filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_26230
""" yxf: Convert from XLSForm to YAML and back. To convert an XLSForm to a YAML file: `python -m yxf form.xlsx`. By default, the result will be called `form.yaml`, in other words, the same name as the input file with the extension changed to `.yaml`. You can specify a different output file name using the `--output othername.yaml` option. To convert a YAML file to an XLSForm: `python -m yxf form.yaml`. """ import argparse import collections import logging import pathlib import re import markdown_it import markdown_it.tree import openpyxl import openpyxl.styles import openpyxl.utils import strictyaml from . import xlsform log = logging.getLogger("yxf.__main__") def _row_to_dict(headers, values): row_dict = collections.OrderedDict() for h, v in zip(headers, values): if v is None: continue if h is None: raise ValueError(f"Cell with no column header: {v}") row_dict[h] = v return row_dict def _convert_sheet(sheet): headers = xlsform.headers(sheet) result = [] for row in xlsform.content_rows(sheet, values_only=True): values = xlsform.truncate_row(row) values = [xlsform.stringify_value(v) for v in values] row_dict = _row_to_dict(headers, values) if row_dict: result.append(row_dict) return result def _convert_to_sheet(sheet, rows, keys): key_set = set(keys) for i, key in enumerate(keys): sheet.cell(row=1, column=i + 1, value=key) next_row = 2 previous_list_name = rows[0].get("list_name") if rows else None for row in rows: if row.get("type") == "begin_group": next_row += 1 if row.get("list_name") != previous_list_name: previous_list_name = row.get("list_name") next_row += 1 if not all(k in key_set for k in row.keys()): missing_key = next(k for k in row.keys() if k not in key_set) raise ValueError( f'Invalid key "{missing_key}" in row "{row.get("name", "(unnamed)")}". ' f"Add it to yxf.headers.{sheet.title} in the YAML file." ) for i, key in enumerate(keys): if key in row: sheet.cell(row=next_row, column=i + 1, value=row[key]) next_row += 1 return sheet def _write_to_xlsform(form, target): wb = openpyxl.Workbook() for sheet_name in form: if sheet_name == "yxf": continue _convert_to_sheet( wb.create_sheet(sheet_name), form[sheet_name], form["yxf"]["headers"][sheet_name], ) wb.remove(wb.active) xlsform.make_pretty(wb) wb.save(target) def _check_existing_output(filename, force): if filename.exists() and not force: raise ValueError(f"File already exists (use --force to override): {filename}") def _ensure_yxf_comment(form, name, file_format): desired_comment = f"Converted by yxf, from {name}. Edit the {file_format} file instead of the Excel file." first_line = form["survey"][0] if "#" not in first_line or not first_line["#"].startswith("Converted by yxf,"): form["survey"].insert(0, {"#": desired_comment}) else: form["survey"][0]["#"] = desired_comment if "#" not in form["yxf"]["headers"]["survey"]: form["yxf"]["headers"]["survey"].insert(0, "#") def _validate_sheet_name(sheet_name, filename, line): if sheet_name not in ["survey", "choices", "settings"]: raise ValueError( f"{filename}:{line}: Invalid sheet name (must be survey, choices, or settings): {sheet_name}" ) def _load_workbook(filename): wb = openpyxl.load_workbook(filename, read_only=True) result = collections.OrderedDict() headers = collections.OrderedDict() for sheet_name in ["survey", "choices", "settings"]: if sheet_name in wb: result[sheet_name] = _convert_sheet(wb[sheet_name]) headers[sheet_name] = xlsform.headers(wb[sheet_name]) if headers[sheet_name] and headers[sheet_name][0] != "#": if "#" in headers[sheet_name]: raise ValueError( f"The comment column must come first in sheet {sheet_name}." ) if "survey" not in result: raise ValueError('An XLSForm must have a "survey" sheet.') result["yxf"] = {"headers": headers} return result def xlsform_to_yaml(filename: pathlib.Path, target: pathlib.Path): """Convert XLSForm file `filename` to YAML file `target`.""" log.info("xlsform_to_yaml: %s -> %s", filename, target) form = _load_workbook(filename) _ensure_yxf_comment(form, filename.name, "YAML") with open(target, "w", encoding="utf-8") as f: f.write(strictyaml.as_document(form).as_yaml()) def xlsform_to_markdown(filename: pathlib.Path, target: pathlib.Path): """Convert XLSForm file `filename` to Markdown file `target`.""" log.info("xlsform_to_markdown: %s -> %s", filename, target) form = _load_workbook(filename) _ensure_yxf_comment(form, filename.name, "Markdown") md = [] for sheet_name in ["survey", "choices", "settings"]: if sheet_name not in form: continue md.append(f"## {sheet_name}") md.append("") sheet = form[sheet_name] headers = form["yxf"]["headers"][sheet_name] header_indices = dict(zip(headers, range(len(headers)))) # Before we render the table, look for comments and render those. # We simply put them as paragraphs in the Markdown file. for row in sheet: if "#" in row: if row["#"]: md.append(row["#"]) md.append("") del row["#"] if headers[0] == "#": headers.pop(0) del header_indices["#"] header_indices = {k: v - 1 for (k, v) in header_indices.items()} for i, row in enumerate(sheet): for k, v in row.items(): # Markdown does not support multi-line entries in cells. Check # and complain if needed. if "\n" in v: log.warning( f"{filename.name}:{i + 2} Multi-line value for column {k}.\n" "Markdown does not support multi-line values. Use YAML instead." ) v = v.replace("\n", " ") # Markdown uses "|" as a table cell separator. Escape it if it # occurs in one of the values. And duplicate each escape character. row[k] = v.replace("\\", "\\\\").replace("|", "\\|") # Find column widths widths = [len(h) for h in headers] for row in sheet: for k, v in row.items(): i = header_indices[k] widths[i] = max(widths[i], len(v)) # Render the table header_row = [h.ljust(w) for (h, w) in zip(headers, widths)] md.append(f"| {' | '.join(header_row)} |") separator_row = ["-" * w for w in widths] md.append(f"| {' | '.join(separator_row)} |") for row in sheet: if not row: continue formatted_row = [row.get(h, "").ljust(w) for (h, w) in zip(headers, widths)] md.append(f"| {' | '.join(formatted_row)} |") md.append("") with open(target, "w", encoding="utf-8") as f: f.write("\n".join(md)) def yaml_to_xlsform(filename: pathlib.Path, target: pathlib.Path): """Convert YAML file `filename` to XLSForm file `target`.""" log.info("yaml_to_xlsform: %s -> %s", filename, target) with open(filename, encoding="utf-8") as f: form = strictyaml.load(f.read()).data if "yxf" not in form: raise ValueError('YAML file must have a "yxf" entry.') if "survey" not in form: raise ValueError('YAML file must have a "survey" entry.') _ensure_yxf_comment(form, filename.name, "YAML") _write_to_xlsform(form, target) def markdown_to_xlsform(filename: pathlib.Path, target: pathlib.Path): """Convert Markdown file `filename` to XLSForm file `target`.""" log.info("markdown_to_xlsform: %s -> %s", filename, target) with open(filename, encoding="utf-8") as f: md = f.read() parser = markdown_it.MarkdownIt("js-default") ast = markdown_it.tree.SyntaxTreeNode(parser.parse(md)) form = collections.OrderedDict() form_headers = collections.OrderedDict() sheet_name = None for node in ast: if node.tag == "h2": sheet_name = node.children[0].content _validate_sheet_name(sheet_name, filename.name, node.map[0]) result = [] elif node.tag == "p": content = node.children[0].content match = re.match(r"%%\s*(.*)", content) if match: sheet_name = match.group(1) _validate_sheet_name(sheet_name, filename.name, node.map[0]) else: # Other paragraphs are treated as comments and added to the # beginning of the current sheet. result.append({"#": content}) elif node.tag == "table": if not sheet_name: raise ValueError( f"{filename.name}:{node.map[0]}: No sheet name specified for table." ) thead, tbody = node.children headers = [c.children[0].content for c in thead.children[0].children] add_comment_column = headers[0] != "#" and result and "#" in result[0] if add_comment_column: headers.insert(0, "#") rows = tbody.children rows = [[c.children[0].content for c in row.children] for row in rows] for values in rows: if add_comment_column: values.insert(0, "") row_dict = _row_to_dict(headers, values) if row_dict: result.append(row_dict) form[sheet_name] = result form_headers[sheet_name] = headers form["yxf"] = {"headers": form_headers} _ensure_yxf_comment(form, filename.name, "Markdown") _write_to_xlsform(form, target) def main(): """yxf: Convert from XLSForm to YAML and back.""" logging.basicConfig(level=logging.DEBUG) logging.getLogger("markdown_it").setLevel(logging.INFO) parser = argparse.ArgumentParser( description="Convert from XLSForm to YAML and back" ) parser.add_argument("file", type=pathlib.Path, help="a file to be converted") parser.add_argument( "--markdown", action="store_true", help="use Markdown instead of YAML", ) parser.add_argument( "-o", "--output", type=pathlib.Path, help="output file name (default: same as input, with extension changed)", ) parser.add_argument( "-f", "--force", action="store_true", help="allow overwriting existing output files", ) args = parser.parse_args() if args.file.suffix == ".xlsx": if args.markdown or (args.output and args.output.suffix == ".md"): args.output = args.output or args.file.with_suffix(".md") _check_existing_output(args.output, args.force) xlsform_to_markdown(args.file, args.output) else: args.output = args.output or args.file.with_suffix(".yaml") _check_existing_output(args.output, args.force) xlsform_to_yaml(args.file, args.output) elif args.file.suffix == ".yaml": args.output = args.output or args.file.with_suffix(".xlsx") _check_existing_output(args.output, args.force) yaml_to_xlsform(args.file, args.output) elif args.file.suffix == ".md": args.output = args.output or args.file.with_suffix(".xlsx") _check_existing_output(args.output, args.force) markdown_to_xlsform(args.file, args.output) else: raise ValueError(f"Unrecognized file extension: {args.file}") if __name__ == "__main__": main()
the-stack_106_26232
import sys, os sys.path.append(os.pardir) from Common.math_functions import * from Common.gradient import numerical_gradient class TwoLayerNet: def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01): # 初始化权重 self.params = {} self.params['W1'] = weight_init_std * \ np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = weight_init_std * \ np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def predict(self, x): W1, W2 = self.params['W1'], self.params['W2'] b1, b2 = self.params['b1'], self.params['b2'] a1 = np.dot(x, W1) + b1 # 第一次神经网络 z1 = sigmoid(a1) # 第一层输出 a2 = np.dot(z1, W2) + b2 # 第二次神经网络 y = softmax(a2) return y def loss(self, x, t): ''' 损失函数 :param x: 输入数据 :param t: 监督数据 :return: 新的损失函数 ''' y = self.predict(x) return cross_entropy_error(y, t) def accuracy(self, x, t): y = self.predict(x) y = np.argmax(y, axis=1) t = np.argmax(t, axis=1) accuracy = np.sum(y == t) return accuracy def numerical_gradient(self, x, t): loss_W = lambda W: self.loss(x, t) grads = {} grads['W1'] = numerical_gradient(loss_W, self.params['W1']) grads['b1'] = numerical_gradient(loss_W, self.params['b1']) grads['W2'] = numerical_gradient(loss_W, self.params['W2']) grads['b2'] = numerical_gradient(loss_W, self.params['b2']) return grads
the-stack_106_26233
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_query_table_async.py DESCRIPTION: These samples demonstrate the following: querying a table for entities. USAGE: python sample_query_table_async.py Set the environment variables with your own values before running the sample: 1) AZURE_STORAGE_CONNECTION_STRING - the connection string to your storage account """ import os import copy import random import asyncio class SampleTablesQuery(object): connection_string = os.getenv("AZURE_TABLES_CONNECTION_STRING") table_name = "OfficeSupplies" entity_name = "marker" name_filter = "Name eq '{}'".format(entity_name) async def _insert_random_entities(self): from azure.data.tables.aio import TableClient brands = ["Crayola", "Sharpie", "Chameleon"] colors = ["red", "blue", "orange", "yellow"] names = ["marker", "pencil", "pen"] entity_template = { "PartitionKey": "pk", "RowKey": "row", } table_client = TableClient.from_connection_string(self.connection_string, self.table_name) async with table_client: await table_client.create_table() for i in range(10): e = copy.deepcopy(entity_template) e["RowKey"] += str(i) e["Name"] = random.choice(names) e["Brand"] = random.choice(brands) e["Color"] = random.choice(colors) await table_client.create_entity(entity=e) async def sample_query_entities(self): await self._insert_random_entities() from azure.data.tables.aio import TableClient from azure.core.exceptions import HttpResponseError table_client = TableClient.from_connection_string(self.connection_string, self.table_name) # [START query_entities] async with table_client: try: entity_name = "marker" name_filter = "Name eq '{}'".format(entity_name) async for entity_chosen in table_client.query_entities(filter=name_filter, select=["Brand","Color"]): print(entity_chosen) except HttpResponseError as e: pass # [END query_entities] finally: await table_client.delete_table() async def main(): stq = SampleTablesQuery() await stq.sample_query_entities() if __name__ == '__main__': asyncio.run(main())
the-stack_106_26234
# Copyright 2013-2019 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file contains the detection logic for miscellaneous external dependencies. from pathlib import Path import functools import re import sysconfig import typing as T from .. import mlog from .. import mesonlib from ..environment import detect_cpu_family from .base import ( DependencyException, DependencyMethods, ExternalDependency, PkgConfigDependency, CMakeDependency, ConfigToolDependency, factory_methods, DependencyFactory, ) if T.TYPE_CHECKING: from ..environment import Environment, MachineChoice from .base import DependencyType # noqa: F401 @factory_methods({DependencyMethods.PKGCONFIG, DependencyMethods.CMAKE}) def netcdf_factory(env: 'Environment', for_machine: 'MachineChoice', kwargs: T.Dict[str, T.Any], methods: T.List[DependencyMethods]) -> T.List['DependencyType']: language = kwargs.get('language', 'c') if language not in ('c', 'cpp', 'fortran'): raise DependencyException('Language {} is not supported with NetCDF.'.format(language)) candidates = [] # type: T.List['DependencyType'] if DependencyMethods.PKGCONFIG in methods: if language == 'fortran': pkg = 'netcdf-fortran' else: pkg = 'netcdf' candidates.append(functools.partial(PkgConfigDependency, pkg, env, kwargs, language=language)) if DependencyMethods.CMAKE in methods: candidates.append(functools.partial(CMakeDependency, 'NetCDF', env, kwargs, language=language)) return candidates class OpenMPDependency(ExternalDependency): # Map date of specification release (which is the macro value) to a version. VERSIONS = { '201811': '5.0', '201611': '5.0-revision1', # This is supported by ICC 19.x '201511': '4.5', '201307': '4.0', '201107': '3.1', '200805': '3.0', '200505': '2.5', '200203': '2.0', '199810': '1.0', } def __init__(self, environment, kwargs): language = kwargs.get('language') super().__init__('openmp', environment, kwargs, language=language) self.is_found = False if self.clib_compiler.get_id() == 'pgi': # through at least PGI 19.4, there is no macro defined for OpenMP, but OpenMP 3.1 is supported. self.version = '3.1' self.is_found = True self.compile_args = self.link_args = self.clib_compiler.openmp_flags() return try: openmp_date = self.clib_compiler.get_define( '_OPENMP', '', self.env, self.clib_compiler.openmp_flags(), [self], disable_cache=True)[0] except mesonlib.EnvironmentException as e: mlog.debug('OpenMP support not available in the compiler') mlog.debug(e) openmp_date = None if openmp_date: self.version = self.VERSIONS[openmp_date] # Flang has omp_lib.h header_names = ('omp.h', 'omp_lib.h') for name in header_names: if self.clib_compiler.has_header(name, '', self.env, dependencies=[self], disable_cache=True)[0]: self.is_found = True self.compile_args = self.link_args = self.clib_compiler.openmp_flags() break if not self.is_found: mlog.log(mlog.yellow('WARNING:'), 'OpenMP found but omp.h missing.') class ThreadDependency(ExternalDependency): def __init__(self, name: str, environment, kwargs): super().__init__(name, environment, kwargs) self.is_found = True # Happens if you are using a language with threads # concept without C, such as plain Cuda. if self.clib_compiler is None: self.compile_args = [] self.link_args = [] else: self.compile_args = self.clib_compiler.thread_flags(environment) self.link_args = self.clib_compiler.thread_link_flags(environment) @staticmethod def get_methods(): return [DependencyMethods.AUTO, DependencyMethods.CMAKE] class BlocksDependency(ExternalDependency): def __init__(self, environment, kwargs): super().__init__('blocks', environment, kwargs) self.name = 'blocks' self.is_found = False if self.env.machines[self.for_machine].is_darwin(): self.compile_args = [] self.link_args = [] else: self.compile_args = ['-fblocks'] self.link_args = ['-lBlocksRuntime'] if not self.clib_compiler.has_header('Block.h', '', environment, disable_cache=True) or \ not self.clib_compiler.find_library('BlocksRuntime', environment, []): mlog.log(mlog.red('ERROR:'), 'BlocksRuntime not found.') return source = ''' int main(int argc, char **argv) { int (^callback)(void) = ^ int (void) { return 0; }; return callback(); }''' with self.clib_compiler.compile(source, extra_args=self.compile_args + self.link_args) as p: if p.returncode != 0: mlog.log(mlog.red('ERROR:'), 'Compiler does not support blocks extension.') return self.is_found = True class Python3DependencySystem(ExternalDependency): def __init__(self, name, environment, kwargs): super().__init__(name, environment, kwargs) if not environment.machines.matches_build_machine(self.for_machine): return if not environment.machines[self.for_machine].is_windows(): return self.name = 'python3' self.static = kwargs.get('static', False) # We can only be sure that it is Python 3 at this point self.version = '3' self._find_libpy3_windows(environment) @staticmethod def get_windows_python_arch(): pyplat = sysconfig.get_platform() if pyplat == 'mingw': pycc = sysconfig.get_config_var('CC') if pycc.startswith('x86_64'): return '64' elif pycc.startswith(('i686', 'i386')): return '32' else: mlog.log('MinGW Python built with unknown CC {!r}, please file' 'a bug'.format(pycc)) return None elif pyplat == 'win32': return '32' elif pyplat in ('win64', 'win-amd64'): return '64' mlog.log('Unknown Windows Python platform {!r}'.format(pyplat)) return None def get_windows_link_args(self): pyplat = sysconfig.get_platform() if pyplat.startswith('win'): vernum = sysconfig.get_config_var('py_version_nodot') if self.static: libpath = Path('libs') / 'libpython{}.a'.format(vernum) else: comp = self.get_compiler() if comp.id == "gcc": libpath = 'python{}.dll'.format(vernum) else: libpath = Path('libs') / 'python{}.lib'.format(vernum) lib = Path(sysconfig.get_config_var('base')) / libpath elif pyplat == 'mingw': if self.static: libname = sysconfig.get_config_var('LIBRARY') else: libname = sysconfig.get_config_var('LDLIBRARY') lib = Path(sysconfig.get_config_var('LIBDIR')) / libname if not lib.exists(): mlog.log('Could not find Python3 library {!r}'.format(str(lib))) return None return [str(lib)] def _find_libpy3_windows(self, env): ''' Find python3 libraries on Windows and also verify that the arch matches what we are building for. ''' pyarch = self.get_windows_python_arch() if pyarch is None: self.is_found = False return arch = detect_cpu_family(env.coredata.compilers.host) if arch == 'x86': arch = '32' elif arch == 'x86_64': arch = '64' else: # We can't cross-compile Python 3 dependencies on Windows yet mlog.log('Unknown architecture {!r} for'.format(arch), mlog.bold(self.name)) self.is_found = False return # Pyarch ends in '32' or '64' if arch != pyarch: mlog.log('Need', mlog.bold(self.name), 'for {}-bit, but ' 'found {}-bit'.format(arch, pyarch)) self.is_found = False return # This can fail if the library is not found largs = self.get_windows_link_args() if largs is None: self.is_found = False return self.link_args = largs # Compile args inc = sysconfig.get_path('include') platinc = sysconfig.get_path('platinclude') self.compile_args = ['-I' + inc] if inc != platinc: self.compile_args.append('-I' + platinc) self.version = sysconfig.get_config_var('py_version') self.is_found = True @staticmethod def get_methods(): if mesonlib.is_windows(): return [DependencyMethods.PKGCONFIG, DependencyMethods.SYSCONFIG] elif mesonlib.is_osx(): return [DependencyMethods.PKGCONFIG, DependencyMethods.EXTRAFRAMEWORK] else: return [DependencyMethods.PKGCONFIG] def log_tried(self): return 'sysconfig' class PcapDependencyConfigTool(ConfigToolDependency): tools = ['pcap-config'] tool_name = 'pcap-config' @staticmethod def finish_init(self) -> None: self.compile_args = self.get_config_value(['--cflags'], 'compile_args') self.link_args = self.get_config_value(['--libs'], 'link_args') self.version = self.get_pcap_lib_version() @staticmethod def get_methods(): return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL] def get_pcap_lib_version(self): # Since we seem to need to run a program to discover the pcap version, # we can't do that when cross-compiling if not self.env.machines.matches_build_machine(self.for_machine): return None v = self.clib_compiler.get_return_value('pcap_lib_version', 'string', '#include <pcap.h>', self.env, [], [self]) v = re.sub(r'libpcap version ', '', v) v = re.sub(r' -- Apple version.*$', '', v) return v class CupsDependencyConfigTool(ConfigToolDependency): tools = ['cups-config'] tool_name = 'cups-config' @staticmethod def finish_init(ctdep): ctdep.compile_args = ctdep.get_config_value(['--cflags'], 'compile_args') ctdep.link_args = ctdep.get_config_value(['--ldflags', '--libs'], 'link_args') @staticmethod def get_methods(): if mesonlib.is_osx(): return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL, DependencyMethods.EXTRAFRAMEWORK, DependencyMethods.CMAKE] else: return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL, DependencyMethods.CMAKE] class LibWmfDependencyConfigTool(ConfigToolDependency): tools = ['libwmf-config'] tool_name = 'libwmf-config' @staticmethod def finish_init(ctdep): ctdep.compile_args = ctdep.get_config_value(['--cflags'], 'compile_args') ctdep.link_args = ctdep.get_config_value(['--libs'], 'link_args') @staticmethod def get_methods(): return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL] class LibGCryptDependencyConfigTool(ConfigToolDependency): tools = ['libgcrypt-config'] tool_name = 'libgcrypt-config' @staticmethod def finish_init(ctdep): ctdep.compile_args = ctdep.get_config_value(['--cflags'], 'compile_args') ctdep.link_args = ctdep.get_config_value(['--libs'], 'link_args') ctdep.version = ctdep.get_config_value(['--version'], 'version')[0] @staticmethod def get_methods(): return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL] class GpgmeDependencyConfigTool(ConfigToolDependency): tools = ['gpgme-config'] tool_name = 'gpg-config' @staticmethod def finish_init(ctdep): ctdep.compile_args = ctdep.get_config_value(['--cflags'], 'compile_args') ctdep.link_args = ctdep.get_config_value(['--libs'], 'link_args') ctdep.version = ctdep.get_config_value(['--version'], 'version')[0] @staticmethod def get_methods(): return [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL] class ShadercDependency(ExternalDependency): def __init__(self, environment, kwargs): super().__init__('shaderc', environment, kwargs) static_lib = 'shaderc_combined' shared_lib = 'shaderc_shared' libs = [shared_lib, static_lib] if self.static: libs.reverse() cc = self.get_compiler() for lib in libs: self.link_args = cc.find_library(lib, environment, []) if self.link_args is not None: self.is_found = True if self.static and lib != static_lib: mlog.warning('Static library {!r} not found for dependency {!r}, may ' 'not be statically linked'.format(static_lib, self.name)) break def log_tried(self): return 'system' @staticmethod def get_methods(): return [DependencyMethods.SYSTEM, DependencyMethods.PKGCONFIG] @factory_methods({DependencyMethods.PKGCONFIG}) def curses_factory(env: 'Environment', for_machine: 'MachineChoice', kwargs: T.Dict[str, T.Any], methods: T.List[DependencyMethods]) -> T.List['DependencyType']: candidates = [] # type: T.List['DependencyType'] if DependencyMethods.PKGCONFIG in methods: pkgconfig_files = ['ncurses', 'ncursesw'] for pkg in pkgconfig_files: candidates.append(functools.partial(PkgConfigDependency, pkg, env, kwargs)) return candidates @factory_methods({DependencyMethods.PKGCONFIG, DependencyMethods.SYSTEM}) def shaderc_factory(env: 'Environment', for_machine: 'MachineChoice', kwargs: T.Dict[str, T.Any], methods: T.List[DependencyMethods]) -> T.List['DependencyType']: """Custom DependencyFactory for ShaderC. ShaderC's odd you get three different libraries from the same build thing are just easier to represent as a separate function than twisting DependencyFactory even more. """ candidates = [] # type: T.List['DependencyType'] if DependencyMethods.PKGCONFIG in methods: # ShaderC packages their shared and static libs together # and provides different pkg-config files for each one. We # smooth over this difference by handling the static # keyword before handing off to the pkg-config handler. shared_libs = ['shaderc'] static_libs = ['shaderc_combined', 'shaderc_static'] if kwargs.get('static', False): c = [functools.partial(PkgConfigDependency, name, env, kwargs) for name in static_libs + shared_libs] else: c = [functools.partial(PkgConfigDependency, name, env, kwargs) for name in shared_libs + static_libs] candidates.extend(c) if DependencyMethods.SYSTEM in methods: candidates.append(functools.partial(ShadercDependency, env, kwargs)) return candidates cups_factory = DependencyFactory( 'cups', [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL, DependencyMethods.EXTRAFRAMEWORK, DependencyMethods.CMAKE], configtool_class=CupsDependencyConfigTool, cmake_name='Cups', ) gpgme_factory = DependencyFactory( 'gpgme', [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL], configtool_class=GpgmeDependencyConfigTool, ) libgcrypt_factory = DependencyFactory( 'libgcrypt', [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL], configtool_class=LibGCryptDependencyConfigTool, ) libwmf_factory = DependencyFactory( 'libwmf', [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL], configtool_class=LibWmfDependencyConfigTool, ) pcap_factory = DependencyFactory( 'pcap', [DependencyMethods.PKGCONFIG, DependencyMethods.CONFIG_TOOL], configtool_class=PcapDependencyConfigTool, pkgconfig_name='libpcap', ) python3_factory = DependencyFactory( 'python3', [DependencyMethods.PKGCONFIG, DependencyMethods.SYSTEM, DependencyMethods.EXTRAFRAMEWORK], system_class=Python3DependencySystem, # There is no version number in the macOS version number framework_name='Python', # There is a python in /System/Library/Frameworks, but thats python 2.x, # Python 3 will always be in /Library extra_kwargs={'paths': ['/Library/Frameworks']}, ) threads_factory = DependencyFactory( 'threads', [DependencyMethods.SYSTEM, DependencyMethods.CMAKE], cmake_name='Threads', system_class=ThreadDependency, )
the-stack_106_26235
r""" This module contains classes for working with sparse matrices. """ from __future__ import division from copy import deepcopy from collections.abc import Mapping, MutableMapping from numbers import Number, Integral import numpy as np import sympy as sp from scipy.sparse import bmat, dia_matrix, kron, diags as sp_diags from scipy.sparse.linalg import spsolve from mpi4py import MPI from .utilities import integrate_sympy __all__ = ['SparseMatrix', 'SpectralMatrix', 'extract_diagonal_matrix', 'extract_bc_matrices', 'check_sanity', 'get_dense_matrix', 'TPMatrix', 'BlockMatrix', 'BlockMatrices', 'Identity', 'get_dense_matrix_sympy', 'get_dense_matrix_quadpy'] comm = MPI.COMM_WORLD class SparseMatrix(MutableMapping): r"""Base class for sparse matrices. The data is stored as a dictionary, where keys and values are, respectively, the offsets and values of the diagonals. In addition, each matrix is stored with a coefficient that is used as a scalar multiple of the matrix. Parameters ---------- d : dict Dictionary, where keys are the diagonal offsets and values the diagonals shape : two-tuple of ints scale : number, optional Scale matrix with this number Note ---- The dictionary can use a function to generate its values. See, e.g., the ASDSDmat matrix, where diagonals for keys > 2 are functions that return the proper diagonal when looked up. Examples -------- A tridiagonal matrix of shape N x N could be created as >>> from shenfun import SparseMatrix >>> import numpy as np >>> N = 4 >>> d = {-1: 1, 0: -2, 1: 1} >>> S = SparseMatrix(d, (N, N)) >>> dict(S) {-1: 1, 0: -2, 1: 1} In case of variable values, store the entire diagonal. For an N x N matrix use >>> d = {-1: np.ones(N-1), ... 0: -2*np.ones(N), ... 1: np.ones(N-1)} >>> S = SparseMatrix(d, (N, N)) >>> dict(S) {-1: array([1., 1., 1.]), 0: array([-2., -2., -2., -2.]), 1: array([1., 1., 1.])} """ # pylint: disable=redefined-builtin, missing-docstring def __init__(self, d, shape, scale=1.0): self._storage = dict(d) self.shape = shape self._diags = dia_matrix((1, 1)) self.scale = scale self._matvec_methods = [] def matvec(self, v, c, format='dia', axis=0): """Matrix vector product Returns c = dot(self, v) Parameters ---------- v : array Numpy input array of ndim>=1 c : array Numpy output array of same shape as v format : str, optional Choice for computation - csr - Compressed sparse row format - dia - Sparse matrix with DIAgonal storage - python - Use numpy and vectorization - self - To be implemented in subclass - cython - Cython implementation that may be implemented in subclass - numba - Numba implementation that may be implemented in subclass axis : int, optional The axis over which to take the matrix vector product """ N, M = self.shape c.fill(0) # Roll relevant axis to first if axis > 0: v = np.moveaxis(v, axis, 0) c = np.moveaxis(c, axis, 0) if format == 'python': for key, val in self.items(): if np.ndim(val) > 0: # broadcasting val = val[(slice(None), ) + (np.newaxis,)*(v.ndim-1)] if key < 0: c[-key:min(N, M-key)] += val*v[:min(M, N+key)] else: c[:min(N, M-key)] += val*v[key:min(M, N+key)] c *= self.scale else: if format not in ('csr', 'dia'): # Fallback on 'csr'. Should probably throw warning format = 'csr' diags = self.diags(format=format) P = int(np.prod(v.shape[1:])) y = diags.dot(v[:M].reshape(M, P)).squeeze() d = tuple([slice(0, m) for m in y.shape]) c[d] = y.reshape(c[d].shape) if axis > 0: c = np.moveaxis(c, 0, axis) v = np.moveaxis(v, 0, axis) return c def diags(self, format='dia'): """Return a regular sparse matrix of specified format Parameters ---------- format : str, optional Choice of matrix type (see scipy.sparse.diags) - dia - Sparse matrix with DIAgonal storage - csr - Compressed sparse row - csc - Compressed sparse column Note ---- This method returns the matrix scaled by self.scale. """ #if self._diags.shape != self.shape or self._diags.format != format: self._diags = sp_diags(list(self.values()), list(self.keys()), shape=self.shape, format=format) scale = self.scale if isinstance(scale, np.ndarray): scale = np.atleast_1d(scale).item() self._diags = self._diags*scale return self._diags def __getitem__(self, key): v = self._storage[key] if hasattr(v, '__call__'): return v(key) return v def __delitem__(self, key): del self._storage[key] def __setitem__(self, key, val): self._storage[key] = val def __iter__(self): return iter(self._storage) def __len__(self): return len(self._storage) def __quasi__(self, Q): return Q.diags('csc')*self.diags('csc') def __eq__(self, a): if self.shape != a.shape: return False if not self.same_keys(a): return False if (np.abs(self.diags('csr') - a.diags('csr')) >= 2e-8).nnz > 0: return False if self.scale != a.scale: return False return True def __neq__(self, a): return not self.__eq__(a) def __imul__(self, y): """self.__imul__(y) <==> self*=y""" assert isinstance(y, Number) self.scale *= y return self def __mul__(self, y): """Returns copy of self.__mul__(y) <==> self*y""" if isinstance(y, Number): return SparseMatrix(deepcopy(dict(self)), self.shape, scale=self.scale*y) elif isinstance(y, np.ndarray): c = np.empty_like(y) c = self.matvec(y, c) return c elif isinstance(y, SparseMatrix): return self.diags('csc')*y.diags('csc') raise RuntimeError def __rmul__(self, y): """Returns copy of self.__rmul__(y) <==> y*self""" return self.__mul__(y) def __div__(self, y): """Returns elementwise division if `y` is a Number, or a linear algebra solve if `y` is an array. Parameters ---------- y : Number or array """ if isinstance(y, Number): return SparseMatrix(deepcopy(dict(self)), self.shape, scale=self.scale/y) elif isinstance(y, np.ndarray): b = np.zeros_like(y) b = self.solve(y, b) return b else: raise NotImplementedError def __truediv__(self, y): """Returns copy self.__div__(y) <==> self/y""" return self.__div__(y) def __add__(self, d): """Return copy of self.__add__(y) <==> self+d""" if self == d: if abs(self.scale+d.scale) < 1e-15: f = SparseMatrix({0: 0}, self.shape) else: f = SparseMatrix(deepcopy(dict(self)), self.shape, self.scale+d.scale) else: if abs(self.scale) < 1e-15 and abs(d.scale) < 1e-15: f = SparseMatrix({0: 0}, self.shape) elif abs(self.scale) < 1e-15: f = SparseMatrix(deepcopy(dict(d)), d.shape, d.scale) else: f = SparseMatrix(deepcopy(dict(self)), self.shape, self.scale) assert isinstance(d, Mapping) for key, val in d.items(): if key in f: # Check if symmetric and make copy if necessary if -key in f: if id(f[key]) == id(f[-key]): f[-key] = deepcopy(f[key]) f[key] = f[key] + d.scale/self.scale*val else: f[key] = d.scale/f.scale*val return f def __iadd__(self, d): """self.__iadd__(d) <==> self += d""" assert isinstance(d, Mapping) assert d.shape == self.shape #if self == d: # self.scale += d.scale if abs(d.scale) < 1e-16: pass elif abs(self.scale) < 1e-16: self.clear() for key, val in d.items(): self[key] = val self.scale = d.scale else: for key, val in d.items(): if key in self: # Check if symmetric and make copy if necessary #self[key] = self[key]*self.scale if -key in self: if id(self[key]) == id(self[-key]): self[-key] = deepcopy(self[key]) self[key] = self[key] + d.scale/self.scale*val else: self[key] = d.scale/self.scale*val return self def __sub__(self, d): """Return copy of self.__sub__(d) <==> self-d""" assert isinstance(d, Mapping) if self == d: f = SparseMatrix(deepcopy(dict(self)), self.shape, self.scale-d.scale) elif abs(self.scale) < 1e-16: f = SparseMatrix(deepcopy(dict(d)), d.shape, -d.scale) else: f = SparseMatrix(deepcopy(dict(self)), self.shape, self.scale) for key, val in d.items(): if key in f: # Check if symmetric and make copy if necessary if -key in f: if id(f[key]) == id(f[-key]): f[-key] = deepcopy(f[key]) f[key] = f[key] - d.scale/self.scale*val else: f[key] = -d.scale/self.scale*val return f def __isub__(self, d): """self.__isub__(d) <==> self -= d""" assert isinstance(d, Mapping) assert d.shape == self.shape if self == d: self.scale -= d.scale elif abs(self.scale) < 1e-16: self.clear() for key, val in d.items(): self[key] = val self.scale = -d.scale else: for key, val in d.items(): if key in self: #self[key] = self[key]*self.scale # Check if symmetric and make copy if necessary if -key in self: if id(self[key]) == id(self[-key]): self[-key] = deepcopy(self[key]) self[key] =self[key] - d.scale/self.scale*val else: self[key] = -d.scale/self.scale*val #self.scale = 1 return self def __neg__(self): """self.__neg__() <==> self *= -1""" self.scale *= -1 return self def __hash__(self): return hash(frozenset(self)) def get_key(self): return self.__hash__() def same_keys(self, a): return self.__hash__() == a.__hash__() def scale_array(self, c, sc): assert isinstance(sc, Number) if abs(sc-1) > 1e-8: c *= sc def incorporate_scale(self): if abs(self.scale-1) < 1e-8: return if hasattr(self, '_keyscale'): self._keyscale *= self.scale else: for key, val in self.items(): self[key] = val*self.scale self.scale = 1 def solve(self, b, u=None, axis=0, use_lu=False): """Solve matrix system Au = b where A is the current matrix (self) Parameters ---------- b : array Array of right hand side on entry and solution on exit unless u is provided. u : array, optional Output array axis : int, optional The axis over which to solve for if b and u are multi- dimensional use_lu : bool, optional Look for already computed LU-matrix Note ---- Vectors may be one- or multidimensional. """ assert self.shape[0] == self.shape[1] assert self.shape[0] == b.shape[axis] if u is None: u = b else: assert u.shape == b.shape # Roll relevant axis to first if axis > 0: u = np.moveaxis(u, axis, 0) if u is not b: b = np.moveaxis(b, axis, 0) if b.ndim == 1: if use_lu: if b.dtype.char in 'FDG' and self._lu.U.dtype.char in 'fdg': u.real[:] = self._lu.solve(b.real) u.imag[:] = self._lu.solve(b.imag) else: u[:] = self._lu.solve(b) else: u[:] = spsolve(self.diags('csc'), b) else: N = b.shape[0] P = np.prod(b.shape[1:]) if use_lu: if b.dtype.char in 'FDG' and self._lu.U.dtype.char in 'fdg': u.real[:] = self._lu.solve(b.real.reshape((N, P))).reshape(u.shape) u.imag[:] = self._lu.solve(b.imag.reshape((N, P))).reshape(u.shape) else: u[:] = self._lu.solve(b.reshape((N, P))).reshape(u.shape) else: u[:] = spsolve(self.diags('csc'), b.reshape((N, P))).reshape(u.shape) if axis > 0: u = np.moveaxis(u, 0, axis) if u is not b: b = np.moveaxis(b, 0, axis) return u def isdiagonal(self): if len(self) == 1: if (0 in self): return True return False def isidentity(self): if not len(self) == 1: return False if (0 not in self): return False d = self[0] if np.all(d == 1): return True return False @property def issymmetric(self): M = self.diags() return (abs(M-M.T) > 1e-8).nnz == 0 def clean_diagonals(self, reltol=1e-8): """Eliminate essentially zerovalued diagonals Parameters ---------- reltol : number Relative tolerance """ a = self * np.ones(self.shape[1]) relmax = abs(a).max() / self.shape[1] list_keys = [] for key, val in self.items(): if abs(np.linalg.norm(val))/relmax < reltol: list_keys.append(key) for key in list_keys: del self[key] return self class SpectralMatrix(SparseMatrix): r"""Base class for inner product matrices. Parameters ---------- d : dict Dictionary, where keys are the diagonal offsets and values the diagonals trial : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the trial function should be differentiated. Representing matrix column. test : 2-tuple of (basis, int) As trial, but representing matrix row. scale : number, optional Scale matrix with this number Examples -------- Mass matrix for Chebyshev Dirichlet basis: .. math:: (\phi_k, \phi_j)_w = \int_{-1}^{1} \phi_k(x) \phi_j(x) w(x) dx Stiffness matrix for Chebyshev Dirichlet basis: .. math:: (\phi_k'', \phi_j)_w = \int_{-1}^{1} \phi_k''(x) \phi_j(x) w(x) dx The matrices can be automatically created using, e.g., for the mass matrix of the Dirichlet space:: SD = ShenDirichlet N = 16 M = SpectralMatrix({}, (SD(N), 0), (SD(N), 0)) where the first (SD(N), 0) represents the test function and the second the trial function. The stiffness matrix can be obtained as:: A = SpectralMatrix({}, (SD(N), 0), (SD(N), 2)) where (SD(N), 2) signals that we use the second derivative of this trial function. The number N is the number of quadrature points used for the basis. The automatically created matrices may be overloaded with more exactly computed diagonals. Note that matrices with the Neumann basis are stored using index space :math:`k = 0, 1, ..., N-2`, i.e., including the zero index for a nonzero average value. """ def __init__(self, d, test, trial, scale=1.0, measure=1): assert isinstance(test[1], (int, np.integer)) assert isinstance(trial[1], (int, np.integer)) self.testfunction = test self.trialfunction = trial self.measure = measure shape = (test[0].dim(), trial[0].dim()) if d == {}: D = get_dense_matrix(test, trial, measure)[:shape[0], :shape[1]] #D = get_denser_matrix(test, trial, measure)[:shape[0], :shape[1]] #D = get_dense_matrix_sympy(test, trial, measure)[:shape[0], :shape[1]] d = extract_diagonal_matrix(D) SparseMatrix.__init__(self, d, shape, scale) if shape[0] == shape[1]: from shenfun.la import Solve self.solver = Solve(self, test[0]) def matvec(self, v, c, format='csr', axis=0): u = self.trialfunction[0] ss = [slice(None)]*len(v.shape) ss[axis] = u.slice() c = super(SpectralMatrix, self).matvec(v[tuple(ss)], c, format=format, axis=axis) if self.testfunction[0].use_fixed_gauge: ss[axis] = 0 c[tuple(ss)] = 0 return c def solve(self, b, u=None, axis=0, use_lu=False): """Solve matrix system Au = b where A is the current matrix (self) Parameters ---------- b : array Array of right hand side on entry and solution on exit unless u is provided. u : array, optional Output array axis : int, optional The axis over which to solve for if b and u are multidimensional use_lu : bool, optional Look for already computed LU-matrix Note ---- Vectors may be one- or multidimensional. """ u = self.solver(b, u=u, axis=axis, use_lu=use_lu) return u @property def tensorproductspace(self): """Return the :class:`.TensorProductSpace` this matrix has been computed for""" return self.testfunction[0].tensorproductspace @property def axis(self): """Return the axis of the :class:`.TensorProductSpace` this matrix is created for""" return self.testfunction[0].axis def __hash__(self): return hash(((self.testfunction[0].__class__, self.testfunction[1]), (self.trialfunction[0].__class__, self.trialfunction[1]))) def get_key(self): if self.__class__.__name__.endswith('mat'): return self.__class__.__name__ return self.__hash__() def simplify_diagonal_matrices(self): if self.isdiagonal(): self.scale = self.scale*self[0] self[0] = 1 def __eq__(self, a): if isinstance(a, Number): return False if not isinstance(a, SparseMatrix): return False if self.shape != a.shape: return False if self.get_key() != a.get_key(): return False sl = np.array(list(self.keys())) sa = np.array(list(a.keys())) if not sl.shape == sa.shape: return False sl.sort() sa.sort() if not np.linalg.norm((sl-sa)**2) == 0: return False if np.linalg.norm(sl[0] - sa[0]) > 1e-8: return False return True def __mul__(self, y): """Returns copy of self.__mul__(y) <==> self*y""" if isinstance(y, Number): f = SpectralMatrix(deepcopy(dict(self)), self.testfunction, self.trialfunction, self.scale*y) elif isinstance(y, np.ndarray): f = SparseMatrix.__mul__(self, y) elif isinstance(y, SparseMatrix): f = self.diags('csc')*y.diags('csc') return f def __div__(self, y): """Returns copy self.__div__(y) <==> self/y""" if isinstance(y, Number): f = SpectralMatrix(deepcopy(dict(self)), self.testfunction, self.trialfunction, self.scale/y) elif isinstance(y, np.ndarray): f = SparseMatrix.__div__(self, y) return f def __add__(self, y): """Return copy of self.__add__(y) <==> self+y""" assert isinstance(y, Mapping) if self == y: f = SpectralMatrix(deepcopy(dict(self)), self.testfunction, self.trialfunction, self.scale+y.scale) else: f = SparseMatrix.__add__(self, y) return f def __iadd__(self, d): """self.__iadd__(d) <==> self += d""" SparseMatrix.__iadd__(self, d) if self == d: return self else: # downcast return SparseMatrix(dict(self), self.shape, self.scale) def __sub__(self, y): """Return copy of self.__sub__(y) <==> self-y""" assert isinstance(y, Mapping) if self == y: f = SpectralMatrix(deepcopy(dict(self)), self.testfunction, self.trialfunction, self.scale-y.scale) else: f = SparseMatrix.__sub__(self, y) return f def __isub__(self, y): """self.__isub__(d) <==> self -= y""" SparseMatrix.__isub__(self, y) if self == y: return self else: # downcast return SparseMatrix(dict(self), self.shape, self.scale) class Identity(SparseMatrix): """The identity matrix in :class:`.SparseMatrix` form Parameters ---------- shape : 2-tuple of ints The shape of the matrix scale : number, optional Scalar multiple of the matrix, defaults to unity """ def __init__(self, shape, scale=1): SparseMatrix.__init__(self, {0:1}, shape, scale) self.measure = 1 def solve(self, b, u=None, axis=0): if u is None: u = b else: assert u.shape == b.shape u[:] = b u *= (1/self.scale) return u def BlockMatrices(tpmats): """Return two instances of the :class:`.BlockMatrix` class. Parameters ---------- tpmats : sequence of :class:`.TPMatrix`'es There should be both boundary matrices from inhomogeneous Dirichlet or Neumann conditions, as well as regular matrices. Note ---- Use :class:`.BlockMatrix` directly if you do not have any inhomogeneous boundary conditions. """ bc_mats = extract_bc_matrices([tpmats]) assert len(bc_mats) > 0, 'No boundary matrices - use BlockMatrix' return BlockMatrix(tpmats), BlockMatrix(bc_mats) class BlockMatrix: r"""A class for block matrices Parameters ---------- tpmats : sequence of :class:`.TPMatrix` or :class:`.SparseMatrix` The individual blocks for the matrix Note ---- The tensor product matrices must be either boundary matrices or regular matrices, not both. If your problem contains inhomogeneous boundary conditions, then create two BlockMatrices, one for the implicit terms and one for the boundary terms. To this end you can use :class:`.BlockMatrices`. Example ------- Stokes equations, periodic in x and y-directions .. math:: -\nabla^2 u - \nabla p &= 0 \\ \nabla \cdot u &= 0 \\ u(x, y, z=\pm 1) &= 0 We use for the z-direction a Dirichlet basis (SD) and a regular basis with no boundary conditions (ST). This is combined with Fourier in the x- and y-directions (K0, K1), such that we get two TensorProductSpaces (TD, TT) that are the Cartesian product of these bases .. math:: TD &= K0 \times K1 \times SD \\ TT &= K0 \times K1 \times ST We choose trialfunctions :math:`u \in [TD]^3` and :math:`p \in TT`, and then solve the weak problem .. math:: \left( \nabla v, \nabla u\right) + \left(\nabla \cdot v, p \right) = 0\\ \left( q, \nabla \cdot u\right) = 0 for all :math:`v \in [TD]^3` and :math:`q \in TT`. To solve the problem we need to assemble a block matrix .. math:: \begin{bmatrix} \left( \nabla v, \nabla u\right) & \left(\nabla \cdot v, p \right) \\ \left( q, \nabla \cdot u\right) & 0 \end{bmatrix} This matrix is assemble below >>> from shenfun import * >>> from mpi4py import MPI >>> comm = MPI.COMM_WORLD >>> N = (24, 24, 24) >>> K0 = FunctionSpace(N[0], 'Fourier', dtype='d') >>> K1 = FunctionSpace(N[1], 'Fourier', dtype='D') >>> SD = FunctionSpace(N[2], 'Legendre', bc=(0, 0)) >>> ST = FunctionSpace(N[2], 'Legendre') >>> TD = TensorProductSpace(comm, (K0, K1, SD), axes=(2, 1, 0)) >>> TT = TensorProductSpace(comm, (K0, K1, ST), axes=(2, 1, 0)) >>> VT = VectorSpace(TD) >>> Q = CompositeSpace([VT, TD]) >>> up = TrialFunction(Q) >>> vq = TestFunction(Q) >>> u, p = up >>> v, q = vq >>> A00 = inner(grad(v), grad(u)) >>> A01 = inner(div(v), p) >>> A10 = inner(q, div(u)) >>> M = BlockMatrix(A00+A01+A10) """ def __init__(self, tpmats): assert isinstance(tpmats, (list, tuple)) tpmats = [tpmats] if not isinstance(tpmats[0], (list, tuple)) else tpmats self.mixedbase = mixedbase = tpmats[0][0].mixedbase self.dims = dims = mixedbase.num_components() self.mats = np.zeros((dims, dims), dtype=int).tolist() tps = mixedbase.flatten() if hasattr(mixedbase, 'flatten') else [mixedbase] offset = [np.zeros(tps[0].dimensions, dtype=int)] for i, tp in enumerate(tps): dims = tp.dim() if not hasattr(tp, 'dims') else tp.dims() # 1D basis does not have dims() offset.append(np.array(dims + offset[i])) self.offset = offset self.global_shape = self.offset[-1] self += tpmats def __add__(self, a): """Return copy of self.__add__(a) <==> self+a""" return BlockMatrix(self.get_mats()+a.get_mats()) def __iadd__(self, a): """self.__iadd__(a) <==> self += a Parameters ---------- a : :class:`.BlockMatrix` or list of :class:`.TPMatrix` instances """ if isinstance(a, BlockMatrix): tpmats = a.get_mats() elif isinstance(a, (list, tuple)): tpmats = a for mat in tpmats: if not isinstance(mat, list): mat = [mat] for m in mat: assert isinstance(m, (TPMatrix, SparseMatrix)) i, j = m.global_index m0 = self.mats[i][j] if isinstance(m0, int): self.mats[i][j] = [m] else: found = False for n in m0: if m == n: n += m found = True continue if not found: self.mats[i][j].append(m) def get_mats(self, return_first=False): """Return flattened list of matrices in self""" tpmats = [] for mi in self.mats: for mij in mi: if isinstance(mij, (list, tuple)): for m in mij: if isinstance(m, (TPMatrix, SparseMatrix)): if return_first: return m else: tpmats.append(m) return tpmats def matvec(self, v, c): """Compute matrix vector product c = self * v Parameters ---------- v : :class:`.Function` c : :class:`.Function` Returns ------- c : :class:`.Function` """ assert v.function_space() == self.mixedbase assert c.function_space() == self.mixedbase c.v.fill(0) z = np.zeros_like(c.v[0]) for i, mi in enumerate(self.mats): for j, mij in enumerate(mi): if isinstance(mij, Number): if abs(mij) > 1e-8: c.v[i] += mij*v.v[j] else: for m in mij: z.fill(0) z = m.matvec(v.v[j], z) c.v[i] += z return c def __getitem__(self, ij): return self.mats[ij[0]][ij[1]] def get_offset(self, i, axis=0): return self.offset[i][axis] def diags(self, it=(0,), format='csr'): """Return global block matrix in scipy sparse format For multidimensional forms the returned matrix is constructed for given indices in the periodic directions. Parameters ---------- it : n-tuple of ints where n is dimensions. These are the indices into the scale arrays of the TPMatrices in various blocks. Should be zero along the non- periodic direction. format : str The format of the returned matrix. See `Scipy sparse matrices <https://docs.scipy.org/doc/scipy/reference/sparse.html>`_ """ from .spectralbase import MixedFunctionSpace bm = [] for mi in self.mats: bm.append([]) for mij in mi: if isinstance(mij, Number): bm[-1].append(None) else: m = mij[0] if isinstance(self.mixedbase, MixedFunctionSpace): d = m.diags(format) for mj in mij[1:]: d = d + mj.diags(format) elif len(m.naxes) == 2: # 2 non-periodic directions assert len(m.mats) == 2, "Only implemented without periodic directions" d = m.scale.item()*kron(m.mats[0].diags(format), m.mats[1].diags(format)) for mj in mij[1:]: d = d + mj.scale.item()*kron(mj.mats[0].diags(format), mj.mats[1].diags(format)) else: iit = np.where(np.array(m.scale.shape) == 1, 0, it) # if shape is 1 use index 0, else use given index (shape=1 means the scale is constant in that direction) sc = m.scale[tuple(iit)] d = sc*m.pmat.diags(format) for mj in mij[1:]: iit = np.where(np.array(mj.scale.shape) == 1, 0, it) sc = mj.scale[tuple(iit)] d = d + sc*mj.pmat.diags(format) bm[-1].append(d) return bmat(bm, format=format) def solve(self, b, u=None, constraints=(), return_system=False, Alu=None, BM=None): r""" Solve matrix system Au = b where A is the current :class:`.BlockMatrix` (self) Parameters ---------- b : array Array of right hand side u : array, optional Output array constraints : sequence of 3-tuples of (int, int, number) Any 3-tuple describe a dof to be constrained. The first int represents the block number of the function to be constrained. The second int gives which degree of freedom to constrain and the number gives the value it should obtain. For example, for the global restriction that .. math:: \frac{1}{V}\int p dx = number where we have .. math:: p = \sum_{k=0}^{N-1} \hat{p}_k \phi_k it is sufficient to fix the first dof of p, \hat{p}_0, since the bases are created such that all basis functions except the first integrates to zero. So in this case the 3-tuple can be (2, 0, 0) if p is found in block 2 of the mixed basis. The constraint can only be applied to bases with no given explicit boundary condition, like the pure Chebyshev or Legendre bases. Other Parameters ---------------- return_system : bool, optional If True then return the assembled block matrix as well as the solution in a 2-tuple (solution, matrix). This is helpful for repeated solves, because the returned matrix may then be factorized once and reused. Only for non-periodic problems Alu : pre-factorized matrix, optional Computed with Alu = splu(self), where self is the assembled block matrix. Only for non-periodic problems. """ from .forms.arguments import Function import scipy.sparse as sp space = b.function_space() if u is None: u = Function(space) else: assert u.shape == b.shape if BM: # Add contribution to right hand side due to inhomogeneous boundary conditions u.set_boundary_dofs() w0 = np.zeros_like(u) b -= BM.matvec(u, w0) tpmat = self.get_mats(True) axis = tpmat.naxes[0] if isinstance(tpmat, TPMatrix) else 0 tp = space.flatten() if hasattr(space, 'flatten') else [space] nvars = b.shape[0] if len(b.shape) > space.dimensions else 1 u = u.reshape(1, *u.shape) if nvars == 1 else u b = b.reshape(1, *b.shape) if nvars == 1 else b for con in constraints: assert len(con) == 3 assert isinstance(con[0], Integral) assert isinstance(con[1], Integral) assert isinstance(con[2], Number) N = self.global_shape[axis] gi = np.zeros(N, dtype=b.dtype) go = np.zeros(N, dtype=b.dtype) if space.dimensions == 1: s = [0, 0] Ai = self.diags((0,)) for k in range(nvars): s[0] = k s[1] = tp[k].slice() gi[self.offset[k][axis]:self.offset[k+1][axis]] = b[tuple(s)] if Alu is not None: go[:] = Alu.solve(gi) else: go[:] = sp.linalg.spsolve(Ai, gi) for k in range(nvars): s[0] = k s[1] = tp[k].slice() u[tuple(s)] = go[self.offset[k][axis]:self.offset[k+1][axis]] if return_system: return u, Ai elif space.dimensions == 2: if len(tpmat.naxes) == 2: # 2 non-periodic axes s = [0, 0, 0] if Alu is None: Ai = self.diags(format='csr') gi = np.zeros(space.dim(), dtype=b.dtype) go = np.zeros(space.dim(), dtype=b.dtype) start = 0 for k in range(nvars): s[0] = k s[1] = tp[k].bases[0].slice() s[2] = tp[k].bases[1].slice() gi[start:(start+tp[k].dim())] = b[tuple(s)].ravel() start += tp[k].dim() for con in constraints: dim = 0 for i in range(con[0]): dim += tp[i].dim() if Alu is None: Ai, gi = self.apply_constraint(Ai, gi, dim, 0, con) else: gi[dim] = con[2] if Alu is not None: go[:] = Alu.solve(gi) else: go[:] = sp.linalg.spsolve(Ai, gi) start = 0 for k in range(nvars): s[0] = k s[1] = tp[k].bases[0].slice() s[2] = tp[k].bases[1].slice() u[tuple(s)] = go[start:(start+tp[k].dim())].reshape((1, tp[k].bases[0].dim(), tp[k].bases[1].dim())) start += tp[k].dim() if return_system: return u, Ai else: s = [0]*3 ii, jj = {0:(2, 1), 1:(1, 2)}[axis] d0 = [0, 0] for i in range(b.shape[ii]): d0[(axis+1)%2] = i Ai = self.diags(d0) s[ii] = i for k in range(nvars): s[0] = k s[jj] = tp[k].bases[axis].slice() gi[self.offset[k][axis]:self.offset[k+1][axis]] = b[tuple(s)] for con in constraints: Ai, gi = self.apply_constraint(Ai, gi, self.offset[con[0]][axis], i, con) go[:] = sp.linalg.spsolve(Ai, gi) for k in range(nvars): s[0] = k s[jj] = tp[k].bases[axis].slice() u[tuple(s)] = go[self.offset[k][axis]:self.offset[k+1][axis]] elif space.dimensions == 3: s = [0]*4 ii, jj = {0:(2, 3), 1:(1, 3), 2:(1, 2)}[axis] d0 = [0, 0, 0] for i in range(b.shape[ii]): for j in range(b.shape[jj]): d0[ii-1], d0[jj-1] = i, j Ai = self.diags(d0) s[ii], s[jj] = i, j for k in range(nvars): s[0] = k s[axis+1] = tp[k].bases[axis].slice() gi[self.offset[k][axis]:self.offset[k+1][axis]] = b[tuple(s)] for con in constraints: Ai, gi = self.apply_constraint(Ai, gi, self.offset[con[0]][axis], (i, j), con) go[:] = sp.linalg.spsolve(Ai, gi) for k in range(nvars): s[0] = k s[axis+1] = tp[k].bases[axis].slice() u[tuple(s)] = go[self.offset[k][axis]:self.offset[k+1][axis]] u = u.reshape(u.shape[1:]) if nvars == 1 else u b = b.reshape(b.shape[1:]) if nvars == 1 else b return u @staticmethod def apply_constraint(A, b, offset, i, constraint): if constraint is None or comm.Get_rank() > 0: return A, b if isinstance(i, int): if i > 0: return A, b if isinstance(i, tuple): if np.sum(np.array(i)) > 0: return A, b row = offset + constraint[1] #print('Applying constraint row %d con (%d, %d, %2.5f)' %(row, *constraint)) assert isinstance(constraint, tuple) assert len(constraint) == 3 val = constraint[2] b[row] = val r = A.getrow(row).nonzero() #rp = A.getrow(row-1).nonzero() A[(row, r[1])] = 0 #A[(row, rp[1])] = 0 #A[row, offset] = 1 A[row, row] = 1 #A[offset, row] = 1 #A[row-1, row-1] = 1 return A, b class TPMatrix: """Tensor product matrix A :class:`.TensorProductSpace` is the tensor product of ``D`` univariate function spaces. A normal matrix (a second order tensor) is assembled from bilinear forms (i.e., forms containing both test and trial functions) on one univariate function space. A bilinear form on a tensor product space will assemble to ``D`` outer products of such univariate matrices. That is, for a two-dimensional tensor product you get fourth order tensors (outer product of two matrices), and three-dimensional tensor product spaces leads to a sixth order tensor (outer product of three matrices). This class contains ``D`` second order matrices. The complete matrix is as such the outer product of these ``D`` matrices. Note that the outer product of two matrices often is called the Kronecker product. Parameters ---------- mats : sequence, or sequence of sequence of matrices Instances of :class:`.SpectralMatrix` or :class:`.SparseMatrix` The length of ``mats`` is the number of dimensions of the :class:`.TensorProductSpace` testspace : Function space The test :class:`.TensorProductSpace` trialspace : Function space The trial :class:`.TensorProductSpace` scale : array, optional Scalar multiple of matrices. Must have ndim equal to the number of dimensions in the :class:`.TensorProductSpace`, and the shape must be 1 along any directions with a nondiagonal matrix. global_index : 2-tuple, optional Indices (test, trial) into mixed space :class:`.CompositeSpace`. mixedbase : :class:`.CompositeSpace`, optional Instance of the base space """ def __init__(self, mats, testspace, trialspace, scale=1.0, global_index=None, mixedbase=None): assert isinstance(mats, (list, tuple)) assert len(mats) == len(testspace) self.mats = mats self.space = testspace self.trialspace = trialspace self.scale = scale self.pmat = 1 self.naxes = [] self.global_index = global_index self.mixedbase = mixedbase self._issimplified = False def simplify_diagonal_matrices(self): self.naxes = [] for axis, mat in enumerate(self.mats): if not mat: continue #if mat.isdiagonal(): if axis not in self.space.get_nondiagonal_axes(): if self.dimensions == 1: # Don't bother with the 1D case continue else: d = mat[0] # get diagoal if np.ndim(d): d = self.space[axis].broadcast_to_ndims(d) d = d*mat.scale self.scale = self.scale*d self.mats[axis] = Identity(mat.shape) else: self.naxes.append(axis) # Decomposition if len(self.space) > 1: s = self.scale.shape ss = [slice(None)]*self.space.dimensions ls = self.space.local_slice() for axis, shape in enumerate(s): if shape > 1: ss[axis] = ls[axis] self.scale = (self.scale[tuple(ss)]).copy() # If only one non-diagonal matrix, then make a simple link to # this matrix. if len(self.naxes) == 1: self.pmat = self.mats[self.naxes[0]] elif len(self.naxes) == 2: # 2 nondiagonal self.pmat = self.mats self._issimplified = True def solve(self, b, u=None): if len(self.naxes) == 0: sl = tuple([s.slice() for s in self.trialspace.bases]) d = self.scale with np.errstate(divide='ignore'): d = 1./self.scale d = np.where(np.isfinite(d), d, 0) if u is None: from .forms.arguments import Function u = Function(self.space) u[sl] = b[sl] * d[sl] elif len(self.naxes) == 1: axis = self.naxes[0] u = self.pmat.solve(b, u=u, axis=axis) with np.errstate(divide='ignore'): u /= self.scale u[:] = np.where(np.isfinite(u), u, 0) elif len(self.naxes) == 2: from shenfun.la import SolverGeneric2ND H = SolverGeneric2ND([self]) u = H(b, u) return u def matvec(self, v, c): c.fill(0) if len(self.naxes) == 0: c[:] = self.scale*v elif len(self.naxes) == 1: axis = self.naxes[0] rank = v.rank if hasattr(v, 'rank') else 0 if rank == 0: c = self.pmat.matvec(v, c, axis=axis) else: c = self.pmat.matvec(v[self.global_index[1]], c, axis=axis) c = c*self.scale elif len(self.naxes) == 2: # 2 non-periodic directions (may be non-aligned in second axis, hence transfers) npaxes = deepcopy(self.naxes) space = self.space if space.forward.input_array.shape != space.forward.output_array.shape: space = space.get_unplanned(True) # in case self.space is padded pencilA = space.forward.output_pencil subcomms = [s.Get_size() for s in pencilA.subcomm] axis = pencilA.axis assert subcomms[axis] == 1 npaxes.remove(axis) second_axis = npaxes[0] pencilB = pencilA.pencil(second_axis) transAB = pencilA.transfer(pencilB, c.dtype.char) cB = np.zeros(transAB.subshapeB, dtype=c.dtype) cC = np.zeros(transAB.subshapeB, dtype=c.dtype) bb = self.mats[axis] c = bb.matvec(v, c, axis=axis) # align in second non-periodic axis transAB.forward(c, cB) bb = self.mats[second_axis] cC = bb.matvec(cB, cC, axis=second_axis) transAB.backward(cC, c) c *= self.scale return c def get_key(self): """Return key of the one nondiagonal matrix in the TPMatrix Note ---- Raises an error of there are more than one single nondiagonal matrix in TPMatrix. """ naxis = self.space.get_nondiagonal_axes() assert len(naxis) == 1 return self.mats[naxis[0]].get_key() def isidentity(self): return np.all([m.isidentity() for m in self.mats]) def isdiagonal(self): return np.all([m.isdiagonal() for m in self.mats]) def is_bc_matrix(self): for m in self.mats: if hasattr(m, 'trialfunction'): if m.trialfunction[0].boundary_condition() == 'Apply': return True return False @property def dimensions(self): """Return dimension of TPMatrix""" return len(self.mats) def __mul__(self, a): """Returns copy of self.__mul__(a) <==> self*a""" if isinstance(a, Number): TPMatrix(self.mats, self.space, self.trialspace, self.scale*a, self.global_index, self.mixedbase) elif isinstance(a, np.ndarray): c = np.empty_like(a) c = self.matvec(a, c) return c def __rmul__(self, a): """Returns copy of self.__rmul__(a) <==> a*self""" if isinstance(a, Number): return self.__mul__(a) else: raise NotImplementedError def __imul__(self, a): """Returns self.__imul__(a) <==> self*=a""" if isinstance(a, Number): self.scale *= a elif isinstance(a, np.ndarray): self.scale = self.scale*a return self def __div__(self, a): """Returns copy self.__div__(a) <==> self/a""" if isinstance(a, Number): return TPMatrix(self.mats, self.space, self.trialspace, self.scale/a, self.global_index, self.mixedbase) elif isinstance(a, np.ndarray): b = np.zeros_like(a) b = self.solve(a, b) return b else: raise NotImplementedError def __neg__(self): """self.__neg__() <==> self *= -1""" self.scale *= -1 return self def __eq__(self, a): """Check if matrices and global_index are the same. Note ---- The attribute scale may still be different """ assert isinstance(a, TPMatrix) if not self.global_index == a.global_index: return False for m0, m1 in zip(self.mats, a.mats): if not m0.get_key() == m1.get_key(): return False if not m0 == m1: return False return True def __ne__(self, a): return not self.__eq__(a) def __add__(self, a): """Return copy of self.__add__(a) <==> self+a""" assert isinstance(a, TPMatrix) assert self == a return TPMatrix(self.mats, self.space, self.trialspace, self.scale+a.scale, self.global_index, self.mixedbase) def __iadd__(self, a): """self.__iadd__(a) <==> self += a""" assert isinstance(a, TPMatrix) assert self == a self.scale = self.scale + a.scale return self def __sub__(self, a): """Return copy of self.__sub__(a) <==> self-a""" assert isinstance(a, TPMatrix) assert self == a return TPMatrix(self.mats, self.space, self.trialspace, self.scale-a.scale, self.global_index, self.mixedbase) def __isub__(self, a): """self.__isub__(a) <==> self -= a""" assert isinstance(a, TPMatrix) assert self == a self.scale = self.scale - a.scale return self def diags(self, format='csr'): if self.dimensions == 2: return kron(self.mats[0].diags(format=format), self.mats[1].diags(format=format)) elif self.dimensions == 3: return kron(self.mats[0].diags(format=format), kron(self.mats[1].diags(format=format), self.mats[2].diags(format=format))) def check_sanity(A, test, trial, measure=1): """Sanity check for matrix. Test that automatically created matrix agrees with overloaded one Parameters ---------- A : matrix test : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the test function should be differentiated. Representing matrix row. trial : 2-tuple of (basis, int) As test, but representing matrix column. measure : sympy function of coordinate, optional """ N, M = A.shape if measure == 1: D = get_dense_matrix(test, trial, measure)[:N, :M] else: D = get_denser_matrix(test, trial, measure) Dsp = extract_diagonal_matrix(D) for key, val in A.items(): assert np.allclose(val*A.scale, Dsp[key]) def get_dense_matrix(test, trial, measure=1): """Return dense matrix automatically computed from basis Parameters ---------- test : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the test function should be differentiated. Representing matrix row. trial : 2-tuple of (basis, int) As test, but representing matrix column. measure : Sympy expression of coordinate, or number, optional Additional weight to integral. For example, in cylindrical coordinates an additional measure is the radius `r`. """ K0 = test[0].slice().stop - test[0].slice().start K1 = trial[0].slice().stop - trial[0].slice().start N = test[0].N x = test[0].mpmath_points_and_weights(N, map_true_domain=False)[0] ws = test[0].get_measured_weights(N, measure) v = test[0].evaluate_basis_derivative_all(x=x, k=test[1])[:, :K0] u = trial[0].evaluate_basis_derivative_all(x=x, k=trial[1])[:, :K1] A = np.dot(np.conj(v.T)*ws[np.newaxis, :], u) if A.dtype.char in 'FDG': if np.linalg.norm(A.real) / np.linalg.norm(A.imag) > 1e14: A = A.real.copy() return A def get_denser_matrix(test, trial, measure=1): """Return dense matrix automatically computed from basis Use slightly more quadrature points than usual N Parameters ---------- test : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the test function should be differentiated. Representing matrix row. trial : 2-tuple of (basis, int) As test, but representing matrix column. measure : Sympy expression of coordinate, or number, optional Additional weight to integral. For example, in cylindrical coordinates an additional measure is the radius `r`. """ test2 = test[0].get_refined((test[0].N*3)//2) K0 = test[0].slice().stop - test[0].slice().start K1 = trial[0].slice().stop - trial[0].slice().start N = test2.N x = test2.mpmath_points_and_weights(N, map_true_domain=False)[0] ws = test2.get_measured_weights(N, measure) v = test[0].evaluate_basis_derivative_all(x=x, k=test[1])[:, :K0] u = trial[0].evaluate_basis_derivative_all(x=x, k=trial[1])[:, :K1] return np.dot(np.conj(v.T)*ws[np.newaxis, :], u) def extract_diagonal_matrix(M, abstol=1e-10, reltol=1e-10): """Return SparseMatrix version of dense matrix ``M`` Parameters ---------- M : Numpy array of ndim=2 abstol : float Tolerance. Only diagonals with max(:math:`|d|`) < tol are kept in the returned SparseMatrix, where :math:`d` is the diagonal reltol : float Relative tolerance. Only diagonals with max(:math:`|d|`)/max(:math:`|M|`) > reltol are kept in the returned SparseMatrix """ d = {} relmax = abs(M).max() dtype = float if M.dtype == 'O' else M.dtype # For mpf object for i in range(M.shape[1]): u = M.diagonal(i).copy() if abs(u).max() > abstol and abs(u).max()/relmax > reltol: d[i] = np.array(u, dtype=dtype) for i in range(1, M.shape[0]): l = M.diagonal(-i).copy() if abs(l).max() > abstol and abs(l).max()/relmax > reltol: d[-i] = np.array(l, dtype=dtype) return SparseMatrix(d, M.shape) def extract_bc_matrices(mats): """Extract boundary matrices from list of ``mats`` Parameters ---------- mats : list of list of :class:`.TPMatrix`es Returns ------- list list of boundary matrices. Note ---- The ``mats`` list is modified in place since boundary matrices are extracted. """ bc_mats = [] for a in mats: for b in a.copy(): if isinstance(b, SparseMatrix): if b.trialfunction[0].boundary_condition() == 'Apply': bc_mats.append(b) a.remove(b) elif isinstance(b, TPMatrix): if b.is_bc_matrix(): bc_mats.append(b) a.remove(b) return bc_mats def get_dense_matrix_sympy(test, trial, measure=1): """Return dense matrix automatically computed from basis Parameters ---------- test : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the test function should be differentiated. Representing matrix row. trial : 2-tuple of (basis, int) As test, but representing matrix column. measure : Sympy expression of coordinate, or number, optional Additional weight to integral. For example, in cylindrical coordinates an additional measure is the radius `r`. """ N = test[0].slice().stop - test[0].slice().start M = trial[0].slice().stop - trial[0].slice().start V = np.zeros((N, M), dtype=test[0].forward.output_array.dtype) x = sp.Symbol('x', real=True) if not measure == 1: if isinstance(measure, sp.Expr): s = measure.free_symbols assert len(s) == 1 x = s.pop() xm = test[0].map_true_domain(x) measure = measure.subs(x, xm) else: assert isinstance(measure, Number) # Weight of weighted space measure *= test[0].weight() for i in range(test[0].slice().start, test[0].slice().stop): pi = np.conj(test[0].sympy_basis(i, x=x)) for j in range(trial[0].slice().start, trial[0].slice().stop): pj = trial[0].sympy_basis(j, x=x) integrand = sp.simplify(measure*pi.diff(x, test[1])*pj.diff(x, trial[1])) V[i, j] = integrate_sympy(integrand, (x, test[0].sympy_reference_domain()[0], test[0].sympy_reference_domain()[1])) return V def get_dense_matrix_quadpy(test, trial, measure=1): """Return dense matrix automatically computed from basis Using quadpy to compute the integral adaptively with high accuracy. This should be equivalent to integrating analytically with sympy, as long as the integrand is smooth enough and the integral can be found with quadrature. Parameters ---------- test : 2-tuple of (basis, int) The basis is an instance of a class for one of the bases in - :mod:`.legendre.bases` - :mod:`.chebyshev.bases` - :mod:`.fourier.bases` - :mod:`.laguerre.bases` - :mod:`.hermite.bases` - :mod:`.jacobi.bases` The int represents the number of times the test function should be differentiated. Representing matrix row. trial : 2-tuple of (basis, int) As test, but representing matrix column. measure : Sympy expression of coordinate, or number, optional Additional weight to integral. For example, in cylindrical coordinates an additional measure is the radius `r`. """ import quadpy N = test[0].slice().stop - test[0].slice().start M = trial[0].slice().stop - trial[0].slice().start V = np.zeros((N, M), dtype=test[0].forward.output_array.dtype) x = sp.Symbol('x', real=True) if not measure == 1: if isinstance(measure, sp.Expr): s = measure.free_symbols assert len(s) == 1 x = s.pop() xm = test[0].map_true_domain(x) measure = measure.subs(x, xm) else: assert isinstance(measure, Number) # Weight of weighted space measure *= test[0].weight() for i in range(test[0].slice().start, test[0].slice().stop): pi = np.conj(test[0].sympy_basis(i, x=x)) for j in range(trial[0].slice().start, trial[0].slice().stop): pj = trial[0].sympy_basis(j, x=x) integrand = sp.simplify(measure*pi.diff(x, test[1])*pj.diff(x, trial[1])) if not integrand == 0: V[i, j] = quadpy.c1.integrate_adaptive(sp.lambdify(x, integrand), test[0].reference_domain())[0] return V
the-stack_106_26237
import queue import consts import logging import requests import threading from domain.Table import Table from domain.Waiters import Waiters logger = logging.getLogger(__name__) lock = threading.Lock() class DinningHall: def __init__(self, config): self.config = config self.id_ = config["restaurant_id"] self.name = f'DH-{self.id_}' self.done_orders = [] self.orders = [] self.tables = [Table(self, i) for i in range(config['tables_no'])] self.waiters = [Waiters(self, i) for i in range(config['waiters_no'])] self.orders_q = queue.Queue() self.rating_stars = [] self.avg_rating = config['rating'] self.TIME_UNIT = 1 self.free_tables = queue.Queue() def start_dinning_workers(self): for table in self.tables: self.free_tables.put_nowait(table) for waiter in self.waiters: threading.Thread(target=waiter.search_order, args=(self.free_tables, ), daemon=True).start() def get_restaurant_data(self): return {'config': self.config} def get_menu(self): return {'menu': self.config['menu'], 'restaurant_name': self.config['name']} def order(self, data): logger.info(f'{self.name}, NEW order: {data["order_id"]} | request to kitchen PORT: {self.config["kitchen_port"]}\n') self.orders.append(data) res = requests.post(f'http://{consts.KH_HOST}:{self.config["kitchen_port"]}/order', json=data) return res.json() def get_order(self, order_id): logger.info(f'{self.name}, client requested for order: {order_id}\n') order = next((x for x in self.done_orders if x['order_id'] == order_id), None) if order is not None: logger.info(f'{self.name}, client received order: {order_id}\n') return {**order, 'is_ready': True} else: logger.info(f'{self.name}, client order: {order_id} is not ready!\n') return {'order_id': order_id, 'is_ready': False, 'estimated_waiting_time': 3} def distribution(self, order): self.done_orders.append(order) if order['table_id'] is not None: # serve the order to table logger.info(f'{self.name} NEW distribution for table: {order["table_id"]}') waiter = next((w for w in self.waiters if w.id == order['waiter_id']), None) waiter.serve_order(order) else: # keep the order, so client can request it logger.info(f'{self.name} NEW distribution for client service') return {'isSuccess': True} def update_rating(self, data): lock.acquire() self.rating_stars.append(data['stars']) avg = float(sum(s for s in self.rating_stars)) / len(self.rating_stars) self.avg_rating = avg lock.release() logger.info(f'{self.name} order_id: {data["order_id"]} | updated RATING: {self.avg_rating}') return {'updated_rating': self.avg_rating}
the-stack_106_26238
import logging from gaphor import UML from gaphor.core.format import format from gaphor.core.modeling.properties import attribute from gaphor.core.styling import ( FontStyle, FontWeight, TextAlign, TextDecoration, VerticalAlign, ) from gaphor.diagram.presentation import ( Classified, ElementPresentation, from_package_str, ) from gaphor.diagram.shapes import ( Box, EditableText, Text, draw_border, draw_top_separator, ) from gaphor.diagram.support import represents from gaphor.UML.classes.stereotype import stereotype_compartments log = logging.getLogger(__name__) @represents(UML.Class) @represents(UML.Stereotype) class ClassItem(ElementPresentation[UML.Class], Classified): """This item visualizes a Class instance. A ClassItem contains two compartments: one for attributes and one for operations. """ def __init__(self, diagram, id=None): super().__init__(diagram, id=id) self.watch("show_stereotypes", self.update_shapes).watch( "show_attributes", self.update_shapes ).watch("show_operations", self.update_shapes).watch( "subject[NamedElement].name" ).watch( "subject[NamedElement].namespace.name" ).watch( "subject[Classifier].isAbstract", self.update_shapes ) attribute_watches(self, "Class") operation_watches(self, "Class") stereotype_watches(self) show_stereotypes: attribute[int] = attribute("show_stereotypes", int) show_attributes: attribute[int] = attribute("show_attributes", int, default=True) show_operations: attribute[int] = attribute("show_operations", int, default=True) def additional_stereotypes(self): if isinstance(self.subject, UML.Stereotype): return ["stereotype"] elif UML.model.is_metaclass(self.subject): return ["metaclass"] else: return () def update_shapes(self, event=None): self.shape = Box( Box( Text( text=lambda: UML.model.stereotypes_str( self.subject, self.additional_stereotypes() ), ), EditableText( text=lambda: self.subject.name or "", style={ "font-weight": FontWeight.BOLD, "font-style": FontStyle.ITALIC if self.subject and self.subject.isAbstract else FontStyle.NORMAL, }, ), Text( text=lambda: from_package_str(self), style={"font-size": "x-small"}, ), style={"padding": (12, 4, 12, 4)}, ), *( self.show_attributes and self.subject and [attributes_compartment(self.subject)] or [] ), *( self.show_operations and self.subject and [operations_compartment(self.subject)] or [] ), *(self.show_stereotypes and stereotype_compartments(self.subject) or []), style={ "vertical-align": VerticalAlign.TOP, }, draw=draw_border, ) def attribute_watches(presentation, cast): presentation.watch( f"subject[{cast}].ownedAttribute", presentation.update_shapes ).watch( f"subject[{cast}].ownedAttribute.association", presentation.update_shapes ).watch( f"subject[{cast}].ownedAttribute.name" ).watch( f"subject[{cast}].ownedAttribute.isStatic", presentation.update_shapes ).watch( f"subject[{cast}].ownedAttribute.isDerived" ).watch( f"subject[{cast}].ownedAttribute.visibility" ).watch( f"subject[{cast}].ownedAttribute.lowerValue" ).watch( f"subject[{cast}].ownedAttribute.upperValue" ).watch( f"subject[{cast}].ownedAttribute.defaultValue" ).watch( f"subject[{cast}].ownedAttribute.type" ).watch( f"subject[{cast}].ownedAttribute.typeValue" ) def operation_watches(presentation, cast): presentation.watch( f"subject[{cast}].ownedOperation", presentation.update_shapes ).watch(f"subject[{cast}].ownedOperation.name").watch( f"subject[{cast}].ownedOperation.isAbstract", presentation.update_shapes ).watch( f"subject[{cast}].ownedOperation.isStatic", presentation.update_shapes ).watch( f"subject[{cast}].ownedOperation.visibility" ).watch( f"subject[{cast}].ownedOperation.returnResult.lowerValue" ).watch( f"subject[{cast}].ownedOperation.returnResult.upperValue" ).watch( f"subject[{cast}].ownedOperation.returnResult.typeValue" ).watch( f"subject[{cast}].ownedOperation.formalParameter.lowerValue" ).watch( f"subject[{cast}].ownedOperation.formalParameter.upperValue" ).watch( f"subject[{cast}].ownedOperation.formalParameter.typeValue" ).watch( f"subject[{cast}].ownedOperation.formalParameter.defaultValue" ) def stereotype_watches(presentation): presentation.watch("subject.appliedStereotype", presentation.update_shapes).watch( "subject.appliedStereotype.classifier.name" ).watch("subject.appliedStereotype.slot", presentation.update_shapes).watch( "subject.appliedStereotype.slot.definingFeature.name" ).watch( "subject.appliedStereotype.slot.value", presentation.update_shapes ) def attributes_compartment(subject): # We need to fix the attribute value, since the for loop changes it. def lazy_format(attribute): return lambda: format(attribute) return Box( *( Text( text=lazy_format(attribute), style={ "text-align": TextAlign.LEFT, "text-decoration": TextDecoration.UNDERLINE if attribute.isStatic else TextDecoration.NONE, }, ) for attribute in subject.ownedAttribute if not attribute.association ), style={"padding": (4, 4, 4, 4)}, draw=draw_top_separator, ) def operations_compartment(subject): def lazy_format(operation): return lambda: format( operation, visibility=True, type=True, multiplicity=True, default=True ) return Box( *( Text( text=lazy_format(operation), style={ "text-align": TextAlign.LEFT, "font-style": FontStyle.ITALIC if operation.isAbstract else FontStyle.NORMAL, "text-decoration": TextDecoration.UNDERLINE if operation.isStatic else TextDecoration.NONE, }, ) for operation in subject.ownedOperation ), style={"padding": (4, 4, 4, 4)}, draw=draw_top_separator, )
