filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_25859
from pathlib import Path import pytest from poetry.core.factory import Factory from poetry.core.toml import TOMLFile fixtures_dir = Path(__file__).parent / "fixtures" def test_create_poetry(): poetry = Factory().create_poetry(fixtures_dir / "sample_project") package = poetry.package assert package.name == "my-package" assert package.version.text == "1.2.3" assert package.description == "Some description." assert package.authors == ["Sébastien Eustace <[email protected]>"] assert package.license.id == "MIT" assert ( package.readmes[0].relative_to(fixtures_dir).as_posix() == "sample_project/README.rst" ) assert package.homepage == "https://python-poetry.org" assert package.repository_url == "https://github.com/python-poetry/poetry" assert package.keywords == ["packaging", "dependency", "poetry"] assert package.python_versions == "~2.7 || ^3.6" assert str(package.python_constraint) == ">=2.7,<2.8 || >=3.6,<4.0" dependencies = {} for dep in package.requires: dependencies[dep.name] = dep cleo = dependencies["cleo"] assert cleo.pretty_constraint == "^0.6" assert not cleo.is_optional() pendulum = dependencies["pendulum"] assert pendulum.pretty_constraint == "branch 2.0" assert pendulum.is_vcs() assert pendulum.vcs == "git" assert pendulum.branch == "2.0" assert pendulum.source == "https://github.com/sdispater/pendulum.git" assert pendulum.allows_prereleases() assert not pendulum.develop tomlkit = dependencies["tomlkit"] assert tomlkit.pretty_constraint == "rev 3bff550" assert tomlkit.is_vcs() assert tomlkit.vcs == "git" assert tomlkit.rev == "3bff550" assert tomlkit.source == "https://github.com/sdispater/tomlkit.git" assert tomlkit.allows_prereleases() assert not tomlkit.develop requests = dependencies["requests"] assert requests.pretty_constraint == "^2.18" assert not requests.is_vcs() assert not requests.allows_prereleases() assert requests.is_optional() assert requests.extras == frozenset({"security"}) pathlib2 = dependencies["pathlib2"] assert pathlib2.pretty_constraint == "^2.2" assert pathlib2.python_versions == ">=2.7 <2.8" assert not pathlib2.is_optional() demo = dependencies["demo"] assert demo.is_file() assert not demo.is_vcs() assert demo.name == "demo" assert demo.pretty_constraint == "*" demo = dependencies["my-package"] assert not demo.is_file() assert demo.is_directory() assert not demo.is_vcs() assert demo.name == "my-package" assert demo.pretty_constraint == "*" simple_project = dependencies["simple-project"] assert not simple_project.is_file() assert simple_project.is_directory() assert not simple_project.is_vcs() assert simple_project.name == "simple-project" assert simple_project.pretty_constraint == "*" functools32 = dependencies["functools32"] assert functools32.name == "functools32" assert functools32.pretty_constraint == "^3.2.3" assert ( str(functools32.marker) == 'python_version ~= "2.7" and sys_platform == "win32" or python_version in' ' "3.4 3.5"' ) dataclasses = dependencies["dataclasses"] assert dataclasses.name == "dataclasses" assert dataclasses.pretty_constraint == "^0.7" assert dataclasses.python_versions == ">=3.6.1 <3.7" assert ( str(dataclasses.marker) == 'python_full_version >= "3.6.1" and python_version < "3.7"' ) assert "db" in package.extras classifiers = package.classifiers assert classifiers == [ "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Libraries :: Python Modules", ] assert package.all_classifiers == [ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Software Development :: Build Tools", "Topic :: Software Development :: Libraries :: Python Modules", ] def test_create_poetry_with_packages_and_includes(): poetry = Factory().create_poetry( fixtures_dir.parent / "masonry" / "builders" / "fixtures" / "with-include" ) package = poetry.package assert package.packages == [ {"include": "extra_dir/**/*.py"}, {"include": "extra_dir/**/*.py"}, {"include": "my_module.py"}, {"include": "package_with_include"}, {"include": "tests", "format": "sdist"}, {"include": "for_wheel_only", "format": ["wheel"]}, {"include": "src_package", "from": "src"}, ] assert package.include == [ {"path": "extra_dir/vcs_excluded.txt", "format": []}, {"path": "notes.txt", "format": []}, ] def test_create_poetry_with_multi_constraints_dependency(): poetry = Factory().create_poetry( fixtures_dir / "project_with_multi_constraints_dependency" ) package = poetry.package assert len(package.requires) == 2 def test_validate(): complete = TOMLFile(fixtures_dir / "complete.toml") content = complete.read()["tool"]["poetry"] assert Factory.validate(content) == {"errors": [], "warnings": []} def test_validate_fails(): complete = TOMLFile(fixtures_dir / "complete.toml") content = complete.read()["tool"]["poetry"] content["this key is not in the schema"] = "" expected = ( "Additional properties are not allowed " "('this key is not in the schema' was unexpected)" ) assert Factory.validate(content) == {"errors": [expected], "warnings": []} def test_strict_validation_success_on_multiple_readme_files(): with_readme_files = TOMLFile(fixtures_dir / "with_readme_files" / "pyproject.toml") content = with_readme_files.read()["tool"]["poetry"] assert Factory.validate(content, strict=True) == {"errors": [], "warnings": []} def test_strict_validation_fails_on_readme_files_with_unmatching_types(): with_readme_files = TOMLFile(fixtures_dir / "with_readme_files" / "pyproject.toml") content = with_readme_files.read()["tool"]["poetry"] content["readme"][0] = "README.md" assert Factory.validate(content, strict=True) == { "errors": [ "Declared README files must be of same type: found text/markdown," " text/x-rst" ], "warnings": [], } def test_create_poetry_fails_on_invalid_configuration(): with pytest.raises(RuntimeError) as e: Factory().create_poetry( Path(__file__).parent / "fixtures" / "invalid_pyproject" / "pyproject.toml" ) expected = """\ The Poetry configuration is invalid: - 'description' is a required property """ assert str(e.value) == expected def test_create_poetry_omits_dev_dependencies_iff_with_dev_is_false(): poetry = Factory().create_poetry(fixtures_dir / "sample_project", with_groups=False) assert not any("dev" in r.groups for r in poetry.package.all_requires) poetry = Factory().create_poetry(fixtures_dir / "sample_project") assert any("dev" in r.groups for r in poetry.package.all_requires) def test_create_poetry_fails_with_invalid_dev_dependencies_iff_with_dev_is_true(): with pytest.raises(ValueError) as err: Factory().create_poetry(fixtures_dir / "project_with_invalid_dev_deps") assert "does not exist" in str(err.value) Factory().create_poetry( fixtures_dir / "project_with_invalid_dev_deps", with_groups=False )
the-stack_106_25860
