filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_26395
from __future__ import print_function # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding=utf-8 import os import sys parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, parent_dir) from aliyunsdkcore.client import AcsClient from aliyunsdkcore.request import RpcRequest client = AcsClient('your_access_key', 'your_access_secret', 'cn-hangzhou') location_service = client.get_location_service() location_service.set_location_service_attr(region='cn-beijing', product_name="Location", domain="location.aliyuncs.com") domain = location_service.find_product_domain(client.get_region_id(), 'oss'); print(domain) domain = location_service.find_product_domain(client.get_region_id(), 'oss'); print(domain) class DescribeRegionsRequest(RpcRequest): def __init__(self, OwnerId = None, ResourceOwnerAccount = None, ResourceOwnerId = None, OwnerAccount = None): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DescribeRegions', 'oss') self.add_query_param('OwnerId',OwnerId) self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) self.add_query_param('ResourceOwnerId',ResourceOwnerId) self.add_query_param('OwnerAccount',OwnerAccount) request = DescribeRegionsRequest() status, headers, body = client.get_response(request) print(status) print(body)
the-stack_106_26397
'''A wrapper for fixed column text files This module copies a fixed column TXT file into a dictionary to manipulate, and enrich. It can also be exported into a TXT file with a different structure than the original file. ''' import logging from pathlib import Path import sys import tempfile import beetools import displayfx _VERSION = "0.0.1" _path = Path(__file__) _name = _path.stem class TxtWrpr: '''A wrapper for fixed column text files This module copies a fixed column TXT file into a dictionary structure to manipulate and enrich. It can also be exported into a TXT file with a different structure than the original file. Each row of the TXT file must have at least one unique field that can be used as a key. ''' def __init__( self, p_parent_logger_name, p_key_idx, p_src_field_def, p_src = None, p_has_header = True, p_verbose = False ): '''Initialize the class Parameters ---------- p_parent_logger_name Logger name of the caller. Assigns a logger name to the logger in the <p_parent_logger_name>.<_name> format. p_key_idx Indicates the column number used as a key for the dictionary starting at 0. p_src_field_def Definition of the source file presented in a list. [[FieldName1,ColStart1,ColEnd1], [FieldName2,ColStart2,ColEnd2], .... [FieldNameN,ColStartN,ColEndN]] where: FieldName = Name of the field in the header ColStart = Start column ColEnd = End column of the field p_src = None List or a file path. p_has_header = True Indicate if the source has a header as the first record. p_verbose = False Print feed back to the screen Returns ------- None Examples -------- See example in do_example ''' self.logger_name = '{}.{}'.format( p_parent_logger_name, _name ) self.logger = logging.getLogger( self.logger_name ) self.logger.info( 'Start' ) self.success = False self.exp_data = None self.exp_field_def = None self.exp_header = None self.exp_pth = None self.has_header = p_has_header self.key_idx = p_key_idx self.member_cntr = 0 self.parsed_data = {} self.src_data = None self.src_data = None self.src_field_def = p_src_field_def self.src_pth = None self.verbose = p_verbose self.read_txt(p_src) def assign_src(self, p_src): '''Assign src_data to the source data. It accept either a list or a path to a file. If the source is a list, the src_path is set "list" or alternatively the path to the file is assighend to src_pth. Parameters ---------- p_src Source data for parsing Returns ------- src_data A list or Path to the source data Examples -------- See example in do_example ''' self.success = True if isinstance(p_src, list): self.src_data = p_src self.src_pth = list elif p_src: if isinstance(p_src, Path): self.src_pth = p_src with open( self.src_pth,'r', encoding = 'cp1252' ) as src_file: self.src_data = src_file.readlines() else: msg = beetools.msg_error('{} does not exist.\nSystem terminated.'.format(self.src_pth)) print(msg) self.success = False sys.exit() return self.src_data def read_txt( self, p_src = None, p_verbose = False ): '''Process the fixed width column text file into a dictionary Parameters ---------- p_src = None A list or Path to the source data p_verbose = False Print feed back to the screen Returns ------- Examples -------- See example in do_example ''' self.assign_src(p_src) if self.src_data: if self.has_header: t_src_data = self.src_data[1:] else: t_src_data = self.src_data recs_in_file = len( self.src_data ) - 1 if isinstance(self.src_pth, Path): msg = beetools.msg_display( 'Process {} ({})'.format( self.src_pth, recs_in_file )) else: msg = beetools.msg_display( 'Process data ({})'.format(recs_in_file )) fx_bar = displayfx.DisplayFx( _name, recs_in_file, p_msg = msg) for fx_cntr, rec in enumerate(t_src_data): key_id = str(rec[self.src_field_def[self.key_idx][ 1 ] : self.src_field_def[self.key_idx][ 2 ]].strip()) self.parsed_data[key_id] = {} for field_name, field_start, field_end in self.src_field_def: self.parsed_data[key_id][field_name] = rec[ field_start : field_end ].strip() self.member_cntr += 1 if p_verbose: fx_bar.update( fx_cntr ) if len( self.parsed_data ) >= 0: self.success = True else: self.success = False return self.parsed_data def write_txt(self, p_exp_pth, p_exp_field_def, p_exp_header = True, p_verbose = False): '''Export fixed width column text file Parameters ---------- p_exp_pth Path to export the file to p_exp_field_def Definition of the export file presented in a list. [[FieldName1,ColStart1,ColEnd1,StaticText], [FieldName2,ColStart2,ColEnd2,StaticText], .... [FieldNameN,ColStartN,ColEndN,StaticText]] where: FieldName = Name of the field in the header ColStart = Start column ColEnd = End column of the field If FieldName is not an existing field, this text will be inserted in this column (enrichment) p_exp_header = True Write the header to the TXT file. p_verbose = False Print feed back to the screen Returns ------- str Exported data in string format. Examples -------- See example in do_example ''' self.exp_pth = p_exp_pth self.exp_field_def = p_exp_field_def self.exp_header = p_exp_header self.exp_data = '' if p_exp_header: for field in p_exp_field_def: field_len = field[2] - field[1] self.exp_data += '{: <{field_len}}'.format(field[0][:field_len], field_len = field_len) self.exp_data += '\n' msg = beetools.msg_display( 'Process {} ({})'.format( self.exp_pth, self.member_cntr)) fx_bar = displayfx.DisplayFx( _name, self.member_cntr, p_msg = msg) for fx_cntr, rec in enumerate(self.parsed_data): exp_rec = '' for field in p_exp_field_def: field_len = field[2] - field[1] if field[0] in self.parsed_data[rec]: field_contents = self.parsed_data[rec][field[0]] else: field_contents = field[3] exp_rec += '{: <{field_len}}'.format(field_contents, field_len = field_len) self.exp_data += '{}\n'.format(exp_rec) if p_verbose: fx_bar.update( fx_cntr ) self.exp_pth.write_text(self.exp_data) return self.exp_data def do_example( p_app_path = '', p_cls = True ): '''Eample on the usage of the class. ''' def basic_example(): '''Basic and mandatory scenario tests for certification of the class ''' success = True dst_field_def = [ ['OrgMemberId', 0 , 15], ['SurnameName', 15, 50], ['Gender' , 53, 54], ['BirthYear' , 59, 63] ] src_data = [ '''OrgMemberId SurnameName FedgStd Birt''', '''11000120 Makoto,Rodwell ZIMM2378 1987''', '''14300133 Klaasen,Calvin Jong RSAM2226 1987''', '''14300427 Van der Nat,Nicholas RSAM2362 1979''', '''14300702 Mabusela,Johannes Manyedi RSAM2250 1984''', '''14300753 Masango,Spencer ZIMM2232 1982''', '''14304600 Barrish,Daniel RSAM2252 2000''', '''14700077 Amonatov,Farrukh TJKM2632 1978''', '''5001668 Sriram,Jha INDM2396 1976''', '''5021103 Grover,Sahaj INDM2473 1995''', '''8700249 Jere,Daniel ZAMM2384 1986''', ] src_field_def = [ ['OrgMemberId', 0 , 15], ['SurnameName', 15, 50], ['Fed' , 50, 53], ['Gender' , 53, 54], ['Std' , 54, 59], ['BirthYear' , 59, 63] ] key_idx = 0 txt_file = TxtWrpr( _name, key_idx, src_field_def, p_has_header = False, p_verbose = True ) success = txt_file.read_txt(src_data) dst_fldr = Path(tempfile.TemporaryDirectory().name) success = txt_file.write_txt(dst_fldr, dst_field_def) return success success = True b_tls = beetools.Archiver( _name, _VERSION, __doc__[0], p_app_path = p_app_path, p_cls = p_cls ) logger = logging.getLogger( _name ) logger.setLevel( beetools.DEF_LOG_LEV ) file_handle = logging.FileHandler( beetools.LOG_FILE_NAME, mode = 'w' ) file_handle.setLevel( beetools.DEF_LOG_LEV_FILE ) console_handle = logging.StreamHandler() console_handle.setLevel( beetools.DEF_LOG_LEV_CON ) file_format = logging.Formatter( beetools.LOG_FILE_FORMAT, datefmt = beetools.LOG_DATE_FORMAT ) console_format = logging.Formatter( beetools.LOG_CONSOLE_FORMAT ) file_handle.setFormatter( file_format ) console_handle.setFormatter( console_format ) logger.addHandler( file_handle ) logger.addHandler( console_handle ) b_tls.print_header( p_cls = p_cls ) success = basic_example() beetools.result_rep( success, 'Done' ) b_tls.print_footer() if success: return b_tls.archive_path return False # end do_tests if __name__ == '__main__': do_example(p_app_path=_path) # end __main__
the-stack_106_26399
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Optimize chains of single-qubit u1, u2, u3 gates by combining them into a single gate.""" from itertools import groupby import numpy as np from qiskit.transpiler.exceptions import TranspilerError from qiskit.circuit.library.standard_gates.p import PhaseGate from qiskit.circuit.library.standard_gates.u import UGate from qiskit.circuit.library.standard_gates.u1 import U1Gate from qiskit.circuit.library.standard_gates.u2 import U2Gate from qiskit.circuit.library.standard_gates.u3 import U3Gate from qiskit.circuit.gate import Gate from qiskit.transpiler.basepasses import TransformationPass from qiskit.quantum_info.synthesis import Quaternion _CHOP_THRESHOLD = 1e-15 class Optimize1qGates(TransformationPass): """Optimize chains of single-qubit u1, u2, u3 gates by combining them into a single gate.""" def __init__(self, basis=None, eps=1e-15): """Optimize1qGates initializer. Args: basis (list[str]): Basis gates to consider, e.g. `['u3', 'cx']`. For the effects of this pass, the basis is the set intersection between the `basis` parameter and the set `{'u1','u2','u3', 'u', 'p'}`. eps (float): EPS to check against """ super().__init__() self.basis = basis if basis else ["u1", "u2", "u3"] self.eps = eps def run(self, dag): """Run the Optimize1qGates pass on `dag`. Args: dag (DAGCircuit): the DAG to be optimized. Returns: DAGCircuit: the optimized DAG. Raises: TranspilerError: if YZY and ZYZ angles do not give same rotation matrix. """ use_u = 'u' in self.basis use_p = 'p' in self.basis runs = dag.collect_runs(["u1", "u2", "u3", "u", 'p']) runs = _split_runs_on_parameters(runs) for run in runs: if use_p: right_name = "p" else: right_name = "u1" right_parameters = (0, 0, 0) # (theta, phi, lambda) right_global_phase = 0 for current_node in run: left_name = current_node.name if (current_node.condition is not None or len(current_node.qargs) != 1 or left_name not in ["p", "u1", "u2", "u3", 'u', "id"]): raise TranspilerError("internal error") if left_name in ("u1", "p"): left_parameters = (0, 0, current_node.op.params[0]) elif left_name == "u2": left_parameters = (np.pi / 2, current_node.op.params[0], current_node.op.params[1]) elif left_name in ("u3", 'u'): left_parameters = tuple(current_node.op.params) else: if use_p: left_name = "p" else: left_name = "u1" # replace id with u1 left_parameters = (0, 0, 0) if (current_node.op.definition is not None and current_node.op.definition.global_phase): right_global_phase += current_node.op.definition.global_phase # If there are any sympy objects coming from the gate convert # to numpy. left_parameters = tuple(float(x) for x in left_parameters) # Compose gates name_tuple = (left_name, right_name) if name_tuple in (("u1", "u1"), ("p", "p")): # u1(lambda1) * u1(lambda2) = u1(lambda1 + lambda2) right_parameters = (0, 0, right_parameters[2] + left_parameters[2]) elif name_tuple in (("u1", "u2"), ("p", "u2")): # u1(lambda1) * u2(phi2, lambda2) = u2(phi2 + lambda1, lambda2) right_parameters = (np.pi / 2, right_parameters[1] + left_parameters[2], right_parameters[2]) elif name_tuple in (("u2", "u1"), ("u2", "p")): # u2(phi1, lambda1) * u1(lambda2) = u2(phi1, lambda1 + lambda2) right_name = "u2" right_parameters = (np.pi / 2, left_parameters[1], right_parameters[2] + left_parameters[2]) elif name_tuple in (("u1", "u3"), ("u1", "u"), ("p", "u3"), ("p", "u")): # u1(lambda1) * u3(theta2, phi2, lambda2) = # u3(theta2, phi2 + lambda1, lambda2) right_parameters = (right_parameters[0], right_parameters[1] + left_parameters[2], right_parameters[2]) elif name_tuple in (("u3", "u1"), ('u', 'u1'), ("u3", "p"), ("u", "p")): # u3(theta1, phi1, lambda1) * u1(lambda2) = # u3(theta1, phi1, lambda1 + lambda2) if use_u: right_name = 'u' else: right_name = "u3" right_parameters = (left_parameters[0], left_parameters[1], right_parameters[2] + left_parameters[2]) elif name_tuple == ("u2", "u2"): # Using Ry(pi/2).Rz(2*lambda).Ry(pi/2) = # Rz(pi/2).Ry(pi-2*lambda).Rz(pi/2), # u2(phi1, lambda1) * u2(phi2, lambda2) = # u3(pi - lambda1 - phi2, phi1 + pi/2, lambda2 + pi/2) if use_u: right_name = 'u' else: right_name = "u3" right_parameters = (np.pi - left_parameters[2] - right_parameters[1], left_parameters[1] + np.pi / 2, right_parameters[2] + np.pi / 2) elif name_tuple[1] == "nop": right_name = left_name right_parameters = left_parameters else: # For composing u3's or u2's with u3's, use # u2(phi, lambda) = u3(pi/2, phi, lambda) # together with the qiskit.mapper.compose_u3 method. if use_u: right_name = 'u' else: right_name = "u3" # Evaluate the symbolic expressions for efficiency right_parameters = Optimize1qGates.compose_u3(left_parameters[0], left_parameters[1], left_parameters[2], right_parameters[0], right_parameters[1], right_parameters[2]) # Why evalf()? This program: # OPENQASM 2.0; # include "qelib1.inc"; # qreg q[2]; # creg c[2]; # u3(0.518016983430947*pi,1.37051598592907*pi,1.36816383603222*pi) q[0]; # u3(1.69867232277986*pi,0.371448347747471*pi,0.461117217930936*pi) q[0]; # u3(0.294319836336836*pi,0.450325871124225*pi,1.46804720442555*pi) q[0]; # measure q -> c; # took >630 seconds (did not complete) to optimize without # calling evalf() at all, 19 seconds to optimize calling # evalf() AFTER compose_u3, and 1 second to optimize # calling evalf() BEFORE compose_u3. # 1. Here down, when we simplify, we add f(theta) to lambda to # correct the global phase when f(theta) is 2*pi. This isn't # necessary but the other steps preserve the global phase, so # we continue in that manner. # 2. The final step will remove Z rotations by 2*pi. # 3. Note that is_zero is true only if the expression is exactly # zero. If the input expressions have already been evaluated # then these final simplifications will not occur. # TODO After we refactor, we should have separate passes for # exact and approximate rewriting. # Y rotation is 0 mod 2*pi, so the gate is a u1 if abs(np.mod(right_parameters[0], (2 * np.pi))) < self.eps and right_name != "u1" \ and right_name != "p": if use_p: right_name = "p" else: right_name = "u1" right_parameters = (0, 0, right_parameters[1] + right_parameters[2] + right_parameters[0]) # Y rotation is pi/2 or -pi/2 mod 2*pi, so the gate is a u2 if right_name in ("u3", 'u'): # theta = pi/2 + 2*k*pi right_angle = right_parameters[0] - np.pi / 2 if abs(right_angle) < self.eps: right_angle = 0 if abs(np.mod((right_angle), 2 * np.pi)) < self.eps: right_name = "u2" right_parameters = (np.pi / 2, right_parameters[1], right_parameters[2] + (right_parameters[0] - np.pi / 2)) # theta = -pi/2 + 2*k*pi right_angle = right_parameters[0] + np.pi / 2 if abs(right_angle) < self.eps: right_angle = 0 if abs(np.mod(right_angle, 2 * np.pi)) < self.eps: right_name = "u2" right_parameters = (np.pi / 2, right_parameters[1] + np.pi, right_parameters[2] - np.pi + (right_parameters[0] + np.pi / 2)) # u1 and lambda is 0 mod 2*pi so gate is nop (up to a global phase) if right_name in ("u1", "p") and abs( np.mod(right_parameters[2], 2 * np.pi)) < self.eps: right_name = "nop" if right_name == "u2" and "u2" not in self.basis: if use_u: right_name = 'u' else: right_name = "u3" if right_name in ("u1", "p") and right_name not in self.basis: if use_u: right_name = 'u' else: right_name = "u3" new_op = Gate(name="", num_qubits=1, params=[]) if right_name == "u1": new_op = U1Gate(right_parameters[2]) if right_name == "p": new_op = PhaseGate(right_parameters[2]) if right_name == "u2": new_op = U2Gate(right_parameters[1], right_parameters[2]) if right_name == "u": if "u" in self.basis: new_op = UGate(*right_parameters) if right_name == "u3": if "u3" in self.basis: new_op = U3Gate(*right_parameters) else: raise TranspilerError('It was not possible to use the basis %s' % self.basis) dag.global_phase += right_global_phase if right_name != 'nop': dag.substitute_node(run[0], new_op, inplace=True) # Delete the other nodes in the run for current_node in run[1:]: dag.remove_op_node(current_node) if right_name == "nop": dag.remove_op_node(run[0]) return dag @staticmethod def compose_u3(theta1, phi1, lambda1, theta2, phi2, lambda2): """Return a triple theta, phi, lambda for the product. u3(theta, phi, lambda) = u3(theta1, phi1, lambda1).u3(theta2, phi2, lambda2) = Rz(phi1).Ry(theta1).Rz(lambda1+phi2).Ry(theta2).Rz(lambda2) = Rz(phi1).Rz(phi').Ry(theta').Rz(lambda').Rz(lambda2) = u3(theta', phi1 + phi', lambda2 + lambda') Return theta, phi, lambda. """ # Careful with the factor of two in yzy_to_zyz thetap, phip, lambdap = Optimize1qGates.yzy_to_zyz((lambda1 + phi2), theta1, theta2) (theta, phi, lamb) = (thetap, phi1 + phip, lambda2 + lambdap) return (theta, phi, lamb) @staticmethod def yzy_to_zyz(xi, theta1, theta2, eps=1e-9): # pylint: disable=invalid-name """Express a Y.Z.Y single qubit gate as a Z.Y.Z gate. Solve the equation .. math:: Ry(theta1).Rz(xi).Ry(theta2) = Rz(phi).Ry(theta).Rz(lambda) for theta, phi, and lambda. Return a solution theta, phi, and lambda. """ quaternion_yzy = Quaternion.from_euler([theta1, xi, theta2], 'yzy') euler = quaternion_yzy.to_zyz() quaternion_zyz = Quaternion.from_euler(euler, 'zyz') # output order different than rotation order out_angles = (euler[1], euler[0], euler[2]) abs_inner = abs(quaternion_zyz.data.dot(quaternion_yzy.data)) if not np.allclose(abs_inner, 1, eps): raise TranspilerError('YZY and ZYZ angles do not give same rotation matrix.') out_angles = tuple(0 if np.abs(angle) < _CHOP_THRESHOLD else angle for angle in out_angles) return out_angles def _split_runs_on_parameters(runs): """Finds runs containing parameterized gates and splits them into sequential runs excluding the parameterized gates. """ out = [] for run in runs: groups = groupby(run, lambda x: x.op.is_parameterized()) for group_is_parameterized, gates in groups: if not group_is_parameterized: out.append(list(gates)) return out
the-stack_106_26401
# -*- coding: utf-8 -*- import json import typing from apispec import APISpec import pytest import serpyco from serpyco import nested_field from serpyco import string_field from apispec_serpyco import SerpycoPlugin from apispec_serpyco.utils import schema_name_resolver import dataclasses from dataclasses import dataclass from tests.utils import get_definitions from tests.utils import get_parameters from tests.utils import get_paths from tests.utils import get_responses from tests.utils import ref_path @dataclass class PetSchema(object): id: int = string_field(description="Pet id") name: str = string_field(description="Pet name") password: str = string_field(description="Pet auth password") @dataclass class SampleSchema(object): count: int runs: typing.List["RunSchema"] = nested_field(exclude=["sample"]) @dataclass class RunSchema(object): sample: typing.List[SampleSchema] = nested_field(exclude=["runs"]) @dataclass class AnalysisSchema(object): sample: SampleSchema @dataclass class AnalysisWithListSchema(object): samples: typing.List[SampleSchema] @dataclass class SelfReferencingSchema(object): id: int single: "SelfReferencingSchema" many: typing.List["SelfReferencingSchema"] @dataclass class DefaultValuesSchema(object): number_auto_default: int = dataclasses.field(default=12) string_callable_default: str = dataclasses.field( default_factory=lambda: "Callable value" ) numbers: typing.List[int] = dataclasses.field(default_factory=lambda: []) class TestDefinitionHelper: @pytest.mark.parametrize("schema", [PetSchema]) def test_can_use_schema_as_definition(self, spec, schema): spec.components.schema("Pet", schema=schema) definitions = get_definitions(spec) props = definitions["Pet"]["properties"] assert props["id"]["type"] == "integer" assert props["name"]["type"] == "string" def test_schema_helper_without_schema(self, spec): spec.components.schema("Pet", {"properties": {"key": {"type": "integer"}}}) definitions = get_definitions(spec) assert definitions["Pet"]["properties"] == {"key": {"type": "integer"}} @pytest.mark.parametrize("schema", [AnalysisSchema]) def test_resolve_schema_dict_auto_reference(self, schema): def resolver(schema): return schema.__name__ spec = APISpec( title="Test auto-reference", version="0.1", openapi_version="2.0", plugins=(SerpycoPlugin(schema_name_resolver=schema_name_resolver),), ) assert {} == get_definitions(spec) spec.components.schema("analysis", schema=schema) spec.path( "/test", operations={ "get": { "responses": {"200": {"schema": {"$ref": "#/definitions/analysis"}}} } }, ) definitions = get_definitions(spec) assert 3 == len(definitions) assert "analysis" in definitions assert "SampleSchema" in definitions assert "RunSchema_exclude_sample" in definitions @pytest.mark.parametrize("schema", [AnalysisWithListSchema]) def test_resolve_schema_dict_auto_reference_in_list(self, schema): def resolver(schema): return schema.__name__ spec = APISpec( title="Test auto-reference", version="0.1", openapi_version="2.0", plugins=(SerpycoPlugin(),), ) assert {} == get_definitions(spec) spec.components.schema("analysis", schema=schema) spec.path( "/test", operations={ "get": { "responses": {"200": {"schema": {"$ref": "#/definitions/analysis"}}} } }, ) definitions = get_definitions(spec) assert 3 == len(definitions) assert "analysis" in definitions assert "tests.test_ext_serpyco.SampleSchema" in definitions assert "tests.test_ext_serpyco.RunSchema_exclude_sample" in definitions class TestComponentParameterHelper(object): @pytest.mark.parametrize("schema", [PetSchema]) def test_can_use_schema_in_parameter(self, spec, schema): if spec.openapi_version.major < 3: kwargs = {"schema": schema} else: kwargs = {"content": {"application/json": {"schema": schema}}} spec.components.parameter("Pet", "body", **kwargs) parameter = get_parameters(spec)["Pet"] assert parameter["in"] == "body" if spec.openapi_version.major < 3: schema = parameter["schema"]["properties"] else: schema = parameter["content"]["application/json"]["schema"]["properties"] assert schema["name"]["type"] == "string" assert schema["password"]["type"] == "string" class TestComponentResponseHelper: @pytest.mark.parametrize("schema", [PetSchema]) def test_can_use_schema_in_response(self, spec, schema): if spec.openapi_version.major < 3: kwargs = {"schema": schema} else: kwargs = {"content": {"application/json": {"schema": schema}}} spec.components.response("GetPetOk", **kwargs) response = get_responses(spec)["GetPetOk"] if spec.openapi_version.major < 3: schema = response["schema"]["properties"] else: schema = response["content"]["application/json"]["schema"]["properties"] assert schema["id"]["type"] == "integer" assert schema["name"]["type"] == "string" class TestCustomField: def test_can_use_custom_field_decorator(self, spec_fixture): @dataclass class CustomPetASchema(PetSchema): email: str = serpyco.string_field( format_=serpyco.StringFormat.EMAIL, pattern="^[A-Z]", min_length=3, max_length=24, ) @dataclass class CustomPetBSchema(PetSchema): age: int = serpyco.number_field(minimum=1, maximum=120) @dataclass class WithStringField(object): """String field test class""" foo: str = serpyco.string_field( format_=serpyco.StringFormat.EMAIL, pattern="^[A-Z]", min_length=3, max_length=24, ) serializer = serpyco.Serializer(WithStringField) serializer.json_schema() spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.components.schema("CustomPetA", schema=CustomPetASchema) spec_fixture.spec.components.schema("CustomPetB", schema=CustomPetBSchema) props_0 = get_definitions(spec_fixture.spec)["Pet"]["properties"] props_a = get_definitions(spec_fixture.spec)["CustomPetA"]["properties"] props_b = get_definitions(spec_fixture.spec)["CustomPetB"]["properties"] assert props_0["name"]["type"] == "string" assert "format" not in props_0["name"] assert props_a["email"]["type"] == "string" assert json.dumps(props_a["email"]["format"]) == '"email"' assert props_a["email"]["pattern"] == "^[A-Z]" assert props_a["email"]["maxLength"] == 24 assert props_a["email"]["minLength"] == 3 assert props_b["age"]["type"] == "integer" assert props_b["age"]["minimum"] == 1 assert props_b["age"]["maximum"] == 120 class TestOperationHelper: @staticmethod def ref_path(spec): if spec.openapi_version.version[0] < 3: return "#/definitions/" return "#/components/schemas/" @pytest.mark.parametrize("pet_schema", (PetSchema,)) @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_v2(self, spec_fixture, pet_schema): spec_fixture.spec.path( path="/pet", operations={ "get": { "responses": { "200": { "schema": pet_schema, "description": "successful operation", } } } }, ) get = get_paths(spec_fixture.spec)["/pet"]["get"] assert get["responses"]["200"][ "schema" ] == spec_fixture.openapi.schema2jsonschema(PetSchema) assert get["responses"]["200"]["description"] == "successful operation" @pytest.mark.parametrize("pet_schema", (PetSchema,)) @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_v3(self, spec_fixture, pet_schema): spec_fixture.spec.path( path="/pet", operations={ "get": { "responses": { "200": { "content": {"application/json": {"schema": pet_schema}}, "description": "successful operation", } } } }, ) get = get_paths(spec_fixture.spec)["/pet"]["get"] resolved_schema = get["responses"]["200"]["content"]["application/json"][ "schema" ] assert resolved_schema == spec_fixture.openapi.schema2jsonschema(PetSchema) assert get["responses"]["200"]["description"] == "successful operation" @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_expand_parameters_v2(self, spec_fixture): spec_fixture.spec.path( path="/pet", operations={ "get": {"parameters": [{"in": "query", "schema": PetSchema}]}, "post": { "parameters": [ { "in": "body", "description": "a pet schema", "required": True, "name": "pet", "schema": PetSchema, } ] }, }, ) p = get_paths(spec_fixture.spec)["/pet"] get = p["get"] assert get["parameters"] == spec_fixture.openapi.schema2parameters( PetSchema, default_in="query" ) post = p["post"] assert post["parameters"] == spec_fixture.openapi.schema2parameters( PetSchema, default_in="body", required=True, name="pet", description="a pet schema", ) @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_expand_parameters_v3(self, spec_fixture): spec_fixture.spec.path( path="/pet", operations={ "get": {"parameters": [{"in": "query", "schema": PetSchema}]}, "post": { "requestBody": { "description": "a pet schema", "required": True, "content": {"application/json": {"schema": PetSchema}}, } }, }, ) p = get_paths(spec_fixture.spec)["/pet"] get = p["get"] assert get["parameters"] == spec_fixture.openapi.schema2parameters( PetSchema, default_in="query" ) post = p["post"] post_schema = spec_fixture.openapi.resolve_schema_dict(PetSchema) assert ( post["requestBody"]["content"]["application/json"]["schema"] == post_schema ) assert post["requestBody"]["description"] == "a pet schema" assert post["requestBody"]["required"] @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_uses_ref_if_available_v2(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={"get": {"responses": {"200": {"schema": PetSchema}}}}, ) get = get_paths(spec_fixture.spec)["/pet"]["get"] assert ( get["responses"]["200"]["schema"]["$ref"] == self.ref_path(spec_fixture.spec) + "Pet" ) @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_uses_ref_if_available_v3(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={ "get": { "responses": { "200": {"content": {"application/json": {"schema": PetSchema}}} } } }, ) get = get_paths(spec_fixture.spec)["/pet"]["get"] assert ( get["responses"]["200"]["content"]["application/json"]["schema"]["$ref"] == self.ref_path(spec_fixture.spec) + "Pet" ) @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_uses_ref_in_parameters_and_request_body_if_available_v2( self, spec_fixture ): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={ "get": {"parameters": [{"in": "query", "schema": PetSchema}]}, "post": {"parameters": [{"in": "body", "schema": PetSchema}]}, }, ) p = get_paths(spec_fixture.spec)["/pet"] assert "schema" not in p["get"]["parameters"][0] post = p["post"] assert len(post["parameters"]) == 1 assert ( post["parameters"][0]["schema"]["$ref"] == self.ref_path(spec_fixture.spec) + "Pet" ) @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_uses_ref_in_parameters_and_request_body_if_available_v3( self, spec_fixture ): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={ "get": {"parameters": [{"in": "query", "schema": PetSchema}]}, "post": { "requestBody": { "content": {"application/json": {"schema": PetSchema}} } }, }, ) p = get_paths(spec_fixture.spec)["/pet"] assert "schema" in p["get"]["parameters"][0] post = p["post"] schema_ref = post["requestBody"]["content"]["application/json"]["schema"] assert schema_ref == {"$ref": self.ref_path(spec_fixture.spec) + "Pet"} @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_array_uses_ref_if_available_v2(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={ "get": { "parameters": [ { "in": "body", "name": "body", "schema": {"type": "array", "items": PetSchema}, } ], "responses": { "200": {"schema": {"type": "array", "items": PetSchema}} }, } }, ) get = get_paths(spec_fixture.spec)["/pet"]["get"] assert len(get["parameters"]) == 1 resolved_schema = { "type": "array", "items": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, } assert get["parameters"][0]["schema"] == resolved_schema assert get["responses"]["200"]["schema"] == resolved_schema @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_array_uses_ref_if_available_v3(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/pet", operations={ "get": { "parameters": [ { "in": "body", "name": " body", "content": { "application/json": { "schema": {"type": "array", "items": PetSchema} } }, } ], "responses": { "200": { "content": { "application/json": { "schema": {"type": "array", "items": PetSchema} } } } }, } }, ) p = get_paths(spec_fixture.spec)["/pet"] assert "get" in p op = p["get"] resolved_schema = { "type": "array", "items": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, } request_schema = op["parameters"][0]["content"]["application/json"]["schema"] assert request_schema == resolved_schema response_schema = op["responses"]["200"]["content"]["application/json"][ "schema" ] assert response_schema == resolved_schema @pytest.mark.parametrize("spec_fixture", ("2.0",), indirect=True) def test_schema_partially_v2(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/parents", operations={ "get": { "responses": { "200": { "schema": { "type": "object", "properties": { "mother": PetSchema, "father": PetSchema, }, } } } } }, ) get = get_paths(spec_fixture.spec)["/parents"]["get"] assert get["responses"]["200"]["schema"] == { "type": "object", "properties": { "mother": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, "father": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, }, } @pytest.mark.parametrize("spec_fixture", ("3.0.0",), indirect=True) def test_schema_partially_v3(self, spec_fixture): spec_fixture.spec.components.schema("Pet", schema=PetSchema) spec_fixture.spec.path( path="/parents", operations={ "get": { "responses": { "200": { "content": { "application/json": { "schema": { "type": "object", "properties": { "mother": PetSchema, "father": PetSchema, }, } } } } } } }, ) get = get_paths(spec_fixture.spec)["/parents"]["get"] assert get["responses"]["200"]["content"]["application/json"]["schema"] == { "type": "object", "properties": { "mother": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, "father": {"$ref": self.ref_path(spec_fixture.spec) + "Pet"}, }, } class TestCircularReference: def test_circular_referencing_schemas(self, spec): spec.components.schema("Analysis", schema=AnalysisSchema) spec.components.schema("Sample", schema=SampleSchema) spec.components.schema("Run", schema=RunSchema) definitions = get_definitions(spec) ref = definitions["Analysis"]["properties"]["sample"]["$ref"] assert ref == ref_path(spec) + "tests.test_ext_serpyco.SampleSchema" class TestSelfReference: def test_self_referencing_field_single(self, spec): spec.components.schema("SelfReference", schema=SelfReferencingSchema) definitions = get_definitions(spec) ref = definitions["SelfReference"]["properties"]["single"]["$ref"] assert ref == ref_path(spec) + "SelfReference" def test_self_referencing_field_many(self, spec): spec.components.schema("SelfReference", schema=SelfReferencingSchema) definitions = get_definitions(spec) result = definitions["SelfReference"]["properties"]["many"] assert result == { "type": "array", "items": {"$ref": ref_path(spec) + "SelfReference"}, } class TestSchemaWithDefaultValues: def test_schema_with_default_values(self, spec): spec.components.schema("DefaultValuesSchema", schema=DefaultValuesSchema) definitions = get_definitions(spec) props = definitions["DefaultValuesSchema"]["properties"] assert props["number_auto_default"]["default"] == 12 # FIXME BS 2019-10-21: restore these 2 lines when # https://gitlab.com/sgrignard/serpyco/issues/32 resolved # assert props["string_callable_default"]["default"] == "Callable value" # assert props["numbers"]["default"] == [] class TestSchemaWithOptional: def test_schema_with_optional_string(self, spec): @dataclasses.dataclass class MySchema: id: int name: typing.Optional[str] = None spec.components.schema("MySchema", schema=MySchema) definitions = get_definitions(spec) props = definitions["MySchema"]["properties"] assert "required" in definitions["MySchema"] assert ["id"] == definitions["MySchema"]["required"] assert {"id": {"type": "integer"}, "name": {"type": "string"}} == props def test_schema_with_optional_string_in_related_schema(self, spec): @dataclasses.dataclass class MyChildSchema: id: int name: typing.Optional[str] = None @dataclasses.dataclass class MyParentSchema: id: int child: MyChildSchema spec.components.schema("MyParentSchema", schema=MyParentSchema) definitions = get_definitions(spec) props = definitions["tests.test_ext_serpyco.MyChildSchema"]["properties"] definition = definitions["tests.test_ext_serpyco.MyChildSchema"] assert "required" in definition assert ["id"] == definition["required"] assert {"id": {"type": "integer"}, "name": {"type": "string"}} == props
the-stack_106_26404
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "test-1.botics.co" site_params = { "name": "test", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
the-stack_106_26405
from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, Text, \ Number, Operator, Generic, Whitespace, Punctuation, Other, Literal class Monokai_darkStyle(Style): """ This style mimics the Monokai color scheme. """ background_color = "#000000" highlight_color = "#49483e" styles = { # No corresponding class for the following: Text: "#f8f8f2", # class: '' Whitespace: "", # class: 'w' Error: "#960050 bg:#1e0010", # class: 'err' Other: "", # class 'x' Comment: "#75715e", # class: 'c' Comment.Multiline: "", # class: 'cm' Comment.Preproc: "", # class: 'cp' Comment.Single: "", # class: 'c1' Comment.Special: "", # class: 'cs' Keyword: "#66d9ef", # class: 'k' Keyword.Constant: "", # class: 'kc' Keyword.Declaration: "", # class: 'kd' Keyword.Namespace: "#f92672", # class: 'kn' Keyword.Pseudo: "", # class: 'kp' Keyword.Reserved: "", # class: 'kr' Keyword.Type: "", # class: 'kt' Operator: "#f92672", # class: 'o' Operator.Word: "", # class: 'ow' - like keywords Punctuation: "#f8f8f2", # class: 'p' Name: "#f8f8f2", # class: 'n' Name.Attribute: "#a6e22e", # class: 'na' - to be revised Name.Builtin: "", # class: 'nb' Name.Builtin.Pseudo: "", # class: 'bp' Name.Class: "#a6e22e", # class: 'nc' - to be revised Name.Constant: "#66d9ef", # class: 'no' - to be revised Name.Decorator: "#a6e22e", # class: 'nd' - to be revised Name.Entity: "", # class: 'ni' Name.Exception: "#a6e22e", # class: 'ne' Name.Function: "#a6e22e", # class: 'nf' Name.Property: "", # class: 'py' Name.Label: "", # class: 'nl' Name.Namespace: "", # class: 'nn' - to be revised Name.Other: "#a6e22e", # class: 'nx' Name.Tag: "#f92672", # class: 'nt' - like a keyword Name.Variable: "", # class: 'nv' - to be revised Name.Variable.Class: "", # class: 'vc' - to be revised Name.Variable.Global: "", # class: 'vg' - to be revised Name.Variable.Instance: "", # class: 'vi' - to be revised Number: "#ae81ff", # class: 'm' Number.Float: "", # class: 'mf' Number.Hex: "", # class: 'mh' Number.Integer: "", # class: 'mi' Number.Integer.Long: "", # class: 'il' Number.Oct: "", # class: 'mo' Literal: "#ae81ff", # class: 'l' Literal.Date: "#e6db74", # class: 'ld' String: "#e6db74", # class: 's' String.Backtick: "", # class: 'sb' String.Char: "", # class: 'sc' String.Doc: "", # class: 'sd' - like a comment String.Double: "", # class: 's2' String.Escape: "#ae81ff", # class: 'se' String.Heredoc: "", # class: 'sh' String.Interpol: "", # class: 'si' String.Other: "", # class: 'sx' String.Regex: "", # class: 'sr' String.Single: "", # class: 's1' String.Symbol: "", # class: 'ss' Generic: "", # class: 'g' Generic.Deleted: "#f92672", # class: 'gd', Generic.Emph: "italic", # class: 'ge' Generic.Error: "", # class: 'gr' Generic.Heading: "", # class: 'gh' Generic.Inserted: "#a6e22e", # class: 'gi' Generic.Output: "", # class: 'go' Generic.Prompt: "", # class: 'gp' Generic.Strong: "bold", # class: 'gs' Generic.Subheading: "#75715e", # class: 'gu' Generic.Traceback: "", # class: 'gt' }
the-stack_106_26406
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Union, Any import warnings import numpy as np import scipy.stats from ..common.typetools import ArrayLike # Nevergrad, in the most fundamental layer, uses continuous variables only. # Discrete variables are handled in one of the following ways: # - by a softmax transformation, a k-valued categorical variable is converted into k continuous variables. # - by a discretization - as we often use Gaussian random values, we discretize according to quantiles of the normal # distribution. def threshold_discretization(x: ArrayLike, arity: int = 2) -> List[int]: """Discretize by casting values from 0 to arity -1, assuming that x values follow a normal distribution. Parameters ---------- x: list/array values to discretize arity: int the number of possible integer values (arity n will lead to values from 0 to n - 1) Note ---- - nans are processed as negative infs (yields 0) """ x = np.array(x, copy=True) if np.any(np.isnan(x)): warnings.warn("Encountered NaN values for discretization") x[np.isnan(x)] = -np.inf if arity == 2: # special case, to have 0 yield 0 return (np.array(x) > 0).astype(int).tolist() # type: ignore else: return np.clip(arity * scipy.stats.norm.cdf(x), 0, arity - 1).astype(int).tolist() # type: ignore # The function below is the opposite of the function above. def inverse_threshold_discretization(indexes: List[int], arity: int = 2) -> np.ndarray: indexes_arr = np.array(indexes, copy=True) pdf_bin_size = 1 / arity # We take the center of each bin (in the pdf space) return scipy.stats.norm.ppf(indexes_arr * pdf_bin_size + (pdf_bin_size / 2)) # type: ignore # The discretization is, by nature, not one to one. # In the function below, we randomly draw one of the possible inverse values - this is therefore noisy. def noisy_inverse_threshold_discretization(indexes: List[int], arity: int = 2, gen: Any = None) -> np.ndarray: indexes_arr = np.array(indexes, copy=True) pdf_bin_size = 1 / arity # We take a random point in the bin. return scipy.stats.norm.ppf(indexes_arr * pdf_bin_size + gen.rand() * pdf_bin_size) # type: ignore def softmax_discretization(x: ArrayLike, arity: int = 2, random: Union[bool, np.random.RandomState] = True) -> List[int]: """Discretize a list of floats to a list of ints based on softmax probabilities. For arity n, a softmax is applied to the first n values, and the result serves as probability for the first output integer. The same process it applied to the other input values. Parameters ---------- x: list/array the float values from a continuous space which need to be discretized arity: int the number of possible integer values (arity 2 will lead to values in {0, 1}) random: bool or np.random.RandomState either a RandomState to pull values from, or True for pulling values on the default random state, or False to get a deterministic behavior Notes ----- - if one or several inf values are present, only those are considered - in case of tie, the deterministic value is the first one (lowest) of the tie - nans and -infs are ignored, except if all are (then uniform random choice) """ data = np.array(x, copy=True, dtype=float).reshape((-1, arity)) if np.any(np.isnan(data)): warnings.warn("Encountered NaN values for discretization") data[np.isnan(data)] = -np.inf if random is False: output = np.argmax(data, axis=1).tolist() return output # type: ignore if isinstance(random, bool): # equivalent to "random is True" random = np.random # default random number generator (creating a RandomState is slow) return [random.choice(arity, p=softmax_probas(d)) for d in data] def softmax_probas(data: np.ndarray) -> np.ndarray: # TODO: test directly? (currently through softmax discretization) # TODO: move nan case here? maxv = np.max(data) if np.abs(maxv) == np.inf or np.isnan(maxv): maxv = 0 data = np.exp(data - maxv) if any(x == np.inf for x in data): # deal with infinite positives special case data = np.array([int(x == np.inf) for x in data]) if not sum(data): data = np.ones(len(data)) return data / np.sum(data) # type: ignore def inverse_softmax_discretization(index: int, arity: int) -> ArrayLike: # p is an arbitrary probability that the provided arg will be sampled with the returned point p = (1 / arity) * 1.5 x: np.ndarray = np.zeros(arity) x[index] = np.log((p * (arity - 1)) / (1 - p)) return x
the-stack_106_26407
import matplotlib.pyplot as plt import numpy as np def plot_period(X, y=None, channel_names=None, init_second=None, sample_rate=None, out_path=None, return_fig=False): """ Plots one period (typically 30 seconds) of PSG data with its annotation. If neither out_path and return_fig are set, displays the figure and blocks. Args: X: (list) A list of ndarrays of PSG periods y: (string) The epoch stage string (optional) channel_names: (list) A list of channel names, length equal to second dimension of 'X'. init_second (int) Show the time of this period in the axes title. If not set, no title will be set. sample_rate (int) The sample rate of the PSG ('X'). Used to compute the length of the period. out_path: (string) Optional path to save the figure to return_fig: (bool) Return the figure instead of saving (out_path is ignored) Returns: Figure and axes objects if return_fig=True, otherwise None """ X = X.squeeze() if X.ndim == 1: X = np.expand_dims(X, -1) n_chans = X.shape[-1] assert len(channel_names) == n_chans fig, axes = plt.subplots(figsize=(14, 7), ncols=1, nrows=n_chans, sharex=True) fig.subplots_adjust(hspace=0) if n_chans == 1: axes = [axes] xs = np.arange(len(X)) for i in range(n_chans): axes[i].plot(xs, X[:, i], color="black") axes[i].axhline(0, color='red', linewidth=1.5) axes[i].set_xlim(xs[0], xs[-1]) if channel_names: axes[i].annotate( s=channel_names[i], size=max(23-(2*len(channel_names)), 7), xy=(1.025, 0.5), xycoords=axes[i].transAxes, rotation=-90, va="center", ha="center" ) p = "Period {}s".format(init_second) if init_second else "" p += "-{}s".format(init_second + int(len(X) / sample_rate)) if (init_second and sample_rate) else "" if p: axes[0].set_title(p, size=26) if isinstance(y, str): fig.suptitle("Sleep stage: {}".format(y), size=18) # Return, save or show the figure if not return_fig: if out_path: fig.savefig(out_path) else: plt.show() plt.close(fig) else: return fig, axes def plot_periods(X, y=None, highlight_periods=True, out_path=None, return_fig=False, **kwargs): """ Plots multiple consecutive periods of PSG data with annotated labels. If neither out_path and return_fig are set, displays the figure and blocks. Args: X: (list) A list of ndarrays of PSG periods y: (list) A list of epoch stage strings (optional) highlight_periods: (bool) Plot vertical lines to separate epochs out_path: (string) Optional path to save the figure to return_fig: (bool) Return the figure instead of saving (out_path is ignored) **kwargs: (dict) Parameters passed to 'plot_period' Returns: Figure and axes objects if return_fig=True, otherwise None """ X = np.array(X) if X.ndim == 3: X = np.concatenate(X, axis=0) if y is not None: if len(y) < 15: ys = '-'.join(y) else: ys = "{} stages (too long to show)".format(len(y)) else: ys = "<Not specified>" fig, axes = plot_period(X, ys, return_fig=True, **kwargs) x_sepparations = [(len(X)//len(y)) * i for i in range(1, len(y))] if highlight_periods: for ax in axes: for sep in x_sepparations: ax.axvline(sep, color='red', linestyle='--', linewidth=1.5) # Return, save or show the figure if not return_fig: if out_path: fig.savefig(out_path) else: plt.show() plt.close(fig) else: return fig, axes
the-stack_106_26409
# COPYRIGHT 2007 BY BBN TECHNOLOGIES CORP. # BY USING THIS SOFTWARE THE USER EXPRESSLY AGREES: (1) TO BE BOUND BY # THE TERMS OF THIS AGREEMENT; (2) THAT YOU ARE AUTHORIZED TO AGREE TO # THESE TERMS ON BEHALF OF YOURSELF AND YOUR ORGANIZATION; (3) IF YOU OR # YOUR ORGANIZATION DO NOT AGREE WITH THE TERMS OF THIS AGREEMENT, DO # NOT CONTINUE. RETURN THE SOFTWARE AND ALL OTHER MATERIALS, INCLUDING # ANY DOCUMENTATION TO BBN TECHNOLOGIES CORP. # BBN GRANTS A NONEXCLUSIVE, ROYALTY-FREE RIGHT TO USE THIS SOFTWARE # KNOWN AS THE OntoNotes DB Tool v. 0.9 (HEREINAFTER THE "SOFTWARE") # SOLELY FOR RESEARCH PURPOSES. PROVIDED, YOU MUST AGREE TO ABIDE BY THE # LICENSE AND TERMS STATED HEREIN. TITLE TO THE SOFTWARE AND ITS # DOCUMENTATION AND ALL APPLICABLE COPYRIGHTS, TRADE SECRETS, PATENTS # AND OTHER INTELLECTUAL RIGHTS IN IT ARE AND REMAIN WITH BBN AND SHALL # NOT BE USED, REVEALED, DISCLOSED IN MARKETING OR ADVERTISEMENT OR ANY # OTHER ACTIVITY NOT EXPLICITLY PERMITTED IN WRITING. # NO WARRANTY. THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY # KIND. THE SOFTWARE IS PROVIDED for RESEARCH PURPOSES ONLY. AS SUCH, # IT MAY CONTAIN ERRORS, WHICH COULD CAUSE FAILURES OR LOSS OF DATA. TO # THE MAXIMUM EXTENT PERMITTED BY LAW, BBN MAKES NO WARRANTIES, EXPRESS # OR IMPLIED AS TO THE SOFTWARE, ITS CAPABILITIES OR FUNCTIONALITY, # INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR # ANY USE OF THE SOFTWARE. THE USER ASSUMES THE ENTIRE COST OF ALL # NECESSARY REPAIR OR CORRECTION, EVEN IF BBN HAS BEEN ADVISED OF THE # POSSIBILITY OF SUCH A DEFECT OR DAMAGES. BBN MAKES NO WARRANTY THAT # THE SOFTWARE WILL MEET THE USER REQUIREMENTS, OR WILL BE # UNINTERRUPTED, TIMELY, SECURE, OR ERROR-FREE. # LIMITATION OF LIABILITY. THE ENTIRE RISK AS TO THE RESULTS AND # PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE USER. TO THE MAXIMUM # EXTENT PERMITTED BY APPLICABLE LAW, BBN SHALL NOT BE LIABLE WITH # RESPECT TO ANY SUBJECT MATTER OF THIS AGREEMENT UNDER ANY CONTRACT, # NEGLIGENCE, STRICT LIABILITY OR OTHER THEORY FOR ANY DIRECT, # CONSEQUENTIAL, RELIANCE, INCIDENTAL, SPECIAL, DIRECT OR INDIRECT # DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF # BUSINESS PROFITS, OR BUSINESS INFORMATION, OR FOR BUSINESS # INTERRUPTION, PERSONAL INJURY OR ANY OTHER LOSSES) RELATING TO (A) # LOSS OR INACCURACY OF DATA OR COST OF PROCUREMENT OF SUBSTITUTE # SYSTEM, SERVICES OR TECHNOLOGY, (B) THE USE OR INABILITY TO USE THE # SOFTWARE; (C) UNAUTHORIZED ACCESS TO OR ALTERATION OF YOUR # TRANSMISSIONS OR DATA; (D) ANY PERSONAL INJURY OR INJURY TO PROPERTY; # OR (E) ANY OTHER USE OF THE SOFTWARE EVEN IF BBN HAS BEEN FIRST # ADVISED OF THE POSSIBILITY OF ANY SUCH DAMAGES OR LOSSES. # WITHOUT LIMITATION OF THE FOREGOING, THE USER AGREES TO COMMIT NO ACT # WHICH, DIRECTLY OR INDIRECTLY, WOULD VIOLATE ANY U.S. LAW, REGULATION, # OR TREATY, OR ANY OTHER INTERNATIONAL TREATY OR AGREEMENT TO WHICH THE # UNITED STATES ADHERES OR WITH WHICH THE UNITED STATES COMPLIES, # RELATING TO THE EXPORT OR RE-EXPORT OF ANY COMMODITIES, SOFTWARE, OR # TECHNICAL DATA. # author: sameer pradhan """ :mod:`ontology` -- Ontology Annotation ------------------------------------------------- .. autoclass:: ontology .. autoclass:: upper_model .. autoclass:: sense_pool .. autoclass:: sense_pool_collection .. autoclass:: concept .. autoclass:: feature .. autoexception:: no_such_parent_concept_error .. autoexception:: no_such_parent_sense_pool_error """ #---- standard python imports ----# from __future__ import with_statement import operator import os.path try: import MySQLdb except ImportError: pass import string import sys import re import exceptions import codecs #---- xml specific imports ----# from xml.etree import ElementTree import xml.etree.cElementTree as ElementTree #---- custom package imports ----# import on import on.common.log from on.common.log import status import on.common.util import on.corpora import on.corpora.tree import on.corpora.proposition import on.corpora.coreference import on.corpora.name import on.corpora.sense from collections import defaultdict from on.common.util import insert_ignoring_dups class ontology: def __init__(self, a_id, a_upper_model, a_sense_pool_collection, a_cursor=None): self.id = a_id self.upper_model = a_upper_model self.sense_pool_collection = a_sense_pool_collection def to_dot(self): a_dot_string = self.upper_model.to_dot() + "\n\t" + \ self.sense_pool_collection.to_dot() v_e_hash = {} v_e_list = a_dot_string.split("\n\t") for v_e in v_e_list: if(not v_e_hash.has_key(v_e)): v_e_hash[v_e] = v_e else: on.common.log.debug("ignoring duplicate vertex/edge", on.common.log.DEBUG, on.common.log.MAX_VERBOSITY) a_dot_string = "" for v_e in v_e_hash.keys(): a_dot_string = a_dot_string + "\n\t" + v_e a_dot_string = a_dot_string.strip() a_dot_string = "digraph UM {\n\t" + a_dot_string + "\n}" return a_dot_string def write_to_db(self, a_cursor): self.upper_model.write_to_db(a_cursor) self.sense_pool_collection.write_to_db(a_cursor) # write the feature type table on.corpora.ontology.feature_type.write_to_db(a_cursor) def from_db(self, a_id, a_cursor): a_ontology = on.corpora.ontology.ontology(a_id, None, None, a_cursor) # might want to fetch the id from the database a_upper_model = on.corpora.ontology.upper_model.from_db("upper_model@%s" % (a_id), a_cursor) a_sense_pool_collection = on.corpora.ontology.sense_pool_collection.from_db("sense_pool_collection@%s" % (a_id), a_cursor) a_ontology.upper_model = a_upper_model a_ontology.sense_pool_collection = a_sense_pool_collection return a_ontology @staticmethod @on.common.util.register_config("corpus", "data_in", required=False) def from_files(config_or_ontology_dir): """ Given: either a string representing a the path to the ontology directory or a configuration file that defines the key (corpus, data_in) representing the parent directory of the ontology dir. Return: an instance of the ontology loaded from the filesystem""" def make_upper_model(um_fname): status("Loading upper model ...") with codecs.open(um_fname, "r", "utf8") as um_inf: return on.corpora.ontology.upper_model( "upper_model@ontology@on", um_inf.read()) def make_sense_pools(sp_dir): status("Loading sense pools ...") return on.corpora.ontology.sense_pool_collection( "sense_pool_collection@ontology@on", sp_dir) try: ontology_dir = os.path.join(config_or_ontology_dir[ "corpus", "data_in"], "ontology") except TypeError: ontology_dir = config_or_ontology_dir return ontology( "ontology@on", make_upper_model(os.path.join(ontology_dir, "upper-model.xml")), make_sense_pools(os.path.join(ontology_dir, "sense-pools"))) class sense_pool_type(on.corpora.abstract_open_type_table): type_hash = defaultdict(int) @classmethod def write_to_db(cls, a_cursor): pass class sense_pool_collection: def __init__(self, a_id, root_dir, a_cursor=None): self.sense_pools = [] self.id = a_id if(a_cursor == None): filenames = [ x for x in os.listdir(root_dir) if x[-4:] == ".xml" ] # make one pass to fill the sense_pool_type hash so we can # check for missing parent, related pools, etc. for filename in filenames: sense_pool_type(re.sub("\.xml$", "", filename)) for filename in filenames: file_string = open("%s/%s" % (root_dir, filename)).read() try: a_sense_pool = sense_pool(re.sub("\.xml$", "", filename), file_string) self.sense_pools.append(a_sense_pool) except Exception: on.common.log.report("ontology", "failed to initialize sense pool", fname=filename) #except no_such_parent_concept_error: # on.common.log.error(""" #found reference to a undefined concept, please correct the upper model #definition file and reload the data. the reason for this action is #that this concept is not created, and therefore any successor concepts #would have a missing path to the root concept. just deleting this #concept from the list of concepts won't help either because no #particular sequence in which the concepts are loaded is assumed, and #therefore there might have been a descendant that got added earlier #which had this one as the parent, and since our assumption that the #presense of this concept in the hash means that it would be created #successfully does not hold, we will have to rectify the error and load #the concepts once again. #""") #except no_such_parent_sense_pool_error: # on.common.log.error(""" #found reference to a undefined sense pool, please correct the sense pool #definition files and reload the data. the reason for this action is #that this concept is not created, and therefore any successor concepts #would have a missing path to the root sense pool/concept. just deleting this #concept from the list of concepts won't help either because no #particular sequence in which the concepts are loaded is assumed, and #therefore there might have been a descendant that got added earlier #which had this one as the parent, and since our assumption that the #presense of this concept in the hash means that it would be created #successfully does not hold, we will have to rectify the error and load #the sense pools once again. #""") #print "e" else: pass def to_dot(self, complete=False): dot_string = "" for a_sense_pool in self.sense_pools: dot_string = dot_string + a_sense_pool.to_dot() if(complete == True): dot_string = "digraph UM {\n\t" + dot_string.strip() + "\n}" return dot_string.strip() def write_to_db(self, a_cursor): for a_sense_pool in self.sense_pools: a_sense_pool.write_to_db(a_cursor) def from_db(self, a_id, a_cursor): # create the object a_sense_pool_collection = on.corpora.ontology.sense_pool_collection(a_id, None, a_cursor) # add sense pools to a_cursor.execute("""select concept_pool_type.id from concept_pool_type where concept_pool_type.type = 'pool'""") pool_rows = a_cursor.fetchall() for a_pool_row in pool_rows: a_pool_id = a_pool_row["id"] a_pool = on.corpora.ontology.sense_pool.from_db(a_pool_id, a_cursor) a_sense_pool_collection.sense_pools.append(a_pool) return a_sense_pool_collection from_db = classmethod(from_db) class sense_pool: def __init__(self, a_sense_pool_id, a_sense_pool_string, a_cursor=None): self.id = a_sense_pool_id # the file name of the .xml pool file self.commentary = "" # the commentary tag in the .xml file self.description = "" # the SPID field in the .xml file self.spid = "" self.fid = "" self.name = "" self.sense_list = [] self.parent_concepts_list = [] self.parent_pools_list = [] self.related_concepts_list = [] self.related_pools_list = [] if(a_cursor == None): try: a_sense_pool_tree = ElementTree.fromstring(a_sense_pool_string) except Exception: on.common.log.warning("there was some problem reading the XML file." + "\n" + a_sense_pool_string) raise self.description = on.common.util.get_attribute(a_sense_pool_tree, "SPID") self.spid = self.description self.fid = on.common.util.get_attribute(a_sense_pool_tree, "FID") self.name = on.common.util.get_attribute(a_sense_pool_tree, "NAME") for a_sense_tree in a_sense_pool_tree.findall(".//SENSE"): for a_sense_id_tree in a_sense_tree.findall(".//SENSEID"): a_sense_string = a_sense_id_tree.text sense_contents = a_sense_string.split(".") if len(sense_contents) not in [4,5]: raise Exception("invalid senseid " + a_sense_string) else: a_lemma = sense_contents[0] a_lang = sense_contents[1] if len(sense_contents) == 5 else None if a_lang != "e": continue a_type = sense_contents[-3] a_pos = sense_contents[-2] a_num = sense_contents[-1] if(a_type not in "cbayoj"): raise Exception("invalid senseid annotator" + a_sense_string) elif(a_type == "y"): a_on_sense_string = "%s@%s@%s@omega" % (a_lemma, a_num, a_pos) else: a_on_sense_string = "%s@%s@%s" % (a_lemma, a_num, a_pos) self.sense_list.append(a_on_sense_string) for a_sub_to_tree in a_sense_pool_tree.findall(".//SUBTO"): for a_sub_tag_tree in a_sub_to_tree.findall(".//SUBTAG"): a_id = a_sub_tag_tree.text.split("=")[0] # check if it is a concept or pool and add it to the appropriate list if(on.common.util.matches_pool_id_specification(a_id)): if(sense_pool_type.type_hash.has_key(a_id)): self.parent_pools_list.append(a_id) else: on.common.log.warning("found an undefined sense pool '%s' as being a parent" % (a_id)) raise no_such_parent_sense_pool_error # else assume it to be a concept (as there is no specific definition for it) else: if( concept_type.type_hash.has_key(a_id) ): self.parent_concepts_list.append(a_id) else: on.common.log.warning("found an undefined concept '%s' as being a parent" % (a_id)) raise no_such_parent_concept_error for a_relation_tree in a_sense_pool_tree.findall(".//RELATION"): for a_relation_tag_tree in a_relation_tree.findall(".//RELATIONTAG"): a_id = a_relation_tag_tree.text.split("=")[0] # check if it is a concept or pool and add it to the appropriate list if(on.common.util.matches_pool_id_specification(a_id)): if(sense_pool_type.type_hash.has_key(a_id)): self.related_pools_list.append(a_id) else: on.common.log.warning("found an undefined sense pool '%s' as being related" % (a_id)) raise no_such_parent_sense_pool_error # else assume it to be a concept (as there is no specific definition for it) else: if( concept_type.type_hash.has_key(a_id) ): self.related_concepts_list.append(a_id) else: on.common.log.warning("found an undefined concept '%s' as being related" % (a_id)) raise no_such_parent_concept_error for a_commentary_tree in a_sense_pool_tree.findall(".//COMMENTARY"): self.commentary = a_commentary_tree.text on.common.log.debug(""" -------------------------------------------------------------------------------------------------------- sense pool -------------------------------------------------------------------------------------------------------- description : %s commentary : %s senses : %s parent concepts : %s parent pools : %s related concepts: %s related pools : %s -------------------------------------------------------------------------------------------------------- """ % (self.description, self.commentary, str(self.sense_list), str(self.parent_concepts_list), str(self.parent_pools_list), str(self.related_concepts_list), str(self.related_pools_list)), on.common.log.DEBUG, on.common.log.MAX_VERBOSITY) else: pass def __repr__(self): return """ -------------------------------------------------------------------------------------------------------- sense pool -------------------------------------------------------------------------------------------------------- description : %s commentary : %s senses : %s parent concepts : %s parent pools : %s related concepts: %s related pools : %s -------------------------------------------------------------------------------------------------------- """ % (self.description, self.commentary, str(self.sense_list), str(self.parent_concepts_list), str(self.parent_pools_list), str(self.related_concepts_list), str(self.related_pools_list)) def to_dot(self): dot_string = "" a_sense_pool_id = self.id a_sense_pool_id = on.common.util.format_for_dot(a_sense_pool_id) for a_parent_concept in self.parent_concepts_list: a_parent_concept = on.common.util.format_for_dot(a_parent_concept) dot_string = dot_string + "\t\"" + a_parent_concept + "\" -> \"" + a_sense_pool_id + "\" [label=\"sub-concept\"];\n" for a_parent_pool in self.parent_pools_list: a_parent_pool = on.common.util.format_for_dot(a_parent_pool) dot_string = dot_string + "\t\"" + a_parent_pool + "\" -> \"" + a_sense_pool_id + "\" [label=\"sub-pool\"];\n" for a_related_concept in self.related_concepts_list: a_related_concept = on.common.util.format_for_dot(a_related_concept) dot_string = dot_string + "\t\"" + a_related_concept + "\" -> \"" + a_sense_pool_id + "\" [label=\"related-concept\"];\n" for a_related_pool in self.related_pools_list: a_related_pool = on.common.util.format_for_dot(a_related_pool) dot_string = dot_string + "\t\"" + a_related_pool + "\" -> \"" + a_sense_pool_id + "\" [label=\"related-pool\"];\n" for a_sense in self.sense_list: a_sense = on.common.util.format_for_dot(a_sense) dot_string = dot_string + "\t\"" + a_sense_pool_id + "\" -> \"" + a_sense + "\" [label=\"sense\"];\n" return dot_string sense_sql_table_name = "pool_sense" sense_sql_create_statement = \ """ create table pool_sense ( id varchar(255), sense_id varchar (255) ) default character set utf8; """ sense_sql_insert_statement = \ """insert into pool_sense ( id, sense_id ) values (%s, %s) """ def write_senses_to_db(self, cursor): cursor.executemany("%s" % (self.sense_sql_insert_statement), [ (self.id, a_sense_id) for a_sense_id in self.sense_list]) def write_parents_to_db(self, cursor): data = [] for thinglist, thing in [[self.parent_concepts_list, "concept"], [self.parent_pools_list, "pool"]]: for a_parent_thing_id in thinglist: # making an assumption (looking at the current snapshot of # the data) that relations to concepts are always concepts data.append((self.id, a_parent_thing_id, "pool", thing)) cursor.executemany("%s" % (on.corpora.ontology.concept.parent_sql_insert_statement), data) def write_relations_to_db(self, cursor): data = [] for a_related_concept_id in self.related_concepts_list: a_tuple = (self.id, a_related_concept_id, "pool", "concept") data.append(a_tuple) for a_related_pool_id in self.related_pools_list: a_tuple = (self.id, a_related_pool_id, "pool", "pool") data.append(a_tuple) cursor.executemany("%s" % (on.corpora.ontology.concept.relation_sql_insert_statement), data) # this is the method that writes the concept to the database def write_to_db(self, a_cursor): insert_ignoring_dups(on.corpora.ontology.concept.sql_insert_statement, a_cursor, self.id, self.spid, self.fid, self.name, self.commentary, "pool") # write other features, relations and parents to the db self.write_parents_to_db(a_cursor) self.write_relations_to_db(a_cursor) self.write_senses_to_db(a_cursor) @staticmethod def from_db(a_sense_pool_id, a_cursor): a_sense_pool = on.corpora.ontology.sense_pool(a_sense_pool_id, None, a_cursor) a_sense_pool.id = a_sense_pool_id # lets fill the concept attributes first a_cursor.execute("""select * from concept_pool_type where id = '%s'""" % (a_sense_pool_id)) sense_pool_type_rows = a_cursor.fetchall() for a_sense_pool_type_row in sense_pool_type_rows: a_sense_pool.spid = a_sense_pool_type_row["spid"] a_sense_pool.fid = a_sense_pool_type_row["spid"] a_sense_pool.name = a_sense_pool_type_row["name"] a_sense_pool.commentary = a_sense_pool_type_row["commentary"] a_cursor.execute("""select * from concept_pool_parent where id = '%s' and type = 'concept'""" % (a_sense_pool_id)) parent_concept_id_rows = a_cursor.fetchall() for a_parent_concept_id_row in parent_concept_id_rows: status("adding %s as parent concept" % (a_parent_concept_id_row["parent_id"])) a_sense_pool.parent_concepts_list.append(a_parent_concept_id_row["parent_id"]) a_cursor.execute("""select * from concept_pool_parent where id = '%s' and type = 'pool'""" % (a_sense_pool_id)) parent_pool_id_rows = a_cursor.fetchall() for a_parent_pool_id_row in parent_pool_id_rows: status("adding %s as parent pool" % (a_parent_pool_id_row["parent_id"])) a_sense_pool.parent_pools_list.append(a_parent_pool_id_row["parent_id"]) a_cursor.execute("""select * from concept_pool_relation where id = '%s' and relation_type='concept'""" % (a_sense_pool_id)) relation_concept_id_rows = a_cursor.fetchall() for a_relation_concept_id_row in relation_concept_id_rows: status("adding %s as being related concept" % (a_relation_pool_id_row["relation_id"])) a_sense_pool.related_concepts_list.append(a_relation_pool_id_row["relation_id"]) a_cursor.execute("""select * from concept_pool_relation where id = '%s' and relation_type='pool'""" % (a_sense_pool_id)) relation_pool_id_rows = a_cursor.fetchall() for a_relation_pool_id_row in relation_pool_id_rows: status("adding %s as being related pool" % (a_relation_pool_id_row["relation_id"])) a_sense_pool.related_pools_list.append(a_relation_pool_id_row["relation_id"]) a_cursor.execute("""select * from pool_sense where id = '%s'""" % (a_sense_pool_id)) sense_id_rows = a_cursor.fetchall() for a_sense_id_row in sense_id_rows: a_sense_id = a_sense_id_row["sense_id"] status("adding %s as a sense in this pool" % (a_sense_id)) a_sense_pool.sense_list.append(a_sense_id) return a_sense_pool class no_such_parent_concept_error(exceptions.Exception): pass class no_such_parent_sense_pool_error(exceptions.Exception): pass class upper_model: def __init__(self, a_id, a_um_string, a_cursor=None): self.id = a_id self.concepts = [] if(a_cursor == None): try: a_um_tree = ElementTree.fromstring(a_um_string) # lower case all the data in the upper model except Exception: on.common.log.warning("there was some problem reading the XML file." + "\n" + a_um_string) raise # it is important to note that in the upper model, each sensepool is a concept definition # make one pass over the concepts to fill the concept hash for a_sensepool_tree in a_um_tree.findall(".//SENSEPOOL"): a_concept_id = on.common.util.get_attribute(a_sensepool_tree, "SPID") concept_type(a_concept_id) # now let's create the actual concepts, and verify the validity using the aforefilled hash k=0 for a_sensepool_tree in a_um_tree.findall(".//SENSEPOOL"): try: a_concept = concept(ElementTree.tostring(a_sensepool_tree)) self.concepts.append(a_concept) except no_such_parent_concept_error: on.common.log.error(""" found reference to a undefined concept, please correct the upper model definition file and reload the data. the reason for this action is that this concept is not created, and therefore any successor concepts would have a missing path to the root concept. just deleting this concept from the list of concepts won't help either because no particular sequence in which the concepts are loaded is assumed, and therefore there might have been a descendant that got added earlier which had this one as the parent, and since our assumption that the presense of this concept in the hash means that it would be created successfully does not hold, we will have to rectify the error and load the concepts once again. """) else: pass def to_dot(self, complete=False): dot_string = "" for a_concept in self.concepts: dot_string = dot_string + "\n\t" + a_concept.to_dot() if(complete == True): dot_string = "digraph UM {\n\t" + dot_string.strip() + "\n}" return dot_string.strip() def write_to_db(self, a_cursor): for a_concept in self.concepts: a_concept.write_to_db(a_cursor) def from_db(self, a_id, a_cursor): a_upper_model = on.corpora.ontology.upper_model(a_id, None, a_cursor) a_cursor.execute("""select concept_pool_type.id from concept_pool_type where concept_pool_type.type = 'concept'""") concept_rows = a_cursor.fetchall() for a_concept_row in concept_rows: a_concept_id = a_concept_row["id"] a_concept = on.corpora.ontology.concept.from_db(a_concept_id, a_cursor) a_upper_model.concepts.append(a_concept) return a_upper_model from_db = classmethod(from_db) class feature_type(on.corpora.abstract_open_type_table): type_hash = defaultdict(int) sql_table_name = "ontology_feature_type" sql_create_statement = \ """ create table ontology_feature_type ( id varchar(255) not null collate utf8_bin primary key ) default character set utf8; """ sql_insert_statement = \ """insert into ontology_feature_type ( id ) values (%s) """ class feature: def __init__(self, a_feature): if(a_feature[0] != "+" and a_feature[0] != "-"): on.common.log.warning("the feature string should have a + or - modifier along with it") (a_modifier, a_type) = re.findall("^(\+|\-)?(.+)$", a_feature)[0] self.modifier = a_modifier self.type = feature_type(a_type) def __repr__(self): return "%s%s" % (self.modifier, self.type.id) class concept_type(on.corpora.abstract_open_type_table): type_hash = defaultdict(int) @classmethod def write_to_db(cls, a_cursor): pass class concept: # global hash for consistency check concept_hash = {} def __init__(self, a_concept_string, a_cursor=None): self.spid = "" #---- the SPID attribute self.name = "" #---- the NAME attribute self.fid = "" #---- the FID attribute self.id = "" self.features = [] self.parent_ids = [] self.relation_ids = [] self.commentaries = [] #self.sub_concept_names = [] if(a_cursor == None): try: on.common.log.debug(""" ------------------------------ the concept string representation --------------------------------------- %s -------------------------------------------------------------------------------------------------------- """ % (a_concept_string), on.common.log.DEBUG, on.common.log.MAX_VERBOSITY) a_concept_tree = ElementTree.fromstring(a_concept_string) except Exception: on.common.log.warning("there was some problem reading the XML file." + "\n" + a_concept_string) raise self.spid = on.common.util.get_attribute(a_concept_tree, "SPID") self.name = on.common.util.get_attribute(a_concept_tree, "NAME") self.fid = on.common.util.get_attribute(a_concept_tree, "FID") self.id = self.spid on.common.log.debug("came to create concept: %s" % (self.spid), on.common.log.DEBUG, on.common.log.MAX_VERBOSITY) a_commentary_index = 0 # there can be multiple commentaries, so let's just tag them with an index for a_commentary_tree in a_concept_tree.findall(".//COMMENTARY"): a_commentary = a_commentary_tree.text if(a_commentary == None): a_commentary = "" self.commentaries.append(a_commentary) for a_feature_tree in a_concept_tree.findall(".//FEATURE"): for a_featuretag_tree in a_feature_tree.findall(".//FEATURETAG"): a_feature = feature(a_featuretag_tree.text.lower()) self.features.append(a_feature) for a_relation_tree in a_concept_tree.findall(".//RELATION"): for a_relationtag_tree in a_relation_tree.findall(".//RELATIONTAG"): a_relation_id = a_relationtag_tree.text # since relation is just another concept, we won't create a new relation class if(not concept_type.type_hash.has_key(a_relation_id)): on.common.log.warning("found an undefined concept '%s' as being related" % (a_relation_id)) raise no_such_parent_concept_error self.relation_ids.append(a_relation_id) for a_subto_tree in a_concept_tree.findall(".//SUBTO"): for a_subtag_tree in a_subto_tree.findall(".//SUBTAG"): a_parent_id = a_subtag_tree.text # since parent is just another concept, we won't create a new class if(not concept_type.type_hash.has_key(a_parent_id)): on.common.log.warning("found an undefined concept '%s' as being a parent" % (a_parent_id)) raise no_such_parent_concept_error self.parent_ids.append(a_parent_id) on.common.log.debug(""" -------------------------------- the concept object contents ------------------------------------------ %s -------------------------------------------------------------------------------------------------------- """ % (self), on.common.log.DEBUG, on.common.log.MAX_VERBOSITY) else: pass def __repr__(self): return """ -------------------------------------------------------------------------------------------------------- concept -------------------------------------------------------------------------------------------------------- spid: %s fid: %s name: %s features: %s parent concept ids: %s related concept ids: %s commantaries: %s -------------------------------------------------------------------------------------------------------- """ % (self.spid, self.fid, self.name, str(self.features), str(self.parent_ids), str(self.relation_ids), " ".join(self.commentaries)) def to_dot(self): dot_string = "" a_concept_id = self.id a_concept_id = on.common.util.format_for_dot(a_concept_id) dot_string = dot_string + "\t\"" + a_concept_id + "\" [id=\"" + a_concept_id + "\", commentary=\"" + on.common.util.format_for_dot(" ".join(self.commentaries)) + "\"];\n" for a_parent_concept_id in self.parent_ids: a_parent_concept_id = on.common.util.format_for_dot(a_parent_concept_id) dot_string = dot_string + "\t\"" + a_parent_concept_id + "\" -> \"" + a_concept_id + "\" [label=\"sub-concept\"];\n" for a_relation_id in self.relation_ids: a_relation_id = on.common.util.format_for_dot(a_relation_id) dot_string = dot_string + "\t\"" + a_concept_id + "\" -> \"" + a_relation_id + "\" [label=\"related\"];\n" return dot_string.strip() sql_table_name = "concept_pool_type" sql_create_statement = \ """ create table concept_pool_type ( id varchar(255) not null collate utf8_bin primary key, spid varchar(255) not null, fid varchar(255) not null, name varchar(255) not null, commentary varchar(5000), type varchar(255) ) default character set utf8; """ sql_insert_statement = \ """insert into concept_pool_type ( id, spid, fid, name, commentary, type ) values (%s, %s, %s, %s, %s, %s) """ parent_sql_table_name = "concept_pool_parent" parent_sql_create_statement = \ """ create table concept_pool_parent ( id varchar(255), parent_id varchar(255), type varchar(255), parent_type varchar(255) ) default character set utf8; """ parent_sql_insert_statement = \ """insert into concept_pool_parent ( id, parent_id, type, parent_type ) values (%s, %s, %s, %s) """ relation_sql_table_name = "concept_pool_relation" relation_sql_create_statement = \ """ create table concept_pool_relation ( id varchar(255), relation_id varchar(255), type varchar(255), relation_type varchar(255) ) default character set utf8; """ relation_sql_insert_statement = \ """insert into concept_pool_relation ( id, relation_id, type, relation_type ) values (%s, %s, %s, %s) """ feature_sql_table_name = "concept_pool_feature" feature_sql_create_statement = \ """ create table concept_pool_feature ( id varchar(255), feature_type varchar (255), feature_modifier varchar (255) ) default character set utf8; """ feature_sql_insert_statement = \ """insert into concept_pool_feature ( id, feature_type, feature_modifier ) values (%s, %s, %s) """ def write_parents_to_db(self, cursor): data = [] for a_parent_id in self.parent_ids: # making an assumption (looking at the current snapshot of # the data) that relations to concepts are always concepts a_tuple = (self.id, a_parent_id, "concept", "concept") data.append(a_tuple) cursor.executemany("%s" % (self.parent_sql_insert_statement), data) def write_relations_to_db(self, cursor): data = [] for a_relation_id in self.relation_ids: # making an assumption (looking at the current snapshot of # the data) that relations to concepts are always concepts a_tuple = (self.id, a_relation_id, "concept", "concept") data.append(a_tuple) cursor.executemany("%s" % (self.relation_sql_insert_statement), data) def write_features_to_db(self, cursor): data = [] for a_feature_id in self.features: # making an assumption (looking at the current snapshot of # the data) that relations to concepts are always concepts a_tuple = (self.id, a_feature_id.type.id, a_feature_id.modifier) data.append(a_tuple) cursor.executemany("%s" % (self.feature_sql_insert_statement), data) # this is the method that writes the concept to the database def write_to_db(self, a_cursor): insert_ignoring_dups(self, a_cursor, self.id, self.spid, self.fid, self.name, " ".join(self.commentaries), "concept") # write other features, relations and parents to the db self.write_parents_to_db(a_cursor) self.write_relations_to_db(a_cursor) self.write_features_to_db(a_cursor) @staticmethod def from_db(a_concept_id, a_cursor=None): a_concept = on.corpora.ontology.concept(None, a_cursor) a_concept.id = a_concept_id # lets fill the concept attributes first a_cursor.execute("""select * from concept_pool_type where id = '%s'""" % (a_concept_id)) concept_pool_type_rows = a_cursor.fetchall() for a_concept_pool_type_row in concept_pool_type_rows: a_concept.spid = a_concept_pool_type_row["spid"] a_concept.fid = a_concept_pool_type_row["spid"] a_concept.name = a_concept_pool_type_row["name"] a_concept.commentaries.append(a_concept_pool_type_row["commentary"]) a_cursor.execute("""select * from concept_pool_parent where id = '%s'""" % (a_concept_id)) parent_id_rows = a_cursor.fetchall() for a_parent_id_row in parent_id_rows: status("adding %s as parent" % (a_parent_id_row["parent_id"])) a_concept.parent_ids.append(a_parent_id_row["parent_id"]) a_cursor.execute("""select * from concept_pool_relation where id = '%s'""" % (a_concept_id)) relation_id_rows = a_cursor.fetchall() for a_relation_id_row in relation_id_rows: status("adding %s as being related" % (a_relation_id_row["relation_id"])) a_concept.relation_ids.append(a_relation_id_row["relation_id"]) a_cursor.execute("""select * from concept_pool_feature where id = '%s'""" % (a_concept_id)) feature_id_rows = a_cursor.fetchall() for a_feature_id_row in feature_id_rows: status("adding %s as a feature with %s modifier" % (a_feature_id_row["feature_type"], a_feature_id_row["feature_modifier"])) a_feature = on.corpora.ontology.feature("%s%s" % (a_feature_id_row["feature_modifier"], a_feature_id_row["feature_type"])) a_concept.features.append(a_feature) return a_concept
the-stack_106_26412
""" Break fastq sequences into smaller chunks. Eg. from nanopore reads we want smaller pieces """ import os import sys import argparse from roblib import stream_fastq __author__ = 'Rob Edwards' def rewrite_fastq(inf, outf, sz, verbose): """ Rewrite a fastq file :param inf: input fastq file :param outf: output fastq file :param sz: size of the DNA sequences to write :param verbose: more output :return: """ with open(outf, 'w') as out: seqcounter = 0 for seqid, header, seq, qual in stream_fastq(inf): posn = 0 while (posn < len(seq)-sz): seqcounter += 1 out.write("@{} {}\n{}\n+\n{}\n".format(seqcounter, header, seq[posn:posn+sz], qual[posn:posn+sz])) posn += sz if posn < len(seq): out.write("@{} {}\n{}\n+\n{}\n".format(seqcounter, header, seq[posn:], qual[posn:])) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Read a fastq file and write the sequences smaller. Note does not preserve IDs!') parser.add_argument('-f', help='input file', required=True) parser.add_argument('-s', help='DNA fragment size', required=True, type=int) parser.add_argument('-o', help='output file name', required=True) parser.add_argument('-v', help='verbose output', action='store_true') args = parser.parse_args() rewrite_fastq(args.f, args.o, args.s, args.v)
the-stack_106_26415
# ------------------------------------------------------------ # Copyright 2021 The Dapr Authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------ import json import time from dapr.clients import DaprClient with DaprClient() as d: id=0 while True: id+=1 req_data = { 'id': id, 'message': 'hello world' } # Create a typed message with content type and body resp = d.publish_event( pubsub_name='pubsub', topic_name='TOPIC_A', data=json.dumps(req_data), data_content_type='application/json', ) # Print the request print(req_data, flush=True) time.sleep(2)
the-stack_106_26416
from organisations.boundaries.management.base import BaseOsniCommand from organisations.boundaries.osni import OsniLayer from organisations.models import OrganisationDivision class Command(BaseOsniCommand): def handle(self, *args, **options): url = "http://osni-spatial-ni.opendata.arcgis.com/datasets/563dc2ec3d9943428e3fe68966d40deb_3.geojson" self.layer = OsniLayer(url, "PC_ID", "PC_NAME") for feature in self.layer.features: if "gss" in feature: record = OrganisationDivision.objects.all().get( official_identifier="gss:{}".format(feature["gss"]) ) self.import_boundary(record, feature) else: raise Exception("Expected GSS code") self.stdout.write("...done!")
