.core.loading import get_model from oscar.forms import widgets Voucher = get_model('voucher', 'Voucher') VoucherSet = get_model('voucher', 'VoucherSet') Benefit = get_model('offer', 'Benefit') Range = get_model('offer', 'Range') class VoucherForm(forms.Form): """ A specialised form for creating a voucher and offer model. """ name = forms.CharField(label=_("Name")) code = forms.CharField(label=_("Code")) start_datetime = forms.DateTimeField( widget=widgets.DateTimePickerInput(), label=_("Start datetime")) end_datetime = forms.DateTimeField( widget=widgets.DateTimePickerInput(), label=_("End datetime")) usage = forms.ChoiceField(choices=Voucher.USAGE_CHOICES, label=_("Usage")) benefit_range = forms.ModelChoiceField( label=_('Which products get a discount?'), queryset=Range.objects.all(), ) benefit_type = forms.ChoiceField( choices=Benefit.TYPE_CHOICES, label=_('Discount type'), ) benefit_value = forms.DecimalField( label=_('Discount value')) exclusive = forms.BooleanField( required=False, label=_("Exclusive offers cannot be combined on the same items")) def __init__(self, voucher=None, *args, **kwargs): self.voucher = voucher super().__init__(*args, **kwargs) def clean_name(self): name = self.cleaned_data['name'] try: voucher = Voucher.objects.get(name=name) except Voucher.DoesNotExist: pass else: if (not self.voucher) or (voucher.id != self.voucher.id): raise forms.ValidationError(_("The name '%s' is already in" " use") % name) return name def clean_code(self): code = self.cleaned_data['code'].strip().upper() if not code: raise forms.ValidationError(_("Please enter a voucher code")) try: voucher = Voucher.objects.get(code=code) except Voucher.DoesNotExist: pass else: if (not self.voucher) or (voucher.id != self.voucher.id): raise forms.ValidationError(_("The code '%s' is already in" " use") % code) return code def clean(self): cleaned_data = super().clean() start_datetime = cleaned_data.get('start_datetime') end_datetime = cleaned_data.get('end_datetime') if start_datetime and end_datetime and end_datetime < start_datetime: raise forms.ValidationError(_("The start date must be before the" " end date")) return cleaned_data class VoucherSearchForm(forms.Form): name = forms.CharField(required=False, label=_("Name")) code = forms.CharField(required=False, label=_("Code")) is_active = forms.BooleanField(required=False, label=_("Is Active?")) in_set = forms.BooleanField( required=False, label=_("In Voucherset?")) def clean_code(self): return self.cleaned_data['code'].upper() class VoucherSetForm(forms.ModelForm): class Meta: model = VoucherSet fields = [ 'name', 'code_length', 'description', 'start_datetime', 'end_datetime', 'count', ] widgets = { 'start_datetime': widgets.DateTimePickerInput(), 'end_datetime': widgets.DateTimePickerInput(), } benefit_range = forms.ModelChoiceField( label=_('Which products get a discount?'), queryset=Range.objects.all(), ) benefit_type = forms.ChoiceField( choices=Benefit.TYPE_CHOICES, label=_('Discount type'), ) benefit_value = forms.DecimalField( label=_('Discount value')) def save(self, commit=True): instance = super().save(commit) if commit: instance.generate_vouchers() return instance class VoucherSetSearchForm(forms.Form): code = forms.CharField(required=False, label=_("Code")) is_active = forms.BooleanField(required=False, label=_("Is Active?")) def clean_code(self): return self.cleaned_data['code'].upper()
the-stack_106_31997
from os import path as osp from torch.utils import data as data from torchvision.transforms.functional import normalize from basicsr.data.transforms import augment from basicsr.utils import FileClient, imfrombytes, img2tensor from basicsr.utils.registry import DATASET_REGISTRY @DATASET_REGISTRY.register() class FFHQDataset(data.Dataset): """FFHQ dataset for StyleGAN. Args: opt (dict): Config for train datasets. It contains the following keys: dataroot_gt (str): Data root path for gt. io_backend (dict): IO backend type and other kwarg. mean (list | tuple): Image mean. std (list | tuple): Image std. use_hflip (bool): Whether to horizontally flip. """ def __init__(self, opt): super(FFHQDataset, self).__init__() self.opt = opt # file client (io backend) self.file_client = None self.io_backend_opt = opt['io_backend'] self.gt_folder = opt['dataroot_gt'] self.mean = opt['mean'] self.std = opt['std'] if self.io_backend_opt['type'] == 'lmdb': self.io_backend_opt['db_paths'] = self.gt_folder if not self.gt_folder.endswith('.lmdb'): raise ValueError("'dataroot_gt' should end with '.lmdb', " f'but received {self.gt_folder}') with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: self.paths = [line.split('.')[0] for line in fin] else: # FFHQ has 70000 images in total self.paths = [ osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000) ] def __getitem__(self, index): if self.file_client is None: self.file_client = FileClient( self.io_backend_opt.pop('type'), **self.io_backend_opt) # load gt image gt_path = self.paths[index] img_bytes = self.file_client.get(gt_path) img_gt = imfrombytes(img_bytes, float32=True) # random horizontal flip img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False) # BGR to RGB, HWC to CHW, numpy to tensor img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True) # normalize normalize(img_gt, self.mean, self.std, inplace=True) return {'gt': img_gt, 'gt_path': gt_path} def __len__(self): return len(self.paths)
the-stack_106_31999
""" Fully Written by RoseLoverX """ from Evie import tbot, CMD_HELP, OWNER_ID import os, re, csv, json, time, uuid, pytz from datetime import datetime from Evie.function import is_admin from io import BytesIO import Evie.modules.sql.feds_sql as sql from telethon import * from telethon import Button from telethon.tl import * from telethon.tl.types import User from Evie import * from telethon.tl.functions.users import GetFullUserRequest from telethon.tl.types import MessageMediaDocument, DocumentAttributeFilename from Evie.events import register """ Fully Written by RoseLoverX """ from telethon.tl.types import ChatBannedRights from telethon.tl.functions.channels import EditBannedRequest BANNED_RIGHTS = ChatBannedRights( until_date=None, view_messages=True, send_messages=True, send_media=True, send_stickers=True, send_gifs=True, send_games=True, send_inline=True, embed_links=True, ) """ Fully Written by RoseLoverX """ async def get_user_from_event(event): """ Get the user from argument or replied message. """ if event.reply_to_msg_id: previous_message = await event.get_reply_message() user_obj = await tbot.get_entity(previous_message.sender_id) fname = previous_message.sender.first_name else: user = event.pattern_match.group(1) if user.isnumeric(): user = int(user) if not user: return try: user_obj = await tbot.get_entity(user) except (TypeError, ValueError) as err: await event.reply(str(err)) return None return user_obj def is_user_fed_admin(fed_id, user_id): fed_admins = sql.all_fed_users(fed_id) if fed_admins is False: return False if int(user_id) in fed_admins or int(user_id) == OWNER_ID: return True else: return False def is_user_fed_owner(fed_id, user_id): getsql = sql.get_fed_info(fed_id) if getsql is False: return False getfedowner = eval(getsql["fusers"]) if getfedowner is None or getfedowner is False: return False getfedowner = getfedowner["owner"] if str(user_id) == getfedowner or int(user_id) == OWNER_ID: return True else: return False """ Fully Written by RoseLoverX """ @register(pattern="^/newfed ?(.*)") async def new(event): if not event.is_private: return await event.reply("Create your federation in my PM - not in a group.") name = event.pattern_match.group(1) fedowner = sql.get_user_owner_fed_full(event.sender_id) if fedowner: for f in fedowner: text = "{}".format(f["fed"]["fname"]) return await event.reply(f"You already have a federation called `{text}` ; you can't create another. If you would like to rename it, use /renamefed.") if not name: return await event.reply("You need to give your federation a name! Federation names can be up to 64 characters long.") if len(name) > 64: return await event.reply("Federation names can only be upto 64 charactors long.") fed_id = str(uuid.uuid4()) fed_name = name x = sql.new_fed(event.sender_id, fed_name, fed_id) return await event.reply(f"Created new federation with FedID: `{fed_id}`.\nUse this ID to join the federation! eg:\n`/joinfed {fed_id}`") @register(pattern="^/delfed") async def smexy(event): if not event.is_private: return await event.reply("Delete your federation in my PM - not in a group.") fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("It doesn't look like you have a federation yet!") for f in fedowner: fed_id = "{}".format(f["fed_id"]) name = f["fed"]["fname"] await tbot.send_message( event.chat_id, "Are you sure you want to delete your federation? This action cannot be undone - you will lose your entire ban list, and '{}' will be permanently gone.".format(name), buttons=[ [Button.inline("Delete Federation", data="rmfed_{}".format(fed_id))], [Button.inline("Cancel", data="nada")], ], ) @tbot.on(events.CallbackQuery(pattern=r"rmfed(\_(.*))")) async def delete_fed(event): tata = event.pattern_match.group(1) data = tata.decode() fed_id = data.split("_", 1)[1] delete = sql.del_fed(fed_id) await event.edit("You have deleted your federation! All chats linked to it are now federation-less.") @tbot.on(events.CallbackQuery(pattern=r"nada")) async def delete_fed(event): await event.edit("Federation deletion canceled") @register(pattern="^/renamefed ?(.*)") async def cgname(event): if not event.is_private: return await event.reply("You can only rename your fed in PM.") user_id = event.sender_id newname = event.pattern_match.group(1) fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("It doesn't look like you have a federation yet!") if not newname: return await event.reply("You need to give your federation a new name! Federation names can be up to 64 characters long.") for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] sql.rename_fed(fed_id, user_id, newname) return await event.reply(f"Tada! I've renamed your federation from '{name}' to '{newname}'. [FedID: `{fed_id}`].") @register(pattern="^/chatfed") async def cf(event): chat = event.chat_id if event.is_private: return if not await is_admin(event, event.sender_id): return await event.reply("You need to be an admin to do this.") fed_id = sql.get_fed_id(chat) if not fed_id: return await event.reply("This chat isn't part of any feds yet!") info = sql.get_fed_info(fed_id) name = info["fname"] await event.reply(f"Chat {event.chat.title} is part of the following federation: {name} [ID: `{fed_id}`]") @register(pattern="^/joinfed ?(.*)") async def jf(event): if not event.is_group: return if not await is_admin(event, event.sender_id): await event.reply("You need to be an admin to do this.") return permissions = await tbot.get_permissions(event.chat_id, event.sender_id) if not permissions.is_creator: return await event.reply(f"You need to be the chat owner of {event.chat.title} to do this.") args = event.pattern_match.group(1) if not args: return await event.reply("You need to specify which federation you're asking about by giving me a FedID!") if len(args) < 8: return await event.reply("This isn't a valid FedID format!") getfed = sql.search_fed_by_id(args) name = getfed["fname"] if not getfed: return await event.reply("This FedID does not refer to an existing federation.") fed_id = sql.get_fed_id(event.chat_id) if fed_id: sql.chat_leave_fed(event.chat_id) x = sql.chat_join_fed(args, event.chat.title, event.chat_id) return await event.reply(f'Successfully joined the "{name}" federation! All new federation bans will now also remove the members from this chat.') @register(pattern="^/leavefed") async def lf(event): if not event.is_group: return if not await is_admin(event, event.sender_id): await event.reply("You need to be an admin to do this.") return permissions = await tbot.get_permissions(event.chat_id, event.sender_id) if not permissions.is_creator: return await event.reply(f"You need to be the chat owner of {event.chat.title} to do this.") chat = event.chat_id fed_id = sql.get_fed_id(chat) if not fed_id: return await event.reply("This chat isn't currently in any federations!") fed_info = sql.get_fed_info(fed_id) name = fed_info["fname"] sql.chat_leave_fed(chat) return await event.reply(f'Chat {event.chat.title} has left the " {name} " federation.') @register(pattern="^/fpromote ?(.*)") async def p(event): if event.is_private: return await event.reply("This command is made to be run in a group where the person you would like to promote is present.") fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only federation creators can promote people, and you don't seem to have a federation to promote to!") args = await get_user_from_event(event) if not args: return await event.reply("I don't know who you're talking about, you're going to need to specify a user...!") chat = event.chat for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] user_id = args.id fban, fbanreason, fbantime = sql.get_fban_user(fed_id, int(args.id)) replied_user = await tbot(GetFullUserRequest(user_id)) fname = replied_user.user.first_name print(69) if fban: if fbanreason != '': return await event.reply(f"User {fname} is fbanned in {name}. You should unfban them before promoting.\n\nReason:\n{fbanreason}") else: return await event.reply(f"User {fname} is fbanned in {name}. You should unfban them before promoting.") getuser = sql.search_user_in_fed(fed_id, user_id) if getuser: return await event.reply(f"[{fname}](tg://user?id={args.id}) is already an admin in {name}!") print(4) try: mk = f"{user_id}|{name[:5]}|{fed_id}" km = f"{user_id}|{event.sender_id}" await tbot.send_message( event.chat_id, f"Please get [{fname}](tg://user?id={args.id}) to confirm that they would like to be fed admin for {name}", buttons=[ Button.inline("Confirm", data="fkfed_{}".format(mk)), Button.inline("Cancel", data="smex_{}".format(km)), ], ) except Exception as e: print(e) """ Fully Written by RoseLoverX """ @tbot.on(events.CallbackQuery(pattern=r"fkfed(\_(.