import os from os import path from setuptools import find_packages, setup VERSION = "0.5.1" INSTALL_REQUIRES = [ "Django>=2.2.9,<3", "bleach==3.1.4", "bleach-whitelist>=0.0.10", "cryptography>=2.7", "django-after-response>=0.2.2", "django-bootstrap4>=0.0.7", "djangorestframework>=3.9.2", "emoji-data-python==1.1.0", "jsonfield>=2.0.2", "markdown2>=2.3.7", "python-slugify>=1.2.6", "slackclient>=1.3,<2", "statuspageio>=0.0.1", ] # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) # load README.md this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="django-incident-response", version=VERSION, long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(exclude="demo"), install_requires=INSTALL_REQUIRES, package_dir={"response": "response"}, python_requires=">3.6", include_package_data=True, license="MIT License", # example license description="A real-time incident response and reporting tool", url="https://github.com/monzo/response", author="Chris Evans", classifiers=[ "Environment :: Web Environment", "Framework :: Django", "Framework :: Django :: 2.2", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: Dynamic Content", ], )
the-stack_106_25861
""" Test the session save feature """ import os import tempfile import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class SessionSaveTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def raw_transcript_builder(self, cmd, res): raw = "(lldb) " + cmd + "\n" if res.GetOutputSize(): raw += res.GetOutput() if res.GetErrorSize(): raw += res.GetError() return raw @skipIfWindows @no_debug_info_test def test_session_save(self): raw = "" interpreter = self.dbg.GetCommandInterpreter() settings = [ 'settings set interpreter.echo-commands true', 'settings set interpreter.echo-comment-commands true', 'settings set interpreter.stop-command-source-on-error false' ] for setting in settings: interpreter.HandleCommand(setting, lldb.SBCommandReturnObject()) inputs = [ '# This is a comment', # Comment 'help session', # Valid command 'Lorem ipsum' # Invalid command ] for cmd in inputs: res = lldb.SBCommandReturnObject() interpreter.HandleCommand(cmd, res) raw += self.raw_transcript_builder(cmd, res) self.assertTrue(interpreter.HasCommands()) self.assertTrue(len(raw) != 0) # Check for error cmd = 'session save /root/file' interpreter.HandleCommand(cmd, res) self.assertFalse(res.Succeeded()) raw += self.raw_transcript_builder(cmd, res) tf = tempfile.NamedTemporaryFile() output_file = tf.name res = lldb.SBCommandReturnObject() interpreter.HandleCommand('session save ' + output_file, res) self.assertTrue(res.Succeeded()) raw += self.raw_transcript_builder(cmd, res) with open(output_file, "r") as file: content = file.read() # Exclude last line, since session won't record it's own output lines = raw.splitlines()[:-1] for line in lines: self.assertIn(line, content) td = tempfile.TemporaryDirectory() res = lldb.SBCommandReturnObject() interpreter.HandleCommand('settings set interpreter.save-session-directory ' + td.name, res) self.assertTrue(res.Succeeded()) res = lldb.SBCommandReturnObject() interpreter.HandleCommand('session save', res) self.assertTrue(res.Succeeded()) raw += self.raw_transcript_builder(cmd, res) with open(os.path.join(td.name, os.listdir(td.name)[0]), "r") as file: content = file.read() # Exclude last line, since session won't record it's own output lines = raw.splitlines()[:-1] for line in lines: self.assertIn(line, content) @skipIfWindows @no_debug_info_test def test_session_save_on_quit(self): raw = "" interpreter = self.dbg.GetCommandInterpreter() td = tempfile.TemporaryDirectory() settings = [ 'settings set interpreter.echo-commands true', 'settings set interpreter.echo-comment-commands true', 'settings set interpreter.stop-command-source-on-error false', 'settings set interpreter.save-session-on-quit true', 'settings set interpreter.save-session-directory ' + td.name, ] for setting in settings: res = lldb.SBCommandReturnObject() interpreter.HandleCommand(setting, res) raw += self.raw_transcript_builder(setting, res) self.dbg.Destroy(self.dbg) with open(os.path.join(td.name, os.listdir(td.name)[0]), "r") as file: content = file.read() # Exclude last line, since session won't record it's own output lines = raw.splitlines()[:-1] for line in lines: self.assertIn(line, content)
the-stack_106_25863
import torch from torch.nn import Linear as Lin from torch.nn import ReLU from torch.nn import Sequential as Seq from torch_geometric.nn import GlobalAttention def test_global_attention(): channels, batch_size = (32, 10) gate_nn = Seq(Lin(channels, channels), ReLU(), Lin(channels, 1)) nn = Seq(Lin(channels, channels), ReLU(), Lin(channels, channels)) glob = GlobalAttention(gate_nn, nn) assert glob.__repr__() == ( 'GlobalAttention(gate_nn=Sequential(\n' ' (0): Linear(in_features=32, out_features=32, bias=True)\n' ' (1): ReLU()\n' ' (2): Linear(in_features=32, out_features=1, bias=True)\n' '), nn=Sequential(\n' ' (0): Linear(in_features=32, out_features=32, bias=True)\n' ' (1): ReLU()\n' ' (2): Linear(in_features=32, out_features=32, bias=True)\n' '))') x = torch.randn((batch_size**2, channels)) batch = torch.arange(batch_size, dtype=torch.long) batch = batch.view(-1, 1).repeat(1, batch_size).view(-1) assert glob(x, batch).size() == (batch_size, channels) assert glob(x, batch, batch_size + 1).size() == (batch_size + 1, channels)
the-stack_106_25864
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified from espnet(https://github.com/espnet/espnet) from typing import Any from typing import List from typing import Tuple import numpy as np import paddle import paddle.nn as nn import paddle.nn.functional as F from paddlespeech.s2t.decoders.scorers.scorer_interface import BatchScorerInterface from paddlespeech.s2t.models.lm_interface import LMInterface from paddlespeech.s2t.modules.encoder import TransformerEncoder from paddlespeech.s2t.modules.mask import subsequent_mask from paddlespeech.s2t.utils.log import Log logger = Log(__name__).getlog() class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface): def __init__(self, n_vocab: int, pos_enc: str=None, embed_unit: int=128, att_unit: int=256, head: int=2, unit: int=1024, layer: int=4, dropout_rate: float=0.5, emb_dropout_rate: float=0.0, att_dropout_rate: float=0.0, tie_weights: bool=False, **kwargs): nn.Layer.