the-stack_106_26417
from django.http import Http404 from django.test import RequestFactory, TestCase from django.urls import reverse from agreements.models import Agreement, Issuer from agreements.views import issuer_search class TestIssuerSearch(TestCase): def setUp(self): self.request = RequestFactory().get("/") def test_no_issuers_raises_404(self): with self.assertRaises(Http404): issuer_search(self.request, "none") def test_missing_issuer_raises_404(self): Issuer.objects.create(name="name", slug="slug") with self.assertRaises(Http404): issuer_search(self.request, "missing") def test_issuer_no_agreements(self): Issuer.objects.create(name="A & B Bank", slug="a-b-bank") response = self.client.get( reverse("issuer_search", kwargs={"issuer_slug": "a-b-bank"}) ) self.assertContains(response, "A &amp; B Bank") def test_issuer_has_agreements(self): issuer = Issuer.objects.create(name="A & B Bank", slug="a-b-bank") for i in range(2): filename = "agreement{}.pdf".format(i + 1) Agreement.objects.create( issuer=issuer, description=filename, file_name=filename, size=0 ) response = self.client.get( reverse("issuer_search", kwargs={"issuer_slug": "a-b-bank"}) ) self.assertContains(response, "agreement1.pdf") self.assertContains(response, "agreement2.pdf") def test_multiple_issuers_with_same_slug_no_agreements_uses_latest(self): Issuer.objects.create(name="A & B Bank", slug="a-b-bank") Issuer.objects.create(name="A - B Bank", slug="a-b-bank") response = self.client.get( reverse("issuer_search", kwargs={"issuer_slug": "a-b-bank"}) ) self.assertContains(response, "A - B Bank") def test_multiple_issuers_with_same_slug_uses_latest_agreement(self): issuer = Issuer.objects.create(name="A & B Bank", slug="a-b-bank") Agreement.objects.create( issuer=issuer, description="description", file_name="filename", size=0, ) Issuer.objects.create(name="A - B Bank", slug="a-b-bank") response = self.client.get( reverse("issuer_search", kwargs={"issuer_slug": "a-b-bank"}) ) self.assertContains(response, "A &amp; B Bank")
the-stack_106_26419
t_search = pd.DataFrame(index = tag_list, columns = ['search_num']) # 페이스북 로그인 페이지로 driver = webdriver.Chrome('./chromedriver') url = 'https://www.facebook.com/' driver.get(url) time.sleep(2) # 로그인 완료 driver.find_element_by_xpath('//*[@id="email"]').send_keys(fb_id) time.sleep(2) driver.find_element_by_xpath('//*[@id="pass"]').send_keys(fb_pw + '\n') time.sleep(2) #크롤링 l_search = [] for key, i in zip(tag_list[100:], [x for x in range(1,112+1)]): print(f"{i}번째 {key} 크롤링 중입니다.") driver.find_element_by_xpath('//*[@id="mount_0_0_Rd"]/div/div[1]/div/div[2]/div[2]/div/div/div/div/div/label').send_keys(Keys.CONTROL, 'a') time.sleep(2) driver.find_element_by_xpath('//*[@id="mount_0_0_Rd"]/div/div[1]/div/div[2]/div[2]/div/div/div/div/div/label').send_keys(Keys.DELETE) time.sleep(2) driver.find_element_by_xpath('//*[@id="mount_0_0_Rd"]/div/div[1]/div/div[2]/div[2]/div/div/div/div/div/label').send_keys(f'#{key}' + '\n') time.sleep(2) # 검색량 긁어오기 html = BeautifulSoup(driver.page_source, 'html.parser') time.sleep(2) text = html.select('div.bi6gxh9e span.d2edcug0')[1].text[:2+1] l_search.append(text)
the-stack_106_26420
import random import warnings import time import numpy as np import compressors from sklearn.preprocessing import MinMaxScaler class Client: def __init__(self, client_id, group=None, train_data={'x' : [],'y' : []}, eval_data={'x' : [],'y' : []}, model=None): self._model = model self.id = client_id self.group = group self.train_data = train_data self.eval_data = eval_data def train(self, num_epochs=1, batch_size=10, minibatch=None): """Trains on self.model using the client's train_data. Args: num_epochs: Number of epochs to train. Unsupported if minibatch is provided (minibatch has only 1 epoch) batch_size: Size of training batches. minibatch: fraction of client's data to apply minibatch sgd, None to use FedAvg Return: comp: number of FLOPs executed in training process num_samples: number of samples used in training update: set of weights update_size: number of bytes in update """ # TODO: Swap this for a with statement and a timer train_start = time.time() if minibatch is None: data = self.train_data comp, update = self.model.train(data, num_epochs, batch_size) else: frac = min(1.0, minibatch) num_data = max(1, int(frac*len(self.train_data["x"]))) xs, ys = zip(*random.sample(list(zip(self.train_data["x"], self.train_data["y"])), num_data)) data = {'x': xs, 'y': ys} # Minibatch trains for only 1 epoch - multiple local epochs don't make sense! num_epochs = 1 comp, update = self.model.train(data, num_epochs, num_data) num_train_samples = len(data['y']) train_stop = time.time() train_time = int(round(train_stop - train_start)) before_nonzeros = 0 after_nonzeros = 0 ### Start Compression compress_start = time.time() layers_to_compress = [6] update = np.array(update, dtype=object) for i in layers_to_compress: actual_shape = update[i].shape flattended = update[i].flatten() before_nonzeros += np.count_nonzero(flattended) compressed_flat = flattended # For calculating sparsity constraints flat_sz = flattended.size bits = flattended.size * flattended.itemsize * 8 B_j = int(np.floor(0.80 * bits)) scaler = MinMaxScaler() Xsc = flattended.reshape((flat_sz, 1)) Xsc = scaler.fit_transform(Xsc) try: Cg, _ = compressors.sparse_kmeans( gradient=Xsc, budget=B_j ) compressed_flat = scaler.inverse_transform(Cg.reshape((flat_sz, 1))) compressed_flat = compressed_flat.flatten() except BaseException as err: print("ERROR") print(f"Unexpected err={err}, type(err)={type(err)}") print(flattended) exit after_nonzeros += np.count_nonzero(compressed_flat) update[i] = compressed_flat.reshape(actual_shape) compress_end = time.time() ### End Compression compress_time = int(round(compress_end - compress_start)) train_time_secs = train_time + compress_time return comp, num_train_samples, before_nonzeros, after_nonzeros, update, train_time_secs def test(self, set_to_use='test'): """Tests self.model on self.test_data. Args: set_to_use. Set to test on. Should be in ['train', 'test']. Return: dict of metrics returned by the model. """ assert set_to_use in ['train', 'test', 'val'] if set_to_use == 'train': data = self.train_data elif set_to_use == 'test' or set_to_use == 'val': data = self.eval_data return self.model.test(data) @property def num_test_samples(self): """Number of test samples for this client. Return: int: Number of test samples for this client """ if self.eval_data is None: return 0 return len(self.eval_data['y']) @property def num_train_samples(self): """Number of train samples for this client. Return: int: Number of train samples for this client """ if self.train_data is None: return 0 return len(self.train_data['y']) @property def num_samples(self): """Number samples for this client. Return: int: Number of samples for this client """ train_size = 0 if self.train_data is not None: train_size = len(self.train_data['y']) test_size = 0 if self.eval_data is not None: test_size = len(self.eval_data['y']) return train_size + test_size @property def model(self): """Returns this client reference to model being trained""" return self._model @model.setter def model(self, model): warnings.warn('The current implementation shares the model among all clients.' 'Setting it on one client will effectively modify all clients.') self._model = model
the-stack_106_26423
import os, datetime, zipfile from datetime import date from os import path def export(config): MODULE_PATH = os.path.join(os.path.dirname(__file__)) print("\n========================"); print("EXPORTING PROJECT INTO ARCHIVE") print("\n") project_folder = config["project"]["path"] if (not (os.path.isdir(project_folder))): print(" ERROR: Invalid Project folder.") return False db_name = config["db"]["name"] db_user = config["db"]["user"] db_pass = config["db"]["password"] db_dump = config["db"]["file"] try: if (os.system(f"mysqldump --user={db_user} --password={db_pass} {db_name} > {db_dump}") > 0): raise except Exception: print(" ERROR: Failed to connect to the database."); print("\nABORTED.\n") return False print(" OK: Database exported."); zip_name = config["project"]["zip"] included_folders = config["project"]["folders"] excluded_folders = config["project"]["excluded_folders"] root_files = config["project"]["root_files"] date_format = date.today().strftime('%d %m %Y') zip_name = zip_name + " - " + date_format zip_name_final = (zip_name + ".backup.zip") try: zf = zipfile.ZipFile(zip_name_final, "w") except Exception as err: print(" ERROR: Failed to create archive:", err) print("\nABORTED.\n") return False try: zf.write(db_dump) os.remove(db_dump) except Exception as err: print(" ERROR:", err) print("\nABORTED.\n") return False starting_dir = os.getcwd() os.chdir(project_folder) try: for file in root_files: zf.write(file) for folder in included_folders: for dirname, dirs, files in os.walk(folder, topdown = True): dirs[:] = [d for d in dirs if d not in excluded_folders] zf.write(dirname) for filename in files: zf.write(os.path.join(dirname, filename)) zf.close() except Exception as err: print(" ERROR:", err) print("\nABORTED.\n") return False print(" SUCCESS: Project added to the archive (" + zip_name_final + ")."); os.chdir(starting_dir) return zip_name_final
the-stack_106_26424
from __future__ import unicode_literals import mock import pytest from hermes_python.hermes import Hermes from hermes_python.ontology import MqttOptions from hermes_python.ontology.dialogue import StartSessionMessage, SessionInitNotification, ContinueSessionMessage from hermes_python.ontology.injection import InjectionRequestMessage HOST = "localhost" DUMMY_INTENT_NAME = "INTENT" def test_initialization(): h = Hermes(HOST) assert 0 == len(h.ffi.dialogue._c_callback_subscribe_intent) def test_initialization_with_options(): mqtt_opts = MqttOptions() h = Hermes(mqtt_options=mqtt_opts) assert h.mqtt_options.broker_address == "localhost:1883" def test_context_manager_enter_calls_ffi_api(): h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.release_connection.assert_called_once() @mock.patch("hermes_python.api.ffi.tts.hermes_drop_tts_facade") @mock.patch("hermes_python.api.ffi.tts.hermes_protocol_handler_tts_facade") @mock.patch("hermes_python.api.ffi.injection.hermes_drop_injection_facade") @mock.patch("hermes_python.api.ffi.injection.hermes_protocol_handler_injection_facade") @mock.patch("hermes_python.api.ffi.feedback.hermes_drop_sound_feedback_facade") @mock.patch("hermes_python.api.ffi.feedback.hermes_protocol_handler_sound_feedback_facade") @mock.patch("hermes_python.api.ffi.dialogue.hermes_drop_dialogue_facade") @mock.patch("hermes_python.api.ffi.dialogue.hermes_protocol_handler_dialogue_facade") @mock.patch("hermes_python.api.ffi.hermes_destroy_mqtt_protocol_handler") @mock.patch("hermes_python.api.ffi.hermes_protocol_handler_new_mqtt_with_options") def test_context_manager_enter_exit(hermes_protocol_handler_new_mqtt, hermes_destroy_mqtt_protocol_handler, hermes_protocol_handler_dialogue_facade, hermes_drop_dialogue_facade, hermes_protocol_handler_sound_feedback_facade, hermes_drop_sound_feedback_facade, hermes_protocol_handler_injection_facade, hermes_drop_injection_facade, hermes_protocol_handler_tts_facade, hermes_drop_tts_facade): with Hermes(HOST) as h: pass hermes_protocol_handler_new_mqtt.assert_called_once() hermes_protocol_handler_dialogue_facade.assert_called_once() hermes_drop_dialogue_facade.assert_called_once() hermes_protocol_handler_sound_feedback_facade.assert_called_once() hermes_drop_sound_feedback_facade.assert_called_once() hermes_protocol_handler_injection_facade.assert_called_once() hermes_drop_injection_facade.assert_called_once() hermes_protocol_handler_tts_facade.assert_called_once() hermes_drop_tts_facade.assert_called_once() hermes_destroy_mqtt_protocol_handler.assert_called_once() @mock.patch("hermes_python.api.ffi.feedback.hermes_protocol_handler_sound_feedback_facade") @mock.patch("hermes_python.api.ffi.dialogue.hermes_protocol_handler_dialogue_facade") @mock.patch("hermes_python.api.ffi.dialogue.hermes_drop_dialogue_facade") @mock.patch("hermes_python.api.ffi.hermes_protocol_handler_new_mqtt_with_options") def test_context_manager_catches_exceptions(hermes_protocol_handler_new_mqtt, mocked_hermes_drop_dialogue_facade, hermes_protocol_handler_dialogue_facade, hermes_protocol_handler_sound_feedback_facade): hermes_protocol_handler_dialogue_facade.side_effect = Exception("An exception occured!") with pytest.raises(Exception): with Hermes(HOST) as h: pass def test_subscribe_intent_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_intent(DUMMY_INTENT_NAME, user_callback) h.__exit__(None, None, None) h.ffi.dialogue.register_subscribe_intent_handler.assert_called_once_with(DUMMY_INTENT_NAME, user_callback, h) def test_subscribe_intents_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_intents(user_callback) h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.dialogue.register_subscribe_intents_handler.assert_called_once_with(user_callback, h) def test_subscribe_session_started_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_session_started(user_callback) h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.dialogue.register_session_started_handler.assert_called_once_with(user_callback, h) def test_subscribe_session_queued_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_session_queued(user_callback) h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.dialogue.register_session_queued_handler.assert_called_once_with(user_callback, h) def test_subscribe_session_ended_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_session_ended(user_callback) h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.dialogue.register_session_ended_handler.assert_called_once_with(user_callback, h) def test_subscribe_intent_not_recognized_correctly_registers_callback(): def user_callback(hermes, intentMessage): pass h = Hermes(HOST) h.ffi = mock.MagicMock() h.__enter__() h.subscribe_intent_not_recognized(user_callback) h.__exit__(None, None, None) h.ffi.establish_connection.assert_called_once() h.ffi.dialogue.register_intent_not_recognized_handler.assert_called_once_with(user_callback, h) def test_start_session_notification_1(): h = Hermes(HOST) h.ffi = mock.MagicMock() with h: h.publish_start_session_notification(None, "welcome !", "custom_data") start_session_notification_message = StartSessionMessage(SessionInitNotification("welcome !"), "custom_data", None) h.ffi.dialogue.publish_start_session.assert_called_once_with(start_session_notification_message) def test_start_session_notification_2(): h = Hermes(HOST) h.ffi = mock.MagicMock() with h: h.publish_start_session_notification(None, None, "custom_data", "yup!") start_session_notification_message = StartSessionMessage(SessionInitNotification("yup!"), "custom_data", None) h.ffi.dialogue.publish_start_session.assert_called_once_with(start_session_notification_message) def test_start_session_notification_text_parameter_takes_precedence_over_session_initiation_text(): h = Hermes(HOST) h.ffi = mock.MagicMock() with h: h.publish_start_session_notification(None, "test", "custom_data", "yup!") start_session_notification_message = StartSessionMessage(SessionInitNotification("yup!"), "custom_data", None) h.ffi.dialogue.publish_start_session.assert_called_once_with(start_session_notification_message) class TestContinueSession(object): def test_continue_session_slot_filler(self): h = Hermes(HOST) h.ffi = mock.MagicMock() with h: h.publish_continue_session("session_id", "Tell me what the missing slot is", ["intent1"], None, False, "missing_slot") continue_session_message = ContinueSessionMessage("session_id", "Tell me what the missing slot is", ["intent1"], None, False, "missing_slot") h.ffi.dialogue.publish_continue_session.assert_called_once_with(continue_session_message) class TestInjection(object): # These tests are disabled as long as the injection API is stabilized. # def test_requesting_injection_status(self): # h = Hermes(HOST) # h.ffi = mock.MagicMock() # # # with h: # h.request_injection_status() # # h.ffi.injection.publish_injection_status_request.assert_called_once() # # def test_correctly_subscribing_to_injection_status(self): # def injection_request_cb(callback, injection_status): # pass # # h = Hermes(HOST) # h.ffi = mock.MagicMock() # # with h: # h.subscribe_injection_status(injection_request_cb) # # h.ffi.injection.register_subscribe_injection_status.assert_called_once_with(injection_request_cb, h) def test_correctly_requesting_injection(self): h = Hermes(HOST) h.ffi = mock.MagicMock() injection_request = InjectionRequestMessage([], dict()) with h: h.request_injection(injection_request) h.ffi.injection.publish_injection_request.assert_called_once_with(injection_request)
the-stack_106_26425
# -*- coding:utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding=utf-8 from com.aliyun.api.gateway.sdk.common import constant from com.aliyun.api.gateway.sdk.auth import sha_hmac256 from com.aliyun.api.gateway.sdk.util import DateUtil import time def build_sign_str(uri=None, method=None, headers=None, body=None): lf = '\n' string_to_sign = [] string_to_sign.append(method) string_to_sign.append(lf) if constant.HTTP_HEADER_ACCEPT in headers and headers[constant.HTTP_HEADER_ACCEPT]: string_to_sign.append(headers[constant.HTTP_HEADER_ACCEPT]) string_to_sign.append(lf) if constant.HTTP_HEADER_CONTENT_MD5 in headers and headers[constant.HTTP_HEADER_CONTENT_MD5]: string_to_sign.append(headers[constant.HTTP_HEADER_CONTENT_MD5]) string_to_sign.append(lf) if constant.HTTP_HEADER_CONTENT_TYPE in headers and headers[constant.HTTP_HEADER_CONTENT_TYPE]: string_to_sign.append(headers[constant.HTTP_HEADER_CONTENT_TYPE]) string_to_sign.append(lf) if constant.HTTP_HEADER_DATE in headers and headers[constant.HTTP_HEADER_DATE]: string_to_sign.append(headers[constant.HTTP_HEADER_DATE]) string_to_sign.append(lf) string_to_sign.append(_format_header(headers=headers)) string_to_sign.append(_build_resource(uri=uri, body=body)) for _index, _value in enumerate(string_to_sign): if not isinstance(_value, str): string_to_sign[_index] = _value.decode("utf-8") return ''.join(string_to_sign) def _build_resource(uri="", body={}): if uri.__contains__("?"): uri_array = uri.split("?") uri = uri_array[0] query_str = uri_array[1] if not body: body = {} if query_str: query_str_array = query_str.split("&") for query in query_str_array: query_array = query.split("=") if query_array[0] not in body: body[query_array[0]] = query_array[1] resource = [] resource.append(uri) if body: resource.append("?") param_list = list(body.keys()) param_list.sort() first = True for key in param_list: if not first: resource.append("&") first = False if body[key]: resource.append(key) resource.append("=") resource.append(body[key]) else: resource.append(key) if resource is None: return '' return "".join(str(x) for x in resource) def convert_utf8(input_string): if isinstance(input_string, unicode): input_string = input_string.encode('utf-8') return input_string def _format_header(headers={}): lf = '\n' temp_headers = [] if len(headers) > 0: header_list = list(headers.keys()) header_list.sort() signature_headers = [] for k in header_list: if k.startswith("X-Ca-"): temp_headers.append(k) temp_headers.append(":") temp_headers.append(str(headers[k])) temp_headers.append(lf) signature_headers.append(k) headers[constant.X_CA_SIGNATURE_HEADERS] = ','.join(signature_headers) return ''.join(temp_headers)
the-stack_106_26426
from tapiriik.settings import WEB_ROOT, SPORTTRACKS_OPENFIT_ENDPOINT, SPORTTRACKS_CLIENT_ID, SPORTTRACKS_CLIENT_SECRET from tapiriik.services.service_base import ServiceAuthenticationType, ServiceBase from tapiriik.services.interchange import UploadedActivity, ActivityType, ActivityStatistic, ActivityStatisticUnit, Waypoint, WaypointType, Location, LapIntensity, Lap from tapiriik.services.api import APIException, UserException, UserExceptionType, APIExcludeActivity from tapiriik.services.sessioncache import SessionCache from tapiriik.database import cachedb from django.urls import reverse import pytz from datetime import timedelta import dateutil.parser from dateutil.tz import tzutc import requests import json import re import urllib.parse import logging logger = logging.getLogger(__name__) class SportTracksService(ServiceBase): ID = "sporttracks" DisplayName = "SportTracks" DisplayAbbreviation = "ST" AuthenticationType = ServiceAuthenticationType.OAuth OpenFitEndpoint = SPORTTRACKS_OPENFIT_ENDPOINT SupportsHR = True AuthenticationNoFrame = True """ Other Basketball Other Boxing Other Climbing Other Driving Other Flying Other Football Other Gardening Other Kitesurf Other Sailing Other Soccer Other Tennis Other Volleyball Other Windsurf Running Hashing Running Hills Running Intervals Running Orienteering Running Race Running Road Running Showshoe Running Speed Running Stair Running Track Running Trail Running Treadmill Cycling Hills Cycling Indoor Cycling Intervals Cycling Mountain Cycling Race Cycling Road Cycling Rollers Cycling Spinning Cycling Track Cycling Trainer Swimming Open Water Swimming Pool Swimming Race Walking Geocaching Walking Hiking Walking Nordic Walking Photography Walking Snowshoe Walking Treadmill Skiing Alpine Skiing Nordic Skiing Roller Skiing Snowboard Rowing Canoe Rowing Kayak Rowing Kitesurf Rowing Ocean Kayak Rowing Rafting Rowing Rowing Machine Rowing Sailing Rowing Standup Paddling Rowing Windsurf Skating Board Skating Ice Skating Inline Skating Race Skating Track Gym Aerobics Gym Elliptical Gym Plyometrics Gym Rowing Machine Gym Spinning Gym Stair Climber Gym Stationary Bike Gym Strength Gym Stretching Gym Treadmill Gym Yoga """ _activityMappings = { "running": ActivityType.Running, "cycling": ActivityType.Cycling, "mountain": ActivityType.MountainBiking, "walking": ActivityType.Walking, "hiking": ActivityType.Hiking, "snowboarding": ActivityType.Snowboarding, "skiing": ActivityType.DownhillSkiing, "nordic": ActivityType.CrossCountrySkiing, "skating": ActivityType.Skating, "swimming": ActivityType.Swimming, "rowing": ActivityType.Rowing, "elliptical": ActivityType.Elliptical, "gym": ActivityType.Gym, "standup paddling": ActivityType.StandUpPaddling, "other": ActivityType.Other } _reverseActivityMappings = { ActivityType.Running: "running", ActivityType.Cycling: "cycling", ActivityType.Walking: "walking", ActivityType.MountainBiking: "cycling: mountain", ActivityType.Hiking: "walking: hiking", ActivityType.CrossCountrySkiing: "skiing: nordic", # Equipment.Bindings.IsToeOnly ?? ActivityType.DownhillSkiing: "skiing", ActivityType.Snowboarding: "skiing: snowboarding", ActivityType.Skating: "skating", ActivityType.Swimming: "swimming", ActivityType.Rowing: "rowing", ActivityType.Elliptical: "gym: elliptical", ActivityType.Gym: "gym", ActivityType.StandUpPaddling: "rowing: standup paddling", ActivityType.Other: "other" } SupportedActivities = list(_reverseActivityMappings.keys()) _tokenCache = SessionCache("sporttracks", lifetime=timedelta(minutes=115), freshen_on_get=False) def WebInit(self): self.UserAuthorizationURL = "https://api.sporttracks.mobi/oauth2/authorize?response_type=code&client_id=%s&state=mobi_api" % SPORTTRACKS_CLIENT_ID def _getAuthHeaders(self, serviceRecord=None): token = self._tokenCache.Get(serviceRecord.ExternalID) if not token: if not serviceRecord.Authorization or "RefreshToken" not in serviceRecord.Authorization: # When I convert the existing users, people who didn't check the remember-credentials box will be stuck in limbo raise APIException("User not upgraded to OAuth", block=True, user_exception=UserException(UserExceptionType.Authorization, intervention_required=True)) # Use refresh token to get access token # Hardcoded return URI to get around the lack of URL reversing without loading up all the Django stuff params = {"grant_type": "refresh_token", "refresh_token": serviceRecord.Authorization["RefreshToken"], "client_id": SPORTTRACKS_CLIENT_ID, "client_secret": SPORTTRACKS_CLIENT_SECRET, "redirect_uri": "https://tapiriik.com/auth/return/sporttracks"} response = requests.post("https://api.sporttracks.mobi/oauth2/token", data=urllib.parse.urlencode(params), headers={"Content-Type": "application/x-www-form-urlencoded"}) if response.status_code != 200: if response.status_code >= 400 and response.status_code < 500: raise APIException("Could not retrieve refreshed token %s %s" % (response.status_code, response.text), block=True, user_exception=UserException(UserExceptionType.Authorization, intervention_required=True)) raise APIException("Could not retrieve refreshed token %s %s" % (response.status_code, response.text)) token = response.json()["access_token"] self._tokenCache.Set(serviceRecord.ExternalID, token) return {"Authorization": "Bearer %s" % token} def RetrieveAuthorizationToken(self, req, level): from tapiriik.services import Service # might consider a real OAuth client code = req.GET.get("code") params = {"grant_type": "authorization_code", "code": code, "client_id": SPORTTRACKS_CLIENT_ID, "client_secret": SPORTTRACKS_CLIENT_SECRET, "redirect_uri": WEB_ROOT + reverse("oauth_return", kwargs={"service": "sporttracks"})} response = requests.post("https://api.sporttracks.mobi/oauth2/token", data=urllib.parse.urlencode(params), headers={"Content-Type": "application/x-www-form-urlencoded"}) if response.status_code != 200: print(response.text) raise APIException("Invalid code") access_token = response.json()["access_token"] refresh_token = response.json()["refresh_token"] uid_res = requests.post("https://api.sporttracks.mobi/api/v2/system/connect", headers={"Authorization": "Bearer %s" % access_token}) uid = uid_res.json()["user"]["uid"] return (uid, {"RefreshToken": refresh_token}) def RevokeAuthorization(self, serviceRecord): pass # Can't revoke these tokens :( def DeleteCachedData(self, serviceRecord): cachedb.sporttracks_meta_cache.remove({"ExternalID": serviceRecord.ExternalID}) def DownloadActivityList(self, serviceRecord, exhaustive=False): headers = self._getAuthHeaders(serviceRecord) activities = [] exclusions = [] pageUri = self.OpenFitEndpoint + "/fitnessActivities.json" activity_tz_cache_raw = cachedb.sporttracks_meta_cache.find_one({"ExternalID": serviceRecord.ExternalID}) activity_tz_cache_raw = activity_tz_cache_raw if activity_tz_cache_raw else {"Activities":[]} activity_tz_cache = dict([(x["ActivityURI"], x["TZ"]) for x in activity_tz_cache_raw["Activities"]]) while True: logger.debug("Req against " + pageUri) res = requests.get(pageUri, headers=headers) try: res = res.json() except ValueError: raise APIException("Could not decode activity list response %s %s" % (res.status_code, res.text)) for act in res["items"]: activity = UploadedActivity() activity.ServiceData = {"ActivityURI": act["uri"]} if len(act["name"].strip()): activity.Name = act["name"] # Longstanding ST.mobi bug causes it to return negative partial-hour timezones as "-2:-30" instead of "-2:30" fixed_start_time = re.sub(r":-(\d\d)", r":\1", act["start_time"]) activity.StartTime = dateutil.parser.parse(fixed_start_time) if isinstance(activity.StartTime.tzinfo, tzutc): activity.TZ = pytz.utc # The dateutil tzutc doesn't have an _offset value. else: activity.TZ = pytz.FixedOffset(activity.StartTime.tzinfo.utcoffset(activity.StartTime).total_seconds() / 60) # Convert the dateutil lame timezones into pytz awesome timezones. activity.StartTime = activity.StartTime.replace(tzinfo=activity.TZ) activity.EndTime = activity.StartTime + timedelta(seconds=float(act["duration"])) activity.Stats.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=float(act["duration"])) # OpenFit says this excludes paused times. # Sometimes activities get returned with a UTC timezone even when they are clearly not in UTC. if activity.TZ == pytz.utc: if act["uri"] in activity_tz_cache: activity.TZ = pytz.FixedOffset(activity_tz_cache[act["uri"]]) else: # So, we get the first location in the activity and calculate the TZ from that. try: firstLocation = self._downloadActivity(serviceRecord, activity, returnFirstLocation=True) except APIExcludeActivity: pass else: try: activity.CalculateTZ(firstLocation, recalculate=True) except: # We tried! pass else: activity.AdjustTZ() finally: activity_tz_cache[act["uri"]] = activity.StartTime.utcoffset().total_seconds() / 60 logger.debug("Activity s/t " + str(activity.StartTime)) activity.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(act["total_distance"])) types = [x.strip().lower() for x in act["type"].split(":")] types.reverse() # The incoming format is like "walking: hiking" and we want the most specific first activity.Type = None for type_key in types: if type_key in self._activityMappings: activity.Type = self._activityMappings[type_key] break if not activity.Type: exclusions.append(APIExcludeActivity("Unknown activity type %s" % act["type"], activity_id=act["uri"], user_exception=UserException(UserExceptionType.Other))) continue activity.CalculateUID() activities.append(activity) if not exhaustive or "next" not in res or not len(res["next"]): break else: pageUri = res["next"] logger.debug("Writing back meta cache") cachedb.sporttracks_meta_cache.update({"ExternalID": serviceRecord.ExternalID}, {"ExternalID": serviceRecord.ExternalID, "Activities": [{"ActivityURI": k, "TZ": v} for k, v in activity_tz_cache.items()]}, upsert=True) return activities, exclusions def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False): activityURI = activity.ServiceData["ActivityURI"] headers = self._getAuthHeaders(serviceRecord) activityData = requests.get(activityURI, headers=headers) activityData = activityData.json() if "clock_duration" in activityData: activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"])) activity.Private = "sharing" in activityData and activityData["sharing"] != "public" activity.GPS = False # Gets set back if there is GPS data if "notes" in activityData: activity.Notes = activityData["notes"] activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"])) activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None) activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None) activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None) activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None) laps_info = [] laps_starts = [] if "laps" in activityData: laps_info = activityData["laps"] for lap in activityData["laps"]: laps_starts.append(dateutil.parser.parse(lap["start_time"])) lap = None for lapinfo in laps_info: lap = Lap() activity.Laps.append(lap) lap.StartTime = dateutil.parser.parse(lapinfo["start_time"]) lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"]) if "type" in lapinfo: lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest if "distance" in lapinfo: lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"])) if "duration" in lapinfo: lap.Stats.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=lapinfo["duration"]) if "calories" in lapinfo: lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"]) if "elevation_gain" in lapinfo: lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"]))) if "elevation_loss" in lapinfo: lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"]))) if "max_speed" in lapinfo: lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"]))) if "max_speed" in lapinfo: lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"]))) if "avg_speed" in lapinfo: lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"]))) if "max_heartrate" in lapinfo: lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"]))) if "avg_heartrate" in lapinfo: lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"]))) if lap is None: # No explicit laps => make one that encompasses the entire activity lap = Lap() activity.Laps.append(lap) lap.Stats = activity.Stats lap.StartTime = activity.StartTime lap.EndTime = activity.EndTime elif len(activity.Laps) == 1: activity.Stats.update(activity.Laps[0].Stats) # Lap stats have a bit more info generally. activity.Laps[0].Stats = activity.Stats timerStops = [] if "timer_stops" in activityData: for stop in activityData["timer_stops"]: timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])]) def isInTimerStop(timestamp): for stop in timerStops: if timestamp >= stop[0] and timestamp < stop[1]: return True if timestamp >= stop[1]: return False return False # Collate the individual streams into our waypoints. # Global sample rate is variable - will pick the next nearest stream datapoint. # Resampling happens on a lookbehind basis - new values will only appear their timestamp has been reached/passed wasInPause = False currentLapIdx = 0 lap = activity.Laps[currentLapIdx] streams = [] for stream in ["location", "elevation", "heartrate", "power", "cadence", "distance"]: if stream in activityData: streams.append(stream) stream_indices = dict([(stream, -1) for stream in streams]) # -1 meaning the stream has yet to start stream_lengths = dict([(stream, len(activityData[stream])/2) for stream in streams]) # Data comes as "stream":[timestamp,value,timestamp,value,...] stream_values = {} for stream in streams: values = [] for x in range(0,int(len(activityData[stream])/2)): values.append((activityData[stream][x * 2], activityData[stream][x * 2 + 1])) stream_values[stream] = values currentOffset = 0 def streamVal(stream): nonlocal stream_values, stream_indices return stream_values[stream][stream_indices[stream]][1] def hasStreamData(stream): nonlocal stream_indices, streams return stream in streams and stream_indices[stream] >= 0 while True: advance_stream = None advance_offset = None for stream in streams: if stream_indices[stream] + 1 == stream_lengths[stream]: continue # We're at the end - can't advance if advance_offset is None or stream_values[stream][stream_indices[stream] + 1][0] - currentOffset < advance_offset: advance_offset = stream_values[stream][stream_indices[stream] + 1][0] - currentOffset advance_stream = stream if not advance_stream: break # We've hit the end of every stream, stop # Advance streams sharing the current timestamp for stream in streams: if stream == advance_stream: continue # For clarity, we increment this later if stream_indices[stream] + 1 == stream_lengths[stream]: continue # We're at the end - can't advance if stream_values[stream][stream_indices[stream] + 1][0] == stream_values[advance_stream][stream_indices[advance_stream] + 1][0]: stream_indices[stream] += 1 stream_indices[advance_stream] += 1 # Advance the key stream for this waypoint currentOffset = stream_values[advance_stream][stream_indices[advance_stream]][0] # Update the current time offset waypoint = Waypoint(activity.StartTime + timedelta(seconds=currentOffset)) if hasStreamData("location"): waypoint.Location = Location(streamVal("location")[0], streamVal("location")[1], None) activity.GPS = True if returnFirstLocation: return waypoint.Location if hasStreamData("elevation"): if not waypoint.Location: waypoint.Location = Location(None, None, None) waypoint.Location.Altitude = streamVal("elevation") if hasStreamData("heartrate"): waypoint.HR = streamVal("heartrate") if hasStreamData("power"): waypoint.Power = streamVal("power") if hasStreamData("cadence"): waypoint.Cadence = streamVal("cadence") if hasStreamData("distance"): waypoint.Distance = streamVal("distance") inPause = isInTimerStop(waypoint.Timestamp) waypoint.Type = WaypointType.Regular if not inPause else WaypointType.Pause if wasInPause and not inPause: waypoint.Type = WaypointType.Resume wasInPause = inPause # We only care if it's possible to start a new lap, i.e. there are more left if currentLapIdx + 1 < len(laps_starts): if laps_starts[currentLapIdx + 1] < waypoint.Timestamp: # A new lap has started currentLapIdx += 1 lap = activity.Laps[currentLapIdx] lap.Waypoints.append(waypoint) if returnFirstLocation: return None # I guess there were no waypoints? if activity.CountTotalWaypoints(): activity.GetFlatWaypoints()[0].Type = WaypointType.Start activity.GetFlatWaypoints()[-1].Type = WaypointType.End activity.Stationary = False else: activity.Stationary = True return activity def DownloadActivity(self, serviceRecord, activity): return self._downloadActivity(serviceRecord, activity) def UploadActivity(self, serviceRecord, activity): activityData = {} # Props to the SportTracks API people for seamlessly supprting activities with or without TZ data. activityData["start_time"] = activity.StartTime.isoformat() if activity.Name: activityData["name"] = activity.Name if activity.Notes: activityData["notes"] = activity.Notes activityData["sharing"] = "public" if not activity.Private else "private" activityData["type"] = self._reverseActivityMappings[activity.Type] def _resolveDuration(obj): if obj.Stats.TimerTime.Value is not None: return obj.Stats.TimerTime.asUnits(ActivityStatisticUnit.Seconds).Value if obj.Stats.MovingTime.Value is not None: return obj.Stats.MovingTime.asUnits(ActivityStatisticUnit.Seconds).Value return (obj.EndTime - obj.StartTime).total_seconds() def _mapStat(dict, key, val, naturalValue=False): if val is not None: if naturalValue: val = round(val) dict[key] = val _mapStat(activityData, "clock_duration", (activity.EndTime - activity.StartTime).total_seconds()) _mapStat(activityData, "duration", _resolveDuration(activity)) # This has to be set, otherwise all time shows up as "stopped" :( _mapStat(activityData, "total_distance", activity.Stats.Distance.asUnits(ActivityStatisticUnit.Meters).Value) _mapStat(activityData, "calories", activity.Stats.Energy.asUnits(ActivityStatisticUnit.Kilojoules).Value, naturalValue=True) _mapStat(activityData, "elevation_gain", activity.Stats.Elevation.Gain) _mapStat(activityData, "elevation_loss", activity.Stats.Elevation.Loss) _mapStat(activityData, "max_speed", activity.Stats.Speed.Max) _mapStat(activityData, "avg_heartrate", activity.Stats.HR.Average) _mapStat(activityData, "max_heartrate", activity.Stats.HR.Max) _mapStat(activityData, "avg_cadence", activity.Stats.Cadence.Average) _mapStat(activityData, "max_cadence", activity.Stats.Cadence.Max) _mapStat(activityData, "avg_power", activity.Stats.Power.Average) _mapStat(activityData, "max_power", activity.Stats.Power.Max) activityData["laps"] = [] lapNum = 0 for lap in activity.Laps: lapNum += 1 lapinfo = { "number": lapNum, "start_time": lap.StartTime.isoformat(), "type": "REST" if lap.Intensity == LapIntensity.Rest else "ACTIVE" } _mapStat(lapinfo, "clock_duration", (lap.EndTime - lap.StartTime).total_seconds()) # Required too. _mapStat(lapinfo, "duration", _resolveDuration(lap)) # This field is required for laps to be created. _mapStat(lapinfo, "distance", lap.Stats.Distance.asUnits(ActivityStatisticUnit.Meters).Value) # Probably required. _mapStat(lapinfo, "calories", lap.Stats.Energy.asUnits(ActivityStatisticUnit.Kilojoules).Value, naturalValue=True) _mapStat(lapinfo, "elevation_gain", lap.Stats.Elevation.Gain) _mapStat(lapinfo, "elevation_loss", lap.Stats.Elevation.Loss) _mapStat(lapinfo, "max_speed", lap.Stats.Speed.Max) _mapStat(lapinfo, "avg_heartrate", lap.Stats.HR.Average) _mapStat(lapinfo, "max_heartrate", lap.Stats.HR.Max) activityData["laps"].append(lapinfo) if not activity.Stationary: timer_stops = [] timer_stopped_at = None def stream_append(stream, wp, data): stream += [round((wp.Timestamp - activity.StartTime).total_seconds()), data] location_stream = [] distance_stream = [] elevation_stream = [] heartrate_stream = [] power_stream = [] cadence_stream = [] for lap in activity.Laps: for wp in lap.Waypoints: if wp.Location and wp.Location.Latitude and wp.Location.Longitude: stream_append(location_stream, wp, [wp.Location.Latitude, wp.Location.Longitude]) if wp.HR: stream_append(heartrate_stream, wp, round(wp.HR)) if wp.Distance: stream_append(distance_stream, wp, wp.Distance) if wp.Cadence or wp.RunCadence: stream_append(cadence_stream, wp, round(wp.Cadence) if wp.Cadence else round(wp.RunCadence)) if wp.Power: stream_append(power_stream, wp, wp.Power) if wp.Location and wp.Location.Altitude: stream_append(elevation_stream, wp, wp.Location.Altitude) if wp.Type == WaypointType.Pause and not timer_stopped_at: timer_stopped_at = wp.Timestamp if wp.Type != WaypointType.Pause and timer_stopped_at: timer_stops.append([timer_stopped_at, wp.Timestamp]) timer_stopped_at = None activityData["elevation"] = elevation_stream activityData["heartrate"] = heartrate_stream activityData["power"] = power_stream activityData["cadence"] = cadence_stream activityData["distance"] = distance_stream activityData["location"] = location_stream activityData["timer_stops"] = [[y.isoformat() for y in x] for x in timer_stops] headers = self._getAuthHeaders(serviceRecord) headers.update({"Content-Type": "application/json"}) upload_resp = requests.post(self.OpenFitEndpoint + "/fitnessActivities.json", data=json.dumps(activityData), headers=headers) if upload_resp.status_code != 200: if upload_resp.status_code == 401: raise APIException("ST.mobi trial expired", block=True, user_exception=UserException(UserExceptionType.AccountExpired, intervention_required=True)) raise APIException("Unable to upload activity %s" % upload_resp.text) return upload_resp.json()["uris"][0]
the-stack_106_26428
import sys import gzip import json import pytest import numpy as np import yaml from aizynthfinder.context.config import Configuration from aizynthfinder.context.policy import ExpansionPolicy, FilterPolicy from aizynthfinder.context.stock import Stock from aizynthfinder.mcts.node import Node from aizynthfinder.chem import Molecule, TreeMolecule, RetroReaction from aizynthfinder.mcts.mcts import SearchTree from aizynthfinder.analysis import TreeAnalysis from aizynthfinder.utils.trees import ( AndOrSearchTreeBase, TreeNodeMixin, SplitAndOrTree, ) from aizynthfinder.utils.serialization import MoleculeDeserializer def pytest_addoption(parser): parser.addoption( "--finder_config", help="the configuration file for the aizynthfinder", ) parser.addoption( "--stocks", nargs="+", help="the stocks to use in the aizynthfinder", ) parser.addoption("--policy", help="the policy to use in the aizynthfinder") parser.addoption( "--run_integration", action="store_true", default=False, help="run integration tests", ) def pytest_collection_modifyitems(config, items): if config.getoption("--run_integration"): return skip_integration = pytest.mark.skip(reason="need --run_integration option to run") for item in items: if "integration" in item.keywords: item.add_marker(skip_integration) def pytest_configure(config): config.addinivalue_line( "markers", "integration: this one is for integration tests." ) @pytest.fixture def add_cli_arguments(): saved_argv = list(sys.argv) def wrapper(args): sys.argv = [sys.argv[0]] + args.split(" ") yield wrapper sys.argv = saved_argv @pytest.fixture def default_config(): return Configuration() @pytest.fixture def filter_policy(default_config): policy = FilterPolicy(default_config) return policy @pytest.fixture def fresh_tree(default_config): return SearchTree(config=default_config, root_smiles=None) @pytest.fixture def generate_root(default_config): def wrapper(smiles): return Node.create_root(smiles, tree=None, config=default_config) return wrapper @pytest.fixture def mock_expansion_policy(mocker, simple_actions): mocked_get_action = mocker.patch( "aizynthfinder.context.policy.ExpansionPolicy.get_actions" ) def wrapper(mol): mocked_get_action.return_value = simple_actions(mol) return mocked_get_action.return_value return wrapper @pytest.fixture def load_reaction_tree(shared_datadir): def wrapper(filename, index=0): filename = str(shared_datadir / filename) with open(filename, "r") as fileobj: trees = json.load(fileobj) if isinstance(trees, dict): return trees else: return trees[index] return wrapper @pytest.fixture def mocked_reaction(mocker): """ Fixture for creating a mocked Reaction object Will return a function that should be called with the parent of the reaction and the TreeMolecule objects that should be returned when calling ``apply``. """ def wrapper(parent, return_value): class MockedReaction(mocker.MagicMock): @property def index(self): return 0 @property def mol(self): return parent @property def reactants(self): return [return_value] if return_value else [] def apply(self, *_): return self.reactants return MockedReaction() return wrapper @pytest.fixture def mock_get_actions(mocker, mocked_reaction): """ Fixture for mocking the call to the ``get_actions`` method of the Policy class, used to return reactions and probabilities of these actions. Will return a function that should be called will: - the parent TreeMolecule object - the SMILES of the State object of the Node that will be calling ``get_actions`` - a list of the the SMILES of the molecules that will be returned by the Reaction class - a list of probabilities for each action that should be returned by ``get_actions`` the function will create the TreeMolecule objects that should be returned by the Reaction classes, and it will return them to the caller. """ actions = {} def get_action(mols): key = tuple(mol.smiles for mol in mols) return actions[key] mocked_get_actions = mocker.patch( "aizynthfinder.context.policy.ExpansionPolicy.get_actions" ) mocked_get_actions.side_effect = get_action def wrapper(parent, key_smiles, child_smiles_list, probs): rxn_objs = [] mol_objs_list = [] for child_smiles in child_smiles_list: if not child_smiles: rxn_objs.append(mocked_reaction(parent, None)) continue mol_objs = [ TreeMolecule(parent=parent, smiles=smiles) for smiles in child_smiles ] mol_objs_list.append(mol_objs) rxn_objs.append(mocked_reaction(parent, mol_objs)) actions[key_smiles] = rxn_objs, probs return mol_objs_list return wrapper @pytest.fixture def mock_policy_model(mocker): class MockedKerasModel(mocker.MagicMock): @property def input(self): pass @property def output(self): pass def predict(self, *_): pass mocker.patch.object( MockedKerasModel, "input", mocker.PropertyMock(return_value=np.zeros((3, 3))) ) mocker.patch.object( MockedKerasModel, "output", mocker.PropertyMock(return_value=np.zeros((3, 3))) ) mocker.patch.object( MockedKerasModel, "predict", mocker.MagicMock(return_value=np.array([[0.2, 0.7, 0.1]])), ) return mocker.patch( "aizynthfinder.utils.models.load_keras_model", return_value=MockedKerasModel ) @pytest.fixture def mock_stock(tmpdir): """ Fixture for setting up stock of inchi keys in a textfile. Will return a function that should be called with any number of Molecule objects as arguments """ def wrapper(config, *molecules): molecules = [ Molecule(smiles=mol) if isinstance(mol, str) else mol for mol in molecules ] filename = str(tmpdir / "stock.txt") with open(filename, "w") as fileobj: fileobj.write("\n".join([mol.inchi_key for mol in molecules])) config.stock.load(filename, "stock") config.stock.select("stock") return wrapper @pytest.fixture def expansion_policy(default_config): policy = ExpansionPolicy(default_config) return policy @pytest.fixture def setup_analysis(default_config, shared_datadir, tmpdir, mock_stock): mock_stock( default_config, "N#Cc1cccc(N)c1F", "O=C(Cl)c1ccc(F)cc1", "CN1CCC(Cl)CC1", "O" ) with gzip.open(shared_datadir / "full_search_tree.json.gz", "rb") as gzip_obj: with open(tmpdir / "full_search_tree.json", "wb") as fileobj: fileobj.write(gzip_obj.read()) tree = SearchTree.from_json(tmpdir / "full_search_tree.json", default_config) nodes = list(tree.graph()) def wrapper(scorer=None): return TreeAnalysis(tree, scorer=scorer), nodes return wrapper @pytest.fixture def setup_complete_tree(fresh_tree, mocker, mock_stock): tree = fresh_tree state1 = mocker.MagicMock() state1.mols = [ TreeMolecule( parent=None, transform=0, smiles="CN1CCC(C(=O)c2cccc(NC(=O)c3ccc(F)cc3)c2F)CC1", ) ] state1.in_stock_list = [False] state1.score = 0.049 state1.is_solved = False state1.max_transforms = state1.mols[0].transform node1 = mocker.MagicMock() node1.state = state1 node1.parent = None node1.tree = tree node1.is_expanded = True action1 = ( "([C:2]-[CH;D3;+0:1](-[C:3])-[C;H0;D3;+0:4](=[O;H0;D1;+0:6])-[c:5])" ">>(Cl-[CH;D3;+0:1](-[C:2])-[C:3]).(N#[C;H0;D2;+0:4]-[c:5]).([OH2;D0;+0:6])" ) reaction1 = RetroReaction(state1.mols[0], action1) reaction1.apply() node1.__getitem__.return_value = {"action": reaction1} tree.root = node1 state2 = mocker.MagicMock() state2.mols = [ TreeMolecule(parent=state1.mols[0], smiles=smiles) for smiles in ["CN1CCC(Cl)CC1", "N#Cc1cccc(NC(=O)c2ccc(F)cc2)c1F", "O"] ] state2.max_transforms = state2.mols[0].transform state2.in_stock_list = [True, False, True] state2.score = 0.68 state2.is_solved = False node2 = mocker.MagicMock() node2.parent = node1 node2.is_expanded = True node2.state = state2 node2.tree = tree node1.promising_child.return_value = node2 node1.children.return_value = [node2] action2 = ( "([O;D1;H0:2]=[C;H0;D3;+0:1](-[c:3])-[NH;D2;+0:4]-[c:5])" ">>(Cl-[C;H0;D3;+0:1](=[O;D1;H0:2])-[c:3]).([NH2;D1;+0:4]-[c:5])" ) reaction2 = RetroReaction(state2.mols[1], action2) reaction2.apply() node2.__getitem__.return_value = {"action": reaction2} state3 = mocker.MagicMock() state3.mols = [ TreeMolecule(parent=state2.mols[1], smiles=smiles) for smiles in ["N#Cc1cccc(N)c1F", "O=C(Cl)c1ccc(F)cc1"] ] state3.max_transforms = state3.mols[0].transform state3.in_stock_list = [True, True] state3.stock = mocker.MagicMock() state3.stock.__contains__.side_effect = [False, True, False, True, True, True] state3.score = 0.99 state3.is_solved = True node3 = mocker.MagicMock() node3.parent = node2 node3.tree = tree node3.state = state3 node2.promising_child.return_value = node3 node2.children.return_value = [node3] node3.children.return_value = [] return tree, [node1, node2, node3] @pytest.fixture def set_default_prior(default_config): default_config.use_prior = False def wrapper(prior): default_config.default_prior = prior yield wrapper default_config.use_prior = True @pytest.fixture def setup_search(fresh_tree, generate_root): tree = fresh_tree tree.initialize() def wrapper(smiles): root = generate_root(smiles) tree.add_root(root) return tree, root return wrapper @pytest.fixture def simple_actions(): # These templated reactions are taken from the full USPTO data set # action1 and action2 can be applied, action3 cannot def wrapper(mol): actions = { "CCCCOc1ccc(CC(=O)N(C)O)cc1": [ "([#8:4]-[N;H0;D3;+0:5](-[C;D1;H3:6])-[C;H0;D3;+0:1](-[C:2])=[O;D1;H0:3])" ">>(Cl-[C;H0;D3;+0:1](-[C:2])=[O;D1;H0:3]).([#8:4]-[NH;D2;+0:5]-[C;D1;H3:6])", "([C:2]-[CH2;D2;+0:1]-[O;H0;D2;+0:3]-[c:4])>>(Br-[CH2;D2;+0:1]-[C:2]).([OH;D1;+0:3]-[c:4])", "([C:4]-[N;H0;D3;+0:5](-[C:6])-[C;H0;D3;+0:1](-[C:2])=[O;D1;H0:3])>>" "(O-[C;H0;D3;+0:1](-[C:2])=[O;D1;H0:3]).([C:4]-[NH;D2;+0:5]-[C:6])", ] } action1, action2, action3 = actions[mol.smiles] action_list = [ RetroReaction(mol, action1, metadata={"dummy": 1}), RetroReaction(mol, action2, metadata={"dummy": 2}), RetroReaction(mol, action3, metadata={"dummy": 3}), ] prior_list = [0.7, 0.5, 0.3] return action_list, prior_list return wrapper @pytest.fixture def stock(): stock = Stock() return stock @pytest.fixture def write_yaml(tmpdir): filename = str(tmpdir / "test.yaml") def wrapper(dict_): with open(filename, "w") as fileobj: yaml.dump(dict_, fileobj) return filename return wrapper @pytest.fixture def setup_analysis_andor_tree(default_config, shared_datadir, mock_stock): # noqa mock_stock( default_config, "Nc1ccc(NC(=S)Nc2ccccc2)cc1", "Cc1ccc2nc3ccccc3c(Cl)c2c1", "Nc1ccccc1", "Nc1ccc(N=C=S)cc1", "Cc1ccc2nc3ccccc3c(Br)c2c1", "Nc1ccc(Br)cc1", ) class BasicAndOrTree(AndOrSearchTreeBase): def __init__(self, filename, config): super().__init__(config) self._mol_nodes = [] with open(filename, "r") as fileobj: dict_ = json.load(fileobj) mol_deser = MoleculeDeserializer(dict_["molecules"]) self.root = AndOrNode(dict_["tree"], config, mol_deser, self) @property def mol_nodes(self): return self._mol_nodes def one_iteration(self): return False def routes(self): return SplitAndOrTree(self.root, self.config.stock).routes class AndOrNode(TreeNodeMixin): def __init__(self, dict_, config, molecules, tree): self.tree = tree self.config = config self._children = [ AndOrNode(child, config, molecules, tree) for child in dict_["children"] ] if "reaction" in dict_: self._obj = RetroReaction( molecules[dict_["reaction"]["mol"]], dict_["reaction"]["smarts"], dict_["reaction"]["index"], dict_["reaction"].get("metadata", {}), ) self._solved = all(child.prop["solved"] for child in self._children) else: self.tree._mol_nodes.append(self) self._obj = molecules[dict_["mol"]] self._solved = self._obj in self.config.stock @property def prop(self): obj_key = "reaction" if isinstance(self._obj, RetroReaction) else "mol" return {obj_key: self._obj, "solved": self._solved} @property def children(self): return self._children tree = BasicAndOrTree(str(shared_datadir / "and_or_tree.json"), default_config) def wrapper(scorer=None): return TreeAnalysis(tree, scorer=scorer) return wrapper
the-stack_106_26431
""" Action class for Jaseci Each action has an id, name, timestamp and it's set of edges. """ from .item import item from jaseci.actions.live_actions import live_actions # ACTION_PACKAGE = 'jaseci.actions.' class action(item): """ Action class for Jaseci preset_in_out holds a set of parameters in the form of lists of context objects that are to be used from whereever those contexts are attached e.g., (nodes, edges, walkers, etc). This is used by Jac's runtime engine to support preset actions in nodes access_list is used by walker to decide what to trigger """ def __init__(self, preset_in_out=None, access_list=None, *args, **kwargs): self.preset_in_out = preset_in_out # Not using _ids convention self.access_list = access_list super().__init__(*args, **kwargs) def trigger(self, param_list, scope): """ param_list should be passed as list of values to lib functions Also note that Jac stores preset_in_out as input/output list of hex ids since preset_in_out doesn't use _ids convention """ result = live_actions[ self.value](*param_list, meta={'m_id': scope.parent._m_id, 'h': scope.parent._h, 'scope': scope}) return result
the-stack_106_26433
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test multiwallet. Verify that a defid node can load multiple wallet files """ import os import shutil import time from test_framework.test_framework import DefiTestFramework from test_framework.test_node import ErrorMatch from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class MultiWalletTest(DefiTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.supports_cli = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] data_dir = lambda *p: os.path.join(node.datadir, 'regtest', *p) wallet_dir = lambda *p: data_dir('wallets', *p) wallet = lambda name: node.get_wallet_rpc(name) def wallet_file(name): if os.path.isdir(wallet_dir(name)): return wallet_dir(name, "wallet.dat") return wallet_dir(name) assert_equal(self.nodes[0].listwalletdir(), { 'wallets': [{ 'name': '' }] }) # check wallet.dat is created self.stop_nodes() assert_equal(os.path.isfile(wallet_dir('wallet.dat')), True) # create symlink to verify wallet directory path can be referenced # through symlink os.mkdir(wallet_dir('w7')) os.symlink('w7', wallet_dir('w7_symlink')) # rename wallet.dat to make sure plain wallet file paths (as opposed to # directory paths) can be loaded os.rename(wallet_dir("wallet.dat"), wallet_dir("w8")) # create another dummy wallet for use in testing backups later self.start_node(0, []) self.stop_nodes() empty_wallet = os.path.join(self.options.tmpdir, 'empty.dat') os.rename(wallet_dir("wallet.dat"), empty_wallet) # restart node with a mix of wallet names: # w1, w2, w3 - to verify new wallets created when non-existing paths specified # w - to verify wallet name matching works when one wallet path is prefix of another # sub/w5 - to verify relative wallet path is created correctly # extern/w6 - to verify absolute wallet path is created correctly # w7_symlink - to verify symlinked wallet path is initialized correctly # w8 - to verify existing wallet file is loaded correctly # '' - to verify default wallet file is created correctly wallet_names = ['w1', 'w2', 'w3', 'w', 'sub/w5', os.path.join(self.options.tmpdir, 'extern/w6'), 'w7_symlink', 'w8', ''] extra_args = ['-wallet={}'.format(n) for n in wallet_names] self.start_node(0, extra_args) assert_equal(sorted(map(lambda w: w['name'], self.nodes[0].listwalletdir()['wallets'])), ['', os.path.join('sub', 'w5'), 'w', 'w1', 'w2', 'w3', 'w7', 'w7_symlink', 'w8']) assert_equal(set(node.listwallets()), set(wallet_names)) # check that all requested wallets were created self.stop_node(0) for wallet_name in wallet_names: assert_equal(os.path.isfile(wallet_file(wallet_name)), True) # should not initialize if wallet path can't be created exp_stderr = "boost::filesystem::create_directory:" self.nodes[0].assert_start_raises_init_error(['-wallet=wallet.dat/bad'], exp_stderr, match=ErrorMatch.PARTIAL_REGEX) self.nodes[0].assert_start_raises_init_error(['-walletdir=wallets'], 'Error: Specified -walletdir "wallets" does not exist') self.nodes[0].assert_start_raises_init_error(['-walletdir=wallets'], 'Error: Specified -walletdir "wallets" is a relative path', cwd=data_dir()) self.nodes[0].assert_start_raises_init_error(['-walletdir=debug.log'], 'Error: Specified -walletdir "debug.log" is not a directory', cwd=data_dir()) # should not initialize if there are duplicate wallets self.nodes[0].assert_start_raises_init_error(['-wallet=w1', '-wallet=w1'], 'Error: Error loading wallet w1. Duplicate -wallet filename specified.') # should not initialize if one wallet is a copy of another shutil.copyfile(wallet_dir('w8'), wallet_dir('w8_copy')) exp_stderr = "BerkeleyBatch: Can't open database w8_copy \(duplicates fileid \w+ from w8\)" self.nodes[0].assert_start_raises_init_error(['-wallet=w8', '-wallet=w8_copy'], exp_stderr, match=ErrorMatch.PARTIAL_REGEX) # should not initialize if wallet file is a symlink os.symlink('w8', wallet_dir('w8_symlink')) self.nodes[0].assert_start_raises_init_error(['-wallet=w8_symlink'], 'Error: Invalid -wallet path \'w8_symlink\'\. .*', match=ErrorMatch.FULL_REGEX) # should not initialize if the specified walletdir does not exist self.nodes[0].assert_start_raises_init_error(['-walletdir=bad'], 'Error: Specified -walletdir "bad" does not exist') # should not initialize if the specified walletdir is not a directory not_a_dir = wallet_dir('notadir') open(not_a_dir, 'a', encoding="utf8").close() self.nodes[0].assert_start_raises_init_error(['-walletdir=' + not_a_dir], 'Error: Specified -walletdir "' + not_a_dir + '" is not a directory') self.log.info("Do not allow -zapwallettxes with multiwallet") self.nodes[0].assert_start_raises_init_error(['-zapwallettxes', '-wallet=w1', '-wallet=w2'], "Error: -zapwallettxes is only allowed with a single wallet file") self.nodes[0].assert_start_raises_init_error(['-zapwallettxes=1', '-wallet=w1', '-wallet=w2'], "Error: -zapwallettxes is only allowed with a single wallet file") self.nodes[0].assert_start_raises_init_error(['-zapwallettxes=2', '-wallet=w1', '-wallet=w2'], "Error: -zapwallettxes is only allowed with a single wallet file") self.log.info("Do not allow -salvagewallet with multiwallet") self.nodes[0].assert_start_raises_init_error(['-salvagewallet', '-wallet=w1', '-wallet=w2'], "Error: -salvagewallet is only allowed with a single wallet file") self.nodes[0].assert_start_raises_init_error(['-salvagewallet=1', '-wallet=w1', '-wallet=w2'], "Error: -salvagewallet is only allowed with a single wallet file") self.log.info("Do not allow -upgradewallet with multiwallet") self.nodes[0].assert_start_raises_init_error(['-upgradewallet', '-wallet=w1', '-wallet=w2'], "Error: -upgradewallet is only allowed with a single wallet file") self.nodes[0].assert_start_raises_init_error(['-upgradewallet=1', '-wallet=w1', '-wallet=w2'], "Error: -upgradewallet is only allowed with a single wallet file") # if wallets/ doesn't exist, datadir should be the default wallet dir wallet_dir2 = data_dir('walletdir') os.rename(wallet_dir(), wallet_dir2) self.start_node(0, ['-wallet=w4', '-wallet=w5']) assert_equal(set(node.listwallets()), {"w4", "w5"}) w5 = wallet("w5") w5.importprivkey(privkey=node.get_genesis_keys().operatorPrivKey) node.generate(nblocks=1, address=w5.getnewaddress()) # now if wallets/ exists again, but the rootdir is specified as the walletdir, w4 and w5 should still be loaded os.rename(wallet_dir2, wallet_dir()) self.restart_node(0, ['-wallet=w4', '-wallet=w5', '-walletdir=' + data_dir()]) assert_equal(set(node.listwallets()), {"w4", "w5"}) w5 = wallet("w5") w5_info = w5.getwalletinfo() assert_equal(w5_info['immature_balance'], 50) competing_wallet_dir = os.path.join(self.options.tmpdir, 'competing_walletdir') os.mkdir(competing_wallet_dir) self.restart_node(0, ['-walletdir=' + competing_wallet_dir]) exp_stderr = "Error: Error initializing wallet database environment \"\S+competing_walletdir\"!" self.nodes[1].assert_start_raises_init_error(['-walletdir=' + competing_wallet_dir], exp_stderr, match=ErrorMatch.PARTIAL_REGEX) self.restart_node(0, extra_args) assert_equal(sorted(map(lambda w: w['name'], self.nodes[0].listwalletdir()['wallets'])), ['', os.path.join('sub', 'w5'), 'w', 'w1', 'w2', 'w3', 'w7', 'w7_symlink', 'w8', 'w8_copy']) wallets = [wallet(w) for w in wallet_names] wallet_bad = wallet("bad") # check wallet names and balances node.generate(nblocks=1, address=wallets[0].getnewaddress()) for wallet_name, wallet in zip(wallet_names, wallets): info = wallet.getwalletinfo() assert_equal(info['immature_balance'], 50 if wallet is wallets[0] else 0) assert_equal(info['walletname'], wallet_name) # accessing invalid wallet fails assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", wallet_bad.getwalletinfo) # accessing wallet RPC without using wallet endpoint fails assert_raises_rpc_error(-19, "Wallet file not specified", node.getwalletinfo) w1, w2, w3, w4, *_ = wallets node.generate(nblocks=101, address=w1.getnewaddress()) assert_equal(w1.getbalance(), 100) assert_equal(w2.getbalance(), 0) assert_equal(w3.getbalance(), 0) assert_equal(w4.getbalance(), 0) w1.sendtoaddress(w2.getnewaddress(), 1) w1.sendtoaddress(w3.getnewaddress(), 2) w1.sendtoaddress(w4.getnewaddress(), 3) node.generate(nblocks=1, address=w1.getnewaddress()) assert_equal(w2.getbalance(), 1) assert_equal(w3.getbalance(), 2) assert_equal(w4.getbalance(), 3) batch = w1.batch([w1.getblockchaininfo.get_request(), w1.getwalletinfo.get_request()]) assert_equal(batch[0]["result"]["chain"], "regtest") assert_equal(batch[1]["result"]["walletname"], "w1") self.log.info('Check for per-wallet settxfee call') assert_equal(w1.getwalletinfo()['paytxfee'], 0) assert_equal(w2.getwalletinfo()['paytxfee'], 0) w2.settxfee(4.0) assert_equal(w1.getwalletinfo()['paytxfee'], 0) assert_equal(w2.getwalletinfo()['paytxfee'], 4.0) self.log.info("Test dynamic wallet loading") self.restart_node(0, ['-nowallet']) assert_equal(node.listwallets(), []) assert_raises_rpc_error(-32601, "Method not found", node.getwalletinfo) self.log.info("Load first wallet") loadwallet_name = node.loadwallet(wallet_names[0]) assert_equal(loadwallet_name['name'], wallet_names[0]) assert_equal(node.listwallets(), wallet_names[0:1]) node.getwalletinfo() w1 = node.get_wallet_rpc(wallet_names[0]) w1.getwalletinfo() self.log.info("Load second wallet") loadwallet_name = node.loadwallet(wallet_names[1]) assert_equal(loadwallet_name['name'], wallet_names[1]) assert_equal(node.listwallets(), wallet_names[0:2]) assert_raises_rpc_error(-19, "Wallet file not specified", node.getwalletinfo) w2 = node.get_wallet_rpc(wallet_names[1]) w2.getwalletinfo() self.log.info("Load remaining wallets") for wallet_name in wallet_names[2:]: loadwallet_name = self.nodes[0].loadwallet(wallet_name) assert_equal(loadwallet_name['name'], wallet_name) assert_equal(set(self.nodes[0].listwallets()), set(wallet_names)) # Fail to load if wallet doesn't exist assert_raises_rpc_error(-18, 'Wallet wallets not found.', self.nodes[0].loadwallet, 'wallets') # Fail to load duplicate wallets assert_raises_rpc_error(-4, 'Wallet file verification failed: Error loading wallet w1. Duplicate -wallet filename specified.', self.nodes[0].loadwallet, wallet_names[0]) # Fail to load duplicate wallets by different ways (directory and filepath) assert_raises_rpc_error(-4, "Wallet file verification failed: Error loading wallet wallet.dat. Duplicate -wallet filename specified.", self.nodes[0].loadwallet, 'wallet.dat') # Fail to load if one wallet is a copy of another assert_raises_rpc_error(-1, "BerkeleyBatch: Can't open database w8_copy (duplicates fileid", self.nodes[0].loadwallet, 'w8_copy') # Fail to load if one wallet is a copy of another, test this twice to make sure that we don't re-introduce #14304 assert_raises_rpc_error(-1, "BerkeleyBatch: Can't open database w8_copy (duplicates fileid", self.nodes[0].loadwallet, 'w8_copy') # Fail to load if wallet file is a symlink assert_raises_rpc_error(-4, "Wallet file verification failed: Invalid -wallet path 'w8_symlink'", self.nodes[0].loadwallet, 'w8_symlink') # Fail to load if a directory is specified that doesn't contain a wallet os.mkdir(wallet_dir('empty_wallet_dir')) assert_raises_rpc_error(-18, "Directory empty_wallet_dir does not contain a wallet.dat file", self.nodes[0].loadwallet, 'empty_wallet_dir') self.log.info("Test dynamic wallet creation.") # Fail to create a wallet if it already exists. assert_raises_rpc_error(-4, "Wallet w2 already exists.", self.nodes[0].createwallet, 'w2') # Successfully create a wallet with a new name loadwallet_name = self.nodes[0].createwallet('w9') assert_equal(loadwallet_name['name'], 'w9') w9 = node.get_wallet_rpc('w9') assert_equal(w9.getwalletinfo()['walletname'], 'w9') assert 'w9' in self.nodes[0].listwallets() # Successfully create a wallet using a full path new_wallet_dir = os.path.join(self.options.tmpdir, 'new_walletdir') new_wallet_name = os.path.join(new_wallet_dir, 'w10') loadwallet_name = self.nodes[0].createwallet(new_wallet_name) assert_equal(loadwallet_name['name'], new_wallet_name) w10 = node.get_wallet_rpc(new_wallet_name) assert_equal(w10.getwalletinfo()['walletname'], new_wallet_name) assert new_wallet_name in self.nodes[0].listwallets() self.log.info("Test dynamic wallet unloading") # Test `unloadwallet` errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].unloadwallet) assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", self.nodes[0].unloadwallet, "dummy") assert_raises_rpc_error(-18, "Requested wallet does not exist or is not loaded", node.get_wallet_rpc("dummy").unloadwallet) assert_raises_rpc_error(-8, "Cannot unload the requested wallet", w1.unloadwallet, "w2"), # Successfully unload the specified wallet name self.nodes[0].unloadwallet("w1") assert 'w1' not in self.nodes[0].listwallets() # Successfully unload the wallet referenced by the request endpoint # Also ensure unload works during walletpassphrase timeout w2.encryptwallet('test') w2.walletpassphrase('test', 1) w2.unloadwallet() time.sleep(1.1) assert 'w2' not in self.nodes[0].listwallets() # Successfully unload all wallets for wallet_name in self.nodes[0].listwallets(): self.nodes[0].unloadwallet(wallet_name) assert_equal(self.nodes[0].listwallets(), []) assert_raises_rpc_error(-32601, "Method not found (wallet method is disabled because no wallet is loaded)", self.nodes[0].getwalletinfo) # Successfully load a previously unloaded wallet self.nodes[0].loadwallet('w1') assert_equal(self.nodes[0].listwallets(), ['w1']) assert_equal(w1.getwalletinfo()['walletname'], 'w1') assert_equal(sorted(map(lambda w: w['name'], self.nodes[0].listwalletdir()['wallets'])), ['', os.path.join('sub', 'w5'), 'w', 'w1', 'w2', 'w3', 'w7', 'w7_symlink', 'w8', 'w8_copy', 'w9']) # Test backing up and restoring wallets self.log.info("Test wallet backup") self.restart_node(0, ['-nowallet']) for wallet_name in wallet_names: self.nodes[0].loadwallet(wallet_name) for wallet_name in wallet_names: rpc = self.nodes[0].get_wallet_rpc(wallet_name) addr = rpc.getnewaddress() backup = os.path.join(self.options.tmpdir, 'backup.dat') rpc.backupwallet(backup) self.nodes[0].unloadwallet(wallet_name) shutil.copyfile(empty_wallet, wallet_file(wallet_name)) self.nodes[0].loadwallet(wallet_name) assert_equal(rpc.getaddressinfo(addr)['ismine'], False) self.nodes[0].unloadwallet(wallet_name) shutil.copyfile(backup, wallet_file(wallet_name)) self.nodes[0].loadwallet(wallet_name) assert_equal(rpc.getaddressinfo(addr)['ismine'], True) # Test .walletlock file is closed self.start_node(1) wallet = os.path.join(self.options.tmpdir, 'my_wallet') self.nodes[0].createwallet(wallet) assert_raises_rpc_error(-4, "Error initializing wallet database environment", self.nodes[1].loadwallet, wallet) self.nodes[0].unloadwallet(wallet) self.nodes[1].loadwallet(wallet) if __name__ == '__main__': MultiWalletTest().main()
the-stack_106_26434
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs a batch job for performing Tensorflow Model Analysis.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import tempfile import apache_beam as beam import tensorflow as tf import tensorflow_model_analysis as tfma try: # Absolute import is preferred after 0.13 release, in which the path below # will be available in TFX package and will be a dependency of chicago taxi # example. from tfx.examples.chicago_taxi.trainer import taxi # pylint: disable=g-import-not-at-top except ImportError: from trainer import taxi # pylint: disable=g-import-not-at-top def process_tfma(eval_result_dir, schema_file, input_csv=None, big_query_table=None, eval_model_dir=None, max_eval_rows=None, pipeline_args=None): """Runs a batch job to evaluate the eval_model against the given input. Args: eval_result_dir: A directory where the evaluation result should be written to. schema_file: A file containing a text-serialized Schema that describes the eval data. input_csv: A path to a csv file which should be the input for evaluation. This can only be set if big_query_table is None. big_query_table: A BigQuery table name specified as DATASET.TABLE which should be the input for evaluation. This can only be set if input_csv is None. eval_model_dir: A directory where the eval model is located. max_eval_rows: Number of rows to query from BigQuery. pipeline_args: additional DataflowRunner or DirectRunner args passed to the beam pipeline. Raises: ValueError: if input_csv and big_query_table are not specified correctly. """ if input_csv == big_query_table and input_csv is None: raise ValueError( 'one of --input_csv or --big_query_table should be provided.') slice_spec = [ tfma.slicer.SingleSliceSpec(), tfma.slicer.SingleSliceSpec(columns=['trip_start_hour']) ] schema = taxi.read_schema(schema_file) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=eval_model_dir, add_metrics_callbacks=[ tfma.post_export_metrics.calibration_plot_and_prediction_histogram(), tfma.post_export_metrics.auc_plots() ]) with beam.Pipeline(argv=pipeline_args) as pipeline: if input_csv: csv_coder = taxi.make_csv_coder(schema) raw_data = ( pipeline | 'ReadFromText' >> beam.io.ReadFromText( input_csv, skip_header_lines=1) | 'ParseCSV' >> beam.Map(csv_coder.decode)) else: assert big_query_table query = taxi.make_sql(big_query_table, max_eval_rows, for_eval=True) raw_feature_spec = taxi.get_raw_feature_spec(schema) raw_data = ( pipeline | 'ReadBigQuery' >> beam.io.Read( beam.io.BigQuerySource(query=query, use_standard_sql=True)) | 'CleanData' >> beam.Map(lambda x: (taxi.clean_raw_data_dict(x, raw_feature_spec)))) # Examples must be in clean tf-example format. coder = taxi.make_proto_coder(schema) _ = ( raw_data | 'ToSerializedTFExample' >> beam.Map(coder.encode) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, slice_spec=slice_spec, output_path=eval_result_dir)) def main(): tf.logging.set_verbosity(tf.logging.INFO) parser = argparse.ArgumentParser() parser.add_argument( '--eval_model_dir', help='Input path to the model which will be evaluated.') parser.add_argument( '--eval_result_dir', help='Output directory in which the model analysis result is written.') parser.add_argument( '--big_query_table', help='BigQuery path to input examples which will be evaluated.') parser.add_argument( '--input_csv', help='CSV file containing raw data which will be evaluated.') parser.add_argument( '--max_eval_rows', help='Maximum number of rows to evaluate on.', default=None, type=int) parser.add_argument( '--schema_file', help='File holding the schema for the input data') known_args, pipeline_args = parser.parse_known_args() if known_args.eval_result_dir: eval_result_dir = known_args.eval_result_dir else: eval_result_dir = tempfile.mkdtemp() process_tfma( eval_result_dir, input_csv=known_args.input_csv, big_query_table=known_args.big_query_table, eval_model_dir=known_args.eval_model_dir, max_eval_rows=known_args.max_eval_rows, schema_file=known_args.schema_file, pipeline_args=pipeline_args) if __name__ == '__main__': main()
the-stack_106_26435
import asyncio import logging import pathlib import signal import socket import time from typing import Dict, List import pkg_resources from fibo.util.chia_logging import initialize_logging from fibo.util.config import load_config from fibo.util.default_root import DEFAULT_ROOT_PATH from fibo.util.setproctitle import setproctitle active_processes: List = [] stopped = False lock = asyncio.Lock() log = logging.getLogger(__name__) async def kill_processes(): global stopped global active_processes async with lock: stopped = True for process in active_processes: try: process.kill() except ProcessLookupError: pass def find_vdf_client() -> pathlib.Path: p = pathlib.Path(pkg_resources.get_distribution("chiavdf").location) / "vdf_client" if p.is_file(): return p raise FileNotFoundError("can't find vdf_client binary") async def spawn_process(host: str, port: int, counter: int): global stopped global active_processes path_to_vdf_client = find_vdf_client() first_10_seconds = True start_time = time.time() while not stopped: try: dirname = path_to_vdf_client.parent basename = path_to_vdf_client.name resolved = socket.gethostbyname(host) proc = await asyncio.create_subprocess_shell( f"{basename} {resolved} {port} {counter}", stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env={"PATH": dirname}, ) except Exception as e: log.warning(f"Exception while spawning process {counter}: {(e)}") continue async with lock: active_processes.append(proc) stdout, stderr = await proc.communicate() if stdout: log.info(f"VDF client {counter}: {stdout.decode().rstrip()}") if stderr: if first_10_seconds: if time.time() - start_time > 10: first_10_seconds = False else: log.error(f"VDF client {counter}: {stderr.decode().rstrip()}") log.info(f"Process number {counter} ended.") async with lock: if proc in active_processes: active_processes.remove(proc) await asyncio.sleep(0.1) async def spawn_all_processes(config: Dict, net_config: Dict): await asyncio.sleep(5) port = config["port"] process_count = config["process_count"] awaitables = [spawn_process(net_config["self_hostname"], port, i) for i in range(process_count)] await asyncio.gather(*awaitables) def main(): root_path = DEFAULT_ROOT_PATH setproctitle("chia_timelord_launcher") net_config = load_config(root_path, "config.yaml") config = net_config["timelord_launcher"] initialize_logging("TLauncher", config["logging"], root_path) def signal_received(): asyncio.create_task(kill_processes()) loop = asyncio.get_event_loop() try: loop.add_signal_handler(signal.SIGINT, signal_received) loop.add_signal_handler(signal.SIGTERM, signal_received) except NotImplementedError: log.info("signal handlers unsupported") try: loop.run_until_complete(spawn_all_processes(config, net_config)) finally: log.info("Launcher fully closed.") loop.close() if __name__ == "__main__": main()
the-stack_106_26437
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # # Astropy documentation build configuration file. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this file. # # All configuration values have a default. Some values are defined in # the global Astropy configuration which is loaded here before anything else. # See astropy.sphinx.conf for which values are set there. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('..')) # IMPORTANT: the above commented section was generated by sphinx-quickstart, but # is *NOT* appropriate for astropy or Astropy affiliated packages. It is left # commented out with this explanation to make it clear why this should not be # done. If the sys.path entry above is added, when the astropy.sphinx.conf # import occurs, it will import the *source* version of astropy instead of the # version installed (if invoked as "make html" or directly with sphinx), or the # version in the build directory (if "python setup.py build_sphinx" is used). # Thus, any C-extensions that are needed to build the documentation will *not* # be accessible, and the documentation will not build correctly. import datetime import os import sys try: import astropy_helpers except ImportError: # Building from inside the docs/ directory? if os.path.basename(os.getcwd()) == 'docs': a_h_path = os.path.abspath(os.path.join('..', 'astropy_helpers')) if os.path.isdir(a_h_path): sys.path.insert(1, a_h_path) import astropy try: from sphinx_astropy.conf.v1 import * # noqa except ImportError: print( 'ERROR: the documentation requires the sphinx-astropy' + ' package to be installed' ) sys.exit(1) plot_rcparams = {} plot_rcparams['figure.figsize'] = (6, 8) plot_rcparams['savefig.facecolor'] = 'none' plot_rcparams['savefig.bbox'] = 'tight' plot_rcparams['axes.labelsize'] = 'large' plot_rcparams['figure.subplot.hspace'] = 0.5 plot_apply_rcparams = True plot_html_show_source_link = False plot_formats = ['png', 'svg', 'pdf'] # Don't use the default - which includes a numpy and matplotlib import plot_pre_code = "" # Get configuration information from setup.cfg try: from ConfigParser import ConfigParser except ImportError: from configparser import ConfigParser conf = ConfigParser() conf.read([os.path.join(os.path.dirname(__file__), '..', 'setup.cfg')]) setup_cfg = dict(conf.items('metadata')) # -- General configuration ---------------------------------------------------- # By default, highlight as Python 3. highlight_language = 'python3' # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.2' # To perform a Sphinx version check that needs to be more specific than # major.minor, call `check_sphinx_version("x.y.z")` here. # check_sphinx_version("1.2.1") # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns.append('_templates') # This is added to the end of RST files - a good place to put substitutions to # be used globally. rst_epilog += """ """ # -- Project information ------------------------------------------------------ # This does not *have* to match the package name, but typically does project = setup_cfg['package_name'] author = setup_cfg['author'] copyright = '{0}, {1}'.format( datetime.datetime.now().year, setup_cfg['author']) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. __import__(setup_cfg['package_name']) package = sys.modules[setup_cfg['package_name']] # The short X.Y version. version = package.__version__.split('-', 1)[0] # The full version, including alpha/beta/rc tags. release = package.__version__ # -- Options for HTML output -------------------------------------------------- html_static_path = ['_static'] html_style = 'pyoof.css' # A NOTE ON HTML THEMES # The global astropy configuration uses a custom theme, 'bootstrap-astropy', # which is installed along with astropy. A different theme can be used or # the options for this theme can be modified by overriding some of the # variables set in the global configuration. The variables set in the # global configuration are listed below, commented out. # Add any paths that contain custom themes here, relative to this directory. # To use a different custom theme, add the directory containing the theme. #html_theme_path = [] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. To override the custom theme, set this to the # name of a builtin theme or the name of a custom theme in html_theme_path. #html_theme = None # Please update these texts to match the name of your package. html_theme_options = { 'logotext1': 'py', # white, semi-bold 'logotext2': 'oof', # orange, light 'logotext3': ':docs' # white, light } # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = '' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = '' # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = '{0} v{1}'.format(project, release) # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output ------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [('index', project + '.tex', project + u' Documentation', author, 'manual')] # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [('index', project.lower(), project + u' Documentation', [author], 1)] # -- Options for the edit_on_github extension --------------------------------- if eval(setup_cfg.get('edit_on_github')): extensions += ['sphinx_astropy.ext.edit_on_github'] versionmod = __import__(setup_cfg['package_name'] + '.version') edit_on_github_project = setup_cfg['github_project'] if versionmod.version.release: edit_on_github_branch = "v" + versionmod.version.version else: edit_on_github_branch = "master" edit_on_github_source_root = "" edit_on_github_doc_root = "docs" # -- Resolving issue number to links in changelog ----------------------------- github_issues_url = 'https://github.com/{0}/issues/'.format(setup_cfg['github_project']) # -- Inline Plotting ---------------------------------------------------------- # extensions += [ # 'matplotlib.sphinxext.only_directives', # 'matplotlib.sphinxext.plot_directive', # ] # -- Options for the Sphinx gallery ------------------------------------------- # try: # import sphinx_gallery # extensions += ["sphinx_gallery.gen_gallery"] # sphinx_gallery_conf = { # 'backreferences_dir': 'generated/modules', # path to store the module using example template # 'filename_pattern': '^((?!skip_).)*$', # execute all examples except those that start with "skip_" # 'examples_dirs': '..{}examples'.format(os.sep), # path to the examples scripts # 'gallery_dirs': 'generated/examples', # path to save gallery generated examples # 'reference_url': { # 'astropy': None, # 'matplotlib': 'http://matplotlib.org/', # 'numpy': 'http://docs.scipy.org/doc/numpy/', # }, # 'abort_on_example_error': True # } # except ImportError: # def setup(app): # app.warn('The sphinx_gallery extension is not installed, so the ' # 'gallery will not be built. You will probably see ' # 'additional warnings about undefined references due ' # 'to this.')