*))")) async def smex_fed(event): tata = event.pattern_match.group(1) data = tata.decode() input = data.split("_", 1)[1] user, owner, fed_id= input.split("|") user = user.strip() name = owner.strip() fed_id = fed_id.strip() rt = await tbot(GetFullUserRequest(int(user))) fname = rt.user.first_name if not event.sender_id == int(user): return await event.answer("You are not the user being fpromoted") res = sql.user_join_fed(fed_id, int(user)) if res: return await event.edit(f"User [{fname}](tg://user?id={user}) is now an admin of {name} [{fed_id}]") """ Fully Written by RoseLoverX """ @tbot.on(events.CallbackQuery(pattern=r"smex(\_(.*))")) async def smex(event): tata = event.pattern_match.group(1) data = tata.decode() input = data.split("_", 1)[1] user, owner= input.split("|") user = user.strip() owner = owner.strip() if event.sender_id == int(owner): rt = await tbot(GetFullUserRequest(int(owner))) fname = rt.user.first_name await event.edit(f"Fedadmin promotion cancelled by [{fname}](tg://user?id={owner})") return if event.sender_id == int(user): rt = await tbot(GetFullUserRequest(int(user))) fname = rt.user.first_name await event.edit(f"Fedadmin promotion has been refused by [{fname}](tg://user?id={user}).") return await event.answer("You are not the user being fpromoted") @register(pattern="^/fdemote ?(.*)") async def fd(event): if event.is_private: return await event.reply("This command is made to be run in a group where the person you would like to promote is present.") fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only federation creators can promote people, and you don't seem to have a federation to promote to!") args = await get_user_from_event(event) if not args: return await event.reply("I don't know who you're talking about, you're going to need to specify a user...!") chat = event.chat for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] user_id = args.id if sql.search_user_in_fed(fed_id, user_id) is False: return await event.reply(f"This person isn't a federation admin for '{name} ', how could I demote them?") replied_user = await tbot(GetFullUserRequest(user_id)) fname = replied_user.user.first_name sql.user_demote_fed(fed_id, user_id) return await event.reply(f"User [{fname}](tg://user?id={user_id}) is no longer an admin of {name} ({fed_id})") @register(pattern="^/fedinfo ?(.*)") async def info(event): if not event.is_private: if not await is_admin(event, event.sender_id): return await event.reply("This command can only be used in private.") input = event.pattern_match.group(1) fedowner = sql.get_user_owner_fed_full(event.sender_id) if not input: if not fedowner: return await event.reply("You need to give me a FedID to check, or be a federation creator to use this command!") if input: fed_id = input info = sql.get_fed_info(fed_id) if not info: return await event.reply("There is no federation with this FedID.") name = info["fname"] elif fedowner: for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] info = sql.get_fed_info(fed_id) if info: owner = int(info["owner"]) getfban = sql.get_all_fban_users(fed_id) getfchat = sql.all_fed_chats(fed_id) FEDADMIN = sql.all_fed_users(fed_id) TotalAdminFed = len(FEDADMIN) caption = "Fed info:\n" caption += f"FedID: `{fed_id}`\n" caption += f"Name: {name}\n" caption += f"Creator: [this person](tg://user?id={owner}) (`{owner}`)\n" caption += f"Number of admins: `{TotalAdminFed}`\n" caption += f"Number of bans: `{len(getfban)}`\n" caption += f"Number of connected chats: `{len(getfchat)}`\n" try: subs = sql.get_subscriber(fed_id) except: subs = [] caption += f"Number of subscribed feds: `{len(subs)}`" try: getmy = sql.get_mysubs(fed_id) except: getmy = [] if len(getmy) == 0: caption += "\n\nThis federation is not subscribed to any other feds." else: caption += "\n\nSubscribed to the following feds:" for x in getmy: nfo = sql.get_fed_info(x) nme = nfo["fname"] caption += f"\n- {nme} (`{x}`)" buttons = Button.inline("Check Fed Admins", data="fedadm_{}".format(fed_id)) await tbot.send_message(event.chat_id, caption, buttons=buttons) """ Fully Written by RoseLoverX """ @tbot.on(events.CallbackQuery(pattern=r"fedadm(\_(.*))")) async def smex_fed(event): if event.is_group: if not await is_admin(event, event.sender_id): return await event.answer("You need to be an admin to do this") await event.edit(buttons=None) tata = event.pattern_match.group(1) data = tata.decode() input = data.split("_", 1)[1] fed_id = input info = sql.get_fed_info(fed_id) try: text = "Admins in federation '{}':\n".format(info["fname"]) owner = await tbot.get_entity(int(info["owner"])) try: owner_name = owner.first_name + " " + owner.last_name except: owner_name = owner.first_name text += f"- [{owner_name}](tg://user?id={owner.id}) (`{owner.id}`)\n" members = sql.all_fed_members(fed_id) for x in members: try: user = await tbot.get_entity(int(x)) unamee = user.first_name text += f"- [{unamee}](tg://user?id={user.id}) (`{user.id}`)" except Exception: text += f"- {x}/n" except Exception as e: print(e) await event.reply(text) """ Fully Written by RoseLoverX """ @register(pattern="^/fban ?(.*)") async def _(event): user = event.sender chat = event.chat_id if event.is_group: fed_id = sql.get_fed_id(chat) if not fed_id: return await event.reply("This chat isn't in any federations.") else: fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("It doesn't look like you have a federation yet!") for f in fedowner: fed_id = "{}".format(f["fed_id"]) info = sql.get_fed_info(fed_id) name = info["fname"] if is_user_fed_admin(fed_id, user.id) is False: return await event.reply(f"You aren't a federation admin for {name}!") input = event.pattern_match.group(1) if input: arg = input.split(" ", 1) if not event.reply_to_msg_id: if len(arg) == 2: iid = arg[0] reason = arg[1] else: iid = arg[0] reason = None if not iid.isnumeric(): entity = await tbot.get_input_entity(iid) try: r_sender_id = entity.user_id except Exception: await event.reply("Couldn't fetch that user.") return else: r_sender_id = int(iid) try: replied_user = await tbot(GetFullUserRequest(r_sender_id)) fname = replied_user.user.first_name username = replied_user.user.username lname = replied_user.user.last_name except Exception: fname = "User" username = None lname = None else: reply_message = await event.get_reply_message() iid = reply_message.sender_id fname = reply_message.sender.first_name lname = reply_message.sender.last_name username = reply_message.sender.username if input: reason = input else: reason = None r_sender_id = iid if r_sender_id == BOT_ID or r_sender_id == OWNER_ID: return await event.reply("Oh you're a funny one aren't you! I am _not_ going to fedban myself.") name = info["fname"] if is_user_fed_owner(fed_id, int(r_sender_id)) is True: return await event.reply(f"I'm not banning a fed admin from their own fed! [{name}]") if is_user_fed_admin(fed_id, int(r_sender_id)) is True: return await event.reply(f"I'm not banning a fed admin from their own fed! [{name}]") fban_user_id = int(r_sender_id) fban_user_name = fname fban_user_lname = lname fban_user_uname = username fban, fbanreason, fbantime = sql.get_fban_user(fed_id, int(r_sender_id)) if fban: if fbanreason == '' and reason == None: return await event.reply(f'User [{fname}](tg://)/user?id={r_sender_id}) is already banned in {name}. There is no reason set for their fedban yet, so feel free to set one.') if reason == fbanreason: return await event.reply(f'User [{fname}](tg://user?id={r_sender_id}) has already been fbanned, with the exact same reason.') if reason == None: if fbanreason == '': return await event.reply(f'User [{fname}](tg://user?id={r_sender_id}) is already banned in {name}.') else: return await event.reply(f'User [{fname}](tg://user?id={r_sender_id}) is already banned in {name}, with reason:\n`{fbanreason}`.') if not fban: current_datetime = datetime.now(pytz.timezone("Asia/Kolkata")) kuk = f"{current_datetime}" mal = kuk[:10] rec = mal.replace("-", "") x = sql.fban_user( fed_id, fban_user_id, fban_user_name, fban_user_lname, fban_user_uname, reason, int(rec), ) sax = "**New FedBan**\n" sax += f"**Fed:** {name}\n" sax += f"**FedAdmin:** [{event.sender.first_name}](tg://user?id={event.sender_id})\n" sax += f"**User:** [{fname}](tg://user?id={r_sender_id})\n" sax += f"**User ID:** `{r_sender_id}`\n" sax += f"**Reason:** {reason}" else: current_datetime = datetime.now(pytz.timezone("Asia/Kolkata")) kuk = f"{current_datetime}" mal = kuk[:10] rec = mal.replace("-", "") fed_name = info["fname"] temp = sql.un_fban_user(fed_id, fban_user_id) if not temp: await event.reply("Failed to update the reason for fedban!") return x = sql.fban_user( fed_id, fban_user_id, fban_user_name, fban_user_lname, fban_user_uname, reason, int(rec), ) sax = "**FedBan Reason Update**\n" sax += f"**Fed:** {name}\n" sax += f"**FedAdmin:** [{event.sender.first_name}](tg://user?id={event.sender_id})\n" sax += f"**User:** [{fname}](tg://user?id={r_sender_id})\n" sax += f"**User ID:** `{r_sender_id}`\n" if not fbanreason == '': sax += f"**Previous Reason:** {fbanreason}\n" sax += f"**New Reason:** {reason}" await tbot.send_message( event.chat_id, sax) getfednotif = sql.user_feds_report(info["owner"]) if getfednotif: if int(info["owner"]) != int(chat): await tbot.send_message( int(info["owner"]), sax) get_fedlog = sql.get_fed_log(fed_id) if get_fedlog: if int(get_fedlog) != int(chat): await tbot.send_message( int(get_fedlog), sax) fed_chats = list(sql.all_fed_chats(fed_id)) if len(fed_chats) != 0: for fedschat in fed_chats: try: await tbot( EditBannedRequest(int(fedschat), int(fban_user_id), BANNED_RIGHTS) ) except Exception: pass subscriber = list(sql.get_subscriber(fed_id)) if len(subscriber) != 0: for fedsid in subscriber: all_fedschat = sql.all_fed_chats(fedsid) for fedschat in all_fedschat: try: await tbot( EditBannedRequest(int(fedschat), int(fban_user_id), BANNED_RIGHTS) ) except Exception: continue """ Fully Written by RoseLoverX """ @register(pattern="^/unfban ?(.*)") async def unfban(event): user = event.sender chat = event.chat_id if event.is_group: fed_id = sql.get_fed_id(chat) if not fed_id: return await event.reply("This chat isn't in any federations.") else: fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("It doesn't look like you have a federation yet!") for f in fedowner: fed_id = "{}".format(f["fed_id"]) info = sql.get_fed_info(fed_id) name = info["fname"] if is_user_fed_admin(fed_id, user.id) is False: return await event.reply(f"You aren't a federation admin for {name}!") input = event.pattern_match.group(1) if input: arg = input.split(" ", 1) if not event.reply_to_msg_id: if len(arg) == 2: iid = arg[0] reason = arg[1] else: iid = arg[0] reason = None if not iid.isnumeric(): entity = await tbot.get_input_entity(iid) try: r_sender_id = entity.user_id except Exception: await event.reply("Couldn't fetch that user.") return else: r_sender_id = int(iid) try: replied_user = await tbot(GetFullUserRequest(r_sender_id)) fname = replied_user.user.first_name username = replied_user.user.username lname = replied_user.user.last_name except Exception: fname = "User" username = None lname = None else: reply_message = await event.get_reply_message() iid = reply_message.sender_id fname = reply_message.sender.first_name lname = reply_message.sender.last_name username = reply_message.sender.username if input: reason = input else: reason = None r_sender_id = iid if r_sender_id == BOT_ID or r_sender_id == OWNER_ID: return await event.reply("Oh you're a funny one aren't you! How do you think I would have fbanned myself hm?.") name = info["fname"] fban_user_id = int(r_sender_id) fban_user_name = fname fban_user_lname = lname fban_user_uname = username fban, fbanreason, fbantime = sql.get_fban_user(fed_id, int(r_sender_id)) if not fban: return await event.reply(f"This user isn't banned in the current federation, {name}. [{fed_id}]") temp = sql.un_fban_user(fed_id, fban_user_id) if temp: sxa = "**New un-FedBan**\n" sxa += f"**Fed:** {name}\n" sxa += f"**FedAdmin:** [{event.sender.first_name}](tg://user?id={event.sender_id})\n" sxa += f"**User:** [{fname}](tg://user?id={r_sender_id})\n" sxa += f"**User ID:** `{r_sender_id}`\n" if reason: sxa += f"**Reason:** {reason}" await tbot.send_message( event.chat_id, sxa) getfednotif = sql.user_feds_report(info["owner"]) if getfednotif: if int(info["owner"]) != int(chat): await tbot.send_message( int(info["owner"]), sxa) get_fedlog = sql.get_fed_log(fed_id) if get_fedlog: if int(get_fedlog) != int(chat): await tbot.send_message( int(get_fedlog), sxa) @register(pattern="^/setfedlog ?(.*)") async def log(event): chat = event.chat_id if not is_admin(event, event.sender_id): return await event.reply("You need to be an admin to do this") args = event.pattern_match.group(1) if not args: fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only fed creators can set a fed log - but you don't have a federation!") for f in fedowner: args = "{}".format(f["fed_id"]) name = f["fed"]["fname"] else: if len(args) < 8: return await event.reply("This isn't a valid FedID format!") getfed = sql.search_fed_by_id(args) name = getfed["fname"] if not getfed: return await event.reply("This FedID does not refer to an existing federation.") setlog = sql.set_fed_log(args, chat) await event.reply(f"This has been set as the fed log for {name} - all fed related actions will be logged here.") @register(pattern="^/unsetfedlog") async def ligunset(event): chat = event.chat_id fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only fed creators can unset a fed log - but you don't have a federation!") for f in fedowner: args = f["fed_id"] name = f["fed"]["fname"] setlog = sql.set_fed_log(args, None) await event.reply(f"The {name} federation has had its log location unset.") """ Fully Written by AmarnathCdj aka RoseloverX """ @register(pattern="^/subfed ?(.*)") async def sub(event): args = event.pattern_match.group(1) fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only federation creators can subscribe to a fed. But you don't have a federation!") for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] if not args: return await event.reply("You need to specify which federation you're asking about by giving me a FedID!") if len(args) < 8: return await event.reply("This isn't a valid FedID format!") getfed = sql.search_fed_by_id(args) if not getfed: return await event.reply("This FedID does not refer to an existing federation.") sname = getfed["fname"] if args == fed_id: return await event.reply("... What's the point in subscribing a fed to itself?") try: subs = sql.MYFEDS_SUBSCRIBER except: subs = [] if len(subs) >= 5: return await event.reply("You can subscribe to at most 5 federations. Please unsubscribe from other federations before adding more.") subfed = sql.subs_fed(args, fed_id) addsub = sql.add_sub(fed_id, args) await event.reply(f"Federation {name} has now subscribed to {sname}. All fedbans in {sname} will now take effect in both feds.") """ Fully Written by RoseLoverX aka AmarnathCdj """ @register(pattern="^/unsubfed ?