__init__(self) if pos_enc == "sinusoidal": pos_enc_layer_type = "abs_pos" elif pos_enc is None: pos_enc_layer_type = "no_pos" else: raise ValueError(f"unknown pos-enc option: {pos_enc}") self.embed = nn.Embedding(n_vocab, embed_unit) if emb_dropout_rate == 0.0: self.embed_drop = None else: self.embed_drop = nn.Dropout(emb_dropout_rate) self.encoder = TransformerEncoder( input_size=embed_unit, output_size=att_unit, attention_heads=head, linear_units=unit, num_blocks=layer, dropout_rate=dropout_rate, attention_dropout_rate=att_dropout_rate, input_layer="linear", pos_enc_layer_type=pos_enc_layer_type, concat_after=False, static_chunk_size=1, use_dynamic_chunk=False, use_dynamic_left_chunk=False) self.decoder = nn.Linear(att_unit, n_vocab) logger.info("Tie weights set to {}".format(tie_weights)) logger.info("Dropout set to {}".format(dropout_rate)) logger.info("Emb Dropout set to {}".format(emb_dropout_rate)) logger.info("Att Dropout set to {}".format(att_dropout_rate)) if tie_weights: assert ( att_unit == embed_unit ), "Tie Weights: True need embedding and final dimensions to match" self.decoder.weight = self.embed.weight def _target_mask(self, ys_in_pad): ys_mask = ys_in_pad != 0 m = subsequent_mask(paddle.shape(ys_mask)[-1]).unsqueeze(0) return ys_mask.unsqueeze(-2) & m def forward(self, x: paddle.Tensor, t: paddle.Tensor ) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: """Compute LM loss value from buffer sequences. Args: x (paddle.Tensor): Input ids. (batch, len) t (paddle.Tensor): Target ids. (batch, len) Returns: tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: Tuple of loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar) Notes: The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n) """ batch_size = paddle.shape(x)[0] xm = x != 0 xlen = xm.sum(axis=1) if self.embed_drop is not None: emb = self.embed_drop(self.embed(x)) else: emb = self.embed(x) h, _ = self.encoder(emb, xlen) y = self.decoder(h) loss = F.cross_entropy( y.view(-1, paddle.shape(y)[-1]), t.view(-1), reduction="none") mask = xm.to(loss.dtype) logp = loss * mask.view(-1) nll = logp.view(batch_size, -1).sum(-1) nll_count = mask.sum(-1) logp = logp.sum() count = mask.sum() return logp / count, logp, count, nll, nll_count # beam search API (see ScorerInterface) def score(self, y: paddle.Tensor, state: Any, x: paddle.Tensor) -> Tuple[paddle.Tensor, Any]: """Score new token. Args: y (paddle.Tensor): 1D paddle.int64 prefix tokens. state: Scorer state for prefix tokens x (paddle.Tensor): encoder feature that generates ys. Returns: tuple[paddle.Tensor, Any]: Tuple of paddle.float32 scores for next token (n_vocab) and next state for ys """ y = y.unsqueeze(0) if self.embed_drop is not None: emb = self.embed_drop(self.embed(y)) else: emb = self.embed(y) h, _, cache = self.encoder.forward_one_step( emb, self._target_mask(y), cache=state) h = self.decoder(h[:, -1]) logp = F.log_softmax(h).squeeze(0) return logp, cache # batch beam search API (see BatchScorerInterface) def batch_score(self, ys: paddle.Tensor, states: List[Any], xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]: """Score new token batch (required). Args: ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen). states (List[Any]): Scorer states for prefix tokens. xs (paddle.Tensor): The encoder feature that generates ys (n_batch, xlen, n_feat). Returns: tuple[paddle.Tensor, List[Any]]: Tuple of batchfied scores for next token with shape of `(n_batch, n_vocab)` and next state list for ys. """ # merge states n_batch = len(ys) n_layers = len(self.encoder.encoders) if states[0] is None: batch_state = None else: # transpose state of [batch, layer] into [layer, batch] batch_state = [ paddle.stack([states[b][i] for b in range(n_batch)]) for i in range(n_layers) ] if self.embed_drop is not None: emb = self.embed_drop(self.embed(ys)) else: emb = self.embed(ys) # batch decoding h, _, states = self.encoder.forward_one_step( emb, self._target_mask(ys), cache=batch_state) h = self.decoder(h[:, -1]) logp = F.log_softmax(h) # transpose state of [layer, batch] into [batch, layer] state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)] return logp, state_list if __name__ == "__main__": tlm = TransformerLM( n_vocab=5002, pos_enc=None, embed_unit=128, att_unit=512, head=8, unit=2048, layer=16, dropout_rate=0.5, ) # n_vocab: int, # pos_enc: str=None, # embed_unit: int=128, # att_unit: int=256, # head: int=2, # unit: int=1024, # layer: int=4, # dropout_rate: float=0.5, # emb_dropout_rate: float = 0.0, # att_dropout_rate: float = 0.0, # tie_weights: bool = False,): paddle.set_device("cpu") model_dict = paddle.load("transformerLM.pdparams") tlm.set_state_dict(model_dict) tlm.eval() #Test the score input2 = np.array([5]) input2 = paddle.to_tensor(input2) state = None output, state = tlm.score(input2, state, None) input3 = np.array([5, 10]) input3 = paddle.to_tensor(input3) output, state = tlm.score(input3, state, None) input4 = np.array([5, 10, 0]) input4 = paddle.to_tensor(input4) output, state = tlm.score(input4, state, None) print("output", output) """ #Test the batch score batch_size = 2 inp2 = np.array([[5], [10]]) inp2 = paddle.to_tensor(inp2) output, states = tlm.batch_score( inp2, [(None,None,0)] * batch_size) inp3 = np.array([[100], [30]]) inp3 = paddle.to_tensor(inp3) output, states = tlm.batch_score( inp3, states) print("output", output) #print("cache", cache) #np.save("output_pd.npy", output) """
the-stack_106_25866
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters sequence_length = 28 input_size = 28 hidden_size = 128 num_layers = 2 num_classes = 10 batch_size = 100 num_epochs = 2 learning_rate = 0.01 # MNIST dataset train_dataset = torchvision.datasets.MNIST(root='../../data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data/', train=False, transform=transforms.ToTensor()) # Data loader train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Recurrent neural network (many-to-one) class RNN(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_classes): super(RNN, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) # nn.LSTM(input dimension, output layer dimension, layer count) # batch_first = True : input data 의 첫번째 차원을 batch_size로 맞춰주기 위함 self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): # Set initial hidden and cell states # input x : (BATCH, LENGTH, INPUT_SIZE) # 최초의 hidden state와 cell state를 초기화 # batch_size를 직접적으로 표시하지 않고 x.size(0) 이렇게 표현해야 함 h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # Forward propagate LSTM out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size) tensor # (hn, cn)은 필요 없으므로 받지 않고 _로 처리 # Decode the hidden state of the last time step # 28 time step을 갖기 때문에, 최종적인 output에서도 마지막 time step의 output만 가져오면 됨 out = self.fc(out[:, -1, :]) return out model = RNN(input_size, hidden_size, num_layers, num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, sequence_length, input_size).to(device) labels = labels.to(device) # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, sequence_length, input_size).to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint torch.save(model.state_dict(), 'model.ckpt')
the-stack_106_25867