the-stack_106_26240
# Copyright 2020 EraO Prosopagnosia Helper Dev Team, Liren Pan, Yixiao Hong, Hongzheng Xu, Stephen Huang, Tiancong Wang # # Supervised by Prof. Steve Mann (http://www.eecg.toronto.edu/~mann/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import mysql.connector import time from app.sql.config.DbConfig import db_config from flask import request, redirect, url_for, send_from_directory, render_template, session, g from werkzeug.utils import secure_filename from app import webapp from app.S3Helper import store_file, get_file_path_by_key, create_presigned_url_expanded, delete_file # The function used to establish connection to sql database from app.util.AWSHelper import compare_faces def connect_to_database(): ''' Function used to connet to database :return: ''' return mysql.connector.connect(user=db_config['user'], password=db_config['password'], host=db_config['host'], database=db_config['database'], use_pure=True) def get_database(): ''' Description: These two functions allow us to connect to database and get basic information :return: connected database object ''' db = getattr(g, '_database', None) if db is None: db = g._database = connect_to_database() return db # UPLOAD_FOLDER = '/home/ubuntu/ece1779_projects/img/' # UPLOAD_FOLDER = '/Users/fredpan/Desktop/output/' # UPLOAD_FOLDER = '/home/yixiao/Desktop/after/' UPLOAD_FOLDER = '/' ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) webapp.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): ''' Description: This function checks allowed extension type. :param filename: The file name which need to be judged :return: True if the file is illegible and False if its not ''' return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS # after user click the upload button @webapp.route('/name_tag_modify', methods=['POST']) def name_tag_modify(): ''' This function helps modify the name tag of the photo stored in the database :return: redirect to file managment ''' name_tag = request.form.get('nameTag', "") imageName = request.form.get('imageName', "") # update database # connect to database and create the record cnx = get_database() cursor = cnx.cursor() sql = "UPDATE file_info SET person_name = %s WHERE cloud_image_name = %s" val = (name_tag, imageName) cursor.execute(sql, val) cnx.commit() session['info'] = "Name Tag Updated!" return redirect(url_for('file_management')) # after user click the upload button @webapp.route('/delete_image', methods=['POST']) def delete_image(): ''' This function deletes a stored reference face and also deletes the name tag in the database :return: ''' deleteImageName = request.form.get('deleteImageName', "") # delete image from s3 resut1 = delete_file(deleteImageName) # delete image from database resut2 = True try: cnx = get_database() cursor = cnx.cursor() sql = "DELETE FROM file_info WHERE cloud_image_name = %s" val = (deleteImageName,) cursor.execute(sql, val) cnx.commit() except Exception as ex: resut2 = False if not (resut1 and resut2): session['error'] = "A problem occurred while deleting file!" else: session['info'] = "File deleted!" return redirect(url_for('file_management')) # after user click the upload button @webapp.route('/which_face', methods=['POST']) def which_face(): ''' This function is called from the web page to perform the face compairation function :return: ''' try: if request.method == 'POST': img_file = request.files['img'] # check if the post request has the file part if 'img' not in request.files: raise Exception("No file upload in the request!") # test if file too large: # if user does not select file, browser also # submit an empty part without filename if img_file.filename == '': raise Exception("No file selected!") if len(img_file.filename) >= 50: raise Exception("File name too long") if img_file and allowed_file(img_file.filename): # ===================================================# # ======Till this step the file is good to process===# # ===================================================# # img_bytes = img_file.read() store_file('temp_image.jpg', img_file) match_result, match_output = compare_faces('temp_image.jpg') temp_image_path = create_presigned_url_expanded('temp_image.jpg') error_msg = None info_msg = None if match_result == False: info_msg = match_output return render_template("process_image.html", uploadImagePath=temp_image_path, match_result=str(match_output), info_msg=info_msg, error_msg=error_msg) else: info_msg = "Match succeed, result as follows:" return render_template("process_image.html", uploadImagePath=temp_image_path, match_result=str(match_output), info_msg=info_msg, error_msg=error_msg) else: raise Exception("Not a Correct File Type!") except Exception as ex: print("problem is:", str(ex)) return render_template("process_image.html", error_msg=str(ex)) # after user click the upload button @webapp.route('/upload', methods=['POST']) def upload_file(): ''' Description: This function will be called if the user tries to upload an image and this function checks if the upload is valid. If so the function will keep a copy of the image and an OpenCV-processed image in the database, with the proper naming scheme. The function can raise exceptions if there are any of the following problems: no file selected; filename too long; wrong extension type; file too large. If the uploaded is valid then we will connect to the database and create a record. First, we update the information in session from our database. Second, we assign systematic names to the image and its processed image depending on the user id and their upload counter. Third, we save the image to the cloud, process it through OpenCV and then save the processed image to the cloud. Fourth, we gather all information and update our file name table in the database. Last we increase the upload counter by 1 and update it. :return: upload_management.html ''' try: if request.method == 'POST': file = request.files['file'] # check if the post request has the file part if 'file' not in request.files: raise Exception("No file upload in the request!") # test if file too large: # if user does not select file, browser also # submit an empty part without filename if file.filename == '': raise Exception("No file selected!") if len(file.filename) >= 50: raise Exception("File name too long") if file and allowed_file(file.filename): # ===================================================# # ======Till this step the file is good to process===# # ===================================================# # connect to database and create the record cnx = get_database() cursor = cnx.cursor() # rename the upload img as: userpid_useruploadcounter_imagename.extention userFileName = secure_filename(file.filename) # example: example.jpg cloudSaveFilename = str(session["uid"]) + "_" + str(time.time()).replace('.', '') + "_" + userFileName # example: 12_1_example.jpg store_file(cloudSaveFilename, file) new_file = get_file_path_by_key(cloudSaveFilename) # prepare for values for sql fileName = userFileName uploadImagePath = UPLOAD_FOLDER + cloudSaveFilename ts = time.time() timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') personName = str(time.time()).replace('.', '') input_name = request.form.get('nameTag', "") if input_name.strip() != '': personName = input_name # update file_name table query = "INSERT INTO file_info (file_name, upload_image_path, cloud_image_name, create_time, person_name) VALUES (%s, %s, %s, %s, %s)" data = (fileName, uploadImagePath, cloudSaveFilename, timeStamp, personName) cursor.execute(query, data) cnx.commit() # get the image path for both image_before and image_after info_msg = "Photo Uploaded Successfully!" return render_template("upload_management.html", uploadImagePath=create_presigned_url_expanded(cloudSaveFilename), fileName=fileName, person_name=personName, info_msg=info_msg) else: raise Exception("Not a Correct File Type!") except Exception as ex: print("problem is:", str(ex)) return render_template("upload_management.html", error_msg=str(ex)) @webapp.route('/uploads/<filename>') def uploaded_file(filename): return send_from_directory(webapp.config['UPLOAD_FOLDER'], filename) @webapp.route('/file_management') def file_management(): ''' This function allows user to check uploaded and processed images when the url'/file_management' is called. If the session information is all valid, we will connect to the database and try to get all images with the required uid and then show them. :return: "file_management.html" ''' if ('authenticated' in session) and ('username' in session): # check if the cookie includes username and authenticated flag if session['authenticated'] == True: # ==========prepare the loop for flexable amont of images===========# # connect to database and create the record cnx = get_database() cursor = cnx.cursor() query = "SELECT file_name, cloud_image_name, person_name FROM file_info" cursor.execute(query) results = cursor.fetchall() # if there is no uploaded image: if len(results) == 0: return render_template("file_management.html", fileNumber=0, dictList=[]) # if there exists uploaded image: else: # need following args for render html template : dictList, filenumber>0 # for each dictionary in dictList, 5 elements: # modelName: ex. model1 # cloudSaveFilename: ex. 07_2_example.jpg # cloudProcessedFileName ex. p_07_2_example.jpg # userFileName: ex. example.jpg # processedUserFileName: ex. processed_example.jpg dictList = [] fileNumber = len(results) # build the dictList for i in range(fileNumber): newdict = dict() newdict["userFileName"] = results[i][0] newdict["cloudSaveFilename"] = create_presigned_url_expanded(results[i][1]) newdict["cloudImageName"] = results[i][1] newdict["personName"] = results[i][2] newdict["modalID"] = "modal" + str(i) newdict["buttonID"] = "button" + str(i) newdict["closeID"] = "close" + str(i) dictList.append(newdict) info_msg = None if ('info' in session): info_msg = session['info'] session.pop('info') error_msg = None if ('error' in session): error_msg = session['error'] session.pop('error') return render_template("file_management.html", fileNumber=fileNumber, dictList=dictList, info_msg=info_msg, error_msg=error_msg) else: return redirect(url_for('user_login'))
the-stack_106_26242
""" The main module containing functions for parsing text strings into crs objects. """ # possible use module: https://github.com/rockdoc/grabbag/wiki/CRS-WKT-Parser # also note some paramter descriptions: http://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html # and see gdal source code: http://gis.stackexchange.com/questions/129764/how-are-esri-wkt-projections-different-from-ogc-wkt-projections # especially: http://fossies.org/windows/misc/saga_2.1.4_x64.zip/saga_2.1.4_x64/saga_prj.dic # also: http://saga.sourcearchive.com/documentation/2.0.7plus-pdfsg-2/crs__base_8cpp_source.html from .elements import datums from .elements import ellipsoids from .elements import parameters from .elements import containers from .elements import units from .elements import projections from . import utils def from_epsg_code(code): """ Load crs object from epsg code, via spatialreference.org. Parses based on the proj4 representation. Arguments: - *code*: The EPSG code as an integer. Returns: - CRS object. """ # must go online (or look up local table) to get crs details code = str(code) proj4 = utils.crscode_to_string("epsg", code, "proj4") crs = from_proj4(proj4) return crs def from_esri_code(code): """ Load crs object from esri code, via spatialreference.org. Parses based on the proj4 representation. Arguments: - *code*: The ESRI code as an integer. Returns: - CRS object. """ # must go online (or look up local table) to get crs details code = str(code) proj4 = utils.crscode_to_string("esri", code, "proj4") crs = from_proj4(proj4) return crs def from_sr_code(code): """ Load crs object from sr-org code, via spatialreference.org. Parses based on the proj4 representation. Arguments: - *code*: The SR-ORG code as an integer. Returns: - CRS object. """ # must go online (or look up local table) to get crs details code = str(code) proj4 = utils.crscode_to_string("sr-org", code, "proj4") crs = from_proj4(proj4) return crs def from_ogc_wkt(string, strict=False): """ Parse crs as ogc wkt formatted string and return the resulting crs object. Arguments: - *string*: The OGC WKT representation as a string. - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ # parse arguments into components # use args to create crs return _from_wkt(string, "ogc", strict) def from_esri_wkt(string, strict=False): """ Parse crs as esri wkt formatted string and return the resulting crs object. Arguments: - *string*: The ESRI WKT representation as a string. - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ # parse arguments into components # use args to create crs return _from_wkt(string, "esri", strict) def from_unknown_wkt(string, strict=False): """ Given an unknown wkt string, detect if uses ogc or esri flavor, and parse the crs accordingly. Arguments: - *string*: The unknown WKT representation as a string. - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ # parse arguments into components # use args to create crs return _from_wkt(string, None, strict) def _from_wkt(string, wkttype=None, strict=False): """ Internal method for parsing wkt, with minor differences depending on ogc or esri style. Arguments: - *string*: The OGC or ESRI WKT representation as a string. - *wkttype* (optional): How to parse the WKT string, as either 'ogc', 'esri', or None. If None, tries to autodetect the wkt type before parsing (default). - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ # TODO # - Make function for finding next elemt by name, instead of knowing its arg index position # - Maybe verify elem arg name # make sure valid wkttype if wkttype: wkttype = wkttype.lower() assert wkttype in ("ogc","esri",None) # remove newlines and multi spaces string = " ".join(string.split()) # parse arguments into components def _consume_bracket(chars, char): "char must be the opening bracket" consumed = "" depth = 1 while char and depth > 0: consumed += char char = next(chars, None) # update depth level if char == "[": depth += 1 elif char == "]": depth -= 1 consumed += char # consume the last closing char too return consumed def _consume_quote(chars, char, quotechar): "char and quotechar must be the opening quote char" consumed = "" # consume the first opening char consumed += char char = next(chars, None) # consume inside while char and char != quotechar: consumed += char char = next(chars, None) # consume the last closing char too consumed += char return consumed def _next_elem(chars, char): "char must be the first char of the text that precedes brackets" header = "" # skip until next header while not char.isalpha(): char = next(chars, None) # first consume the element text header while char.isalpha(): header += char char = next(chars, None) # skip until next brackets (in case of spaces) while char != "[": char = next(chars, None) # then consume the element bracket contents if char == "[": content = _consume_bracket(chars, char) char = next(chars, None) # split content into args list content = content[1:-1] # remove enclosing brackets content = _split_except(content) # recursively load all subelems for i,item in enumerate(content): if isinstance(item, str) and "[" in item: chars = (char for char in item) char = next(chars) item = _next_elem(chars, char) content[i] = item return header, content def _clean_value(string): string = string.strip() try: string = float(string) except: pass return string def _split_except(string): "split the string on every comma, except not while inside quotes or square brackets" chars = (char for char in string) char = next(chars) items = [] consumed = "" while char: # dont split on quotes, just consume it if char in ("'", '"'): consumed += _consume_quote(chars, char, char) # dont split inside brackets, just consume it elif char == "[": consumed += _consume_bracket(chars, char) # new splitchar found, add what has been consumed so far as an item, reset, and start consuming until next splitchar elif char == ",": consumed = _clean_value(consumed) items.append(consumed) consumed = "" # consume normal char elif char: consumed += char # next char = next(chars, None) # append last item too consumed = _clean_value(consumed) items.append(consumed) return items # load into nested tuples and arglists crstuples = [] chars = (char for char in string) char = next(chars) while char: header,content = _next_elem(chars, char) crstuples.append((header, content)) char = next(chars, None) # autodetect wkttype if not specified if not wkttype: topheader,topcontent = crstuples[0] if topheader == "PROJCS": geogcsheader,geogcscontent = topcontent[1] elif topheader == "GEOGCS": geogcsheader,geogcscontent = topheader,topcontent # datum elem should be second under geogcs datumheader, datumcontent = geogcscontent[1] datumname = datumcontent[0].upper().strip('"') # esri wkt datums all use "D_" before the datum name if datumname.startswith("D_"): wkttype = "esri" else: wkttype = "ogc" # parse into actual crs objects def _parse_top(header, content): "procedure for parsing the toplevel crs element and all its children" if header.upper() == "PROJCS": # find name name = content[0].strip('"') # find geogcs elem (by running parse again) subheader, subcontent = content[1] geogcs = _parse_top(subheader, subcontent) # find projection elem subheader, subcontent = content[2] projname = subcontent[0].strip('"') projclass = projections.find(projname, "%s_wkt" % wkttype, strict) if projclass: projdef = projclass() proj = containers.Projection(projdef) else: raise Exception("The specified projection name could not be found") # find params params = [] for part in content: if isinstance(part, tuple): subheader,subcontent = part if subheader == "PARAMETER": name, value = subcontent[0].strip('"'), subcontent[1] itemclass = parameters.find(name, "%s_wkt" % wkttype, strict) if itemclass: item = itemclass(value) params.append(item) # find unit for part in content: if isinstance(part, tuple): subheader,subcontent = part if subheader == "UNIT": break unitname,value = subcontent[0].strip('"'), subcontent[1] unitclass = units.find(unitname, "%s_wkt" % wkttype, strict) if unitclass: unit = unitclass() unittype = parameters.UnitType(unit) else: unit = units.Unknown() unittype = parameters.UnitType(unit) metmult = parameters.MeterMultiplier(value) linunit = parameters.Unit(unittype, metmult) # find twin axis maybe ## if len(content) >= 6: ## twinax = (parameters.Axis( ## else: ## twinax = None # put it all together projcs = containers.ProjCS("Unknown", geogcs, proj, params, linunit) #, twinax) return projcs elif header.upper() == "GEOGCS": # name name = content[0].strip('"') # datum subheader, subcontent = content[1] ## datum name datumname = subcontent[0].strip('"') datumclass = datums.find(datumname, "%s_wkt" % wkttype, strict) if datumclass: datumdef = datumclass() else: datumdef = datums.Unknown() ## datum ellipsoid subsubheader, subsubcontent = subcontent[1] ellipsname = subsubcontent[0].strip('"') ellipsclass = ellipsoids.find(ellipsname, "%s_wkt" % wkttype, strict) if ellipsclass: ellipsdef = ellipsclass() else: ellipsdef = ellipsoids.Unknown() ellipsoid = containers.Ellipsoid(ellipsdef, subsubcontent[1], subsubcontent[2]) ## datum shift if wkttype == "ogc": for subsubheader,subsubcontent in subcontent[1:]: if subsubheader == "TOWGS84": datumshift = parameters.DatumShift(subsubcontent) break else: datumshift = None elif wkttype == "esri": # not used in esri wkt datumshift = None ## put it all togehter datum = containers.Datum(datumdef, ellipsoid, datumshift) # prime mer subheader, subcontent = content[2] prime_mer = parameters.PrimeMeridian(subcontent[1]) # angunit subheader, subcontent = content[3] unitname,value = subcontent[0].strip('"'), subcontent[1] unitclass = units.find(unitname, "%s_wkt" % wkttype, strict) if unitclass: unit = unitclass() unittype = parameters.UnitType(unit) else: unit = units.Unknown() unittype = parameters.UnitType(unit) metmult = parameters.MeterMultiplier(value) angunit = parameters.AngularUnit(unittype, metmult) # twin axis # ... # put it all together geogcs = containers.GeogCS(name, datum, prime_mer, angunit, twin_ax=None) return geogcs # toplevel collection header, content = crstuples[0] toplevel = _parse_top(header, content) crs = containers.CRS(toplevel) # use args to create crs return crs def from_proj4(proj4, strict=False): """ Parse crs as proj4 formatted string or dict and return the resulting crs object. Arguments: - *proj4*: The proj4 representation as a string or dict. - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ # parse arguments into components # use args to create crs # TODO: SLIGTHLY MESSY STILL, CLEANUP.. params = [] if isinstance(proj4, dict): # add leading + sign as expected below, proj4 dicts do not have that partdict = dict([('+'+k,v) for k,v in proj4.items()]) else: partdict = dict([part.split("=") for part in proj4.split() if len(part.split("=")) == 2 ]) # INIT CODES # eg, +init=EPSG:1234 if "+init" in partdict: # first, get the default proj4 string of the +init code codetype, code = partdict["+init"].split(":") if codetype == "EPSG": initproj4 = utils.crscode_to_string("epsg", code, "proj4") elif codetype == "ESRI": initproj4 = utils.crscode_to_string("esri", code, "proj4") # make the default into param dict initpartdict = dict([part.split("=") for part in initproj4.split() if len(part.split("=")) == 2 ]) # override the default with any custom params specified along with the +init code initpartdict.update(partdict) # rerun from_proj4() again on the derived proj4 params as if it was not made with the +init code del initpartdict["+init"] string = " ".join("%s=%s" % (key,val) for key,val in initpartdict.items()) return from_proj4(string) # DATUM # datum param is required if "+datum" in partdict: # get predefined datum def datumname = partdict["+datum"] datumclass = datums.find(datumname, "proj4", strict) if datumclass: datumdef = datumclass() else: datumdef = datums.Unknown() else: datumdef = datums.Unknown() # ELLIPS # ellipse param is required if "+ellps" in partdict: # get predefined ellips def ellipsname = partdict["+ellps"] ellipsclass = ellipsoids.find(ellipsname, "proj4", strict) if ellipsclass: ellipsdef = ellipsclass elif "+a" in partdict and "+f" in partdict: ellipsdef = ellipsoids.Unknown() elif "+a" in partdict and "+rf" in partdict: ellipsdef = ellipsoids.Unknown() else: raise Exception("The specified ellipsoid name could not be found, and there was no manual specification of the semimajor axis and inverse flattening to use as a substitute.") elif "+a" in partdict and "+f" in partdict: # alternatively, it is okay with a missing ellipsoid if +a and +f are specified # TODO: +f seems to never be specified when +ellps is missing, only +a and +b, look into... ellipsdef = ellipsoids.Unknown() elif "+a" in partdict and "+rf" in partdict: ellipsdef = ellipsoids.Unknown() else: raise Exception("Could not find the required +ellps element, nor a manual specification of the +a or +f elements, or +a and +rf elements.") # TO WGS 84 COEFFS if "+towgs84" in partdict: coeffs = partdict["+towgs84"].split(",") datumshift = parameters.DatumShift(coeffs) # TODO: if no datum, use ellips + towgs84 params to create the correct datum # ...?? # COMBINE DATUM AND ELLIPS ## create datum and ellips param objs if "+rf" in partdict: inv_flat = partdict.get("+rf") elif "+f" in partdict: inv_flat = 1.0 / float(partdict.get("+f")) elif ellipsdef.inv_flat is not None: inv_flat = ellipsdef.inv_flat else: raise Exception("Could not find the required +ellps element, nor a manual specification of the +f or +rf elements.") ellips = containers.Ellipsoid(ellipsdef, semimaj_ax=partdict.get("+a"), inv_flat=inv_flat) if "+datum" in partdict: datum = containers.Datum(datumdef, ellips) elif "+towgs84" in partdict: datum = containers.Datum(datumdef, ellips, datumshift) else: datum = containers.Datum(datumdef, ellips) # PRIME MERIDIAN # set default prime_mer = parameters.PrimeMeridian(0) # overwrite with user input if "+pm" in partdict: # for now only support longitude, later add name support from below: ## greenwich 0dE ## lisbon 9d07'54.862"W ## paris 2d20'14.025"E ## bogota 74d04'51.3"E ## madrid 3d41'16.48"W ## rome 12d27'8.4"E ## bern 7d26'22.5"E ## jakarta 106d48'27.79"E ## ferro 17d40'W ## brussels 4d22'4.71"E ## stockholm 18d3'29.8"E ## athens 23d42'58.815"E ## oslo 10d43'22.5"E prime_mer = parameters.PrimeMeridian(partdict["+pm"]) # ANGULAR UNIT ## proj4 cannot set angular unit, so just set to default metmulti = parameters.MeterMultiplier(0.017453292519943295) unittype = parameters.UnitType(units.Degree()) angunit = parameters.AngularUnit(unittype, metmulti) # GEOGCS (note, currently does not load axes) geogcs = containers.GeogCS("Unknown", datum, prime_mer, angunit) #, twin_ax) # PROJECTION if "+proj" in partdict: # get predefined proj def projname = partdict["+proj"] projclass = projections.find(projname, "proj4", strict) if projclass: projdef = projclass() elif projname == "longlat": # proj4 special case, longlat as projection name means unprojected geogcs projdef = None else: raise Exception("The specified projection name could not be found") else: raise Exception("Could not find required +proj element") if projdef: # create proj param obj proj = containers.Projection(projdef) # Because proj4 has no element hierarchy, using automatic element find() would # ...would not be very effective, as that would need a try-fail approach for each # ...element type (parameter, projection, datum, ellipsoid, unit). # ...Instead load each element individually. # CENTRAL MERIDIAN if "+lon_0" in partdict: val = partdict["+lon_0"] obj = parameters.CentralMeridian(val) params.append(obj) # FALSE EASTING if "+x_0" in partdict: val = partdict["+x_0"] obj = parameters.FalseEasting(val) params.append(obj) # FALSE NORTHING if "+y_0" in partdict: val = partdict["+y_0"] obj = parameters.FalseNorthing(val) params.append(obj) # SCALING FACTOR if "+k_0" in partdict or "+k" in partdict: if "+k_0" in partdict: val = partdict["+k_0"] elif "+k" in partdict: val = partdict["+k"] obj = parameters.ScalingFactor(val) params.append(obj) # LATITUDE ORIGIN if "+lat_0" in partdict: val = partdict["+lat_0"] obj = parameters.LatitudeOrigin(val) params.append(obj) # LATITUDE TRUE SCALE if "+lat_ts" in partdict: val = partdict["+lat_ts"] obj = parameters.LatitudeTrueScale(val) params.append(obj) # LONGITUDE CENTER if "+lonc" in partdict: val = partdict["+lonc"] obj = parameters.LongitudeCenter(val) params.append(obj) # AZIMUTH if "+alpha" in partdict: val = partdict["+alpha"] obj = parameters.Azimuth(val) params.append(obj) # STD PARALLEL 1 if "+lat_1" in partdict: val = partdict["+lat_1"] obj = parameters.LatitudeFirstStndParallel(val) params.append(obj) # STD PARALLEL 2 if "+lat_2" in partdict: val = partdict["+lat_2"] obj = parameters.LatitudeSecondStndParallel(val) params.append(obj) # SATELLITE HEIGHT if "+h" in partdict: val = partdict["+h"] obj = parameters.SatelliteHeight(val) params.append(obj) # TILT ANGLE if "+tilt" in partdict: val = partdict["+tilt"] obj = parameters.TiltAngle(val) params.append(obj) # UNIT # get values if "+units" in partdict: # unit name takes precedence over to_meter unitname = partdict["+units"] unitclass = units.find(unitname, "proj4", strict) if unitclass: unit = unitclass() unittype = parameters.UnitType(unit) metmulti = parameters.MeterMultiplier(unit.to_meter) # takes meter multiplier from name, ignoring any custom meter multiplier else: raise Exception("The specified unit name could not be found") elif "+to_meter" in partdict: # no unit name specified, only to_meter conversion factor unittype = parameters.UnitType(units.Unknown()) metmulti = parameters.MeterMultiplier(partdict["+to_meter"]) else: # if nothing specified, defaults to meter unittype = parameters.UnitType(units.Meter()) metmulti = parameters.MeterMultiplier(1.0) ## create unitobj unit = parameters.Unit(unittype, metmulti) # PROJCS projcs = containers.ProjCS("Unknown", geogcs, proj, params, unit) # CRS crs = containers.CRS(projcs) else: # means projdef was None, ie unprojected longlat geogcs crs = containers.CRS(geogcs) # FINISHED return crs ##def from_ogc_urn(string, strict=False): ## # hmmm, seems like ogc urn could be anything incl online link, epsg, etc... ## # if necessary, must go online (or lookup local table) to get details ## # maybe test which of these and run their function? ## # examples urn:ogc:def:crs:OGC:1.3:CRS1 ## # or with EPSG instead of OGC ## ## # If OGC, 1.3 is pdf version, and after that is a name from list below ## # as found in pdf: "Definition identifier URNs in OGC namespace" ## # OGC crs definitions ## # URN | CRS name | Definition reference ## # urn:ogc:def:crs:OGC:1.3:CRS1 Map CS B.2 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:CRS84 WGS 84 longitude-latitude B.3 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:CRS83 NAD83 longitude-latitude B.4 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:CRS27 NAD27 longitude-latitude B.5 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:CRS88 NAVD 88 B.6 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:AUTO42001:99:8888 Auto universal transverse mercator B.7 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:AUTO42002:99:8888 Auto transverse mercator B.8 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:AUTO42003:99:8888 Auto orthographic B.9 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:AUTO42004:99:8888 Auto equirectangular B.10 in OGC 06-042 ## # urn:ogc:def:crs:OGC:1.3:AUTO42005:99 Auto Mollweide B.11 in OGC 06-042 ## ## pass def from_unknown_text(text, strict=False): """ Detect crs string format and parse into crs object with appropriate function. Arguments: - *text*: The crs text representation of unknown type. - *strict* (optional): When True, the parser is strict about names having to match exactly with upper and lowercases. Default is not strict (False). Returns: - CRS object. """ if text.startswith("+"): crs = from_proj4(text, strict) elif text.startswith(("PROJCS[","GEOGCS[")): crs = from_unknown_wkt(text, strict) #elif text.startswith("urn:"): # crs = from_ogc_urn(text, strict) elif text.startswith("EPSG:"): crs = from_epsg_code(text.split(":")[1]) elif text.startswith("ESRI:"): crs = from_esri_code(text.split(":")[1]) elif text.startswith("SR-ORG:"): crs = from_sr_code(text.split(":")[1]) else: raise Exception("Could not detect which type of crs") return crs ##def from_geotiff_parameters(**params): ## pass
the-stack_106_26244
""" Test module for . . . """ # Standard library imports from __future__ import (absolute_import, division, print_function, unicode_literals) import logging from os.path import abspath, dirname, join, realpath from sys import path # Third party imports import pytest # Local imports logger = logging.getLogger(__name__) test_dir = realpath(dirname(__file__)) src_dir = abspath(join(test_dir, '..')) path.append(src_dir) print(path) import pypiserver @pytest.mark.parametrize('conf_options', [ {}, {'root': '~/stable_packages'}, {'root': '~/unstable_packages', 'authenticated': 'upload', 'passwords': '~/htpasswd'}, # Verify that the strip parser works properly. {'authenticated': str('upload')}, ]) def test_paste_app_factory(conf_options, monkeypatch): """Test the paste_app_factory method""" monkeypatch.setattr('pypiserver.core.configure', lambda **x: (x, [x.keys()])) pypiserver.paste_app_factory({}, **conf_options) def test_app_factory(monkeypatch): monkeypatch.setattr('pypiserver.core.configure', lambda **x: (x, [x.keys()])) assert pypiserver.app() is not pypiserver.app()
the-stack_106_26246
""" Transaction support for Gaphor """ import logging from typing import List from gaphor import application from gaphor.event import TransactionBegin, TransactionCommit, TransactionRollback log = logging.getLogger(__name__) def transactional(func): """The transactional decorator makes a function transactional. A Transaction instance is created before the decorated function is called. If calling the function leads to an exception being raised, the transaction is rolled-back. Otherwise, it is committed.""" def _transactional(*args, **kwargs): r = None event_manager = application.Application.get_service("event_manager") tx = Transaction(event_manager) try: r = func(*args, **kwargs) except Exception: log.error( "Transaction terminated due to an exception, performing a rollback", exc_info=True, ) try: tx.rollback() except Exception: log.error("Rollback failed", exc_info=True) raise else: tx.commit() return r return _transactional class TransactionError(Exception): """ Errors related to the transaction module. """ class Transaction: """ The transaction. On start and end of a transaction an event is emitted. >>> import gaphor.services.eventmanager >>> event_manager = gaphor.services.eventmanager.EventManager() Transactions can be nested. If the outermost transaction is committed or rolled back, an event is emitted. Events can be handled programmatically: >>> tx = Transaction(event_manager) >>> tx.commit() It can be assigned as decorator: >>> @transactional ... def foo(): ... pass Or with the ``with`` statement: >>> with Transaction(event_manager): ... pass """ _stack: List = [] def __init__(self, event_manager): """Initialize the transaction. If this is the first transaction in the stack, a TransactionBegin event is emitted.""" self.event_manager = event_manager self._need_rollback = False if not self._stack: self._handle(TransactionBegin()) self._stack.append(self) def commit(self): """Commit the transaction. First, the transaction is closed. If it needs to be rolled-back, a TransactionRollback event is emitted. Otherwise, a TransactionCommit event is emitted.""" self._close() if not self._stack: if self._need_rollback: self._handle(TransactionRollback()) else: self._handle(TransactionCommit()) def rollback(self): """Roll-back the transaction. First, the transaction is closed. Every transaction on the stack is then marked for roll-back. If the stack is empty, a TransactionRollback event is emitted.""" self._close() for tx in self._stack: tx._need_rollback = True else: if not self._stack: self._handle(TransactionRollback()) def _close(self): """Close the transaction. If the stack is empty, a TransactionError is raised. If the last transaction on the stack isn't this transaction, a Transaction error is raised.""" try: last = self._stack.pop() except IndexError: raise TransactionError("No Transaction on stack.") if last is not self: self._stack.append(last) raise TransactionError( "Transaction on stack is not the transaction being closed." ) def _handle(self, event): try: event_manager = self.event_manager except (application.NotInitializedError, application.ComponentLookupError): log.warning("Could not lookup event_manager. Not emitting events.") else: event_manager.handle(event) def __enter__(self): """Provide with-statement transaction support.""" return self def __exit__(self, exc_type=None, exc_val=None, exc_tb=None): """Provide with-statement transaction support. If an error occurred, the transaction is rolled back. Otherwise, it is committed.""" if exc_type: self.rollback() else: self.commit()
the-stack_106_26247
# -*- encoding: utf-8 -*- import os from datetime import datetime from boto3.session import Session from django.conf import settings from django.core.management.base import BaseCommand class Command(BaseCommand): help = 'Backs up PostgreSQL database to AWS S3' def handle(self, *args, **options): AWS_ACCESS_KEY_ID = os.environ.get('AWS_S3_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_S3_SECRET_ACCESS_KEY') AWS_REGION_NAME = os.environ.get('AWS_S3_REGION_NAME') AWS_BUCKET_NAME = os.environ.get('AWS_S3_BUCKET_NAME') session = Session(aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION_NAME) s3 = session.resource('s3') bucket = s3.Bucket(AWS_BUCKET_NAME) timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H%M_UTC') db_file = "pgbackup_{}.dump".format(timestamp) db_host = settings.DATABASES['default']['HOST'] db_port = settings.DATABASES['default']['PORT'] db_name = settings.DATABASES['default']['NAME'] db_user = settings.DATABASES['default']['USER'] # See command definitions at http://www.postgresql.org/docs/9.4/static/app-pgdump.html pg_dump_command = "pg_dump --host={host} --port={port} --user={user} --format=c -O -x --file={file_name} {name}".format( host=db_host, port=db_port, user=db_user, file_name=db_file, name=db_name) self.stdout.write("Enter {}'s psql password".format(db_user)) os.system(pg_dump_command) bucket.upload_file(db_file, db_file) os.system("rm {}".format(db_file)) self.stdout.write("{} successfully uploaded to AWS S3".format(db_file))
the-stack_106_26248
import gzip import itertools import re import zlib from typing import Tuple, List from .structs.edge import Edge from .structs.graph import Graph from .structs.node import Node from .utils import smiles2mol verbose = False def trace(msg): if (verbose): print("[parse.py] " + msg) # Type ALIASES Atom = str Bond = Tuple[str, str, str] Mapping_ID_Graph = Tuple[str, Graph] def flatmap(func, *iterable): return itertools.chain.from_iterable(map(func, *iterable)) def decompress(val): try: s = zlib.decompress(val, 16 + zlib.MAX_WBITS) except: return val return s def decode_utf8(binary_str): try: return binary_str.decode("utf-8") except Exception as e: print(e) return None def stripcomments(txt): return re.sub('//.*?\n|/\*.*?\*/', '', txt, flags=re.S) def from_abstract(file_path: str) -> List[Graph]: """ Abstract method For signature purpose, do not use """ raise NotImplementedError() # –––––––––––––––––––– PARSE FUNCTIONS ; CONSUME STRINGS def parse_dimacs(text_content) -> Graph: directed = False graph_id = "" graph_strict = False lines = text_content.split("\n") header = lines.pop(0) while not header.startswith('p '): header = lines.pop(0) (vertices, edges) = (int(header.split(' ')[2]), int(header.split(' ')[3])) ids_nodes = [str(id_node) for id_node in range(1, vertices + 1)] graph = Graph(id="") nodes = [Node(str(id_node), ".") for id_node in ids_nodes] graph.add_nodes(nodes) edges = [] id_edge = 1 for line in lines: if len(line.split(' ')) == 3: tokens = line.split(' ') id_a = tokens[1] id_b = tokens[2] edges.append(Edge(id_edge, graph.V[id_a], graph.V[id_b], 1)) id_edge += 1 graph.add_edges(edges) return graph def parse_dot(text_content) -> Graph: directed = False graph_id = "" graph_strict = False lines = text_content.split("\n") line = "" # trim first line while line == "": line = lines.pop(0) # FIRST LINE tokens = line.split() token = tokens.pop(0) if token == "strict": graph_strict = True token = tokens.pop(0) if token == "digraph": directed = True token = tokens.pop(0) elif token == "graph": token = tokens.pop(0) else: raise Exception('graph|digraph token not found') if token != "{": graph_id = token token = tokens.pop(0) if token != "{": raise Exception('expected "{" not found') # BODY edgeop = "->" if directed else "--" nodes = [] edges = [] while lines[0].strip() != "}": line = lines.pop(0) if len(line.strip()) == 0: pass line = stripcomments(line) opts = re.search(r"\[(.*)\]", line) opts_dict = {} if opts: for opt in opts.group(1).split(','): k = opt.split("=")[0].strip() v = opt.split("=")[1].strip() opts_dict[k] = v tokens = line.split() if edgeop in tokens: # edge declaration id_a = tokens.pop(0) assert tokens.pop(0) == edgeop id_b = tokens.pop(0) mod = str(opts_dict["weight"]) if "weight" in opts_dict else "1" edges.append((id_a, id_b, mod)) elif tokens: # node declaration id_node = tokens.pop(0) label = str(opts_dict["label"]) if "label" in opts_dict else "" nodes.append((id_node, label)) # print(nodes) # print(edges) graph = Graph(id=graph_id) nodes = [Node(str(id_node), label) for (id_node, label) in nodes] graph.add_nodes(nodes) edges = [Edge(i, graph.V[a], graph.V[b], mod) for (i, (a, b, mod)) in enumerate(edges, 1)] graph.add_edges(edges) # print(graph) return graph def parse_smiles(smiles: str, ignore_hydrogens=False) -> Graph: """ parse method from_dot """ mol_block = "Fake_ID" + smiles2mol.to_mol_block(smiles) mol = parse_Mol(mol_block, ignore_hydrogens) return Mol_to_Graph(mol[0], mol[1]) def parse_Mol(mol_content: str, ignore_hydrogens=False) -> (List[Atom], List[Bond]): """ parseMol Parse a Mol block into two lists - atoms - bonds """ trace("[parse_Mol]") trace(str(mol_content)) try: lines = mol_content.split('\n') while not lines[0]: lines.pop(0) trace("""\tMOL HEADER {0} {1} {2} {3} """.format(lines[0].split(), lines[1].split(), lines[2].split(), lines[3].split())) # following the standard, the two first integers on the 4th line are respectively atoms_nb and bonds_nb (atoms_nb, bonds_nb) = tuple([int(i) for i in lines[3].split() if i.isdigit()][:2]) atoms = lines[4: 4 + atoms_nb] atoms = [line for line in lines if len(line.split()) >= 4 and line.split()[3].isalpha()] trace(str(atoms)) bonds = lines[4 + atoms_nb: 4 + atoms_nb + bonds_nb] # bonds = [ line for line in lines if len(line.split()) == 7 and all([ float(i).is_integer() for i in line.split()])] trace(str(bonds)) atoms = [atom.split()[3] for atom in atoms] bonds = [tuple(bond.split()[:3]) for bond in bonds] trace("""\t{0} ATOMS annouced ; {1} ATOMS found {2} \n {3} BONDS annouced ; {4} BONDS found {5} """.format(str(atoms_nb), len(atoms), atoms, str(bonds_nb), len(bonds), bonds)) # assert len(atoms) == atoms_nb # assert len(bonds) == bonds_nb if ignore_hydrogens: H_indexes = [str(i) for (i, atom_symbol) in enumerate(atoms, 1) if str(atom_symbol) == "H"] atoms = [atom for atom in atoms if atom != "H"] bonds = [bond for bond in bonds if (bond[0] not in H_indexes and bond[1] not in H_indexes)] trace("""\t{0} ATOMS != H {1} \n {2} BONDS !== H {3} H_indexes : {4} """.format(len(atoms), atoms, len(bonds), bonds, H_indexes)) return (atoms, bonds) except Exception as e: print(str(e)) raise (e) return (None, None) def is_Mol(block: str) -> bool: """ isMol Read the first character of a SDF file block If the fist char is a ">", then it's not a Mol block """ trace("[isMol]") trace(str(block)) trace(str((not ">" in block))) return not ">" in block def Mol_to_Graph(atoms: List[Atom], bonds: List[Bond]) -> Graph: """ NOTE : enumerate are used with an offset 1, because obiously, chemists start indexing from 1 """ trace("[Mol_to_Graph]") trace(str(atoms)) trace(str(bonds)) if not atoms: return None graph = Graph() nodes = [Node(str(i), label) for (i, label) in enumerate(atoms, 1)] graph.add_nodes(nodes) edges = [Edge(i, graph.V[a], graph.V[b], mod) for (i, (a, b, mod)) in enumerate(bonds, 1)] graph.add_edges(edges) return graph # –––––––––––––––––––– FROM FUNCTIONS ; CONSUME FILES def from_dimacs(dimacs_content: str = None, file_path: str = None) -> List[Graph]: """ parse method from_dot Parses a dimacs file """ if file_path: if (file_path.endswith('.gz')): fp = gzip.open(file_path, 'rt', encoding='utf-8') dimacs_content = fp.read() else: with open(file_path, 'r') as content_file: dimacs_content = content_file.read() return [parse_dimacs(dimacs_content)] def from_dot(dot_content: str = None, file_path: str = None) -> List[Graph]: """ parse method from_dot Parses a dot file """ if file_path: if (file_path.endswith('.gz')): fp = gzip.open(file_path, 'rt', encoding='utf-8') dot_content = fp.read() else: with open(file_path, 'r') as content_file: dot_content = content_file.read() dots = dot_content.split('}') return [parse_dot(dot + '}') for dot in dots[:-1:]] def from_sdf(sdf_content: str = None, file_path: str = None, ignore_hydrogens=False) -> List[Graph]: """ parse graph from_sdf Read chemical files and parses them into instances of `Graph`. As this function is not meant to be called in a loop, inner functions only relative to chemical files parsing are declared. Type Aliases : Atom = str Bond = List[str] """ if file_path: if (file_path.endswith('.gz')): fp = gzip.open(file_path, 'rt', encoding='utf-8') sdf_content = fp.read() else: with open(file_path, 'r') as content_file: sdf_content = content_file.read() return [ Mol_to_Graph(mol[0], mol[1]) for mol in [ parse_Mol(mol_file, ignore_hydrogens) for mol_file in [ part[0] for part in [ compound.split('M END') for compound in sdf_content.split("$$$$") if (compound.strip(' \t\n\r') != '') ] if is_Mol(part) ] ] ] def from_pubchem_xml(xml_content: str = None, file_path: str = None, ignore_hydrogens=False, ensure_uq_covalent_unit=True) -> List[Graph]: return [t[1] for t in map_pubchem_xml(xml_content, file_path, ignore_hydrogens, ensure_uq_covalent_unit)] def map_pubchem_xml(xml_content: str = None, file_path: str = None, ignore_hydrogens=False, ensure_uq_covalent_unit=True) -> List[Mapping_ID_Graph]: """ parse graph from pubchem xml Read chemical files and parses them into instances of `Graph`. schema = http://www.ncbi.nlm.nih.gov ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem.xsd """ import xml.etree.cElementTree as ET # from lxml import etree as ET # Type ALIASES Atom = str Bond = Tuple[str, str, str] def parse_pc_compound(pc_compound: "Element '{http://www.ncbi.nlm.nih.gov}PC-Compound'") -> (str, Graph): """ parseMol Parse a Mol block into two lists - atoms - bonds """ try: atoms = [] bonds = [] h_index = [] pc_id = pc_compound.find('{http://www.ncbi.nlm.nih.gov}PC-Compound_id') \ .find('{http://www.ncbi.nlm.nih.gov}PC-CompoundType') \ .find('{http://www.ncbi.nlm.nih.gov}PC-CompoundType_id') \ .find('{http://www.ncbi.nlm.nih.gov}PC-CompoundType_id_cid') pc_id = next(pc_id.iter()).text trace("Cid : #" + pc_id) covalent_units = pc_compound.find('{http://www.ncbi.nlm.nih.gov}PC-Compound_count') \ .find('{http://www.ncbi.nlm.nih.gov}PC-Count') \ .find('{http://www.ncbi.nlm.nih.gov}PC-Count_covalent-unit') covalent_units = next(covalent_units.iter()).text trace(covalent_units + " covalent units") if ensure_uq_covalent_unit: assert int(covalent_units) == 1 pc_atoms = pc_compound.find('{http://www.ncbi.nlm.nih.gov}PC-Compound_atoms').find( '{http://www.ncbi.nlm.nih.gov}PC-Atoms') atoms_aid = pc_atoms.find('{http://www.ncbi.nlm.nih.gov}PC-Atoms_aid') atoms_elements = pc_atoms.find('{http://www.ncbi.nlm.nih.gov}PC-Atoms_element') assert len(atoms_aid) == len(atoms_elements) trace(str(len(atoms_aid)) + " atoms found") for (i, id_node) in enumerate(atoms_aid): if atoms_elements[i].attrib["value"].capitalize() == "H": h_index.append(id_node.text) if not ignore_hydrogens or atoms_elements[i].attrib["value"].capitalize() != "H": atoms.append((id_node.text, atoms_elements[i].attrib["value"].capitalize())) trace(str(len(atoms)) + " atoms stored") trace(str(atoms)) trace(str(h_index)) pc_bonds = pc_compound.find('{http://www.ncbi.nlm.nih.gov}PC-Compound_bonds').find( '{http://www.ncbi.nlm.nih.gov}PC-Bonds') bonds_aid_a = pc_bonds.find('{http://www.ncbi.nlm.nih.gov}PC-Bonds_aid1') bonds_aid_b = pc_bonds.find('{http://www.ncbi.nlm.nih.gov}PC-Bonds_aid2') bonds_order = pc_bonds.find('{http://www.ncbi.nlm.nih.gov}PC-Bonds_order') assert len(bonds_aid_a) == len(bonds_aid_b) and len(bonds_aid_a) == len(bonds_order) trace(str(len(bonds_aid_a)) + " bonds found") for (i, aid_a) in enumerate(bonds_aid_a): if (not ignore_hydrogens or (aid_a.text not in h_index and bonds_aid_b[i].text not in h_index)): bonds.append((aid_a.text, bonds_aid_b[i].text, bonds_order[i].text)) trace(str(len(bonds)) + " bonds stored") trace(str(bonds)) graph = Graph(pc_id) nodes = [Node(str(id_atom), label) for (id_atom, label) in atoms] graph.add_nodes(nodes) edges = [Edge(i, graph.V[a], graph.V[b], mod) for (i, (a, b, mod)) in enumerate(bonds, 1)] graph.add_edges(edges) return (pc_id, graph) except Exception as e: trace(str(e)) # raise e return (pc_id, None) def parse_xml(text): try: return ET.XML(text) except Exception as e: trace(str(e)) # raise e return None # if file is provided, and it might be huge, and thus require smart parsing if file_path: trace("parsing " + file_path) if (file_path.endswith('.gz')): fp = gzip.open(file_path, 'rt', encoding='utf-8') xml_content = fp.read() trace(xml_content) else: fp = open(file_path, 'r', encoding='utf-8') def compound_gen(): fp.seek(0) # get an iterable context = ET.iterparse(fp, events=("start", "end")) # turn it into an iterator context = iter(context) # get the root element event, root = context.__next__() for event, elem in context: # print(event) # print(elem.tag) if event == "end" and elem.tag == "{http://www.ncbi.nlm.nih.gov}PC-Compound": yield parse_pc_compound(elem) root.clear() return compound_gen() else: # keep it simple and stupid otherwise return [parse_pc_compound(pc_compound) for pc_compound in parse_xml(xml_content)]
the-stack_106_26249
import plotly.graph_objects as go import pandas as pd import numpy as np from dataset_utils import get_datasets GRID_COLOR = "#595959" JOB_TITLES = [ 'Business Analyst', 'Data Analyst', 'Data Scientist', 'Data Engineer/DBA', 'Software Engineer', 'Statistician/Research Scientist' ] PROGRAMMING_LANGUAGE = ['Bash', 'C', 'C++', 'Java', 'Javascript', 'MATLAB', 'Other', 'Python', 'R', 'SQL', 'TypeScript'] TIME_WRITING_CODE = ['< 1 years', '1-2 years', '3-5 years', '5-10 years', '10-20 years', '20+ years'] COMPANY_SIZE = [ '0-49 employees', '50-249 employees', '250-999 employees', '1000-9,999 employees', '> 10,000 employees' ] ##################################### datasets ##################################################### kaggle, glassdoor = get_datasets() ##################################### polar chart plotting ######################################### class PolarPlot(): def __init__(self): self.figure = go.Figure() self.range = (0, 0) self.theta = ['Business Analyst', 'Data Analyst', 'Data Scientist', 'Data Engineer/DBA', 'Software Engineer', 'Statistician/Research Scientist', 'Business Analyst'] def update_common_layout(self): """ Updates general layout characteristics """ self.figure.update_layout( showlegend=True, legend_itemclick='toggleothers', legend_itemdoubleclick='toggle', plot_bgcolor="rgba(0, 0, 0, 0)", paper_bgcolor="rgba(0, 0, 0, 0)", autosize=True, font_color="white", uirevision=True, height=400, margin=dict(t=10) ) def update_commom_polar_layout(self): """ Updates polar layout characteristics """ self.figure.update_layout( polar_bgcolor='rgba(0, 0, 0, 0)', polar_radialaxis_visible=True, polar_radialaxis_showticklabels=True, polar_radialaxis_tickfont_color='darkgrey', polar_radialaxis_showline=False, polar_radialaxis_layer='below traces', polar_radialaxis_gridcolor=GRID_COLOR, polar_radialaxis_range=self.range, # polar_angularaxis_color='gray', polar_angularaxis_showline=True, polar_angularaxis_linecolor=GRID_COLOR, polar_angularaxis_gridcolor=GRID_COLOR, ) def add_data(self, data, country, hover_template='%{r:0.0f}%'): """ Adds a trace to the figure following the same standard for each trace """ # add the first element to the end of the list to "close" the polar chart data.append(data[0]) self.figure.add_trace( go.Scatterpolar( r=data, theta=self.theta, mode='lines', name=country, hoverinfo='name+r', hovertemplate=hover_template, showlegend=True, line_shape='spline', line_smoothing=0.8, line_width=3 ) ) # update the max range self.update_range(data) def update_range(self, data): """ Updates the range to be 110% of maximum value of all traces """ max_range = max(data) * 1.1 self.range = ( 0, max_range) if max_range > self.range[1] else self.range def get_figure(self): """ Update layouts and shows the figure """ self.update_common_layout() self.update_commom_polar_layout() return self.figure def plot_polar(polar_plot, data, traces, x_names, agg_column, group_column, trace_column, hover_template): data_cp = data.copy() polar_plot.figure.data = tuple() for trace_name in traces: if agg_column in ('JobDescription', 'CloudPlatf'): data_cp['TempCol'] = data_cp[agg_column].apply( lambda x: trace_name.lower() in x) else: data_cp['TempCol'] = data_cp[agg_column].apply( lambda x: trace_name in x) plot_data = data_cp.groupby([group_column], as_index=False).agg({ 'TempCol': ['sum', 'count']}) plot_data['TempColPct'] = plot_data['TempCol']['sum'] / \ plot_data['TempCol']['count'] * 100 plot_data = plot_data.TempColPct.tolist() polar_plot.add_data(plot_data, trace_name, hover_template) ##################################### Line chart plotting ############################################ class LinePlot(): def __init__(self): self.figure = go.Figure() self.range = (0, 100) def update_axis_title(self, x, y): self.figure.update_layout( xaxis_title_text=x, yaxis_title_text=y, ) def update_layout(self): """ Creates a clean layout for ploting, adjusting multiple settings """ self.figure.update_layout( plot_bgcolor="rgba(0, 0, 0, 0)", paper_bgcolor="rgba(0, 0, 0, 0)", showlegend=True, legend_font_color='gray', legend_itemclick='toggleothers', legend_itemdoubleclick='toggle', xaxis={ "visible": True, "showgrid": False, "gridwidth": 0.8, # "color": "white", }, yaxis={ "showgrid": True, "gridcolor": GRID_COLOR, "gridwidth": 0.5, }, font_color='white' ) def add_data(self, x_names, y_data, trace_name, hover_template): """ Adds a trace to the figure following the same standard for each trace """ self.figure.add_trace( go.Scatter( x=x_names, y=y_data, mode='lines', name=trace_name, hoverinfo='name+y', hovertemplate=hover_template, line_shape='spline', line_smoothing=0.8, line_width=3 ) ) def get_figure(self): self.update_layout() return self.figure def plot_lines(line_plot, data, traces, x_names, agg_column, group_column, trace_column, hover_template): """ Creates aggregation to plot """ line_plot.figure.data = tuple() for trace_name in traces: data_filtered = data[data[trace_column] == trace_name] plot_data = data_filtered.groupby([group_column], as_index=False).agg({ agg_column: ['mean', 'count']}) plot_data = plot_data[agg_column]['mean'].tolist() line_plot.add_data(x_names, plot_data, trace_name, hover_template=hover_template) ########################################## getters ################################################## job_proportion_polar_plot = PolarPlot() time_of_coding_line_plot = LinePlot() salary_line_plot = LinePlot() job_skills_polar_plot = PolarPlot() job_desc_polar_plot = PolarPlot() prog_language_line_plot = LinePlot() def get_salary_line_plot(job_titles=None): # salary_line_plot.figure.data = tuple() traces = job_titles if job_titles is not None else JOB_TITLES x_names = COMPANY_SIZE plot_lines( salary_line_plot, data=kaggle, traces=traces, x_names=x_names, agg_column='Salary', group_column='CompanySize', trace_column='JobTitle', hover_template='U$%{y:,.2r}' ) xaxis_title = 'Company size' yaxis_title = 'Average Salary (USD per Year)' salary_line_plot.update_axis_title(xaxis_title, yaxis_title) return salary_line_plot def get_job_skills_polar_plot(selected_languages=None): traces = selected_languages if selected_languages is not None else PROGRAMMING_LANGUAGE x_names = JOB_TITLES plot_polar( job_skills_polar_plot, data=kaggle, traces=traces, x_names=x_names, agg_column='ProgLang', group_column='JobTitle', trace_column='ProgLang', hover_template='%{r:0.0f}%' ) job_skills_polar_plot.figure.update_layout( polar_radialaxis_tickvals=[25, 50, 75], polar_radialaxis_ticktext=['25%', '50%', '75%'], polar_radialaxis_tickmode='array', ) return job_skills_polar_plot def get_job_proportion_polar_plot(countries): job_proportion_polar_plot.figure.data = tuple() proportion_dict = dict() for country in countries: glassdoor_country = glassdoor[glassdoor.Country == f"{country}"].groupby( ["JobTitle"], as_index=False).Count.sum().Count.tolist() glassdoor_country = (np.array(glassdoor_country) / sum(glassdoor_country) * 100).tolist() proportion_dict[f"{country}"] = glassdoor_country for country, proportion in proportion_dict.items(): job_proportion_polar_plot.add_data(proportion, country) return job_proportion_polar_plot def get_job_propotion_pie_chart(country): glassdoor_country = glassdoor[glassdoor.Country == f"{country}"].groupby( ["JobTitle"], as_index=False).Count.sum().Count.tolist() glassdoor_country = (np.array(glassdoor_country) / sum(glassdoor_country) * 100).tolist() fig = go.Figure(data=go.Pie(labels=JOB_TITLES, values=glassdoor_country)) fig.update_traces( hoverinfo="label+percent", textposition='inside', textinfo='label', ) fig.update_layout( plot_bgcolor="rgba(0, 0, 0, 0)", paper_bgcolor="rgba(0, 0, 0, 0)", showlegend=False, margin=dict(t=10), title=dict( text=country, x=0.5, y=0.95, xanchor="center", yanchor="top" ), font_color="white" # height=400 ) return fig def get_prog_language_line_plot(selected_time_writing_code=None): traces = selected_time_writing_code if selected_time_writing_code is not None else list( set(kaggle.TimeWritingCode.tolist())) x_names = ['{} languages'.format(x) for x in range(7)] plot_lines( prog_language_line_plot, data=kaggle, traces=traces, x_names=x_names, agg_column='Salary', group_column='QtyProgLang', trace_column='TimeWritingCode', hover_template='U$%{y:,.2r}' ) # Adding Averarage # plot_data = kaggle.groupby( # ['QtyProgLang'], as_index=False).agg({'Salary': 'mean'}) # plot_data = plot_data.Salary.tolist() # prog_language_line_plot.add_data( # x_names, plot_data, 'Average', hover_template='U$%{y:,.2r}') xaxis_title = 'Quantity of programming languages used on a regular basis' yaxis_title = 'Average Salary (USD per Year)' prog_language_line_plot.update_axis_title(xaxis_title, yaxis_title) return prog_language_line_plot def get_countries(): countries = list(set(glassdoor["Country"])) countries.sort() return countries def get_job_titles(): return JOB_TITLES def get_programming_language(): return PROGRAMMING_LANGUAGE def get_time_writing_code(): return TIME_WRITING_CODE
the-stack_106_26252
#!/usr/bin/env python # -*- coding: utf-8 -*- import csv import xlwt def csv_to_xlsx(): with open('1.csv', 'r', encoding='utf-8') as f: read = csv.reader(f) workbook = xlwt.Workbook() sheet = workbook.add_sheet('data') # 创建一个sheet表格 l = 0 for line in read: print(line) r = 0 for i in line: print(i) sheet.write(l, r, i) # 一个一个将单元格数据写入 r = r + 1 l = l + 1 workbook.save('1.xlsx') # 保存Excel if __name__ == '__main__': csv_to_xlsx()
the-stack_106_26256
from django import forms from django.urls import reverse from django.utils.translation import gettext_lazy as _, gettext_noop # NoQA from pretix.base.forms import SettingsForm from pretix.base.models import Event from pretix.control.views.event import ( EventSettingsFormView, EventSettingsViewMixin, ) class VaccSettingsForm(SettingsForm): vaccination_interval_check = forms.BooleanField( label=_('Enable validation'), required=False, ) vaccination_future_max = forms.IntegerField( label=_('Maximum time frame for first shot'), required=True, min_value=1, widget=forms.NumberInput( attrs={'addon_after': _('days')} ), ) vaccination_interval_min = forms.IntegerField( label=_('Minimum interval between first and second shot'), required=True, min_value=1, widget=forms.NumberInput( attrs={'addon_after': _('days')} ), ) vaccination_interval_max = forms.IntegerField( label=_('Maximum interval between first and second shot'), required=True, min_value=1, widget=forms.NumberInput( attrs={'addon_after': _('days')} ), ) class VaccSettings(EventSettingsViewMixin, EventSettingsFormView): model = Event form_class = VaccSettingsForm template_name = 'pretix_vaccination_interval/settings.html' permission = 'can_change_event_settings' def get_success_url(self) -> str: return reverse('plugins:pretix_vaccination_interval:settings', kwargs={ 'organizer': self.request.event.organizer.slug, 'event': self.request.event.slug })
the-stack_106_26257
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy.selector import Selector from scrapy.loader.processors import TakeFirst, MapCompose, Join from w3lib.html import remove_tags def clean_html_text(value): cleaned_text = '' try: cleaned_text = remove_tags(value) except: cleaned_text = "No Reviews" return cleaned_text def get_platforms(value): platforms = [] platform = value.split(" ")[-1] if platform == 'win': platforms.append('Windows') if platform == 'mac': platforms.append('Mac OS') if platform == 'linux': platforms.append('Linux') if platform == 'vr_required': platforms.append('VR Only') if platform == 'vr_supported': platforms.append('VR Supported') return platforms def get_original_price(html_string): original_price = '' selector_obj = Selector(text=html_string) opWithDisc = selector_obj.xpath(".//div[contains(@class, 'discounted')]/span/strike/text()").get() if opWithDisc != None: original_price = opWithDisc else: original_price = selector_obj.xpath("normalize-space(.//div[@class='col search_price responsive_secondrow']/text())").get() # Sometimes normalize-space don't work, so we can use str.strip inside input_processor return original_price def clean_discount_rate(value): if value != None: result = value.lstrip('-') else: result = "0%" return result class SteamstoreItem(scrapy.Item): game_url = scrapy.Field( output_processor = TakeFirst() ) img_url = scrapy.Field( output_processor = TakeFirst() ) game_name = scrapy.Field( output_processor = TakeFirst() ) release_date = scrapy.Field( output_processor = TakeFirst() ) platforms = scrapy.Field( input_processor = MapCompose(get_platforms) ) rating = scrapy.Field( input_processor = MapCompose(clean_html_text), output_processor = TakeFirst() ) original_price = scrapy.Field( input_processor = MapCompose(get_original_price, str.strip), output_processor = Join('') ) discounted_price = scrapy.Field( output_processor = TakeFirst() ) discounted_rate = scrapy.Field( input_processor = MapCompose(clean_discount_rate), output_processor = TakeFirst() )
the-stack_106_26259
from urllib.parse import urlencode from requests import Session from db_redis import RedisQueue from request import WeixinRequest from config import * import requests from requests.exceptions import ConnectionError, ReadTimeout from pyquery import PyQuery as pq class Spider(): base_url = 'https://weixin.sogou.com/weixin' keyword = 'NBA' headers = { 'Cookie': 'SUV = 00B317881B17ED1B5B6908F93A1EF865;CXID = CFB60C2B607DA865459A24D17B3BA704;SUID = 344EB76F3865860A5B724D730004C0D3;ABTEST = 0 | 1547686493 | v1;weixinIndexVisited = 1;ppinf = 5 | 1548046655 | 1549256255 | dHJ1c3Q6MToxfGNsaWVudGlkOjQ6MjAxN3x1bmlxbmFtZTo4OmF1dGhldGljfGNydDoxMDoxNTQ4MDQ2NjU1fHJlZm5pY2s6ODphdXRoZXRpY3x1c2VyaWQ6NDQ6bzl0Mmx1TUNxYTBlU3lGcnExbE92aHQ3WG1Gd0B3ZWl4aW4uc29odS5jb218;pprdig = nfjiTQ62SluMVzhnMfzfgAECp - 10K12U8UYHC2eqYnJVPFubSIi041j - db4Tgv9yqfBiud8xlrNycXt7MXCYlucNOBpWcu1gu3Dn0Q8Lh7PPEBSYMvNTKTqTGx3x - l45Ndurz5 - 5Aq16RW8U - jenH5XD8vbJVnyHQP4ank0IJiA;sgid = 11 - 38791065 - AVxFUTibcPxuhorUqhoFwgzQ;SNUID = 925AC9C5DEDB5D85D39AAC46DE277CC1;IPLOC = CN4211;ppmdig = 15484905700000007acac90ac9b6a5f99ecab3769c06d166;JSESSIONID = aaaRpyLsVNeWx8b3_W5Hw;sct = 4', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36', 'Host': 'weixin.sogou.com' } session = Session() queue = RedisQueue() def start(self): self.session.headers.update(self.headers) start_url = self.base_url + '?' + urlencode({'query':self.keyword, 'type':2}) first_request = WeixinRequest(url=start_url, callback=self.parse_index, need_proxy=True) self.queue.add(first_request) def get_proxy(self): try: response = requests.get(PROXY_POOL_URL) if response.status_code == 200: print('Get proxy', response.text) return response.text return None except ConnectionError as e: return None def parse_index(self, response): doc = pq(response.text) items = doc('.news-box .news-list .txt-box h3 a').items() for item in items: url = item.attr('href') weixin_request = WeixinRequest(url=url, callback=self.parse_detail, need_proxy=True) yield weixin_request next = doc('.sogou_next') if next: url = self.base_url + next.attr('href') yield WeixinRequest(url=url, callback=self.parse_index, need_proxy=True) def parse_detail(self, response): doc = pq(response.text) data = { 'title': doc('.rich_media_title').text(), 'content': doc('.rich_media_content').text(), 'nickname': doc('.profile_nickname').text(), 'wechat': doc('.profile_meta_value').text(), 'date': doc('#publish_time').text() } yield data def request(self, weixin_request): try: if weixin_request.need_proxy: proxy = self.get_proxy() proxies = { 'http': 'http://' + proxy, 'https': 'https://' +proxy } return self.session.send(weixin_request.prepare(), proxies=proxies, timeout= weixin_request.timeout, allow_redirects=False) return self.session.send(weixin_request.prepare(), timeout= weixin_request.timeout, allow_redirects=False) except (ConnectionError, ReadTimeout) as e: print(e.args) return None def error(self, weixin_request): weixin_request.failed_time += 1 print('Request failed', weixin_request.failed_time, 'Times', weixin_request.url) if weixin_request.failed_time < 5: self.queue.add(weixin_request) def schedule(self): while not self.queue.empty(): weixin_request = self.queue.pop() callback = weixin_request.callback print('Schedule', weixin_request.url) response = self.request(weixin_request) if response and response.status_code == 200: results = list(callback(response)) if results: for result in results: print('New result', type(result)) if isinstance(result, WeixinRequest): self.queue.add(result) if isinstance(result, dict): # insert into mysql print('Get an article') print(result) else: self.error(weixin_request) else: self.error(weixin_request) def run(self): self.start() self.schedule() if __name__ == '__main__': spider = Spider() spider.start() spider.schedule()
the-stack_106_26260
#!/usr/bin/python import wiringpi2 as gpio import time #init the GPIO #prepare PWM pins gpio.wiringPiSetupGpio() gpio.pinMode(12, gpio.GPIO.PWM_OUTPUT) gpio.pinMode(13, gpio.GPIO.PWM_OUTPUT) #prepare PWM channels gpio.pwmSetMode(gpio.GPIO.PWM_MODE_MS) gpio.pwmSetRange(480) gpio.pwmSetClock(2) #prepare direction pins gpio.pinMode(5, gpio.GPIO.OUTPUT) gpio.pinMode(6, gpio.GPIO.OUTPUT) #movements def straight_fw(speed): gpio.digitalWrite(5, 1) gpio.digitalWrite(6, 1) gpio.pwmWrite(12, speed) gpio.pwmWrite(13, speed) def straight_bw(speed): gpio.digitalWrite(5, 0) gpio.digitalWrite(6, 0) gpio.pwmWrite(12, speed) gpio.pwmWrite(13, speed) def stop(): gpio.digitalWrite(5, 1) gpio.digitalWrite(6, 1) gpio.pwmWrite(12, 0) gpio.pwmWrite(13, 0) def turn_180(): gpio.digitalWrite(5, 0) gpio.digitalWrite(6, 1) gpio.pwmWrite(12, 300) gpio.pwmWrite(13, 300) time.sleep(2) stop() #playground #straight_fw(300) #time.sleep(2) #stop() #straight_bw(300) #time.sleep(2) #stop() #turn_180()
the-stack_106_26261
""" adbts.tcp.asynchronous ~~~~~~~~~~~~~~~~~~~~~~ Contains functionality for asynchronous Transmission Control Protocol (TCP) transport using `asyncio`. """ import asyncio from .. import exceptions, hints, transport from . import timeouts __all__ = ['Transport'] # Disable incorrect warning on asyncio.wait_for, https://github.com/PyCQA/pylint/issues/996. # pylint: disable=not-an-iterable class Transport(transport.Transport): """ Defines asynchronous (non-blocking) TCP transport using `asyncio`. """ def __init__(self, host: hints.Str, port: hints.Int, reader: hints.StreamReader, writer: hints.StreamWriter, loop: hints.OptionalEventLoop = None) -> None: self._host = host self._port = port self._reader = reader self._writer = writer self._loop = loop self._closed = False def __repr__(self) -> hints.Str: address = str(self) state = 'closed' if self.closed else 'open' return '<{}(address={!r}, state={!r})>'.format(self.__class__.__name__, address, state) def __str__(self) -> hints.Str: return '{}:{}'.format(self._host, self._port) @property def closed(self) -> hints.Bool: """ Checks to see if the transport is closed. :return: Closed state of the transport :rtype: :class:`~bool` """ return self._closed is True @asyncio.coroutine @transport.ensure_opened @transport.ensure_num_bytes @exceptions.reraise(OSError) @exceptions.reraise_timeout_errors(asyncio.TimeoutError) def read(self, num_bytes: hints.Int, timeout: hints.Timeout = timeouts.UNDEFINED) -> transport.TransportReadResult: """ Read bytes from the transport. :param num_bytes: Number of bytes to read. :type num_bytes: :class:`~int` :param timeout: Maximum number of milliseconds to read before raising an exception. :type timeout: :class:`~int`, :class:`~NoneType`, or :class:`~object` :return: Collection of bytes read :rtype: :class:`~bytes` or :class:`~bytearray` :raises :class:`~adbts.exceptions.TransportError`: When underlying transport encounters an error :raises :class:`~adbts.exceptions.TimeoutError`: When timeout is exceeded """ data = yield from asyncio.wait_for(self._reader.read(num_bytes), timeout=timeouts.timeout(timeout), loop=self._loop) return data @asyncio.coroutine @transport.ensure_opened @transport.ensure_data @exceptions.reraise(OSError) @exceptions.reraise_timeout_errors(asyncio.TimeoutError) def write(self, data: hints.Buffer, timeout: hints.Timeout = timeouts.UNDEFINED) -> transport.TransportWriteResult: """ Write bytes to the transport. :param data: Collection of bytes to write. :type data: :class:`~bytes` or :class:`~bytearray` :param timeout: Maximum number of milliseconds to write before raising an exception. :type timeout: :class:`~int`, :class:`~NoneType`, or :class:`~object` :return Nothing :return: :class:`~NoneType` :raises :class:`~adbts.exceptions.TransportError`: When underlying transport encounters an error. :raises :class:`~adbts.exceptions.TimeoutError`: When timeout is exceeded """ self._writer.write(data) yield from asyncio.wait_for(self._writer.drain(), timeout=timeouts.timeout(timeout), loop=self._loop) @transport.ensure_opened @exceptions.reraise(OSError) def close(self) -> None: """ Close the transport. :return: Nothing :rtype: `None` :raises :class:`~adbts.exceptions.TransportError`: When underlying transport encounters an error """ self._writer.close() self._closed = True @asyncio.coroutine @exceptions.reraise(OSError) def open(host: hints.Str, # pylint: disable=redefined-builtin port: hints.Int, timeout: hints.Timeout = timeouts.UNDEFINED, loop: hints.OptionalEventLoop = None) -> transport.TransportOpenResult: """ Open a new :class:`~adbts.tcp.async.Transport` transport to the given host/port. :param host: Remote host :type host: :class:`~str` :param port: Remote port :type port: :class:`~int` :param timeout: Maximum number of milliseconds to write before raising an exception. :type timeout: :class:`~int`, :class:`~NoneType`, or :class:`~object` :param loop: Asyncio Event Loop :type loop: :class:`~asyncio.events.AbstractEventLoop` :return: Asynchronous TCP transport :rtype: :class:`~adbts.tcp.async.Transport` :raises :class:`~adbts.exceptions.TransportError`: When underlying transport encounters an error """ reader, writer = yield from asyncio.wait_for(asyncio.open_connection(host, port, loop=loop), timeout=timeouts.timeout(timeout), loop=loop) return Transport(host, port, reader, writer, loop)
the-stack_106_26262
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2018, JK & AGB # Full license can be found in License.md # ----------------------------------------------------------------------------- """ Tools for loading solar indices. Classes ------------------------------------------------------------------------------- OMNIvals Moduleauthor ------------------------------------------------------------------------------- Jeff Klenzing (JK), 3 Mar 2018, Goddard Space Flight Center (GSFC) References ------------------------------------------------------------------------------- """ import datetime as dt import numpy as np class OMNIvals: """ Object containing OMNI solar indices Keyword Arguments ------------------ file_dir : (str) Directory with data files (default=solar_index._data_dir) file_name : (str) Data filename (default='omni2_daily_12664.txt') Attributes ---------- self.year : (np.array) Integer year self.day : (np.array) Integer day self.dt : (np.array) datetime self.Rz : (np.array) Rz index self.F107 : (np.array) 10.7 cm flux index in solar flux units self.Lalpha : (np.array) Lyman alpha Methods -------- load_omni_vals : Load the values from an ASCII file """ def __init__(self, **kwargs): try: self.load_omni_vals(**kwargs) except ImportError: raise ImportError("unable to initiate OMNIvals class - ") def load_omni_vals(self, **kwargs): """ Load an ascii file into the OMNIvals class Keyword Arguments -------------------- file_dir : (str) Directory with data files (default='data') file_name : (str) Data filename (default='omni2_daily_12664.txt') Returns ------- Void """ from os import path from solar_index import utils, _data_dir # Define the default data file and update using kwargs file_dir = _data_dir file_name = "omni2_daily_12664.txt" for kk in kwargs.keys(): if kk.lower() == "file_dir": file_dir = kwargs[kk] elif kk.lower() == "file_name": file_name = kwargs[kk] # Construct filename and load the data if not path.isdir(file_dir): raise OSError("unknown file directory {:s}".format(file_dir)) self.filename = path.join(file_dir, file_name) if not path.isfile(self.filename): raise OSError("unknown file {:s}".format(self.filename)) try: data = np.loadtxt(self.filename) except ImportError: estr = "unable to load ascii file {:s}".format(self.filename) raise ImportError(estr) self.year = data[:, 0] self.day = data[:, 1] self.dt = np.array([dt.datetime(int(self.year[i]), 1, 1) + dt.timedelta(days=int(self.day[i])-1) for i in range(len(self.day))]) self.Rz = data[:, 3] self.F107 = utils.replace_fill_array(data[:, 4], fill_value=999.9) self.Lalpha = data[:, 5]
the-stack_106_26263