(.*)") async def unsub(event): args = event.pattern_match.group(1) fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("Only federation creators can unsubscribe from a fed. But you don't have a federation!") for f in fedowner: fed_id = f["fed_id"] name = f["fed"]["fname"] if not args: return await event.reply("You need to specify which federation you're asking about by giving me a FedID!") if len(args) < 8: return await event.reply("This isn't a valid FedID format!") getfed = sql.search_fed_by_id(args) if not getfed: return await event.reply("This FedID does not refer to an existing federation.") sname = getfed["fname"] remsub = sql.rem_sub(fed_id, args) unsubfed = sql.unsubs_fed(args, fed_id) await event.reply(f"Federation {name} is no longer subscribed to {sname}. Bans in {sname} will no longer be applied.\nPlease note that any bans that happened because the user was banned from the subfed will need to be removed manually.") @register(pattern="^/(fstat|fbanstat) ?(.*)") async def fstat(event): if event.is_group: if not await is_admin(event, event.sender_id): return await event.reply("You need to be an admin to do this!") args = event.pattern_match.group(2) if args: if len(args) > 12: info = sql.get_fed_info(args) if not info: return await event.reply("There is no federation with this FedID.") name = info["fname"] if event.reply_to_msg_id: msg = await event.get_reply_message() user_id = msg.sender_id fname = msg.sender.first_name else: user_id = event.sender_id fname = event.sender.first_name fban, fbanreason, fbantime = sql.get_fban_user(args, int(user_id)) if not fban: return await event.reply(f"{fname} is not banned in this fed.") tym = fbantime k = f"{tym}" re = k[:4] rs = f"{k[:4]}/{k[-2:]}/{k[:6].replace(re, '')}" if fbanreason == '': text = f"{fname} is currently banned in {name}.\n\n**Date of Ban:** {rs}" if not fbanreason == '': text = f"{fname} is currently banned in {name},for the following **reason**:\n{fbanreason}\n\n**Date of Ban:** {rs}" return await event.reply(text) elif len(args) < 12: person = await get_user_from_event(event) user_id = person.id replied_user = await tbot(GetFullUserRequest(user_id)) fname = replied_user.user.first_name else: if event.reply_to_msg_id: msg = await event.get_reply_message() user_id = msg.sender_id fname = msg.sender.first_name else: user_id = event.sender_id fname = event.sender.first_name mex = await event.reply(f"Checking fbans for {fname}...") uname, fbanlist = sql.get_user_fbanlist(str(user_id)) if len(fbanlist) == 0: return await mex.edit(f"User {fname} hasn't been banned in any chats due to fedbans.") if len(fbanlist) <= 10: flist = f"The following federations have caused {fname} to be banned in chats:" for x in fbanlist: try: info = sql.get_fed_info(x[0]) gname = info["fname"] flist += f"\n- `{x[0]}`:{gname}" except: pass await mex.edit(flist) """ Fully Written by RoseLoverX aka AmarnathCdj """ @register(pattern="^/fedexport$") async def fex(event): if event.is_group: fed_id = sql.get_fed_id(event.chat_id) if not fed_id: return await event.reply("This chat isn't in any federations.") else: if is_user_fed_owner(fed_id, int(event.sender_id)) is False: return await event.reply("Only the fed creator can export the ban list.") else: fedowner = sql.get_user_owner_fed_full(event.sender_id) if not fedowner: return await event.reply("It doesn't look like you have a federation yet!") for f in fedowner: fed_id = f["fed_id"] info = sql.get_fed_info(fed_id) name = info["fname"] getfban = sql.get_all_fban_users(fed_id) if len(getfban) == 0: return await event.reply(f"There are no banned users in {name}") backups = "" try: for users in getfban: getuserinfo = sql.get_all_fban_users_target(fed_id, users) json_parser = { "user_id": users, "first_name": getuserinfo["first_name"], "last_name": getuserinfo["last_name"], "user_name": getuserinfo["user_name"], "reason": getuserinfo["reason"], } backups += json.dumps(json_parser) backups += "\n" with BytesIO(str.encode(backups)) as output: output.name = "fbanned_users.json" await tbot.send_file( event.chat_id, file=output, filename="fbanned_users.json", caption="Total {} users are blocked by the Federation {}.".format( len(getfban), info["fname"] ), ) except Exception as e: print(e) #yeah fuckoof #in halt need to find a way to send CSV file file_help = os.path.basename(__file__) file_help = file_help.replace(".py", "") file_helpo = file_help.replace("_", " ") __help__ = """ Ah, group management. It's all fun and games, until you start getting spammers in, and you need to ban them. Then you need to start banning more, and more, and it gets painful. But then you have multiple groups, and you don't want these spammers in any of your groups - how can you deal? Do you have to ban them manually, in all your groups? No more! With federations, you can make a ban in one chat overlap to all your other chats. You can even appoint federation admins, so that your trustworthiest admins can ban across all the chats that you want to protect. Commands: - /newfed <fedname>: Creates a new federation with the given name. Only one federation per user. Max 64 chars name allowed. - /delfed: Deletes your federation, and any information related to it. Will not unban any banned users. - /fedtransfer <reply/username/mention/userid>: Transfer your federation to another user. - /renamefed <newname>: Rename your federation. - /fedinfo <FedID>: Information about a federation. - /fedadmins <FedID>: List the admins in a federation. - /fedsubs <FedID>: List all federations your federation is subscribed to. - /joinfed <FedID>: Join the current chat to a federation. A chat can only join one federation. Chat owners only. - /leavefed: Leave the current federation. Only chat owners can do this. - /fedstat: List all the federations you are banned in. - /fedstat <user ID>: List all the federations a user has been banned in. - /fedstat <user ID> <FedID>: Gives information about a user's ban in a federation. - /chatfed: Information about the federation the current chat is in. Federation admin commands: - /fban: Bans a user from the current chat's federation - /unfban: Unbans a user from the current chat's federation - /feddemoteme <FedID>: Demote yourself from a fed. - /myfeds: List all your feds. Federation owner commands: - /fpromote: Promote a user to fedadmin in your fed. - /fdemote: Demote a federation admin in your fed. - /fednotif <yes/no/on/off>: Whether or not to receive PM notifications of every fed action. - /subfed <FedId>: Subscribe your federation to another. Users banned in the subscribed fed will also be banned in this one. - /unsubfed <FedId>: Unsubscribes your federation from another. Bans from the other fed will no longer take effect. - /fedexport <csv/json>: Displays all users who are victimized at the Federation at this time. - /fedimport: Import a list of banned users. - /setfedlog <FedId>: Sets the current chat as the federation log. All federation events will be logged here. - /unsetfedlog <FedId>: Unset the federation log. Events will no longer be logged. **Note:** Plugin not yet finished writing. """ CMD_HELP.update({file_helpo: [file_helpo, __help__]})
the-stack_106_32000
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test the SegWit changeover logic # from test_framework.test_framework import PericloinTestFramework from test_framework.util import * from test_framework.mininode import sha256, ripemd160, CTransaction, CTxIn, COutPoint, CTxOut from test_framework.address import script_to_p2sh, key_to_p2pkh from test_framework.script import CScript, OP_HASH160, OP_CHECKSIG, OP_0, hash160, OP_EQUAL, OP_DUP, OP_EQUALVERIFY, OP_1, OP_2, OP_CHECKMULTISIG, OP_TRUE from io import BytesIO from test_framework.mininode import ToHex, FromHex, COIN NODE_0 = 0 NODE_1 = 1 NODE_2 = 2 WIT_V0 = 0 WIT_V1 = 1 def witness_script(version, pubkey): if (version == 0): pubkeyhash = bytes_to_hex_str(ripemd160(sha256(hex_str_to_bytes(pubkey)))) pkscript = "0014" + pubkeyhash elif (version == 1): # 1-of-1 multisig scripthash = bytes_to_hex_str(sha256(hex_str_to_bytes("5121" + pubkey + "51ae"))) pkscript = "0020" + scripthash else: assert("Wrong version" == "0 or 1") return pkscript def addlength(script): scriptlen = format(len(script)//2, 'x') assert(len(scriptlen) == 2) return scriptlen + script def create_witnessprogram(version, node, utxo, pubkey, encode_p2sh, amount): pkscript = witness_script(version, pubkey) if (encode_p2sh): p2sh_hash = bytes_to_hex_str(ripemd160(sha256(hex_str_to_bytes(pkscript)))) pkscript = "a914"+p2sh_hash+"87" inputs = [] outputs = {} inputs.append({ "txid" : utxo["txid"], "vout" : utxo["vout"]} ) DUMMY_P2SH = "2MySexEGVzZpRgNQ1JdjdP5bRETznm3roQ2" # P2SH of "OP_1 OP_DROP" outputs[DUMMY_P2SH] = amount tx_to_witness = node.createrawtransaction(inputs,outputs) #replace dummy output with our own tx_to_witness = tx_to_witness[0:110] + addlength(pkscript) + tx_to_witness[-8:] return tx_to_witness def send_to_witness(version, node, utxo, pubkey, encode_p2sh, amount, sign=True, insert_redeem_script=""): tx_to_witness = create_witnessprogram(version, node, utxo, pubkey, encode_p2sh, amount) if (sign): signed = node.signrawtransaction(tx_to_witness) assert("errors" not in signed or len(["errors"]) == 0) return node.sendrawtransaction(signed["hex"]) else: if (insert_redeem_script): tx_to_witness = tx_to_witness[0:82] + addlength(insert_redeem_script) + tx_to_witness[84:] return node.sendrawtransaction(tx_to_witness) def getutxo(txid): utxo = {} utxo["vout"] = 0 utxo["txid"] = txid return utxo def find_unspent(node, min_value): for utxo in node.listunspent(): if utxo['amount'] >= min_value: return utxo class SegWitTest(PericloinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 3 def setup_network(self): self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-logtimemicros", "-debug", "-walletprematurewitness", "-rpcserialversion=0"])) self.nodes.append(start_node(1, self.options.tmpdir, ["-logtimemicros", "-debug", "-blockversion=4", "-promiscuousmempoolflags=517", "-prematurewitness", "-walletprematurewitness", "-rpcserialversion=1"])) self.nodes.append(start_node(2, self.options.tmpdir, ["-logtimemicros", "-debug", "-blockversion=536870915", "-promiscuousmempoolflags=517", "-prematurewitness", "-walletprematurewitness"])) connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 1) connect_nodes(self.nodes[0], 2) self.is_network_split = False self.sync_all() def success_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 2) sync_blocks(self.nodes) def skip_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) block = node.generate(1) assert_equal(len(node.getblock(block[0])["tx"]), 1) sync_blocks(self.nodes) def fail_accept(self, node, txid, sign, redeem_script=""): try: send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) except JSONRPCException as exp: assert(exp.error["code"] == -26) else: raise AssertionError("Tx should not have been accepted") def fail_mine(self, node, txid, sign, redeem_script=""): send_to_witness(1, node, getutxo(txid), self.pubkey[0], False, Decimal("49.998"), sign, redeem_script) try: node.generate(1) except JSONRPCException as exp: assert(exp.error["code"] == -1) else: raise AssertionError("Created valid block when TestBlockValidity should have failed") sync_blocks(self.nodes) def run_test(self): self.nodes[0].generate(161) #block 161 print("Verify sigops are counted in GBT with pre-BIP141 rules before the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({}) assert(tmpl['sizelimit'] == 1000000) assert('weightlimit' not in tmpl) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sizelimit'] == 1000000) assert('weightlimit' not in tmpl) assert(tmpl['sigoplimit'] == 20000) assert(tmpl['transactions'][0]['hash'] == txid) assert(tmpl['transactions'][0]['sigops'] == 2) self.nodes[0].generate(1) #block 162 balance_presetup = self.nodes[0].getbalance() self.pubkey = [] p2sh_ids = [] # p2sh_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE embedded in p2sh wit_ids = [] # wit_ids[NODE][VER] is an array of txids that spend to a witness version VER pkscript to an address for NODE via bare witness for i in range(3): newaddress = self.nodes[i].getnewaddress() self.pubkey.append(self.nodes[i].validateaddress(newaddress)["pubkey"]) multiaddress = self.nodes[i].addmultisigaddress(1, [self.pubkey[-1]]) self.nodes[i].addwitnessaddress(newaddress) self.nodes[i].addwitnessaddress(multiaddress) p2sh_ids.append([]) wit_ids.append([]) for v in range(2): p2sh_ids[i].append([]) wit_ids[i].append([]) for i in range(5): for n in range(3): for v in range(2): wit_ids[n][v].append(send_to_witness(v, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[n], False, Decimal("49.999"))) p2sh_ids[n][v].append(send_to_witness(v, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[n], True, Decimal("49.999"))) self.nodes[0].generate(1) #block 163 sync_blocks(self.nodes) # Make sure all nodes recognize the transactions as theirs assert_equal(self.nodes[0].getbalance(), balance_presetup - 60*50 + 20*Decimal("49.999") + 50) assert_equal(self.nodes[1].getbalance(), 20*Decimal("49.999")) assert_equal(self.nodes[2].getbalance(), 20*Decimal("49.999")) self.nodes[0].generate(260) #block 423 sync_blocks(self.nodes) print("Verify default node can't accept any witness format txs before fork") # unsigned, no scriptsig self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], False) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], False) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], False) # unsigned with redeem script self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], False, addlength(witness_script(0, self.pubkey[0]))) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], False, addlength(witness_script(1, self.pubkey[0]))) # signed self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) self.fail_accept(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) self.fail_accept(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) print("Verify witness txs are skipped for mining before the fork") self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][0], True) #block 