the-stack_106_26439
import socket from Node import Node #ustawienenia naszego gniazda, port oraz nagłówek domyslny HEADER = 64 PORT = 5050 FORMAT = 'utf-8' #formatowanie tekstu DISCONNECT_MESSAGE = "!DISCONNECT" #formatowanie tekstu SERVER = "10.9.25.109" # ip klienta ADDR = (SERVER, PORT) client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) #tworzenie gniazda client.connect(ADDR) #przypisanie adresu def send(msg): #funkcja osblugujaca wysylanie informacji gniazdem message = msg.encode(FORMAT) #deklaracja formatowania tekstu msg_length = len(message) #okreslenei dlugosci tekstu send_length = str(msg_length).encode(FORMAT) #nadanie dlugosci send_length += b' ' * (HEADER - len(send_length)) #dodanie naglowka client.send(send_length) #funkcja wysylajaca pakiet z dlugoscia wiadomosci client.send(message) #funkcja wysylajaca wiadomosc print(client.recv(2048).decode(FORMAT)) #potiwerdznei wyslania nodes = [] initialNodes = [] def codeMessage(message): #kodowanie drzewa #sortowanie wg czestototliwosci oraz zlicznie znkaow dictionary = {} for char in message: if not char in dictionary : dictionary[char] = 1 else : dictionary[char] = dictionary[char] + 1 sortedDictionary = sorted(dictionary.items(),key=lambda x:x[1]) print(sortedDictionary) for char in sortedDictionary : initialNodes.append( Node( sortedDictionary[char] ) ) #tworzenie drzewa nodes.append(initialNodes[0]) for i in range ( 1, len(initialNodes) ) : if initialNodes[i].value > nodes[i-1].value : nodes.append( Node( nodes[-1].value + initialNodes[i].value, nodes[-2], nodes[-1] ) ) string = 'Algorytm Huffmana działa rewelacyjnie!' class NodeTree(object): def __init__(self, left=None, right=None): self.left = left #przejscie na najblizsza lewa galaz self.right = right #przejscie na najblizsza prawa galaz def children(self): #definicja "potomka" return (self.left, self.right) def nodes(self): #definicja wezla return (self.left, self.right) def __str__(self): #funkcja przechowujaca wartosc dla danego wezla return '%s_%s' % (self.left, self.right) def huffmanCodeTree(node, left=True, binString=''): #implementacja drzewa oraz kodowania huffmana if type(node) is str: return {node: binString} #zamiana na binarny string odpowiedni do przeslania gniazdem (l, r) = node.children() #deklaracja drzewa d = dict() #deklaracja slownika d.update(huffmanCodeTree(l, True, binString + '0')) # przypisanie 0 przy przejsciu na lewo d.update(huffmanCodeTree(r, False, binString + '1')) # przypisanie 1 przy przejsciu na prawo return d #sprawdzanie czestotliwosci wystepowania danego znaku w wiadomosci do zakodownaia freq = {} for c in string: if c in freq: freq[c] += 1 else: freq[c] = 1 freq = sorted(freq.items(), key=lambda x: x[1], reverse=True) #sortowanie wg czestotliwosci nodes = freq #przepisanie wartosci while len(nodes) > 1: #petla dla całego drzewa, tworzenei slownika (key1, c1) = nodes[-1] #rozprowadzanie danych po drzewie (key2, c2) = nodes[-2] nodes = nodes[:-2] node = NodeTree(key1, key2) nodes.append((node, c1 + c2)) nodes = sorted(nodes, key=lambda x: x[1], reverse=True) huffmanCode = huffmanCodeTree(nodes[0][0]) #przekazanie slownika i danych do zmiennych print(' Znak - Kod Huffmana ') #wyswietlanie print(huffmanCode) #wysiwetlanie zakodownaj wiadomosci messageToSend = '' dictionaryToSend = '/' for char in string: #dodanie po znaku naszego kodu messageToSend = messageToSend + huffmanCode[char] #Przepisanie slownika na string for char in huffmanCode : dictionaryToSend = dictionaryToSend + char + ':' + huffmanCode[char] + ',' print(dictionaryToSend) #wyswietlanie slownika print(messageToSend) #wyswietlanie wiadomosci send(dictionaryToSend) #wysylanie slownika send(messageToSend) #wysylanie wiadomosci send(DISCONNECT_MESSAGE) #koniec polaczneia
the-stack_106_26440
# # Copyright 2021 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Serial logs don't contain mount error messages The messages: "You are in emergency mode" / "Failed to mount" / "Unrecognized mount option" in serial output usually indicate that a Linux instance cannot mount the root partition. """ from typing import Optional from gcpdiag import lint, models from gcpdiag.lint.gce.utils import LogEntryShort, SerialOutputSearch from gcpdiag.queries import gce MOUNT_ERROR_MESSAGES = [ 'You are in emergency mode', # 'Failed to mount', 'Unrecognized mount option', ] logs_by_project = {} def prepare_rule(context: models.Context): logs_by_project[context.project_id] = SerialOutputSearch( context, search_strings=MOUNT_ERROR_MESSAGES) def run_rule(context: models.Context, report: lint.LintReportRuleInterface): search = logs_by_project[context.project_id] instances = gce.get_instances(context).values() if len(instances) == 0: report.add_skipped(None, 'No instances found') else: for instance in sorted(instances, key=lambda i: i.name): match: Optional[LogEntryShort] = search.get_last_match( instance_id=instance.id) if match: report.add_failed( instance, ('There are messages indicating that ' 'the instance is unable to mount disk {}\n{}: "{}"').format( instance.name, match.timestamp_iso, match.text)) else: report.add_ok(instance)
the-stack_106_26441
import logging from config_utils import * from sqlalchemy import * from postgres_query import sql_query_action logger = logging.getLogger() class Camera_Query(object): def __init__(self, postgres_db_conn): self.conn = postgres_db_conn def add_camera(self, camera_id, location, coordinate, address, port, uri): query = "INSERT INTO cameras VALUES ('{}','{}','{}','{}','{}','{}')".format(camera_id, location, coordinate, address, port, uri) return sql_query_action(self.conn, query, camera_id) def get_camera(self, camera_id): table = 'cameras' query_result = self.conn.execute( "SELECT * FROM {} WHERE camera_id='{}'".format(table, camera_id) ).fetchall() return query_result[0] def get_camera_list(self): try: query_result = self.conn.execute( "SELECT * FROM cameras" ).fetchall() except Exception as e: return [] return query_result def edit_camera(self, camera_id, location, coordinate, address, port, uri): query = "UPDATE cameras \ SET location='{}',coordinate='{}',address='{}',port='{}',uri='{}'\ WHERE camera_id='{}'".format(camera_id, location, coordinate, address, port, uri) return sql_query_action(self.conn, query, camera_id) def delete_camera(self, camera_id): query = "DELETE FROM {} \ WHERE camera_id='{}'".format("cameras", camera_id) return sql_query_action(self.conn, query, camera_id)
the-stack_106_26442
import pytest from django.urls import reverse from ..views import get_filtered_user_queryset pytestmark = pytest.mark.django_db(transaction=True) @pytest.mark.parametrize( "filter_type, filter_mode, expected_result", [ ([], "any", 5), # Find everyone ( ["notification_digest", "feedback_volunteer"], "any", 2, ), # Find users with either selected ( ["notification_digest", "feedback_volunteer"], "all", 0, ), # Find users with both selected ( ["notification_digest", "feedback_volunteer"], "none", 3, ), # Find users where neither is selected. ], ) def test_filtering(admin_testdata, filter_type, filter_mode, expected_result): assert ( get_filtered_user_queryset(filter_type, filter_mode).count() == expected_result ) @pytest.mark.parametrize( "view_name, gamer_to_use, expected_status_code, expected_location", [ ("adminutils:notification", None, 302, "/accounts/login/"), # Must be logged in ("adminutils:email", None, 302, "/accounts/login/"), # Must be logged in ("adminutils:notification", "gamer1", 403, None), # Must be an admin ("adminutils:email", "gamer1", 403, None), # Must be an admin ("adminutils:notification", "admin_gamer", 200, None), # Admin can access ("adminutils:email", "admin_gamer", 200, None), # Admin can access ], ) def test_get_views( client, django_assert_max_num_queries, admin_testdata, view_name, gamer_to_use, expected_status_code, expected_location, ): if gamer_to_use: client.force_login(user=getattr(admin_testdata, gamer_to_use).user) with django_assert_max_num_queries(50): response = client.get(reverse(view_name)) assert response.status_code == expected_status_code if expected_location: assert expected_location in response["Location"] @pytest.mark.parametrize( "view_name, data_to_send", [ ( "adminutils:notification", { "message": "Hello, friend", "filter_options": ["feedback_volunteer"], "filter_mode": "any", }, ), ( "adminutils:email", { "subject": "Greetings", "body": "Do you have the time?", "filter_options": ["feedback_volunteer"], "filter_mode": "any", }, ), ], ) def test_sending_messages(client, admin_testdata, view_name, data_to_send): client.force_login(user=admin_testdata.admin_gamer.user) response = client.post(reverse(view_name), data=data_to_send) assert response.status_code == 302
the-stack_106_26443
""" :codeauthor: Jayesh Kariya <[email protected]> """ import salt.states.layman as layman from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import MagicMock, patch from tests.support.unit import TestCase class LaymanTestCase(TestCase, LoaderModuleMockMixin): """ Test cases for salt.states.layman """ def setup_loader_modules(self): return {layman: {}} # 'present' function tests: 1 def test_present(self): """ Test to verify that the overlay is present. """ name = "sunrise" ret = {"name": name, "result": True, "comment": "", "changes": {}} mock = MagicMock(side_effect=[[name], []]) with patch.dict(layman.__salt__, {"layman.list_local": mock}): comt = "Overlay {} already present".format(name) ret.update({"comment": comt}) self.assertDictEqual(layman.present(name), ret) with patch.dict(layman.__opts__, {"test": True}): comt = "Overlay {} is set to be added".format(name) ret.update({"comment": comt, "result": None}) self.assertDictEqual(layman.present(name), ret) # 'absent' function tests: 1 def test_absent(self): """ Test to verify that the overlay is absent. """ name = "sunrise" ret = {"name": name, "result": True, "comment": "", "changes": {}} mock = MagicMock(side_effect=[[], [name]]) with patch.dict(layman.__salt__, {"layman.list_local": mock}): comt = "Overlay {} already absent".format(name) ret.update({"comment": comt}) self.assertDictEqual(layman.absent(name), ret) with patch.dict(layman.__opts__, {"test": True}): comt = "Overlay {} is set to be deleted".format(name) ret.update({"comment": comt, "result": None}) self.assertDictEqual(layman.absent(name), ret)
the-stack_106_26445
""" --------------------------------------------------------------------- -- Author: Jhosimar George Arias Figueroa --------------------------------------------------------------------- Custom Layers """ import torch from torch import nn from torch.nn import functional as F # Flatten layer class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) # Reshape layer class Reshape(nn.Module): def __init__(self, outer_shape): super(Reshape, self).__init__() self.outer_shape = outer_shape def forward(self, x): return x.view(x.size(0), *self.outer_shape) # Sample from the Gumbel-Softmax distribution and optionally discretize. class GumbelSoftmax(nn.Module): def __init__(self, f_dim, c_dim): super(GumbelSoftmax, self).__init__() self.logits = nn.Linear(f_dim, c_dim) self.f_dim = f_dim self.c_dim = c_dim def sample_gumbel(self, shape, is_cuda=False, eps=1e-20): U = torch.rand(shape) if is_cuda: U = U.cuda() return -torch.log(-torch.log(U + eps) + eps) def gumbel_softmax_sample(self, logits, temperature): y = logits + self.sample_gumbel(logits.size(), logits.is_cuda) return F.softmax(y / temperature, dim=-1) def gumbel_softmax(self, logits, temperature, hard=False): """ ST-gumple-softmax input: [*, n_class] return: flatten --> [*, n_class] an one-hot vector """ #categorical_dim = 10 y = self.gumbel_softmax_sample(logits, temperature) if not hard: return y shape = y.size() _, ind = y.max(dim=-1) y_hard = torch.zeros_like(y).view(-1, shape[-1]) y_hard.scatter_(1, ind.view(-1, 1), 1) y_hard = y_hard.view(*shape) # Set gradients w.r.t. y_hard gradients w.r.t. y y_hard = (y_hard - y).detach() + y return y_hard def forward(self, x, temperature=1.0, hard=False): logits = self.logits(x).view(-1, self.c_dim) prob = F.softmax(logits, dim=-1) # y = self.gumbel_softmax(logits, temperature, hard) y = F.softmax(logits, dim=-1) return logits, prob, y # Sample from a Gaussian distribution class Gaussian(nn.Module): def __init__(self, in_dim, z_dim): super(Gaussian, self).__init__() self.mu = nn.Linear(in_dim, z_dim) self.var = nn.Linear(in_dim, z_dim) def reparameterize(self, mu, var): std = torch.sqrt(var + 1e-10) noise = torch.randn_like(std) z = mu + noise * std return z def forward(self, x): mu = self.mu(x) var = F.softplus(self.var(x)) z = self.reparameterize(mu, var) return mu, var, z
the-stack_106_26447
#!/usr/bin/env python # coding=utf-8 """ test_neoepiscope.py Tests functions in neoepiscope.py. The MIT License (MIT) Copyright (c) 2018 Mary A. Wood, Austin Nguyen, Abhinav Nellore, and Reid Thompson Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import, division, print_function from inspect import getsourcefile import os.path as path, sys from neoepiscope import * import unittest import filecmp import os neoepiscope_dir = os.path.dirname( os.path.dirname((os.path.abspath(getsourcefile(lambda: 0)))) ) def predicate(line): ''' whether reading first line of neoepiscope output ''' if "Neoepiscope version" in line: return False return True class TestGTFprocessing(unittest.TestCase): """Tests proper creation of dictionaries store GTF data""" def setUp(self): """Sets up gtf file and creates dictionaries for tests""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.gtf = os.path.join(self.base_dir, "Ychrom.gtf") self.gtf2 = os.path.join(self.base_dir, "Chr11.gtf") self.Ycds, self.Ytx = gtf_to_cds(self.gtf, "NA", pickle_it=False) self.Ytree = cds_to_tree(self.Ycds, "NA", pickle_it=False) self.cds11, self.tx11 = gtf_to_cds(self.gtf2, "NA", pickle_it=False) self.tree11 = cds_to_tree(self.cds11, "NA", pickle_it=False) def test_transcript_to_cds(self): """Fails if dictionary was built incorrectly""" self.assertEqual(len(self.Ycds.keys()), 220) start_test = [x for x in self.cds11['ENST00000429923.5_1'] if x[1] == "start_codon"] self.assertEqual(len(start_test), 1) self.assertEqual(start_test[0][2], 1891437) def test_cds_tree(self): """Fails if dictionary was built incorrectly""" self.assertEqual(len(self.Ytree.keys()), 1) self.assertEqual(len(self.Ytree["chrY"]), 2585) def test_transcript_extraction(self): """Fails if incorrect transcripts are pulled""" self.assertEqual( len(get_transcripts_from_tree("chrY", 150860, 150861, self.Ytree)), 10 ) self.coordinate_search = list(self.Ytree["chrY"].overlap(150860, 150861)) self.transcripts = [] for interval in self.coordinate_search: self.transcripts.append(interval[2]) self.transcripts.sort() self.assertEqual( self.transcripts, [ "ENST00000381657.7_3_PAR_Y", "ENST00000381663.8_3_PAR_Y", "ENST00000399012.6_3_PAR_Y", "ENST00000415337.6_3_PAR_Y", "ENST00000429181.6_2_PAR_Y", "ENST00000430923.7_3_PAR_Y", "ENST00000443019.6_2_PAR_Y", "ENST00000445062.6_2_PAR_Y", "ENST00000447472.6_3_PAR_Y", "ENST00000448477.6_2_PAR_Y", ], ) class TestVCFmerging(unittest.TestCase): """Tests proper merging of somatic and germline VCFS""" def setUp(self): """Sets up files to use for tests""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.varscan = os.path.join(self.base_dir, "Ychrom.varscan.vcf") self.germline = os.path.join(self.base_dir, "Ychrom.germline.vcf") self.precombined = os.path.join(self.base_dir, "Ychrom.combined.vcf") self.outvcf = os.path.join(self.base_dir, "Ychrom.testcombine.vcf") combine_vcf(self.germline, self.varscan, self.outvcf) def test_merge(self): """Fails if VCFs were merged improperly""" self.assertTrue(filecmp.cmp(self.outvcf, self.precombined)) def tearDown(self): """Removes test file""" os.remove(self.outvcf) class TestPrepHapCUT(unittest.TestCase): """Tests addition of unphased mutations to HapCUT2 output""" def setUp(self): """Sets up hapcut and vcf files to use for tests""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.hapcut = os.path.join(self.base_dir, "test.hapcut.out") self.vcf = os.path.join(self.base_dir, "test.vcf") self.phased_vcf = os.path.join(self.base_dir, "phased.vcf") self.germline_vcf = os.path.join(self.base_dir, "germline.vcf") self.complete_hapcut = os.path.join(self.base_dir, "complete_hapcut.out") self.test_hapcut = os.path.join(self.base_dir, "test_complete_hapcut.out") self.rbp_haplotypes = os.path.join(self.base_dir, "rbp.haplotypes") self.test_rbp = os.path.join(self.base_dir, "test.rbp.haplotypes") def test_haplotype_prep(self): """Tests that output of haplotype prep is correct for either regular hapcut output or phased VCFs """ prep_hapcut_output(self.test_hapcut, self.hapcut, self.vcf) self.assertTrue(filecmp.cmp(self.test_hapcut, self.complete_hapcut)) prep_hapcut_output(self.test_rbp, None, self.phased_vcf, phased_vcf=True) self.assertTrue(filecmp.cmp(self.rbp_haplotypes, self.test_rbp)) def tearDown(self): """Removes test file""" os.remove(self.test_hapcut) os.remove(self.test_rbp) class TestVAFpos(unittest.TestCase): """Tests fetching of VAF position from VCF file""" def setUp(self): """Sets up vcf files to use for tests""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.varscan = os.path.join(self.base_dir, "Ychrom.varscan.vcf") self.mutect = os.path.join(self.base_dir, "Ychrom.mutect.vcf") def test_position(self): """Fails if incorrect positions are returned""" self.assertEqual(get_vaf_pos(self.varscan), (5, 'FREQ')) self.assertEqual(get_vaf_pos(self.mutect), (4, 'FA')) class TestHaplotypeProcessing(unittest.TestCase): """Tests proper processing of HAPCUT2 files""" def setUp(self): """Sets up input files and dictionaries to use for tests""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.ref_prefix = os.path.join(self.base_dir, "Chr11.ref") self.reference_index = bowtie_index.BowtieIndexReference(self.ref_prefix) self.Chr11gtf = os.path.join(self.base_dir, "Chr11.gtf") self.Chr11cds, self.Chr11tx = gtf_to_cds(self.Chr11gtf, "NA", pickle_it=False) for transcript in self.Chr11cds: for cds_block in self.Chr11cds[transcript]: cds_block[0] = cds_block[0].replace("chr", "") self.Chr11tree = cds_to_tree(self.Chr11cds, "NA", pickle_it=False) self.Chr11hapcut = os.path.join(self.base_dir, "Chr11.hapcut.out") self.rbp_ref_prefix = os.path.join(self.base_dir, "chr14_index") self.rbp_reference_index = bowtie_index.BowtieIndexReference(self.rbp_ref_prefix) self.Chr14gtf = os.path.join(self.base_dir, "Chr14.gtf") self.Chr14cds, self.Chr14tx = gtf_to_cds(self.Chr14gtf, "NA", pickle_it=False) for transcript in self.Chr14cds: for cds_block in self.Chr14cds[transcript]: cds_block[0] = cds_block[0].replace("chr", "") self.Chr14tree = cds_to_tree(self.Chr14cds, "NA", pickle_it=False) self.phased_hapcut = os.path.join(self.base_dir, "rbp.haplotypes") def test_hap_processing(self): """Fails if file is processed incorrectly""" Chr11_txs, homozygous_vars = process_haplotypes(self.Chr11hapcut, self.Chr11tree, phasing=True) phased_txs, phased_homozygous = process_haplotypes(self.phased_hapcut, self.Chr14tree, phasing=True) self.assertEqual(sorted(Chr11_txs.keys()), ['ENST00000299106.8_2', 'ENST00000398531.2_2', 'ENST00000441717.3_2']) self.assertEqual(homozygous_vars["ENST00000299106.8_2"], [ [ "11", 134018663, "A", "G", "1", "1", "1/1:.:17:17:0:0%:17,0,0,0:.:2", "V", ] ] ) self.assertEqual(Chr11_txs["ENST00000299106.8_2"], [ [ [ "11", 134015873, "GCAG", 4, "1", "0", "0/1:.:53:52:0:0%:22,30,0,0:.:2", "D" ], [ "11", 134015876, "", "TT", "1", "0", "0/1:.:53:52:0:0%:22,30,0,0:.:2", "I" ] ], [ [ "11", 134019062, "T", "C", "0", "1", "0/1:.:38:38:0:0%:31,7,0,0:.:2", "V" ] ] ] ) self.assertEqual( Chr11_txs["ENST00000398531.2_2"], [ [ [ "11", 71276862, "GT", 2, "0", "1", "0/1:.:53:52:0:0%:22,30,0,0:.:2", "D", ], [ "11", 71276900, "C", "G", "0", "1", "0/1:.:35:34:0:0%:19,15,0,0:.:2", "V", ], [ "11", 71277000, "", "AA", "0", "1", "0/1:.:35:34:0:0%:19,15,0,0:.:2", "I", ], ] ], ) self.assertEqual(list(phased_txs.keys()), ['ENST00000409832.3']) self.assertEqual(phased_homozygous, {}) self.assertEqual( phased_txs["ENST00000409832.3"], [ [ [ "14", 19553372, "G", "A", "0", "1", "0/1:647,136:783:99:19553372-1,19553372-2:1684,0,17385:GERMLINE*", "V", ], [ "14", 19553436, "C", "T", "1", "0", "0/1:740,103:843:99:19553372-2,19553372-1:1930,0,30239:3965.49:GERMLINE*", "V", ], [ "14", 19553443, "G", "A", "0", "1", "0/1:726,98:824:99:19553372-1,19553372-2:1889,0,29565:17731.95:GERMLINE*", "V", ], [ "14", 19553764, "A", "G", "0", "1", "0/1:1344,721:2065:99:19553372-1,19553372-2:15846,0,36781:726.04:GERMLINE*", "V", ], [ "14", 19553795, "G", "A", "0", "1", "0/1:16.22%:19553372-1,19553372-2:8761.31:SOMATIC", "V", ], ] ], ) def test_maximum_clique(self): ht = [ ['11', 5246952, 'A', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'], ['11', 5246956, 'G', 'A', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'], ['11', 5246956, 'G', 'T', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'], ['11', 5247812, 'A', 'T', '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'], ['11', 5247832, 'AGCT', 4, '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'D'], ['11', 5247834, 'CTT', 3, '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'D'], ['11', 5248161, '', 'A', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'I'], ['11', 5248161, '', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'I'], ] cliques = list(transcript.get_haplotype_cliques(ht)) for x in cliques: x.sort(key=itemgetter(1)) sorted_cliques = sorted(cliques) self.assertEqual( sorted_cliques, [ [ ('11', 5246952, 'A', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5246956, 'G', 'A', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'), ('11', 5248161, '', 'A', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'I') ], [ ('11', 5246952, 'A', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5246956, 'G', 'A', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'), ('11', 5248161, '', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'I') ], [ ('11', 5246952, 'A', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5246956, 'G', 'T', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'), ('11', 5248161, '', 'A', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'I') ], [ ('11', 5246952, 'A', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5246956, 'G', 'T', '0', '1', '0/1:.:53:52:0:3.0%:22,30,0,0:.:2', 'V'), ('11', 5248161, '', 'T', '0', '1', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'I') ], [ ('11', 5247812, 'A', 'T', '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5247832, 'AGCT', 4, '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'D') ], [ ('11', 5247812, 'A', 'T', '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2', 'V'), ('11', 5247834, 'CTT', 3, '1', '0', '0/1:.:35:34:0:0.1%:19,15,0,0:.:2*', 'D') ], ] ) def test_peptide_gathering(self): Chr11_txs = { "ENST00000398531.2_2": [ [ [ "11", 71276651, "CTC", 3, "0", "1", "0/1:.:53:52:0:3.0%:22,30,0,0:.:2", "D", ], [ "11", 71277229, "A", "C", "0", "1", "0/1:.:35:34:0:15.7%:19,15,0,0:.:2", "V", ], [ "11", 71277056, "", "AAA", "0", "1", "0/1:.:35:34:0:0.1%:19,15,0,0:.:2", "I", ], ] ] } homozygous_vars = {'ENST00000299106.8_2': [ [ "11", 134018663, "A", "G", "1", "1", "1/1:.:17:17:0:0%:17,0,0,0:.:2", "V", ] ] } transcript_blocks = self.Chr11cds["ENST00000398531.2_2"] neoepitopes, fasta = get_peptides_from_transcripts( Chr11_txs, homozygous_vars, (5, 'FREQ'), self.Chr11cds, True, False, False, self.reference_index, [8, 9, 10, 11], False, False, False, False, False, False, 2, 1, protein_fasta=True, ) self.assertEqual(len(neoepitopes.keys()), 108) self.assertEqual( neoepitopes["CGCSQKCN"], [("11", 71277056, "", "AAA", "I", 0.001, "NA", "NA", "ENST00000398531.2_2")], ) self.assertEqual( neoepitopes["PVCCPCKI"], [ ( "11", 71277229, "A", "C", "V", 0.157, "PVCCQCKI", "NA", "ENST00000398531.2_2", ) ], ) self.assertEqual( neoepitopes["NKQDGESYE"], [ ( "11", 134018663, "A", "G", "V", 0, "NKQDGESYK", "NA", "ENST00000299106.8_2", ) ] ) self.assertEqual(sorted(neoepitopes.keys())[0], "CCGCGGCG") self.assertEqual(sorted(neoepitopes.keys())[-1], "YENPGKPDGVN") self.assertEqual( sorted(fasta["ENST00000398531.2_2"]), [ "MGCCGCGGCGSGCGGCGSGCGGCGSGCGGYGSGCGGCGSSCCVPVCCCKPVCCCVPACSCSSCG" "SCGGSKGDCGSCGGSKGGCGSCGGSKGGCGSCGGSKGGCGSCGGSKGGCGSCGGSKGGCGS" "CGGSKGGCGSCGCSQKCNCCKPCCCSSGCGSCCQSSCCNPCCCQSSCCVPVCCQSSCCKPC" "CCQSSCCVPVCCPCKIX" ], ) class TestBindingPrediction(unittest.TestCase): """Tests binding prediction functions""" def setUp(self): """""" self.neoepitopes = { "CGCSQKCN": [("11", 71277056, "", "AAA", "I", 0.001, "ENST00000398531.2_2")], "PVCCPCKI": [("11", 71277229, "A", "C", "V", 0.157, "ENST00000398531.2_2")], } self.tools = { "mhcflurry1": ["mhcflurry-predict", ["affinity", "rank"]], "mhcnuggets2": ["NA", ["affinity"]], } self.alleles = ["HLA-A*02:01", "HLA-B*07:02"] self.size_list = [8] def test_binding_scores(self): new_neoepitopes = gather_binding_scores( self.neoepitopes, self.tools, self.alleles, self.size_list ) self.assertEqual( len(new_neoepitopes["CGCSQKCN"][0]), 13) self.assertEqual( len(new_neoepitopes["PVCCPCKI"][0]), 13) for score in new_neoepitopes["CGCSQKCN"][0][7:]: self.assertEqual(type(score), str) for score in new_neoepitopes["PVCCPCKI"][0][7:]: self.assertEqual(type(score), str) class TestOutput(unittest.TestCase): """Tests function to write output""" def setUp(self): """Sets up paths and dictionaries""" self.base_dir = os.path.join(neoepiscope_dir, "tests") self.out_file = os.path.join(self.base_dir, "neoepiscope.out") self.correct_out = os.path.join(self.base_dir, "expected.neoepiscope.out") self.gtf = os.path.join(self.base_dir, "Chr11.gtf") self.cds, self.tx = gtf_to_cds(self.gtf, "NA", pickle_it=False) self.tools = { "netMHCpan4": ["netMHCpan", ["rank", "affinity"]], "netMHCIIpan3": ["netMHCIIpan", ["rank"]], } self.HLA_alleles = ["HLA*A01:01", "HLA*A02:01"] self.neoepitopes = { "CGCSQKCN": [ ( "11", 71277056, "", "AAA", "I", 0.001, "NA", "NA", "ENST00000398531.2_2", 5, 10000.0, 1, 5, 150, 4, ), ( "11", 167789, "A", "T", "V", 0.102, "CGCSQCNN", "NA", "ENST00000410108.5_1", 0.5, 100, 0.5, 3, 150, 4, ), ], "PVCCPCKI": [ ( "11", 71277229, "A", "C", "V", 0.157, "PVCCQCKI", "NA", "ENST00000398531.2_2", 10, 50.57, 1.2, 3, 10.1, 7, ), ( "11", 71277229, "A", "C", "V", 0.203, "PVCCQCKI", "NA", "ENST00000325113.8_1", 10, 50.57, 1.2, 3, 10.1, 7, ), ], } def testwrite(self): """Tests that output file is written correctly""" from sys import version_info write_results(self.out_file, self.HLA_alleles, self.neoepitopes, self.tools, self.tx) if version_info[0] < 3: from itertools import izip, ifilter with open(self.out_file) as fh1, open(self.correct_out) as fh2: f1 = ifilter(predicate, fh1) f2 = ifilter(predicate, fh2) test = all(x == y for x, y in izip(f1, f2)) else: with open(self.out_file) as fh1, open(self.correct_out) as fh2: f1 = filter(predicate, fh1) f2 = filter(predicate, fh2) test = all(x == y for x, y in zip(f1, f2)) self.assertTrue(test) def tearDown(self): """Removes test file""" os.remove(self.out_file) if __name__ == "__main__": unittest.main()
the-stack_106_26448
import mmdet2trt.ops.util_ops as mm2trt_util import torch from mmdet2trt.core.post_processing.batched_nms import BatchedNMS from mmdet2trt.models.builder import build_wraper, register_wraper from torch import nn @register_wraper('mmdet.models.GARetinaHead') class GuidedAnchorHeadWraper(nn.Module): def __init__(self, module): super(GuidedAnchorHeadWraper, self).__init__() self.module = module self.loc_filter_thr = module.loc_filter_thr self.num_anchors = module.num_anchors self.square_anchor_generator = build_wraper( self.module.square_anchor_generator) self.anchor_coder = build_wraper(self.module.anchor_coder) self.bbox_coder = build_wraper(self.module.bbox_coder) self.test_cfg = module.test_cfg self.num_classes = self.module.num_classes self.use_sigmoid_cls = self.module.use_sigmoid_cls if ('score_thr' in module.test_cfg) and ( 'nms' in module.test_cfg) and ('iou_threshold' in module.test_cfg.nms): self.rcnn_nms = BatchedNMS( module.test_cfg.score_thr, module.test_cfg.nms.iou_threshold, backgroundLabelId=self.num_classes) def get_anchors(self, cls_scores, shape_preds, loc_preds, use_loc_filter=False): multi_level_squares = self.square_anchor_generator( cls_scores, device=cls_scores[0].device) num_levels = len(cls_scores) guided_anchors_list = [] loc_mask_list = [] for i in range(num_levels): squares = multi_level_squares[i] shape_pred = shape_preds[i] loc_pred = loc_preds[i] guided_anchors, loc_mask = self._get_guided_anchors( squares, shape_pred, loc_pred, use_loc_filter) guided_anchors_list.append(guided_anchors) loc_mask_list.append(loc_mask) return multi_level_squares, guided_anchors_list, loc_mask_list def _get_guided_anchors(self, squares, shape_pred, loc_pred, use_loc_filter=False): loc_pred = loc_pred.sigmoid() if use_loc_filter: loc_mask = loc_pred >= self.loc_filter_thr else: loc_mask = loc_pred >= 0.0 mask = loc_mask.permute(0, 2, 3, 1).float().expand(-1, -1, -1, self.num_anchors) mask = mask.view(mask.shape[0], -1) # calculate guided anchors squares = squares.unsqueeze(0) anchor_deltas = shape_pred.permute(0, 2, 3, 1).contiguous().view( shape_pred.shape[0], -1, 2) zeros = anchor_deltas[:, :, :2] * 0. bbox_deltas = torch.cat([zeros, anchor_deltas], dim=2) guided_anchors = self.anchor_coder.decode( squares, bbox_deltas, wh_ratio_clip=1e-6) return guided_anchors, mask def forward(self, feat, x): img_shape = x.shape[2:] module = self.module cfg = self.test_cfg cls_scores, bbox_preds, shape_preds, loc_preds = module(feat) _, mlvl_anchors, mlvl_masks = self.get_anchors( cls_scores, shape_preds, loc_preds, use_loc_filter=True) mlvl_scores = [] mlvl_proposals = [] nms_pre = cfg.get('nms_pre', -1) for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds, mlvl_anchors, mlvl_masks): scores = cls_score.permute(0, 2, 3, 1).reshape( cls_score.shape[0], -1, module.cls_out_channels).sigmoid() if module.use_sigmoid_cls: scores = scores.sigmoid() else: scores = scores.softmax(-1) scores = scores * mask.unsqueeze(2) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(bbox_pred.shape[0], -1, 4) if nms_pre > 0: # concate zero to enable topk, # dirty way, will find a better way in future scores = mm2trt_util.pad_with_value(scores, 1, nms_pre, 0.) bbox_pred = mm2trt_util.pad_with_value(bbox_pred, 1, nms_pre) anchors = mm2trt_util.pad_with_value(anchors, 1, nms_pre) # do topk max_scores, _ = (scores).max(dim=2) _, topk_inds = max_scores.topk(nms_pre, dim=1) bbox_pred = mm2trt_util.gather_topk(bbox_pred, 1, topk_inds) scores = mm2trt_util.gather_topk(scores, 1, topk_inds) anchors = mm2trt_util.gather_topk(anchors, 1, topk_inds) proposals = self.bbox_coder.decode( anchors, bbox_pred, max_shape=img_shape) mlvl_scores.append(scores) mlvl_proposals.append(proposals) mlvl_scores = torch.cat(mlvl_scores, dim=1) mlvl_proposals = torch.cat(mlvl_proposals, dim=1) mlvl_proposals = mlvl_proposals.unsqueeze(2) max_scores, _ = mlvl_scores.max(dim=2) topk_pre = max(1000, nms_pre) _, topk_inds = max_scores.topk( min(topk_pre, mlvl_scores.shape[1]), dim=1) mlvl_scores = mm2trt_util.gather_topk(mlvl_scores, 1, topk_inds) mlvl_proposals = mm2trt_util.gather_topk(mlvl_proposals, 1, topk_inds) num_bboxes = mlvl_proposals.shape[1] num_detected, proposals, scores, cls_id = self.rcnn_nms( mlvl_scores, mlvl_proposals, num_bboxes, self.test_cfg.max_per_img) return num_detected, proposals, scores, cls_id
the-stack_106_26450
from krogon.k8s.k8s_env_vars import add_environment_secret from krogon.nullable import nlist, nmap from typing import List import krogon.maybe as M def cron_job(name: str, image: str): return K8sJobTemplate(name, image) class K8sJobTemplate: def __init__(self, name: str, image: str): super().__init__() self.name = name self.image = image self.command = M.nothing() self.environment_vars = [] self.schedule = '* * * * *' self.suspend = True def with_environment_variable(self, name: str, value: str): self.environment_vars = self.environment_vars + [{'name': name, 'value': value}] return self def with_schedule(self, schedule: str): self.schedule = schedule self.suspend = False return self def with_command(self, command: str): self.command = M.just(command) return self def with_environment_secret(self, secret_name: str, data: map): self.environment_vars = add_environment_secret(self.environment_vars, secret_name, data) return self def run(self) -> List[dict]: return _get_templates(self.name, self.image, self.schedule, self.suspend, self.environment_vars, self.command) def _get_templates(name: str, image: str, schedule: str, suspend: bool, env_vars: List[str], command: M.Maybe[List[str]]) -> List[dict]: return nlist([ { 'kind': 'CronJob', 'apiVersion': 'batch/v1beta1', 'metadata': {'name': name}, 'spec': { 'suspend': suspend, 'concurrencyPolicy': 'Forbid', 'schedule': schedule, 'jobTemplate': {'spec': { 'template': { 'metadata': { 'annotations': { 'traffic.sidecar.istio.io/excludeOutboundIPRanges': "0.0.0.0/0", "sidecar.istio.io/inject": "false"} }, 'spec': { 'containers': nlist([ nmap({ 'name': name, 'image': image, 'env': env_vars }).append_if_value( 'command', command).to_map() ]).to_list(), 'volumes': nlist([]).to_list(), 'restartPolicy': 'Never' } }, 'backoffLimit': 0 }}, } } ]).to_list()
the-stack_106_26451
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import json import logging import shlex import subprocess from collections import defaultdict from typing import Dict, List, Optional import detectron2.utils.comm as comm from detectron2.data import MetadataCatalog from detectron2.structures import BoxMode from pycocotools.coco import COCO from .cache_util import _cache_json_file try: # virtual_fs is used to support both local and manifold paths # with syntax that is identical to the default python APIs from virtual_fs import virtual_os as os from virtual_fs.virtual_io import open except ImportError: import os logger = logging.getLogger(__name__) class InMemoryCOCO(COCO): def __init__(self, loaded_json): """ In this in-memory version of COCO we don't load json from the file, but direclty use a loaded_json instead. This approach improves both robustness and efficiency, as when we convert from other formats to COCO format, we don't need to save and re-load the json again. """ # load dataset self.dataset = loaded_json self.anns = {} self.cats = {} self.imgs = {} self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) self.createIndex() def extract_archive_file(archive_fn: str, im_dir: str): if not os.path.exists(im_dir) or not os.listdir(im_dir): # Dataset is not deployed. Deploy it. archive_fns = archive_fn # A dataset may be composed of several tgz files, or only one. # If one, make it into a list to make the code later more general if not isinstance(archive_fns, list): archive_fns = [archive_fns] logger.info( "Extracting datasets {} to local machine at {}".format(archive_fns, im_dir) ) if not os.path.exists(im_dir): os.makedirs(im_dir, exist_ok=True) for archive_fn in archive_fns: # Extract the tgz file directly into the target directory, # without precopy. # Note that the tgz file contains a root directory that # we do not want, hence the strip-components=1 commandUnpack = ( "tar -mxzf {src_file} -C {tgt_dir} " "--strip-components=1" ).format(src_file=archive_fn, tgt_dir=im_dir) assert not subprocess.call(shlex.split(commandUnpack)), "Failed to unpack" logger.info("Extracted {}".format(archive_fn)) def convert_coco_text_to_coco_detection_json( source_json: str, target_json: str, set_type: Optional[str] = None, min_img_size: int = 100, text_cat_id: int = 1, ) -> Dict: """ This function converts a COCOText style JSON to a COCODetection style JSON. For COCOText see: https://vision.cornell.edu/se3/coco-text-2/ For COCODetection see: http://cocodataset.org/#overview """ with open(source_json, "r") as f: coco_text_json = json.load(f) coco_text_json["annotations"] = list(coco_text_json["anns"].values()) coco_text_json["images"] = list(coco_text_json["imgs"].values()) if set_type is not None: # COCO Text style JSONs often mix test, train, and val sets. # We need to make sure we only use the data type we want. coco_text_json["images"] = [ x for x in coco_text_json["images"] if x["set"] == set_type ] coco_text_json["categories"] = [{"name": "text", "id": text_cat_id}] del coco_text_json["cats"] del coco_text_json["imgs"] del coco_text_json["anns"] for ann in coco_text_json["annotations"]: ann["category_id"] = text_cat_id ann["iscrowd"] = 0 # Don't evaluate the model on illegible words if set_type == "val" and ann["legibility"] != "legible": ann["ignore"] = True # Some datasets seem to have extremely small images which break downstream # operations. If min_img_size is set, we can remove these. coco_text_json["images"] = [ x for x in coco_text_json["images"] if x["height"] >= min_img_size and x["width"] >= min_img_size ] # Remap image_ids if necessary if isinstance(coco_text_json["images"][0]["id"], str): image_id_remap = { x["id"]: id_no for (id_no, x) in enumerate(coco_text_json["images"]) } for x in coco_text_json["images"]: x["id"] = image_id_remap[x["id"]] for x in coco_text_json["annotations"]: if x["image_id"] in image_id_remap: x["image_id"] = image_id_remap[x["image_id"]] os.makedirs(os.path.dirname(target_json), exist_ok=True) with open(target_json, "w") as f: json.dump(coco_text_json, f) return coco_text_json def valid_bbox(bbox_xywh: List[int], img_w: int, img_h: int) -> bool: if ( bbox_xywh is None or (bbox_xywh[3] == 0 or bbox_xywh[2] == 0) or not (0 <= bbox_xywh[0] <= img_w - bbox_xywh[2]) or not (0 <= bbox_xywh[1] <= img_h - bbox_xywh[3]) ): return False return True def convert_coco_annotations( anno_dict_list: List[Dict], record: Dict, remapped_id: Dict, error_report: Dict ): """ Converts annotations format of coco to internal format while applying some filtering """ converted_annotations = [] for anno in anno_dict_list: # Check that the image_id in this annotation is the same. This fails # only when the data parsing logic or the annotation file is buggy. assert anno["image_id"] == record["image_id"] assert anno.get("ignore", 0) == 0 # Copy fields that do not need additional conversion fields_to_copy = [ "iscrowd", "bbox", "bbox_mode", "keypoints", "category_id", "extras", "point_coords", "point_labels", ] # NOTE: maybe use MetadataCatalog for this obj = {field: anno[field] for field in fields_to_copy if field in anno} # Filter out bad annotations where category do not match if obj.get("category_id", None) not in remapped_id: continue # Bounding boxes: convert and filter out bad bounding box annotations bbox_object = obj.get("bbox", None) if bbox_object: if "bbox_mode" in obj: bbox_object = BoxMode.convert( bbox_object, obj["bbox_mode"], BoxMode.XYWH_ABS ) else: # Assume default box mode is always (x, y, w h) error_report["without_bbox_mode"].cnt += 1 obj["bbox_mode"] = ( BoxMode.XYWHA_ABS if len(obj["bbox"]) == 5 else BoxMode.XYWH_ABS ) if ( record.get("width") and record.get("height") and not valid_bbox(bbox_object, record["width"], record["height"]) ): error_report["without_valid_bounding_box"].cnt += 1 continue # Segmentation: filter and add segmentation segm = anno.get("segmentation", None) if segm: # either list[list[float]] or dict(RLE) if not isinstance(segm, dict): # filter out invalid polygons (< 3 points) segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6] if len(segm) == 0: error_report["without_valid_segmentation"].cnt += 1 continue # ignore this instance obj["segmentation"] = segm # Remap ids obj["category_id"] = remapped_id[obj["category_id"]] converted_annotations.append(obj) return converted_annotations # Error entry class for reporting coco conversion issues class ErrorEntry: def __init__(self, error_name, msg, cnt=0): self.error_name = error_name self.cnt = cnt self.msg = msg def __repr__(self): return f"{self.msg} for {self.error_name}, count = {self.cnt}" def print_conversion_report(ann_error_report, image_error_report, ex_warning_fn): # Report image errors report_str = "" for error_key in image_error_report: if image_error_report[error_key].cnt > 0: report_str += f"\t{image_error_report[error_key]}\n" if error_key == "ignore_image_root" and ex_warning_fn: report_str += f"\texample file name {ex_warning_fn}\n" # Report annotation errors for error_key in ann_error_report: if ann_error_report[error_key].cnt > 0: report_str += f"\t{ann_error_report[error_key]}\n" if len(report_str): logger.warning(f"Conversion issues:\n{report_str}") def convert_to_dict_list( image_root: str, remapped_id: Dict, imgs: List[Dict], anns: List[Dict], dataset_name: Optional[str] = None, image_direct_copy_keys: Optional[List[str]] = None, filter_empty_annotations: Optional[bool] = True, ) -> List[Dict]: ann_error_report = { name: ErrorEntry(name, msg, 0) for name, msg in [ ("without_valid_segmentation", "Instance filtered"), ("without_valid_bounding_box", "Instance filtered"), ("without_bbox_mode", "Warning"), ] } image_error_report = { name: ErrorEntry(name, msg, 0) for name, msg in [ ("ignore_image_root", f"Image root ignored {image_root}"), ( "no_annotations", "Image filtered" if filter_empty_annotations else "Warning", ), ] } ex_warning_fn = None default_record = {"dataset_name": dataset_name} if dataset_name else {} converted_dict_list = [] for (img_dict, anno_dict_list) in zip(imgs, anns): record = copy.deepcopy(default_record) # NOTE: besides using (relative path) in the "file_name" filed to represent # the image resource, "extended coco" also supports using uri which # represents an image using a single string, eg. "everstore_handle://xxx", if "://" not in img_dict["file_name"]: record["file_name"] = os.path.join(image_root, img_dict["file_name"]) else: if image_root is not None: image_error_report["ignore_image_root"].cnt += 1 ex_warning_fn = ( ex_warning_fn if ex_warning_fn else img_dict["file_name"] ) record["file_name"] = img_dict["file_name"] # Setup image info and id if "height" in img_dict or "width" in img_dict: record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["image_id"] = img_dict["id"] # Convert annotation for dataset_dict converted_anns = convert_coco_annotations( anno_dict_list, record, remapped_id, ann_error_report ) if len(converted_anns) == 0: image_error_report["no_annotations"].cnt += 1 if filter_empty_annotations: continue record["annotations"] = converted_anns # Copy keys if additionally asked if image_direct_copy_keys: for c_key in image_direct_copy_keys: assert c_key in img_dict, f"{c_key} not in coco image entry annotation" record[c_key] = img_dict[c_key] converted_dict_list.append(record) print_conversion_report(ann_error_report, image_error_report, ex_warning_fn) assert len(converted_dict_list) != 0, ( f"Loaded zero entries from {dataset_name}. \n" f" Size of inputs (imgs={len(imgs)}, anns={len(anns)})\n" f" Image issues ({image_error_report})\n" f" Instance issues ({ann_error_report})\n" ) return converted_dict_list def coco_text_load( coco_json_file: str, image_root: str, source_json_file: Optional[str] = None, dataset_name: Optional[str] = None, archive_file: Optional[str] = None, ) -> List[Dict]: if archive_file is not None: if comm.get_rank() == 0: extract_archive_file(archive_file, image_root) comm.synchronize() if source_json_file is not None: # Need to convert to coco detection format loaded_json = convert_coco_text_to_coco_detection_json( source_json_file, coco_json_file ) return extended_coco_load(coco_json_file, image_root, dataset_name, loaded_json) return extended_coco_load( coco_json_file, image_root, dataset_name, loaded_json=None ) def extended_coco_load( json_file: str, image_root: str, dataset_name: Optional[str] = None, loaded_json: Optional[str] = None, image_direct_copy_keys: List[str] = None, filter_empty_annotations: Optional[bool] = True, ) -> List[Dict]: """ Load a json file with COCO's annotation format. Currently only supports instance segmentation annotations. Args: json_file (str): full path to the json file in COCO annotation format. image_root (str): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., "coco", "cityscapes"). If provided, this function will also put "thing_classes" into the metadata associated with this dataset. loaded_json (str): optional loaded json content, used in InMemoryCOCO to avoid loading from json_file again. Returns: list[dict]: a list of dicts in "Detectron2 Dataset" format. (See DATASETS.md) Notes: 1. This function does not read the image files. The results do not have the "image" field. 2. When `dataset_name=='coco'`, this function will translate COCO's incontiguous category ids to contiguous ids in [0, 80). """ json_file = _cache_json_file(json_file) if loaded_json is None: coco_api = COCO(json_file) else: coco_api = InMemoryCOCO(loaded_json) # Collect classes and remap them starting from 0 all_cat_ids = coco_api.getCatIds() all_cats = coco_api.loadCats(all_cat_ids) all_cat_names = [c["name"] for c in sorted(all_cats, key=lambda x: x["id"])] # Setup id remapping remapped_id = {} for cat_id, cat in zip(all_cat_ids, all_cats): remapped_id[cat_id] = all_cat_names.index(cat["name"]) # Register dataset in metadata catalog if dataset_name is not None: # overwrite attrs meta_dict = MetadataCatalog.get(dataset_name).as_dict() meta_dict["thing_classes"] = all_cat_names meta_dict["thing_dataset_id_to_contiguous_id"] = remapped_id # update MetadataCatalog (cannot change inplace, have to remove) MetadataCatalog.remove(dataset_name) MetadataCatalog.get(dataset_name).set(**meta_dict) # assert the change assert MetadataCatalog.get(dataset_name).thing_classes == all_cat_names # Sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) anns = [coco_api.imgToAnns[img_id] for img_id in img_ids] logger.info("Loaded {} images from {}".format(len(imgs), json_file)) # Return the coco converted to record list return convert_to_dict_list( image_root, remapped_id, imgs, anns, dataset_name, image_direct_copy_keys=image_direct_copy_keys, filter_empty_annotations=filter_empty_annotations, ) if __name__ == "__main__": """ Test the COCO json dataset loader. Usage: python -m detectron2.data.datasets.coco \ path/to/json path/to/image_root dataset_name """ import sys import cv2 from detectron2.utils.logger import setup_logger from detectron2.utils.visualizer import Visualizer logger = setup_logger(name=__name__) meta = MetadataCatalog.get(sys.argv[3]) dicts = extended_coco_load(sys.argv[1], sys.argv[2], sys.argv[3], ["cat", "dog"]) logger.info("Done loading {} samples.".format(len(dicts))) for d in dicts: img = cv2.imread(d["file_name"])[:, :, ::-1] visualizer = Visualizer(img, metadata=meta) vis = visualizer.draw_dataset_dict(d) fpath = os.path.join("coco-data-vis", os.path.basename(d["file_name"])) vis.save(fpath)
the-stack_106_26452
from six import string_types import numpy as np from landlab.components.erosion_deposition.generalized_erosion_deposition import (_GeneralizedErosionDeposition, DEFAULT_MINIMUM_TIME_STEP) from landlab.utils.return_array import return_array_at_node from .cfuncs import calculate_qs_in ROOT2 = np.sqrt(2.0) # syntactic sugar for precalculated square root of 2 TIME_STEP_FACTOR = 0.5 # factor used in simple subdivision solver class Space(_GeneralizedErosionDeposition): """Stream Power with Alluvium Conservation and Entrainment (SPACE) See the publication: Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution, Geosci. Model Dev., 10, 4577-4604, https://doi.org/10.5194/gmd-10-4577-2017, 2017. Note: If timesteps are large enough that Es*dt (sediment erosion) exceeds sediment thickness H, the 'adaptive' solver is necessary to subdivide timesteps. Compare Es and H arrays to determine whether timesteps are appropriate or too large for the 'basic' solver. Parameters ---------- grid : ModelGrid Landlab ModelGrid object K_sed : float, field name, or array Erodibility for sediment (units vary). K_br : float, field name, or array Erodibility for bedrock (units vary). F_f : float Fraction of permanently suspendable fines in bedrock [-]. phi : float Sediment porosity [-]. H_star : float Sediment thickness required for full entrainment [L]. v_s : float Effective settling velocity for chosen grain size metric [L/T]. m_sp : float Drainage area exponent (units vary) n_sp : float Slope exponent (units vary) sp_crit_sed : float, field name, or array Critical stream power to erode sediment [E/(TL^2)] sp_crit_br : float, field name, or array Critical stream power to erode rock [E/(TL^2)] discharge_field : float, field name, or array Discharge [L^2/T]. The default is to use the grid field 'surface_water__discharge', which is simply drainage area multiplied by the default rainfall rate (1 m/yr). To use custom spatially/temporally varying flow, use 'water__unit_flux_in' as the discharge field. solver : string Solver to use. Options at present include: (1) 'basic' (default): explicit forward-time extrapolation. Simple but will become unstable if time step is too large. (2) 'adaptive': subdivides global time step as needed to prevent slopes from reversing and alluvium from going negative. Examples --------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components.flow_routing import FlowRouter >>> from landlab.components import DepressionFinderAndRouter >>> from landlab.components import Space >>> from landlab.components import FastscapeEroder >>> np.random.seed(seed = 5000) Define grid and initial topography: * 5x5 grid with baselevel in the lower left corner * All other boundary nodes closed * Initial topography is plane tilted up to the upper right with noise >>> mg = RasterModelGrid((5, 5), spacing=10.0) >>> _ = mg.add_zeros('topographic__elevation', at='node') >>> mg.at_node['topographic__elevation'] += (mg.node_y / 10. + ... mg.node_x / 10. + np.random.rand(len(mg.node_y)) / 10.) >>> mg.set_closed_boundaries_at_grid_edges(bottom_is_closed=True, ... left_is_closed=True, ... right_is_closed=True, ... top_is_closed=True) >>> mg.set_watershed_boundary_condition_outlet_id( ... 0, mg.at_node['topographic__elevation'], -9999.) >>> fsc_dt = 100. >>> space_dt = 100. Instantiate Fastscape eroder, flow router, and depression finder >>> fsc = FastscapeEroder(mg, K_sp=.001, m_sp=.5, n_sp=1) >>> fr = FlowRouter(mg) >>> df = DepressionFinderAndRouter(mg) Burn in an initial drainage network using the Fastscape eroder: >>> for x in range(100): ... fr.run_one_step() ... df.map_depressions() ... flooded = np.where(df.flood_status == 3)[0] ... fsc.run_one_step(dt=fsc_dt, flooded_nodes=flooded) ... mg.at_node['topographic__elevation'][0] -= 0.001 # Uplift Add some soil to the drainage network: >>> _ = mg.add_zeros('soil__depth', at='node', dtype=float) >>> mg.at_node['soil__depth'] += 0.5 >>> mg.at_node['topographic__elevation'] += mg.at_node['soil__depth'] Instantiate the Space component: >>> ha = Space(mg, K_sed=0.00001, K_br=0.00000000001, ... F_f=0.5, phi=0.1, H_star=1., v_s=0.001, ... m_sp=0.5, n_sp = 1.0, sp_crit_sed=0, ... sp_crit_br=0) Now run the Space component for 2000 short timesteps: >>> for x in range(2000): #Space component loop ... fr.run_one_step() ... df.map_depressions() ... flooded = np.where(df.flood_status == 3)[0] ... ha.run_one_step(dt=space_dt, flooded_nodes=flooded) ... mg.at_node['bedrock__elevation'][0] -= 2e-6 * space_dt Now we test to see if soil depth and topography are right: >>> np.around(mg.at_node['soil__depth'], decimals=3) # doctest: +NORMALIZE_WHITESPACE array([ 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.495, 0.493, 0.492, 0.5 , 0.5 , 0.493, 0.493, 0.491, 0.5 , 0.5 , 0.492, 0.491, 0.486, 0.5 , 0.5 , 0.5 , 0.5 , 0.5 , 0.5 ]) >>> np.around(mg.at_node['topographic__elevation'], decimals=3) # doctest: +NORMALIZE_WHITESPACE array([ 0.423, 1.536, 2.573, 3.511, 4.561, 1.582, 0.424, 0.429, 0.438, 5.51 , 2.54 , 0.429, 0.429, 0.439, 6.526, 3.559, 0.438, 0.439, 0.451, 7.553, 4.559, 5.541, 6.57 , 7.504, 8.51 ]) """ _name= 'Space' _input_var_names = ( 'flow__receiver_node', 'flow__upstream_node_order', 'topographic__steepest_slope', 'drainage_area', 'soil__depth' ) _output_var_names = ( 'topographic__elevation' 'soil__depth' ) _var_units = { 'flow__receiver_node': '-', 'flow__upstream_node_order': '-', 'topographic__steepest_slope': '-', 'drainage_area': 'm**2', 'soil__depth': 'm', 'topographic__elevation': 'm', } _var_mapping = { 'flow__receiver_node': 'node', 'flow__upstream_node_order': 'node', 'topographic__steepest_slope': 'node', 'drainage_area': 'node', 'soil__depth': 'node', 'topographic__elevation': 'node', } _var_doc = { 'flow__receiver_node': 'Node array of receivers (node that receives flow from current ' 'node)', 'flow__upstream_node_order': 'Node array containing downstream-to-upstream ordered list of ' 'node IDs', 'topographic__steepest_slope': 'Topographic slope at each node', 'drainage_area': "Upstream accumulated surface area contributing to the node's " "discharge", 'soil__depth': 'Depth of sediment above bedrock', 'topographic__elevation': 'Land surface topographic elevation', } _cite_as = """@Article{gmd-10-4577-2017, AUTHOR = {Shobe, C. M. and Tucker, G. E. and Barnhart, K. R.}, TITLE = {The SPACE~1.0 model: a~Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution}, JOURNAL = {Geoscientific Model Development}, VOLUME = {10}, YEAR = {2017}, NUMBER = {12}, PAGES = {4577--4604}, URL = {https://www.geosci-model-dev.net/10/4577/2017/}, DOI = {10.5194/gmd-10-4577-2017} }""" def __init__(self, grid, K_sed=None, K_br=None, F_f=None, phi=None, H_star=None, v_s=None, m_sp=None, n_sp=None, sp_crit_sed=None, sp_crit_br=None, discharge_field='surface_water__discharge', solver='basic', dt_min=DEFAULT_MINIMUM_TIME_STEP, **kwds): """Initialize the Space model. """ super(Space, self).__init__(grid, m_sp=m_sp, n_sp=n_sp, phi=phi, F_f=F_f, v_s=v_s, dt_min=dt_min, discharge_field=discharge_field) self._grid = grid #store grid # space specific inits self.H_star = H_star if 'soil__depth' in grid.at_node: self.soil__depth = grid.at_node['soil__depth'] else: self.soil__depth = grid.add_zeros( 'soil__depth', at='node', dtype=float) if 'bedrock__elevation' in grid.at_node: self.bedrock__elevation = grid.at_node['bedrock__elevation'] else: self.bedrock__elevation = grid.add_zeros( 'bedrock__elevation', at='node', dtype=float) self.bedrock__elevation[:] = self.topographic__elevation -\ self.soil__depth self.Es = np.zeros(grid.number_of_nodes) self.Er = np.zeros(grid.number_of_nodes) #K's and critical values can be floats, grid fields, or arrays self.K_sed = return_array_at_node(grid, K_sed) self.K_br = return_array_at_node(grid, K_br) self.sp_crit_sed = return_array_at_node(grid, sp_crit_sed) self.sp_crit_br = return_array_at_node(grid, sp_crit_br) # Handle option for solver if solver == 'basic': self.run_one_step = self.run_one_step_basic elif solver == 'adaptive': self.run_one_step = self.run_with_adaptive_time_step_solver self.time_to_flat = np.zeros(grid.number_of_nodes) self.porosity_factor = 1.0 / (1.0 - self.phi) else: raise ValueError("Parameter 'solver' must be one of: " + "'basic', 'adaptive'") def _calc_erosion_rates(self): """Calculate erosion rates.""" # if sp_crits are zero, then this colapses to correct all the time. omega_sed = self.K_sed * self.Q_to_the_m * np.power(self.slope, self.n_sp) omega_br = self.K_br * self.Q_to_the_m * np.power(self.slope, self.n_sp) omega_sed_over_sp_crit = np.divide(omega_sed, self.sp_crit_sed, out=np.zeros_like(omega_sed), where=self.sp_crit_sed!=0) omega_br_over_sp_crit = np.divide(omega_br, self.sp_crit_br, out=np.zeros_like(omega_br), where=self.sp_crit_br!=0) self.sed_erosion_term = omega_sed - self.sp_crit_sed * (1.0 - np.exp(-omega_sed_over_sp_crit)) self.br_erosion_term = omega_br - self.sp_crit_br * (1.0 - np.exp(-omega_br_over_sp_crit)) self.Es = self.sed_erosion_term * (1.0 - np.exp(-self.soil__depth / self.H_star)) self.Er = self.br_erosion_term * np.exp(-self.soil__depth / self.H_star) def run_one_step_basic(self, dt=1.0, flooded_nodes=None, **kwds): """Calculate change in rock and alluvium thickness for a time period 'dt'. Parameters ---------- dt : float Model timestep [T] flooded_nodes : array Indices of flooded nodes, passed from flow router """ #Choose a method for calculating erosion: self._calc_hydrology() self._calc_erosion_rates() self.qs_in[:] = 0 #iterate top to bottom through the stack, calculate qs # cythonized version of calculating qs_in calculate_qs_in(np.flipud(self.stack), self.flow_receivers, self.cell_area_at_node, self.q, self.qs, self.qs_in, self.Es, self.Er, self.v_s, self.F_f, self.phi) self.depo_rate[self.q > 0] = (self.qs[self.q > 0] * (self.v_s / self.q[self.q > 0])) #now, the analytical solution to soil thickness in time: #need to distinguish D=kqS from all other cases to save from blowup! flooded = np.full(self._grid.number_of_nodes, False, dtype=bool) flooded[flooded_nodes] = True #distinguish cases: blowup = self.depo_rate == self.K_sed * self.Q_to_the_m * self.slope ##first, potential blowup case: #positive slopes, not flooded pos_not_flood = ((self.q > 0) & (blowup==True) & (self.slope > 0) & (flooded==False)) self.soil__depth[pos_not_flood] = (self.H_star * np.log((self.sed_erosion_term[pos_not_flood] / self.H_star) * dt + np.exp(self.soil__depth[pos_not_flood] / self.H_star))) #positive slopes, flooded pos_flood = ((self.q > 0) & (blowup==True) & (self.slope > 0) & (flooded==True)) self.soil__depth[pos_flood] = (self.depo_rate[pos_flood] / (1 - self.phi)) * dt #non-positive slopes, not flooded non_pos_not_flood = ((self.q > 0) & (blowup==True) & (self.slope <= 0) & (flooded==False)) self.soil__depth[non_pos_not_flood] += (self.depo_rate[non_pos_not_flood] / (1 - self.phi) * dt) ##more general case: pos_not_flood = ((self.q > 0) & (blowup==False) & (self.slope > 0) & (flooded==False)) self.soil__depth[pos_not_flood] = (self.H_star * np.log((1 / ((self.depo_rate[pos_not_flood] / (1 - self.phi)) / (self.sed_erosion_term[pos_not_flood]) - 1)) * (np.exp((self.depo_rate[pos_not_flood] / (1 - self.phi) - (self.sed_erosion_term[pos_not_flood]))*(dt / self.H_star)) * (((self.depo_rate[pos_not_flood] / (1 - self.phi) / (self.sed_erosion_term[pos_not_flood])) - 1) * np.exp(self.soil__depth[pos_not_flood] / self.H_star) + 1) - 1))) #places where slope <= 0 but not flooded: neg_slope_not_flooded = ((self.q > 0) & (blowup==False) & (self.slope <= 0) & (flooded==False)) self.soil__depth[neg_slope_not_flooded] += (self.depo_rate[neg_slope_not_flooded] / (1 - self.phi) * dt) #flooded nodes: flooded_nodes = (self.q > 0) & (blowup==False) & (flooded==True) self.soil__depth[flooded_nodes] += (self.depo_rate[flooded_nodes] / (1 - self.phi) * dt) # where discharge exists discharge_exists = self.q > 0 self.bedrock__elevation[discharge_exists] += dt * \ (-self.br_erosion_term[discharge_exists] * \ (np.exp(-self.soil__depth[discharge_exists] / self.H_star))) #finally, determine topography by summing bedrock and soil cores = self._grid.core_nodes self.topographic__elevation[cores] = self.bedrock__elevation[cores] + \ self.soil__depth[cores] def run_with_adaptive_time_step_solver(self, dt=1.0, flooded_nodes=[], **kwds): """Run step with CHILD-like solver that adjusts time steps to prevent slope flattening. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> import numpy as np >>> rg = RasterModelGrid((3, 4)) >>> z = rg.add_zeros('topographic__elevation', at='node') >>> z[:] = 0.1 * rg.x_of_node >>> H = rg.add_zeros('soil__depth', at='node') >>> H += 0.1 >>> br = rg.add_zeros('bedrock__elevation', at='node') >>> br[:] = z - H >>> fa = FlowAccumulator(rg, flow_director='FlowDirectorSteepest') >>> fa.run_one_step() >>> sp = Space(rg, K_sed=1.0, K_br=0.1, ... F_f=0.5, phi=0.0, H_star=1., v_s=1.0, ... m_sp=0.5, n_sp = 1.0, sp_crit_sed=0, ... sp_crit_br=0, solver='adaptive') >>> sp.run_one_step(dt=10.0) >>> np.round(sp.Es[5:7], 4) array([ 0.0029, 0.0074]) >>> np.round(sp.Er[5:7], 4) array([ 0.0032, 0.0085]) >>> np.round(H[5:7], 3) array([ 0.088, 0.078]) """ # Initialize remaining_time, which records how much of the global time # step we have yet to use up. remaining_time = dt z = self._grid.at_node['topographic__elevation'] br = self._grid.at_node['bedrock__elevation'] H = self._grid.at_node['soil__depth'] r = self.flow_receivers time_to_flat = np.zeros(len(z)) time_to_zero_alluv = np.zeros(len(z)) dzdt = np.zeros(len(z)) cores = self._grid.core_nodes first_iteration = True # Outer WHILE loop: keep going until time is used up while remaining_time > 0.0: # Update all the flow-link slopes. # # For the first iteration, we assume this has already been done # outside the component (e.g., by flow router), but we need to do # it ourselves on subsequent iterations. if not first_iteration: # update the link slopes self._update_flow_link_slopes() # update where nodes are flooded. This shouuldn't happen because # of the dynamic timestepper, but just in case, we update here. new_flooded_nodes = np.where(self.slope<0)[0] flooded_nodes = np.asarray(np.unique(np.concatenate(( flooded_nodes, new_flooded_nodes))), dtype=np.int64) else: first_iteration = False # Calculate rates of entrainment self._calc_hydrology() self._calc_erosion_rates() # CORRECTION HERE? self.Es[flooded_nodes] = 0.0 self.Er[flooded_nodes] = 0.0 # Zero out sediment influx for new iteration self.qs_in[:] = 0 calculate_qs_in(np.flipud(self.stack), self.flow_receivers, self.cell_area_at_node, self.q, self.qs, self.qs_in, self.Es, self.Er, self.v_s, self.F_f, self.phi) self.depo_rate[self.q > 0] = (self.qs[self.q > 0] * (self.v_s / self.q[self.q > 0])) # TODO handle flooded nodes in the above fn # Now look at upstream-downstream node pairs, and recording the # time it would take for each pair to flatten. Take the minimum. dzdt[cores] = self.depo_rate[cores] - (self.Es[cores] + self.Er[cores]) rocdif = dzdt - dzdt[r] zdif = z - z[r] time_to_flat[:] = remaining_time converging = np.where(rocdif < 0.0)[0] time_to_flat[converging] = -(TIME_STEP_FACTOR * zdif[converging] / rocdif[converging]) time_to_flat[np.where(zdif <= 0.0)[0]] = remaining_time # From this, find the maximum stable time step with regard to slope # evolution. dt_max1 = np.amin(time_to_flat) # Next we consider time to exhaust regolith time_to_zero_alluv[:] = remaining_time dHdt = self.porosity_factor * (self.depo_rate) - self.Es decreasing_H = np.where(dHdt < 0.0)[0] time_to_zero_alluv[decreasing_H] = - (TIME_STEP_FACTOR * H[decreasing_H] / dHdt[decreasing_H]) # Now find the smallest time that would lead to near-empty alluv dt_max2 = np.amin(time_to_zero_alluv) # Take the smaller of the limits dt_max = min(dt_max1, dt_max2) if dt_max < self.dt_min: dt_max = self.dt_min # Now a vector operation: apply dzdt and dhdt to all nodes br[cores] -= self.Er[cores] * dt_max H[cores] += dHdt[cores] * dt_max z[cores] = br[cores] + H[cores] # Update remaining time and continue remaining_time -= dt_max
the-stack_106_26453
""" clint.textui.progress ~~~~~~~~~~~~~~~~~ This module provides the progressbar functionality. """ import os import sys import time import crayons from pipenv.environments import PIPENV_COLORBLIND, PIPENV_HIDE_EMOJIS STREAM = sys.stderr MILL_TEMPLATE = "%s %s %i/%i\r" DOTS_CHAR = "." if PIPENV_HIDE_EMOJIS: if PIPENV_COLORBLIND: BAR_FILLED_CHAR = "=" BAR_EMPTY_CHAR = "-" else: BAR_FILLED_CHAR = str(crayons.green("=", bold=True)) BAR_EMPTY_CHAR = str(crayons.black("-")) else: if PIPENV_COLORBLIND: BAR_FILLED_CHAR = "▉" BAR_EMPTY_CHAR = " " else: BAR_FILLED_CHAR = str(crayons.green("▉", bold=True)) BAR_EMPTY_CHAR = str(crayons.black("▉")) if (sys.version_info[0] >= 3) and (os.name != "nt"): BAR_TEMPLATE = " %s%s%s %i/%i — {}\r".format(crayons.black("%s")) else: if os.name == "nt": BAR_TEMPLATE = " %s%s%s %i/%i - %s\r" else: BAR_TEMPLATE = " %s%s%s %i/%i — %s\r" MILL_CHARS = ["|", "/", "-", "\\"] # How long to wait before recalculating the ETA ETA_INTERVAL = 1 # How many intervals (excluding the current one) to calculate the simple moving # average ETA_SMA_WINDOW = 9 class Bar: def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.done() return False # we're not suppressing exceptions def __init__( self, label="", width=32, hide=None, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=None, every=1, ): self.label = label self.width = width self.hide = hide # Only show bar in terminals by default (better for piping, logging etc.) if hide is None: try: self.hide = not STREAM.isatty() except AttributeError: # output does not support isatty() self.hide = True self.empty_char = empty_char self.filled_char = filled_char self.expected_size = expected_size self.every = every self.start = time.time() self.ittimes = [] self.eta = 0 self.etadelta = time.time() self.etadisp = self.format_time(self.eta) self.last_progress = 0 if self.expected_size: self.show(0) def show(self, progress, count=None): if count is not None: self.expected_size = count if self.expected_size is None: raise Exception("expected_size not initialized") self.last_progress = progress if (time.time() - self.etadelta) > ETA_INTERVAL: self.etadelta = time.time() self.ittimes = self.ittimes[-ETA_SMA_WINDOW:] + [ -(self.start - time.time()) / (progress + 1) ] self.eta = ( sum(self.ittimes) / float(len(self.ittimes)) * (self.expected_size - progress) ) self.etadisp = self.format_time(self.eta) x = int(self.width * progress / self.expected_size) if not self.hide: if ( progress % self.every == 0 # True every "every" updates or progress == self.expected_size # And when we're done ): STREAM.write( BAR_TEMPLATE % ( self.label, self.filled_char * x, self.empty_char * (self.width - x), progress, self.expected_size, self.etadisp, ) ) STREAM.flush() def done(self): self.elapsed = time.time() - self.start elapsed_disp = self.format_time(self.elapsed) if not self.hide: # Print completed bar with elapsed time STREAM.write( BAR_TEMPLATE % ( self.label, self.filled_char * self.width, self.empty_char * 0, self.last_progress, self.expected_size, elapsed_disp, ) ) STREAM.write("\n") STREAM.flush() def format_time(self, seconds): return time.strftime("%H:%M:%S", time.gmtime(seconds)) def bar( it, label="", width=32, hide=None, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=None, every=1, ): """Progress iterator. Wrap your iterables with it.""" count = len(it) if expected_size is None else expected_size with Bar( label=label, width=width, hide=hide, empty_char=BAR_EMPTY_CHAR, filled_char=BAR_FILLED_CHAR, expected_size=count, every=every, ) as bar: for i, item in enumerate(it): yield item bar.show(i + 1) def dots(it, label="", hide=None, every=1): """Progress iterator. Prints a dot for each item being iterated""" count = 0 if not hide: STREAM.write(label) for i, item in enumerate(it): if not hide: if i % every == 0: # True every "every" updates STREAM.write(DOTS_CHAR) sys.stderr.flush() count += 1 yield item STREAM.write("\n") STREAM.flush() def mill(it, label="", hide=None, expected_size=None, every=1): """Progress iterator. Prints a mill while iterating over the items.""" def _mill_char(_i): if _i >= count: return " " else: return MILL_CHARS[(_i // every) % len(MILL_CHARS)] def _show(_i): if not hide: if ( _i % every == 0 # True every "every" updates or _i == count # And when we're done ): STREAM.write(MILL_TEMPLATE % (label, _mill_char(_i), _i, count)) STREAM.flush() count = len(it) if expected_size is None else expected_size if count: _show(0) for i, item in enumerate(it): yield item _show(i + 1) if not hide: STREAM.write("\n") STREAM.flush()
the-stack_106_26454
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Evangelos A. Dimopoulos, Evan K. Irving-Pease" __copyright__ = "Copyright 2020, University of Oxford" __email__ = "[email protected]" __license__ = "MIT" import argparse import hashlib import os import re import sys import pandas as pd import yaml REGEX_WHITELIST = r"[\w.-]+" REGEX_BLACKLIST = r"[^\w.-]+" PE = "PE" COLLAPSED = "COLLAPSED" SE = "SE" WARNING = "\x1b[33m" FAIL = "\x1b[31m" END = "\033[0m" WARNING_DB = 0 WARNING_USER = 0 is_tty = sys.stdout.isatty() class ValidationError(Exception): pass class ArgumentCustomFormatter(argparse.HelpFormatter): """ Custom formatter for argparse """ def _get_help_string(self, action): message = action.help if "%(default)" not in action.help: if action.default is not argparse.SUPPRESS and action.default is not None: defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE] if action.option_strings or action.nargs in defaulting_nargs: message += " (default: %(default)s)" return message class WritablePathType(object): """ Is this a writable path. """ def __call__(self, value): from pathlib import Path try: path = Path(value).expanduser() path.mkdir(parents=True, exist_ok=True) return value except Exception: raise argparse.ArgumentTypeError(f"'{value}' is not a valid writable path") class PositiveIntType(object): """ Is this a positive integer """ def __call__(self, value): try: if not int(value) > 0: raise ValueError() except ValueError: raise argparse.ArgumentTypeError(f"'{value}' is not a valid positive integer") return int(value) class RangeType(object): """ Is this a valid instance of `_type` and within the range [lower, upper] """ def __init__(self, _type, lower, upper): self.type = _type self.lower = lower self.upper = upper def __call__(self, value): try: if not (self.lower <= self.type(value) <= self.upper): raise ValueError() except ValueError: raise argparse.ArgumentTypeError( f"'{value}' is not a valid {self.type.__name__} in the range ({self.lower}, {self.upper})" ) return self.type(value) class FloatRangeType(RangeType): """ Is this a float() within the given range """ def __init__(self, lower, upper): super().__init__(float, lower, upper) class IntRangeType(RangeType): """ Is this an int() within the given range """ def __init__(self, lower, upper): super().__init__(int, lower, upper) class BoolType(object): """ Is this a valid boolean """ def __call__(self, value): if isinstance(value, bool): return value if value.lower() in ("yes", "true", "t", "y", "1"): return True elif value.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError(f"'{value}' is not a valid boolean") class JsonType(object): """ Is this a valid JSON string """ def __call__(self, value): import json try: return json.loads(value) except json.decoder.JSONDecodeError as error: raise argparse.ArgumentTypeError(f"'{value}' is not a valid JSON string\n {error}") class SpreadsheetFileType(object): """ Is it a valid user input file """ cols = None data = None def __call__(self, value): if not os.path.exists(value): raise argparse.ArgumentTypeError(f"'{value}' does not exit") if os.stat(value).st_size == 0: raise argparse.ArgumentTypeError(f"'{value}' is empty") try: self.data = pd.read_table( value, sep="\t", header=None, index_col=False, ) except Exception: raise argparse.ArgumentTypeError(f"'{value}' unknown error parsing file") if len(self.data.columns) != len(self.cols): raise argparse.ArgumentTypeError( f"'{value}' must have {len(self.cols)} columns and be tab delimited (cols={len(self.data.columns)})" ) # find the row number of any empty cells bad_rows = ", ".join([str(i + 1) for i in self.data.index[self.data.isnull().any(axis=1)].tolist()]) if bad_rows: raise argparse.ArgumentTypeError(f"'{value}' contains missing data in line(s): {bad_rows}") return value class AccessionFileType(SpreadsheetFileType): """ Is this a valid accession input file. """ cols = ["species", "accession"] def __call__(self, value): super().__call__(value) # check all accessions pass the regex pattern idx = self.cols.index("accession") species = self.cols.index("species") bad_list_acc = "\n".join( [ f"line {i + 1}: '{acc}'" for i, acc in enumerate(self.data[idx].tolist()) if re.match(REGEX_BLACKLIST, acc) is not None ] ) bad_list_species = "\n".join( [ f"line {i + 1}: '{tax}'" for i, tax in enumerate(self.data[species].tolist()) if re.match(REGEX_BLACKLIST, tax) is not None ] ) if bad_list_acc or bad_list_species: bad_list = bad_list_acc + "\n" + bad_list_species raise argparse.ArgumentTypeError( f"'{value}' these accession codes or taxon names contain invalid characters:\n{bad_list}" ) return value class SequenceFileType(AccessionFileType): """ Is this a valid sequence input file. """ cols = ["species", "accession", "path"] def __call__(self, value): super().__call__(value) # find any files that don't exist or are empty idx = self.cols.index("path") bad_files = "\n".join( [ f"line {i + 1}: '{file}'" for i, file in enumerate(self.data[idx].tolist()) if not os.path.exists(file) or os.stat(file).st_size == 0 ] ) if bad_files: raise argparse.ArgumentTypeError(f"'{value}' these sequence files do not exist or are empty:\n{bad_files}") return value class SraAccessionType(object): """ Is this a valid SRA accession """ def __call__(self, value): # import these locally to avoid cyclic import issues from haystac.workflow.scripts.entrez_utils import entrez_esearch, entrez_efetch try: # query the SRA to see if this a valid accession _, _, id_list = entrez_esearch("sra", f"{value}[Accession]") etree = entrez_efetch("sra", id_list) except Exception: raise argparse.ArgumentTypeError(f"Invalid SRA accession '{value}'") run_code = etree.find('.//RUN').attrib['accession'] if len(id_list) > 1 or value != run_code: raise argparse.ArgumentTypeError( f"The SRA accession you have provided {value} does not refer to a sequencing run. " f"Please visit https://www.ncbi.nlm.nih.gov/sra/ and chose a valid " f"sequencing run accession for the SRA accession {value}." ) try: # now get the library layout layout = etree.find(".//LIBRARY_LAYOUT/*").tag.lower() except Exception: raise argparse.ArgumentTypeError(f"Unable to resolve the library layout for SRA accession '{value}'") return value, layout class NuccoreQueryType(object): """ Is this a valid nuccore query """ def __call__(self, value): # import these locally to avoid cyclic import issues from haystac.workflow.scripts.entrez_utils import entrez_esearch # check if the user has given us a file instead of a string if os.path.isfile(value): query = open(value).read().strip() if not query: raise argparse.ArgumentTypeError(f"The query file '{value}' is empty.") else: query = value try: # query nuccore to see if this a valid query _, _, id_list = entrez_esearch("nuccore", f"{query}") except Exception: raise argparse.ArgumentTypeError(f"Invalid NCBI query '{query}'") # if the query returns no result set raise error if len(id_list) == 0: raise argparse.ArgumentTypeError(f"No results in NCBI nucleotide for query '{query}'") return value class CheckExistingConfig(object): """ Checks the details of an existing yaml file against cli params or another yaml file """ def __init__(self, filename, params): # check if second argument is a dict or a yaml file if isinstance(params, dict): params_config = params elif os.path.isfile(params): with open(params, "r") as fin_params: params_config = yaml.safe_load(fin_params) # check if a config already exists if not os.path.isfile(filename): pass else: # open the config file with open(filename, "r") as fin: existing_config = yaml.safe_load(fin) if not isinstance(params, dict): important_args = ["cache"] else: important_args = [ "cache", "api_key", "mismatch_probability", "bowtie2_scaling", "query", "query_file", "accessions_file", "sequences_file", "refseq_rep", # "force_accessions", # "exclude_accessions", # "resolve_accessions", "rank", "mtDNA", "aDNA", "seed", "fastq", "fastq_r1", "fastq_r2", "sra", "collapse", "trim_adapters", "sample", "min_prob", "query_file_md5", "accessions_md5", "sequences_md5", ] for arg in important_args: # check if all the important params match if arg in existing_config.keys() and arg in params_config.keys(): if existing_config[arg] != params_config[arg]: print_error( f"You are trying to set a value for parameter {arg} on top of an already existing one " f"(old: {existing_config[arg]}, new: {params_config[arg]}). " f"Please either revert to the original parameter you used or create a " f"new output directory." ) class FastqFile(object): """ Is it a valid user input fastq file """ def __call__(self, value): if not os.path.exists(value): raise argparse.ArgumentTypeError(f"'{value}' does not exit") if os.stat(value).st_size == 0: raise argparse.ArgumentTypeError(f"'{value}' is empty") if ".gz" not in value: with open(value, "r") as fin: first_line = fin.readline() else: import gzip with gzip.open(value, "rt") as fin: first_line = fin.readline() # if first_line[0] != "@" or first_line != '>': # raise argparse.ArgumentTypeError(f"'{value}' is not a valid fastq file.") print('here\n') return value class BatchType(object): """ Is this a valid smk batch string """ def __call__(self, value): try: rulename, batch, batches = ( value.split("=")[0], int(value.split("=")[1].split("/")[0]), int(value.split("=")[1].split("/")[1]), ) return rulename, batch, batches except IndexError as error: raise argparse.ArgumentTypeError(f"'{value}' is not a valid snakemake batch string\n {error}") def get_total_paths( checkpoints, config, ): """ Get all the individual fasta file paths for the taxa in our database. """ sequences_df = pd.DataFrame() if config["query"]: pick_sequences = checkpoints.entrez_pick_sequences.get() sequences_df = pd.read_csv(pick_sequences.output[0], sep="\t") assert len(sequences_df) > 0, f"The entrez pick sequences file is empty {pick_sequences.output[0]}" if config["refseq_rep"]: sources = [] # refseq rep prok if config["refseq_rep"] == "prokaryote_rep": refseq_rep_prok = checkpoints.entrez_refseq_rep_prok_accessions.get() refseq_genomes = pd.read_csv(refseq_rep_prok.output.refseq_genomes, sep="\t") genbank_genomes = pd.read_csv(refseq_rep_prok.output.genbank_genomes, sep="\t") assemblies = pd.read_csv(refseq_rep_prok.output.assemblies, sep="\t") refseq_plasmids = pd.read_csv(refseq_rep_prok.output.refseq_plasmids, sep="\t") genbank_plasmids = pd.read_csv(refseq_rep_prok.output.genbank_plasmids, sep="\t") if not config["force_accessions"]: invalid_assemblies = checkpoints.entrez_invalid_assemblies.get() invalid_assembly_sequences = pd.read_csv(invalid_assemblies.output[0], sep="\t") assemblies = assemblies[ ~assemblies["AccessionVersion"].isin(invalid_assembly_sequences["AccessionVersion"]) ] sources = [ refseq_genomes, genbank_genomes, assemblies, refseq_plasmids, genbank_plasmids, ] # refseq viruses elif config["refseq_rep"] == "viruses": refseq_viruses = checkpoints.entrez_refseq_viruses_accessions.get() refseq_viral_genomes = pd.read_csv(refseq_viruses.output.refseq_viruses, sep="\t") sources = [refseq_viral_genomes] # refseq eukaryotes elif config["refseq_rep"] == "eukaryotes": refseq_eukaryotes = checkpoints.entrez_refseq_eukaryotes_accessions.get() refseq_euk_genomes = pd.read_csv(refseq_eukaryotes.output.refseq_euk, sep="\t") sources = [refseq_euk_genomes] if config["query"]: sources.append(sequences_df) sequences_df = pd.concat(sources) if config["sequences"] or config["accessions"]: check_unique_taxa_in_custom_inputs(config["accessions"], config["sequences"]) if config["sequences"]: custom_fasta_paths = pd.read_csv( config["sequences"], sep="\t", header=None, names=["species", "AccessionVersion", "path"], ) custom_fasta_paths = check_unique_taxa_accs(custom_fasta_paths, config, config["sequences"], "user_file") custom_seqs = custom_fasta_paths[["species", "AccessionVersion"]].copy() custom_seqs["AccessionVersion"] = "custom_seq-" + custom_seqs["AccessionVersion"].astype(str) sequences_df = sequences_df.append(custom_seqs) if config["accessions"]: custom_accessions = pd.read_csv( config["accessions"], sep="\t", header=None, names=["species", "AccessionVersion"], ) custom_accessions = check_unique_taxa_accs(custom_accessions, config, config["accessions"], "user_file") sequences_df = sequences_df.append(custom_accessions) if config["genera"]: sequences_df = sequences_df[sequences_df["species"].str.contains("|".join(config["genera"]))] if config["exclude_accessions"]: sequences_df = sequences_df[~sequences_df["AccessionVersion"].isin(config["exclude_accessions"])] # check that db accessions are unique sequences_df = check_unique_taxa_accs(sequences_df, config, "", "db") inputs = [] for key, seq in sequences_df.iterrows(): orgname, accession = ( normalise_name(seq["species"]), seq["AccessionVersion"], ) inputs.append((orgname, accession)) return inputs def normalise_name(taxon): """remove unnecessary characters from a taxon name string.""" return re.sub(REGEX_BLACKLIST, "_", taxon) def check_unique_taxa_in_custom_inputs(accessions, sequences): """Checks that custom input files have only one entry per taxon""" if accessions != "" and sequences != "": custom_fasta_paths = pd.read_csv(sequences, sep="\t", header=None, names=["species", "accession", "path"]) custom_accessions = pd.read_csv(accessions, sep="\t", header=None, names=["species", "accession"]) # check if any taxa in common taxon_acc = custom_accessions["species"].tolist() taxon_seq = custom_fasta_paths["species"].tolist() if bool(set(taxon_acc) & set(taxon_seq)): print_error( "You have provided the same taxon both in your custom sequences " "file and your custom accessions file. Please pick and keep ONLY " "one entry from both of these files. You can only have 1 sequence " "per chosen taxon in your database." ) # check if any accessions in common accession_acc = custom_accessions["accession"].tolist() accession_seq = custom_fasta_paths["accession"].tolist() if bool(set(accession_acc) & set(accession_seq)): print_error( "You have provided the same accession both in your custom sequences " "file and your custom accessions file. Please pick and keep ONLY " "one entry from both of these files, or change the accession entry " "appropriately in your custom sequences file. You can only have 1 accession name " "per chosen taxon in your database." ) def check_unique_taxa_accs(df, config, user_input, to_check): """Checks that there are only unique inputs for taxa and accessions""" # if we are checking the user files if to_check == "user_file": # if duplicate accession in user file raise error if df["AccessionVersion"].duplicated().any(): dup_acc = [i for i in df[df["AccessionVersion"].duplicated()]["AccessionVersion"].to_list()] message = ( f"{user_input} contains multiple taxa for {', '.join(dup_acc)}. " f"Please remove/fix all duplicates. Picking automatically a taxon/accession pair in " f"this case is not possible." ) print_error(message) # if duplicate species in user file either raise error, or --resolve-accessions elif df["species"].duplicated().any(): dup_taxa = [i for i in df[df["species"].duplicated()]["species"].to_list()] message = f"{user_input} contains multiple sequences for {', '.join(dup_taxa)}. " if not config["resolve_accessions"]: message += ( "Either remove all duplicates, or set the `--resolve-accessions` flag to automatically choose one. " "It is the first accession that will be chosen." ) print_error(message) else: # global WARNING_USER for idx, val in df[df["species"].duplicated(keep="first")].iterrows(): message += f"Accession {val['AccessionVersion']} for {val['species']} was omitted." # if WARNING_USER == 0: print_warning(message) # WARNING_USER += 1 df = df[~df["species"].duplicated(keep="first")] return df # if all good return df as is else: return df # if we are checking the database in total elif to_check == "db": # if duplicate accessions in db either raise error, or --resolve-accessions if df["AccessionVersion"].duplicated().any(): dup_acc = [i for i in df[df["AccessionVersion"].duplicated()]["AccessionVersion"].to_list()] dup_tax = [i for i in df[df["AccessionVersion"].duplicated(keep=False)]["species"].to_list()] message = ( f"Accession {', '.join(dup_acc)} appears multiple times in the database " f"with different taxa names ({', '.join(dup_tax)}). " ) if not config["resolve_accessions"]: message += ( f"Please remove/fix all duplicate accessions if possible. " f"If multiple taxa have the same accession, " f"that is possibly due to a recent change in NCBI's taxonomy, and it is strongly " f"advised you check the latest information for these accessions. " f"Either specify unique pairs of taxa and accessions using the `--accessions-file` or " f"`--sequences-file` flags, or set the `--resolve-accessions` flag to automatically " f"choose the first one. " ) print_error(message) else: # global WARNING_DB for idx, val in df[df["AccessionVersion"].duplicated(keep="first")].iterrows(): message += ( f"{val['species']} has been excluded. It is strongly advised to " f"check the latest taxonomy info on NCBI." ) # if WARNING_DB == 0: print_warning(message) # WARNING_DB += 1 df = df[~df["AccessionVersion"].duplicated(keep="first")] return df # if all good return df as id else: return df def get_final_db_paths(checkpoints): """Get all the taxon/acc pairs for the taxa in our database.""" db_sequences = checkpoints.entrez_db_list.get() sequences_df = pd.read_csv(db_sequences.output[0], sep="\t", names=["species", "AccessionVersion"]) assert len(sequences_df) > 0, ( f"The db file containing the taxon/accession pairs is empty {db_sequences.output[0]}. " f"Please rebuild the database." ) inputs = [] for key, seq in sequences_df.iterrows(): orgname, accession = ( normalise_name(seq["species"]), seq["AccessionVersion"], ) inputs.append((orgname, accession)) return inputs def chunker(seq, size): return (seq[pos : pos + size] for pos in range(0, len(seq), size)) def md5(filename): hash_md5 = hashlib.md5() # open file and get the checksum with open(filename, "rb") as f: # read it in chunks in case the file is big for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def print_error(message): """Function to print errors and exit""" message = f"haystac: error: {message}" print(f"{FAIL}{message}{END}" if is_tty else message, file=sys.stderr) exit(1) def print_warning(message): """Function to print warnings""" message = f"WARNING: {message}" print(f"{WARNING}{message}{END}" if is_tty else message, file=sys.stderr) def get_smk_config(): """Function to read the smk config and return a dictionary""" try: with open(".snakemake/config.yaml") as fin: config = yaml.safe_load(fin) except FileNotFoundError: config = {} return config
the-stack_106_26456
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import sys import inspect from py4j.protocol import Py4JJavaError __all__ = [] def _exception_message(excp): """Return the message from an exception as either a str or unicode object. Supports both Python 2 and Python 3. >>> msg = "Exception message" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True >>> msg = u"unicöde" >>> excp = Exception(msg) >>> msg == _exception_message(excp) True """ if isinstance(excp, Py4JJavaError): # 'Py4JJavaError' doesn't contain the stack trace available on the Java side in 'message' # attribute in Python 2. We should call 'str' function on this exception in general but # 'Py4JJavaError' has an issue about addressing non-ascii strings. So, here we work # around by the direct call, '__str__()'. Please see SPARK-23517. return excp.__str__() if hasattr(excp, "message"): return excp.message return str(excp) def _get_argspec(f): """ Get argspec of a function. Supports both Python 2 and Python 3. """ # `getargspec` is deprecated since python3.0 (incompatible with function annotations). # See SPARK-23569. if sys.version_info[0] < 3: argspec = inspect.getargspec(f) else: argspec = inspect.getfullargspec(f) return argspec def majorMinorVersion(version): """ Get major and minor version numbers for given Spark version string. >>> version = "2.4.0" >>> majorMinorVersion(version) (2, 4) >>> version = "abc" >>> majorMinorVersion(version) is None True """ m = re.search('^(\d+)\.(\d+)(\..*)?$', version) if m is None: return None else: return (int(m.group(1)), int(m.group(2))) if __name__ == "__main__": import doctest (failure_count, test_count) = doctest.testmod() if failure_count: sys.exit(-1)
the-stack_106_26460
import unittest import numpy as np from cpprb import LaBERmean, LaBERlazy, LaBERmax class TestLaBER: def test_init(self): laber = self.cls(12) self.assertEqual(laber.batch_size, 12) np.testing.assert_array_equal(laber.idx, [i for i in range(12*4)]) self.assertEqual(laber.eps, 1e-6) with self.assertRaises(ValueError): self.cls(-12) laber = self.cls(12, 5) self.assertEqual(laber.batch_size, 12) np.testing.assert_array_equal(laber.idx, [i for i in range(12*5)]) self.assertEqual(laber.eps, 1e-6) with self.assertRaises(ValueError): self.cls(12, -4) laber = self.cls(12, 5, eps=1e-4) self.assertEqual(laber.batch_size, 12) np.testing.assert_array_equal(laber.idx, [i for i in range(12*5)]) self.assertEqual(laber.eps, 1e-4) with self.assertRaises(ValueError): self.cls(12, 4, eps=-2) def test_call(self): batch_size = 32 m = 4 m_batch = batch_size * m laber = self.cls(batch_size, m) with self.assertRaises(ValueError): laber(priorities=[]) sample = laber(priorities=[1.0]*m_batch) self.assertEqual(sample["indexes"].shape, (batch_size, )) self.assertEqual(sample["weights"].shape, (batch_size, )) def test_uniform(self): laber = self.cls(2, 2) sample = laber(priorities=[1,1,1,1]) np.testing.assert_array_equal(sample["weights"], self.uniform) def test_onehot(self): laber = self.cls(2, 2, eps=0) sample = laber(priorities=[1, 0, 0, 0]) np.testing.assert_array_equal(sample["indexes"], [0, 0]) np.testing.assert_array_equal(sample["weights"], self.onehot) class TestLaBERmean(TestLaBER, unittest.TestCase): @classmethod def setUpClass(cls): cls.cls = LaBERmean cls.uniform = (1, 1) cls.onehot = (0.25, 0.25) class TestLaBERlazy(TestLaBER, unittest.TestCase): @classmethod def setUpClass(cls): cls.cls = LaBERlazy cls.uniform = (4, 4) cls.onehot = (1, 1) class TestLaBERmax(TestLaBER, unittest.TestCase): @classmethod def setUpClass(cls): cls.cls = LaBERmax cls.uniform = (1, 1) cls.onehot = (1, 1) if __name__ == "__main__": unittest.main()
the-stack_106_26461
""" MIT License Copyright (c) 2021 GamingGeek Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from fire.converters import Member, TextChannel from discord.ext import commands import datetime import discord import asyncio import random import uuid import io class Tickets(commands.Cog, name="Tickets"): def __init__(self, bot): self.bot = bot self.words = open('./words.txt').read().split(' ') @commands.group(name='tickets', description='View all the ticket configuration commands', aliases=['ticket']) @commands.has_permissions(manage_channels=True) async def tickets_group(self, ctx): if ctx.invoked_subcommand: return embed = discord.Embed(color=ctx.author.color, timestamp=datetime.datetime.now( datetime.timezone.utc), description='Here are all the ticket configuration commands') embed.add_field( name=f'{ctx.prefix}ticket category [<category>]', value='Set the category were tickets are made. **Setting this enables tickets**' '\nRunning this command without providing a category resets it, therefore disabling tickets', inline=False ) embed.add_field( name=f'{ctx.prefix}ticket limit <number>', value='Limit the number of tickets a user can make, 0 = No Limit', inline=False ) embed.add_field( name=f'{ctx.prefix}ticket name <name>', value='Set the name for tickets. There are many variables available for use in the name', inline=False ) embed.set_author(name=str(ctx.author), icon_url=str( ctx.author.avatar_url_as(static_format='png'))) return await ctx.send(embed=embed) @tickets_group.command(name='category', description='Set the category where tickets are made') @commands.has_permissions(manage_channels=True) async def tickets_category(self, ctx, category: discord.CategoryChannel = None): await ctx.config.set('tickets.parent', category) if not category: return await ctx.success(f'Successfully disabled tickets.') return await ctx.success(f'Successfully enabled tickets and set the category to {category}.') @tickets_group.command(name='limit', description='Set the limit for how many tickets a user can make') @commands.has_permissions(manage_channels=True) async def tickets_limit(self, ctx, limit: int = 0): if limit < 0 or limit > 20: return await ctx.error('Invalid limit') await ctx.config.set('tickets.limit', limit) return await ctx.success(f'Successfully set the ticket limit to {limit}') @tickets_group.command(name='name', description='Set the name for tickets') @commands.has_permissions(manage_channels=True) async def tickets_name(self, ctx, name: str = None): variables = { '{increment}': ctx.config.get('tickets.increment'), '{name}': ctx.author.name, '{id}': ctx.author.id, '{word}': random.choice(self.words), '{uuid}': str(uuid.uuid4())[:4] } if not name: variables = '\n'.join([f'{k}: {v}' for k, v in variables.items()]) current = ctx.config.get('tickets.name') embed = discord.Embed( color=ctx.author.color, timestamp=datetime.datetime.now(datetime.timezone.utc)) embed.add_field(name='Variables', value=variables, inline=False) return await ctx.send(embed=embed) if len(name) > 50: return await ctx.error('Name is too long, it must be 50 chars or less') await ctx.config.set('tickets.name', name) fname = name for k, v in variables.items(): fname = fname.replace(k, str(v)) return await ctx.success(f'Successfully set the tickets name to {name}\nExample: {fname}') @commands.command(name='new', description='Makes a new ticket') @commands.bot_has_permissions(manage_channels=True, manage_roles=True) async def tickets_new(self, ctx, *, subject: str = "No subject given"): creating = None if not ctx.silent: creating = await ctx.send('Creating your ticket...') config = ctx.config parent = ctx.ticket_override if config.get( "tickets.allow_override") and ctx.ticket_override else config.get('tickets.parent') limit = config.get('tickets.limit') if not parent and not ctx.silent: return await ctx.error('Tickets are not enabled here') if limit and len([c for c in config.get("tickets.channels") if isinstance(c, discord.TextChannel) and str(ctx.author.id) in str(c.topic)]) >= limit: if not ctx.silent: return await ctx.error('You have too many tickets open!') return variables = { '{increment}': config.get('tickets.increment'), '{name}': ctx.author.name, '{id}': ctx.author.id, '{word}': random.choice(self.words), '{uuid}': str(uuid.uuid4())[:4], '{crab}': '🦀' # crab in the code? nah, crab in the ticket name } name = config.get('tickets.name') for k, v in variables.items(): # asbyth has me putting crabs everywhere name = name.replace(k, str(v)).replace('crab', '🦀') overwrites = { ctx.author: discord.PermissionOverwrite(read_messages=True, send_messages=True), ctx.guild.me: discord.PermissionOverwrite(read_messages=True, send_messages=True, manage_channels=True, manage_roles=True), ctx.guild.default_role: discord.PermissionOverwrite( read_messages=False) } overwrites.update(parent.overwrites) ticket = await parent.create_text_channel( name=name[:50], overwrites=overwrites, topic=f'Ticket created by {ctx.author} ({ctx.author.id}) with subject "{subject}"', reason=f'Ticket created by {ctx.author} ({ctx.author.id})' ) embed = discord.Embed( title=f'Ticket opened by {ctx.author}', timestamp=datetime.datetime.now(datetime.timezone.utc), color=ctx.author.color ) embed.add_field(name='Subject', value=subject) open_msg = await ticket.send(embed=embed) # Removes any channels that no longer exist. tchannels = [c for c in config.get('tickets.channels') if c] tchannels.append(ticket) await config.set('tickets.channels', tchannels) await config.set('tickets.increment', config.get('tickets.increment') + 1) self.bot.dispatch('ticket_create', ctx, ticket, open_msg) if creating: return await creating.edit( content=f'<:yes:534174796888408074> Successfully made your ticket, {ticket.mention}' ) @commands.command(name='add', description='Add a user to the current ticket') @commands.bot_has_permissions(manage_roles=True) async def tickets_add(self, ctx, *, user: Member): tchannels = ctx.config.get('tickets.channels') if ctx.channel not in tchannels: return await ctx.error('This command can only be ran in ticket channels!') if str(ctx.author.id) not in ctx.channel.topic and not ctx.author.permissions_in(ctx.channel).manage_channels: return await ctx.error('You must own this ticket or have `Manage Channels` permission to add users') overwrites = ctx.channel.overwrites overwrites.update({user: discord.PermissionOverwrite( read_messages=True, send_messages=True)}) await ctx.channel.edit(overwrites=overwrites) return await ctx.success(f'Successfully added {user.mention} to the ticket') @commands.command(name='remove', description='Remove a user from the current ticket') @commands.bot_has_permissions(manage_roles=True) async def tickets_remove(self, ctx, *, user: Member): tchannels = ctx.config.get('tickets.channels') if ctx.channel not in tchannels: return await ctx.error('This command can only be ran in ticket channels!') if str(ctx.author.id) not in ctx.channel.topic and not ctx.author.permissions_in(ctx.channel).manage_channels: return await ctx.error('You must own this ticket or have `Manage Channels` permission to remove users') if str(user.id) in ctx.channel.topic: return await ctx.error('You cannot remove the ticket author') if not user.permissions_in(ctx.channel).read_messages: return await ctx.error(f'{user} is not here, so how are you gonna remove them? 🤔') if user.permissions_in(ctx.channel).manage_channels: return await ctx.error(f'You cannot remove this user') overwrites = ctx.channel.overwrites overwrites.update({user: discord.PermissionOverwrite( read_messages=False, send_messages=False)}) await ctx.channel.edit(overwrites=overwrites) return await ctx.success(f'Successfully removed {user} from the ticket') @commands.command(name='close', description='Closes a ticket, uploads the transcript to action logs channel and sends to the ticket author') @commands.bot_has_permissions(manage_roles=True) @commands.max_concurrency(1, commands.BucketType.channel) async def tickets_close(self, ctx, *, reason: str = "No Reason Provided"): config = ctx.config tchannels = [c for c in config.get('tickets.channels') if c] if ctx.channel not in tchannels: return await ctx.error('This command can only be ran in ticket channels!') if not ctx.author.permissions_in(ctx.channel).manage_channels and not str(ctx.author.id) in str(ctx.channel.topic): return await ctx.error('You must own this ticket or have `Manage Channels` permission to close') await ctx.error(f'Are you sure you want to close this ticket? Type `close` to confirm') try: await self.bot.wait_for('message', check=lambda m: m.author == ctx.author and m.channel == ctx.channel and m.content.lower() == 'close', timeout=10) except asyncio.TimeoutError: return await ctx.error('No response, aborting close.') closing = await ctx.send('Closing ticket, this may make take a bit...') tchannels.remove(ctx.channel) await config.set('tickets.channels', tchannels) transcript = [] async for m in ctx.channel.history(limit=None): transcript.append( f'{m.author} ({m.author.id}) at {m.created_at.strftime("%d/%m/%Y @ %I:%M:%S %p")} UTC\n{m.content}') transcript.reverse() string = io.StringIO('\n\n'.join(transcript)) # If author is not found for some odd reason, fallback to message author for log embed color author = ctx.author for m in ctx.channel.members: if str(m.id) in ctx.channel.topic: # they do be the ticket author doe author = m try: await m.send(f'Your ticket in {ctx.guild} was closed for the reason "{reason}". The transcript is below', file=discord.File(string, filename=f'{ctx.channel}-transcript.txt')) except Exception: pass # no transcript for you, boo hoo :( actionlogs = config.get( 'tickets.transcript_logs') or config.get('log.action') if actionlogs: transcript.append( f'{len(transcript)} total messages, closed by {ctx.author}') string = io.StringIO('\n\n'.join(transcript)) embed = discord.Embed( title=f'Ticket {ctx.channel} was closed', timestamp=datetime.datetime.now(datetime.timezone.utc), color=author.color ) embed.add_field( name='Closed by', value=f'{ctx.author} ({ctx.author.id})', inline=False) embed.add_field(name='Reason', value=reason, inline=False) await actionlogs.send( embed=embed, # Will make this better soon file=discord.File( string, filename=f'transcript.txt') if ctx.channel.category.id != 755796036198596688 else None ) await ctx.channel.delete(reason=f'Ticket closed by {ctx.author} for "{reason}"') self.bot.dispatch('ticket_close', ctx, author) def setup(bot): bot.add_cog(Tickets(bot)) bot.logger.info(f'$GREENLoaded $CYANTickets $GREENmodule!')