from pypy.rpython.memory.gctransform.transform import GCTransformer from pypy.rpython.memory.gctransform.support import find_gc_ptrs_in_type, \ get_rtti, ll_call_destructor, type_contains_pyobjs, var_ispyobj from pypy.rpython.lltypesystem import lltype, llmemory from pypy.rpython import rmodel from pypy.rpython.memory import gctypelayout from pypy.rpython.memory.gc import marksweep from pypy.rpython.memory.gcheader import GCHeaderBuilder from pypy.rlib.rarithmetic import ovfcheck from pypy.rlib.debug import ll_assert from pypy.translator.backendopt import graphanalyze from pypy.translator.backendopt.support import var_needsgc from pypy.annotation import model as annmodel from pypy.rpython import annlowlevel from pypy.rpython.rbuiltin import gen_cast from pypy.rpython.memory.gctypelayout import ll_weakref_deref, WEAKREF from pypy.rpython.memory.gctypelayout import convert_weakref_to, WEAKREFPTR from pypy.rpython.memory.gctransform.log import log from pypy.tool.sourcetools import func_with_new_name from pypy.rpython.lltypesystem.lloperation import llop import sys class CollectAnalyzer(graphanalyze.GraphAnalyzer): def operation_is_true(self, op): if op.opname == 'gc__collect': return True if op.opname in ('malloc', 'malloc_varsize'): flags = op.args[1].value return flags['flavor'] == 'gc' and not flags.get('nocollect', False) if op.opname in ('coalloc', 'coalloc_varsize'): return True def find_initializing_stores(collect_analyzer, graph): from pypy.objspace.flow.model import mkentrymap entrymap = mkentrymap(graph) # a bit of a hackish analysis: if a block contains a malloc and check that # the result is not zero, then the block following the True link will # usually initialize the newly allocated object result = {} def find_in_block(block, mallocvars): for i, op in enumerate(block.operations): if op.opname in ("cast_pointer", "same_as"): if op.args[0] in mallocvars: mallocvars[op.result] = True elif op.opname in ("setfield", "setarrayitem", "setinteriorfield"): TYPE = op.args[-1].concretetype if (op.args[0] in mallocvars and isinstance(TYPE, lltype.Ptr) and TYPE.TO._gckind == "gc"): result[op] = True else: if collect_analyzer.analyze(op): return for exit in block.exits: if len(entrymap[exit.target]) != 1: continue newmallocvars = {} for i, var in enumerate(exit.args): if var in mallocvars: newmallocvars[exit.target.inputargs[i]] = True if newmallocvars: find_in_block(exit.target, newmallocvars) mallocnum = 0 blockset = set(graph.iterblocks()) while blockset: block = blockset.pop() if len(block.operations) < 2: continue mallocop = block.operations[-2] checkop = block.operations[-1] if not (mallocop.opname == "malloc" and checkop.opname == "ptr_nonzero" and mallocop.result is checkop.args[0] and block.exitswitch is checkop.result): continue exits = [exit for exit in block.exits if exit.llexitcase] if len(exits) != 1: continue exit = exits[0] if len(entrymap[exit.target]) != 1: continue try: index = exit.args.index(mallocop.result) except ValueError: continue target = exit.target mallocvars = {target.inputargs[index]: True} mallocnum += 1 find_in_block(target, mallocvars) #if result: # print "found %s initializing stores in %s" % (len(result), graph.name) return result class FrameworkGCTransformer(GCTransformer): use_stackless = False root_stack_depth = 163840 def __init__(self, translator): from pypy.rpython.memory.gc.base import choose_gc_from_config super(FrameworkGCTransformer, self).__init__(translator, inline=True) if hasattr(self, 'GC_PARAMS'): # for tests: the GC choice can be specified as class attributes from pypy.rpython.memory.gc.marksweep import MarkSweepGC GCClass = getattr(self, 'GCClass', MarkSweepGC) GC_PARAMS = self.GC_PARAMS else: # for regular translation: pick the GC from the config GCClass, GC_PARAMS = choose_gc_from_config(translator.config) self.layoutbuilder = TransformerLayoutBuilder(self) self.get_type_id = self.layoutbuilder.get_type_id # set up dummy a table, to be overwritten with the real one in finish() type_info_table = lltype._ptr( lltype.Ptr(gctypelayout.GCData.TYPE_INFO_TABLE), "delayed!type_info_table", solid=True) gcdata = gctypelayout.GCData(type_info_table) # initialize the following two fields with a random non-NULL address, # to make the annotator happy. The fields are patched in finish() # to point to a real array. foo = lltype.malloc(lltype.FixedSizeArray(llmemory.Address, 1), immortal=True, zero=True) a_random_address = llmemory.cast_ptr_to_adr(foo) gcdata.static_root_start = a_random_address # patched in finish() gcdata.static_root_nongcend = a_random_address # patched in finish() gcdata.static_root_end = a_random_address # patched in finish() self.gcdata = gcdata self.malloc_fnptr_cache = {} gcdata.gc = GCClass(**GC_PARAMS) root_walker = self.build_root_walker() gcdata.set_query_functions(gcdata.gc) gcdata.gc.set_root_walker(root_walker) self.num_pushs = 0 self.write_barrier_calls = 0 def frameworkgc_setup(): # run-time initialization code root_walker.setup_root_walker() gcdata.gc.setup() bk = self.translator.annotator.bookkeeper # the point of this little dance is to not annotate # self.gcdata.static_root_xyz as constants. XXX is it still needed?? data_classdef = bk.getuniqueclassdef(gctypelayout.GCData) data_classdef.generalize_attr( 'static_root_start', annmodel.SomeAddress()) data_classdef.generalize_attr( 'static_root_nongcend', annmodel.SomeAddress()) data_classdef.generalize_attr( 'static_root_end', annmodel.SomeAddress()) annhelper = annlowlevel.MixLevelHelperAnnotator(self.translator.rtyper) def getfn(ll_function, args_s, s_result, inline=False, minimal_transform=True): graph = annhelper.getgraph(ll_function, args_s, s_result) if minimal_transform: self.need_minimal_transform(graph) if inline: self.graphs_to_inline[graph] = True return annhelper.graph2const(graph) self.frameworkgc_setup_ptr = getfn(frameworkgc_setup, [], annmodel.s_None) if root_walker.need_root_stack: self.incr_stack_ptr = getfn(root_walker.incr_stack, [annmodel.SomeInteger()], annmodel.SomeAddress(), inline = True) self.decr_stack_ptr = getfn(root_walker.decr_stack, [annmodel.SomeInteger()], annmodel.SomeAddress(), inline = True) else: self.incr_stack_ptr = None self.decr_stack_ptr = None self.weakref_deref_ptr = self.inittime_helper( ll_weakref_deref, [llmemory.WeakRefPtr], llmemory.Address) classdef = bk.getuniqueclassdef(GCClass) s_gc = annmodel.SomeInstance(classdef) s_gcref = annmodel.SomePtr(llmemory.GCREF) malloc_fixedsize_clear_meth = GCClass.malloc_fixedsize_clear.im_func self.malloc_fixedsize_clear_ptr = getfn( malloc_fixedsize_clear_meth, [s_gc, annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), annmodel.SomeBool(), annmodel.SomeBool(), annmodel.SomeBool()], s_gcref, inline = False) if hasattr(GCClass, 'malloc_fixedsize'): malloc_fixedsize_meth = GCClass.malloc_fixedsize.im_func self.malloc_fixedsize_ptr = getfn( malloc_fixedsize_meth, [s_gc, annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), annmodel.SomeBool(), annmodel.SomeBool(), annmodel.SomeBool()], s_gcref, inline = False) else: malloc_fixedsize_meth = None self.malloc_fixedsize_ptr = self.malloc_fixedsize_clear_ptr ## self.malloc_varsize_ptr = getfn( ## GCClass.malloc_varsize.im_func, ## [s_gc] + [annmodel.SomeInteger(nonneg=True) for i in range(5)] ## + [annmodel.SomeBool(), annmodel.SomeBool()], s_gcref) self.malloc_varsize_clear_ptr = getfn( GCClass.malloc_varsize_clear.im_func, [s_gc] + [annmodel.SomeInteger(nonneg=True) for i in range(5)] + [annmodel.SomeBool(), annmodel.SomeBool()], s_gcref) self.collect_ptr = getfn(GCClass.collect.im_func, [s_gc], annmodel.s_None) # in some GCs we can inline the common case of # malloc_fixedsize(typeid, size, True, False, False) if getattr(GCClass, 'inline_simple_malloc', False): # make a copy of this function so that it gets annotated # independently and the constants are folded inside if malloc_fixedsize_meth is None: malloc_fast_meth = malloc_fixedsize_clear_meth self.malloc_fast_is_clearing = True else: malloc_fast_meth = malloc_fixedsize_meth self.malloc_fast_is_clearing = False malloc_fast = func_with_new_name( malloc_fast_meth, "malloc_fast") s_False = annmodel.SomeBool(); s_False.const = False s_True = annmodel.SomeBool(); s_True .const = True self.malloc_fast_ptr = getfn( malloc_fast, [s_gc, annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), s_True, s_False, s_False], s_gcref, inline = True) else: self.malloc_fast_ptr = None # in some GCs we can also inline the common case of # malloc_varsize(typeid, length, (3 constant sizes), True, False) if getattr(GCClass, 'inline_simple_malloc_varsize', False): # make a copy of this function so that it gets annotated # independently and the constants are folded inside malloc_varsize_clear_fast = func_with_new_name( GCClass.malloc_varsize_clear.im_func, "malloc_varsize_clear_fast") s_False = annmodel.SomeBool(); s_False.const = False s_True = annmodel.SomeBool(); s_True .const = True self.malloc_varsize_clear_fast_ptr = getfn( malloc_varsize_clear_fast, [s_gc, annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True), s_True, s_False], s_gcref, inline = True) else: self.malloc_varsize_clear_fast_ptr = None if GCClass.moving_gc: self.id_ptr = getfn(GCClass.id.im_func, [s_gc, s_gcref], annmodel.SomeInteger(), inline = False, minimal_transform = False) else: self.id_ptr = None self.set_max_heap_size_ptr = getfn(GCClass.set_max_heap_size.im_func, [s_gc, annmodel.SomeInteger(nonneg=True)], annmodel.s_None) if GCClass.needs_write_barrier: self.write_barrier_ptr = getfn(GCClass.write_barrier.im_func, [s_gc, annmodel.SomeAddress(), annmodel.SomeAddress(), annmodel.SomeAddress()], annmodel.s_None, inline=True) else: self.write_barrier_ptr = None if hasattr(GCClass, "coalloc_fixedsize_clear"): self.coalloc_clear_ptr = getfn( GCClass.coalloc_fixedsize_clear.im_func, [s_gc, annmodel.SomeAddress(), annmodel.SomeInteger(nonneg=True), annmodel.SomeInteger(nonneg=True)], s_gcref, inline=True) self.coalloc_varsize_clear_ptr = getfn( GCClass.coalloc_varsize_clear.im_func, [s_gc, annmodel.SomeAddress()] + [annmodel.SomeInteger(nonneg=True) for i in range(5)], s_gcref, inline=True) else: self.coalloc_clear_ptr = self.coalloc_varsize_clear_ptr = None self.statistics_ptr = getfn(GCClass.statistics.im_func, [s_gc, annmodel.SomeInteger()], annmodel.SomeInteger()) # experimental gc_x_* operations s_x_pool = annmodel.SomePtr(marksweep.X_POOL_PTR) s_x_clone = annmodel.SomePtr(marksweep.X_CLONE_PTR) # the x_*() methods use some regular mallocs that must be # transformed in the normal way self.x_swap_pool_ptr = getfn(GCClass.x_swap_pool.im_func, [s_gc, s_x_pool], s_x_pool, minimal_transform = False) self.x_clone_ptr = getfn(GCClass.x_clone.im_func, [s_gc, s_x_clone], annmodel.s_None, minimal_transform = False) annhelper.finish() # at this point, annotate all mix-level helpers annhelper.backend_optimize() self.collect_analyzer = CollectAnalyzer(self.translator) self.collect_analyzer.analyze_all() s_gc = self.translator.annotator.bookkeeper.valueoftype(GCClass) r_gc = self.translator.rtyper.getrepr(s_gc) self.c_const_gc = rmodel.inputconst(r_gc, self.gcdata.gc) self.malloc_zero_filled = GCClass.malloc_zero_filled HDR = self._gc_HDR = self.gcdata.gc.gcheaderbuilder.HDR self._gc_fields = fields = [] for fldname in HDR._names: FLDTYPE = getattr(HDR, fldname) fields.append(('_' + fldname, FLDTYPE)) def build_root_walker(self): return ShadowStackRootWalker(self) def consider_constant(self, TYPE, value): self.layoutbuilder.consider_constant(TYPE, value, self.gcdata.gc) #def get_type_id(self, TYPE): # this method is attached to the instance and redirects to # layoutbuilder.get_type_id(). def finalizer_funcptr_for_type(self, TYPE): return self.layoutbuilder.finalizer_funcptr_for_type(TYPE) def gc_fields(self): return self._gc_fields def gc_field_values_for(self, obj): hdr = self.gcdata.gc.gcheaderbuilder.header_of_object(obj) HDR = self._gc_HDR return [getattr(hdr, fldname) for fldname in HDR._names] def finish_tables(self): table = self.layoutbuilder.flatten_table() log.info("assigned %s typeids" % (len(table), )) log.info("added %s push/pop stack root instructions" % ( self.num_pushs, )) if self.write_barrier_ptr: log.info("inserted %s write barrier calls" % ( self.write_barrier_calls, )) # replace the type_info_table pointer in gcdata -- at this point, # the database is in principle complete, so it has already seen # the delayed pointer. We need to force it to consider the new # array now. self.gcdata.type_info_table._become(table) # XXX because we call inputconst already in replace_malloc, we can't # modify the instance, we have to modify the 'rtyped instance' # instead. horrors. is there a better way? s_gcdata = self.translator.annotator.bookkeeper.immutablevalue( self.gcdata) r_gcdata = self.translator.rtyper.getrepr(s_gcdata) ll_instance = rmodel.inputconst(r_gcdata, self.gcdata).value addresses_of_static_ptrs = ( self.layoutbuilder.addresses_of_static_ptrs_in_nongc + self.layoutbuilder.addresses_of_static_ptrs) log.info("found %s static roots" % (len(addresses_of_static_ptrs), )) additional_ptrs = self.layoutbuilder.additional_roots_sources log.info("additional %d potential static roots" % additional_ptrs) ll_static_roots_inside = lltype.malloc(lltype.Array(llmemory.Address), len(addresses_of_static_ptrs) + additional_ptrs, immortal=True) for i in range(len(addresses_of_static_ptrs)): ll_static_roots_inside[i] = addresses_of_static_ptrs[i] ll_instance.inst_static_root_start = llmemory.cast_ptr_to_adr(ll_static_roots_inside) + llmemory.ArrayItemsOffset(lltype.Array(llmemory.Address)) ll_instance.inst_static_root_nongcend = ll_instance.inst_static_root_start + llmemory.sizeof(llmemory.Address) * len(self.layoutbuilder.addresses_of_static_ptrs_in_nongc) ll_instance.inst_static_root_end = ll_instance.inst_static_root_start + llmemory.sizeof(llmemory.Address) * len(addresses_of_static_ptrs) newgcdependencies = [] newgcdependencies.append(ll_static_roots_inside) self.write_typeid_list() return newgcdependencies def write_typeid_list(self): """write out the list of type ids together with some info""" from pypy.tool.udir import udir # XXX not ideal since it is not per compilation, but per run f = udir.join("typeids.txt").open("w") all = [(typeid, TYPE) for TYPE, typeid in self.layoutbuilder.id_of_type.iteritems()] all.sort() for typeid, TYPE in all: f.write("%s %s\n" % (typeid, TYPE)) f.close() def transform_graph(self, graph): if self.write_barrier_ptr: self.initializing_stores = find_initializing_stores( self.collect_analyzer, graph) super(FrameworkGCTransformer, self).transform_graph(graph) if self.write_barrier_ptr: self.initializing_stores = None def gct_direct_call(self, hop): if self.collect_analyzer.analyze(hop.spaceop): livevars = self.push_roots(hop) self.default(hop) self.pop_roots(hop, livevars) else: self.default(hop) gct_indirect_call = gct_direct_call def gct_fv_gc_malloc(self, hop, flags, TYPE, *args): op = hop.spaceop flavor = flags['flavor'] c_can_collect = rmodel.inputconst(lltype.Bool, not flags.get('nocollect', False)) PTRTYPE = op.result.concretetype assert PTRTYPE.TO == TYPE type_id = self.get_type_id(TYPE) c_type_id = rmodel.inputconst(lltype.Signed, type_id) info = self.layoutbuilder.type_info_list[type_id] c_size = rmodel.inputconst(lltype.Signed, info.fixedsize) has_finalizer = bool(self.finalizer_funcptr_for_type(TYPE)) c_has_finalizer = rmodel.inputconst(lltype.Bool, has_finalizer) if not op.opname.endswith('_varsize'): #malloc_ptr = self.malloc_fixedsize_ptr zero = flags.get('zero', False) if (self.malloc_fast_ptr is not None and c_can_collect.value and not c_has_finalizer.value and (self.malloc_fast_is_clearing or not zero)): malloc_ptr = self.malloc_fast_ptr elif zero: malloc_ptr = self.malloc_fixedsize_clear_ptr else: malloc_ptr = self.malloc_fixedsize_ptr args = [self.c_const_gc, c_type_id, c_size, c_can_collect, c_has_finalizer, rmodel.inputconst(lltype.Bool, False)] else: v_length = op.args[-1] c_ofstolength = rmodel.inputconst(lltype.Signed, info.ofstolength) c_varitemsize = rmodel.inputconst(lltype.Signed, info.varitemsize) if (self.malloc_varsize_clear_fast_ptr is not None and c_can_collect.value and not c_has_finalizer.value): malloc_ptr = self.malloc_varsize_clear_fast_ptr else: malloc_ptr = self.malloc_varsize_clear_ptr args = [self.c_const_gc, c_type_id, v_length, c_size, c_varitemsize, c_ofstolength, c_can_collect, c_has_finalizer] livevars = self.push_roots(hop) v_result = hop.genop("direct_call", [malloc_ptr] + args, resulttype=llmemory.GCREF) self.pop_roots(hop, livevars) return v_result gct_fv_gc_malloc_varsize = gct_fv_gc_malloc def gct_fv_gc_coalloc(self, hop, coallocator, flags, TYPE, *args): if self.coalloc_clear_ptr is None: return self.gct_fv_gc_malloc( hop, flags, TYPE, *args) op = hop.spaceop flavor = flags['flavor'] assert not flags.get("nocollect", False) PTRTYPE = op.result.concretetype assert PTRTYPE.TO == TYPE type_id = self.get_type_id(TYPE) c_type_id = rmodel.inputconst(lltype.Signed, type_id) info = self.layoutbuilder.type_info_list[type_id] c_size = rmodel.inputconst(lltype.Signed, info.fixedsize) has_finalizer = bool(self.finalizer_funcptr_for_type(TYPE)) assert not has_finalizer v_coallocator = gen_cast(hop.llops, llmemory.Address, coallocator) if not op.opname.endswith('_varsize'): malloc_ptr = self.coalloc_clear_ptr args = [self.c_const_gc, v_coallocator, c_type_id, c_size] else: v_length = op.args[-1] c_ofstolength = rmodel.inputconst(lltype.Signed, info.ofstolength) c_varitemsize = rmodel.inputconst(lltype.Signed, info.varitemsize) malloc_ptr = self.coalloc_varsize_clear_ptr args = [self.c_const_gc, v_coallocator, c_type_id, v_length, c_size, c_varitemsize, c_ofstolength] livevars = self.push_roots(hop) v_result = hop.genop("direct_call", [malloc_ptr] + args, resulttype=llmemory.GCREF) self.pop_roots(hop, livevars) return v_result gct_fv_gc_coalloc_varsize = gct_fv_gc_coalloc def gct_gc__collect(self, hop): op = hop.spaceop livevars = self.push_roots(hop) hop.genop("direct_call", [self.collect_ptr, self.c_const_gc], resultvar=op.result) self.pop_roots(hop, livevars) def gct_gc_x_swap_pool(self, hop): op = hop.spaceop [v_malloced] = op.args hop.genop("direct_call", [self.x_swap_pool_ptr, self.c_const_gc, v_malloced], resultvar=op.result) def gct_gc_x_clone(self, hop): op = hop.spaceop [v_clonedata] = op.args hop.genop("direct_call", [self.x_clone_ptr, self.c_const_gc, v_clonedata], resultvar=op.result) def gct_gc_x_size_header(self, hop): op = hop.spaceop c_result = rmodel.inputconst(lltype.Signed, self.gcdata.gc.size_gc_header()) hop.genop("same_as", [c_result], resultvar=op.result) def gct_zero_gc_pointers_inside(self, hop): if not self.malloc_zero_filled: v_ob = hop.spaceop.args[0] TYPE = v_ob.concretetype.TO gen_zero_gc_pointers(TYPE, v_ob, hop.llops) def gct_weakref_create(self, hop): op = hop.spaceop type_id = self.get_type_id(WEAKREF) c_type_id = rmodel.inputconst(lltype.Signed, type_id) info = self.layoutbuilder.type_info_list[type_id] c_size = rmodel.inputconst(lltype.Signed, info.fixedsize) malloc_ptr = self.malloc_fixedsize_ptr c_has_finalizer = rmodel.inputconst(lltype.Bool, False) c_has_weakptr = c_can_collect = rmodel.inputconst(lltype.Bool, True) args = [self.c_const_gc, c_type_id, c_size, c_can_collect, c_has_finalizer, c_has_weakptr] # push and pop the current live variables *including* the argument # to the weakref_create operation, which must be kept alive and # moved if the GC needs to collect livevars = self.push_roots(hop, keep_current_args=True) v_result = hop.genop("direct_call", [malloc_ptr] + args, resulttype=llmemory.GCREF) v_result = hop.genop("cast_opaque_ptr", [v_result], resulttype=WEAKREFPTR) self.pop_roots(hop, livevars) # cast_ptr_to_adr must be done after malloc, as the GC pointer # might have moved just now. v_instance, = op.args v_addr = hop.genop("cast_ptr_to_adr", [v_instance], resulttype=llmemory.Address) hop.genop("bare_setfield", [v_result, rmodel.inputconst(lltype.Void, "weakptr"), v_addr]) v_weakref = hop.genop("cast_ptr_to_weakrefptr", [v_result], resulttype=llmemory.WeakRefPtr) hop.cast_result(v_weakref) def gct_weakref_deref(self, hop): v_wref, = hop.spaceop.args v_addr = hop.genop("direct_call", [self.weakref_deref_ptr, v_wref], resulttype=llmemory.Address) hop.cast_result(v_addr) def gct_gc_id(self, hop): if self.id_ptr is not None: livevars = self.push_roots(hop) [v_ptr] = hop.spaceop.args v_ptr = hop.genop("cast_opaque_ptr", [v_ptr], resulttype=llmemory.GCREF) hop.genop("direct_call", [self.id_ptr, self.c_const_gc, v_ptr], resultvar=hop.spaceop.result) self.pop_roots(hop, livevars) else: hop.rename('cast_ptr_to_int') # works nicely for non-moving GCs def gct_gc_set_max_heap_size(self, hop): [v_size] = hop.spaceop.args hop.genop("direct_call", [self.set_max_heap_size_ptr, self.c_const_gc, v_size]) def transform_generic_set(self, hop): from pypy.objspace.flow.model import Constant opname = hop.spaceop.opname v_struct = hop.spaceop.args[0] v_newvalue = hop.spaceop.args[-1] assert opname in ('setfield', 'setarrayitem', 'setinteriorfield') assert isinstance(v_newvalue.concretetype, lltype.Ptr) # XXX for some GCs the skipping if the newvalue is a constant won't be # ok if (self.write_barrier_ptr is not None and not isinstance(v_newvalue, Constant) and v_struct.concretetype.TO._gckind == "gc" and hop.spaceop not in self.initializing_stores): self.write_barrier_calls += 1 v_oldvalue = hop.genop('g' + opname[1:], hop.inputargs()[:-1], resulttype=v_newvalue.concretetype) v_oldvalue = hop.genop("cast_ptr_to_adr", [v_oldvalue], resulttype = llmemory.Address) v_newvalue = hop.genop("cast_ptr_to_adr", [v_newvalue], resulttype = llmemory.Address) v_structaddr = hop.genop("cast_ptr_to_adr", [v_struct], resulttype = llmemory.Address) hop.genop("direct_call", [self.write_barrier_ptr, self.c_const_gc, v_oldvalue, v_newvalue, v_structaddr]) hop.rename('bare_' + opname) def var_needs_set_transform(self, var): return var_needsgc(var) def push_alive_nopyobj(self, var, llops): pass def pop_alive_nopyobj(self, var, llops): pass def get_livevars_for_roots(self, hop, keep_current_args=False): if self.gcdata.gc.moving_gc and not keep_current_args: # moving GCs don't borrow, so the caller does not need to keep # the arguments alive livevars = [var for var in hop.livevars_after_op() if not var_ispyobj(var)] else: livevars = hop.livevars_after_op() + hop.current_op_keeps_alive() livevars = [var for var in livevars if not var_ispyobj(var)] return livevars def push_roots(self, hop, keep_current_args=False): if self.incr_stack_ptr is None: return livevars = self.get_livevars_for_roots(hop, keep_current_args) self.num_pushs += len(livevars) if not livevars: return [] c_len = rmodel.inputconst(lltype.Signed, len(livevars) ) base_addr = hop.genop("direct_call", [self.incr_stack_ptr, c_len ], resulttype=llmemory.Address) c_type = rmodel.inputconst(lltype.Void, llmemory.Address) for k,var in enumerate(livevars): c_k = rmodel.inputconst(lltype.Signed, k) v_adr = gen_cast(hop.llops, llmemory.Address, var) hop.genop("raw_store", [base_addr, c_type, c_k, v_adr]) return livevars def pop_roots(self, hop, livevars): if self.decr_stack_ptr is None: return if not livevars: return c_len = rmodel.inputconst(lltype.Signed, len(livevars) ) base_addr = hop.genop("direct_call", [self.decr_stack_ptr, c_len ], resulttype=llmemory.Address) if self.gcdata.gc.moving_gc: # for moving collectors, reload the roots into the local variables c_type = rmodel.inputconst(lltype.Void, llmemory.Address) for k,var in enumerate(livevars): c_k = rmodel.inputconst(lltype.Signed, k) v_newaddr = hop.genop("raw_load", [base_addr, c_type, c_k], resulttype=llmemory.Address) hop.genop("gc_reload_possibly_moved", [v_newaddr, var]) def compute_borrowed_vars(self, graph): # XXX temporary workaround, should be done more correctly if self.gcdata.gc.moving_gc: return lambda v: False return super(FrameworkGCTransformer, self).compute_borrowed_vars(graph) class TransformerLayoutBuilder(gctypelayout.TypeLayoutBuilder): def __init__(self, transformer): super(TransformerLayoutBuilder, self).__init__() self.transformer = transformer self.offsettable_cache = {} def make_finalizer_funcptr_for_type(self, TYPE): rtti = get_rtti(TYPE) if rtti is not None and hasattr(rtti._obj, 'destructor_funcptr'): destrptr = rtti._obj.destructor_funcptr DESTR_ARG = lltype.typeOf(destrptr).TO.ARGS[0] else: destrptr = None DESTR_ARG = None assert not type_contains_pyobjs(TYPE), "not implemented" if destrptr: def ll_finalizer(addr): v = llmemory.cast_adr_to_ptr(addr, DESTR_ARG) ll_call_destructor(destrptr, v) fptr = self.transformer.annotate_finalizer(ll_finalizer, [llmemory.Address], lltype.Void) else: fptr = lltype.nullptr(gctypelayout.GCData.FINALIZERTYPE.TO) return fptr def gen_zero_gc_pointers(TYPE, v, llops, previous_steps=None): if previous_steps is None: previous_steps = [] assert isinstance(TYPE, lltype.Struct) for name in TYPE._names: c_name = rmodel.inputconst(lltype.Void, name) FIELD = getattr(TYPE, name) if isinstance(FIELD, lltype.Ptr) and FIELD._needsgc(): c_null = rmodel.inputconst(FIELD, lltype.nullptr(FIELD.TO)) if not previous_steps: llops.genop('bare_setfield', [v, c_name, c_null]) else: llops.genop('bare_setinteriorfield', [v] + previous_steps + [c_name, c_null]) elif isinstance(FIELD, lltype.Struct): gen_zero_gc_pointers(FIELD, v, llops, previous_steps + [c_name]) # ____________________________________________________________ sizeofaddr = llmemory.sizeof(llmemory.Address) class BaseRootWalker: need_root_stack = False def __init__(self, gctransformer): self.gcdata = gctransformer.gcdata self.gc = self.gcdata.gc def _freeze_(self): return True def setup_root_walker(self): pass def append_static_root(self, adr): self.gcdata.static_root_end.address[0] = adr self.gcdata.static_root_end += sizeofaddr def walk_roots(self, collect_stack_root, collect_static_in_prebuilt_nongc, collect_static_in_prebuilt_gc): gcdata = self.gcdata gc = self.gc if collect_static_in_prebuilt_nongc: addr = gcdata.static_root_start end = gcdata.static_root_nongcend while addr != end: result = addr.address[0] if result.address[0] != llmemory.NULL: collect_static_in_prebuilt_nongc(gc, result) addr += sizeofaddr if collect_static_in_prebuilt_gc: addr = gcdata.static_root_nongcend end = gcdata.static_root_end while addr != end: result = addr.address[0] if result.address[0] != llmemory.NULL: collect_static_in_prebuilt_gc(gc, result) addr += sizeofaddr if collect_stack_root: self.walk_stack_roots(collect_stack_root) # abstract class ShadowStackRootWalker(BaseRootWalker): need_root_stack = True def __init__(self, gctransformer): BaseRootWalker.__init__(self, gctransformer) self.rootstacksize = sizeofaddr * gctransformer.root_stack_depth # NB. 'self' is frozen, but we can use self.gcdata to store state gcdata = self.gcdata def incr_stack(n): top = gcdata.root_stack_top gcdata.root_stack_top = top + n*sizeofaddr return top self.incr_stack = incr_stack def decr_stack(n): top = gcdata.root_stack_top - n*sizeofaddr gcdata.root_stack_top = top return top self.decr_stack = decr_stack def setup_root_walker(self): stackbase = llmemory.raw_malloc(self.rootstacksize) ll_assert(bool(stackbase), "could not allocate root stack") llmemory.raw_memclear(stackbase, self.rootstacksize) self.gcdata.root_stack_top = stackbase self.gcdata.root_stack_base = stackbase def walk_stack_roots(self, collect_stack_root): gcdata = self.gcdata gc = self.gc addr = gcdata.root_stack_base end = gcdata.root_stack_top while addr != end: if addr.address[0] != llmemory.NULL: collect_stack_root(gc, addr) addr += sizeofaddr
the-stack_106_26265
""" Platform support for Programs. This package is a thin wrapper around interactions with the Programs service, supporting learner- and author-facing features involving that service if and only if the service is deployed in the Open edX installation. To ensure maximum separation of concerns, and a minimum of interdependencies, this package should be kept small, thin, and stateless. """ default_app_config = 'openedx.core.djangoapps.programs.apps.ProgramsConfig' from edx_toggles.toggles import LegacyWaffleSwitch, LegacyWaffleSwitchNamespace # lint-amnesty, pylint: disable=wrong-import-position PROGRAMS_WAFFLE_SWITCH_NAMESPACE = LegacyWaffleSwitchNamespace(name='programs') # This is meant to be enabled until https://openedx.atlassian.net/browse/LEARNER-5573 needs to be resolved ALWAYS_CALCULATE_PROGRAM_PRICE_AS_ANONYMOUS_USER = LegacyWaffleSwitch( # lint-amnesty, pylint: disable=toggle-missing-annotation PROGRAMS_WAFFLE_SWITCH_NAMESPACE, 'always_calculate_program_price_as_anonymous_user', __name__ )
the-stack_106_26266
import torch import torch.nn as nn from . import odeint from . import odeint_err from .misc import _flatten, _flatten_convert_none_to_zeros class OdeintAdjointMethod(torch.autograd.Function): total_err=[] @staticmethod def forward(ctx, *args): assert len(args) >= 8, 'Internal error: all arguments required.' (y0, func, t, flat_params, rtol, atol, method, options, adjoint_rtol, adjoint_atol, adjoint_method, adjoint_options) = (args[:-11], args[-11], args[-10], args[-9], args[-8], args[-7], args[-6], args[-5], args[-4], args[-3], args[-2], args[-1]) (ctx.func, ctx.adjoint_rtol, ctx.adjoint_atol, ctx.adjoint_method, ctx.adjoint_options) = func, adjoint_rtol, adjoint_atol, adjoint_method, adjoint_options with torch.no_grad(): ans, err = odeint_err(func, y0, t, rtol=rtol, atol=atol, method=method, options=options) OdeintAdjointMethod.total_err += err ctx.save_for_backward(t, flat_params, *ans) return ans @staticmethod def backward(ctx, *grad_output): t, flat_params, *ans = ctx.saved_tensors ans = tuple(ans) (func, adjoint_rtol, adjoint_atol, adjoint_method, adjoint_options) = ctx.func, ctx.adjoint_rtol, ctx.adjoint_atol, ctx.adjoint_method, ctx.adjoint_options n_tensors = len(ans) f_params = tuple(func.parameters()) # TODO: use a nn.Module and call odeint_adjoint to implement higher order derivatives. def augmented_dynamics(t, y_aug): # Dynamics of the original system augmented with # the adjoint wrt y, and an integrator wrt t and args. y, adj_y = y_aug[:n_tensors], y_aug[n_tensors:2 * n_tensors] # Ignore adj_time and adj_params. with torch.set_grad_enabled(True): t = t.to(y[0].device).detach().requires_grad_(True) y = tuple(y_.detach().requires_grad_(True) for y_ in y) func_eval = func(t, y) vjp_t, *vjp_y_and_params = torch.autograd.grad( func_eval, (t,) + y + f_params, tuple(-adj_y_ for adj_y_ in adj_y), allow_unused=True, retain_graph=True ) vjp_y = vjp_y_and_params[:n_tensors] vjp_params = vjp_y_and_params[n_tensors:] # autograd.grad returns None if no gradient, set to zero. vjp_t = torch.zeros_like(t) if vjp_t is None else vjp_t vjp_y = tuple(torch.zeros_like(y_) if vjp_y_ is None else vjp_y_ for vjp_y_, y_ in zip(vjp_y, y)) vjp_params = _flatten_convert_none_to_zeros(vjp_params, f_params) if len(f_params) == 0: vjp_params = torch.tensor(0.).to(vjp_y[0]) return (*func_eval, *vjp_y, vjp_t, vjp_params) T = ans[0].shape[0] with torch.no_grad(): adj_y = tuple(grad_output_[-1] for grad_output_ in grad_output) adj_params = torch.zeros_like(flat_params) adj_time = torch.tensor(0.).to(t) time_vjps = [] for i in range(T - 1, 0, -1): ans_i = tuple(ans_[i] for ans_ in ans) grad_output_i = tuple(grad_output_[i] for grad_output_ in grad_output) func_i = func(t[i], ans_i) # Compute the effect of moving the current time measurement point. dLd_cur_t = sum( torch.dot(func_i_.reshape(-1), grad_output_i_.reshape(-1)).reshape(1) for func_i_, grad_output_i_ in zip(func_i, grad_output_i) ) adj_time = adj_time - dLd_cur_t time_vjps.append(dLd_cur_t) # Run the augmented system backwards in time. if adj_params.numel() == 0: adj_params = torch.tensor(0.).to(adj_y[0]) aug_y0 = (*ans_i, *adj_y, adj_time, adj_params) aug_ans = odeint( augmented_dynamics, aug_y0, torch.tensor([t[i], t[i - 1]]), rtol=adjoint_rtol, atol=adjoint_atol, method=adjoint_method, options=adjoint_options ) # Unpack aug_ans. adj_y = aug_ans[n_tensors:2 * n_tensors] adj_time = aug_ans[2 * n_tensors] adj_params = aug_ans[2 * n_tensors + 1] adj_y = tuple(adj_y_[1] if len(adj_y_) > 0 else adj_y_ for adj_y_ in adj_y) if len(adj_time) > 0: adj_time = adj_time[1] if len(adj_params) > 0: adj_params = adj_params[1] adj_y = tuple(adj_y_ + grad_output_[i - 1] for adj_y_, grad_output_ in zip(adj_y, grad_output)) del aug_y0, aug_ans time_vjps.append(adj_time) time_vjps = torch.cat(time_vjps[::-1]) return (*adj_y, None, time_vjps, adj_params, None, None, None, None, None, None, None, None) def odeint_adjoint(func, y0, t, rtol=1e-6, atol=1e-12, method=None, options=None, adjoint_rtol=None, adjoint_atol=None, adjoint_method=None, adjoint_options=None): # We need this in order to access the variables inside this module, # since we have no other way of getting variables along the execution path. if not isinstance(func, nn.Module): raise ValueError('func is required to be an instance of nn.Module.') if adjoint_rtol is None: adjoint_rtol = rtol if adjoint_atol is None: adjoint_atol = atol if adjoint_method is None: adjoint_method = method if adjoint_options is None: adjoint_options = options tensor_input = False if torch.is_tensor(y0): class TupleFunc(nn.Module): def __init__(self, base_func): super(TupleFunc, self).__init__() self.base_func = base_func def forward(self, t, y): return (self.base_func(t, y[0]),) tensor_input = True y0 = (y0,) func = TupleFunc(func) flat_params = _flatten(func.parameters()) ys = OdeintAdjointMethod.apply(*y0, func, t, flat_params, rtol, atol, method, options, adjoint_rtol, adjoint_atol, adjoint_method, adjoint_options) err = OdeintAdjointMethod.total_err OdeintAdjointMethod.total_err=[] if tensor_input: ys = ys[0] return ys, []
the-stack_106_26267
from common.numpy_fast import clip from selfdrive.car.ford.values import MAX_ANGLE def create_steer_command(packer, angle_cmd, enabled, angle_steers, action, angleReq, sappConfig, sappChime): """Creates a CAN message for the Ford Steer Command.""" #if enabled and lkas available: #if enabled: # and (frame % 500) >= 3: # action = lkas_action # angle_cmd = angle_steers/MAX_ANGLE #else: # action = 0xf # angle_cmd = angle_steers/MAX_ANGLE #angle_cmd = clip(angle_cmd * MAX_ANGLE, - MAX_ANGLE, MAX_ANGLE) values = { "ApaSys_D_Stat": action, "EPASExtAngleStatReq": angleReq, "ExtSteeringAngleReq2": angle_cmd, "SAPPStatusCoding": sappConfig, "ApaChime_D_Rq": sappChime, } return packer.make_can_msg("ParkAid_Data", 2, values) def create_ds_118(packer, filler1, filler2, filler3, brakectr, awdlckmax, awdlckmn, drvstate, drvtq, emergbrk, stoplmp, angle): """Creates a CAN message for the Ford 118 message.""" values = { "BrkCtrFnd_B_Stat": brakectr, "AwdLck_Tq_RqMx": awdlckmax, "AwdLck_Tq_RqMn": awdlckmn, "DrvSte_D_Stat": drvstate, "DrvSte_Tq_Rq": drvtq, "EmgcyBrkLamp_D_Rq": emergbrk, "StopLamp_B_RqBrk": stoplmp, "SteWhlRelInit_An_Sns": angle, "DS_Filler_1": filler1, "DS_Filler_2": filler2, "DS_Filler_3": filler3, } return packer.make_can_msg("BrakeSnData_5", 2, values) def create_speed_command(packer, speed, trlraid, actlnocs, actlnocnt, actlqf, gear): """Creates a CAN message for the Ford Speed Command.""" values = { "VehVTrlrAid_B_Avail": trlraid, "VehVActlEng_No_Cs": actlnocs, "VehVActlEng_No_Cnt": actlnocnt, "VehVActlEng_D_Qf": actlqf, "GearRvrse_D_Actl": gear, "Veh_V_ActlEng": speed, } return packer.make_can_msg("EngVehicleSpThrottle2", 2, values) def create_speed_command2(packer, speed3, lsmcdecel, actlbrknocs, actlbrknocnt, actlbrkqf): """Creates a CAN message for the Ford Speed Command.""" values = { "Veh_V_ActlBrk": speed3, "LsmcBrkDecel_D_Stat": lsmcdecel, "VehVActlBrk_No_Cs": actlbrknocs, "VehVActlBrk_No_Cnt": actlbrknocnt, "VehVActlBrk_D_Qf": actlbrkqf, } return packer.make_can_msg("BrakeSysFeatures", 2, values) def create_lkas_ui(packer, main_on, enabled, steer_alert, defog, ahbc, ahbcramping, config, noipma, stats, persipma, dasdsply, x30): """Creates a CAN message for the Ford Steer Ui.""" if enabled: lines = 0x6 else: lines = 0xc values = { "PersIndexIpma_D_Actl": persipma, "DasStats_D_Dsply": dasdsply, "Set_Me_X30": x30, "Lines_Hud": lines, "Hands_Warning_W_Chime": steer_alert, "CamraDefog_B_Req": defog, "AhbHiBeam_D_Rq": ahbc, "AhbcRampingV_D_Rq": ahbcramping, "FeatConfigIpmaActl": config, "FeatNoIpmaActl": noipma, "CamraStats_D_Dsply": stats, } return packer.make_can_msg("Lane_Keep_Assist_Ui", 0, values) def spam_cancel_button(packer): values = { "Cancel": 1 } return packer.make_can_msg("Steering_Buttons", 0, values)
the-stack_106_26269
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import cv2 import os import sys cv2v = cv2.__version__ if(cv2v[0] >= '3'): flagCapturePosFrame = cv2.CAP_PROP_POS_FRAMES elif(cv2v[0] == '2'): flagCapturePosFrame = cv2.cv.CV_CAP_PROP_POS_FRAMES if len(sys.argv) == 2: videoName = sys.argv[1] else: print ("Example of usage: python VideoAnnotation.py video.mp4") videoName = 'RM4.mp4' if os.path.exists(videoName): print ("Video path not provided, using default") else: sys.exit("Error: Video path not provided and default doesnt exist") foldName = videoName.split('.')[0] foldLabel = foldName + '/labels' foldJpeg = foldName + '/JPEGImages' foldGT = foldName + '/Ground' foldAugment = foldJpeg if not os.path.exists(foldName): os.mkdir(foldName) if not os.path.exists(foldLabel): os.mkdir(foldLabel) if not os.path.exists(foldJpeg): os.mkdir(foldJpeg) if not os.path.exists(foldGT): os.mkdir(foldGT) if not os.path.exists(foldAugment): os.mkdir(foldAugment) drawRect = False startRect = [] endRect = [] iClass = [] key = -1 color = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(255,0,255),(0,255,255),(0, 51, 102), (102, 51, 0),(0,0,0),(255,255,255)] secColor = [(int(i * 0.7), int(j * 0.7), int(k * 0.7)) for (i,j,k) in color] color.extend(secColor) shiftColor = 10 actual = 0 lenBbox = 0 lastFrameSkip = 0 def draw(event,x,y,flags,param): global drawRect global startRect global frame global endRect global oriFrame global key global color global actual global lenBbox if event == cv2.EVENT_LBUTTONDOWN: drawRect = True startRect.append((x, y)) endRect.append((x, y)) iClass.append(cv2.getTrackbarPos('ID','VideoTag')) lenBbox = len(startRect) actual = lenBbox elif event == cv2.EVENT_MOUSEWHEEL: if actual > 0: iClass[actual-1] = (iClass[actual-1] + 1 ) % NUM_OF_CLASS elif event == cv2.EVENT_LBUTTONUP: drawRect = False elif event == cv2.EVENT_MOUSEMOVE: if drawRect: endRect[actual-1] = (x, y) frame = oriFrame.copy() elif event == cv2.EVENT_RBUTTONDOWN: frame = oriFrame.copy() if len(startRect) > 0: startRect.pop() if len(endRect) > 0: endRect.pop() if len(iClass) > 0: iClass.pop() if actual > 0: actual -= 1 def imview(src, bbox): height, width, _ = src.shape # ID, xcenter/widht, ycenter/height, srcwidth/width, srcheight/height iClass, xYolo, yYolo, widthYolo, heightYolo = bbox xCenter = int( xYolo * width ) yCenter = int( yYolo * height ) objWidth = int( widthYolo * width ) objHeight = int ( heightYolo * height ) ul = (xCenter - objWidth/2, yCenter - objHeight/2) br = (xCenter + objWidth/2, yCenter + objHeight/2) cv2.rectangle(src,ul, br, (0,255,0),3) cv2.imshow("src", src) cv2.waitKey(10000) cv2.destroyAllWindows() # bbox = (2, 0.79765625, 0.705208333333, 0.1015625 ,0.202083333333) # src = cv2.imread('/home/kaka/Desktop/SimpleVideoAnnotation/atHome004/JPEGImages/000000.jpg') def VOCtoRect(vocLabel, imgW=1024, imgH=640): """ vocLabel: Classe; absoluteX/imgWidth; absoluteY/imgHeight; absoluteWidth/imgWidth; absoluteHeight/imgHeigh """ xMean = vocLabel[1] * imgW yMean = vocLabel[2] * imgH deltaX = vocLabel[3] * imgW deltaY = vocLabel[4] * imgH dX = deltaX/2 dY = deltaY/2 xMin = int(xMean - dX) xMax = int(xMean + dX) yMin = int(yMean - dY) yMax = int(yMean + dY) return ([(xMin, yMin), (xMax, yMax)]) def nothing(x): pass NUM_OF_CLASS = (10-1) cv2.namedWindow("VideoTag", cv2.WINDOW_NORMAL) cv2.setMouseCallback("VideoTag", draw) cv2.createTrackbar("ID", "VideoTag",0, NUM_OF_CLASS, nothing) cv2.createTrackbar("Jump", "VideoTag",1, 10, nothing) cv2.createTrackbar("SkipFrames", "VideoTag",1, 300, nothing) cap = cv2.VideoCapture(videoName) if not cap.isOpened(): print ("Video not found or Opencv without ffmpeg") framePos = 0 ret, oriFrame = cap.read() if not ret: print("Error reading video") exit() frame = oriFrame.copy() height, width, _ = frame.shape oldId = 0 actualId = 0 while( cap.isOpened() and ret ): frame = oriFrame.copy() jump = cv2.getTrackbarPos('Jump','VideoTag') for values in range(0, len(startRect)): if values == actual-1: col = color[iClass[values]] thick = 2 else: col = color[iClass[values] + shiftColor] thick = 2 cv2.rectangle(frame, startRect[values], endRect[values], col, thick) cv2.imshow("VideoTag", frame) key = (cv2.waitKey(1) & 0xFF) if key == 255: continue if key == ord('q'): break if actual <= len(startRect) and actual > 0 : if key == ord('w'): startRect[actual-1] = (startRect[actual-1][0], startRect[actual-1][1]-jump) endRect[actual-1] = (endRect[actual-1][0], endRect[actual-1][1]-jump) if key == ord('s'): startRect[actual-1] = (startRect[actual-1][0], startRect[actual-1][1]+jump) endRect[actual-1] = (endRect[actual-1][0], endRect[actual-1][1]+jump) if key == ord('a'): startRect[actual-1] = (startRect[actual-1][0]-jump, startRect[actual-1][1]) endRect[actual-1] = (endRect[actual-1][0]-jump, endRect[actual-1][1]) if key == ord('d'): startRect[actual-1] = (startRect[actual-1][0]+jump, startRect[actual-1][1]) endRect[actual-1] = (endRect[actual-1][0]+jump, endRect[actual-1][1]) if key == ord('6'): startRect[actual-1] = (startRect[actual-1][0]-jump, startRect[actual-1][1]) endRect[actual-1] = (endRect[actual-1][0]+jump, endRect[actual-1][1]) if key == ord('4'): startRect[actual-1] = (startRect[actual-1][0]+jump, startRect[actual-1][1]) endRect[actual-1] = (endRect[actual-1][0]-jump, endRect[actual-1][1]) if key == ord('8'): startRect[actual-1] = (startRect[actual-1][0], startRect[actual-1][1]-jump) endRect[actual-1] = (endRect[actual-1][0], endRect[actual-1][1]+jump) if key == ord('5'): startRect[actual-1] = (startRect[actual-1][0], startRect[actual-1][1]+jump) endRect[actual-1] = (endRect[actual-1][0], endRect[actual-1][1]-jump) if key == ord('*'): iClass[actual-1] = (iClass[actual-1] + 1 ) % NUM_OF_CLASS if key == ord('/'): iClass[actual-1] = (iClass[actual-1] - 1 ) % NUM_OF_CLASS if key == ord('c'): startRect.append(startRect[-1]) endRect.append(endRect[-1]) iClass.append(iClass[-1]) lenBbox = len(startRect) actual = lenBbox if key == ord('-'): del startRect[actual-1] del endRect[actual-1] del iClass[actual-1] if(actual < 0): actual = 0 lenBbox = len(startRect) if key == ord('9') and lenBbox > 0: actual = ((actual)%(lenBbox)) + 1 if key == ord('7') and lenBbox > 0: actual -= 1 if actual == 0: actual = lenBbox if key == ord('z'): skip = cv2.getTrackbarPos('SkipFrames','VideoTag') actualPosFrame = cap.get(flagCapturePosFrame) newFramePos = actualPosFrame-skip if newFramePos < 0: newFramePos = 0 cap.set(flagCapturePosFrame, newFramePos) ret, oriFrame = cap.read() framePos -= 1 if framePos < 0: framePos = 0 if key == ord('r'): path_r = foldLabel+"/{:06d}.txt".format(framePos) if (not os.path.exists(path_r)): path_r = foldLabel + '/000000.txt' if (os.path.exists(path_r)): startRect, endRect, iClass = [], [], [] actual = 0 with open(path_r, 'r') as f: lines = f.readlines() for line in sorted(lines, key=lambda t: t[2:]): voc = [float(i) for i in line.split()] rect = VOCtoRect(voc, width, height) iClass.append(int(voc[0])) startRect.append(rect[0]) endRect.append(rect[1]) lenBbox = len(startRect) actual = 1 if key == (32): vocLabel = [] flipLabel = [] rotLabel = [] save = False for values in range(0,len(startRect)): frameWidth, frameHeight = abs(startRect[values][0]-endRect[values][0]), abs(startRect[values][1]-endRect[values][1]) xCenter, yCenter = abs((startRect[values][0]+endRect[values][0])/2.0), abs((startRect[values][1]+endRect[values][1])/2.0) xVoc, yVoc = xCenter/width, yCenter/height if frameWidth < 4 or frameHeight < 4: continue save = True widthVoc = float(frameWidth)/width heightVoc = float(frameHeight)/height vocClass = (iClass[values], xVoc,yVoc, widthVoc, heightVoc, '\n') vocLabel.append(' '.join(str(e) + '' for e in vocClass)) flipClass = (iClass[values], 1-xVoc,yVoc, widthVoc, heightVoc, '\n') flipLabel.append(' '.join(str(e) + '' for e in flipClass)) rotX = (height - yCenter)/height rotY = xVoc rotClass = (iClass[values], rotX, rotY, heightVoc, widthVoc, '\n') rotLabel.append(' '.join(str(e) + '' for e in rotClass)) if save == False: actualPosFrame = cap.get(flagCapturePosFrame) skip = cv2.getTrackbarPos('SkipFrames','VideoTag') if (actualPosFrame+skip > lastFrameSkip): cap.set(flagCapturePosFrame,actualPosFrame+skip) ret, oriFrame = cap.read() lastFrameSkip = actualPosFrame+skip else: ret = False; continue fileName = "/{:06d}.jpg".format(framePos) cv2.imwrite(foldGT+fileName, frame) cv2.imwrite(foldJpeg+fileName, oriFrame) ### fileName = "/{:06d}_F.jpg".format(framePos) flip = cv2.flip(oriFrame, 1) cv2.imwrite(foldAugment+fileName, flip) ### fileName = "/{:06d}_R.jpg".format(framePos) rot = cv2.rotate(oriFrame, 0) cv2.imwrite(foldAugment+fileName, rot) with open(foldLabel+"/{:06d}.txt".format(framePos), 'w') as f: for labels in vocLabel: f.write(labels) with open(foldLabel+"/{:06d}_F.txt".format(framePos), 'w') as f: for labels in flipLabel: f.write(labels) with open(foldLabel+"/{:06d}_R.txt".format(framePos), 'w') as f: for labels in rotLabel: f.write(labels) actualPosFrame = cap.get(flagCapturePosFrame) skip = cv2.getTrackbarPos('SkipFrames','VideoTag') if (actualPosFrame+skip > lastFrameSkip): cap.set(flagCapturePosFrame,actualPosFrame+skip) ret, oriFrame = cap.read() lastFrameSkip = actualPosFrame+skip else: ret = False; framePos += 1 oldId = actualId command = 'ls -d '+ os.getcwd() +'/{}/JPEGImages/* > '.format(foldName) + os.getcwd() + '/{}/imgList.txt'.format(foldName) os.system(command) cap.release() cv2.destroyAllWindows()
the-stack_106_26270
# Imports import logging import socket import logging from functools import wraps from flask_login import current_user, LoginManager from flask import Flask, render_template, request from flask_sqlalchemy import SQLAlchemy from functools import wraps # Config app = Flask(__name__) app.config['SECRET_KEY'] = 'LongAndRandomSecretKey' app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///calculator.db' app.config['RECAPTCHA_PUBLIC_KEY'] = "6LfFdRMcAAAAAEeOwLocqoG8LhRNZhE0TYF8MdMG" app.config['RECAPTCHA_PRIVATE_KEY'] = "6LfFdRMcAAAAAILSgmbrJcTLnkDV5fG-xwPzyoR4" app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ECHO'] = True db = SQLAlchemy(app) # Functions def requires_roles(*roles): def wrapper(f): @wraps(f) def wrapped(*args, **kwargs): if current_user.role not in roles: # Send unauthorised access attempt notification to security log file. logging.warning('SECURITY - Unauthorised access attempt [%s, %s, %s, %s]', current_user.id, current_user.email, current_user.role, request.remote_addr) # redirect the user to an unauthorised notice! return render_template('403.html') return f(*args, **kwargs) return wrapped return wrapper # Home Page View @app.route('/') def index(): if current_user.is_authenticated and current_user.role == 'admin': return render_template('profile.html') else: return render_template('index.html') # Error Page Views @app.errorhandler(400) def internal_error(error): return render_template('400.html'), 400 @app.errorhandler(403) def page_forbidden(error): return render_template('403.html'), 403 @app.errorhandler(404) def page_not_found(error): return render_template('404.html'), 404 @app.errorhandler(500) def internal_error(error): return render_template('500.html'), 500 @app.errorhandler(503) def internal_error(error): return render_template('503.html'), 503 if __name__ == '__main__': my_host = "127.0.0.1" free_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) free_socket.bind((my_host, 0)) free_socket.listen(5) # free_port = free_socket.getsockname()[1] free_port = 5000 free_socket.close() # Login Manager login_manager = LoginManager() login_manager.login_view = 'users.login' login_manager.init_app(app) from models import User @login_manager.user_loader def load_user(id): return User.query.get(int(id)) # BLUEPRINTS # import blueprints from users.views import users_blueprint from calculator.views import calculator_blueprint from admin.views import admin_blueprint from test.views import quiz_blueprint # register blueprints with app app.register_blueprint(users_blueprint) app.register_blueprint(calculator_blueprint) app.register_blueprint(admin_blueprint) app.register_blueprint(quiz_blueprint) app.run(host=my_host, port=free_port, debug=True)
the-stack_106_26271
#!/usr/bin/env python3 # https://adventofcode.com/2021/day/1 INPUT_FILE ='../input/1.txt' def file_to_ints(input_file): """ Input: A file containing one number per line Output: An int iterable Blank lines and lines starting with '#' are ignored """ with open(input_file) as f: for line in f.readlines(): line = line.strip() if line and not line.startswith('#'): yield int(line) def get_increases(array): """ Input: An array of numbers Output: The number of elements larger than the one preceding it """ prev = None inc = 0 for n in array: if prev and n > prev: inc += 1 prev = n return inc def main(): depths = file_to_ints(INPUT_FILE) increases = get_increases(depths) print(increases) if __name__ == '__main__': main()
the-stack_106_26272
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup, find_packages # HISTORY.rst entry. VERSION = '0.1.0' try: from azext_datamigration.manual.version import VERSION except ImportError: pass # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [] try: from azext_datamigration.manual.dependency import DEPENDENCIES except ImportError: pass with open('README.md', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='datamigration', version=VERSION, description='Microsoft Azure Command-Line Tools DataMigrationManagementClient Extension', author='Microsoft Corporation', author_email='[email protected]', url='https://github.com/Azure/azure-cli-extensions/tree/master/src/datamigration', long_description=README + '\n\n' + HISTORY, license='MIT', classifiers=CLASSIFIERS, packages=find_packages(), install_requires=DEPENDENCIES, package_data={'azext_datamigration': ['azext_metadata.json']}, )
the-stack_106_26276
#!/usr/bin/env python3 import math import torch from .. import settings from .variational_strategy import VariationalStrategy from ..utils.memoize import cached from ..lazy import RootLazyTensor, MatmulLazyTensor, CholLazyTensor, \ CachedCGLazyTensor, DiagLazyTensor, BatchRepeatLazyTensor, PsdSumLazyTensor from ..distributions import MultivariateNormal class WhitenedVariationalStrategy(VariationalStrategy): @cached(name="logdet_memo") def prior_covar_logdet(self): return -self.prior_distribution.lazy_covariance_matrix.logdet() @cached(name="covar_trace_memo") def covar_trace(self): variational_covar = self.variational_distribution.variational_distribution.covariance_matrix prior_covar = self.prior_distribution.covariance_matrix batch_shape = prior_covar.shape[:-2] return (variational_covar * prior_covar).view(*batch_shape, -1).sum(-1) @cached(name="mean_diff_inv_quad_memo") def mean_diff_inv_quad(self): prior_mean = self.prior_distribution.mean prior_covar = self.prior_distribution.lazy_covariance_matrix variational_mean = self.variational_distribution.variational_distribution.mean return prior_covar.inv_quad(variational_mean - prior_mean) def kl_divergence(self): variational_dist_u = self.variational_distribution.variational_distribution prior_dist = self.prior_distribution kl_divergence = 0.5 * sum( [ # log|k| - log|S| # = log|K| - log|K var_dist_covar K| # = -log|K| - log|var_dist_covar| self.prior_covar_logdet(), -variational_dist_u.lazy_covariance_matrix.logdet(), # tr(K^-1 S) = tr(K^1 K var_dist_covar K) = tr(K var_dist_covar) self.covar_trace(), # (m - \mu u)^T K^-1 (m - \mu u) # = (K^-1 (m - \mu u)) K (K^1 (m - \mu u)) # = (var_dist_mean)^T K (var_dist_mean) self.mean_diff_inv_quad(), # d -prior_dist.event_shape.numel(), ] ) return kl_divergence def initialize_variational_dist(self): prior_dist = self.prior_distribution inv_prior_dist = torch.distributions.MultivariateNormal( prior_dist.mean, prior_dist.lazy_covariance_matrix.add_jitter() .evaluate() .double() .inverse() .type_as(prior_dist.covariance_matrix), ) self.variational_distribution.initialize_variational_distribution(inv_prior_dist) def forward(self, x): """ The :func:`~gpytorch.variational.VariationalStrategy.forward` method determines how to marginalize out the inducing point function values. Specifically, forward defines how to transform a variational distribution over the inducing point values, :math:`q(u)`, in to a variational distribution over the function values at specified locations x, :math:`q(f|x)`, by integrating :math:`\int p(f|x, u)q(u)du` Args: x (torch.tensor): Locations x to get the variational posterior of the function values at. Returns: :obj:`gpytorch.distributions.MultivariateNormal`: The distribution q(f|x) """ variational_dist = self.variational_distribution.variational_distribution inducing_points = self.inducing_points if inducing_points.dim() < x.dim(): inducing_points = inducing_points.expand(*x.shape[:-2], *inducing_points.shape[-2:]) if len(variational_dist.batch_shape) < x.dim() - 2: variational_dist = variational_dist.expand(x.shape[:-2]) # If our points equal the inducing points, we're done if torch.equal(x, inducing_points): # De-whiten the prior covar prior_covar = self.prior_distribution.lazy_covariance_matrix if isinstance(variational_dist.lazy_covariance_matrix, RootLazyTensor): predictive_covar = RootLazyTensor(prior_covar @ variational_dist.lazy_covariance_matrix.root.evaluate()) else: predictive_covar = MatmulLazyTensor(prior_covar @ variational_dist.covariance_matrix, prior_covar) # Cache some values for the KL divergence if self.training: self._mean_diff_inv_quad_memo, self._logdet_memo = prior_covar.inv_quad_logdet( (variational_dist.mean - self.prior_distribution.mean), logdet=True ) return MultivariateNormal(variational_dist.mean, predictive_covar) # Otherwise, we have to marginalize else: num_induc = inducing_points.size(-2) full_inputs = torch.cat([inducing_points, x], dim=-2) full_output = self.model.forward(full_inputs) full_mean, full_covar = full_output.mean, full_output.lazy_covariance_matrix # Mean terms test_mean = full_mean[..., num_induc:] induc_mean = full_mean[..., :num_induc] mean_diff = (variational_dist.mean - induc_mean).unsqueeze(-1) # Covariance terms induc_induc_covar = full_covar[..., :num_induc, :num_induc].add_jitter() induc_data_covar = full_covar[..., :num_induc, num_induc:].evaluate() data_data_covar = full_covar[..., num_induc:, num_induc:] # If we're less than a certain size, we'll compute the Cholesky decomposition of induc_induc_covar cholesky = False if settings.fast_computations.log_prob.off() or (num_induc <= settings.max_cholesky_size.value()): induc_induc_covar = CholLazyTensor(induc_induc_covar.cholesky()) cholesky = True # Cache the CG results # Do not use preconditioning for whitened VI, as it does not seem to improve performance. with settings.max_preconditioner_size(0): with torch.no_grad(): eager_rhs = torch.cat([induc_data_covar, mean_diff], -1) solve, probe_vecs, probe_vec_norms, probe_vec_solves, tmats = CachedCGLazyTensor.precompute_terms( induc_induc_covar, eager_rhs.detach(), logdet_terms=(not cholesky), include_tmats=(not settings.skip_logdet_forward.on() and not cholesky), ) eager_rhss = [eager_rhs.detach()] solves = [solve.detach()] if settings.skip_logdet_forward.on() and self.training: eager_rhss.append(torch.cat([probe_vecs, eager_rhs], -1)) solves.append(torch.cat([probe_vec_solves, solve[..., : eager_rhs.size(-1)]], -1)) elif not self.training: eager_rhss.append(eager_rhs[..., :-1]) solves.append(solve[..., :-1]) induc_induc_covar = CachedCGLazyTensor( induc_induc_covar, eager_rhss=eager_rhss, solves=solves, probe_vectors=probe_vecs, probe_vector_norms=probe_vec_norms, probe_vector_solves=probe_vec_solves, probe_vector_tmats=tmats, ) # Compute some terms that will be necessary for the predicitve covariance and KL divergence if self.training: interp_data_data_var_plus_mean_diff_inv_quad, logdet = induc_induc_covar.inv_quad_logdet( torch.cat([induc_data_covar, mean_diff], -1), logdet=True, reduce_inv_quad=False ) interp_data_data_var = interp_data_data_var_plus_mean_diff_inv_quad[..., :-1] mean_diff_inv_quad = interp_data_data_var_plus_mean_diff_inv_quad[..., -1] # Compute predictive mean predictive_mean = torch.add( test_mean, induc_induc_covar.inv_matmul(mean_diff, left_tensor=induc_data_covar.transpose(-1, -2)).squeeze(-1), ) # Compute the predictive covariance is_root_lt = isinstance(variational_dist.lazy_covariance_matrix, RootLazyTensor) is_repeated_root_lt = isinstance( variational_dist.lazy_covariance_matrix, BatchRepeatLazyTensor ) and isinstance(variational_dist.lazy_covariance_matrix.base_lazy_tensor, RootLazyTensor) if is_root_lt: predictive_covar = RootLazyTensor( induc_data_covar.transpose(-1, -2) @ variational_dist.lazy_covariance_matrix.root.evaluate() ) elif is_repeated_root_lt: predictive_covar = RootLazyTensor( induc_data_covar.transpose(-1, -2) @ variational_dist.lazy_covariance_matrix.root_decomposition().root.evaluate() ) else: predictive_covar = MatmulLazyTensor( induc_data_covar.transpose(-1, -2), predictive_covar @ induc_data_covar ) if self.training: data_covariance = DiagLazyTensor((data_data_covar.diag() - interp_data_data_var).clamp(0, math.inf)) else: neg_induc_data_data_covar = induc_induc_covar.inv_matmul( induc_data_covar, left_tensor=induc_data_covar.transpose(-1, -2).mul(-1) ) data_covariance = data_data_covar + neg_induc_data_data_covar predictive_covar = PsdSumLazyTensor(predictive_covar, data_covariance) # Save the logdet, mean_diff_inv_quad, prior distribution for the ELBO if self.training: self._memoize_cache["prior_distribution_memo"] = MultivariateNormal(induc_mean, induc_induc_covar) self._memoize_cache["logdet_memo"] = -logdet self._memoize_cache["mean_diff_inv_quad_memo"] = mean_diff_inv_quad return MultivariateNormal(predictive_mean, predictive_covar)
the-stack_106_26277
# qubit number=3 # total number=6 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.x(input_qubit[2]) # number=2 prog.z(input_qubit[2]) # number=3 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_QC30.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
the-stack_106_26278
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Algorithm Protocol =================== For a class to be passed as a trading algorithm to the :py:class:`zipline.lines.SimulatedTrading` zipline it must follow an implementation protocol. Examples of this algorithm protocol are provided below. The algorithm must expose methods: - initialize: method that takes no args, no returns. Simply called to enable the algorithm to set any internal state needed. - get_sid_filter: method that takes no args, and returns a list of valid sids. List must have a length between 1 and 10. If None is returned the filter will block all events. - handle_data: method that accepts a :py:class:`zipline.protocol.BarData` of the current state of the simulation universe. An example data object: .. This outputs the table as an HTML table but for some reason there is no bounding box. Make the previous paraagraph ending colon a double-colon to turn this back into blockquoted table in ASCII art. +-----------------+--------------+----------------+-------------------+ | | sid(133) | sid(134) | sid(135) | +=================+==============+================+===================+ | price | $10.10 | $22.50 | $13.37 | +-----------------+--------------+----------------+-------------------+ | volume | 10,000 | 5,000 | 50,000 | +-----------------+--------------+----------------+-------------------+ | mvg_avg_30 | $9.97 | $22.61 | $13.37 | +-----------------+--------------+----------------+-------------------+ | dt | 6/30/2012 | 6/30/2011 | 6/29/2012 | +-----------------+--------------+----------------+-------------------+ - set_order: method that accepts a callable. Will be set as the value of the order method of trading_client. An algorithm can then place orders with a valid sid and a number of shares:: self.order(sid(133), share_count) - set_performance: property which can be set equal to the cumulative_trading_performance property of the trading_client. An algorithm can then check position information with the Portfolio object:: self.Portfolio[sid(133)]['cost_basis'] - set_transact_setter: method that accepts a callable. Will be set as the value of the set_transact_setter method of the trading_client. This allows an algorithm to change the slippage model used to predict transactions based on orders and trade events. """ from copy import deepcopy import numpy as np from nose.tools import assert_raises from six.moves import range from six import itervalues from zipline.algorithm import TradingAlgorithm from zipline.api import ( FixedSlippage, order, set_slippage, record, sid, ) from zipline.errors import UnsupportedOrderParameters from zipline.assets import Future, Equity from zipline.finance.execution import ( LimitOrder, MarketOrder, StopLimitOrder, StopOrder, ) from zipline.finance.controls import AssetDateBounds from zipline.transforms import BatchTransform, batch_transform class TestAlgorithm(TradingAlgorithm): """ This algorithm will send a specified number of orders, to allow unit tests to verify the orders sent/received, transactions created, and positions at the close of a simulation. """ def initialize(self, sid, amount, order_count, sid_filter=None, slippage=None, commission=None): self.count = order_count self.asset = self.sid(sid) self.amount = amount self.incr = 0 if sid_filter: self.sid_filter = sid_filter else: self.sid_filter = [self.asset.sid] if slippage is not None: self.set_slippage(slippage) if commission is not None: self.set_commission(commission) def handle_data(self, data): # place an order for amount shares of sid if self.incr < self.count: self.order(self.asset, self.amount) self.incr += 1 class HeavyBuyAlgorithm(TradingAlgorithm): """ This algorithm will send a specified number of orders, to allow unit tests to verify the orders sent/received, transactions created, and positions at the close of a simulation. """ def initialize(self, sid, amount): self.asset = self.sid(sid) self.amount = amount self.incr = 0 def handle_data(self, data): # place an order for 100 shares of sid self.order(self.asset, self.amount) self.incr += 1 class NoopAlgorithm(TradingAlgorithm): """ Dolce fa niente. """ def get_sid_filter(self): return [] def initialize(self): pass def set_transact_setter(self, txn_sim_callable): pass def handle_data(self, data): pass class ExceptionAlgorithm(TradingAlgorithm): """ Throw an exception from the method name specified in the constructor. """ def initialize(self, throw_from, sid): self.throw_from = throw_from self.asset = self.sid(sid) if self.throw_from == "initialize": raise Exception("Algo exception in initialize") else: pass def set_portfolio(self, portfolio): if self.throw_from == "set_portfolio": raise Exception("Algo exception in set_portfolio") else: pass def handle_data(self, data): if self.throw_from == "handle_data": raise Exception("Algo exception in handle_data") else: pass def get_sid_filter(self): if self.throw_from == "get_sid_filter": raise Exception("Algo exception in get_sid_filter") else: return [self.asset] def set_transact_setter(self, txn_sim_callable): pass class DivByZeroAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) self.incr = 0 def handle_data(self, data): self.incr += 1 if self.incr > 4: 5 / 0 pass class TooMuchProcessingAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) def handle_data(self, data): # Unless we're running on some sort of # supercomputer this will hit timeout. for i in range(1000000000): self.foo = i class TimeoutAlgorithm(TradingAlgorithm): def initialize(self, sid): self.asset = self.sid(sid) self.incr = 0 def handle_data(self, data): if self.incr > 4: import time time.sleep(100) pass class RecordAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 def handle_data(self, data): self.incr += 1 self.record(incr=self.incr) name = 'name' self.record(name, self.incr) record(name, self.incr, 'name2', 2, name3=self.incr) class TestOrderAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.incr += 1 self.order(self.sid(0), 1) class TestOrderInstantAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 self.last_price = None def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ self.last_price, "Orders was not filled at last price." self.incr += 2 self.order_value(self.sid(0), data[0].price * 2.) self.last_price = data[0].price class TestOrderStyleForwardingAlgorithm(TradingAlgorithm): """ Test Algorithm for verifying that ExecutionStyles are properly forwarded by order API helper methods. Pass the name of the method to be tested as a string parameter to this algorithm's constructor. """ def __init__(self, *args, **kwargs): self.method_name = kwargs.pop('method_name') super(TestOrderStyleForwardingAlgorithm, self)\ .__init__(*args, **kwargs) def initialize(self): self.incr = 0 self.last_price = None def handle_data(self, data): if self.incr == 0: assert len(self.portfolio.positions.keys()) == 0 method_to_check = getattr(self, self.method_name) method_to_check(self.sid(0), data[0].price, style=StopLimitOrder(10, 10)) assert len(self.blotter.open_orders[0]) == 1 result = self.blotter.open_orders[0][0] assert result.limit == 10 assert result.stop == 10 self.incr += 1 class TestOrderValueAlgorithm(TradingAlgorithm): def initialize(self): self.incr = 0 self.sale_price = None def handle_data(self, data): if self.incr == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.incr, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.incr += 2 multiplier = 2. if isinstance(self.sid(0), Future): multiplier *= self.sid(0).multiplier self.order_value(self.sid(0), data[0].price * multiplier) class TestTargetAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions else: assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.target_shares = np.random.randint(1, 30) self.order_target(self.sid(0), self.target_shares) class TestOrderPercentAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.order(self.sid(0), 10) self.target_shares = 10 return else: assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.order_percent(self.sid(0), .001) if isinstance(self.sid(0), Equity): self.target_shares += np.floor( (.001 * self.portfolio.portfolio_value) / data[0].price ) if isinstance(self.sid(0), Future): self.target_shares += np.floor( (.001 * self.portfolio.portfolio_value) / (data[0].price * self.sid(0).multiplier) ) class TestTargetPercentAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.target_shares = 1 else: assert np.round(self.portfolio.portfolio_value * 0.002) == \ self.portfolio.positions[0]['amount'] * self.sale_price, \ "Orders not filled correctly." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.sale_price = data[0].price self.order_target_percent(self.sid(0), .002) class TestTargetValueAlgorithm(TradingAlgorithm): def initialize(self): self.target_shares = 0 self.sale_price = None def handle_data(self, data): if self.target_shares == 0: assert 0 not in self.portfolio.positions self.order(self.sid(0), 10) self.target_shares = 10 return else: print(self.portfolio) assert self.portfolio.positions[0]['amount'] == \ self.target_shares, "Orders not filled immediately." assert self.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." self.order_target_value(self.sid(0), 20) self.target_shares = np.round(20 / data[0].price) if isinstance(self.sid(0), Equity): self.target_shares = np.round(20 / data[0].price) if isinstance(self.sid(0), Future): self.target_shares = np.round( 20 / (data[0].price * self.sid(0).multiplier)) class FutureFlipAlgo(TestAlgorithm): def handle_data(self, data): if len(self.portfolio.positions) > 0: if self.portfolio.positions[self.asset.sid]["amount"] > 0: self.order_target(self.asset, -self.amount) else: self.order_target(self.asset, 0) else: self.order_target(self.asset, self.amount) ############################ # AccountControl Test Algos# ############################ class SetMaxLeverageAlgorithm(TradingAlgorithm): def initialize(self, max_leverage=None): self.set_max_leverage(max_leverage=max_leverage) ############################ # TradingControl Test Algos# ############################ class SetMaxPositionSizeAlgorithm(TradingAlgorithm): def initialize(self, sid=None, max_shares=None, max_notional=None): self.order_count = 0 self.set_max_position_size(sid=sid, max_shares=max_shares, max_notional=max_notional) class SetMaxOrderSizeAlgorithm(TradingAlgorithm): def initialize(self, sid=None, max_shares=None, max_notional=None): self.order_count = 0 self.set_max_order_size(sid=sid, max_shares=max_shares, max_notional=max_notional) class SetDoNotOrderListAlgorithm(TradingAlgorithm): def initialize(self, sid=None, restricted_list=None): self.order_count = 0 self.set_do_not_order_list(restricted_list) class SetMaxOrderCountAlgorithm(TradingAlgorithm): def initialize(self, count): self.order_count = 0 self.set_max_order_count(count) class SetLongOnlyAlgorithm(TradingAlgorithm): def initialize(self): self.order_count = 0 self.set_long_only() class SetAssetDateBoundsAlgorithm(TradingAlgorithm): """ Algorithm that tries to order 1 share of sid 0 on every bar and has an AssetDateBounds() trading control in place. """ def initialize(self): self.register_trading_control(AssetDateBounds()) def handle_data(algo, data): algo.order(algo.sid(0), 1) class TestRegisterTransformAlgorithm(TradingAlgorithm): def initialize(self, *args, **kwargs): self.set_slippage(FixedSlippage()) def handle_data(self, data): pass class AmbitiousStopLimitAlgorithm(TradingAlgorithm): """ Algorithm that tries to buy with extremely low stops/limits and tries to sell with extremely high versions of same. Should not end up with any positions for reasonable data. """ def initialize(self, *args, **kwargs): self.asset = self.sid(kwargs.pop('sid')) def handle_data(self, data): ######## # Buys # ######## # Buy with low limit, shouldn't trigger. self.order(self.asset, 100, limit_price=1) # But with high stop, shouldn't trigger self.order(self.asset, 100, stop_price=10000000) # Buy with high limit (should trigger) but also high stop (should # prevent trigger). self.order(self.asset, 100, limit_price=10000000, stop_price=10000000) # Buy with low stop (should trigger), but also low limit (should # prevent trigger). self.order(self.asset, 100, limit_price=1, stop_price=1) ######### # Sells # ######### # Sell with high limit, shouldn't trigger. self.order(self.asset, -100, limit_price=1000000) # Sell with low stop, shouldn't trigger. self.order(self.asset, -100, stop_price=1) # Sell with low limit (should trigger), but also high stop (should # prevent trigger). self.order(self.asset, -100, limit_price=1000000, stop_price=1000000) # Sell with low limit (should trigger), but also low stop (should # prevent trigger). self.order(self.asset, -100, limit_price=1, stop_price=1) ################### # Rounding Checks # ################### self.order(self.asset, 100, limit_price=.00000001) self.order(self.asset, -100, stop_price=.00000001) ########################################## # Algorithm using simple batch transforms class ReturnPriceBatchTransform(BatchTransform): def get_value(self, data): assert data.shape[1] == self.window_length, \ "data shape={0} does not equal window_length={1} for data={2}".\ format(data.shape[1], self.window_length, data) return data.price @batch_transform def return_price_batch_decorator(data): return data.price @batch_transform def return_args_batch_decorator(data, *args, **kwargs): return args, kwargs @batch_transform def return_data(data, *args, **kwargs): return data @batch_transform def uses_ufunc(data, *args, **kwargs): # ufuncs like np.log should not crash return np.log(data) @batch_transform def price_multiple(data, multiplier, extra_arg=1): return data.price * multiplier * extra_arg class BatchTransformAlgorithm(TradingAlgorithm): def initialize(self, *args, **kwargs): self.refresh_period = kwargs.pop('refresh_period', 1) self.window_length = kwargs.pop('window_length', 3) self.args = args self.kwargs = kwargs self.history_return_price_class = [] self.history_return_price_decorator = [] self.history_return_args = [] self.history_return_arbitrary_fields = [] self.history_return_nan = [] self.history_return_sid_filter = [] self.history_return_field_filter = [] self.history_return_field_no_filter = [] self.history_return_ticks = [] self.history_return_not_full = [] self.return_price_class = ReturnPriceBatchTransform( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_price_decorator = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_args_batch = return_args_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_arbitrary_fields = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.return_nan = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True ) self.return_sid_filter = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True, sids=[0] ) self.return_field_filter = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True, fields=['price'] ) self.return_field_no_filter = return_data( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=True ) self.return_not_full = return_data( refresh_period=1, window_length=self.window_length, compute_only_full=False ) self.uses_ufunc = uses_ufunc( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.price_multiple = price_multiple( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False ) self.iter = 0 self.set_slippage(FixedSlippage()) def handle_data(self, data): self.history_return_price_class.append( self.return_price_class.handle_data(data)) self.history_return_price_decorator.append( self.return_price_decorator.handle_data(data)) self.history_return_args.append( self.return_args_batch.handle_data( data, *self.args, **self.kwargs)) self.history_return_not_full.append( self.return_not_full.handle_data(data)) self.uses_ufunc.handle_data(data) # check that calling transforms with the same arguments # is idempotent self.price_multiple.handle_data(data, 1, extra_arg=1) if self.price_multiple.full: pre = self.price_multiple.rolling_panel.get_current().shape[0] result1 = self.price_multiple.handle_data(data, 1, extra_arg=1) post = self.price_multiple.rolling_panel.get_current().shape[0] assert pre == post, "batch transform is appending redundant events" result2 = self.price_multiple.handle_data(data, 1, extra_arg=1) assert result1 is result2, "batch transform is not idempotent" # check that calling transform with the same data, but # different supplemental arguments results in new # results. result3 = self.price_multiple.handle_data(data, 2, extra_arg=1) assert result1 is not result3, \ "batch transform is not updating for new args" result4 = self.price_multiple.handle_data(data, 1, extra_arg=2) assert result1 is not result4,\ "batch transform is not updating for new kwargs" new_data = deepcopy(data) for sidint in new_data: new_data[sidint]['arbitrary'] = 123 self.history_return_arbitrary_fields.append( self.return_arbitrary_fields.handle_data(new_data)) # nan every second event price if self.iter % 2 == 0: self.history_return_nan.append( self.return_nan.handle_data(data)) else: nan_data = deepcopy(data) nan_data.price = np.nan self.history_return_nan.append( self.return_nan.handle_data(nan_data)) self.iter += 1 # Add a new sid to check that it does not get included extra_sid_data = deepcopy(data) extra_sid_data[1] = extra_sid_data[0] self.history_return_sid_filter.append( self.return_sid_filter.handle_data(extra_sid_data) ) # Add a field to check that it does not get included extra_field_data = deepcopy(data) extra_field_data[0]['ignore'] = extra_sid_data[0]['price'] self.history_return_field_filter.append( self.return_field_filter.handle_data(extra_field_data) ) self.history_return_field_no_filter.append( self.return_field_no_filter.handle_data(extra_field_data) ) class BatchTransformAlgorithmMinute(TradingAlgorithm): def initialize(self, *args, **kwargs): self.refresh_period = kwargs.pop('refresh_period', 1) self.window_length = kwargs.pop('window_length', 3) self.args = args self.kwargs = kwargs self.history = [] self.batch_transform = return_price_batch_decorator( refresh_period=self.refresh_period, window_length=self.window_length, clean_nans=False, bars='minute' ) def handle_data(self, data): self.history.append(self.batch_transform.handle_data(data)) class SetPortfolioAlgorithm(TradingAlgorithm): """ An algorithm that tries to set the portfolio directly. The portfolio should be treated as a read-only object within the algorithm. """ def initialize(self, *args, **kwargs): pass def handle_data(self, data): self.portfolio = 3 class TALIBAlgorithm(TradingAlgorithm): """ An algorithm that applies a TA-Lib transform. The transform object can be passed at initialization with the 'talib' keyword argument. The results are stored in the talib_results array. """ def initialize(self, *args, **kwargs): if 'talib' not in kwargs: raise KeyError('No TA-LIB transform specified ' '(use keyword \'talib\').') elif not isinstance(kwargs['talib'], (list, tuple)): self.talib_transforms = (kwargs['talib'],) else: self.talib_transforms = kwargs['talib'] self.talib_results = dict((t, []) for t in self.talib_transforms) def handle_data(self, data): for t in self.talib_transforms: result = t.handle_data(data) if result is None: if len(t.talib_fn.output_names) == 1: result = np.nan else: result = (np.nan,) * len(t.talib_fn.output_names) self.talib_results[t].append(result) class EmptyPositionsAlgorithm(TradingAlgorithm): """ An algorithm that ensures that 'phantom' positions do not appear portfolio.positions in the case that a position has been entered and fully exited. """ def initialize(self, *args, **kwargs): self.ordered = False self.exited = False def handle_data(self, data): if not self.ordered: for s in data: self.order(self.sid(s), 100) self.ordered = True if not self.exited: amounts = [pos.amount for pos in itervalues(self.portfolio.positions)] if ( all([(amount == 100) for amount in amounts]) and (len(amounts) == len(data.keys())) ): for stock in self.portfolio.positions: self.order(self.sid(stock), -100) self.exited = True # Should be 0 when all positions are exited. self.record(num_positions=len(self.portfolio.positions)) class InvalidOrderAlgorithm(TradingAlgorithm): """ An algorithm that tries to make various invalid order calls, verifying that appropriate exceptions are raised. """ def initialize(self, *args, **kwargs): self.asset = self.sid(kwargs.pop('sids')[0]) def handle_data(self, data): from zipline.api import ( order_percent, order_target, order_target_percent, order_target_value, order_value, ) for style in [MarketOrder(), LimitOrder(10), StopOrder(10), StopLimitOrder(10, 10)]: with assert_raises(UnsupportedOrderParameters): order(self.asset, 10, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order(self.asset, 10, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_value(self.asset, 300, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_value(self.asset, 300, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_percent(self.asset, .1, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_percent(self.asset, .1, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target(self.asset, 100, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target(self.asset, 100, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_value(self.asset, 100, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_value(self.asset, 100, stop_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_percent(self.asset, .2, limit_price=10, style=style) with assert_raises(UnsupportedOrderParameters): order_target_percent(self.asset, .2, stop_price=10, style=style) ############################## # Quantopian style algorithms # Noop algo def initialize_noop(context): pass def handle_data_noop(context, data): pass # API functions def initialize_api(context): context.incr = 0 context.sale_price = None set_slippage(FixedSlippage()) def handle_data_api(context, data): if context.incr == 0: assert 0 not in context.portfolio.positions else: assert context.portfolio.positions[0]['amount'] == \ context.incr, "Orders not filled immediately." assert context.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." context.incr += 1 order(sid(0), 1) record(incr=context.incr) ########################### # AlgoScripts as strings noop_algo = """ # Noop algo def initialize(context): pass def handle_data(context, data): pass """ api_algo = """ from zipline.api import (order, set_slippage, FixedSlippage, record, sid) def initialize(context): context.incr = 0 context.sale_price = None set_slippage(FixedSlippage()) def handle_data(context, data): if context.incr == 0: assert 0 not in context.portfolio.positions else: assert context.portfolio.positions[0]['amount'] == \ context.incr, "Orders not filled immediately." assert context.portfolio.positions[0]['last_sale_price'] == \ data[0].price, "Orders not filled at current price." context.incr += 1 order(sid(0), 1) record(incr=context.incr) """ api_get_environment_algo = """ from zipline.api import get_environment, order, symbol def initialize(context): context.environment = get_environment() handle_data = lambda context, data: order(symbol('TEST'), 1) """ api_symbol_algo = """ from zipline.api import (order, symbol) def initialize(context): pass def handle_data(context, data): order(symbol('TEST'), 1) """ call_order_in_init = """ from zipline.api import (order) def initialize(context): order(0, 10) pass def handle_data(context, data): pass """ access_portfolio_in_init = """ def initialize(context): var = context.portfolio.cash pass def handle_data(context, data): pass """ access_account_in_init = """ def initialize(context): var = context.account.settled_cash pass def handle_data(context, data): pass """ call_all_order_methods = """ from zipline.api import (order, order_value, order_percent, order_target, order_target_value, order_target_percent, sid) def initialize(context): pass def handle_data(context, data): order(sid(0), 10) order_value(sid(0), 300) order_percent(sid(0), .1) order_target(sid(0), 100) order_target_value(sid(0), 100) order_target_percent(sid(0), .2) """ record_variables = """ from zipline.api import record def initialize(context): context.stocks = [0, 1] context.incr = 0 def handle_data(context, data): context.incr += 1 record(incr=context.incr) """ record_float_magic = """ from zipline.api import record def initialize(context): context.stocks = [0, 1] context.incr = 0 def handle_data(context, data): context.incr += 1 record(data=float('%s')) """