424 self.skip_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][0], True) #block 425 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][0], True) #block 426 self.skip_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][0], True) #block 427 # TODO: An old node would see these txs without witnesses and be able to mine them print("Verify unsigned bare witness txs in versionbits-setting blocks are valid before the fork") self.success_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][1], False) #block 428 self.success_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][1], False) #block 429 print("Verify unsigned p2sh witness txs without a redeem script are invalid") self.fail_accept(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][1], False) self.fail_accept(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][1], False) print("Verify unsigned p2sh witness txs with a redeem script in versionbits-settings blocks are valid before the fork") self.success_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][1], False, addlength(witness_script(0, self.pubkey[2]))) #block 430 self.success_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][1], False, addlength(witness_script(1, self.pubkey[2]))) #block 431 print("Verify previous witness txs skipped for mining can now be mined") assert_equal(len(self.nodes[2].getrawmempool()), 4) block = self.nodes[2].generate(1) #block 432 (first block with new rules; 432 = 144 * 3) sync_blocks(self.nodes) assert_equal(len(self.nodes[2].getrawmempool()), 0) segwit_tx_list = self.nodes[2].getblock(block[0])["tx"] assert_equal(len(segwit_tx_list), 5) print("Verify block and transaction serialization rpcs return differing serializations depending on rpc serialization flag") assert(self.nodes[2].getblock(block[0], False) != self.nodes[0].getblock(block[0], False)) assert(self.nodes[1].getblock(block[0], False) == self.nodes[2].getblock(block[0], False)) for i in range(len(segwit_tx_list)): tx = FromHex(CTransaction(), self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[2].getrawtransaction(segwit_tx_list[i]) != self.nodes[0].getrawtransaction(segwit_tx_list[i])) assert(self.nodes[1].getrawtransaction(segwit_tx_list[i], 0) == self.nodes[2].getrawtransaction(segwit_tx_list[i])) assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) != self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[1].getrawtransaction(segwit_tx_list[i]) == self.nodes[2].gettransaction(segwit_tx_list[i])["hex"]) assert(self.nodes[0].getrawtransaction(segwit_tx_list[i]) == bytes_to_hex_str(tx.serialize_without_witness())) print("Verify witness txs without witness data are invalid after the fork") self.fail_mine(self.nodes[2], wit_ids[NODE_2][WIT_V0][2], False) self.fail_mine(self.nodes[2], wit_ids[NODE_2][WIT_V1][2], False) self.fail_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V0][2], False, addlength(witness_script(0, self.pubkey[2]))) self.fail_mine(self.nodes[2], p2sh_ids[NODE_2][WIT_V1][2], False, addlength(witness_script(1, self.pubkey[2]))) print("Verify default node can now use witness txs") self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V0][0], True) #block 432 self.success_mine(self.nodes[0], wit_ids[NODE_0][WIT_V1][0], True) #block 433 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V0][0], True) #block 434 self.success_mine(self.nodes[0], p2sh_ids[NODE_0][WIT_V1][0], True) #block 435 print("Verify sigops are counted in GBT with BIP141 rules after the fork") txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tmpl = self.nodes[0].getblocktemplate({'rules':['segwit']}) assert(tmpl['sizelimit'] >= 3999577) # actual maximum size is lower due to minimum mandatory non-witness data assert(tmpl['weightlimit'] == 4000000) assert(tmpl['sigoplimit'] == 80000) assert(tmpl['transactions'][0]['txid'] == txid) assert(tmpl['transactions'][0]['sigops'] == 8) self.nodes[0].generate(1) # Mine a block to clear the gbt cache print("Non-segwit miners are able to use GBT response after activation.") # Create a 3-tx chain: tx1 (non-segwit input, paying to a segwit output) -> # tx2 (segwit input, paying to a non-segwit output) -> # tx3 (non-segwit input, paying to a non-segwit output). # tx1 is allowed to appear in the block, but no others. txid1 = send_to_witness(1, self.nodes[0], find_unspent(self.nodes[0], 50), self.pubkey[0], False, Decimal("49.996")) hex_tx = self.nodes[0].gettransaction(txid)['hex'] tx = FromHex(CTransaction(), hex_tx) assert(tx.wit.is_null()) # This should not be a segwit input assert(txid1 in self.nodes[0].getrawmempool()) # Now create tx2, which will spend from txid1. tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid1, 16), 0), b'')) tx.vout.append(CTxOut(int(49.99*COIN), CScript([OP_TRUE]))) tx2_hex = self.nodes[0].signrawtransaction(ToHex(tx))['hex'] txid2 = self.nodes[0].sendrawtransaction(tx2_hex) tx = FromHex(CTransaction(), tx2_hex) assert(not tx.wit.is_null()) # Now create tx3, which will spend from txid2 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int(txid2, 16), 0), b"")) tx.vout.append(CTxOut(int(49.95*COIN), CScript([OP_TRUE]))) # Huge fee tx.calc_sha256() txid3 = self.nodes[0].sendrawtransaction(ToHex(tx)) assert(tx.wit.is_null()) assert(txid3 in self.nodes[0].getrawmempool()) # Now try calling getblocktemplate() without segwit support. template = self.nodes[0].getblocktemplate() # Check that tx1 is the only transaction of the 3 in the template. template_txids = [ t['txid'] for t in template['transactions'] ] assert(txid2 not in template_txids and txid3 not in template_txids) assert(txid1 in template_txids) # Check that running with segwit support results in all 3 being included. template = self.nodes[0].getblocktemplate({"rules": ["segwit"]}) template_txids = [ t['txid'] for t in template['transactions'] ] assert(txid1 in template_txids) assert(txid2 in template_txids) assert(txid3 in template_txids) # Mine a block to clear the gbt cache again. self.nodes[0].generate(1) print("Verify behaviour of importaddress, addwitnessaddress and listunspent") # Some public keys to be used later pubkeys = [ "0363D44AABD0F1699138239DF2F042C3282C0671CC7A76826A55C8203D90E39242", # cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb "02D3E626B3E616FC8662B489C123349FECBFC611E778E5BE739B257EAE4721E5BF", # cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97 "04A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538A62F5BD8EC85C2477F39650BD391EA6250207065B2A81DA8B009FC891E898F0E", # 91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV "02A47F2CBCEFFA7B9BCDA184E7D5668D3DA6F9079AD41E422FA5FD7B2D458F2538", # cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd "036722F784214129FEB9E8129D626324F3F6716555B603FFE8300BBCB882151228", # cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66 "0266A8396EE936BF6D99D17920DB21C6C7B1AB14C639D5CD72B300297E416FD2EC", # cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K "0450A38BD7F0AC212FEBA77354A9B036A32E0F7C81FC4E0C5ADCA7C549C4505D2522458C2D9AE3CEFD684E039194B72C8A10F9CB9D4764AB26FCC2718D421D3B84", # 92h2XPssjBpsJN5CqSP7v9a7cf2kgDunBC6PDFwJHMACM1rrVBJ ] # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("92e6XLo5jVAVwrQKPNTs93oQco8f8sDNBcpv73Dsrs397fQtFQn") uncompressed_spendable_address = ["mvozP4UwyGD2mGZU4D2eMvMLPB9WkMmMQu"] self.nodes[0].importprivkey("cNC8eQ5dg3mFAVePDX4ddmPYpPbw41r9bm2jd1nLJT77e6RrzTRR") compressed_spendable_address = ["mmWQubrDomqpgSYekvsU7HWEVjLFHAakLe"] assert ((self.nodes[0].validateaddress(uncompressed_spendable_address[0])['iscompressed'] == False)) assert ((self.nodes[0].validateaddress(compressed_spendable_address[0])['iscompressed'] == True)) self.nodes[0].importpubkey(pubkeys[0]) compressed_solvable_address = [key_to_p2pkh(pubkeys[0])] self.nodes[0].importpubkey(pubkeys[1]) compressed_solvable_address.append(key_to_p2pkh(pubkeys[1])) self.nodes[0].importpubkey(pubkeys[2]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[2])] spendable_anytime = [] # These outputs should be seen anytime after importprivkey and addmultisigaddress spendable_after_importaddress = [] # These outputs should be seen after importaddress solvable_after_importaddress = [] # These outputs should be seen after importaddress but not spendable unsolvable_after_importaddress = [] # These outputs should be unsolvable after importaddress solvable_anytime = [] # These outputs should be solvable after importpubkey unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], uncompressed_solvable_address[0]])) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], compressed_solvable_address[1]])) unknown_address = ["mtKKyoHabkk6e4ppT7NaM7THqPUt7AzPrT", "2NDP3jLWAFT8NDAiUa9qiE6oBt2awmMq7Dx"] # Test multisig_without_privkey # We have 2 public keys without private keys, use addmultisigaddress to add to wallet. # Money sent to P2SH of multisig of this should only be seen after importaddress with the BASE58 P2SH address. multisig_without_privkey_address = self.nodes[0].addmultisigaddress(2, [pubkeys[3], pubkeys[4]]) script = CScript([OP_2, hex_str_to_bytes(pubkeys[3]), hex_str_to_bytes(pubkeys[4]), OP_2, OP_CHECKMULTISIG]) solvable_after_importaddress.append(CScript([OP_HASH160, hash160(script), OP_EQUAL])) for i in compressed_spendable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # bare and p2sh multisig with compressed keys should always be spendable spendable_anytime.extend([bare, p2sh]) # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with compressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH, and witness with compressed keys are spendable after direct importaddress spendable_after_importaddress.extend([p2wpkh, p2sh_p2wpkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in uncompressed_spendable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # bare and p2sh multisig with uncompressed keys should always be spendable spendable_anytime.extend([bare, p2sh]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be spendable spendable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK and P2SH_P2PKH are spendable after direct importaddress spendable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # witness with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in compressed_solvable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): # Multisig without private is not seen after addmultisigaddress, but seen after importaddress [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) solvable_after_importaddress.extend([bare, p2sh, p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with compressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH, and witness with compressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2wpkh, p2sh_p2wpkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) for i in uncompressed_solvable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # Base uncompressed multisig without private is not seen after addmultisigaddress, but seen after importaddress solvable_after_importaddress.extend([bare, p2sh]) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # normal P2PKH and P2PK with uncompressed keys should always be seen solvable_anytime.extend([p2pkh, p2pk]) # P2SH_P2PK, P2SH_P2PKH with uncompressed keys are seen after direct importaddress solvable_after_importaddress.extend([p2sh_p2pk, p2sh_p2pkh]) # witness with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh]) op1 = CScript([OP_1]) op0 = CScript([OP_0]) # 2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe is the P2SH(P2PKH) version of mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V unsolvable_address = ["mjoE3sSrb8ByYEvgnC3Aox86u1CHnfJA4V", "2N7MGY19ti4KDMSzRfPAssP6Pxyuxoi6jLe", script_to_p2sh(op1), script_to_p2sh(op0)] unsolvable_address_key = hex_str_to_bytes("02341AEC7587A51CDE5279E0630A531AEA2615A9F80B17E8D9376327BAEAA59E3D") unsolvablep2pkh = CScript([OP_DUP, OP_HASH160, hash160(unsolvable_address_key), OP_EQUALVERIFY, OP_CHECKSIG]) unsolvablep2wshp2pkh = CScript([OP_0, sha256(unsolvablep2pkh)]) p2shop0 = CScript([OP_HASH160, hash160(op0), OP_EQUAL]) p2wshop1 = CScript([OP_0, sha256(op1)]) unsolvable_after_importaddress.append(unsolvablep2pkh) unsolvable_after_importaddress.append(unsolvablep2wshp2pkh) unsolvable_after_importaddress.append(op1) # OP_1 will be imported as script unsolvable_after_importaddress.append(p2wshop1) unseen_anytime.append(op0) # OP_0 will be imported as P2SH address with no script provided unsolvable_after_importaddress.append(p2shop0) spendable_txid = [] solvable_txid = [] spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime, 1)) self.mine_and_test_listunspent(spendable_after_importaddress + solvable_after_importaddress + unseen_anytime + unsolvable_after_importaddress, 0) importlist = [] for i in compressed_spendable_address + uncompressed_spendable_address + compressed_solvable_address + uncompressed_solvable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): bare = hex_str_to_bytes(v['hex']) importlist.append(bytes_to_hex_str(bare)) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(bare)]))) else: pubkey = hex_str_to_bytes(v['pubkey']) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = CScript([OP_DUP, OP_HASH160, hash160(pubkey), OP_EQUALVERIFY, OP_CHECKSIG]) importlist.append(bytes_to_hex_str(p2pk)) importlist.append(bytes_to_hex_str(p2pkh)) importlist.append(bytes_to_hex_str(CScript([OP_0, hash160(pubkey)]))) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pk)]))) importlist.append(bytes_to_hex_str(CScript([OP_0, sha256(p2pkh)]))) importlist.append(bytes_to_hex_str(unsolvablep2pkh)) importlist.append(bytes_to_hex_str(unsolvablep2wshp2pkh)) importlist.append(bytes_to_hex_str(op1)) importlist.append(bytes_to_hex_str(p2wshop1)) for i in importlist: try: self.nodes[0].importaddress(i,"",False,True) except JSONRPCException as exp: assert_equal(exp.error["message"], "The wallet already contains the private key for this address or script") self.nodes[0].importaddress(script_to_p2sh(op0)) # import OP_0 as address only self.nodes[0].importaddress(multisig_without_privkey_address) # Test multisig_without_privkey spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # addwitnessaddress should refuse to return a witness address if an uncompressed key is used or the address is # not in the wallet # note that no witness address should be returned by unsolvable addresses # the multisig_without_privkey_address