the-stack_106_26462
""" Copyright 2013 Rackspace Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cafe.drivers.unittest.decorators import tags from cloudcafe.common.tools.datagen import rand_name from cloudcafe.compute.common.exceptions import BadRequest, ItemNotFound from cloudroast.compute.fixtures import ComputeAdminFixture class PrivateFlavorTest(ComputeAdminFixture): @classmethod def setUpClass(cls): super(PrivateFlavorTest, cls).setUpClass() cls.flavor_name = rand_name('flavor') cls.flavor = cls.admin_flavors_client.create_flavor( name=cls.flavor_name, ram='64', vcpus='1', disk='10', is_public=False).entity cls.admin_flavors_client.add_tenant_access( flavor_id=cls.flavor.id, tenant=cls.user_config.tenant_id) @classmethod def tearDownClass(cls): super(PrivateFlavorTest, cls).tearDownClass() cls.admin_flavors_client.delete_flavor(cls.flavor.id) @tags(type='positive', net='no') def test_create_server_with_private_flavor(self): resp = self.server_behaviors.create_active_server( flavor_ref=self.flavor.id) server = resp.entity self.resources.add(server.id, self.servers_client.delete_server) @tags(type='positive', net='no') def test_list_private_flavor(self): response = self.flavors_client.list_flavors_with_detail() flavors = response.entity self.assertIn(self.flavor, flavors) @tags(type='positive', net='no') def test_get_private_flavor(self): response = self.flavors_client.get_flavor_details(self.flavor.id) self.assertEqual(response.status_code, 200) class PrivateFlavorNegativeTest(ComputeAdminFixture): @classmethod def setUpClass(cls): super(PrivateFlavorNegativeTest, cls).setUpClass() cls.flavor_name = rand_name('flavor') cls.flavor = cls.admin_flavors_client.create_flavor( name=cls.flavor_name, ram='64', vcpus='1', disk='10', is_public=False).entity @tags(type='negative', net='no') def test_create_server_without_flavor_permissions_fails(self): with self.assertRaises(BadRequest): resp = self.server_behaviors.create_active_server( flavor_ref=self.flavor.id) server = resp.entity self.resources.add(server.id, self.servers_client.delete_server) @tags(type='negative', net='no') def test_private_flavor_not_listed_without_permissions(self): response = self.flavors_client.list_flavors_with_detail() flavors = response.entity self.assertNotIn(self.flavor, flavors) @tags(type='negative', net='no') def test_get_private_flavor_fails_without_permissions(self): with self.assertRaises(ItemNotFound): self.flavors_client.get_flavor_details(self.flavor.id)
the-stack_106_26463
"""Test module for tools pkg i.e. MagicTools""" from IPython import get_ipython import jarvis import tools ip = get_ipython() my_magic = jarvis.MagicTools(ip) def test_retrieve_pkg_version(capsys): """Notebook equivalent: %retrieve_pkg_version """ my_magic.retrieve_pkg_version('') captured = capsys.readouterr() expected = ["lxml==", "notebook==", "plantuml==", "jarvis4se==", "pandas==", "python=="] assert all(i in captured.out for i in expected) def test_diagram_cell(capsys, mocker): """Notebook equivalent: %%diagram @startuml !define Junction_Or circle #black !define Junction_And circle #whitesmoke Junction_And JunctionAnd Junction_Or JunctionOr archimate #Technology "VPN Server" as vpnServerA <<technology-device>> rectangle GO #lightgreen rectangle STOP #red rectangle WAIT #orange GO -up-> JunctionOr STOP -up-> JunctionOr STOP -down-> JunctionAnd WAIT -down-> JunctionAnd @enduml """ spy = mocker.spy(tools, "get_url_from_string") my_magic.diagram('', "@startuml\n" "!define Junction_Or circle #black\n" "!define Junction_And circle #whitesmoke\n" "\n" "\n" "Junction_And JunctionAnd\n" "Junction_Or JunctionOr\n" "\n" "archimate #Technology 'VPN Server' as vpnServerA <<technology-device>>\n" "\n" "rectangle GO #lightgreen\n" "rectangle STOP #red\n" "rectangle WAIT #orange\n" "GO -up-> JunctionOr\n" "STOP -up-> JunctionOr\n" "STOP -down-> JunctionAnd\n" "WAIT -down-> JunctionAnd\n" "@enduml\n") expected_plantuml_link = "http://www.plantuml.com/plantuml/svg/TL2nhi8m3Dpz5KOTcFe7gA8JUWmK" \ "YGf651BJHgGESjCY_fx04oW8sExEToVRypue2KFdO6BeQ9bmER0ErlE-4jHMj2FC3ax" \ "fqwUZPFEoN5eRgE_yYG3WpV4a4KDQ_iIL02ZHhUrKY4KrwPQzyyqLfzlr2ZSa8yaKLO" \ "_ZcVzPYRDPUFboGwFLL1G0GZeeRk92YmepPvisD4B4oM1JLslCX4oYxSg_6ZClaH74P" \ "3wSyo9Ty17weHf_uKI_d_de-pQO4vlxisy=" expected_notebook_output = "<IPython.core.display.HTML object>\n" \ "Overview :\n" \ "<IPython.core.display.Markdown object>\n" captured = capsys.readouterr() assert spy.spy_return == expected_plantuml_link assert captured.out == expected_notebook_output
the-stack_106_26464
#!/usr/bin/env python3 # Copyright (c) 2021, Justin D Holcomb ([email protected]) All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ################################################################################ # Script Info # ################################################################################ # Title: csv_converter.py # Author: Justin D Holcomb ([email protected]) # Created: June 28, 2021 # Version: 0.0.1 # Requires: Python 3.6+ (fstrings) # Description: Converts a CSV from a source system, enriches the # data, then exports to a destination CSV format. ################################################################################ # Import Modules # ################################################################################ from pathlib import Path from os.path import exists import argparse import csv import datetime import json import logging ################################################################################ # Variables # ################################################################################ ARGPARSE_DESCRIPTION = """ Converts a CSV from a source system, enriches the data, then exports to a destination CSV format. Requires: Python 3.6+ """ # These are the headers in the CSV for the source file. SOURCE_HEADERS = { "No", "Customer ID", "Company Name", "Flat Charge", "Current Volume", "Current Amount", "YTD Volume", "YTD Amount", } # These are the headers in the CSV for the mapping file. MAPPING_HEADERS = { "Customer ID", "Company Name", "Account Number", } # This is the header name used to match an account from the two systems. ACCOUNT_KEY = "Customer ID" # Contains the source field name and what it needs to be renamed to. FIELD_NAME_CHANGE = { "SOURCE_FIELD_NAME": "DESTINATION_FIELD_NAME", } # These are the headers in the CSV for the destination file (to the billing software). BILLING_HEADERS = { "No", "Customer ID", "Company Name", "Account Number", "Flat Charge", "Current Volume", "Current Amount", "YTD Volume", "YTD Amount", } DEFAULT_SOURCE_CSV_FILENAME = "accounting.csv" DEFAULT_MAPPING_CSV_FILENAME = "account_mapping.csv" DEFAULT_DEST_CSV_FILENAME_PREFIX = "billing_" DEFAULT_DEST_CSV_FILENAME = f"{DEFAULT_DEST_CSV_FILENAME_PREFIX}YYYYMMDD_HHMM.csv" LOGGER = logging.getLogger(__name__) ################################################################################ # Functions # ################################################################################ def convert_formats(accounting_data, mapping_data): """ This converts the original data and changes it to match the desired format for the destination system. """ line_count = 0 # Iterate over each line in source file. for row in accounting_data: line_count += 1 LOGGER.info(f"Converting line {line_count}") ## Check if account number is in account mapping file. # If there is not a matching account number: prompt the user, immediately # add it to the mapping file. if row[ACCOUNT_KEY] not in mapping_data.keys(): row['Account Number'] = prompt_user_for_account(row['Customer ID'], row['Company Name']) mapping_data[row[ACCOUNT_KEY]] = { "Customer ID": row['Customer ID'], "Company Name": row['Company Name'], "Account Number": row['Account Number'], } write_csv(DEFAULT_MAPPING_CSV_FILENAME, MAPPING_HEADERS, mapping_data.values()) else: row['Account Number'] = mapping_data[row[ACCOUNT_KEY]]['Account Number'] # Rename source field names to match expected destination field names. for source_field, dest_field in FIELD_NAME_CHANGE.items(): if source_field in row.keys(): row[dest_field] = row[source_field] del row[source_field] # Add any special handling here. Such as splitting fields or other field specific processing. return accounting_data def load_csv(filename, headers, load_as_dict=False): """ Loads data from a CSV file. Can load data as an dictionary or as a list of dictionaries. """ line_count = 0 if load_as_dict: dataset = {} else: dataset = [] with open(filename, encoding='utf-8-sig') as fp: csv_reader = csv.DictReader( fp, #fieldnames=headers, quoting=csv.QUOTE_ALL, lineterminator='\r\n', delimiter=',' ) for row in csv_reader: line_count += 1 if load_as_dict: dataset[row[ACCOUNT_KEY]] = row else: dataset.append(row) LOGGER.info(f"Processed {line_count} lines from {filename}") return dataset def prompt_user_for_account(id, name): """ Prompts a user for input and returns the value. TODO: Add error handling and input validation. """ return input(f"Please enter the account number for '{name}' aka ID {id}: ") def write_billing_csv(data, user_filename): """ This is a wrapper to the `write_csv()` function to calculate a filename with a timestamp. """ # If a filename that is not the default, use that value. Otherwise calculate # the filename. if user_filename == DEFAULT_DEST_CSV_FILENAME: DEFAULT_DEST_CSV_FILENAME_PREFIX timestamp = datetime.datetime.now() timestamp_string = timestamp.strftime("%Y%m%d_%H%M") filename = f"{DEFAULT_DEST_CSV_FILENAME_PREFIX}{timestamp_string}.csv" else: filename = user_filename write_csv(filename, BILLING_HEADERS, data) def write_csv(filename, headers, dataset): """ Writes data to a CSV file. """ with open(filename, 'w') as fp: wr = csv.DictWriter( fp, fieldnames=headers, quoting=csv.QUOTE_ALL, lineterminator='\r\n', delimiter=',' ) wr.writeheader() wr.writerows(dataset) return True ################################################################################ # Main # ################################################################################ def parse_args(): """ Parses command line arguments. """ parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=ARGPARSE_DESCRIPTION) parser.add_argument('--source-csv-filename', dest="source_csv_filename", help=f"CSV from water accounting system. Default: {DEFAULT_SOURCE_CSV_FILENAME}", default=DEFAULT_SOURCE_CSV_FILENAME) parser.add_argument('--dest-csv-filename', dest="dest_csv_filename", help=f"CSV for the billing system. The default output is f{DEFAULT_DEST_CSV_FILENAME_PREFIX}_YYYYMMDD_HHMM.csv", default=DEFAULT_DEST_CSV_FILENAME) parser.add_argument('-v', dest="warn_logging", help=f"Use WARNING level logging output.", action="store_true", default=False) parser.add_argument('-vv', dest="info_logging", help=f"Use INFO level logging output.", action="store_true", default=False) parser.add_argument('-vvv', dest="debug_logging", help=f"Use most verbose DEBUG level logging output.", action="store_true", default=False) args = parser.parse_args() return args if __name__ == "__main__": ''' When manually ran from command line. ''' args = parse_args() # Setup logging. if args.debug_logging is True: LOGGER.setLevel(logging.DEBUG) elif args.info_logging is True: LOGGER.setLevel(logging.INFO) elif args.warn_logging is True: LOGGER.setLevel(logging.WARNING) else: LOGGER.setLevel(logging.ERROR) CH = logging.StreamHandler() FORMATTER = logging.Formatter("%(message)s") CH.setFormatter(FORMATTER) LOGGER.addHandler(CH) LOGGER.info(f"Loading water accounting data from: {args.source_csv_filename}") LOGGER.debug(f"Expecting water accounting data headers: {SOURCE_HEADERS}") this_months_data = load_csv(args.source_csv_filename, SOURCE_HEADERS) LOGGER.debug("Data from water accounting:") LOGGER.debug(json.dumps(this_months_data, indent=4)) # Create mapping file if missing. if exists(DEFAULT_MAPPING_CSV_FILENAME) == False: LOGGER.error(f"Mapping file is missing, creating.") Path(DEFAULT_MAPPING_CSV_FILENAME).touch() # Load account mapping from CSV. LOGGER.info(f"Loading account mapping data from: {DEFAULT_MAPPING_CSV_FILENAME}") LOGGER.debug(f"Expecting account mapping headers: {MAPPING_HEADERS}") account_mapping = load_csv(DEFAULT_MAPPING_CSV_FILENAME, MAPPING_HEADERS, load_as_dict=True) LOGGER.debug("Data from account mapping:") LOGGER.debug(json.dumps(account_mapping, indent=4)) # Process the water accounting CSV to the billing CSV. LOGGER.info("Converting CSV to destination format.") processed_data = convert_formats(this_months_data, account_mapping) # Write the billing data to a timestamped CSV. LOGGER.info("Writing converted data to CSV.") write_billing_csv(processed_data, args.dest_csv_filename)
the-stack_106_26465
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'katana_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation '%s'" % sanitize_string(translation)) return False else: if source_f != translation_f: errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
the-stack_106_26467
"""PythonDjango URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('home.urls')), path('blog/', include('blog.urls')), ]
the-stack_106_26468
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import re import odoo.tests RE_ONLY = re.compile('QUnit\.only\(') @odoo.tests.tagged('post_install', '-at_install') class WebSuite(odoo.tests.HttpCase): def test_01_js(self): # webclient desktop test suite self.phantom_js('/web/tests?mod=web&failfast', "", "", login='admin', timeout=1800) def test_02_js(self): # webclient mobile test suite self.phantom_js('/web/tests/mobile?mod=web&failfast', "", "", login='admin', timeout=1800) def test_check_suite(self): # verify no js test is using `QUnit.only` as it forbid any other test to be executed self._check_only_call('web.qunit_suite') self._check_only_call('web.qunit_mobile_suite') def _check_only_call(self, suite): # As we currently aren't in a request context, we can't render `web.layout`. # redefinied it as a minimal proxy template. self.env.ref('web.layout').write({'arch_db': '<t t-name="web.layout"><t t-raw="head"/></t>'}) for asset in self.env['ir.qweb']._get_asset_content(suite, options={})[0]: filename = asset['filename'] if not filename or asset['atype'] != 'text/javascript': continue with open(filename, 'rb') as fp: if RE_ONLY.search(fp.read().decode('utf-8')): self.fail("`QUnit.only()` used in file %r" % asset['url'])
the-stack_106_26469
from collections import OrderedDict from collections.abc import Mapping, Iterator from contextlib import contextmanager from functools import partial from hashlib import md5 from numbers import Number from operator import getitem import inspect import pickle import os import threading import uuid from tlz import merge, groupby, curry, identity from tlz.functoolz import Compose from .compatibility import is_dataclass, dataclass_fields from .context import thread_state from .core import flatten, quote, get as simple_get, literal from .hashing import hash_buffer_hex from .utils import Dispatch, ensure_dict, apply, key_split from . import config, local, threaded __all__ = ( "DaskMethodsMixin", "annotate", "is_dask_collection", "compute", "persist", "optimize", "visualize", "tokenize", "normalize_token", "get_collection_name", "replace_name_in_key", "clone_key", ) @contextmanager def annotate(**annotations): """Context Manager for setting HighLevelGraph Layer annotations. Annotations are metadata or soft constraints associated with tasks that dask schedulers may choose to respect: They signal intent without enforcing hard constraints. As such, they are primarily designed for use with the distributed scheduler. Almost any object can serve as an annotation, but small Python objects are preferred, while large objects such as NumPy arrays are discouraged. Callables supplied as an annotation should take a single *key* argument and produce the appropriate annotation. Individual task keys in the annotated collection are supplied to the callable. Parameters ---------- **annotations : key-value pairs Examples -------- All tasks within array A should have priority 100 and be retried 3 times on failure. >>> import dask >>> import dask.array as da >>> with dask.annotate(priority=100, retries=3): ... A = da.ones((10000, 10000)) Prioritise tasks within Array A on flattened block ID. >>> nblocks = (10, 10) >>> with dask.annotate(priority=lambda k: k[1]*nblocks[1] + k[2]): ... A = da.ones((1000, 1000), chunks=(100, 100)) Annotations may be nested. >>> with dask.annotate(priority=1): ... with dask.annotate(retries=3): ... A = da.ones((1000, 1000)) ... B = A + 1 """ # Sanity check annotations used in place of # legacy distributed Client.{submit, persist, compute} keywords if "workers" in annotations: if isinstance(annotations["workers"], (list, set, tuple)): annotations["workers"] = list(annotations["workers"]) elif isinstance(annotations["workers"], str): annotations["workers"] = [annotations["workers"]] elif callable(annotations["workers"]): pass else: raise TypeError( "'workers' annotation must be a sequence of str, a str or a callable, but got %s." % annotations["workers"] ) if ( "priority" in annotations and not isinstance(annotations["priority"], Number) and not callable(annotations["priority"]) ): raise TypeError( "'priority' annotation must be a Number or a callable, but got %s" % annotations["priority"] ) if ( "retries" in annotations and not isinstance(annotations["retries"], Number) and not callable(annotations["retries"]) ): raise TypeError( "'retries' annotation must be a Number or a callable, but got %s" % annotations["retries"] ) if ( "resources" in annotations and not isinstance(annotations["resources"], dict) and not callable(annotations["resources"]) ): raise TypeError( "'resources' annotation must be a dict, but got %s" % annotations["resources"] ) if ( "allow_other_workers" in annotations and not isinstance(annotations["allow_other_workers"], bool) and not callable(annotations["allow_other_workers"]) ): raise TypeError( "'allow_other_workers' annotations must be a bool or a callable, but got %s" % annotations["allow_other_workers"] ) prev_annotations = config.get("annotations", {}) new_annotations = { **prev_annotations, **{f"annotations.{k}": v for k, v in annotations.items()}, } with config.set(new_annotations): yield def is_dask_collection(x): """Returns ``True`` if ``x`` is a dask collection""" try: return x.__dask_graph__() is not None except (AttributeError, TypeError): return False class DaskMethodsMixin: """A mixin adding standard dask collection methods""" __slots__ = () def visualize(self, filename="mydask", format=None, optimize_graph=False, **kwargs): """Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color: {None, 'order'}, optional Options to color nodes. Provide ``cmap=`` keyword for additional colormap **kwargs Additional keyword arguments to forward to ``to_graphviz``. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.base.visualize dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ return visualize( self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs, ) def persist(self, **kwargs): """Persist this dask collection into memory This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results fully computed or actively computing in the background. The action of function differs significantly depending on the active task scheduler. If the task scheduler supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will return *immediately* and the return value's task graph will contain Dask Future objects. However if the task scheduler only supports blocking computation then the call to persist will *block* and the return value's task graph will contain concrete Python results. This function is particularly useful when using distributed systems, because the results will be kept in distributed memory, rather than returned to the local process as with compute. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data See Also -------- dask.base.persist """ (result,) = persist(self, traverse=False, **kwargs) return result def compute(self, **kwargs): """Compute this dask collection This turns a lazy Dask collection into its in-memory equivalent. For example a Dask array turns into a NumPy array and a Dask dataframe turns into a Pandas dataframe. The entire dataset must fit into memory before calling this operation. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler function. See Also -------- dask.base.compute """ (result,) = compute(self, traverse=False, **kwargs) return result def __await__(self): try: from distributed import wait, futures_of except ImportError as e: raise ImportError( "Using async/await with dask requires the `distributed` package" ) from e from tornado import gen @gen.coroutine def f(): if futures_of(self): yield wait(self) raise gen.Return(self) return f().__await__() def compute_as_if_collection(cls, dsk, keys, scheduler=None, get=None, **kwargs): """Compute a graph as if it were of type cls. Allows for applying the same optimizations and default scheduler.""" schedule = get_scheduler(scheduler=scheduler, cls=cls, get=get) dsk2 = optimization_function(cls)(ensure_dict(dsk), keys, **kwargs) return schedule(dsk2, keys, **kwargs) def dont_optimize(dsk, keys, **kwargs): return dsk def optimization_function(x): return getattr(x, "__dask_optimize__", dont_optimize) def collections_to_dsk(collections, optimize_graph=True, optimizations=(), **kwargs): """ Convert many collections into a single dask graph, after optimization """ from .highlevelgraph import HighLevelGraph optimizations = tuple(optimizations) + tuple(config.get("optimizations", ())) if optimize_graph: groups = groupby(optimization_function, collections) graphs = [] for opt, val in groups.items(): dsk, keys = _extract_graph_and_keys(val) dsk = opt(dsk, keys, **kwargs) for opt in optimizations: dsk = opt(dsk, keys, **kwargs) graphs.append(dsk) # Merge all graphs if any(isinstance(graph, HighLevelGraph) for graph in graphs): dsk = HighLevelGraph.merge(*graphs) else: dsk = merge(*map(ensure_dict, graphs)) else: dsk, _ = _extract_graph_and_keys(collections) return dsk def _extract_graph_and_keys(vals): """Given a list of dask vals, return a single graph and a list of keys such that ``get(dsk, keys)`` is equivalent to ``[v.compute() for v in vals]``.""" from .highlevelgraph import HighLevelGraph graphs, keys = [], [] for v in vals: graphs.append(v.__dask_graph__()) keys.append(v.__dask_keys__()) if any(isinstance(graph, HighLevelGraph) for graph in graphs): graph = HighLevelGraph.merge(*graphs) else: graph = merge(*map(ensure_dict, graphs)) return graph, keys def unpack_collections(*args, **kwargs): """Extract collections in preparation for compute/persist/etc... Intended use is to find all collections in a set of (possibly nested) python objects, do something to them (compute, etc...), then repackage them in equivalent python objects. Parameters ---------- *args Any number of objects. If it is a dask collection, it's extracted and added to the list of collections returned. By default, python builtin collections are also traversed to look for dask collections (for more information see the ``traverse`` keyword). traverse : bool, optional If True (default), builtin python collections are traversed looking for any dask collections they might contain. Returns ------- collections : list A list of all dask collections contained in ``args`` repack : callable A function to call on the transformed collections to repackage them as they were in the original ``args``. """ traverse = kwargs.pop("traverse", True) collections = [] repack_dsk = {} collections_token = uuid.uuid4().hex def _unpack(expr): if is_dask_collection(expr): tok = tokenize(expr) if tok not in repack_dsk: repack_dsk[tok] = (getitem, collections_token, len(collections)) collections.append(expr) return tok tok = uuid.uuid4().hex if not traverse: tsk = quote(expr) else: # Treat iterators like lists typ = list if isinstance(expr, Iterator) else type(expr) if typ in (list, tuple, set): tsk = (typ, [_unpack(i) for i in expr]) elif typ in (dict, OrderedDict): tsk = (typ, [[_unpack(k), _unpack(v)] for k, v in expr.items()]) elif is_dataclass(expr) and not isinstance(expr, type): tsk = ( apply, typ, (), ( dict, [ [f.name, _unpack(getattr(expr, f.name))] for f in dataclass_fields(expr) ], ), ) else: return expr repack_dsk[tok] = tsk return tok out = uuid.uuid4().hex repack_dsk[out] = (tuple, [_unpack(i) for i in args]) def repack(results): dsk = repack_dsk.copy() dsk[collections_token] = quote(results) return simple_get(dsk, out) return collections, repack def optimize(*args, **kwargs): """Optimize several dask collections at once. Returns equivalent dask collections that all share the same merged and optimized underlying graph. This can be useful if converting multiple collections to delayed objects, or to manually apply the optimizations at strategic points. Note that in most cases you shouldn't need to call this method directly. Parameters ---------- *args : objects Any number of objects. If a dask object, its graph is optimized and merged with all those of all other dask objects before returning an equivalent dask collection. Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``optimize``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimizations : list of callables, optional Additional optimization passes to perform. **kwargs Extra keyword arguments to forward to the optimization passes. Examples -------- >>> import dask as d >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> a2, b2 = d.optimize(a, b) >>> a2.compute() == a.compute() True >>> b2.compute() == b.compute() True """ collections, repack = unpack_collections(*args, **kwargs) if not collections: return args dsk = collections_to_dsk(collections, **kwargs) postpersists = [] for a in collections: r, s = a.__dask_postpersist__() postpersists.append(r(dsk, *s)) return repack(postpersists) def compute(*args, **kwargs): """Compute several dask collections at once. Parameters ---------- args : object Any number of objects. If it is a dask object, it's computed and the result is returned. By default, python builtin collections are also traversed to look for dask objects (for more information see the ``traverse`` keyword). Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``compute``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the optimizations for each collection are applied before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler function. Examples -------- >>> import dask as d >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> d.compute(a, b) (45, 4.5) By default, dask objects inside python collections will also be computed: >>> d.compute({'a': a, 'b': b, 'c': 1}) ({'a': 45, 'b': 4.5, 'c': 1},) """ traverse = kwargs.pop("traverse", True) optimize_graph = kwargs.pop("optimize_graph", True) collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler( scheduler=kwargs.pop("scheduler", None), collections=collections, get=kwargs.pop("get", None), ) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postcomputes = [], [] for x in collections: keys.append(x.__dask_keys__()) postcomputes.append(x.__dask_postcompute__()) results = schedule(dsk, keys, **kwargs) return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) def visualize(*args, **kwargs): """ Visualize several dask graphs at once. Requires ``graphviz`` to be installed. All options that are not the dask graph(s) should be passed as keyword arguments. Parameters ---------- dsk : dict(s) or collection(s) The dask graph(s) to visualize. filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color : {None, 'order'}, optional Options to color nodes. Provide ``cmap=`` keyword for additional colormap collapse_outputs : bool, optional Whether to collapse output boxes, which often have empty labels. Default is False. verbose : bool, optional Whether to label output and input boxes even if the data aren't chunked. Beware: these labels can get very long. Default is False. **kwargs Additional keyword arguments to forward to ``to_graphviz``. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ from dask.dot import dot_graph filename = kwargs.pop("filename", "mydask") optimize_graph = kwargs.pop("optimize_graph", False) dsks = [] args3 = [] for arg in args: if isinstance(arg, (list, tuple, set)): for a in arg: if isinstance(a, Mapping): dsks.append(a) if is_dask_collection(a): args3.append(a) else: if isinstance(arg, Mapping): dsks.append(arg) if is_dask_collection(arg): args3.append(arg) dsk = dict(collections_to_dsk(args3, optimize_graph=optimize_graph)) for d in dsks: dsk.update(d) color = kwargs.get("color") if color == "order": from .order import order import matplotlib.pyplot as plt o = order(dsk) try: cmap = kwargs.pop("cmap") except KeyError: cmap = plt.cm.RdBu if isinstance(cmap, str): import matplotlib.pyplot as plt cmap = getattr(plt.cm, cmap) mx = max(o.values()) + 1 colors = {k: _colorize(cmap(v / mx, bytes=True)) for k, v in o.items()} kwargs["function_attributes"] = { k: {"color": v, "label": str(o[k])} for k, v in colors.items() } kwargs["data_attributes"] = {k: {"color": v} for k, v in colors.items()} elif color: raise NotImplementedError("Unknown value color=%s" % color) return dot_graph(dsk, filename=filename, **kwargs) def persist(*args, **kwargs): """Persist multiple Dask collections into memory This turns lazy Dask collections into Dask collections with the same metadata, but now with their results fully computed or actively computing in the background. For example a lazy dask.array built up from many lazy calls will now be a dask.array of the same shape, dtype, chunks, etc., but now with all of those previously lazy tasks either computed in memory as many small :class:`numpy.array` (in the single-machine case) or asynchronously running in the background on a cluster (in the distributed case). This function operates differently if a ``dask.distributed.Client`` exists and is connected to a distributed scheduler. In this case this function will return as soon as the task graph has been submitted to the cluster, but before the computations have completed. Computations will continue asynchronously in the background. When using this function with the single machine scheduler it blocks until the computations have finished. When using Dask on a single machine you should ensure that the dataset fits entirely within memory. Examples -------- >>> df = dd.read_csv('/path/to/*.csv') # doctest: +SKIP >>> df = df[df.name == 'Alice'] # doctest: +SKIP >>> df['in-debt'] = df.balance < 0 # doctest: +SKIP >>> df = df.persist() # triggers computation # doctest: +SKIP >>> df.value().min() # future computations are now fast # doctest: +SKIP -10 >>> df.value().max() # doctest: +SKIP 100 >>> from dask import persist # use persist function on multiple collections >>> a, b = persist(a, b) # doctest: +SKIP Parameters ---------- *args: Dask collections scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``persist``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data """ traverse = kwargs.pop("traverse", True) optimize_graph = kwargs.pop("optimize_graph", True) collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler( scheduler=kwargs.pop("scheduler", None), collections=collections ) if inspect.ismethod(schedule): try: from distributed.client import default_client except ImportError: pass else: try: client = default_client() except ValueError: pass else: if client.get == schedule: results = client.persist( collections, optimize_graph=optimize_graph, **kwargs ) return repack(results) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postpersists = [], [] for a in collections: a_keys = list(flatten(a.__dask_keys__())) rebuild, state = a.__dask_postpersist__() keys.extend(a_keys) postpersists.append((rebuild, a_keys, state)) results = schedule(dsk, keys, **kwargs) d = dict(zip(keys, results)) results2 = [r({k: d[k] for k in ks}, *s) for r, ks, s in postpersists] return repack(results2) ############ # Tokenize # ############ def tokenize(*args, **kwargs): """Deterministic token >>> tokenize([1, 2, '3']) '7d6a880cd9ec03506eee6973ff551339' >>> tokenize('Hello') == tokenize('Hello') True """ if kwargs: args = args + (kwargs,) return md5(str(tuple(map(normalize_token, args))).encode()).hexdigest() normalize_token = Dispatch() normalize_token.register( (int, float, str, bytes, type(None), type, slice, complex, type(Ellipsis)), identity ) @normalize_token.register(dict) def normalize_dict(d): return normalize_token(sorted(d.items(), key=str)) @normalize_token.register(OrderedDict) def normalize_ordered_dict(d): return type(d).__name__, normalize_token(list(d.items())) @normalize_token.register(set) def normalize_set(s): return normalize_token(sorted(s, key=str)) @normalize_token.register((tuple, list)) def normalize_seq(seq): def func(seq): try: return list(map(normalize_token, seq)) except RecursionError: return str(uuid.uuid4()) return type(seq).__name__, func(seq) @normalize_token.register(literal) def normalize_literal(lit): return "literal", normalize_token(lit()) @normalize_token.register(range) def normalize_range(r): return list(map(normalize_token, [r.start, r.stop, r.step])) @normalize_token.register(object) def normalize_object(o): method = getattr(o, "__dask_tokenize__", None) if method is not None: return method() return normalize_function(o) if callable(o) else uuid.uuid4().hex function_cache = {} function_cache_lock = threading.Lock() def normalize_function(func): try: return function_cache[func] except KeyError: result = _normalize_function(func) if len(function_cache) >= 500: # clear half of cache if full with function_cache_lock: if len(function_cache) >= 500: for k in list(function_cache)[::2]: del function_cache[k] function_cache[func] = result return result except TypeError: # not hashable return _normalize_function(func) def _normalize_function(func): if isinstance(func, Compose): first = getattr(func, "first", None) funcs = reversed((first,) + func.funcs) if first else func.funcs return tuple(normalize_function(f) for f in funcs) elif isinstance(func, (partial, curry)): args = tuple(normalize_token(i) for i in func.args) if func.keywords: kws = tuple( (k, normalize_token(v)) for k, v in sorted(func.keywords.items()) ) else: kws = None return (normalize_function(func.func), args, kws) else: try: result = pickle.dumps(func, protocol=0) if b"__main__" not in result: # abort on dynamic functions return result except Exception: pass try: import cloudpickle return cloudpickle.dumps(func, protocol=0) except Exception: return str(func) @normalize_token.register_lazy("pandas") def register_pandas(): import pandas as pd @normalize_token.register(pd.Index) def normalize_index(ind): values = ind.array return [ind.name, normalize_token(values)] @normalize_token.register(pd.MultiIndex) def normalize_index(ind): codes = ind.codes return ( [ind.name] + [normalize_token(x) for x in ind.levels] + [normalize_token(x) for x in codes] ) @normalize_token.register(pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.dtype)] @normalize_token.register(pd.arrays.PeriodArray) @normalize_token.register(pd.arrays.DatetimeArray) @normalize_token.register(pd.arrays.TimedeltaArray) def normalize_period_array(arr): return [normalize_token(arr.asi8), normalize_token(arr.dtype)] @normalize_token.register(pd.arrays.IntervalArray) def normalize_interval_array(arr): return [ normalize_token(arr.left), normalize_token(arr.right), normalize_token(arr.closed), ] @normalize_token.register(pd.Series) def normalize_series(s): return [ s.name, s.dtype, normalize_token(s._data.blocks[0].values), normalize_token(s.index), ] @normalize_token.register(pd.DataFrame) def normalize_dataframe(df): data = [block.values for block in df._data.blocks] data.extend([df.columns, df.index]) return list(map(normalize_token, data)) @normalize_token.register(pd.api.extensions.ExtensionArray) def normalize_extension_array(arr): import numpy as np return normalize_token(np.asarray(arr)) # Dtypes @normalize_token.register(pd.api.types.CategoricalDtype) def normalize_categorical_dtype(dtype): return [normalize_token(dtype.categories), normalize_token(dtype.ordered)] @normalize_token.register(pd.api.extensions.ExtensionDtype) def normalize_period_dtype(dtype): return normalize_token(dtype.name) @normalize_token.register_lazy("numpy") def register_numpy(): import numpy as np @normalize_token.register(np.ndarray) def normalize_array(x): if not x.shape: return (x.item(), x.dtype) if hasattr(x, "mode") and getattr(x, "filename", None): if hasattr(x.base, "ctypes"): offset = ( x.ctypes.get_as_parameter().value - x.base.ctypes.get_as_parameter().value ) else: offset = 0 # root memmap's have mmap object as base if hasattr( x, "offset" ): # offset numpy used while opening, and not the offset to the beginning of the file offset += getattr(x, "offset") return ( x.filename, os.path.getmtime(x.filename), x.dtype, x.shape, x.strides, offset, ) if x.dtype.hasobject: try: try: # string fast-path data = hash_buffer_hex( "-".join(x.flat).encode( encoding="utf-8", errors="surrogatepass" ) ) except UnicodeDecodeError: # bytes fast-path data = hash_buffer_hex(b"-".join(x.flat)) except (TypeError, UnicodeDecodeError): try: data = hash_buffer_hex(pickle.dumps(x, pickle.HIGHEST_PROTOCOL)) except Exception: # pickling not supported, use UUID4-based fallback data = uuid.uuid4().hex else: try: data = hash_buffer_hex(x.ravel(order="K").view("i1")) except (BufferError, AttributeError, ValueError): data = hash_buffer_hex(x.copy().ravel(order="K").view("i1")) return (data, x.dtype, x.shape, x.strides) @normalize_token.register(np.matrix) def normalize_matrix(x): return type(x).__name__, normalize_array(x.view(type=np.ndarray)) normalize_token.register(np.dtype, repr) normalize_token.register(np.generic, repr) @normalize_token.register(np.ufunc) def normalize_ufunc(x): try: name = x.__name__ if getattr(np, name) is x: return "np." + name except AttributeError: return normalize_function(x) @normalize_token.register_lazy("scipy") def register_scipy(): import scipy.sparse as sp def normalize_sparse_matrix(x, attrs): return ( type(x).__name__, normalize_seq((normalize_token(getattr(x, key)) for key in attrs)), ) for cls, attrs in [ (sp.dia_matrix, ("data", "offsets", "shape")), (sp.bsr_matrix, ("data", "indices", "indptr", "blocksize", "shape")), (sp.coo_matrix, ("data", "row", "col", "shape")), (sp.csr_matrix, ("data", "indices", "indptr", "shape")), (sp.csc_matrix, ("data", "indices", "indptr", "shape")), (sp.lil_matrix, ("data", "rows", "shape")), ]: normalize_token.register(cls, partial(normalize_sparse_matrix, attrs=attrs)) @normalize_token.register(sp.dok_matrix) def normalize_dok_matrix(x): return type(x).__name__, normalize_token(sorted(x.items())) def _colorize(t): """Convert (r, g, b) triple to "#RRGGBB" string For use with ``visualize(color=...)`` Examples -------- >>> _colorize((255, 255, 255)) '#FFFFFF' >>> _colorize((0, 32, 128)) '#002080' """ t = t[:3] i = sum(v * 256 ** (len(t) - i - 1) for i, v in enumerate(t)) h = hex(int(i))[2:].upper() h = "0" * (6 - len(h)) + h return "#" + h named_schedulers = { "sync": local.get_sync, "synchronous": local.get_sync, "single-threaded": local.get_sync, "threads": threaded.get, "threading": threaded.get, } try: from dask import multiprocessing as dask_multiprocessing except ImportError: pass else: named_schedulers.update( { "processes": dask_multiprocessing.get, "multiprocessing": dask_multiprocessing.get, } ) get_err_msg = """ The get= keyword has been removed. Please use the scheduler= keyword instead with the name of the desired scheduler like 'threads' or 'processes' x.compute(scheduler='single-threaded') x.compute(scheduler='threads') x.compute(scheduler='processes') or with a function that takes the graph and keys x.compute(scheduler=my_scheduler_function) or with a Dask client x.compute(scheduler=client) """.strip() def get_scheduler(get=None, scheduler=None, collections=None, cls=None): """Get scheduler function There are various ways to specify the scheduler to use: 1. Passing in scheduler= parameters 2. Passing these into global configuration 3. Using defaults of a dask collection This function centralizes the logic to determine the right scheduler to use from those many options """ if get: raise TypeError(get_err_msg) if scheduler is not None: if callable(scheduler): return scheduler elif "Client" in type(scheduler).__name__ and hasattr(scheduler, "get"): return scheduler.get elif scheduler.lower() in named_schedulers: return named_schedulers[scheduler.lower()] elif scheduler.lower() in ("dask.distributed", "distributed"): from distributed.worker import get_client return get_client().get else: raise ValueError( "Expected one of [distributed, %s]" % ", ".join(sorted(named_schedulers)) ) # else: # try to connect to remote scheduler with this name # return get_client(scheduler).get if config.get("scheduler", None): return get_scheduler(scheduler=config.get("scheduler", None)) if config.get("get", None): raise ValueError(get_err_msg) if getattr(thread_state, "key", False): from distributed.worker import get_worker return get_worker().client.get if cls is not None: return cls.__dask_scheduler__ if collections: collections = [c for c in collections if c is not None] if collections: get = collections[0].__dask_scheduler__ if not all(c.__dask_scheduler__ == get for c in collections): raise ValueError( "Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler=` parameter explicitly in compute or " "globally with `dask.config.set`." ) return get return None def wait(x, timeout=None, return_when="ALL_COMPLETED"): """Wait until computation has finished This is a compatibility alias for ``dask.distributed.wait``. If it is applied onto Dask collections without Dask Futures or if Dask distributed is not installed then it is a no-op """ try: from distributed import wait return wait(x, timeout=timeout, return_when=return_when) except (ImportError, ValueError): return x def get_collection_name(collection) -> str: """Infer the collection name from the dask keys, under the assumption that all keys are either tuples with matching first element, and that element is a string, or there is exactly one key and it is a string. Examples -------- >>> a.__dask_keys__() # doctest: +SKIP ["foo-123"] # doctest: +SKIP >>> get_collection_name(a) # doctest: +SKIP "foo-123" # doctest: +SKIP >>> b.__dask_keys__() # doctest: +SKIP [[("foo-123", 0, 0), ("foo-123", 0, 1)], [("foo-123", 1, 0), ("foo-123", 1, 1)]] # doctest: +SKIP >>> get_collection_name(b) # doctest: +SKIP "foo-123" # doctest: +SKIP """ if not is_dask_collection(collection): raise TypeError(f"Expected Dask collection; got {type(collection)}") try: key = next(flatten(collection.__dask_keys__())) except StopIteration: # Collection with no keys; this is a legitimate use case but, at the moment of # writing, can only happen with third-party collections raise KeyError("Dask collection has no keys") if isinstance(key, tuple) and key and isinstance(key[0], str): return key[0] if isinstance(key, str): return key raise TypeError(f"Expected str or tuple[str, Hashable, ...]; got {key}") def replace_name_in_key(key, name: str): """Given a dask key, which must be either a single string or a tuple whose first element is a string (commonly referred to as a collection's 'name'), replace the name with a new one. Examples -------- >>> replace_name_in_key("foo", "bar") 'bar' >>> replace_name_in_key(("foo-123", 1, 2), "bar-456") ('bar-456', 1, 2) """ if isinstance(key, tuple) and key and isinstance(key[0], str): return (name,) + key[1:] if isinstance(key, str): return name raise TypeError(f"Expected str or tuple[str, Hashable, ...]; got {key}") def clone_key(key, seed): """Clone a key from a Dask collection, producing a new key with the same prefix and indices and a token which a deterministic function of the previous token and seed. Examples -------- >>> clone_key("inc-cbb1eca3bafafbb3e8b2419c4eebb387", 123) # doctest: +SKIP 'inc-1d291de52f5045f8a969743daea271fd' # doctest: +SKIP >>> clone_key(("sum-cbb1eca3bafafbb3e8b2419c4eebb387", 4, 3), 123) # doctest: +SKIP ('sum-f0962cc58ef4415689a86cc1d4cc1723', 4, 3) # doctest: +SKIP """ if isinstance(key, tuple) and key and isinstance(key[0], str): return (clone_key(key[0], seed),) + key[1:] if isinstance(key, str): prefix = key_split(key) token = key[len(prefix) + 1 :] if token: return prefix + "-" + tokenize(token, seed) else: return tokenize(key, seed) raise TypeError(f"Expected str or tuple[str, Hashable, ...]; got {key}")
the-stack_106_26471
from sklearn.preprocessing import MinMaxScaler import settings import pandas as pd import numpy as np from sklearn.metrics import average_precision_score, recall_score from xgboost.sklearn import XGBClassifier from sklearn.metrics import accuracy_score from sklearn.utils import shuffle def run_xgboost_ml(df_train, df_test, platform_folder): target = 'Vid_type_mean' df_train.drop(['Vid_pltform_ML_mean'], axis=1, inplace=True) df_test.drop(['Vid_pltform_ML_mean'], axis=1, inplace=True) counts = np.asarray(df_train[target].value_counts()) base_score = counts[1] / (counts[0] + counts[1]) predictors = [x for x in df_train.columns if x not in [target]] x_train = df_train[predictors] y_train = df_train[target] x_test = df_test[predictors] y_test = df_test[target] # select mode features for xgboost ns, md, mcw, g, ss, csbt, sps, rl, ra = select_params_xgboost(platform_folder) xgboost_model = XGBClassifier(base_score=base_score, learning_rate=0.01, n_estimators=ns, max_depth=md, min_child_weight=mcw, gamma=g, subsample=ss, # 0.9, colsample_bytree=csbt, # 0.8, objective='binary:logistic', nthread=1, scale_pos_weight=sps, # 2.0, reg_lambda=rl, reg_alpha=ra, seed=123) xgboost_model.fit(x_train, y_train, eval_metric='error') # get the performance y_pred = xgboost_model.predict(x_test) accuracy = accuracy_score(y_test, y_pred) precsion = average_precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred, average='binary') # print('mean acc ' + platform_folder + ' ' + str(accuracy)) return accuracy, precsion, recall # based on the traffic_type (platform) select the classifier parameters. def select_params_xgboost(platform): # ns,md, mcw, g, ss, csbt, sps, rl, ra if platform == 'yt': return [1000, 3, 2, 1, 0.6, 0.5, 1.0, 0.1, 0.1] elif platform == 'fb': return [1000, 7, 3, 1, 0.9, 0.6, 1.0, 0.1, 0.1] else: return [1000, 7, 2, 1, 0.8, 0.6, 1.0, 1, 0.1] # split the data to train and test split based on the video id def split_by_control_param(df, platform, random_seed): # read the NC data Sydney = 1 Random = 0 test_df = df[ (df['location'] == Sydney)& (df['bandwidth'] == Random)& (df['Vid_pltform_mean'] == platform)] train_df = df[ (df['location'] == Sydney)& (df['bandwidth'] == Random)& (df['Vid_pltform_mean'] == platform)] train_df_360 = train_df[train_df['Vid_type_mean'] == settings.V_360] train_df_normal = train_df[train_df['Vid_type_mean'] == settings.V_NORMAL] test_df_360 = test_df[test_df['Vid_type_mean'] == settings.V_360] test_df_normal = test_df[test_df['Vid_type_mean'] == settings.V_NORMAL] # take the vid numbers separaetely vid_numbers_360_test = np.unique(test_df_360['Vid_number_mean'].values) vid_numbers_normal_test = np.unique(test_df_normal['Vid_number_mean'].values) vid_numbers_360_train = np.unique(train_df_360['Vid_number_mean'].values) vid_numbers_normal_train = np.unique(train_df_normal['Vid_number_mean'].values) vid_numbers_360 = np.union1d(vid_numbers_360_test, vid_numbers_360_train) vid_numbers_normal = np.union1d(vid_numbers_normal_test, vid_numbers_normal_train) train_test_split_value = 5 # randomly select the video ids to be in trian and test sets np.random.seed(random_seed) test_360_ind = list( np.random.choice(vid_numbers_360, len(vid_numbers_360) // train_test_split_value, replace=False)) if len(test_360_ind) == 0: test_360_ind = [vid_numbers_360[0]] np.random.seed(random_seed) test_normal_ind = list( np.random.choice(vid_numbers_normal, len(vid_numbers_normal) // train_test_split_value, replace=False)) if len(test_normal_ind) == 0: test_normal_ind = [vid_numbers_normal[0]] train_360_ind = list(set(vid_numbers_360) - set(test_360_ind)) train_normal_ind = list(set(vid_numbers_normal) - set(test_normal_ind)) train_df_360_new = train_df_360.loc[train_df_360['Vid_number_mean'].isin(list(train_360_ind))] train_df_normal_new = train_df_normal.loc[train_df_normal['Vid_number_mean'].isin(list(train_normal_ind))] test_df_360_new = test_df_360.loc[test_df_360['Vid_number_mean'].isin(list(test_360_ind))] test_df_normal_new = test_df_normal.loc[test_df_normal['Vid_number_mean'].isin(list(test_normal_ind))] # combine the 360 and normal video traces to train and test sets train_df_new = pd.concat([train_df_360_new, train_df_normal_new]) train_df_new = shuffle(train_df_new, random_state=random_seed) test_df_new = pd.concat([test_df_360_new, test_df_normal_new]) test_df_new = shuffle(test_df_new, random_state=random_seed) return train_df_new, test_df_new
the-stack_106_26473
from lazydata.cli.commands.BaseCommand import BaseCommand from lazydata.storage.cloudsetup import setup_aws_credentials from lazydata.storage.localsetup import setup_local_folder class ConfigCommand(BaseCommand): def add_arguments(self, parser): parser.add_argument('backend', type=str, help='The backend to configure, currently only `aws` supported') return parser def handle(self, args): if args.backend == "aws": setup_aws_credentials() elif args.backend in ['drive','local','folder','mount']: setup_local_folder() else: print("ERROR: Unrecognised backend `%s`. Currently supported: `aws`, `folder`" % args.backend)
the-stack_106_26476
import os import string import random import base64 import binascii import json from datetime import date, datetime def file_write(data, path, filename): os.makedirs(path, exist_ok=True) if data: with open('{}/{}.json'.format(path, filename), 'w+') as outfile: outfile.write(data) outfile.close() def json_serializer(obj: {}): if isinstance(obj, (datetime, date)): return obj.isoformat() # failure fallback if not isinstance(obj, str): return str(obj) raise TypeError("Object of type '%s' is not JSON serializable" % type(obj).__name__) def bin2ascii(v): decoded = base64.b64decode(v.split(':').pop()) replaced = binascii.hexlify(decoded) return bool(int(replaced, 16)) def generate_password(size=8, chars=string.ascii_letters + string.digits + string.punctuation): return ''.join(random.choice(chars) for _ in range(size)) def get_mapping_for_table(table_name, path='migration_result'): with open(path + '/mapping/' + table_name + '.json') as json_file: data = json.load(json_file) return data def convert_string_to_time(date_string, timezone): import dateutil.parser date_time_obj = dateutil.parser.parse(date_string, ignoretz=True) # from datetime import datetime import pytz # # date_time_obj = datetime.strptime(date_string[:26], '%Y-%m-%d %H:%M:%S.%f') date_time_obj_timezone = pytz.timezone(timezone).localize(date_time_obj) return date_time_obj_timezone def sortedWalk(top, topdown=True, onerror=None): from os.path import join, isdir, islink names = os.listdir(top) names.sort() dirs, nondirs = [], [] for name in names: if isdir(os.path.join(top, name)): dirs.append(name) else: nondirs.append(name) if topdown: yield top, dirs, nondirs for name in dirs: path = join(top, name) if not os.path.islink(path): for x in sortedWalk(path, topdown, onerror): yield x if not topdown: yield top, dirs, nondirs
the-stack_106_26477
# Author: Mark Wronkiewicz <[email protected]> # # License: BSD (3-clause) import os.path as op import warnings import numpy as np import sys import scipy from numpy.testing import assert_equal, assert_allclose from nose.tools import assert_true, assert_raises from nose.plugins.skip import SkipTest from distutils.version import LooseVersion from mne import compute_raw_covariance, pick_types from mne.chpi import read_head_pos, filter_chpi from mne.forward import _prep_meg_channels from mne.cov import _estimate_rank_meeg_cov from mne.datasets import testing from mne.io import (read_raw_fif, proc_history, read_info, read_raw_bti, read_raw_kit, _BaseRaw) from mne.preprocessing.maxwell import ( maxwell_filter, _get_n_moments, _sss_basis_basic, _sh_complex_to_real, _sh_real_to_complex, _sh_negate, _bases_complex_to_real, _trans_sss_basis, _bases_real_to_complex, _sph_harm, _prep_mf_coils) from mne.tests.common import assert_meg_snr from mne.utils import (_TempDir, run_tests_if_main, slow_test, catch_logging, requires_version, object_diff, buggy_mkl_svd) from mne.externals.six import PY3 warnings.simplefilter('always') # Always throw warnings data_path = testing.data_path(download=False) sss_path = op.join(data_path, 'SSS') pre = op.join(sss_path, 'test_move_anon_') raw_fname = pre + 'raw.fif' sss_std_fname = pre + 'stdOrigin_raw_sss.fif' sss_nonstd_fname = pre + 'nonStdOrigin_raw_sss.fif' sss_bad_recon_fname = pre + 'badRecon_raw_sss.fif' sss_reg_in_fname = pre + 'regIn_raw_sss.fif' sss_fine_cal_fname = pre + 'fineCal_raw_sss.fif' sss_ctc_fname = pre + 'crossTalk_raw_sss.fif' sss_trans_default_fname = pre + 'transDefault_raw_sss.fif' sss_trans_sample_fname = pre + 'transSample_raw_sss.fif' sss_st1FineCalCrossTalkRegIn_fname = \ pre + 'st1FineCalCrossTalkRegIn_raw_sss.fif' sss_st1FineCalCrossTalkRegInTransSample_fname = \ pre + 'st1FineCalCrossTalkRegInTransSample_raw_sss.fif' sss_movecomp_fname = pre + 'movecomp_raw_sss.fif' sss_movecomp_reg_in_fname = pre + 'movecomp_regIn_raw_sss.fif' sss_movecomp_reg_in_st4s_fname = pre + 'movecomp_regIn_st4s_raw_sss.fif' erm_fname = pre + 'erm_raw.fif' sss_erm_std_fname = pre + 'erm_devOrigin_raw_sss.fif' sss_erm_reg_in_fname = pre + 'erm_regIn_raw_sss.fif' sss_erm_fine_cal_fname = pre + 'erm_fineCal_raw_sss.fif' sss_erm_ctc_fname = pre + 'erm_crossTalk_raw_sss.fif' sss_erm_st_fname = pre + 'erm_st1_raw_sss.fif' sss_erm_st1FineCalCrossTalk_fname = pre + 'erm_st1FineCalCrossTalk_raw_sss.fif' sss_erm_st1FineCalCrossTalkRegIn_fname = \ pre + 'erm_st1FineCalCrossTalkRegIn_raw_sss.fif' sample_fname = op.join(data_path, 'MEG', 'sample_audvis_trunc_raw.fif') sss_samp_reg_in_fname = op.join(data_path, 'SSS', 'sample_audvis_trunc_regIn_raw_sss.fif') sss_samp_fname = op.join(data_path, 'SSS', 'sample_audvis_trunc_raw_sss.fif') pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.pos') bases_fname = op.join(sss_path, 'sss_data.mat') fine_cal_fname = op.join(sss_path, 'sss_cal_3053.dat') fine_cal_fname_3d = op.join(sss_path, 'sss_cal_3053_3d.dat') ctc_fname = op.join(sss_path, 'ct_sparse.fif') fine_cal_mgh_fname = op.join(sss_path, 'sss_cal_mgh.dat') ctc_mgh_fname = op.join(sss_path, 'ct_sparse_mgh.fif') sample_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') triux_path = op.join(data_path, 'SSS', 'TRIUX') tri_fname = op.join(triux_path, 'triux_bmlhus_erm_raw.fif') tri_sss_fname = op.join(triux_path, 'triux_bmlhus_erm_raw_sss.fif') tri_sss_reg_fname = op.join(triux_path, 'triux_bmlhus_erm_regIn_raw_sss.fif') tri_sss_st4_fname = op.join(triux_path, 'triux_bmlhus_erm_st4_raw_sss.fif') tri_sss_ctc_fname = op.join(triux_path, 'triux_bmlhus_erm_ctc_raw_sss.fif') tri_sss_cal_fname = op.join(triux_path, 'triux_bmlhus_erm_cal_raw_sss.fif') tri_sss_ctc_cal_fname = op.join( triux_path, 'triux_bmlhus_erm_ctc_cal_raw_sss.fif') tri_sss_ctc_cal_reg_in_fname = op.join( triux_path, 'triux_bmlhus_erm_ctc_cal_regIn_raw_sss.fif') tri_ctc_fname = op.join(triux_path, 'ct_sparse_BMLHUS.fif') tri_cal_fname = op.join(triux_path, 'sss_cal_BMLHUS.dat') io_dir = op.join(op.dirname(__file__), '..', '..', 'io') fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif') int_order, ext_order = 8, 3 mf_head_origin = (0., 0., 0.04) mf_meg_origin = (0., 0.013, -0.006) # otherwise we can get SVD error requires_svd_convergence = requires_version('scipy', '0.12') # 30 random bad MEG channels (20 grad, 10 mag) that were used in generation bads = ['MEG0912', 'MEG1722', 'MEG2213', 'MEG0132', 'MEG1312', 'MEG0432', 'MEG2433', 'MEG1022', 'MEG0442', 'MEG2332', 'MEG0633', 'MEG1043', 'MEG1713', 'MEG0422', 'MEG0932', 'MEG1622', 'MEG1343', 'MEG0943', 'MEG0643', 'MEG0143', 'MEG2142', 'MEG0813', 'MEG2143', 'MEG1323', 'MEG0522', 'MEG1123', 'MEG0423', 'MEG2122', 'MEG2532', 'MEG0812'] def _assert_n_free(raw_sss, lower, upper=None): """Check the DOF.""" upper = lower if upper is None else upper n_free = raw_sss.info['proc_history'][0]['max_info']['sss_info']['nfree'] assert_true(lower <= n_free <= upper, 'nfree fail: %s <= %s <= %s' % (lower, n_free, upper)) def read_crop(fname, lims=(0, None)): """Read and crop.""" return read_raw_fif(fname, allow_maxshield='yes', add_eeg_ref=False).crop(*lims) @slow_test @testing.requires_testing_data def test_movement_compensation(): """Test movement compensation.""" temp_dir = _TempDir() lims = (0, 4, False) raw = read_crop(raw_fname, lims).load_data() head_pos = read_head_pos(pos_fname) # # Movement compensation, no regularization, no tSSS # raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims), 4.6, 12.4, chpi_med_tol=58) # IO temp_fname = op.join(temp_dir, 'test_raw_sss.fif') raw_sss.save(temp_fname) raw_sss = read_crop(temp_fname) assert_meg_snr(raw_sss, read_crop(sss_movecomp_fname, lims), 4.6, 12.4, chpi_med_tol=58) # # Movement compensation, regularization, no tSSS # raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin) assert_meg_snr(raw_sss, read_crop(sss_movecomp_reg_in_fname, lims), 0.5, 1.9, chpi_med_tol=121) # # Movement compensation, regularization, tSSS at the end # raw_nohpi = filter_chpi(raw.copy()) with warnings.catch_warnings(record=True) as w: # untested feature raw_sss_mv = maxwell_filter(raw_nohpi, head_pos=head_pos, st_duration=4., origin=mf_head_origin, st_fixed=False) assert_equal(len(w), 1) assert_true('is untested' in str(w[0].message)) # Neither match is particularly good because our algorithm actually differs assert_meg_snr(raw_sss_mv, read_crop(sss_movecomp_reg_in_st4s_fname, lims), 0.6, 1.3) tSSS_fname = op.join(sss_path, 'test_move_anon_st4s_raw_sss.fif') assert_meg_snr(raw_sss_mv, read_crop(tSSS_fname, lims), 0.6, 1.0, chpi_med_tol=None) assert_meg_snr(read_crop(sss_movecomp_reg_in_st4s_fname), read_crop(tSSS_fname), 0.8, 1.0, chpi_med_tol=None) # # Movement compensation, regularization, tSSS at the beginning # raw_sss_mc = maxwell_filter(raw_nohpi, head_pos=head_pos, st_duration=4., origin=mf_head_origin) assert_meg_snr(raw_sss_mc, read_crop(tSSS_fname, lims), 0.6, 1.0, chpi_med_tol=None) assert_meg_snr(raw_sss_mc, raw_sss_mv, 0.6, 1.4) # some degenerate cases raw_erm = read_crop(erm_fname) assert_raises(ValueError, maxwell_filter, raw_erm, coord_frame='meg', head_pos=head_pos) # can't do ERM file assert_raises(ValueError, maxwell_filter, raw, head_pos=head_pos[:, :9]) # bad shape assert_raises(TypeError, maxwell_filter, raw, head_pos='foo') # bad type assert_raises(ValueError, maxwell_filter, raw, head_pos=head_pos[::-1]) head_pos_bad = head_pos.copy() head_pos_bad[0, 0] = raw.first_samp / raw.info['sfreq'] - 1e-2 assert_raises(ValueError, maxwell_filter, raw, head_pos=head_pos_bad) head_pos_bad = head_pos.copy() head_pos_bad[0, 4] = 1. # off by more than 1 m with warnings.catch_warnings(record=True) as w: maxwell_filter(raw, head_pos=head_pos_bad, bad_condition='ignore') assert_true(any('greater than 1 m' in str(ww.message) for ww in w)) # make sure numerical error doesn't screw it up, though head_pos_bad = head_pos.copy() head_pos_bad[0, 0] = raw.first_samp / raw.info['sfreq'] - 5e-4 raw_sss_tweak = maxwell_filter(raw, head_pos=head_pos_bad, origin=mf_head_origin) assert_meg_snr(raw_sss_tweak, raw_sss, 2., 10., chpi_med_tol=11) @slow_test def test_other_systems(): """Test Maxwell filtering on KIT, BTI, and CTF files.""" # KIT kit_dir = op.join(io_dir, 'kit', 'tests', 'data') sqd_path = op.join(kit_dir, 'test.sqd') mrk_path = op.join(kit_dir, 'test_mrk.sqd') elp_path = op.join(kit_dir, 'test_elp.txt') hsp_path = op.join(kit_dir, 'test_hsp.txt') raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path) with warnings.catch_warnings(record=True): # head fit assert_raises(RuntimeError, maxwell_filter, raw_kit) raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True) _assert_n_free(raw_sss, 65, 65) raw_sss_auto = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True, mag_scale='auto') assert_allclose(raw_sss._data, raw_sss_auto._data) # XXX this KIT origin fit is terrible! Eventually we should get a # corrected HSP file with proper coverage with warnings.catch_warnings(record=True): with catch_logging() as log_file: assert_raises(RuntimeError, maxwell_filter, raw_kit, ignore_ref=True, regularize=None) # bad condition raw_sss = maxwell_filter(raw_kit, origin='auto', ignore_ref=True, bad_condition='warning', verbose='warning') log_file = log_file.getvalue() assert_true('badly conditioned' in log_file) assert_true('more than 20 mm from' in log_file) # fits can differ slightly based on scipy version, so be lenient here _assert_n_free(raw_sss, 28, 34) # bad origin == brutal reg # Let's set the origin with warnings.catch_warnings(record=True): with catch_logging() as log_file: raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True, bad_condition='warning', regularize=None, verbose='warning') log_file = log_file.getvalue() assert_true('badly conditioned' in log_file) _assert_n_free(raw_sss, 80) # Now with reg with warnings.catch_warnings(record=True): with catch_logging() as log_file: raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True, verbose=True) log_file = log_file.getvalue() assert_true('badly conditioned' not in log_file) _assert_n_free(raw_sss, 65) # BTi bti_dir = op.join(io_dir, 'bti', 'tests', 'data') bti_pdf = op.join(bti_dir, 'test_pdf_linux') bti_config = op.join(bti_dir, 'test_config_linux') bti_hs = op.join(bti_dir, 'test_hs_linux') with warnings.catch_warnings(record=True): # weght table raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False) picks = pick_types(raw_bti.info, meg='mag', exclude=()) power = np.sqrt(np.sum(raw_bti[picks][0] ** 2)) raw_sss = maxwell_filter(raw_bti) _assert_n_free(raw_sss, 70) _assert_shielding(raw_sss, power, 0.5) raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True) _assert_shielding(raw_sss_auto, power, 0.7) # CTF raw_ctf = read_crop(fname_ctf_raw) assert_equal(raw_ctf.compensation_grade, 3) assert_raises(RuntimeError, maxwell_filter, raw_ctf) # compensated raw_ctf.apply_gradient_compensation(0) assert_raises(ValueError, maxwell_filter, raw_ctf) # cannot fit headshape raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04)) _assert_n_free(raw_sss, 68) _assert_shielding(raw_sss, raw_ctf, 1.8) raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True) _assert_n_free(raw_sss, 70) _assert_shielding(raw_sss, raw_ctf, 12) raw_sss_auto = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True, mag_scale='auto') assert_allclose(raw_sss._data, raw_sss_auto._data) def test_spherical_harmonics(): """Test spherical harmonic functions.""" from scipy.special import sph_harm az, pol = np.meshgrid(np.linspace(0, 2 * np.pi, 30), np.linspace(0, np.pi, 20)) # As of Oct 16, 2015, Anancoda has a bug in scipy due to old compilers (?): # https://github.com/ContinuumIO/anaconda-issues/issues/479 if (PY3 and LooseVersion(scipy.__version__) >= LooseVersion('0.15') and 'Continuum Analytics' in sys.version): raise SkipTest('scipy sph_harm bad in Py3k on Anaconda') # Test our basic spherical harmonics for degree in range(1, int_order): for order in range(0, degree + 1): sph = _sph_harm(order, degree, az, pol) sph_scipy = sph_harm(order, degree, az, pol) assert_allclose(sph, sph_scipy, atol=1e-7) def test_spherical_conversions(): """Test spherical harmonic conversions.""" # Test our real<->complex conversion functions az, pol = np.meshgrid(np.linspace(0, 2 * np.pi, 30), np.linspace(0, np.pi, 20)) for degree in range(1, int_order): for order in range(0, degree + 1): sph = _sph_harm(order, degree, az, pol) # ensure that we satisfy the conjugation property assert_allclose(_sh_negate(sph, order), _sph_harm(-order, degree, az, pol)) # ensure our conversion functions work sph_real_pos = _sh_complex_to_real(sph, order) sph_real_neg = _sh_complex_to_real(sph, -order) sph_2 = _sh_real_to_complex([sph_real_pos, sph_real_neg], order) assert_allclose(sph, sph_2, atol=1e-7) @testing.requires_testing_data def test_multipolar_bases(): """Test multipolar moment basis calculation using sensor information.""" from scipy.io import loadmat # Test our basis calculations info = read_info(raw_fname) coils = _prep_meg_channels(info, accurate=True, elekta_defs=True, do_es=True)[0] # Check against a known benchmark sss_data = loadmat(bases_fname) exp = dict(int_order=int_order, ext_order=ext_order) for origin in ((0, 0, 0.04), (0, 0.02, 0.02)): o_str = ''.join('%d' % (1000 * n) for n in origin) exp.update(origin=origin) S_tot = _sss_basis_basic(exp, coils, method='alternative') # Test our real<->complex conversion functions S_tot_complex = _bases_real_to_complex(S_tot, int_order, ext_order) S_tot_round = _bases_complex_to_real(S_tot_complex, int_order, ext_order) assert_allclose(S_tot, S_tot_round, atol=1e-7) S_tot_mat = np.concatenate([sss_data['Sin' + o_str], sss_data['Sout' + o_str]], axis=1) S_tot_mat_real = _bases_complex_to_real(S_tot_mat, int_order, ext_order) S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real, int_order, ext_order) assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7) assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8) assert_allclose(S_tot, S_tot_mat_real, rtol=1e-4, atol=1e-8) # Now normalize our columns S_tot /= np.sqrt(np.sum(S_tot * S_tot, axis=0))[np.newaxis] S_tot_complex /= np.sqrt(np.sum( (S_tot_complex * S_tot_complex.conj()).real, axis=0))[np.newaxis] # Check against a known benchmark S_tot_mat = np.concatenate([sss_data['SNin' + o_str], sss_data['SNout' + o_str]], axis=1) # Check this roundtrip S_tot_mat_real = _bases_complex_to_real(S_tot_mat, int_order, ext_order) S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real, int_order, ext_order) assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7) assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8) # Now test our optimized version S_tot = _sss_basis_basic(exp, coils) S_tot_fast = _trans_sss_basis( exp, all_coils=_prep_mf_coils(info), trans=info['dev_head_t']) # there are some sign differences for columns (order/degrees) # in here, likely due to Condon-Shortley. Here we use a # Magnetometer channel to figure out the flips because the # gradiometer channels have effectively zero values for first three # external components (i.e., S_tot[grad_picks, 80:83]) flips = (np.sign(S_tot_fast[2]) != np.sign(S_tot[2])) flips = 1 - 2 * flips assert_allclose(S_tot, S_tot_fast * flips, atol=1e-16) @testing.requires_testing_data def test_basic(): """Test Maxwell filter basic version.""" # Load testing data (raw, SSS std origin, SSS non-standard origin) raw = read_crop(raw_fname, (0., 1.)) raw_err = read_crop(raw_fname).apply_proj() raw_erm = read_crop(erm_fname) assert_raises(RuntimeError, maxwell_filter, raw_err) assert_raises(TypeError, maxwell_filter, 1.) # not a raw assert_raises(ValueError, maxwell_filter, raw, int_order=20) # too many n_int_bases = int_order ** 2 + 2 * int_order n_ext_bases = ext_order ** 2 + 2 * ext_order nbases = n_int_bases + n_ext_bases # Check number of bases computed correctly assert_equal(_get_n_moments([int_order, ext_order]).sum(), nbases) # Test SSS computation at the standard head origin assert_equal(len(raw.info['projs']), 12) # 11 MEG projs + 1 AVG EEG raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_equal(len(raw_sss.info['projs']), 1) # avg EEG assert_equal(raw_sss.info['projs'][0]['desc'], 'Average EEG reference') assert_meg_snr(raw_sss, read_crop(sss_std_fname), 200., 1000.) py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal'] assert_equal(len(py_cal), 0) py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc'] assert_equal(len(py_ctc), 0) py_st = raw_sss.info['proc_history'][0]['max_info']['max_st'] assert_equal(len(py_st), 0) assert_raises(RuntimeError, maxwell_filter, raw_sss) # Test SSS computation at non-standard head origin raw_sss = maxwell_filter(raw, origin=[0., 0.02, 0.02], regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, read_crop(sss_nonstd_fname), 250., 700.) # Test SSS computation at device origin sss_erm_std = read_crop(sss_erm_std_fname) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', origin=mf_meg_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, sss_erm_std, 100., 900.) for key in ('job', 'frame'): vals = [x.info['proc_history'][0]['max_info']['sss_info'][key] for x in [raw_sss, sss_erm_std]] assert_equal(vals[0], vals[1]) # Check against SSS functions from proc_history sss_info = raw_sss.info['proc_history'][0]['max_info'] assert_equal(_get_n_moments(int_order), proc_history._get_sss_rank(sss_info)) # Degenerate cases assert_raises(ValueError, maxwell_filter, raw, coord_frame='foo') assert_raises(ValueError, maxwell_filter, raw, origin='foo') assert_raises(ValueError, maxwell_filter, raw, origin=[0] * 4) assert_raises(ValueError, maxwell_filter, raw, mag_scale='foo') @testing.requires_testing_data def test_maxwell_filter_additional(): """Test processing of Maxwell filtered data.""" # TODO: Future tests integrate with mne/io/tests/test_proc_history # Load testing data (raw, SSS std origin, SSS non-standard origin) data_path = op.join(testing.data_path(download=False)) file_name = 'test_move_anon' raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif') # Use 2.0 seconds of data to get stable cov. estimate raw = read_crop(raw_fname, (0., 2.)) # Get MEG channels, compute Maxwell filtered data raw.load_data() raw.pick_types(meg=True, eeg=False) int_order = 8 raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None, bad_condition='ignore') # Test io on processed data tempdir = _TempDir() test_outname = op.join(tempdir, 'test_raw_sss.fif') raw_sss.save(test_outname) raw_sss_loaded = read_crop(test_outname).load_data() # Some numerical imprecision since save uses 'single' fmt assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0], rtol=1e-6, atol=1e-20) # Test rank of covariance matrices for raw and SSS processed data cov_raw = compute_raw_covariance(raw) cov_sss = compute_raw_covariance(raw_sss) scalings = None cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings) cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info, scalings) assert_equal(cov_raw_rank, raw.info['nchan']) assert_equal(cov_sss_rank, _get_n_moments(int_order)) @slow_test @testing.requires_testing_data def test_bads_reconstruction(): """Test Maxwell filter reconstruction of bad channels.""" raw = read_crop(raw_fname, (0., 1.)) raw.info['bads'] = bads raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, read_crop(sss_bad_recon_fname), 300.) @requires_svd_convergence @testing.requires_testing_data def test_spatiotemporal_maxwell(): """Test Maxwell filter (tSSS) spatiotemporal processing.""" # Load raw testing data raw = read_crop(raw_fname) # Test that window is less than length of data assert_raises(ValueError, maxwell_filter, raw, st_duration=1000.) # Check both 4 and 10 seconds because Elekta handles them differently # This is to ensure that std/non-std tSSS windows are correctly handled st_durations = [4., 10.] tols = [325., 200.] for st_duration, tol in zip(st_durations, tols): # Load tSSS data depending on st_duration and get data tSSS_fname = op.join(sss_path, 'test_move_anon_st%0ds_raw_sss.fif' % st_duration) tsss_bench = read_crop(tSSS_fname) # Because Elekta's tSSS sometimes(!) lumps the tail window of data # onto the previous buffer if it's shorter than st_duration, we have to # crop the data here to compensate for Elekta's tSSS behavior. if st_duration == 10.: tsss_bench.crop(0, st_duration, copy=False) # Test sss computation at the standard head origin. Same cropping issue # as mentioned above. if st_duration == 10.: raw_tsss = maxwell_filter(raw.crop(0, st_duration), origin=mf_head_origin, st_duration=st_duration, regularize=None, bad_condition='ignore') else: raw_tsss = maxwell_filter(raw, st_duration=st_duration, origin=mf_head_origin, regularize=None, bad_condition='ignore', verbose=True) raw_tsss_2 = maxwell_filter(raw, st_duration=st_duration, origin=mf_head_origin, regularize=None, bad_condition='ignore', st_fixed=False, verbose=True) assert_meg_snr(raw_tsss, raw_tsss_2, 100., 1000.) assert_equal(raw_tsss.estimate_rank(), 140) assert_equal(raw_tsss_2.estimate_rank(), 140) assert_meg_snr(raw_tsss, tsss_bench, tol) py_st = raw_tsss.info['proc_history'][0]['max_info']['max_st'] assert_true(len(py_st) > 0) assert_equal(py_st['buflen'], st_duration) assert_equal(py_st['subspcorr'], 0.98) # Degenerate cases assert_raises(ValueError, maxwell_filter, raw, st_duration=10., st_correlation=0.) @requires_svd_convergence @testing.requires_testing_data def test_spatiotemporal_only(): """Test tSSS-only processing.""" # Load raw testing data raw = read_crop(raw_fname, (0, 2)).load_data() picks = pick_types(raw.info, meg='mag', exclude=()) power = np.sqrt(np.sum(raw[picks][0] ** 2)) # basics raw_tsss = maxwell_filter(raw, st_duration=1., st_only=True) assert_equal(raw_tsss.estimate_rank(), 366) _assert_shielding(raw_tsss, power, 10) # temporal proj will actually reduce spatial DOF with small windows! raw_tsss = maxwell_filter(raw, st_duration=0.1, st_only=True) assert_true(raw_tsss.estimate_rank() < 350) _assert_shielding(raw_tsss, power, 40) # with movement head_pos = read_head_pos(pos_fname) raw_tsss = maxwell_filter(raw, st_duration=1., st_only=True, head_pos=head_pos) assert_equal(raw_tsss.estimate_rank(), 366) _assert_shielding(raw_tsss, power, 12) with warnings.catch_warnings(record=True): # st_fixed False raw_tsss = maxwell_filter(raw, st_duration=1., st_only=True, head_pos=head_pos, st_fixed=False) assert_equal(raw_tsss.estimate_rank(), 366) _assert_shielding(raw_tsss, power, 12) # should do nothing raw_tsss = maxwell_filter(raw, st_duration=1., st_correlation=1., st_only=True) assert_allclose(raw[:][0], raw_tsss[:][0]) # degenerate assert_raises(ValueError, maxwell_filter, raw, st_only=True) # no ST # two-step process equivalent to single-step process raw_tsss = maxwell_filter(raw, st_duration=1., st_only=True) raw_tsss = maxwell_filter(raw_tsss) raw_tsss_2 = maxwell_filter(raw, st_duration=1.) assert_meg_snr(raw_tsss, raw_tsss_2, 1e5) # now also with head movement, and a bad MEG channel assert_equal(len(raw.info['bads']), 0) raw.info['bads'] = ['EEG001', 'MEG2623'] raw_tsss = maxwell_filter(raw, st_duration=1., st_only=True, head_pos=head_pos) assert_equal(raw.info['bads'], ['EEG001', 'MEG2623']) assert_equal(raw_tsss.info['bads'], ['EEG001', 'MEG2623']) # don't reset raw_tsss = maxwell_filter(raw_tsss, head_pos=head_pos) assert_equal(raw_tsss.info['bads'], ['EEG001']) # do reset MEG bads raw_tsss_2 = maxwell_filter(raw, st_duration=1., head_pos=head_pos) assert_equal(raw_tsss_2.info['bads'], ['EEG001']) assert_meg_snr(raw_tsss, raw_tsss_2, 1e5) @testing.requires_testing_data def test_fine_calibration(): """Test Maxwell filter fine calibration.""" # Load testing data (raw, SSS std origin, SSS non-standard origin) raw = read_crop(raw_fname, (0., 1.)) sss_fine_cal = read_crop(sss_fine_cal_fname) # Test 1D SSS fine calibration raw_sss = maxwell_filter(raw, calibration=fine_cal_fname, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, sss_fine_cal, 82, 611) py_cal = raw_sss.info['proc_history'][0]['max_info']['sss_cal'] assert_true(py_cal is not None) assert_true(len(py_cal) > 0) mf_cal = sss_fine_cal.info['proc_history'][0]['max_info']['sss_cal'] # we identify these differently mf_cal['cal_chans'][mf_cal['cal_chans'][:, 1] == 3022, 1] = 3024 assert_allclose(py_cal['cal_chans'], mf_cal['cal_chans']) assert_allclose(py_cal['cal_corrs'], mf_cal['cal_corrs'], rtol=1e-3, atol=1e-3) # Test 3D SSS fine calibration (no equivalent func in MaxFilter yet!) # very low SNR as proc differs, eventually we should add a better test raw_sss_3D = maxwell_filter(raw, calibration=fine_cal_fname_3d, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss_3D, sss_fine_cal, 1.0, 6.) raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0) assert_raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04), calibration=fine_cal_fname) @slow_test @testing.requires_testing_data def test_regularization(): """Test Maxwell filter regularization.""" # Load testing data (raw, SSS std origin, SSS non-standard origin) min_tols = (100., 2.6, 1.0) med_tols = (1000., 21.4, 3.7) origins = ((0., 0., 0.04), (0.,) * 3, (0., 0.02, 0.02)) coord_frames = ('head', 'meg', 'head') raw_fnames = (raw_fname, erm_fname, sample_fname) sss_fnames = (sss_reg_in_fname, sss_erm_reg_in_fname, sss_samp_reg_in_fname) comp_tols = [0, 1, 4] for ii, rf in enumerate(raw_fnames): raw = read_crop(rf, (0., 1.)) sss_reg_in = read_crop(sss_fnames[ii]) # Test "in" regularization raw_sss = maxwell_filter(raw, coord_frame=coord_frames[ii], origin=origins[ii]) assert_meg_snr(raw_sss, sss_reg_in, min_tols[ii], med_tols[ii], msg=rf) # check components match _check_reg_match(raw_sss, sss_reg_in, comp_tols[ii]) def _check_reg_match(sss_py, sss_mf, comp_tol): """Helper to check regularization.""" info_py = sss_py.info['proc_history'][0]['max_info']['sss_info'] assert_true(info_py is not None) assert_true(len(info_py) > 0) info_mf = sss_mf.info['proc_history'][0]['max_info']['sss_info'] n_in = None for inf in (info_py, info_mf): if n_in is None: n_in = _get_n_moments(inf['in_order']) else: assert_equal(n_in, _get_n_moments(inf['in_order'])) assert_equal(inf['components'][:n_in].sum(), inf['nfree']) assert_allclose(info_py['nfree'], info_mf['nfree'], atol=comp_tol, err_msg=sss_py._filenames[0]) @testing.requires_testing_data def test_cross_talk(): """Test Maxwell filter cross-talk cancellation.""" raw = read_crop(raw_fname, (0., 1.)) raw.info['bads'] = bads sss_ctc = read_crop(sss_ctc_fname) raw_sss = maxwell_filter(raw, cross_talk=ctc_fname, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, sss_ctc, 275.) py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc'] assert_true(len(py_ctc) > 0) assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw) assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname) mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc'] del mf_ctc['block_id'] # we don't write this assert_equal(object_diff(py_ctc, mf_ctc), '') raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0) assert_raises(ValueError, maxwell_filter, raw_ctf) # cannot fit headshape raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04)) _assert_n_free(raw_sss, 68) raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True) _assert_n_free(raw_sss, 70) raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels( [raw.ch_names[pi] for pi in pick_types(raw.info, meg=True, exclude=())[3:]]) with warnings.catch_warnings(record=True) as w: maxwell_filter(raw_missing, cross_talk=ctc_fname) assert_equal(len(w), 1) assert_true('Not all cross-talk channels in raw' in str(w[0].message)) # MEG channels not in cross-talk assert_raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04), cross_talk=ctc_fname) @testing.requires_testing_data def test_head_translation(): """Test Maxwell filter head translation.""" raw = read_crop(raw_fname, (0., 1.)) # First try with an unchanged destination raw_sss = maxwell_filter(raw, destination=raw_fname, origin=mf_head_origin, regularize=None, bad_condition='ignore') assert_meg_snr(raw_sss, read_crop(sss_std_fname, (0., 1.)), 200.) # Now with default with warnings.catch_warnings(record=True): with catch_logging() as log: raw_sss = maxwell_filter(raw, destination=mf_head_origin, origin=mf_head_origin, regularize=None, bad_condition='ignore', verbose='warning') assert_true('over 25 mm' in log.getvalue()) assert_meg_snr(raw_sss, read_crop(sss_trans_default_fname), 125.) destination = np.eye(4) destination[2, 3] = 0.04 assert_allclose(raw_sss.info['dev_head_t']['trans'], destination) # Now to sample's head pos with warnings.catch_warnings(record=True): with catch_logging() as log: raw_sss = maxwell_filter(raw, destination=sample_fname, origin=mf_head_origin, regularize=None, bad_condition='ignore', verbose='warning') assert_true('= 25.6 mm' in log.getvalue()) assert_meg_snr(raw_sss, read_crop(sss_trans_sample_fname), 350.) assert_allclose(raw_sss.info['dev_head_t']['trans'], read_info(sample_fname)['dev_head_t']['trans']) # Degenerate cases assert_raises(RuntimeError, maxwell_filter, raw, destination=mf_head_origin, coord_frame='meg') assert_raises(ValueError, maxwell_filter, raw, destination=[0.] * 4) # TODO: Eventually add simulation tests mirroring Taulu's original paper # that calculates the localization error: # http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1495874 def _assert_shielding(raw_sss, erm_power, shielding_factor, meg='mag'): """Helper to assert a minimum shielding factor using empty-room power.""" picks = pick_types(raw_sss.info, meg=meg, ref_meg=False) if isinstance(erm_power, _BaseRaw): picks_erm = pick_types(raw_sss.info, meg=meg, ref_meg=False) assert_allclose(picks, picks_erm) erm_power = np.sqrt((erm_power[picks_erm][0] ** 2).sum()) sss_power = raw_sss[picks][0].ravel() sss_power = np.sqrt(np.sum(sss_power * sss_power)) factor = erm_power / sss_power assert_true(factor >= shielding_factor, 'Shielding factor %0.3f < %0.3f' % (factor, shielding_factor)) @buggy_mkl_svd @slow_test @requires_svd_convergence @testing.requires_testing_data def test_shielding_factor(): """Test Maxwell filter shielding factor using empty room.""" raw_erm = read_crop(erm_fname).load_data() picks = pick_types(raw_erm.info, meg='mag') erm_power = raw_erm[picks][0] erm_power = np.sqrt(np.sum(erm_power * erm_power)) erm_power_grad = raw_erm[pick_types(raw_erm.info, meg='grad')][0] erm_power_grad = np.sqrt(np.sum(erm_power * erm_power)) # Vanilla SSS (second value would be for meg=True instead of meg='mag') _assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None) _assert_shielding(raw_sss, erm_power, 12) # 1.5) _assert_shielding(raw_sss, erm_power_grad, 0.45, 'grad') # 1.5) # Using different mag_scale values raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, mag_scale='auto') _assert_shielding(raw_sss, erm_power, 12) _assert_shielding(raw_sss, erm_power_grad, 0.48, 'grad') raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, mag_scale=1.) # not a good choice _assert_shielding(raw_sss, erm_power, 7.3) _assert_shielding(raw_sss, erm_power_grad, 0.2, 'grad') raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, mag_scale=1000., bad_condition='ignore') _assert_shielding(raw_sss, erm_power, 4.0) _assert_shielding(raw_sss, erm_power_grad, 0.1, 'grad') # Fine cal _assert_shielding(read_crop(sss_erm_fine_cal_fname), erm_power, 12) # 2.0) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, origin=mf_meg_origin, calibration=fine_cal_fname) _assert_shielding(raw_sss, erm_power, 12) # 2.0) # Crosstalk _assert_shielding(read_crop(sss_erm_ctc_fname), erm_power, 12) # 2.1) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, origin=mf_meg_origin, cross_talk=ctc_fname) _assert_shielding(raw_sss, erm_power, 12) # 2.1) # Fine cal + Crosstalk raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, calibration=fine_cal_fname, origin=mf_meg_origin, cross_talk=ctc_fname) _assert_shielding(raw_sss, erm_power, 13) # 2.2) # tSSS _assert_shielding(read_crop(sss_erm_st_fname), erm_power, 37) # 5.8) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, origin=mf_meg_origin, st_duration=1.) _assert_shielding(raw_sss, erm_power, 37) # 5.8) # Crosstalk + tSSS raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, cross_talk=ctc_fname, origin=mf_meg_origin, st_duration=1.) _assert_shielding(raw_sss, erm_power, 38) # 5.91) # Fine cal + tSSS raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, calibration=fine_cal_fname, origin=mf_meg_origin, st_duration=1.) _assert_shielding(raw_sss, erm_power, 38) # 5.98) # Fine cal + Crosstalk + tSSS _assert_shielding(read_crop(sss_erm_st1FineCalCrossTalk_fname), erm_power, 39) # 6.07) raw_sss = maxwell_filter(raw_erm, coord_frame='meg', regularize=None, calibration=fine_cal_fname, origin=mf_meg_origin, cross_talk=ctc_fname, st_duration=1.) _assert_shielding(raw_sss, erm_power, 39) # 6.05) # Fine cal + Crosstalk + tSSS + Reg-in _assert_shielding(read_crop(sss_erm_st1FineCalCrossTalkRegIn_fname), erm_power, 57) # 6.97) raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname, cross_talk=ctc_fname, st_duration=1., origin=mf_meg_origin, coord_frame='meg', regularize='in') _assert_shielding(raw_sss, erm_power, 53) # 6.64) raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname, cross_talk=ctc_fname, st_duration=1., coord_frame='meg', regularize='in') _assert_shielding(raw_sss, erm_power, 58) # 7.0) _assert_shielding(raw_sss, erm_power_grad, 1.6, 'grad') raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname, cross_talk=ctc_fname, st_duration=1., coord_frame='meg', regularize='in', mag_scale='auto') _assert_shielding(raw_sss, erm_power, 51) _assert_shielding(raw_sss, erm_power_grad, 1.5, 'grad') raw_sss = maxwell_filter(raw_erm, calibration=fine_cal_fname_3d, cross_talk=ctc_fname, st_duration=1., coord_frame='meg', regularize='in') # Our 3D cal has worse defaults for this ERM than the 1D file _assert_shielding(raw_sss, erm_power, 54) # Show it by rewriting the 3D as 1D and testing it temp_dir = _TempDir() temp_fname = op.join(temp_dir, 'test_cal.dat') with open(fine_cal_fname_3d, 'r') as fid: with open(temp_fname, 'w') as fid_out: for line in fid: fid_out.write(' '.join(line.strip().split(' ')[:14]) + '\n') raw_sss = maxwell_filter(raw_erm, calibration=temp_fname, cross_talk=ctc_fname, st_duration=1., coord_frame='meg', regularize='in') # Our 3D cal has worse defaults for this ERM than the 1D file _assert_shielding(raw_sss, erm_power, 44) @slow_test @requires_svd_convergence @testing.requires_testing_data def test_all(): """Test maxwell filter using all options.""" raw_fnames = (raw_fname, raw_fname, erm_fname, sample_fname) sss_fnames = (sss_st1FineCalCrossTalkRegIn_fname, sss_st1FineCalCrossTalkRegInTransSample_fname, sss_erm_st1FineCalCrossTalkRegIn_fname, sss_samp_fname) fine_cals = (fine_cal_fname, fine_cal_fname, fine_cal_fname, fine_cal_mgh_fname) coord_frames = ('head', 'head', 'meg', 'head') ctcs = (ctc_fname, ctc_fname, ctc_fname, ctc_mgh_fname) mins = (3.5, 3.5, 1.2, 0.9) meds = (10.8, 10.4, 3.2, 6.) st_durs = (1., 1., 1., None) destinations = (None, sample_fname, None, None) origins = (mf_head_origin, mf_head_origin, mf_meg_origin, mf_head_origin) for ii, rf in enumerate(raw_fnames): raw = read_crop(rf, (0., 1.)) with warnings.catch_warnings(record=True): # head fit off-center sss_py = maxwell_filter( raw, calibration=fine_cals[ii], cross_talk=ctcs[ii], st_duration=st_durs[ii], coord_frame=coord_frames[ii], destination=destinations[ii], origin=origins[ii]) sss_mf = read_crop(sss_fnames[ii]) assert_meg_snr(sss_py, sss_mf, mins[ii], meds[ii], msg=rf) @slow_test @requires_svd_convergence @testing.requires_testing_data def test_triux(): """Test TRIUX system support.""" raw = read_crop(tri_fname, (0, 0.999)) raw.fix_mag_coil_types() # standard sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None) assert_meg_snr(sss_py, read_crop(tri_sss_fname), 37, 700) # cross-talk sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None, cross_talk=tri_ctc_fname) assert_meg_snr(sss_py, read_crop(tri_sss_ctc_fname), 35, 700) # fine cal sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None, calibration=tri_cal_fname) assert_meg_snr(sss_py, read_crop(tri_sss_cal_fname), 31, 360) # ctc+cal sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None, calibration=tri_cal_fname, cross_talk=tri_ctc_fname) assert_meg_snr(sss_py, read_crop(tri_sss_ctc_cal_fname), 31, 350) # regularization sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in') sss_mf = read_crop(tri_sss_reg_fname) assert_meg_snr(sss_py, sss_mf, 0.6, 9) _check_reg_match(sss_py, sss_mf, 1) # all three sss_py = maxwell_filter(raw, coord_frame='meg', regularize='in', calibration=tri_cal_fname, cross_talk=tri_ctc_fname) sss_mf = read_crop(tri_sss_ctc_cal_reg_in_fname) assert_meg_snr(sss_py, sss_mf, 0.6, 9) _check_reg_match(sss_py, sss_mf, 1) # tSSS raw = read_crop(tri_fname).fix_mag_coil_types() sss_py = maxwell_filter(raw, coord_frame='meg', regularize=None, st_duration=4., verbose=True) assert_meg_snr(sss_py, read_crop(tri_sss_st4_fname), 700., 1600) run_tests_if_main()
the-stack_106_26478