the-stack_106_26279
def search(value, my_list): """Returns the index of a requested value""" index = 0 # print(my_list) for i in my_list: if i == value: return index else: index += 1 return None def count(value, my_list): """Returns the number of times a requested value is in the list""" my_list.sort() counter = 0 # print(my_list) for i in my_list: if i == value: counter += 1 return counter def binary_find(value, my_list): """Sorts the list and returns the index of the requested value""" my_list.sort() print(my_list) found = False first = 0 last = len(my_list) - 1 while first <= last and not found: mid = (first + last) // 2 if value < my_list[mid]: last = mid - 1 elif value > my_list[mid]: first = mid + 1 else: found = True if not found: mid = None return mid def main1(): print('MAIN 1: Sequential') a = [5, 332, 6, 8, 91, 123, 123, 3] valid = False while not valid: selection = input('Please type an integer to search in the list: ') try: selection = int(selection) valid = True except ValueError: print('Incorrect input type. Please try again.\n') location = search(value=selection, my_list=a) if location == None: print('Value of {} not found.\n'.format(str(selection))) else: print('Index: ' + str(location)) print('Value at index {}: {}\n'.format(str(location), str(a[location]))) def main2(): print('MAIN 2: Smart sequential') a = [5, 332, 6, 8, 91, 123, 91, 91, 123, 3] valid = False while not valid: selection = input('Please type an integer to search in the list: ') try: selection = int(selection) valid = True except ValueError: print('Incorrect input type. Please try again.\n') num = count(value=selection, my_list=a) print('Value {} has been found {} times.\n'.format(str(selection), str(num))) def main3(): print('MAIN 3: Binary search') a = [5, 332, 6, 8, 91, 123, 91, 91, 123, 3] valid = False while not valid: selection = input('Please type an integer to search in the list: ') try: selection = int(selection) valid = True except ValueError: print('Incorrect input type. Please try again.\n') look_for = binary_find(value=selection, my_list=a) if look_for is None: print('Value {} has not been found.\n'.format(str(selection))) else: print('Value {} has been found at index {}.\n'.format(str(selection), str(look_for))) main1() main2() main3()
the-stack_106_26281
import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.metrics import euclidean_distances from sklearn.utils.multiclass import unique_labels import math class Node: def __init__(self, depth, label = None, description = None, best_feature_id = -1, best_feature_threshold = -1 * float('inf'), impurity = 0): self.depth = depth self.label = label self.description = description self.best_feature_id = best_feature_id self.best_feature_threshold = best_feature_threshold self.impurity = impurity self.counts = {} self.probabilities = {} self.children = {} class C45Classifier(BaseEstimator, ClassifierMixin): """ Classifier which implements c45 algorithm For more information regarding how to build your own classifier, read more in the :ref:`User Guide <user_guide>`. Parameters ---------- demo_param : str, default='demo' A parameter used for demonstation of how to pass and store paramters. algo : str, default='c45' A parameter used for selecting proper tree algorithm. Now only two supported - 'id3' and 'c45' The only difference between them is the eway how amount of additional info is measured - via information gain or gain ratio max_depth: int, default=10 Max depth of the tree min_samples_split: int, default=2 Min size of a node for further split Attributes ---------- X_ : ndarray, shape (n_samples, n_features) The input passed during :meth:`fit`. y_ : ndarray, shape (n_samples,) The labels passed during :meth:`fit`. classes_ : ndarray, shape (n_classes,) The classes seen at :meth:`fit`. """ def __init__(self, algo='c45', max_depth=10, min_samples_split=2): self.algo = algo self.max_depth = max_depth self.min_samples_split = min_samples_split def fit(self, X, y, types_auto=True, force_nominal_indices=[], force_continuous_indices=[], feature_names = [], class_names = []): """A reference implementation of a fitting function for a classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The training input samples. y : array-like, shape (n_samples,) The target values. An array of int. types_auto: boolean, default=True If true, try to determine if each variable is categorical or numeric; if False, all categories are considered as categorical force_nominal_indices: array-like Any variable can be explicitly marked as categorical. If both parameters, force_nominal_indices and force_continuous_indices are set and have intersections, parameter force_nominal_indices has priority force_continuous_indices: array-like Any variable can be explicitly marked as numeric/continuous. If both parameters, force_nominal_indices and force_continuous_indices are set and have intersections, parameter force_nominal_indices has priority feature_names: array_like, shape(n_features,) Names of features; set to their numbers if no names are provided Returns ------- self : object Returns self. """ self.nominal_features_ = [] self.feature_names_ = [] self.attrs_for_indices = {} # Check that X and y have correct shape X, y = check_X_y(X, y) # Store the classes seen during fit self.classes_ = np.array(unique_labels(y)) self.X_ = np.array(X) self.y_ = np.array(y).reshape(-1, 1) self.data_ = np.append(self.X_, self.y_, axis=1) #print('shapes', self.X_.shape, self.y_.shape, self.data_.shape) #self.data_ = np.hstack( (self.X_, self.y_) ) #print('Joined data with classes', self.data_) self.total_attributes_no = self.X_.shape[1] if len(feature_names) > 0: if len(feature_names) != self.total_attributes_no: raise ValueError("Attribute labels shape doesnot fit data shape") else: feature_names = [i for i in range(self.total_attributes_no)] self.feature_names_ = feature_names self.attr_indices_ = [i for i in range(self.total_attributes_no)] #print('total attrs', self.total_attributes_no, self.feature_names_) # Infer types of columns self.nominal_features_ = np.full(self.total_attributes_no, True) if types_auto == True: for i in range(self.total_attributes_no): self.nominal_features_[i] = self._is_attr_discrete(i) for cont_i in force_continuous_indices: self.nominal_features_[cont_i] = False for nom_i in force_nominal_indices: self.nominal_features_[nom_i] = True for i in range(self.total_attributes_no): self.attrs_for_indices[i] = np.unique(X[:,i]) # #build tree self._generate_tree() return self def predict(self, X): """ An implementation of a prediction for a classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Returns ------- y : ndarray, shape (n_samples,) The label for each sample is the label of the closest sample seen udring fit. """ # Check is fit had been called check_is_fitted(self, ['X_', 'y_']) # Input validation X = check_array(X) dummy = np.zeros( X.shape[0] ) default_class_threshold = 0.5 index = 0 for row in X: probas = self._predict_proba_one(row) if probas is None: continue for c, p in probas.items(): if p >= default_class_threshold: dummy[index] = c break #print(row, probas, index, dummy[index]) index += 1 return dummy def predict_proba(self, data): """ An implementation of a probabilitis prediction for a classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Returns ------- y : ndarray, shape (n_samples, n_classes) Probability for each class for each incoming sample. """ output = [] for row in data: proba = self._predict_proba_one(row) o = [] for _, v in proba.items(): o.append(v) output.append(o) return np.array(output) def _predict_proba_one(self, row): #traverse tree node = self.tree if node is None: return None while True: feature_id = node.best_feature_id observed_feature_value = row[feature_id] next_node = None if self.nominal_features_[feature_id] == True: for link, child in node.children.items(): if observed_feature_value == link: next_node = child break else: threshold = node.best_feature_threshold if len(node.children) == 2: if observed_feature_value <= threshold: next_node = node.children['left'] else: next_node = node.children['right'] if next_node == None: break node = next_node probas = node.probabilities return probas def feature_importances(self): node = self.tree importances = {} node_0_size = 0 for _, v in node.counts.items(): node_0_size += v node_layers, total_nodes = self._nodes_to_array() for layer in node_layers: for node in layer: feature_id = node.best_feature_id if feature_id == -1: continue impurity = node.impurity total_entries = 0 for _, v in node.counts.items(): total_entries += v children_importances = 0 #check children for _, child in node.children.items(): child_impurity = child.impurity if child_impurity == -1*float('inf'): continue total_child_entries = 0 for _, v in child.counts.items(): total_child_entries += v children_importances += child_impurity * total_child_entries #print(impurity) node_importance = impurity * total_entries - children_importances node_importance /= node_0_size #print('Importance for', self.feature_names_[feature_id], 'is', node_importance, '(total', total_entries, ', node impurity', impurity, 'children cumulative importances', children_importances, ')') #print(feature_id) if feature_id in importances: importances[feature_id] = max(node_importance, importances[feature_id]) else: importances[feature_id] = node_importance #print(importances) return importances def _nodes_to_array(self): layers = [] layer_id = 0 node = self.tree layer = [] layer.append(node) layers.append(layer) total_nodes = len(layer) while True: all_nodes_in_layer = layers[layer_id] print('Layer size', len(all_nodes_in_layer)) new_layer = [] for n in all_nodes_in_layer: for _, child in n.children.items(): new_layer.append(child) if len(new_layer) == 0: break layer_id += 1 layers.append(new_layer) total_nodes += len(new_layer) return layers, total_nodes def _log(self, x): if x == 0: return 0 else: return math.log(x,2) def _entropy(self, data): s = len(data) if s == 0: return 0 num_classes = np.array([0 for u in self.classes_]) for row in data: class_index = np.where(self.classes_ == row[-1]) num_classes[class_index] += 1 num_classes = [x/s for x in num_classes] ent = 0 for num in num_classes: ent += num * self._log(num) return (-1) * ent def _information_gain(self, data, subsets): #input : data and disjoint subsets of it #output : information gain s = len(data) #calculate impurity before split impurity_before_split = self._entropy(data) #calculate impurity after split weights = [len(subset)/s for subset in subsets] impurity_after_split = 0 intrinsic_value = 0 for i in range(len(subsets)): impurity_after_split += weights[i] * self._entropy(subsets[i]) intrinsic_value += weights[i] * self._log(weights[i]) #calculate total gain total_gain = impurity_before_split - impurity_after_split if self.algo == 'c45': gain_ratio = total_gain / ( -1 * intrinsic_value) return gain_ratio elif self.algo == 'id3': return total_gain else: raise ValueError('Unsupported algo:' + self.algo) def _is_attr_discrete(self, attr_id): dtype = self.X_[:,attr_id].dtype if (dtype == np.float) or (dtype == np.float64) : return False return True def _ig_for_nominal_feature(self, data, feature_id): X_column = data[:, feature_id] unique_values_for_feature = np.unique(X_column) X_column_splits = [ [] for i in range(len(unique_values_for_feature)) ] X_samples_count = data.shape[0] for sample_id in range(X_samples_count): sample = data[sample_id] for unique_value_id in range(len(unique_values_for_feature)): unique_value = unique_values_for_feature[unique_value_id] if unique_value == X_column[sample_id]: X_column_splits[unique_value_id].append(sample) ig = self._information_gain(data, X_column_splits) threshold = None return (ig, threshold, X_column_splits, unique_values_for_feature) #to return same type as for cont variable def _ig_for_cont_feature(self, data, feature_id): X_column_sorted = np.sort(data[:, feature_id]) #X_column_sorted = data[ data[:,feature_id].argsort() ] feature_threshold = -1* float('inf') best_ig = -1*float('inf') X_column_splits = None unique_feature_values = [] for j in range(len(X_column_sorted) - 1): if X_column_sorted[j] != X_column_sorted[j + 1]: threshold = (X_column_sorted[j] + X_column_sorted[j + 1]) / 2 less = [] greater = [] for row in data: if row[feature_id] > threshold: greater.append(row) else: less.append(row) ig = self._information_gain(data, [less, greater]) if ig > best_ig: best_ig = ig feature_threshold = threshold X_column_splits = [less, greater] unique_feature_values = ['<=' + str(threshold), '>' + str(threshold)] return (best_ig, feature_threshold, X_column_splits, unique_feature_values) def _calculate_classes(self, y): counts = {} for x in self.classes_: counts[x] = 0 for value in y: counts[value] += 1 return counts def _generate_tree(self): self.tree = self._recursive_generate_tree(data = self.data_, feature_ids=self.attr_indices_, level = 0, label = 'root', verbose=1) def _recursive_generate_tree(self, data, feature_ids, level, label, verbose): #strategy #1. Check level. If exceeds max_depth - exit #2. Check amount of data. If less than min_split or min_leaf - exit #3. Cycle through all features. # 3.1 If feature is continuous or ordinal - find best binary split # 3.2 If feature is nominal - split by categories. Order by categories frequencies and select max_split_categories; # other categories join to 'other' #4. Select feature which produces best split. Create subsets of data according to the best split. #5. For each subset: # - increase depth #6. Recursive call node = Node(level, label) offset = '\t'*level if verbose > 0: print(offset + 'Level', level, '; label', label) print(offset + 'Incoming data shape:', data.shape) print(offset + 'Incoming feature_ids:', feature_ids) if len(data) == 0: if verbose > 0: print(offset + 'Not enough data at all, terminate') node.description = 'Not enough data at all, terminate' return None node.counts = self._calculate_classes(data[:, -1]) if verbose > 0: print(offset + 'Node counts',node.counts) for c, f in node.counts.items(): node.probabilities[c] = f / len(data[:, -1]) if len(data) <= self.min_samples_split: if verbose > 0: print(offset + 'Not enough data to go deeper, terminate') node.description = 'Not enough data to go deeper, terminate' return None if level > self.max_depth: if verbose > 0: print(offset + 'Max depth exceeded, terminate') node.description = 'Max depth exceeded, terminate' return None if self._check_one_class_remains(data): if verbose > 0: print(offset + 'One class remains, terminate') node.description = 'One class remains, terminate' return node new_level = level + 1 best_feature_id = -1 max_ig = -1 * float('inf') best_threshold = None data_splits = [] description = None unique_feature_values = [] for feature_id in feature_ids: ig = max_ig threshold = best_threshold splits = None unique_values = [] if self.nominal_features_[feature_id] == True: #nominal feature (ig, threshold, splits, unique_values) = self._ig_for_nominal_feature(data, feature_id) description = 'nominal' else: #contunuous or ordinal feature (ig, threshold, splits, unique_values) = self._ig_for_cont_feature(data, feature_id) description = 'non-nominal' if ig > max_ig: best_feature_id = feature_id best_threshold = threshold max_ig = ig data_splits = splits unique_feature_values = unique_values if verbose > 0: print(offset + 'Feature', self.feature_names_[feature_id], 'has better split') else: if verbose > 0: print(offset + 'Feature', self.feature_names_[feature_id], 'has less IG, ignoring') node.best_feature_id = best_feature_id node.best_feature_threshold = best_threshold node.description = description node.impurity = max_ig if best_feature_id < 0: if verbose > 0: print(offset + 'No better split. Leaf node') return node if data_splits is None: if verbose > 0: print(offset + 'No splits found. Leaf node') return node if len(data_splits) != len(unique_feature_values): if verbose > 0: print(offset + 'sizes (splits, values):', len(data_splits), len(unique_feature_values)) print(offset + 'Shapes between splits and unique features don\'t match. Leaf node?') return node new_feature_ids = feature_ids.copy() if best_feature_id in new_feature_ids: new_feature_ids.remove(best_feature_id) if self.nominal_features_[node.best_feature_id] == True: i = 0 for split in data_splits: if verbose > 0: print(offset + 'Data shape for child:', np.array(split).shape) op = '' if self.nominal_features_[best_feature_id] == True: op = ' is ' unique_value = unique_feature_values[i] new_label = str(self.feature_names_[best_feature_id]) + op + str(unique_value) child = self._recursive_generate_tree(np.array(split), new_feature_ids, new_level, new_label, verbose) if child != None: #Check if our child split improves our knowledge; if probs remain the same, child is useless if node.counts != child.counts: node.children[unique_value] = child i += 1 else: #Expected data splits should be 2 for i in range(2): unique_value = unique_feature_values[i] new_label = str(self.feature_names_[best_feature_id]) + str(unique_value) child = self._recursive_generate_tree(np.array(data_splits[i]), new_feature_ids, new_level, new_label, verbose) if child != None: if i == 0: node.children['left'] = child else: node.children['right'] = child return node def _check_one_class_remains(self, data): uniques = np.unique(data[:,-1]) if len(uniques) <= 1: return True return False def _get_major_class_index(self, data): #print('classes', self.classes_) freq = [0]*len(self.classes_) #print('classes', self.classes_) freq = np.array(freq) for row in data: #print('row-1, row:', row[-1], row) index = np.where(self.classes_ == row[-1]) freq[index] += 1 max_ind = np.where(freq == max(freq)) #print('freqs', freq) return max_ind def _get_class_frequencies(self, data): #print('classes', self.classes_) freqs = [0]*len(self.classes_) #print('classes', self.classes_) freqs = np.array(freqs) for row in data: #print('row-1, row:', row[-1], row) index = np.where(self.classes_ == row[-1]) freqs[index] += 1 #print('freqs', freq) return freqs def printTree(self): print('--- Tree ---') self.printNode(self.tree) def printNode(self, node, indent=""): print(indent + 'Label:', node.label) print(indent + 'Description:', node.description) total_entries = 0 classes_count_str = 'Classes count: [' for c, p in node.counts.items(): classes_count_str += str(c) + ':' + str(p) + '; ' total_entries += p classes_count_str += ']' classes_prob_str = 'Classes probs: [' for c, p in node.probabilities.items(): classes_prob_str += str(c) + ':' + str(p) + '; ' # classes_prob_str += str(self.feature_names_[c]) + ':' + str(p / total_entries) + ';' classes_prob_str += ']' print(indent + classes_count_str) print(indent + classes_prob_str) print(indent + 'Best feature to split:', self.feature_names_[node.best_feature_id]) print(indent + 'Best feature threshold:', node.best_feature_threshold) for link, child in node.children.items(): print(indent+'Link to child', link) self.printNode(child, indent + '\t')
the-stack_106_26282
import numpy as np import PILasOPENCV # getmask in PILasOPENCV does not work with certain characters / fonts / sizes # this is a quick fix # XXX: fix properly and make PR to PILasOPENCV def getmaskFix(text, ttf_font): slot = ttf_font.glyph width, height, baseline = PILasOPENCV.getsize(text, ttf_font) Z = np.zeros((height, width), dtype=np.ubyte) x, y = 0, 0 previous = 0 for c in text: ttf_font.load_char(c) bitmap = slot.bitmap top = slot.bitmap_top left = slot.bitmap_left w,h = bitmap.width, bitmap.rows #My modification if previous == 0 and (w != width or h != height): Z = np.zeros((h, w), dtype=np.ubyte) y = 0 else: y = height-baseline-top if y<=0: y=0 kerning = ttf_font.get_kerning(previous, c) x += (kerning.x >> 6) character = np.array(bitmap.buffer, dtype='uint8').reshape(h,w) # try: Z[y:y+h,x:x+w] += character # except ValueError: # while x+w>Z.shape[1]: # x = x - 1 # print("new", x, y, w, h, character.shape, type(bitmap)) # if x>0: # Z[:character.shape[0],x:x+w] += character x += (slot.advance.x >> 6) previous = c return Z
the-stack_106_26284
# -*- coding: utf-8 -*- """ Created on Tue Apr 26 13:44:58 2022 @author: Jens Eriksson """ from window_functions import hann_window, corner_hann_window, top_hann_window, bartley_hann_window, triangular_window from window_functions import build_weighted_mask_array from matplotlib import pyplot as plt import numpy as np indir = r"C:\Users\Jens\Documents\Code\bactnet\Bactnet\Training data\stacks\predict\piccolo" h = 288 w = 288 plt.subplot(331) plt.imshow(corner_hann_window(h, w)) plt.subplot(332) plt.imshow(top_hann_window(h, w)) plt.subplot(333) plt.imshow(np.rot90(corner_hann_window(h, w), 3)) plt.subplot(334) plt.imshow(np.rot90(top_hann_window(h, w), 1)) plt.subplot(335) plt.imshow(hann_window(h, w)) plt.subplot(336) plt.imshow(np.rot90(top_hann_window(h, w), 3)) plt.subplot(337) plt.imshow(np.rot90(corner_hann_window(h, w), 1)) plt.subplot(338) plt.imshow(np.rot90(top_hann_window(h, w), 2)) plt.subplot(339) plt.imshow(np.rot90(corner_hann_window(h, w), 2)) plt.setp(plt.gcf().get_axes(), xticks=[], yticks=[]); print(build_weighted_mask_array("han", 3))
the-stack_106_26286
import datetime import oauthlib.oauth2 import oauthlib.oauth2.rfc6749.tokens import oauth2_provider.models import oauth2_provider.oauth2_validators from oauth2_provider.scopes import BaseScopes from oauth2_provider.settings import oauth2_settings from . import generators def signed_token_generator(request): token_duration = datetime.timedelta( seconds=oauth2_settings.ACCESS_TOKEN_EXPIRE_SECONDS ) user = getattr(request, "user", None) token, payload = generators.generate_jwt_with_payload( request.client, token_duration=token_duration, user=user ) # set claims on the request request.claims = payload return token class Server(oauthlib.oauth2.Server): """Just swap the default token generator to signed_tokens.""" def __init__(self, *args, **kwargs): if not kwargs.get("token_generator"): kwargs["token_generator"] = signed_token_generator kwargs[ "refresh_token_generator" ] = oauthlib.oauth2.rfc6749.tokens.random_token_generator super().__init__(*args, **kwargs) class OAuth2Validator(oauth2_provider.oauth2_validators.OAuth2Validator): def _create_access_token(self, expires, request, token, source_refresh_token=None): """Saves the token jti in the database.""" access_token = oauth2_provider.models.get_access_token_model()( user=request.user, scope=token["scope"], expires=expires, token=token["access_token"], application=request.client, source_refresh_token=source_refresh_token, jti=request.claims["jti"], ) access_token.save() return access_token class AppScopes(BaseScopes): def get_all_scopes(self): Application = oauth2_provider.models.get_application_model() return { k: k for k in set( s for scopes in Application.objects.values_list("scopes", flat=True) for s in scopes ) } def get_available_scopes(self, application=None, request=None, *args, **kwargs): return application.scopes def get_default_scopes(self, application=None, request=None, *args, **kwargs): return self.get_available_scopes(application, request, *args, **kwargs)
the-stack_106_26287
# coding=utf-8 import random from pyecharts.option import get_all_options from pyecharts.base import Base import pyecharts.constants as constants class Chart(Base): """ `Chart`类是所有非自定义类的基类,继承自 `Base` 类 """ def __init__(self, title, subtitle, width=800, height=400, title_pos="auto", title_top="auto", title_color="#000", subtitle_color="#aaa", title_text_size=18, subtitle_text_size=12, background_color="#fff", page_title=constants.PAGE_TITLE, jshost=None): """ :param title: 主标题文本,支持 \n 换行,默认为 "" :param subtitle: 副标题文本,支持 \n 换行,默认为 "" :param width: 画布宽度,默认为 800(px) :param height: 画布高度,默认为 400(px) :param title_pos: 标题距离左侧距离,默认为'left',有'auto', 'left', 'right', 'center'可选,也可为百分比或整数 :param title_top: 标题距离顶部距离,默认为'top',有'top', 'middle', 'bottom'可选, 也可为百分比或整数 :param title_color: 主标题文本颜色,默认为 '#000' :param subtitle_color: 副标题文本颜色,默认为 '#aaa' :param title_text_size: 主标题文本字体大小,默认为 18 :param subtitle_text_size: 副标题文本字体大小,默认为 12 :param background_color: 画布背景颜色,默认为 '#fff' :param page_title: 指定生成的 html 文件中 <title> 标签的值。默认为'Echarts' :param jshost: 自定义每个实例的 JavaScript host """ super(Chart, self).__init__( width=width, height=height, page_title=page_title, jshost=jshost ) self._colorlst = [ '#c23531', '#2f4554', '#61a0a8', '#d48265', '#749f83', '#ca8622', '#bda29a', '#6e7074', '#546570', '#c4ccd3', '#f05b72', '#ef5b9c', '#f47920', '#905a3d', '#fab27b', '#2a5caa', '#444693', '#726930', '#b2d235', '#6d8346', '#ac6767', '#1d953f', '#6950a1', '#918597', '#f6f5ec'] self._option.update( title=[{ "text": title, "subtext": subtitle, "left": title_pos, "top": title_top, "textStyle": { "color": title_color, "fontSize": title_text_size }, "subtextStyle": { "color": subtitle_color, "fontSize": subtitle_text_size } }], toolbox={ "show": True, "orient": "vertical", "left": "95%", "top": "center", "feature": { "saveAsImage": { "show": True, "title": "下载图片" }, "restore": {"show": True}, "dataView": {"show": True}, } }, series_id=random.randint(1, 9000000), tooltip={}, series=[], legend=[{"data": []}], backgroundColor=background_color ) def add(self, angle_data=None, angle_range=None, area_color=None, area_opacity=None, axis_range=None, bar_category_gap=None, border_color=None, boundary_gap=None, center=None, calendar_date_range=None, calendar_cell_size=None, datazoom_type=None, datazoom_range=None, datazoom_orient=None, datazoom_xaxis_index=None, datazoom_yaxis_index=None, effect_brushtype=None, effect_period=None, effect_scale=None, extra_data=None, geo_emphasis_color=None, geo_normal_color=None, geo_cities_coords=None, geo_effect_period=None, geo_effect_traillength=None, geo_effect_color=None, geo_effect_symbol=None, geo_effect_symbolsize=None, graph_layout=None, graph_gravity=None, graph_edge_length=None, graph_repulsion=None, graph_edge_symbol=None, graph_edge_symbolsize=None, grid_width=None, grid_height=None, grid_top=None, grid_bottom=None, grid_left=None, grid_right=None, grid3d_width=None, grid3d_height=None, grid3d_depth=None, grid3d_opacity=None, grid3d_shading=None, grid3d_rotate_speed=None, grid3d_rotate_sensitivity=None, is_angleaxis_show=None, is_area_show=None, is_axisline_show=None, is_calculable=None, is_calendar_heatmap=None, is_clockwise=None, is_convert=None, is_datazoom_show=None, is_fill=None, is_focusnode=None, is_geo_effect_show=None, is_grid3d_rotate=None, is_label_show=None, is_label_emphasis=None, is_legend_show=None, is_liquid_animation=None, is_liquid_outline_show=None, is_more_utils=None, is_piecewise=None, is_radiusaxis_show=None, is_random=None, is_roam=None, is_rotatelabel=None, is_smooth=None, is_splitline_show=None, is_stack=None, is_step=None, is_symbol_show=None, is_map_symbol_show=None, is_visualmap=None, is_xaxislabel_align=None, is_yaxislabel_align=None, is_xaxis_inverse=None, is_yaxis_inverse=None, is_xaxis_boundarygap=None, is_yaxis_boundarygap=None, is_xaxis_show=None, is_yaxis_show=None, item_color=None, label_color=None, label_pos=None, label_text_color=None, label_text_size=None, label_formatter=None, label_emphasis_textcolor=None, label_emphasis_textsize=None, label_emphasis_pos=None, legend_orient=None, legend_pos=None, legend_top=None, legend_selectedmode=None, legend_text_size=None, legend_text_color=None, line_curve=None, line_opacity=None, line_type=None, line_width=None, line_color=None, liquid_color=None, maptype=None, mark_line=None, mark_line_symbolsize=None, mark_line_valuedim=None, mark_point=None, mark_point_symbol=None, mark_point_symbolsize=None, mark_point_textcolor=None, radius_data=None, radius=None, rosetype=None, rotate_step=None, scale_range=None, shape=None, start_angle=None, symbol_size=None, symbol=None, sankey_node_width=None, sankey_node_gap=None, type=None, tooltip_tragger=None, tooltip_tragger_on=None, tooltip_axispointer_type=None, tooltip_formatter=None, tooltip_text_color=None, tooltip_font_size=None, treemap_left_depth=None, treemap_drilldown_icon=None, treemap_visible_min=None, visual_orient=None, visual_range_color=None, visual_range_size=None, visual_range_text=None, visual_range=None, visual_text_color=None, visual_pos=None, visual_top=None, visual_type=None, visual_split_number=None, visual_dimension=None, word_gap=None, word_size_range=None, x_axis=None, xaxis_margin=None, xaxis_interval=None, xaxis_force_interval=None, xaxis_pos=None, xaxis_name_gap=None, xaxis_name_size=None, xaxis_name_pos=None, xaxis_name=None, xaxis_rotate=None, xaxis_min=None, xaxis_max=None, xaxis_type=None, xaxis3d_name=None, xaxis3d_name_size=None, xaxis3d_name_gap=None, xaxis3d_min=None, xaxis3d_max=None, xaxis3d_interval=None, xaxis3d_margin=None, yaxis_margin=None, yaxis_interval=None, yaxis_force_interval=None, yaxis_pos=None, yaxis_formatter=None, yaxis_rotate=None, yaxis_min=None, yaxis_max=None, yaxis_name_gap=None, yaxis_name_size=None, yaxis_name_pos=None, yaxis_type=None, yaxis_name=None, yaxis3d_name=None, yaxis3d_name_size=None, yaxis3d_name_gap=None, yaxis3d_min=None, yaxis3d_max=None, yaxis3d_interval=None, yaxis3d_margin=None, zaxis3d_name=None, zaxis3d_name_size=None, zaxis3d_name_gap=None, zaxis3d_min=None, zaxis3d_max=None, zaxis3d_margin=None, **kwargs): """ `add()` 方法只是用于提供自动参数补全 """ pass def _config_components(self, is_visualmap=False, is_more_utils=False, **kwargs): """ 图形组件配置项 :param is_visualmap: 指定是否使用 visualMap 组件 :param is_datazoom_show: 指定是否使用 dataZoom 组件 :param is_more_utils: 指定是否提供更多的实用小工具 :param kwargs: """ kwargs.update(colorlst=self._colorlst) chart = get_all_options(**kwargs) self._option.update(color=chart['color']) # legend self._option.get('legend')[0].update(chart['legend']) # tooltip self._option.update(tooltip=chart['tooltip']) # dataZoom,勿改动 if kwargs.get('is_datazoom_show', None) is True: self._option.update(dataZoom=chart['datazoom']) # visualMap if is_visualmap: self._option.update(visualMap=chart['visual_map']) # toolbox if is_more_utils: self._option.get('toolbox').get('feature').update( magicType={ "show": True, "type": ['line', 'bar', 'stack', 'tiled'], "title": { "line": "折线图", "bar": "柱状图", "stack": "堆叠", "tiled": "平铺" }}, dataZoom={ "show": True, "title": { "zoom": "区域缩放", "back": "缩放还原" }} )
the-stack_106_26290
import json from pyramid import testing from pyramid.response import Response from unittest import TestCase, mock from sqlalchemy import create_engine, Column, String, Integer from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from marshmallow import Schema, fields from pyramid_restful import viewsets class MyViewSet(viewsets.APIViewSet): def list(self, request, *args, **kwargs): return Response({'method': 'GET', 'action': 'list'}) engine = create_engine('sqlite://') Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) class UserSchema(Schema): id = fields.Integer() name = fields.String() class UserViewSet(viewsets.ModelCRUPDViewSet): model = User schema_class = UserSchema def get_dbsession(): Session = sessionmaker() Session.configure(bind=engine) return Session() class ViewSetTests(TestCase): def setUp(self): self.viewset = MyViewSet.as_view(action_map={'get': 'list'}) def test_action_map(self): request = testing.DummyRequest() response = self.viewset(request) expected = {'method': 'GET', 'action': 'list'} assert response.status_code == 200 assert response.body == expected def test_missing_action_map(self): self.assertRaises(TypeError, MyViewSet.as_view) class ModelViewSetTests(TestCase): @classmethod def setUpClass(cls): Base.metadata.create_all(engine) dbsession = get_dbsession() user = User(id=1, name='testing') user2 = User(id=2, name='testing 2') dbsession.add(user) dbsession.add(user2) dbsession.commit() def setUp(self): self.dbsession = get_dbsession() self.list_viewset = UserViewSet.as_view({'get': 'list', 'post': 'create'}) self.detail_viewset = UserViewSet.as_view( {'get': 'retrieve', 'put': 'update', 'patch': 'partial_update', 'delete': 'destroy'}) self.request = testing.DummyRequest() self.request.dbsession = self.dbsession def tearDown(self): self.dbsession.close() def test_list(self): response = self.list_viewset(self.request) assert response.status_code == 200 assert json.loads(response.body.decode('utf-8')) == [{"id": 1, "name": "testing"}, {"id": 2, "name": "testing 2"}] def test_create(self): expected = {'id': 3, 'name': 'testing 3'} self.request.json_body = expected self.request.method = 'POST' response = self.list_viewset(self.request) assert response.status_code == 201 assert json.loads(response.body.decode('utf-8')) == expected def test_retrieve(self): expected = {'id': 1, 'name': 'testing'} self.request.matchdict['id'] = 1 response = self.detail_viewset(self.request) assert response.status_code == 200 assert json.loads(response.body.decode('utf-8')) == expected def test_object_does_not_exist(self): self.request.matchdict['id'] = 99 response = self.detail_viewset(self.request) assert response.status_code == 404 def test_update(self): expected = {'id': 1, 'name': 'testing 1'} self.request.matchdict['id'] = 1 self.request.method = 'PUT' self.request.json_body = expected response = self.detail_viewset(self.request) assert response.status_code == 200 assert json.loads(response.body.decode('utf-8')) == expected def test_partial_update(self): expected = {'id': 1, 'name': '1'} self.request.matchdict['id'] = 1 self.request.method = 'PATCH' self.request.json_body = {'name': '1'} response = self.detail_viewset(self.request) assert response.status_code == 200 assert json.loads(response.body.decode('utf-8')) == expected def test_destroy(self): self.request.matchdict['id'] = 1 self.request.method = 'DELETE' response = self.detail_viewset(self.request) assert response.status_code == 204 self.request.method = 'GET' response = self.detail_viewset(self.request) assert response.status_code == 404
the-stack_106_26291
from multiprocessing import Lock from contextlib import contextmanager from typing import NewType from dbt.adapters.postgres import PostgresConnectionManager from dbt.adapters.postgres import PostgresCredentials from dbt.logger import GLOBAL_LOGGER as logger # noqa import dbt.exceptions import dbt.flags import boto3 from hologram import FieldEncoder, JsonSchemaMixin from hologram.helpers import StrEnum from dataclasses import dataclass, field from typing import Optional, List drop_lock: Lock = dbt.flags.MP_CONTEXT.Lock() IAMDuration = NewType('IAMDuration', int) class IAMDurationEncoder(FieldEncoder): @property def json_schema(self): return {'type': 'integer', 'minimum': 0, 'maximum': 65535} JsonSchemaMixin.register_field_encoders({IAMDuration: IAMDurationEncoder()}) class RedshiftConnectionMethod(StrEnum): DATABASE = 'database' IAM = 'iam' @dataclass class RedshiftCredentials(PostgresCredentials): method: RedshiftConnectionMethod = RedshiftConnectionMethod.DATABASE password: Optional[str] = None cluster_id: Optional[str] = field( default=None, metadata={'description': 'If using IAM auth, the name of the cluster'}, ) iam_profile: Optional[str] = None iam_duration_seconds: int = 900 search_path: Optional[str] = None keepalives_idle: int = 240 autocreate: bool = False db_groups: List[str] = field(default_factory=list) @property def type(self): return 'redshift' def _connection_keys(self): keys = super()._connection_keys() return keys + ( 'method', 'cluster_id', 'iam_profile', 'iam_duration_seconds' ) class RedshiftConnectionManager(PostgresConnectionManager): TYPE = 'redshift' @contextmanager def fresh_transaction(self, name=None): """On entrance to this context manager, hold an exclusive lock and create a fresh transaction for redshift, then commit and begin a new one before releasing the lock on exit. See drop_relation in RedshiftAdapter for more information. :param Optional[str] name: The name of the connection to use, or None to use the default. """ with drop_lock: connection = self.get_thread_connection() if connection.transaction_open: self.commit() self.begin() yield self.commit() self.begin() @classmethod def fetch_cluster_credentials(cls, db_user, db_name, cluster_id, iam_profile, duration_s, autocreate, db_groups): """Fetches temporary login credentials from AWS. The specified user must already exist in the database, or else an error will occur""" if iam_profile is None: boto_client = boto3.client('redshift') else: logger.debug("Connecting to Redshift using 'IAM'" + f"with profile {iam_profile}") boto_session = boto3.Session( profile_name=iam_profile ) boto_client = boto_session.client('redshift') try: return boto_client.get_cluster_credentials( DbUser=db_user, DbName=db_name, ClusterIdentifier=cluster_id, DurationSeconds=duration_s, AutoCreate=autocreate, DbGroups=db_groups,) except boto_client.exceptions.ClientError as e: raise dbt.exceptions.FailedToConnectException( "Unable to get temporary Redshift cluster credentials: {}" .format(e)) @classmethod def get_tmp_iam_cluster_credentials(cls, credentials): cluster_id = credentials.cluster_id # default via: # boto3.readthedocs.io/en/latest/reference/services/redshift.html iam_duration_s = credentials.iam_duration_seconds if not cluster_id: raise dbt.exceptions.FailedToConnectException( "'cluster_id' must be provided in profile if IAM " "authentication method selected") cluster_creds = cls.fetch_cluster_credentials( credentials.user, credentials.database, credentials.cluster_id, credentials.iam_profile, iam_duration_s, credentials.autocreate, credentials.db_groups, ) # replace username and password with temporary redshift credentials return credentials.replace(user=cluster_creds.get('DbUser'), password=cluster_creds.get('DbPassword')) @classmethod def get_credentials(cls, credentials): method = credentials.method # Support missing 'method' for backwards compatibility if method == 'database' or method is None: logger.debug("Connecting to Redshift using 'database' credentials") # this requirement is really annoying to encode into json schema, # so validate it here if credentials.password is None: raise dbt.exceptions.FailedToConnectException( "'password' field is required for 'database' credentials" ) return credentials elif method == 'iam': logger.debug("Connecting to Redshift using 'IAM' credentials") return cls.get_tmp_iam_cluster_credentials(credentials) else: raise dbt.exceptions.FailedToConnectException( "Invalid 'method' in profile: '{}'".format(method))
the-stack_106_26292
#!/usr/bin/env python3 """Creating a dataframe from a csv or json.""" import pandas as pd # df.csv # a,b,c,d # 1,2,3,4 # 5,6,7,8 # 9,8,7,6 # df.json # {"a":{"0":1,"1":5,"2":9},"b":{"0":2,"1":6,"2":8}, # "c":{"0":3,"1":7,"2":7},"d":{"0":4,"1":8,"2":6}} df = pd.read_csv('df.csv', header=0, sep=',', index_col=None, comment='#', na_values='-1') df = pd.read_json('df.json') print(df) # a b c d # 0 1 2 3 4 # 1 5 6 7 8 # 2 9 8 7 6 for chunk in pd.read_csv('df.csv', chunksize=1): print(chunk) # a b c d # 0 1 2 3 4 # a b c d # 1 5 6 7 8 # a b c d # 2 9 8 7 6 df.to_csv('df.csv', index=False) df.to_json('df.json')
the-stack_106_26293
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Analysis defaults options for DM pipelien analysis """ from __future__ import absolute_import, division, print_function generic = { 'outfile': (None, 'Path to output file.', str), 'infile': (None, 'Path to input file.', str), 'summaryfile': (None, 'Path to file with results summaries.', str), } common = { 'ttype': (None, 'Type of target being analyzed.', str), 'rosters': ([], 'Name of a stacking target roster.', list), 'rosterlist': (None, 'Path to the roster list.', str), 'target': (None, 'Name of analysis target.', str), 'targetlist': (None, 'Path to the target list.', str), 'config': (None, 'Path to fermipy config file.', str), 'roi_baseline': ('fit_baseline', 'Key for roi baseline file.', str), 'profile_file': (None, 'Path to yaml file with target profile', str), 'spatial_models': ([], 'Types of spatial models to use', list), 'alias_dict': (None, 'File to rename target version keys.', str), 'sed_file': (None, 'Path to SED file.', str), 'profiles': ([], 'List of profiles to analyze', list), 'nsims': (-1, 'Number of simulations to run.', int), 'dry_run': (False, 'Print commands but do not run them.', bool), 'make_plots': (False, 'Make plots', bool), 'non_null_src': (False, 'Zero out test source', bool), 'do_find_src': (False, 'Add source finding step to simulated realizations', bool), } sims = { 'sim': (None, 'Name of the simulation scenario.', str), 'sims': ([], 'Names of the simulation scenario.', list), 'sim_profile': ('default', 'Name of the profile to use for simulation.', str), 'nsims': (20, 'Number of simulations to run.', int), 'nsims_job': (0, 'Number of simulations to run per job.', int), 'seed': (0, 'Seed number for first simulation.', int), 'rand_config': (None, 'Path to config file for genaration random sky dirs', str), 'skydirs': (None, 'Yaml file with blank sky directions.', str), 'extracopy': ([], 'Extra files to copy', list), 'band_sim': ('null', 'Name of the simulation scenario to use for plot bands.', str), 'band_type': ('e2dnde_ul', 'Name of the quantity to plot in bands plots.', str), } collect = { 'write_full': (False, 'Write file with full collected results', bool), 'write_summary': (False, 'Write file with summary of collected results', bool), } jobs = { 'action': ('run', 'Action to perform', str), 'dry_run': (False, 'Print commands, but do not execute them', bool), 'job_check_sleep': (300, 'Sleep time between checking on job status (s)', int), 'print_update': (False, 'Print summary of job status', bool), 'check_status_once': (False, 'Check status only once before proceeding', bool), }
the-stack_106_26295
# ****************************************************************************** # Copyright 2017-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import json import numpy as np import pytest from _pyngraph import VariantInt, VariantString import ngraph as ng from ngraph.exceptions import UserInputError from ngraph.impl import Function, PartialShape, Shape, Type from ngraph.impl.op import Parameter from tests.runtime import get_runtime from tests.test_ngraph.util import run_op_node from tests import (xfail_issue_35929, xfail_issue_36476, xfail_issue_36479, xfail_issue_36480) def test_ngraph_function_api(): shape = [2, 2] parameter_a = ng.parameter(shape, dtype=np.float32, name="A") parameter_b = ng.parameter(shape, dtype=np.float32, name="B") parameter_c = ng.parameter(shape, dtype=np.float32, name="C") model = (parameter_a + parameter_b) * parameter_c function = Function(model, [parameter_a, parameter_b, parameter_c], "TestFunction") function.get_parameters()[1].set_partial_shape(PartialShape([3, 4, 5])) ordered_ops = function.get_ordered_ops() op_types = [op.get_type_name() for op in ordered_ops] assert op_types == ["Parameter", "Parameter", "Parameter", "Add", "Multiply", "Result"] assert len(function.get_ops()) == 6 assert function.get_output_size() == 1 assert function.get_output_op(0).get_type_name() == "Result" assert function.get_output_element_type(0) == parameter_a.get_element_type() assert list(function.get_output_shape(0)) == [2, 2] assert (function.get_parameters()[1].get_partial_shape()) == PartialShape([3, 4, 5]) assert len(function.get_parameters()) == 3 assert len(function.get_results()) == 1 assert function.get_friendly_name() == "TestFunction" @pytest.mark.parametrize( "dtype", [ np.float32, pytest.param(np.float64, marks=xfail_issue_35929), pytest.param(np.int8, marks=xfail_issue_36479), np.int16, np.int32, np.int64, pytest.param(np.uint8, marks=xfail_issue_36479), np.uint16, pytest.param(np.uint32, marks=xfail_issue_36476), np.uint64, ], ) def test_simple_computation_on_ndarrays(dtype): runtime = get_runtime() shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name="A") parameter_b = ng.parameter(shape, dtype=dtype, name="B") parameter_c = ng.parameter(shape, dtype=dtype, name="C") model = (parameter_a + parameter_b) * parameter_c computation = runtime.computation(model, parameter_a, parameter_b, parameter_c) value_a = np.array([[1, 2], [3, 4]], dtype=dtype) value_b = np.array([[5, 6], [7, 8]], dtype=dtype) value_c = np.array([[9, 10], [11, 12]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[54, 80], [110, 144]], dtype=dtype)) value_a = np.array([[13, 14], [15, 16]], dtype=dtype) value_b = np.array([[17, 18], [19, 20]], dtype=dtype) value_c = np.array([[21, 22], [23, 24]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[630, 704], [782, 864]], dtype=dtype)) def test_serialization(): dtype = np.float32 shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name="A") parameter_b = ng.parameter(shape, dtype=dtype, name="B") parameter_c = ng.parameter(shape, dtype=dtype, name="C") model = (parameter_a + parameter_b) * parameter_c runtime = get_runtime() computation = runtime.computation(model, parameter_a, parameter_b, parameter_c) try: serialized = computation.serialize(2) serial_json = json.loads(serialized) assert serial_json[0]["name"] != "" assert 10 == len(serial_json[0]["ops"]) except Exception: pass def test_broadcast_1(): input_data = np.array([1, 2, 3], dtype=np.int32) new_shape = [3, 3] expected = [[1, 2, 3], [1, 2, 3], [1, 2, 3]] result = run_op_node([input_data], ng.broadcast, new_shape) assert np.allclose(result, expected) def test_broadcast_2(): input_data = np.arange(4, dtype=np.int32) new_shape = [3, 4, 2, 4] expected = np.broadcast_to(input_data, new_shape) result = run_op_node([input_data], ng.broadcast, new_shape) assert np.allclose(result, expected) def test_broadcast_3(): input_data = np.array([1, 2, 3], dtype=np.int32) new_shape = [3, 3] axis_mapping = [0] expected = [[1, 1, 1], [2, 2, 2], [3, 3, 3]] result = run_op_node([input_data], ng.broadcast, new_shape, axis_mapping, "EXPLICIT") assert np.allclose(result, expected) @pytest.mark.xfail(reason="AssertionError: assert dtype('float32') == <class 'bool'") @pytest.mark.parametrize( "destination_type, input_data", [(bool, np.zeros((2, 2), dtype=np.int32)), ("boolean", np.zeros((2, 2), dtype=np.int32))], ) def test_convert_to_bool(destination_type, input_data): expected = np.array(input_data, dtype=bool) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == bool @pytest.mark.parametrize( "destination_type, rand_range, in_dtype, expected_type", [ pytest.param(np.float32, (-8, 8), np.int32, np.float32), pytest.param(np.float64, (-16383, 16383), np.int64, np.float64, marks=xfail_issue_35929), pytest.param("f32", (-8, 8), np.int32, np.float32), pytest.param("f64", (-16383, 16383), np.int64, np.float64, marks=xfail_issue_35929), ], ) def test_convert_to_float(destination_type, rand_range, in_dtype, expected_type): np.random.seed(133391) input_data = np.random.randint(*rand_range, size=(2, 2), dtype=in_dtype) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type @xfail_issue_35929 @pytest.mark.parametrize( "destination_type, expected_type", [ (np.int8, np.int8), (np.int16, np.int16), (np.int32, np.int32), (np.int64, np.int64), ("i8", np.int8), ("i16", np.int16), ("i32", np.int32), ("i64", np.int64), ], ) def test_convert_to_int(destination_type, expected_type): np.random.seed(133391) input_data = np.ceil(-8 + np.random.rand(2, 3, 4) * 16) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type @xfail_issue_35929 @pytest.mark.parametrize( "destination_type, expected_type", [ (np.uint8, np.uint8), (np.uint16, np.uint16), (np.uint32, np.uint32), (np.uint64, np.uint64), ("u8", np.uint8), ("u16", np.uint16), ("u32", np.uint32), ("u64", np.uint64), ], ) def test_convert_to_uint(destination_type, expected_type): np.random.seed(133391) input_data = np.ceil(np.random.rand(2, 3, 4) * 16) expected = np.array(input_data, dtype=expected_type) result = run_op_node([input_data], ng.convert, destination_type) assert np.allclose(result, expected) assert np.array(result).dtype == expected_type def test_bad_data_shape(): A = ng.parameter(shape=[2, 2], name="A", dtype=np.float32) B = ng.parameter(shape=[2, 2], name="B") model = A + B runtime = get_runtime() computation = runtime.computation(model, A, B) value_a = np.array([[1, 2]], dtype=np.float32) value_b = np.array([[5, 6], [7, 8]], dtype=np.float32) with pytest.raises(UserInputError): computation(value_a, value_b) def test_constant_get_data_bool(): input_data = np.array([True, False, False, True]) node = ng.constant(input_data, dtype=np.bool) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @pytest.mark.parametrize("data_type", [np.float32, np.float64]) def test_constant_get_data_floating_point(data_type): np.random.seed(133391) input_data = np.random.randn(2, 3, 4).astype(data_type) min_value = -1.0e20 max_value = 1.0e20 input_data = min_value + input_data * max_value * data_type(2) node = ng.constant(input_data, dtype=data_type) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @pytest.mark.parametrize("data_type", [np.int64, np.int32, np.int16, np.int8]) def test_constant_get_data_signed_integer(data_type): np.random.seed(133391) input_data = np.random.randint( np.iinfo(data_type).min, np.iinfo(data_type).max, size=[2, 3, 4], dtype=data_type ) node = ng.constant(input_data, dtype=data_type) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @pytest.mark.parametrize("data_type", [np.uint64, np.uint32, np.uint16, np.uint8]) def test_constant_get_data_unsigned_integer(data_type): np.random.seed(133391) input_data = np.random.randn(2, 3, 4).astype(data_type) input_data = ( np.iinfo(data_type).min + input_data * np.iinfo(data_type).max + input_data * np.iinfo(data_type).max ) node = ng.constant(input_data, dtype=data_type) retrieved_data = node.get_data() assert np.allclose(input_data, retrieved_data) @xfail_issue_36480 def test_backend_config(): dummy_config = {"dummy_option": "dummy_value"} # Expect no throw runtime = get_runtime() runtime.set_config(dummy_config) def test_result(): node = np.array([[11, 10], [1, 8], [3, 4]]) result = run_op_node([node], ng.result) assert np.allclose(result, node) def test_node_friendly_name(): dummy_node = ng.parameter(shape=[1], name="dummy_name") assert(dummy_node.friendly_name == "dummy_name") dummy_node.set_friendly_name("changed_name") assert(dummy_node.get_friendly_name() == "changed_name") dummy_node.friendly_name = "new_name" assert(dummy_node.get_friendly_name() == "new_name") def test_node_output(): input_array = np.array([0, 1, 2, 3, 4, 5]) splits = 3 expected_shape = len(input_array) // splits input_tensor = ng.constant(input_array, dtype=np.int32) axis = ng.constant(0, dtype=np.int64) split_node = ng.split(input_tensor, axis, splits) split_node_outputs = split_node.outputs() assert len(split_node_outputs) == splits assert [output_node.get_index() for output_node in split_node_outputs] == [0, 1, 2] assert np.equal( [output_node.get_element_type() for output_node in split_node_outputs], input_tensor.get_element_type(), ).all() assert np.equal( [output_node.get_shape() for output_node in split_node_outputs], Shape([expected_shape]), ).all() assert np.equal( [output_node.get_partial_shape() for output_node in split_node_outputs], PartialShape([expected_shape]), ).all() output0 = split_node.output(0) output1 = split_node.output(1) output2 = split_node.output(2) assert [output0.get_index(), output1.get_index(), output2.get_index()] == [0, 1, 2] def test_node_input(): shape = [2, 2] parameter_a = ng.parameter(shape, dtype=np.float32, name="A") parameter_b = ng.parameter(shape, dtype=np.float32, name="B") model = parameter_a + parameter_b model_inputs = model.inputs() assert len(model_inputs) == 2 assert [input_node.get_index() for input_node in model_inputs] == [0, 1] assert np.equal( [input_node.get_element_type() for input_node in model_inputs], model.get_element_type(), ).all() assert np.equal( [input_node.get_shape() for input_node in model_inputs], Shape(shape) ).all() assert np.equal( [input_node.get_partial_shape() for input_node in model_inputs], PartialShape(shape), ).all() input0 = model.input(0) input1 = model.input(1) assert [input0.get_index(), input1.get_index()] == [0, 1] def test_node_target_inputs_soruce_output(): shape = [2, 2] parameter_a = ng.parameter(shape, dtype=np.float32, name="A") parameter_b = ng.parameter(shape, dtype=np.float32, name="B") model = parameter_a + parameter_b out_a = list(parameter_a.output(0).get_target_inputs())[0] out_b = list(parameter_b.output(0).get_target_inputs())[0] assert out_a.get_node().name == model.name assert out_b.get_node().name == model.name assert np.equal([out_a.get_shape()], [model.get_output_shape(0)]).all() assert np.equal([out_b.get_shape()], [model.get_output_shape(0)]).all() in_model0 = model.input(0).get_source_output() in_model1 = model.input(1).get_source_output() assert in_model0.get_node().name == parameter_a.name assert in_model1.get_node().name == parameter_b.name assert np.equal([in_model0.get_shape()], [model.get_output_shape(0)]).all() assert np.equal([in_model1.get_shape()], [model.get_output_shape(0)]).all() def test_variants(): variant_int = VariantInt(32) variant_str = VariantString("test_text") assert variant_int.get() == 32 assert variant_str.get() == "test_text" variant_int.set(777) variant_str.set("another_text") assert variant_int.get() == 777 assert variant_str.get() == "another_text" def test_runtime_info(): test_shape = PartialShape([1, 1, 1, 1]) test_type = Type.f32 test_param = Parameter(test_type, test_shape) relu_node = ng.relu(test_param) runtime_info = relu_node.get_rt_info() runtime_info["affinity"] = "test_affinity" relu_node.set_friendly_name("testReLU") runtime_info_after = relu_node.get_rt_info() assert runtime_info_after["affinity"] == "test_affinity"
the-stack_106_26298
import traceback import Configuration from Classes.Logic.LogicLaserMessageFactory import LogicLaserMessageFactory from Classes.Messaging import Messaging class MessageManager: def receiveMessage(self, messageType, messagePayload): message = LogicLaserMessageFactory.createMessageByType(messageType, messagePayload) if message is not None: try: if Configuration.settings["Proxy"] == False and message.isServerToClient(): message.encode() else: message.fields = message.decode() if Configuration.settings["Proxy"] == False: message.execute(self, message.fields) except Exception: print(traceback.format_exc()) if Configuration.settings["Proxy"] == False: Messaging.sendMessage(23457, {"Socket": self.client}, self.player)
the-stack_106_26299
import sys import os if len(sys.argv) != 4: print(len(sys.argv)) sys.exit('Usage: python ' + sys.argv[0] + ' <input pmf.f filename> <mechID from PP> <out pmf.dat filename>') print('reading pmf fortran file ' + sys.argv[1]) try: f = open(sys.argv[1]) except Exception as ex: sys.exit(ex) lines = f.readlines() f.close() nl = len(lines) for l in lines: split = l.strip().split(':') if 'umber of states' in split[0]: ns = int(split[-1]) break for l in lines: split = l.strip().split(':') if 'umber of x data points' in split[0]: np = int(split[-1]) break print('Number of states per point',ns) print('Number of points',np) in_dat = False nl_hdr = 0 for i in range(nl): s = lines[i].split() is_nondat = len(s)==1 or not (len(s) > 2 and s[0] == 'data' and s[1] == 'x_data(1)') if not in_dat: if is_nondat: nl_hdr = nl_hdr+1 else: in_dat = True x_data = [] for i in range(nl_hdr,nl+1,ns+1): if lines[i].split()[0] != 'data': break x_data.append(float([x for x in lines[i].split()[-1].split('/') if x][-1])) np = len(x_data) y_data = [] for j in range(1,ns+1): y_data.append([]) for i in range(nl_hdr+j,nl+1,ns+1): if lines[i].split()[0] != 'data': break y_data[-1].append(float([x for x in lines[i].split()[-1].split('/') if x][-1])) if len(y_data[-1]) != np: sys.exit('Different number of values read for y_data than x_data') mech = sys.argv[2] mech_file = os.environ['PELE_PHYSICS_HOME'] + '/Support/Fuego/Mechanism/Models/' + mech + '/mechanism.H' print('grabbing species list from ' + mech_file) try: f = open(mech_file) except Exception as ex: sys.exit(ex) lines = f.readlines() f.close() species = [] for l in lines: tok = l.split() if len(tok)==3 and '_ID' in tok[1]: species.append('"' + tok[1][:-3] + '"') print('Found '+str(len(species))+' species names to use') if len(species) + 3 != ns: sys.exit('Number of species not compatible with fortran file') try: f = open(sys.argv[3],'w') except Exception as ex: sys.exit(ex) f.write('VARIABLES = "X" "temp" "u" "rho" ' + ' '.join(species)+'\n') f.write('ZONE I=' + str(np) + ' FORMAT=POINT\n') for i in range(np): f.write(str(x_data[i])+' '+' '.join([str(y_data[j][i]) for j in range(ns)])+'\n') f.close() print('pmf data writtent to ' + sys.argv[3])
the-stack_106_26300
# Copyright (c) Facebook, Inc. and its affiliates. import argparse import os import yaml import ray from ray import tune from ray.tune.registry import register_env def arg_parser(): parser = argparse.ArgumentParser() ''' Specification file of the expriment ''' parser.add_argument("--spec", required=True, type=str) ''' Mode for running an experiment ''' parser.add_argument("--mode", required=True, choices=['train', 'load']) ''' ''' parser.add_argument("--checkpoint", type=str, default=None) ''' ''' parser.add_argument("--num_workers", type=int, default=None) ''' ''' parser.add_argument("--num_cpus", type=int, default=1) ''' ''' parser.add_argument("--num_gpus", type=int, default=0) ''' ''' parser.add_argument("--num_envs_per_worker", type=int, default=None) ''' ''' parser.add_argument("--num_cpus_per_worker", type=int, default=None) ''' ''' parser.add_argument("--num_gpus_per_worker", type=int, default=None) ''' Directory where the environment and related files are stored ''' parser.add_argument("--project_dir", type=str, default=None) ''' Directory where intermediate results are saved ''' parser.add_argument("--local_dir", type=str, default=None) ''' Verbose ''' parser.add_argument("--verbose", action='store_true') ''' ''' parser.add_argument("--ip_head", type=str, default=None) ''' ''' parser.add_argument("--password", type=str, default=None) return parser if __name__ == "__main__": args = arg_parser().parse_args() with open(args.spec) as f: spec = yaml.load(f, Loader=yaml.FullLoader) config = spec['config'] ''' Register environment to learn according to the input specification file ''' if config['env'] == "HumanoidImitation": import rllib_env_imitation as env_module else: raise NotImplementedError("Unknown Environment") register_env(config['env'], lambda config: env_module.env_cls(config)) ''' Register custom model to use if it exists ''' framework = config.get('framework') if config.get('model'): custom_model = config.get('model').get('custom_model') if custom_model: if framework=='torch': import rllib_model_custom_torch else: raise NotImplementedError("Tensorflow is not supported!") ''' Validate configurations and overide values by arguments ''' if args.local_dir is not None: spec.update({'local_dir': args.local_dir}) if args.project_dir is not None: assert os.path.exists(args.project_dir) config['env_config']['project_dir'] = args.project_dir if config['model'].get('custom_model_config'): config['model']['custom_model_config'].update( {'project_dir': config['env_config']['project_dir']}) if args.verbose: config['env_config'].update({'verbose': args.verbose}) if args.checkpoint is not None: assert os.path.exists(args.checkpoint) if args.num_workers is not None: config.update({'num_workers': args.num_workers}) if args.num_gpus is not None: config.update({'num_gpus': args.num_gpus}) if args.num_envs_per_worker: config.update({'num_envs_per_worker': args.num_envs_per_worker}) if args.num_cpus_per_worker: config.update({'num_cpus_per_worker': args.num_cpus_per_worker}) if args.num_gpus_per_worker: config.update({'num_gpus_per_worker': args.num_gpus_per_worker}) if args.mode == "train": if not os.path.exists(spec['local_dir']): raise Exception( "The directory does not exist: %s"%spec['local_dir']) config_override = env_module.config_override(spec) config.update(config_override) if args.ip_head: # tmp_dir = os.path.join(spec['local_dir'], os.path.join('tmp/', spec['name'])) if args.password: ray.init(address=args.ip_head, redis_password=args.password) else: ray.init(address=args.ip_head) else: assert args.num_cpus is not None assert args.num_gpus is not None ray.init(num_cpus=args.num_cpus, num_gpus=args.num_gpus) def adjust_config_for_loading(config, alg): config["num_workers"] = 1 config['num_envs_per_worker'] = 1 config['num_cpus_per_worker'] = 1 config['num_gpus_per_worker'] = 0 config['remote_worker_envs'] = False def adjust_config(config, alg): rollout_fragment_length = config.get('rollout_fragment_length') num_workers = config.get('num_workers') num_envs_per_worker = config.get('num_envs_per_worker') train_batch_size = config.get('train_batch_size') ''' Set rollout_fragment_length value so that workers can genertate train_batch_size tuples correctly ''' rollout_fragment_length = \ max(train_batch_size // (num_workers * num_envs_per_worker), 100) while rollout_fragment_length * num_workers * num_envs_per_worker \ < train_batch_size: rollout_fragment_length += 1 config['rollout_fragment_length'] = rollout_fragment_length adjust_config(config, spec['run']) if args.mode == "load": adjust_config_for_loading(config, spec['run']) if spec["run"] == "PPO": from ray.rllib.agents.ppo import PPOTrainer as Trainer else: raise NotImplementedError("Not a supported algorithm") trainer = Trainer(env=env_module.env_cls, config=config) if args.checkpoint is not None: trainer.restore(args.checkpoint) env_module.rm.initialize() env = env_module.env_cls(config['env_config']) cam = env_module.default_cam() renderer = env_module.EnvRenderer(trainer=trainer, env=env, cam=cam) renderer.run() else: tune.run( spec['run'], name=spec['name'], stop=spec['stop'], local_dir=spec['local_dir'], checkpoint_freq=spec['checkpoint_freq'], checkpoint_at_end=spec['checkpoint_at_end'], config=config, restore=args.checkpoint, sync_to_driver=False, )
the-stack_106_26302
import typing if typing.TYPE_CHECKING: # pragma: no cover from .applications import App class SettingsError(Exception): """Raised when a setting is missing, ill-declared or invalid.""" class Settings: def __init__(self, obj: typing.Optional[typing.Any]): for setting in dir(obj): if not setting.isupper() or setting.startswith("_"): continue value = getattr(obj, setting) setattr(self, setting, value) class LazySettings: """A lazy proxy for application settings. Once configured, an instance of this class can be used to access settings from anywhere in the application code base. Such an instance is in fact exposed as `bocadillo.settings`. Settings can be accessed using: - Dot notation: `settings.FOO`. - The `getattr` builtin: `getattr(settings, "FOO")`. - The dict-like `.get()` method: `settings.get("FOO", "foo")`. """ def __init__(self): self._wrapped = None def configure(self, obj: typing.Any = None, **options): if self.configured: raise RuntimeError("Settings are already configured") wrapped = Settings(obj) for name, option in options.items(): assert name.isupper() setattr(wrapped, name, option) self._wrapped = wrapped @property def configured(self) -> bool: return self._wrapped is not None def __getattr__(self, name: str) -> typing.Any: if not self.configured: raise SettingsError( f"Requested setting {name} but settings aren't configured yet." ) value = getattr(self._wrapped, name) self.__dict__[name] = value # cache setting return value def __setattr__(self, name: str, value: typing.Any): if name == "_wrapped": self.__dict__.clear() else: self.__dict__.pop(name, None) # remove from cache super().__setattr__(name, value) def __contains__(self, name: str) -> bool: return name in self.__dict__ def get(self, name: str, default: typing.Any = None) -> typing.Any: return getattr(self, name, default) def _clear(self): self._wrapped = None settings = LazySettings() # pylint: disable=invalid-name def configure(app: "App", settings_obj: typing.Any = None, **kwargs) -> "App": """Configure the application settings and setup plugins. # Parameters app (App): an application instance. settings (any): an optional settings object or module. **kwargs (any): arbitrary settings, case-insensitive. # Returns app (App): the same object as `app`, for convenience. """ from .plugins import setup_plugins if settings_obj is None: settings_obj = kwargs.pop("settings", None) kwargs = {key.upper(): value for key, value in kwargs.items()} settings.configure(obj=settings_obj, **kwargs) setup_plugins(app) return app
the-stack_106_26305