from datetime import datetime from decimal import Decimal import numpy as np import pytest from pandas._config import config as cf from pandas._libs import missing as libmissing from pandas._libs.tslibs import iNaT, is_null_datetimelike from pandas.core.dtypes.common import is_scalar from pandas.core.dtypes.dtypes import DatetimeTZDtype, IntervalDtype, PeriodDtype from pandas.core.dtypes.missing import ( array_equivalent, isna, isnull, na_value_for_dtype, notna, notnull, ) import pandas as pd from pandas import DatetimeIndex, Float64Index, NaT, Series, TimedeltaIndex, date_range import pandas._testing as tm now = pd.Timestamp.now() utcnow = pd.Timestamp.now("UTC") @pytest.mark.parametrize("notna_f", [notna, notnull]) def test_notna_notnull(notna_f): assert notna_f(1.0) assert not notna_f(None) assert not notna_f(np.NaN) with cf.option_context("mode.use_inf_as_na", False): assert notna_f(np.inf) assert notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.all() with cf.option_context("mode.use_inf_as_na", True): assert not notna_f(np.inf) assert not notna_f(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notna_f(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_na", False): for s in [ tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries(), ]: assert isinstance(notna_f(s), Series) class TestIsNA: def test_0d_array(self): assert isna(np.array(np.nan)) assert not isna(np.array(0.0)) assert not isna(np.array(0)) # test object dtype assert isna(np.array(np.nan, dtype=object)) assert not isna(np.array(0.0, dtype=object)) assert not isna(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isna(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("isna_f", [isna, isnull]) def test_isna_isnull(self, isna_f): assert not isna_f(1.0) assert isna_f(None) assert isna_f(np.NaN) assert float("nan") assert not isna_f(np.inf) assert not isna_f(-np.inf) # type assert not isna_f(type(pd.Series(dtype=object))) assert not isna_f(type(pd.Series(dtype=np.float64))) assert not isna_f(type(pd.DataFrame())) # series for s in [ tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries(), ]: assert isinstance(isna_f(s), Series) # frame for df in [ tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame(), ]: result = isna_f(df) expected = df.apply(isna_f) tm.assert_frame_equal(result, expected) def test_isna_lists(self): result = isna([[False]]) exp = np.array([[False]]) tm.assert_numpy_array_equal(result, exp) result = isna([[1], [2]]) exp = np.array([[False], [False]]) tm.assert_numpy_array_equal(result, exp) # list of strings / unicode result = isna(["foo", "bar"]) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) result = isna(["foo", "bar"]) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) # GH20675 result = isna([np.NaN, "world"]) exp = np.array([True, False]) tm.assert_numpy_array_equal(result, exp) def test_isna_nat(self): result = isna([NaT]) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) result = isna(np.array([NaT], dtype=object)) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) def test_isna_numpy_nat(self): arr = np.array( [ NaT, np.datetime64("NaT"), np.timedelta64("NaT"), np.datetime64("NaT", "s"), ] ) result = isna(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isna_datetime(self): assert not isna(datetime.now()) assert notna(datetime.now()) idx = date_range("1/1/1990", periods=20) exp = np.ones(len(idx), dtype=bool) tm.assert_numpy_array_equal(notna(idx), exp) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isna(idx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) # GH 9129 pidx = idx.to_period(freq="M") mask = isna(pidx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) mask = isna(pidx[1:]) exp = np.zeros(len(mask), dtype=bool) tm.assert_numpy_array_equal(mask, exp) def test_isna_old_datetimelike(self): # isna_old should work for dt64tz, td64, and period, not just tznaive dti = pd.date_range("2016-01-01", periods=3) dta = dti._data dta[-1] = pd.NaT expected = np.array([False, False, True], dtype=bool) objs = [dta, dta.tz_localize("US/Eastern"), dta - dta, dta.to_period("D")] for obj in objs: with cf.option_context("mode.use_inf_as_na", True): result = pd.isna(obj) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "value, expected", [ (np.complex128(np.nan), True), (np.float64(1), False), (np.array([1, 1 + 0j, np.nan, 3]), np.array([False, False, True, False])), ( np.array([1, 1 + 0j, np.nan, 3], dtype=object), np.array([False, False, True, False]), ), ( np.array([1, 1 + 0j, np.nan, 3]).astype(object), np.array([False, False, True, False]), ), ], ) def test_complex(self, value, expected): result = isna(value) if is_scalar(result): assert result is expected else: tm.assert_numpy_array_equal(result, expected) def test_datetime_other_units(self): idx = pd.DatetimeIndex(["2011-01-01", "NaT", "2011-01-02"]) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isna(idx), exp) tm.assert_numpy_array_equal(notna(idx), ~exp) tm.assert_numpy_array_equal(isna(idx.values), exp) tm.assert_numpy_array_equal(notna(idx.values), ~exp) for dtype in [ "datetime64[D]", "datetime64[h]", "datetime64[m]", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ]: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isna(values), exp) tm.assert_numpy_array_equal(notna(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) def test_timedelta_other_units(self): idx = pd.TimedeltaIndex(["1 days", "NaT", "2 days"]) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isna(idx), exp) tm.assert_numpy_array_equal(notna(idx), ~exp) tm.assert_numpy_array_equal(isna(idx.values), exp) tm.assert_numpy_array_equal(notna(idx.values), ~exp) for dtype in [ "timedelta64[D]", "timedelta64[h]", "timedelta64[m]", "timedelta64[s]", "timedelta64[ms]", "timedelta64[us]", "timedelta64[ns]", ]: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isna(values), exp) tm.assert_numpy_array_equal(notna(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) def test_period(self): idx = pd.PeriodIndex(["2011-01", "NaT", "2012-01"], freq="M") exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isna(idx), exp) tm.assert_numpy_array_equal(notna(idx), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(idx) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) s = pd.Series(idx, dtype=object) tm.assert_series_equal(isna(s), exp) tm.assert_series_equal(notna(s), ~exp) @pytest.mark.parametrize("dtype_equal", [True, False]) def test_array_equivalent(dtype_equal): assert array_equivalent( np.array([np.nan, np.nan]), np.array([np.nan, np.nan]), dtype_equal=dtype_equal ) assert array_equivalent( np.array([np.nan, 1, np.nan]), np.array([np.nan, 1, np.nan]), dtype_equal=dtype_equal, ) assert array_equivalent( np.array([np.nan, None], dtype="object"), np.array([np.nan, None], dtype="object"), dtype_equal=dtype_equal, ) # Check the handling of nested arrays in array_equivalent_object assert array_equivalent( np.array([np.array([np.nan, None], dtype="object"), None], dtype="object"), np.array([np.array([np.nan, None], dtype="object"), None], dtype="object"), dtype_equal=dtype_equal, ) assert