import math import os import json import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm import torch.optim.lr_scheduler as lr_scheduler from dataset.dataset import DFDCDataset from resnet.res_lstm4 import createModel ############################################################################### # config setting # ############################################################################### # 数据集根路径、标签路径 root_dir = 'I:/data/FF++/FF++face250/' train_label_path = 'I:/data/FF++/FF++face250/ff_train82-s.csv' val_label_path = 'I:/data/FF++/FF++face250/ff_validate82.csv' ckpt = '' log_dir='./log/res_lstm_ff/' batch_size = 32 epochs = 400 lr = 0.0001 weight_decay = 0.3 num_classes = 2 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = { "train": transforms.Compose([transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [1, 1, 1]) ]), "val": transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [1, 1, 1]) ]) } def main(): print("using {} device.".format(device)) assert os.path.exists(root_dir), "{} path does not exist.".format(root_dir) # 训练集 train_dataset = DFDCDataset(train_label_path, root_dir, data_transform['train']) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True) train_num = len(train_dataset) # 验证集 val_dataset = DFDCDataset(val_label_path, root_dir, data_transform['val']) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, pin_memory=True) val_num = len(val_dataset) print("using {} images for training, {} images for validation.".format(train_num, val_num)) # Linux系统下可用 nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers print('Using {} dataloader workers every process'.format(nw)) # 加载模型 net = createModel() if ckpt: net.load_state_dict(torch.load(ckpt)) print('Load Net state_dict from pretrain') net.to(device) # 正则化 decay_gp = [] nodecay_gp = [] for k, v in net.named_modules(): # print(v) if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): nodecay_gp.append(v.bias) if isinstance(v, nn.BatchNorm2d): nodecay_gp.append(v.weight) elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): decay_gp.append(v.weight) print(net.named_modules().__sizeof__(),len(decay_gp),len(nodecay_gp)) # construct an optimizer # optimizer = torch.optim.Adam(net.parameters(), lr=lr) optimizer = torch.optim.Adam(nodecay_gp, lr=lr) optimizer.add_param_group({'params': decay_gp, 'weight_decay': weight_decay, 'lr': lr}) lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - 0.1) + 0.1 # cosine scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # tensorboard tb_writer = SummaryWriter(log_dir=log_dir) init_img = torch.zeros((1, 3, 224, 224), device=device) tb_writer.add_graph(net, init_img) best_acc = 0.0 train_steps = len(train_loader) for epoch in range(epochs): # train net.train() running_loss = 0.0 train_bar = tqdm(train_loader) for step, (X, y) in enumerate(train_bar): X, y = X.to(device), y.to(device) optimizer.zero_grad() logits = net(X) label = torch.softmax(logits, dim=1) # mse = F.mse_loss(label[:, 1].float(), y.float()) # loss = F.cross_entropy(logits, y) + mse loss = F.cross_entropy(logits, y) loss.backward() optimizer.step() # print statistics running_loss += loss.item() train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1, epochs, loss) # print('epoch', epoch, 'loss:', loss) # validate net.eval() acc = 0.0 # accumulate accurate number / epoch with torch.no_grad(): val_bar = tqdm(val_loader) for step, (Xv, yv) in enumerate(val_bar): Xv, yv = Xv.to(device), yv.to(device) outputs = net(Xv) # loss = loss_function(outputs, test_labels) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, yv.to(device)).sum().item() val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1, epochs) val_accurate = acc / val_num print('[epoch %d] train_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), './pkl/net_ff_' + str(best_acc)[0:5] + '.pkl') scheduler.step() tags = ["train_loss", "accuracy", "learning_rate"] tb_writer.add_scalar(tags[0], running_loss / train_steps, epoch) tb_writer.add_scalar(tags[1], val_accurate, epoch) tb_writer.add_scalar(tags[2], optimizer.param_groups[0]["lr"], epoch) print('Finished Training') if __name__ == '__main__': main()
the-stack_106_26481
import math import numpy as np import pandas as pd import statistics import time import concurrent import copy import random from concurrent.futures import ProcessPoolExecutor from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from formulabot.mep import Solution, Population from tqdm import tqdm def main(): source_data_path = r"C:\Users\markr\Projects\Software\FormulaBot\data\hypotenuse_01.csv" results_path = r"C:\Users\markr\Projects\Software\FormulaBot\data\hypotenuse_01_results.csv" scenarios_to_run = 25 df = pd.read_csv(source_data_path) X = df[['X','Y']].to_dict(orient='records') Y = df['out'].tolist() X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33) rng = np.arange(scenarios_to_run) d = {} results = [] d['parms'] = list(df.columns[:-1]) d['X_train'] = X_train d['y_train'] = y_train d['X_test'] = X_test d['y_test'] = y_test with ProcessPoolExecutor() as executor: for _ in rng: d['population_size'] = random.randint(100,501) d['operations_size'] = random.randint(10,101) d['operands_size'] = random.randint(30,51) d['epochs'] = random.randint(400,1001) d['crossover_rate'] = random.randint(20, 81)/100. d['mutation_rate'] = random.randint(1, 31)/100. d['kill_rate'] = random.randint(1, 31)/100. results.append(executor.submit(run_scenario, copy.deepcopy(d))) for r in concurrent.futures.as_completed(results): write_to_log(r, results_path) print(f"pop:{r.result()['population_size']} | ops:{r.result()['operations_size']} | opr:{r.result()['operands_size']}") print(f"epochs: {r.result()['epochs']}, train: {r.result()['train_score']} | test: {r.result()['test_score']}") def write_to_log(r, fp): with open(fp, 'a') as f: f.write(str(r.result()['population_size'])) f.write(',') f.write(str(r.result()['operations_size'])) f.write(',') f.write(str(r.result()['operands_size'])) f.write(',') f.write(str(r.result()['epochs'])) f.write(',') f.write(str(r.result()['crossover_rate'])) f.write(',') f.write(str(r.result()['mutation_rate'])) f.write(',') f.write(str(r.result()['kill_rate'])) f.write(',') f.write(str(r.result()['train_score'])) f.write(',') f.write(str(r.result()['test_score'])) f.write(',') f.write(str(len(r.result()['X_train']))) f.write(',') f.write(str(len(r.result()['X_test']))) f.write(',') f.write(r.result()['latex_string']) f.write(',') f.write(str(r.result()['calc_time'])) f.write(',') f.write(str(id(r.result))) f.write('\n') def run_scenario(d): start = time.perf_counter() p = Population(population_size=d['population_size'], parameters=list(d['parms']), operations_size=d['operations_size'], operands_size=d['operands_size'], epochs=d['epochs'], crossover_rate=d['crossover_rate'], mutation_rate=d['mutation_rate'], kill_rate=d['kill_rate'], error_calc=mean_squared_error, inputs=d['X_train'], outputs=d['y_train']) # run epochs p.run_epochs(plot_nb=False) end = time.perf_counter() d['train_score'] = p.get_best_score() d['test_score'] = p.fitness_calc(d['y_test'], [m for m in map(p.get_best_solution().compute, d['X_test'])]) d['latex_string'] = p.get_best_solution().to_latex_string() d['calc_time'] = round(end - start, 2) return(d) if __name__ == "__main__": main()
the-stack_106_26482
# encoding: utf-8 from __future__ import annotations import functools import inspect import importlib from collections import defaultdict, OrderedDict from logging import getLogger from typing import Any, Callable, Collection, KeysView, Optional, Union from types import ModuleType from ckan.common import config import ckan.plugins as p import ckan.model as model from ckan.common import _, g import ckan.lib.maintain as maintain from ckan.types import AuthResult, AuthFunction, DataDict, Context log = getLogger(__name__) def get_local_functions(module: ModuleType, include_private: bool = False): """Return list of (name, func) tuples. Filters out all non-callables and all the items that were imported. """ return inspect.getmembers( module, lambda func: (inspect.isfunction(func) and inspect.getmodule(func) is module and (include_private or not func.__name__.startswith('_')))) class AuthFunctions: ''' This is a private cache used by get_auth_function() and should never be accessed directly we will create an instance of it and then remove it.''' _functions: dict[str, AuthFunction] = {} def clear(self) -> None: ''' clear any stored auth functions. ''' self._functions.clear() def keys(self) -> KeysView[str]: ''' Return a list of known auth functions.''' if not self._functions: self._build() return self._functions.keys() def get(self, function: str) -> Optional[AuthFunction]: ''' Return the requested auth function. ''' if not self._functions: self._build() return self._functions.get(function) @staticmethod def _is_chained_auth_function(func: AuthFunction) -> bool: ''' Helper function to check if a function is a chained auth function, i.e. it has been decorated with the chain auth function decorator. ''' return getattr(func, 'chained_auth_function', False) def _build(self) -> None: '''Gather the auth functions. First get the default ones in the ckan/logic/auth directory Rather than writing them out in full will use importlib.import_module to load anything from ckan.auth that looks like it might be an authorisation function ''' module_root = 'ckan.logic.auth' for auth_module_name in ['get', 'create', 'update', 'delete', 'patch']: module = importlib.import_module( '.' + auth_module_name, module_root) for key, v in get_local_functions(module): # Whitelist all auth functions defined in # logic/auth/get.py as not requiring an authorized user, # as well as ensuring that the rest do. In both cases, do # nothing if a decorator has already been used to define # the behaviour if not hasattr(v, 'auth_allow_anonymous_access'): if auth_module_name == 'get': v.auth_allow_anonymous_access = True else: v.auth_allow_anonymous_access = False self._functions[key] = v # Then overwrite them with any specific ones in the plugins: resolved_auth_function_plugins: dict[str, str] = {} fetched_auth_functions = {} chained_auth_functions = defaultdict(list) for plugin in p.PluginImplementations(p.IAuthFunctions): for name, auth_function in plugin.get_auth_functions().items(): if self._is_chained_auth_function(auth_function): chained_auth_functions[name].append(auth_function) elif name in resolved_auth_function_plugins: raise Exception( 'The auth function %r is already implemented in %r' % ( name, resolved_auth_function_plugins[name] ) ) else: resolved_auth_function_plugins[name] = plugin.name fetched_auth_functions[name] = auth_function for name, func_list in chained_auth_functions.items(): if (name not in fetched_auth_functions and name not in self._functions): raise Exception('The auth %r is not found for chained auth' % ( name)) # create the chain of functions in the correct order for func in reversed(func_list): if name in fetched_auth_functions: prev_func = fetched_auth_functions[name] else: # fallback to chaining off the builtin auth function prev_func = self._functions[name] new_func = (functools.partial(func, prev_func)) # persisting attributes to the new partial function for attribute, value in func.__dict__.items(): setattr(new_func, attribute, value) fetched_auth_functions[name] = new_func # Use the updated ones in preference to the originals. self._functions.update(fetched_auth_functions) _AuthFunctions = AuthFunctions() #remove the class del AuthFunctions def clear_auth_functions_cache() -> None: _AuthFunctions.clear() def auth_functions_list() -> KeysView[str]: '''Returns a list of the names of the auth functions available. Currently this is to allow the Auth Audit to know if an auth function is available for a given action.''' return _AuthFunctions.keys() def is_sysadmin(username: Optional[str]) -> bool: ''' Returns True is username is a sysadmin ''' user = _get_user(username) return bool(user and user.sysadmin) def _get_user(username: Optional[str]) -> Optional['model.User']: ''' Try to get the user from g, if possible. If not fallback to using the DB ''' if not username: return None # See if we can get the user without touching the DB try: if g.userobj and g.userobj.name == username: return g.userobj except AttributeError: # g.userobj not set pass except TypeError: # c is not available (py2) pass except RuntimeError: # g is not available (py3) pass # Get user from the DB return model.User.get(username) def get_group_or_org_admin_ids(group_id: Optional[str]) -> list[str]: if not group_id: return [] group = model.Group.get(group_id) if not group: return [] q = model.Session.query(model.Member.table_id) \ .filter(model.Member.group_id == group.id) \ .filter(model.Member.table_name == 'user') \ .filter(model.Member.state == 'active') \ .filter(model.Member.capacity == 'admin') # type_ignore_reason: all stored memerships have table_id return [a.table_id for a in q] def is_authorized_boolean(action: str, context: Context, data_dict: Optional[DataDict]=None) -> bool: ''' runs the auth function but just returns True if allowed else False ''' outcome = is_authorized(action, context, data_dict=data_dict) return outcome.get('success', False) def is_authorized(action: str, context: Context, data_dict: Optional[DataDict]=None) -> AuthResult: if context.get('ignore_auth'): return {'success': True} auth_function = _AuthFunctions.get(action) if auth_function: username = context.get('user') user = _get_user(username) if user: # deleted users are always unauthorized if user.is_deleted(): return {'success': False} # sysadmins can do anything unless the auth_sysadmins_check # decorator was used in which case they are treated like all other # users. elif user.sysadmin: if not getattr(auth_function, 'auth_sysadmins_check', False): return {'success': True} # If the auth function is flagged as not allowing anonymous access, # and an existing user object is not provided in the context, deny # access straight away if not getattr(auth_function, 'auth_allow_anonymous_access', False) \ and not context.get('auth_user_obj'): if isinstance(auth_function, functools.partial): name = auth_function.func.__name__ else: name = auth_function.__name__ return { 'success': False, 'msg': 'Action {0} requires an authenticated user'.format(name) } return auth_function(context, data_dict or {}) else: raise ValueError(_('Authorization function not found: %s' % action)) # these are the permissions that roles have ROLE_PERMISSIONS: dict[str, list[str]] = OrderedDict([ ('admin', ['admin', 'membership']), ('editor', ['read', 'delete_dataset', 'create_dataset', 'update_dataset', 'manage_group']), ('member', ['read', 'manage_group']), ]) def get_collaborator_capacities() -> Collection[str]: if check_config_permission('allow_admin_collaborators'): return ('admin', 'editor', 'member') else: return ('editor', 'member') _trans_functions: dict[str, Callable[[], str]] = { 'admin': lambda: _('Admin'), 'editor': lambda: _('Editor'), 'member': lambda: _('Member'), } def trans_role(role: str) -> str: return _trans_functions[role]() def roles_list() -> list[dict[str, str]]: ''' returns list of roles for forms ''' roles = [] for role in ROLE_PERMISSIONS: roles.append(dict(text=trans_role(role), value=role)) return roles def roles_trans() -> dict[str, str]: ''' return dict of roles with translation ''' roles = {} for role in ROLE_PERMISSIONS: roles[role] = trans_role(role) return roles def get_roles_with_permission(permission: str) -> list[str]: ''' returns the roles with the permission requested ''' roles = [] for role in ROLE_PERMISSIONS: permissions = ROLE_PERMISSIONS[role] if permission in permissions or 'admin' in permissions: roles.append(role) return roles def has_user_permission_for_group_or_org(group_id: Optional[str], user_name: Optional[str], permission: str) -> bool: ''' Check if the user has the given permissions for the group, allowing for sysadmin rights and permission cascading down a group hierarchy. ''' if not group_id: return False group = model.Group.get(group_id) if not group: return False group_id = group.id # Sys admins can do anything if is_sysadmin(user_name): return True user_id = get_user_id_for_username(user_name, allow_none=True) if not user_id: return False if _has_user_permission_for_groups(user_id, permission, [group_id]): return True capacities = check_config_permission('roles_that_cascade_to_sub_groups') assert isinstance(capacities, list) # Handle when permissions cascade. Check the user's roles on groups higher # in the group hierarchy for permission. for capacity in capacities: parent_groups = group.get_parent_group_hierarchy(type=group.type) group_ids = [group_.id for group_ in parent_groups] if _has_user_permission_for_groups(user_id, permission, group_ids, capacity=capacity): return True return False def _has_user_permission_for_groups( user_id: str, permission: str, group_ids: list[str], capacity: Optional[str]=None) -> bool: ''' Check if the user has the given permissions for the particular group (ignoring permissions cascading in a group hierarchy). Can also be filtered by a particular capacity. ''' if not group_ids: return False # get any roles the user has for the group q: Any = (model.Session.query(model.Member.capacity) # type_ignore_reason: attribute has no method .filter(model.Member.group_id.in_(group_ids)) # type: ignore .filter(model.Member.table_name == 'user') .filter(model.Member.state == 'active') .filter(model.Member.table_id == user_id)) if capacity: q = q.filter(model.Member.capacity == capacity) # see if any role has the required permission # admin permission allows anything for the group for row in q: perms = ROLE_PERMISSIONS.get(row.capacity, []) if 'admin' in perms or permission in perms: return True return False def users_role_for_group_or_org( group_id: Optional[str], user_name: Optional[str]) -> Optional[str]: ''' Returns the user's role for the group. (Ignores privileges that cascade in a group hierarchy.) ''' if not group_id: return None group = model.Group.get(group_id) if not group: return None user_id = get_user_id_for_username(user_name, allow_none=True) if not user_id: return None # get any roles the user has for the group q: Any = model.Session.query(model.Member.capacity) \ .filter(model.Member.group_id == group.id) \ .filter(model.Member.table_name == 'user') \ .filter(model.Member.state == 'active') \ .filter(model.Member.table_id == user_id) # return the first role we find for row in q: return row.capacity return None def has_user_permission_for_some_org( user_name: Optional[str], permission: str) -> bool: ''' Check if the user has the given permission for any organization. ''' user_id = get_user_id_for_username(user_name, allow_none=True) if not user_id: return False roles = get_roles_with_permission(permission) if not roles: return False # get any groups the user has with the needed role q: Any = (model.Session.query(model.Member.group_id) .filter(model.Member.table_name == 'user') .filter(model.Member.state == 'active') # type_ignore_reason: attribute has no method .filter(model.Member.capacity.in_(roles)) # type: ignore .filter(model.Member.table_id == user_id)) group_ids = [] for row in q: group_ids.append(row.group_id) # if not in any groups has no permissions if not group_ids: return False # see if any of the groups are orgs permission_exists: bool = model.Session.query( model.Session.query(model.Group) .filter(model.Group.is_organization == True) .filter(model.Group.state == 'active') # type_ignore_reason: attribute has no method .filter(model.Group.id.in_(group_ids)).exists() # type: ignore ).scalar() return permission_exists def get_user_id_for_username( user_name: Optional[str], allow_none: bool = False) -> Optional[str]: ''' Helper function to get user id ''' # first check if we have the user object already and get from there user = _get_user(user_name) if user: return user.id if allow_none: return None raise Exception('Not logged in user') def can_manage_collaborators(package_id: str, user_id: str) -> bool: ''' Returns True if a user is allowed to manage the collaborators of a given dataset. Currently a user can manage collaborators if: 1. Is an administrator of the organization the dataset belongs to 2. Is a collaborator with role "admin" ( assuming :ref:`ckan.auth.allow_admin_collaborators` is set to True) 3. Is the creator of the dataset and the dataset does not belong to an organization ( requires :ref:`ckan.auth.create_dataset_if_not_in_organization` and :ref:`ckan.auth.create_unowned_dataset`) ''' pkg = model.Package.get(package_id) if not pkg: return False owner_org = pkg.owner_org if (not owner_org and check_config_permission('create_dataset_if_not_in_organization') and check_config_permission('create_unowned_dataset') and pkg.creator_user_id == user_id): # User is the creator of this unowned dataset return True if has_user_permission_for_group_or_org( owner_org, user_id, 'membership'): # User is an administrator of the organization the dataset belongs to return True # Check if user is a collaborator with admin role return user_is_collaborator_on_dataset(user_id, pkg.id, 'admin') def user_is_collaborator_on_dataset( user_id: str, dataset_id: str, capacity: Optional[Union[str, list[str]]] = None) -> bool: ''' Returns True if the provided user is a collaborator on the provided dataset. If capacity is provided it restricts the check to the capacity provided (eg `admin` or `editor`). Multiple capacities can be provided passing a list ''' q = model.Session.query(model.PackageMember) \ .filter(model.PackageMember.user_id == user_id) \ .filter(model.PackageMember.package_id == dataset_id) if capacity: if isinstance(capacity, str): capacity = [capacity] # type_ignore_reason: attribute has no method q = q.filter(model.PackageMember.capacity.in_(capacity)) # type: ignore return model.Session.query(q.exists()).scalar() CONFIG_PERMISSIONS_DEFAULTS: dict[str, Union[bool, str]] = { # permission and default # these are prefixed with ckan.auth. in config to override 'anon_create_dataset': False, 'create_dataset_if_not_in_organization': True, 'create_unowned_dataset': True, 'user_create_groups': True, 'user_create_organizations': True, 'user_delete_groups': True, 'user_delete_organizations': True, 'create_user_via_api': False, 'create_user_via_web': True, 'roles_that_cascade_to_sub_groups': 'admin', 'public_activity_stream_detail': False, 'allow_dataset_collaborators': False, 'allow_admin_collaborators': False, 'allow_collaborators_to_change_owner_org': False, 'create_default_api_keys': False, } def check_config_permission(permission: str) -> Union[list[str], bool]: '''Returns the configuration value for the provided permission Permission is a string indentifying the auth permission (eg `anon_create_dataset`), optionally prefixed with `ckan.auth.`. The possible values for `permission` are the keys of CONFIG_PERMISSIONS_DEFAULTS. These can be overriden in the config file by prefixing them with `ckan.auth.`. Returns the permission value, generally True or False, except on `roles_that_cascade_to_sub_groups` which is a list of strings. ''' key = permission.replace('ckan.auth.', '') if key not in CONFIG_PERMISSIONS_DEFAULTS: return False config_key = 'ckan.auth.' + key value = config.get_value(config_key) return value @maintain.deprecated('Use auth_is_loggedin_user instead', since="2.2.0") def auth_is_registered_user() -> bool: ''' This function is deprecated, please use the auth_is_loggedin_user instead ''' return auth_is_loggedin_user() def auth_is_loggedin_user() -> bool: ''' Do we have a logged in user ''' try: context_user = g.user except TypeError: context_user = None return bool(context_user) def auth_is_anon_user(context: Context) -> bool: ''' Is this an anonymous user? eg Not logged in if a web request and not user defined in context if logic functions called directly See ckan/lib/base.py:232 for pylons context object logic ''' context_user = context.get('user') is_anon_user = not bool(context_user) return is_anon_user
the-stack_106_26483
""" Platform for the garadget cover component. For more details about this platform, please refer to the documentation https://home-assistant.io/components/garadget/ """ import logging import voluptuous as vol import requests from homeassistant.components.cover import CoverDevice, PLATFORM_SCHEMA from homeassistant.helpers.event import track_utc_time_change from homeassistant.const import CONF_DEVICE, CONF_USERNAME, CONF_PASSWORD,\ CONF_ACCESS_TOKEN, CONF_NAME, STATE_UNKNOWN, STATE_CLOSED, STATE_OPEN,\ CONF_COVERS import homeassistant.helpers.config_validation as cv DEFAULT_NAME = 'Garadget' ATTR_SIGNAL_STRENGTH = "wifi signal strength (dB)" ATTR_TIME_IN_STATE = "time in state" ATTR_SENSOR_STRENGTH = "sensor reflection rate" ATTR_AVAILABLE = "available" STATE_OPENING = "opening" STATE_CLOSING = "closing" STATE_STOPPED = "stopped" STATE_OFFLINE = "offline" STATES_MAP = { "open": STATE_OPEN, "opening": STATE_OPENING, "closed": STATE_CLOSED, "closing": STATE_CLOSING, "stopped": STATE_STOPPED } # Validation of the user's configuration COVER_SCHEMA = vol.Schema({ vol.Optional(CONF_DEVICE): cv.string, vol.Optional(CONF_USERNAME): cv.string, vol.Optional(CONF_PASSWORD): cv.string, vol.Optional(CONF_ACCESS_TOKEN): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string }) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_COVERS): vol.Schema({cv.slug: COVER_SCHEMA}), }) _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Demo covers.""" covers = [] devices = config.get(CONF_COVERS, {}) _LOGGER.debug(devices) for device_id, device_config in devices.items(): args = { "name": device_config.get(CONF_NAME), "device_id": device_config.get(CONF_DEVICE, device_id), "username": device_config.get(CONF_USERNAME), "password": device_config.get(CONF_PASSWORD), "access_token": device_config.get(CONF_ACCESS_TOKEN) } covers.append(GaradgetCover(hass, args)) add_devices(covers) class GaradgetCover(CoverDevice): """Representation of a demo cover.""" # pylint: disable=no-self-use, too-many-instance-attributes def __init__(self, hass, args): """Initialize the cover.""" self.particle_url = 'https://api.particle.io' self.hass = hass self._name = args['name'] self.device_id = args['device_id'] self.access_token = args['access_token'] self.obtained_token = False self._username = args['username'] self._password = args['password'] self._state = STATE_UNKNOWN self.time_in_state = None self.signal = None self.sensor = None self._unsub_listener_cover = None self._available = True if self.access_token is None: self.access_token = self.get_token() self._obtained_token = True # Lets try to get the configured name if not provided. try: if self._name is None: doorconfig = self._get_variable("doorConfig") if doorconfig["nme"] is not None: self._name = doorconfig["nme"] self.update() except requests.exceptions.ConnectionError as ex: _LOGGER.error('Unable to connect to server: %(reason)s', dict(reason=ex)) self._state = STATE_OFFLINE self._available = False self._name = DEFAULT_NAME except KeyError as ex: _LOGGER.warning('Garadget device %(device)s seems to be offline', dict(device=self.device_id)) self._name = DEFAULT_NAME self._state = STATE_OFFLINE self._available = False def __del__(self): """Try to remove token.""" if self._obtained_token is True: if self.access_token is not None: self.remove_token() @property def name(self): """Return the name of the cover.""" return self._name @property def should_poll(self): """No polling needed for a demo cover.""" return True @property def available(self): """Return True if entity is available.""" return self._available @property def device_state_attributes(self): """Return the device state attributes.""" data = {} if self.signal is not None: data[ATTR_SIGNAL_STRENGTH] = self.signal if self.time_in_state is not None: data[ATTR_TIME_IN_STATE] = self.time_in_state if self.sensor is not None: data[ATTR_SENSOR_STRENGTH] = self.sensor if self.access_token is not None: data[CONF_ACCESS_TOKEN] = self.access_token return data @property def is_closed(self): """Return if the cover is closed.""" if self._state == STATE_UNKNOWN: return None else: return self._state == STATE_CLOSED @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" return 'garage' def get_token(self): """Get new token for usage during this session.""" args = { 'grant_type': 'password', 'username': self._username, 'password': self._password } url = '{}/oauth/token'.format(self.particle_url) ret = requests.post(url, auth=('particle', 'particle'), data=args) return ret.json()['access_token'] def remove_token(self): """Remove authorization token from API.""" ret = requests.delete('{}/v1/access_tokens/{}'.format( self.particle_url, self.access_token), auth=(self._username, self._password)) return ret.text def _start_watcher(self, command): """Start watcher.""" _LOGGER.debug("Starting Watcher for command: %s ", command) if self._unsub_listener_cover is None: self._unsub_listener_cover = track_utc_time_change( self.hass, self._check_state) def _check_state(self, now): """Check the state of the service during an operation.""" self.schedule_update_ha_state(True) def close_cover(self): """Close the cover.""" if self._state not in ["close", "closing"]: ret = self._put_command("setState", "close") self._start_watcher('close') return ret.get('return_value') == 1 def open_cover(self): """Open the cover.""" if self._state not in ["open", "opening"]: ret = self._put_command("setState", "open") self._start_watcher('open') return ret.get('return_value') == 1 def stop_cover(self): """Stop the door where it is.""" if self._state not in ["stopped"]: ret = self._put_command("setState", "stop") self._start_watcher('stop') return ret['return_value'] == 1 def update(self): """Get updated status from API.""" try: status = self._get_variable("doorStatus") _LOGGER.debug("Current Status: %s", status['status']) self._state = STATES_MAP.get(status['status'], STATE_UNKNOWN) self.time_in_state = status['time'] self.signal = status['signal'] self.sensor = status['sensor'] self._availble = True except requests.exceptions.ConnectionError as ex: _LOGGER.error('Unable to connect to server: %(reason)s', dict(reason=ex)) self._state = STATE_OFFLINE except KeyError as ex: _LOGGER.warning('Garadget device %(device)s seems to be offline', dict(device=self.device_id)) self._state = STATE_OFFLINE if self._state not in [STATE_CLOSING, STATE_OPENING]: if self._unsub_listener_cover is not None: self._unsub_listener_cover() self._unsub_listener_cover = None def _get_variable(self, var): """Get latest status.""" url = '{}/v1/devices/{}/{}?access_token={}'.format( self.particle_url, self.device_id, var, self.access_token, ) ret = requests.get(url) result = {} for pairs in ret.json()['result'].split('|'): key = pairs.split('=') result[key[0]] = key[1] return result def _put_command(self, func, arg=None): """Send commands to API.""" params = {'access_token': self.access_token} if arg: params['command'] = arg url = '{}/v1/devices/{}/{}'.format( self.particle_url, self.device_id, func) ret = requests.post(url, data=params) return ret.json()
the-stack_106_26484
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test wallet group functionality.""" from test_framework.test_framework import MinicoinTestFramework from test_framework.messages import CTransaction, FromHex, ToHex from test_framework.util import ( assert_equal, ) def assert_approx(v, vexp, vspan=0.00001): if v < vexp - vspan: raise AssertionError("%s < [%s..%s]" % (str(v), str(vexp - vspan), str(vexp + vspan))) if v > vexp + vspan: raise AssertionError("%s > [%s..%s]" % (str(v), str(vexp - vspan), str(vexp + vspan))) class WalletGroupTest(MinicoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], [], ['-avoidpartialspends']] self.rpc_timewait = 120 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Mine some coins self.nodes[0].generate(110) # Get some addresses from the two nodes addr1 = [self.nodes[1].getnewaddress() for i in range(3)] addr2 = [self.nodes[2].getnewaddress() for i in range(3)] addrs = addr1 + addr2 # Send 1 + 0.5 coin to each address [self.nodes[0].sendtoaddress(addr, 1.0) for addr in addrs] [self.nodes[0].sendtoaddress(addr, 0.5) for addr in addrs] self.nodes[0].generate(1) self.sync_all() # For each node, send 0.2 coins back to 0; # - node[1] should pick one 0.5 UTXO and leave the rest # - node[2] should pick one (1.0 + 0.5) UTXO group corresponding to a # given address, and leave the rest txid1 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx1 = self.nodes[1].getrawtransaction(txid1, True) # txid1 should have 1 input and 2 outputs assert_equal(1, len(tx1["vin"])) assert_equal(2, len(tx1["vout"])) # one output should be 0.2, the other should be ~0.3 v = [vout["value"] for vout in tx1["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 0.3, 0.0001) txid2 = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx2 = self.nodes[2].getrawtransaction(txid2, True) # txid2 should have 2 inputs and 2 outputs assert_equal(2, len(tx2["vin"])) assert_equal(2, len(tx2["vout"])) # one output should be 0.2, the other should be ~1.3 v = [vout["value"] for vout in tx2["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 1.3, 0.0001) # Empty out node2's wallet self.nodes[2].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=self.nodes[2].getbalance(), subtractfeefromamount=True) self.sync_all() self.nodes[0].generate(1) # Fill node2's wallet with 10000 outputs corresponding to the same # scriptPubKey for i in range(5): raw_tx = self.nodes[0].createrawtransaction([{"txid":"0"*64, "vout":0}], [{addr2[0]: 0.05}]) tx = FromHex(CTransaction(), raw_tx) tx.vin = [] tx.vout = [tx.vout[0]] * 2000 funded_tx = self.nodes[0].fundrawtransaction(ToHex(tx)) signed_tx = self.nodes[0].signrawtransactionwithwallet(funded_tx['hex']) self.nodes[0].sendrawtransaction(signed_tx['hex']) self.nodes[0].generate(1) self.sync_all() # Check that we can create a transaction that only requires ~100 of our # utxos, without pulling in all outputs and creating a transaction that # is way too big. assert self.nodes[2].sendtoaddress(address=addr2[0], amount=5) if __name__ == '__main__': WalletGroupTest().main ()
the-stack_106_26485
import os import re import pandas as pd from extractor import extract from voluptuous import (Schema, Required, All, Optional, Length, Any, MultipleInvalid, Match, Coerce) # Lookups iso_country = pd.read_csv('./Lookups/ISO_COUNTRY.csv', dtype='str', encoding='latin', keep_default_na=False) cpv = pd.read_csv('./Lookups/CPV.csv', dtype='str') ma = pd.read_csv('./Lookups/MA_MAIN_ACTIVITY.csv', dtype='str') td = pd.read_csv('./Lookups/TD_DOCUMENT_TYPE.csv', dtype='str') nc = pd.read_csv('./Lookups/NC_CONTRACT_NATURE.csv', dtype='str') aa = pd.read_csv('./Lookups/AA_AUTHORITY_TYPE.csv', dtype='str') pr = pd.read_csv('./Lookups/PR_PROC.csv', dtype='str') ty = pd.read_csv('./Lookups/TY_TYPE_BID.csv', dtype='str') ac = pd.read_csv('./Lookups/AC_AWARD_CRIT.csv', dtype='str') rp = pd.read_csv('./Lookups/RP_REGULATION.csv', dtype='str') # Allowed Currencies currencies = ['EUR', 'BGN', 'CHF', 'USD', 'HRK', 'CZK', 'DKK', 'HUF', 'SEK', 'NOK', 'LTL', 'TRY', 'PLN', 'MKD', 'RON', 'JPY', 'ISK', 'SKK', 'LVL', 'GBP', 'MTL', 'CYP', 'EEK'] def number(s): n = re.sub(r'\s', '', s.replace(',', '.').replace('%', '')) return float(n) def concatenate(lst): return ' '.join(lst) def flat(lst): return lst[0] # Sub Schemas value = Schema({ Optional('CURRENCY'): All(str, Any(*currencies)), Optional(str): Any([], All(Coerce(flat), Coerce(number)), All(Coerce(flat), str)) # Let it pass }) contract_value = Schema({ Optional(str): value, Optional('NUMBER_OF_YEARS'): Any([], All(Coerce(flat), Coerce(number)), All(Coerce(flat), str)), # Let it pass Optional('NUMBER_OF_MONTHS'): Any([], All(Coerce(flat), Coerce(number)), All(Coerce(flat), str)) # Let it pass }) contractor = Schema({ Optional(str): Any([], All(Coerce(flat), str)), Optional('COUNTRY'): Any([], All(Coerce(flat), str, Length(2), Any(*iso_country.Code))) }) match_nuts = Match('^(' + '|'.join(iso_country.Code) + ')') match_cpv = Match('^(' + '|'.join(cpv.CODE) + ')') # Document Schema schema = Schema({ Required('DOC_ID'): str, Required('CODED_DATA'): { Required('NOTICE_DATA'): { Required('NO_DOC_OJS'): All(Coerce(flat), str), Required('ORIGINAL_NUTS'): [All(str, match_nuts)], Required('ORIGINAL_CPV'): [All(str, match_cpv)], Required('ISO_COUNTRY'): All(Coerce(flat), str, Length(2), Any(*iso_country.Code)), Required('IA_URL_GENERAL'): Any([], All(Coerce(flat), str)), Required('REF_NOTICE'): [str], Required('VALUES_LIST'): { Optional('GLOBAL_VALUE'): value, Optional('CONTRACTS_VALUE'): [value] } }, Required('CODIF_DATA'): { Required('DS_DATE_DISPATCH'): All(Coerce(flat), str), Required('TD_DOCUMENT_TYPE'): All(Coerce(flat), str, Any(*td.CODE)), Required('AA_AUTHORITY_TYPE'): All(Coerce(flat), str, Any(*aa.CODE)), Required('NC_CONTRACT_NATURE'): All(Coerce(flat), str, Any(*nc.CODE)), Required('PR_PROC'): All(Coerce(flat), str, Any(*pr.CODE)), Required('RP_REGULATION'): All(Coerce(flat), str, Any(*rp.CODE)), Required('TY_TYPE_BID'): All(Coerce(flat), str, Any(*ty.CODE)), Required('AC_AWARD_CRIT'): All(Coerce(flat), str, Any(*ac.CODE)), Required('MA_MAIN_ACTIVITIES'): [All(str, Any(*ma.CODE))] } }, Required('CONTRACT'): { Required('OTH_NOT'): All(Coerce(flat), str, Any('YES', 'NO')), Optional('CONTRACTING_AUTHORITY'): All(Coerce(flat), str), Optional('CONTRACT_OBJECT'): { Optional('NUTS'): [All(str, match_nuts)], Optional('NUTS_EXTRA'): All(Coerce(concatenate), str), Optional('CPV_MAIN'): Any([], All(Coerce(flat), str, match_cpv)), Optional('CONTRACT_VALUE'): contract_value, Optional(str): Any([], All(Coerce(flat), str, Any('YES', 'NO'))), }, Optional('AWARDS_OF_CONTRACT'): [{ Optional('CONTRACTOR'): contractor, Optional('CONTRACT_VALUE'): contract_value, }] } }) def prune(node): if isinstance(node, list): for n in node: prune(n) elif isinstance(node, dict): for k in list(node.keys()): if node[k]: prune(node[k]) else: del node[k] if __name__ == "__main__": Y = '2013' M = '01' years = ['2013', '2014', '2015', '2016'] months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12'] collection = [] for Y in years: print(Y) for M in months: print(M) # Folder containing xml files DIR = os.path.join('/Volumes/WD/S8', Y + '-' + M) # List xml files files = os.listdir(DIR) for f in files: # Extract data from xml file file_path = os.path.join(DIR, f) data = extract(file_path) try: data = schema(data) except MultipleInvalid as e: print(str(e) + ' ---- file: ' + file_path) prune(data) collection.append(data) print(collection) break
the-stack_106_26486
import logging def setup_logging(debug=False): root_logger = logging.getLogger() debug_fomatter = logging.Formatter( fmt="%(asctime)s.%(msecs)03d %(levelname).4s [%(name)s] %(message)s", datefmt="%H:%M:%S", ) logger_handle = logging.StreamHandler() logger_handle.setFormatter(debug_fomatter) if debug: logger_handle.setLevel(logging.DEBUG) else: logger_handle.setLevel(logging.WARNING) root_logger.addHandler(logger_handle) root_logger.setLevel(0)
the-stack_106_26487
import numpy as np try: from scipy.sparse.linalg import spsolve from scipy.sparse import coo_matrix, eye except ImportError: pass from . import triangles from .util import unitize from .geometry import index_sparse from .triangles import mass_properties def filter_laplacian(mesh, lamb=0.5, iterations=10, implicit_time_integration=False, volume_constraint=True, laplacian_operator=None): """ Smooth a mesh in-place using laplacian smoothing. Articles 1 - "Improved Laplacian Smoothing of Noisy Surface Meshes" J. Vollmer, R. Mencl, and H. Muller 2 - "Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow". M. Desbrun, M. Meyer, P. Schroder, A.H.B. Caltech Parameters ------------ mesh : trimesh.Trimesh Mesh to be smoothed in place lamb : float Diffusion speed constant If 0.0, no diffusion If > 0.0, diffusion occurs implicit_time_integration: boolean if False: explicit time integration -lamb <= 1.0 - Stability Limit (Article 1) if True: implicit time integration -lamb no limit (Article 2) iterations : int Number of passes to run filter laplacian_operator : None or scipy.sparse.coo.coo_matrix Sparse matrix laplacian operator Will be autogenerated if None """ # if the laplacian operator was not passed create it here if laplacian_operator is None: laplacian_operator = laplacian_calculation(mesh) # save initial volume if volume_constraint: vol_ini = mesh.volume # get mesh vertices and faces as vanilla numpy array vertices = mesh.vertices.copy().view(np.ndarray) faces = mesh.faces.copy().view(np.ndarray) # Set matrix for linear system of equations if implicit_time_integration: dlap = laplacian_operator.shape[0] AA = eye(dlap) + lamb * (eye(dlap) - laplacian_operator) # Number of passes for _index in range(iterations): # Classic Explicit Time Integration - Article 1 if not implicit_time_integration: dot = laplacian_operator.dot(vertices) - vertices vertices += lamb * dot # Implicit Time Integration - Article 2 else: vertices = spsolve(AA, vertices) # volume constraint if volume_constraint: # find the volume with new vertex positions vol_new = triangles.mass_properties( vertices[faces], skip_inertia=True)["volume"] # scale by volume ratio vertices *= ((vol_ini / vol_new) ** (1.0 / 3.0)) # assign modified vertices back to mesh mesh.vertices = vertices return mesh def filter_humphrey(mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None): """ Smooth a mesh in-place using laplacian smoothing and Humphrey filtering. Articles "Improved Laplacian Smoothing of Noisy Surface Meshes" J. Vollmer, R. Mencl, and H. Muller Parameters ------------ mesh : trimesh.Trimesh Mesh to be smoothed in place alpha : float Controls shrinkage, range is 0.0 - 1.0 If 0.0, not considered If 1.0, no smoothing beta : float Controls how aggressive smoothing is If 0.0, no smoothing If 1.0, full aggressiveness iterations : int Number of passes to run filter laplacian_operator : None or scipy.sparse.coo.coo_matrix Sparse matrix laplacian operator Will be autogenerated if None """ # if the laplacian operator was not passed create it here if laplacian_operator is None: laplacian_operator = laplacian_calculation(mesh) # get mesh vertices as vanilla numpy array vertices = mesh.vertices.copy().view(np.ndarray) # save original unmodified vertices original = vertices.copy() # run through iterations of filter for _index in range(iterations): vert_q = vertices.copy() vertices = laplacian_operator.dot(vertices) vert_b = vertices - (alpha * original + (1.0 - alpha) * vert_q) vertices -= (beta * vert_b + (1.0 - beta) * laplacian_operator.dot(vert_b)) # assign modified vertices back to mesh mesh.vertices = vertices return mesh def filter_taubin(mesh, lamb=0.5, nu=0.5, iterations=10, laplacian_operator=None): """ Smooth a mesh in-place using laplacian smoothing and taubin filtering. Articles "Improved Laplacian Smoothing of Noisy Surface Meshes" J. Vollmer, R. Mencl, and H. Muller Parameters ------------ mesh : trimesh.Trimesh Mesh to be smoothed in place. lamb : float Controls shrinkage, range is 0.0 - 1.0 nu : float Controls dilation, range is 0.0 - 1.0 Nu shall be between 0.0 < 1.0/lambda - 1.0/nu < 0.1 iterations : int Number of passes to run the filter laplacian_operator : None or scipy.sparse.coo.coo_matrix Sparse matrix laplacian operator Will be autogenerated if None """ # if the laplacian operator was not passed create it here if laplacian_operator is None: laplacian_operator = laplacian_calculation(mesh) # get mesh vertices as vanilla numpy array vertices = mesh.vertices.copy().view(np.ndarray) # run through multiple passes of the filter for index in range(iterations): # do a sparse dot product on the vertices dot = laplacian_operator.dot(vertices) - vertices # alternate shrinkage and dilation if index % 2 == 0: vertices += lamb * dot else: vertices -= nu * dot # assign updated vertices back to mesh mesh.vertices = vertices return mesh def filter_mut_dif_laplacian(mesh, lamb=0.5, iterations=10, volume_constraint=True, laplacian_operator=None): """ Smooth a mesh in-place using laplacian smoothing using a mutable difusion laplacian. Articles Barroqueiro, B., Andrade-Campos, A., Dias-de-Oliveira, J., and Valente, R. (January 21, 2021). "Bridging between topology optimization and additive manufacturing via Laplacian smoothing." ASME. J. Mech. Des. Parameters ------------ mesh : trimesh.Trimesh Mesh to be smoothed in place lamb : float Diffusion speed constant If 0.0, no diffusion If > 0.0, diffusion occurs iterations : int Number of passes to run filter laplacian_operator : None or scipy.sparse.coo.coo_matrix Sparse matrix laplacian operator Will be autogenerated if None """ # if the laplacian operator was not passed create it here if laplacian_operator is None: laplacian_operator = laplacian_calculation(mesh) # Set volume constraint if volume_constraint: v_ini = mesh.volume # get mesh vertices as vanilla numpy array vertices = mesh.vertices.copy().view(np.ndarray) faces = mesh.faces.copy().view(np.ndarray) eps = 0.01 * (np.max(mesh.area_faces)**0.5) # Number of passes for _index in range(iterations): # Mutable difusion normals = get_vertices_normals(mesh) qi = laplacian_operator.dot(vertices) pi_qi = vertices - qi adil = np.abs((normals * pi_qi).dot(np.ones((3, 1)))) adil = 1.0 / np.maximum(1e-12, adil) lamber = np.maximum( 0.2 * lamb, np.minimum(1.0, lamb * adil / np.mean(adil))) # Filter dot = laplacian_operator.dot(vertices) - vertices vertices += lamber * dot # Volume constraint if volume_constraint: vol = mass_properties(vertices[faces], skip_inertia=True)["volume"] if _index == 0: slope = dilate_slope(vertices, faces, normals, vol, eps) vertices += normals * slope * (v_ini - vol) # assign modified vertices back to mesh mesh.vertices = vertices return mesh def laplacian_calculation(mesh, equal_weight=True, pinned_vertices=[]): """ Calculate a sparse matrix for laplacian operations. Parameters ------------- mesh : trimesh.Trimesh Input geometry equal_weight : bool If True, all neighbors will be considered equally If False, all neighbors will be weighted by inverse distance Returns ---------- laplacian : scipy.sparse.coo.coo_matrix Laplacian operator """ # get the vertex neighbors from the cache neighbors = mesh.vertex_neighbors # if a node is pinned, it will average his coordinates by himself # in practice it will not move for i in pinned_vertices: neighbors[i] = [i] # avoid hitting crc checks in loops vertices = mesh.vertices.view(np.ndarray) # stack neighbors to 1D arrays col = np.concatenate(neighbors) row = np.concatenate([[i] * len(n) for i, n in enumerate(neighbors)]) if equal_weight: # equal weights for each neighbor data = np.concatenate([[1.0 / len(n)] * len(n) for n in neighbors]) else: # umbrella weights, distance-weighted # use dot product of ones to replace array.sum(axis=1) ones = np.ones(3) # the distance from verticesex to neighbors norms = [ 1.0 / np.maximum(1e-6, np.sqrt(np.dot( (vertices[i] - vertices[n]) ** 2, ones))) for i, n in enumerate(neighbors)] # normalize group and stack into single array data = np.concatenate([i / i.sum() for i in norms]) # create the sparse matrix matrix = coo_matrix((data, (row, col)), shape=[len(vertices)] * 2) return matrix def get_vertices_normals(mesh): """ Compute Vertex normals using equal weighting of neighbors faces. Parameters ------------- mesh : trimesh.Trimesh Input geometry Returns ---------- vertices_normals: array Vertices normals """ # get mesh vertices and faces vertices = mesh.vertices faces = mesh.faces # get face normals face_normals = mesh.face_normals # Compute Vert normals vert_normals = index_sparse(len(vertices), faces).dot(face_normals) return unitize(vert_normals) def dilate_slope(vertices, faces, normals, v, eps): """ Get de derivate of dilation scalar by the volume variation by finite diferences Thus, Vertices += vertex_normals*dilate_slope*(Initial_Volume - Srinked_Volume) Parameters ------------- mesh : trimesh.Trimesh Input geometry vertices: mesh.vertices faces: mesh.faces normals: array vertices normals Returns ---------- dilate_slope: float derivative """ # finite diference derivative vertices2 = vertices + normals * eps v2 = mass_properties(vertices2[faces], skip_inertia=True)["volume"] return (eps) / (v2 - v)
the-stack_106_26490
#!/usr/bin/env python3 """The setup script.""" from setuptools import find_packages, setup with open('requirements.txt') as f: requirements = f.read().strip().split('\n') with open('README.md') as f: long_description = f.read() setup( maintainer='Xdev', maintainer_email='[email protected]', python_requires='>=3.7', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Scientific/Engineering', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', ], description='A high-level mapping of name/key to Xarray.Datasets.', install_requires=requirements, license='Apache Software License 2.0', long_description_content_type='text/markdown', long_description=long_description, include_package_data=True, keywords='xarray', name='xcollection', packages=find_packages(), entry_points={}, url='https://github.com/NCAR/xcollection', project_urls={ 'Documentation': 'https://github.com/NCAR/xcollection', 'Source': 'https://github.com/NCAR/xcollection', 'Tracker': 'https://github.com/NCAR/xcollection/issues', }, use_scm_version={ 'version_scheme': 'post-release', 'local_scheme': 'dirty-tag', }, setup_requires=['setuptools_scm', 'setuptools>=30.3.0'], zip_safe=False, )
the-stack_106_26491
import json import re import sys from collections import defaultdict from datetime import date, datetime from functools import wraps import click from .cve_api import CveApi, CveApiError from . import __version__ CVE_RE = re.compile(r"^CVE-[12]\d{3}-\d{4,}$") CONTEXT_SETTINGS = { "help_option_names": ["-h", "--help"], "max_content_width": 100, } def validate_cve(ctx, param, value): if value is None: return if not CVE_RE.match(value): raise click.BadParameter("invalid CVE ID.") return value def validate_year(ctx, param, value): if value is None: return # Hopefully this code won't be around in year 10,000. if not re.match(r"^[1-9]\d{3}$", value): raise click.BadParameter("invalid year.") return value def human_ts(ts): return datetime.strptime(ts, "%Y-%m-%dT%H:%M:%S.%fZ").strftime("%c") def print_cve(cve): click.secho(cve["cve_id"], bold=True) click.echo(f"├─ State:\t{cve['state']}") # CVEs reserved by other CNAs do not include information on who requested them and when. if "requested_by" in cve: click.echo(f"├─ Owning CNA:\t{cve['owning_cna']}") click.echo(f"├─ Reserved by:\t{cve['requested_by']['user']} ({cve['requested_by']['cna']})") click.echo(f"└─ Reserved on:\t{human_ts(cve['reserved'])}") else: click.echo(f"└─ Owning CNA:\t{cve['owning_cna']}") def print_table(lines): """Print tabulated data based on the widths of the longest values in each column.""" col_widths = [] for item_index in range(len(lines[0])): max_len_value = max(lines, key=lambda x: len(x[item_index])) col_widths.append(len(max_len_value[item_index])) for idx, line in enumerate(lines): text = "".join(f"{value:<{width + 3}}" for value, width in zip(line, col_widths)).strip() if idx == 0: click.secho(text, bold=True) else: click.echo(text) def print_json_data(data): click.echo(json.dumps(data, indent=4, sort_keys=True)) def print_user(user): name = get_full_name(user) if name: click.echo(f"{name} — ", nl=False) click.echo(user["username"]) click.echo(f"├─ Active:\t{bool_to_text(user['active'])}") click.echo(f"├─ Roles:\t{', '.join(user['authority']['active_roles']) or 'None'}") # Time values are not returned when creating users; secrets (API tokens) are however. if "time" in user: click.echo(f"├─ Created:\t{human_ts(user['time']['created'])}") click.echo(f"└─ Modified:\t{human_ts(user['time']['modified'])}") elif "secret" in user: click.echo(f"└─ API token:\t{user['secret']}") def get_full_name(user_data): # If no name values are defined on a user, the entire `name` object is not returned in the # user data response; see https://github.com/CVEProject/cve-services/issues/436. name = user_data.get("name", {}) if name: return f"{name.get('first', '')} {name.get('last', '')}".strip() or None def bool_to_text(value): if value is None: return "N/A" return "Yes" if value else "No" def natural_cve_sort(cve): if not cve: return [] return [int(x) for x in cve.split("-")[1:]] def handle_cve_api_error(func): """Decorator for catching CVE API exceptions and formatting the error message.""" @wraps(func) def wrapped(*args, **kwargs): try: return func(*args, **kwargs) except CveApiError as exc: error, _, details = str(exc).partition("; returned error: ") click.secho("ERROR: ", bold=True, nl=False) click.echo(error) if details: click.secho("DETAILS: ", bold=True, nl=False) click.echo(details) sys.exit(1) return wrapped class Config: def __init__(self, username, org, api_key, env, api_url, interactive): self.username = username self.org = org self.api_key = api_key self.env = env self.api_url = api_url self.interactive = interactive self.cve_api = self.init_cve_api() def init_cve_api(self): return CveApi( username=self.username, org=self.org, api_key=self.api_key, env=self.env, url=self.api_url, ) @click.group(context_settings=CONTEXT_SETTINGS) @click.option( "-u", "--username", envvar="CVE_USER", required=True, help="Your username (env var: CVE_USER)" ) @click.option( "-o", "--org", envvar="CVE_ORG", required=True, help="Your CNA organization short name (env var: CVE_ORG)", ) @click.option( "-a", "--api-key", envvar="CVE_API_KEY", required=True, help="Your API key (env var: CVE_API_KEY)", ) @click.option( "-e", "--env", envvar="CVE_ENVIRONMENT", default="prod", type=click.Choice(["prod", "dev"]), help="Select deployment environment to query (env var: CVE_ENVIRONMENT)", ) @click.option( "--api-url", envvar="CVE_API_URL", help="Provide arbitrary URL for the CVE API (env var: CVE_API_URL)", ) @click.option( "-i", "--interactive", envvar="CVE_INTERACTIVE", default=False, is_flag=True, help="Confirm create/update actions before execution (env var: CVE_INTERACTIVE)", ) @click.version_option( __version__, "-V", "--version", prog_name="cvelib", message="%(prog)s %(version)s" ) @click.pass_context def cli(ctx, username, org, api_key, env, api_url, interactive): """A CLI interface for the CVE Services API.""" ctx.obj = Config(username, org, api_key, env, api_url, interactive) @cli.command() @click.option( "-r", "--random", default=False, show_default=True, is_flag=True, help="Reserve multiple CVE IDs non-sequentially.", ) @click.option( "-y", "--year", default=lambda: str(date.today().year), callback=validate_year, help="Reserve CVE ID(s) for a given year.", show_default="current year", ) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.argument("count", default=1, type=click.IntRange(min=1)) @click.pass_context @handle_cve_api_error def reserve(ctx, random, year, count, print_raw): """Reserve one or more CVE IDs. COUNT is the number of CVEs to reserve; defaults to 1. CVE IDs can be reserved one by one (the lowest IDs are reserved first) or in batches of multiple IDs per single request. When reserving multiple IDs, you can request those IDs to be generated sequentially (default) or non-sequentially (random IDs are selected from your CVE ID range). For more information, see: "Developer Guide to CVE Services API" (https://git.io/JLcmZ) """ if random and count > 10: raise click.BadParameter("requesting non-sequential CVE IDs is limited to 10 per request.") if ctx.obj.interactive: click.echo("You are about to reserve ", nl=False) if count > 1: click.secho( f"{count} {'non-sequential' if random else 'sequential'} ", bold=True, nl=False ) click.echo("CVE IDs for year ", nl=False) else: click.secho("1 ", bold=True, nl=False) click.echo("CVE ID for year ", nl=False) click.secho(year, bold=True, nl=False) click.echo(" that will be owned by the ", nl=False) click.secho(ctx.obj.org, bold=True, nl=False) click.echo(" CNA org.") if not click.confirm("This operation cannot be reversed; do you want to continue?"): click.echo("Exiting...") sys.exit(0) click.echo() cve_api = ctx.obj.cve_api cve_data, remaining_quota = cve_api.reserve(count, random, year) if print_raw: print_json_data(cve_data) return click.echo("Reserved the following CVE ID(s):\n") for cve in cve_data["cve_ids"]: print_cve(cve) click.echo(f"\nRemaining quota: {remaining_quota}") @cli.command(name="show") @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.argument("cve_id", callback=validate_cve) @click.pass_context @handle_cve_api_error def show_cve(ctx, print_raw, cve_id): """Display a specific CVE ID owned by your CNA.""" cve_api = ctx.obj.cve_api cve = cve_api.show_cve(cve_id=cve_id) if print_raw: print_json_data(cve) else: print_cve(cve) @cli.command(name="list") @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.option( "--sort-by", type=click.Choice(["cve_id", "state", "user", "reserved"], case_sensitive=False), default="cve_id", help="Sort output.", ) @click.option("--year", callback=validate_year, help="Filter by year.") @click.option( "--state", type=click.Choice(["reserved", "public", "reject"], case_sensitive=False), help="Filter by reservation state.", ) @click.option( "--reserved-lt", type=click.DateTime(), help="Filter by reservation time before timestamp." ) @click.option( "--reserved-gt", type=click.DateTime(), help="Filter by reservation time after timestamp." ) @click.pass_context @handle_cve_api_error def list_cves(ctx, print_raw, sort_by, **query): """Filter and list reserved CVE IDs owned by your CNA.""" cve_api = ctx.obj.cve_api cves = list(cve_api.list_cves(**query)) if print_raw: print_json_data(cves) return if not cves: click.echo("No CVEs found...") return if sort_by: key = sort_by.lower() if key == "user": cves.sort(key=lambda x: x["requested_by"]["user"]) elif key == "cve_id": cves.sort(key=lambda x: natural_cve_sort(x["cve_id"])) elif key == "reserved_asc": cves.sort(key=lambda x: x["reserved"]) elif key == "state": cves.sort(key=lambda x: x["state"]) lines = [("CVE ID", "STATE", "OWNING CNA", "REQUESTED BY", "RESERVED")] for cve in cves: lines.append( ( cve["cve_id"], cve["state"], cve["owning_cna"], f"{cve['requested_by']['user']} ({cve['requested_by']['cna']})", human_ts(cve["reserved"]), ) ) print_table(lines) @cli.command() @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def quota(ctx, print_raw): """Display the available CVE ID quota for your CNA. \b - "Limit": how many CVE IDs your organization can have in the RESERVED state at once. - "Reserved": the number of CVE IDs that are in the RESERVED state across all years. - "Available": the number of CVE IDs that can be reserved (that is, "Limit" - "Reserved") """ cve_api = ctx.obj.cve_api cve_quota = cve_api.quota() if print_raw: print_json_data(cve_quota) return click.echo("CNA quota for ", nl=False) click.secho(f"{ctx.obj.org}", bold=True, nl=False) click.echo(f":") click.echo(f"├─ Limit:\t{cve_quota['id_quota']}") click.echo(f"├─ Reserved:\t{cve_quota['total_reserved']}") click.echo(f"└─ Available:\t{cve_quota['available']}") @cli.group(name="user", invoke_without_command=True) @click.option( "-u", "--username", help="Specify the user to show.", show_default="Current user specified in -u/--username/CVE_USER", ) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def show_user(ctx, username, print_raw): """Show information about a user.""" if ctx.invoked_subcommand is not None: return cve_api = ctx.obj.cve_api if not username: username = cve_api.username user = cve_api.show_user(username) if print_raw: print_json_data(user) else: print_user(user) @show_user.command() @click.option( "-u", "--username", help="User whose API token should be reset (only ADMIN role users can update other users).", show_default="Current user specified in global -u/--username/CVE_USER", ) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def reset_token(ctx, username, print_raw): """Reset a user's personal access token (API token). This token is used to authenticate each request to the CVE API. """ cve_api = ctx.obj.cve_api if not username: username = cve_api.username api_key = cve_api.reset_api_token(username) if print_raw: print_json_data(api_key) return click.echo(f"New API token for ", nl=False) click.secho(username, bold=True, nl=False) click.echo(":\n") click.secho(api_key["API-secret"], bold=True) click.echo("\nMake sure to copy your new API token; you won't be able to access it again!") @show_user.command(name="update") @click.option( "-u", "--username", help="Username of the user being updated (only ADMIN role users can update other users).", show_default="Current user specified in global -u/--username/CVE_USER", ) @click.option( "--mark-active/--mark-inactive", "active", default=None, help="Mark user as active or inactive." ) @click.option("--new-username", help="Update username.") @click.option("--name-first", help="Update first name.") @click.option("--name-last", help="Update last name.") @click.option("--add-role", help="Add role.", type=click.Choice(CveApi.USER_ROLES)) @click.option("--remove-role", help="Remove role.", type=click.Choice(CveApi.USER_ROLES)) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def update_user(ctx, username, **opts_data): """Update a user. To reset a user's API token, use `cve user reset-token`. """ print_raw = opts_data.pop("print_raw") cve_api = ctx.obj.cve_api if not username: username = cve_api.username user_updates = {} for opt, value in opts_data.items(): if value is not None: if opt.startswith("name"): opt = opt.replace("_", ".") elif opt.endswith("role"): opt = "active_roles." + opt.replace("_role", "") elif opt == "active": # Convert boolean to string since this data is passed as query params value = str(value).lower() user_updates[opt] = value if not user_updates: raise click.UsageError("No updates were provided.") if ctx.obj.interactive: click.echo("You are about to update the ", nl=False) click.secho(username, bold=True, nl=False) click.echo(" user with the following changes:\n") for key, value in user_updates.items(): click.echo(f"- {key}: ", nl=False) click.secho(str(value), bold=True) if not click.confirm("\nDo you want to continue?"): click.echo("Exiting...") sys.exit(0) click.echo() updated_user = cve_api.update_user(username, **user_updates) if print_raw: print_json_data(updated_user) else: click.echo("User updated.") @show_user.command(name="create") @click.option("-u", "--username", default="", required=True, help="Set username.") @click.option("--name-first", default="", help="Set first name.") @click.option("--name-last", default="", help="Set last name.") @click.option( "--role", "roles", help="Set role.", multiple=True, type=click.Choice(CveApi.USER_ROLES) ) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def create_user(ctx, username, name_first, name_last, roles, print_raw): """Create a user in your organization. This action is restricted to users with the ADMIN role. Note: Once a user is created, they cannot be removed, only marked as inactive. Only create users when you really need them. """ user_data = defaultdict(dict) if username: user_data["username"] = username if name_first: user_data["name"]["first"] = name_first if name_last: user_data["name"]["last"] = name_last if roles: user_data["authority"]["active_roles"] = list(roles) if ctx.obj.interactive: click.echo("You are about to create the following user under your ", nl=False) click.secho(ctx.obj.org, bold=True, nl=False) click.echo(f" org:\n\nUsername:\t", nl=False) click.secho(username, bold=True) click.echo("Full name:\t", nl=False) click.secho(name_first + name_last or "None", bold=True) click.echo(f"Roles:\t\t", nl=False) click.secho(", ".join(roles) or "None", bold=True) click.echo("\nThis action cannot be undone; created users can only be marked as inactive.") if not click.confirm("Do you want to continue?"): click.echo("Exiting...") sys.exit(0) click.echo() cve_api = ctx.obj.cve_api created_user = cve_api.create_user(**user_data)["created"] if print_raw: print_json_data(created_user) return click.echo("Created user:\n") print_user(created_user) click.echo("\nMake sure to copy the returned API token; you won't be able to access it again!") @cli.group(name="org", invoke_without_command=True) @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def show_org(ctx, print_raw): """Show information about your organization.""" if ctx.invoked_subcommand is not None: return cve_api = ctx.obj.cve_api org_data = cve_api.show_org() if print_raw: print_json_data(org_data) return click.echo(f"{org_data['name']} — {org_data['short_name']}") click.echo(f"├─ Roles:\t{', '.join(org_data['authority']['active_roles']) or 'None'}") click.echo(f"├─ Created:\t{human_ts(org_data['time']['created'])}") click.echo(f"└─ Modified:\t{human_ts(org_data['time']['modified'])}") @show_org.command() @click.option("--raw", "print_raw", default=False, is_flag=True, help="Print response JSON.") @click.pass_context @handle_cve_api_error def users(ctx, print_raw): """List all users in your organization.""" cve_api = ctx.obj.cve_api org_users = list(cve_api.list_users()) if print_raw: print_json_data(org_users) return lines = [] for user in org_users: lines.append( ( user["username"], str(get_full_name(user)), ", ".join(user["authority"]["active_roles"]) or "None", bool_to_text(user["active"]), human_ts(user["time"]["created"]), human_ts(user["time"]["modified"]), ) ) lines.sort(key=lambda x: x[0]) # Sort by username # Add header after sorting lines.insert(0, ("USERNAME", "NAME", "ROLES", "ACTIVE", "CREATED", "MODIFIED")) print_table(lines) @cli.command() @click.pass_context def ping(ctx): """Ping the CVE Services API to see if it is up.""" cve_api = ctx.obj.cve_api ok, error_msg = cve_api.ping() click.echo(f"CVE API Status — {cve_api.url}\n└─ ", nl=False) if ok: click.secho(f"OK", fg="green") else: click.secho("ERROR:", bold=True, nl=False) click.echo(f" {error_msg}")
the-stack_106_26492