import config import numpy as np import os import tarfile import torch import datasets import datasets.transforms as transforms from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate from torch.utils.data.sampler import SubsetRandomSampler from torch.utils.data.distributed import DistributedSampler from utils import * dist = False world_size = config.PARAM['world_size'] num_workers = config.PARAM['num_workers'] normalize = config.PARAM['normalize'] device = config.PARAM['device'] def fetch_dataset(data_name): print('fetching data {}...'.format(data_name)) if(data_name=='MNIST'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/test'.format(data_name) train_dataset = datasets.MNIST(root=train_dir, train=True, download=True, transform=transforms.ToTensor()) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.ToTensor()]) test_transform = transforms.Compose([transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.MNIST(root=test_dir, train=False, download=True, transform=test_transform) elif(data_name=='EMNIST' or data_name=='EMNIST_byclass' or data_name=='EMNIST_bymerge' or data_name=='EMNIST_balanced' or data_name=='EMNIST_letters' or data_name=='EMNIST_digits' or data_name=='EMNIST_mnist'): train_dir = './data/{}/train'.format(data_name.split('_')[0]) test_dir = './data/{}/test'.format(data_name.split('_')[0]) transform = transforms.Compose([transforms.ToTensor()]) split = 'balanced' if len(data_name.split('_')) == 1 else data_name.split('_')[1] train_dataset = datasets.EMNIST(root=train_dir, split=split, branch=branch, train=True, download=True, transform=transform) test_dataset = datasets.EMNIST(root=test_dir, split=split, branch=branch, train=False, download=True, transform=transform) elif(data_name=='FashionMNIST'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/test'.format(data_name) transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.FashionMNIST(root=train_dir, train=True, download=True, transform=transform) test_dataset = datasets.FashionMNIST(root=test_dir, train=False, download=True, transform=transform) elif(data_name=='CIFAR10'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/validation'.format(data_name) train_dataset = datasets.CIFAR10(train_dir, train=True, transform=transforms.ToTensor(), download=True) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) test_transform = transforms.Compose([transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.CIFAR10(test_dir, train=False, transform=test_transform, download=True) elif(data_name=='CIFAR100'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/validation'.format(data_name) train_dataset = datasets.CIFAR100(train_dir, branch=branch, train=True, transform=transforms.ToTensor(), download=True) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) test_transform = transforms.Compose([transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.CIFAR100(test_dir, branch=branch, train=False, transform=test_transform, download=True) elif(data_name=='SVHN'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/validation'.format(data_name) train_dataset = datasets.SVHN(train_dir, split='train', transform=transforms.ToTensor(), download=True) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.ToTensor()]) test_transform = transforms.Compose([transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.SVHN(test_dir, split='test', transform=test_transform, download=True) elif(data_name=='ImageNet'): train_dir = './data/{}/train'.format(data_name) test_dir = './data/{}/validation'.format(data_name) train_dataset = datasets.ImageFolder(train_dir, transform=transforms.ToTensor()) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.ImageFolder(test_dir, transform=test_transform) elif(data_name=='CUB2011'): train_dir = './data/{}/train'.format(data_name.split('_')[0]) test_dir = './data/{}/validation'.format(data_name.split('_')[0]) train_dataset = datasets.CUB2011(train_dir, transform=transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()]), download=True) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.CUB2011(test_dir, transform=test_transform, download=True) elif(data_name=='WheatImage' or data_name=='WheatImage_binary' or data_name=='WheatImage_six'): train_dir = './data/{}/train'.format(data_name.split('_')[0]) test_dir = './data/{}/validation'.format(data_name.split('_')[0]) label_mode = 'six' if len(data_name.split('_')) == 1 else data_name.split('_')[1] train_dataset = datasets.WheatImage(train_dir, label_mode=label_mode, transform=transforms.Compose([transforms.Resize((224,288)), transforms.ToTensor()])) if(normalize): stats = make_stats(train_dataset,batch_size=128) train_transform = transforms.Compose([transforms.Resize((224,288)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.Resize((224,288)), transforms.ToTensor(), transforms.Normalize(stats)]) else: train_transform = transforms.Compose([transforms.Resize((224,288)), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor()]) test_transform = transforms.Compose([transforms.Resize((224,288)), transforms.ToTensor()]) train_dataset.transform = train_transform test_dataset = datasets.WheatImage(test_dir, label_mode=label_mode, transform=test_transform) elif(data_name=='CocoDetection'): train_dir = './data/Coco/train2017' train_ann = './data/Coco/annotations/instances_train2017.json' test_dir = './data/Coco/val2017' test_ann = './data/Coco/annotations/instances_val2017.json' transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset = datasets.CocoDetection( train_dir, train_ann, transform=transform) test_dataset = datasets.CocoDetection( test_dir, test_ann, transform=transform) elif(data_name=='CocoCaptions'): train_dir = './data/Coco/train2017' train_ann = './data/Coco/annotations/captions_train2017.json' test_dir = './data/Coco/val2017' test_ann = './data/Coco/annotations/captions_val2017.json' transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset = datasets.CocoCaptions( train_dir, train_ann, transform=transform) test_dataset = datasets.CocoCaptions( test_dir, test_ann, transform=transform) elif(data_name=='VOCDetection'): train_dir = './data/VOC/VOCdevkit' test_dir = './data/VOC/VOCdevkit' transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset = datasets.VOCDetection( train_dir, 'trainval', transform=transform) test_dataset = datasets.VOCDetection( test_dir, 'test', transform=transform) elif(data_name=='VOCSegmentation'): train_dir = './data/VOC/VOCdevkit' test_dir = './data/VOC/VOCdevkit' transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor()]) train_dataset = datasets.VOCSegmentation(train_dir, 'trainval', transform=transform) test_dataset = datasets.VOCSegmentation(test_dir, 'test', transform=transform) elif(data_name=='MOSI' or data_name=='MOSI_binary' or data_name=='MOSI_five' or data_name=='MOSI_seven' or data_name=='MOSI_regression'): train_dir = './data/{}'.format(data_name.split('_')[0]) test_dir = './data/{}'.format(data_name.split('_')[0]) label_mode = 'five' if len(data_name.split('_')) == 1 else data_name.split('_')[1] train_dataset = datasets.MOSI(train_dir, split='trainval', label_mode=label_mode, download=True) stats = make_stats(train_dataset,batch_size=1) train_transform = transforms.Compose([transforms.Normalize(stats)]) test_transform = transforms.Compose([transforms.Normalize(stats)]) train_dataset.transform = train_transform test_dataset = datasets.MOSI(test_dir, split='test', label_mode=label_mode, download=True, transform=test_transform) elif(data_name =='Kodak'): train_dataset = None transform = transforms.Compose([transforms.ToTensor()]) test_dir = './data/{}'.format(data_name) train_dataset = datasets.ImageFolder( test_dir, transform) test_dataset = datasets.ImageFolder( test_dir, transform) elif(data_name =='UCID'): train_dataset = None transform = transforms.Compose([transforms.ToTensor()]) test_dir = './data/{}'.format(data_name) train_dataset = datasets.ImageFolder( test_dir, transform) test_dataset = datasets.ImageFolder( test_dir, transform) else: raise ValueError('Not valid dataset name') print('data ready') return train_dataset,test_dataset def input_collate(batch): if(isinstance(batch[0], dict)): output = {key: [] for key in batch[0].keys()} for b in batch: for key in b: output[key].append(b[key]) return output else: return default_collate(batch) def split_dataset(dataset,data_size,batch_size,radomGen=np.random.RandomState(1234),shuffle={'train':True,'test':False},collate_fn=input_collate): data_loader = {} for k in dataset: data_size[k] = len(dataset[k]) if (data_size[k]==0) else data_size[k] batch_size[k] = data_size[k] if (batch_size[k]==0) else batch_size[k] data_idx_k = radomGen.choice(list(range(len(dataset[k]))), size=data_size[k], replace=False) dataset_k = torch.utils.data.Subset(dataset[k], data_idx_k) data_loader[k] = torch.utils.data.DataLoader(dataset=dataset_k, shuffle=shuffle[k], batch_size=batch_size[k], pin_memory=True, sampler=None, num_workers=num_workers, collate_fn=collate_fn) return data_loader def split_dataset_cross_validation(train_dataset,test_dataset,data_size,batch_size,num_fold,radomGen,p=0.8): indices = list(range(len(train_dataset))) data_idx = radomGen.choice(indices, size=data_size, replace=False) if(batch_size==0): batch_size = len(train_idx) else: batch_size = batch_size*world_size if(num_fold==1): train_idx = radomGen.choice(data_idx, size=int(data_size*p), replace=False) sub_train_dataset = torch.utils.data.Subset(train_dataset, train_idx) train_sampler = DistributedSampler(sub_train_dataset) if (world_size > 1 and dist) else None train_loader = [torch.utils.data.DataLoader(dataset=sub_train_dataset, shuffle=(train_sampler is None), batch_size=batch_size, pin_memory=True, sampler=train_sampler, num_workers=num_workers*world_size)] validation_idx = list(set(data_idx) - set(train_idx)) validation_dataset = torch.utils.data.Subset(train_dataset, validation_idx) validation_sampler = DistributedSampler(validation_dataset) if (world_size > 1 and dist) else None validation_loader = [torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=batch_size, pin_memory=True, sampler=validation_sampler, num_workers=num_workers*world_size)] elif(num_fold>1 and num_fold<=len(indices)): splitted_idx = np.array_split(data_idx, num_fold) train_loader = [] validation_loader = [] for i in range(num_fold): validation_idx = splitted_idx[i] train_idx = list(set(data_idx) - set(validation_idx)) cur_train_dataset = torch.utils.data.Subset(train_dataset, train_idx) cur_train_sampler = DistributedSampler(cur_train_dataset) if (world_size > 1 and dist) else None train_loader.append(torch.utils.data.DataLoader(dataset=cur_train_dataset, shuffle=(cur_train_sampler is None), batch_size=batch_size, pin_memory=True, sampler=cur_train_sampler, num_workers=num_workers*world_size)) validation_dataset = torch.utils.data.Subset(train_dataset, validation_idx) validation_sampler = DistributedSampler(validation_dataset) if (world_size > 1 and dist) else None validation_loader.append(torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, pin_memory=True, sampler=validation_sampler, num_workers=num_workers*world_size)) else: error("Invalid number of fold") exit() test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, pin_memory=True, num_workers=num_workers*world_size) return train_loader,validation_loader,test_loader def fetch_dataset_synth(input_feature,output_feature,high_dim=None,cov_mode='base',noise_sigma=np.sqrt(0.1),randomGen=np.random.RandomState(1234)): print('fetching data...') data_size = 50000 test_size = 10000 V = make_cov_mat(input_feature,cov_mode) X = randomGen.multivariate_normal(np.zeros(input_feature),V,data_size+test_size) if(high_dim is None): beta = randomGen.randn(input_feature,output_feature) else: if(high_dim>=input_feature): raise ValueError('invalid high dimension') valid_beta = randomGen.randn(high_dim,output_feature) empty_beta = np.zeros((input_feature-high_dim,output_feature)) beta = np.vstack((valid_beta,empty_beta)) mu = np.matmul(X,beta) eps = noise_sigma*randomGen.randn(*mu.shape) if(output_feature==1): y = mu + eps elif(output_feature>1): p = softmax(mu + eps) y = [] for i in range(X.shape[0]): sample = randomGen.multinomial(1,p[i,]) y.append(np.where(sample==1)[0][0]) y = np.array(y) else: raise ValueError('invalid dimension') print('data ready') X,y = X.astype(np.float32),y.astype(np.int64) train_dataset = torch.utils.data.TensorDataset(torch.from_numpy(X[:data_size,:]), torch.from_numpy(y[:data_size])) test_dataset = torch.utils.data.TensorDataset(torch.from_numpy(X[data_size:,:]), torch.from_numpy(y[data_size:])) return train_dataset,test_dataset def make_cov_mat(dim,mode,zo=0.5): if(mode=='base'): V = np.eye(dim) elif(mode=='corr'): V = np.full((dim, dim), zo) V = V + (1-zo)*np.eye(dim) elif(mode=='decay_corr'): indices = np.arange(dim) valid_indices = [indices,indices] mesh_indices = np.meshgrid(*valid_indices, sparse=False, indexing='ij') exponent = np.abs(mesh_indices[0]-mesh_indices[1]) V = np.power(zo,exponent) else: raise ValueError('invalid covariance mode') return V def make_stats(dataset,reuse=True,batch_size=1000): if(reuse and os.path.exists('./data/stats/{}.pkl'.format(dataset.data_name))): stats = load('./data/stats/{}.pkl'.format(dataset.data_name)) elif(dataset is not None): data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0) stats = {} for k in dataset.feature_dim: stats[k] = Stats(dataset.feature_dim[k]) print('Computing mean and std...') with torch.no_grad(): for input in data_loader: for k in dataset.feature_dim: stats[k].update(input[k]) save(stats,'./data/stats/{}.pkl'.format(dataset.data_name)) else: raise ValueError('Please provide dataset for making stats') for k in dataset.output_names: if(k != 'label'): print('[{}] mean: {}, std: {}'.format(k,stats[k].mean,stats[k].std)) return stats def unzip(path,mode='zip'): filenames = filenames_in(path,mode) for filename in filenames: print('Unzipping {}'.format(filename),end='') tar = tarfile.open('{}/{}.{}'.format(path,filename,mode)) tar.extractall(path='{}/{}'.format(path,filename)) tar.close() print('Done') return def extract_patches_2d(img,patch_shape,step=[1.0,1.0]): patch_H, patch_W = patch_shape[0], patch_shape[1] if(img.size(2)<patch_H): num_padded_H_Top = (patch_H - img.size(2))//2 num_padded_H_Bottom = patch_H - img.size(2) - num_padded_H_Top padding_H = nn.ConstantPad2d((0,0,num_padded_H_Top,num_padded_H_Bottom),0) img = padding_H(img) if(img.size(3)<patch_W): num_padded_W_Left = (patch_W - img.size(3))//2 num_padded_W_Right = patch_W - img.size(3) - num_padded_W_Left padding_W = nn.ConstantPad2d((num_padded_W_Left,num_padded_W_Right,0,0),0) img = padding_W(img) step_int = [0,0] step_int[0] = int(patch_H*step[0]) if(isinstance(step[0], float)) else step[0] step_int[1] = int(patch_W*step[1]) if(isinstance(step[1], float)) else step[1] patches_fold_H = img.unfold(2, patch_H, step_int[0]) if((img.size(2) - patch_H) % step_int[0] != 0): patches_fold_H = torch.cat((patches_fold_H,img[:,:,-patch_H:,].permute(0,1,3,2).unsqueeze(2)),dim=2) patches_fold_HW = patches_fold_H.unfold(3, patch_W, step_int[1]) if((img.size(3) - patch_W) % step_int[1] != 0): patches_fold_HW = torch.cat((patches_fold_HW,patches_fold_H[:,:,:,-patch_W:,:].permute(0,1,2,4,3).unsqueeze(3)),dim=3) patches = patches_fold_HW.permute(2,3,0,1,4,5) patches = patches.reshape(-1,img.size(0),img.size(1),patch_H,patch_W) patches = patches.transpose(0,1) return patches def reconstruct_from_patches_2d(patches,img_shape,step=[1.0,1.0]): patches = patches.transpose(0,1) patch_H, patch_W = patches.size(3), patches.size(4) img_size = (patches.size(1), patches.size(2), max(img_shape[0], patch_H), max(img_shape[1], patch_W)) step_int = [0,0] step_int[0] = int(patch_H*step[0]) if(isinstance(step[0], float)) else step[0] step_int[1] = int(patch_W*step[1]) if(isinstance(step[1], float)) else step[1] nrow, ncol = 1 + (img_size[-2] - patch_H)//step_int[0], 1 + (img_size[-1] - patch_W)//step_int[1] r_nrow = nrow + 1 if((img_size[2] - patch_H) % step_int[0] != 0) else nrow r_ncol = ncol + 1 if((img_size[3] - patch_W) % step_int[1] != 0) else ncol patches = patches.reshape(r_nrow,r_ncol,img_size[0],img_size[1],patch_H,patch_W) img = torch.zeros(img_size, device = patches.device) overlap_counter = torch.zeros(img_size, device = patches.device) for i in range(nrow): for j in range(ncol): img[:,:,i*step_int[0]:i*step_int[0]+patch_H,j*step_int[1]:j*step_int[1]+patch_W] += patches[i,j,] overlap_counter[:,:,i*step_int[0]:i*step_int[0]+patch_H,j*step_int[1]:j*step_int[1]+patch_W] += 1 if((img_size[2] - patch_H) % step_int[0] != 0): for j in range(ncol): img[:,:,-patch_H:,j*step_int[1]:j*step_int[1]+patch_W] += patches[-1,j,] overlap_counter[:,:,-patch_H:,j*step_int[1]:j*step_int[1]+patch_W] += 1 if((img_size[3] - patch_W) % step_int[1] != 0): for i in range(nrow): img[:,:,i*step_int[0]:i*step_int[0]+patch_H,-patch_W:] += patches[i,-1,] overlap_counter[:,:,i*step_int[0]:i*step_int[0]+patch_H,-patch_W:] += 1 if((img_size[2] - patch_H) % step_int[0] != 0 and (img_size[3] - patch_W) % step_int[1] != 0): img[:,:,-patch_H:,-patch_W:] += patches[-1,-1,] overlap_counter[:,:,-patch_H:,-patch_W:] += 1 img /= overlap_counter if(img_shape[0]<patch_H): num_padded_H_Top = (patch_H - img_shape[0])//2 num_padded_H_Bottom = patch_H - img_shape[0] - num_padded_H_Top img = img[:,:,num_padded_H_Top:-num_padded_H_Bottom,] if(img_shape[1]<patch_W): num_padded_W_Left = (patch_W - img_shape[1])//2 num_padded_W_Right = patch_W - img_shape[1] - num_padded_W_Left img = img[:,:,:,num_padded_W_Left:-num_padded_W_Right] return img class Stats(object): def __init__(self, feature_dim): self.feature_dim = feature_dim self.n_samples = 0 def update(self, data): collapse_data = data.transpose(self.feature_dim,-1) collapse_data = collapse_data.reshape(-1,collapse_data.size(-1)) if self.n_samples == 0: self.n_samples = collapse_data.size(0) self.n_features = data.size(self.feature_dim) self.mean = collapse_data.mean(dim=0) self.std = collapse_data.std(dim=0) else: if collapse_data.size(1) != self.n_features: raise ValueError("Data dims don't match prev observations.") m = float(self.n_samples) n = collapse_data.size(0) new_mean = collapse_data.mean(dim=0) if(n==1): new_std = new_mean.new_zeros(new_mean.size()) else: new_std = collapse_data.std(dim=0) old_mean = self.mean old_std = self.std self.mean = m/(m+n)*old_mean + n/(m+n)*new_mean self.std = torch.sqrt(m/(m+n)*old_std**2 + n/(m+n)*new_std**2 + m*n/(m+n)**2 * (old_mean - new_mean)**2) self.n_samples += n return
the-stack_106_26312
import asyncio import collections import copy import time from aiokafka.errors import (KafkaTimeoutError, NotLeaderForPartitionError, LeaderNotAvailableError, ProducerClosed) from aiokafka.record.legacy_records import LegacyRecordBatchBuilder from aiokafka.record.default_records import DefaultRecordBatchBuilder from aiokafka.structs import RecordMetadata from aiokafka.util import create_future class BatchBuilder: def __init__(self, magic, batch_size, compression_type, *, is_transactional): if magic < 2: assert not is_transactional self._builder = LegacyRecordBatchBuilder( magic, compression_type, batch_size) else: self._builder = DefaultRecordBatchBuilder( magic, compression_type, is_transactional=is_transactional, producer_id=-1, producer_epoch=-1, base_sequence=0, batch_size=batch_size) self._relative_offset = 0 self._buffer = None self._closed = False def append(self, *, timestamp, key, value, headers=[]): """Add a message to the batch. Arguments: timestamp (float or None): epoch timestamp in seconds. If None, the timestamp will be set to the current time. If submitting to an 0.8.x or 0.9.x broker, the timestamp will be ignored. key (bytes or None): the message key. `key` and `value` may not both be None. value (bytes or None): the message value. `key` and `value` may not both be None. Returns: If the message was successfully added, returns a metadata object with crc, offset, size, and timestamp fields. If the batch is full or closed, returns None. """ if self._closed: return None metadata = self._builder.append( self._relative_offset, timestamp, key, value, headers=headers) # Check if we could add the message if metadata is None: return None self._relative_offset += 1 return metadata def close(self): """Close the batch to further updates. Closing the batch before submitting to the producer ensures that no messages are added via the ``producer.send()`` interface. To gracefully support both the batch and individual message interfaces, leave the batch open. For complete control over the batch's contents, close before submission. Closing a batch has no effect on when it's sent to the broker. A batch may not be reopened after it's closed. """ if self._closed: return self._closed = True def _set_producer_state(self, producer_id, producer_epoch, base_sequence): assert type(self._builder) is DefaultRecordBatchBuilder self._builder.set_producer_state( producer_id, producer_epoch, base_sequence) def _build(self): self.close() if self._buffer is None: self._buffer = self._builder.build() del self._builder # We may only call self._builder.build() once! return self._buffer def size(self): """Get the size of batch in bytes.""" if self._buffer is not None: return len(self._buffer) else: return self._builder.size() def record_count(self): """Get the number of records in the batch.""" return self._relative_offset class MessageBatch: """This class incapsulate operations with batch of produce messages""" def __init__(self, tp, builder, ttl): self._builder = builder self._tp = tp self._ttl = ttl self._ctime = time.monotonic() # Waiters # Set when messages are delivered to Kafka based on ACK setting self.future = create_future() self._msg_futures = [] # Set when sender takes this batch self._drain_waiter = create_future() self._retry_count = 0 @property def tp(self): return self._tp @property def record_count(self): return self._builder.record_count() def append(self, key, value, timestamp_ms, _create_future=create_future, headers=[]): """Append message (key and value) to batch Returns: None if batch is full or asyncio.Future that will resolved when message is delivered """ metadata = self._builder.append( timestamp=timestamp_ms, key=key, value=value, headers=headers) if metadata is None: return None future = _create_future() self._msg_futures.append((future, metadata)) return future def done(self, base_offset, timestamp=None, _record_metadata_class=RecordMetadata): """Resolve all pending futures""" tp = self._tp topic = tp.topic partition = tp.partition if timestamp == -1: timestamp_type = 0 else: timestamp_type = 1 # Set main batch future if not self.future.done(): self.future.set_result(_record_metadata_class( topic, partition, tp, base_offset, timestamp, timestamp_type)) # Set message futures for future, metadata in self._msg_futures: if future.done(): continue # If timestamp returned by broker is -1 it means we need to take # the timestamp sent by user. if timestamp == -1: timestamp = metadata.timestamp offset = base_offset + metadata.offset future.set_result(_record_metadata_class( topic, partition, tp, offset, timestamp, timestamp_type)) def done_noack(self): """ Resolve all pending futures to None """ # Faster resolve for base_offset=None case. if not self.future.done(): self.future.set_result(None) for future, _ in self._msg_futures: if future.done(): continue future.set_result(None) def failure(self, exception): if not self.future.done(): self.future.set_exception(exception) for future, _ in self._msg_futures: if future.done(): continue # we need to copy exception so traceback is not multiplied # https://github.com/aio-libs/aiokafka/issues/246 future.set_exception(copy.copy(exception)) # Consume exception to avoid warnings. We delegate this consumption # to user only in case of explicit batch API. if self._msg_futures: self.future.exception() # In case where sender fails and closes batches all waiters have to be # reset also. if not self._drain_waiter.done(): self._drain_waiter.set_exception(exception) async def wait_drain(self, timeout=None): """Wait until all message from this batch is processed""" waiter = self._drain_waiter await asyncio.wait([waiter], timeout=timeout) if waiter.done(): waiter.result() # Check for exception def expired(self): """Check that batch is expired or not""" return (time.monotonic() - self._ctime) > self._ttl def drain_ready(self): """Compress batch to be ready for send""" if not self._drain_waiter.done(): self._drain_waiter.set_result(None) self._retry_count += 1 def reset_drain(self): """Reset drain waiter, until we will do another retry""" assert self._drain_waiter.done() self._drain_waiter = create_future() def set_producer_state(self, producer_id, producer_epoch, base_sequence): assert not self._drain_waiter.done() self._builder._set_producer_state( producer_id, producer_epoch, base_sequence) def get_data_buffer(self): return self._builder._build() def is_empty(self): return self._builder.record_count() == 0 @property def retry_count(self): return self._retry_count class MessageAccumulator: """Accumulator of messages batched by topic-partition Producer adds messages to this accumulator and a background send task gets batches per nodes to process it. """ def __init__( self, cluster, batch_size, compression_type, batch_ttl, *, txn_manager=None): self._batches = collections.defaultdict(collections.deque) self._pending_batches = set([]) self._cluster = cluster self._batch_size = batch_size self._compression_type = compression_type self._batch_ttl = batch_ttl self._wait_data_future = create_future() self._closed = False self._api_version = (0, 9) self._txn_manager = txn_manager self._exception = None # Critical exception def set_api_version(self, api_version): self._api_version = api_version async def flush(self): waiters = [] for batches in self._batches.values(): for batch in list(batches): waiters.append(batch.future) for batch in list(self._pending_batches): waiters.append(batch.future) if waiters: await asyncio.wait(waiters) async def flush_for_commit(self): waiters = [] for batches in self._batches.values(): for batch in batches: # We force all buffers to close to finalyze the transaction # scope. We should not add anything to this transaction. batch._builder.close() waiters.append(batch.future) for batch in self._pending_batches: waiters.append(batch.future) # Wait for all waiters to finish. We only wait for the scope we defined # above, other batches should not be delivered as part of this # transaction if waiters: await asyncio.wait(waiters) def fail_all(self, exception): # Close all batches with this exception for batches in self._batches.values(): for batch in batches: batch.failure(exception) for batch in self._pending_batches: batch.failure(exception) self._exception = exception async def close(self): self._closed = True await self.flush() async def add_message( self, tp, key, value, timeout, timestamp_ms=None, headers=[] ): """ Add message to batch by topic-partition If batch is already full this method waits (`timeout` seconds maximum) until batch is drained by send task """ while True: if self._closed: # this can happen when producer is closing but try to send some # messages in async task raise ProducerClosed() if self._exception is not None: raise copy.copy(self._exception) pending_batches = self._batches.get(tp) if not pending_batches: builder = self.create_builder() batch = self._append_batch(builder, tp) else: batch = pending_batches[-1] future = batch.append(key, value, timestamp_ms, headers=headers) if future is not None: return future # Batch is full, can't append data atm, # waiting until batch per topic-partition is drained start = time.monotonic() await batch.wait_drain(timeout) timeout -= time.monotonic() - start if timeout <= 0: raise KafkaTimeoutError() def data_waiter(self): """ Return waiter future that will be resolved when accumulator contain some data for drain """ return self._wait_data_future def _pop_batch(self, tp): batch = self._batches[tp].popleft() not_retry = batch.retry_count == 0 if self._txn_manager is not None and not_retry: assert self._txn_manager.has_pid(), \ "We should have waited for it in sender routine" seq = self._txn_manager.sequence_number(batch.tp) self._txn_manager.increment_sequence_number( batch.tp, batch.record_count) batch.set_producer_state( producer_id=self._txn_manager.producer_id, producer_epoch=self._txn_manager.producer_epoch, base_sequence=seq) batch.drain_ready() if len(self._batches[tp]) == 0: del self._batches[tp] self._pending_batches.add(batch) if not_retry: def cb(fut, batch=batch, self=self): self._pending_batches.remove(batch) batch.future.add_done_callback(cb) return batch def reenqueue(self, batch): tp = batch.tp self._batches[tp].appendleft(batch) self._pending_batches.remove(batch) batch.reset_drain() def drain_by_nodes(self, ignore_nodes, muted_partitions=set()): """ Group batches by leader to partition nodes. """ nodes = collections.defaultdict(dict) unknown_leaders_exist = False for tp in list(self._batches.keys()): # Just ignoring by node is not enough, as leader can change during # the cycle if tp in muted_partitions: continue leader = self._cluster.leader_for_partition(tp) if leader is None or leader == -1: if self._batches[tp][0].expired(): # batch is for partition is expired and still no leader, # so set exception for batch and pop it batch = self._pop_batch(tp) if leader is None: err = NotLeaderForPartitionError() else: err = LeaderNotAvailableError() batch.failure(exception=err) unknown_leaders_exist = True continue elif ignore_nodes and leader in ignore_nodes: continue batch = self._pop_batch(tp) # We can get an empty batch here if all `append()` calls failed # with validation... if not batch.is_empty(): nodes[leader][tp] = batch else: # XXX: use something more graceful. We just want to trigger # delivery future here, no message futures. batch.done_noack() # all batches are drained from accumulator # so create "wait data" future again for waiting new data in send # task if not self._wait_data_future.done(): self._wait_data_future.set_result(None) self._wait_data_future = create_future() return nodes, unknown_leaders_exist def create_builder(self): if self._api_version >= (0, 11): magic = 2 elif self._api_version >= (0, 10): magic = 1 else: magic = 0 is_transactional = False if self._txn_manager is not None and \ self._txn_manager.transactional_id is not None: is_transactional = True return BatchBuilder( magic, self._batch_size, self._compression_type, is_transactional=is_transactional) def _append_batch(self, builder, tp): # We must do this before actual add takes place to check for errors. if self._txn_manager is not None: self._txn_manager.maybe_add_partition_to_txn(tp) batch = MessageBatch(tp, builder, self._batch_ttl) self._batches[tp].append(batch) if not self._wait_data_future.done(): self._wait_data_future.set_result(None) return batch async def add_batch(self, builder, tp, timeout): """Add BatchBuilder to queue by topic-partition. Arguments: builder (BatchBuilder): batch object to enqueue. tp (TopicPartition): topic and partition to enqueue this batch for. timeout (int): time in seconds to wait for a free slot in the batch queue. Returns: MessageBatch: delivery wrapper around the BatchBuilder object. Raises: aiokafka.errors.ProducerClosed: the accumulator has already been closed and flushed. aiokafka.errors.KafkaTimeoutError: the batch could not be added within the specified timeout. """ if self._closed: raise ProducerClosed() if self._exception is not None: raise copy.copy(self._exception) start = time.monotonic() while timeout > 0: pending = self._batches.get(tp) if pending: await pending[-1].wait_drain(timeout=timeout) timeout -= time.monotonic() - start else: batch = self._append_batch(builder, tp) return asyncio.shield(batch.future) raise KafkaTimeoutError()
the-stack_106_26313
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=5, create_symlink=False) evaluation = dict(interval=10, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=1, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( num_output_channels=15, dataset_joints=15, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) # model settings model = dict( type='TopDown', pretrained='https://download.openmmlab.com/mmpose/' 'pretrain_models/hrnet_w32-36af842e.pth', backbone=dict( type='HRNet', in_channels=3, extra=dict( stage1=dict( num_modules=1, num_branches=1, block='BOTTLENECK', num_blocks=(4, ), num_channels=(64, )), stage2=dict( num_modules=1, num_branches=2, block='BASIC', num_blocks=(4, 4), num_channels=(32, 64)), stage3=dict( num_modules=4, num_branches=3, block='BASIC', num_blocks=(4, 4, 4), num_channels=(32, 64, 128)), stage4=dict( num_modules=3, num_branches=4, block='BASIC', num_blocks=(4, 4, 4, 4), num_channels=(32, 64, 128, 256))), ), keypoint_head=dict( type='TopDownSimpleHead', in_channels=32, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownHalfBodyTransform', num_joints_half_body=8, prob_half_body=0.3), dict( type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] test_pipeline = val_pipeline data_root = 'data/atrw' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=256), test_dataloader=dict(samples_per_gpu=256), train=dict( type='AnimalATRWDataset', ann_file=f'{data_root}/annotations/keypoint_train.json', img_prefix=f'{data_root}/images/train/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='AnimalATRWDataset', ann_file=f'{data_root}/annotations/keypoint_val.json', img_prefix=f'{data_root}/images/val/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='AnimalATRWDataset', ann_file=f'{data_root}/annotations/keypoint_val.json', img_prefix=f'{data_root}/images/val/', data_cfg=data_cfg, pipeline=val_pipeline), )
the-stack_106_26315
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from flax.linen.attention import dot_product_attention_weights from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from .configuration_vit import ViTConfig VIT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen `flax.linen.Module <https://flax.readthedocs.io/en/latest/flax.linen.html#module>`__ subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__ - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__ - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__ - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__ Parameters: config (:class:`~transformers.ViTConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the model weights. dtype (:obj:`jax.numpy.dtype`, `optional`, defaults to :obj:`jax.numpy.float32`): The data type of the computation. Can be one of :obj:`jax.numpy.float32`, :obj:`jax.numpy.float16` (on GPUs) and :obj:`jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given ``dtype``. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see :meth:`~transformers.FlaxPreTrainedModel.to_fp16` and :meth:`~transformers.FlaxPreTrainedModel.to_bf16`. """ VIT_INPUTS_DOCSTRING = r""" Args: pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using :class:`~transformers.ViTFeatureExtractor`. See :meth:`transformers.ViTFeatureExtractor.__call__` for details. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ class FlaxPatchEmbeddings(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): image_size = self.config.image_size patch_size = self.config.patch_size num_patches = (image_size // patch_size) * (image_size // patch_size) self.num_patches = num_patches self.projection = nn.Conv( self.config.hidden_size, kernel_size=(patch_size, patch_size), strides=(patch_size, patch_size), padding="VALID", dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__(self, pixel_values): x = self.projection(pixel_values) batch_size, _, _, channels = x.shape return jnp.reshape(x, (batch_size, -1, channels)) class FlaxViTEmbeddings(nn.Module): """Construct the CLS token, position and patch embeddings.""" config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) self.patch_embeddings = FlaxPatchEmbeddings(self.config, dtype=self.dtype) num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.param( "position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size) ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, pixel_values, deterministic=True): batch_size = pixel_values.shape[0] embeddings = self.patch_embeddings(pixel_values) cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings, deterministic=deterministic) return embeddings class FlaxViTSelfAttention(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`: {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), use_bias=self.config.qkv_bias, ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), use_bias=self.config.qkv_bias, ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), use_bias=self.config.qkv_bias, ) def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): head_dim = self.config.hidden_size // self.config.num_attention_heads query_states = self.query(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) value_states = self.value(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) key_states = self.key(hidden_states).reshape( hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) ) dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxViTSelfOutput(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxViTAttention(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype) self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype) def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False): attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs class FlaxViTIntermediate(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states class FlaxViTOutput(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = hidden_states + attention_output return hidden_states class FlaxViTLayer(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxViTAttention(self.config, dtype=self.dtype) self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype) self.output = FlaxViTOutput(self.config, dtype=self.dtype) self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # first residual connection attention_output = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(attention_output) hidden_states = self.intermediate(layer_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) return outputs class FlaxViTLayerCollection(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states,) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class FlaxViTEncoder(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype) def __call__( self, hidden_states, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxViTPooler(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) def __call__(self, hidden_states): cls_hidden_state = hidden_states[:, 0] cls_hidden_state = self.dense(cls_hidden_state) return nn.tanh(cls_hidden_state) class FlaxViTPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTConfig base_model_prefix = "vit" main_input_name = "pixel_values" module_class: nn.Module = None def __init__(self, config: ViTConfig, input_shape=None, seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, 3) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init(rngs, pixel_values, return_dict=False)["params"] @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) class FlaxViTModule(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation add_pooling_layer: bool = True def setup(self): self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype) self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None def __call__( self, pixel_values, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): hidden_states = self.embeddings(pixel_values, deterministic=deterministic) outputs = self.encoder( hidden_states, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.layernorm(hidden_states) pooled = self.pooler(hidden_states) if self.add_pooling_layer else None if not return_dict: # if pooled is None, don't return it if pooled is None: return (hidden_states,) + outputs[1:] return (hidden_states, pooled) + outputs[1:] return FlaxBaseModelOutputWithPooling( last_hidden_state=hidden_states, pooler_output=pooled, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", VIT_START_DOCSTRING, ) class FlaxViTModel(FlaxViTPreTrainedModel): module_class = FlaxViTModule FLAX_VISION_MODEL_DOCSTRING = """ Returns: Examples:: >>> from transformers import ViTFeatureExtractor, FlaxViTModel >>> from PIL import Image >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') >>> model = FlaxViTModel.from_pretrained('google/vit-base-patch16-224-in21k') >>> inputs = feature_extractor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state """ overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig) class FlaxViTForImageClassificationModule(nn.Module): config: ViTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) self.classifier = nn.Dense( self.config.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) def __call__( self, pixel_values=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.classifier(hidden_states[:, 0, :]) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, VIT_START_DOCSTRING, ) class FlaxViTForImageClassification(FlaxViTPreTrainedModel): module_class = FlaxViTForImageClassificationModule FLAX_VISION_CLASSIF_DOCSTRING = """ Returns: Example:: >>> from transformers import ViTFeatureExtractor, FlaxViTForImageClassification >>> from PIL import Image >>> import jax >>> import requests >>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' >>> image = Image.open(requests.get(url, stream=True).raw) >>> feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') >>> model = FlaxViTForImageClassification.from_pretrained('google/vit-base-patch16-224') >>> inputs = feature_extractor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) """ overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig )
the-stack_106_26318
# Copyright 2019 The Blueqat Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The module for calculate Pauli matrices.""" from collections import defaultdict, namedtuple from functools import reduce from itertools import combinations, product from numbers import Number, Integral from math import pi import numpy as np _PauliTuple = namedtuple("_PauliTuple", "n") half_pi = pi / 2 def pauli_from_char(ch, n=0): """Make Pauli matrix from an character. Args: ch (str): "X" or "Y" or "Z" or "I". n (int, optional): Make Pauli matrix as n-th qubits. Returns: If ch is "X" => X, "Y" => Y, "Z" => Z, "I" => I Raises: ValueError: When ch is not "X", "Y", "Z" nor "I". """ ch = ch.upper() if ch == "I": return I if ch == "X": return X(n) if ch == "Y": return Y(n) if ch == "Z": return Z(n) raise ValueError("ch shall be X, Y, Z or I") def term_from_chars(chars): """Make Pauli's Term from chars which is written by "X", "Y", "Z" or "I". e.g. "XZIY" => X(0) * Z(1) * Y(3) Args: chars (str): Written in "X", "Y", "Z" or "I". Returns: Term: A `Term` object. Raises: ValueError: When chars conteins the character which is "X", "Y", "Z" nor "I". """ return Term.from_chars(chars) def to_term(pauli): """Convert to Term from Pauli operator (X, Y, Z, I). Args: pauli (X, Y, Z or I): A Pauli operator Returns: Term: A `Term` object. """ return pauli.to_term() def to_expr(term): """Convert to Expr from Term or Pauli operator (X, Y, Z, I). Args: term: (Term, X, Y, Z or I): A Term or Pauli operator. Returns: Expr: An `Expr` object. """ return term.to_expr() def commutator(expr1, expr2): """Returns [expr1, expr2] = expr1 * expr2 - expr2 * expr1. Args: expr1 (Expr, Term or Pauli operator): Pauli's expression. expr2 (Expr, Term or Pauli operator): Pauli's expression. Returns: Expr: expr1 * expr2 - expr2 * expr1. """ expr1 = expr1.to_expr().simplify() expr2 = expr2.to_expr().simplify() return (expr1 * expr2 - expr2 * expr1).simplify() def is_commutable(expr1, expr2, eps=0.00000001): """Test whether expr1 and expr2 are commutable. Args: expr1 (Expr, Term or Pauli operator): Pauli's expression. expr2 (Expr, Term or Pauli operator): Pauli's expression. eps (float, optional): Machine epsilon. If |[expr1, expr2]| < eps, consider it is commutable. Returns: bool: if expr1 and expr2 are commutable, returns True, otherwise False. """ return sum((x * x.conjugate()).real for x in commutator(expr1, expr2).coeffs()) < eps # To avoid pylint error def _n(pauli): return pauli.n def _GetItem(self_, n): return type(self_)(n) class _PauliImpl: @property def op(self): """Return operator type (X, Y, Z, I)""" return self.__class__.__name__[1] @property def is_identity(self): """If `self` is I, returns True, otherwise False.""" return self.op == "I" def __hash__(self): return hash((self.op, _n(self))) def __eq__(self, other): if isinstance(other, _PauliImpl): if self.is_identity: return other.is_identity return _n(self) == _n(other) and self.op == other.op if isinstance(other, Term): return self.to_term() == other if isinstance(other, Expr): return self.to_expr() == other return NotImplemented def __ne__(self, other): return not self == other def __mul__(self, other): if isinstance(other, Number): return Term.from_pauli(self, other) if not isinstance(other, _PauliImpl): return NotImplemented if self.is_identity: return other.to_term() if other.is_identity: return self.to_term() if _n(self) == _n(other) and self.op == other.op: return I.to_term() return Term.from_paulipair(self, other) def __rmul__(self, other): if isinstance(other, Number): return Term.from_pauli(self, other) return NotImplemented def __truediv__(self, other): if isinstance(other, Number): if other: return Term.from_pauli(self, 1.0 / other) raise ZeroDivisionError return NotImplemented def __add__(self, other): return self.to_expr() + other def __radd__(self, other): return other + self.to_expr() def __sub__(self, other): return self.to_expr() - other def __rsub__(self, other): return other - self.to_expr() def __neg__(self): return Term.from_pauli(self, -1.0) def __repr__(self): if self.is_identity: return "I" return self.op + "[" + str(_n(self)) + "]" def to_term(self): """Convert to Pauli Term""" return Term.from_pauli(self) def to_expr(self): """Convert to Pauli Expr""" return self.to_term().to_expr() _matrix = { 'I': np.array([[1, 0], [0, 1]], dtype=complex), 'X': np.array([[0, 1], [1, 0]], dtype=complex), 'Y': np.array([[0, -1j], [1j, 0]], dtype=complex), 'Z': np.array([[1, 0], [0, -1]], dtype=complex) } @property def matrix(self): """Matrix reprentation of this operator.""" return self._matrix[self.op].copy() def to_matrix(self, n_qubits=-1): """Convert to the matrix.""" if self.is_identity: if n_qubits == -1: return self.matrix else: return reduce(np.kron, [I.matrix for _ in range(n_qubits)]) if n_qubits == -1: n_qubits = _n(self) + 1 if _n(self) == 0: mat = self.matrix else: mat = reduce(np.kron, [I.matrix for _ in range(_n(self))]) mat = np.kron(mat, self.matrix) if n_qubits > _n(self) + 1: mat = reduce(np.kron, [I.matrix for _ in range(n_qubits - _n(self) - 1)], mat) return mat class _X(_PauliImpl, _PauliTuple): """Pauli's X operator""" class _Y(_PauliImpl, _PauliTuple): """Pauli's Y operator""" class _Z(_PauliImpl, _PauliTuple): """Pauli's Z operator""" class _PauliCtor: def __init__(self, ty): self.ty = ty def __call__(self, n): return self.ty(n) def __getitem__(self, n): return self.ty(n) X = _PauliCtor(_X) Y = _PauliCtor(_Y) Z = _PauliCtor(_Z) class _I(_PauliImpl, namedtuple("_I", "")): """Identity operator""" def __call__(self): return self I = _I() _TermTuple = namedtuple("_TermTuple", "ops coeff") class Term(_TermTuple): """Multiplication of Pauli matrices with coefficient. Note that this class is immutable. Multiplied Pauli matrices are very important for quantum computation because it is an unitary matrix (without coefficient) and also it can be consider the time evolution of the term (with real coefficient) without Suzuki-Trotter expansion. """ @staticmethod def from_paulipair(pauli1, pauli2): """Make new Term from two Pauli operator.""" return Term(Term.join_ops((pauli1,), (pauli2,)), 1.0) @staticmethod def from_pauli(pauli, coeff=1.0): """Make new Term from an Pauli operator""" if pauli.is_identity or coeff == 0: return Term((), coeff) return Term((pauli,), coeff) @staticmethod def from_ops_iter(ops, coeff): """For internal use.""" return Term(tuple(ops), coeff) @staticmethod def from_chars(chars): """Make Pauli's Term from chars which is written by "X", "Y", "Z" or "I". e.g. "XZIY" => X(0) * Z(1) * Y(3) Args: chars (str): Written in "X", "Y", "Z" or "I". Returns: Term: A `Term` object. Raises: ValueError: When chars conteins the character which is "X", "Y", "Z" nor "I". """ paulis = [pauli_from_char(c, n) for n, c in enumerate(chars) if c != "I"] if not paulis: return 1.0 * I if len(paulis) == 1: return 1.0 * paulis[0] return reduce(lambda a, b: a * b, paulis) @staticmethod def join_ops(ops1, ops2): """For internal use.""" i = len(ops1) - 1 j = 0 while i >= 0 and j < len(ops2): if ops1[i] == ops2[j]: i -= 1 j += 1 else: break return ops1[:i + 1] + ops2[j:] @property def is_identity(self): """If `self` is I, returns True, otherwise False.""" return not self.ops def __mul__(self, other): if isinstance(other, Number): return Term(self.ops, self.coeff * other) if isinstance(other, Term): ops = Term.join_ops(self.ops, other.ops) coeff = self.coeff * other.coeff return Term(ops, coeff) if isinstance(other, _PauliImpl): if other.is_identity: return self return Term(Term.join_ops(self.ops, (other,)), self.coeff) return NotImplemented def __rmul__(self, other): if isinstance(other, Number): return Term(self.ops, self.coeff * other) if isinstance(other, _PauliImpl): if other.is_identity: return self return Term(Term.join_ops((other,), self.ops), self.coeff) return NotImplemented def __truediv__(self, other): if isinstance(other, (int, float)): if other: return Term(self.ops, self.coeff / other) raise ZeroDivisionError return NotImplemented def __pow__(self, n): if isinstance(n, Integral): if n < 0: raise ValueError("`pauli_term ** n` or `pow(pauli_term, n)`: " + "n shall not be negative value.") if n == 0: return Term.from_pauli(I) return Term(self.ops * n, self.coeff ** n) return NotImplemented def __add__(self, other): return Expr.from_term(self) + other def __radd__(self, other): return other + Expr.from_term(self) def __sub__(self, other): return Expr.from_term(self) - other def __rsub__(self, other): return other - Expr.from_term(self) def __neg__(self): return Term(self.ops, -self.coeff) def __repr__(self): if self.coeff == 0: return "0*I" if self.coeff == -1.0: s_coeff = "-" else: s_coeff = str(self.coeff) + "*" if self.ops == (): s_ops = "I" else: s_ops = "*".join(op.op + "[" + repr(op.n) + "]" for op in self.ops) return s_coeff + s_ops def __eq__(self, other): if isinstance(other, _PauliImpl): other = other.to_term() return _TermTuple.__eq__(self, other) or \ _TermTuple.__eq__(self.simplify(), other.simplify()) def __ne__(self, other): return not self == other def to_term(self): """Do nothing. This method is prepared to avoid TypeError.""" return self def to_expr(self): """Convert to Expr.""" return Expr.from_term(self) def commutator(self, other): """Returns commutator.""" return commutator(self, other) def is_commutable_with(self, other): """Test whether `self` is commutable with `other`.""" return is_commutable(self, other) def simplify(self): """Simplify the Term.""" def mul(op1, op2): if op1 == "I": return 1.0, op2 if op2 == "I": return 1.0, op1 if op1 == op2: return 1.0, "I" if op1 == "X": return (-1j, "Z") if op2 == "Y" else (1j, "Y") if op1 == "Y": return (-1j, "X") if op2 == "Z" else (1j, "Z") if op1 == "Z": return (-1j, "Y") if op2 == "X" else (1j, "X") before = defaultdict(list) for op in self.ops: if op.op == "I": continue before[op.n].append(op.op) new_coeff = self.coeff new_ops = [] for n in sorted(before.keys()): ops = before[n] assert ops k = 1.0 op = ops[0] for _op in ops[1:]: _k, op = mul(op, _op) k *= _k new_coeff *= k if new_coeff.imag == 0: # cast to float new_coeff = new_coeff.real if op != "I": new_ops.append(pauli_from_char(op, n)) return Term(tuple(new_ops), new_coeff) def n_iter(self): """Returns an iterator which yields indices for each Pauli matrices in the Term.""" return (op.n for op in self.ops) def max_n(self): """Returns the maximum index of Pauli matrices in the Term.""" return max(self.n_iter()) def append_to_circuit(self, circuit, simplify=True): """Append Pauli gates to `Circuit`.""" if simplify: term = self.simplify() else: term = self for op in term.ops[::-1]: gate = op.op.lower() if gate != "i": getattr(circuit, gate)[op.n] def get_time_evolution(self): """Get the function to append the time evolution of this term. Returns: function(circuit: Circuit, t: float): Add gates for time evolution to `circuit` with time `t` """ term = self.simplify() coeff = term.coeff if coeff.imag: raise ValueError("Not a real coefficient.") ops = term.ops def append_to_circuit(circuit, t): if not ops: return for op in ops: n = op.n if op.op == "X": circuit.h[n] elif op.op == "Y": circuit.rx(-half_pi)[n] for i in range(1, len(ops)): circuit.cx[ops[i-1].n, ops[i].n] circuit.rz(-2 * coeff * t)[ops[-1].n] for i in range(len(ops)-1, 0, -1): circuit.cx[ops[i-1].n, ops[i].n] for op in ops: n = op.n if op.op == "X": circuit.h[n] elif op.op == "Y": circuit.rx(half_pi)[n] return append_to_circuit def to_matrix(self, n_qubits=-1): """Convert to the matrix.""" if n_qubits == -1: n_qubits = self.max_n() + 1 mat = I.to_matrix(n_qubits) for op in self.ops: if op.is_identity: continue mat = mat @ op.to_matrix(n_qubits) return mat * self.coeff _ExprTuple = namedtuple("_ExprTuple", "terms") class Expr(_ExprTuple): @staticmethod def from_number(num): """Make new Expr from a number""" if num: return Expr.from_term(Term((), num)) else: return Expr.zero() @staticmethod def from_term(term): """Make new Expr from a Term""" if term.coeff: return Expr((term,)) else: return Expr.zero() @staticmethod def from_terms_iter(terms): """For internal use.""" return Expr(tuple(term for term in terms if term.coeff)) def terms_to_dict(self): """For internal use.""" return {term[0]: term[1] for term in self.terms if term.coeff} @staticmethod def from_terms_dict(terms_dict): """For internal use.""" return Expr(tuple(Term(k, v) for k, v in terms_dict.items() if v)) @staticmethod def zero(): """Returns 0 as Term""" return Expr(()) @property def is_identity(self): """If `self` is I, returns True, otherwise False.""" if not self.terms: return True return len(self.terms) == 1 and not self.terms[0].ops and self.terms[0].coeff == 1.0 def __eq__(self, other): if isinstance(other, (_PauliImpl, Term)): other = other.to_expr() if isinstance(other, Expr): return self.terms == other.terms or self.simplify().terms == other.simplify().terms return NotImplemented def __ne__(self, other): return not self == other def __add__(self, other): if isinstance(other, Number): other = Expr.from_number(other) elif isinstance(other, Term): other = Expr.from_term(other) if isinstance(other, Expr): terms = self.terms_to_dict() for op, coeff in other.terms: if op in terms: terms[op] += coeff if terms[op] == 0: del terms[op] else: terms[op] = coeff return Expr.from_terms_dict(terms) return NotImplemented def __sub__(self, other): if isinstance(other, Number): other = Expr.from_number(other) elif isinstance(other, Term): other = Expr.from_term(other) if isinstance(other, Expr): terms = self.terms_to_dict() for op, coeff in other.terms: if op in terms: terms[op] -= coeff if terms[op] == 0: del terms[op] else: terms[op] = -coeff return Expr.from_terms_dict(terms) return NotImplemented def __radd__(self, other): if isinstance(other, Number): return Expr.from_number(other) + self if isinstance(other, Term): return Expr.from_term(other) + self return NotImplemented def __rsub__(self, other): if isinstance(other, Number): return Expr.from_number(other) - self if isinstance(other, Term): return Expr.from_term(other) - self return NotImplemented def __neg__(self): return Expr(tuple(Term(op, -coeff) for op, coeff in self.terms)) def __mul__(self, other): if isinstance(other, Number): if other == 0: return Expr.from_number(0.0) return Expr.from_terms_iter(Term(op, coeff * other) for op, coeff in self.terms) if isinstance(other, _PauliImpl): other = other.to_term() if isinstance(other, Term): return Expr(tuple(term * other for term in self.terms)) if isinstance(other, Expr): terms = defaultdict(float) for t1, t2 in product(self.terms, other.terms): term = t1 * t2 terms[term.ops] += term.coeff return Expr.from_terms_dict(terms) return NotImplemented def __rmul__(self, other): if isinstance(other, Number): if other == 0: return Expr.from_number(0.0) return Expr.from_terms_iter(Term(op, coeff * other) for op, coeff in self.terms) if isinstance(other, _PauliImpl): other = other.to_term() if isinstance(other, Term): return Expr(tuple(other * term for term in self.terms)) return NotImplemented def __truediv__(self, other): if isinstance(other, Number): if other: return Expr(tuple(term / other for term in self.terms)) raise ZeroDivisionError return NotImplemented def __pow__(self, n): if isinstance(n, Integral): if n < 0: raise ValueError("`pauli_expr ** n` or `pow(pauli_expr, n)`: " + "n shall not be negative value.") if n == 0: return Expr.from_number(1.0) val = self for _ in range(n - 1): val *= self return val return NotImplemented def __iter__(self): return iter(self.terms) def __repr__(self): if not self.terms: return "0*I+0" s_terms = [repr(self.terms[0])] for term in self.terms[1:]: s = repr(term) if s[0] == "+": s_terms.append("+") s_terms.append(s[1:]) elif s[0] == "-": s_terms.append("-") s_terms.append(s[1:]) else: s_terms.append("+") s_terms.append(s) return " ".join(s_terms) def __getnewargs__(self): return (self.terms,) def to_expr(self): """Do nothing. This method is prepared to avoid TypeError.""" return self def max_n(self): """Returns the maximum index of Pauli matrices in the Term.""" return max(term.max_n() for term in self.terms if term.ops) def coeffs(self): """Generator which yields a coefficent for each Term.""" for term in self.terms: yield term.coeff def commutator(self, other): """Returns commutator.""" return commutator(self, other) def is_commutable_with(self, other): """Test whether `self` is commutable with `other`.""" return is_commutable(self, other) def is_all_terms_commutable(self): """Test whether all terms are commutable. This function may very slow.""" return all(is_commutable(a, b) for a, b in combinations(self.terms, 2)) def simplify(self): """Simplify the Expr.""" d = defaultdict(float) for term in self.terms: term = term.simplify() d[term.ops] += term.coeff return Expr.from_terms_iter( Term.from_ops_iter(k, d[k]) for k in sorted(d, key=repr) if d[k]) def to_matrix(self, n_qubits=-1): """Convert to the matrix.""" if n_qubits == -1: n_qubits = self.max_n() + 1 return sum(term.to_matrix(n_qubits) for term in self.terms) def qubo_bit(n): """Represent QUBO's bit to Pauli operator of Ising model. Args: n (int): n-th bit in QUBO Returns: Expr: Pauli expression of QUBO bit. """ return 0.5 - 0.5*Z[n]
the-stack_106_26319
#!/usr/bin/python # # Request for historical data (RDM type 12) published by provider.history.tcl # This domain is not officially supported by Thomson Reuters # Sample: # {'MTYPE':'REFRESH','RIC':'tANZ.AX','SERVICE':'NIP'} # {'SERVICE':'NIP','SALTIM':'08:05:22:612:000:000','MTYPE':'IMAGE','TRADE_ID':'123456789', # 'BID_ORD_ID':'5307FBL20AL7B','TRDPRC_1':40.124,'RIC':'tANZ.AX','ASK_ORD_ID':'5307FBL20BN8A'} # import sys import pyrfa p = pyrfa.Pyrfa() p.createConfigDb("./pyrfa.cfg") p.setDebugMode(False) p.acquireSession("Session3") p.createOMMConsumer() p.login() p.directoryRequest() p.dictionaryRequest() p.historyRequest("tANZ.AX") count = 0 while not p.isHistoryRefreshComplete(): for u in p.dispatchEventQueue(): if count == 1: print(u['SERVICE'] + " - " + u['RIC']) print("-----------------------") for k,v in u.items(): sys.stdout.write(k+',') print("") for k,v in u.items(): sys.stdout.write(str(v)+',') elif count > 1: for k,v in u.items(): sys.stdout.write(str(v)+',') count += 1 print("") print("\n\n########## total history records: %s ###################\n\n" % (count - 1))
the-stack_106_26320
#!/usr/bin/env python3 -u # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import os import socket import subprocess from singleprocess_train import main as single_process_main from fairseq import distributed_utils, options def main(args): if args.distributed_init_method is None and args.distributed_port > 0: # We can determine the init method automatically for Slurm. node_list = os.environ.get('SLURM_JOB_NODELIST') if node_list is not None: try: hostnames = subprocess.check_output(['scontrol', 'show', 'hostnames', node_list]) args.distributed_init_method = 'tcp://{host}:{port}'.format( host=hostnames.split()[0].decode('utf-8'), port=args.distributed_port) args.distributed_rank = int(os.environ.get('SLURM_PROCID')) args.device_id = int(os.environ.get('SLURM_LOCALID')) except subprocess.CalledProcessError as e: # scontrol failed raise e except FileNotFoundError as e: # Slurm is not installed pass if args.distributed_init_method is None: raise ValueError('--distributed-init-method or --distributed-port ' 'must be specified for distributed training') args.distributed_rank = distributed_utils.distributed_init(args) print('| initialized host {} as rank {}'.format(socket.gethostname(), args.distributed_rank)) single_process_main(args) if __name__ == '__main__': parser = options.get_training_parser() args = options.parse_args_and_arch(parser) main(args)
the-stack_106_26321
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from ._configuration import ApplicationInsightsManagementClientConfiguration from .operations import WorkbookTemplatesOperations from . import models class ApplicationInsightsManagementClient(object): """Composite Swagger for Application Insights Management Client. :ivar workbook_templates: WorkbookTemplatesOperations operations :vartype workbook_templates: azure.mgmt.applicationinsights.v2019_10_17_preview.operations.WorkbookTemplatesOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://management.azure.com' self._config = ApplicationInsightsManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.workbook_templates = WorkbookTemplatesOperations( self._client, self._config, self._serialize, self._deserialize) def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> ApplicationInsightsManagementClient self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
the-stack_106_26323
from allauth.account.forms import SignupForm from django import forms from bims.models import Profile class CustomSignupForm(SignupForm): first_name = forms.CharField( max_length=150, label='First Name', required=True) last_name = forms.CharField( max_length=150, label='Last Name', required=True ) organization = forms.CharField( max_length=100, label='Organization/Institution', required=True ) role = forms.ChoiceField( choices=Profile.ROLE_CHOICES, initial='citizen', required=True ) def custom_signup(self, request, user): user.first_name = self.cleaned_data['first_name'] user.last_name = self.cleaned_data['last_name'] user.organization = self.cleaned_data['organization'] user.save() bims_profile, created = Profile.objects.get_or_create( user=user ) bims_profile.role = self.cleaned_data['role'] bims_profile.save() return user
the-stack_106_26324
#!/usr/bin/env python from random import randint from time import sleep import unicornhathd as unicorn print("""Snow Draws random white pixels to look like a snowstorm. If you're using a Unicorn HAT and only half the screen lights up, edit this example and change 'unicorn.AUTO' to 'unicorn.HAT' below. """) unicorn.set_layout(unicorn.AUTO) unicorn.rotation(90) unicorn.brightness(0.5) width,height=unicorn.get_shape() rows = [] row_pointer = 0 def init(): # create a buffer of <height> blank rows for i in range(height): rows.append(get_blank_row()) def get_blank_row(): # generate a blank row return [0] * width def get_new_row(): # get a new blank row and add a random brightness snowflake to a random column row = get_blank_row() row[randint(0, width - 1)] = 50 + randint(0, 155) return row def update_display(): # keep track of the row we are updating c = row_pointer for h in range(height): for w in range(width): # val is between 50 and 255 val = rows[c][w] # invert coordinates unicorn.set_pixel((width - 1) - w, (height - 1) - h, val, val, val) c += 1 if c > height - 1: c = 0 unicorn.show() def step(): global row_pointer # add new row at current row pointer # leave other rows the same, display will start from this one which overwrites the # oldest existing row from the last time we updated the display rows[row_pointer] = get_new_row() update_display() # determine next row pointer, wrapping around if we went past zero row_pointer -= 1 if row_pointer < 0: row_pointer = height - 1 init() while True: step() sleep(0.3)
the-stack_106_26325
import math # Fixed parameters N = 200 # Number of participants Tmax = 120 # total duration of the simulaion # Tunable parameters Tinf = 30 # infectious time I0 = 1 # number of initial cases Itot = 150 # total number of cases cr = 0.005 # per capita contact rate c, # cr x N is the number of contacts per unit of time an infectious individual make S0 = N - I0 Send = N - Itot z = Itot/math.log(S0/Send) print("gamma/beta = ", z) print("R0 = ", S0/z) Imax = N - z + z * math.log(z) - z * math.log(S0) print("IMax = ", Imax) beta = 1/(z*Tinf) print("beta = ", beta) p = beta/cr # probability that a contact with a susceptible individual results in transmission print("Probability of infection = ", p)
the-stack_106_26326
from common import Action import copy import gym from gym import spaces import numpy as np from random import choice from copy import deepcopy from parse_utils import vectorize_obs class KarelEnv(gym.Env): N_ACTIONS = 6 # Direction encoding dir_to_dxy = {"north": (-1, 0), "east": (0, 1), "south": (1, 0), "west": (0, -1)} dir_ord = ["north", "east", "south", "west"] def __init__(self, task_space=None, is_compact=True, reward_func='binary'): super(KarelEnv, self).__init__() if reward_func == 'binary': self.R = self.R_binary else: self.R = self.R_complex self.task_space = task_space self.is_compact = is_compact self.debug = False self.probe_mode = False self.obs_shape = (4, 4, 11) self.action_space = spaces.Discrete(self.N_ACTIONS) self.observation_space = spaces.Box( low=0, high=1, shape=self.obs_shape, dtype=np.uint8 ) self.action_handlers = { Action.move: self.move, Action.turnLeft: lambda src_state: self.turn(-1, src_state), Action.turnRight: lambda src_state: self.turn(1, src_state), Action.pickMarker: self.pickMarker, Action.putMarker: self.putMarker, Action.finish: self.finish, } # self.reset() def reset(self, init_state=None): if init_state is None: init_state = choice(self.task_space) self.init(init_state) return vectorize_obs(init_state, self.is_compact) def init(self, task): self.task = copy.deepcopy(task) self.is_terminal = False self.task["pregrid_markers"] = set( map(tuple, self.task["pregrid_markers"])) self.task["postgrid_markers"] = set( map(tuple, self.task["postgrid_markers"])) # Active (i.e., changing) state, note that this is not the total state self.state = { "agent_r": self.task["pregrid_agent_row"], "agent_c": self.task["pregrid_agent_col"], "agent_d": self.task["pregrid_agent_dir"], "markers": self.task["pregrid_markers"], } # Active target state, note that this is not the total state self.target_state = { "agent_r": self.task["postgrid_agent_row"], "agent_c": self.task["postgrid_agent_col"], "agent_d": self.task["postgrid_agent_dir"], "markers": self.task["postgrid_markers"], } def get_full_state(self, state=None): if state is None: state = self.state if state == "terminal": return "terminal" task_state = copy.deepcopy(self.task) task_state["pregrid_agent_row"] = state["agent_r"] task_state["pregrid_agent_col"] = state["agent_c"] task_state["pregrid_agent_dir"] = state["agent_d"] task_state["pregrid_markers"] = state["markers"] return task_state def generate_rollout(self, PI, H): EP = [] for i in range(H): s = self.get_full_state() if s == "terminal": break a = PI(s) r = self.R(self.state, a) EP.append((s, a, r)) self.step(a) return EP def probe(self, action): state_copy = deepcopy(self.state) self.next_state, self.is_terminal = self.action_handlers[action](state_copy) r = self.R(self.state, action) is_solved = self.state == self.target_state and action == Action.finish has_crashed = self.is_terminal and not is_solved next_obs = vectorize_obs(self.get_full_state(), self.is_compact) return next_obs, r, self.is_terminal, {"solved": is_solved, "crashed": has_crashed} def step(self, action): state_copy = deepcopy(self.state) self.next_state, self.is_terminal = self.action_handlers[action](state_copy) r = self.R(self.state, action) is_solved = self.state == self.target_state and action == Action.finish has_crashed = self.is_terminal and not is_solved self.state = self.next_state next_obs = vectorize_obs(self.get_full_state(), self.is_compact) return next_obs, r, self.is_terminal, {"solved": is_solved, "crashed": has_crashed} def R_binary(self, s, a): if s == self.target_state and a == Action.finish: return 1 else: return 0 def R_complex(self, s, a): if self.debug: next_state, is_terminal = self.action_handlers[a](src_state=deepcopy(s)) else: next_state, is_terminal = self.next_state, self.is_terminal if s == self.target_state and a == Action.finish: # Task solved return 20 elif is_terminal: # Crash return -10 elif a == Action.move: vd1 = s["agent_r"]-self.task["postgrid_agent_row"] hd1 = s["agent_c"]-self.task["postgrid_agent_col"] d1 = abs(hd1) + abs(vd1) vd2 = next_state["agent_r"]-self.task["postgrid_agent_row"] hd2 = next_state["agent_c"]-self.task["postgrid_agent_col"] d2 = abs(hd2) + abs(vd2) if s['markers'] == self.task["postgrid_markers"]: if d2 < d1: return 1 elif d2 > d1: h_ort, v_ort = hd1//max(abs(hd1),1), vd1//max(abs(vd1),1) h_blocked, v_blocked = False, False for step in range(1, 5): h_blocked |= [s["agent_r"], s["agent_c"]+h_ort*step] in self.task["walls"] v_blocked |= [s["agent_r"]+v_ort*step, s["agent_c"]] in self.task["walls"] if not (h_blocked and v_blocked): return -1 else: return 0 else: return 0 else: return 0 elif a == Action.putMarker: loc = (s["agent_r"], s["agent_c"]) if loc in self.task["postgrid_markers"] and loc not in s["markers"]: return 3 else: return -3 elif a == Action.pickMarker: loc = (s["agent_r"], s["agent_c"]) if loc not in self.task["postgrid_markers"] and loc in s["markers"]: return 3 else: return -3 else: return 0 def move(self, src_state): agent_r, agent_c = src_state["agent_r"], src_state["agent_c"] agent_d = src_state["agent_d"] dxy = self.dir_to_dxy[agent_d] next_pos = [agent_r + dxy[0], agent_c + dxy[1]] out_of_bounds = ( next_pos[0] >= self.task["gridsz_num_rows"] or next_pos[1] >= self.task["gridsz_num_cols"] or next_pos[0] < 0 or next_pos[1] < 0 ) wall_hit = next_pos in self.task["walls"] if out_of_bounds or wall_hit: return src_state, True src_state["agent_r"], src_state["agent_c"] = next_pos[0], next_pos[1] return src_state, False def turn(self, clk_ort, src_state): agent_r, agent_c = src_state["agent_r"], src_state["agent_c"] agent_d = src_state["agent_d"] dir_idx = self.dir_ord.index(agent_d) next_idx = (dir_idx + clk_ort + 4) % 4 new_dir = self.dir_ord[next_idx] src_state["agent_d"] = new_dir return src_state, False def pickMarker(self, src_state): agent_r, agent_c = src_state["agent_r"], src_state["agent_c"] if (agent_r, agent_c) not in src_state["markers"]: return src_state, True src_state["markers"].remove((agent_r, agent_c)) return src_state, False def putMarker(self, src_state): agent_r, agent_c = src_state["agent_r"], src_state["agent_c"] if (agent_r, agent_c) in src_state["markers"]: return src_state, True src_state["markers"].add((agent_r, agent_c)) return src_state, False def finish(self, src_state): return src_state, True
the-stack_106_26327
import os from unittest.mock import patch, PropertyMock import requests from memsource import api, constants, models import api as api_test class TestApiAnalysis(api_test.ApiTestCase): def setUp(self): self.url_base = 'https://cloud.memsource.com/web/api/v2/analyse' self.analysis = api.Analysis('token') self.test_analysis_file_path = '/tmp/analysis.csv' self.setCleanUpFiles([self.test_analysis_file_path]) @patch.object(requests.Session, 'request') def test_get(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mock_request().json.return_value = {} analysis_id = self.gen_random_int() self.assertIsInstance(self.analysis.get(analysis_id), models.Analysis) mock_request.assert_called_with( constants.HttpMethod.get.value, '{}/get'.format(self.url_base), params={ 'token': self.analysis.token, 'analyse': analysis_id, }, timeout=constants.Base.timeout.value ) @patch.object(requests.Session, 'request') def test_create(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mock_request().json.return_value = {} job_part_ids = [self.gen_random_int()] self.assertIsInstance(self.analysis.create(job_part_ids), models.Analysis) mock_request.assert_called_with( constants.HttpMethod.post.value, '{}/create'.format(self.url_base), data={ 'token': self.analysis.token, 'jobPart': job_part_ids, }, timeout=constants.Base.timeout.value ) @patch.object(requests.Session, 'request') def test_delete(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mock_request().json.return_value = None analysis_id = self.gen_random_int() self.assertIsNone(self.analysis.delete(analysis_id)) mock_request.assert_called_with( constants.HttpMethod.post.value, '{}/delete'.format(self.url_base), data={ 'token': self.analysis.token, 'analyse': analysis_id, 'purge': False, }, timeout=constants.Base.timeout.value ) @patch.object(requests.Session, 'request') def test_get_by_project(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) mock_request().json.return_value = [{id: 1}, {id: 2}] project_id = self.gen_random_int() analyses = self.analysis.get_by_project(project_id) self.assertIsInstance(analyses, list) for analysis in analyses: self.assertIsInstance(analysis, models.Analysis) mock_request.assert_called_with( constants.HttpMethod.get.value, '{}/listByProject'.format(self.url_base), params={ 'token': self.analysis.token, 'project': project_id, }, timeout=constants.Base.timeout.value ) @patch.object(requests.Session, 'request') def test_download(self, mock_request): type(mock_request()).status_code = PropertyMock(return_value=200) analysis = 'this is analysis' mock_request().iter_content.return_value = [ bytes(content, 'utf-8') for content in analysis] analysis_id = self.gen_random_int() self.assertFalse(os.path.isfile(self.test_analysis_file_path)) returned_value = self.analysis.download(analysis_id, self.test_analysis_file_path) self.assertTrue(os.path.isfile(self.test_analysis_file_path)) self.assertIsNone(returned_value) with open(self.test_analysis_file_path) as f: self.assertEqual(''.join(analysis), f.read()) mock_request.assert_called_with( constants.HttpMethod.get.value, "{}/download".format(self.url_base), params={ 'token': self.analysis.token, 'analyse': analysis_id, 'format': constants.AnalysisFormat.CSV.value }, timeout=constants.Base.timeout.value * 5, stream=True )
the-stack_106_26328
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.nasnet import NASNetMobile from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 64 args_lr = 0.002 args_model = 'mnasnet' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_final5/' + job_name + '*' total_epochs = 143 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() base_model = NASNetMobile(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_final5/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
the-stack_106_26332
""" Tutorial 3: Null models for gradient significance ================================================== In this tutorial we assess the significance of correlations between the first canonical gradient and data from other modalities (curvature, cortical thickness and T1w/T2w image intensity). A normal test of the significance of the correlation cannot be used, because the spatial auto-correlation in MRI data may bias the test statistic. In this tutorial we will show two approaches for null hypothesis testing: spin permutations and Moran spectral randomization. .. note:: When using either approach to compare gradients to non-gradient markers, we recommend randomizing the non-gradient markers as these randomizations need not maintain the statistical independence between gradients. """ ############################################################################### # Spin Permutations # ------------------------------ # # Here, we use the spin permutations approach previously proposed in # `(Alexander-Bloch et al., 2018) # <https://www.sciencedirect.com/science/article/pii/S1053811918304968>`_, # which preserves the auto-correlation of the permuted feature(s) by rotating # the feature data on the spherical domain. # We will start by loading the conte69 surfaces for left and right hemispheres, # their corresponding spheres, midline mask, and t1w/t2w intensity as well as # cortical thickness data, and a template functional gradient. import numpy as np from brainspace.datasets import load_gradient, load_marker, load_conte69 # load the conte69 hemisphere surfaces and spheres surf_lh, surf_rh = load_conte69() sphere_lh, sphere_rh = load_conte69(as_sphere=True) # Load the data t1wt2w_lh, t1wt2w_rh = load_marker('t1wt2w') t1wt2w = np.concatenate([t1wt2w_lh, t1wt2w_rh]) thickness_lh, thickness_rh = load_marker('thickness') thickness = np.concatenate([thickness_lh, thickness_rh]) # Template functional gradient embedding = load_gradient('fc', idx=0, join=True) ############################################################################### # Let’s first generate some null data using spintest. from brainspace.null_models import SpinPermutations from brainspace.plotting import plot_hemispheres # Let's create some rotations n_rand = 1000 sp = SpinPermutations(n_rep=n_rand, random_state=0) sp.fit(sphere_lh, points_rh=sphere_rh) t1wt2w_rotated = np.hstack(sp.randomize(t1wt2w_lh, t1wt2w_rh)) thickness_rotated = np.hstack(sp.randomize(thickness_lh, thickness_rh)) ############################################################################### # As an illustration of the rotation, let’s plot the original t1w/t2w data # Plot original data plot_hemispheres(surf_lh, surf_rh, array_name=t1wt2w, size=(1200, 200), cmap='viridis', nan_color=(0.5, 0.5, 0.5, 1), color_bar=True, zoom=1.65) ############################################################################### # as well as a few rotated versions. # sphinx_gallery_thumbnail_number = 2 # Plot some rotations plot_hemispheres(surf_lh, surf_rh, array_name=t1wt2w_rotated[:3], size=(1200, 600), cmap='viridis', nan_color=(0.5, 0.5, 0.5, 1), color_bar=True, zoom=1.55, label_text=['Rot0', 'Rot1', 'Rot2']) ############################################################################### # # .. warning:: # # With spin permutations, midline vertices (i.e,, NaNs) from both the # original and rotated data are discarded. Depending on the overlap of # midlines in the, statistical comparisons between them may compare # different numbers of features. This can bias your test statistics. # Therefore, if a large portion of the sphere is not used, we recommend # using Moran spectral randomization instead. # # Now we simply compute the correlations between the first gradient and the # original data, as well as all rotated data. from matplotlib import pyplot as plt from scipy.stats import spearmanr fig, axs = plt.subplots(1, 2, figsize=(9, 3.5)) feats = {'t1wt2w': t1wt2w, 'thickness': thickness} rotated = {'t1wt2w': t1wt2w_rotated, 'thickness': thickness_rotated} r_spin = np.empty(n_rand) mask = ~np.isnan(thickness) for k, (fn, feat) in enumerate(feats.items()): r_obs, pv_obs = spearmanr(feat[mask], embedding[mask]) # Compute perm pval for i, perm in enumerate(rotated[fn]): mask_rot = mask & ~np.isnan(perm) # Remove midline r_spin[i] = spearmanr(perm[mask_rot], embedding[mask_rot])[0] pv_spin = np.mean(np.abs(r_spin) >= np.abs(r_obs)) # Plot null dist axs[k].hist(r_spin, bins=25, density=True, alpha=0.5, color=(0.8, 0.8, 0.8)) axs[k].axvline(r_obs, lw=2, ls='--', color='k') axs[k].set_xlabel('Correlation with {}'.format(fn)) if k == 0: axs[k].set_ylabel('Density') print('{}:\n Obs : {:.5e}\n Spin: {:.5e}\n'. format(fn.capitalize(), pv_obs, pv_spin)) fig.tight_layout() plt.show() ############################################################################### # It is interesting to see that both p-values increase when taking into # consideration the auto-correlation present in the surfaces. Also, we can see # that the correlation with thickness is no longer statistically significant # after spin permutations. # # # # Moran Spectral Randomization # ------------------------------ # # Moran Spectral Randomization (MSR) computes Moran's I, a metric for spatial # auto-correlation and generates normally distributed data with similar # auto-correlation. MSR relies on a weight matrix denoting the spatial # proximity of features to one another. Within neuroimaging, one # straightforward example of this is inverse geodesic distance i.e. distance # along the cortical surface. # # In this example we will show how to use MSR to assess statistical # significance between cortical markers (here curvature and cortical t1wt2w # intensity) and the first functional connectivity gradient. We will start by # loading the left temporal lobe mask, t1w/t2w intensity as well as cortical # thickness data, and a template functional gradient from brainspace.datasets import load_mask n_pts_lh = surf_lh.n_points mask_tl, _ = load_mask(name='temporal') # Keep only the temporal lobe. embedding_tl = embedding[:n_pts_lh][mask_tl] t1wt2w_tl = t1wt2w_lh[mask_tl] curv_tl = load_marker('curvature')[0][mask_tl] ############################################################################### # We will now compute the Moran eigenvectors. This can be done either by # providing a weight matrix of spatial proximity between each vertex, or by # providing a cortical surface. Here we’ll use a cortical surface. from brainspace.null_models import MoranRandomization from brainspace.mesh import mesh_elements as me # compute spatial weight matrix w = me.get_ring_distance(surf_lh, n_ring=1, mask=mask_tl) w.data **= -1 msr = MoranRandomization(n_rep=n_rand, procedure='singleton', tol=1e-6, random_state=0) msr.fit(w) ############################################################################### # Using the Moran eigenvectors we can now compute the randomized data. curv_rand = msr.randomize(curv_tl) t1wt2w_rand = msr.randomize(t1wt2w_tl) ############################################################################### # Now that we have the randomized data, we can compute correlations between # the gradient and the real/randomised data and generate the non-parametric # p-values. fig, axs = plt.subplots(1, 2, figsize=(9, 3.5)) feats = {'t1wt2w': t1wt2w_tl, 'curvature': curv_tl} rand = {'t1wt2w': t1wt2w_rand, 'curvature': curv_rand} for k, (fn, data) in enumerate(rand.items()): r_obs, pv_obs = spearmanr(feats[fn], embedding_tl, nan_policy='omit') # Compute perm pval r_rand = np.asarray([spearmanr(embedding_tl, d)[0] for d in data]) pv_rand = np.mean(np.abs(r_rand) >= np.abs(r_obs)) # Plot null dist axs[k].hist(r_rand, bins=25, density=True, alpha=0.5, color=(0.8, 0.8, 0.8)) axs[k].axvline(r_obs, lw=2, ls='--', color='k') axs[k].set_xlabel('Correlation with {}'.format(fn)) if k == 0: axs[k].set_ylabel('Density') print('{}:\n Obs : {:.5e}\n Moran: {:.5e}\n'. format(fn.capitalize(), pv_obs, pv_rand)) fig.tight_layout() plt.show() ############################################################################### # There are some scenarios where MSR results do not follow a normal # distribution. It is relatively simple to check whether this occurs in our # data by visualizing the null distributions. Check this interesting paper # for more information `(Burt et al., 2020) <https://www.biorxiv.org/content/ # 10.1101/2020.02.18.955054v1>`_.