array_equivalent( np.array([np.nan, 1 + 1j], dtype="complex"), np.array([np.nan, 1 + 1j], dtype="complex"), dtype_equal=dtype_equal, ) assert not array_equivalent( np.array([np.nan, 1 + 1j], dtype="complex"), np.array([np.nan, 1 + 2j], dtype="complex"), dtype_equal=dtype_equal, ) assert not array_equivalent( np.array([np.nan, 1, np.nan]), np.array([np.nan, 2, np.nan]), dtype_equal=dtype_equal, ) assert not array_equivalent( np.array(["a", "b", "c", "d"]), np.array(["e", "e"]), dtype_equal=dtype_equal ) assert array_equivalent( Float64Index([0, np.nan]), Float64Index([0, np.nan]), dtype_equal=dtype_equal ) assert not array_equivalent( Float64Index([0, np.nan]), Float64Index([1, np.nan]), dtype_equal=dtype_equal ) assert array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan]), dtype_equal=dtype_equal ) assert not array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex([1, np.nan]), dtype_equal=dtype_equal ) assert array_equivalent( TimedeltaIndex([0, np.nan]), TimedeltaIndex([0, np.nan]), dtype_equal=dtype_equal, ) assert not array_equivalent( TimedeltaIndex([0, np.nan]), TimedeltaIndex([1, np.nan]), dtype_equal=dtype_equal, ) assert array_equivalent( DatetimeIndex([0, np.nan], tz="US/Eastern"), DatetimeIndex([0, np.nan], tz="US/Eastern"), dtype_equal=dtype_equal, ) assert not array_equivalent( DatetimeIndex([0, np.nan], tz="US/Eastern"), DatetimeIndex([1, np.nan], tz="US/Eastern"), dtype_equal=dtype_equal, ) # The rest are not dtype_equal assert not array_equivalent( DatetimeIndex([0, np.nan]), DatetimeIndex([0, np.nan], tz="US/Eastern"), ) assert not array_equivalent( DatetimeIndex([0, np.nan], tz="CET"), DatetimeIndex([0, np.nan], tz="US/Eastern"), ) assert not array_equivalent(DatetimeIndex([0, np.nan]), TimedeltaIndex([0, np.nan])) def test_array_equivalent_different_dtype_but_equal(): # Unclear if this is exposed anywhere in the public-facing API assert array_equivalent(np.array([1, 2]), np.array([1.0, 2.0])) @pytest.mark.parametrize( "lvalue, rvalue", [ # There are 3 variants for each of lvalue and rvalue. We include all # three for the tz-naive `now` and exclude the datetim64 variant # for utcnow because it drops tzinfo. (now, utcnow), (now.to_datetime64(), utcnow), (now.to_pydatetime(), utcnow), (now, utcnow), (now.to_datetime64(), utcnow.to_pydatetime()), (now.to_pydatetime(), utcnow.to_pydatetime()), ], ) def test_array_equivalent_tzawareness(lvalue, rvalue): # we shouldn't raise if comparing tzaware and tznaive datetimes left = np.array([lvalue], dtype=object) right = np.array([rvalue], dtype=object) assert not array_equivalent(left, right, strict_nan=True) assert not array_equivalent(left, right, strict_nan=False) def test_array_equivalent_compat(): # see gh-13388 m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)]) n = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)]) assert array_equivalent(m, n, strict_nan=True) assert array_equivalent(m, n, strict_nan=False) m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)]) n = np.array([(1, 2), (4, 3)], dtype=[("a", int), ("b", float)]) assert not array_equivalent(m, n, strict_nan=True) assert not array_equivalent(m, n, strict_nan=False) m = np.array([(1, 2), (3, 4)], dtype=[("a", int), ("b", float)]) n = np.array([(1, 2), (3, 4)], dtype=[("b", int), ("a", float)]) assert not array_equivalent(m, n, strict_nan=True) assert not array_equivalent(m, n, strict_nan=False) def test_array_equivalent_str(): for dtype in ["O", "S", "U"]: assert array_equivalent( np.array(["A", "B"], dtype=dtype), np.array(["A", "B"], dtype=dtype) ) assert not array_equivalent( np.array(["A", "B"], dtype=dtype), np.array(["A", "X"], dtype=dtype) ) def test_array_equivalent_nested(): # reached in groupby aggregations, make sure we use np.any when checking # if the comparison is truthy left = np.array([np.array([50, 70, 90]), np.array([20, 30, 40])], dtype=object) right = np.array([np.array([50, 70, 90]), np.array([20, 30, 40])], dtype=object) assert array_equivalent(left, right, strict_nan=True) assert not array_equivalent(left, right[::-1], strict_nan=True) left = np.array([np.array([50, 50, 50]), np.array([40, 40, 40])], dtype=object) right = np.array([50, 40]) assert not array_equivalent(left, right, strict_nan=True) @pytest.mark.parametrize( "dtype, na_value", [ # Datetime-like (np.dtype("M8[ns]"), NaT), (np.dtype("m8[ns]"), NaT), (DatetimeTZDtype.construct_from_string("datetime64[ns, US/Eastern]"), NaT), (PeriodDtype("M"), NaT), # Integer ("u1", 0), ("u2", 0), ("u4", 0), ("u8", 0), ("i1", 0), ("i2", 0), ("i4", 0), ("i8", 0), # Bool ("bool", False), # Float ("f2", np.nan), ("f4", np.nan), ("f8", np.nan), # Object ("O", np.nan), # Interval (IntervalDtype(), np.nan), ], ) def test_na_value_for_dtype(dtype, na_value): result = na_value_for_dtype(dtype) assert result is na_value class TestNAObj: _1d_methods = ["isnaobj", "isnaobj_old"] _2d_methods = ["isnaobj2d", "isnaobj2d_old"] def _check_behavior(self, arr, expected): for method in TestNAObj._1d_methods: result = getattr(libmissing, method)(arr) tm.assert_numpy_array_equal(result, expected) arr = np.atleast_2d(arr) expected = np.atleast_2d(expected) for method in TestNAObj._2d_methods: result = getattr(libmissing, method)(arr) tm.assert_numpy_array_equal(result, expected) def test_basic(self): arr = np.array([1, None, "foo", -5.1, pd.NaT, np.nan]) expected = np.array([False, True, False, False, True, True]) self._check_behavior(arr, expected) def test_non_obj_dtype(self): arr = np.array([1, 3, np.nan, 5], dtype=float) expected = np.array([False, False, True, False]) self._check_behavior(arr, expected) def test_empty_arr(self): arr = np.array([]) expected = np.array([], dtype=bool) self._check_behavior(arr, expected) def test_empty_str_inp(self): arr = np.array([""]) # empty but not na expected = np.array([False]) self._check_behavior(arr, expected) def test_empty_like(self): # see gh-13717: no segfaults! arr = np.empty_like([None]) expected = np.array([True]) self._check_behavior(arr, expected) m8_units = ["as", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"] na_vals = ( [ None, NaT, float("NaN"), complex("NaN"), np.nan, np.float64("NaN"), np.float32("NaN"), np.complex64(np.nan), np.complex128(np.nan), np.datetime64("NaT"), np.timedelta64("NaT"), ] + [np.datetime64("NaT", unit) for unit in m8_units] + [np.timedelta64("NaT", unit) for unit in m8_units] ) inf_vals = [ float("inf"), float("-inf"), complex("inf"), complex("-inf"), np.inf, np.NINF, ] int_na_vals = [ # Values that match iNaT, which we treat as null in specific cases np.int64(NaT.value), int(NaT.value), ] sometimes_na_vals = [Decimal("NaN")] never_na_vals = [ # float/complex values that when viewed as int64 match iNaT -0.0, np.float64("-0.0"), -0j, np.complex64(-0j), ] class TestLibMissing: def test_checknull(self): for value in