from pandac.PandaModules import * from toontown.toonbase.ToontownGlobals import * from direct.gui.DirectGui import * from pandac.PandaModules import * from direct.showbase import DirectObject from direct.directnotify import DirectNotifyGlobal from direct.fsm import StateData from toontown.toonbase import ToontownGlobals from toontown.toonbase import TTLocalizer import types from toontown.toon import NPCToons from toontown.toon import NPCFriendPanel from toontown.toonbase import ToontownBattleGlobals class TownBattleSOSPanel(DirectFrame, StateData.StateData): notify = DirectNotifyGlobal.directNotify.newCategory('TownBattleSOSPanel') def __init__(self, doneEvent): DirectFrame.__init__(self, relief=None) self.initialiseoptions(TownBattleSOSPanel) StateData.StateData.__init__(self, doneEvent) self.friends = {} self.NPCFriends = {} self.textRolloverColor = Vec4(1, 1, 0, 1) self.textDownColor = Vec4(0.5, 0.9, 1, 1) self.textDisabledColor = Vec4(0.4, 0.8, 0.4, 1) self.bldg = 0 self.chosenNPCToons = [] return def load(self): if self.isLoaded == 1: return None self.isLoaded = 1 bgd = loader.loadModel('phase_3.5/models/gui/frame') gui = loader.loadModel('phase_3.5/models/gui/frame4names') scrollGui = loader.loadModel('phase_3.5/models/gui/friendslist_gui') backGui = loader.loadModel('phase_3.5/models/gui/battle_gui') self['image'] = bgd self['image_pos'] = (0.0, 0.1, -0.08) self.setScale(0.3) self.title = DirectLabel(parent=self, relief=None, text=TTLocalizer.TownBattleSOSNoFriends, text_scale=0.4, text_fg=(1, 1, 1, 1), text_shadow=(0, 0, 0, 1), pos=(0.0, 0.0, 1.5)) self.NPCFriendPanel = NPCFriendPanel.NPCFriendPanel(parent=self, doneEvent=self.doneEvent) self.NPCFriendPanel.setPos(-0.75, 0, -0.15) self.NPCFriendPanel.setScale(0.325) self.NPCFriendsLabel = DirectLabel(parent=self, relief=None, text=TTLocalizer.TownBattleSOSNPCFriends, text_scale=0.3, text_fg=(1, 1, 1, 1), text_shadow=(0, 0, 0, 1), pos=(-0.75, 0.0, -2.0)) self.scrollList = DirectScrolledList(parent=self, relief=None, image=gui.find('**/frame4names'), image_scale=(0.11, 1, 0.1), text=TTLocalizer.FriendsListPanelOnlineFriends, text_scale=0.04, text_pos=(-0.02, 0.275), text_fg=(0, 0, 0, 1), incButton_image=(scrollGui.find('**/FndsLst_ScrollUp'), scrollGui.find('**/FndsLst_ScrollDN'), scrollGui.find('**/FndsLst_ScrollUp_Rllvr'), scrollGui.find('**/FndsLst_ScrollUp')), incButton_relief=None, incButton_pos=(0.0, 0.0, -0.3), incButton_image3_color=Vec4(0.6, 0.6, 0.6, 0.6), incButton_scale=(1.0, 1.0, -1.0), decButton_image=(scrollGui.find('**/FndsLst_ScrollUp'), scrollGui.find('**/FndsLst_ScrollDN'), scrollGui.find('**/FndsLst_ScrollUp_Rllvr'), scrollGui.find('**/FndsLst_ScrollUp')), decButton_relief=None, decButton_pos=(0.0, 0.0, 0.175), decButton_image3_color=Vec4(0.6, 0.6, 0.6, 0.6), itemFrame_pos=(-0.17, 0.0, 0.11), itemFrame_relief=None, numItemsVisible=9, items=[], pos=(2.4, 0.0, 0.025), scale=3.5) clipper = PlaneNode('clipper') clipper.setPlane(Plane(Vec3(-1, 0, 0), Point3(0.32, 0, 0))) clipNP = self.scrollList.component('itemFrame').attachNewNode(clipper) self.scrollList.component('itemFrame').setClipPlane(clipNP) self.close = DirectButton(parent=self, relief=None, image=(backGui.find('**/PckMn_BackBtn'), backGui.find('**/PckMn_BackBtn_Dn'), backGui.find('**/PckMn_BackBtn_Rlvr')), pos=(2.3, 0.0, -1.65), scale=3, text=TTLocalizer.TownBattleSOSBack, text_scale=0.05, text_pos=(0.01, -0.012), text_fg=Vec4(0, 0, 0.8, 1), command=self.__close) gui.removeNode() scrollGui.removeNode() backGui.removeNode() bgd.removeNode() self.hide() return def unload(self): if self.isLoaded == 0: return None self.isLoaded = 0 self.exit() del self.title del self.scrollList del self.close del self.friends del self.NPCFriends DirectFrame.destroy(self) return None def makeFriendButton(self, friendPair): friendId, flags = friendPair handle = base.cr.playerFriendsManager.identifyFriend(friendId) if handle == None: base.cr.fillUpFriendsMap() return friendName = handle.getName() fg = Vec4(0.0, 0.0, 0.0, 1.0) if handle.isPet(): com = self.__chosePet else: com = self.__choseFriend return DirectButton(relief=None, text=friendName, text_scale=0.04, text_align=TextNode.ALeft, text_fg=fg, text1_bg=self.textDownColor, text2_bg=self.textRolloverColor, text3_fg=self.textDisabledColor, command=com, extraArgs=[friendId, friendName]) def makeNPCFriendButton(self, NPCFriendId, numCalls): if NPCFriendId not in TTLocalizer.NPCToonNames: return None friendName = TTLocalizer.NPCToonNames[NPCFriendId] friendName += ' %d' % numCalls fg = Vec4(0.0, 0.0, 0.0, 1.0) return DirectButton(relief=None, text=friendName, text_scale=0.04, text_align=TextNode.ALeft, text_fg=fg, text1_bg=self.textDownColor, text2_bg=self.textRolloverColor, text3_fg=self.textDisabledColor, command=self.__choseNPCFriend, extraArgs=[NPCFriendId]) def enter(self, canLure = 1, canTrap = 1): if self.isEntered == 1: return None self.isEntered = 1 if self.isLoaded == 0: self.load() self.canLure = canLure self.canTrap = canTrap self.factoryToonIdList = None messenger.send('SOSPanelEnter', [self]) self.__updateScrollList() self.__updateNPCFriendsPanel() self.__updateTitleText() self.show() self.accept('friendOnline', self.__friendOnline) self.accept('friendOffline', self.__friendOffline) self.accept('friendsListChanged', self.__friendsListChanged) self.accept('friendsMapComplete', self.__friendsListChanged) return def exit(self): if self.isEntered == 0: return None self.isEntered = 0 self.hide() self.ignore('friendOnline') self.ignore('friendOffline') self.ignore('friendsListChanged') self.ignore('friendsMapComplete') messenger.send(self.doneEvent) return None def __close(self): doneStatus = {} doneStatus['mode'] = 'Back' messenger.send(self.doneEvent, [doneStatus]) def __choseFriend(self, friendId, friendName): doneStatus = {} doneStatus['mode'] = 'Friend' doneStatus['friend'] = friendId messenger.send(self.doneEvent, [doneStatus]) def __chosePet(self, petId, petName): doneStatus = {} doneStatus['mode'] = 'Pet' doneStatus['petId'] = petId doneStatus['petName'] = petName messenger.send(self.doneEvent, [doneStatus]) def __choseNPCFriend(self, friendId): doneStatus = {} doneStatus['mode'] = 'NPCFriend' doneStatus['friend'] = friendId self.chosenNPCToons.append(friendId) messenger.send(self.doneEvent, [doneStatus]) def setFactoryToonIdList(self, toonIdList): self.factoryToonIdList = toonIdList[:] def __updateScrollList(self): newFriends = [] battlePets = base.config.GetBool('want-pets-in-battle', 1) if base.wantPets and battlePets == 1 and base.localAvatar.hasPet(): newFriends.append((base.localAvatar.getPetId(), 0)) if not self.bldg or self.factoryToonIdList is not None: for friendPair in base.localAvatar.friendsList: if base.cr.isFriendOnline(friendPair[0]): if self.factoryToonIdList is None or friendPair[0] in self.factoryToonIdList: newFriends.append(friendPair) if hasattr(base.cr, 'playerFriendsManager'): for avatarId in base.cr.playerFriendsManager.getAllOnlinePlayerAvatars(): if not base.cr.playerFriendsManager.askAvatarKnownElseWhere(avatarId): newFriends.append((avatarId, 0)) for friendPair in self.friends.keys(): if friendPair not in newFriends: friendButton = self.friends[friendPair] self.scrollList.removeItem(friendButton) if not friendButton.isEmpty(): friendButton.destroy() del self.friends[friendPair] for friendPair in newFriends: if friendPair not in self.friends: friendButton = self.makeFriendButton(friendPair) if friendButton: self.scrollList.addItem(friendButton) self.friends[friendPair] = friendButton return def __updateNPCFriendsPanel(self): self.NPCFriends = {} for friend, count in base.localAvatar.NPCFriendsDict.items(): track = NPCToons.getNPCTrack(friend) if track == ToontownBattleGlobals.LURE_TRACK and self.canLure == 0 or track == ToontownBattleGlobals.TRAP_TRACK and self.canTrap == 0: self.NPCFriends[friend] = 0 else: self.NPCFriends[friend] = count self.NPCFriendPanel.update(self.NPCFriends, fCallable=1) def __updateTitleText(self): isEmpty = (len(self.friends) == 0 and len(self.NPCFriends) == 0) if isEmpty: self.title['text'] = TTLocalizer.TownBattleSOSNoFriends else: self.title['text'] = TTLocalizer.TownBattleSOSWhichFriend def __friendOnline(self, doId, commonChatFlags, whitelistChatFlags): self.__updateScrollList() self.__updateTitleText() def __friendOffline(self, doId): self.__updateScrollList() self.__updateTitleText() def __friendsListChanged(self): self.__updateScrollList() self.__updateTitleText()
the-stack_106_26493
#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. '''Test generateblock rpc. ''' from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class GenerateBlockTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] self.log.info('Generate an empty block to address') address = node.getnewaddress() hash = node.generateblock(output=address, transactions=[])['hash'] block = node.getblock(blockhash=hash, verbose=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][1] ['scriptPubKey']['addresses'][0], address) self.log.info('Generate an empty block to a descriptor') hash = node.generateblock('addr(' + address + ')', [])['hash'] block = node.getblock(blockhash=hash, verbosity=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][1] ['scriptPubKey']['addresses'][0], address) self.log.info( 'Generate an empty block to a combo descriptor with compressed pubkey') combo_key = '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798' combo_address = 'bchreg:qp63uahgrxged4z5jswyt5dn5v3lzsem6c6mz8vuwd' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][1]['scriptPubKey'] ['addresses'][0], combo_address) self.log.info( 'Generate an empty block to a combo descriptor with uncompressed pubkey') combo_key = '0408ef68c46d20596cc3f6ddf7c8794f71913add807f1dc55949fa805d764d191c0b7ce6894c126fce0babc6663042f3dde9b0cf76467ea315514e5a6731149c67' combo_address = 'bchreg:qqmagqc48ln8p7zk6ez2h64amcamr86qwqezwt52uy' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][1]['scriptPubKey'] ['addresses'][0], combo_address) # Generate 110 blocks to spend node.generatetoaddress(110, address) # Generate some extra mempool transactions to verify they don't get # mined for i in range(10): node.sendtoaddress(address, 0.1) self.log.info('Generate block with txid') txid = node.sendtoaddress(address, 100) hash = node.generateblock(address, [txid])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) assert_equal(block['tx'][1], txid) self.log.info('Generate block with raw tx') utxos = node.listunspent(addresses=[address]) raw = node.createrawtransaction( [{'txid': utxos[0]['txid'], 'vout':utxos[0]['vout']}], [{address: 100}]) signed_raw = node.signrawtransactionwithwallet(raw)['hex'] hash = node.generateblock(address, [signed_raw])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) txid = block['tx'][1] assert_equal(node.gettransaction(txid)['hex'], signed_raw) self.log.info('Fail to generate block with out of order txs') raw1 = node.createrawtransaction( [{'txid': txid, 'vout': 0}], [{address: 99.99}]) signed_raw1 = node.signrawtransactionwithwallet(raw1)['hex'] txid1 = node.sendrawtransaction(signed_raw1) raw2 = node.createrawtransaction( [{'txid': txid1, 'vout': 0}], [{address: 99.9}]) signed_raw2 = node.signrawtransactionwithwallet(raw2)['hex'] txid2 = node.sendrawtransaction(signed_raw2) # Reversed CTOR txids = sorted([txid1, txid2], reverse=True) assert_raises_rpc_error(-25, 'TestBlockValidity failed: tx-ordering', node.generateblock, address, txids) self.log.info('Fail to generate block with txid not in mempool') missing_txid = '0000000000000000000000000000000000000000000000000000000000000000' assert_raises_rpc_error(-5, 'Transaction ' + missing_txid + ' not in mempool.', node.generateblock, address, [missing_txid]) self.log.info('Fail to generate block with invalid raw tx') invalid_raw_tx = '0000' assert_raises_rpc_error(-22, 'Transaction decode failed for ' + invalid_raw_tx, node.generateblock, address, [invalid_raw_tx]) self.log.info('Fail to generate block with invalid address/descriptor') assert_raises_rpc_error(-5, 'Invalid address or descriptor', node.generateblock, '1234', []) self.log.info('Fail to generate block with a ranged descriptor') ranged_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0/*)' assert_raises_rpc_error( -8, 'Ranged descriptor not accepted. Maybe pass through deriveaddresses first?', node.generateblock, ranged_descriptor, []) self.log.info( 'Fail to generate block with a descriptor missing a private key') child_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0\'/0)' assert_raises_rpc_error(-5, 'Cannot derive script without private keys', node.generateblock, child_descriptor, []) if __name__ == '__main__': GenerateBlockTest().main()
the-stack_106_26495
# Author: Acer Zhang # Datetime: 2021/10/27 # Copyright belongs to the author. # Please indicate the source for reprinting. from setuptools import setup from setuptools import find_packages __version__ = "0.1" setup( name='AgentEnc', version=__version__, packages=['agentenc', 'agentenc.ops', 'agentenc.encryptors'], url='https://github.com/AgentMaker/AgentEncryption', license='Apache2', author='GT-ZhangAcer', author_email='[email protected]', description='飞桨模型加密库', install_requires=["ppqi", "pycryptodome"], python_requires='>3.5', include_package_data=True, )
the-stack_106_26496
import logging from modules.location import Location, gen_plr import const class_name = "Outside" class Outside(Location): prefix = "o" def __init__(self, server): super().__init__(server) self.commands.update({"r": self.room, "gr": self.get_room}) def get_room(self, msg, client): online = self.server.online.copy() num = 1 while True: i = 0 for tmp in online: if tmp.room == f"{msg[2]['lid']}_{msg[2]['gid']}_{num}": i += 1 if i >= const.ROOM_LIMIT: num += 1 else: break room = f"{msg[2]['lid']}_{msg[2]['gid']}_{num}" if client.room: logging.error(f"Already in room, uid - {client.uid}") return client.room = room client.position = (-1.0, -1.0) client.action_tag = "" client.state = 0 client.dimension = 4 plr = gen_plr(client, self.server) for tmp in self.server.online.copy(): if tmp.room != client.room: continue tmp.send(["o.r.jn", {"plr": plr}]) tmp.send([client.room, client.uid], type_=16) client.send(["o.gr", {"rid": client.room}]) def room(self, msg, client): subcommand = msg[1].split(".")[2] if subcommand == "info": rmmb = [] room = msg[0] for tmp in self.server.online.copy(): if tmp.room != room: continue rmmb.append(gen_plr(tmp, self.server)) client.send(["o.r.info", {"rmmb": rmmb, "evn": None}]) else: super().room(msg, client)
the-stack_106_26498
#!/usr/bin/env python # coding: utf-8 from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments, TrainerCallback, EarlyStoppingCallback ) from sklearn.metrics import accuracy_score, precision_recall_fscore_support from transformers.trainer_callback import TrainerControl from datasets import load_dataset, load_metric, load_from_disk import os import sys import time import random import shutil import torch import pandas as pd from torch.utils.data import DataLoader from sibyl import * device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') data_dir = "../../data1/fabricehc/prepared_datasets/" save_dir = "../../data1/fabricehc/results_a100/" local_save_dir = "./results/" def tokenize_fn(batch): if sentence2_key is None: return tokenizer(batch[sentence1_key], padding=True, truncation=True, max_length=250) return tokenizer(batch[sentence1_key], batch[sentence2_key], padding=True, truncation=True, max_length=250) def sibyl_tokenize_fn(text1, text2): if text2 is None: return tokenizer(text1, padding=True, truncation=True, max_length=250, return_tensors='pt') return tokenizer(text1, text2, padding=True, truncation=True, max_length=250, return_tensors='pt') early_stopping_patience = 5 num_valid_per_class = 2000 num_runs = 3 num_train_examples = [10] MODEL_NAMES = ['bert-base-uncased'] # ['bert-base-uncased', 'roberta-base', 'xlnet-base-cased'] ts = ['ORIG'] + [t.__name__ for t in TRANSFORMATIONS] tasks = ['ag_news', 'imdb', 'dbpedia_14', 'yahoo_answers_topics', 'yelp_polarity', 'amazon_polarity'] run_args = [] for run_num in range(num_runs): for num_train_per_class in num_train_examples: for task in tasks: for MODEL_NAME in MODEL_NAMES: for t in ts: run_args.append({ "run_num":run_num, "num_train_per_class":num_train_per_class, "task":task, "MODEL_NAME":MODEL_NAME, "t":t }) results = [] save_file = 'transform_eval_all_10.csv' if os.path.exists(save_file): results.extend(pd.read_csv(save_file).to_dict("records")) start_position = len(results) else: start_position = 0 print('starting at position {}'.format(start_position)) for run_arg in run_args[start_position:]: run_num = run_arg['run_num'] num_train_per_class = run_arg['num_train_per_class'] task = run_arg['task'] MODEL_NAME = run_arg['MODEL_NAME'] t = run_arg['t'] print(pd.DataFrame([run_arg])) task_to_keys = { "ag_news": {"keys": ("text", None), "num_classes": 4, "task_type": "topic"}, "dbpedia_14": {"keys": ("text", None), "num_classes": 14, "task_type": "topic"}, "yahoo_answers_topics": {"keys": ("text", None), "num_classes": 10, "task_type": "topic"}, "imdb": {"keys": ("text", None), "num_classes": 2, "task_type": "sentiment"}, "amazon_polarity": {"keys": ("text", None), "num_classes": 2, "task_type": "sentiment"}, "yelp_polarity": {"keys": ("text", None), "num_classes": 2, "task_type": "sentiment"} } sentence1_key, sentence2_key = task_to_keys[task]["keys"] num_classes = task_to_keys[task]["num_classes"] task_type = task_to_keys[task]["task_type"] ############################################################# ## Model + Tokenizer ######################################## ############################################################# checkpoint = local_save_dir + MODEL_NAME + '-' + task + '-' + t tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=num_classes).to(device) ############################################################# ## Dataset Preparation ###################################### ############################################################# train_data_path = os.path.join(data_dir, task, 'ORIG', task + '_train_' + str(num_train_per_class)) valid_data_path = os.path.join(data_dir, task, 'ORIG', task + '_valid_' + str(num_valid_per_class)) train_dataset = load_from_disk(train_data_path) eval_dataset = load_from_disk(valid_data_path) test_dataset = load_dataset(task, split='test') # train_dataset = train_dataset.rename_column("label", "labels") # special handling for yahoo and dbpedia_14 datasets if task in ["dbpedia_14", "amazon_polarity"]: test_dataset = test_dataset.rename_column("content", "text") if task == "yahoo_answers_topics": test_dataset = test_dataset.map(lambda example : {'text' : example['question_title'] + " " + example['question_content'] + " " + example['best_answer'], 'label': example['topic']}) print('Length of train_dataset', num_classes * num_train_per_class, len(train_dataset)) print('Length of valid_dataset', num_classes * num_valid_per_class, len(eval_dataset)) assert num_classes * num_train_per_class == len(train_dataset) assert num_classes * num_valid_per_class == len(eval_dataset) eval_dataset = eval_dataset.map(tokenize_fn, batched=True, batch_size=len(eval_dataset)) eval_dataset = eval_dataset.rename_column("label", "labels") eval_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) test_dataset = test_dataset.map(tokenize_fn, batched=True, batch_size=len(test_dataset)) test_dataset = test_dataset.rename_column("label", "labels") test_dataset.set_format('torch', columns=['input_ids', 'attention_mask', 'labels']) ############################################################# ## Callbacks + Collator ##################################### ############################################################# callbacks = [] tmcb = None if early_stopping_patience > 0: escb = EarlyStoppingCallback( early_stopping_patience=early_stopping_patience ) callbacks.append(escb) transform = None num_sampled_INV = 0 num_sampled_SIB = 0 label_type = "soft" if t == "ORIG": label_type = "hard" elif t == "INV": num_sampled_INV = 2 label_type = "hard" elif t == "SIB": num_sampled_SIB = 2 label_type = "soft" elif t == 'INVSIB': num_sampled_INV = 1 num_sampled_SIB = 1 label_type = None label_type = "soft" else: transform = getattr(sys.modules[__name__], t) if hasattr(transform, 'uses_dataset'): transform = transform(dataset=task) else: transform = transform() if t in ['TextMix', 'SentMix', 'WordMix', 'ConceptMix']: tmcb = TargetedMixturesCallback( dataloader=DataLoader(eval_dataset, batch_size=4), device=device, sentence1_key=sentence1_key, sentence2_key=sentence2_key, num_classes=num_classes ) callbacks.append(tmcb) label_type = "soft" if sentence2_key is not None: continue # skip Mixture mutations for 2-input tasks collator = SibylCollator( sentence1_key=sentence1_key, sentence2_key=sentence2_key, tokenize_fn=sibyl_tokenize_fn, transform=transform, num_sampled_INV=num_sampled_INV, num_sampled_SIB=num_sampled_SIB, dataset=task, num_outputs = 3, keep_original = True, task_type=task_type, tran_type=None, label_type=None, one_hot=label_type != "hard", transform_prob=1.0, target_pairs=[], target_prob=0., reduce_mixed=False, num_classes=num_classes, return_tensors='pt', return_text=False ) ############################################################# ## Trainer Setup ############################################ ############################################################# train_batch_size = 16 eval_batch_size = 64 num_epoch = 30 gradient_accumulation_steps = 1 max_steps = int((len(train_dataset) * num_epoch / gradient_accumulation_steps) / train_batch_size) logging_steps = max_steps // (num_epoch / 2) training_args = TrainingArguments( output_dir=checkpoint, overwrite_output_dir=True, max_steps=max_steps, save_steps=logging_steps, save_total_limit=1, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=eval_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, warmup_steps=int(max_steps / 10), weight_decay=0.01, logging_dir='./logs', logging_steps=logging_steps, logging_first_step=True, load_best_model_at_end=True, metric_for_best_model="accuracy", greater_is_better=True, evaluation_strategy="steps", remove_unused_columns=False ) trainer = SibylTrainer( model=model, tokenizer=tokenizer, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=collator, callbacks=callbacks ) start_time = time.time() trainer.train() run_time = time.time() - start_time # test with ORIG data trainer.eval_dataset = test_dataset trainer.data_collator = DefaultCollator() if tmcb: trainer.remove_callback(tmcb) out = trainer.evaluate() out['run_num'] = run_num out['num_train_per_class'] = num_train_per_class out['task'] = task out['transform'] = t out['run'] = checkpoint out['model_name'] = MODEL_NAME out['transform'] = t out['test'] = "ORIG" out['run_time'] = start_time print('ORIG for {}\n{}'.format(checkpoint, out)) results.append(out) # save results df = pd.DataFrame(results) df.to_csv(save_file) shutil.rmtree(checkpoint)
the-stack_106_26499
""" weasyprint.formatting_structure.build ------------------------------------- Turn an element tree with associated CSS style (computed values) into a "before layout" formatting structure / box tree. This includes creating anonymous boxes and processing whitespace as necessary. """ import copy import re import unicodedata import tinycss2.color3 from .. import html from ..css import computed_values, properties from ..logger import LOGGER from . import boxes # Maps values of the ``display`` CSS property to box types. BOX_TYPE_FROM_DISPLAY = { 'block': boxes.BlockBox, 'list-item': boxes.BlockBox, 'inline': boxes.InlineBox, 'inline-block': boxes.InlineBlockBox, 'table': boxes.TableBox, 'inline-table': boxes.InlineTableBox, 'table-row': boxes.TableRowBox, 'table-row-group': boxes.TableRowGroupBox, 'table-header-group': boxes.TableRowGroupBox, 'table-footer-group': boxes.TableRowGroupBox, 'table-column': boxes.TableColumnBox, 'table-column-group': boxes.TableColumnGroupBox, 'table-cell': boxes.TableCellBox, 'table-caption': boxes.TableCaptionBox, 'flex': boxes.FlexBox, 'inline-flex': boxes.InlineFlexBox, } def build_formatting_structure(element_tree, style_for, get_image_from_uri, base_url, target_collector, counter_style): """Build a formatting structure (box tree) from an element tree.""" box_list = element_to_box( element_tree, style_for, get_image_from_uri, base_url, target_collector, counter_style) if box_list: box, = box_list else: # No root element def root_style_for(element, pseudo_type=None): style = style_for(element, pseudo_type) if style: if element == element_tree: style['display'] = 'block' else: style['display'] = 'none' return style box, = element_to_box( element_tree, root_style_for, get_image_from_uri, base_url, target_collector, counter_style) target_collector.check_pending_targets() box.is_for_root_element = True # If this is changed, maybe update weasy.layout.pages.make_margin_boxes() process_whitespace(box) box = anonymous_table_boxes(box) box = flex_boxes(box) box = inline_in_block(box) box = block_in_inline(box) box = set_viewport_overflow(box) return box def make_box(element_tag, style, content, element): box = BOX_TYPE_FROM_DISPLAY[style['display']]( element_tag, style, element, content) return box def element_to_box(element, style_for, get_image_from_uri, base_url, target_collector, counter_style, state=None): """Convert an element and its children into a box with children. Return a list of boxes. Most of the time the list will have one item but may have zero or more than one. Eg.:: <p>Some <em>emphasised</em> text.</p> gives (not actual syntax):: BlockBox[ TextBox['Some '], InlineBox[ TextBox['emphasised'], ], TextBox[' text.'], ] ``TextBox``es are anonymous inline boxes: See http://www.w3.org/TR/CSS21/visuren.html#anonymous """ if not isinstance(element.tag, str): # We ignore comments and XML processing instructions. return [] style = style_for(element) # TODO: should be the used value. When does the used value for `display` # differ from the computer value? display = style['display'] if display == 'none': return [] box = make_box(element.tag, style, [], element) if state is None: # use a list to have a shared mutable object state = ( # Shared mutable objects: [0], # quote_depth: single integer {}, # counter_values: name -> stacked/scoped values [set()] # counter_scopes: element tree depths -> counter names ) _quote_depth, counter_values, counter_scopes = state update_counters(state, style) children = [] # If this element’s direct children create new scopes, the counter # names will be in this new list counter_scopes.append(set()) box.first_letter_style = style_for(element, 'first-letter') box.first_line_style = style_for(element, 'first-line') marker_boxes = [] if style['display'] == 'list-item': marker_boxes = list(marker_to_box( element, state, style, style_for, get_image_from_uri, target_collector, counter_style)) children.extend(marker_boxes) children.extend(before_after_to_box( element, 'before', state, style_for, get_image_from_uri, target_collector, counter_style)) # collect anchor's counter_values, maybe it's a target. # to get the spec-conform counter_values we must do it here, # after the ::before is parsed and before the ::after is if style['anchor']: target_collector.store_target(style['anchor'], counter_values, box) text = element.text if text: children.append(boxes.TextBox.anonymous_from(box, text)) for child_element in element: children.extend(element_to_box( child_element, style_for, get_image_from_uri, base_url, target_collector, counter_style, state)) text = child_element.tail if text: text_box = boxes.TextBox.anonymous_from(box, text) if children and isinstance(children[-1], boxes.TextBox): children[-1].text += text_box.text else: children.append(text_box) children.extend(before_after_to_box( element, 'after', state, style_for, get_image_from_uri, target_collector, counter_style)) # Scopes created by this element’s children stop here. for name in counter_scopes.pop(): counter_values[name].pop() if not counter_values[name]: counter_values.pop(name) box.children = children # calculate string-set and bookmark-label set_content_lists( element, box, style, counter_values, target_collector, counter_style) if marker_boxes and len(box.children) == 1: # See https://www.w3.org/TR/css-lists-3/#list-style-position-outside # # "The size or contents of the marker box may affect the height of the # principal block box and/or the height of its first line box, and in # some cases may cause the creation of a new line box; this # interaction is also not defined." # # We decide here to add a zero-width space to have a minimum # height. Adding text boxes is not the best idea, but it's not a good # moment to add an empty line box, and the specification lets us do # almost what we want, so… if style['list_style_position'] == 'outside': box.children.append(boxes.TextBox.anonymous_from(box, '​')) # Specific handling for the element. (eg. replaced element) return html.handle_element(element, box, get_image_from_uri, base_url) def before_after_to_box(element, pseudo_type, state, style_for, get_image_from_uri, target_collector, counter_style): """Return the boxes for ::before or ::after pseudo-element.""" style = style_for(element, pseudo_type) if pseudo_type and style is None: # Pseudo-elements with no style at all do not get a style dict. # Their initial content property computes to 'none'. return [] # TODO: should be the computed value. When does the used value for # `display` differ from the computer value? It's at least wrong for # `content` where 'normal' computes as 'inhibit' for pseudo elements. display = style['display'] content = style['content'] if 'none' in (display, content) or content in ('normal', 'inhibit'): return [] box = make_box('%s::%s' % (element.tag, pseudo_type), style, [], element) quote_depth, counter_values, _counter_scopes = state update_counters(state, style) children = [] if display == 'list-item': marker_boxes = list(marker_to_box( element, state, style, style_for, get_image_from_uri, target_collector, counter_style)) children.extend(marker_boxes) children.extend(content_to_boxes( style, box, quote_depth, counter_values, get_image_from_uri, target_collector, counter_style)) box.children = children return [box] def marker_to_box(element, state, parent_style, style_for, get_image_from_uri, target_collector, counter_style): """Yield the box for ::marker pseudo-element if there is one. https://drafts.csswg.org/css-lists-3/#marker-pseudo """ style = style_for(element, 'marker') children = [] # TODO: should be the computed value. When does the used value for # `display` differ from the computer value? It's at least wrong for # `content` where 'normal' computes as 'inhibit' for pseudo elements. quote_depth, counter_values, _counter_scopes = state box = make_box('%s::marker' % element.tag, style, children, element) if style['display'] == 'none': return image_type, image = style['list_style_image'] if style['content'] not in ('normal', 'inhibit'): children.extend(content_to_boxes( style, box, quote_depth, counter_values, get_image_from_uri, target_collector, counter_style)) else: if image_type == 'url': # image may be None here too, in case the image is not available. image = get_image_from_uri(image) if image is not None: box = boxes.InlineReplacedBox.anonymous_from(box, image) children.append(box) if not children and style['list_style_type'] != 'none': counter_value = counter_values.get('list-item', [0])[-1] counter_type = style['list_style_type'] # TODO: rtl numbered list has the dot on the left marker_text = counter_style.render_marker( counter_type, counter_value) box = boxes.TextBox.anonymous_from(box, marker_text) box.style['white_space'] = 'pre-wrap' children.append(box) if not children: return if parent_style['list_style_position'] == 'outside': marker_box = boxes.BlockBox.anonymous_from(box, children) # We can safely edit everything that can't be changed by user style # See https://drafts.csswg.org/css-pseudo-4/#marker-pseudo marker_box.style['position'] = 'absolute' if parent_style['direction'] == 'ltr': translate_x = properties.Dimension(-100, '%') else: translate_x = properties.Dimension(100, '%') translate_y = computed_values.ZERO_PIXELS marker_box.style['transform'] = ( ('translate', (translate_x, translate_y)),) else: marker_box = boxes.InlineBox.anonymous_from(box, children) yield marker_box def _collect_missing_counter(counter_name, counter_values, missing_counters): """Collect missing counters.""" if counter_name not in list(counter_values) + missing_counters: missing_counters.append(counter_name) def _collect_missing_target_counter(counter_name, lookup_counter_values, anchor_name, missing_target_counters): """Collect missing target counters. The corresponding TargetLookupItem caches the target's page based counter values during pagination. """ if counter_name not in lookup_counter_values: missing_counters = missing_target_counters.setdefault(anchor_name, []) if counter_name not in missing_counters: missing_counters.append(counter_name) def compute_content_list(content_list, parent_box, counter_values, css_token, parse_again, target_collector, counter_style, get_image_from_uri=None, quote_depth=None, quote_style=None, context=None, page=None, element=None): """Compute and return the boxes corresponding to the ``content_list``. ``parse_again`` is called to compute the ``content_list`` again when ``target_collector.lookup_target()`` detected a pending target. ``build_formatting_structure`` calls ``target_collector.check_pending_targets()`` after the first pass to do required reparsing. """ # TODO: Some computation done here may be done in computed_values # instead. We currently miss at least style_for, counters and quotes # context in computer. Some work will still need to be done here though, # like box creation for URIs. boxlist = [] texts = [] missing_counters = [] missing_target_counters = {} in_page_context = context is not None and page is not None # Collect missing counters during build_formatting_structure. # Pointless to collect missing target counters in MarginBoxes. need_collect_missing = target_collector.collecting and not in_page_context # TODO: remove attribute or set a default value in Box class if not hasattr(parent_box, 'cached_counter_values'): # Store the counter_values in the parent_box to make them accessible # in @page context. Obsoletes the parse_again function's deepcopy. # TODO: Is propbably superfluous in_page_context. parent_box.cached_counter_values = copy.deepcopy(counter_values) for type_, value in content_list: if type_ == 'string': texts.append(value) elif type_ == 'url' and get_image_from_uri is not None: origin, uri = value if origin != 'external': # Embedding internal references is impossible continue image = get_image_from_uri(uri) if image is not None: text = ''.join(texts) if text: boxlist.append( boxes.TextBox.anonymous_from(parent_box, text)) texts = [] boxlist.append( boxes.InlineReplacedBox.anonymous_from(parent_box, image)) elif type_ == 'content()': added_text = TEXT_CONTENT_EXTRACTORS[value](parent_box) # Simulate the step of white space processing # (normally done during the layout) added_text = added_text.strip() texts.append(added_text) elif type_ == 'counter()': counter_name, counter_type = value if need_collect_missing: _collect_missing_counter( counter_name, counter_values, missing_counters) if counter_type != 'none': counter_value = counter_values.get(counter_name, [0])[-1] texts.append(counter_style.render_value( counter_value, counter_type)) elif type_ == 'counters()': counter_name, separator, counter_type = value if need_collect_missing: _collect_missing_counter( counter_name, counter_values, missing_counters) if counter_type != 'none': texts.append(separator.join( counter_style.render_value(counter_value, counter_type) for counter_value in counter_values.get(counter_name, [0]))) elif type_ == 'string()': if not in_page_context: # string() is currently only valid in @page context # See https://github.com/Kozea/WeasyPrint/issues/723 LOGGER.warning( '"string(%s)" is only allowed in page margins' % (' '.join(value))) continue texts.append(context.get_string_set_for(page, *value) or '') elif type_ == 'target-counter()': anchor_token, counter_name, counter_type = value lookup_target = target_collector.lookup_target( anchor_token, parent_box, css_token, parse_again) if lookup_target.state == 'up-to-date': target_values = lookup_target.target_box.cached_counter_values if need_collect_missing: _collect_missing_target_counter( counter_name, target_values, target_collector.anchor_name_from_token(anchor_token), missing_target_counters) # Mixin target's cached page counters. # cached_page_counter_values are empty during layout. local_counters = ( lookup_target.cached_page_counter_values.copy()) local_counters.update(target_values) if counter_type != 'none': counter_value = local_counters.get(counter_name, [0])[-1] texts.append(counter_style.render_value( counter_value, counter_type)) else: texts = [] break elif type_ == 'target-counters()': anchor_token, counter_name, separator, counter_type = value lookup_target = target_collector.lookup_target( anchor_token, parent_box, css_token, parse_again) if lookup_target.state == 'up-to-date': if separator[0] != 'string': break separator_string = separator[1] target_values = lookup_target.target_box.cached_counter_values if need_collect_missing: _collect_missing_target_counter( counter_name, target_values, target_collector.anchor_name_from_token(anchor_token), missing_target_counters) # Mixin target's cached page counters. # cached_page_counter_values are empty during layout. local_counters = ( lookup_target.cached_page_counter_values.copy()) local_counters.update(target_values) if counter_type != 'none': texts.append(separator_string.join( counter_style.render_value(counter_value, counter_type) for counter_value in local_counters.get(counter_name, [0]))) else: texts = [] break elif type_ == 'target-text()': anchor_token, text_style = value lookup_target = target_collector.lookup_target( anchor_token, parent_box, css_token, parse_again) if lookup_target.state == 'up-to-date': target_box = lookup_target.target_box # TODO: 'before'- and 'after'- content referring missing # counters are not properly set. text = TEXT_CONTENT_EXTRACTORS[text_style](target_box) # Simulate the step of white space processing # (normally done during the layout) texts.append(text.strip()) else: texts = [] break elif (type_ == 'quote' and quote_depth is not None and quote_style is not None): is_open = 'open' in value insert = not value.startswith('no-') if not is_open: quote_depth[0] = max(0, quote_depth[0] - 1) if insert: open_quotes, close_quotes = quote_style quotes = open_quotes if is_open else close_quotes texts.append(quotes[min(quote_depth[0], len(quotes) - 1)]) if is_open: quote_depth[0] += 1 elif type_ == 'element()': if not in_page_context: LOGGER.warning( '"element(%s)" is only allowed in page margins' % (' '.join(value))) continue new_box = context.get_running_element_for(page, *value) if new_box is None: continue new_box = new_box.deepcopy() new_box.style['position'] = 'static' for child in new_box.descendants(): if child.style['content'] in ('normal', 'none'): continue child.children = content_to_boxes( child.style, child, quote_depth, counter_values, get_image_from_uri, target_collector, counter_style, context=context, page=page) boxlist.append(new_box) text = ''.join(texts) if text: boxlist.append(boxes.TextBox.anonymous_from(parent_box, text)) # Only add CounterLookupItem if the content_list actually produced text target_collector.collect_missing_counters( parent_box, css_token, parse_again, missing_counters, missing_target_counters) return boxlist if (texts or boxlist) else None def content_to_boxes(style, parent_box, quote_depth, counter_values, get_image_from_uri, target_collector, counter_style, context=None, page=None): """Take the value of a ``content`` property and return boxes.""" def parse_again(mixin_pagebased_counters=None): """Closure to parse the ``parent_boxes`` children all again.""" # Neither alters the mixed-in nor the cached counter values, no # need to deepcopy here if mixin_pagebased_counters is None: local_counters = {} else: local_counters = mixin_pagebased_counters.copy() local_counters.update(parent_box.cached_counter_values) local_children = [] local_children.extend(content_to_boxes( style, parent_box, orig_quote_depth, local_counters, get_image_from_uri, target_collector, counter_style)) # TODO: do we need to add markers here? # TODO: redo the formatting structure of the parent instead of hacking # the already formatted structure. Find why inline_in_blocks has # sometimes already been called, and sometimes not. if (len(parent_box.children) == 1 and isinstance(parent_box.children[0], boxes.LineBox)): parent_box.children[0].children = local_children else: parent_box.children = local_children if style['content'] == 'inhibit': return [] orig_quote_depth = quote_depth[:] css_token = 'content' box_list = compute_content_list( style['content'], parent_box, counter_values, css_token, parse_again, target_collector, counter_style, get_image_from_uri, quote_depth, style['quotes'], context, page) return box_list or [] def compute_string_set(element, box, string_name, content_list, counter_values, target_collector, counter_style): """Parse the content-list value of ``string_name`` for ``string-set``.""" def parse_again(mixin_pagebased_counters=None): """Closure to parse the string-set string value all again.""" # Neither alters the mixed-in nor the cached counter values, no # need to deepcopy here if mixin_pagebased_counters is None: local_counters = {} else: local_counters = mixin_pagebased_counters.copy() local_counters.update(box.cached_counter_values) compute_string_set( element, box, string_name, content_list, local_counters, target_collector, counter_style) css_token = 'string-set::%s' % string_name box_list = compute_content_list( content_list, box, counter_values, css_token, parse_again, target_collector, counter_style, element=element) if box_list is not None: string = ''.join( box.text for box in box_list if isinstance(box, boxes.TextBox)) # Avoid duplicates, care for parse_again and missing counters, don't # change the pointer for string_set_tuple in box.string_set: if string_set_tuple[0] == string_name: box.string_set.remove(string_set_tuple) break box.string_set.append((string_name, string)) def compute_bookmark_label(element, box, content_list, counter_values, target_collector, counter_style): """Parses the content-list value for ``bookmark-label``.""" def parse_again(mixin_pagebased_counters={}): """Closure to parse the bookmark-label all again.""" # Neither alters the mixed-in nor the cached counter values, no # need to deepcopy here if mixin_pagebased_counters is None: local_counters = {} else: local_counters = mixin_pagebased_counters.copy() local_counters = mixin_pagebased_counters.copy() local_counters.update(box.cached_counter_values) compute_bookmark_label( element, box, content_list, local_counters, target_collector, counter_style) css_token = 'bookmark-label' box_list = compute_content_list( content_list, box, counter_values, css_token, parse_again, target_collector, counter_style, element=element) if box_list is None: box.bookmark_label = '' else: box.bookmark_label = ''.join( box.text for box in box_list if isinstance(box, boxes.TextBox)) def set_content_lists(element, box, style, counter_values, target_collector, counter_style): """Set the content-lists values. These content-lists are used in GCPM properties like ``string-set`` and ``bookmark-label``. """ box.string_set = [] if style['string_set'] != 'none': for i, (string_name, string_values) in enumerate(style['string_set']): compute_string_set( element, box, string_name, string_values, counter_values, target_collector, counter_style) if style['bookmark_label'] == 'none': box.bookmark_label = '' else: compute_bookmark_label( element, box, style['bookmark_label'], counter_values, target_collector, counter_style) def update_counters(state, style): """Handle the ``counter-*`` properties.""" _quote_depth, counter_values, counter_scopes = state sibling_scopes = counter_scopes[-1] for name, value in style['counter_reset']: if name in sibling_scopes: counter_values[name].pop() else: sibling_scopes.add(name) counter_values.setdefault(name, []).append(value) for name, value in style['counter_set']: values = counter_values.setdefault(name, []) if not values: assert name not in sibling_scopes sibling_scopes.add(name) values.append(0) values[-1] = value counter_increment = style['counter_increment'] if counter_increment == 'auto': # 'auto' is the initial value but is not valid in stylesheet: # there was no counter-increment declaration for this element. # (Or the winning value was 'initial'.) # http://dev.w3.org/csswg/css3-lists/#declaring-a-list-item if style['display'] == 'list-item': counter_increment = [('list-item', 1)] else: counter_increment = [] for name, value in counter_increment: values = counter_values.setdefault(name, []) if not values: assert name not in sibling_scopes sibling_scopes.add(name) values.append(0) values[-1] += value def is_whitespace(box, _has_non_whitespace=re.compile('\\S').search): """Return True if ``box`` is a TextBox with only whitespace.""" return isinstance(box, boxes.TextBox) and not _has_non_whitespace(box.text) def wrap_improper(box, children, wrapper_type, test=None): """ Wrap consecutive children that do not pass ``test`` in a box of type ``wrapper_type``. ``test`` defaults to children being of the same type as ``wrapper_type``. """ if test is None: def test(child): return isinstance(child, wrapper_type) improper = [] for child in children: if test(child): if improper: wrapper = wrapper_type.anonymous_from(box, children=[]) # Apply the rules again on the new wrapper yield table_boxes_children(wrapper, improper) improper = [] yield child else: # Whitespace either fail the test or were removed earlier, # so there is no need to take special care with the definition # of "consecutive". if isinstance(box, boxes.FlexContainerBox): # The display value of a flex item must be "blockified", see # https://www.w3.org/TR/css-flexbox-1/#flex-items # TODO: These blocks are currently ignored, we should # "blockify" them and their children. pass else: improper.append(child) if improper: wrapper = wrapper_type.anonymous_from(box, children=[]) # Apply the rules again on the new wrapper yield table_boxes_children(wrapper, improper) def anonymous_table_boxes(box): """Remove and add boxes according to the table model. Take and return a ``Box`` object. See http://www.w3.org/TR/CSS21/tables.html#anonymous-boxes """ if not isinstance(box, boxes.ParentBox) or box.is_running(): return box # Do recursion. children = [anonymous_table_boxes(child) for child in box.children] return table_boxes_children(box, children) def table_boxes_children(box, children): """Internal implementation of anonymous_table_boxes().""" if isinstance(box, boxes.TableColumnBox): # rule 1.1 # Remove all children. children = [] elif isinstance(box, boxes.TableColumnGroupBox): # rule 1.2 # Remove children other than table-column. children = [ child for child in children if isinstance(child, boxes.TableColumnBox) ] # Rule XXX (not in the spec): column groups have at least # one column child. if not children: children = [boxes.TableColumnBox.anonymous_from(box, []) for _i in range(box.span)] # rule 1.3 if box.tabular_container and len(children) >= 2: # TODO: Maybe only remove text if internal is also # a proper table descendant of box. # This is what the spec says, but maybe not what browsers do: # http://lists.w3.org/Archives/Public/www-style/2011Oct/0567 # Last child internal, text = children[-2:] if (internal.internal_table_or_caption and is_whitespace(text)): children.pop() # First child if len(children) >= 2: text, internal = children[:2] if (internal.internal_table_or_caption and is_whitespace(text)): children.pop(0) # Children other than first and last that would be removed by # rule 1.3 are also removed by rule 1.4 below. children = [ child for prev_child, child, next_child in zip( [None] + children[:-1], children, children[1:] + [None] ) if not ( # Ignore some whitespace: rule 1.4 prev_child and prev_child.internal_table_or_caption and next_child and next_child.internal_table_or_caption and is_whitespace(child) ) ] if isinstance(box, boxes.TableBox): # Rule 2.1 children = wrap_improper( box, children, boxes.TableRowBox, lambda child: child.proper_table_child) elif isinstance(box, boxes.TableRowGroupBox): # Rule 2.2 children = wrap_improper(box, children, boxes.TableRowBox) if isinstance(box, boxes.TableRowBox): # Rule 2.3 children = wrap_improper(box, children, boxes.TableCellBox) else: # Rule 3.1 children = wrap_improper( box, children, boxes.TableRowBox, lambda child: not isinstance(child, boxes.TableCellBox)) # Rule 3.2 if isinstance(box, boxes.InlineBox): children = wrap_improper( box, children, boxes.InlineTableBox, lambda child: not child.proper_table_child) else: parent_type = type(box) children = wrap_improper( box, children, boxes.TableBox, lambda child: (not child.proper_table_child or parent_type in child.proper_parents)) if isinstance(box, boxes.TableBox): return wrap_table(box, children) else: box.children = list(children) return box def wrap_table(box, children): """Take a table box and return it in its table wrapper box. Also re-order children and assign grid positions to each column and cell. Because of colspan/rowspan works, grid_y is implicitly the index of a row, but grid_x is an explicit attribute on cells, columns and column group. http://www.w3.org/TR/CSS21/tables.html#model http://www.w3.org/TR/CSS21/tables.html#table-layout """ # Group table children by type columns = [] rows = [] all_captions = [] by_type = { boxes.TableColumnBox: columns, boxes.TableColumnGroupBox: columns, boxes.TableRowBox: rows, boxes.TableRowGroupBox: rows, boxes.TableCaptionBox: all_captions, } for child in children: by_type[type(child)].append(child) # Split top and bottom captions captions = {'top': [], 'bottom': []} for caption in all_captions: captions[caption.style['caption_side']].append(caption) # Assign X positions on the grid to column boxes column_groups = list(wrap_improper( box, columns, boxes.TableColumnGroupBox)) grid_x = 0 for group in column_groups: group.grid_x = grid_x if group.children: for column in group.children: # There's no need to take care of group's span, as "span=x" # already generates x TableColumnBox children column.grid_x = grid_x grid_x += 1 group.span = len(group.children) else: grid_x += group.span grid_width = grid_x row_groups = wrap_improper(box, rows, boxes.TableRowGroupBox) # Extract the optional header and footer groups. body_row_groups = [] header = None footer = None for group in row_groups: display = group.style['display'] if display == 'table-header-group' and header is None: group.is_header = True header = group elif display == 'table-footer-group' and footer is None: group.is_footer = True footer = group else: body_row_groups.append(group) row_groups = ( ([header] if header is not None else []) + body_row_groups + ([footer] if footer is not None else [])) # Assign a (x,y) position in the grid to each cell. # rowspan can not extend beyond a row group, so each row group # is independent. # http://www.w3.org/TR/CSS21/tables.html#table-layout # Column 0 is on the left if direction is ltr, right if rtl. # This algorithm does not change. grid_height = 0 for group in row_groups: # Indexes: row number in the group. # Values: set of cells already occupied by row-spanning cells. occupied_cells_by_row = [set() for row in group.children] for row in group.children: occupied_cells_in_this_row = occupied_cells_by_row.pop(0) # The list is now about rows after this one. grid_x = 0 for cell in row.children: # Make sure that the first grid cell is free. while grid_x in occupied_cells_in_this_row: grid_x += 1 cell.grid_x = grid_x new_grid_x = grid_x + cell.colspan # http://www.w3.org/TR/html401/struct/tables.html#adef-rowspan if cell.rowspan != 1: max_rowspan = len(occupied_cells_by_row) + 1 if cell.rowspan == 0: # All rows until the end of the group spanned_rows = occupied_cells_by_row cell.rowspan = max_rowspan else: cell.rowspan = min(cell.rowspan, max_rowspan) spanned_rows = occupied_cells_by_row[:cell.rowspan - 1] spanned_columns = range(grid_x, new_grid_x) for occupied_cells in spanned_rows: occupied_cells.update(spanned_columns) grid_x = new_grid_x grid_width = max(grid_width, grid_x) grid_height += len(group.children) table = box.copy_with_children(row_groups) table.column_groups = tuple(column_groups) if table.style['border_collapse'] == 'collapse': table.collapsed_border_grid = collapse_table_borders( table, grid_width, grid_height) if isinstance(box, boxes.InlineTableBox): wrapper_type = boxes.InlineBlockBox else: wrapper_type = boxes.BlockBox wrapper = wrapper_type.anonymous_from( box, captions['top'] + [table] + captions['bottom']) wrapper.style = wrapper.style.copy() wrapper.is_table_wrapper = True # Non-inherited properties of the table element apply to one # of the wrapper and the table. The other get the initial value. # TODO: put this in a method of the table object for name in properties.TABLE_WRAPPER_BOX_PROPERTIES: wrapper.style[name] = table.style[name] table.style[name] = properties.INITIAL_VALUES[name] return wrapper TRANSPARENT = tinycss2.color3.parse_color('transparent') def collapse_table_borders(table, grid_width, grid_height): """Resolve border conflicts for a table in the collapsing border model. Take a :class:`TableBox`; set appropriate border widths on the table, column group, column, row group, row, and cell boxes; and return a data structure for the resolved collapsed border grid. """ if not (grid_width and grid_height): # Don’t bother with empty tables return [], [] style_scores = dict((v, i) for i, v in enumerate(reversed([ 'hidden', 'double', 'solid', 'dashed', 'dotted', 'ridge', 'outset', 'groove', 'inset', 'none']))) style_map = {'inset': 'ridge', 'outset': 'groove'} transparent = TRANSPARENT weak_null_border = ( (0, 0, style_scores['none']), ('none', 0, transparent)) vertical_borders = [[weak_null_border for x in range(grid_width + 1)] for y in range(grid_height)] horizontal_borders = [[weak_null_border for x in range(grid_width)] for y in range(grid_height + 1)] def set_one_border(border_grid, box_style, side, grid_x, grid_y): from ..draw import get_color style = box_style['border_%s_style' % side] width = box_style['border_%s_width' % side] color = get_color(box_style, 'border_%s_color' % side) # http://www.w3.org/TR/CSS21/tables.html#border-conflict-resolution score = ((1 if style == 'hidden' else 0), width, style_scores[style]) style = style_map.get(style, style) previous_score, _ = border_grid[grid_y][grid_x] # Strict < so that the earlier call wins in case of a tie. if previous_score < score: border_grid[grid_y][grid_x] = (score, (style, width, color)) def set_borders(box, x, y, w, h): style = box.style for yy in range(y, y + h): set_one_border(vertical_borders, style, 'left', x, yy) set_one_border(vertical_borders, style, 'right', x + w, yy) for xx in range(x, x + w): set_one_border(horizontal_borders, style, 'top', xx, y) set_one_border(horizontal_borders, style, 'bottom', xx, y + h) # The order is important here: # "A style set on a cell wins over one on a row, which wins over a # row group, column, column group and, lastly, table" # See http://www.w3.org/TR/CSS21/tables.html#border-conflict-resolution strong_null_border = ( (1, 0, style_scores['hidden']), ('hidden', 0, transparent)) grid_y = 0 for row_group in table.children: for row in row_group.children: for cell in row.children: # No border inside of a cell with rowspan or colspan for xx in range(cell.grid_x + 1, cell.grid_x + cell.colspan): for yy in range(grid_y, grid_y + cell.rowspan): vertical_borders[yy][xx] = strong_null_border for xx in range(cell.grid_x, cell.grid_x + cell.colspan): for yy in range(grid_y + 1, grid_y + cell.rowspan): horizontal_borders[yy][xx] = strong_null_border # The cell’s own borders set_borders(cell, x=cell.grid_x, y=grid_y, w=cell.colspan, h=cell.rowspan) grid_y += 1 grid_y = 0 for row_group in table.children: for row in row_group.children: set_borders(row, x=0, y=grid_y, w=grid_width, h=1) grid_y += 1 grid_y = 0 for row_group in table.children: rowspan = len(row_group.children) set_borders(row_group, x=0, y=grid_y, w=grid_width, h=rowspan) grid_y += rowspan for column_group in table.column_groups: for column in column_group.children: set_borders(column, x=column.grid_x, y=0, w=1, h=grid_height) for column_group in table.column_groups: set_borders(column_group, x=column_group.grid_x, y=0, w=column_group.span, h=grid_height) set_borders(table, x=0, y=0, w=grid_width, h=grid_height) # Now that all conflicts are resolved, set transparent borders of # the correct widths on each box. The actual border grid will be # painted separately. def set_transparent_border(box, side, twice_width): box.style['border_%s_style' % side] = 'solid' box.style['border_%s_width' % side] = twice_width / 2 box.style['border_%s_color' % side] = transparent def remove_borders(box): set_transparent_border(box, 'top', 0) set_transparent_border(box, 'right', 0) set_transparent_border(box, 'bottom', 0) set_transparent_border(box, 'left', 0) def max_vertical_width(x, y, h): return max( width for grid_row in vertical_borders[y:y + h] for _, (_, width, _) in [grid_row[x]]) def max_horizontal_width(x, y, w): return max( width for _, (_, width, _) in horizontal_borders[y][x:x + w]) grid_y = 0 for row_group in table.children: remove_borders(row_group) for row in row_group.children: remove_borders(row) for cell in row.children: set_transparent_border(cell, 'top', max_horizontal_width( x=cell.grid_x, y=grid_y, w=cell.colspan)) set_transparent_border(cell, 'bottom', max_horizontal_width( x=cell.grid_x, y=grid_y + cell.rowspan, w=cell.colspan)) set_transparent_border(cell, 'left', max_vertical_width( x=cell.grid_x, y=grid_y, h=cell.rowspan)) set_transparent_border(cell, 'right', max_vertical_width( x=cell.grid_x + cell.colspan, y=grid_y, h=cell.rowspan)) grid_y += 1 for column_group in table.column_groups: remove_borders(column_group) for column in column_group.children: remove_borders(column) set_transparent_border(table, 'top', max_horizontal_width( x=0, y=0, w=grid_width)) set_transparent_border(table, 'bottom', max_horizontal_width( x=0, y=grid_height, w=grid_width)) # "UAs must compute an initial left and right border width for the table # by examining the first and last cells in the first row of the table." # http://www.w3.org/TR/CSS21/tables.html#collapsing-borders # ... so h=1, not grid_height: set_transparent_border(table, 'left', max_vertical_width( x=0, y=0, h=1)) set_transparent_border(table, 'right', max_vertical_width( x=grid_width, y=0, h=1)) return vertical_borders, horizontal_borders def flex_boxes(box): """Remove and add boxes according to the flex model. Take and return a ``Box`` object. See http://www.w3.org/TR/css-flexbox-1/#flex-items """ if not isinstance(box, boxes.ParentBox) or box.is_running(): return box # Do recursion. children = [flex_boxes(child) for child in box.children] box.children = flex_children(box, children) return box def flex_children(box, children): if isinstance(box, boxes.FlexContainerBox): flex_children = [] for child in children: if not child.is_absolutely_positioned(): child.is_flex_item = True if isinstance(child, boxes.TextBox) and not child.text.strip(' '): # TODO: ignore texts only containing "characters that can be # affected by the white-space property" # https://www.w3.org/TR/css-flexbox-1/#flex-items continue if isinstance(child, boxes.InlineLevelBox): # TODO: Only create block boxes for text runs, not for other # inline level boxes. This is false but currently needed # because block_level_width and block_level_layout are called # in layout.flex. if isinstance(child, boxes.ParentBox): anonymous = boxes.BlockBox.anonymous_from( box, child.children) anonymous.style = child.style else: anonymous = boxes.BlockBox.anonymous_from(box, [child]) anonymous.is_flex_item = True flex_children.append(anonymous) else: flex_children.append(child) return flex_children else: return children def process_whitespace(box, following_collapsible_space=False): """First part of "The 'white-space' processing model". See http://www.w3.org/TR/CSS21/text.html#white-space-model http://dev.w3.org/csswg/css3-text/#white-space-rules """ if isinstance(box, boxes.TextBox): text = box.text if not text: return following_collapsible_space # Normalize line feeds text = re.sub('\r\n?', '\n', text) new_line_collapse = box.style['white_space'] in ('normal', 'nowrap') space_collapse = box.style['white_space'] in ( 'normal', 'nowrap', 'pre-line') if space_collapse: # \r characters were removed/converted earlier text = re.sub('[\t ]*\n[\t ]*', '\n', text) if new_line_collapse: # TODO: this should be language-specific # Could also replace with a zero width space character (U+200B), # or no character # CSS3: http://www.w3.org/TR/css3-text/#line-break-transform text = text.replace('\n', ' ') if space_collapse: text = text.replace('\t', ' ') text = re.sub(' +', ' ', text) previous_text = text if following_collapsible_space and text.startswith(' '): text = text[1:] box.leading_collapsible_space = True following_collapsible_space = previous_text.endswith(' ') else: following_collapsible_space = False box.text = text return following_collapsible_space if isinstance(box, boxes.ParentBox) and not box.is_running(): for child in box.children: if isinstance(child, (boxes.TextBox, boxes.InlineBox)): following_collapsible_space = process_whitespace( child, following_collapsible_space) else: process_whitespace(child) if child.is_in_normal_flow(): following_collapsible_space = False return following_collapsible_space def inline_in_block(box): """Build the structure of lines inside blocks and return a new box tree. Consecutive inline-level boxes in a block container box are wrapped into a line box, itself wrapped into an anonymous block box. This line box will be broken into multiple lines later. This is the first case in http://www.w3.org/TR/CSS21/visuren.html#anonymous-block-level Eg.:: BlockBox[ TextBox['Some '], InlineBox[TextBox['text']], BlockBox[ TextBox['More text'], ] ] is turned into:: BlockBox[ AnonymousBlockBox[ LineBox[ TextBox['Some '], InlineBox[TextBox['text']], ] ] BlockBox[ LineBox[ TextBox['More text'], ] ] ] """ if not isinstance(box, boxes.ParentBox) or box.is_running(): return box box_children = list(box.children) if box_children and box.leading_collapsible_space is False: box.leading_collapsible_space = ( box_children[0].leading_collapsible_space) children = [] trailing_collapsible_space = False for child in box_children: # Keep track of removed collapsing spaces for wrap opportunities, and # remove empty text boxes. # (They may have been emptied by process_whitespace().) if trailing_collapsible_space: child.leading_collapsible_space = True if isinstance(child, boxes.TextBox) and not child.text: trailing_collapsible_space = child.leading_collapsible_space else: trailing_collapsible_space = False children.append(inline_in_block(child)) if box.trailing_collapsible_space is False: box.trailing_collapsible_space = trailing_collapsible_space if not isinstance(box, boxes.BlockContainerBox): box.children = children return box new_line_children = [] new_children = [] for child_box in children: assert not isinstance(child_box, boxes.LineBox) if new_line_children and child_box.is_absolutely_positioned(): new_line_children.append(child_box) elif isinstance(child_box, boxes.InlineLevelBox) or ( new_line_children and child_box.is_floated()): # Do not append white space at the start of a line: # It would be removed during layout. if new_line_children or not ( isinstance(child_box, boxes.TextBox) and # Sequence of white-space was collapsed to a single # space by process_whitespace(). child_box.text == ' ' and child_box.style['white_space'] in ( 'normal', 'nowrap', 'pre-line')): new_line_children.append(child_box) else: if new_line_children: # Inlines are consecutive no more: add this line box # and create a new one. line_box = boxes.LineBox.anonymous_from(box, new_line_children) anonymous = boxes.BlockBox.anonymous_from(box, [line_box]) new_children.append(anonymous) new_line_children = [] new_children.append(child_box) if new_line_children: # There were inlines at the end line_box = boxes.LineBox.anonymous_from(box, new_line_children) if new_children: anonymous = boxes.BlockBox.anonymous_from(box, [line_box]) new_children.append(anonymous) else: # Only inline-level children: one line box new_children.append(line_box) box.children = new_children return box def block_in_inline(box): """Build the structure of blocks inside lines. Inline boxes containing block-level boxes will be broken in two boxes on each side on consecutive block-level boxes, each side wrapped in an anonymous block-level box. This is the second case in http://www.w3.org/TR/CSS21/visuren.html#anonymous-block-level Eg. if this is given:: BlockBox[ LineBox[ InlineBox[ TextBox['Hello.'], ], InlineBox[ TextBox['Some '], InlineBox[ TextBox['text'] BlockBox[LineBox[TextBox['More text']]], BlockBox[LineBox[TextBox['More text again']]], ], BlockBox[LineBox[TextBox['And again.']]], ] ] ] this is returned:: BlockBox[ AnonymousBlockBox[ LineBox[ InlineBox[ TextBox['Hello.'], ], InlineBox[ TextBox['Some '], InlineBox[TextBox['text']], ] ] ], BlockBox[LineBox[TextBox['More text']]], BlockBox[LineBox[TextBox['More text again']]], AnonymousBlockBox[ LineBox[ InlineBox[ ] ] ], BlockBox[LineBox[TextBox['And again.']]], AnonymousBlockBox[ LineBox[ InlineBox[ ] ] ], ] """ if not isinstance(box, boxes.ParentBox) or box.is_running(): return box new_children = [] changed = False for child in box.children: if isinstance(child, boxes.LineBox): assert len(box.children) == 1, ( 'Line boxes should have no ' 'siblings at this stage, got %r.' % box.children) stack = None while 1: new_line, block, stack = _inner_block_in_inline( child, skip_stack=stack) if block is None: break anon = boxes.BlockBox.anonymous_from(box, [new_line]) new_children.append(anon) new_children.append(block_in_inline(block)) # Loop with the same child and the new stack. if new_children: # Some children were already added, this became a block # context. new_child = boxes.BlockBox.anonymous_from(box, [new_line]) else: # Keep the single line box as-is, without anonymous blocks. new_child = new_line else: # Not in an inline formatting context. new_child = block_in_inline(child) if new_child is not child: changed = True new_children.append(new_child) if changed: box.children = new_children return box def _inner_block_in_inline(box, skip_stack=None): """Find a block-level box in an inline formatting context. If one is found, return ``(new_box, block_level_box, resume_at)``. ``new_box`` contains all of ``box`` content before the block-level box. ``resume_at`` can be passed as ``skip_stack`` in a new call to this function to resume the search just after the block-level box. If no block-level box is found after the position marked by ``skip_stack``, return ``(new_box, None, None)`` """ new_children = [] block_level_box = None resume_at = None changed = False is_start = skip_stack is None if is_start: skip = 0 else: skip, skip_stack = skip_stack for i, child in enumerate(box.children[skip:]): index = i + skip if isinstance(child, boxes.BlockLevelBox) and \ child.is_in_normal_flow(): assert skip_stack is None # Should not skip here block_level_box = child index += 1 # Resume *after* the block else: if isinstance(child, boxes.InlineBox): recursion = _inner_block_in_inline(child, skip_stack) skip_stack = None new_child, block_level_box, resume_at = recursion else: assert skip_stack is None # Should not skip here new_child = block_in_inline(child) # block_level_box is still None. if new_child is not child: changed = True new_children.append(new_child) if block_level_box is not None: resume_at = (index, resume_at) box = box.copy_with_children(new_children) break else: if changed or skip: box = box.copy_with_children(new_children) return box, block_level_box, resume_at def set_viewport_overflow(root_box): """ Set a ``viewport_overflow`` attribute on the box for the root element. Like backgrounds, ``overflow`` on the root element must be propagated to the viewport. See http://www.w3.org/TR/CSS21/visufx.html#overflow """ chosen_box = root_box if (root_box.element_tag.lower() == 'html' and root_box.style['overflow'] == 'visible'): for child in root_box.children: if child.element_tag.lower() == 'body': chosen_box = child break root_box.viewport_overflow = chosen_box.style['overflow'] chosen_box.style['overflow'] = 'visible' return root_box def box_text(box): if isinstance(box, boxes.TextBox): return box.text elif isinstance(box, boxes.ParentBox): return ''.join( child.text for child in box.descendants() if not child.element_tag.endswith('::before') and not child.element_tag.endswith('::after') and not child.element_tag.endswith('::marker') and isinstance(child, boxes.TextBox)) else: return '' def box_text_first_letter(box): # TODO: use the same code as in inlines.first_letter_to_box character_found = False first_letter = '' text = box_text(box) while text: next_letter = text[0] category = unicodedata.category(next_letter) if category not in ('Ps', 'Pe', 'Pi', 'Pf', 'Po'): if character_found: break character_found = True first_letter += next_letter text = text[1:] return first_letter def box_text_before(box): if isinstance(box, boxes.ParentBox): return ''.join( box_text(child) for child in box.descendants() if child.element_tag.endswith('::before') and not isinstance(child, boxes.ParentBox)) else: return '' def box_text_after(box): if isinstance(box, boxes.ParentBox): return ''.join( box_text(child) for child in box.descendants() if child.element_tag.endswith('::after') and not isinstance(child, boxes.ParentBox)) else: return '' TEXT_CONTENT_EXTRACTORS = { 'text': box_text, 'content': box_text, 'before': box_text_before, 'after': box_text_after, 'first-letter': box_text_first_letter}
the-stack_106_26500
from pudzu.charts import * from pudzu.sandbox.bamboo import * from PIL import ImageEnhance df = pd.read_csv("datasets/eumothers.csv").set_index("country") FONT = sans PALETTE = { "IWD": VegaPalette10.RED, "SE": VegaPalette10.GREEN, "FSL": VegaPalette10.ORANGE, "FSM": VegaPalette10.LIGHTBLUE, "SSM": VegaPalette10.BLUE, "LSM": VegaPalette10.PURPLE, "other": VegaPalette10.GREY, } DESCRIPTIONS = [ "**International Women's Day** (8 March)", "**Spring Equinox** (21 March)", "**Fourth Sunday in Lent** (Mothering Sunday)", "**First Sunday of May**", "**Second Sunday of May**", "**Last Sunday of May**\n(may be postponed in France for Pentecost)", """**On a different day** Norway: Second Sunday of February Israel: 30 Shevat (~February) Georgia: 3 March Slovenia: 25 March Armenia: 7 April Iran: 21 Ordibehesht (~11 May) Poland: 26 May Luxembourg: Second Sunday of June Belarus: 14 October Serbia: Second Sunday before Christmas""", ] FOOTER = None def colorfn(c): if c in ['Sea', 'Borders']: return "white" elif c not in df.index or non(df.group.get(c)): return "grey" elif "&" in df.group.get(c): colors = [PALETTE[i] for i in df.group[c].split("&")] return Stripe(20, *colors) elif "|" in df.group.get(c): return VegaPalette10.BROWN else: return PALETTE[df.group.get(c)] map = map_chart("maps/Europe2.png", colorfn, None) legend = generate_legend(list(PALETTE.values()), DESCRIPTIONS, box_sizes=(40,...), header="Mother's Day mainly celebrated on...".upper(), footer=FOOTER, font_family=partial(FONT, 16)) chart = map.place(legend, align=(1,0), padding=50) title = Image.from_column([ Image.from_text("MOTHER'S DAYS", FONT(96, bold=True)), Image.from_text("date of main Mother's Day celebrations (according to Wikipedia)", FONT(36)) ], bg="white", padding=2) img = Image.from_column([title, chart], bg="white", padding=2) img = ImageEnhance.Color(img).enhance(0.8) img.place(Image.from_text("/u/Udzu", FONT(16), fg="black", bg="white", padding=5).pad((1,1,0,0), "black"), align=1, padding=10, copy=False) img.save("output/eumothers.png")
the-stack_106_26502
# import the definition of the steps and input files: from Configuration.PyReleaseValidation.relval_steps import * # here only define the workflows as a combination of the steps defined above: workflows = Matrix() # each workflow defines a name and a list of steps to be done. # if no explicit name/label given for the workflow (first arg), # the name of step1 will be used from Configuration.PyReleaseValidation.relval_upgrade import workflows as _upgrade_workflows #just define all of them #WFs to run in IB: # mc 2018 (Patatrack pixel-only quadruplets: ZMM - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only triplets: ZMM - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only quadruplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only triplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack ECAL-only: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack HCAL-only: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack full reco with pixel quadruplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack full reco with pixel triplets: TTbar - on GPU, both CPU and GPU, auto) # mc 2021 (Patatrack pixel-only quadruplets: ZMM - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only triplets: ZMM - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only quadruplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack pixel-only triplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack ECAL-only: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack HCAL-only: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack full reco with pixel quadruplets: TTbar - on GPU, both CPU and GPU, auto) # (Patatrack full reco with pixel triplets: TTbar - on GPU, both CPU and GPU, auto) numWFIB = [ 10842.502, # 10842.503,10842.504, 10842.506, # 10842.507,10842.508, 10824.502, # 10824.503,10824.504, 10824.506, # 10824.507,10824.508, 10824.512, # 10824.513,10824.514, 10824.522, # 10824.523,10824.524, 10824.592, # 10824.593,10824.594, 10824.596, # 10824.597,10824.598, 11650.502, # 11650.503,11650.504, 11650.506, # 11650.507,11650.508, 11634.502, # 11634.503,11634.504, 11634.506, # 11634.507,11634.508, 11634.512, # 11634.513,11634.514, 11634.522, # 11634.523,11634.524 11634.592, # 11634.593,11634.594, 11634.596, # 11634.597,11634.598, ] for numWF in numWFIB: if not numWF in _upgrade_workflows: continue workflows[numWF] = _upgrade_workflows[numWF] # data 2018 (Patatrack pixel-only: RunHLTPhy2018D, RunJetHT2018D on GPU) # (Patatrack ECAL-only: RunHLTPhy2018D, RunJetHT2018D on GPU) # (Patatrack HCAL-only: RunHLTPhy2018D, RunJetHT2018D on GPU) workflows[136.885502] = ['',['RunHLTPhy2018D','HLTDR2_2018','RECODR2_2018reHLT_Patatrack_PixelOnlyGPU','HARVEST2018_pixelTrackingOnly']] workflows[136.888502] = ['',['RunJetHT2018D','HLTDR2_2018','RECODR2_2018reHLT_Patatrack_PixelOnlyGPU','HARVEST2018_pixelTrackingOnly']] workflows[136.885512] = ['',['RunHLTPhy2018D','HLTDR2_2018','RECODR2_2018reHLT_ECALOnlyGPU','HARVEST2018_ECALOnly']] workflows[136.888512] = ['',['RunJetHT2018D','HLTDR2_2018','RECODR2_2018reHLT_ECALOnlyGPU','HARVEST2018_ECALOnly']] workflows[136.885522] = ['',['RunHLTPhy2018D','HLTDR2_2018','RECODR2_2018reHLT_HCALOnlyGPU','HARVEST2018_HCALOnly']] workflows[136.888522] = ['',['RunJetHT2018D','HLTDR2_2018','RECODR2_2018reHLT_HCALOnlyGPU','HARVEST2018_HCALOnly']]
the-stack_106_26503
''' uses code from https://pypi.org/project/combalg-py/ https://pythonhosted.org/combalg-py/ License: MIT License (MIT) Author: Sam Stump ''' def all(n, k): ''' A generator that returns all of the compositions of n into k parts. :param n: integer to compose :type n: int :param k: number of parts to compose :type k: int :return: a list of k-elements which sum to n Compositions are an expression of n as a sum k parts, including zero terms, and order is important. For example, the compositions of 2 into 2 parts: >>> compositions(2,2) = [2,0],[1,1],[0,2]. NOTE: There are C(n+k-1,n) partitions of n into k parts. See: `Stars and Bars <https://en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)>`_. ''' t = n h = 0 a = [0]*k a[0] = n yield tuple(a) while a[k-1] != n: if t != 1: h = 0 t = a[h] a[h] = 0 a[0] = t-1 a[h+1] += 1 h += 1 yield tuple(a)
the-stack_106_26504