the-stack_106_26333
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Trimgalore(Package): """Trim Galore! is a wrapper around Cutadapt and FastQC to consistently apply adapter and quality trimming to FastQ files, with extra functionality for RRBS data.""" homepage = "https://github.com/FelixKrueger/TrimGalore" url = "https://github.com/FelixKrueger/TrimGalore/archive/0.4.4.tar.gz" version('0.6.1', sha256='658578c29d007fe66f9ab49608442be703a6fcf535db06eb82659c7edccb62b0') version('0.6.0', sha256='f374dfa4c94e2ad50c63276dda0f341fd95b29cb1d5a0e2ad56e8b0168b758ec') version('0.4.5', 'c71756042b2a65c34d483533a29dc206') version('0.4.4', 'aae1b807b48e38bae7074470203997bb') depends_on('perl', type=('build', 'run')) depends_on('py-cutadapt', type=('build', 'run')) depends_on('fastqc') def install(self, spec, prefix): filter_file(r'#!/usr/bin/perl', '#!/usr/bin/env perl', 'trim_galore') mkdirp(prefix.bin) install('trim_galore', prefix.bin)
the-stack_106_26334
"""authentik expression policy evaluator""" from ipaddress import ip_address, ip_network from typing import TYPE_CHECKING, Optional from django.http import HttpRequest from django_otp import devices_for_user from structlog.stdlib import get_logger from authentik.core.models import User from authentik.flows.planner import PLAN_CONTEXT_SSO from authentik.lib.expression.evaluator import BaseEvaluator from authentik.lib.utils.http import get_client_ip from authentik.policies.exceptions import PolicyException from authentik.policies.models import Policy, PolicyBinding from authentik.policies.process import PolicyProcess from authentik.policies.types import PolicyRequest, PolicyResult LOGGER = get_logger() if TYPE_CHECKING: from authentik.policies.expression.models import ExpressionPolicy class PolicyEvaluator(BaseEvaluator): """Validate and evaluate python-based expressions""" _messages: list[str] policy: Optional["ExpressionPolicy"] = None def __init__(self, policy_name: str): super().__init__() self._messages = [] self._context["ak_logger"] = get_logger(policy_name) self._context["ak_message"] = self.expr_func_message self._context["ak_user_has_authenticator"] = self.expr_func_user_has_authenticator self._context["ak_call_policy"] = self.expr_func_call_policy self._context["ip_address"] = ip_address self._context["ip_network"] = ip_network self._filename = policy_name or "PolicyEvaluator" def expr_func_message(self, message: str): """Wrapper to append to messages list, which is returned with PolicyResult""" self._messages.append(message) def expr_func_call_policy(self, name: str, **kwargs) -> PolicyResult: """Call policy by name, with current request""" policy = Policy.objects.filter(name=name).select_subclasses().first() if not policy: raise ValueError(f"Policy '{name}' not found.") req: PolicyRequest = self._context["request"] req.context.update(kwargs) proc = PolicyProcess(PolicyBinding(policy=policy), request=req, connection=None) return proc.profiling_wrapper() def expr_func_user_has_authenticator( self, user: User, device_type: Optional[str] = None ) -> bool: """Check if a user has any authenticator devices, optionally matching *device_type*""" user_devices = devices_for_user(user) if device_type: for device in user_devices: device_class = device.__class__.__name__.lower().replace("device", "") if device_class == device_type: return True return False return len(list(user_devices)) > 0 def set_policy_request(self, request: PolicyRequest): """Update context based on policy request (if http request is given, update that too)""" # update website/docs/expressions/_objects.md # update website/docs/expressions/_functions.md self._context["ak_is_sso_flow"] = request.context.get(PLAN_CONTEXT_SSO, False) if request.http_request: self.set_http_request(request.http_request) self._context["request"] = request self._context["context"] = request.context def set_http_request(self, request: HttpRequest): """Update context based on http request""" # update website/docs/expressions/_objects.md # update website/docs/expressions/_functions.md self._context["ak_client_ip"] = ip_address(get_client_ip(request)) self._context["http_request"] = request def handle_error(self, exc: Exception, expression_source: str): """Exception Handler""" raise PolicyException(exc) def evaluate(self, expression_source: str) -> PolicyResult: """Parse and evaluate expression. Policy is expected to return a truthy object. Messages can be added using 'do ak_message()'.""" try: result = super().evaluate(expression_source) except PolicyException as exc: # PolicyExceptions should be propagated back to the process, # which handles recording and returning a correct result raise exc except Exception as exc: # pylint: disable=broad-except LOGGER.warning("Expression error", exc=exc) return PolicyResult(False, str(exc)) else: policy_result = PolicyResult(False, *self._messages) if result is None: LOGGER.warning( "Expression policy returned None", src=expression_source, req=self._context, ) policy_result.passing = False if result: policy_result.passing = bool(result) return policy_result
the-stack_106_26335
from Node import error SYNTAX_NODE_SERIALIZATION_CODES = { # 0 is 'Token'. Needs to be defined manually # 1 is 'Unknown'. Needs to be defined manually 'UnknownDecl': 2, 'TypealiasDecl': 3, 'AssociatedtypeDecl': 4, 'IfConfigDecl': 5, 'PoundErrorDecl': 6, 'PoundWarningDecl': 7, 'PoundSourceLocation': 8, 'ClassDecl': 9, 'StructDecl': 10, 'ProtocolDecl': 11, 'ExtensionDecl': 12, 'FunctionDecl': 13, 'InitializerDecl': 14, 'DeinitializerDecl': 15, 'SubscriptDecl': 16, 'ImportDecl': 17, 'AccessorDecl': 18, 'VariableDecl': 19, 'EnumCaseDecl': 20, 'EnumDecl': 21, 'OperatorDecl': 22, 'PrecedenceGroupDecl': 23, 'UnknownExpr': 24, 'InOutExpr': 25, 'PoundColumnExpr': 26, 'TryExpr': 27, 'IdentifierExpr': 28, 'SuperRefExpr': 29, 'NilLiteralExpr': 30, 'DiscardAssignmentExpr': 31, 'AssignmentExpr': 32, 'SequenceExpr': 33, 'PoundLineExpr': 34, 'PoundFileExpr': 35, 'PoundFunctionExpr': 36, 'PoundDsohandleExpr': 37, 'SymbolicReferenceExpr': 38, 'PrefixOperatorExpr': 39, 'BinaryOperatorExpr': 40, 'ArrowExpr': 41, 'FloatLiteralExpr': 42, 'TupleExpr': 43, 'ArrayExpr': 44, 'DictionaryExpr': 45, 'ImplicitMemberExpr': 46, 'IntegerLiteralExpr': 47, 'StringLiteralExpr': 48, 'BooleanLiteralExpr': 49, 'TernaryExpr': 50, 'MemberAccessExpr': 51, 'DotSelfExpr': 52, 'IsExpr': 53, 'AsExpr': 54, 'TypeExpr': 55, 'ClosureExpr': 56, 'UnresolvedPatternExpr': 57, 'FunctionCallExpr': 58, 'SubscriptExpr': 59, 'OptionalChainingExpr': 60, 'ForcedValueExpr': 61, 'PostfixUnaryExpr': 62, 'SpecializeExpr': 63, 'KeyPathExpr': 65, 'KeyPathBaseExpr': 66, 'ObjcKeyPathExpr': 67, 'ObjcSelectorExpr': 68, 'EditorPlaceholderExpr': 69, 'ObjectLiteralExpr': 70, 'UnknownStmt': 71, 'ContinueStmt': 72, 'WhileStmt': 73, 'DeferStmt': 74, 'ExpressionStmt': 75, 'RepeatWhileStmt': 76, 'GuardStmt': 77, 'ForInStmt': 78, 'SwitchStmt': 79, 'DoStmt': 80, 'ReturnStmt': 81, 'FallthroughStmt': 82, 'BreakStmt': 83, 'DeclarationStmt': 84, 'ThrowStmt': 85, 'IfStmt': 86, 'Decl': 87, 'Expr': 88, 'Stmt': 89, 'Type': 90, 'Pattern': 91, 'CodeBlockItem': 92, 'CodeBlock': 93, 'DeclNameArgument': 94, 'DeclNameArguments': 95, # removed: 'FunctionCallArgument': 96, 'TupleExprElement': 97, 'ArrayElement': 98, 'DictionaryElement': 99, 'ClosureCaptureItem': 100, 'ClosureCaptureSignature': 101, 'ClosureParam': 102, 'ClosureSignature': 103, 'StringSegment': 104, 'ExpressionSegment': 105, 'ObjcNamePiece': 106, 'TypeInitializerClause': 107, 'ParameterClause': 108, 'ReturnClause': 109, 'FunctionSignature': 110, 'IfConfigClause': 111, 'PoundSourceLocationArgs': 112, 'DeclModifier': 113, 'InheritedType': 114, 'TypeInheritanceClause': 115, 'MemberDeclBlock': 116, 'MemberDeclListItem': 117, 'SourceFile': 118, 'InitializerClause': 119, 'FunctionParameter': 120, 'AccessLevelModifier': 121, 'AccessPathComponent': 122, 'AccessorParameter': 123, 'AccessorBlock': 124, 'PatternBinding': 125, 'EnumCaseElement': 126, 'OperatorPrecedenceAndTypes': 127, 'PrecedenceGroupRelation': 128, 'PrecedenceGroupNameElement': 129, 'PrecedenceGroupAssignment': 130, 'PrecedenceGroupAssociativity': 131, 'Attribute': 132, 'LabeledSpecializeEntry': 133, 'ImplementsAttributeArguments': 134, 'ObjCSelectorPiece': 135, 'WhereClause': 136, 'ConditionElement': 137, 'AvailabilityCondition': 138, 'MatchingPatternCondition': 139, 'OptionalBindingCondition': 140, 'ElseIfContinuation': 141, 'ElseBlock': 142, 'SwitchCase': 143, 'SwitchDefaultLabel': 144, 'CaseItem': 145, 'SwitchCaseLabel': 146, 'CatchClause': 147, 'GenericWhereClause': 148, 'SameTypeRequirement': 149, 'GenericParameter': 150, 'GenericParameterClause': 151, 'ConformanceRequirement': 152, 'CompositionTypeElement': 153, 'TupleTypeElement': 154, 'GenericArgument': 155, 'GenericArgumentClause': 156, 'TypeAnnotation': 157, 'TuplePatternElement': 158, 'AvailabilityArgument': 159, 'AvailabilityLabeledArgument': 160, 'AvailabilityVersionRestriction': 161, 'VersionTuple': 162, 'CodeBlockItemList': 163, # removed: 'FunctionCallArgumentList': 164, 'TupleExprElementList': 165, 'ArrayElementList': 166, 'DictionaryElementList': 167, 'StringLiteralSegments': 168, 'DeclNameArgumentList': 169, 'ExprList': 170, 'ClosureCaptureItemList': 171, 'ClosureParamList': 172, 'ObjcName': 173, 'FunctionParameterList': 174, 'IfConfigClauseList': 175, 'InheritedTypeList': 176, 'MemberDeclList': 177, 'ModifierList': 178, 'AccessPath': 179, 'AccessorList': 180, 'PatternBindingList': 181, 'EnumCaseElementList': 182, 'PrecedenceGroupAttributeList': 183, 'PrecedenceGroupNameList': 184, 'TokenList': 185, 'NonEmptyTokenList': 186, 'AttributeList': 187, 'SpecializeAttributeSpecList': 188, 'ObjCSelector': 189, 'SwitchCaseList': 190, 'CatchClauseList': 191, 'CaseItemList': 192, 'ConditionElementList': 193, 'GenericRequirementList': 194, 'GenericParameterList': 195, 'CompositionTypeElementList': 196, 'TupleTypeElementList': 197, 'GenericArgumentList': 198, 'TuplePatternElementList': 199, 'AvailabilitySpecList': 200, 'UnknownPattern': 201, 'EnumCasePattern': 202, 'IsTypePattern': 203, 'OptionalPattern': 204, 'IdentifierPattern': 205, 'AsTypePattern': 206, 'TuplePattern': 207, 'WildcardPattern': 208, 'ExpressionPattern': 209, 'ValueBindingPattern': 210, 'UnknownType': 211, 'SimpleTypeIdentifier': 212, 'MemberTypeIdentifier': 213, 'ClassRestrictionType': 214, 'ArrayType': 215, 'DictionaryType': 216, 'MetatypeType': 217, 'OptionalType': 218, 'ImplicitlyUnwrappedOptionalType': 219, 'CompositionType': 220, 'TupleType': 221, 'FunctionType': 222, 'AttributedType': 223, 'YieldStmt': 224, 'YieldList': 225, 'IdentifierList': 226, 'NamedAttributeStringArgument': 227, 'DeclName': 228, 'PoundAssertStmt': 229, 'SomeType': 230, 'CustomAttribute': 231, 'GenericRequirement': 232, 'DifferentiableAttributeArguments': 233, 'DifferentiationParamsClause': 234, 'DifferentiationParams': 235, 'DifferentiationParamList': 236, 'DifferentiationParam': 237, 'DifferentiableAttributeFuncSpecifier': 238, 'FunctionDeclName': 239, 'PoundFilePathExpr': 240, } def verify_syntax_node_serialization_codes(nodes, serialization_codes): # Verify that all nodes have serialization codes for node in nodes: if not node.is_base() and node.syntax_kind not in serialization_codes: error('Node %s has no serialization code' % node.syntax_kind) # Verify that no serialization code is used twice used_codes = set() for serialization_code in serialization_codes.values(): if serialization_code in used_codes: error("Serialization code %d used twice" % serialization_code) used_codes.add(serialization_code) def get_serialization_code(syntax_kind): return SYNTAX_NODE_SERIALIZATION_CODES[syntax_kind]
the-stack_106_26336
import graphene import graphene_django from typing import Dict, Any from django.db.models.query import QuerySet from meetup.models import Meetup from meetup.models import Event from meetup.models import Attendee from meetup.models import Attendance class MeetupType(graphene_django.DjangoObjectType): """GraphQL type for Meetup model""" class Meta: model = Meetup class EventType(graphene_django.DjangoObjectType): """GraphQL type for Event model""" class Meta: model = Event class AttendeeType(graphene_django.DjangoObjectType): """GraphQL type for Attendee model""" class Meta: model = Attendee class AttendanceType(graphene_django.DjangoObjectType): """GraphQL type for Attendance model""" class Meta: model = Attendance class MeetupQuery: """Query which provides access to all meetups.""" meetup = graphene.Field( MeetupType, id=graphene.Int(), name=graphene.String(), description="Fetch a specific meetup by specifying the 'id' or 'name'." ) all_meetups = graphene.List( MeetupType, limit=graphene.Int(), description="All meetups available in the application." ) def resolve_meetup(self, info: Any, **kwargs: Dict) -> Meetup: """ Args: info (Any): Returns: A Meetup instance """ pk = kwargs.get('id', None) name = kwargs.get('name', None) if pk is not None: return Meetup.objects.get(pk=pk) if name is not None: return Meetup.objects.get(name=name) def resolve_all_meetups(self, info: Any, **kwargs: Dict) -> QuerySet: """Return a list of all meetups. Optionally limit the records if the client provides a `limit` input. Args: info (Any): Returns: A Meetup queryset """ limit = kwargs.get('limit', None) meetups = Meetup.objects.all() if limit is None: return meetups return meetups[:limit] class EventQuery: event = graphene.Field( EventType, id=graphene.Int(), name=graphene.String() ) all_events = graphene.List( EventType, limit=graphene.Int() ) def resolve_event(self, info: Any, **kwargs: Dict) -> Event: """ Args: info (Any): Returns: A Event instance """ pk = kwargs.get('id', None) name = kwargs.get('name', None) if pk is not None: return Event.objects.get(pk=pk) if name is not None: return Event.objects.get(name=name) def resolve_all_events(self, info: Any, **kwargs: Dict) -> QuerySet: """ Args: info (Any): Returns: A Event queryset """ limit = kwargs.get('limit', None) events = Event.objects.all() if limit is None: return events return events[:limit] class AttendeeQuery: attendee = graphene.Field( AttendeeType, id=graphene.Int(), name=graphene.String() ) all_attendees = graphene.List(AttendeeType) def resolve_attendee(self, info: Any, **kwargs: Dict) -> Attendee: """ Args: info (Any): Returns: An Attendee instance """ pk = kwargs.get('id', None) name = kwargs.get('name', None) if pk is not None: return Attendee.objects.get(pk=pk) if name is not None: return Attendee.objects.get(name=name) def resolve_all_attendees(self, info: Any, **kwargs: Dict) -> QuerySet: """ Args: info (Any): Returns: An Attendee queryset """ return Attendee.objects.all() class AttendanceQuery: attendance = graphene.Field(AttendanceType, id=graphene.Int()) all_attendances = graphene.List(AttendanceType) def resolve_attendance(self, info: Any, **kwargs: Dict) -> Attendance: """ Args: info (Any): Returns: An Attendance instance """ pk = kwargs.get('id', None) if pk is None: return return Attendance.objects.get(pk=pk) def resolve_all_attendances(self, info: Any, **kwargs: Dict) -> QuerySet: """ Args: info (Any): Returns: An Attendance queryset """ return Attendance.objects.all() class Query( MeetupQuery, EventQuery, AttendeeQuery, AttendanceQuery, graphene.ObjectType ): """ # Root Query ### Root query for the application. This documentation comes directly from the doc string for the `meetup.schema:Query class`. The doc string contains markdown. The root query of the application provides the access to the following: - MeetupQuery - EventQuery - AttendeeQuery - AttendanceQuery """ pass
the-stack_106_26338
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import logging from datetime import datetime from io import BytesIO from typing import Any from zipfile import ZipFile from flask import g, request, Response, send_file from flask_appbuilder.api import expose, protect, rison, safe from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_babel import ngettext from superset.commands.importers.exceptions import NoValidFilesFoundError from superset.commands.importers.v1.utils import get_contents_from_bundle from superset.constants import MODEL_API_RW_METHOD_PERMISSION_MAP, RouteMethod from superset.databases.filters import DatabaseFilter from superset.extensions import event_logger from superset.models.sql_lab import SavedQuery from superset.queries.saved_queries.commands.bulk_delete import ( BulkDeleteSavedQueryCommand, ) from superset.queries.saved_queries.commands.exceptions import ( SavedQueryBulkDeleteFailedError, SavedQueryNotFoundError, ) from superset.queries.saved_queries.commands.export import ExportSavedQueriesCommand from superset.queries.saved_queries.commands.importers.dispatcher import ( ImportSavedQueriesCommand, ) from superset.queries.saved_queries.filters import ( SavedQueryAllTextFilter, SavedQueryFavoriteFilter, SavedQueryFilter, ) from superset.queries.saved_queries.schemas import ( get_delete_ids_schema, get_export_ids_schema, openapi_spec_methods_override, ) from superset.views.base_api import ( BaseSupersetModelRestApi, requires_form_data, statsd_metrics, ) logger = logging.getLogger(__name__) class SavedQueryRestApi(BaseSupersetModelRestApi): datamodel = SQLAInterface(SavedQuery) include_route_methods = RouteMethod.REST_MODEL_VIEW_CRUD_SET | { RouteMethod.EXPORT, RouteMethod.RELATED, RouteMethod.DISTINCT, RouteMethod.IMPORT, "bulk_delete", # not using RouteMethod since locally defined } class_permission_name = "SavedQuery" method_permission_name = MODEL_API_RW_METHOD_PERMISSION_MAP resource_name = "saved_query" allow_browser_login = True base_filters = [["id", SavedQueryFilter, lambda: []]] show_columns = [ "created_by.first_name", "created_by.id", "created_by.last_name", "database.database_name", "database.id", "description", "id", "label", "schema", "sql", "sql_tables", ] list_columns = [ "changed_on_delta_humanized", "created_on", "created_by.first_name", "created_by.id", "created_by.last_name", "database.database_name", "database.id", "db_id", "description", "id", "label", "schema", "sql", "sql_tables", "rows", "last_run_delta_humanized", "extra", ] add_columns = ["db_id", "description", "label", "schema", "sql"] edit_columns = add_columns order_columns = [ "schema", "label", "description", "sql", "rows", "created_by.first_name", "database.database_name", "created_on", "changed_on_delta_humanized", "last_run_delta_humanized", ] search_columns = ["id", "database", "label", "schema", "created_by"] search_filters = { "id": [SavedQueryFavoriteFilter], "label": [SavedQueryAllTextFilter], } apispec_parameter_schemas = { "get_delete_ids_schema": get_delete_ids_schema, "get_export_ids_schema": get_export_ids_schema, } openapi_spec_tag = "Queries" openapi_spec_methods = openapi_spec_methods_override related_field_filters = { "database": "database_name", } filter_rel_fields = {"database": [["id", DatabaseFilter, lambda: []]]} allowed_rel_fields = {"database"} allowed_distinct_fields = {"schema"} def pre_add(self, item: SavedQuery) -> None: item.user = g.user def pre_update(self, item: SavedQuery) -> None: self.pre_add(item) @expose("/", methods=["DELETE"]) @protect() @safe @statsd_metrics @rison(get_delete_ids_schema) def bulk_delete(self, **kwargs: Any) -> Response: """Delete bulk Saved Queries --- delete: description: >- Deletes multiple saved queries in a bulk operation. parameters: - in: query name: q content: application/json: schema: $ref: '#/components/schemas/get_delete_ids_schema' responses: 200: description: Saved queries bulk delete content: application/json: schema: type: object properties: message: type: string 401: $ref: '#/components/responses/401' 404: $ref: '#/components/responses/404' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ item_ids = kwargs["rison"] try: BulkDeleteSavedQueryCommand(g.user, item_ids).run() return self.response( 200, message=ngettext( "Deleted %(num)d saved query", "Deleted %(num)d saved queries", num=len(item_ids), ), ) except SavedQueryNotFoundError: return self.response_404() except SavedQueryBulkDeleteFailedError as ex: return self.response_422(message=str(ex)) @expose("/export/", methods=["GET"]) @protect() @safe @statsd_metrics @rison(get_export_ids_schema) def export(self, **kwargs: Any) -> Response: """Export saved queries --- get: description: >- Exports multiple saved queries and downloads them as YAML files parameters: - in: query name: q content: application/json: schema: $ref: '#/components/schemas/get_export_ids_schema' responses: 200: description: A zip file with saved query(ies) and database(s) as YAML content: application/zip: schema: type: string format: binary 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 404: $ref: '#/components/responses/404' 500: $ref: '#/components/responses/500' """ token = request.args.get("token") requested_ids = kwargs["rison"] timestamp = datetime.now().strftime("%Y%m%dT%H%M%S") root = f"saved_query_export_{timestamp}" filename = f"{root}.zip" buf = BytesIO() with ZipFile(buf, "w") as bundle: try: for file_name, file_content in ExportSavedQueriesCommand( requested_ids ).run(): with bundle.open(f"{root}/{file_name}", "w") as fp: fp.write(file_content.encode()) except SavedQueryNotFoundError: return self.response_404() buf.seek(0) response = send_file( buf, mimetype="application/zip", as_attachment=True, attachment_filename=filename, ) if token: response.set_cookie(token, "done", max_age=600) return response @expose("/import/", methods=["POST"]) @protect() @statsd_metrics @event_logger.log_this_with_context( action=lambda self, *args, **kwargs: f"{self.__class__.__name__}.import_", log_to_statsd=False, ) @requires_form_data def import_(self) -> Response: """Import Saved Queries with associated databases --- post: requestBody: required: true content: multipart/form-data: schema: type: object properties: formData: description: upload file (ZIP) type: string format: binary passwords: description: >- JSON map of passwords for each featured database in the ZIP file. If the ZIP includes a database config in the path `databases/MyDatabase.yaml`, the password should be provided in the following format: `{"databases/MyDatabase.yaml": "my_password"}`. type: string overwrite: description: overwrite existing saved queries? type: boolean responses: 200: description: Saved Query import result content: application/json: schema: type: object properties: message: type: string 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ upload = request.files.get("formData") if not upload: return self.response_400() with ZipFile(upload) as bundle: contents = get_contents_from_bundle(bundle) if not contents: raise NoValidFilesFoundError() passwords = ( json.loads(request.form["passwords"]) if "passwords" in request.form else None ) overwrite = request.form.get("overwrite") == "true" command = ImportSavedQueriesCommand( contents, passwords=passwords, overwrite=overwrite ) command.run() return self.response(200, message="OK")
the-stack_106_26339
# # -*- coding: utf-8 -*- # Copyright 2019 Cisco and/or its affiliates. # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """ The nxos hsrp_interfaces class This class creates a command set to bring the current device configuration to a desired end-state. The command set is based on a comparison of the current configuration (as dict) and the provided configuration (as dict). """ from __future__ import absolute_import, division, print_function __metaclass__ = type from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.cfg.base import ( ConfigBase, ) from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import ( dict_diff, to_list, remove_empties, ) from ansible_collections.cisco.nxos.plugins.module_utils.network.nxos.facts.facts import ( Facts, ) from ansible_collections.cisco.nxos.plugins.module_utils.network.nxos.utils.utils import ( flatten_dict, get_interface_type, normalize_interface, search_obj_in_list, vlan_range_to_list, ) class Hsrp_interfaces(ConfigBase): """ The nxos_hsrp_interfaces class """ gather_subset = ["!all", "!min"] gather_network_resources = ["hsrp_interfaces"] def __init__(self, module): super(Hsrp_interfaces, self).__init__(module) def get_hsrp_interfaces_facts(self, data=None): """ Get the 'facts' (the current configuration) :rtype: A dictionary :returns: The current configuration as a dictionary """ facts, _warnings = Facts(self._module).get_facts( self.gather_subset, self.gather_network_resources, data=data ) hsrp_interfaces_facts = facts["ansible_network_resources"].get( "hsrp_interfaces", [] ) return hsrp_interfaces_facts def edit_config(self, commands): return self._connection.edit_config(commands) def execute_module(self): """ Execute the module :rtype: A dictionary :returns: The result from module execution """ result = {"changed": False} warnings = [] commands = [] if self.state in self.ACTION_STATES: existing_hsrp_interfaces_facts = self.get_hsrp_interfaces_facts() else: existing_hsrp_interfaces_facts = [] if self.state in self.ACTION_STATES or self.state == "rendered": commands.extend(self.set_config(existing_hsrp_interfaces_facts)) if commands and self.state in self.ACTION_STATES: if not self._module.check_mode: self.edit_config(commands) result["changed"] = True if self.state in self.ACTION_STATES: result["commands"] = commands if self.state in self.ACTION_STATES or self.state == "gathered": changed_hsrp_interfaces_facts = self.get_hsrp_interfaces_facts() elif self.state == "rendered": result["rendered"] = commands elif self.state == "parsed": running_config = self._module.params["running_config"] if not running_config: self._module.fail_json( msg="value of running_config parameter must not be empty for state parsed" ) result["parsed"] = self.get_hsrp_interfaces_facts( data=running_config ) if self.state in self.ACTION_STATES: result["before"] = existing_hsrp_interfaces_facts if result["changed"]: result["after"] = changed_hsrp_interfaces_facts elif self.state == "gathered": result["gathered"] = changed_hsrp_interfaces_facts result["warnings"] = warnings return result def set_config(self, existing_hsrp_interfaces_facts): """ Collect the configuration from the args passed to the module, collect the current configuration (as a dict from facts) :rtype: A list :returns: the commands necessary to migrate the current configuration to the desired configuration """ config = self._module.params["config"] want = [] if config: for w in config: w.update({"name": normalize_interface(w["name"])}) want.append(w) have = existing_hsrp_interfaces_facts resp = self.set_state(want, have) return to_list(resp) def set_state(self, want, have): """ Select the appropriate function based on the state provided :param want: the desired configuration as a dictionary :param have: the current configuration as a dictionary :rtype: A list :returns: the commands necessary to migrate the current configuration to the desired configuration """ state = self._module.params["state"] # check for 'config' keyword in play if ( state in ("overridden", "merged", "replaced", "rendered") and not want ): self._module.fail_json( msg="value of config parameter must not be empty for state {0}".format( state ) ) cmds = list() if state == "overridden": cmds.extend(self._state_overridden(want, have)) elif state == "deleted": cmds.extend(self._state_deleted(want, have)) else: for w in want: if state in ["merged", "rendered"]: cmds.extend(self._state_merged(flatten_dict(w), have)) elif state == "replaced": cmds.extend(self._state_replaced(flatten_dict(w), have)) return cmds def _state_replaced(self, want, have): """ The command generator when state is replaced :rtype: A list :returns: the commands necessary to migrate the current configuration to the desired configuration """ cmds = [] obj_in_have = search_obj_in_list(want["name"], have, "name") if obj_in_have: diff = dict_diff(want, obj_in_have) else: diff = want merged_cmds = self.set_commands(want, have) if "name" not in diff: diff["name"] = want["name"] replaced_cmds = [] if obj_in_have: replaced_cmds = self.del_attribs(diff) if replaced_cmds or merged_cmds: for cmd in set(replaced_cmds).intersection(set(merged_cmds)): merged_cmds.remove(cmd) cmds.extend(replaced_cmds) cmds.extend(merged_cmds) return cmds def _state_overridden(self, want, have): """ The command generator when state is overridden :rtype: A list :returns: the commands necessary to migrate the current configuration to the desired configuration """ cmds = [] for h in have: # Check existing states, set to default if not in want or different than want h = flatten_dict(h) obj_in_want = search_obj_in_list(h["name"], want, "name") if obj_in_want: # Let the 'want' loop handle all vals for this interface continue cmds.extend(self.del_attribs(h)) for w in want: # Update any want attrs if needed. The overridden state considers # the play as the source of truth for the entire device, therefore # set any unspecified attrs to their default state. w = self.set_none_vals_to_defaults(flatten_dict(w)) cmds.extend(self.set_commands(w, have)) return cmds def _state_merged(self, want, have): """ The command generator when state is merged :rtype: A list :returns: the commands necessary to merge the provided into the current configuration """ return self.set_commands(want, have) def _state_deleted(self, want, have): """ The command generator when state is deleted :rtype: A list :returns: the commands necessary to remove the current configuration of the provided objects """ if not (want or have): return [] cmds = [] if want: for w in want: obj_in_have = flatten_dict( search_obj_in_list(w["name"], have, "name") ) cmds.extend(self.del_attribs(obj_in_have)) else: for h in have: cmds.extend(self.del_attribs(flatten_dict(h))) return cmds def del_attribs(self, obj): if not obj or len(obj.keys()) == 1: return [] cmds = [] if "bfd" in obj: cmds.append("no hsrp bfd") if cmds: cmds.insert(0, "interface " + obj["name"]) return cmds def set_none_vals_to_defaults(self, want): # Set dict None values to default states if "bfd" in want and want["bfd"] is None: want["bfd"] = "disable" return want def diff_of_dicts(self, want, obj_in_have): diff = set(want.items()) - set(obj_in_have.items()) diff = dict(diff) if diff and want["name"] == obj_in_have["name"]: diff.update({"name": want["name"]}) return diff def add_commands(self, want, obj_in_have): if not want: return [] cmds = [] if "bfd" in want and want["bfd"] is not None: if want["bfd"] == "enable": cmd = "hsrp bfd" cmds.append(cmd) elif ( want["bfd"] == "disable" and obj_in_have and obj_in_have.get("bfd") == "enable" ): cmd = "no hsrp bfd" cmds.append(cmd) if cmds: cmds.insert(0, "interface " + want["name"]) return cmds def set_commands(self, want, have): cmds = [] obj_in_have = search_obj_in_list(want["name"], have, "name") if not obj_in_have: cmds = self.add_commands(want, obj_in_have) else: diff = self.diff_of_dicts(want, obj_in_have) cmds = self.add_commands(diff, obj_in_have) return cmds
the-stack_106_26340
""" Low-level BLAS functions (:mod:`scipy.linalg.blas`) =================================================== This module contains low-level functions from the BLAS library. .. versionadded:: 0.12.0 .. warning:: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer using the higher-level routines in `scipy.linalg`. Finding functions ----------------- .. autosummary:: :toctree: generated/ get_blas_funcs find_best_blas_type BLAS Level 1 functions ---------------------- .. autosummary:: :toctree: generated/ caxpy ccopy cdotc cdotu crotg cscal csrot csscal cswap dasum daxpy dcopy ddot dnrm2 drot drotg drotm drotmg dscal dswap dzasum dznrm2 icamax idamax isamax izamax sasum saxpy scasum scnrm2 scopy sdot snrm2 srot srotg srotm srotmg sscal sswap zaxpy zcopy zdotc zdotu zdrot zdscal zrotg zscal zswap BLAS Level 2 functions ---------------------- .. autosummary:: :toctree: generated/ cgemv cgerc cgeru chemv ctrmv csyr cher cher2 dgemv dger dsymv dtrmv dsyr dsyr2 sgemv sger ssymv strmv ssyr ssyr2 zgemv zgerc zgeru zhemv ztrmv zsyr zher zher2 BLAS Level 3 functions ---------------------- .. autosummary:: :toctree: generated/ cgemm chemm cherk cher2k csymm csyrk csyr2k dgemm dsymm dsyrk dsyr2k sgemm ssymm ssyrk ssyr2k zgemm zhemm zherk zher2k zsymm zsyrk zsyr2k """ # # Author: Pearu Peterson, March 2002 # refactoring by Fabian Pedregosa, March 2010 # from __future__ import division, print_function, absolute_import __all__ = ['get_blas_funcs', 'find_best_blas_type'] import numpy as _np from scipy.linalg import _fblas try: from scipy.linalg import _cblas except ImportError: _cblas = None # Expose all functions (only fblas --- cblas is an implementation detail) empty_module = None from scipy.linalg._fblas import * del empty_module # 'd' will be default for 'i',.. _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'} # some convenience alias for complex functions _blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2', 'cdot': 'cdotc', 'zdot': 'zdotc', 'cger': 'cgerc', 'zger': 'zgerc', 'sdotc': 'sdot', 'sdotu': 'sdot', 'ddotc': 'ddot', 'ddotu': 'ddot'} def find_best_blas_type(arrays=(), dtype=None): """Find best-matching BLAS/LAPACK type. Arrays are used to determine the optimal prefix of BLAS routines. Parameters ---------- arrays : sequence of ndarrays, optional Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used. dtype : str or dtype, optional Data-type specifier. Not used if `arrays` is non-empty. Returns ------- prefix : str BLAS/LAPACK prefix character. dtype : dtype Inferred Numpy data type. prefer_fortran : bool Whether to prefer Fortran order routines over C order. """ dtype = _np.dtype(dtype) prefer_fortran = False if arrays: # use the most generic type in arrays dtypes = [ar.dtype for ar in arrays] dtype = _np.find_common_type(dtypes, ()) try: index = dtypes.index(dtype) except ValueError: index = 0 if arrays[index].flags['FORTRAN']: # prefer Fortran for leading array with column major order prefer_fortran = True prefix = _type_conv.get(dtype.char, 'd') if dtype.char == 'G': # complex256 -> complex128 (i.e., C long double -> C double) dtype = _np.dtype('D') elif dtype.char not in 'fdFD': dtype = _np.dtype('d') return prefix, dtype, prefer_fortran def _get_funcs(names, arrays, dtype, lib_name, fmodule, cmodule, fmodule_name, cmodule_name, alias): """ Return available BLAS/LAPACK functions. Used also in lapack.py. See get_blas_funcs for docstring. """ funcs = [] unpack = False dtype = _np.dtype(dtype) module1 = (cmodule, cmodule_name) module2 = (fmodule, fmodule_name) if isinstance(names, str): names = (names,) unpack = True prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype) if prefer_fortran: module1, module2 = module2, module1 for i, name in enumerate(names): func_name = prefix + name func_name = alias.get(func_name, func_name) func = getattr(module1[0], func_name, None) module_name = module1[1] if func is None: func = getattr(module2[0], func_name, None) module_name = module2[1] if func is None: raise ValueError( '%s function %s could not be found' % (lib_name, func_name)) func.module_name, func.typecode = module_name, prefix func.dtype = dtype func.prefix = prefix # Backward compatibility funcs.append(func) if unpack: return funcs[0] else: return funcs def get_blas_funcs(names, arrays=(), dtype=None): """Return available BLAS function objects from names. Arrays are used to determine the optimal prefix of BLAS routines. Parameters ---------- names : str or sequence of str Name(s) of BLAS functions without type prefix. arrays : sequence of ndarrays, optional Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used. dtype : str or dtype, optional Data-type specifier. Not used if `arrays` is non-empty. Returns ------- funcs : list List containing the found function(s). Notes ----- This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred. In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {'s', 'd', 'c', 'z'} for the numpy types {float32, float64, complex64, complex128} respectively. The code and the dtype are stored in attributes `typecode` and `dtype` of the returned functions. """ return _get_funcs(names, arrays, dtype, "BLAS", _fblas, _cblas, "fblas", "cblas", _blas_alias)
the-stack_106_26341
from django.shortcuts import render, redirect from django.conf import settings from App.models import User from App.models.song import Song, SpotifyTrackInput from App.forms import SpotifyTrackInputForm, SpotifySearchForm import os import sys import spotipy from spotipy.oauth2 import SpotifyOAuth import spotify_cred as cred # this is a pointer to the module object instance itself. this = sys.modules[__name__] # declare the spotify_api at the module level this.spotify_api = None # define the folder to cache spotify tokens CACHE_FOLDER = os.path.join(settings.MEDIA_ROOT, '.spotify_caches') class Spotify_Api(): ''' This class is a wrapper around the Spotipy library to access Spotify content''' def __init__(self, auth_manager, cache_handler, user): '''This app supports one spotify user at a time. The auth_manager and cache_handler are passed in along with the Django user object ''' self.auth_manager = auth_manager self.cache_handler = cache_handler self.user = user # initialize the API self.spotify = spotipy.Spotify(auth_manager = self.auth_manager) # this object caches the Spotify display name of the current user self.user_display_name = None ################################################################# # CONVERSION METHODS FOR SPOTIFY CONTENT TO DJANGO MODELS ################################################################# def track_info_subset (self, spotify_track, album_name=None, cover_art=None): '''This function saves the information about a Spotify track needed by our app''' new_track = dict() # populate main fields new_track['id'] = spotify_track['id'] new_track['name'] = spotify_track['name'] new_track['artist_name'] = spotify_track['artists'][0]['name'] if 'album' in spotify_track: new_track['album_name'] = spotify_track['album']['name'] if len(spotify_track['album']['images']) > 0: new_track['cover_art'] = spotify_track['album']['images'][0]['url'] else: new_track['cover_art'] = None else: new_track['album_name'] = album_name new_track['cover_art'] = cover_art features = self.spotify.audio_features(spotify_track['id']) new_track['tempo'] = round(features[0]['tempo']) # build a duration string seconds = round(spotify_track['duration_ms']/1000) minutes = seconds // 60 seconds = seconds - (minutes * 60) new_track['duration'] = str(minutes) + ":" + "{:02d}".format(seconds) return new_track def track_list_info(self, tracks): '''This method processes a list of spotify tracks and returns the required information for each track. It also returns the offset, last, and total index fields, which can be used to get another page of tracks.''' track_list = list() for track in tracks['items']: if 'track' in track: track_list.append(self.track_info_subset(track['track'])) else: track_list.append(self.track_info_subset(track)) return {'track_list': track_list, 'first': tracks['offset'] + 1, 'last' : tracks['offset'] + len(tracks['items']), 'total': tracks['total']} def album_info_subset (self, spotify_album): '''This function saves the information about a Spotify album needed by our app''' new_album = dict() new_album['id'] = spotify_album['id'] new_album['album_name'] = spotify_album['name'] new_album['artist_name'] = spotify_album['artists'][0]['name'] if len(spotify_album['images']) > 0: new_album['cover_art'] = spotify_album['images'][0]['url'] else: new_album['cover_art'] = settings.STATIC_URL + "img/default.png" return new_album def album_list_info(self, albums): '''This method processes a list of spotify albums and returns the required information for each album. It also returns the offset, last, and total index fields, which can be used to get another page of albums.''' album_list = list() for i in albums['items']: if 'album' in i: album_list.append(self.album_info_subset(i['album'])) else: album_list.append(self.album_info_subset(i)) return {'album_list': album_list, 'first': albums['offset'] + 1, 'last' : albums['offset'] + len(albums['items']), 'total': albums['total']} def artist_info_subset (self, spotify_artist): '''This function saves the information about a Spotify artist needed by our app''' new_artist = dict() new_artist['id'] = spotify_artist['id'] new_artist['artist_name'] = spotify_artist['name'] if len(spotify_artist['images']) > 0: new_artist['artist_image'] = spotify_artist['images'][0]['url'] else: new_artist['artist_image'] = settings.STATIC_URL + "img/default.png" return new_artist def artist_list_info (self, artists): '''This method processes a list of spotify artists and returns the required information for each artist. It also returns the offset, last, and total index fields, which can be used to get another page of artists.''' artist_list = list() for i in artists['items']: artist_list.append(self.artist_info_subset(i)) if 'offset' in artists: return {'artist_list': artist_list, 'first': artists['offset'] + 1, 'last' : artists['offset'] + len(artists['items']), 'total': artists['total']} else: return {'artist_list': artist_list, 'first': 1, 'last' : len(artists['items']), 'total': artists['total']} def playlist_info_subset (self, spotify_playlist): '''This function saves the information about a Spotify artist needed by our app''' new_playlist = dict() new_playlist['id'] = spotify_playlist['id'] new_playlist['name'] = spotify_playlist['name'] new_playlist['owner'] = spotify_playlist['owner']['display_name'] if len(spotify_playlist['images']) > 0: new_playlist['image'] = spotify_playlist['images'][0]['url'] else: new_playlist['image'] = settings.STATIC_URL + "img/default.png" return new_playlist def info_for_playlists (self, playlists): '''This method processes a list of spotify playlists and returns the required information for each playlist. It also returns the offset, last, and total index fields, which can be used to get another page of playlists.''' list_of_playlists = list() for i in playlists['items']: list_of_playlists.append(self.playlist_info_subset(i)) return {'list_of_playlists': list_of_playlists, 'first': playlists['offset'] + 1, 'last' : playlists['offset'] + len(playlists['items']), 'total': playlists['total']} def current_username(self): '''This method returns the display name of the Spotify user.''' # if na name is saved, call Spotify to get the name if self.user_display_name is None: self.user_display_name = self.spotify.current_user()["display_name"] return self.user_display_name def recently_played_tracks(self, limit=16): '''This method returns the last 16 unique tracks played by the current user.''' items = self.spotify.current_user_recently_played(limit=25)['items'] unique_tracks = list() for item in items: # check if this item is already in the list for t in unique_tracks: if item['track']['id'] == t['id']: break; else: # this item is not in the track list new_track = self.track_info_subset(item['track']) unique_tracks.append(new_track) # stop when track limit is readhed if len(unique_tracks) >= limit: break return unique_tracks def album_collection(self, offset=0): '''This method returns a list of albums saved in the current user's spotify library.''' albums = self.spotify.current_user_saved_albums(offset=offset, limit=16) return self.album_list_info(albums) def artists_followed(self): '''This method returns a list of the first 16 artists follwed by the current user. Note: the spotify API doesn't provide an offset or total fields for this oepration.''' artists = self.spotify.current_user_followed_artists(limit=16)['artists'] return self.artist_list_info(artists) def playlist_collection(self): '''This method returns a list of playlists saved in the current user's spotify library.''' playlists = self.spotify.current_user_playlists(limit=16) return self.info_for_playlists(playlists) def saved_tracks(self, offset): '''This method returns a list of tracks liked on Spotify the current user.''' tracks = self.spotify.current_user_saved_tracks(offset=offset, limit=16) return self.track_list_info(tracks) def artist_albums(self, artist_id, offset=0): '''This method returns a list of up to 16 albums by a given artist. The offset parameter is used to get a different set of albums.''' albums = self.spotify.artist_albums(artist_id, limit=16, offset=offset) return self.album_list_info(albums) def album_tracks(self, album_id): '''This method returns a list of all tracks on a given album.''' album = self.spotify.album(album_id) # get the album tracks = album['tracks']['items'] # get the tracks from that album track_list = list() for track in tracks: # pass in the album name and cover art, as that info is not stored with each track track_list.append(self.track_info_subset(track, album['name'], album['images'][0]['url'])) return {'track_list': track_list, 'first': album['tracks']['offset'] + 1, 'last' : album['tracks']['offset'] + len(album['tracks']['items']), 'total': album['tracks']['total'] } def artist_tracks(self, artist_id): '''This method returns a list of the top 10 tracks for a given artist.''' tracks = self.spotify.artist_top_tracks(artist_id)['tracks'] track_list = list() for track in tracks: track_list.append(self.track_info_subset(track)) return track_list def playlist_tracks(self, playlist_id, offset): '''This method returns a list of up to 16 tracks from a given playlist. The offset parameter is used to get a different set of tracks.''' tracks = self.spotify.playlist_tracks(playlist_id, offset=offset, limit=16) return self.track_list_info(tracks) def track_info(self, track_id): '''This method returns the information for a single spotify track.''' track = self.spotify.track(track_id) return self.track_info_subset(track) def search(self, search_term, content_type, offset=0): '''This method searches spotify for items matching the given search term. The content_type can be 'album', 'artist', 'playlist', or 'track'. The offset parameter can be used to get additional pages of matching items.''' results = self.spotify.search(q=search_term, limit=16, offset=offset, type=content_type, market='US') if content_type == 'artist': return self.artist_list_info(results['artists']) if content_type == 'album': return self.album_list_info(results['albums']) if content_type == 'playlist': return self.info_for_playlists(results['playlists']) if content_type == 'track': return self.track_list_info(results['tracks']) return None ########################################### # end of the Spotify_API class ########################################### def spotify_token(user): '''This routine returns the user's spotify token for use by the audio player. If the user does not have a token, this function returns None.''' if this.spotify_api is None: return None if user == this.spotify_api.user: return this.spotify_api.cache_handler.get_cached_token() else: return None ################################################################# # DJANGO VIEWS TO ACCESS SPOTIFY RESORUCES # ################################################################# def spotify_sign_in(request): '''This view coordinates spotify authorization for the user''' user = request.user # Step 1: initialize cache and authorization managers cache_path = os.path.join(CACHE_FOLDER, user.username) cache_handler = spotipy.cache_handler.CacheFileHandler(cache_path=cache_path) auth_manager = spotipy.oauth2.SpotifyOAuth(client_id=cred.client_ID, client_secret= cred.client_SECRET, redirect_uri=cred.redirect_url, scope="streaming, user-modify-playback-state, user-read-playback-state, user-read-currently-playing, user-read-recently-played, user-library-read user-follow-read playlist-modify-private", cache_handler=cache_handler, show_dialog=True) #print("auth manager created") if request.GET.get("code"): # Step 3. Being redirected from Spotify auth page auth_manager.get_access_token(request.GET.get("code")) print("code obtained") return redirect('App:spotify_sign_in') if not auth_manager.validate_token(cache_handler.get_cached_token()): # Step 2. Display sign in link when no token #print("requesting authorization") auth_url = auth_manager.get_authorize_url() return redirect(auth_url) # Step 4. Signed in, display list of user's recently played tracks this.spotify_api = Spotify_Api(auth_manager, cache_handler, user) #print("API initialized") if not user.has_spotify_token: user.has_spotify_token = True #print("saving token") user.save() #print("obtaining liked songs") tracks = this.spotify_api.saved_tracks(offset=0) return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Your Liked Songs", "tracks": tracks['track_list'], "first" : tracks['first'], "last" : tracks['last'], "total" : tracks['total'] }) def spotify_sign_out(request): '''This view signs a user out of Spotify''' user = request.user if this.spotify_api is not None: if user == this.spotify_api.user: # force the next user to start a new API this.spotify_api = None cache_path = os.path.join(CACHE_FOLDER, user.username) try: # Remove the CACHE file with the token so that a new user can authorize. os.remove(cache_path) except OSError as e: print ("Error: %s - %s." % (e.filename, e.strerror)) if user.has_spotify_token: # clear the flag indicating that the user has a token user.has_spotify_token = False user.save() return redirect('App:home') def spotify_recently_played(request): '''This view displays a list of user's recently played tracks''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Your Recently Played Songs", "tracks": this.spotify_api.recently_played_tracks(), "first" : 1, "last" : 16, "total" : 16 }) def spotify_followed_artists(request): '''This view displays the Spotify artists followed by the user''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') artists = this.spotify_api.artists_followed() return render(request, "spotify_artist_list.html", { "spotify_user": this.spotify_api.current_username(), 'artist_list_description': "Your Followed Artists", 'artist_list': artists['artist_list'], 'first': artists['first'], 'last' : artists['last'], 'total': artists['total'] }) def spotify_liked_songs(request): '''This view displays the Spotify songs liked by the user''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') offset = request.GET.get('offset') if offset is None: offset = 0 tracks = this.spotify_api.saved_tracks(offset) return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Your Liked Songs", "tracks": tracks['track_list'], "first" : tracks['first'], "last" : tracks['last'], "total" : tracks['total'] }) def spotify_saved_albums(request): '''This view displays the Spotify albums saved by the user''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') offset = request.GET.get('offset') if offset is None: offset = 0 albums = this.spotify_api.album_collection(offset) return render(request, "spotify_album_list.html", { "spotify_user": this.spotify_api.current_username(), 'album_list_description': "Your Saved Albums", "album_list": albums['album_list'], "first": albums['first'], "last": albums['last'], "total": albums['total'], }) def spotify_saved_playlists(request): '''This view displays the Spotify albums saved by the user''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') playlists = this.spotify_api.playlist_collection() return render(request, "spotify_playlists.html", { "spotify_user": this.spotify_api.current_username(), 'playlists_description': "Your Saved Playlists", "playlists": playlists['list_of_playlists'], "first": playlists['first'], "last" : playlists['last'], "total": playlists['total'] }) def spotify_search(request): '''This view allows the user to search for Spotify content''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') if request.method == "GET": # display the form for the user to enter search options form = SpotifySearchForm() return render(request, "spotify_search.html", {'form': form}) else: form = SpotifySearchForm(request.POST) if form.is_valid(): # get data from the form st = form.cleaned_data['search_term'] ct = form.cleaned_data['content_type'] # redirect to the appropriate view. # This redirect step allows the offset parameter to search for additional data if ct == 'artist': return redirect('App:spotify_search_artists', st) if ct == 'album': return redirect('App:spotify_search_albums', st) if ct == 'playlist': return redirect('App:spotify_search_playlists', st) if ct == 'track': return redirect('App:spotify_search_tracks', st) else: # display error on form return render(request, 'spotify_search.html', { 'form': form, 'error': "Invalid data submitted."}) def spotify_search_albums(request, search_term): '''This view obtains spotify albums that match the search term''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') # get the offset query parameter from the URL offset = request.GET.get('offset') if offset is None: offset = 0 # get results using the spotify API results = this.spotify_api.search(search_term, 'album', offset) # render those results return render(request, "spotify_album_list.html", { "spotify_user": this.spotify_api.current_username(), 'album_list_description': "Albums Matching - " + search_term, "album_list": results['album_list'], "first": results['first'], "last": results['last'], "total": results['total']}) def spotify_search_artists(request, search_term): '''This view obtains spotify artists that match the search term''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') # get the offset query parameter from the URL offset = request.GET.get('offset') if offset is None: offset = 0 # get results using the spotify API results = this.spotify_api.search(search_term, 'artist', offset) # render those results return render(request, "spotify_artist_list.html", { "spotify_user": this.spotify_api.current_username(), 'artist_list_description': "Artists Matching - " + search_term, "artist_list": results['artist_list'], "first": results['first'], "last" : results['last'], "total": results['total']}) def spotify_search_playlists(request, search_term): '''This view obtains spotify playlists that match the search term''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') # get the offset query parameter from the URL offset = request.GET.get('offset') if offset is None: offset = 0 # get results using the spotify API results = this.spotify_api.search(search_term, 'playlist', offset) # render those results return render(request, "spotify_playlists.html", { "spotify_user": this.spotify_api.current_username(), 'playlists_description': "Playlists Matching - " + search_term, "playlists": results['list_of_playlists'], "first": results['first'], "last": results['last'], "total": results['total']}) def spotify_search_tracks(request, search_term): '''This view obtains spotify tracks that match the search term''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') # get the offset query parameter from the URL offset = request.GET.get('offset') if offset is None: offset = 0 # get the offset query parameter from the URL results = this.spotify_api.search(search_term, 'track', offset) # render those results return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'artist_list_description': "Tracks Matching - " + search_term, "tracks": results['track_list'], "first": results['first'], "last": results['last'], "total": results['total']}) def spotify_playlist_tracks (request, playlist_id): '''This view displays a list of tracks on a specific Spotify album''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') offset = request.GET.get('offset') if offset is None: offset = 0 tracks = this.spotify_api.playlist_tracks(playlist_id, offset) return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Playlist Contents", "tracks": tracks['track_list'], "first" : tracks['first'], "last" : tracks['last'], "total" : tracks['total'] }) def spotify_album_tracks (request, album_id): '''This view displays a list of tracks on a specific Spotify album''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') tracks = this.spotify_api.album_tracks(album_id) return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Album Contents", "tracks": tracks['track_list'], "first" : tracks['first'], "last" : tracks['last'], "total" : tracks['total'] }) def spotify_artist_tracks (request, artist_id): '''This view displays a list of tracks on a specific Spotify album''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') track_list = this.spotify_api.artist_tracks(artist_id) return render(request, "spotify_track_list.html", { "spotify_user": this.spotify_api.current_username(), 'track_list_description': "Top Ten Tracks by Artist", "tracks": track_list, "first" : 1, "last" : 10, "total" : 10 }) def spotify_artist_albums (request, artist_id): '''This view displays the albums by a specific Spotify artist''' if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') offset = request.GET.get('offset') if offset is None: offset = 0 artist_albums = this.spotify_api.artist_albums(artist_id, offset) return render(request, "spotify_album_list.html", { "spotify_user": this.spotify_api.current_username(), 'album_list_description': "Albums by Artist", "album_list": artist_albums['album_list'], "first": artist_albums['first'], "last": artist_albums['last'], "total": artist_albums['total'], }) def add_spotify_track(request, track_id): '''This view adds a Spotify track into the Studio song database''' from App.views.song_crud import authorized # must be an administrator or teacher to add songs if not authorized(request.user): return render(request, 'permission_denied.html') if this.spotify_api is None: return render(request, 'not_signed_in_spotify.html') track = this.spotify_api.track_info(track_id) image_link = track['cover_art'] if request.method == "GET": track_input = SpotifyTrackInput( track_id = track['id'], title = track['name'], artist = track['artist_name']) form = SpotifyTrackInputForm(instance=track_input) return render(request, 'add_song.html', {'form': form, 'cover_art': image_link}) else: # process data submitted from the form form = SpotifyTrackInputForm(request.POST) # if form data invalid, display an error on the form if not form.is_valid(): return render(request, 'add_song.html', {'form':SpotifyTrackInputForm(), 'error': "Invalid data submitted."}) song_instance = form.save(commit=False) # create a new Song object new_song = Song() # save the audio file, metadata, dance_type, and holiday/theme new_song.spotify_track_id = song_instance.track_id new_song.image_link = image_link new_song.title = song_instance.title new_song.artist = song_instance.artist new_song.dance_type = song_instance.dance_type new_song.holiday = song_instance.holiday new_song.save() print(new_song) # return to list of songs return redirect('App:all_songs')
the-stack_106_26342
"""This file and its contents are licensed under the Apache License 2.0. Please see the included NOTICE for copyright information and LICENSE for a copy of the license. """ import drf_yasg.openapi as openapi import logging import numpy as np import pathlib import os from collections import Counter from django.db import IntegrityError from django.db.models.fields import DecimalField from django.conf import settings from drf_yasg.utils import swagger_auto_schema from django.db.models import Q, When, Count, Case, OuterRef, Max, Exists, Value, BooleanField from rest_framework import generics, status, filters from rest_framework.exceptions import NotFound, ValidationError as RestValidationError from rest_framework.parsers import FormParser, JSONParser, MultiPartParser from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.views import exception_handler from core.utils.common import conditional_atomic from core.label_config import config_essential_data_has_changed from projects.models import ( Project, ProjectSummary ) from projects.serializers import ( ProjectSerializer, ProjectLabelConfigSerializer, ProjectSummarySerializer ) from tasks.models import Task, Annotation, Prediction, TaskLock from tasks.serializers import TaskSerializer, TaskWithAnnotationsAndPredictionsAndDraftsSerializer from core.mixins import APIViewVirtualRedirectMixin, APIViewVirtualMethodMixin from core.permissions import all_permissions, ViewClassPermission from core.utils.common import ( get_object_with_check_and_log, bool_from_request, paginator, paginator_help) from core.utils.exceptions import ProjectExistException, LabelStudioDatabaseException from core.utils.io import find_dir, find_file, read_yaml from data_manager.functions import get_prepared_queryset from data_manager.models import View logger = logging.getLogger(__name__) _result_schema = openapi.Schema( title='Labeling result', description='Labeling result (choices, labels, bounding boxes, etc.)', type=openapi.TYPE_OBJECT, properies={ 'from_name': openapi.Schema( title='from_name', description='The name of the labeling tag from the project config', type=openapi.TYPE_STRING ), 'to_name': openapi.Schema( title='to_name', description='The name of the labeling tag from the project config', type=openapi.TYPE_STRING ), 'value': openapi.Schema( title='value', description='Labeling result value. Format depends on chosen ML backend', type=openapi.TYPE_OBJECT ) }, example={ 'from_name': 'image_class', 'to_name': 'image', 'value': { 'labels': ['Cat'] } } ) _task_data_schema = openapi.Schema( title='Task data', description='Task data', type=openapi.TYPE_OBJECT, example={ 'id': 1, 'my_image_url': 'https://app.heartex.ai/static/samples/kittens.jpg' } ) class ProjectListAPI(generics.ListCreateAPIView): """ get: List your projects Return a list of the projects that you've created. post: Create new project Create a labeling project. """ parser_classes = (JSONParser, FormParser, MultiPartParser) serializer_class = ProjectSerializer filter_backends = [filters.OrderingFilter] permission_required = ViewClassPermission( GET=all_permissions.projects_view, POST=all_permissions.projects_create, ) ordering = ['-created_at'] def get_queryset(self): return Project.objects.with_counts().filter(organization=self.request.user.active_organization) def get_serializer_context(self): context = super(ProjectListAPI, self).get_serializer_context() context['created_by'] = self.request.user return context def perform_create(self, ser): try: project = ser.save(organization=self.request.user.active_organization) except IntegrityError as e: if str(e) == 'UNIQUE constraint failed: project.title, project.created_by_id': raise ProjectExistException('Project with the same name already exists: {}'. format(ser.validated_data.get('title', ''))) raise LabelStudioDatabaseException('Database error during project creation. Try again.') @swagger_auto_schema(tags=['Projects']) def get(self, request, *args, **kwargs): return super(ProjectListAPI, self).get(request, *args, **kwargs) @swagger_auto_schema(tags=['Projects'], request_body=ProjectSerializer) def post(self, request, *args, **kwargs): return super(ProjectListAPI, self).post(request, *args, **kwargs) class ProjectAPI(APIViewVirtualRedirectMixin, APIViewVirtualMethodMixin, generics.RetrieveUpdateDestroyAPIView): """ get: Get project by ID Retrieve information about a project by ID. patch: Update project Update project settings for a specific project. delete: Delete project Delete a project by specified project ID. """ parser_classes = (JSONParser, FormParser, MultiPartParser) queryset = Project.objects.with_counts() permission_required = ViewClassPermission( GET=all_permissions.projects_view, DELETE=all_permissions.projects_delete, PATCH=all_permissions.projects_change, PUT=all_permissions.projects_change, POST=all_permissions.projects_create, ) serializer_class = ProjectSerializer redirect_route = 'projects:project-detail' redirect_kwarg = 'pk' def get_queryset(self): return Project.objects.with_counts().filter(organization=self.request.user.active_organization) @swagger_auto_schema(tags=['Projects']) def get(self, request, *args, **kwargs): return super(ProjectAPI, self).get(request, *args, **kwargs) @swagger_auto_schema(tags=['Projects']) def delete(self, request, *args, **kwargs): return super(ProjectAPI, self).delete(request, *args, **kwargs) @swagger_auto_schema(tags=['Projects'], request_body=ProjectSerializer) def patch(self, request, *args, **kwargs): project = self.get_object() label_config = self.request.data.get('label_config') # config changes can break view, so we need to reset them if label_config: try: has_changes = config_essential_data_has_changed(label_config, project.label_config) except KeyError: pass else: if has_changes: View.objects.filter(project=project).all().delete() return super(ProjectAPI, self).patch(request, *args, **kwargs) def perform_destroy(self, instance): """Performance optimization for whole project deletion if we catch constraint error fallback to regular .delete() method""" try: task_annotation_qs = Annotation.objects.filter(task__project_id=instance.id) task_annotation_qs._raw_delete(task_annotation_qs.db) task_prediction_qs = Prediction.objects.filter(task__project_id=instance.id) task_prediction_qs._raw_delete(task_prediction_qs.db) task_locks_qs = TaskLock.objects.filter(task__project_id=instance.id) task_locks_qs._raw_delete(task_locks_qs.db) task_qs = Task.objects.filter(project_id=instance.id) task_qs._raw_delete(task_qs.db) instance.delete() except IntegrityError as e: logger.error('Fallback to cascade deleting after integrity_error: {}'.format(str(e))) instance.delete() @swagger_auto_schema(auto_schema=None) def post(self, request, *args, **kwargs): return super(ProjectAPI, self).post(request, *args, **kwargs) @swagger_auto_schema(auto_schema=None) def put(self, request, *args, **kwargs): return super(ProjectAPI, self).put(request, *args, **kwargs) class ProjectNextTaskAPI(generics.RetrieveAPIView): """get: Get next task to label Get the next task for labeling. If you enable Machine Learning in your project, the response might include a "predictions" field. It contains a machine learning prediction result for this task. """ permission_required = all_permissions.tasks_view serializer_class = TaskWithAnnotationsAndPredictionsAndDraftsSerializer # using it for swagger API docs def _get_random_unlocked(self, task_query, upper_limit=None): # get random task from task query, ignoring locked tasks n = task_query.count() if n > 0: upper_limit = upper_limit or n random_indices = np.random.permutation(upper_limit) task_query_only = task_query.only('overlap', 'id') for i in random_indices: try: task = task_query_only[int(i)] except IndexError as exc: logger.error(f'Task query out of range for {int(i)}, count={task_query_only.count()}. ' f'Reason: {exc}', exc_info=True) except Exception as exc: logger.error(exc, exc_info=True) else: try: task = Task.objects.select_for_update(skip_locked=True).get(pk=task.id) if not task.has_lock(): return task except Task.DoesNotExist: logger.debug('Task with id {} locked'.format(task.id)) def _get_first_unlocked(self, tasks_query): # Skip tasks that are locked due to being taken by collaborators for task_id in tasks_query.values_list('id', flat=True): try: task = Task.objects.select_for_update(skip_locked=True).get(pk=task_id) if not task.has_lock(): return task except Task.DoesNotExist: logger.debug('Task with id {} locked'.format(task_id)) def _try_ground_truth(self, tasks, project): """Returns task from ground truth set""" ground_truth = Annotation.objects.filter(task=OuterRef('pk'), ground_truth=True) not_solved_tasks_with_ground_truths = tasks.annotate( has_ground_truths=Exists(ground_truth)).filter(has_ground_truths=True) if not_solved_tasks_with_ground_truths.exists(): if project.sampling == project.SEQUENCE: return self._get_first_unlocked(not_solved_tasks_with_ground_truths) return self._get_random_unlocked(not_solved_tasks_with_ground_truths) def _try_tasks_with_overlap(self, tasks): """Filter out tasks without overlap (doesn't return next task)""" tasks_with_overlap = tasks.filter(overlap__gt=1) if tasks_with_overlap.exists(): return None, tasks_with_overlap else: return None, tasks.filter(overlap=1) def _try_breadth_first(self, tasks): """Try to find tasks with maximum amount of annotations, since we are trying to label tasks as fast as possible """ # ======= # This commented part is trying to solve breadth-first in a bit different way: # it selects first task where any amount of annotations have been already created # we've left it here to be able to select it through the project settings later # ======= # annotations = Annotation.objects.filter(task=OuterRef('pk'), ground_truth=False) # not_solved_tasks_labeling_started = tasks.annotate(labeling_started=Exists(annotations)) # not_solved_tasks_labeling_started_true = not_solved_tasks_labeling_started.filter(labeling_started=True) # if not_solved_tasks_labeling_started_true.exists(): # # try to complete tasks that are already in progress # next_task = self._get_random(not_solved_tasks_labeling_started_true) # return next_task tasks = tasks.annotate(annotations_count=Count('annotations')) max_annotations_count = tasks.aggregate(Max('annotations_count'))['annotations_count__max'] if max_annotations_count == 0: # there is no any labeled tasks found return # find any task with maximal amount of created annotations not_solved_tasks_labeling_started = tasks.annotate( reach_max_annotations_count=Case( When(annotations_count=max_annotations_count, then=Value(True)), default=Value(False), output_field=BooleanField())) not_solved_tasks_labeling_with_max_annotations = not_solved_tasks_labeling_started.filter( reach_max_annotations_count=True) if not_solved_tasks_labeling_with_max_annotations.exists(): # try to complete tasks that are already in progress return self._get_random_unlocked(not_solved_tasks_labeling_with_max_annotations) def _try_uncertainty_sampling(self, tasks, project, user_solved_tasks_array): task_with_current_predictions = tasks.filter(predictions__model_version=project.model_version) if task_with_current_predictions.exists(): logger.debug('Use uncertainty sampling') # collect all clusters already solved by user, count number of solved task in them user_solved_clusters = project.prepared_tasks.filter(pk__in=user_solved_tasks_array).annotate( cluster=Max('predictions__cluster')).values_list('cluster', flat=True) user_solved_clusters = Counter(user_solved_clusters) # order each task by the count of how many tasks solved in it's cluster cluster_num_solved_map = [When(predictions__cluster=k, then=v) for k, v in user_solved_clusters.items()] num_tasks_with_current_predictions = task_with_current_predictions.count() # WARNING! this call doesn't work after consequent annotate if cluster_num_solved_map: task_with_current_predictions = task_with_current_predictions.annotate( cluster_num_solved=Case(*cluster_num_solved_map, default=0, output_field=DecimalField())) # next task is chosen from least solved cluster and with lowest prediction score possible_next_tasks = task_with_current_predictions.order_by('cluster_num_solved', 'predictions__score') else: possible_next_tasks = task_with_current_predictions.order_by('predictions__score') num_annotators = project.annotators().count() if num_annotators > 1 and num_tasks_with_current_predictions > 0: # try to randomize tasks to avoid concurrent labeling between several annotators next_task = self._get_random_unlocked( possible_next_tasks, upper_limit=min(num_annotators + 1, num_tasks_with_current_predictions)) else: next_task = self._get_first_unlocked(possible_next_tasks) else: # uncertainty sampling fallback: choose by random sampling logger.debug(f'Uncertainty sampling fallbacks to random sampling ' f'(current project.model_version={str(project.model_version)})') next_task = self._get_random_unlocked(tasks) return next_task def _make_response(self, next_task, request, use_task_lock=True): """Once next task has chosen, this function triggers inference and prepare the API response""" user = request.user project = next_task.project if use_task_lock: # set lock for the task with TTL 3x time more then current average lead time (or 1 hour by default) next_task.set_lock(request.user) # call machine learning api and format response if project.show_collab_predictions and not next_task.predictions.exists(): for ml_backend in project.ml_backends.all(): ml_backend.predict_one_task(next_task) # serialize task context = {'request': request, 'project': project, 'resolve_uri': True, 'proxy': bool_from_request(request.GET, 'proxy', True)} serializer = TaskWithAnnotationsAndPredictionsAndDraftsSerializer(next_task, context=context) response = serializer.data annotations = [] for c in response.get('annotations', []): if c.get('completed_by') == user.id and not (c.get('ground_truth') or c.get('honeypot')): annotations.append(c) response['annotations'] = annotations # remove all predictions if we don't want to show it in the label stream if not project.show_collab_predictions: response['predictions'] = [] return Response(response) @swagger_auto_schema( tags=['Projects'], responses={200: TaskWithAnnotationsAndPredictionsAndDraftsSerializer()} ) def get(self, request, *args, **kwargs): project = get_object_with_check_and_log(request, Project, pk=self.kwargs['pk']) self.check_object_permissions(request, project) user = request.user # support actions api call from actions/next_task.py if hasattr(self, 'prepared_tasks'): project.prepared_tasks = self.prepared_tasks # get prepared tasks from request params (filters, selected items) else: project.prepared_tasks = get_prepared_queryset(self.request, project) # detect solved and not solved tasks user_solved_tasks_array = user.annotations.filter(ground_truth=False).filter( Q(task__isnull=False)).values_list('task__pk', flat=True) with conditional_atomic(): not_solved_tasks = project.prepared_tasks.\ exclude(pk__in=user_solved_tasks_array) # if annotator is assigned for tasks, he must to solve it regardless of is_labeled=True assigned_flag = hasattr(self, 'assignee_flag') and self.assignee_flag if not assigned_flag: not_solved_tasks = not_solved_tasks.annotate( annotation_number=Count('annotations', filter=Q(annotations__ground_truth=False), distinct=True) ).filter( annotation_number__lt=project.maximum_annotations ) not_solved_tasks_count = not_solved_tasks.count() # return nothing if there are no tasks remain if not_solved_tasks_count == 0: raise NotFound(f'There are no tasks remaining to be annotated by the user={user}') logger.debug(f'{not_solved_tasks_count} tasks that still need to be annotated for user={user}') # ordered by data manager if assigned_flag: next_task = not_solved_tasks.first() if not next_task: raise NotFound('No more tasks found') return self._make_response(next_task, request, use_task_lock=False) # If current user has already lock one task - return it (without setting the lock again) next_task = Task.get_locked_by(user, tasks=not_solved_tasks) if next_task: return self._make_response(next_task, request, use_task_lock=False) if project.show_ground_truth_first: logger.debug(f'User={request.user} tries ground truth from {not_solved_tasks_count} tasks') next_task = self._try_ground_truth(not_solved_tasks, project) if next_task: return self._make_response(next_task, request) if project.show_overlap_first: # don't output anything - just filter tasks with overlap logger.debug(f'User={request.user} tries overlap first from {not_solved_tasks_count} tasks') _, not_solved_tasks = self._try_tasks_with_overlap(not_solved_tasks) # don't use this mode for data manager sorting, because the sorting becomes not obvious if project.sampling != project.SEQUENCE: # if there any tasks in progress (with maximum number of annotations), randomly sampling from them logger.debug(f'User={request.user} tries depth first from {not_solved_tasks_count} tasks') next_task = self._try_breadth_first(not_solved_tasks) if next_task: return self._make_response(next_task, request) if project.sampling == project.UNCERTAINTY: logger.debug(f'User={request.user} tries uncertainty sampling from {not_solved_tasks_count} tasks') next_task = self._try_uncertainty_sampling(not_solved_tasks, project, user_solved_tasks_array) elif project.sampling == project.UNIFORM: logger.debug(f'User={request.user} tries random sampling from {not_solved_tasks_count} tasks') next_task = self._get_random_unlocked(not_solved_tasks) elif project.sampling == project.SEQUENCE: logger.debug(f'User={request.user} tries sequence sampling from {not_solved_tasks_count} tasks') next_task = self._get_first_unlocked(not_solved_tasks) if next_task: return self._make_response(next_task, request) else: raise NotFound( f'There are still some tasks to complete for the user={user}, but they seem to be locked by another user.') class LabelConfigValidateAPI(generics.CreateAPIView): parser_classes = (JSONParser, FormParser, MultiPartParser) permission_classes = (AllowAny,) serializer_class = ProjectLabelConfigSerializer @swagger_auto_schema( tags=['Projects'], operation_summary='Validate label config', operation_description='Validate a labeling configuration for a project.', responses={200: 'Validation success'} ) def post(self, request, *args, **kwargs): return super(LabelConfigValidateAPI, self).post(request, *args, **kwargs) def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) try: serializer.is_valid(raise_exception=True) except RestValidationError as exc: context = self.get_exception_handler_context() response = exception_handler(exc, context) response = self.finalize_response(request, response) return response return Response(status=status.HTTP_204_NO_CONTENT) class ProjectLabelConfigValidateAPI(generics.RetrieveAPIView): """ Validate label config """ parser_classes = (JSONParser, FormParser, MultiPartParser) serializer_class = ProjectLabelConfigSerializer permission_required = all_permissions.projects_change queryset = Project.objects.all() @swagger_auto_schema( tags=['Projects'], operation_summary='Validate a label config', manual_parameters=[ openapi.Parameter( name='label_config', type=openapi.TYPE_STRING, in_=openapi.IN_QUERY, description='labeling config') ]) def post(self, request, *args, **kwargs): project = self.get_object() label_config = self.request.data.get('label_config') if not label_config: raise RestValidationError('Label config is not set or is empty') # check new config includes meaningful changes has_changed = config_essential_data_has_changed(label_config, project.label_config) project.validate_config(label_config) return Response({'config_essential_data_has_changed': has_changed}, status=status.HTTP_200_OK) @swagger_auto_schema(auto_schema=None) def get(self, request, *args, **kwargs): return super(ProjectLabelConfigValidateAPI, self).get(request, *args, **kwargs) class ProjectSummaryAPI(generics.RetrieveAPIView): parser_classes = (JSONParser,) serializer_class = ProjectSummarySerializer permission_required = all_permissions.projects_view queryset = ProjectSummary.objects.all() @swagger_auto_schema(tags=['Projects'], operation_summary='Project summary') def get(self, *args, **kwargs): return super(ProjectSummaryAPI, self).get(*args, **kwargs) class TasksListAPI(generics.ListCreateAPIView, generics.DestroyAPIView, APIViewVirtualMethodMixin, APIViewVirtualRedirectMixin): """ get: List project tasks Paginated list of tasks for a specific project. delete: Delete all tasks Delete all tasks from a specific project. """ parser_classes = (JSONParser, FormParser) permission_required = ViewClassPermission( GET=all_permissions.tasks_view, POST=all_permissions.tasks_change, DELETE=all_permissions.tasks_delete, ) serializer_class = TaskSerializer redirect_route = 'projects:project-settings' redirect_kwarg = 'pk' def get_queryset(self): project = generics.get_object_or_404(Project.objects.for_user(self.request.user), pk=self.kwargs.get('pk', 0)) tasks = Task.objects.filter(project=project) return paginator(tasks, self.request) @swagger_auto_schema(tags=['Projects']) def delete(self, request, *args, **kwargs): project = generics.get_object_or_404(Project.objects.for_user(self.request.user), pk=self.kwargs['pk']) Task.objects.filter(project=project).delete() return Response(status=204) @swagger_auto_schema(**paginator_help('tasks', 'Projects')) def get(self, *args, **kwargs): return super(TasksListAPI, self).get(*args, **kwargs) @swagger_auto_schema(auto_schema=None, tags=['Projects']) def post(self, *args, **kwargs): return super(TasksListAPI, self).post(*args, **kwargs) def get_serializer_context(self): context = super(TasksListAPI, self).get_serializer_context() context['project'] = get_object_with_check_and_log(self.request, Project, pk=self.kwargs['pk']) return context def perform_create(self, serializer): project = get_object_with_check_and_log(self.request, Project, pk=self.kwargs['pk']) serializer.save(project=project) class TemplateListAPI(generics.ListAPIView): parser_classes = (JSONParser, FormParser, MultiPartParser) permission_required = all_permissions.projects_view swagger_schema = None def list(self, request, *args, **kwargs): annotation_templates_dir = find_dir('annotation_templates') configs = [] for config_file in pathlib.Path(annotation_templates_dir).glob('**/*.yml'): config = read_yaml(config_file) if config.get('image', '').startswith('/static') and settings.HOSTNAME: # if hostname set manually, create full image urls config['image'] = settings.HOSTNAME + config['image'] configs.append(config) template_groups_file = find_file(os.path.join('annotation_templates', 'groups.txt')) with open(template_groups_file, encoding='utf-8') as f: groups = f.read().splitlines() logger.debug(f'{len(configs)} templates found.') return Response({'templates': configs, 'groups': groups}) class ProjectSampleTask(generics.RetrieveAPIView): parser_classes = (JSONParser,) queryset = Project.objects.all() permission_required = all_permissions.projects_view serializer_class = ProjectSerializer swagger_schema = None def post(self, request, *args, **kwargs): label_config = self.request.data.get('label_config') if not label_config: raise RestValidationError('Label config is not set or is empty') project = self.get_object() return Response({'sample_task': project.get_sample_task(label_config)}, status=200)
the-stack_106_26343
# coding=utf-8 import numpy as np from snntoolbox.datasets.utils import get_dataset class TestGetDataset: """Test obtaining the dataset from disk in correct format.""" def test_get_dataset_from_npz(self, _datapath, _config): data = np.random.random_sample((1, 1, 1, 1)) np.savez_compressed(str(_datapath.join('x_norm')), data) np.savez_compressed(str(_datapath.join('x_test')), data) np.savez_compressed(str(_datapath.join('y_test')), data) _config.set('paths', 'dataset_path', str(_datapath)) normset, testset = get_dataset(_config) assert all([normset, testset]) def test_get_dataset_from_jpg(self, _datapath, _config): try: import matplotlib.pyplot as plt except ImportError: plt = None return plt classpath = _datapath.mkdir('class_0') data = np.random.random_sample((10, 10, 3)) plt.imsave(str(classpath.join('image_0.jpg')), data) _config.read_dict( {'paths': {'dataset_path': str(_datapath)}, 'input': {'dataset_format': 'jpg', 'dataflow_kwargs': "{'target_size': (11, 12)}", 'datagen_kwargs': "{'rescale': 0.003922," " 'featurewise_center': True," " 'featurewise_std_normalization':" " True}"}}) normset, testset = get_dataset(_config) assert all([normset, testset])
the-stack_106_26344
from __future__ import annotations import asyncio import collections.abc import re import time from typing import ( Any, AsyncGenerator, Awaitable, Callable, Dict, Optional, Sequence, Type, TypeVar, ) from bluesky.protocols import Descriptor, Dtype, Reading from ophyd.v2.core import ( Device, Signal, SignalCollector, SignalDetails, SignalProvider, SignalRO, SignalRW, SignalSourcer, SignalWO, SignalX, T, check_no_args, ) # TODO: use the one in pvi PASCAL_CASE_REGEX = re.compile(r"(?<![A-Z])[A-Z]|[A-Z][a-z/d]|(?<=[a-z])\d") def to_snake_case(pascal_s: str) -> str: """Takes a PascalCaseFieldName and returns an Title Case Field Name Args: pascal_s: E.g. PascalCaseFieldName Returns: snake_case converted name. E.g. pascal_case_field_name """ return PASCAL_CASE_REGEX.sub(lambda m: "_" + m.group().lower(), pascal_s).strip("_") SetCallback = Callable[[Any], Awaitable[None]] CallCallback = Callable[[], Awaitable[None]] primitive_dtypes: Dict[type, Dtype] = { str: "string", int: "integer", float: "number", bool: "boolean", } def make_descriptor(source: Optional[str], value) -> Descriptor: assert source, "Not connected" try: dtype = primitive_dtypes[type(value)] shape = [] except KeyError: assert isinstance(value, Sequence), f"Can't get dtype for {type(value)}" dtype = "array" shape = [len(value)] return dict(source=source, dtype=dtype, shape=shape) class _SimStore: def __init__(self): self.on_set: Dict[int, SetCallback] = {} self.on_call: Dict[int, CallCallback] = {} self.values: Dict[int, Any] = {} self.events: Dict[int, asyncio.Event] = {} def set_value(self, signal_id: int, value): self.values[signal_id] = value self.events[signal_id].set() self.events[signal_id] = asyncio.Event() class SimSignal(Signal): def __init__(self, store: _SimStore): self._store = store self._source: Optional[str] = None @property def source(self) -> Optional[str]: return self._source def set_source(self, source, *args, **kwargs): self._source = source check_no_args(args, kwargs) async def wait_for_connection(self): while self.source is None: await asyncio.sleep(0.1) class SimSignalRO(SignalRO[T], SimSignal): async def get_descriptor(self) -> Descriptor: return make_descriptor(self.source, self._store.values[id(self)]) async def get_reading(self) -> Reading: return Reading(value=self._store.values[id(self)], timestamp=time.time()) async def observe_reading(self) -> AsyncGenerator[Reading, None]: id_self = id(self) while True: yield Reading(value=self._store.values[id_self], timestamp=time.time()) await self._store.events[id_self].wait() class SimSignalWO(SignalWO[T], SimSignal): """Signal that can be put to""" async def put(self, value: T): id_self = id(self) cb = self._store.on_set.get(id_self, None) if cb: await cb(value) self._store.set_value(id_self, value) class SimSignalRW(SimSignalRO[T], SimSignalWO[T], SignalRW[T]): pass class SimSignalX(SignalX, SimSignal): async def execute(self): cb = self._store.on_call.get(id(self), None) if cb: await cb() lookup: Dict[Type[Signal], Type[SimSignal]] = { SignalRO: SimSignalRO, SignalWO: SimSignalWO, SignalRW: SimSignalRW, SignalX: SimSignalX, } SetCallbackT = TypeVar("SetCallbackT", bound=SetCallback) CallCallbackT = TypeVar("CallCallbackT", bound=CallCallback) class SimProvider(SignalProvider): @staticmethod def transport() -> str: return "sim" def __init__(self): self._store = _SimStore() def on_set(self, signal: SignalWO) -> Callable[[SetCallbackT], SetCallbackT]: def decorator(cb: SetCallbackT) -> SetCallbackT: self._store.on_set[id(signal)] = cb return cb return decorator def on_call(self, signal: SignalX) -> Callable[[CallCallbackT], CallCallbackT]: def decorator(cb: CallCallbackT) -> CallCallbackT: self._store.on_call[id(signal)] = cb return cb return decorator def get_value(self, signal: SignalRO[T]) -> T: return self._store.values[id(signal)] def set_value(self, signal: SignalRO[T], value: T) -> T: self._store.set_value(id(signal), value) return value def create_disconnected_signal(self, details: SignalDetails) -> Signal: """Create a disconnected Signal to go in all_signals""" signal = lookup[details.signal_cls](self._store) if details.value_type is not None: origin = getattr(details.value_type, "__origin__", None) if origin is None: # str, bool, int, float assert details.value_type value = details.value_type() elif origin is collections.abc.Sequence: # Sequence[...] value = () elif origin is dict: # Dict[...] value = origin() else: raise ValueError(f"Can't make {details.value_type}") self._store.values[id(signal)] = value self._store.events[id(signal)] = asyncio.Event() return signal async def connect_signals( self, device: Device, signal_prefix: str, sourcer: SignalSourcer ): # Ignore the sourcer and make our own names for attr_name, signal in device.all_signals.items(): source = self.canonical_source(signal_prefix + to_snake_case(attr_name)) signal.set_source(source) @classmethod def instance(cls) -> Optional[SimProvider]: provider = SignalCollector.get_provider("sim") assert provider is None or isinstance(provider, SimProvider) return provider