na_vals: assert libmissing.checknull(value) for value in inf_vals: assert not libmissing.checknull(value) for value in int_na_vals: assert not libmissing.checknull(value) for value in sometimes_na_vals: assert not libmissing.checknull(value) for value in never_na_vals: assert not libmissing.checknull(value) def test_checknull_old(self): for value in na_vals: assert libmissing.checknull_old(value) for value in inf_vals: assert libmissing.checknull_old(value) for value in int_na_vals: assert not libmissing.checknull_old(value) for value in sometimes_na_vals: assert not libmissing.checknull_old(value) for value in never_na_vals: assert not libmissing.checknull_old(value) def test_is_null_datetimelike(self): for value in na_vals: assert is_null_datetimelike(value) assert is_null_datetimelike(value, False) for value in inf_vals: assert not is_null_datetimelike(value) assert not is_null_datetimelike(value, False) for value in int_na_vals: assert is_null_datetimelike(value) assert not is_null_datetimelike(value, False) for value in sometimes_na_vals: assert not is_null_datetimelike(value) assert not is_null_datetimelike(value, False) for value in never_na_vals: assert not is_null_datetimelike(value)
the-stack_106_25868
# This work is based on original code developed and copyrighted by TNO 2020. # Subsequent contributions are licensed to you by the developers of such code and are # made available to the Project under one or several contributor license agreements. # # This work is licensed to you under the Apache License, Version 2.0. # You may obtain a copy of the license at # # http://www.apache.org/licenses/LICENSE-2.0 # # Contributors: # TNO - Initial implementation # Manager: # TNO from application.esdl import esdl from application.esdl.esh import EnergySystemHandler class EnergySystemStatistics: def __init__(self): self.esh = EnergySystemHandler() self.es = None self.area = None def calculate(self, esdl_string): self.esh.load_from_string(esdl_string, 'calc_stats') self.es = self.esh.get_energy_system() result = dict() self.get_energysystem_info(result) instances = self.es.instance if instances: inst = instances[0] if inst: self.area = inst.area if self.area: self.get_all_areas_info(result) self.get_number_of_assets_info(result) self.get_power_of_assets_info(result) return result def get_energysystem_info(self, res_dict): res_dict['energysystem'] = { 'es_id': self.es.id, 'es_name': self.es.name, 'es_description': self.es.description, 'inst_id': self.es.instance[0].id, 'inst_name': self.es.instance[0].name } def _get_area_info(self, area): res = { 'id': area.id, 'name': area.name, 'scope': str(area.scope), 'sub_areas': [], 'bld_info': {} } for sub_area in area.area: ar_info = self._get_area_info(sub_area) res['sub_areas'].append(ar_info) res['bld_info'] = self._building_statistiscs_per_area(area) return res def get_all_areas_info(self, res_dict): res_dict['areas'] = self._get_area_info(self.area) def _get_number_of_assets_in_building(self, building, res): for content in building.eContents: if isinstance(content, esdl.AbstractBuilding): self._get_number_of_assets_in_building(content, res) if isinstance(content, esdl.Asset): if content.__class__.__name__ in res: res[content.__class__.__name__]['cnt'] += 1 res[content.__class__.__name__]['aggr_cnt'] += content.aggregationCount else: res[content.__class__.__name__] = {'cnt': 1, 'aggr_cnt': content.aggregationCount} def _get_number_of_assets_in_area(self, area, res): for content in area.eContents: if isinstance(content, esdl.Area): self._get_number_of_assets_in_area(content, res) if isinstance(content, esdl.AbstractBuilding): self._get_number_of_assets_in_building(content, res) if isinstance(content, esdl.Asset): if content.__class__.__name__ in res: res[content.__class__.__name__]['cnt'] += 1 res[content.__class__.__name__]['aggr_cnt'] += content.aggregationCount else: res[content.__class__.__name__] = {'cnt': 1, 'aggr_cnt': content.aggregationCount} def get_number_of_assets_info(self, res_dict): res = dict() self._get_number_of_assets_in_area(self.area, res) res_dict['number_of_assets'] = res def _get_power_of_assets_in_building(self, building, res): for content in building.eContents: if isinstance(content, esdl.AbstractBuilding): self._get_power_of_assets_in_building(content, res) if isinstance(content, esdl.EnergyAsset): if 'power' in dir(content): if content.__class__.__name__ in res: res[content.__class__.__name__] += content.power else: res[content.__class__.__name__] = content.power def _get_power_of_assets_in_area(self, area, res): for content in area.eContents: if isinstance(content, esdl.Area): self._get_power_of_assets_in_area(content, res) if isinstance(content, esdl.AbstractBuilding): self._get_power_of_assets_in_building(content, res) if isinstance(content, esdl.EnergyAsset): if 'power' in dir(content): if content.__class__.__name__ in res: res[content.__class__.__name__] += content.power else: res[content.__class__.__name__] = content.power def get_power_of_assets_info(self, res_dict): res = dict() self._get_power_of_assets_in_area(self.area, res) res_dict['power_of_assets'] = res def _building_statistiscs_per_area(self, area): type_number_area = dict() for asset in area.asset: if isinstance(asset, esdl.Building): for bld_asset in asset.asset: if isinstance(bld_asset, esdl.BuildingUnit): bldu_gbd = bld_asset.type gbds = list() for gbd in bldu_gbd: gbds.append(str(gbd)) gbds_str = ",".join(gbds) bldu_floor_area = bld_asset.floorArea if gbds_str in type_number_area: gbd_stats = type_number_area[gbds_str] else: gbd_stats = dict() type_number_area[gbds_str] = gbd_stats if 'number' in gbd_stats: gbd_stats['number'] += 1 else: gbd_stats['number'] = 1 if 'floor_area' in gbd_stats: gbd_stats['floor_area'] += bldu_floor_area else: gbd_stats['floor_area'] = bldu_floor_area return type_number_area
the-stack_106_25871