from moduleUsefulFunctions_20180215 import * import scikits.bootstrap as boot plt.close() def updateDictData(dictionaryToUpdate,sequence,counts): if sequence in dictionaryToUpdate: dictionaryToUpdate[sequence]+=counts else: dictionaryToUpdate[sequence]=counts def listToDictConverter(listOfDimers): dictToReturn={} for eachEl in listOfDimers: if eachEl in dictToReturn: dictToReturn[eachEl]+=1 else: dictToReturn[eachEl]=1 return dictToReturn def bootStrapDictReturn(indexList,dimerList): dictToReturn={} for eachEl in indexList: if dimerList[eachEl] in dictToReturn: dictToReturn[dimerList[eachEl]]+=1 else: dictToReturn[dimerList[eachEl]]=1 return dictToReturn def getHomoDict(dictData): dictToReturn={} for eachEl in dictData: if eachEl[0]==eachEl[1]: dictToReturn[eachEl]=dictData[eachEl] return dictToReturn def getHeteroDict(dictData): dictToReturn={} for eachEl in dictData: if eachEl[0]!=eachEl[1]: dictToReturn[eachEl]=dictData[eachEl] return dictToReturn def getFirstHalf(dictData): dictToReturn={} for eachEl in dictData: if eachEl[0] in dictToReturn: dictToReturn[eachEl[0]]+=dictData[eachEl] else: dictToReturn[eachEl[0]]=dictData[eachEl] return dictToReturn def getSecondHalf(dictData): dictToReturn={} for eachEl in dictData: if eachEl[1] in dictToReturn: dictToReturn[eachEl[1]]+=dictData[eachEl] else: dictToReturn[eachEl[1]]=dictData[eachEl] return dictToReturn def getTotal(refName,dictData): total=0 for eachEl in dictData: if eachEl[0][0]+eachEl[1][0]==refName: total+=dictData[eachEl] return total def getCorrection(refName,firstHalfDict,secondHalfDict,totalsDict): #correction required because the total of hetero dicts does not include homodimers produced because of intermolecular template switching correction=1.0 for eachEl in firstHalfDict: if eachEl in secondHalfDict: if eachEl[0]==refName[0]: correction=correction-(float(firstHalfDict[eachEl])/float(totalsDict[refName]))*(float(secondHalfDict[eachEl])/float(totalsDict[refName])) return correction def getXRange(dataVector,expPower): xToUse=0.0 xVector=[] for counter, eachEl in enumerate(dataVector): if counter==0: pass else: xToUse+=np.power(eachEl,expPower) xVector.append(xToUse) return xVector def numberDiffHalves(seq1,seq2): totalDiff=0 for counter, eachEl in enumerate(seq1): if eachEl!=seq2[counter]: totalDiff+=1 return totalDiff with open(sys.argv[1],'rb') as f: dimerCounts=cPickle.load(f) #dimerDump_ver2.pckl file def bootstrapFunction(data): #data is an indices list dictSimData=bootStrapDictReturn(data,listDimerNames) homoSimData=getHomoDict(dictSimData) heteroSimData=getHeteroDict(dictSimData) firstHalfWholeSimData=getFirstHalf(dictSimData) secondHalfWholeSimData=getSecondHalf(dictSimData) firstHalfHeteroSimData=getFirstHalf(heteroSimData) secondHalfHeteroSimData=getSecondHalf(heteroSimData) totalsWholeSim={} totalsHeteroSim={} totalsHeteroSubtractSim={} listToReturn=[] for eachEl in refsToUse: totalsWholeSim[eachEl]=getTotal(eachEl,dictSimData) totalsHeteroSim[eachEl]=getTotal(eachEl,heteroSimData) totalsHeteroSubtractSim[eachEl]=getCorrection(eachEl,firstHalfHeteroSimData,secondHalfHeteroSimData,totalsHeteroSim) for counter, eachEl in enumerate(dictSorter(homoOriginalExpDict)): refName=eachEl[0][0]+eachEl[1][0] if eachEl[0] in firstHalfWholeSimData and eachEl[1] in secondHalfWholeSimData: listToReturn.append((float(firstHalfWholeSimData[eachEl[0]])*float(secondHalfWholeSimData[eachEl[1]]))/float(totalsWholeSim[refName])) else: listToReturn.append(0.0) for counter, eachEl in enumerate(dictSorter(heteroOriginalExpDict)): refName=eachEl[0][0]+eachEl[1][0] if eachEl[0] in firstHalfHeteroSimData and eachEl[1] in secondHalfHeteroSimData: listToReturn.append(((float(firstHalfHeteroSimData[eachEl[0]])*float(secondHalfHeteroSimData[eachEl[1]]))/float(totalsHeteroSim[refName]))/float(totalsHeteroSubtractSim[refName])) else: listToReturn.append(0.0) return np.array(listToReturn) sampleName=sys.argv[1] sampleName=sampleName[:sampleName.rfind('_dimerDump_ver2.pckl')] #first generate sample to bootstrap on, also restrict to GG and CC dimers refsToUse=['GG','CC'] pcrDuplicates=0 listDimerNames=[] for eachComb in dimerCounts: refType=eachComb[0][0]+eachComb[1][0] if refType in refsToUse: for i in range(0,dimerCounts[eachComb][pcrDuplicates]): listDimerNames.append(eachComb) dictOriginalData=listToDictConverter(listDimerNames) homoOriginalData=getHomoDict(dictOriginalData) heteroOriginalData=getHeteroDict(dictOriginalData) firstHalfWholeOriginalData=getFirstHalf(dictOriginalData) secondHalfWholeOriginalData=getSecondHalf(dictOriginalData) firstHalfHeteroOriginalData=getFirstHalf(heteroOriginalData) secondHalfHeteroOriginalData=getSecondHalf(heteroOriginalData) totalsWholeOriginal={} totalsHeteroOriginal={} totalsHeteroSubtractOriginal={} for eachEl in refsToUse: totalsWholeOriginal[eachEl]=getTotal(eachEl,dictOriginalData) totalsHeteroOriginal[eachEl]=getTotal(eachEl,heteroOriginalData) totalsHeteroSubtractOriginal[eachEl]=getCorrection(eachEl,firstHalfHeteroOriginalData,secondHalfHeteroOriginalData,totalsHeteroOriginal) f,ax=plt.subplots(nrows=1,ncols=2,figsize=(24,12)) #plot data and expected counts obsHomoCounts=[] expHomoCounts=[] homoOriginalExpDict={} for eachEl in homoOriginalData: refName=eachEl[0][0]+eachEl[1][0] homoOriginalExpDict[eachEl]=(float(firstHalfWholeOriginalData[eachEl[0]])*float(secondHalfWholeOriginalData[eachEl[1]]))/float(totalsWholeOriginal[refName]) for eachEl in dictSorter(homoOriginalExpDict): obsHomoCounts.append(homoOriginalData[eachEl]) expHomoCounts.append(homoOriginalExpDict[eachEl]) obsHeteroCounts=[] expHeteroCounts=[] heteroOriginalExpDict={} for eachEl in heteroOriginalData: refName=eachEl[0][0]+eachEl[1][0] heteroOriginalExpDict[eachEl]=((float(firstHalfHeteroOriginalData[eachEl[0]])*float(secondHalfHeteroOriginalData[eachEl[1]]))/float(totalsHeteroOriginal[refName]))/float(totalsHeteroSubtractOriginal[refName]) for eachEl in dictSorter(heteroOriginalExpDict): obsHeteroCounts.append(heteroOriginalData[eachEl]) expHeteroCounts.append(heteroOriginalExpDict[eachEl]) #generate bootstrap data confidenceIntervals=boot.ci(np.arange(len(listDimerNames)), statfunction=bootstrapFunction, alpha=0.05, n_samples=100000, method='bca', output='lowhigh') #first row of confidenceIntervals is lowPercentile #second row of confidenceIntervals is highPercentile lowPercentile=confidenceIntervals[0,:] highPercentile=confidenceIntervals[1,:] obsHomoCounts=np.array(obsHomoCounts) expHomoCounts=np.array(expHomoCounts) obsHeteroCounts=np.array(obsHeteroCounts) expHeteroCounts=np.array(expHeteroCounts) #re-sort based on high percentile values lowPercentileHomo=lowPercentile[:len(homoOriginalExpDict)] lowPercentileHetero=lowPercentile[len(homoOriginalExpDict):] highPercentileHomo=highPercentile[:len(homoOriginalExpDict)] highPercentileHetero=highPercentile[len(homoOriginalExpDict):] #homo sort newIndexArray=np.argsort(highPercentileHomo) newIndexArray=newIndexArray[::-1] lowPercentileHomo=lowPercentileHomo[newIndexArray] highPercentileHomo=highPercentileHomo[newIndexArray] obsHomoCounts=obsHomoCounts[newIndexArray] expHomoCounts=expHomoCounts[newIndexArray] #hetero sort newIndexArray=np.argsort(highPercentileHetero) newIndexArray=newIndexArray[::-1] lowPercentileHetero=lowPercentileHetero[newIndexArray] highPercentileHetero=highPercentileHetero[newIndexArray] obsHeteroCounts=obsHeteroCounts[newIndexArray] expHeteroCounts=expHeteroCounts[newIndexArray] firstXRange=getXRange(highPercentileHomo,0.25) secondXRange=getXRange(highPercentileHetero,0.7) ax[0].plot(firstXRange,obsHomoCounts,'bo',mec='b') ax[0].fill_between(firstXRange,lowPercentileHomo,highPercentileHomo,color=(230.0/255.0,230.0/255.0,0.0/255.0)) ax[0].set_yscale('symlog',linthreshy=1.0) ax[0].set_xlim([-1*(firstXRange[2]-firstXRange[1]),None]) ax[0].set_ylim([0,10**5]) ax[0].set_xlabel('Homodimer species') ax[0].set_ylabel('Counts') ax[1].plot(secondXRange,obsHeteroCounts,'bo',mec='b') ax[1].fill_between(secondXRange,lowPercentileHetero,highPercentileHetero,color=(230.0/255.0,230.0/255.0,0.0/255.0)) ax[1].set_yscale('symlog',linthreshy=1.0) ax[1].set_xlim([-1*(secondXRange[2]-secondXRange[1]),None]) ax[1].set_ylim([0,10**5]) ax[1].set_xlabel('Heterodimer species') ax[1].set_ylabel('Counts') #plt.show() plt.savefig(sampleName+'_agreementByVariant_20180426_ver4.pdf',dpi=300)
the-stack_106_26507
from Abstract.Expression import Expression from Environment.Environment import Environment from Environment.Value import Value from Enum.typeExpression import typeExpression class Multiply(Expression): def __init__(self, left: Expression, right: Expression) -> None: super().__init__() self.leftExpression = left self.rightExpression = right def compile(self, environment: Environment) -> Value: self.leftExpression.generator = self.generator self.rightExpression.generator = self.generator leftValue: Value = self.leftExpression.compile(environment) rightValue: Value = self.rightExpression.compile(environment) newTemp = self.generator.newTemp() if(leftValue.type == typeExpression.INTEGER): if(rightValue.type == typeExpression.INTEGER or rightValue.type == typeExpression.FLOAT): self.generator.addExpression(newTemp,leftValue.getValue(),rightValue.getValue(),"*") return Value(newTemp,True,rightValue.type) else: print("Error en resta") return Value("0",False,typeExpression.INTEGER) elif(leftValue.type == typeExpression.FLOAT): if(rightValue.type == typeExpression.INTEGER or rightValue.type == typeExpression.FLOAT): self.generator.addExpression(newTemp,leftValue.getValue(),rightValue.getValue(),"*") return Value(newTemp,True,typeExpression.FLOAT) else: print("Error en resta") return Value("0",False,typeExpression.INTEGER) else: print("Error en resta") return Value("0",False,typeExpression.INTEGER)
the-stack_106_26509
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #Royal Cuevas #2285562 #[email protected] #PHYS220 Fall 2018 #CW 09 import numpy as np import matplotlib.pyplot as plt def gradient(x, o=1): """Requires a 1-dimensional matrix. Will compute the derivative of the corresponding function. For larger order derivatives put the order as an int in the 2nd argument, defaults to 1.""" D = np.zeros((len(x), len(x))) ones = np.ones(len(D)-1) np.fill_diagonal(D[1:], -ones) np.fill_diagonal(D[:, 1:], ones) D[0][0] = -2 D[0][1] = 2 D[len(D)-1][len(D)-1] = 2 D[len(D)-1][len(D)-2] = -2 for i in range(o-1): D = D@D return D@x*.5 def xx(): """Plots x^2 and its derivative""" x = np.arange(0, 7) f = x**2 fp = gradient(f) a = plt.axes() a.plot(x, f, label="f(x)") a.plot(x, fp, color="Red", label="f'(x)") a.set(xlabel="x", ylabel="y", title="$x^2$") a.legend() plt.show() def second(): """Plots x^2 and its 2nd derivative""" x = np.arange(0, 7) f = x**2 fpp = gradient(f, 2) a = plt.axes() a.plot(x, f, label="f(x)") a.plot(x, fpp, color="Red", label="f''(x)") a.set(xlabel="x", ylabel="y", title="$x^2$") a.legend() plt.show() def xxgrad(): x = np.arange(0, 7) f = x**2 fp = np.gradient(f) a = plt.axes() a.plot(x, f, label="f(x)") a.plot(x, fp, color="Red", label="f'(x)") a.set(xlabel="x", ylabel="y", title="$x^2$") a.legend() plt.show() def sinx(): """Plots sin(x) and its derivative""" x = np.arange(0, 8) s = np.sin(x) sp = gradient(s) a = plt.axes() a.plot(x, s, label="s(x)") a.plot(x, sp, color="Red", label="s'(x)") a.set(xlabel="x", ylabel="y", title="sin(x)") a.legend() plt.show() def sin2(): """Plots sin(x) and its 2nd derivative""" x = np.arange(0, 8) s = np.sin(x) spp = gradient(s, 2) a = plt.axes() a.plot(x, s, label="s(x)") a.plot(x, spp, color="Red", label="s''(x)") a.set(xlabel="x", ylabel="y", title="sin(x)") a.legend() plt.show() def sinxgrad(): x = np.arange(0, 8) s = np.sin(x) sp = np.gradient(s) a = plt.axes() a.plot(x, s, label="s(x)") a.plot(x, sp, color="Red", label="s'(x)") a.set(xlabel="x", ylabel="y", title="$sin(x)$") a.legend() plt.show() def exp(): """Plots e^(-x^2/2)/sqrt(2pi) and its derivative""" x = np.arange(0, 6) g = np.exp(-x**2/2)/np.sqrt(2*np.pi) gp = gradient(g) a = plt.axes() a.plot(x, g, label="g(x)") a.plot(x, gp, color="Red", label="g'(x)") a.set(xlabel="x", ylabel="y", title="$e^{-x^2/2}/\sqrt{2\pi}$") a.legend() plt.show() def expgrad(): x = np.arange(0, 6) g = np.exp(-x**2/2)/np.sqrt(2*np.pi) gp = np.gradient(g) a = plt.axes() a.plot(x, g, label="g(x)") a.plot(x, gp, color="Red", label="g'(x)") a.set(xlabel="x", ylabel="y", title="$e^{-x^2/2}/\sqrt{2\pi}$") a.legend() plt.show()
the-stack_106_26512
# Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''result.py''' import abc import sys from enum import Enum from heron.common.src.python.utils import proc from heron.common.src.python.utils.log import Log # Meaning of exit status code: # - status code = 0: # program exits without error # - 0 < status code < 100: # program fails to execute before program execution. For example, # JVM cannot find or load main class # - 100 <= status code < 200: # program fails to launch after program execution. For example, # topology definition file fails to be loaded # - status code == 200: # program sends out dry-run response # Definition corresponds to definition in com.twitter.heron.scheduler.AbstractMain # pylint: disable=no-init class Status(Enum): """Status code enum""" Ok = 0 InvocationError = 1 HeronError = 100 DryRun = 200 def status_type(status_code): if status_code == 0: return Status.Ok elif status_code < 100: return Status.InvocationError elif status_code == 200: return Status.DryRun else: return Status.HeronError class Result(object): """Result class""" def __init__(self, status=None, err_context=None, succ_context=None): self.status = status self.err_context = err_context self.succ_context = succ_context @staticmethod def _do_log(log_f, msg): if msg: if msg[-1] == '\n': msg = msg[:-1] log_f(msg) @staticmethod def _do_print(f, msg): if msg: if msg[-1] == '\n': msg = msg[:-1] print >> f, msg def _log_context(self): # render context only after process exits assert self.status is not None if self.status in [Status.Ok, Status.DryRun]: self._do_log(Log.info, self.succ_context) elif self.status in [Status.HeronError, Status.InvocationError]: self._do_log(Log.error, self.err_context) else: raise RuntimeError( "Unknown status type of value %d. Expected value: %s", self.status.value, list(Status)) def add_context(self, err_context, succ_context=None): """ Prepend msg to add some context information :param pmsg: context info :return: None """ self.err_context = err_context self.succ_context = succ_context @abc.abstractmethod def render(self): pass class SimpleResult(Result): """Simple result: result that already and only contains status of the result""" def __init__(self, *args): super(SimpleResult, self).__init__(*args) def render(self): self._log_context() class ProcessResult(Result): """Process result: a wrapper of result class""" def __init__(self, process): super(ProcessResult, self).__init__() self.process = process self.stdout_builder = proc.async_stdout_builder(process) # start redirect stderr in initialization, before render() gets called proc.async_stream_process_stderr(self.process, self.renderProcessStdErr) def renderProcessStdErr(self, stderr_line): """ render stderr of shelled-out process stderr could be error message of failure of invoking process or normal stderr output from successfully shelled-out process. In the first case, ``Popen'' should fail fast and we should be able to get return code immediately. We then render the failure message. In the second case, we simply print stderr line in stderr. The way to handle the first case is shaky but should be the best we can do since we have conflicts of design goals here. :param stderr_line: one line from shelled-out process :return: """ retcode = self.process.poll() if retcode is not None and status_type(retcode) == Status.InvocationError: self._do_log(Log.error, stderr_line) else: self._do_print(sys.stderr, stderr_line) def renderProcessStdOut(self, stdout): """ render stdout of shelled-out process stdout always contains information Java process wants to propagate back to cli, so we do special rendering here :param stdout: all lines from shelled-out process :return: """ # since we render stdout line based on Java process return code, # ``status'' has to be already set assert self.status is not None # remove pending newline if self.status == Status.Ok: self._do_log(Log.info, stdout) elif self.status == Status.HeronError: # remove last newline since logging will append newline self._do_log(Log.error, stdout) # No need to prefix [INFO] here. We want to display dry-run response in a clean way elif self.status == Status.DryRun: self._do_print(sys.stdout, stdout) elif self.status == Status.InvocationError: self._do_print(sys.stdout, stdout) else: raise RuntimeError( "Unknown status type of value %d. Expected value: %s" % \ (self.status.value, list(Status))) def render(self): self.process.wait() self.status = status_type(self.process.returncode) self.renderProcessStdOut(self.stdout_builder.result()) self._log_context() def render(results): if isinstance(results, Result): results.render() elif isinstance(results, list): for r in results: r.render() else: raise RuntimeError("Unknown result instance: %s", str(results.__class__)) # check if all results are successful def is_successful(results): if isinstance(results, list): return all([result.status == Status.Ok for result in results]) elif isinstance(results, Result): return results.status == Status.Ok else: raise RuntimeError("Unknown result instance: %s", str(results.__class__))
the-stack_106_26513
#!/usr/bin/env python3 import ufarc class Iterate(ufarc.Ahsm): def __init__(self,): super().__init__(Iterate.initial) ufarc.SIGNAL.register("ITERATE") def initial(me, event): print("initial") me.iter_evt = (ufarc.SIGNAL.ITERATE, None) return me.tran(me, Iterate.iterating) def iterating(me, event): sig = event[ufarc.Event.SIG_IDX] if sig == ufarc.SIGNAL.ENTRY: print("iterating") me.count = 10 me.postFIFO(me.iter_evt) return me.handled(me, event) elif sig == ufarc.SIGNAL.ITERATE: print(me.count) if me.count == 0: return me.tran(me, Iterate.done) else: # do work me.count -= 1 me.postFIFO(me.iter_evt) return me.handled(me, event) return me.super(me, me.top) def done(me, event): sig = event[ufarc.Event.SIG_IDX] if sig == ufarc.SIGNAL.ENTRY: print("done") ufarc.Framework.stop() return me.handled(me, event) return me.super(me, me.top) if __name__ == "__main__": sl = Iterate() sl.start(0) ufarc.Framework.run_forever()
the-stack_106_26516
"""Plot functions for the profiling report.""" import copy from typing import Any, Callable, Optional, Union import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib.colors import Colormap, LinearSegmentedColormap, ListedColormap from matplotlib.patches import Patch from matplotlib.ticker import FuncFormatter from pandas_profiling.config import Settings from pandas_profiling.utils.common import convert_timestamp_to_datetime from pandas_profiling.visualisation.context import manage_matplotlib_context from pandas_profiling.visualisation.utils import plot_360_n0sc0pe def _plot_histogram( config: Settings, series: np.ndarray, bins: Union[int, np.ndarray], figsize: tuple = (6, 4), date: bool = False, ) -> plt.Figure: """Plot an histogram from the data and return the AxesSubplot object. Args: series: The data to plot figsize: The size of the figure (width, height) in inches, default (6,4) bins: number of bins (int for equal size, ndarray for variable size) Returns: The histogram plot. """ fig = plt.figure(figsize=figsize) plot = fig.add_subplot(111) plot.set_ylabel("Frequency") # we have precomputed the histograms... diff = np.diff(bins) plot.bar( bins[:-1] + diff / 2, # type: ignore series, diff, facecolor=config.html.style.primary_color, ) if date: def format_fn(tick_val: int, tick_pos: Any) -> str: return convert_timestamp_to_datetime(tick_val).strftime("%Y-%m-%d %H:%M:%S") plot.xaxis.set_major_formatter(FuncFormatter(format_fn)) if not config.plot.histogram.x_axis_labels: plot.set_xticklabels([]) return plot @manage_matplotlib_context() def histogram( config: Settings, series: np.ndarray, bins: Union[int, np.ndarray], date: bool = False, ) -> str: """Plot an histogram of the data. Args: config: Settings series: The data to plot. bins: number of bins (int for equal size, ndarray for variable size) date: is histogram of date(time)? Returns: The resulting histogram encoded as a string. """ plot = _plot_histogram(config, series, bins, date=date) plot.xaxis.set_tick_params(rotation=90 if date else 45) plot.figure.tight_layout() return plot_360_n0sc0pe(config) @manage_matplotlib_context() def mini_histogram( config: Settings, series: np.ndarray, bins: Union[int, np.ndarray], date: bool = False, ) -> str: """Plot a small (mini) histogram of the data. Args: config: Settings series: The data to plot. bins: number of bins (int for equal size, ndarray for variable size) Returns: The resulting mini histogram encoded as a string. """ plot = _plot_histogram(config, series, bins, figsize=(3, 2.25), date=date) plot.axes.get_yaxis().set_visible(False) plot.set_facecolor("w") for tick in plot.xaxis.get_major_ticks(): tick.label1.set_fontsize(6 if date else 8) plot.xaxis.set_tick_params(rotation=90 if date else 45) plot.figure.tight_layout() return plot_360_n0sc0pe(config) def get_cmap_half( cmap: Union[Colormap, LinearSegmentedColormap, ListedColormap] ) -> LinearSegmentedColormap: """Get the upper half of the color map Args: cmap: the color map Returns: A new color map based on the upper half of another color map References: https://stackoverflow.com/a/24746399/470433 """ # Evaluate an existing colormap from 0.5 (midpoint) to 1 (upper end) colors = cmap(np.linspace(0.5, 1, cmap.N // 2)) # Create a new colormap from those colors return LinearSegmentedColormap.from_list("cmap_half", colors) def get_correlation_font_size(n_labels: int) -> Optional[int]: """Dynamic label font sizes in correlation plots Args: n_labels: the number of labels Returns: A font size or None for the default font size """ if n_labels > 100: font_size = 4 elif n_labels > 80: font_size = 5 elif n_labels > 50: font_size = 6 elif n_labels > 40: font_size = 8 else: return None return font_size @manage_matplotlib_context() def correlation_matrix(config: Settings, data: pd.DataFrame, vmin: int = -1) -> str: """Plot image of a matrix correlation. Args: config: Settings data: The matrix correlation to plot. vmin: Minimum value of value range. Returns: The resulting correlation matrix encoded as a string. """ fig_cor, axes_cor = plt.subplots() cmap = plt.get_cmap(config.plot.correlation.cmap) if vmin == 0: cmap = get_cmap_half(cmap) cmap = copy.copy(cmap) cmap.set_bad(config.plot.correlation.bad) labels = data.columns matrix_image = axes_cor.imshow( data, vmin=vmin, vmax=1, interpolation="nearest", cmap=cmap ) plt.colorbar(matrix_image) if data.isnull().values.any(): legend_elements = [Patch(facecolor=cmap(np.nan), label="invalid\ncoefficient")] plt.legend( handles=legend_elements, loc="upper right", handleheight=2.5, ) axes_cor.set_xticks(np.arange(0, data.shape[0], float(data.shape[0]) / len(labels))) axes_cor.set_yticks(np.arange(0, data.shape[1], float(data.shape[1]) / len(labels))) font_size = get_correlation_font_size(len(labels)) axes_cor.set_xticklabels(labels, rotation=90, fontsize=font_size) axes_cor.set_yticklabels(labels, fontsize=font_size) plt.subplots_adjust(bottom=0.2) return plot_360_n0sc0pe(config) @manage_matplotlib_context() def scatter_complex(config: Settings, series: pd.Series) -> str: """Scatter plot (or hexbin plot) from a series of complex values Examples: >>> complex_series = pd.Series([complex(1, 3), complex(3, 1)]) >>> scatter_complex(complex_series) Args: config: Settings series: the Series Returns: A string containing (a reference to) the image """ plt.ylabel("Imaginary") plt.xlabel("Real") color = config.html.style.primary_color if len(series) > config.plot.scatter_threshold: cmap = sns.light_palette(color, as_cmap=True) plt.hexbin(series.real, series.imag, cmap=cmap) else: plt.scatter(series.real, series.imag, color=color) return plot_360_n0sc0pe(config) @manage_matplotlib_context() def scatter_series( config: Settings, series: pd.Series, x_label: str = "Width", y_label: str = "Height" ) -> str: """Scatter plot (or hexbin plot) from one series of sequences with length 2 Examples: >>> scatter_series(file_sizes, "Width", "Height") Args: config: report Settings object series: the Series x_label: the label on the x-axis y_label: the label on the y-axis Returns: A string containing (a reference to) the image """ plt.xlabel(x_label) plt.ylabel(y_label) color = config.html.style.primary_color data = zip(*series.tolist()) if len(series) > config.plot.scatter_threshold: cmap = sns.light_palette(color, as_cmap=True) plt.hexbin(*data, cmap=cmap) else: plt.scatter(*data, color=color) return plot_360_n0sc0pe(config) @manage_matplotlib_context() def scatter_pairwise( config: Settings, series1: pd.Series, series2: pd.Series, x_label: str, y_label: str ) -> str: """Scatter plot (or hexbin plot) from two series Examples: >>> widths = pd.Series([800, 1024]) >>> heights = pd.Series([600, 768]) >>> scatter_series(widths, heights, "Width", "Height") Args: config: Settings series1: the series corresponding to the x-axis series2: the series corresponding to the y-axis x_label: the label on the x-axis y_label: the label on the y-axis Returns: A string containing (a reference to) the image """ plt.xlabel(x_label) plt.ylabel(y_label) color = config.html.style.primary_color indices = (series1.notna()) & (series2.notna()) if len(series1) > config.plot.scatter_threshold: cmap = sns.light_palette(color, as_cmap=True) plt.hexbin(series1[indices], series2[indices], gridsize=15, cmap=cmap) else: plt.scatter(series1[indices], series2[indices], color=color) return plot_360_n0sc0pe(config) @manage_matplotlib_context() def pie_plot( config: Settings, data: pd.Series, legend_kws: Optional[dict] = None ) -> str: """Generate pie plot showing proportions of categorical and boolean variables. Modify colors by setting 'config.plot.pie.colors' to a list of valid matplotib colors. https://matplotlib.org/stable/tutorials/colors/colors.html Args: config (Settings): a config data (pd.Series): the categories and their frequency legend_kws (Optional[dict], optional): Defaults to None. Returns: str: pie plot encoded in text """ if legend_kws is None: legend_kws = {} def make_autopct(values: pd.Series) -> Callable: def my_autopct(pct: float) -> str: total = np.sum(values) val = int(round(pct * total / 100.0)) return f"{pct:.1f}% ({val:d})" return my_autopct wedges, _, _ = plt.pie( data, autopct=make_autopct(data), textprops={"color": "w"}, colors=config.plot.pie.colors, ) plt.legend(wedges, data.index.values, **legend_kws) return plot_360_n0sc0pe(config)
the-stack_106_26518
import random import numpy as np import config s1, a1 = config.patch_size_subtracter, config.patch_size_adder def is_in_bounds(im, idx): i, j, k = idx return \ i - s1 >= 0 and i + a1 < im.shape[0] and \ j - s1 >= 0 and j + a1 < im.shape[1] and \ k - s1 >= 0 and k + a1 < im.shape[2] def to_vector(lists): return [item for sublist in lists for item in sublist] def is_flip(p): return random.random() < p def get_training_example(im_idx, im_arr, im_truth_arr, lbl, idx, edge_idxs_dict=None): if not is_in_bounds(im_arr, idx): return [], [] x_for_idx = to_vector([[im_idx], idx, [0, 0, 0], [False]]) y_for_idx = lbl - 1 '''i, j, k = idx if edge_idxs_dict is not None and (i, j, k) in edge_idxs_dict: for _ in range(5): x_for_lbl.append( getX([[im_idx], idx, np.random.uniform(-5, 5, 3), [is_flip(0.5)]])) y_for_lbl.append(lbl - 1)''' return [x_for_idx], [y_for_idx] def get_examples_for_label(im_idx, im_arr, im_truth_arr, lbl, edge_idxs_dict=None): x_for_lbl, y_for_lbl = [], [] lbl_idxs = np.where(im_truth_arr == lbl) for idx in zip(*lbl_idxs): x_for_idx, y_for_idx = get_training_example(im_idx, im_arr, im_truth_arr, lbl, idx, edge_idxs_dict) x_for_lbl.extend(x_for_idx) y_for_lbl.extend(y_for_idx) return x_for_lbl, y_for_lbl def get_examples(im_idx, im_arr, im_truth_arr, edge_idxs_dict=None): x_list, y_list = [], [] for lbl in range(1, 4): x_for_lbl, y_for_lbl = get_examples_for_label(im_idx, im_arr, im_truth_arr, lbl, edge_idxs_dict) x_list.extend(x_for_lbl) y_list.extend(y_for_lbl) x_arr = np.array(x_list) y_arr = np.array(y_list) y_arr_one_hot = np.zeros([y_arr.shape[0], 3]) y_arr_one_hot[np.arange(y_arr.shape[0]), y_arr] = 1 return x_arr, y_arr_one_hot if __name__ == '__main__': pass
the-stack_106_26520
# -*- Python -*- import os import platform import re import subprocess import tempfile import lit.formats import lit.util from lit.llvm import llvm_config from lit.llvm.subst import ToolSubst from lit.llvm.subst import FindTool # Configuration file for the 'lit' test runner. # name: The name of this test suite. config.name = 'MLIR' config.test_format = lit.formats.ShTest(not llvm_config.use_lit_shell) # suffixes: A list of file extensions to treat as test files. config.suffixes = ['.td', '.mlir', '.toy', '.ll', '.tc', '.py'] # test_source_root: The root path where tests are located. config.test_source_root = os.path.dirname(__file__) # test_exec_root: The root path where tests should be run. config.test_exec_root = os.path.join(config.mlir_obj_root, 'test') config.substitutions.append(('%PATH%', config.environment['PATH'])) config.substitutions.append(('%shlibext', config.llvm_shlib_ext)) config.substitutions.append(("%mlir_src_root", config.mlir_src_root)) llvm_config.with_system_environment( ['HOME', 'INCLUDE', 'LIB', 'TMP', 'TEMP']) llvm_config.use_default_substitutions() # excludes: A list of directories to exclude from the testsuite. The 'Inputs' # subdirectories contain auxiliary inputs for various tests in their parent # directories. config.excludes = ['Inputs', 'CMakeLists.txt', 'README.txt', 'LICENSE.txt', 'lit.cfg.py', 'lit.site.cfg.py'] # test_source_root: The root path where tests are located. config.test_source_root = os.path.dirname(__file__) # test_exec_root: The root path where tests should be run. config.test_exec_root = os.path.join(config.mlir_obj_root, 'test') # Tweak the PATH to include the tools dir. llvm_config.with_environment('PATH', config.llvm_tools_dir, append_path=True) tool_dirs = [config.mlir_tools_dir, config.llvm_tools_dir] tools = [ 'mlir-opt', 'mlir-tblgen', 'mlir-translate', 'mlir-capi-ir-test', 'mlir-edsc-builder-api-test', ] # The following tools are optional tools.extend([ ToolSubst('%PYTHON', config.python_executable), ToolSubst('toy-ch1', unresolved='ignore'), ToolSubst('toy-ch2', unresolved='ignore'), ToolSubst('toy-ch3', unresolved='ignore'), ToolSubst('toy-ch4', unresolved='ignore'), ToolSubst('toy-ch5', unresolved='ignore'), ToolSubst('%cuda_wrapper_library_dir', config.cuda_wrapper_library_dir, unresolved='ignore'), ToolSubst('%linalg_test_lib_dir', config.linalg_test_lib_dir, unresolved='ignore'), ToolSubst('%mlir_runner_utils_dir', config.mlir_runner_utils_dir, unresolved='ignore'), ToolSubst('%rocm_wrapper_library_dir', config.rocm_wrapper_library_dir, unresolved='ignore'), ToolSubst('%vulkan_wrapper_library_dir', config.vulkan_wrapper_library_dir, unresolved='ignore'), ]) llvm_config.add_tool_substitutions(tools, tool_dirs) # FileCheck -enable-var-scope is enabled by default in MLIR test # This option avoids to accidentally reuse variable across -LABEL match, # it can be explicitly opted-in by prefixing the variable name with $ config.environment['FILECHECK_OPTS'] = "-enable-var-scope" # LLVM can be configured with an empty default triple # by passing ` -DLLVM_DEFAULT_TARGET_TRIPLE="" `. # This is how LLVM filters tests that require the host target # to be available for JIT tests. if config.target_triple: config.available_features.add('default_triple') # Add the python path for both the source and binary tree. # Note that presently, the python sources come from the source tree and the # binaries come from the build tree. This should be unified to the build tree # by copying/linking sources to build. if config.enable_bindings_python: llvm_config.with_environment('PYTHONPATH', [ os.path.join(config.mlir_src_root, "lib", "Bindings", "Python"), os.path.join(config.mlir_obj_root, "lib", "Bindings", "Python"), ], append_path=True)
the-stack_106_26524
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ import boto3 from botocore.paginate import (PageIterator, Paginator) from botocore.client import BaseClient from botocore.exceptions import (ClientError, ConfigNotFound, NoCredentialsError, ProfileNotFound) from typing import Dict, List from model import error_messages from model.basic_resource_attributes import (BasicResourceAttributes, BasicResourceAttributesBuilder) """ AWS Utils provide related functions to interact with aws service, e.g. getting aws account, region, resources, etc. """ _PAGINATION_MAX_ITEMS: int = 10 _PAGINATION_PAGE_SIZE: int = 10 default_session: boto3.session.Session = None class AWSConstants(object): CLOUDFORMATION_SERVICE_NAME: str = "cloudformation" CLOUDFORMATION_LIST_STACKS_API_NAME: str = "list_stacks" CLOUDFORMATION_LIST_STACK_RESOURCES_API_NAME: str = "list_stack_resources" CLOUDFORMATION_STACKS_STATUS_FILTERS: List[str] = ["CREATE_COMPLETE", "ROLLBACK_COMPLETE", "UPDATE_COMPLETE", "IMPORT_COMPLETE", "IMPORT_ROLLBACK_COMPLETE"] LAMBDA_SERVICE_NAME: str = "lambda" LAMBDA_LIST_FUNCTIONS_API_NAME: str = "list_functions" DYNAMODB_SERVICE_NAME: str = "dynamodb" DYNAMODB_LIST_TABLES_API_NAME: str = "list_tables" STS_SERVICE_NAME: str = "sts" S3_SERVICE_NAME: str = "s3" def _close_client_connection(client: BaseClient) -> None: session: boto3.session.Session = client._endpoint.http_session managers: List[object] = [session._manager, *session._proxy_managers.values()] for manager in managers: manager.clear() def _initialize_boto3_aws_client(service: str, region: str = "") -> BaseClient: if region: boto3_client: BaseClient = default_session.client(service, region_name=region) else: boto3_client: BaseClient = default_session.client(service) boto3_client.meta.events.register( f"after-call.{service}.*", lambda **kwargs: _close_client_connection(boto3_client) ) return boto3_client def setup_default_session(profile: str) -> None: try: global default_session default_session = boto3.session.Session(profile_name=profile) except (ConfigNotFound, ProfileNotFound) as error: raise RuntimeError(error) def get_default_account_id() -> str: sts_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.STS_SERVICE_NAME) try: return sts_client.get_caller_identity()["Account"] except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( "get_caller_identity", error.response['Error']['Code'], error.response['Error']['Message'])) except NoCredentialsError as error: raise RuntimeError(error) def get_default_region() -> str: region: str = default_session.region_name if region: return region sts_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.STS_SERVICE_NAME) region = sts_client.meta.region_name if region: return region return "" def list_s3_buckets(region: str = "") -> List[str]: s3_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.S3_SERVICE_NAME, region) try: response: Dict[str, any] = s3_client.list_buckets() except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( "list_buckets", error.response['Error']['Code'], error.response['Error']['Message'])) bucket_names: List[str] = [] bucket: Dict[str, any] for bucket in response["Buckets"]: bucket_names.append(bucket["Name"]) return bucket_names def list_lambda_functions(region: str = "") -> List[str]: lambda_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.LAMBDA_SERVICE_NAME, region) try: lambda_paginator: Paginator = lambda_client.get_paginator(AWSConstants.LAMBDA_LIST_FUNCTIONS_API_NAME) iterator: PageIterator = lambda_paginator.paginate(PaginationConfig={"PageSize": _PAGINATION_PAGE_SIZE}) function_names: List[str] = [] page: Dict[str, any] for page in iterator: function: Dict[str, any] for function in page["Functions"]: function_names.append(function["FunctionName"]) return function_names except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( AWSConstants.LAMBDA_LIST_FUNCTIONS_API_NAME, error.response['Error']['Code'], error.response['Error']['Message'])) def list_dynamodb_tables(region: str = "") -> List[str]: dynamodb_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.DYNAMODB_SERVICE_NAME, region) try: dynamodb_paginator: Paginator = dynamodb_client.get_paginator(AWSConstants.DYNAMODB_LIST_TABLES_API_NAME) iterator: PageIterator = dynamodb_paginator.paginate(PaginationConfig={"PageSize": _PAGINATION_PAGE_SIZE}) table_names: List[str] = [] page: Dict[str, any] for page in iterator: table_names.extend(page["TableNames"]) return table_names except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( AWSConstants.DYNAMODB_LIST_TABLES_API_NAME, error.response['Error']['Code'], error.response['Error']['Message'])) def list_cloudformation_stacks(region: str = "") -> List[str]: cfn_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.CLOUDFORMATION_SERVICE_NAME, region) try: cfn_paginator: Paginator = cfn_client.get_paginator(AWSConstants.CLOUDFORMATION_LIST_STACKS_API_NAME) iterator: PageIterator = \ cfn_paginator.paginate(StackStatusFilter=AWSConstants.CLOUDFORMATION_STACKS_STATUS_FILTERS) stack_names: List[str] = [] page: Dict[str, any] for page in iterator: stack: Dict[str, any] for stack in page["StackSummaries"]: stack_names.append(stack["StackName"]) return stack_names except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( AWSConstants.CLOUDFORMATION_LIST_STACKS_API_NAME, error.response['Error']['Code'], error.response['Error']['Message'])) def list_cloudformation_stack_resources(stack_name, region=None) -> List[BasicResourceAttributes]: cfn_client: BaseClient = _initialize_boto3_aws_client(AWSConstants.CLOUDFORMATION_SERVICE_NAME, region) try: cfn_paginator: Paginator = cfn_client.get_paginator(AWSConstants.CLOUDFORMATION_LIST_STACK_RESOURCES_API_NAME) resource_type_and_name: List[BasicResourceAttributes] = [] starting_token: str = None while True: # list cloudformation stack resources with starting token and max items. StartingToken is used to mark # the starting point of the request; if None, it means request from start. MaxItems is used to define the # total number of resources requested in the page iterator. iterator: PageIterator = \ cfn_paginator.paginate(StackName=stack_name, PaginationConfig={"MaxItems": _PAGINATION_MAX_ITEMS, "StartingToken": starting_token}) page: Dict[str, any] for page in iterator: # iterate through page iterator to fetch all resources resource: Dict[str, any] for resource in page["StackResourceSummaries"]: if "ResourceType" in resource.keys() and "PhysicalResourceId" in resource.keys(): resource_type_and_name.append(BasicResourceAttributesBuilder() .build_type(resource["ResourceType"]) .build_name_id(resource["PhysicalResourceId"]) .build()) if iterator.resume_token is None: # when resume token is none, it means there is no more resources left break else: # setting starting token to resume token, then next request will query with proper starting point starting_token = iterator.resume_token return resource_type_and_name except ClientError as error: raise RuntimeError(error_messages.AWS_SERVICE_REQUEST_CLIENT_ERROR_MESSAGE.format( AWSConstants.CLOUDFORMATION_LIST_STACK_RESOURCES_API_NAME, error.response['Error']['Code'], error.response['Error']['Message']))
the-stack_106_26525
#-*- coding: utf-8 -*- import os import torch import argparse import numpy as np from tqdm import tqdm from transformers import BertTokenizer from dataset import DualSample, TokenizedSample, OriginalDataset def tokenize_data(data, mode='train'): max_forward_asp_query_length = 0 max_forward_opi_query_length = 0 max_sentiment_query_length = 0 max_aspect_num = 0 tokenized_sample_list = [] header_fmt = 'Tokenize data {:>5s}' for sample in tqdm(data, desc=f"{header_fmt.format(mode.upper())}"): forward_queries = [] forward_answers = [] sentiment_queries = [] sentiment_answers = [] forward_queries_seg = [] sentiment_queries_seg = [] if int(len(sample.sentiment_queries)) > max_aspect_num: max_aspect_num = int(len(sample.sentiment_queries)) for idx in range(len(sample.forward_queries)): temp_query = sample.forward_queries[idx] temp_text = sample.text temp_answer = sample.forward_answers[idx] temp_query_to = ['[CLS]'] + temp_query + ['[SEP]'] + temp_text temp_query_seg = [0] * (len(temp_query) + 2) + [1] * len(temp_text) temp_answer[0] = [-1] * (len(temp_query) + 2) + temp_answer[0] temp_answer[1] = [-1] * (len(temp_query) + 2) + temp_answer[1] assert len(temp_answer[0]) == len(temp_answer[1]) == len(temp_query_to) == len(temp_query_seg) if len(temp_query_to) > max_forward_asp_query_length: max_forward_asp_query_length = len(temp_query_to) forward_queries.append(temp_query_to) forward_answers.append(temp_answer) forward_queries_seg.append(temp_query_seg) for idx in range(len(sample.sentiment_queries)): temp_query = sample.sentiment_queries[idx] temp_text = sample.text temp_answer = sample.sentiment_answers[idx] temp_query_to = ['[CLS]'] + temp_query + ['[SEP]'] + temp_text temp_query_seg = [0] * (len(temp_query) + 2) + [1] * len(temp_text) assert len(temp_query_to) == len(temp_query_seg) if len(temp_query_to) > max_sentiment_query_length: max_sentiment_query_length = len(temp_query_to) sentiment_queries.append(temp_query_to) sentiment_answers.append(temp_answer) sentiment_queries_seg.append(temp_query_seg) # import numpy as np # print(f"forward_queries: {np.shape(forward_queries)} {type(forward_queries)} | {forward_queries}") # print(f"forward_answers: {np.shape(forward_answers)}") # print(f"sentiment_queries: {np.shape(sentiment_queries)} | {sentiment_queries}") # print(f"sentiment_answers: {np.shape(sentiment_answers)} | {sentiment_answers}") # print(f"forward_queries_seg: {np.shape(forward_queries_seg)} | {forward_queries_seg}") # print(f"sentiment_queries_seg: {np.shape(sentiment_queries_seg)}") temp_sample = TokenizedSample( sample.original_sample, forward_queries, forward_answers, sentiment_queries, sentiment_answers, forward_queries_seg, sentiment_queries_seg ) # print(temp_sample) tokenized_sample_list.append(temp_sample) max_attributes = { 'mfor_asp_len': max_forward_asp_query_length, 'max_sent_len': max_sentiment_query_length, 'max_aspect_num': max_aspect_num } return tokenized_sample_list, max_attributes def preprocessing(sample_list, max_len, mode='train'): _tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') _forward_asp_query = [] _forward_asp_answer_start = [] _forward_asp_answer_end = [] _forward_asp_query_mask = [] _forward_asp_query_seg = [] _sentiment_query = [] _sentiment_answer = [] _sentiment_query_mask = [] _sentiment_query_seg = [] _aspect_num = [] header_fmt = 'Preprocessing {:>5s}' for instance in tqdm(sample_list, desc=f"{header_fmt.format(mode.upper())}"): f_query_list = instance.forward_queries f_answer_list = instance.forward_answers f_query_seg_list = instance.forward_seg s_query_list = instance.sentiment_queries s_answer_list = instance.sentiment_answers s_query_seg_list = instance.sentiment_seg # _aspect_num: 1/2/3/... _aspect_num.append(int(len(s_query_list))) # Forward # Aspect # query assert len(f_query_list[0]) == len(f_answer_list[0][0]) == len(f_answer_list[0][1]) f_asp_pad_num = max_len['mfor_asp_len'] - len(f_query_list[0]) _forward_asp_query.append(_tokenizer.convert_tokens_to_ids( [word.lower() if word not in ['[CLS]', '[SEP]'] else word for word in f_query_list[0]])) _forward_asp_query[-1].extend([0] * f_asp_pad_num) # query_mask _forward_asp_query_mask.append([1 for i in range(len(f_query_list[0]))]) _forward_asp_query_mask[-1].extend([0] * f_asp_pad_num) # answer _forward_asp_answer_start.append(f_answer_list[0][0]) _forward_asp_answer_start[-1].extend([-1] * f_asp_pad_num) _forward_asp_answer_end.append(f_answer_list[0][1]) _forward_asp_answer_end[-1].extend([-1] * f_asp_pad_num) # seg _forward_asp_query_seg.append(f_query_seg_list[0]) _forward_asp_query_seg[-1].extend([1] * f_asp_pad_num) # Sentiment single_sentiment_query = [] single_sentiment_query_mask = [] single_sentiment_query_seg = [] single_sentiment_answer = [] for j in range(len(s_query_list)): sent_pad_num = max_len['max_sent_len'] - len(s_query_list[j]) single_sentiment_query.append(_tokenizer.convert_tokens_to_ids( [word.lower() if word not in ['[CLS]', '[SEP]'] else word for word in s_query_list[j]])) single_sentiment_query[-1].extend([0] * sent_pad_num) single_sentiment_query_mask.append([1 for i in range(len(s_query_list[j]))]) single_sentiment_query_mask[-1].extend([0] * sent_pad_num) # query_seg single_sentiment_query_seg.append(s_query_seg_list[j]) single_sentiment_query_seg[-1].extend([1] * sent_pad_num) single_sentiment_answer.append(s_answer_list[j]) _sentiment_query.append(single_sentiment_query) _sentiment_query[-1].extend( [[0 for i in range(max_len['max_sent_len'])]] * (max_len['max_aspect_num'] - _aspect_num[-1])) _sentiment_query_mask.append(single_sentiment_query_mask) _sentiment_query_mask[-1].extend( [[0 for i in range(max_len['max_sent_len'])]] * (max_len['max_aspect_num'] - _aspect_num[-1])) _sentiment_query_seg.append(single_sentiment_query_seg) _sentiment_query_seg[-1].extend( [[0 for i in range(max_len['max_sent_len'])]] * (max_len['max_aspect_num'] - _aspect_num[-1])) _sentiment_answer.append(single_sentiment_answer) _sentiment_answer[-1].extend([-1] * (max_len['max_aspect_num'] - _aspect_num[-1])) result = { "_forward_asp_query": _forward_asp_query, "_forward_asp_answer_start": _forward_asp_answer_start, "_forward_asp_answer_end": _forward_asp_answer_end, "_forward_asp_query_mask": _forward_asp_query_mask, "_forward_asp_query_seg": _forward_asp_query_seg, "_sentiment_query": _sentiment_query, "_sentiment_answer": _sentiment_answer, "_sentiment_query_mask": _sentiment_query_mask, "_sentiment_query_seg": _sentiment_query_seg, "_aspect_num": _aspect_num, } return OriginalDataset(result) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, default='./data/14rest/preprocess', help='Path to the processed data from `data_process.py`') parser.add_argument('--output_path', type=str, default='./data/14rest/preprocess', help='Path to the saved data.') args = parser.parse_args() train_data_path = f"{args.data_path}/train_DUAL.pt" dev_data_path = f"{args.data_path}/dev_DUAL.pt" test_data_path = f"{args.data_path}/test_DUAL.pt" train_data = torch.load(train_data_path) dev_data = torch.load(dev_data_path) test_data = torch.load(test_data_path) train_tokenized, train_max_len = tokenize_data(train_data, mode='train') dev_tokenized, dev_max_len = tokenize_data(dev_data, mode='dev') test_tokenized, test_max_len = tokenize_data(test_data, mode='test') print(f"\nMax attributes") print(f"train_max_len : {train_max_len}") print(f"dev_max_len : {dev_max_len}") print(f"test_max_len : {test_max_len}\n") train_preprocess = preprocessing(train_tokenized, train_max_len, mode='train') dev_preprocess = preprocessing(dev_tokenized, dev_max_len, mode='dev') test_preprocess = preprocessing(test_tokenized, test_max_len, mode='test') if not os.path.exists(args.output_path): os.makedirs(args.output_path) output_path = f"{args.output_path}/data.pt" print(f"Saved data : `{output_path}`.") torch.save({ 'train': train_preprocess, 'dev': dev_preprocess, 'test': test_preprocess }, output_path)
the-stack_106_26526
# -*- coding: utf-8 -*- # -------------------------- # Copyright © 2014 - Qentinel Group. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------- from robot.api import logger from selenium.common.exceptions import NoSuchWindowException from QWeb.internal import browser, javascript, xhr, window, decorators from QWeb.internal.exceptions import QWebDriverError, QWebValueError from QWeb.internal.config_defaults import CONFIG @decorators.timeout_decorator def go_to(url, timeout=0): # pylint: disable=unused-argument """Switch current page to given url. Examples -------- .. code-block:: robotframework GoTo http://google.com GoTo file://resources/window.html Parameters ---------- url : str URL of the website that will be opened. Raises ------ UnexpectedAlertPresentException If the page opens with alert popup """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") driver.get(url) def open_window(): """Open new tab. Uses javascript to do this so javascript has to be enabled. Examples -------- .. code-block:: robotframework OpenWindow """ script = 'window.open()' javascript.execute_javascript(script) window_handles = window.get_window_handles() current_window_handle = window.get_current_window_handle() index = window_handles.index(current_window_handle) new_window_index = index + 1 window.switch_to_window(window_handles[new_window_index]) try: xhr.setup_xhr_monitor() except QWebDriverError: logger.debug('XHR monitor threw exception. Bypassing jQuery injection') def close_others(): """Close all windows except the first window. If you have a test that may open new windows, this keyword closes them and switches to the first window. Examples -------- .. code-block:: robotframework CloseOthers Raises ------ NoSuchWindowException If other windows cannot been closed """ window_handles = window.get_window_handles() logger.info("Current browser has {} tabs".format(len(window_handles))) if len(window_handles) == 1: return driver = browser.get_current_browser() while len(window_handles) > 1: try: window_handle = window_handles.pop() window.switch_to_window(window_handle) driver.close() except NoSuchWindowException: logger.info('Failed to close window') first_window_handle = window_handles.pop() window.switch_to_window(first_window_handle) number_of_handles = len(window.get_window_handles()) if number_of_handles != 1: raise Exception( 'Expected 1 window open, found {0}'.format(number_of_handles)) def close_window(): """Close current tab and switch context to another window handle. If you need to change to specific tab, use switch window keyword. Examples -------- .. code-block:: robotframework CloseWindow """ driver = browser.get_current_browser() window_handles = window.get_window_handles() logger.info("Current browser has {} tabs".format(len(window_handles))) if len(window_handles) == 1: logger.info("Only one tab, handle closing without changing context") browser.remove_from_browser_cache(driver) # remove from browser cache driver.close() else: logger.info( "Multiple tabs open, can change window context to another one") current_window = window.get_current_window_handle() current_index = window_handles.index(current_window) logger.info("Current index {}".format(current_index)) driver.close() # "refresh" window handles window_handles = window.get_window_handles() current_length = len(window_handles) logger.info( "After closing, {} tabs remain open".format(current_length)) # if current index is more than new length, move to last handle if current_index > (len(window_handles) - 1): window.switch_to_window(window_handles[(current_index - 1)]) # move to next window (as browsers do) else: window.switch_to_window(window_handles[current_index]) logger.info("Changed context to tab with url {}".format( window.get_url())) @decorators.timeout_decorator def switch_window(index, timeout=0): # pylint: disable=unused-argument """Switch to another tab. Examples -------- .. code-block:: robotframework SwitchWindow 1 SwitchWindow NEW # Switches to latest opened tab Parameters ---------- index : str Index of the tab starting from one and counting from left to right. OR Special keyword "NEW" which can be used to move to the latest opened tab. timeout : str | int How long we search before failing. Raises ------ ValueError If the window index is out of reach """ window_handles = window.get_window_handles() logger.info("Current browser contains {} tabs".format(len(window_handles))) if index.isdigit(): if int(index) == 0: raise QWebValueError('SwitchWindow index starts at 1.') i = int(index) - 1 if i < len(window_handles): correct_window_handle = window_handles[i] window.switch_to_window(correct_window_handle) return logger.debug('Tried to select tab with index {} but there' ' are only {} tabs open'.format(index, len(window_handles))) elif index == "NEW": window.switch_to_window(window_handles[-1]) return else: raise QWebValueError( 'Given argument "{}" is not a digit or NEW'.format(index)) raise QWebDriverError( 'Tried to select tab with index {} but there are only {} tabs open' .format(index, len(window_handles))) def set_window_size(width, height): """*DEPRECATED!!* Use keyword `SetConfig` instead. Set current window size. Examples -------- .. code-block:: robotframework SetWindowSize 1920 1080 Parameters ---------- width : int The width value of the window height: int The height value of the window """ width = int(width) height = int(height) driver = browser.get_current_browser() driver.set_window_size(width, height) def maximize_window(): """Maximizes current browser window. Note: This keyword will not fail if maximizing is prevented for some reason. This can happen for example if window manager is not installed or setup correctly. Examples -------- .. code-block:: robotframework MaximizeWindow Parameters ---------- None """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") if CONFIG.get_value('Headless') is True: logger.debug("Maximizing browser in headless mode") screen_width_js = driver.execute_script("return screen.width") screen_height_js = driver.execute_script("return screen.height") driver.set_window_size(screen_width_js, screen_height_js) else: driver.maximize_window() size = driver.get_window_size() logger.debug("Window size set to {}x{}".format(size["width"], size["height"])) def get_url(): """Gets current url/location. Examples -------- .. code-block:: robotframework ${url}= GetUrl Parameters ---------- None """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") return driver.current_url @decorators.timeout_decorator def verify_url(url, timeout=0): # pylint: disable=unused-argument """Verifies that current page url/location matches expected url. Examples -------- .. code-block:: robotframework VerifyUrl https://www.google.com VerifyUrl https://www.google.com timeout=5 Parameters ---------- url : str The expected url timeout : str | int How long we wait for url to change before failing. Raises ------ QWebValueError If the expected url differs from current url """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") current = driver.current_url if current.lower() != url.lower(): raise QWebValueError(f"Current url '{current}'' does not match expected url '{url}'") def get_title(): """Gets the title of current page/window. Examples -------- .. code-block:: robotframework ${title}= GetTitle Parameters ---------- None """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") return driver.title @decorators.timeout_decorator def verify_title(title, timeout=0): # pylint: disable=unused-argument """Verifies that current page's title matches expected title. Examples -------- .. code-block:: robotframework VerifyTitle Google VerifyTitle Google timeout=3 Parameters ---------- title : str The expected title timeout : str | int How long we wait for title to change before failing. Raises ------ QWebValueError If the expected title differs from actual page title """ driver = browser.get_current_browser() if driver is None: raise QWebDriverError("No browser open. Use OpenBrowser keyword" " to open browser first") actual = driver.title if actual != title: raise QWebValueError(f"Page title '{actual}'' does not match expected '{title}'") def swipe_down(times='1', start=None): """Swipes down on the screen. Examples -------- .. code-block:: robotframework SwipeDown # Swipes down once SwipeDown 5 # Swipes down five times SwipeDown 1 Qentinel Touch # Swipes down once, starting from the text "Qentinel Touch" SwipeDown 5 Qentinel Touch # Swipes down five times, from the text "Qentinel Touch" Parameters ---------- times : str The amount of times we swipe / length of the swipe start : str Optional starting point for the swipe Raises ------ ValueError If the swipe amount is not an integer. """ window.swipe('down', times, start) def swipe_up(times='1', start=None): """Swipes up on the screen. Examples -------- .. code-block:: robotframework SwipeUp # Swipes up once SwipeUp 5 # Swipes up five times SwipeUp 1 Qentinel Touch # Swipes up once, from the text "Qentinel Touch" SwipeUp 5 Qentinel Touch # Swipes up five times, from the text "Qentinel Touch" Parameters ---------- times : str The amount of times swiped / length of the swipe start : str Optional starting point for the swipe Raises ------ ValueError If the swipe amount is not an integer. """ window.swipe('up', times, start) def swipe_left(times='1', start=None): """Swipes left on the screen. Examples -------- .. code-block:: robotframework SwipeLeft # Swipes left once SwipeLeft 5 # Swipes left five times SwipeLeft 1 Qentinel Touch # Swipes left once, from the text "Qentinel Touch" SwipeLeft 5 Qentinel Touch # Swipes left five times, from the text "Qentinel Touch" Parameters ---------- times : str The amount of times swiped / length of the swipe start : str Optional starting point for the swipe Raises ------ ValueError If the swipe amount is not an integer. """ window.swipe('left', times, start) def swipe_right(times='1', start=None): """Swipes right on the screen. Examples -------- .. code-block:: robotframework SwipeRight # Swipes right once SwipeRight 5 # Swipes right five times SwipeRight 1 Qentinel Touch # Swipes right once, from the text "Qentinel Touch" SwipeRight 5 Qentinel Touch # Swipes right five times, from the text "Qentinel Touch" Parameters ---------- times : str The amount of times swiped / length of the swipe start : str Optional starting point for the swipe Raises ------ ValueError If the swipe amount is not an integer. """ window.swipe('right', times, start)
the-stack_106_26530
from time import time import tumor2d from fitmulticell.sumstat import SummaryStatistics as ss import matplotlib.pyplot as plt from string import capwords import os import pyabc from fitmulticell.model import MorpheusModel import numpy as np import scipy def eucl_dist(sim, obs): total = 0 for key in sim: if key in 'loc': continue total += scipy.stats.ks_2samp(sim[key], obs[key]).statistic return total pop_size = 2 min_eps = 750 min_eps_ori = min_eps max_nr_pop = 2 # logfilepath = "/home/emad/Insync/[email protected]/Google_Drive/Bonn/Github/FMC_paper/PEtab_problems/Code/Tumor_2d/TumorStats.txt" problempath = "/home/emad/Insync/[email protected]/Google_Drive/Bonn/Github/FMC_paper/PEtab_problems/Tumor_2D/Tumour_Spheroid_ScenI_1e.xml" par_map = {'k_div_max': './Global/Constant[@symbol="k_div_max"]', 'L_init': './Global/Constant[@symbol="L_init"]', 'q_init': './Global/Constant[@symbol="q_init"]', 'L_div': './Global/Constant[@symbol="L_div"]', 'ke_pro': './Global/Constant[@symbol="ke_pro"]', 'ke_deg': './Global/Constant[@symbol="ke_deg"]', 'e_div': './Global/Constant[@symbol="e_div"]', } start_time = time() observation_par = {"k_div_max": 4.17e-2, "L_init": 1.2e1, "q_init": 7.5e-1, "L_div": 100, "ke_pro": 5e-3, "ke_deg": 8e-4, "e_div": 1e-2} sumstat = ss(output_file="logger_1.csv", ignore=["cell.id", "time"]) model = MorpheusModel( model_file=problempath, par_map=par_map, executable="/home/emad/morpheus-2.2.5", sumstat=sumstat, ) observation_morpheus = model.sample(observation_par) model.par_scale = "log10" # observation_origin = tumor2d.simulate(division_rate=4.17e-2, # initial_spheroid_radius=1.2e1, # initial_quiescent_cell_fraction=7.5e-1, # division_depth=100, # ecm_production_rate=5e-3, # ecm_degradation_rate=8e-4, # ecm_division_threshold=1e-2) limits = dict(k_div_max=(-3, -1), L_init=(1, 3), q_init=(0, 1.2), L_div=(-5, 0), ke_pro=(-5, 0), ke_deg=(-5, 0), e_div=(-5, 0)) # prior = pyabc.Distribution(**{key: pyabc.RV("uniform", a, b - a) for key, (a, b) in limits.items()}) # data_mean = tumor2d.load_default()[1] # (raw, mean, var) # In[6]: # redis_sampler = pyabc.sampler.RedisEvalParallelSampler(host=host, port=port, look_ahead = False) abc = pyabc.ABCSMC(models=model, parameter_priors=prior, distance_function=eucl_dist, population_size=pop_size) db_path = "sqlite:///" + "/tmp/" + "test_14param_Felipe.db" abc.new(db_path, observation_morpheus) history_f = abc.run(max_nr_populations=max_nr_pop, minimum_epsilon=min_eps_ori) # petab_problem_path = "/home/emad/Insync/[email protected]/Google_Drive/Bonn/Github/FMC_paper" + '/PEtab_problems' + '/Tumor_2D' + '/Tumor_2D.yaml' # petab_problem = petab_MS.Problem.from_yaml(petab_problem_path) # importer = PetabImporter(petab_problem) # PEtab_prior = importer.create_prior() # par_map_imported = importer.get_par_map() # obs_pars_imported = petab_problem.get_x_nominal_dict(scaled=True) # PEtab_par_scale = petab_problem.get_optimization_parameter_scales() # dict_data_imported = petab_problem.get_measurement_dict() # PEtab_model = importer.create_model() # PEtab_model.timeout = 900 # PEtab_model.ignore_list = ["cell.id", "Tension", "time"] # # PEtab_tryjectory = PEtab_model.sample(obs_pars_imported) # model_dir = "/home/emad/Insync/[email protected]/Google_Drive/Bonn/Github/FMC_paper" + '/PEtab_problems' + '/Liver_regeneration' + '/YAP_Signaling_Liver_Regeneration_Model_reparametrized_further.xml' # # abc = pyabc.ABCSMC(PEtab_model, PEtab_prior, eucl_dist, population_size=2, # eps=QuantileEpsilon(alpha=0.3), all_accepted=False) # # db_path = ("sqlite:///" + # os.path.join(tempfile.gettempdir(), "test.db")) # history = abc.new(db_path, dict_data_imported) # abc.run(max_nr_populations=2)
the-stack_106_26531
import discord from discord.ext import commands import io import textwrap import os import traceback from contextlib import redirect_stdout from Admin.admin import Files intents = discord.Intents().default() intents.members = True bot = commands.Bot(command_prefix=Files.config("main","prefix"), intents=intents, case_insensitive=True, owner_ids=Files.config("main", "managers")) bot.remove_command("help") def is_owner(): def predicate(ctx): return ctx.author.id in bot.owner_ids return commands.check(predicate) @is_owner() @bot.command(aliases=["e"]) async def eval(ctx, *, body: str): raw = False """Evaluates a code""" env = { 'bot': bot, 'ctx': ctx, 'channel': ctx.message.channel, 'author': ctx.message.author, 'guild': ctx.message.guild, 'message': ctx.message, } env.update(globals()) stdout = io.StringIO() to_compile = f'async def func():\n{textwrap.indent(body, " ")}' try: exec(to_compile, env) except Exception as e: return await ctx.send(f'```py\n{e.__class__.__name__}: {e}\n```') func = env['func'] try: with redirect_stdout(stdout): ret = await func() except Exception: value = stdout.getvalue() await ctx.send(f'```py\n{value}{traceback.format_exc()}\n```') else: value = stdout.getvalue() try: await ctx.message.add_reaction('\u2705') except: pass if ret is None: if value: if raw: await ctx.send(f"{value}") else: await ctx.send(f'```py\n{value}\n```') else: pass @bot.event async def on_ready(): print("Bot is ready!") await bot.change_presence(activity=discord.Activity(type=discord.ActivityType.watching, name="over BytesToBits")) @is_owner() @bot.command(hidden=True) async def load(ctx, *, module): try: bot.load_extension(f"cogs.{module}") except commands.ExtensionError as e: await ctx.send(f'{e.__class__.__name__}: {e}') else: embed=discord.Embed(title=f"Loaded {str(module).capitalize()}", description=f"Successfully loaded cogs.{str(module).lower()}!", color=0x2cf818) await ctx.send(embed=embed) @is_owner() @bot.command(hidden=True) async def unload(ctx, *, module): try: bot.unload_extension(f"cogs.{module}") except commands.ExtensionError as e: await ctx.send(f'{e.__class__.__name__}: {e}') else: embed=discord.Embed(title=f"Unloaded {str(module).capitalize()}", description=f"Successfully unloaded cogs.{str(module).lower()}!", color=0xeb1b2c) await ctx.send(embed=embed) @is_owner() @bot.command(name="reload") async def _reload(ctx, *, module): try: bot.reload_extension(f"cogs.{module}") except commands.ExtensionError as e: await ctx.send(f'{e.__class__.__name__}: {e}') else: embed=discord.Embed(title=f"Reloaded {str(module).capitalize()}", description=f"Successfully reloaded cogs.{str(module).lower()}!", color=0x00d4ff) await ctx.send(embed=embed) for i in os.listdir("cogs"): if i == "staff": pass else: cog = i[:-3] try: bot.load_extension(f"cogs.{cog}") print(f"Loaded Main.{cog}") except Exception as e: print(e) bot.run(Files.config("main", "token"))
the-stack_106_26532
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pytype: skip-file from __future__ import absolute_import import argparse import json import logging import sys from apache_beam.metrics import MetricsFilter from apache_beam.options.pipeline_options import GoogleCloudOptions from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.testing.load_tests.load_test_metrics_utils import MetricsReader from apache_beam.testing.test_pipeline import TestPipeline class LoadTestOptions(PipelineOptions): @classmethod def _add_argparse_args(cls, parser): parser.add_argument( '--publish_to_big_query', type=cls._str_to_boolean, help='Publishes pipeline metrics to BigQuery table.') parser.add_argument( '--metrics_dataset', help='A BigQuery dataset where metrics should be' 'written.') parser.add_argument( '--metrics_table', help='A BigQuery table where metrics should be ' 'written.') parser.add_argument( '--input_options', type=json.loads, help='Input specification of SyntheticSource.') @staticmethod def _str_to_boolean(value): try: return bool(['false', 'true'].index(value.lower())) except ValueError: raise argparse.ArgumentTypeError( '"true" or "false" expected, got "{}" ' 'instead.'.format(value)) class LoadTest(object): def __init__(self): self.pipeline = TestPipeline(is_integration_test=True) load_test_options = self.pipeline.get_pipeline_options().view_as( LoadTestOptions) self.input_options = load_test_options.input_options self.metrics_namespace = load_test_options.metrics_table or 'default' publish_to_bq = load_test_options.publish_to_big_query if publish_to_bq is None: logging.info( 'Missing --publish_to_big_query option. Metrics will not ' 'be published to BigQuery.') if load_test_options.input_options is None: logging.error('--input_options argument is required.') sys.exit(1) gcloud_options = self.pipeline.get_pipeline_options().view_as( GoogleCloudOptions) self.project_id = gcloud_options.project self._metrics_monitor = MetricsReader( publish_to_bq=publish_to_bq, project_name=self.project_id, bq_table=load_test_options.metrics_table, bq_dataset=load_test_options.metrics_dataset, # Apply filter to prevent system metrics from being published filters=MetricsFilter().with_namespace(self.metrics_namespace)) def test(self): """An abstract method where the pipeline definition should be put.""" pass def cleanup(self): """An abstract method that executes after the test method.""" pass def run(self): try: self.test() if not hasattr(self, 'result'): self.result = self.pipeline.run() self.result.wait_until_finish() self._metrics_monitor.publish_metrics(self.result) finally: self.cleanup() def parse_synthetic_source_options(self, options=None): if not options: options = self.input_options return { 'numRecords': options.get('num_records'), 'keySizeBytes': options.get('key_size'), 'valueSizeBytes': options.get('value_size'), 'hotKeyFraction': options.get('hot_key_fraction', 0), 'numHotKeys': options.get('num_hot_keys', 0), 'bundleSizeDistribution': { 'type': options.get('bundle_size_distribution_type', 'const'), 'param': options.get('bundle_size_distribution_param', 0) }, 'forceNumInitialBundles': options.get('force_initial_num_bundles', 0) } def get_option_or_default(self, opt_name, default=0): """Returns a pipeline option or a default value if it was not provided. The returned value is converted to an integer. """ option = self.pipeline.get_option(opt_name) try: return int(option) except TypeError: return default
the-stack_106_26533
from keras.models import Model from keras.layers import Conv2D, MaxPooling2D, GlobalMaxPooling2D, Input from keras.utils.data_utils import get_file import keras.backend as K import h5py import numpy as np import tensorflow as tf WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5' MEAN_PIXEL = np.array([103.939, 116.779, 123.68]) WEIGHTS_PATH = get_file('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='253f8cb515780f3b799900260a226db6') def vgg_layers(inputs, target_layer): # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(inputs) if target_layer == 1: return x x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) if target_layer == 2: return x x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) if target_layer == 3: return x x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) if target_layer == 4: return x x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) return x def load_weights(model): f = h5py.File(WEIGHTS_PATH) layer_names = [name for name in f.attrs['layer_names']] for layer in model.layers: b_name = layer.name.encode() if b_name in layer_names: g = f[b_name] weights = [g[name] for name in g.attrs['weight_names']] layer.set_weights(weights) layer.trainable = False f.close() def VGG19(input_tensor=None, input_shape=None, target_layer=1): """ VGG19, up to the target layer (1 for relu1_1, 2 for relu2_1, etc.) """ if input_tensor is None: inputs = Input(shape=input_shape) else: inputs = Input(tensor=input_tensor, shape=input_shape) model = Model(inputs, vgg_layers(inputs, target_layer), name='vgg19') load_weights(model) return model def preprocess_input(x): # Convert 'RGB' -> 'BGR' if type(x) is np.ndarray: x = x[..., ::-1] else: x = tf.reverse(x, [-1]) return x - MEAN_PIXEL
the-stack_106_26535
import numpy as np class RLSFilterAnalyticIntercept(): """ Class representing the state of a recursive least squares estimator with intercept estimation. """ def __init__(self, input_dim, output_dim, alpha=1.0, forgetting_factor=1.0): self.input_dim = input_dim self.output_dim = output_dim self.param_dim = input_dim self.alpha = alpha self.forgetting_factor = forgetting_factor self.t = 0.0 self.intercept = np.zeros((self.output_dim, 1)) self.theta = np.zeros((self.param_dim, self.output_dim)) self.corrected_theta = np.zeros_like(self.theta) self.feat_mean = np.zeros((1, self.param_dim)) self.output_mean = np.zeros((1, self.output_dim)) self.covar = np.eye(self.param_dim) * alpha def _make_feature_vec(self, in_vec): assert(in_vec.shape == (self.input_dim, 1)) return in_vec.transpose() def _update_covar(self, U, C, V): assert(U.shape == (self.param_dim, 2)) assert(C.shape == (2, 2)) assert(V.shape == (2, self.param_dim)) inv_part = np.linalg.inv(C) + V.dot(self.covar).dot(U) update = self.covar.dot(U).dot(np.linalg.inv(inv_part)).dot(V).dot(self.covar) self.covar = (1.0 / self.forgetting_factor ** 2) * (self.covar - update) def _update_theta(self, C_t, feat, output): assert(feat.shape == (1, self.param_dim)) assert(output.shape == (self.output_dim, 1)) assert(C_t.shape == (self.param_dim, self.param_dim)) inner_term = feat.transpose().dot(output.transpose()) - C_t.dot(self.theta) update = self.covar.dot(inner_term) self.theta = self.theta + update def _update_output_mean(self, output): assert(output.shape == (self.output_dim, 1)) self.output_mean = (self.forgetting_factor * self.output_mean) + (1.0 / self.t) * (output.transpose() - (self.forgetting_factor * self.output_mean)) def _update_feat_mean(self, feat): assert(feat.shape == (1, self.param_dim)) self.feat_mean = (self.forgetting_factor * self.feat_mean) + (1.0 / self.t) * (feat - (self.forgetting_factor * self.feat_mean)) def _make_U(self, feat): assert(feat.shape == (1, self.param_dim)) return np.block([self.forgetting_factor * self.feat_mean.transpose(), feat.transpose()]) def _make_V(self, feat): assert(feat.shape == (1, self.param_dim)) return np.block([[self.forgetting_factor * self.feat_mean],[feat]]) def _make_C(self): return (1 / ((self.forgetting_factor * self.t) ** 2)) * np.array([[((2.0 * self.t - 1.0) ** 2) - 2.0 * (self.t ** 2), -(2.0 * self.t - 1.0) * (self.t - 1.0)], [-(2.0 * self.t - 1.0) * (self.t - 1.0), (self.t - 1.0) ** 2]]) def process_datum(self, in_vec, output): feat = self._make_feature_vec(in_vec) self.t += 1.0 if self.t == 1.0: self._update_feat_mean(feat) self._update_output_mean(output) return U = self._make_U(feat) V = self._make_V(feat) C = self._make_C() C_t = U.dot(C).dot(V) self._update_covar(U, C, V) self._update_output_mean(output) self._update_feat_mean(feat) self._update_theta(C_t, feat, output) self.corrected_theta = self.theta - ((2 * self.t - 1) * self.covar.dot(self.feat_mean.transpose()).dot(self.output_mean)) self.intercept = (self.output_mean - self.feat_mean.dot(self.corrected_theta)).transpose() def get_identified_mats(self): """ Returns the current estimated A, B, and c matrices. """ return self.corrected_theta.transpose(), self.intercept def predict(self, in_vec): feat = self._make_feature_vec(in_vec) prediction = feat.dot(self.corrected_theta).transpose() + self.intercept assert(prediction.shape == (self.output_dim, 1)) return prediction class RecursiveLassoFilter(): def __init__(self, input_dim, output_dim, alpha=1.0, forgetting_factor=1.0, gamma=1.0): self.input_dim = input_dim self.output_dim = output_dim self.param_dim = input_dim self.alpha = alpha self.gamma = gamma self.forgetting_factor = forgetting_factor self.intercept = np.zeros((self.output_dim, 1)) self.theta = np.zeros((self.param_dim, self.output_dim)) self.ls_filter = RLSFilterAnalyticIntercept(input_dim, output_dim, alpha=alpha, forgetting_factor=forgetting_factor) def _update_params(self): mod_ls_theta = np.abs(self.ls_filter.corrected_theta) - self.gamma mod_ls_intercept = np.abs(self.ls_filter.intercept) - self.gamma mod_ls_theta[mod_ls_theta < 0.0] = 0.0 mod_ls_intercept[mod_ls_intercept < 0.0] = 0.0 self.theta = np.sign(self.ls_filter.corrected_theta) * mod_ls_theta self.intercept = np.sign(self.ls_filter.intercept) * mod_ls_intercept def process_datum(self, in_vec, output): self.ls_filter.process_datum(in_vec, output) self._update_params() def get_identified_mats(self): return self.theta.transpose(), self.intercept def predict(self, in_vec): feat = self.ls_filter._make_feature_vec(in_vec) prediction = feat.dot(self.theta).transpose() + self.intercept assert(prediction.shape == (self.output_dim, 1)) return prediction
the-stack_106_26536
#!/usr/bin/env python3 # Copyright (c) 2020 The DIVI developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Tests the workflow for setting up a masternode vault (with prepared # unvault tx and destroyed private key), running the masternode with it # and unvaulting the funds later. # # We use seven nodes: # - node 0 is used to fund and unvault the masternode # - node 1 is the "hot" masternode # - node 2 holds the "temporary" vault key and can sign with it # (but we use it sparingly) # - nodes 3-6 are just used to get above the "three full nodes" threshold from test_framework import BitcoinTestFramework from util import * from messages import * from masternode import * from binascii import unhexlify import time class MnVaultsTest (BitcoinTestFramework): def __init__ (self): super (MnVaultsTest, self).__init__ () self.base_args = ["-debug=masternode", "-debug=mocktime"] self.cfg = None def setup_chain (self): for i in range (7): initialize_datadir (self.options.tmpdir, i) def setup_network (self, config_line=None, extra_args=[]): # The masternode starts off, the others are online initially. self.nodes = [ start_node (0, self.options.tmpdir, extra_args=self.base_args), None, ] + [ start_node (i, self.options.tmpdir, extra_args=self.base_args) for i in [2, 3, 4, 5, 6] ] # We want to work with mock times that are beyond the genesis # block timestamp but before current time (so that nodes being # started up and before they get on mocktime aren't rejecting # the on-disk blockchain). self.time = 1580000000 assert self.time < time.time () set_node_times (self.nodes, self.time) # Nodes 3-5 are connected between each other, and the cluster is # also connected to nodes 0-2. connect_nodes (self.nodes[3], 4) connect_nodes (self.nodes[3], 5) connect_nodes (self.nodes[3], 6) connect_nodes (self.nodes[4], 5) connect_nodes (self.nodes[4], 6) connect_nodes (self.nodes[5], 6) for i in [0, 2]: connect_nodes (self.nodes[i], 3) connect_nodes (self.nodes[i], 4) connect_nodes (self.nodes[i], 5) connect_nodes (self.nodes[i], 6) self.is_network_split = False def start_node (self, n): """Starts node n with the proper arguments and masternode config for it.""" args = self.base_args if n == 1: args.append ("-masternode") args.append ("-masternodeprivkey=%s" % self.cfg.privkey) if self.cfg: cfg = [self.cfg.line] else: cfg = [] self.nodes[n] = start_node (n, self.options.tmpdir, extra_args=args, mn_config_lines=cfg) self.nodes[n].setmocktime (self.time) for i in [3, 4, 5, 6]: connect_nodes (self.nodes[n], i) sync_blocks (self.nodes) def stop_node (self, n): stop_node (self.nodes[n], n) self.nodes[n] = None def advance_time (self, dt=1): """Advances mocktime by the given number of seconds.""" self.time += dt set_node_times (self.nodes, self.time) def mine_blocks (self, n): """Mines blocks with node 3.""" sync_mempools (self.nodes) self.nodes[3].setgenerate(True, n) sync_blocks (self.nodes) def run_test (self): self.fund_vault () self.start_masternode () self.get_payments () self.unvault () def fund_vault (self): print ("Funding masternode vault...") self.nodes[0].setgenerate (True, 5) sync_blocks (self.nodes) self.mine_blocks (20) addr = self.nodes[2].getnewaddress () privkey = self.nodes[2].dumpprivkey (addr) amount = 100 txid = self.nodes[0].sendtoaddress (addr, amount) raw = self.nodes[0].getrawtransaction (txid, 1) vout = None for i in range (len (raw["vout"])): o = raw["vout"][i] if addr in o["scriptPubKey"]["addresses"]: vout = i break assert vout is not None unvaultAddr = self.nodes[0].getnewaddress ("unvaulted") data = self.nodes[0].validateaddress (unvaultAddr) tx = CTransaction () tx.vin.append (CTxIn (COutPoint (txid=txid, n=vout))) tx.vout.append (CTxOut (amount * COIN, unhexlify (data["scriptPubKey"]))) unsigned = ToHex (tx) validated = self.nodes[0].validateaddress (addr) script = validated["scriptPubKey"] prevtx = [{"txid": txid, "vout": vout, "scriptPubKey": script}] signed = self.nodes[0].signrawtransaction (unsigned, prevtx, [privkey], "SINGLE|ANYONECANPAY") assert_equal (signed["complete"], True) self.unvaultTx = signed["hex"] self.cfg = fund_masternode (self.nodes[0], "mn", "copper", txid, "localhost:%d" % p2p_port (1)) # FIXME: Use reward address from node 0. self.cfg.rewardAddr = addr for i in [0, 2]: self.stop_node (i) self.start_node (i) # Prepare the masternode activation broadcast, without actually # relaying it to the network. After this is done, node 2 with the # "temporary" private key is no longer needed at all, and can be # shut down for the rest of the test. bc = self.nodes[2].startmasternode ("mn", True) assert_equal (bc["status"], "success") self.broadcast = bc["broadcastData"] self.stop_node (2) self.mine_blocks (20) def start_masternode (self): print ("Starting masternode from vault...") # Advance some time to simulate starting the node later (e.g. also when # restarting it as necessary during operation). for _ in range (100): self.advance_time (100) time.sleep(0.01) # Due to advancing the time without having any masternodes, sync will # have failed on the nodes that are up. Reset the sync now to make # sure they will then properly sync together with the other nodes # after we start our masternode. for n in self.nodes: if n is not None: n.mnsync ("reset") # Now start and activate the masternode based on the stored # broadcast message. self.start_node (1) bc = self.nodes[1].broadcaststartmasternode (self.broadcast, "update_ping") assert_equal (bc["status"], "success") # Finish masternode sync. for _ in range (100): self.advance_time () time.sleep(0.01) for n in self.nodes: if n is not None: status = n.mnsync ("status") assert_equal (status["currentMasternodeSyncStatus"], 999) # Check that the masternode is indeed active. data = self.nodes[1].getmasternodestatus () assert_equal (data["status"], 4) assert_equal (data["message"], "Masternode successfully started") def get_payments (self): print ("Receiving masternode payments...") # For payments, the masternode needs to be active at least 8000 seconds # and we also need at least 100 blocks. We also need some extra # leeway in the time due to the one hour we add to the current time # when signing a collateral that is not yet 15 times confirmed. self.mine_blocks (100) for _ in range (150): self.advance_time (100) time.sleep(0.01) cnt = self.nodes[3].getmasternodecount () assert_equal (cnt["total"], 1) assert_equal (cnt["enabled"], 1) assert_equal (cnt["inqueue"], 1) # Mine some blocks, but advance the time in between and do it # one by one so the masternode winners can get broadcast between # blocks and such. for _ in range (10): self.mine_blocks (1) self.advance_time (10) time.sleep(0.01) # Check that some payments were made. winners = self.nodes[3].getmasternodewinners () found = False for w in winners: if w["winner"]["address"] == self.cfg.rewardAddr: found = True break assert_equal (found, True) # FIXME: Check in wallet when we have a custom reward address. def unvault (self): print ("Unvaulting the funds...") # The prepared unvaulting tx is just a single input/output pair # with no fee attached. To add the transaction fee, we add another # input and output, which is fine due to the SINGLE|ANYONECANPAY signature # that we used. fee = Decimal ('0.10000000') inp = self.nodes[0].listunspent ()[0] change = int ((inp["amount"] - fee) * COIN) assert_greater_than (change, 0) changeAddr = self.nodes[0].getnewaddress () data = self.nodes[0].validateaddress (changeAddr) tx = FromHex (CTransaction (), self.unvaultTx) tx.vin.append (CTxIn (COutPoint (txid=inp["txid"], n=inp["vout"]))) tx.vout.append (CTxOut (change, unhexlify (data["scriptPubKey"]))) partial = ToHex (tx) signed = self.nodes[0].signrawtransaction (partial) assert_equal (signed["complete"], True) self.nodes[0].sendrawtransaction (signed["hex"]) self.mine_blocks (1) assert_equal (self.nodes[0].getbalance ("unvaulted"), 100) if __name__ == '__main__': MnVaultsTest ().main ()