the-stack_106_26345
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """\ Serialize a btrfs subvolume built by an `image_layer` target into a portable format (either a file, or a directory with a few files). At the moment, this only outputs "full" packages -- that is, we do not support emitting an incremental package relative to a prior `image_layer`. ## How to add support for incremental packages There is a specific setting, where it is possible to support safe incremental packaging. First, read on to understand why the general case of incremental packaging is intrinsically unsafe. ### The incremental package consistency problem It is technically simple to create incremental outputs: - `btrfs send -p` - `tar --create --listed-incremental` The problem is that it is hard to guarantee consistency between parts of the incremental stack. It is reasonable for an end-user to expect this to work correctly, so long as they build both parts from excatly the same source control version: - first, they build package A; - later (perhaps on a different host or repo checkout), they build an incremental package B that stacks on top of A. Indeed, this generally works for programming artifacts, because programming languages define a clear interface for their build artifacts, and the same source code + build toolchain is GUARANTEED to always produce artifacts that are interface-compatible with other outputs from the same inputs. In contrast, a filesystem output of an image build does NOT define such an interface, which makes it impossible to guarantee consistency. Let's make this concrete with an example. Imagine these Buck targets: - `:parent_subvol` - `:child_subvol`, with `parent_layer = ":parent_subvol"` Let's say that `:parent_subvol` contains, among other things, a multi-file relational DB which stores a table per file, and uses RANDOM keys internally. The first time we build it, we might get this: ``` $ jq . table_names { "randKeyA3": {"name": "cat"}, "randKeyA1": {"name": "dog"}, "randKeyA8": {"name": "gibbon"} } $ jq . table_friends { "randKeyA3": ["randKeyA1"] } ``` This database just says that we have 3 animals, and 1 directed friendship among them (cat -> dog). You can imagine a second build of `:parent_subvol` which has the same semantic content: ``` $ jq . table_names { "randKeyA6": {"name": "cat"}, "randKeyA5": {"name": "dog"}, "randKeyA1": {"name": "gibbon"} } $ jq . table_friends { "randKeyA6": ["randKeyA5"] } ``` Since the random keys are internal to the DB, and not part of its public API, this is permissible build entropy -- just like "build info" sections in binary objects, and just like build timestamps. So from the point of view of Buck, everything is fine. Now, let's say that in `:child_subvol` we add another friendship to the DB (gibbon -> dog). Depending on the version of `:parent_subvol` you start with, building `:child_subvol` will cause you to produce an incremental package replaceing JUST the file `table_friends` with one of these versions: ``` # `:child_subvol` from the first `:parent_subvol` build $ jq . table_friends { "randKeyA3": ["randKeyA1"], "randKeyA8": ["randKeyA1"] } # `:child_subvol` from the second `:parent_subvol` build $ jq . table_friends { "randKeyA6": ["randKeyA5"], "randKeyA1": ["randKeyA5"], } ``` Omitting `table_names` from the incremental update is completely fine from the point of view of the filesystem -- that file hasn't changed in either build. However, we now have two INCOMPATIBLE build artifacts from the same source version. Now, we may end up combining the first version of `:parent_subvol` with the second version of `:child_subvol`. The incremental update would apply fine, but the resulting DB would be corrupted. Worst of all, this could occur quite naturally, e.g. - An innocent (but not stupid!) user may assume that since builds are hermetic, build artifacts from the same version are compatible. - Target-level distributed caching in Buck may cache artifacts from two different build runs. On the Buck side, T35569915 documents the intention to make ALL cache retrievals be based only on input keys, which could actually guarantee the consistency we need, but this is probably not happening before late 2019, early 2020. To sum up: - In practice, builds are almost never bitwise-reproducible. The resulting filesystem contents of two builds of the same repo state may differ. When we say a build environment is hermetic we just mean that at runtime, all of its artifacts work the same way, so long as they were built from the same repo state. - Filesystems lack a standard semantic interface, which could guarantee interoperability between filesystem artifacts from two differen builds of the same "hermetic" environment. Therefore, any kind of "incremental" package has to be applied against EXACTLY the same filesystem contents, against which it was built, or the result may be incorrect. - In a distributed build setting, it's hard to guarantee that incremental build artifacts will NOT get composed incorrectly. - So, we choose NOT to support incremental packaging in the general case. We may revise this decision once Buck's cache handling changes (T35569915), or if the need for incremental packaging is strong enough to justify shipping solutions with razor-sharp edges. ### When can we safely build incremental packages? Before getting to the practically useful solution, let me mention a less-useful one in passing. It is simple to define a rule type that outputs a STACK of known-compatible incremental packages. The current code has commented-out breadcrumbs (see `get_subvolume_on_disk_stack`), while P60233442 adds ~20 lines of code to materializing an incremental send-stream stack. This solves the consistency problem, but it's unclear what value this type of rule provides over a "full" package. The main use-case for incremental builds is this: - pieces of widely-used infrastructure are packaged up into a few common base images, - custom container images are distributed as incremental add-ons to these common bases. In this case, we can side-step the above correctness issues by requiring that any base `image_layer` for an incremental package must have a "release" property. This is an assertion that can be verified at build-time, stating that a content hash of the base layer has been checked into the source control repo. While the production version of this might look a little different, this demonstrates the right semantics: ``` $ cat TARGETS buck_genrule( name='parent.sendstream', out='parent.sendstream', bash='... fetch the sendstream from some blob store ...', ) image_sendstream_layer( name='parent', source=':parent.sendstream', # The presence of this hash assures us that the filesystem contents are # fixed, which makes it safe to build incremental snapshots against it. sendstream_hash={ 'sha256': '4449df7d6848198f310aaffa7f7860b6022017e1913b94b6af86bb618e999480', }, ) image_layer( name='child', parent_layer=':parent', ... ) image_package( name='child_from_parent.sendstream', layer=':child', # If `:parent` lacked `sendstream_hash`, we would not know it is a # "release" image, and this `image_package` would fail to build. incremental_to=':parent', ) ``` Besides tweaks to naming, the main difference I would expect in a production system is a more automatable way of specifying content hashes for previously released base images. Requiring base images to be released adds some conceptual complexity. However, it is quite reasonable to have post-CI release processes for commonly used base images. Specific advantages to this include: - more rigorous testing than is feasible in at-code-review-time CI/CD system - the ability to pre-warm caches, thus ensuring nearly instant availability of the base images. """ import argparse import os import pwd import stat import subprocess from typing import Mapping, NamedTuple, Optional, Callable from antlir.nspawn_in_subvol.args import PopenArgs, new_nspawn_opts from antlir.nspawn_in_subvol.nspawn import popen_nspawn, run_nspawn from .common import check_popen_returncode, init_logging from .find_built_subvol import find_built_subvol from .fs_utils import Path, create_ro, generate_work_dir from .subvol_utils import Subvol, SubvolOpts, KiB, MiB class _Opts(NamedTuple): subvol_opts: SubvolOpts build_appliance: Optional[Subvol] size_mb: Optional[int] volume_label: Optional[str] class Format: "A base class that registers its subclasses in NAME_TO_CLASS." NAME_TO_CLASS: Mapping[str, "Format"] = {} def __init_subclass__(cls, format_name: str, **kwargs): super().__init_subclass__(**kwargs) prev_cls = cls.NAME_TO_CLASS.get(format_name) if prev_cls: raise AssertionError(f"{cls} and {prev_cls} share format_name") cls.NAME_TO_CLASS[format_name] = cls @classmethod def make(cls, format_name) -> "Format": return cls.NAME_TO_CLASS[format_name]() class Sendstream(Format, format_name="sendstream"): """ Packages the subvolume as a stand-alone (non-incremental) send-stream. See the script-level docs for details on supporting incremental ones. """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): with create_ro( output_path, "wb" ) as outfile, subvol.mark_readonly_and_write_sendstream_to_file( outfile ): pass class SendstreamZst(Format, format_name="sendstream.zst"): """ Packages the subvolume as a stand-alone (non-incremental) zstd-compressed send-stream. See the script-level docs for details on supporting incremental ones. Future: add general compression support instead of adding `TarballGz`, `TarballZst`, `SendstreamGz`, etc. """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): with create_ro(output_path, "wb") as outfile, subprocess.Popen( ["zstd", "--stdout"], stdin=subprocess.PIPE, stdout=outfile ) as zst, subvol.mark_readonly_and_write_sendstream_to_file(zst.stdin): pass check_popen_returncode(zst) class SquashfsImage(Format, format_name="squashfs"): """ Packages the subvolume as a squashfs-formatted disk image, usage: mount -t squashfs image.squashfs dest/ -o loop """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): create_ro(output_path, "wb").close() # Ensure non-root ownership subvol.run_as_root( [ "mksquashfs", subvol.path(), output_path, "-comp", "zstd", "-noappend", ] ) class BtrfsImage(Format, format_name="btrfs"): """ Packages the subvolume as a btrfs-formatted disk image, usage: mount -t btrfs image.btrfs dest/ -o loop """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): subvol.mark_readonly_and_send_to_new_loopback( output_path, subvol_opts=opts.subvol_opts ) class TarballGzipImage(Format, format_name="tar.gz"): """ Packages the subvolume as a gzip-compressed tarball, usage: tar xzf image.tar.gz -C dest/ """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): with create_ro(output_path, "wb") as outfile, subprocess.Popen( ["gzip", "--stdout"], stdin=subprocess.PIPE, stdout=outfile ) as gz, subvol.write_tarball_to_file(gz.stdin): pass check_popen_returncode(gz) class CPIOGzipImage(Format, format_name="cpio.gz"): """ Packages the subvol as a gzip-compressed cpio. """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): work_dir = generate_work_dir() # This command is partly based on the recomendations of # reproducible-builds.org: # https://reproducible-builds.org/docs/archives/ # Note that this does *not* create a reproducible archive yet. # For that we need 2 more things: # - Clearing of the timestamps # - Setting uid/gid to 0 # Those 2 operations mutate the filesystem. Packaging # should be transparent and not cause mutations, as such # those operations should be added as genrule layers (or # something similar) that mutates the filesystem being # packaged *before* reaching this point. create_archive_cmd = [ "/bin/bash", "-c", "set -ue -o pipefail;" f"pushd {work_dir} >/dev/null;" # List all the files except sockets since cpio doesn't # support them and they don't really mean much outside # the context of the process that is using it. "(set -ue -o pipefail; /bin/find . -mindepth 1 ! -type s | " # Use LANG=C to avoid any surprises that locale might cause "LANG=C /bin/sort | " # Create the archive with bsdtar "LANG=C /bin/cpio -o -H newc |" # And finally compress it "/bin/gzip --stdout)", ] opts = new_nspawn_opts( cmd=create_archive_cmd, layer=opts.build_appliance, bindmount_rw=[(subvol.path(), work_dir)], user=pwd.getpwnam("root"), ) with create_ro(output_path, "wb") as outfile, popen_nspawn( opts, PopenArgs(stdout=outfile) ): pass def _bash_cmd_in_build_appliance( output_path: str, opts: _Opts, subvol: Subvol, get_bash: Callable[[str, str], str], ): """ Spin up a new nspawn build appliance with bind mounts and run cmd provided by get_bash. """ work_dir = generate_work_dir() output_dir = "/output" o_basepath, o_file = os.path.split(output_path) image_path = os.path.join(output_dir, o_file) cmd = [ "/bin/bash", "-eux", "-o", "pipefail", "-c", get_bash(image_path=image_path, work_dir=work_dir), ] run_nspawn( new_nspawn_opts( cmd=cmd, layer=opts.build_appliance, bindmount_rw=[ (subvol.path(), work_dir), (o_basepath, output_dir), ], user=pwd.getpwuid(os.getuid()), ), PopenArgs(), ) class VfatImage(Format, format_name="vfat"): """ Packages the subvolume as a vfat-formatted disk image, usage: mount -t vfat image.vfat dest/ -o loop NB: vfat is very limited on supported file types, thus we only support packaging regular files/dirs into a vfat image. """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): if opts.size_mb is None: raise ValueError("size_mb is required when packaging a vfat image") _bash_cmd_in_build_appliance( output_path, opts, subvol, lambda *, image_path, work_dir: ( "/usr/sbin/mkfs.vfat {maybe_label} " "-C {image_path} {image_size}; " "/usr/bin/mcopy -v -i {image_path} -sp {work_dir}/* ::" ).format( maybe_label=f"-n {opts.volume_label}" if opts.volume_label else "", image_path=image_path, # mkfs.vfat takes the size as BLOCK_COUNT (1K Bytes) # thus passing in "size_mb * KiB" results in "size_mb" MiB image_size=opts.size_mb * KiB, work_dir=work_dir, ), ) class Ext3Image(Format, format_name="ext3"): """ Packages the subvolume as an ext3-formatted disk image, usage: mount -t ext3 image.ext3 dest/ -o loop """ def package_full(self, subvol: Subvol, output_path: str, opts: _Opts): if opts.size_mb is None: raise ValueError("size_mb is required when packaging an ext3 image") _bash_cmd_in_build_appliance( output_path, opts, subvol, lambda *, image_path, work_dir: ( "/usr/bin/truncate -s {image_size}M {image_path}; " "/usr/sbin/mkfs.ext3 {maybe_label} {image_path}" " -d {work_dir}" ).format( maybe_label=f"-L {opts.volume_label}" if opts.volume_label else "", image_path=image_path, image_size=opts.size_mb, work_dir=work_dir, ), ) def parse_args(argv): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--subvolumes-dir", required=True, type=Path.from_argparse, help="A directory on a btrfs volume, where all the subvolume wrapper " "directories reside.", ) parser.add_argument( "--layer-path", required=True, help="A directory output from the `image_layer` we need to package", ) parser.add_argument( "--format", choices=Format.NAME_TO_CLASS.keys(), required=True, help=f""" Brief format descriptions -- see the code docblocks for more detail: {'; '.join( '"' + k + '" -- ' + v.__doc__ for k, v in Format.NAME_TO_CLASS.items() )} """, ) parser.add_argument( "--output-path", required=True, help="Write the image package file(s) to this path -- must not exist", ) parser.add_argument( "--writable-subvolume", action="store_true", default=False, help="By default, the subvolume inside a loopback is marked read-only." " Pass this flag to mark it writable.", ) parser.add_argument( "--seed-device", action="store_true", default=False, help="Pass this flag to make the resulting image a btrfs seed device", ) parser.add_argument( "--size-mb", type=int, help="Size of the target filesystem image", ) parser.add_argument( "--volume-label", help="Label for the target filesystem image", ) parser.add_argument( "--multi-pass-size-minimization", action="store_true", default=False, help="By default, we do not apply time-costly efforts to minimize the" " size of loopback image", ) parser.add_argument( "--set-default-subvol", action="store_true", default=False, help="Set the default subvol of the loopback image to be the volume:" " subvol", ) parser.add_argument( "--build-appliance", help="Build appliance layer to use when packaging" ) # Future: To add support for incremental send-streams, we'd want to # use this (see `--ancestor-jsons` in `image_package.bzl`) # # parser.add_argument( # '--ancestor-jsons', # nargs=argparse.REMAINDER, metavar=['PATH'], required=True, # help='Consumes the remaining arguments on the command-line. ' # 'A list of image_layer JSON output files.', # ) return Path.parse_args(parser, argv) # Future: For incremental snapshots, an important sanity check is to verify # that base subvolume is actually an ancestor of the subvolume being # packaged, since `btrfs send` does not check this. The function below # enables us to do this, and more. # # def get_subvolume_on_disk_stack( # layer_json_paths: Iterable[str], subvolumes_dir: str, # ) -> List[SubvolumeOnDisk]: # # Map the given layer JSONs to btrfs subvolumes in the per-repo volume # uuid_to_svod = {} # parent_uuids = set() # for json_path in layer_json_paths: # with open(json_path) as infile: # svod = SubvolumeOnDisk.from_json_file(infile, subvolumes_dir) # uuid_to_svod[svod.btrfs_uuid] = svod # if svod.btrfs_parent_uuid: # parent_uuids.add(svod.btrfs_parent_uuid) # # # Traverse `SubvolumeOnDisk`s from the leaf child to the last ancestor # svod, = (s for u, s in uuid_to_svod.items() if u not in parent_uuids) # subvol_stack = [] # while True: # subvol_stack.append(svod) # if not svod.btrfs_parent_uuid: # break # svod = uuid_to_svod[svod.btrfs_parent_uuid] # subvol_stack.reverse() # Now from last ancestor to newest child # assert len(subvol_stack) == len(uuid_to_svod), uuid_to_svod # assert len(set(subvol_stack)) == len(uuid_to_svod), uuid_to_svod # # return subvol_stack def package_image(argv): args = parse_args(argv) assert not os.path.exists(args.output_path) Format.make(args.format).package_full( find_built_subvol(args.layer_path, subvolumes_dir=args.subvolumes_dir), output_path=args.output_path, opts=_Opts( subvol_opts=SubvolOpts( readonly=not args.writable_subvolume, seed_device=args.seed_device, set_default_subvol=args.set_default_subvol, multi_pass_size_minimization=args.multi_pass_size_minimization, size_bytes=args.size_mb * MiB if args.size_mb else None, ), build_appliance=find_built_subvol(args.build_appliance) if args.build_appliance else None, size_mb=args.size_mb, volume_label=args.volume_label, ), ) # Paranoia: images are read-only after being built os.chmod( args.output_path, stat.S_IMODE(os.stat(args.output_path).st_mode) & ~(stat.S_IWUSR | stat.S_IWGRP | stat.S_IWOTH), ) if __name__ == "__main__": # pragma: no cover import sys init_logging() package_image(sys.argv[1:])
the-stack_106_26346
# # Module providing the `SyncManager` class for dealing # with shared objects # # multiprocessing/managers.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # __all__ = [ 'BaseManager', 'SyncManager', 'BaseProxy', 'Token' ] # # Imports # import sys import threading import array import queue from time import time as _time from traceback import format_exc from . import connection from .context import reduction, get_spawning_popen, ProcessError from . import pool from . import process from . import util from . import get_context # # Register some things for pickling # def reduce_array(a): return array.array, (a.typecode, a.tobytes()) reduction.register(array.array, reduce_array) view_types = [type(getattr({}, name)()) for name in ('items','keys','values')] if view_types[0] is not list: # only needed in Py3.0 def rebuild_as_list(obj): return list, (list(obj),) for view_type in view_types: reduction.register(view_type, rebuild_as_list) # # Type for identifying shared objects # class Token(object): ''' Type to uniquely indentify a shared object ''' __slots__ = ('typeid', 'address', 'id') def __init__(self, typeid, address, id): (self.typeid, self.address, self.id) = (typeid, address, id) def __getstate__(self): return (self.typeid, self.address, self.id) def __setstate__(self, state): (self.typeid, self.address, self.id) = state def __repr__(self): return '%s(typeid=%r, address=%r, id=%r)' % \ (self.__class__.__name__, self.typeid, self.address, self.id) # # Function for communication with a manager's server process # def dispatch(c, id, methodname, args=(), kwds={}): ''' Send a message to manager using connection `c` and return response ''' c.send((id, methodname, args, kwds)) kind, result = c.recv() if kind == '#RETURN': return result raise convert_to_error(kind, result) def convert_to_error(kind, result): if kind == '#ERROR': return result elif kind in ('#TRACEBACK', '#UNSERIALIZABLE'): if not isinstance(result, str): raise TypeError( "Result {0!r} (kind '{1}') type is {2}, not str".format( result, kind, type(result))) if kind == '#UNSERIALIZABLE': return RemoteError('Unserializable message: %s\n' % result) else: return RemoteError(result) else: return ValueError('Unrecognized message type {!r}'.format(kind)) class RemoteError(Exception): def __str__(self): return ('\n' + '-'*75 + '\n' + str(self.args[0]) + '-'*75) # # Functions for finding the method names of an object # def all_methods(obj): ''' Return a list of names of methods of `obj` ''' temp = [] for name in dir(obj): func = getattr(obj, name) if callable(func): temp.append(name) return temp def public_methods(obj): ''' Return a list of names of methods of `obj` which do not start with '_' ''' return [name for name in all_methods(obj) if name[0] != '_'] # # Server which is run in a process controlled by a manager # class Server(object): ''' Server class which runs in a process controlled by a manager object ''' public = ['shutdown', 'create', 'accept_connection', 'get_methods', 'debug_info', 'number_of_objects', 'dummy', 'incref', 'decref'] def __init__(self, registry, address, authkey, serializer): if not isinstance(authkey, bytes): raise TypeError( "Authkey {0!r} is type {1!s}, not bytes".format( authkey, type(authkey))) self.registry = registry self.authkey = process.AuthenticationString(authkey) Listener, Client = listener_client[serializer] # do authentication later self.listener = Listener(address=address, backlog=16) self.address = self.listener.address self.id_to_obj = {'0': (None, ())} self.id_to_refcount = {} self.id_to_local_proxy_obj = {} self.mutex = threading.Lock() def serve_forever(self): ''' Run the server forever ''' self.stop_event = threading.Event() process.current_process()._manager_server = self try: accepter = threading.Thread(target=self.accepter) accepter.daemon = True accepter.start() try: while not self.stop_event.is_set(): self.stop_event.wait(1) except (KeyboardInterrupt, SystemExit): pass finally: if sys.stdout != sys.__stdout__: # what about stderr? util.debug('resetting stdout, stderr') sys.stdout = sys.__stdout__ sys.stderr = sys.__stderr__ sys.exit(0) def accepter(self): while True: try: c = self.listener.accept() except OSError: continue t = threading.Thread(target=self.handle_request, args=(c,)) t.daemon = True t.start() def handle_request(self, c): ''' Handle a new connection ''' funcname = result = request = None try: connection.deliver_challenge(c, self.authkey) connection.answer_challenge(c, self.authkey) request = c.recv() ignore, funcname, args, kwds = request assert funcname in self.public, '%r unrecognized' % funcname func = getattr(self, funcname) except Exception: msg = ('#TRACEBACK', format_exc()) else: try: result = func(c, *args, **kwds) except Exception: msg = ('#TRACEBACK', format_exc()) else: msg = ('#RETURN', result) try: c.send(msg) except Exception as e: try: c.send(('#TRACEBACK', format_exc())) except Exception: pass util.info('Failure to send message: %r', msg) util.info(' ... request was %r', request) util.info(' ... exception was %r', e) c.close() def serve_client(self, conn): ''' Handle requests from the proxies in a particular process/thread ''' util.debug('starting server thread to service %r', threading.current_thread().name) recv = conn.recv send = conn.send id_to_obj = self.id_to_obj while not self.stop_event.is_set(): try: methodname = obj = None request = recv() ident, methodname, args, kwds = request try: obj, exposed, gettypeid = id_to_obj[ident] except KeyError as ke: try: obj, exposed, gettypeid = \ self.id_to_local_proxy_obj[ident] except KeyError as second_ke: raise ke if methodname not in exposed: raise AttributeError( 'method %r of %r object is not in exposed=%r' % (methodname, type(obj), exposed) ) function = getattr(obj, methodname) try: res = function(*args, **kwds) except Exception as e: msg = ('#ERROR', e) else: typeid = gettypeid and gettypeid.get(methodname, None) if typeid: rident, rexposed = self.create(conn, typeid, res) token = Token(typeid, self.address, rident) msg = ('#PROXY', (rexposed, token)) else: msg = ('#RETURN', res) except AttributeError: if methodname is None: msg = ('#TRACEBACK', format_exc()) else: try: fallback_func = self.fallback_mapping[methodname] result = fallback_func( self, conn, ident, obj, *args, **kwds ) msg = ('#RETURN', result) except Exception: msg = ('#TRACEBACK', format_exc()) except EOFError: util.debug('got EOF -- exiting thread serving %r', threading.current_thread().name) sys.exit(0) except Exception: msg = ('#TRACEBACK', format_exc()) try: try: send(msg) except Exception as e: send(('#UNSERIALIZABLE', format_exc())) except Exception as e: util.info('exception in thread serving %r', threading.current_thread().name) util.info(' ... message was %r', msg) util.info(' ... exception was %r', e) conn.close() sys.exit(1) def fallback_getvalue(self, conn, ident, obj): return obj def fallback_str(self, conn, ident, obj): return str(obj) def fallback_repr(self, conn, ident, obj): return repr(obj) fallback_mapping = { '__str__':fallback_str, '__repr__':fallback_repr, '#GETVALUE':fallback_getvalue } def dummy(self, c): pass def debug_info(self, c): ''' Return some info --- useful to spot problems with refcounting ''' # Perhaps include debug info about 'c'? with self.mutex: result = [] keys = list(self.id_to_refcount.keys()) keys.sort() for ident in keys: if ident != '0': result.append(' %s: refcount=%s\n %s' % (ident, self.id_to_refcount[ident], str(self.id_to_obj[ident][0])[:75])) return '\n'.join(result) def number_of_objects(self, c): ''' Number of shared objects ''' # Doesn't use (len(self.id_to_obj) - 1) as we shouldn't count ident='0' return len(self.id_to_refcount) def shutdown(self, c): ''' Shutdown this process ''' try: util.debug('manager received shutdown message') c.send(('#RETURN', None)) except: import traceback traceback.print_exc() finally: self.stop_event.set() def create(self, c, typeid, *args, **kwds): ''' Create a new shared object and return its id ''' with self.mutex: callable, exposed, method_to_typeid, proxytype = \ self.registry[typeid] if callable is None: if kwds or (len(args) != 1): raise ValueError( "Without callable, must have one non-keyword argument") obj = args[0] else: obj = callable(*args, **kwds) if exposed is None: exposed = public_methods(obj) if method_to_typeid is not None: if not isinstance(method_to_typeid, dict): raise TypeError( "Method_to_typeid {0!r}: type {1!s}, not dict".format( method_to_typeid, type(method_to_typeid))) exposed = list(exposed) + list(method_to_typeid) ident = '%x' % id(obj) # convert to string because xmlrpclib # only has 32 bit signed integers util.debug('%r callable returned object with id %r', typeid, ident) self.id_to_obj[ident] = (obj, set(exposed), method_to_typeid) if ident not in self.id_to_refcount: self.id_to_refcount[ident] = 0 self.incref(c, ident) return ident, tuple(exposed) def get_methods(self, c, token): ''' Return the methods of the shared object indicated by token ''' return tuple(self.id_to_obj[token.id][1]) def accept_connection(self, c, name): ''' Spawn a new thread to serve this connection ''' threading.current_thread().name = name c.send(('#RETURN', None)) self.serve_client(c) def incref(self, c, ident): with self.mutex: try: self.id_to_refcount[ident] += 1 except KeyError as ke: # If no external references exist but an internal (to the # manager) still does and a new external reference is created # from it, restore the manager's tracking of it from the # previously stashed internal ref. if ident in self.id_to_local_proxy_obj: self.id_to_refcount[ident] = 1 self.id_to_obj[ident] = \ self.id_to_local_proxy_obj[ident] obj, exposed, gettypeid = self.id_to_obj[ident] util.debug('Server re-enabled tracking & INCREF %r', ident) else: raise ke def decref(self, c, ident): if ident not in self.id_to_refcount and \ ident in self.id_to_local_proxy_obj: util.debug('Server DECREF skipping %r', ident) return with self.mutex: if self.id_to_refcount[ident] <= 0: raise AssertionError( "Id {0!s} ({1!r}) has refcount {2:n}, not 1+".format( ident, self.id_to_obj[ident], self.id_to_refcount[ident])) self.id_to_refcount[ident] -= 1 if self.id_to_refcount[ident] == 0: del self.id_to_refcount[ident] if ident not in self.id_to_refcount: # Two-step process in case the object turns out to contain other # proxy objects (e.g. a managed list of managed lists). # Otherwise, deleting self.id_to_obj[ident] would trigger the # deleting of the stored value (another managed object) which would # in turn attempt to acquire the mutex that is already held here. self.id_to_obj[ident] = (None, (), None) # thread-safe util.debug('disposing of obj with id %r', ident) with self.mutex: del self.id_to_obj[ident] # # Class to represent state of a manager # class State(object): __slots__ = ['value'] INITIAL = 0 STARTED = 1 SHUTDOWN = 2 # # Mapping from serializer name to Listener and Client types # listener_client = { 'pickle' : (connection.Listener, connection.Client), 'xmlrpclib' : (connection.XmlListener, connection.XmlClient) } # # Definition of BaseManager # class BaseManager(object): ''' Base class for managers ''' _registry = {} _Server = Server def __init__(self, address=None, authkey=None, serializer='pickle', ctx=None): if authkey is None: authkey = process.current_process().authkey self._address = address # XXX not final address if eg ('', 0) self._authkey = process.AuthenticationString(authkey) self._state = State() self._state.value = State.INITIAL self._serializer = serializer self._Listener, self._Client = listener_client[serializer] self._ctx = ctx or get_context() def get_server(self): ''' Return server object with serve_forever() method and address attribute ''' if self._state.value != State.INITIAL: if self._state.value == State.STARTED: raise ProcessError("Already started server") elif self._state.value == State.SHUTDOWN: raise ProcessError("Manager has shut down") else: raise ProcessError( "Unknown state {!r}".format(self._state.value)) return Server(self._registry, self._address, self._authkey, self._serializer) def connect(self): ''' Connect manager object to the server process ''' Listener, Client = listener_client[self._serializer] conn = Client(self._address, authkey=self._authkey) dispatch(conn, None, 'dummy') self._state.value = State.STARTED def start(self, initializer=None, initargs=()): ''' Spawn a server process for this manager object ''' if self._state.value != State.INITIAL: if self._state.value == State.STARTED: raise ProcessError("Already started server") elif self._state.value == State.SHUTDOWN: raise ProcessError("Manager has shut down") else: raise ProcessError( "Unknown state {!r}".format(self._state.value)) if initializer is not None and not callable(initializer): raise TypeError('initializer must be a callable') # pipe over which we will retrieve address of server reader, writer = connection.Pipe(duplex=False) # spawn process which runs a server self._process = self._ctx.Process( target=type(self)._run_server, args=(self._registry, self._address, self._authkey, self._serializer, writer, initializer, initargs), ) ident = ':'.join(str(i) for i in self._process._identity) self._process.name = type(self).__name__ + '-' + ident self._process.start() # get address of server writer.close() self._address = reader.recv() reader.close() # register a finalizer self._state.value = State.STARTED self.shutdown = util.Finalize( self, type(self)._finalize_manager, args=(self._process, self._address, self._authkey, self._state, self._Client), exitpriority=0 ) @classmethod def _run_server(cls, registry, address, authkey, serializer, writer, initializer=None, initargs=()): ''' Create a server, report its address and run it ''' if initializer is not None: initializer(*initargs) # create server server = cls._Server(registry, address, authkey, serializer) # inform parent process of the server's address writer.send(server.address) writer.close() # run the manager util.info('manager serving at %r', server.address) server.serve_forever() def _create(self, typeid, *args, **kwds): ''' Create a new shared object; return the token and exposed tuple ''' assert self._state.value == State.STARTED, 'server not yet started' conn = self._Client(self._address, authkey=self._authkey) try: id, exposed = dispatch(conn, None, 'create', (typeid,)+args, kwds) finally: conn.close() return Token(typeid, self._address, id), exposed def join(self, timeout=None): ''' Join the manager process (if it has been spawned) ''' if self._process is not None: self._process.join(timeout) if not self._process.is_alive(): self._process = None def _debug_info(self): ''' Return some info about the servers shared objects and connections ''' conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'debug_info') finally: conn.close() def _number_of_objects(self): ''' Return the number of shared objects ''' conn = self._Client(self._address, authkey=self._authkey) try: return dispatch(conn, None, 'number_of_objects') finally: conn.close() def __enter__(self): if self._state.value == State.INITIAL: self.start() if self._state.value != State.STARTED: if self._state.value == State.INITIAL: raise ProcessError("Unable to start server") elif self._state.value == State.SHUTDOWN: raise ProcessError("Manager has shut down") else: raise ProcessError( "Unknown state {!r}".format(self._state.value)) return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown() @staticmethod def _finalize_manager(process, address, authkey, state, _Client): ''' Shutdown the manager process; will be registered as a finalizer ''' if process.is_alive(): util.info('sending shutdown message to manager') try: conn = _Client(address, authkey=authkey) try: dispatch(conn, None, 'shutdown') finally: conn.close() except Exception: pass process.join(timeout=1.0) if process.is_alive(): util.info('manager still alive') if hasattr(process, 'terminate'): util.info('trying to `terminate()` manager process') process.terminate() process.join(timeout=0.1) if process.is_alive(): util.info('manager still alive after terminate') state.value = State.SHUTDOWN try: del BaseProxy._address_to_local[address] except KeyError: pass @property def address(self): return self._address @classmethod def register(cls, typeid, callable=None, proxytype=None, exposed=None, method_to_typeid=None, create_method=True): ''' Register a typeid with the manager type ''' if '_registry' not in cls.__dict__: cls._registry = cls._registry.copy() if proxytype is None: proxytype = AutoProxy exposed = exposed or getattr(proxytype, '_exposed_', None) method_to_typeid = method_to_typeid or \ getattr(proxytype, '_method_to_typeid_', None) if method_to_typeid: for key, value in list(method_to_typeid.items()): # isinstance? assert type(key) is str, '%r is not a string' % key assert type(value) is str, '%r is not a string' % value cls._registry[typeid] = ( callable, exposed, method_to_typeid, proxytype ) if create_method: def temp(self, *args, **kwds): util.debug('requesting creation of a shared %r object', typeid) token, exp = self._create(typeid, *args, **kwds) proxy = proxytype( token, self._serializer, manager=self, authkey=self._authkey, exposed=exp ) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy temp.__name__ = typeid setattr(cls, typeid, temp) # # Subclass of set which get cleared after a fork # class ProcessLocalSet(set): def __init__(self): util.register_after_fork(self, lambda obj: obj.clear()) def __reduce__(self): return type(self), () # # Definition of BaseProxy # class BaseProxy(object): ''' A base for proxies of shared objects ''' _address_to_local = {} _mutex = util.ForkAwareThreadLock() def __init__(self, token, serializer, manager=None, authkey=None, exposed=None, incref=True, manager_owned=False): with BaseProxy._mutex: tls_idset = BaseProxy._address_to_local.get(token.address, None) if tls_idset is None: tls_idset = util.ForkAwareLocal(), ProcessLocalSet() BaseProxy._address_to_local[token.address] = tls_idset # self._tls is used to record the connection used by this # thread to communicate with the manager at token.address self._tls = tls_idset[0] # self._idset is used to record the identities of all shared # objects for which the current process owns references and # which are in the manager at token.address self._idset = tls_idset[1] self._token = token self._id = self._token.id self._manager = manager self._serializer = serializer self._Client = listener_client[serializer][1] # Should be set to True only when a proxy object is being created # on the manager server; primary use case: nested proxy objects. # RebuildProxy detects when a proxy is being created on the manager # and sets this value appropriately. self._owned_by_manager = manager_owned if authkey is not None: self._authkey = process.AuthenticationString(authkey) elif self._manager is not None: self._authkey = self._manager._authkey else: self._authkey = process.current_process().authkey if incref: self._incref() util.register_after_fork(self, BaseProxy._after_fork) def _connect(self): util.debug('making connection to manager') name = process.current_process().name if threading.current_thread().name != 'MainThread': name += '|' + threading.current_thread().name conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'accept_connection', (name,)) self._tls.connection = conn def _callmethod(self, methodname, args=(), kwds={}): ''' Try to call a method of the referrent and return a copy of the result ''' try: conn = self._tls.connection except AttributeError: util.debug('thread %r does not own a connection', threading.current_thread().name) self._connect() conn = self._tls.connection conn.send((self._id, methodname, args, kwds)) kind, result = conn.recv() if kind == '#RETURN': return result elif kind == '#PROXY': exposed, token = result proxytype = self._manager._registry[token.typeid][-1] token.address = self._token.address proxy = proxytype( token, self._serializer, manager=self._manager, authkey=self._authkey, exposed=exposed ) conn = self._Client(token.address, authkey=self._authkey) dispatch(conn, None, 'decref', (token.id,)) return proxy raise convert_to_error(kind, result) def _getvalue(self): ''' Get a copy of the value of the referent ''' return self._callmethod('#GETVALUE') def _incref(self): if self._owned_by_manager: util.debug('owned_by_manager skipped INCREF of %r', self._token.id) return conn = self._Client(self._token.address, authkey=self._authkey) dispatch(conn, None, 'incref', (self._id,)) util.debug('INCREF %r', self._token.id) self._idset.add(self._id) state = self._manager and self._manager._state self._close = util.Finalize( self, BaseProxy._decref, args=(self._token, self._authkey, state, self._tls, self._idset, self._Client), exitpriority=10 ) @staticmethod def _decref(token, authkey, state, tls, idset, _Client): idset.discard(token.id) # check whether manager is still alive if state is None or state.value == State.STARTED: # tell manager this process no longer cares about referent try: util.debug('DECREF %r', token.id) conn = _Client(token.address, authkey=authkey) dispatch(conn, None, 'decref', (token.id,)) except Exception as e: util.debug('... decref failed %s', e) else: util.debug('DECREF %r -- manager already shutdown', token.id) # check whether we can close this thread's connection because # the process owns no more references to objects for this manager if not idset and hasattr(tls, 'connection'): util.debug('thread %r has no more proxies so closing conn', threading.current_thread().name) tls.connection.close() del tls.connection def _after_fork(self): self._manager = None try: self._incref() except Exception as e: # the proxy may just be for a manager which has shutdown util.info('incref failed: %s' % e) def __reduce__(self): kwds = {} if get_spawning_popen() is not None: kwds['authkey'] = self._authkey if getattr(self, '_isauto', False): kwds['exposed'] = self._exposed_ return (RebuildProxy, (AutoProxy, self._token, self._serializer, kwds)) else: return (RebuildProxy, (type(self), self._token, self._serializer, kwds)) def __deepcopy__(self, memo): return self._getvalue() def __repr__(self): return '<%s object, typeid %r at %#x>' % \ (type(self).__name__, self._token.typeid, id(self)) def __str__(self): ''' Return representation of the referent (or a fall-back if that fails) ''' try: return self._callmethod('__repr__') except Exception: return repr(self)[:-1] + "; '__str__()' failed>" # # Function used for unpickling # def RebuildProxy(func, token, serializer, kwds): ''' Function used for unpickling proxy objects. ''' server = getattr(process.current_process(), '_manager_server', None) if server and server.address == token.address: util.debug('Rebuild a proxy owned by manager, token=%r', token) kwds['manager_owned'] = True if token.id not in server.id_to_local_proxy_obj: server.id_to_local_proxy_obj[token.id] = \ server.id_to_obj[token.id] incref = ( kwds.pop('incref', True) and not getattr(process.current_process(), '_inheriting', False) ) return func(token, serializer, incref=incref, **kwds) # # Functions to create proxies and proxy types # def MakeProxyType(name, exposed, _cache={}): ''' Return a proxy type whose methods are given by `exposed` ''' exposed = tuple(exposed) try: return _cache[(name, exposed)] except KeyError: pass dic = {} for meth in exposed: exec('''def %s(self, *args, **kwds): return self._callmethod(%r, args, kwds)''' % (meth, meth), dic) ProxyType = type(name, (BaseProxy,), dic) ProxyType._exposed_ = exposed _cache[(name, exposed)] = ProxyType return ProxyType def AutoProxy(token, serializer, manager=None, authkey=None, exposed=None, incref=True): ''' Return an auto-proxy for `token` ''' _Client = listener_client[serializer][1] if exposed is None: conn = _Client(token.address, authkey=authkey) try: exposed = dispatch(conn, None, 'get_methods', (token,)) finally: conn.close() if authkey is None and manager is not None: authkey = manager._authkey if authkey is None: authkey = process.current_process().authkey ProxyType = MakeProxyType('AutoProxy[%s]' % token.typeid, exposed) proxy = ProxyType(token, serializer, manager=manager, authkey=authkey, incref=incref) proxy._isauto = True return proxy # # Types/callables which we will register with SyncManager # class Namespace(object): def __init__(self, **kwds): self.__dict__.update(kwds) def __repr__(self): items = list(self.__dict__.items()) temp = [] for name, value in items: if not name.startswith('_'): temp.append('%s=%r' % (name, value)) temp.sort() return '%s(%s)' % (self.__class__.__name__, ', '.join(temp)) class Value(object): def __init__(self, typecode, value, lock=True): self._typecode = typecode self._value = value def get(self): return self._value def set(self, value): self._value = value def __repr__(self): return '%s(%r, %r)'%(type(self).__name__, self._typecode, self._value) value = property(get, set) def Array(typecode, sequence, lock=True): return array.array(typecode, sequence) # # Proxy types used by SyncManager # class IteratorProxy(BaseProxy): _exposed_ = ('__next__', 'send', 'throw', 'close') def __iter__(self): return self def __next__(self, *args): return self._callmethod('__next__', args) def send(self, *args): return self._callmethod('send', args) def throw(self, *args): return self._callmethod('throw', args) def close(self, *args): return self._callmethod('close', args) class AcquirerProxy(BaseProxy): _exposed_ = ('acquire', 'release') def acquire(self, blocking=True, timeout=None): args = (blocking,) if timeout is None else (blocking, timeout) return self._callmethod('acquire', args) def release(self): return self._callmethod('release') def __enter__(self): return self._callmethod('acquire') def __exit__(self, exc_type, exc_val, exc_tb): return self._callmethod('release') class ConditionProxy(AcquirerProxy): _exposed_ = ('acquire', 'release', 'wait', 'notify', 'notify_all') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) def notify(self, n=1): return self._callmethod('notify', (n,)) def notify_all(self): return self._callmethod('notify_all') def wait_for(self, predicate, timeout=None): result = predicate() if result: return result if timeout is not None: endtime = _time() + timeout else: endtime = None waittime = None while not result: if endtime is not None: waittime = endtime - _time() if waittime <= 0: break self.wait(waittime) result = predicate() return result class EventProxy(BaseProxy): _exposed_ = ('is_set', 'set', 'clear', 'wait') def is_set(self): return self._callmethod('is_set') def set(self): return self._callmethod('set') def clear(self): return self._callmethod('clear') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) class BarrierProxy(BaseProxy): _exposed_ = ('__getattribute__', 'wait', 'abort', 'reset') def wait(self, timeout=None): return self._callmethod('wait', (timeout,)) def abort(self): return self._callmethod('abort') def reset(self): return self._callmethod('reset') @property def parties(self): return self._callmethod('__getattribute__', ('parties',)) @property def n_waiting(self): return self._callmethod('__getattribute__', ('n_waiting',)) @property def broken(self): return self._callmethod('__getattribute__', ('broken',)) class NamespaceProxy(BaseProxy): _exposed_ = ('__getattribute__', '__setattr__', '__delattr__') def __getattr__(self, key): if key[0] == '_': return object.__getattribute__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__getattribute__', (key,)) def __setattr__(self, key, value): if key[0] == '_': return object.__setattr__(self, key, value) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__setattr__', (key, value)) def __delattr__(self, key): if key[0] == '_': return object.__delattr__(self, key) callmethod = object.__getattribute__(self, '_callmethod') return callmethod('__delattr__', (key,)) class ValueProxy(BaseProxy): _exposed_ = ('get', 'set') def get(self): return self._callmethod('get') def set(self, value): return self._callmethod('set', (value,)) value = property(get, set) BaseListProxy = MakeProxyType('BaseListProxy', ( '__add__', '__contains__', '__delitem__', '__getitem__', '__len__', '__mul__', '__reversed__', '__rmul__', '__setitem__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort', '__imul__' )) class ListProxy(BaseListProxy): def __iadd__(self, value): self._callmethod('extend', (value,)) return self def __imul__(self, value): self._callmethod('__imul__', (value,)) return self DictProxy = MakeProxyType('DictProxy', ( '__contains__', '__delitem__', '__getitem__', '__len__', '__setitem__', 'clear', 'copy', 'get', 'has_key', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values' )) ArrayProxy = MakeProxyType('ArrayProxy', ( '__len__', '__getitem__', '__setitem__' )) BasePoolProxy = MakeProxyType('PoolProxy', ( 'apply', 'apply_async', 'close', 'imap', 'imap_unordered', 'join', 'map', 'map_async', 'starmap', 'starmap_async', 'terminate', )) BasePoolProxy._method_to_typeid_ = { 'apply_async': 'AsyncResult', 'map_async': 'AsyncResult', 'starmap_async': 'AsyncResult', 'imap': 'Iterator', 'imap_unordered': 'Iterator' } class PoolProxy(BasePoolProxy): def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.terminate() # # Definition of SyncManager # class SyncManager(BaseManager): ''' Subclass of `BaseManager` which supports a number of shared object types. The types registered are those intended for the synchronization of threads, plus `dict`, `list` and `Namespace`. The `multiprocessing.Manager()` function creates started instances of this class. ''' SyncManager.register('Queue', queue.Queue) SyncManager.register('JoinableQueue', queue.Queue) SyncManager.register('Event', threading.Event, EventProxy) SyncManager.register('Lock', threading.Lock, AcquirerProxy) SyncManager.register('RLock', threading.RLock, AcquirerProxy) SyncManager.register('Semaphore', threading.Semaphore, AcquirerProxy) SyncManager.register('BoundedSemaphore', threading.BoundedSemaphore, AcquirerProxy) SyncManager.register('Condition', threading.Condition, ConditionProxy) SyncManager.register('Barrier', threading.Barrier, BarrierProxy) SyncManager.register('Pool', pool.Pool, PoolProxy) SyncManager.register('list', list, ListProxy) SyncManager.register('dict', dict, DictProxy) SyncManager.register('Value', Value, ValueProxy) SyncManager.register('Array', Array, ArrayProxy) SyncManager.register('Namespace', Namespace, NamespaceProxy) # types returned by methods of PoolProxy SyncManager.register('Iterator', proxytype=IteratorProxy, create_method=False) SyncManager.register('AsyncResult', create_method=False)
the-stack_106_26348
#!/usr/bin/python # coding: UTF-8 # # Author: Dawid Laszuk # Contact: [email protected] # # Feel free to contact for any information. """ .. currentmodule:: CEEMDAN """ from __future__ import print_function import logging import numpy as np from multiprocessing import Pool # Python3 handles mutliprocessing much better. # For Python2 we need to pickle instance differently. import sys if sys.version_info[0] < 3: import copy_reg as copy_reg import types def _pickle_method(m): if m.im_self is None: return getattr, (m.im_class, m.im_func.func_name) else: return getattr, (m.im_self, m.im_func.func_name) copy_reg.pickle(types.MethodType, _pickle_method) class CEEMDAN: """ **"Complete Ensemble Empirical Mode Decomposition with Adaptive Noise"** "Complete ensemble empirical mode decomposition with adaptive noise" (CEEMDAN) [Torres2011_] is noise-assisted EMD technique. Word "complete" presumably refers to decomposing completly everything, even added perturbation (noise). Provided implementation contains proposed "improvmenets" from paper [Colominas2014_]. Parameters ---------- trials : int (default: 100) Number of trials or EMD performance with added noise. epsilon : float (default: 0.005) Scale for added noise (:math:`\epsilon`) which multiply std :math:`\sigma`: :math:`\\beta = \epsilon \cdot \sigma (noise)` ext_EMD : EMD (default: None) One can pass EMD object defined outside, which will be used to compute IMF decompositions in each trial. If none is passed then EMD with default options is used. References ---------- .. [Torres2011] M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin A complete ensemble empirical mode decomposition with adaptive noise. Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 4144--4147 .. [Colominas2014] M.A. Colominas, G. Schlotthauer, M.E. Torres, Improved complete ensemble EMD: A suitable tool for biomedical signal processing, In Biomed. Sig. Proc. and Control, V. 14, 2014, pp. 19--29 """ logger = logging.getLogger(__name__) noise_kinds_all = ["normal", "uniform"] def __init__(self, trials=100, epsilon=0.005, ext_EMD=None, **kwargs): # Ensemble constants self.trials = trials self.epsilon = epsilon self.all_noise_std = np.zeros(self.trials) self.beta_progress = True # Scale noise by std self.random = np.random.RandomState() self.noise_kind = "normal" self.all_noise_EMD = [] if ext_EMD is None: from PyEMD import EMD self.EMD = EMD() else: self.EMD = ext_EMD self.range_thr = 0.01 self.total_power_thr = 0.05 # By default (None) Pool spawns #processes = #CPU processes = None if "processes" not in kwargs else kwargs["processes"] self.pool = Pool(processes=processes) # Update based on options for key in kwargs.keys(): if key in self.__dict__.keys(): self.__dict__[key] = kwargs[key] elif key in self.EMD.__dict__.keys(): self.EMD.__dict__[key] = kwargs[key] def __call__(self, S, T=None, max_imf=-1): return self.ceemdan(S, T=T, max_imf=max_imf) def __getstate__(self): self_dict = self.__dict__.copy() del self_dict['pool'] return self_dict def generate_noise(self, scale, size): """ Generate noise with specified parameters. Currently supported distributions are: * *normal* with std equal scale. * *uniform* with range [-scale/2, scale/2]. Parameters ---------- scale : float Width for the distribution. size : int Number of generated samples. Returns ------- noise : numpy array Noise sampled from selected distribution. """ if self.noise_kind=="normal": noise = self.random.normal(loc=0, scale=scale, size=size) elif self.noise_kind=="uniform": noise = self.random.uniform(low=-scale/2, high=scale/2, size=size) else: raise ValueError("Unsupported noise kind. Please assigned `noise_kind`" + " to be one of these: " + str(self.noise_kinds_all)) return noise def noise_seed(self, seed): """Set seed for noise generation.""" self.random.seed(seed) def ceemdan(self, S, T=None, max_imf=-1): scale_s = np.std(S) S[:] = S/scale_s # Define all noise self.all_noises = self.generate_noise(1, (self.trials,S.size)) # Decompose all noise and remember 1st's std self.logger.debug("Decomposing all noises") for trial, noise in enumerate(self.all_noises): _imfs = self.emd(noise, T, max_imf=-1) # If beta_progress then scale all IMFs with 1st std if self.beta_progress: _imfs = _imfs/np.std(_imfs[0]) self.all_noise_EMD.append(_imfs) # Create first IMF last_imf = self._eemd(S, T, 1)[0] res = np.empty(S.size) all_cimfs = last_imf.reshape((-1, last_imf.size)) prev_res = S - last_imf self.logger.debug("Starting CEEMDAN") while(True): # Check end condition in the beginning because we've already have 1 IMF if self.end_condition(S, all_cimfs, max_imf): self.logger.debug("End Condition - Pass") break imfNo = all_cimfs.shape[0] beta = self.epsilon*np.std(prev_res) local_mean = np.zeros(S.size) for trial in range(self.trials): # Skip if noise[trial] didn't have k'th mode noise_imf = self.all_noise_EMD[trial] res = prev_res.copy() if len(noise_imf) > imfNo: res += beta*noise_imf[imfNo] # Extract local mean, which is at 2nd position imfs = self.emd(res, T, 1) local_mean += imfs[-1]/self.trials last_imf = prev_res - local_mean all_cimfs = np.vstack((all_cimfs, last_imf)) prev_res = local_mean.copy() # END of while res = S - np.sum(all_cimfs, axis=0) all_cimfs = np.vstack((all_cimfs,res)) all_cimfs = all_cimfs*scale_s return all_cimfs def end_condition(self, S, cIMFs, max_imf): """Test for end condition of CEEMDAN. Procedure stops if: * number of components reach provided `max_imf`, or * last component is close to being pure noise (range or power), or * set of provided components reconstructs sufficiently input. Parameters ---------- S : numpy array Original signal on which CEEMDAN was performed. cIMFs : numpy 2D array Set of cIMFs where each row is cIMF. Returns ------- end : bool Whether to stop CEEMDAN. """ imfNo = cIMFs.shape[0] # Check if hit maximum number of cIMFs if max_imf > 0 and imfNo >= max_imf: return True # Compute EMD on residue R = S - np.sum(cIMFs, axis=0) _test_imf = self.emd(R, None, max_imf=1) # Check if residue is IMF or no extrema if _test_imf.shape[0] == 1: self.logger.debug("Not enough extrema") return True # Check for range threshold if np.max(R) - np.min(R) < self.range_thr: self.logger.debug("FINISHED -- RANGE") return True # Check for power threshold if np.sum(np.abs(R)) < self.total_power_thr: self.logger.debug("FINISHED -- SUM POWER") return True return False def _eemd(self, S, T=None, max_imf=-1): if T is None: T = np.arange(len(S), dtype=S.dtype) self._S = S self._T = T self._N = N = len(S) self.max_imf = max_imf # For trial number of iterations perform EMD on a signal # with added white noise all_IMFs = self.pool.map(self._trial_update, range(self.trials)) max_imfNo = max([IMFs.shape[0] for IMFs in all_IMFs]) self.E_IMF = np.zeros((max_imfNo, N)) for IMFs in all_IMFs: self.E_IMF[:IMFs.shape[0]] += IMFs return self.E_IMF/self.trials def _trial_update(self, trial): # Generate noise noise = self.epsilon*self.all_noise_EMD[trial][0] return self.emd(self._S+noise, self._T, self.max_imf) def emd(self, S, T, max_imf=-1): """Vanilla EMD method. Provides emd evaluation from provided EMD class. For reference please see :class:`PyEMD.EMD`. """ return self.EMD.emd(S, T, max_imf) ################################################### ## Beginning of program if __name__ == "__main__": import pylab as plt # Logging options logging.basicConfig(level=logging.INFO) max_imf = -1 # Signal options N = 500 tMin, tMax = 0, 2*np.pi T = np.linspace(tMin, tMax, N) S = 3*np.sin(4*T) + 4*np.cos(9*T) + np.sin(8.11*T+1.2) # Prepare and run EEMD trials = 20 ceemdan = CEEMDAN(trials=trials) C_IMFs = ceemdan(S, T, max_imf) imfNo = C_IMFs.shape[0] # Plot results in a grid c = np.floor(np.sqrt(imfNo+2)) r = np.ceil((imfNo+2)/c) plt.ioff() plt.subplot(r,c,1) plt.plot(T, S, 'r') plt.xlim((tMin, tMax)) plt.title("Original signal") plt.subplot(r,c,2) plt.plot(T, S-np.sum(C_IMFs, axis=0), 'r') plt.xlim((tMin, tMax)) plt.title("Residuum") for num in range(imfNo): plt.subplot(r,c,num+3) plt.plot(T, C_IMFs[num],'g') plt.xlim((tMin, tMax)) plt.title("Imf "+str(num+1)) plt.show()
the-stack_106_26352
'''OpenGL extension APPLE.element_array Overview (from the spec) This extension provides facilities to improve DrawElements style vertex indices submission performance by allowing index arrays. Using this extension these arrays can be contained inside a vertex array range and thus pulled directly by the graphics processor, avoiding the CPU overhead of touching the index data. This extension is most useful when used in conjunction with the APPLE_vertex_array_range extension. APPLE_vertex_array_range provides an interface for storing vertex array data. In cases where large amounts of vertex data are in use, the index data used to construct primitives (typically as passed to the GL through DrawElements) can impose a significant bandwidth burden. APPLE_element_array allows the application to specify independent arrays of elements, which can then be cached using APPLE_vertex_array_range. In effect this creates a more orthogonal interface for both vertex indices and data. The official definition of this extension is available here: http://oss.sgi.com/projects/ogl-sample/registry/APPLE/element_array.txt Automatically generated by the get_gl_extensions script, do not edit! ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions from OpenGL.GL import glget import ctypes EXTENSION_NAME = 'GL_APPLE_element_array' GL_ELEMENT_ARRAY_APPLE = constant.Constant( 'GL_ELEMENT_ARRAY_APPLE', 0x8768 ) GL_ELEMENT_ARRAY_TYPE_APPLE = constant.Constant( 'GL_ELEMENT_ARRAY_TYPE_APPLE', 0x8769 ) glget.addGLGetConstant( GL_ELEMENT_ARRAY_TYPE_APPLE, (1,) ) GL_ELEMENT_ARRAY_POINTER_APPLE = constant.Constant( 'GL_ELEMENT_ARRAY_POINTER_APPLE', 0x876A ) glElementPointerAPPLE = platform.createExtensionFunction( 'glElementPointerAPPLE', dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum, ctypes.c_void_p,), doc = 'glElementPointerAPPLE( GLenum(type), c_void_p(pointer) ) -> None', argNames = ('type', 'pointer',), ) glDrawElementArrayAPPLE = platform.createExtensionFunction( 'glDrawElementArrayAPPLE', dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum, constants.GLint, constants.GLsizei,), doc = 'glDrawElementArrayAPPLE( GLenum(mode), GLint(first), GLsizei(count) ) -> None', argNames = ('mode', 'first', 'count',), ) glDrawRangeElementArrayAPPLE = platform.createExtensionFunction( 'glDrawRangeElementArrayAPPLE', dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum, constants.GLuint, constants.GLuint, constants.GLint, constants.GLsizei,), doc = 'glDrawRangeElementArrayAPPLE( GLenum(mode), GLuint(start), GLuint(end), GLint(first), GLsizei(count) ) -> None', argNames = ('mode', 'start', 'end', 'first', 'count',), ) glMultiDrawElementArrayAPPLE = platform.createExtensionFunction( 'glMultiDrawElementArrayAPPLE', dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum, arrays.GLintArray, arrays.GLsizeiArray, constants.GLsizei,), doc = 'glMultiDrawElementArrayAPPLE( GLenum(mode), GLintArray(first), GLsizeiArray(count), GLsizei(primcount) ) -> None', argNames = ('mode', 'first', 'count', 'primcount',), ) glMultiDrawRangeElementArrayAPPLE = platform.createExtensionFunction( 'glMultiDrawRangeElementArrayAPPLE', dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum, constants.GLuint, constants.GLuint, arrays.GLintArray, arrays.GLsizeiArray, constants.GLsizei,), doc = 'glMultiDrawRangeElementArrayAPPLE( GLenum(mode), GLuint(start), GLuint(end), GLintArray(first), GLsizeiArray(count), GLsizei(primcount) ) -> None', argNames = ('mode', 'start', 'end', 'first', 'count', 'primcount',), ) def glInitElementArrayAPPLE(): '''Return boolean indicating whether this extension is available''' return extensions.hasGLExtension( EXTENSION_NAME )
the-stack_106_26354
import torch import torch.nn as nn import torch.nn.functional as func class DistanceDiscriminator(nn.Module): def __init__(self, batch_size, out_size): super().__init__() self.batch_size = batch_size self.batch_combine = nn.Linear(batch_size, out_size) def forward(self, data): data = data.view(data.size(0), -1) dist = ((data[None, :] - data[:, None]).norm(dim=1) + 1e-6).log() return self.batch_combine(dist) class DynamicAugmentation(nn.Module): def __init__(self, transforms, target=0.6, p=0.0, step=0.01, every=4): super().__init__() self.transforms = transforms self.target = target self.p = p self.step = step self.every = every self.tick = 0 def update(self, result): if self.tick % self.every == 0: with torch.no_grad(): sign = (result.sign() + 1).mean() / 2 if sign < self.target: self.p -= self.step else: self.p += self.step self.p = max(0, min(1, self.p)) self.tick = 0 self.tick += 1 def forward(self, data): for transform in self.transforms: aug = transform(data) if isinstance(data, (list, tuple)): tmp = [] mask = (torch.rand(aug[0].size(0)) < self.p).to(aug[0].device) for item, aug_item in zip(data, aug): mm = mask.view(mask.size(0), *([1] * (item.dim() - 1))) item = ((~mm).float() * item + mm.float() * aug_item) tmp.append(item) data = tuple(tmp) else: mask = (torch.rand(aug.size(0)) < self.p).to(data.device) mask = mask.view(mask.size(0), *([1] * (data.dim() - 1))) data = ((~mask).float() * data + mask.float() * aug) return data
the-stack_106_26355
import json import logging import os import ssl import webbrowser from http.server import HTTPServer, BaseHTTPRequestHandler from queue import Queue from threading import Thread from typing import Any, Optional from peek.connection import EsClient, RefreshingEsClient _logger = logging.getLogger(__name__) class _OidcExchange: callback_path = None class CallbackHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): _logger.debug(f'Path is: {self.path}') _OidcExchange.callback_path.put(self.path) self.send_response(200) self.end_headers() self.wfile.write(b'Callback received, you can now close the browser tab.') def do_POST(self): pass def log_message(self, fmt: str, *args: Any) -> None: _logger.info("%s - - [%s] %s\n" % (self.address_string(), self.log_date_time_string(), fmt % args)) def oidc_authenticate(es_client: EsClient, realm: str, callback_port: str, callback_ssl: bool, name: Optional[str]): _logger.info(f'OIDC authenticate for realm {realm!r} and callback port {callback_port!r}') prepare_response = _oidc_prepare(es_client, realm) httpd = _oidc_start_http_server(callback_port, callback_ssl) print('Please use browser to complete authentication against the idP') webbrowser.open(prepare_response['redirect']) callback_path = _OidcExchange.callback_path.get() if isinstance(callback_path, bytes): callback_path = callback_path.decode('utf-8') try: httpd.shutdown() auth_response = _oidc_do_authenticate(es_client, realm, prepare_response['state'], prepare_response['nonce'], callback_path) return RefreshingEsClient( es_client, auth_response['username'], auth_response['access_token'], auth_response['refresh_token'], auth_response['expires_in'], name=name) finally: _OidcExchange.callback_path = None def _oidc_prepare(es_client, realm: str): return es_client.perform_request( 'POST', '/_security/oidc/prepare', json.dumps({ 'realm': realm, }), deserialize_it=True ) def _oidc_do_authenticate(es_client, realm: str, state: str, nonce: str, redirect_uri: str): response = es_client.perform_request( 'POST', '/_security/oidc/authenticate', json.dumps({ 'realm': realm, 'state': state, 'nonce': nonce, 'redirect_uri': redirect_uri, }), deserialize_it=True ) return response def _oidc_start_http_server(callback_port, callback_ssl): from peek import __file__ as package_root package_root = os.path.dirname(package_root) _OidcExchange.callback_path = Queue(maxsize=1) httpd = HTTPServer(('localhost', int(callback_port)), CallbackHTTPRequestHandler) if callback_ssl: keyfile = os.path.join(package_root, 'certs', 'key.pem') certfile = os.path.join(package_root, 'certs', 'cert.pem') httpd.socket = ssl.wrap_socket( httpd.socket, keyfile=keyfile, certfile=certfile, server_side=True) t = Thread(target=httpd.serve_forever, daemon=True) t.start() return httpd class OidcAuthenticateFunc: def __call__(self, app, **options): realm = options.get('realm', 'oidc1') conn = options.get('conn', None) oidc_es_client = oidc_authenticate( app.es_client_manager.current if conn is None else app.es_client_manager.get_client(conn), realm, options.get('callback_port', '5601'), options.get('callback_ssl', True), name=options.get('name', None), ) app.es_client_manager.add(oidc_es_client) return json.dumps({'username': oidc_es_client.username, 'realm': 'realm'}) @property def options(self): return {'realm': 'oidc1', 'callback_port': '5601', 'callback_ssl': True, 'name': None, 'conn': None} @property def description(self): return 'Start OIDC authentication flow'
the-stack_106_26357
#!/Library/Frameworks/Python.framework/Versions/3.5/bin/python3.5 from .basics import * import pickle import os import codecs from .analysis import Analysis_net from .analysis_prior import Analysis_prior_net from .synthesis import Synthesis_net class Synthesis_prior_net(nn.Module): ''' Decode synthesis prior ''' def __init__(self): super(Synthesis_prior_net, self).__init__() self.deconv1 = nn.ConvTranspose2d(out_channel_N, out_channel_N, 5, stride=2, padding=2, output_padding=1) torch.nn.init.xavier_normal_(self.deconv1.weight.data, math.sqrt(2 * 1)) torch.nn.init.constant_(self.deconv1.bias.data, 0.01) self.relu1 = nn.ReLU() self.deconv2 = nn.ConvTranspose2d(out_channel_N, out_channel_N, 5, stride=2, padding=2, output_padding=1) torch.nn.init.xavier_normal_(self.deconv2.weight.data, math.sqrt(2 * 1)) torch.nn.init.constant_(self.deconv2.bias.data, 0.01) self.relu2 = nn.ReLU() self.deconv3 = nn.ConvTranspose2d(out_channel_N, out_channel_M, 3, stride=1, padding=1) torch.nn.init.xavier_normal_(self.deconv3.weight.data, (math.sqrt(2 * 1 * (out_channel_M + out_channel_N) / (out_channel_N + out_channel_N)))) torch.nn.init.constant_(self.deconv3.bias.data, 0.01) # self.priordecoder = nn.Sequential( # nn.ConvTranspose2d(out_channel_N, out_channel_N, 5, stride=2, padding=2, output_padding=1), # nn.ReLU(), # nn.ConvTranspose2d(out_channel_N, out_channel_N, 5, stride=2, padding=2, output_padding=1), # nn.ReLU(), # nn.ConvTranspose2d(out_channel_N, out_channel_M, 3, stride=1, padding=1) # ) def forward(self, x): x = self.relu1(self.deconv1(x)) x = self.relu2(self.deconv2(x)) return torch.exp(self.deconv3(x)) def build_model(): input_image = torch.zeros([7,3,256,256]) analysis_net = Analysis_net() analysis_prior_net = Analysis_prior_net() synthesis_net = Synthesis_net() synthesis_prior_net = Synthesis_prior_net() feature = analysis_net(input_image) z = analysis_prior_net(feature) compressed_z = torch.round(z) recon_sigma = synthesis_prior_net(compressed_z) compressed_feature_renorm = feature / recon_sigma compressed_feature_renorm = torch.round(compressed_feature_renorm) compressed_feature_denorm = compressed_feature_renorm * recon_sigma recon_image = synthesis_net(compressed_feature_denorm) print("input_image : ", input_image.size()) print("feature : ", feature.size()) print("z : ", z.size()) print("recon_sigma : ", recon_sigma.size()) print("recon_image : ", recon_image.size()) if __name__ == '__main__': build_model()
the-stack_106_26359
# -*- coding: utf-8 -*- """ Estimate the PSF FWHM for each of the reduced science images, and append the 'reducedFileIndex.csv' with a column containing that information. The PSF FWHM values will be used to cull data to only include good seeing conditions. """ #Import whatever modules will be used import os import sys import time import numpy as np import matplotlib.pyplot as plt from astropy.table import Table, Column from astropy.coordinates import SkyCoord import astropy.units as u from scipy import stats # Add the AstroImage class import astroimage as ai # Add the header handler to the BaseImage class from Mimir_header_handler import Mimir_header_handler ai.reduced.ReducedScience.set_header_handler(Mimir_header_handler) ai.set_instrument('mimir') #============================================================================== # *********************** CUSTOM USER CODE ************************************ # this is where the user specifies where the raw data is stored # and some of the subdirectory structure to find the actual .FITS images #============================================================================== # Define the location of the PPOL reduced data to be read and worked on PPOL_data = 'C:\\Users\\Jordan\\FITS_data\\Mimir_data\\PPOL_Reduced\\201611\\' S3_dir = os.path.join(PPOL_data, 'S3_Astrometry') # This is the location where all pyPol data will be saved pyPol_data='C:\\Users\\Jordan\\FITS_data\\Mimir_data\\pyPol_Reduced\\201611' # Set the filename for the reduced data indexFile and read it in reducedFileIndexFile = os.path.join(pyPol_data, 'reducedFileIndex.csv') reducedFileIndex = Table.read(reducedFileIndexFile) # Set the filename for the PSF backup index file. This file will be saved # separately, in addition to the modified reduced file index. This way, if the # user invokes 01_buildIndex.py again, it will not OVERWRITE the PSF data. PSFindexFile = os.path.join(pyPol_data, 'PSFindex.csv') # Finally, loop through EACH image and compute the PSF PSFwidths = [] sigm2FWHM = 2*np.sqrt(2*np.log(2)) numberOfFiles = len(reducedFileIndex) for iFile, filename in enumerate(reducedFileIndex['FILENAME'].data): if reducedFileIndex['AB'][iFile] == 'B': PSFwidths = [-1] continue # Construct the PPOL file name PPOL_file = os.path.join(S3_dir, filename) # Read in the image thisImg = ai.reduced.ReducedScience.read(PPOL_file) # Construct a Photometry analyzer object thisPhotAnalyzer = ai.utilitywrappers.PhotometryAnalyzer(thisImg) # Estimate the PSF for this image PSFstamp, PSFparams = thisPhotAnalyzer.get_psf() # Check if non-null values were returned from the get_psf method if (PSFparams['sminor'] is None) or (PSFparams['smajor'] is None): PSFwidths.append(0) continue # Estimate a binning-normalized "width" parameter for the PSF thisBinning = np.sqrt(np.array(thisImg.binning).prod()) thisWidth = np.sqrt(PSFparams['sminor']*PSFparams['smajor'])*thisBinning PSFwidths.append(sigm2FWHM*thisWidth) # Compute the percentage done and show it to the user percentage = np.round(100*iFile/numberOfFiles, 2) print('File : {0} ... completed {1:3.2f}%'.format(os.path.basename(filename), percentage), end="\r") # Add a FWHM column to the PSF index (for safe(r) keeping) file index. PSFindex = Table() FWHMcolumn = Column(name='FWHM', data=PSFwidths) PSFindex.add_column(FWHMcolumn) reducedFileIndex.add_column(FWHMcolumn) # Save the index to disk. PSFindex.write(PSFindexFile, format='ascii.csv', overwrite=True) reducedFileIndex.write(reducedFileIndexFile, format='ascii.csv', overwrite=True)
the-stack_106_26361
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import datetime import unittest from unittest import mock from airflow.models.dag import DAG from airflow.providers.microsoft.azure.operators.wasb_delete_blob import WasbDeleteBlobOperator class TestWasbDeleteBlobOperator(unittest.TestCase): _config = { 'container_name': 'container', 'blob_name': 'blob', } def setUp(self): args = {'owner': 'airflow', 'start_date': datetime.datetime(2017, 1, 1)} self.dag = DAG('test_dag_id', default_args=args) def test_init(self): operator = WasbDeleteBlobOperator(task_id='wasb_operator_1', dag=self.dag, **self._config) self.assertEqual(operator.container_name, self._config['container_name']) self.assertEqual(operator.blob_name, self._config['blob_name']) self.assertEqual(operator.is_prefix, False) self.assertEqual(operator.ignore_if_missing, False) operator = WasbDeleteBlobOperator( task_id='wasb_operator_2', dag=self.dag, is_prefix=True, ignore_if_missing=True, **self._config ) self.assertEqual(operator.is_prefix, True) self.assertEqual(operator.ignore_if_missing, True) @mock.patch('airflow.providers.microsoft.azure.operators.wasb_delete_blob.WasbHook', autospec=True) def test_execute(self, mock_hook): mock_instance = mock_hook.return_value operator = WasbDeleteBlobOperator( task_id='wasb_operator', dag=self.dag, is_prefix=True, ignore_if_missing=True, **self._config ) operator.execute(None) mock_instance.delete_file.assert_called_once_with('container', 'blob', True, True)
the-stack_106_26362
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.test import TestCase from django.contrib.auth.models import User from django.db import IntegrityError, DataError from django.db import transaction from signbank.dictionary.models import (Gloss, Dataset, SignLanguage, Language, Keyword, Translation, Dialect, RelationToForeignSign, FieldChoice, MorphologyDefinition, GlossTranslations) from signbank.dictionary.models import build_choice_list class GlossTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="test", email=None, password=None) # Migrations have id=1 already self.language = Language.objects.create(name="glang", language_code_2char="gl", language_code_3char="gla") self.signlanguage = SignLanguage.objects.create(pk=2, name="testsignlanguage", language_code_3char="tst") self.dataset = Dataset.objects.create(name="testdataset", signlanguage=self.signlanguage) self.gloss = Gloss.objects.create(idgloss="testgloss", dataset=self.dataset, created_by=self.user, updated_by=self.user) def test_str(self): self.assertEqual(str(self.gloss), self.gloss.idgloss) def test_publish(self): """Test that publishing Gloss works.""" gloss = Gloss.objects.get(idgloss="testgloss") # Should be not be published when first created self.assertFalse(gloss.published) # Set locked True, and check that the Gloss is locked. gloss.published = True gloss.save() self.assertTrue(gloss.published) def test_unique_together(self): """Make sure that there can't be two of the same gloss+dataset combinations""" gloss = Gloss.objects.get(idgloss="testgloss") # Create another Gloss new_gloss = Gloss.objects.create(idgloss="testgloss2", dataset=self.dataset, created_by=self.user, updated_by=self.user) new_dataset = Dataset.objects.create(name="testdataset2", signlanguage=self.signlanguage) self.assertEqual(new_gloss.idgloss, "testgloss2") # Make sure you cannot violate unique_together by changing the Gloss.idgloss with self.assertRaises(IntegrityError): # Should return IntegrityError with transaction.atomic(): new_gloss.idgloss = "testgloss" new_gloss.save() # Change to a new dataset new_gloss.dataset = new_dataset new_gloss.save() self.assertTrue(new_gloss.dataset == new_dataset) # Change new_gloss to the same as gloss new_gloss.idgloss = "testgloss" new_gloss.save() self.assertTrue(new_gloss.idgloss == gloss.idgloss) # Make sure that you cannot violate unique_together by changing Dataset with self.assertRaises(IntegrityError): # Should return IntegrityError with transaction.atomic(): gloss.dataset = new_dataset gloss.save() def test_idgloss(self): """Tests idgloss""" gloss = Gloss.objects.get(idgloss="testgloss") # Check for some weird characters weird_chars = ("äöåÄÖŨ^~'* ´`üÜÿŸëêËÊ€$#", "ЁЂЃЄЅІЇЌЍЎЏАБВДЖИКОПРСТФХЦЧЩЫ", "؟ الستارود أي بعد, معاملة بيو",) for my_str in weird_chars: gloss.idgloss = my_str gloss.save() self.assertEqual(gloss.idgloss, str(gloss.idgloss)) self.assertEqual(gloss.idgloss, my_str) # Test that the length of idgloss can't be too long with self.assertRaises(DataError): gloss.idgloss = "afasdkfjsdalkfjdsaljfl^¨'*´`} sajfljadsklfjasdklfjsadkjflÄÖÅlöjsadkfjasdkljflaksdjfkljds" "fljasdlkfjakdslkafjsdlkafjölasdjfkldsajlaköfjsdakljfklasdjfkldsjaflkajdsflökjdsalkfjadslköfjdsalökjfklsd" "ajflkdsjlkfajöldskjflkadsjflkdsajfladslkfjdlksa" gloss.save() def test_idgloss_dataset(self): """Test that a Gloss cannot be created without a relation to Dataset.""" with self.assertRaises(IntegrityError): Gloss.objects.create(idgloss="testgloss7", created_by=self.user, updated_by=self.user) def test_idgloss_en(self): """Tests the field idgloss_en.""" # Check that the max_length can't be exceeded. with self.assertRaises(DataError): en = Gloss.objects.create(idgloss="testgloss_en", idgloss_en="äöå1@r" * 10 + "1", dataset=self.dataset, created_by=self.user, updated_by=self.user) def test_created_by(self): """Tests that the created_by field functions when a gloss is created.""" gl = Gloss.objects.create(idgloss="testgloss_createdby", dataset=self.dataset, created_by=self.user, updated_by=self.user) self.assertEqual(gl.created_by, self.user) def test_get_translation_languages(self): """Tests function get_translation_languages()""" self.dataset.translation_languages = (self.language,) self.dataset.save() self.assertIn(self.language, Gloss.get_translation_languages(self.gloss)) def test_get_translations_for_translation_languages(self): """Test function get_translations_for_translation_languages()""" keyword = Keyword.objects.create(text="akeyword") keyword2 = Keyword.objects.create(text="another") translation = Translation.objects.create(gloss=self.gloss, language=self.language, keyword=keyword, order=2) translation2 = Translation.objects.create(gloss=self.gloss, language=self.language, keyword=keyword2, order=3) self.dataset.translation_languages = (self.language,) self.dataset.save() unzipped = zip(*Gloss.get_translations_for_translation_languages(self.gloss)) languages, translations = next(unzipped), next(unzipped) self.assertIn(self.language, languages) keywords = [str(translation.keyword), str(translation2.keyword)] # Check that all the keywords are in the 'translations' string. self.assertTrue(all(x in str(*translations) for x in keywords)) def test_field_labels(self): """Test that function returns proper field labels.""" meta_fields = self.gloss._meta.fields field_names = dict() for field in meta_fields: field_names[field.name] = field.verbose_name self.assertDictEqual(Gloss.field_labels(self.gloss), field_names) def test_get_fields(self): """Test function.""" field_list = [] for field in Gloss._meta.fields: field_list.append((field.name, field.value_to_string(self.gloss))) self.assertListEqual(Gloss.get_fields(self.gloss), field_list) class DatasetTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="testdata", email=None, password=None) # Migrations have id=1 already self.signlanguage = SignLanguage.objects.create(pk=3, name="slang", language_code_3char="tst") self.dataset = Dataset.objects.create(name="dataset", signlanguage=self.signlanguage) def test_str(self): """Test unicode string representation.""" self.assertEqual(str(self.dataset), self.dataset.name) class GlossTranslationsTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="testglosstrans", email=None, password=None) (self.language1, created) = Language.objects.get_or_create(name="mylang", language_code_2char="er", language_code_3char="eor") (self.language2, created) = Language.objects.get_or_create(name="mylang2", language_code_2char="ir", language_code_3char="ior") (self.language3, created) = Language.objects.get_or_create(name="mylang3", language_code_2char="ar", language_code_3char="aor") (self.language4, created) = Language.objects.get_or_create(name="mylang4", language_code_2char="er", language_code_3char="eor") # Migrations have id=1 already for a SignLanguage (self.signlanguage, created) = SignLanguage.objects.get_or_create(pk=14, name="mysignlang", language_code_3char="mys") (self.dataset, created) = Dataset.objects.get_or_create(name="dataset52", signlanguage=self.signlanguage) (self.gloss, created) = Gloss.objects.get_or_create(idgloss="transgloss", dataset=self.dataset, created_by=self.user, updated_by=self.user) (self.keyword, created) = Keyword.objects.get_or_create(text="tiger") # Create a Translation (self.translation, created) = Translation.objects.get_or_create(gloss=self.gloss, language=self.language1, keyword=self.keyword, order=1) # Create GlossTranslation objects self.translations = "squirrel, elephant, ant, magpie" self.translations_keywords = ["squirrel", "elephant", "ant", "magpie"] (self.glosstranslations, created) = \ GlossTranslations.objects.get_or_create(gloss=self.gloss, language=self.language1, translations=self.translations) self.translations_duplicates = "kangaroo, snake, kangaroo, horse, horse" self.translations_duplicates_keywords = ["kangaroo", "snake", "horse"] (self.glosstranslations_duplicates, created) = \ GlossTranslations.objects.get_or_create(gloss=self.gloss, language=self.language2, translations=self.translations_duplicates) self.translations_grouped = "1. cat, dog; 2. lion, crocodile; 3. mouse" self.translations_grouped_keywords = ["cat", "dog", "lion", "crocodile", "mouse"] (self.glosstranslations_grouped, created) = \ GlossTranslations.objects.get_or_create(gloss=self.gloss, language=self.language3, translations=self.translations_grouped) self.translations_grouped_duplicates = "1. kitten, pony; 2. monkey, pony; donkey, monkey" self.translations_grouped_duplicates_keywords = ["kitten", "pony", "monkey", "donkey"] (self.glosstranslations_grouped_duplicates, created) = \ GlossTranslations.objects.get_or_create(gloss=self.gloss, language=self.language4, translations=self.translations_grouped_duplicates) def test_get_keywords(self): """Test get_keywords()""" # Simple format self.assertEqual(self.glosstranslations.get_keywords(), self.translations_keywords) # Grouped format self.assertEqual(self.glosstranslations_grouped.get_keywords(), self.translations_grouped_keywords) def test_get_keywords_duplicates(self): """Make sure get_keywords() doesn't return duplicates.""" # Simple format duplicates (keywords should not contain duplicates, translations field can) self.assertEqual(self.glosstranslations_duplicates.get_keywords_unique(), self.translations_duplicates_keywords) # Grouped format duplicates (keywords should not contain duplicates, translations field can) self.assertEqual(self.glosstranslations_grouped_duplicates.get_keywords_unique(), self.translations_grouped_duplicates_keywords) def test_has_duplicates(self): """Tests has_duplicates() and verifies that it works correctly.""" self.assertFalse(self.glosstranslations.has_duplicates()) self.assertTrue(self.glosstranslations_duplicates.has_duplicates()) self.assertFalse(self.glosstranslations_grouped.has_duplicates()) self.assertTrue(self.glosstranslations_grouped_duplicates.has_duplicates()) def test_save(self): """Test GlossTranslations.save()""" glosstrans = self.glosstranslations glosstrans.translations = "squirrel, magpie" # Remove "elephant, ant" glosstrans.save() trans = Translation.objects.filter(gloss=self.gloss, language=self.language1) # Verify that these Translation objects have been deleted. self.assertFalse("elephant" and "ant" in [str(x.keyword) for x in trans]) # Verify that these Translation objects still exist. self.assertTrue("squirrel" and "magpie" in [str(x.keyword) for x in trans]) def test_save_duplicates(self): """Test saving duplicates.""" # This object has duplicates, saving it should not raise exceptions. self.glosstranslations_duplicates.save() class TranslationTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="testtrans", email=None, password=None) self.language = Language.objects.create(name="mylang", language_code_2char="ml", language_code_3char="myl") # Migrations have id=1 already for a SignLanguage self.signlanguage = SignLanguage.objects.create(pk=5, name="signlang", language_code_3char="sla") self.dataset = Dataset.objects.create(name="dataset", signlanguage=self.signlanguage) self.gloss = Gloss.objects.create(idgloss="transgloss", dataset=self.dataset, created_by=self.user, updated_by=self.user) self.keyword = Keyword.objects.create(text="myword") # Create a Translation self.translation = Translation.objects.create(gloss=self.gloss, language=self.language, keyword=self.keyword, order=1) def test_str(self): """Test unicode string representation.""" self.assertEqual(str(self.translation), self.keyword.text) class KeywordTestCase(TestCase): def setUp(self): self.keyword = Keyword.objects.create(text="mykeyworD") def test_str(self): self.assertEqual(str(self.keyword), self.keyword.text) class LanguageTestCase(TestCase): def setUp(self): self.language = Language.objects.create(name=u"New ÖÄ Language", language_code_2char="nl", language_code_3char="nla", description="New language we just created") def test_str(self): self.assertEqual(str(self.language), self.language.name) class DialectTestCase(TestCase): def setUp(self): self.signlanguage = SignLanguage.objects.create(pk=5, name=u"sÄÄö", language_code_3char="ÄÄö") self.dialect = Dialect.objects.create(language=self.signlanguage, name=u"Northern sÄÄö", description=u"Northern sÄÄö has traditionally been used in the North " u"Pole, But to this day it has also spread to Greenland.") def test_str(self): self.assertEqual(str(self.dialect), self.signlanguage.name + "/" + self.dialect.name) class RelationToForeignSignTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="testrel", email=None, password=None) self.signlanguage = SignLanguage.objects.create(pk=6, name="lala", language_code_3char="lal") self.dataset = Dataset.objects.create(name="relset", signlanguage=self.signlanguage) self.gloss = Gloss.objects.create(idgloss="related-GLOSS", dataset=self.dataset, created_by=self.user, updated_by=self.user) self.relation = RelationToForeignSign.objects.create(gloss=self.gloss, loan=True, other_lang=u"sÄÄö", other_lang_gloss="Samp-GLOSS") def test_str(self): self.assertEqual(str(self.relation), self.gloss.idgloss + "/" + self.relation.other_lang + "," + self.relation.other_lang_gloss) class FieldChoiceTestCase(TestCase): def setUp(self): self.fieldchoice = FieldChoice.objects.create(field="field", english_name="mychoice", machine_value=1) def test_str(self): self.assertEqual(str(self.fieldchoice), self.fieldchoice.english_name) class MorphologyDefinitionTestCase(TestCase): def setUp(self): self.user = User.objects.create_user(username="usermorph", email=None, password=None) self.signlanguage = SignLanguage.objects.create(pk=11, name="definitive", language_code_3char="def") self.dataset = Dataset.objects.create(name="morphdata", signlanguage=self.signlanguage) self.gloss = Gloss.objects.create(idgloss="morhp-gloss", dataset=self.dataset, created_by=self.user, updated_by=self.user) self.gloss2 = Gloss.objects.create(idgloss="morhp-gloss2", dataset=self.dataset, created_by=self.user, updated_by=self.user) self.fieldchoice = FieldChoice.objects.create(field="newfield", english_name="nice name", machine_value=2) self.morphdef = MorphologyDefinition.objects.create(parent_gloss=self.gloss, morpheme=self.gloss2, role=self.fieldchoice) def test_str(self): self.assertEqual(str(self.morphdef), self.morphdef.morpheme.idgloss + " is " + self.morphdef.role.english_name + " of " + self.morphdef.parent_gloss.idgloss) class FunctionsTestCase(TestCase): def setUp(self): self.field = "testField" f1 = FieldChoice.objects.create(field=self.field, english_name="choice1", machine_value=1) f2 = FieldChoice.objects.create(field=self.field, english_name="choice_another", machine_value=2) f3 = FieldChoice.objects.create(field=self.field, english_name="full-of-choices", machine_value=3) self.choices = [] self.choices.append((str(f1.machine_value), str(f1))) self.choices.append((str(f2.machine_value), str(f2))) self.choices.append((str(f3.machine_value), str(f3))) def test_build_choice_list(self): """Test that function returns proper values.""" # TODO: Simulate OperationalError? self.assertListEqual(build_choice_list(self.field), self.choices)