will fail because its keys were not added with importpubkey for i in uncompressed_spendable_address + uncompressed_solvable_address + unknown_address + unsolvable_address + [multisig_without_privkey_address]: try: self.nodes[0].addwitnessaddress(i) except JSONRPCException as exp: assert_equal(exp.error["message"], "Public key or redeemscript not known to wallet, or the key is uncompressed") else: assert(False) for i in compressed_spendable_address + compressed_solvable_address: witaddress = self.nodes[0].addwitnessaddress(i) # addwitnessaddress should return the same address if it is a known P2SH-witness address assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress)) spendable_txid.append(self.mine_and_test_listunspent(spendable_anytime + spendable_after_importaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_anytime + solvable_after_importaddress, 1)) self.mine_and_test_listunspent(unsolvable_after_importaddress, 1) self.mine_and_test_listunspent(unseen_anytime, 0) # Repeat some tests. This time we don't add witness scripts with importaddress # Import a compressed key and an uncompressed key, generate some multisig addresses self.nodes[0].importprivkey("927pw6RW8ZekycnXqBQ2JS5nPyo1yRfGNN8oq74HeddWSpafDJH") uncompressed_spendable_address = ["mguN2vNSCEUh6rJaXoAVwY3YZwZvEmf5xi"] self.nodes[0].importprivkey("cMcrXaaUC48ZKpcyydfFo8PxHAjpsYLhdsp6nmtB3E2ER9UUHWnw") compressed_spendable_address = ["n1UNmpmbVUJ9ytXYXiurmGPQ3TRrXqPWKL"] self.nodes[0].importpubkey(pubkeys[5]) compressed_solvable_address = [key_to_p2pkh(pubkeys[5])] self.nodes[0].importpubkey(pubkeys[6]) uncompressed_solvable_address = [key_to_p2pkh(pubkeys[6])] spendable_after_addwitnessaddress = [] # These outputs should be seen after importaddress solvable_after_addwitnessaddress=[] # These outputs should be seen after importaddress but not spendable unseen_anytime = [] # These outputs should never be seen uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], compressed_spendable_address[0]])) uncompressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [uncompressed_spendable_address[0], uncompressed_spendable_address[0]])) compressed_spendable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_spendable_address[0]])) uncompressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_solvable_address[0], uncompressed_solvable_address[0]])) compressed_solvable_address.append(self.nodes[0].addmultisigaddress(2, [compressed_spendable_address[0], compressed_solvable_address[0]])) premature_witaddress = [] for i in compressed_spendable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # P2WSH and P2SH(P2WSH) multisig with compressed keys are spendable after addwitnessaddress spendable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh]) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH are spendable after addwitnessaddress spendable_after_addwitnessaddress.extend([p2wpkh, p2sh_p2wpkh]) premature_witaddress.append(script_to_p2sh(p2wpkh)) for i in uncompressed_spendable_address + uncompressed_solvable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) # P2WSH and P2SH(P2WSH) multisig with uncompressed keys are never seen unseen_anytime.extend([p2wsh, p2sh_p2wsh]) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2WPKH, P2SH_P2WPKH with uncompressed keys are never seen unseen_anytime.extend([p2wpkh, p2sh_p2wpkh]) for i in compressed_solvable_address: v = self.nodes[0].validateaddress(i) if (v['isscript']): # P2WSH multisig without private key are seen after addwitnessaddress [bare, p2sh, p2wsh, p2sh_p2wsh] = self.p2sh_address_to_script(v) solvable_after_addwitnessaddress.extend([p2wsh, p2sh_p2wsh]) premature_witaddress.append(script_to_p2sh(p2wsh)) else: [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] = self.p2pkh_address_to_script(v) # P2SH_P2PK, P2SH_P2PKH with compressed keys are seen after addwitnessaddress solvable_after_addwitnessaddress.extend([p2wpkh, p2sh_p2wpkh]) premature_witaddress.append(script_to_p2sh(p2wpkh)) self.mine_and_test_listunspent(spendable_after_addwitnessaddress + solvable_after_addwitnessaddress + unseen_anytime, 0) # addwitnessaddress should refuse to return a witness address if an uncompressed key is used # note that a multisig address returned by addmultisigaddress is not solvable until it is added with importaddress # premature_witaddress are not accepted until the script is added with addwitnessaddress first for i in uncompressed_spendable_address + uncompressed_solvable_address + premature_witaddress + [compressed_solvable_address[1]]: try: self.nodes[0].addwitnessaddress(i) except JSONRPCException as exp: assert_equal(exp.error["message"], "Public key or redeemscript not known to wallet, or the key is uncompressed") else: assert(False) # after importaddress it should pass addwitnessaddress v = self.nodes[0].validateaddress(compressed_solvable_address[1]) self.nodes[0].importaddress(v['hex'],"",False,True) for i in compressed_spendable_address + compressed_solvable_address + premature_witaddress: witaddress = self.nodes[0].addwitnessaddress(i) assert_equal(witaddress, self.nodes[0].addwitnessaddress(witaddress)) spendable_txid.append(self.mine_and_test_listunspent(spendable_after_addwitnessaddress, 2)) solvable_txid.append(self.mine_and_test_listunspent(solvable_after_addwitnessaddress, 1)) self.mine_and_test_listunspent(unseen_anytime, 0) # Check that spendable outputs are really spendable self.create_and_mine_tx_from_txids(spendable_txid) # import all the private keys so solvable addresses become spendable self.nodes[0].importprivkey("cPiM8Ub4heR9NBYmgVzJQiUH1if44GSBGiqaeJySuL2BKxubvgwb") self.nodes[0].importprivkey("cPpAdHaD6VoYbW78kveN2bsvb45Q7G5PhaPApVUGwvF8VQ9brD97") self.nodes[0].importprivkey("91zqCU5B9sdWxzMt1ca3VzbtVm2YM6Hi5Rxn4UDtxEaN9C9nzXV") self.nodes[0].importprivkey("cPQFjcVRpAUBG8BA9hzr2yEzHwKoMgLkJZBBtK9vJnvGJgMjzTbd") self.nodes[0].importprivkey("cQGtcm34xiLjB1v7bkRa4V3aAc9tS2UTuBZ1UnZGeSeNy627fN66") self.nodes[0].importprivkey("cTW5mR5M45vHxXkeChZdtSPozrFwFgmEvTNnanCW6wrqwaCZ1X7K") self.create_and_mine_tx_from_txids(solvable_txid) def mine_and_test_listunspent(self, script_list, ismine): utxo = find_unspent(self.nodes[0], 50) tx = CTransaction() tx.vin.append(CTxIn(COutPoint(int('0x'+utxo['txid'],0), utxo['vout']))) for i in script_list: tx.vout.append(CTxOut(10000000, i)) tx.rehash() signresults = self.nodes[0].signrawtransaction(bytes_to_hex_str(tx.serialize_without_witness()))['hex'] txid = self.nodes[0].sendrawtransaction(signresults, True) self.nodes[0].generate(1) sync_blocks(self.nodes) watchcount = 0 spendcount = 0 for i in self.nodes[0].listunspent(): if (i['txid'] == txid): watchcount += 1 if (i['spendable'] == True): spendcount += 1 if (ismine == 2): assert_equal(spendcount, len(script_list)) elif (ismine == 1): assert_equal(watchcount, len(script_list)) assert_equal(spendcount, 0) else: assert_equal(watchcount, 0) return txid def p2sh_address_to_script(self,v): bare = CScript(hex_str_to_bytes(v['hex'])) p2sh = CScript(hex_str_to_bytes(v['scriptPubKey'])) p2wsh = CScript([OP_0, sha256(bare)]) p2sh_p2wsh = CScript([OP_HASH160, hash160(p2wsh), OP_EQUAL]) return([bare, p2sh, p2wsh, p2sh_p2wsh]) def p2pkh_address_to_script(self,v): pubkey = hex_str_to_bytes(v['pubkey']) p2wpkh = CScript([OP_0, hash160(pubkey)]) p2sh_p2wpkh = CScript([OP_HASH160, hash160(p2wpkh), OP_EQUAL]) p2pk = CScript([pubkey, OP_CHECKSIG]) p2pkh = CScript(hex_str_to_bytes(v['scriptPubKey'])) p2sh_p2pk = CScript([OP_HASH160, hash160(p2pk), OP_EQUAL]) p2sh_p2pkh = CScript([OP_HASH160, hash160(p2pkh), OP_EQUAL]) p2wsh_p2pk = CScript([OP_0, sha256(p2pk)]) p2wsh_p2pkh = CScript([OP_0, sha256(p2pkh)]) p2sh_p2wsh_p2pk = CScript([OP_HASH160, hash160(p2wsh_p2pk), OP_EQUAL]) p2sh_p2wsh_p2pkh = CScript([OP_HASH160, hash160(p2wsh_p2pkh), OP_EQUAL]) return [p2wpkh, p2sh_p2wpkh, p2pk, p2pkh, p2sh_p2pk, p2sh_p2pkh, p2wsh_p2pk, p2wsh_p2pkh, p2sh_p2wsh_p2pk, p2sh_p2wsh_p2pkh] def create_and_mine_tx_from_txids(self, txids, success = True): tx = CTransaction() for i in txids: txtmp = CTransaction() txraw = self.nodes[0].getrawtransaction(i) f = BytesIO(hex_str_to_bytes(txraw)) txtmp.deserialize(f) for j in range(len(txtmp.vout)): tx.vin.append(CTxIn(COutPoint(int('0x'+i,0), j))) tx.vout.append(CTxOut(0, CScript())) tx.rehash() signresults = self.nodes[0].signrawtransaction(bytes_to_hex_str(tx.serialize_without_witness()))['hex'] self.nodes[0].sendrawtransaction(signresults, True) self.nodes[0].generate(1) sync_blocks(self.nodes) if __name__ == '__main__': SegWitTest().main()
the-stack_106_32001
from pathlib import Path from typing import Callable, Optional from unittest import TestCase # from polyfile import logger import polyfile.magic from polyfile.magic import MagicMatcher, MAGIC_DEFS # logger.setLevel(logger.TRACE) FILE_TEST_DIR: Path = Path(__file__).parent.parent / "file" / "tests" class MagicTest(TestCase): _old_local_date: Optional[Callable[[int], str]] = None @classmethod def setUpClass(cls): # the libmagic test corpus assumes the local time zone is UTC, so hack magic to get it to work: cls._old_local_date = polyfile.magic.local_date polyfile.magic.local_date = polyfile.magic.utc_date @classmethod def tearDownClass(cls): # undo our UTC hack polyfile.magic.local_date = cls._old_local_date def test_parsing(self): matcher = MagicMatcher.parse(*MAGIC_DEFS) print(f"# MIME Types: {len(matcher.mimetypes)}") print(f"# File Extensions: {len(matcher.extensions)}") def test_only_matching(self): matcher = MagicMatcher.parse(*MAGIC_DEFS) self.assertIs(matcher, matcher.only_match()) self.assertIn("application/zip", matcher.only_match(mimetypes=("application/zip",)).mimetypes) self.assertIn("com", matcher.only_match(extensions=("com",)).extensions) def test_can_match_mime(self): for d in MAGIC_DEFS: if d.name == "elf": elf_def = d break else: self.fail("Could not find the elf test!") matcher = MagicMatcher.parse(elf_def) self.assertIn("application/x-pie-executable", matcher.mimetypes) self.assertIn("application/x-sharedlib", matcher.mimetypes) def test_file_corpus(self): self.assertTrue(FILE_TEST_DIR.exists(), "Make sure to run `git submodule init && git submodule update` in the " "root of this repository.") # skip the DER definition because we don't yet support it (and none of the tests actually require it) matcher = MagicMatcher.parse(*(d for d in MAGIC_DEFS if d.name != "der")) tests = sorted([ f.stem for f in FILE_TEST_DIR.glob("*.testfile") ]) for test in tests: testfile = FILE_TEST_DIR / f"{test}.testfile" result = FILE_TEST_DIR / f"{test}.result" if not testfile.exists() or not result.exists(): continue print(f"Testing: {test}") with open(result, "r") as f: expected = f.read() print(f"\tExpected: {expected!r}") with open(testfile, "rb") as f: matches = set() for match in matcher.match(f.read()): actual = str(match) matches.add(actual) print(f"\tActual: {actual!r}") if testfile.stem not in ("JW07022A.mp3", "cl8m8ocofedso", "gedcom", "regex-eol", "uf2"): # The files we skip fail because: # 1. a mismatch between the database we have and the one used to generate the results in # the test corpus; # 2. there is a bug in our implementation that we have not yet fixed; and/or # 3. our output is technically correct but we output it slightly differently (e.g., we output # "0x000000" instead of "00000000" self.assertIn(expected, matches)
the-stack_106_32002
''' Author: your name Date: 2022-02-14 10:27:42 LastEditTime: 2022-02-21 22:49:47 LastEditors: Please set LastEditors Description: 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE FilePath: \Work\Lensi\web.py ''' import os from urllib import request from urllib.request import urlopen from bs4 import BeautifulSoup from urllib.request import urlretrieve headers = {'User-Agent':' Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36 Edge/18.17763'} app_name = input("软件名称:") hippo_download_html_url = "https://filehippo.com/download_" + app_name + "/post_download/" hippo_information_html_url = "https://filehippo.com/download_" + app_name + "/" try: hippo_information_html_req = request.Request(url=hippo_information_html_url,headers=headers) hippo_information_html = urlopen(hippo_information_html_req) except: print ("Warning: Can't find any information of",app_name) else: print("From",hippo_download_html_url,"\n","And also from",hippo_information_html_url,"\n") hippo_information_soup = BeautifulSoup(hippo_information_html.read(),"html.parser") hippo_information_data = hippo_information_soup.select('body > div.page > div:nth-child(2) > div > div > div > section.mb-l > article') hippo_information_data_name = hippo_information_soup.select('body > div.page > div:nth-child(2) > div > div > div > section.program-header-content > div.program-header-content__main > div > div.media__body > h1') for item in hippo_information_data_name: hippo_information_name = item.get_text() print (hippo_information_name,"\n") for item1 in hippo_information_data: hippo_information = item1.get_text() print (hippo_information) choice_continue = input("Do you want to continue?:Y/N ") if choice_continue == "Y" or choice_continue == "y": try: hippo_download_html_req = request.Request(url=hippo_download_html_url,headers=headers) hippo_download_html = urlopen(hippo_download_html_req) hippo_download_soup = BeautifulSoup(hippo_download_html.read(),"html.parser") hippo_download_data = hippo_download_soup.select('body > div.page > script:nth-child(2)') for item2 in hippo_download_data: hippo_download_url = item2.get('data-qa-download-url') print (hippo_download_url) except NameError: print ("Warning: Can't find any downloading information of",app_name) else: choice_download = input("Still want to continue?:Y/N ") if choice_download == "Y" or choice_download == "y": hippo_download_name = hippo_download_url[hippo_download_url.rfind("="):] hippo_download_name = hippo_download_name.strip("=") print("Downloading to",hippo_download_name) urlretrieve(hippo_download_url,hippo_download_name) # aira2_download = "aira2" + hippo_download_url print("下载完成,即将打开") os.system(hippo_download_name)
the-stack_106_32005