the-stack_106_26537
"""Function to compare global distributions of turnover time.""" import os.path import iris import cartopy.crs as ccrs import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import scipy.stats as stats from esmvaltool.diag_scripts.shared import ( ProvenanceLogger, get_diagnostic_filename, get_plot_filename, group_metadata, run_diagnostic, ) import esmvaltool.diag_scripts.land_carbon_cycle.plot_utils as plut from esmvaltool.diag_scripts.land_carbon_cycle.shared import ( _apply_common_mask, _load_variable, _remove_invalid, _var_name_constraint, ) from esmvaltool.diag_scripts.land_carbon_cycle.provenance import ( _get_ancestor_files, _get_provenance_record, ) # set the properties of the lines used for hatching mpl.rcParams['hatch.color'] = 'yellow' mpl.rcParams['hatch.linewidth'] = 0.7 # Figure settings and colorbar info def _get_diagonal_colorbar_info(): """ Get dictionary of colormap and colorbar information for diagonal maps. needed for plotting the maps along the diagonal, i.e., the maps of turnover time """ cb_info_diagonal = {} cb_name = 'plasma_r' cb_info_diagonal['tickBounds'] = np.concatenate( ([1], np.linspace(8, 16, num=10)[:-1], np.linspace(16, 32, num=10)[:-1], np.linspace(32, 64, num=10)[:-1], np.linspace(64, 128, num=10)[:-1], np.linspace(128, 256, num=10)[:-1], np.linspace(256, 1000, num=2, endpoint=True))) cb_info_diagonal['ticksLoc'] = np.array([1, 8, 16, 32, 64, 128, 256]) clist_ = plut.get_colomap(cb_name, cb_info_diagonal['tickBounds'], lowp=0., hip=1) cb_info_diagonal['colMap'] = mpl.colors.ListedColormap(clist_) return cb_info_diagonal def _get_fig_config(diag_config): """ Get figure setting and configurations. default settings of the figure, and replace default with runtime settings from recipe Argument: -------- diag_config - nested dictionary of metadata Return: ------ a dictionary of settings """ nmodels = len(group_metadata(diag_config['input_data'].values(), 'dataset')) + 1 w_pl = 1. / nmodels h_pl = w_pl aspect_map = 0.5 fig_config = { # generic settings 'ax_fs': 7.1, 'fill_value': np.nan, # settings of the figure and maps 'x0': 0.02, 'y0': 1.0, 'wp': w_pl, 'hp': h_pl, 'xsp': 0.0, 'ysp': -0.03, 'aspect_map': aspect_map, # settings for the location of scatterplots 'xsp_sca': w_pl / 3 * aspect_map, 'ysp_sca': h_pl / 3 * aspect_map, # colorbar specific settings 'hcolo': 0.0123, 'wcolo': 0.25, 'cb_off_y': 0.06158, 'x_colo_d': 0.02, 'x_colo_r': 0.76, 'y_colo_single': 0.1086, # the correlation method for metric # given in the title of the scatterplot 'correlation_method': 'spearman', 'tx_y_corr': 1.075, # define the range of data and masks 'valrange_sc': (2, 256), 'obs_global': 23, 'gpp_threshold': 0.01 } # replace default values with those provided in recipe fig_config.update(diag_config.get('fig_config')) return fig_config def _get_ratio_colorbar_info(): """ Get dictionary of colormap and colorbar information for off-diagonal maps. The maps of ratios above the diagonal. """ cb_info_ratio = {} border = 0.9 ncolo = 128 num_gr = int(ncolo // 4) num_col = num_gr - 4 # get the colormap cb_info_ratio['tickBounds'] = np.concatenate( (np.geomspace(0.2, 0.25, num=num_col), np.geomspace(0.25, 0.33, num=num_col), np.geomspace(0.33, 0.5, num=num_col), np.geomspace(0.5, border, num=num_col), np.linspace(border, 1 / border, num=num_gr), np.geomspace(1 / border, 2, num=num_col), np.geomspace(2, 3, num=num_col), np.geomspace(3, 4, num=num_col), np.geomspace(4, 5, num=num_col))) colors1 = plt.cm.Blues(np.linspace(0.15, 0.998, (num_col) * 4))[::-1] colorsgr = np.tile(np.array([0.8, 0.8, 0.8, 1]), num_gr).reshape(num_gr, -1) colors2 = plt.cm.Reds(np.linspace(0.15, 0.998, (num_col) * 4)) # combine them and build a new colormap colors1g = np.vstack((colors1, colorsgr)) colors = np.vstack((colors1g, colors2)) cb_info_ratio['colMap'] = mpl.colors.LinearSegmentedColormap.from_list( 'my_colormap', colors) cb_info_ratio['ticksLoc'] = [0.2, 0.25, 0.33, 0.5, 0.9, 1.1, 2, 3, 4, 5] cb_info_ratio['ticksLab'] = [ '$\\dfrac{1}{5}$', '$\\dfrac{1}{4}$', '$\\dfrac{1}{3}$', '$\\dfrac{1}{2}$', '$\\dfrac{1}{1.1}$', '$1.1$', '$2$', '$3$', '$4$', '$5$' ] return cb_info_ratio def _get_agreement_mask(mmdat, dat_5, dat_95, nmodel_reject=2): """ Get mask of multimodel agreement. Finds regions where fewer than one quarter of the model simulations are outside the range of observational uncertainty. """ _maskf = np.zeros_like(mmdat) _maskf[(mmdat < dat_95) & (mmdat > dat_5)] = 1 num_count = _maskf.sum(0) agreement_mask = np.zeros_like(num_count) agreement_mask[num_count < nmodel_reject] = 1 wnan = np.ma.masked_invalid(dat_5).mask agreement_mask[wnan] = 0. return agreement_mask def _get_hex_data(dat_1, dat_2, fig_config): """ Get data for density plots. Requires that both the arrays have the same mask with regards to valid data points """ dat_1[(dat_1 < fig_config['valrange_sc'][0] * 0.5)] = np.nan dat_1[(dat_1 > fig_config['valrange_sc'][1] * 1.5)] = np.nan dat_2[(dat_2 < fig_config['valrange_sc'][0] * 0.5)] = np.nan dat_2[(dat_2 > fig_config['valrange_sc'][1] * 1.5)] = np.nan dat_1, dat_2 = _apply_common_mask(dat_1, dat_2) dat_1mc = np.ma.masked_equal(dat_1, np.nan).compressed() dat_2mc = np.ma.masked_equal(dat_2, np.nan).compressed() return dat_1mc, dat_2mc def _get_obs_data(diag_config): """ Get and handle the observations of turnover time from Carvalhais 2014. Argument: -------- diag_config - nested dictionary of metadata Return: ------ dictionary with observation data with different variables as keys """ if not diag_config.get('obs_variable'): raise ValueError('The observation variable needs to be specified in ' 'the recipe (see recipe description for details)') obs_dir = os.path.join(diag_config['auxiliary_data_dir'], diag_config['obs_info']['obs_data_subdir']) all_data = {} all_data['global'] = {} all_data['grid'] = {} fig_config = _get_fig_config(diag_config) var_list = diag_config.get('obs_variable') input_files = [] for _var in var_list: var_list = np.append(var_list, '{var}_{perc:d}'.format(var=_var, perc=5)) var_list = np.append(var_list, '{var}_{perc:d}'.format(var=_var, perc=95)) obs_filename = (f'{_var}_{{frequency}}_{{source_label}}_' f'{{variant_label}}_{{grid_label}}.nc'.format( **diag_config['obs_info'])) input_files = np.append(input_files, os.path.join(obs_dir, obs_filename)) nvars = len(var_list) for v_ind in range(nvars): var_obs = var_list[v_ind] all_data['coords'] = {} variable_constraint = _var_name_constraint(var_obs) cube = iris.load_cube(input_files, constraint=variable_constraint) all_data['grid'][var_obs] = cube all_data['global'][var_obs] = fig_config['obs_global'] for coord in cube.coords(): all_data['coords'][coord.name()] = coord.points all_data['input_files'] = input_files return all_data def _calc_turnover(ctotal, gpp, _model): """ Calculate the turnover time from ctotal and gpp. Argument: -------- ctotal- iris cube of total carbon stock gpp - iris cube of gross primary productivity Return: ------ tau_ctotal - iris cube of turnover time in years """ # calculate turnover and convert units to yr tau_ctotal = (ctotal / gpp) tau_ctotal.convert_units('yr') # set the attributes tau_ctotal.var_name = 'tau_ctotal' tau_ctotal.standard_name = None tau_ctotal.long_name = 'ecosystem_carbon_turnover_time' tau_ctotal.units = 'yr' return tau_ctotal def _fix_map(axis_obj): """ Beautify map object. Clean boundaries, coast lines, and removes the outline box/circle. """ axis_obj.set_global() axis_obj.coastlines(linewidth=0.4, color='grey') plt.gca().outline_patch.set_visible(False) return axis_obj def _get_data_to_plot(_data): """ Get data to plot on map. Correct for the rotations of latitude and longitude. """ xroll = _data.shape[1] / 2 _data = np.roll(np.flipud(_data), int(xroll), axis=1) return _data def _get_matrix_map_axes(_row_m, _col_m, _fig_config): """ Get the axes object for matrix maps. Argument: -------- _row_m - row location in the matrix _col_m - column location in the matrix _fig_config - figure settings Return: ------ _ax - an axes object """ if _row_m == _col_m: _ax = plt.axes([ _fig_config['x0'] + _row_m * _fig_config['wp'] + _row_m * _fig_config['xsp'], _fig_config['y0'] - (_col_m * _fig_config['hp'] + _col_m * _fig_config['ysp']), _fig_config['wp'], _fig_config['hp'] ], projection=ccrs.Robinson(central_longitude=0), frameon=False) if _row_m < _col_m: _ax = plt.axes([ _fig_config['x0'] + _row_m * _fig_config['wp'] + _row_m * _fig_config['xsp'] + _fig_config['xsp_sca'], _fig_config['y0'] - (_col_m * _fig_config['hp'] + _col_m * _fig_config['ysp']) + _fig_config['ysp_sca'], _fig_config['wp'] * _fig_config['aspect_map'], _fig_config['hp'] * _fig_config['aspect_map'] ]) if _row_m > _col_m: _ax = plt.axes([ _fig_config['x0'] + _row_m * _fig_config['wp'] + _row_m * _fig_config['xsp'], _fig_config['y0'] - (_col_m * _fig_config['hp'] + _col_m * _fig_config['ysp']), _fig_config['wp'], _fig_config['hp'] ], projection=ccrs.Robinson(central_longitude=0), frameon=False) return _ax def _fix_matrix_axes(row_m, col_m, models, nmodels, diag_config, fig_config): """Fix the axes lines and titles in matrix maps.""" row_mod = models[row_m] col_mod = models[col_m] if row_m != 0 and col_m != nmodels - 1: plut.ax_clr() plut.rotate_labels(which_ax='x', axfs=fig_config['ax_fs'], rot=90) elif row_m == 0 and col_m != nmodels - 1: plut.ax_clr_x(axfs=fig_config['ax_fs']) plut.rotate_labels(which_ax='x', axfs=fig_config['ax_fs'], rot=90) elif col_m == nmodels - 1 and row_m != 0: plut.ax_clr_y(axfs=fig_config['ax_fs']) plut.rotate_labels(which_ax='x', axfs=fig_config['ax_fs'], rot=90) if row_m == 0 and col_m == nmodels - 1: plut.ax_orig(axfs=fig_config['ax_fs']) plut.rotate_labels(which_ax='x', axfs=fig_config['ax_fs'], rot=90) plt.ylabel('$model_{column}$', fontsize=fig_config['ax_fs']) plt.xlabel('$model_{row}$', fontsize=fig_config['ax_fs']) if col_m == 0: if row_mod == 'obs': _title_sp = diag_config['obs_info']['source_label'] else: _title_sp = row_mod plt.title(str(row_m + 1) + ': ' + _title_sp, fontsize=0.809 * fig_config['ax_fs']) if row_m == nmodels - 1: if col_mod == 'obs': _title_sp = diag_config['obs_info']['source_label'] else: _title_sp = col_mod _title_sp = str(col_m + 1) t_x = plt.gca().text(1.1, 0.5, _title_sp, fontsize=0.809 * fig_config['ax_fs'], va='center', ha='center', transform=plt.gca().transAxes) else: t_x = '' return t_x def _draw_121_line(): """Draw 1:1 line on the current axis.""" ymin, ymax = plt.ylim() xmin, xmax = plt.xlim() plt.plot((xmin, xmax), (ymin, ymax), 'k', lw=0.1) def _plot_matrix_map(plot_path_matrix, global_tau_mod, global_tau_obs, diag_config): """ Plot the matrix of maps model-observation full factorial comparison. Argument: -------- diag_config - nested dictionary of metadata cube - the cube to plot dataset - name of the dataset to plot """ fig_config = _get_fig_config(diag_config) models = list(global_tau_mod['grid'].keys()) models = sorted(models, key=str.casefold) multimodel_stats = 'MultiModelMedian MultiModelMean'.split() for _mm in multimodel_stats: if _mm in models: models.append(models.pop(models.index(_mm))) models.insert(0, 'obs') global_tau_mod['grid']['obs'] = global_tau_obs['grid']['tau_ctotal'] global_tau_mod['global']['obs'] = global_tau_obs['global']['tau_ctotal'] nmodels = len(models) # define the data and information for plotting ratios cb_info_ratio = _get_ratio_colorbar_info() # get the colormap for diagonal maps cb_info_diagonal = _get_diagonal_colorbar_info() plt.figure(figsize=(9, 6)) for row_m in range(nmodels): dat_row = global_tau_mod['grid'][models[row_m]].data for col_m in range(nmodels): dat_col = global_tau_mod['grid'][models[col_m]].data _ax = _get_matrix_map_axes(row_m, col_m, fig_config) # plot the maps along the diagonal if row_m == col_m: plt.imshow(_get_data_to_plot(dat_row), norm=mpl.colors.BoundaryNorm( cb_info_diagonal['tickBounds'], len(cb_info_diagonal['tickBounds'])), cmap=cb_info_diagonal['colMap'], origin='upper', vmin=cb_info_diagonal['tickBounds'][0], vmax=cb_info_diagonal['tickBounds'][-1], transform=ccrs.PlateCarree()) _fix_map(_ax) # plot the scatterplot/density plot below the diagonal if row_m < col_m: dat1h, dat2h = _get_hex_data(dat_col, dat_row, fig_config) _ax.hexbin(dat1h, dat2h, bins='log', mincnt=3, gridsize=40, cmap='viridis_r', linewidths=0) plt.ylim(fig_config['valrange_sc'][0], fig_config['valrange_sc'][1] * 1.05) plt.xlim(fig_config['valrange_sc'][0], fig_config['valrange_sc'][1] * 1.05) _draw_121_line() if fig_config['correlation_method'] == 'pearson': corr = (stats.pearsonr(dat1h, dat2h)[0])**2 else: corr = (stats.spearmanr(dat1h, dat2h)[0])**2 plt.title('$R^2$={corr:.2f}'.format(corr=corr), fontsize=fig_config['ax_fs'] * 0.953, ma='left', y=fig_config['tx_y_corr'], va="top") # plot the maps of ratio of models and observation above the # diagonal if row_m > col_m: plot_dat = _remove_invalid(dat_row / dat_col, fill_value=fig_config['fill_value']) _ax.imshow(_get_data_to_plot(plot_dat), norm=mpl.colors.BoundaryNorm( cb_info_ratio['tickBounds'], len(cb_info_ratio['tickBounds'])), interpolation='none', vmin=cb_info_ratio['tickBounds'][0], vmax=cb_info_ratio['tickBounds'][-1], cmap=cb_info_ratio['colMap'], origin='upper', transform=ccrs.PlateCarree()) _fix_map(_ax) t_x = _fix_matrix_axes(row_m, col_m, models, nmodels, diag_config, fig_config) # plot the colorbar for maps along the diagonal y_colo = fig_config['y0'] + fig_config['hp'] + fig_config['cb_off_y'] _axcol_dia = [ fig_config['x_colo_d'], y_colo, fig_config['wcolo'], fig_config['hcolo'] ] cb_tit_d = '{name} ({unit})'.format( name=global_tau_mod['grid'][models[col_m]].long_name, unit=global_tau_mod['grid'][models[col_m]].units) col_bar = plut.mk_colo_tau(_axcol_dia, cb_info_diagonal['tickBounds'], cb_info_diagonal['colMap'], tick_locs=cb_info_diagonal['ticksLoc'], cbfs=0.86 * fig_config['ax_fs'], cbtitle=cb_tit_d, cbrt=90) # plot the colorbar for maps above the diagonal y_colo = fig_config['y0'] + fig_config['hp'] + fig_config['cb_off_y'] _axcol_rat = [ fig_config['x_colo_r'], y_colo, fig_config['wcolo'], fig_config['hcolo'] ] col_bar = plut.mk_colo_cont( _axcol_rat, cb_info_ratio['tickBounds'], cb_info_ratio['colMap'], cbfs=0.7 * fig_config['ax_fs'], cbrt=90, col_scale='log', cbtitle='ratio ($model_{column}$/$model_{row}$)', tick_locs=cb_info_ratio['ticksLoc']) col_bar.ax.set_xticklabels(cb_info_ratio['ticksLab'], fontsize=0.86 * fig_config['ax_fs'], ha='center', rotation=0) # save and close figure plut.save_figure(plot_path_matrix, _extr_art=[t_x]) plt.close() def _plot_multimodel_agreement(plot_path_multimodel, global_tau_mod, global_tau_obs, diag_config): """ Plot map of multimodel bias and multimodel agreement. Argument: -------- global_tau_mod - dictionary of all model data global_tau_obs - dictionary of observed data diag_config - nested dictionary of metadata """ # get the settings for plotting figure fig_config = _get_fig_config(diag_config) # get the observation data needed to calculate the bias and multimodel # agreement obs_var = diag_config.get('obs_variable')[0] tau_obs = global_tau_obs['grid'][obs_var].data tau_obs_5 = global_tau_obs['grid'][obs_var + '_5'].data tau_obs_95 = global_tau_obs['grid'][obs_var + '_95'].data # set the information of the colormap used for plotting bias cb_info = _get_ratio_colorbar_info() # calculate the bias of multimodel median turnover time models = list(global_tau_mod['grid'].keys()) # remove multimodel estimates from the list of models multimodel_stats = 'MultiModelMedian MultiModelMean'.split() for _mm in multimodel_stats: if _mm in models: models.remove(_mm) nmodels = len(models) dat_tau_full = np.ones((nmodels, np.shape(tau_obs)[0], np.shape(tau_obs)[1])) * fig_config['fill_value'] for row_m in range(nmodels): row_mod = models[row_m] dat_tau = global_tau_mod['grid'][row_mod] dat_tau_full[row_m] = _remove_invalid( dat_tau.data, fill_value=fig_config['fill_value']) mm_tau = _remove_invalid(np.nanmedian(dat_tau_full, axis=0), fill_value=fig_config['fill_value']) mm_bias_tau = mm_tau / tau_obs mm_bias_tau = _remove_invalid(mm_bias_tau, fill_value=fig_config['fill_value']) # define figure and main axis to plot the map plt.figure(figsize=(5, 3)) _ax = plt.axes([0.1, 0.1, 0.9, 0.9], projection=ccrs.Robinson(central_longitude=0), frameon=False) # plot the data of multimodel bias (=bias of multimodel median turnover # time) _ax.imshow(_get_data_to_plot(mm_bias_tau), norm=mpl.colors.BoundaryNorm(cb_info['tickBounds'], len(cb_info['tickBounds'])), interpolation='none', vmin=cb_info['tickBounds'][0], vmax=cb_info['tickBounds'][-1], cmap=cb_info['colMap'], origin='upper', transform=ccrs.PlateCarree()) _fix_map(_ax) # get the model agreement mask (less than quarter of the model within the # observational uncertainty) agreement_mask_tau = _get_agreement_mask(dat_tau_full, tau_obs_5, tau_obs_95, nmodel_reject=int(nmodels / 4)) # plot the hatches for uncertainty/multimodel agreement lats = global_tau_obs['coords']['latitude'] lons = global_tau_obs['coords']['longitude'] latint = abs(lats[1] - lats[0]) lonint = abs(lons[1] - lons[0]) x_lat, y_lon = np.meshgrid(lons - lonint / 2, lats - latint / 2) _ax.contourf(x_lat, y_lon, agreement_mask_tau, levels=[0, 0.5, 1], alpha=0., hatches=['', '//////'], linewidth=0.2, transform=ccrs.PlateCarree()) title_str = ('multimodel bias and agreement (-)\n{title}'.format( title=global_tau_obs['grid']['tau_ctotal'].long_name)) plt.title(title_str, fontsize=0.98 * fig_config['ax_fs']) # plot colorbar using extraUtils _axcol_rat = [0.254, fig_config['y_colo_single'], 0.6, 0.035] col_bar = plut.mk_colo_cont(_axcol_rat, cb_info['tickBounds'], cb_info['colMap'], cbfs=0.8 * fig_config['ax_fs'], cbrt=90, col_scale='log', cbtitle='', tick_locs=cb_info['ticksLoc']) col_bar.ax.set_xticklabels(cb_info['ticksLab'], fontsize=0.9586 * fig_config['ax_fs'], ha='center', rotation=0) # save and close figure t_x = plt.figtext(0.5, 0.5, ' ', transform=plt.gca().transAxes) plut.save_figure(plot_path_multimodel, _extr_art=[t_x]) plt.close() def _plot_single_map(plot_path, _dat, _datglobal, _name, provenance_record, diag_config): """ Plot a map for a given variable. Argument: -------- diag_config - nested dictionary of metadata cube - the cube to plot dataset - name of the dataset to plot """ # figure configuration fig_config = _get_fig_config(diag_config) # colormap configuration cb_info = _get_diagonal_colorbar_info() # define the figure and axis plt.figure(figsize=(5, 3)) _ax = plt.axes([0.1, 0.1, 0.9, 0.9], projection=ccrs.Robinson(central_longitude=0), frameon=False) # plot data over the map plt.imshow(_get_data_to_plot(_dat.data), norm=mpl.colors.BoundaryNorm(cb_info['tickBounds'], len(cb_info['tickBounds'])), cmap=cb_info['colMap'], origin='upper', vmin=cb_info['tickBounds'][0], vmax=cb_info['tickBounds'][-1], transform=ccrs.PlateCarree()) _fix_map(_ax) # get the data and set the title of the map _dat_median = np.nanmedian( _remove_invalid(_dat.data, fill_value=fig_config['fill_value'])) title_str = (f'{_dat.long_name} ({_dat.units}), {_name},\n' f'global = {_datglobal:.2f}, median = {_dat_median:.2f}') plt.title(title_str, fontsize=0.98 * fig_config['ax_fs']) # draw the colorbar _axcol_dia = [0.254, fig_config['y_colo_single'], 0.6, 0.035] plut.mk_colo_tau(_axcol_dia, cb_info['tickBounds'], cb_info['colMap'], tick_locs=cb_info['ticksLoc'], cbfs=0.86 * fig_config['ax_fs'], cbtitle='', cbrt=90) # save and close figure t_x = plt.figtext(0.5, 0.5, ' ', transform=plt.gca().transAxes) plut.save_figure(plot_path, _extr_art=[t_x]) plt.close() with ProvenanceLogger(diag_config) as provenance_logger: provenance_logger.log(plot_path, provenance_record) def main(diag_config): """ Evaluate global distribution of ecosystem carbon turnover time. Argument: -------- diag_config - nested dictionary of metadata """ model_data_dict = group_metadata(diag_config['input_data'].values(), 'dataset') # get the data from the observation global_tau_obs = _get_obs_data(diag_config) base_name = ('{title}_{source_label}_' '{grid_label}'.format( title=global_tau_obs['grid']['tau_ctotal'].long_name, source_label=diag_config['obs_info']['source_label'], grid_label=diag_config['obs_info']['grid_label'])) global_tau_mod = {} global_tau_mod['grid'] = {} global_tau_mod['global'] = {} provenance_record_matrix = _get_provenance_record( "Matrix Comparison of global distributions of turnover time of carbon", ['mean', 'perc'], ['global'], _get_ancestor_files(diag_config, 'tau_ctotal')) provenance_record_multimodel = _get_provenance_record( "Multimodel bias and agreements of global distributions of turnover" "time of carbon. Reproduces figure 3 in Carvalhais et al. (2014).", ['mean', 'perc'], ['global'], _get_ancestor_files(diag_config, 'tau_ctotal')) for model_name, model_dataset in model_data_dict.items(): global_tau_mod[model_name] = {} # load the data ctotal = _load_variable(model_dataset, 'ctotal') gpp = _load_variable(model_dataset, 'gpp') tau_ctotal = _calc_turnover(ctotal, gpp, model_name) global_tau_mod['grid'][model_name] = tau_ctotal # apply the GPP threshold and set the data in dictionary gpp_global = gpp.collapsed(['latitude', 'longitude'], iris.analysis.SUM) ctotal_global = ctotal.collapsed(['latitude', 'longitude'], iris.analysis.SUM) tau_global = ctotal_global / gpp_global tau_global.convert_units('yr') global_tau_mod['global'][model_name] = np.float(tau_global .core_data()) base_name_mod = ( 'global_{title}_{source_label}_' '{grid_label}'.format( title=global_tau_obs['grid']['tau_ctotal'].long_name, source_label=model_name, grid_label=diag_config['obs_info']['grid_label'])) plot_path_mod = get_plot_filename(base_name_mod, diag_config) # plot_path_list.append(plot_path_mod) provenance_record_mod = _get_provenance_record( "Map of global distribution of turnover time of carbon", ['mean', 'perc'], ['global'], {model_name: model_dataset}) _plot_single_map(plot_path_mod, tau_ctotal, global_tau_mod['global'][model_name], model_name, provenance_record_mod, diag_config) model_cubes = [ c for c in global_tau_mod['grid'].values() if isinstance(c, iris.cube.Cube) ] obs_cubes = [ c for c in global_tau_obs['grid'].values() if isinstance(c, iris.cube.Cube) ] netcdf_path = get_diagnostic_filename(base_name_mod, diag_config) save_cubes = iris.cube.CubeList(model_cubes + obs_cubes) iris.save(save_cubes, netcdf_path) with ProvenanceLogger(diag_config) as provenance_logger: provenance_logger.log(netcdf_path, provenance_record_mod) # multimodel agreement base_name_multimodel = '{prefix}_{base_name}'.format( prefix='global_multimodelAgreement', base_name=base_name) plot_path_multimodel = get_plot_filename(base_name_multimodel, diag_config) _plot_multimodel_agreement(plot_path_multimodel, global_tau_mod, global_tau_obs, config) with ProvenanceLogger(diag_config) as provenance_logger: provenance_logger.log(plot_path_multimodel, provenance_record_multimodel) # map of observation base_name_obs = '{prefix}_{base_name}'.format(prefix='global', base_name=base_name) plot_path_obs = get_plot_filename(base_name_obs, diag_config) provenance_record_obs = _get_provenance_record( "Map of observed global distribution of turnover time of carbon", ['mean', 'perc'], ['global'], global_tau_obs['input_files'].tolist()) _plot_single_map(plot_path_obs, global_tau_obs['grid']['tau_ctotal'], global_tau_obs['global']['tau_ctotal'], config['obs_info']['source_label'], provenance_record_obs, diag_config) # matrix of maps base_name_matrix = '{prefix}_{base_name}'.format( prefix='global_matrix_map', base_name=base_name) plot_path_matrix = get_plot_filename(base_name_matrix, diag_config) _plot_matrix_map(plot_path_matrix, global_tau_mod, global_tau_obs, config) with ProvenanceLogger(diag_config) as provenance_logger: provenance_logger.log(plot_path_matrix, provenance_record_matrix) if __name__ == '__main__': with run_diagnostic() as config: main(config)
the-stack_106_26540
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json, pprint import requests class Authenticator( object ): """ Enables easy calls to the BorrowDirect authN/Z webservices. BorrowDirect 'Authentication Web Service' docs: <http://borrowdirect.pbworks.com/w/page/90132761/Authentication%20Web%20Service> (login required) BorrowDirect 'Authorization Web Service' docs: <http://borrowdirect.pbworks.com/w/page/90132884/Authorization%20Web%20Service> (login required) Called by BorrowDirect.run_auth_nz() """ def __init__( self, logger ): self.logger = logger def authenticate( self, patron_barcode, api_url, api_key, partnership_id, university_code ): """ Accesses and returns authentication-id for storage. Called by BorrowDirect.run_auth_nz(), Searcher.get_authorization_id(), and Requester.get_authorization_id() """ url = '%s/portal-service/user/authentication' % api_url headers = { 'Content-type': 'application/json', 'Accept': 'text/plain'} params = self._make_auth_params( patron_barcode, api_url, api_key, partnership_id, university_code ) self.logger.debug( 'params, `%s`' % pprint.pformat(params) ) r = requests.post( url, data=json.dumps(params), headers=headers ) self.logger.debug( 'auth response, `%s`' % unicode(r.content) ) authentication_id = r.json()['AuthorizationId'] return authentication_id def _make_auth_params( self, patron_barcode, api_url, api_key, partnership_id, university_code ): """ Preps param dict. Called by authenticate() """ params = { 'ApiKey': api_key, 'UserGroup': 'patron', 'LibrarySymbol': university_code, 'PartnershipId': partnership_id, 'PatronId': patron_barcode } return params def authorize( self, api_url, authentication_id ): """ Checks authorization and extends authentication session time. Called by BorrowDirect.run_auth_nz() """ url = '%s/portal-service/user/authz/isAuthorized?aid=%s' % ( api_url, authentication_id ) r = requests.get( url ) dct = r.json() state = dct['AuthorizationState']['State'] # boolean assert type( state ) == bool return state # end class Authenticator
the-stack_106_26541
# Copyright 2018-2021 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adapted from https://pandas.pydata.org/pandas-docs/stable/user_guide/style.html """ import numpy as np import pandas as pd import streamlit as st def color_negative_red(val): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = "red" if val < 0 else "black" return "color: %s" % color def highlight_max(data, color="yellow"): """highlight the maximum in a Series or DataFrame""" attr = "background-color: {}".format(color) if data.ndim == 1: # Series from .apply(axis=0) or axis=1 is_max = data == data.max() return [attr if v else "" for v in is_max] else: # from .apply(axis=None) is_max = data == data.max().max() return pd.DataFrame( np.where(is_max, attr, ""), index=data.index, columns=data.columns ) # Create a table to be styled in various ways np.random.seed(24) df = pd.DataFrame({"A": np.linspace(1, 5, 5)}) df = pd.concat([df, pd.DataFrame(np.random.randn(5, 4), columns=list("BCDE"))], axis=1) df.iloc[0, 2] = np.nan # Unstyled st._legacy_table(df) # Custom formatting st._legacy_table(df.style.format("{:.2%}")) # Colors st._legacy_table( df.style.applymap(color_negative_red).apply( highlight_max, color="darkorange", axis=0 ) ) # Add rows x = st._legacy_table( df.style.set_properties(**{"background-color": "black", "color": "lawngreen"}) ) x.legacy_add_rows( pd.DataFrame(np.random.randn(3, 5)).style.set_properties( **{"background-color": "lawngreen", "color": "black"} ) ) x.legacy_add_rows( pd.DataFrame(np.random.randn(2, 5)).style.format( lambda value: "" if value > 0 else "*" ) )
the-stack_106_26542
import ccsyspath LOG_PATH = "/var/log/codeplag.log" SUPPORTED_EXTENSIONS = { 'py': [ r'.py\b' ], 'cpp': [ r'.cpp\b', r'.c\b', r'.h\b' ] } COMPILE_ARGS = '-x c++ --std=c++11'.split() SYSPATH = ccsyspath.system_include_paths('clang++') INCARGS = [b'-I' + inc for inc in SYSPATH] COMPILE_ARGS = COMPILE_ARGS + INCARGS
the-stack_106_26545
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] # convert_weights(model) model.load_state_dict(state_dict) return model.eval()
the-stack_106_26546
import os, pickle, subprocess from threading import Thread import numpy as np from datasets.open_bhb import OpenBHB from sklearn.model_selection import GridSearchCV from sklearn.base import is_classifier, is_regressor, clone class OpenBHBMLTrainer(Thread): """ A convenient worker specially adapted to perform ML on OpenBHB with scikit-learn. It can be executed in standalone fashion. The methods start()/join() must be favored to run the worker. """ def __init__(self, model, hyperparams, training_dataset, testing_dataset, train_indices=None, mask=None, exp_name=None, saving_dir=None, scoring=None, scaler=None, n_jobs=1, logger=None, **kwargs): """ :param model: a scikit-learn model :param hyperparams: hyper-parameters over which Grid-Search 3-fold Cross-Validation is performed with scikit-learn :param training_dataset/testing_dataset: OpenBHB datasets used for Train/Test. :param train_indices (Optional): list of indices to give to <get_data> from OpenBHB (only for training) :param mask (Optional): a binary mask to give to <get_data> from OpenBHB :param exp_name: str, the results will be saved in <exp_name> :param saving_dir: str, path to the results (if it does not exist, it is created) :param scoring: scoring fn to give to scikit-learn <GridSearchCV> to perform grid-search :param scaler: a scikit-learn Scaler to transform train/tests data :param n_jobs: number of jobs to perform grid-search over set of hyper-parameters :param logger: python Logger to use to write the training/tests results (convenient for debugging) """ super().__init__(**kwargs) assert isinstance(training_dataset, OpenBHB) and isinstance(testing_dataset, OpenBHB), \ "Datasets must be OpenBHB" assert (is_classifier(model) or is_regressor(model)), "Model must be a scikit-learn classifier or regressor" self.model = model self.hyperparams = hyperparams self.training_dataset = training_dataset self.test_dataset = testing_dataset self.train_indices = train_indices self.mask = mask self.scoring = scoring self.scaler = scaler self.saving_dir = saving_dir self.exp_name = exp_name self.n_jobs = n_jobs self.logger = logger def run(self): # Loads the data in memory (X_train, y_train) = self.training_dataset.get_data(self.train_indices, mask=self.mask) if self.logger is not None: self.logger.info("Data loaded.") self.model_cv = GridSearchCV(self.model, self.hyperparams, n_jobs=self.n_jobs, scoring=self.scoring, cv=3) if self.scaler is not None: X_train = self.scaler.fit_transform(X_train) # Performs Grid-Search with n_jobs workers self.model_cv.fit(X_train, y_train) # Reports the results on train if self.logger is not None: exp = os.path.join(self.saving_dir or '', self.exp_name or '{} {}'.format(self.model.__str__, self.training_dataset.__str__)) self.logger.info("{}: Best score/params on Train: {} / {}".format(exp, self.model_cv.best_score_, self.model_cv.best_params_)) # Free the memory as soon as possible del (X_train) (X_test, y_test) = self.test_dataset.get_data(mask=self.mask) if self.scaler is not None: X_test = self.scaler.fit_transform(X_test) y_pred = self.model_cv.predict(X_test) # Reports the results on tests if self.logger is not None: exp = os.path.join(self.saving_dir or '', self.exp_name or '{} {}'.format(self.model.__str__, self.test_dataset.__str__)) self.logger.info("{}: Best score on Test: {}".format(exp, self.model_cv.score(X_test, y_test))) ## Saves the results on disk file_name = self.exp_name or "Test_{}_{}.pkl".format(self.model.__str__, self.training_dataset.__str__) if self.saving_dir is not None: if not os.path.isdir(self.saving_dir): # create the directory subprocess.check_call(['mkdir', '-p', self.saving_dir]) file_name = os.path.join(self.saving_dir, file_name) with open(file_name, 'wb') as f: pickle.dump({'y_pred': y_pred, 'y_true': y_test}, f, protocol=4) # saves the model in a distinct file file_name = self.exp_name or "Test_{}_{}.pkl".format(self.model.__str__, self.training_dataset.__str__) file_name = os.path.join(self.saving_dir, "Model_"+file_name) with open(file_name, 'wb') as f: pickle.dump({'model': self.model_cv}, f, protocol=4) class MLTester(Thread): """ A convenient worker specially adapted to tests ML on OpenBHB with scikit-learn. It can be executed in standalone fashion. The methods start()/join() must be favored to run the worker. """ def __init__(self, model, X_test, y_test, exp_name=None, saving_dir=None, scaler=None, logger=None, **kwargs): """ :param model: a scikit-learn model can implement predict() :param X_test, y_test :param mask (Optional): a binary mask to give to <get_data> from OpenBHB :param exp_name: str, the results will be saved in <exp_name> :param saving_dir: str, path to the results (if it does not exist, it is created) :param scoring: scoring fn to give to scikit-learn <GridSearchCV> to perform grid-search :param scaler: a scikit-learn Scaler to transform tests data :param logger: python Logger to use to write the training/tests results (convenient for debugging) """ super().__init__(**kwargs) assert hasattr(model, "predict"), "Model must implement predict()" self.model = model self.X_test, self.y_test = X_test, y_test self.scaler = scaler self.saving_dir = saving_dir self.exp_name = exp_name self.logger = logger def run(self): X_test, y_test = self.X_test.copy(), self.y_test.copy() if self.scaler is not None: X_test = self.scaler.fit_transform(X_test) y_pred = self.model.predict(X_test) # Reports the results on tests if self.logger is not None: exp = os.path.join(self.saving_dir or '', self.exp_name or '{}'.format(self.model.__str__)) self.logger.info("{}: Best score on Test: {}".format(exp, self.model.score(X_test, y_test))) ## Saves the results on disk file_name = self.exp_name or "Test_{}.pkl".format(self.model.__str__) if self.saving_dir is not None: if not os.path.isdir(self.saving_dir): # create the directory subprocess.check_call(['mkdir', '-p', self.saving_dir]) file_name = os.path.join(self.saving_dir, file_name) if os.path.isfile(file_name): raise ValueError("File %s already exists ! Aborting...") with open(file_name, 'wb') as f: pickle.dump({'y_pred': y_pred, 'y_true': y_test}, f, protocol=4) class MLTrainer(Thread): """ A convenient worker specially adapted to perform ML with scikit-learn. It can be executed in standalone fashion. The methods start()/join() must be favored to run the worker. """ def __init__(self, model, hyperparams, X_train, y_train, X_val=None, y_val=None, X_test=None, y_test=None, test_names=None, exp_name=None, saving_dir=None, save_model=True, scoring=None, n_jobs=1, logger=None, **kwargs): """ :param model: a scikit-learn model :param hyperparams: hyper-parameters over which Grid-Search 3-fold Cross-Validation is performed with scikit-learn :param X_train: np.array for training. If None, it will try to load the last checkpoint and eventually test the model. :param X_test (optional): list of testing np.array :param y_test (optional): list of testing np.array target labels :param test_names (Optional): list of str to be concatenated to <exp_name> for dumping testing results. We assume len(test_names) == len(X_test) :param exp_name: str, the results will be saved in <exp_name> :param saving_dir: str, path to the results (if it does not exist, it is created) :param save_model: boolean, whether the sklearn model is saved after training or not :param scoring: scoring fn to give to scikit-learn <GridSearchCV> to perform grid-search :param n_jobs: number of jobs to perform grid-search over set of hyper-parameters :param logger: python Logger to use to write the training/test results (convenient for debugging) """ super().__init__(**kwargs) self.logger = logger self.last_checkpoint = None # Flag to indicate if we directly load the last checkpoint self.exp_name = exp_name self.model = model self.saving_dir = saving_dir or "" self.hyperparams = hyperparams self.scoring = scoring self.X_train, self.y_train = X_train, y_train self.X_val, self.y_val = X_val, y_val self.X_test, self.y_test = X_test, y_test self.test_names = test_names self.n_jobs = n_jobs self.save_model = save_model self.last_checkpoint = None if X_train is None: file_name = self.exp_name or "Test_{}.pkl".format(self.model.__str__) self.last_checkpoint = os.path.join(self.saving_dir, "Model_" + file_name) if self.logger is not None: self.logger.warning("No X_train given, the last checkpoint to be loaded will be at %s"% self.last_checkpoint) else: assert isinstance(X_train, np.ndarray) assert (is_classifier(model) or is_regressor(model)), "Model must be a scikit-learn classifier or regressor" if X_test is not None: assert y_test is not None and test_names is not None, "<y_test> and <test_names> must be filled !" assert len(y_test) == len(X_test) == len(test_names) for (X_test, y_test) in zip(X_test, y_test): assert len(X_test) == len(y_test), "Incorrect dimension for X_test or y_test ({} != {})".\ format(X_test.shape, np.array(y_test).shape) if X_val is not None: assert y_val is not None and len(y_val) == len(X_val) def run(self): # Performs Grid-Search with n_jobs workers if self.last_checkpoint is None: if self.X_val is not None: n_train, n_val = len(self.X_train), len(self.X_val) self.model_cv = GridSearchCV(self.model, self.hyperparams, n_jobs=self.n_jobs, scoring=self.scoring, cv=[(np.arange(n_train), n_train+np.arange(n_val))], refit=False) self.model_cv.fit(np.concatenate((self.X_train, self.X_val)), np.concatenate((self.y_train, self.y_val))) best_fold, cv_results = self.model_cv.best_index_, self.model_cv.cv_results_ best_score, best_params = cv_results['split0_test_score'][best_fold], cv_results['params'][best_fold] self.model_cv = clone(self.model).set_params(**best_params) # Refit by hand the model with the best params found only on training set self.model_cv.fit(self.X_train, self.y_train) else: self.model_cv = GridSearchCV(self.model, self.hyperparams, n_jobs=self.n_jobs, scoring=self.scoring, cv=3) self.model_cv.fit(self.X_train, self.y_train) best_score, best_params = self.model_cv.best_score_, self.model_cv.best_params_ # Reports the results on train if self.logger is not None: exp = os.path.join(self.saving_dir or '', self.exp_name or '{}'.format(self.model.__str__, )) self.logger.info("{}: Best score/params on Train: {} / {}".format(exp, best_score, best_params)) else: try: self.model_cv = MLTrainer.get_pickle(self.last_checkpoint).get("model") except BaseException as e: self.logger.error("Impossible to load %s: %s"%(self.last_checkpoint, e)) return file_name = self.exp_name or "Test_{}.pkl".format(self.model.__str__) file_name = os.path.join(self.saving_dir, "Model_" + file_name) if self.last_checkpoint is None and self.save_model: MLTrainer.save({'model': self.model_cv}, file_name) if self.X_test is not None: for (X_test, y_test, test_name) in zip(self.X_test, self.y_test, self.test_names): y_pred = self.model_cv.predict(X_test) kwargs = dict() try: if hasattr(self.model_cv, "predict_proba"): kwargs["y_pred_proba"] = self.model_cv.predict_proba(X_test) if hasattr(self.model_cv, "decision_function"): kwargs["decision_function"] = self.model_cv.decision_function(X_test) except BaseException as e: if self.logger is not None: self.logger.error(str(e)) # Reports the results on test if self.logger is not None: exp = os.path.join(self.saving_dir or '', '{} {}'.format(test_name, self.exp_name or self.model.__str__)) self.logger.info("{}: Best score on {}: {}".format(exp, test_name, self.model_cv.score(X_test, y_test))) ## Saves the results on disk file_name = "{}_{}".format(test_name, self.exp_name or (self.model.__str__+'.pkl')) file_name = os.path.join(self.saving_dir, file_name) MLTrainer.save({'y_pred': y_pred, 'y_true': y_test, **kwargs}, file_name) @staticmethod def save(obj, file): dir_path = os.path.dirname(file) if dir_path != '' and not os.path.isdir(dir_path): # create the directory subprocess.check_call(['mkdir', '-p', dir_path]) with open(file, 'wb') as f: pickle.dump(obj, f, protocol=4) @staticmethod def get_pickle(path): import pickle with open(path, 'rb') as f: obj = pickle.load(f) return obj
the-stack_106_26548
import numpy as np from multiagent.core import World, Agent, Landmark, Radius from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self, args=None): world = World() # set any world properties first world.dim_c = 2 num_good_agents = 1 num_adversaries = args['num_adversaries'] num_agents = num_adversaries + num_good_agents # deactivate "good" agent num_landmarks = 2 num_view_radius = num_adversaries # add agents world.agents = [Agent() for i in range(num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = True agent.silent = True agent.adversary = True if i < num_adversaries else False # last agent is good agent agent.size = 0.075 if agent.adversary else 0.05 agent.accel = 3.0 if agent.adversary else 4.0 #agent.accel = 20.0 if agent.adversary else 25.0 agent.max_speed = 1.0 if agent.adversary else 1.3 agent.action_callback = None if i < (num_agents-1) else self.prey_policy agent.view_radius = args['view_radius'] print("AGENT VIEW RADIUS set to: {}".format(agent.view_radius)) # add landmarks world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i landmark.collide = True landmark.movable = False landmark.size = 0.2 landmark.boundary = False world.radius = [Radius() for i in range(num_view_radius)] for i, radius in enumerate(world.radius): radius.name = 'radius %d' % i radius.collide = False radius.movable = False radius.size = args['view_radius'] radius.boundary = False # make initial conditions self.reset_world(world) self.score_function= args['score_function'] self.prey_level= args['prey_level'] world.env_info = { 'state_shape': (12+2*(num_adversaries-1))*num_adversaries, 'obs_shape': 12+2*(num_adversaries-1), 'n_actions': 2, 'n_agents': num_adversaries, 'episode_limit': 10 } return world def prey_policy(self, agent, world): action = None n = 100 # number of positions sampled # sample actions randomly from a target circle length = np.sqrt(np.random.uniform(0, 1, n)) angle = np.pi * np.random.uniform(0, 2, n) x = length * np.cos(angle) y = length * np.sin(angle) # evaluate score for each position # check whether positions are reachable # sample a few evenly spaced points on the way and see if they collide with anything scores = np.zeros(n, dtype=np.float32) n_iter = 5 if self.score_function == "sum": for i in range(n_iter): waypoints_length = (length / float(n_iter)) * (i + 1) x_wp = waypoints_length * np.cos(angle) y_wp = waypoints_length * np.sin(angle) proj_pos = np.vstack((x_wp, y_wp)).transpose() + agent.state.p_pos for _agent in world.agents: if _agent.name != agent.name: delta_pos = _agent.state.p_pos - proj_pos dist = np.sqrt(np.sum(np.square(delta_pos), axis=1)) dist_min = _agent.size + agent.size scores[dist < dist_min] = -9999999 if i == n_iter - 1 and _agent.movable: scores += dist # Discourage the agent to leave the screen # Code should be improved scores[np.transpose(proj_pos)[0]<-1] = -9999999 scores[np.transpose(proj_pos)[0] > 1] = -9999999 scores[np.transpose(proj_pos)[1] < -1] = -9999999 scores[np.transpose(proj_pos)[1] > 1] = -9999999 elif self.score_function == "min": rel_dis = [] adv_names = [] adversaries = self.adversaries(world) proj_pos = np.vstack((x, y)).transpose() + agent.state.p_pos # the position of the 100 sampled points. for adv in adversaries: rel_dis.append(np.sqrt(np.sum(np.square(agent.state.p_pos - adv.state.p_pos)))) adv_names.append(adv.name) min_dis_adv_name = adv_names[np.argmin(rel_dis)] for adv in adversaries: delta_pos = adv.state.p_pos - proj_pos dist = np.sqrt(np.sum(np.square(delta_pos), axis=1)) dist_min = adv.size + agent.size scores[dist < dist_min] = -9999999 if adv.name == min_dis_adv_name: scores += dist elif self.score_function == "random": for i in range(n_iter): waypoints_length = (length / float(n_iter)) * (i + 1) x_wp = waypoints_length * np.cos(angle) y_wp = waypoints_length * np.sin(angle) proj_pos = np.vstack((x_wp, y_wp)).transpose() + agent.state.p_pos scores[np.transpose(proj_pos)[0]<-1] = -9999999 scores[np.transpose(proj_pos)[0] > 1] = -9999999 scores[np.transpose(proj_pos)[1] < -1] = -9999999 scores[np.transpose(proj_pos)[1] > 1] = -9999999 else: raise Exception("Unknown score function {}".format(self.score_function)) # move to best position best_idx = np.argmax(scores) chosen_action = np.array([x[best_idx]*self.prey_level, y[best_idx]*self.prey_level], dtype=np.float32) if scores[best_idx] < 0: chosen_action *= 0.0 # cannot go anywhere return chosen_action def reset_world(self, world): # random properties for agents for i, agent in enumerate(world.agents): agent.color = np.array([0.35, 0.85, 0.35]) if not agent.adversary else np.array([0.85, 0.35, 0.35]) # random properties for landmarks for i, landmark in enumerate(world.landmarks): landmark.color = np.array([0.25, 0.25, 0.25]) for i, radius in enumerate(world.radius): radius.color = np.array([0.25, 0.25, 0.25]) # set random initial states for agent in world.agents: agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) for i, landmark in enumerate(world.landmarks): if not landmark.boundary: landmark.state.p_pos = np.random.uniform(-0.9, +0.9, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) for i, radius in enumerate(world.radius): radius.state.p_pos = world.agents[i].state.p_pos radius.state.p_vel = world.agents[i].state.p_vel def benchmark_data(self, agent, world): # returns data for benchmarking purposes if agent.adversary: collisions = 0 for a in self.good_agents(world): if self.is_collision(a, agent): collisions += 1 return collisions else: return 0 def is_collision(self, agent1, agent2): delta_pos = agent1.state.p_pos - agent2.state.p_pos dist = np.sqrt(np.sum(np.square(delta_pos))) dist_min = agent1.size + agent2.size return True if dist < dist_min else False # return all agents that are not adversaries def good_agents(self, world): return [agent for agent in world.agents if not agent.adversary] # return all adversarial agents def adversaries(self, world): return [agent for agent in world.agents if agent.adversary] def reward(self, agent, world): # Agents are rewarded based on minimum agent distance to each landmark main_reward = self.adversary_reward(agent, world) if agent.adversary else self.agent_reward(agent, world) return main_reward def agent_reward(self, agent, world): # Agents are negatively rewarded if caught by adversaries rew = 0 shape = False adversaries = self.adversaries(world) if shape: # reward can optionally be shaped (increased reward for increased distance from adversary) for adv in adversaries: rew += 0.1 * np.sqrt(np.sum(np.square(agent.state.p_pos - adv.state.p_pos))) if agent.collide: for a in adversaries: if self.is_collision(a, agent): rew -= 10 # agents are penalized for exiting the screen, so that they can be caught by the adversaries def bound(x): if x < 0.9: return 0 if x < 1.0: return (x - 0.9) * 10 return min(np.exp(2 * x - 2), 10) for p in range(world.dim_p): x = abs(agent.state.p_pos[p]) rew -= bound(x) return rew def adversary_reward(self, agent, world): # Adversaries are rewarded for collisions with agents rew = 0 shape = False agents = self.good_agents(world) adversaries = self.adversaries(world) if shape: # reward can optionally be shaped (decreased reward for increased distance from agents) for adv in adversaries: rew -= 0.1 * min([np.sqrt(np.sum(np.square(a.state.p_pos - adv.state.p_pos))) for a in agents]) if agent.collide: for ag in agents: for adv in adversaries: if self.is_collision(ag, adv): rew += 10 return rew def observation(self, agent, world): # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: dist = np.sqrt(np.sum(np.square(entity.state.p_pos - agent.state.p_pos))) if not entity.boundary and (agent.view_radius >= 0) and dist <= agent.view_radius: entity_pos.append(entity.state.p_pos - agent.state.p_pos) else: entity_pos.append(np.array([0., 0.])) # communication of all other agents comm = [] other_pos = [] other_vel = [] for other in world.agents: if other is agent: continue dist = np.sqrt(np.sum(np.square(other.state.p_pos - agent.state.p_pos))) if agent.view_radius >= 0 and dist <= agent.view_radius: comm.append(other.state.c) other_pos.append(other.state.p_pos - agent.state.p_pos) if not other.adversary: other_vel.append(other.state.p_vel) else: other_pos.append(np.array([0., 0.])) if not other.adversary: other_vel.append(np.array([0., 0.])) return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + other_vel) def full_observation(self, agent, world): # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: if not entity.boundary: entity_pos.append(entity.state.p_pos - agent.state.p_pos) # communication of all other agents comm = [] other_pos = [] other_vel = [] for other in world.agents: if other is agent: continue comm.append(other.state.c) other_pos.append(other.state.p_pos - agent.state.p_pos) if not other.adversary: other_vel.append(other.state.p_vel) return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + other_vel)
the-stack_106_26549
#!/usr/bin/env python2.6 """ Tue Dec 4 11:54:18 PST 2012 Parse Blast XML output file and cluster sequences using greedy approach. Input: Blast xml file Output: Text file, each line = 1 cluster, each element of a cluster is space-separated Algorithm summary: Sorted sequences by descending in size Start with the largest sequence and use that as seed For each sequence: Search for the closest seed that have >= %X similarity cutoff If found such seed: add the sequence to the seed's cluster else: the sequence becomes a seed of a new cluster Cluster types: 1/ Seed has multiple expanded clones as matches. 1.1: The expanded clones are from the same sample with seed 1.2: The expanded clones are from at least one sample different from seed sample 2/ Seed has many small clones with similar motifs Cutoffs includes: a/ minimum number of clones contribute to one motif, b/ number of samples 2.1: the clones carrying the motif are from the same sample with seed 2.2: the clones carrying the motif are from at least one different sample than seed sample 3/ Seed has no similar clones: 3.1: seed is expanded 3.2: seed is not expanded 4/ Everything else (similar to type 2 but did not pass the cutoffs, i.e seed has a small number of low-frequency hits, or too many motifs but not enough clones to support a single motif) """ import os, re, sys from Bio.Blast import NCBIXML from optparse import OptionParser def getCloneInfo(clonestr): #as11D;183042;size=8925 items = clonestr.lstrip('>').split(';') sample = items[0] size = int(items[-1].lstrip("size=")) id = items[1] return sample, id, size class Clone(): def __init__(self, clonestr): sample, id, size = getCloneInfo(clonestr) self.desc = clonestr.lstrip('>') self.sample = sample self.id = id self.size = size self.seq = '' self.hits = {} #key = hitCloneId, val = Hit def setSeq(self, seq): self.seq = seq def addHit(self, hitid, hit): self.hits[hitid] = hit def setFreq(self, total): if total == 0: raise ValueError("Error: Total sequences of sample %s is 0." %(self.sample)) else: self.freq = 100.0*self.size/total def __cmp__(self, other): return cmp(self.size, other.size) class Cluster(): def __init__(self, seed): self.clones = [seed] self.totalReads = seed.size self.numClones = 1 self.seed = seed self.motif2count = {} def addClone(self, clone): if clone not in self.clones: self.totalReads += clone.size self.numClones += 1 self.clones.append(clone) def setType(self, type): self.type = type def setMotifs(self, motif2count): self.motif2count = motif2count def __cmp__(self, other): return cmp(self.totalReads, other.totalReads) def typeid2desc(id): id2desc = { 1.1: "Multiple expanded clones from 1 sample", 1.2: "Multiple expanded clones from at least 2 samples", 2.1: "Multiple non-expanded clones carrying the same motif, from 1 sample", 2.2: "Multiple non-expanded clones carrying the same motif, from >=2 samples", 3.1: "Clone with no hit, expanded", 3.2: "Clone with no hit, non-expanded", 4: "Others"} return id2desc[id] def isExpanded(clone, minSize, minFreq): if clone.size >= minSize and clone.freq >= minFreq: #expanded return True return False def isSuper(motif1, motif2): #Return True if motif1 is a superset of motif2, otherwise return False if motif1 == motif2 or len(motif1) != len(motif2): return False for i, m1 in enumerate(motif1): if m1 != '.' and m1 != motif2[i]: return False return True def getClusterType(seed2cluster, options): for seed, cluster in seed2cluster.iteritems(): seedclone = cluster.seed if cluster.numClones == 1: #single element cluster if isExpanded( seedclone, options.minExpSize, options.minExpFreq ): cluster.setType(3.1) else: cluster.setType(3.2) else: numExp = 0 expSamples = [] motif2count = {} motif2samples = {} if isExpanded(seedclone, options.minExpSize, options.minExpFreq): numExp += 1 expSamples.append(seedclone.sample) for hitclone in cluster.clones: if hitclone.desc != seed: if isExpanded(hitclone, options.minExpSize, options.minExpFreq): numExp += 1 if hitclone.sample not in expSamples: expSamples.append(hitclone.sample) if hitclone.desc not in seedclone.hits: hit = hitclone.hits[seed] #sys.stderr.write("Seed: %s. Hitclone: %s is not in the hits list: %s.\n" %(seed, hitclone.desc, " ".join(seedclone.hits.keys()))) else: hit = seedclone.hits[hitclone.desc] motif = "" for i, q in enumerate(hit.query): s = hit.sbjct[i] if q == s: motif += q else: motif += "." #Search to see if any existing motif is a superset of current motif or if current motif is a super set of existing motif: added = False for prevmotif in motif2count.keys(): if motif == prevmotif or isSuper(prevmotif, motif):#prevmotif is a superset of current motif, update its count and don't add curr motif motif2count[prevmotif] += 1 if hitclone.sample not in motif2samples[prevmotif]: motif2samples[prevmotif].append(hitclone.sample) added = True break if not added: #no prev motif is a super set of current motif #check if current motif is a superset of prevmotif, add curr motif, remove previous motif for prevmotif in motif2count.keys(): if isSuper(motif, prevmotif): if motif not in motif2count: motif2count[motif] = motif2count[prevmotif] motif2samples[motif] = [ seedclone.sample ] else: motif2count[motif] += motif2count[prevmotif] for sample in motif2samples[prevmotif]: if sample not in motif2samples[motif]: motif2samples[motif].append(sample) del motif2count[prevmotif] del motif2samples[prevmotif] if motif not in motif2count: motif2count[motif] = 1 motif2samples[motif] = [ seedclone.sample ] else: motif2count[motif] += 1 if hitclone.sample not in motif2samples[motif]: motif2samples[motif].append(hitclone.sample) if numExp >= options.minExpClones: #type 1 if len(expSamples) == 1: #only the seed clone type = 1.1 else: type = 1.2 else: type = 4 for motif, count in motif2count.iteritems(): if count >= options.minMotifClones:#type 2 if len( motif2samples[motif] ) == 1: type = 2.1 else: type = 2.2 break cluster.setType(type) cluster.setMotifs(motif2count) def getFh(type, fh11, fh12, fh21, fh22, fh31, fh32, fh4): if type == 1.1: return fh11 elif type == 1.2: return fh12 elif type == 2.1: return fh21 elif type == 2.2: return fh22 elif type == 3.1: return fh31 elif type == 3.2: return fh32 else: return fh4 def printClusters( outfile, seed2cluster ): clusters = sorted( seed2cluster.values(), reverse = True ) fh = open(outfile, 'w') outbasename = outfile.rstrip('txt').rstrip('.') vjname = os.path.basename(outbasename) fh11 = open( "%s_1.1" % outbasename, 'w' ) fh12 = open( "%s_1.2" % outbasename, 'w' ) fh21 = open( "%s_2.1" % outbasename, 'w' ) fh22 = open( "%s_2.2" % outbasename, 'w' ) fh31 = open( "%s_3.1" % outbasename, 'w' ) fh32 = open( "%s_3.2" % outbasename, 'w' ) fh4 = open( "%s_4" % outbasename, 'w' ) totalClones = 0 for i, cluster in enumerate(clusters): clones = sorted( cluster.clones, key= lambda c:c.size, reverse=True) fh.write( "%s\n" %(" ".join([c.desc for c in clones])) ) totalClones += cluster.numClones fh_long = getFh( cluster.type, fh11, fh12, fh21, fh22, fh31, fh32, fh4 ) fh_long.write(">Cluster %d, type %.1f, %s, %d clones, %d totalReads, motifs: %s\n" %(i, cluster.type, vjname, cluster.numClones, cluster.totalReads, ";".join(["%s_%d" %(m,c) for m,c in cluster.motif2count.iteritems()]) )) for c in clones: fh_long.write("\t%s\t%s\t%f\n" %(c.seq, c.desc, c.freq)) fh_long.write("\n") #fh_long.write("\nTotal clones: %d\nTotal clusters: %d\n" %(totalClones, len(clusters) )) fh.close() fh11.close() fh12.close() fh21.close() fh22.close() fh31.close() fh32.close() fh4.close() def getClusters(clones): seed2cluster = {} #key = seed, val = list of clones that cluster to the seed if len(clones) == 0: return seed2cluster #First seed: firstCluster = Cluster(clones[0]) seed2cluster[ clones[0].desc ] = firstCluster if len(clones) == 1: return seed2cluster for clone in clones[1:]: maxPos = 0 maxSize = 0 bestSeed = '' for seed in seed2cluster: if seed in clone.hits: hit = clone.hits[seed] #if hit.positives > maxPos: if hit.identities > maxPos: #maxPos = hit.positives maxPos = hit.identities maxSize = Clone(seed).size bestSeed = seed #elif hit.positives == maxPos: elif hit.identities == maxPos: currSize = Clone(seed).size if currSize > maxSize: maxSize = currSize bestSeed = seed if bestSeed != '': seed2cluster[ bestSeed ].addClone( clone ) #add to the cluster of the closest seed else: cluster = Cluster(clone) seed2cluster[ clone.desc ] = cluster #create new cluster return seed2cluster def readNcbiXml(infile, minLen, minPos, sample2total, sameLen): rh = open(infile) records = NCBIXML.parse(rh) clones = [] for record in records: if record.query_length < minLen: #too short, pass continue clone = Clone(record.query) if sample2total: clone.setFreq(sample2total[clone.sample]) for aln in record.alignments: for hit in aln.hsps: # each hit if len(hit.match) < record.query_length: #ignore local alignment continue if clone.seq == '': clone.setSeq(hit.query) if sameLen and (re.search('-', hit.query) or re.search('-', hit.sbjct)): #don't allow for gap alignment if sameLen is specifie continue #if float(hit.positives)/len(hit.query) < minPos: #low similarity hit, ignore if float(hit.identities)/len(hit.query) < minPos: #low identity hit, ignore continue hitid = aln.title.split()[-1] if hitid == clone.desc: #self alignment, ignore continue clone.addHit(hitid, hit) clones.append(clone) #if sample2total: # clones = sorted( clones, key=lambda c:c.freq, reverse=True ) #else: # clones = sorted( clones, key=lambda c:c.size, reverse=True ) return clones def readSample2total(file): sample2total = {} f = open(file, 'r') for line in f: items = line.strip().split() sample2total[items[0]] = int(items[1]) f.close() return sample2total def getfiles(indir, ext): files = [] for file in os.listdir(indir): items = file.split('.') if items[-1] == ext: files.append(file) return files def getInfiles(input): ext = 'xml' if os.path.isdir(input): #input is a directory infiles = getfiles(input, ext) infiles = [ os.path.join(input, f) for f in infiles ] else: infiles = [input] return infiles def addOptions(parser): parser.add_option('-i', '--input', dest='input', help='Input file or directory') parser.add_option('-o', '--outfile', dest='outfile', help='Output file') parser.add_option('-p', '--positive', dest='minPos', type='float', default=0.9, help='Minimum portion of positive matches. Default=%default') parser.add_option('-l', '--len', dest='minLen', type='int', default=10, help='Minimum sequence length to be included in the output. Default=%default') parser.add_option('-L', '--lenRestriction', dest='sameLen', action='store_true', default=False, help='If specified, only sequences of same length can be clustered together. Default=%default') parser.add_option('-S', '--minExpandedSize', dest='minExpSize', type='int', default=1000, help='Minimum number of reads for a clone to be called "expanded". Default=%default') parser.add_option('-F', '--minExpandedFreq', dest='minExpFreq', type='float', default=0.0, help='Minimun frequency for a clone to be called "expanded".Range from 0 - 100. Default=%default') parser.add_option('-C', '--minExpandedClones', dest='minExpClones', type='int', default=1, help='Minimum number of similar expanded clones for a seed and its cluster to be classified as type 1. Default=%default') parser.add_option('-c', '--minMotifClones', dest='minMotifClones', type='int', default=10, help='Minimum number of clones carrying the same motif for a seed and its cluster to be classified as type 2. Default=%default ') parser.add_option('--sample2total', dest='sample2total', help='Required if --minExpandedFreq is larger than 0. Format: <sample> <totalCount>') #parser.add_option('-v', '--addV', dest='vfile', help='If specified, add the rest of V gene to each sequence in the output fasta files. Default = None') def main(): usage = "usage: %prog [options]\n" parser = OptionParser( usage=usage ) addOptions(parser) options, args = parser.parse_args() if options.minExpFreq > 0 and not options.sample2total: parser.error("--sample2total is required as --minExpandedFreq > 0\n") if options.sample2total: options.sample2total = readSample2total(options.sample2total) #Read input XML file(s): infiles = getInfiles(options.input) clones = [] for infile in infiles: currclones = readNcbiXml(infile, options.minLen, options.minPos, options.sample2total, options.sameLen) clones.extend( currclones ) if options.sample2total: clones = sorted( clones, key=lambda c:c.freq, reverse=True ) else: clones = sorted( clones, key=lambda c:c.size, reverse=True ) sys.stderr.write("Done reading input file. Total %d clones passed minLen\n" %len(clones)) #Done reading input XML file(s) seed2cluster = getClusters(clones) getClusterType(seed2cluster, options) printClusters( options.outfile, seed2cluster ) if __name__ == '__main__': main()
the-stack_106_26550
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### A demonstration algorithm to check there can be placed an order of a pair not present ### in the brokerage using the conversion between stablecoins ### </summary> class StableCoinsRegressionAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 5, 1) self.SetEndDate(2018, 5, 2) self.SetCash("USDT", 200000000) self.SetBrokerageModel(BrokerageName.Binance, AccountType.Cash) self.AddCrypto("BTCUSDT", Resolution.Hour, Market.Binance) def OnData(self, data): if not self.Portfolio.Invested: self.SetHoldings("BTCUSDT", 1)
the-stack_106_26551
# This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this open-source project. """ Define the Logger class to print log""" import os import sys import logging from datetime import datetime class Logger: def __init__(self, args, output_dir): log = logging.getLogger(output_dir) if not log.handlers: log.setLevel(logging.DEBUG) # if not os.path.exists(output_dir): # os.mkdir(args.data.output_dir) fh = logging.FileHandler(os.path.join(output_dir,'log.txt')) fh.setLevel(logging.INFO) ch = ProgressHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter(fmt='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S') fh.setFormatter(formatter) ch.setFormatter(formatter) log.addHandler(fh) log.addHandler(ch) self.log = log # setup TensorBoard # if args.tensorboard: # from tensorboardX import SummaryWriter # self.writer = SummaryWriter(log_dir=args.output_dir) # else: self.writer = None self.log_per_updates = args.log_per_updates def set_progress(self, epoch, total): self.log.info(f'Epoch: {epoch}') self.epoch = epoch self.i = 0 self.total = total self.start = datetime.now() def update(self, stats): self.i += 1 if self.i % self.log_per_updates == 0: remaining = str((datetime.now() - self.start) / self.i * (self.total - self.i)) remaining = remaining.split('.')[0] updates = stats.pop('updates') stats_str = ' '.join(f'{key}[{val:.8f}]' for key, val in stats.items()) self.log.info(f'> epoch [{self.epoch}] updates[{updates}] {stats_str} eta[{remaining}]') if self.writer: for key, val in stats.items(): self.writer.add_scalar(f'train/{key}', val, updates) if self.i == self.total: self.log.debug('\n') self.log.debug(f'elapsed time: {str(datetime.now() - self.start).split(".")[0]}') def log_eval(self, stats, metrics_group=None): stats_str = ' '.join(f'{key}: {val:.8f}' for key, val in stats.items()) self.log.info(f'valid {stats_str}') if self.writer: for key, val in stats.items(): self.writer.add_scalar(f'valid/{key}', val, self.epoch) # for mode, metrics in metrics_group.items(): # self.log.info(f'evaluation scores ({mode}):') # for key, (val, _) in metrics.items(): # self.log.info(f'\t{key} {val:.4f}') # if self.writer and metrics_group is not None: # for key, val in stats.items(): # self.writer.add_scalar(f'valid/{key}', val, self.epoch) # for key in list(metrics_group.values())[0]: # group = {} # for mode, metrics in metrics_group.items(): # group[mode] = metrics[key][0] # self.writer.add_scalars(f'valid/{key}', group, self.epoch) def __call__(self, msg): self.log.info(msg) class ProgressHandler(logging.Handler): def __init__(self, level=logging.NOTSET): super().__init__(level) def emit(self, record): log_entry = self.format(record) if record.message.startswith('> '): sys.stdout.write('{}\r'.format(log_entry.rstrip())) sys.stdout.flush() else: sys.stdout.write('{}\n'.format(log_entry))
the-stack_106_26553
# Copyright 2019 Stanislav Pidhorskyi # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import print_function import torch.utils.data from scipy import misc from torch import optim, nn from torch.autograd import Variable from torchvision.utils import save_image from vae_gan_net import * import numpy as np import pickle import time import random import os from dlutils import batch_provider from dlutils.pytorch.cuda_helper import * from torchvision import transforms im_size = 128 def process_batch(batch): x = torch.from_numpy(np.asarray(batch, dtype=np.float32)).cuda() # x = torch.from_numpy(np.asarray(batch, dtype=np.float32) / 255.) x = x.view(-1, 1, im_size, im_size) return x def free_params(module: nn.Module): for p in module.parameters(): p.requires_grad = True def frozen_params(module: nn.Module): for p in module.parameters(): p.requires_grad = False def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) elif classname.find('ConvTranspose2d') != -1: m.weight.data.normal_(0.0, 0.02) def main(): input_channels = 1 hidden_size = 128 max_epochs = 500 lr = 3e-4 beta = 20 alpha = 0.2 gamma = 30 batch_size = 60 G = VAE_GAN_Generator(input_channels, hidden_size).cuda() D = Discriminator(input_channels).cuda() # G.load_state_dict(torch.load('G.pkl')) # D.load_state_dict(torch.load('D.pkl')) G.apply(weights_init) D.apply(weights_init) criterion = nn.BCELoss() criterion.cuda() opt_enc = optim.RMSprop(G.encoder.parameters(), lr=lr, alpha=0.9) opt_dec = optim.RMSprop(G.decoder.parameters(), lr=lr, alpha=0.9) opt_dis = optim.RMSprop(D.parameters(), lr=lr * alpha, alpha=0.9) #opt_dis = optim.RMSprop(D.parameters(), lr=lr ) fixed_noise = Variable(torch.randn(batch_size, hidden_size)).cuda() for epoch in range(max_epochs): G.train() D.train() #tmp= epoch % 5 with open('./data_noise_128.pkl', 'rb') as pkl: data_noise = pickle.load(pkl) with open('../vae_gan_brain/data_fold_train_128.pkl', 'rb') as pkl: data_train = pickle.load(pkl) #data_train=data_train[0:13376] print("Train set size:", len(data_train)) batches = batch_provider(data_train, batch_size, process_batch, report_progress=True) batches_noise = batch_provider(data_noise, batch_size, process_batch, report_progress=True) D_real_list, D_rec_enc_list, D_rec_noise_list, D_list = [], [], [], [] g_loss_list, rec_loss_list, prior_loss_list = [], [], [] epoch_start_time = time.time() i = 0 for x_noise,org in zip(batches_noise,batches): # ones_label = torch.ones(batch_size).cuda() # zeros_label = torch.zeros(batch_size).cuda() ones_label = Variable(torch.ones(batch_size)).cuda() zeros_label = Variable(torch.zeros(batch_size)).cuda() datav = Variable(x_noise).cuda() orgv=Variable(org).cuda() mean, logvar, rec_enc = G(datav) noisev = Variable(torch.randn(batch_size, hidden_size)).cuda() rec_noise = G.decoder(noisev) # # ======== Train Discriminator ======== # frozen_params(G) free_params(D) # # train discriminator output = D(orgv) output=output.squeeze(1) errD_real = criterion(output, ones_label) D_real_list.append(output.data.mean()) output = D(rec_enc) output=output.squeeze(1) errD_rec_enc = criterion(output, zeros_label) D_rec_enc_list.append(output.data.mean()) output = D(rec_noise) output=output.squeeze(1) errD_rec_noise = criterion(output, zeros_label) D_rec_noise_list.append(output.data.mean()) dis_img_loss = errD_real + errD_rec_enc + errD_rec_noise #dis_img_loss = errD_real + errD_rec_enc # print ("print (dis_img_loss)", dis_img_loss) D_list.append(dis_img_loss.data.mean()) opt_dis.zero_grad() dis_img_loss.backward(retain_graph=True) opt_dis.step() # ======== Train Generator ======== # free_params(G) frozen_params(D) # train decoder output = D(orgv) output=output.squeeze(1) errD_real = criterion(output, ones_label) output = D(rec_enc) output=output.squeeze(1) errD_rec_enc = criterion(output, zeros_label) output = D(rec_noise) output=output.squeeze(1) errD_rec_noise = criterion(output, zeros_label) similarity_rec_enc = D.similarity(rec_enc) similarity_data = D.similarity(orgv) dis_img_loss = errD_real + errD_rec_enc + errD_rec_noise #dis_img_loss = errD_real + errD_rec_enc #print ("dis_img_loss",dis_img_loss) #gen_img_loss = - dis_img_loss gen_img_loss = -dis_img_loss g_loss_list.append(gen_img_loss.data.mean()) rec_loss = ((similarity_rec_enc - similarity_data) ** 2).mean() rec_loss_list.append(rec_loss.data.mean()) err_dec = gamma * rec_loss + gen_img_loss #print("err_dec",err_dec) opt_dec.zero_grad() err_dec.backward(retain_graph=True) opt_dec.step() # train encoder prior_loss = 1 + logvar - mean.pow(2) - logvar.exp() prior_loss = (-0.5 * torch.sum(prior_loss)) / torch.numel(mean.data) #print (prior_loss, mean, std) prior_loss_list.append(prior_loss.data.mean()) err_enc = prior_loss + beta * rec_loss opt_enc.zero_grad() err_enc.backward() opt_enc.step() ############################################# os.makedirs('results_ori', exist_ok=True) os.makedirs('results_rec', exist_ok=True) os.makedirs('results_gen', exist_ok=True) epoch_end_time = time.time() per_epoch_ptime = epoch_end_time - epoch_start_time # report losses and save samples each 60 iterations m = 6 i += 1 if epoch%5==0 and i % m == 0: print( '[%d/%d]: D_real:%.4f, D_enc:%.4f, D_noise:%.4f, Loss_D:%.4f,Loss_G:%.4f, rec_loss:%.4f, prior_loss:%.4f' # '[%d/%d]: D_real:%.4f, D_enc:%.4f, Loss_D:%.4f, \\' % (epoch, max_epochs, torch.mean(torch.tensor(D_real_list)), torch.mean(torch.tensor(D_rec_enc_list)), torch.mean(torch.tensor(D_rec_noise_list)), torch.mean(torch.tensor(D_list)), torch.mean(torch.tensor(g_loss_list)), torch.mean(torch.tensor(rec_loss_list)), torch.mean(torch.tensor(prior_loss_list)))) with torch.no_grad(): D.eval() G.eval() _, _, x_rec = G.forward(x_noise) x_gen = G.decoder(fixed_noise) x_noise=x_noise.cpu() x_gen=x_gen.cpu() x_rec=x_rec.cpu() # save_image(resultsample.view(-1, 3, im_size, im_size), # 'results_rec/sample_' + str(epoch) + "_" + str(i) + '.png') for j in range(20,29): org_img = transforms.ToPILImage()(x_noise[j].squeeze(0)).convert('L') rec_img = transforms.ToPILImage()(x_rec[j].squeeze(0)).convert('L') gen_img = transforms.ToPILImage()(x_gen[j].squeeze(0)).convert('L') org_img.save('results_ori/ori_' + str(epoch) + "_" + str(i) +"_"+str(j)+ '.png') rec_img.save('results_rec/rec_' + str(epoch) + "_" + str(i) + "_"+str(j)+ '.png') gen_img.save('results_gen/gen_' + str(epoch) + "_" + str(i) +"_"+str(j)+ '.png') # resultsample = x_rec * 0.5 + 0.5 # resultsample = resultsample.cpu() # save_image(resultsample.view(-1, 3, im_size, im_size), # 'results_gen/sample_' + str(epoch) + "_" + str(i) + '.png') del batches del data_train del batches_noise del data_noise print("Training finish!... save training results") torch.save(G.state_dict(), "G_noise.pkl") torch.save(D.state_dict(), "D_noise.pkl") if __name__ == '__main__': main()
the-stack_106_26554
import uuid import random import string from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) from django.db.models import UUIDField from jsonfield import JSONField import Levenshtein as lev author = 'oTree Bogota Tutorial 2018' doc = """ This game generate a random string of <b>5 numbers</b>, <b>5 letters</b> and as must <b>5 spaces</b>. Every string must be a some Levenshtein distance of the others. """ class Constants(BaseConstants): name_in_url = 'real_effort0' players_per_group = None random_string_conf = {"numbers": 5, "letters": 15, "spaces": 5} num_rounds = 1 timeout = 60 texts_number = 100 text_size = 5 # words min_distance_different_text = 10 class Subsession(BaseSubsession): texts = JSONField() def random_string(self, numbers, letters, spaces): numbers = [random.choice(string.digits) for _ in range(numbers)] letters = [random.choice(string.ascii_uppercase) for _ in range(letters)] spaces = [" "] * spaces rstring = numbers + letters + spaces random.shuffle(rstring) return " ".join("".join(rstring).strip().split()) def creating_session(self): texts = [] while len(texts) < Constants.texts_number: text = self.random_string(**Constants.random_string_conf) distances = [lev.distance(text, t) for t in texts] if not texts or min(distances) > Constants.min_distance_different_text: texts.append(text) self.texts = texts def set_payoffs(self): players = self.get_players() payoff = sum([p.current_text_idx for p in players]) / len(players) for p in players: p.payoff = payoff class Group(BaseGroup): pass class Player(BasePlayer): token = UUIDField(default=uuid.uuid4, editable=False) end = models.BooleanField(default=False) current_text_idx = models.IntegerField(default=0) def current_text(self): try: return self.subsession.texts[self.current_text_idx] except IndexError: return None def is_transcription_accurate(self, transcription): text = self.current_text() if lev.distance(text, transcription) <= Constants.min_distance_different_text: self.current_text_idx += 1 return True return False