the-stack_106_26363
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Script to test homemade neural network Args: - (OPTIONAL) -e number of epochs (default is 200) - (OPTIONAL) -b mini-batch size (default is 10) - (OPTIONAL) -s hidden size, number of neurons per layers (default is 50) - (OPTIONAL) -l learning rate (default is 0.003) - (OPTIONAL) -n number of samples for training (default is 1000) - (OPTIONAL) -t number of samples for testing (default is 1000) Examples: Use default parameters: python3 test_training.py Use batch size of 100, 5000 training samples and 100 epochs: python3 test_training.py -b 100 -n 5000 -e 100 """ import argparse from framework import * def main(): parser = argparse.ArgumentParser() parser.add_argument( "-e", "--num_epochs", required=False, default=200, type=int, help="Number of epochs (default is 200).", ) parser.add_argument( "-b", "--batch_size", required=False, default=10, type=int, help="Mini-batch size (default is 10).", ) parser.add_argument( "-s", "--hidden_size", required=False, default=50, type=int, help="Hidden size: number of neurons for the layers (default is 50).", ) parser.add_argument( "-l", "--learning_rate", required=False, default=0.003, type=float, help="Learning rate." ) parser.add_argument( "-n", "--num_samples_train", required=False, default=1000, type=int, help="Number of samples to generate for training (default is 1000).", ) parser.add_argument( "-t", "--num_samples_test", required=False, default=1000, type=int, help="Number of samples to generate for testing (default is 1000).", ) args = parser.parse_args() # generate train and set set train_features, train_target = generate_disc_set(args.num_samples_train) test_features, test_target = generate_disc_set(args.num_samples_test) # Build the model Model = Sequential( [ Linear(2, args.hidden_size), LeakyReLU(), Linear(args.hidden_size, args.hidden_size), LeakyReLU(), Linear(args.hidden_size, 2), Softmax(), ], LossMSE(), ) # Set the learning rate Model.set_Lr(args.learning_rate) # Print model's parameters Model.print(print_color=False) # start training train( Model, args.num_epochs, train_features, train_target, test_features, test_target, args.batch_size, ) if __name__ == '__main__': main()
the-stack_106_26370
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Copyright (c) 2013 Intel Corporation. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. ''' This script provides utils for python scripts in crosswalk. ''' import os import sys import subprocess def TryAddDepotToolsToPythonPath(): depot_tools = FindDepotToolsInPath() if depot_tools: sys.path.append(depot_tools) python_path = os.environ.get('PYTHONPATH') if python_path: os.environ['PYTHONPATH'] = os.path.pathsep.join( python_path.split(os.path.pathsep)+[depot_tools]) else: os.environ['PYTHONPATH'] = depot_tools def FindDepotToolsInPath(): paths = os.getenv('PATH').split(os.path.pathsep) for path in paths: if os.path.basename(path) == '': # path is end with os.path.pathsep path = os.path.dirname(path) if os.path.basename(path) == 'depot_tools': return path return None def IsWindows(): return sys.platform == 'cygwin' or sys.platform.startswith('win') def IsLinux(): return sys.platform.startswith('linux') def IsMac(): return sys.platform.startswith('darwin') def GitExe(): if IsWindows(): return 'git.bat' else: return 'git' def GetCommandOutput(command, cwd=None): proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, bufsize=1, cwd=cwd) output = proc.communicate()[0] result = proc.returncode if result: raise Exception('%s: %s' % (subprocess.list2cmdline(command), output)) return output
the-stack_106_26372
'''patching scipy to fit distributions and expect method This adds new methods to estimate continuous distribution parameters with some fixed/frozen parameters. It also contains functions that calculate the expected value of a function for any continuous or discrete distribution It temporarily also contains Bootstrap and Monte Carlo function for testing the distribution fit, but these are neither general nor verified. Author: josef-pktd License: Simplified BSD ''' from __future__ import print_function from statsmodels.compat.python import range, lmap import numpy as np from scipy import stats, optimize, integrate ########## patching scipy #vonmises doesn't define finite bounds, because it is intended for circular #support which does not define a proper pdf on the real line stats.distributions.vonmises.a = -np.pi stats.distributions.vonmises.b = np.pi #the next 3 functions are for fit with some fixed parameters #As they are written, they do not work as functions, only as methods def _fitstart(self, x): '''example method, method of moment estimator as starting values Parameters ---------- x : array data for which the parameters are estimated Returns ------- est : tuple preliminary estimates used as starting value for fitting, not necessarily a consistent estimator Notes ----- This needs to be written and attached to each individual distribution This example was written for the gamma distribution, but not verified with literature ''' loc = np.min([x.min(),0]) a = 4/stats.skew(x)**2 scale = np.std(x) / np.sqrt(a) return (a, loc, scale) def _fitstart_beta(self, x, fixed=None): '''method of moment estimator as starting values for beta distribution Parameters ---------- x : array data for which the parameters are estimated fixed : None or array_like sequence of numbers and np.nan to indicate fixed parameters and parameters to estimate Returns ------- est : tuple preliminary estimates used as starting value for fitting, not necessarily a consistent estimator Notes ----- This needs to be written and attached to each individual distribution References ---------- for method of moment estimator for known loc and scale http://en.wikipedia.org/wiki/Beta_distribution#Parameter_estimation http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm NIST reference also includes reference to MLE in Johnson, Kotz, and Balakrishan, Volume II, pages 221-235 ''' #todo: separate out this part to be used for other compact support distributions # e.g. rdist, vonmises, and truncnorm # but this might not work because it might still be distribution specific a, b = x.min(), x.max() eps = (a-b)*0.01 if fixed is None: #this part not checked with books loc = a - eps scale = (a - b) * (1 + 2*eps) else: if np.isnan(fixed[-2]): #estimate loc loc = a - eps else: loc = fixed[-2] if np.isnan(fixed[-1]): #estimate scale scale = (b + eps) - loc else: scale = fixed[-1] #method of moment for known loc scale: scale = float(scale) xtrans = (x - loc)/scale xm = xtrans.mean() xv = xtrans.var() tmp = (xm*(1-xm)/xv - 1) p = xm * tmp q = (1 - xm) * tmp return (p, q, loc, scale) #check return type and should fixed be returned ? def _fitstart_poisson(self, x, fixed=None): '''maximum likelihood estimator as starting values for Poisson distribution Parameters ---------- x : array data for which the parameters are estimated fixed : None or array_like sequence of numbers and np.nan to indicate fixed parameters and parameters to estimate Returns ------- est : tuple preliminary estimates used as starting value for fitting, not necessarily a consistent estimator Notes ----- This needs to be written and attached to each individual distribution References ---------- MLE : http://en.wikipedia.org/wiki/Poisson_distribution#Maximum_likelihood ''' #todo: separate out this part to be used for other compact support distributions # e.g. rdist, vonmises, and truncnorm # but this might not work because it might still be distribution specific a = x.min() eps = 0 # is this robust ? if fixed is None: #this part not checked with books loc = a - eps else: if np.isnan(fixed[-1]): #estimate loc loc = a - eps else: loc = fixed[-1] #MLE for standard (unshifted, if loc=0) Poisson distribution xtrans = (x - loc) lambd = xtrans.mean() #second derivative d loglike/ dlambd Not used #dlldlambd = 1/lambd # check return (lambd, loc) #check return type and should fixed be returned ? def nnlf_fr(self, thetash, x, frmask): # new frozen version # - sum (log pdf(x, theta),axis=0) # where theta are the parameters (including loc and scale) # try: if frmask != None: theta = frmask.copy() theta[np.isnan(frmask)] = thetash else: theta = thetash loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError: raise ValueError("Not enough input arguments.") if not self._argcheck(*args) or scale <= 0: return np.inf x = np.array((x-loc) / scale) cond0 = (x <= self.a) | (x >= self.b) if (np.any(cond0)): return np.inf else: N = len(x) #raise ValueError return self._nnlf(x, *args) + N*np.log(scale) def fit_fr(self, data, *args, **kwds): '''estimate distribution parameters by MLE taking some parameters as fixed Parameters ---------- data : array, 1d data for which the distribution parameters are estimated, args : list ? check starting values for optimization kwds : - 'frozen' : array_like values for frozen distribution parameters and, for elements with np.nan, the corresponding parameter will be estimated Returns ------- argest : array estimated parameters Examples -------- generate random sample >>> np.random.seed(12345) >>> x = stats.gamma.rvs(2.5, loc=0, scale=1.2, size=200) estimate all parameters >>> stats.gamma.fit(x) array([ 2.0243194 , 0.20395655, 1.44411371]) >>> stats.gamma.fit_fr(x, frozen=[np.nan, np.nan, np.nan]) array([ 2.0243194 , 0.20395655, 1.44411371]) keep loc fixed, estimate shape and scale parameters >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, np.nan]) array([ 2.45603985, 1.27333105]) keep loc and scale fixed, estimate shape parameter >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, 1.0]) array([ 3.00048828]) >>> stats.gamma.fit_fr(x, frozen=[np.nan, 0.0, 1.2]) array([ 2.57792969]) estimate only scale parameter for fixed shape and loc >>> stats.gamma.fit_fr(x, frozen=[2.5, 0.0, np.nan]) array([ 1.25087891]) Notes ----- self is an instance of a distribution class. This can be attached to scipy.stats.distributions.rv_continuous *Todo* * check if docstring is correct * more input checking, args is list ? might also apply to current fit method ''' loc0, scale0 = lmap(kwds.get, ['loc', 'scale'],[0.0, 1.0]) Narg = len(args) if Narg == 0 and hasattr(self, '_fitstart'): x0 = self._fitstart(data) elif Narg > self.numargs: raise ValueError("Too many input arguments.") else: args += (1.0,)*(self.numargs-Narg) # location and scale are at the end x0 = args + (loc0, scale0) if 'frozen' in kwds: frmask = np.array(kwds['frozen']) if len(frmask) != self.numargs+2: raise ValueError("Incorrect number of frozen arguments.") else: # keep starting values for not frozen parameters x0 = np.array(x0)[np.isnan(frmask)] else: frmask = None #print(x0 #print(frmask return optimize.fmin(self.nnlf_fr, x0, args=(np.ravel(data), frmask), disp=0) #The next two functions/methods calculate expected value of an arbitrary #function, however for the continuous functions intquad is use, which might #require continuouity or smoothness in the function. #TODO: add option for Monte Carlo integration def expect(self, fn=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False): '''calculate expected value of a function with respect to the distribution location and scale only tested on a few examples Parameters ---------- all parameters are keyword parameters fn : function (default: identity mapping) Function for which integral is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution lb, ub : numbers lower and upper bound for integration, default is set to the support of the distribution conditional : boolean (False) If true then the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Returns ------- expected value : float Notes ----- This function has not been checked for it's behavior when the integral is not finite. The integration behavior is inherited from scipy.integrate.quad. ''' if fn is None: def fun(x, *args): return x*self.pdf(x, loc=loc, scale=scale, *args) else: def fun(x, *args): return fn(x)*self.pdf(x, loc=loc, scale=scale, *args) if lb is None: lb = loc + self.a * scale #(self.a - loc)/(1.0*scale) if ub is None: ub = loc + self.b * scale #(self.b - loc)/(1.0*scale) if conditional: invfac = (self.sf(lb, loc=loc, scale=scale, *args) - self.sf(ub, loc=loc, scale=scale, *args)) else: invfac = 1.0 return integrate.quad(fun, lb, ub, args=args)[0]/invfac def expect_v2(self, fn=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False): '''calculate expected value of a function with respect to the distribution location and scale only tested on a few examples Parameters ---------- all parameters are keyword parameters fn : function (default: identity mapping) Function for which integral is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution lb, ub : numbers lower and upper bound for integration, default is set using quantiles of the distribution, see Notes conditional : boolean (False) If true then the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Returns ------- expected value : float Notes ----- This function has not been checked for it's behavior when the integral is not finite. The integration behavior is inherited from scipy.integrate.quad. The default limits are lb = self.ppf(1e-9, *args), ub = self.ppf(1-1e-9, *args) For some heavy tailed distributions, 'alpha', 'cauchy', 'halfcauchy', 'levy', 'levy_l', and for 'ncf', the default limits are not set correctly even when the expectation of the function is finite. In this case, the integration limits, lb and ub, should be chosen by the user. For example, for the ncf distribution, ub=1000 works in the examples. There are also problems with numerical integration in some other cases, for example if the distribution is very concentrated and the default limits are too large. ''' #changes: 20100809 #correction and refactoring how loc and scale are handled #uses now _pdf #needs more testing for distribution with bound support, e.g. genpareto if fn is None: def fun(x, *args): return (loc + x*scale)*self._pdf(x, *args) else: def fun(x, *args): return fn(loc + x*scale)*self._pdf(x, *args) if lb is None: #lb = self.a try: lb = self.ppf(1e-9, *args) #1e-14 quad fails for pareto except ValueError: lb = self.a else: lb = max(self.a, (lb - loc)/(1.0*scale)) #transform to standardized if ub is None: #ub = self.b try: ub = self.ppf(1-1e-9, *args) except ValueError: ub = self.b else: ub = min(self.b, (ub - loc)/(1.0*scale)) if conditional: invfac = self._sf(lb,*args) - self._sf(ub,*args) else: invfac = 1.0 return integrate.quad(fun, lb, ub, args=args, limit=500)[0]/invfac ### for discrete distributions #TODO: check that for a distribution with finite support the calculations are # done with one array summation (np.dot) #based on _drv2_moment(self, n, *args), but streamlined def expect_discrete(self, fn=None, args=(), loc=0, lb=None, ub=None, conditional=False): '''calculate expected value of a function with respect to the distribution for discrete distribution Parameters ---------- (self : distribution instance as defined in scipy stats) fn : function (default: identity mapping) Function for which integral is calculated. Takes only one argument. args : tuple argument (parameters) of the distribution optional keyword parameters lb, ub : numbers lower and upper bound for integration, default is set to the support of the distribution, lb and ub are inclusive (ul<=k<=ub) conditional : boolean (False) If true then the expectation is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval (k such that ul<=k<=ub). Returns ------- expected value : float Notes ----- * function is not vectorized * accuracy: uses self.moment_tol as stopping criterium for heavy tailed distribution e.g. zipf(4), accuracy for mean, variance in example is only 1e-5, increasing precision (moment_tol) makes zipf very slow * suppnmin=100 internal parameter for minimum number of points to evaluate could be added as keyword parameter, to evaluate functions with non-monotonic shapes, points include integers in (-suppnmin, suppnmin) * uses maxcount=1000 limits the number of points that are evaluated to break loop for infinite sums (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative integers are evaluated) ''' #moment_tol = 1e-12 # increase compared to self.moment_tol, # too slow for only small gain in precision for zipf #avoid endless loop with unbound integral, eg. var of zipf(2) maxcount = 1000 suppnmin = 100 #minimum number of points to evaluate (+ and -) if fn is None: def fun(x): #loc and args from outer scope return (x+loc)*self._pmf(x, *args) else: def fun(x): #loc and args from outer scope return fn(x+loc)*self._pmf(x, *args) # used pmf because _pmf does not check support in randint # and there might be problems(?) with correct self.a, self.b at this stage # maybe not anymore, seems to work now with _pmf self._argcheck(*args) # (re)generate scalar self.a and self.b if lb is None: lb = (self.a) else: lb = lb - loc if ub is None: ub = (self.b) else: ub = ub - loc if conditional: invfac = self.sf(lb,*args) - self.sf(ub+1,*args) else: invfac = 1.0 tot = 0.0 low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args) low = max(min(-suppnmin, low), lb) upp = min(max(suppnmin, upp), ub) supp = np.arange(low, upp+1, self.inc) #check limits #print('low, upp', low, upp tot = np.sum(fun(supp)) diff = 1e100 pos = upp + self.inc count = 0 #handle cases with infinite support while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos += self.inc count += 1 if self.a < 0: #handle case when self.a = -inf diff = 1e100 pos = low - self.inc while (pos >= lb) and (diff > self.moment_tol) and count <= maxcount: diff = fun(pos) tot += diff pos -= self.inc count += 1 if count > maxcount: # replace with proper warning print('sum did not converge') return tot/invfac stats.distributions.rv_continuous.fit_fr = fit_fr stats.distributions.rv_continuous.nnlf_fr = nnlf_fr stats.distributions.rv_continuous.expect = expect stats.distributions.rv_discrete.expect = expect_discrete stats.distributions.beta_gen._fitstart = _fitstart_beta #not tried out yet stats.distributions.poisson_gen._fitstart = _fitstart_poisson #not tried out yet ########## end patching scipy def distfitbootstrap(sample, distr, nrepl=100): '''run bootstrap for estimation of distribution parameters hard coded: only one shape parameter is allowed and estimated, loc=0 and scale=1 are fixed in the estimation Parameters ---------- sample : array original sample data for bootstrap distr : distribution instance with fit_fr method nrepl : integer number of bootstrap replications Returns ------- res : array (nrepl,) parameter estimates for all bootstrap replications ''' nobs = len(sample) res = np.zeros(nrepl) for ii in range(nrepl): rvsind = np.random.randint(nobs, size=nobs) x = sample[rvsind] res[ii] = distr.fit_fr(x, frozen=[np.nan, 0.0, 1.0]) return res def distfitmc(sample, distr, nrepl=100, distkwds={}): '''run Monte Carlo for estimation of distribution parameters hard coded: only one shape parameter is allowed and estimated, loc=0 and scale=1 are fixed in the estimation Parameters ---------- sample : array original sample data, in Monte Carlo only used to get nobs, distr : distribution instance with fit_fr method nrepl : integer number of Monte Carlo replications Returns ------- res : array (nrepl,) parameter estimates for all Monte Carlo replications ''' arg = distkwds.pop('arg') nobs = len(sample) res = np.zeros(nrepl) for ii in range(nrepl): x = distr.rvs(arg, size=nobs, **distkwds) res[ii] = distr.fit_fr(x, frozen=[np.nan, 0.0, 1.0]) return res def printresults(sample, arg, bres, kind='bootstrap'): '''calculate and print(Bootstrap or Monte Carlo result Parameters ---------- sample : array original sample data arg : float (for general case will be array) bres : array parameter estimates from Bootstrap or Monte Carlo run kind : {'bootstrap', 'montecarlo'} output is printed for Mootstrap (default) or Monte Carlo Returns ------- None, currently only printing Notes ----- still a bit a mess because it is used for both Bootstrap and Monte Carlo made correction: reference point for bootstrap is estimated parameter not clear: I'm not doing any ddof adjustment in estimation of variance, do we need ddof>0 ? todo: return results and string instead of printing ''' print('true parameter value') print(arg) print('MLE estimate of parameters using sample (nobs=%d)'% (nobs)) argest = distr.fit_fr(sample, frozen=[np.nan, 0.0, 1.0]) print(argest) if kind == 'bootstrap': #bootstrap compares to estimate from sample argorig = arg arg = argest print('%s distribution of parameter estimate (nrepl=%d)'% (kind, nrepl)) print('mean = %f, bias=%f' % (bres.mean(0), bres.mean(0)-arg)) print('median', np.median(bres, axis=0)) print('var and std', bres.var(0), np.sqrt(bres.var(0))) bmse = ((bres - arg)**2).mean(0) print('mse, rmse', bmse, np.sqrt(bmse)) bressorted = np.sort(bres) print('%s confidence interval (90%% coverage)' % kind) print(bressorted[np.floor(nrepl*0.05)], bressorted[np.floor(nrepl*0.95)]) print('%s confidence interval (90%% coverage) normal approximation' % kind) print(stats.norm.ppf(0.05, loc=bres.mean(), scale=bres.std()),) print(stats.norm.isf(0.05, loc=bres.mean(), scale=bres.std())) print('Kolmogorov-Smirnov test for normality of %s distribution' % kind) print(' - estimated parameters, p-values not really correct') print(stats.kstest(bres, 'norm', (bres.mean(), bres.std()))) if __name__ == '__main__': examplecases = ['largenumber', 'bootstrap', 'montecarlo'][:] if 'largenumber' in examplecases: print('\nDistribution: vonmises') for nobs in [200]:#[20000, 1000, 100]: x = stats.vonmises.rvs(1.23, loc=0, scale=1, size=nobs) print('\nnobs:', nobs) print('true parameter') print('1.23, loc=0, scale=1') print('unconstraint') print(stats.vonmises.fit(x)) print(stats.vonmises.fit_fr(x, frozen=[np.nan, np.nan, np.nan])) print('with fixed loc and scale') print(stats.vonmises.fit_fr(x, frozen=[np.nan, 0.0, 1.0])) print('\nDistribution: gamma') distr = stats.gamma arg, loc, scale = 2.5, 0., 20. for nobs in [200]:#[20000, 1000, 100]: x = distr.rvs(arg, loc=loc, scale=scale, size=nobs) print('\nnobs:', nobs) print('true parameter') print('%f, loc=%f, scale=%f' % (arg, loc, scale)) print('unconstraint') print(distr.fit(x)) print(distr.fit_fr(x, frozen=[np.nan, np.nan, np.nan])) print('with fixed loc and scale') print(distr.fit_fr(x, frozen=[np.nan, 0.0, 1.0])) print('with fixed loc') print(distr.fit_fr(x, frozen=[np.nan, 0.0, np.nan])) ex = ['gamma', 'vonmises'][0] if ex == 'gamma': distr = stats.gamma arg, loc, scale = 2.5, 0., 1 elif ex == 'vonmises': distr = stats.vonmises arg, loc, scale = 1.5, 0., 1 else: raise ValueError('wrong example') nobs = 100 nrepl = 1000 sample = distr.rvs(arg, loc=loc, scale=scale, size=nobs) print('\nDistribution:', distr) if 'bootstrap' in examplecases: print('\nBootstrap') bres = distfitbootstrap(sample, distr, nrepl=nrepl ) printresults(sample, arg, bres) if 'montecarlo' in examplecases: print('\nMonteCarlo') mcres = distfitmc(sample, distr, nrepl=nrepl, distkwds=dict(arg=arg, loc=loc, scale=scale)) printresults(sample, arg, mcres, kind='montecarlo')
the-stack_106_26373
#!/usr/bin/python from smfishHmrf.HMRFInstance import HMRFInstance from smfishHmrf.DatasetMatrix import DatasetMatrix, DatasetMatrixSingleField, DatasetMatrixMultiField from smfishHmrf.spatial import rank_transform_matrix, calc_silhouette_per_gene import sys import os import math import subprocess import numpy as np import scipy import scipy.stats from scipy.stats import zscore from scipy.spatial.distance import euclidean, squareform, pdist import smfishHmrf.reader as reader import pandas as pd #import matplotlib as mpl #import matplotlib.pyplot as plt #import seaborn as sns from smfishHmrf.bias_correction import calc_bias_moving, do_pca, plot_pca from scipy.cluster.vq import kmeans2 import argparse def read_centroid(n, cells): map_cell = {} for ind,val in enumerate(cells): map_cell[val] = ind f = open(n) num_cell = 0 for l in f: l = l.rstrip("\n") num_cell+=1 f.close() Xcen = np.empty((num_cell, 2), dtype="float32") field = np.empty((num_cell), dtype="int32") f = open(n) for l in f: l = l.rstrip("\n") ll = l.split() x1, x2 = float(ll[0]), float(ll[1]) t_id = map_cell[ll[-1]] #t_id = int(ll[-1].split("_")[1]) - 1 Xcen[t_id, :] = [x1, x2] field[t_id] = 100 f.close() return Xcen, field def read_graph(n, cells): map_cell = {} for ind,val in enumerate(cells): map_cell[val] = ind f = open(n) edges = set([]) for l in f: l = l.rstrip("\n") ll = l.split("\t") e1, e2 = ll e1_id = map_cell[e1] e2_id = map_cell[e2] #e1_id = int(e1.split("_")[1])-1 #e2_id = int(e2.split("_")[1])-1 edges.add(tuple(sorted([e1_id, e2_id]))) f.close() return edges def read_expression_classic(n): f = open(n) #h = f.readline().rstrip("\n").split() h = f.readline().rstrip("\n") #header begins with space if h.startswith(" "): h = h.split() else: #header startswith a gene name h = h.split()[1:] num_cell = len(h) num_gene = 0 for l in f: l = l.rstrip("\n") ll = l.split() #gene = ll[0] num_gene+=1 f.close() mat = np.empty((num_gene, num_cell), dtype="float32") genes = [] cells = h f = open(n) f.readline() gid = 0 for l in f: l = l.rstrip("\n") ll = l.split() genes.append(ll[0]) mat[gid, :] = [float(v) for v in ll[1:]] gid+=1 f.close() return mat, genes, cells def connected_components(edges, adjacent, points): visited = {} chains = [] for p in sorted(list(points)): visited[p] = False for p in sorted(list(points)): if visited[p]==False: new_chain = [] visited, new_chain = DFS(p, adjacent, visited, new_chain) chains.append(new_chain) return chains def DFS(p, adjacent, visited, new_chain): visited[p] = True new_chain.append(p) for nei in sorted(list(adjacent[p])): if visited[nei]==False: visited, new_chain = DFS(nei, adjacent, visited, new_chain) return visited, new_chain if __name__=="__main__": parser = argparse.ArgumentParser(description="HMRF.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-l", "--location", dest="location", type=str, required=True) parser.add_argument("-g", "--genes", dest="genes", type=str, required=True) parser.add_argument("-n", "--network", dest="network", type=str, required=True) parser.add_argument("-e", "--expression", dest="expression", type=str, required=True) parser.add_argument("-o", "--outdir", dest="outdir", type=str, required=True) parser.add_argument("-a", "--name", dest="name", type=str, required=True) parser.add_argument("-k", "--k", dest="k", type=int, required=True) parser.add_argument("-b", "--betas", help="three numbers: start_beta, beta_increment, num_beta (e.g. 0 2.0 50)", nargs=3, dest="betas", type=float, required=True) parser.add_argument("-t", "--tolerance", dest="tolerance", type=float, help="tolerance value", default=1e-10) parser.add_argument("-s", "--seed", dest="seed", type=float, help="seed for random initialization of HMRF. -1 will not fix it.", default=-1) parser.add_argument("-z", "--zscore", type=str, dest="zscore", choices=["rowcol", "colrow", "none"], default="none", help="zscore the matrix after subsetting to spatial genes. Rowcol: row(gene) first, column(cell) next.") parser.add_argument("-i", "--numinit", type=int, dest="num_init", default=100, help="number of initializations") args = parser.parse_args() sys.setrecursionlimit(50000) #print args #sys.exit(0) mat, genes, cells = read_expression_classic(args.expression) print("Done reading expression") Xcen, field = read_centroid(args.location, cells) print("Done reading location") #mat = pd.read_table(args.expression, sep=" ", header=0, index_col=0) #print mat.index ''' genes = [] for g in range(mat.index.shape[0]): genes.append(str(mat.index[g])) #print genes expr = np.copy(mat.values) ''' genes_good = reader.read_genes(args.genes) expr = mat new_dset = DatasetMatrixSingleField(expr, genes, None, Xcen) edges = read_graph(args.network, cells) print("Done reading graph") points = set([]) adjacent = {} for e1,e2 in edges: points.add(e1) points.add(e2) ncell = expr.shape[1] ngene = expr.shape[0] #print ncell, ngene ''' dist = pdist(Xcen, metric="euclidean") dist = squareform(dist) for i in range(ncell): if i in points: continue dist_i = sorted([(dist[i,j],j) for j in range(ncell) if i!=j]) edges.add(tuple(sorted([i, dist_i[0][1]]))) ''' for e1,e2 in edges: adjacent.setdefault(e1, set([])) adjacent.setdefault(e2, set([])) adjacent[e1].add(e2) adjacent[e2].add(e1) new_dset.edges = edges new_dset.adjacent = adjacent print("Start calculating independent regions") conn = connected_components(edges, adjacent, points) blocks = {} for ind_con,con in enumerate(conn): all_vert = con set_all_vert = set(all_vert) map_vert = {} for ind,val in enumerate(all_vert): map_vert[val] = ind print("Edges for component", ind_con) outdir = args.outdir if not os.path.isdir(outdir): os.mkdir(outdir) edge_file = os.path.join(outdir, "edges.txt") block_file = os.path.join(outdir, "blocks.txt") #edge_file = "/tmp/edges.txt" #block_file = "/tmp/blocks.txt" fw = open(edge_file, "w") for e1, e2 in edges: if e1 in set_all_vert and e2 in set_all_vert: fw.write("%d %d\n" % (map_vert[e1]+1, map_vert[e2]+1)) fw.close() import smfishHmrf this_path = os.path.dirname(smfishHmrf.__file__) + "/graphColoring" subprocess.call("java -cp '%s' -Xmx32g -Xms32g GraphColoring '%s' '%s' '%d'" % (this_path, edge_file, block_file, args.seed), shell=True) f = open(block_file) b_ind = 0 for l in f: l = l.rstrip("\n") ll = l.split() #self.blocks.append(int(ll[1])) blocks[all_vert[b_ind]] = int(ll[1]) b_ind+=1 f.close() #self.blocks = np.array(self.blocks) new_blocks = [] for b in range(0, len(blocks.keys())): new_blocks.append(blocks[b]) new_dset.blocks = np.array(new_blocks) print("Finished calculating independent regions") ''' print("Start calculating independent region") new_dset.calc_independent_region() print("Finished calculating independent region") ''' t_dset = new_dset.subset_genes(genes_good) if args.zscore=="colrow": t_dset.expr = zscore(t_dset.expr, axis=0) #per column (cell) t_dset.expr = zscore(t_dset.expr, axis=1) #per row (gene) elif args.zscore=="rowcol": t_dset.expr = zscore(t_dset.expr, axis=1) #per row (gene) t_dset.expr = zscore(t_dset.expr, axis=0) #per col (cell) outdir = args.outdir st_beta, incr_beta, num_beta = args.betas st_beta = float(st_beta) incr_beta = float(incr_beta) num_beta = int(num_beta) if not os.path.isdir(outdir): os.mkdir(outdir) this_hmrf = HMRFInstance(args.name, outdir, t_dset, args.k, st_beta, incr_beta, num_beta, tolerance=args.tolerance) this_hmrf.init(nstart=args.num_init, seed=args.seed) this_hmrf.run()
the-stack_106_26374
from Population import Population import matplotlib.pyplot as plt import copy def text2array_unicode(string: str) -> list: """ Return an array of char ascii codes for each character in string """ array_unicode = [] for letter in string: array_unicode.append(ord(letter)) return array_unicode def array2text_unicode(array: list) -> str: string = "" for code in array: string += chr(code) return string generations = 200 # its just a stop step in case the program cant find solution max_population = 50 # while more high, more posibilities to find a good combination faster, but more processing num_parents_to_select = 3 # is better tu select very little, no more than 10% of max population # all posible gens gens_set = text2array_unicode("abcdefghijklmnopqrstuvwxyz.-, ") mutation_rate = 0.9 target = "to be or not to be" target_unicode_set = text2array_unicode(target) num_gens = len(target_unicode_set) # length of text population = Population(gens_set, max_population, mutation_rate) population.generate_initial_population(num_gens) # PLOT VARIABLES history_fitness_mean = [] history_change = [] for generation in range(1, generations+1): # fitness is a list with scores of each individual fitness = population.fitness_function(target_unicode_set) # being elitist means that the parents are the best 2 (maybe a little more) best_individuals_index = Population.select_best_individuals_by_elitist(fitness, num_parents_to_select) parents_selected = [] parents_selected_fitness = [] for best_index in best_individuals_index: parents_selected.append(copy.deepcopy(population.chromosomes[best_index])) parents_selected_fitness.append(fitness[best_index]) ################### RESULTS ACTUAL GENERATION ################### print(f"\n*\nBest result for generation {generation}\n") print("Individuals (chromosomes)", [str(parent) for parent in parents_selected]) print("fitness for individuals", parents_selected_fitness) history_fitness_mean.append(sum(fitness)/len(fitness)) ################### offspring_crossover = Population.crossover(copy.deepcopy(parents_selected), max_population-num_parents_to_select) # Creating the new population based on the parents and offspring. offspring_mutated = population.mutate(offspring_crossover) #print(f"Selected{len(parents_selected)}, mutated{len(offspring_mutated)}, chrom{len(population.chromosomes)}") # print("PARENTS SELECTED", [str(parent) for parent in parents_selected]) # print("SELECTED MUTATED", [str(parent) for parent in offspring_mutated]) population.chromosomes[:num_parents_to_select] = parents_selected[:] population.chromosomes[num_parents_to_select:] = offspring_mutated[:] #print([str(parent) for parent in population.chromosomes]) if Population.has_reached_the_top(parents_selected_fitness, target_unicode_set): print("FUNCTION HAS CONVERGED") break final_generations = len(history_fitness_mean) best_chromosome_index = Population.select_best_individuals_by_elitist(fitness, 1) best_chromosome = population.chromosomes[best_chromosome_index[0]] print("Answer", array2text_unicode(best_chromosome.gens)) print("Target", target) """ plt.plot(range(1, final_generations+1), history_fitness_mean) plt.show() """
the-stack_106_26375
import unittest import codecs from os import path from . import xml_response_parsers testdata_dir = path.join(path.dirname(__file__), 'testdata') def load_data(filename): full_path = path.join(testdata_dir, filename) f = codecs.open(full_path, encoding="utf8") return f.read() class TestQuestionResponseParser(unittest.TestCase): def test_parse_response(self): response_xml = load_data('question_responses.xml') parsed = xml_response_parsers.subscriber_responses_as_list_of_dicts(response_xml) r1, r2, r3 = parsed assert('question_id' in r1) assert(r1['question_id'] == 'MTAwNDk=')
the-stack_106_26378
#!/usr/bin/env python # -*- coding: utf-8 -*- import io import os import sys from shutil import rmtree from setuptools import find_packages, setup, Command from dictquery import __version__ # Package meta-data. NAME = 'dictquery' DESCRIPTION = 'Library to query python dicts' URL = 'https://github.com/cyberlis/dictquery' EMAIL = '[email protected]' AUTHOR = 'Denis Lisovik' REQUIRED = [] here = os.path.abspath(os.path.dirname(__file__)) with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = '\n' + f.read() class UploadCommand(Command): """Support setup.py upload.""" description = 'Build and publish the package.' user_options = [] @staticmethod def status(s): """Prints things in bold.""" print('\033[1m{0}\033[0m'.format(s)) def initialize_options(self): pass def finalize_options(self): pass def run(self): try: self.status('Removing previous builds…') rmtree(os.path.join(here, 'dist')) except OSError: pass self.status('Building Source and Wheel (universal) distribution…') os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) self.status('Uploading the package to PyPi via Twine…') os.system('twine upload dist/*') sys.exit() # Where the magic happens: setup( name=NAME, version=__version__, description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', author=AUTHOR, author_email=EMAIL, url=URL, packages=['dictquery'], entry_points={}, install_requires=REQUIRED, include_package_data=True, license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Software Development :: Libraries :: Python Modules' ], # $ setup.py publish support. cmdclass={ 'upload': UploadCommand, }, )
the-stack_106_26379
import torch import torch.nn as nn from torch.autograd import Variable class PoetryNet(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers=2): super(PoetryNet, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers self.embeddings = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers) self.linear1 = nn.Linear(self.hidden_dim, vocab_size) def forward(self, input, hidden_state=None): seq_len, batch_size = input.size() if hidden_state is None: h_0 = torch.zeros(self.num_layers, batch_size, self.hidden_dim) c_0 = torch.zeros(self.num_layers, batch_size, self.hidden_dim) h_0, c_0 = Variable(h_0), Variable(c_0) else: h_0, c_0 = hidden_state embeds = self.embeddings(input) output, hidden_state = self.lstm(embeds, (h_0, c_0)) output = self.linear1(output.view(seq_len * batch_size, -1)) return output, hidden_state
the-stack_106_26380
import unittest from fds.analyticsapi.engines.api.benchmarks_api import BenchmarksApi from fds.analyticsapi.engines.model.spar_benchmark_root import SPARBenchmarkRoot import common_parameters from common_functions import CommonFunctions class TestSparBenchmarkApi(unittest.TestCase): def setUp(self): self.spar_benchmark_api = BenchmarksApi( CommonFunctions.build_api_client()) def test_get_spar_benchmark_by_id(self): response = self.spar_benchmark_api.get_spar_benchmark_by_id(common_parameters.spar_benchmark_r1000, _return_http_data_only=False ) self.assertEqual(response[1], 200, "Response should be 200 - Success") self.assertEqual( type(response[0]), SPARBenchmarkRoot, "Response should be of SPARBenchmark type") if __name__ == '__main__': unittest.main()
the-stack_106_26382
# coding:utf8 """ # pylint: disable=line-too-long url = "http://web.ifzq.gtimg.cn/appstock/app/hkfqkline/get?_var=kline_dayqfq&param=hk00001,day,,,660,qfq&r=0.7773272375526847" url 参数改动 股票代码 :hk00001 日k线天数:660 更改为需要获取的股票代码和天数例如: # pylint: disable=line-too-long url = "http://web.ifzq.gtimg.cn/appstock/app/hkfqkline/get?_var=kline_dayqfq&param=hk00700,day,,,350,qfq&r=0.7773272375526847" """ import json import re from . import basequotation class DayKline(basequotation.BaseQuotation): """腾讯免费行情获取""" max_num = 1 @property def stock_api(self) -> str: # pylint: disable=line-too-long return "http://web.ifzq.gtimg.cn/appstock/app/hkfqkline/get?_var=kline_dayqfq&param=" def _gen_stock_prefix(self, stock_codes, day=1500): return ["hk{},day,,,{},qfq".format(code, day) for code in stock_codes] def format_response_data(self, rep_data, **kwargs): stock_dict = {} for raw_quotation in rep_data: raw_stocks_detail = re.search(r"=(.*)", raw_quotation).group(1) stock_details = json.loads(raw_stocks_detail) for stock, value in stock_details["data"].items(): stock_code = stock[2:] if "qfqday" in value: stock_detail = value["qfqday"] else: stock_detail = value.get("day") if stock_detail is None: print("stock code data not find %s"%stock_code) continue stock_dict[stock_code] = stock_detail break return stock_dict if __name__ == "__main__": pass
the-stack_106_26384
import pickle import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import matplotlib.pyplot as plt import layers as ly training_file = "train.p" with open(training_file, mode="rb") as f: train = pickle.load(f) X_train, y_train = train["features"], train["labels"] x = tf.placeholder(tf.float32, (None, 32, 32, 3)) x_gray = tf.placeholder(tf.float32, (None, 32, 32, 1)) grayscale = tf.image.rgb_to_grayscale(x) normalize = ly.normalize_grayscale(x_gray) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) x_grayscale = sess.run(grayscale, feed_dict={x: X_train}) x_normalize = sess.run(normalize, feed_dict={x_gray: x_grayscale}) f, axes = plt.subplots(1, 2) axes[0].imshow(X_train[0]) axes[1].imshow(x_grayscale[0], cmap="gray") plt.show() f, axes = plt.subplots(1, 2) axes[0].hist(x_grayscale[0].flatten()) axes[0].set_title("Grayscale") axes[1].hist(x_normalize[0].flatten()) axes[1].set_title("Normalized") plt.show()
the-stack_106_26387
from collections.abc import Sequence from itertools import chain import numpy as np import tensorflow as tf from tensorflow.keras.layers import Dense from tensorflow.python.framework.smart_cond import smart_cond from .set_utils import ( build_dense_dropout_model, PaddedToSegments, SegmentAggregation, cumulative_softmax_weighting, cumulative_segment_mean) from .utils import segment_softmax class PositionalEncoding(tf.keras.layers.Layer): def __init__(self, max_time=20000, n_dim=10, **kwargs): self.max_time = max_time self.n_dim = n_dim self._num_timescales = self.n_dim // 2 super().__init__(**kwargs) def get_timescales(self): # This is a bit hacky, but works timescales = self.max_time ** np.linspace(0, 1, self._num_timescales) return timescales def build(self, input_shape): assert len(input_shape) == 3 self.timescales = self.add_weight( 'timescales', (self._num_timescales, ), trainable=False, initializer=tf.compat.v1.keras.initializers.Constant(self.get_timescales()) ) def __call__(self, times): scaled_time = times / self.timescales[None, None, :] signal = tf.concat( [ tf.sin(scaled_time), tf.cos(scaled_time) ], axis=-1) return signal def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], self.n_dim) class CumulativeSetAttentionLayer(tf.keras.layers.Layer): dense_options = { 'activation': 'relu', 'kernel_initializer': 'he_uniform' } def __init__(self, n_layers=2, width=128, latent_width=128, aggregation_function='mean', dot_prod_dim=64, n_heads=4, attn_dropout=0.3): super().__init__() assert aggregation_function == 'mean' self.width = width self.dot_prod_dim = dot_prod_dim self.attn_dropout = attn_dropout self.n_heads = n_heads self.psi = build_dense_dropout_model( n_layers, width, 0., self.dense_options) self.psi.add(Dense(latent_width, **self.dense_options)) self.rho = Dense(latent_width, **self.dense_options) def build(self, input_shape): self.psi.build(input_shape) encoded_shape = self.psi.compute_output_shape(input_shape) self.rho.build(encoded_shape) self.W_k = self.add_weight( 'W_k', (encoded_shape[-1] + input_shape[-1], self.dot_prod_dim*self.n_heads), initializer='he_uniform' ) self.W_q = self.add_weight( 'W_q', (self.n_heads, self.dot_prod_dim), initializer=tf.compat.v1.keras.initializers.Zeros() ) def compute_output_shape(self, input_shape): return (input_shape[0], self.n_heads) def call(self, inputs, segment_ids, training=None): if training is None: training = tf.keras.backend.learning_phase() encoded = self.psi(inputs) # cumulative mean aggregation agg = cumulative_segment_mean(encoded, segment_ids) agg = self.rho(agg) combined = tf.concat([inputs, agg], axis=-1) keys = tf.matmul(combined, self.W_k) keys = tf.stack(tf.split(keys, self.n_heads, -1), 1) keys = tf.expand_dims(keys, axis=2) # should have shape (el, heads, 1, dot_prod_dim) queries = tf.expand_dims(tf.expand_dims(self.W_q, -1), 0) # should have shape (1, heads, dot_prod_dim, 1) preattn = tf.matmul(keys, queries) / tf.sqrt(float(self.dot_prod_dim)) preattn = tf.squeeze(tf.squeeze(preattn, -1), -1) return preattn class SetAttentionLayer(tf.keras.layers.Layer): dense_options = { 'activation': 'relu', 'kernel_initializer': 'he_uniform' } def __init__(self, n_layers=2, width=128, latent_width=128, aggregation_function='mean', dot_prod_dim=64, n_heads=4, attn_dropout=0.3): super().__init__() self.width = width self.dot_prod_dim = dot_prod_dim self.attn_dropout = attn_dropout self.n_heads = n_heads self.psi = build_dense_dropout_model( n_layers, width, 0., self.dense_options) self.psi.add(Dense(latent_width, **self.dense_options)) self.psi_aggregation = SegmentAggregation(aggregation_function) self.rho = Dense(latent_width, **self.dense_options) def build(self, input_shape): self.psi.build(input_shape) encoded_shape = self.psi.compute_output_shape(input_shape) agg_shape = self.psi_aggregation.compute_output_shape(encoded_shape) self.rho.build(agg_shape) self.W_k = self.add_weight( 'W_k', (encoded_shape[-1] + input_shape[-1], self.dot_prod_dim*self.n_heads), initializer='he_uniform' ) self.W_q = self.add_weight( 'W_q', (self.n_heads, self.dot_prod_dim), initializer=tf.compat.v1.keras.initializers.Zeros() ) def call(self, inputs, segment_ids, lengths, training=None): if training is None: training = tf.keras.backend.learning_phase() def dropout_attn(input_tensor): if self.attn_dropout > 0: mask = ( tf.random.uniform( tf.shape(input=input_tensor)[:-1] ) < self.attn_dropout) return ( input_tensor + tf.expand_dims(tf.cast(mask, tf.float32), -1) * -1e9 ) else: return tf.identity(input_tensor) encoded = self.psi(inputs) agg = self.psi_aggregation(encoded, segment_ids) agg = self.rho(agg) agg_scattered = tf.gather_nd(agg, tf.expand_dims(segment_ids, -1)) combined = tf.concat([inputs, agg_scattered], axis=-1) keys = tf.matmul(combined, self.W_k) keys = tf.stack(tf.split(keys, self.n_heads, -1), 1) keys = tf.expand_dims(keys, axis=2) # should have shape (el, heads, 1, dot_prod_dim) queries = tf.expand_dims(tf.expand_dims(self.W_q, -1), 0) # should have shape (1, heads, dot_prod_dim, 1) preattn = tf.matmul(keys, queries) / tf.sqrt(float(self.dot_prod_dim)) preattn = tf.squeeze(preattn, -1) preattn = smart_cond( training, lambda: dropout_attn(preattn), lambda: tf.identity(preattn) ) per_head_preattn = tf.unstack(preattn, axis=1) attentions = [] for pre_attn in per_head_preattn: attentions.append(segment_softmax(pre_attn, segment_ids)) return attentions def compute_output_shape(self, input_shape): return list(chain(input_shape[:-1], (self.n_heads, ))) class IdentityLayer(tf.keras.layers.Layer): def __init__(self): super().__init__() def compute_output_shape(self, input_shapes): return input_shapes def call(self, inputs, **kwargs): return inputs class DeepSetAttentionModel(tf.keras.Model): dense_options = { 'activation': 'relu', 'kernel_initializer': 'he_uniform' } def __init__(self, output_activation, output_dims, n_phi_layers, phi_width, n_psi_layers, psi_width, psi_latent_width, dot_prod_dim, n_heads, attn_dropout, latent_width, phi_dropout, n_rho_layers, rho_width, rho_dropout, max_timescale, n_positional_dims): self._config = { name: val for name, val in locals().items() if name not in ['self', '__class__'] } super().__init__() self.phi_width = phi_width self.to_segments = PaddedToSegments() # If we set n_positional_dims to 0, skip the positional encoding self.positional_encoding = ( PositionalEncoding(max_timescale, n_positional_dims) if n_positional_dims != 0 else IdentityLayer() ) # We need the input dimensionality in order to determine the size of # the embedding for the demographics. self.demo_encoder = None if isinstance(output_dims, Sequence): # We have an online prediction scenario assert output_dims[0] is None self.return_sequences = True output_dims = output_dims[1] else: self.return_sequences = False # Build phi architecture self.phi = build_dense_dropout_model( n_phi_layers, phi_width, phi_dropout, self.dense_options) self.phi.add(Dense(latent_width, **self.dense_options)) self.latent_width = latent_width self.n_heads = n_heads if self.return_sequences: self.attention = CumulativeSetAttentionLayer( n_psi_layers, psi_width, psi_latent_width, dot_prod_dim=dot_prod_dim, n_heads=n_heads, attn_dropout=attn_dropout ) else: self.attention = SetAttentionLayer( n_psi_layers, psi_width, psi_latent_width, dot_prod_dim=dot_prod_dim, n_heads=n_heads, attn_dropout=attn_dropout ) self.aggregation = SegmentAggregation( aggregation_fn='sum', cumulative=self.return_sequences ) # Build rho architecture self.rho = build_dense_dropout_model( n_rho_layers, rho_width, rho_dropout, self.dense_options) self.rho.add(Dense(output_dims, activation=output_activation)) self._n_modalities = None def build(self, input_shapes): if self.return_sequences: demo, times, values, measurements, lengths, inverse_timepoints, pred_lengths = input_shapes else: demo, times, values, measurements, lengths = input_shapes self.positional_encoding.build(times) transformed_times = ( self.positional_encoding.compute_output_shape(times)) mod_shape = self._n_modalities phi_input_dim = transformed_times[-1] + values[-1] + mod_shape self.demo_encoder = tf.keras.Sequential( [ tf.keras.layers.Dense(self.phi_width, activation='relu'), tf.keras.layers.Dense(phi_input_dim) ], name='demo_encoder' ) self.demo_encoder.build(demo) if self.return_sequences: phi_input = (None, phi_input_dim) self.phi.build(phi_input) phi_output = self.phi.compute_output_shape(phi_input) self.attention.build(phi_input) attention_output = self.attention.compute_output_shape(phi_input) aggregated_output = [ phi_output[0], phi_output[1] * attention_output[1]] self.rho.build(aggregated_output) else: phi_input = (None, phi_input_dim) self.phi.build(phi_input) phi_output = self.phi.compute_output_shape(phi_input) self.attention.build(phi_input) attention_output = self.attention.compute_output_shape(phi_input) aggregated_output = self.aggregation.compute_output_shape( [phi_output[0], phi_output[1] * attention_output[1]]) self.rho.build(aggregated_output) def call(self, inputs): if self.return_sequences: demo, times, values, measurements, lengths, elem_per_tp, pred_lengths = inputs if len(pred_lengths.get_shape()) == 2: pred_lengths = tf.squeeze(pred_lengths, -1) else: demo, times, values, measurements, lengths = inputs transformed_times = self.positional_encoding(times) # Transform modalities transformed_measurements = tf.one_hot( measurements, self._n_modalities, dtype=tf.float32) combined_values = tf.concat( ( transformed_times, values, transformed_measurements ), axis=-1 ) demo_encoded = self.demo_encoder(demo) combined_with_demo = tf.concat( [tf.expand_dims(demo_encoded, 1), combined_values], axis=1) # Somehow eager execution and graph mode behave differently. # In graph mode lengths has an additional dimension if len(lengths.get_shape()) == 2: lengths = tf.squeeze(lengths, -1) if self.return_sequences: # We additionally have the encoded demographics as a set element mask = tf.sequence_mask(lengths+1, name='mask') collected_values, segment_ids = self.to_segments( combined_with_demo, mask) preattentions = self.attention(collected_values, segment_ids) encoded = self.phi(collected_values) agg = cumulative_softmax_weighting( encoded, preattentions, segment_ids) # Remove heads dimension agg = tf.reshape( agg, tf.stack([tf.shape(input=agg)[0], tf.constant(-1)], axis=0) ) predictions_mask = tf.sequence_mask(pred_lengths) gathered_time_indices, batch_indices = self.to_segments( elem_per_tp, predictions_mask) # Compute index of the last observation associated with the # provided time. prediction_indices = tf.math.cumsum(gathered_time_indices) # Add an offset for each instance to account for demographics. This # offset decreases for each later index in the batch. Thus we can # use the batch indices. prediction_indices += batch_indices gathered_embeddings = tf.gather_nd( agg, prediction_indices[:, None]) # Lost shape information gathered_embeddings.set_shape([None, None]) output = self.rho(gathered_embeddings) valid_predictions = tf.cast(tf.compat.v1.where(predictions_mask), tf.int32) output = tf.scatter_nd( valid_predictions, output, tf.concat( [tf.shape(input=predictions_mask), tf.shape(input=output)[-1:]], axis=0 ) ) # tf.print(tf.shape(output), tf.shape(mask)) output._keras_mask = predictions_mask return output else: # We additionally have the encoded demographics as a set element mask = tf.sequence_mask(lengths+1, name='mask') collected_values, segment_ids = self.to_segments( combined_with_demo, mask) encoded = self.phi(collected_values) attentions = self.attention(collected_values, segment_ids, lengths) weighted_values = [] for attention in attentions: weighted_values.append(encoded * attention) aggregated_values = self.aggregation( tf.concat(weighted_values, axis=-1), segment_ids) return self.rho(aggregated_values) def get_attentions(self, inputs): demo, times, values, measurements, lengths = inputs transformed_times = self.positional_encoding(times) # Transform modalities if self._n_modalities > 100: # Use an embedding instead of one hot encoding when we have a very # high number of modalities transformed_measurements = self.modality_embedding(measurements) else: transformed_measurements = tf.one_hot( measurements, self._n_modalities, dtype=tf.float32) combined_values = tf.concat( ( transformed_times, values, transformed_measurements ), axis=-1 ) demo_encoded = self.demo_encoder(demo) combined_with_demo = tf.concat( [tf.expand_dims(demo_encoded, 1), combined_values], axis=1) # Somehow eager execution and graph mode behave differently. # In graph mode legths has an additional dimension if len(lengths.get_shape()) == 2: lengths = tf.squeeze(lengths, -1) # We additionally have the encoded demographics as a set element mask = tf.sequence_mask(lengths+1, name='mask') valid_observations = tf.cast(tf.compat.v1.where(mask), tf.int32) out_shape = tf.concat( [ tf.shape(input=combined_with_demo)[:-1], tf.constant([1]) ], axis=0, ) collected_values, segment_ids = self.to_segments(combined_with_demo, mask) attentions = self.attention(collected_values, segment_ids, lengths) demo_attentions = [] ts_attentions = [] for attention in attentions: dist_attention = tf.scatter_nd( valid_observations, attention, out_shape) demo_attentions.append(dist_attention[:, 0]) ts_attentions.append(dist_attention[:, 1:]) return demo_attentions, ts_attentions def _evtl_create_embedding_layer(self): if self._n_modalities > 100 and not hasattr(self, 'modality_embedding'): self.modality_embedding = tf.keras.layers.Embedding( self._n_modalities, 64) @classmethod def get_hyperparameters(cls): import tensorboard.plugins.hparams.api as hp from ..training_utils import HParamWithDefault return [ HParamWithDefault( 'n_phi_layers', hp.Discrete([1, 2, 3, 4, 5]), default=3), HParamWithDefault( 'phi_width', hp.Discrete([16, 32, 64, 128, 256, 512]), default=32 ), HParamWithDefault( 'phi_dropout', hp.Discrete([0.0, 0.1, 0.2, 0.3]), default=0. ), HParamWithDefault( 'n_psi_layers', hp.Discrete([2]), default=2 ), HParamWithDefault( 'psi_width', hp.Discrete([64]), default=64 ), HParamWithDefault( 'psi_latent_width', hp.Discrete([128]), default=128 ), HParamWithDefault( 'dot_prod_dim', hp.Discrete([128]), default=128 ), HParamWithDefault( 'n_heads', hp.Discrete([4]), default=4 ), HParamWithDefault( 'attn_dropout', hp.Discrete([0.0, 0.1, 0.25, 0.5]), default=0.1 ), HParamWithDefault( 'latent_width', hp.Discrete([32, 64, 128, 256, 512, 1024, 2048]), default=128 ), HParamWithDefault( 'n_rho_layers', hp.Discrete([1, 2, 3, 4, 5]), default=3), HParamWithDefault( 'rho_width', hp.Discrete([16, 32, 64, 128, 256, 512]), default=32 ), HParamWithDefault( 'rho_dropout', hp.Discrete([0.0, 0.1, 0.2, 0.3]), default=0. ), HParamWithDefault( 'max_timescale', hp.Discrete([10., 100., 1000.]), default=100. ), HParamWithDefault( 'n_positional_dims', hp.Discrete([4, 8, 16]), default=4 ) ] @classmethod def from_hyperparameter_dict(cls, task, hparams): return cls( output_activation=task.output_activation, output_dims=task.n_outputs, n_phi_layers=hparams['n_phi_layers'], phi_width=hparams['phi_width'], n_psi_layers=hparams['n_psi_layers'], psi_width=hparams['psi_width'], psi_latent_width=hparams['psi_latent_width'], dot_prod_dim=hparams['dot_prod_dim'], n_heads=hparams['n_heads'], attn_dropout=hparams['attn_dropout'], latent_width=hparams['latent_width'], phi_dropout=hparams['phi_dropout'], n_rho_layers=hparams['n_rho_layers'], rho_width=hparams['rho_width'], rho_dropout=hparams['rho_dropout'], max_timescale=hparams['max_timescale'], n_positional_dims=hparams['n_positional_dims'] ) @classmethod def from_config(cls, config): return cls(**config) def get_config(self): return self._config def data_preprocessing_fn(self): def flatten_unaligned_measurements(ts, labels): # Ignore demographics for now demo, X, Y, measurements, lengths = ts if self._n_modalities is None: self._n_modalities = int(measurements.get_shape()[-1]) X = tf.expand_dims(X, -1) measurement_positions = tf.cast(tf.compat.v1.where(measurements), tf.int32) X_indices = measurement_positions[:, 0] Y_indices = measurement_positions[:, 1] gathered_X = tf.gather(X, X_indices) gathered_Y = tf.gather_nd(Y, measurement_positions) gathered_Y = tf.expand_dims(gathered_Y, axis=-1) length = tf.shape(input=X_indices)[0] if self.return_sequences: # We need to know now many prediction values each instance # should have when doing online prediction prediction_length = tf.shape(input=labels)[0] counts = tf.reduce_sum(input_tensor=tf.cast(measurements, tf.int64), axis=1) return (demo, gathered_X, gathered_Y, Y_indices, length, counts, prediction_length), labels else: return (demo, gathered_X, gathered_Y, Y_indices, length), labels return flatten_unaligned_measurements @classmethod def get_default(cls, task): hyperparams = cls.get_hyperparameters() return cls.from_hyperparameter_dict( task, { h.name: h._default for h in hyperparams } ) class DeepSetAttentionNoPosModel(DeepSetAttentionModel): def __init__(self, output_activation, output_dims, **kwargs): super().__init__(output_activation, output_dims, **kwargs, max_timescale=0, n_positional_dims=0) @classmethod def get_hyperparameters(cls): parent_hyperparameters = super().get_hyperparameters() return [ hp for hp in parent_hyperparameters if hp.name not in ['max_timescale', 'n_positional_dims'] ] @classmethod def from_hyperparameter_dict(cls, task, hparams): return cls( output_activation=task.output_activation, output_dims=task.n_outputs, n_phi_layers=hparams['n_phi_layers'], phi_width=hparams['phi_width'], n_psi_layers=hparams['n_psi_layers'], psi_width=hparams['psi_width'], psi_latent_width=hparams['psi_latent_width'], dot_prod_dim=hparams['dot_prod_dim'], n_heads=hparams['n_heads'], attn_dropout=hparams['attn_dropout'], latent_width=hparams['latent_width'], phi_dropout=hparams['phi_dropout'], n_rho_layers=hparams['n_rho_layers'], rho_width=hparams['rho_width'], rho_dropout=hparams['rho_dropout'], )
the-stack_106_26389
#!/usr/bin/env python3 ''' Пример для первой лекции про TkInter Закрытие окошка в постинтерактивном режиме ''' from tkinter import * def dump(*args): print("DUMP:",args) TKroot = Tk() TKroot.title("Hello") root = Frame(TKroot) root.place(relx=0, rely=0, relheight=1, relwidth=1) root.columnconfigure(0, weight=1) root.columnconfigure(1, weight=2) root.rowconfigure(0, weight=10) root.rowconfigure(1, weight=1) Butt = Button(root, text="Butt ON") Butt.bind('<Button-1>', dump) Butt.grid(row=0, column=0, sticky=E+W+S+N) Exit = Button(root, text="Quit!", command=root.quit) Exit.grid(row=0, column=1, sticky=E+W+S+N) Txt = Label(root, text="This is a label", bg="PeachPuff") Txt.grid(row=1, column=0, columnspan=2, sticky=E+W+N) TKroot.mainloop() print("Done") #root.destroy()
the-stack_106_26390
import re import tweepy import pandas as pd from datetime import date from textblob import TextBlob def clean_text(text): text = re.sub(r'@[A-Za-z0-9]+', '', text) #Remove mentions text = re.sub(r'#', '', text) #Remove # text = re.sub(r'RT[\s]:+', '', text) #Remove RT text = re.sub(r'https:\/\/\S+', '', text) #Remove mentions text = re.sub('\n'," ",text) text = re.sub('-\n([a-z])', '', text) text = re.sub('\r'," ",text) text = re.sub('-\r([a-z])', '', text) text = deEmojify(text) return text def deEmojify(text): regrex_pattern = re.compile(pattern="[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) return regrex_pattern.sub(r'', text) def getSubjectivity(text): return TextBlob(text).sentiment.subjectivity def getPolarity(text): return TextBlob(text).sentiment.polarity def x_range(x): if x > 0: return 1 elif x == 0: return 0 else: return -1 def x_range_sentiment(x): if x > 0: return 'Positive' elif x == 0: return 'Neutral' else: return 'Negative' def get_tweets(stock: str, update: str): if update == "upyes": consumer_key = "89sGhwiTspic1SS4NBnnv6yHk" consumer_secret = "wPMainc6F8aw1KPYjWpBUz17wTUQJdDUu4a5vyjWsSYPPbMNvH" access_token = "3243736436-RkiWCNFrQ5Gl82OFSCtENHqnRdRrnjeTB5pOpk6" access_token_secret = "FzxpAu9WCmJYJIeTyqqT8p1mf0kum4s8z2sArU3MAqgDW" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) query = '$' + stock tweets = api.search(q=query, # 200 is the maximum allowed count count=100, include_rts=False, # Necessary to keep full_text # otherwise only the first 140 words are extracted tweet_mode='extended' ) all_tweets = [] all_tweets.extend(tweets) oldest_id = tweets[-90].id for i in range(160): i += 1 tweets = api.search(q=query, # 200 is the maximum allowed count count=100, include_rts=False, lang='en', max_id=oldest_id - 1, # Necessary to keep full_text # otherwise only the first 140 words are extracted tweet_mode='extended' ) if len(tweets) == 0: break oldest_id = tweets[-1].id all_tweets.extend(tweets) print('N of tweets downloaded till now {}'.format(len(all_tweets)), 'ciclo = ', i) outtweets = [[tweet.id_str, tweet.user, tweet.created_at, tweet.favorite_count, tweet.retweet_count, tweet.full_text.encode("utf-8").decode("utf-8")] for idx, tweet in enumerate(all_tweets)] df = pd.DataFrame(outtweets, columns=["id", 'user_name', "created_at", "favorite_count", "retweet_count", "text"]) df['Date'] = df['created_at'].map(lambda x: x.date()) df['text'] = df['text'].apply(clean_text) df['Subjectivity'] = df['text'].apply(getSubjectivity) df['Polarity'] = df['text'].apply(getPolarity) df['result'] = df['Polarity'].apply(x_range) df['Sentiment'] = df['Polarity'].apply(x_range_sentiment) df.to_csv("$SPY_tweets.csv", index=False) return df else: print("No update")
the-stack_106_26391
import pandas as pd import pytest from powersimdata.data_access.context import Context from powersimdata.input.change_table import ChangeTable from powersimdata.input.grid import Grid from powersimdata.tests.mock_context import MockContext grid = Grid(["USA"]) @pytest.fixture def ct(): return ChangeTable(grid) def test_resource_exist(ct): with pytest.raises(ValueError): ct.scale_plant_capacity("unknown", zone_name={"Idaho": 2}) assert ct.ct == {} def test_add_dcline_argument_type(ct): new_dcline = {"capacity": 500, "from_bus_id": 1, "to_bus_id": 2} with pytest.raises(TypeError) as excinfo: ct.add_dcline(new_dcline) assert "Argument enclosing new HVDC line(s) must be a list" in str(excinfo.value) assert ct.ct == {} def test_add_dcline_argument_number_of_keys(ct): new_dcline = [{"from_bus_id": 1, "to_bus_id": 2}] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) expected = "For new_dcline, must specify one of ('capacity', 'Pmax') but not both." assert expected in str(excinfo.value) assert ct.ct == {} def test_add_dcline_argument_wrong_keys(ct): new_dcline = [{"capacity": 1000, "from_bus": 1, "to_bus": 2}] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) expected_msg = "Each entry of new_dcline requires keys of: from_bus_id, to_bus_id" assert expected_msg in str(excinfo.value) assert ct.ct == {} def test_add_dcline_argument_wrong_bus(ct): new_dcline = [ {"capacity": 2000, "from_bus_id": 300, "to_bus_id": 1000}, {"capacity": 1000, "from_bus_id": 1, "to_bus_id": 30010010}, ] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) assert "No bus with the following id for line #2: 30010010" in str(excinfo.value) assert ct.ct == {} def test_add_dcline_argument_same_buses(ct): new_dcline = [{"capacity": 1000, "from_bus_id": 1, "to_bus_id": 1}] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) assert "buses of line #1 must be different" in str(excinfo.value) assert ct.ct == {} def test_add_dcline_argument_negative_capacity(ct): new_dcline = [{"capacity": -1000, "from_bus_id": 300, "to_bus_id": 1000}] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) assert "capacity of line #1 must be positive" in str(excinfo.value) assert ct.ct == {} def test_add_dcline_output(ct): new_dcline = [ {"capacity": 2000, "from_bus_id": 200, "to_bus_id": 2000}, {"capacity": 1000, "from_bus_id": 9, "to_bus_id": 70042}, {"capacity": 8000, "from_bus_id": 2008, "to_bus_id": 5997}, ] ct.add_dcline(new_dcline) expected = { "new_dcline": [ {"Pmax": 2000, "Pmin": -2000, "from_bus_id": 200, "to_bus_id": 2000}, {"Pmax": 1000, "Pmin": -1000, "from_bus_id": 9, "to_bus_id": 70042}, {"Pmax": 8000, "Pmin": -8000, "from_bus_id": 2008, "to_bus_id": 5997}, ] } assert ct.ct == expected def test_add_dcline_in_different_interconnect(ct): new_dcline = [ {"capacity": 2000, "from_bus_id": 200, "to_bus_id": 2000}, {"capacity": 8000, "from_bus_id": 2008, "to_bus_id": 3001001}, ] ct.add_dcline(new_dcline) expected = { "new_dcline": [ {"Pmax": 2000, "Pmin": -2000, "from_bus_id": 200, "to_bus_id": 2000}, {"Pmax": 8000, "Pmin": -8000, "from_bus_id": 2008, "to_bus_id": 3001001}, ] } assert ct.ct == expected def test_add_dcline_Pmin_and_Pmax_success(ct): # noqa: N802 new_dcline = [{"Pmax": 2000, "Pmin": 0, "from_bus_id": 200, "to_bus_id": 2000}] ct.add_dcline(new_dcline) assert ct.ct == {"new_dcline": new_dcline} def test_add_dcline_Pmin_gt_Pmax(ct): # noqa: N802 new_dcline = [{"Pmax": 2000, "Pmin": 3000, "from_bus_id": 200, "to_bus_id": 2000}] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) assert "Pmin cannot be greater than Pmax" in str(excinfo.value) assert ct.ct == {} def test_add_dcline_Pmin_and_Pmax_and_capacity(ct): # noqa: N802 new_dcline = [ {"Pmax": 200, "Pmin": -200, "capacity": 10, "from_bus_id": 1, "to_bus_id": 2} ] with pytest.raises(ValueError) as excinfo: ct.add_dcline(new_dcline) expected = "For new_dcline, must specify one of ('capacity', 'Pmax') but not both" assert expected in str(excinfo.value) assert ct.ct == {} def test_add_branch_argument_buses_in_different_interconnect(ct): new_branch = [ {"capacity": 2000, "from_bus_id": 300, "to_bus_id": 1000}, {"capacity": 1000, "from_bus_id": 1, "to_bus_id": 3001001}, ] with pytest.raises(ValueError) as excinfo: ct.add_branch(new_branch) assert "Buses of line #2 must be in same interconnect" in str(excinfo.value) assert ct.ct == {} def test_add_branch_zero_distance_between_buses(ct): new_branch = [{"capacity": 75, "from_bus_id": 1, "to_bus_id": 3}] with pytest.raises(ValueError) as excinfo: ct.add_branch(new_branch) assert "Distance between buses of line #1 is 0" in str(excinfo.value) assert ct.ct == {} def test_add_branch_Pmin_and_Pmax(ct): # noqa: N802 new_dcline = [{"Pmax": 2000, "Pmin": 0, "from_bus_id": 200, "to_bus_id": 2000}] with pytest.raises(ValueError) as excinfo: ct.add_branch(new_dcline) assert "Can't independently set Pmin & Pmax for AC branches" in str(excinfo.value) assert ct.ct == {} def test_add_plant_argument_type(ct): new_plant = {"type": "solar", "bus_id": 1, "Pmax": 100} with pytest.raises(TypeError) as excinfo: ct.add_plant(new_plant) assert "Argument enclosing new plant(s) must be a list" in str(excinfo.value) assert ct.ct == {} def test_add_renewable_plant_missing_key_type(ct): new_plant = [{"bus_id": 350, "Pmax": 35}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) expected = ( "Each entry of plant requires keys of: Pmax, bus_id, type. Missing ['type']" ) assert expected in str(excinfo.value) assert ct.ct == {} def test_add_renewable_plant_missing_key_bus_id(ct): new_plant = [{"type": "solar", "Pmax": 35}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) expected = ( "Each entry of plant requires keys of: Pmax, bus_id, type. Missing ['bus_id']" ) assert expected in str(excinfo.value) assert ct.ct == {} def test_add_renewable_plant_missing_key_pmax(ct): new_plant = [{"type": "hydro", "bus_id": 350}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) expected = ( "Each entry of plant requires keys of: Pmax, bus_id, type. Missing ['Pmax']" ) assert expected in str(excinfo.value) assert ct.ct == {} def test_add_thermal_plant_missing_key_c0(ct): new_plant = [{"type": "ng", "bus_id": 100, "Pmax": 75, "c1": 9, "c2": 0.25}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "Missing key c0 for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_thermal_plant_missing_key_c1(ct): new_plant = [{"type": "ng", "bus_id": 100, "Pmax": 75, "c0": 1500, "c2": 1}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "Missing key c1 for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_thermal_plant_missing_key_c2(ct): new_plant = [{"type": "ng", "bus_id": 100, "Pmax": 75, "c0": 1500, "c1": 500}] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "Missing key c2 for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_plant_wrong_resource(ct): with pytest.raises(ValueError) as excinfo: ct.add_plant([{"type": "unknown", "bus_id": 50000, "Pmax": 1}]) assert "Invalid resource: unknown" in str(excinfo.value) assert ct.ct == {} def test_add_plant_wrong_bus(ct): new_plant = [ { "type": "nuclear", "bus_id": 300, "Pmin": 500, "Pmax": 5000, "c0": 1, "c1": 2, "c2": 3, }, {"type": "coal", "bus_id": 5000000, "Pmax": 200, "c0": 1, "c1": 2, "c2": 3}, ] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "No bus id 5000000 available for plant #2" in str(excinfo.value) assert ct.ct == {} def test_add_thermal_plant_wrong_coefficients(ct): new_plant = [ { "type": "ng", "bus_id": 300, "Pmin": 0, "Pmax": 500, "c0": -800, "c1": 30, "c2": 0.0025, } ] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "c0 >= 0 must be satisfied for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_plant_negative_pmax(ct): new_plant = [ {"type": "dfo", "bus_id": 300, "Pmax": -10, "c0": 1, "c1": 2, "c2": 0.3} ] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "Pmax >= 0 must be satisfied for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_plant_negative_pmin(ct): new_plant = [ {"type": "dfo", "bus_id": 300, "Pmax": 10, "c0": 100, "c1": 2, "c2": 0.1}, { "type": "geothermal", "bus_id": 3001001, "Pmin": -1, "Pmax": 20, "c0": 10, "c1": 5, "c2": 1, }, ] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "0 <= Pmin <= Pmax must be satisfied for plant #2" in str(excinfo.value) assert ct.ct == {} def test_add_plant_pmin_pmax_relationship(ct): new_plant = [ { "type": "biomass", "bus_id": 13802, "Pmin": 30, "Pmax": 20, "c0": 30, "c1": 15, "c2": 0.1, } ] with pytest.raises(ValueError) as excinfo: ct.add_plant(new_plant) assert "0 <= Pmin <= Pmax must be satisfied for plant #1" in str(excinfo.value) assert ct.ct == {} def test_add_plant_check_pmin_is_added(ct): new_plant = [ {"type": "solar", "bus_id": 3001001, "Pmax": 85}, {"type": "wind", "bus_id": 9, "Pmin": 5, "Pmax": 60}, {"type": "wind_offshore", "bus_id": 13802, "Pmax": 175}, ] ct.add_plant(new_plant) assert ct.ct["new_plant"][0]["Pmin"] == 0 assert ct.ct["new_plant"][1]["Pmin"] == 5 assert ct.ct["new_plant"][2]["Pmin"] == 0 def test_add_renewable_plant_check_neighbor_is_added(ct): new_plant = [ {"type": "hydro", "bus_id": 3001001, "Pmin": 60, "Pmax": 85}, { "type": "coal", "bus_id": 9, "Pmax": 120, "c0": 1000, "c1": 500, "c2": 0.3, }, {"type": "wind_offshore", "bus_id": 13802, "Pmax": 175}, ] ct.add_plant(new_plant) assert "plant_id_neighbor" in ct.ct["new_plant"][0] assert "plant_id_neighbor" not in ct.ct["new_plant"][1] assert "plant_id_neighbor" in ct.ct["new_plant"][2] def test_add_plant_neighbor_can_be_on_same_bus(ct): wind_farm = grid.plant.groupby(["type"]).get_group("wind") hydro_plant = grid.plant.groupby(["type"]).get_group("hydro") bus_id_wind = wind_farm.iloc[100].bus_id bus_id_hydro = hydro_plant.iloc[2000].bus_id new_plant = [ {"type": "wind", "bus_id": bus_id_wind, "Pmin": 60, "Pmax": 85}, {"type": "hydro", "bus_id": bus_id_hydro, "Pmax": 175}, ] ct.add_plant(new_plant) wind_neighbor_id = ct.ct["new_plant"][0]["plant_id_neighbor"] assert wind_neighbor_id == wind_farm.iloc[100].name hydro_neighbor_id = ct.ct["new_plant"][1]["plant_id_neighbor"] assert hydro_neighbor_id == hydro_plant.iloc[2000].name def test_scale_pmin_by_plant_too_high(ct): ct.scale_plant_pmin("ng", plant_id={0: 100}) assert ct.ct["ng_pmin"]["plant_id"][0] * grid.plant.loc[0, "Pmin"] == pytest.approx( grid.plant.loc[0, "Pmax"] ) def test_scale_pmin_by_zone_too_high(ct): ct.scale_plant_pmin("ng", zone_name={"Maine": 100}) assert ( ct.ct["ng_pmin"]["plant_id"][0] * ct.ct["ng_pmin"]["zone_id"][1] # plant_id 0 is in Maine (zone_id 1) * grid.plant.loc[0, "Pmin"] ) == pytest.approx(grid.plant.loc[0, "Pmax"]) def test_scale_pmin_by_plant_and_zone_too_high(ct): ct.scale_plant_pmin("ng", plant_id={0: 10}, zone_name={"Maine": 10}) assert ( ct.ct["ng_pmin"]["plant_id"][0] * ct.ct["ng_pmin"]["zone_id"][1] # plant_id 0 is in Maine (zone_id 1) * grid.plant.loc[0, "Pmin"] ) == pytest.approx(grid.plant.loc[0, "Pmax"]) def test_add_bus_success(ct): new_buses = [ {"lat": 40, "lon": 50.5, "zone_id": 2, "baseKV": 69}, {"lat": -40.5, "lon": -50, "zone_name": "Massachusetts", "Pd": 10}, ] ct.add_bus(new_buses) expected_new_buses = [ {"lat": 40, "lon": 50.5, "zone_id": 2, "Pd": 0, "baseKV": 69}, {"lat": -40.5, "lon": -50, "zone_id": 4, "Pd": 10, "baseKV": 230}, ] assert ct.ct["new_bus"] == expected_new_buses def test_add_bus_bad_list_entries(ct): bad_dicts = [ {"lat": 40, "lon": 50}, # missing zone_id/zone_name {"lat": 40, "zone_id": 2}, # missing lon {"lon": 50, "zone_id": 2}, # missing lat {"lat": 40, "lon": 250, "zone_id": 2}, # bad lat value {"lat": -100, "lon": 120, "zone_id": 2}, # bad lon value {"lat": "40", "lon": "50", "zone_id": 2}, # strings for lat/lon {"lat": 4, "lon": 5, "zone_id": 2, "zone_name": "Ohio"}, # zone_id & zone_name {"lat": 40, "lon": 50, "zone_id": 1000}, # bad zone_id {"lat": 40, "lon": 50, "zone_name": "France"}, # bad zone_name {"lat": 40, "lon": 50, "Pd": "100 MW"}, # bad Pd {"lat": 40, "lon": 50.5, "zone_id": 2, "baseKV": "69"}, # bad baseKV type {"lat": 40, "lon": 50.5, "zone_id": 2, "baseKV": -230}, # bad baseKV value ] for d in bad_dicts: with pytest.raises(ValueError): ct.add_bus([d]) def test_add_bus_bad_type(ct): with pytest.raises(TypeError): ct.add_bus({"bus1": {"lat": 40, "lon": 50.5, "zone_id": 2}}) def test_add_new_elements_at_new_buses(ct): max_existing_index = int(grid.bus.index.max()) new_buses = [ {"lat": 40, "lon": 50.5, "zone_id": 2, "baseKV": 69}, {"lat": -40.5, "lon": -50, "zone_name": "Massachusetts", "Pd": 10}, ] ct.add_bus(new_buses) new_bus1 = max_existing_index + 1 new_bus2 = max_existing_index + 2 ct.add_storage_capacity([{"bus_id": new_bus1, "capacity": 100}]) ct.add_dcline([{"from_bus_id": new_bus1, "to_bus_id": new_bus2, "capacity": 200}]) ct.add_branch([{"from_bus_id": new_bus1, "to_bus_id": new_bus2, "capacity": 300}]) ct.add_plant([{"type": "wind", "bus_id": new_bus2, "Pmax": 400}]) def test_change_table_clear_success(ct): fake_scaling = {"demand", "branch", "solar", "ng_cost", "coal_pmin", "dcline"} fake_additions = { "storage", "new_dcline", "new_branch", "new_plant", "demand_flexibility", } all_fakes = fake_scaling | fake_additions original_dict_object = ct.ct for fake in all_fakes: ct.ct[fake] = {} # Test that each individual clear makes a change, and the ct ends up empty clear_keys = { "branch", "dcline", "demand", "plant", "storage", "demand_flexibility", } for key in clear_keys: old_keys = set(ct.ct.keys()) ct.clear(key) assert set(ct.ct.keys()) < old_keys assert ct.ct == {} # Test that passing no args clears everything in one shot all_fakes = fake_scaling | fake_additions for fake in all_fakes: ct.ct[fake] = {} ct.clear() assert ct.ct == {} assert ct.ct is original_dict_object def test_change_table_clear_bad_type(ct): with pytest.raises(TypeError): ct.clear(["plant"]) def test_change_table_clear_bad_key(ct): with pytest.raises(ValueError): ct.clear({"plantttt"}) def test_remove_branch(ct): ct.remove_branch({0}) with pytest.raises(ValueError): # Can't remove again, because it shouldn't exist ct.remove_branch({0}) def test_remove_bus(ct): with pytest.raises(ValueError): # Can't remove, because there are branches attached to it ct.remove_bus({1}) ct.remove_branch({0, 1, 2}) ct.remove_bus({1}) with pytest.raises(ValueError): # Can't remove again, because it shouldn't exist ct.remove_bus({1}) # Evan after we remove the branch connected to bus 845... ct.remove_branch({1094}) with pytest.raises(ValueError): # We can't remove this bus, since there's a generator with non-zero capacity ct.remove_bus({845}) ct.scale_plant_capacity(resource="ng", plant_id={0: 0}) ct.remove_bus({845}) def test_add_demand_flexibility(ct, monkeypatch): with pytest.raises(ValueError): # Fails because "demand_flexibility_dn", a required key, is not included ct.add_demand_flexibility( {"demand_flexibility_up": "Test", "demand_flexibility_duration": 6} ) with pytest.raises(ValueError): # Fails because there is a key that should not be there ct.add_demand_flexibility( { "demand_flexibility_up": "Test", "demand_flexibility_dn": "Test", "demand_flexibility_duration": 6, "demand_flexibility_wrong_key": "Test", } ) with pytest.raises(ValueError): # Fails because there are no profiles available that match the specified version ct.add_demand_flexibility( { "demand_flexibility_up": "Test", "demand_flexibility_dn": "Test", "demand_flexibility_duration": 6, } ) monkeypatch.setattr(Context, "get_data_access", MockContext().get_data_access) data_access = Context.get_data_access() # Create fake files in the expected directory path exp_path = f"raw/{grid.grid_model}" for csv_file in ( "demand_flexibility_up_Test.csv", "demand_flexibility_dn_Test.csv", ): with data_access.write(exp_path + "/" + csv_file) as f: pd.DataFrame().to_csv(f) # Add a test instance of demand flexibility to the change table ct.add_demand_flexibility( { "demand_flexibility_up": "Test", "demand_flexibility_dn": "Test", "demand_flexibility_duration": 6, } ) exp_dict = { "demand_flexibility": { "demand_flexibility_up": "Test", "demand_flexibility_dn": "Test", "demand_flexibility_duration": 6, }, } assert ct.ct == exp_dict
the-stack_106_26393
import numpy as np def calc_life(trajs, ub=5, lb=-5): """ Identifies transition paths and returns lifetimes of states. Parameters ---------- trajs : list of lists Set of trajectories. ub, lb : float Cutoff value for upper and lower states. """ try: assert ub > lb except AssertionError: print (" Upper bound is lower than lower bound") return lifeA = [] lifeB = [] time = 0 for tr in trajs: state = None ntp = 0 time_prev = 0 for t,q in enumerate(tr): # assign state when beyond boundaries if q > ub: # state "B" if state == 'A': ntp +=1 lifeA.append(time - time_prev) time_prev = time state = 'B' elif q < lb: # state "A" if state == 'B': ntp +=1 lifeB.append(time - time_prev) time_prev = time state = 'A' else: if state == 'A' and q < ub: time = t elif state == 'B' and q > lb: time = t return lifeA, lifeB def calc_life_multi(trajs, bounds=[[-3,-1], [1,3], [6,8]]): """ Identifies transition paths and returns lifetimes of states. Parameters ---------- trajs : list of lists Set of trajectories. bounds : list Limits for states. """ life = [[],[],[]] tau = {} time = 0 for tr in trajs: state = None ntp = 0 for t,q in enumerate(tr): # assign state when beyond boundaries for i,b in enumerate(bounds): if b[0] < q < b[1]: if state != i: try: life[state].append(time - time_prev) tau[i, state].append(time - time_prev) except TypeError: pass except KeyError: tau[(i, state)] = [time - time_prev] state = i time_prev = t break state = i time = t return life, tau def lifetimes(data, f_bound=-5, u_bound=5): """ Estimates lifetimes using a transition path analysis. Transitions are only assigned from one state to the other when the core of the other state is reached. Parameters ---------- data : np.array Time series data containing times and corrected extensions. Returns ------- tau_f : list Waiting times in the unfolded state. tau_u : list Waiting times in the folded state. data_f : list Stretches of data corresponding to the folded segments. data_u : list Stretches of data corresponding to the unfolded segments. tp_f : list Transition paths for folding. tp_u : list Transition paths for unfolding. """ folded = False unfolded = False maybetp = [] recrossings = [] t = data[:,0] dist = data[:,1] data_f = [] data_u = [] tau_u = [] tau_f = [] tp_f = [] tp_u = [] time = 0 data_cum = [] for t, d in zip(t,dist): if d <= f_bound: folded = True if unfolded: #print ' Refolding event: %g'%t, tp_u.append(np.array(maybetp)) tau_f.append(t-time) data_u.append(np.array(data_cum)) unfolded = False time = t data_cum = [] else: recrossings.append(np.array(maybetp)) for tt,dd in maybetp: data_cum.append([tt,dd]) data_cum.append([t,d]) maybetp = [] elif u_bound <= d : unfolded = True if folded: tp_f.append(np.array(maybetp)) #print ' Unfolding event: %g'%t, tau_u.append(t-time) data_f.append(np.array(data_cum)) folded = False time = t data_cum = [] else: recrossings.append(np.array(maybetp)) for tt,dd in maybetp: data_cum.append([tt,dd]) data_cum.append([t,d]) maybetp = [] else: maybetp.append([t,d]) if unfolded: #print ' Refolding event: %g'%t, tau_f.append(t-time) data_u.append(np.array(data_cum)) if folded: # tp_f.append(np.array(maybetp)) #print ' Unfolding event: %g'%t, tau_u.append(t-time) data_f.append(np.array(data_cum)) return tau_f, tau_u, data_f, data_u, tp_f, tp_u, recrossings
the-stack_106_26394
# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- """This module is intended to get metadata from BCKG for barcoded reagents.""" import pyBCKG.domain as domain import pandas as pd from pathlib import Path from typing import List, Dict, Any, Set from pyBCKG.azurestorage.api import AzureConnection def get_plate_data(filepath: Path, conn: AzureConnection) -> List[Dict[str, Any]]: # pragma: no cover """Returns a list of dictionaries contains details of the barcoded reagents. `filepath`: The file path of the barcoded file. `conn`: An instance of `pyBCKG.azurestorage.api.AzureConnection`""" barcoded_df: pd.DataFrame = pd.DataFrame(pd.read_csv(filepath)) barcodes: Set[str] = {str(barcode) for barcode in list(pd.Series(barcoded_df["Barcode"])) if str(barcode) != "nan"} reagents = conn.get_reagents_by_barcode(barcodes) barcode_map = barcoded_df.to_dict("records") reagent_barcodes = {r.barcode: r for r in reagents} new_df_list = [] for entry in barcode_map: full_entry = dict(entry) if entry["Barcode"] in reagent_barcodes: reagent: domain.Reagent = reagent_barcodes[entry["Barcode"]] full_entry["Name"] = reagent.name full_entry["SampleID"] = reagent.guid if isinstance(reagent, domain.DNA) or isinstance(reagent, domain.Chemical): full_entry["Type"] = reagent._type.value new_df_list.append(full_entry) return new_df_list