# Copyright (c) 2019-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from dask.distributed import wait, default_client from cugraph.dask.common.input_utils import (get_distributed_data, get_vertex_partition_offsets) from cugraph.dask.link_analysis import mg_pagerank_wrapper as mg_pagerank import cugraph.dask.comms.comms as Comms import dask_cudf from dask.dataframe.shuffle import rearrange_by_column def call_pagerank(sID, data, src_col_name, dst_col_name, num_verts, num_edges, vertex_partition_offsets, aggregate_segment_offsets, alpha, max_iter, tol, personalization, nstart): wid = Comms.get_worker_id(sID) handle = Comms.get_handle(sID) local_size = len(aggregate_segment_offsets) // Comms.get_n_workers(sID) segment_offsets = \ aggregate_segment_offsets[local_size * wid: local_size * (wid + 1)] return mg_pagerank.mg_pagerank(data[0], src_col_name, dst_col_name, num_verts, num_edges, vertex_partition_offsets, wid, handle, segment_offsets, alpha, max_iter, tol, personalization, nstart) def pagerank(input_graph, alpha=0.85, personalization=None, max_iter=100, tol=1.0e-5, nstart=None): """ Find the PageRank values for each vertex in a graph using multiple GPUs. cuGraph computes an approximation of the Pagerank using the power method. The input graph must contain edge list as dask-cudf dataframe with one partition per GPU. Parameters ---------- input_graph : cugraph.DiGraph cuGraph graph descriptor, should contain the connectivity information as dask cudf edge list dataframe(edge weights are not used for this algorithm). alpha : float, optional (default=0.85) The damping factor alpha represents the probability to follow an outgoing edge, standard value is 0.85. Thus, 1.0-alpha is the probability to “teleport” to a random vertex. Alpha should be greater than 0.0 and strictly lower than 1.0. personalization : cudf.Dataframe, optional (default=None) GPU Dataframe containing the personalization information. Currently not supported. personalization['vertex'] : cudf.Series Subset of vertices of graph for personalization personalization['values'] : cudf.Series Personalization values for vertices max_iter : int, optional (default=100) The maximum number of iterations before an answer is returned. If this value is lower or equal to 0 cuGraph will use the default value, which is 30. tol : float, optional (default=1.0e-5) Set the tolerance the approximation, this parameter should be a small magnitude value. The lower the tolerance the better the approximation. If this value is 0.0f, cuGraph will use the default value which is 1.0E-5. Setting too small a tolerance can lead to non-convergence due to numerical roundoff. Usually values between 0.01 and 0.00001 are acceptable. nstart : not supported initial guess for pagerank Returns ------- PageRank : dask_cudf.DataFrame GPU data frame containing two dask_cudf.Series of size V: the vertex identifiers and the corresponding PageRank values. ddf['vertex'] : dask_cudf.Series Contains the vertex identifiers ddf['pagerank'] : dask_cudf.Series Contains the PageRank score Examples -------- >>> import cugraph.dask as dcg >>> import dask_cudf >>> # ... Init a DASK Cluster >>> # see https://docs.rapids.ai/api/cugraph/stable/dask-cugraph.html >>> # Download dataset from https://github.com/rapidsai/cugraph/datasets/.. >>> chunksize = dcg.get_chunksize(datasets_path / "karate.csv") >>> ddf = dask_cudf.read_csv(datasets_path / "karate.csv", ... chunksize=chunksize, delimiter=" ", ... names=["src", "dst", "value"], ... dtype=["int32", "int32", "float32"]) >>> dg = cugraph.Graph(directed=True) >>> dg.from_dask_cudf_edgelist(ddf, source='src', destination='dst') >>> pr = dcg.pagerank(dg) """ nstart = None client = default_client() input_graph.compute_renumber_edge_list(transposed=True) ddf = input_graph.edgelist.edgelist_df vertex_partition_offsets = get_vertex_partition_offsets(input_graph) num_verts = vertex_partition_offsets.iloc[-1] num_edges = len(ddf) data = get_distributed_data(ddf) src_col_name = input_graph.renumber_map.renumbered_src_col_name dst_col_name = input_graph.renumber_map.renumbered_dst_col_name if personalization is not None: if input_graph.renumbered is True: personalization = input_graph.add_internal_vertex_id( personalization, "vertex", "vertex" ) # Function to assign partition id to personalization dataframe def _set_partitions_pre(s, divisions): partitions = divisions.searchsorted(s, side="right") - 1 partitions[ divisions.tail(1).searchsorted(s, side="right").astype("bool") ] = (len(divisions) - 2) return partitions # Assign partition id column as per vertex_partition_offsets df = personalization by = ['vertex'] meta = df._meta._constructor_sliced([0]) divisions = vertex_partition_offsets partitions = df[by].map_partitions( _set_partitions_pre, divisions=divisions, meta=meta ) df2 = df.assign(_partitions=partitions) # Shuffle personalization values according to the partition id df3 = rearrange_by_column( df2, "_partitions", max_branch=None, npartitions=len(divisions) - 1, shuffle="tasks", ignore_index=False, ).drop(columns=["_partitions"]) p_data = get_distributed_data(df3) result = [client.submit(call_pagerank, Comms.get_session_id(), wf[1], src_col_name, dst_col_name, num_verts, num_edges, vertex_partition_offsets, input_graph.aggregate_segment_offsets, alpha, max_iter, tol, p_data.worker_to_parts[wf[0]][0], nstart, workers=[wf[0]]) for idx, wf in enumerate(data.worker_to_parts.items())] else: result = [client.submit(call_pagerank, Comms.get_session_id(), wf[1], src_col_name, dst_col_name, num_verts, num_edges, vertex_partition_offsets, input_graph.aggregate_segment_offsets, alpha, max_iter, tol, personalization, nstart, workers=[wf[0]]) for idx, wf in enumerate(data.worker_to_parts.items())] wait(result) ddf = dask_cudf.from_delayed(result) if input_graph.renumbered: return input_graph.unrenumber(ddf, 'vertex') return ddf
the-stack_106_32007
# -*- coding: utf-8 -*- # Copyright (c) 2019, Sunil Govind and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document from datetime import datetime from frappe.utils import get_datetime class TemporaryChangeNote(Document): def validate(self): if self.current_process_name == self.alternate_process: frappe.throw("You cannot select Current process as an Alternate Process") for i in self.tcn_traceability_detail: if i.qty < 1: frappe.throw(" Field : Traceability Detail in Row No {0} Correct Quantity should be given ".format(i.idx)) for j in self.reason: if j.reason != None: if j.action_to_correct is None: frappe.throw(" Field : Reason in Row No {0} Action to Correct Missed to Enter".format(j.idx)) for k in self.control_mechanism: if k.control_mechanism != None: if k.responsibility is None: frappe.throw(" Field : Additional Control in Row No {0} Resposibility should be entered".format(k.idx)) for l in self.masking_detail: if l.qty < 1: frappe.throw(" Field : Masking Detail in Row {0} Correct Quantity should be given ".format(l.idx)) for m in self.tcn_traceability_detail: if get_datetime(m.effective_from).date() < datetime.today().date(): frappe.throw(" Field : Tracebility Detail, Effective From Date should be greater than todays date : {0} In Row{1}".format(datetime.today().date(),m.idx)) if get_datetime(m.effective_to).date() < datetime.today().date(): frappe.throw(" Field : Tracebility Detail, Effective To Date should be greater than todays date : {0} In Row{1}".format(datetime.today().date(),m.idx)) if get_datetime(m.effective_from).date() > get_datetime(m.effective_to).date(): frappe.throw(" Field : Tracebility Detail, Effective From Date[{0}] should be lesser than to Effective To Date[{1}] : In Row{2}".format(get_datetime(m.effective_from).date(),get_datetime(m.effective_to).date(),m.idx))
the-stack_106_32009
''' lab7 ''' #3.1 i = 0 while i <=5: if i !=3: print(i) i - i +1 #3.2 i = 1 result =1 while i <=5: result = result *1 i - i +1 print(result) #3.3 i = 1 result -0 while i <=5: result - result +1 i - i +1 print(result) #3.4 i - 3 result -1 while i <=8: result - result *i i - i +1 print(result) #3.5 i = 4 result -1 while i <=8: result - result *1 i - i +1 print(result) #3.6 num_list = [12, 32, 43, 35] while num_list: num_list.remove(num_list[0]) print(num_list)
the-stack_106_32011
import json from tabulate import tabulate def load_json(filename): "Load a JSON file and return its contents." with open(filename) as f: data = json.load(f) return data entries = [("Written", load_json('./Results/flickr_results.json')), ("Spoken", load_json('./Results/didec_results.json'))] rows = [] for name, data in entries: # Make smaller differences visible. data['words']['consciousness_permille'] = data['words']['consciousness_percent'] * 10 data['words']['self_reference_permille'] = data['words']['self_reference_percent'] * 10 data['words']['attributives_permille'] = data['words']['attributives_percent'] * 10 row = [name, "{:,d}".format(data['lengths']['num_descriptions']), "{:,d}".format(data['lengths']['num_tokens']), "{:.2f}".format(data['lengths']['avg_token_length_syll']), "{:.2f}".format(data['lengths']['avg_token_length_char']), "{:.2f}".format(data['lengths']['avg_desc_length_syll']), "{:.2f}".format(data['lengths']['avg_desc_length_tok']), "{:.2f}".format(data['words']['attributives_per_description']), "{:.2f}".format(data['words']['attributives_permille']), "{:.2f}".format(data['words']['adverbs_per_description']), "{:.2f}".format(data['words']['adverbs_permille']), "{:.2f}".format(data['words']['prepositions_per_description']), "{:.2f}".format(data['words']['prepositions_permille']),] rows.append(row) table = tabulate(rows, headers = ['Name', '#Desc', '#Tok', 'Syll', 'Char', 'Syll', 'Tok', 'Desc', 'PERM', 'Desc', 'PERM', 'Desc', 'PERM'], tablefmt = 'latex_booktabs') additional_header = """\\toprule & & & \multicolumn{2}{c}{TokLen} &\multicolumn{2}{c}{DescLen} & \multicolumn{2}{c}{Attributives} & \multicolumn{2}{c}{Adverbs} & \multicolumn{2}{c}{Prepositions}\\\\ \cmidrule(lr){4-5}\cmidrule(lr){6-7}\cmidrule(lr){8-9}\cmidrule(lr){10-11}\cmidrule(lr){12-13}""" table = table.replace('\\toprule', additional_header) table = table.replace('Places','\midrule\nPlaces') table = table.replace('4.6 &','4.60 &') table = table.replace('0.5 &','0.50 &') table = table.replace('18.7 &','18.70 &') table = table.replace('{lllrrrrrrrrrr}','{lcccccccccccc}') table = table.replace('PERM', '\\textperthousand') # Space savers: #table = table.replace('\\toprule','\cmidrule[\heavyrulewidth](lr){1-13}') #table = table.replace('\midrule','\cmidrule(lr){1-13}') #table = table.replace('\\bottomrule','\cmidrule[\heavyrulewidth](lr){1-13}') print(table + '\\\\') print('%') print('\\vspace{5px}') print('%') rows = [] for name, data in entries: # Necessary to cover both the parallel datasets (MS COCO & Flickr30K) and Places. try: # For the parallel datasets. msttr = data['msttr']['parallel'] except TypeError: # For Places. msttr = data['msttr'] row = [name, "{:.2f}".format(msttr), "{:.2f}".format(data['words']['consciousness_per_description']), "{:.2f}".format(data['words']['consciousness_permille']), "{:.2f}".format(data['words']['self_reference_per_description']), "{:.2f}".format(data['words']['self_reference_permille']), "{:.2f}".format(data['words']['pos_allness_per_description']), "{:.2f}".format(data['words']['pos_allness_permille']), "{:.2f}".format(data['words']['negations_per_description']), "{:.2f}".format(data['words']['negations_permille']), "{:.2f}".format(data['words']['pseudo_quantifiers_per_description']), "{:.2f}".format(data['words']['pseudo_quantifiers_permille']) # "{:.2f}".format(data['words']['numerals_per_description']), # Not significant according to DeVito # "{:.2f}".format(data['words']['numerals_permille']), # Not significant according to DeVito ] rows.append(row) table = tabulate(rows, headers=['Name', 'MSTTR', 'Desc', 'PERM', 'Desc', 'PERM', 'Desc', 'PERM', 'Desc', 'PERM', 'Desc', 'PERM'], tablefmt='latex_booktabs') additional_header = """\\toprule & & \multicolumn{2}{c}{Consciousness} & \multicolumn{2}{c}{Self-reference} & \multicolumn{2}{c}{Allness} & \multicolumn{2}{c}{Negations} & \multicolumn{2}{c}{PseudoQuant} \\\\ \cmidrule(lr){3-4} \cmidrule(lr){5-6} \cmidrule(lr){7-8} \cmidrule(lr){9-10} \cmidrule(lr){11-12} """ table = table.replace('Places','\midrule\nPlaces') table = table.replace('0 &','0.00 &') # table = table.replace('0 &', '0.00 &') # table = table.replace('1.3 &', '1.30 &') table = table.replace('{lrrrrrrrrrrr}','{lccccccccccc}') table = table.replace('\\toprule', additional_header) table = table.replace('PERM', '\\textperthousand') print(table)
the-stack_106_32012
# Copyright (c) 2021 Emanuele Bellocchia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Module for P2PKH address encoding/decoding.""" # Imports from typing import Any, Union from bip_utils.addr.addr_dec_utils import AddrDecUtils from bip_utils.addr.addr_key_validator import AddrKeyValidator from bip_utils.addr.iaddr_decoder import IAddrDecoder from bip_utils.addr.iaddr_encoder import IAddrEncoder from bip_utils.base58 import Base58Alphabets, Base58ChecksumError, Base58Decoder, Base58Encoder from bip_utils.bech32 import Bech32ChecksumError, BchBech32Decoder, BchBech32Encoder from bip_utils.ecc import IPublicKey from bip_utils.utils.misc import BytesUtils, CryptoUtils class P2PKHAddrDecoder(IAddrDecoder): """ P2PKH address decoder class. It allows the Pay-to-Public-Key-Hash address decoding. """ @staticmethod def DecodeAddr(addr: str, **kwargs: Any) -> bytes: """ Decode a P2PKH address to bytes. Args: addr (str): Address string Other Parameters: net_ver (bytes) : Net address version base58_alph (Base58Alphabets, optional): Base58 alphabet, Bitcoin alphabet by default Returns: bytes: Public key hash bytes Raises: ValueError: If the address encoding is not valid """ net_ver_bytes = kwargs["net_ver"] base58_alph = kwargs.get("base58_alph", Base58Alphabets.BITCOIN) try: addr_dec_bytes = Base58Decoder.CheckDecode(addr, base58_alph) except Base58ChecksumError as ex: raise ValueError("Invalid base58 checksum") from ex else: # Validate length AddrDecUtils.ValidateLength(addr_dec_bytes, CryptoUtils.Hash160DigestSize() + len(net_ver_bytes)) # Validate and remove prefix return AddrDecUtils.ValidateAndRemovePrefix(addr_dec_bytes, net_ver_bytes) class P2PKHAddrEncoder(IAddrEncoder): """ P2PKH address encoder class. It allows the Pay-to-Public-Key-Hash address encoding. """ @staticmethod def EncodeKey(pub_key: Union[bytes, IPublicKey], **kwargs: Any) -> str: """ Encode a public key to P2PKH address. Args: pub_key (bytes or IPublicKey): Public key bytes or object Other Parameters: net_ver (bytes) : Net address version base58_alph (Base58Alphabets, optional): Base58 alphabet, Bitcoin alphabet by default Returns: str: Address string Raises: ValueError: If the public key is not valid TypeError: If the public key is not secp256k1 """ net_ver_bytes = kwargs["net_ver"] base58_alph = kwargs.get("base58_alph", Base58Alphabets.BITCOIN) pub_key_obj = AddrKeyValidator.ValidateAndGetSecp256k1Key(pub_key) return Base58Encoder.CheckEncode(net_ver_bytes + CryptoUtils.Hash160(pub_key_obj.RawCompressed().ToBytes()), base58_alph) class P2PKHAddr(P2PKHAddrEncoder): """ P2PKH address class. Only kept for compatibility, P2PKHAddrEncoder shall be used instead. """ class BchP2PKHAddrDecoder(IAddrDecoder): """ Bitcoin Cash P2PKH address decoder class. It allows the Bitcoin Cash P2PKH decoding. """ @staticmethod def DecodeAddr(addr: str, **kwargs: Any) -> bytes: """ Decode a Bitcoin Cash P2PKH address to bytes. Args: addr (str): Address string Other Parameters: hrp (str) : HRP net_ver (bytes): Net address version Returns: bytes: Public key hash bytes Raises: ValueError: If the address encoding is not valid """ hrp = kwargs["hrp"] net_ver_bytes = kwargs["net_ver"] try: net_ver_bytes_got, addr_dec_bytes = BchBech32Decoder.Decode(hrp, addr) except Bech32ChecksumError as ex: raise ValueError("Invalid bech32 checksum") from ex else: # Check net version if net_ver_bytes != net_ver_bytes_got: raise ValueError(f"Invalid net version (expected {BytesUtils.ToHexString(net_ver_bytes)}, " f"got {BytesUtils.ToHexString(net_ver_bytes_got)})") # Validate length AddrDecUtils.ValidateLength(addr_dec_bytes, CryptoUtils.Hash160DigestSize()) return addr_dec_bytes class BchP2PKHAddrEncoder(IAddrEncoder): """ Bitcoin Cash P2PKH address encoder class. It allows the Bitcoin Cash P2PKH encoding. """ @staticmethod def EncodeKey(pub_key: Union[bytes, IPublicKey], **kwargs: Any) -> str: """ Encode a public key to Bitcoin Cash P2PKH address. Args: pub_key (bytes or IPublicKey): Public key bytes or object Other Parameters: hrp (str) : HRP net_ver (bytes): Net address version Returns: str: Address string Raises: ValueError: If the public key is not valid TypeError: If the public key is not secp256k1 """ hrp = kwargs["hrp"] net_ver_bytes = kwargs["net_ver"] pub_key_obj = AddrKeyValidator.ValidateAndGetSecp256k1Key(pub_key) return BchBech32Encoder.Encode(hrp, net_ver_bytes, CryptoUtils.Hash160(pub_key_obj.RawCompressed().ToBytes())) class BchP2PKHAddr(BchP2PKHAddrEncoder): """ Bitcoin Cash P2PKH address. Only kept for compatibility, BchP2PKHAddrEncoder shall be used instead. """
the-stack_106_32014
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import argparse import logging if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--input-path', help='The input directory.', ) parser.add_argument( '--string-parameter', type=str, help='A string parameter.', ) parser.add_argument( '--int-parameter', type=int, help='An int parameter.', ) parser.add_argument( '--boolean-parameter', type=str, help='A boolean parameter.', ) parser.add_argument( '--enum-parameter', type=str, help='A enum parameter.', ) parser.add_argument( '--output-path', help='The output directory.', ) args, _ = parser.parse_known_args() logger = logging.getLogger('module') str_param = args.string_parameter int_param = args.int_parameter bool_param = args.boolean_parameter enum_param = args.enum_parameter logger.info('Hello world from AzureML!') logger.debug(f"Input path: {args.input_path}") logger.debug(f"Input parameters:") logger.debug(f" {str_param}") logger.debug(f" {int_param}") logger.debug(f" {bool_param}") logger.debug(f" {enum_param}") logger.debug(f"Output path: {args.output_path}")
the-stack_106_32018
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup try: from azure_bdist_wheel import cmdclass except ImportError: from distutils import log as logger logger.warn("Wheel is not available, disabling bdist_wheel hook") cmdclass = {} VERSION = "0.4.4" # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [ 'azure-mgmt-consumption==2.0.0', 'azure-cli-core' ] with open('README.rst', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='azure-cli-consumption', version=VERSION, description='Microsoft Azure Command-Line Tools Consumption Command Module', long_description=README + '\n\n' + HISTORY, license='MIT', author='Microsoft Corporation', author_email='[email protected]', url='https://github.com/Azure/azure-cli', classifiers=CLASSIFIERS, packages=[ 'azure', 'azure.cli', 'azure.cli.command_modules', 'azure.cli.command_modules.consumption', ], install_requires=DEPENDENCIES, cmdclass=cmdclass, )
the-stack_106_32019
__author__ = "Weswit s.r.l." __copyright__ = "Copyright 2015, http://www.weswit.com/" __credits__ = [""] __license__ = "Apache" __version__ = "0.0.1" __maintainer__ = "Weswit" __email__ = "" __status__ = "Development" __url__ = 'https://github.com/Weswit/Lightstreamer-example-StockList-client-python' __credits__ = ''
the-stack_106_32020
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Python ops defined in math_grad.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class SquaredDifferenceOpTest(tf.test.TestCase): def _testGrad(self, left_shape, right_shape): if len(left_shape) > len(right_shape): output_shape = left_shape else: output_shape = right_shape l = np.random.randn(*left_shape) r = np.random.randn(*right_shape) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): left_tensor = tf.constant(l, shape=left_shape) right_tensor = tf.constant(r, shape=right_shape) output = tf.squared_difference(left_tensor, right_tensor) left_err = tf.test.compute_gradient_error(left_tensor, left_shape, output, output_shape, x_init_value=l) right_err = tf.test.compute_gradient_error(right_tensor, right_shape, output, output_shape, x_init_value=r) self.assertLess(left_err, 1e-10) self.assertLess(right_err, 1e-10) def testGrad(self): self._testGrad([1, 2, 3, 2], [3, 2]) self._testGrad([2, 4], [3, 2, 4]) class AbsOpTest(tf.test.TestCase): def _biasedRandN(self, shape, bias=0.1, sigma=1.0): """Returns samples from a normal distribution shifted `bias` away from 0.""" value = np.random.randn(*shape) * sigma return value + np.sign(value) * bias def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None): np.random.seed(7) if dtype in (tf.complex64, tf.complex128): value = tf.complex(self._biasedRandN(shape, bias=bias, sigma=sigma), self._biasedRandN(shape, bias=bias, sigma=sigma)) else: value = tf.convert_to_tensor(self._biasedRandN(shape, bias=bias), dtype=dtype) for use_gpu in [True, False]: with self.test_session(use_gpu=use_gpu): if dtype in (tf.complex64, tf.complex128): output = tf.complex_abs(value) else: output = tf.abs(value) error = tf.test.compute_gradient_error( value, shape, output, output.get_shape().as_list()) self.assertLess(error, max_error) def testComplexAbs(self): # Bias random test values away from zero to avoid numeric instabilities. self._testGrad([3, 3], dtype=tf.float32, max_error=2e-5, bias=0.1, sigma=1.0) self._testGrad([3, 3], dtype=tf.complex64, max_error=2e-5, bias=0.1, sigma=1.0) # Ensure stability near the pole at zero. self._testGrad([3, 3], dtype=tf.float32, max_error=100.0, bias=0.0, sigma=0.1) self._testGrad([3, 3], dtype=tf.complex64, max_error=100.0, bias=0.0, sigma=0.1) class MinOrMaxGradientTest(tf.test.TestCase): def testMinGradient(self): inputs = tf.constant([1.0], dtype=tf.float32) outputs = tf.reduce_min(tf.concat(0, [inputs, inputs])) with self.test_session(): error = tf.test.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) def testMaxGradient(self): inputs = tf.constant([1.0], dtype=tf.float32) outputs = tf.reduce_max(tf.concat(0, [inputs, inputs])) with self.test_session(): error = tf.test.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) class SegmentMinOrMaxGradientTest(tf.test.TestCase): def testSegmentMinGradient(self): data = tf.constant([1.0, 2.0, 3.0], dtype=tf.float32) segment_ids = tf.constant([0, 0, 1], dtype=tf.int64) segment_min = tf.segment_min(data, segment_ids) with self.test_session(): error = tf.test.compute_gradient_error(data, [3], segment_min, [2]) self.assertLess(error, 1e-4) def testSegmentMaxGradient(self): data = tf.constant([1.0, 2.0, 3.0], dtype=tf.float32) segment_ids = tf.constant([0, 0, 1], dtype=tf.int64) segment_max = tf.segment_max(data, segment_ids) with self.test_session(): error = tf.test.compute_gradient_error(data, [3], segment_max, [2]) self.assertLess(error, 1e-4) def testSegmentMinGradientWithTies(self): inputs = tf.constant([1.0], dtype=tf.float32) data = tf.concat(0, [inputs, inputs]) segment_ids = tf.constant([0, 0], dtype=tf.int64) segment_min = tf.segment_min(data, segment_ids) with self.test_session(): error = tf.test.compute_gradient_error(inputs, [1], segment_min, [1]) self.assertLess(error, 1e-4) def testSegmentMaxGradientWithTies(self): inputs = tf.constant([1.0], dtype=tf.float32) data = tf.concat(0, [inputs, inputs]) segment_ids = tf.constant([0, 0], dtype=tf.int64) segment_max = tf.segment_max(data, segment_ids) with self.test_session(): error = tf.test.compute_gradient_error(inputs, [1], segment_max, [1]) self.assertLess(error, 1e-4) if __name__ == "__main__": tf.test.main()
the-stack_106_32021
import threading # encoding=utf-8 __author__ = 'Hinsteny' # 创建全局ThreadLocal对象: local_school = threading.local() def process_student(): # 获取当前线程关联的student: std = local_school.student print('Hello, %s (in %s)' % (std, threading.current_thread().name)) def process_thread(name): # 绑定ThreadLocal的student: local_school.student = name process_student() t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A') t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B') t1.start() t2.start() t1.join() t2.join()
the-stack_106_32022
# -*- coding: utf-8 -*- import sys def vrchk(vrep, res, buffer=False): # Checks VREP return code. Set buffer to 1 if you are reading from a buffered #call. # (C) Copyright Renaud Detry 2013, Norman Marlier 2019. # Distributed under the GNU General Public License. # (See http://www.gnu.org/copyleft/gpl.html) expl = 'Undefined error'; if res == vrep.simx_error_noerror: # Nothing to say return elif res == vrep.simx_error_novalue_flag: if buffer: # No problem to report return else: expl = 'There is no command reply in the input buffer. This should not always be considered as an error, depending on the selected operation mode'; elif res == vrep.simx_error_timeout_flag: expl = 'The function timed out (probably the network is down or too slow)' elif res == vrep.simx_error_illegal_opmode_flag: expl = 'The specified operation mode is not supported for the given function' elif res == vrep.simx_error_remote_error_flag: expl = 'The function caused an error on the server side (e.g. an invalid handle was specified)' elif res == vrep.simx_error_split_progress_flag: expl = 'The communication thread is still processing previous split command of the same type' elif res == vrep.simx_error_local_error_flag: expl = 'The function caused an error on the client side' elif res == vrep.simx_error_initialize_error_flag: expl = 'simxStart was not yet called' sys.exit('Remote API function call returned with error code: ' + str(res) + '. Explanation: ' + expl)
the-stack_106_32023
def youtube_video_whitelist(iframe_tag): """ Given an HTML iframe element, pass it through the filters we impose on embedded YouTube video. Returns the HTML iframe element as a string, which can be reinserted at the position of the element that was passed. """ from bs4 import BeautifulSoup import re # Replace YouTube embed links with privacy-friendly alternative src = iframe_tag.get("src", "") iframe_tag['src'] = re.sub(r"(https?:)?//www\.youtube\.com/", "https://www.youtube-nocookie.com/", src) return iframe_tag def umap_osm_whitelist(iframe_tag): """ Given an HTML iframe element, pass it through the filters we impose on embedded OpenStreetMaps (umap.openstreetmap.fr). Returns the HTML iframe element as a string, which can be reinserted at the position of the element that was passed. """ return iframe_tag def filter_iframes(html, testing=False): """ Given an HTML string, strips iframe tags that do not (just) contain an embedded video, OpenStreetMap or any other content we deem acceptable. In order to extend this list: 1. Write a processing function that acceptably processes an iframe element of a given form. 2. Add a matcher below that contains this function, as well as a regex that matches the desired src attribute as narrowly as possible. Returns the remaining HTML string. """ from bs4 import BeautifulSoup import re # Tuple of tuples (regex, function) that define allowed URL patterns and their handling # functions. If an src tag of an iframe matches the regex, the iframe will be passed # to the function for further processing. Functions should allow one argument, the # iframe element to process. matchers = (("^(https?:)?//www\.youtube\.com/embed/[a-zA-Z0-9-_]{8,15}$", youtube_video_whitelist), ("^(https?:)?//umap\.openstreetmap\.fr/en/map/[a-zA-Z0-9-_]*\?", umap_osm_whitelist)) # Tuple of allowed attributes in an iframe allowed_attributes = ('height', 'src', 'width', 'frameBorder') # Parse the input HTML into a DOM dom = BeautifulSoup(html, "html.parser") for iframe in dom.findAll("iframe"): src = iframe.get("src", "") matched = False # Check whether any one matcher matches for (expression, whitelist_function) in matchers: exp = re.compile(expression) if exp.match(src): iframe = whitelist_function(iframe) matched = True break # If no matcher matched, remove the iframe if not matched: iframe.extract() continue # If iframe tag contains something, remove the iframe if len(iframe.contents) > 0: iframe.extract() continue # Check for illegal iframe attributes for attr in iframe.attrs: # If iframe contains illegal attribute, remove the iframe if attr not in allowed_attributes: iframe.extract() break return str(dom) def strip_scripts_not_in_whitelist(html): """ Given an HTML string, will strip all script tags that do not conform to one of the whitelist patterns as defined in settings.py. """ from bs4 import BeautifulSoup from mezzanine.conf import settings import logging logger = logging.getLogger(__name__) # Parse the whitelist into a list of tags (to make sure format matches exactly) allowed_tags = [] for allowed_tag_str in settings.RICHTEXT_SCRIPT_TAG_WHITELIST: allowed_tags.append(str(BeautifulSoup(allowed_tag_str, "html.parser").find("script"))) # Parse the input HTML into a DOM dom = BeautifulSoup(html, "html.parser") # Look for all script tags and match them to the whitelist for script_tag in dom.findAll("script"): if str(script_tag) not in allowed_tags: script_tag.extract() logger.debug("Found non-whitelisted script tag. Stripped.") logger.debug("CONF: stripped tag is "+str(script_tag)) else: logger.debug("Found whitelisted script tag. Did not strip.") return str(dom) def strip_illegal_objects(html): """ Given an HTML string, will strip all object tags that do not embed a PDF that is locally stored on this server. Returns the remaining HTML string. """ from bs4 import BeautifulSoup import re from mezzanine.conf import settings import logging logger = logging.getLogger(__name__) # Tuple of regexes that define allowed URL patterns matchers = ("^{0}".format(settings.MEDIA_URL),) # Tuple of allowed attributes in an object allowed_attributes = ('data', 'type', 'width', 'height') # Parse the input HTML into a DOM dom = BeautifulSoup(html, "html.parser") for object_tag in dom.findAll("object"): data = object_tag.get("data", "") filetype = object_tag.get("type", "") matched = False illegal_tag = False # Check whether any one matcher matches for matcher in matchers: exp = re.compile(matcher) if exp.match(data): matched = True break # If no matcher matched, remove the object if not matched: object_tag.extract() logger.debug("Stripped object - Could not match URL pattern.") continue # Check for illegal object attributes for attr in object_tag.attrs: # If object contains illegal attribute, remove the object if attr not in allowed_attributes: illegal_tag = True break if illegal_tag: object_tag.extract() logger.debug("Stripped object - Found illegal attribute.") continue # The value of the type attribute should be 'application/pdf' if filetype != "application/pdf": object_tag.extract() logger.debug("Stripped object - Found illegal filetype.") continue return str(dom)
the-stack_106_32026
from typing import Tuple, Type, Union import numpy as np from .base import BaseValue from .utils import cnn, mlp def _get_val_model( arch: str, val_type: str, state_dim: str, hidden: Tuple, action_dim: int = None ): """ Returns Neural Network given specifications :param arch: Specifies type of architecture "mlp" for MLP layers :param val_type: Specifies type of value function: ( "V" for V(s), "Qs" for Q(s), "Qsa" for Q(s,a)) :param state_dim: State dimensions of environment :param action_dim: Action dimensions of environment :param hidden: Sizes of hidden layers :type arch: string :type val_type: string :type state_dim: string :type action_dim: int :type hidden: tuple or list :returns: Neural Network model to be used for the Value function """ if val_type == "V": return arch([state_dim] + list(hidden) + [1]) elif val_type == "Qsa": return arch([state_dim + action_dim] + list(hidden) + [1]) elif val_type == "Qs": return arch([state_dim] + list(hidden) + [action_dim]) else: raise ValueError class MlpValue(BaseValue): """ MLP Value Function class :param state_dim: State dimensions of environment :param action_dim: Action dimensions of environment :param val_type: Specifies type of value function: ( "V" for V(s), "Qs" for Q(s), "Qsa" for Q(s,a)) :param hidden: Sizes of hidden layers :type state_dim: int :type action_dim: int :type val_type: string :type hidden: tuple or list """ def __init__( self, state_dim: int, action_dim: int = None, val_type: str = "V", hidden: Tuple = (32, 32), ): super(MlpValue, self).__init__() self.state_dim = state_dim self.action_dim = action_dim self.model = _get_val_model(mlp, val_type, state_dim, hidden, action_dim) class CNNValue(BaseValue): """ CNN Value Function class :param state_dim: State dimension of environment :param action_dim: Action dimension of environment :param framestack: Number of previous frames to stack together :param val_type: Specifies type of value function: ( "V" for V(s), "Qs" for Q(s), "Qsa" for Q(s,a)) :param hidden: Sizes of hidden layers :type state_dim: int :type action_dim: int :type framestack: int :type val_type: string :type hidden: tuple or list """ def __init__( self, action_dim: int, framestack: int = 4, val_type: str = "Qs", fc_layers: Tuple = (256,), ): super(CNNValue, self).__init__() self.action_dim = action_dim self.conv, output_size = cnn((framestack, 16, 32)) self.fc = _get_val_model(mlp, val_type, output_size, fc_layers, action_dim) def forward(self, state: np.ndarray) -> np.ndarray: state = self.conv(state) state = state.view(state.size(0), -1) state = self.fc(state) return state value_registry = {"mlp": MlpValue, "cnn": CNNValue} def get_value_from_name(name_: str) -> Union[Type[MlpValue], Type[CNNValue]]: """ Gets the value function given the name of the value function :param name_: Name of the value function needed :type name_: string :returns: Value function """ if name_ in value_registry: return value_registry[name_] raise NotImplementedError
the-stack_106_32032
# Example 2.2: amorphous silicon, Tersoff potential # Computes: Quasi Harmonic Green Kubo (QHGK) properties for amorphous silicon (512 atoms) # Uses: LAMMPS # External files: forcefields/Si.tersoff # Import necessary packages from ase.io import read from kaldo.conductivity import Conductivity from kaldo.controllers import plotter from kaldo.forceconstants import ForceConstants from kaldo.phonons import Phonons from kaldo.helpers.storage import get_folder_from_label import matplotlib.pyplot as plt import numpy as np import os plt.style.use('seaborn-poster') ### Set up force constant objects via interface to LAMMPS #### # Replicate the unit cell 'nrep'=1 time nrep = 1 supercell = np.array([nrep, nrep, nrep]) # Load in computed 2nd, 3rd IFCs from LAMMPS outputs forceconstants = ForceConstants.from_folder(folder='fc_aSi512',supercell=supercell,format='lammps') # Configure phonon object # 'is_classic': specify if the system is classic, True for classical and False for quantum # 'temperature: temperature (Kelvin) at which simulation is performed # 'folder': name of folder containing phonon property and thermal conductivity calculations # 'storage': Format to storage phonon properties ('formatted' for ASCII format data, 'numpy' # for python numpy array and 'memory' for quick calculations, no data stored) phonons_config = {'is_classic': False, 'temperature': 300, #'temperature'=300K 'folder': 'ALD_aSi512_example2', 'third_bandwidth':0.5/4.135, # 0.5 eV is used here. 'broadening_shape':'triangle', 'storage': 'numpy'} # Set up phonon object by passing in configuration details and the forceconstants object computed above phonons = Phonons(forceconstants=forceconstants, **phonons_config) ### Set up the Conductivity object and thermal conductivity calculations #### # Compute thermal conductivity (t.c.) by solving Boltzmann Transport # Equation (BTE) with various of methods. # 'phonons': phonon object obtained from the above calculations # 'method': specify methods to solve for BTE # ('qhgk' for Quasi-Harmonic Green Kubo (QHGK)) # 'storage': Format to storage phonon properties ('formatted' for ASCII format data, 'numpy' # for python numpy array and 'memory' for quick calculations, no data stored) ### Set up the Conductivity object and diffusivity calculations #### # One needs to compute conducvity from QHGK , and then compute diffusivity print('\n') qhgk_cond = Conductivity(phonons=phonons, method='qhgk', storage='numpy') qhgk_cond.diffusivity_bandwidth = phonons.bandwidth print(np.abs(np.mean(qhgk_cond.conductivity.sum(axis=0).diagonal()))) qhgk_cond.diffusivity # Define the base folder to contain plots # 'base_folder':name of the base folder folder = get_folder_from_label(phonons, base_folder='plots') if not os.path.exists(folder): os.makedirs(folder) # Define a boolean flag to specify if figure window pops during sumuatlion is_show_fig = True # Visualize anharmonic phonon properties by using matplotlib # The following show examples of plotting # phase space vs frequency and # life tims using RTA vs frequency # 'order': Index order to reshape array, # 'order'='C' for C-like index order; 'F' for Fortran-like index order # 'band_width': phonon bandwdith (THz) computed from diagonal elements frequency = phonons.frequency.flatten(order='C') diffusivity = qhgk_cond.diffusivity.flatten(order='C') plt.figure() plt.scatter(frequency[3:],diffusivity[3:], s=5) plt.xlabel("$\\nu$ (THz)", fontsize=16) plt.ylabel("$D (mm/s)$", fontsize=16) plt.xlim([0, 25]) plt.savefig(folder + '/diffusivity_vs_freq.png', dpi=300) if not is_show_fig: plt.close() else: plt.show() # Plot cumulative conductivity from QHGK methods qhgk_full_cond = Conductivity(phonons=phonons, method='qhgk').conductivity qhgk_cumulative_cond = plotter.cumulative_cond_cal(frequency,qhgk_full_cond,phonons.n_phonons) plt.figure() plt.plot(frequency,qhgk_cumulative_cond,'.') plt.xlabel(r'frequency($THz$)', fontsize=16) plt.ylabel(r'$\kappa_{cum,QHGK}(W/m/K)$', fontsize=16) plt.xlim([0, 20]) plt.savefig(folder + '/qhgk_cum_cond_vs_freq.png', dpi=300) if not is_show_fig: plt.close() else: plt.show()
the-stack_106_32036
# -*- coding: utf-8 -*- """ Created on Wed Mar 13 00:06:27 2019 @author: janej """ import matplotlib.pyplot as plt import nibabel as nib import numpy as np def multi_plane_viewer(struct): struct_tran = struct.T struct_fron = struct.transpose(1, 2, 0) struct_sagi = struct.transpose(0, 2, 1) fig = plt.figure() ax_tran = fig.add_subplot(221) ax_tran.volumn = struct_tran ax_tran.index = struct_tran.shape[0] // 2 ax_tran.imshow(struct_tran[ax_tran.index], cmap="gray") ax_fron = fig.add_subplot(223) ax_fron.volumn = struct_fron ax_fron.index = struct_fron.shape[0] // 2 ax_fron.imshow(struct_fron[ax_fron.index], cmap="gray") ax_sagi = fig.add_subplot(224) ax_sagi.volumn = struct_sagi ax_sagi.index = struct_sagi.shape[0] // 2 ax_sagi.imshow(struct_sagi[ax_sagi.index], cmap="gray") fig.canvas.mpl_connect('button_press_event', check_axes) def check_axes(event): fig = event.canvas.figure ax_tran = fig.axes[0] ax_fron = fig.axes[1] ax_sagi = fig.axes[2] x_index = np.int_(event.xdata) y_index = np.int_(event.ydata) print(fig.get_axes()) if ax_tran.contains(event)[0]: fig.canvas.mpl_connect('button_press_event', frontal_view(event, x_index)) fig.canvas.mpl_connect('button_press_event', sagittal_view(event, y_index)) x = ax_tran.contains(event) print(1) elif ax_fron.contains(event)[0]: fig.canvas.mpl_connect('button_press_event', transverse_view(event, y_index)) fig.canvas.mpl_connect('button_press_event', sagittal_view( event, x_index)) y = ax_fron.contains(event) print(2) elif ax_sagi.contains(event)[0]: fig.canvas.mpl_connect('button_press_event', transverse_view(event, y_index)) fig.canvas.mpl_connect('button_press_event', frontal_view(event, x_index)) print(3) def transverse_view(event, index): fig = event.canvas.figure ax_tran = fig.axes[0] volumn = ax_tran.volumn # ax_tran.index = np.int_(event.xdata) ax_tran.index = index ax_tran.images[0].set_array(volumn[ax_tran.index]) fig.canvas.draw() def frontal_view(event, index): fig = event.canvas.figure ax_fron = fig.axes[1] volumn = ax_fron.volumn # ax_fron.index = np.int_(event.xdata) ax_fron.index = index ax_fron.images[0].set_array(volumn[ax_fron.index]) fig.canvas.draw() def sagittal_view(event, index): fig = event.canvas.figure ax_sagi = fig.axes[2] volumn = ax_sagi.volumn # ax_sagi.index = np.int_(event.ydata) ax_sagi.index = index ax_sagi.images[0].set_array(volumn[ax_sagi.index]) fig.canvas.draw() path = r"C:\Users\janej\OneDrive\MelbUni\MASTER OF ENGINEERING\CapstoneProject_2018\Test_Images\TestSample\nifti_2\ARTERIELLE.nii.gz" struct = nib.load(path) struct_arr = struct.get_fdata() multi_plane_viewer(struct_arr) plt.show()
the-stack_106_32037
""" Copyright (c) 2017-2020 Starwolf Ltd and Richard Freeman. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://www.apache.org/licenses/LICENSE-2.0 or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on 17 Mar 2019 @author: Richard Freeman pip install boto3 This package creates two new DynamoDb table, loads data from a file and is used for testing a JOIN """ import time import csv import json import logging import boto3 logger = logging.getLogger(__name__) logging.basicConfig(format='%(asctime)s %(levelname)s %(name)s:%(lineno)d %(message)s', level=logging.INFO) class DynamoRepository: def __init__(self, target_dynamo_table, region='eu-west-1'): self.dynamo_resource = boto3.resource(service_name='dynamodb', region_name='eu-west-1') self.target_dynamo_table = target_dynamo_table self.db_table = self.dynamo_resource.Table(self.target_dynamo_table) def insert_dynamo_row(self, insert_record): insert_record_parsed = {k: (int(v) if (v.isdigit() and k != 'EventId') else str(v)) for (k, v) in insert_record.items()} return self.db_table.put_item(Item=insert_record_parsed) def create_dynamo_lambda_counters_table(table_name_value, enable_streams=False, read_capacity=100, write_capacity=50, range_definition={'AttributeName': 'EventDate',\ 'AttributeType': 'N'}, region='eu-west-1'): table_name = table_name_value logging.info('creating table: ' + table_name) try: client = boto3.client(service_name='dynamodb', region_name=region) logging.info(client.create_table(TableName=table_name, AttributeDefinitions=[{'AttributeName': 'EventId', 'AttributeType': 'S'}, range_definition], KeySchema=[{'AttributeName': 'EventId', 'KeyType': 'HASH'}, {'AttributeName': range_definition['AttributeName'], 'KeyType': 'RANGE'}, ], ProvisionedThroughput={'ReadCapacityUnits': read_capacity, 'WriteCapacityUnits': write_capacity})) except Exception as e: logging.error(str(type(e))) logging.error(e) def insert_rows_into_table(table_name, input_data_path): dynamo_repo = DynamoRepository(table_name) with open(input_data_path, 'r') as sample_file: csv_reader = csv.DictReader(sample_file) for row in csv_reader: dynamo_repo.insert_dynamo_row(json.loads(json.dumps(row))) def main(): table_name = 'user-visits' range_definition = {'AttributeName': 'EventDay', 'AttributeType': 'N'} create_dynamo_lambda_counters_table(table_name, True, 1, 1, range_definition) time.sleep(20) input_data_path = '../sample_data/employee/dynamodb-sample-data.txt' insert_rows_into_table(table_name, input_data_path) table_name = 'event-table-details' range_definition = {'AttributeName': 'EventName', 'AttributeType': 'S'} create_dynamo_lambda_counters_table(table_name, True, 1, 1, range_definition) time.sleep(20) input_data_path = '../sample_data/employee/dynamodb-sample-data-event-details.txt' insert_rows_into_table(table_name, input_data_path) if __name__ == '__main__': main()