import logging import psycopg2 import psycopg2.extras import socket import sys import time from cluster_under_test import * class DbRetriable: """ Wrapper around psycopg2, which offers convenient retry functionality. If connection to postgres is lost during query execution or between queries, retry with increasing intervals. Low level functionality: create_connection_with_cursor, run_with_fail, run_with_retry Here you have access to both connection and cursor objects and can e.g run multiple inserts with cursor.execute and the commit them together with connection.commit() More convenient `execute`: run query, commit, return the records. Is sutable for both: selects and insert/update/delete. Supports auto-retry. Usage: db = DbRetriable(dbname="postgres", user="...", password="...") """ def __init__(self, **other_connection_args): """Saves connection_args so they can be later used for connection retry.""" self.other_connection_args = other_connection_args self.ntry = 1 def create_connection_with_cursor(self): """@returns tuple with connection and cursor""" # Reresolve the host name on every connection resolved = ClusterUnderTest.resolve_service_url() con = psycopg2.connect(host=resolved, **self.other_connection_args) cur = con.cursor() return (con, cur) def run_with_retry(self): ''' Runs a block until queries succeed. Generator provides following to the executed block: * psycopg2.connection object * psycopg2.cursor object * number of retries so far Example: >>> for (con, cur, ntry) in db.run_with_retry(): ... cur.execute("""INSERT INTO testdata(batch, try, name) ... SELECT %s, %s, md5(random()::text) ... FROM generate_series(1,%s);""", ... (self.batch, ntry, self.BATCH_SIZE)) ... con.commit() ''' last_exception = '' delay = 1 while True: try: con, cur = self.create_connection_with_cursor() yield con, cur, self.ntry con.commit() break except psycopg2.OperationalError as e: self.ntry +=1 if str(e) == last_exception: sys.stdout.write('+') sys.stdout.flush() else: last_exception = str(e) print(e) time.sleep(delay) delay = delay if delay > 15 else delay*2 if last_exception != '': print() def run_with_fail(self): """ Similar API to run_with_retry. but try to connect and run the block only once. Fail on failure. """ con, cur = self.create_connection_with_cursor() yield con, cur, self.ntry def execute(self, query, params=None, retry=False): """ Shortcut to * run query with params * with retry if desired and necessary * commits at the end * return the dataset as array, if any Is sutable for both: selects and insert/update/delete >>> print(db.execute("SELECT count(*) from testdata;")[0]) """ if retry: for (con, cur, ntry) in self.run_with_retry(): cur.execute(query, params) else: for (con, cur, ntry) in self.run_with_fail(): cur.execute(query, params) try: res = cur.fetchall() except psycopg2.ProgrammingError as ex: res = None # no results to fetch con.commit() return res
the-stack_106_25873
import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings, os, pickle, argparse, multiprocessing, logging from statsmodels.tools.sm_exceptions import ConvergenceWarning import yaml import recommender_config warnings.simplefilter('ignore', ConvergenceWarning) warnings.simplefilter('ignore', FutureWarning) warnings.simplefilter('ignore', UserWarning) from recommender.functions import Theta_forecast, Theta_forecast_sktime, Naive_forecast, lr_forecast, autoarima_forecast, KNN_forecast, DT_forecast, VPA_forecast from recommender.functions import perform_tests def pando_recommender(y_segment, tree, window, limit = 5): forecasters = {'theta':Theta_forecast, 'theta-sktime': Theta_forecast_sktime, 'naive': Naive_forecast, 'linear': lr_forecast,'arima': autoarima_forecast, 'kn': KNN_forecast, 'dt': DT_forecast, "vpa": VPA_forecast} # Check y_segment length if len(y_segment) < window: forecast = np.zeros(window) forecast[-len(y_segment):] = y_segment prov = np.percentile(forecast, recommender_config.TARGET_PERCENTILE) return forecast, prov, "warmup" # get label for segment tests = perform_tests(y_segment, recommender_config.STAT_THRESHOLD, recommender_config.THETA_THRESHOLD, recommender_config.MAX_CHANGEPOINTS) label = int("".join(str(int(i)) for i in tests.values()), 2) print("Trace Behavior Label: {}".format(label)) # get forecaster rec_name = tree[label] if type(rec_name) == float and np.isnan(rec_name): logging.debug("Unseen label: {}. Proceed to apply default VPA".format(label)) rec_name = "vpa" forecaster = forecasters[rec_name] print("Trace Forecaster Selected: {}".format(rec_name)) try: logging.info("Detected label: {}. Forecasting with: {}".format(label, rec_name)) forecast = forecaster(y_segment, window, output=recommender_config.OUTPUT) except: logging.warning("Forecast is invalid, proceed to recommend previous usage.") forecast = y_segment[-window:] if max(forecast) > recommender_config.LIMIT * max(y_segment): logging.warning("Forecast is out of limits, proceed to recommend previous usage.") forecast = y_segment[-window:] prov = np.percentile(y_segment, recommender_config.TARGET_PERCENTILE) else: prov = np.percentile(forecast, recommender_config.TARGET_PERCENTILE) print("Forecasts: {}".format(forecast)) print("Provision: {}".format(prov)) return forecast, prov, label def get_all_recommendation(y, tree, window = 20, sight = 240, default_usage=1000): start, end = 0, window N = len(y) prov, forecast = np.zeros(N), np.zeros(N) labels = [] prov[start:end] = default_usage forecast[start:end] = default_usage while end < N: logging.info("Current segment {}-{}".format(start, end)) forecast_start = end forecast_end = min(end + window, N) prev_usage = y[start:end] if end < sight: logging.info("Warmup phase") prov[forecast_start:forecast_end] = np.percentile(prev_usage, recommender_config.TARGET_PERCENTILE) forecast[forecast_start:forecast_end] = prev_usage else: prev_sight = y[end - sight:end] forecast_segment, rec, label = pando_recommender(prev_sight, tree, forecast_end - forecast_start) forecast[forecast_start:forecast_end] = forecast_segment labels.append(label) prov[forecast_start:forecast_end] = rec start = start + window end = min(end + window, N) return forecast, prov, labels def convert_cputicks2mlcores(trace): return trace / (15 * 10 ** 6) def plot_trace(trace, forecast=None, recommended_requests=None, plt_name="trace", y_label="CPU (milicores)", trace_legend="CPU Usage"): trace_len = len(trace) trace_idx = np.arange(trace_len) * 15 if forecast is not None and recommended_requests is not None: trace_pd = pd.DataFrame({trace_legend: trace, "VPA recommended request": recommended_requests, "Forecast": forecast}, index=trace_idx) elif forecast is not None: trace_pd = pd.DataFrame({trace_legend: trace, "Forecast": forecast}, index=trace_idx) elif recommended_requests is not None: trace_pd = pd.DataFrame({trace_legend: trace, "VPA recommended request": recommended_requests}, index=trace_idx) else: trace_pd = pd.DataFrame({trace_legend: trace}, index=trace_idx) ax = trace_pd.plot() ax.set_xlabel("Time (seconds)") ax.set_ylabel(y_label) ax.legend(loc='upper right') plt.savefig("./imgs/" + plt_name + ".pdf") plt.savefig("./imgs/" + plt_name + ".png") plt.show() def main(): global data_file, output_folder, config_file data = pickle.load(open(data_file, "rb")) if multiproc: pool_obj = multiprocessing.Pool(processes=None) results = pool_obj.starmap(get_all_recommendation, zip(data, np.repeat(recommender_config.TREE, len(data)))) result_dict = {} for i in range(len(data)): result_dict[i] = {"forecast": results[i][0], "prov": results[i][1], "labels": results[i][2]} pickle.dump(result_dict, open(output_folder+ "/forecast_prov_{}".format(os.path.basename(data_file)), "wb")) else: result_dict = {} for i, trace in enumerate(data): logging.info("Processing trace {}".format(i)) if "synthetic" not in data_file: trace = convert_cputicks2mlcores(trace[:600]) forecast, prov, labels = get_all_recommendation(trace[:600], recommender_config.TREE, window=recommender_config.FORECASTING_WINDOW, sight=recommender_config.FORECASTING_SIGHT) result_dict[i] = {"forecast": forecast, "prov": prov, "labels": labels} plot_trace(trace[300:600], forecast[300:600], prov[300:600], plt_name="trace_{}".format(i), y_label="CPU (milicores)", trace_legend="CPU Usage") pickle.dump(result_dict, open(output_folder+ "/pando_forecast_prov_{}".format(os.path.basename(data_file)), "wb")) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s:%(levelname)s: %(message)s', datefmt='%m/%d/%Y %I:%M:%S', level=logging.INFO) parser = argparse.ArgumentParser(description=__doc__,formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('datafile', help="Data file") parser.add_argument('configfile', help="Tree file") parser.add_argument('outfolder', help="Output folder") parser.add_argument('-mp', "--multiproc", action='store_true', help='Compute recommendations in parallel') args = parser.parse_args() data_file = args.datafile config_file = args.configfile output_folder = args.outfolder multiproc = args.multiproc logging.info("Starting Pando VPA") if not os.path.exists(output_folder): os.makedirs(output_folder) main()
the-stack_106_25875
# pylint: skip-file import inspect from typing import List, Optional import lark from WDL.Error import SourcePosition from WDL import Error as Err from WDL import Tree as D from WDL import Type as T from WDL import Expr as E common_grammar = r""" ?literal: "true"-> boolean_true | "false" -> boolean_false | INT -> int | SIGNED_INT -> int | FLOAT -> float | SIGNED_FLOAT -> float ?string: string1 | string2 STRING_INNER1: ("\\'"|/[^']/) ESCAPED_STRING1: "'" STRING_INNER1* "'" string_literal: ESCAPED_STRING | ESCAPED_STRING1 ?map_key: literal | string map_kv: map_key ":" expr // WDL declarations _quant: optional | nonempty | optional_nonempty optional: "?" nonempty: "+" optional_nonempty: "+?" unbound_decl: type CNAME -> decl bound_decl: type CNAME "=" expr -> decl ?any_decl: unbound_decl | bound_decl // WDL task commands: with {} and <<< >>> command and ${} and ~{} placeholder styles !?placeholder_key: "default" | "false" | "true" | "sep" ?placeholder_value: string_literal | INT -> int | FLOAT -> float placeholder_option: placeholder_key "=" placeholder_value placeholder: placeholder_option* expr ?command: command1 | command2 // task meta/parameter_meta sections (effectively JSON) meta_object: "{" [meta_kv (","? meta_kv)*] "}" meta_kv: CNAME ":" meta_value ?meta_value: literal | string_literal | meta_object | "[" [meta_value ("," meta_value)*] "]" -> meta_array META_KIND.2: "meta" | "parameter_meta" | "runtime" // .2 ensures higher priority than CNAME meta_section: META_KIND meta_object // task runtime section (key-expression pairs) runtime_section: "runtime" "{" [runtime_kv (","? runtime_kv)*] "}" runtime_kv: CNAME ":" expr // WDL tasks input_decls: "input" "{" any_decl* "}" output_decls: "output" "{" bound_decl* "}" ?task_sections1: input_decls | output_decls | meta_section | runtime_section | any_decl+ -> noninput_decls ?task_sections2: input_decls | output_decls | meta_section | runtime_section task: "task" CNAME "{" task_sections1* command task_sections2* "}" tasks: task* // WDL workflows namespaced_ident: CNAME ("." CNAME)* call_input: CNAME "=" expr call_inputs: "input" ":" [call_input ("," call_input)*] ","? ?call_body: "{" call_inputs? "}" call: "call" namespaced_ident call_body? -> call | "call" namespaced_ident "as" CNAME call_body? -> call_as ?inner_workflow_element: bound_decl | call | scatter | conditional scatter: "scatter" "(" CNAME "in" expr ")" "{" inner_workflow_element* "}" conditional: "if" "(" expr ")" "{" inner_workflow_element* "}" ?workflow_element: any_decl | call | scatter | conditional | meta_section workflow: "workflow" CNAME "{" input_decls? workflow_element* workflow_outputs? meta_section?"}" // WDL document: version, imports, tasks and (at most one) workflow version: "version" /[^ \t\r\n]+/ import_alias: "alias" CNAME "as" CNAME import_doc: "import" string_literal ["as" CNAME] import_alias* document: version? document_element* | version? document_element* COMMENT: "#" /[^\r\n]*/ NEWLINE %import common.INT %import common.SIGNED_INT %import common.FLOAT %import common.SIGNED_FLOAT %import common.CNAME %import common.ESCAPED_STRING %import common.WS %import common.NEWLINE %ignore WS %ignore COMMENT // WDL expressions ?expr: expr_infix ?expr_infix: expr_infix0 ?expr_infix0: expr_infix0 "||" expr_infix1 -> lor | expr_infix1 ?expr_infix1: expr_infix1 "&&" expr_infix2 -> land | expr_infix2 ?expr_infix2: expr_infix2 "==" expr_infix3 -> eqeq | expr_infix2 "!=" expr_infix3 -> neq | expr_infix2 "<=" expr_infix3 -> lte | expr_infix2 ">=" expr_infix3 -> gte | expr_infix2 "<" expr_infix3 -> lt | expr_infix2 ">" expr_infix3 -> gt | expr_infix3 ?expr_infix3: expr_infix3 "+" expr_infix4 -> add | expr_infix3 "-" expr_infix4 -> sub | expr_infix4 ?expr_infix4: expr_infix4 "*" expr_infix5 -> mul | expr_infix4 "/" expr_infix5 -> div | expr_infix4 "%" expr_infix5 -> rem | expr_infix5 ?expr_infix5: expr_core // expression core (everything but infix) // we stuck this last down here so that further language-version-specific // productions can be added below ?expr_core: "(" expr ")" | literal | string | "!" expr -> negate | "[" [expr ("," expr)*] ","? "]" -> array | expr_core "[" expr "]" -> at | "(" expr "," expr ")" -> pair | "{" [map_kv ("," map_kv)*] "}" -> map | "if" expr "then" expr "else" expr -> ifthenelse | CNAME "(" [expr ("," expr)*] ")" -> apply | CNAME -> left_name | expr_core "." CNAME -> get_name """ # pre-1.0 specific productions: # - predefined types only # - interpolated strings and { } and <<< >>> command styles all have placeholders delimited by ${ } # - workflow outputs can be bare identifiers rather than complete decls productions_pre_1_0 = r""" // WDL types type: BUILTIN_TYPE _quant? | BUILTIN_TYPE "[" type ["," type] "]" _quant? BUILTIN_TYPE.2: "Int" | "Float" | "Boolean" | "String" | "File" | "Array" | "Map" | "Pair" // string (single-quoted) STRING1_CHAR: "\\'" | /[^'$]/ | /\$[^{$']/ STRING1_FRAGMENT: STRING1_CHAR+ string1: /'/ (STRING1_FRAGMENT? /\$/* "${" expr "}")* STRING1_FRAGMENT? /\$/* /'/ -> string // string (double-quoted) STRING2_CHAR: "\\\"" | /[^"$]/ | /\$[^{$"]/ STRING2_FRAGMENT: STRING2_CHAR+ string2: /"/ (STRING2_FRAGMENT? /\$/* "${" expr "}")* STRING2_FRAGMENT? /\$/* /"/ -> string COMMAND1_CHAR: /[^$}]/ | /\$[^{$]/ COMMAND1_FRAGMENT: COMMAND1_CHAR+ command1: "command" "{" (COMMAND1_FRAGMENT? /\$/* "${" placeholder "}")* COMMAND1_FRAGMENT? /\$/* "}" -> command COMMAND2_CHAR: /[^$>]/ | /\$[^{$]/ | />[^>]/ | />>[^>]/ COMMAND2_FRAGMENT: COMMAND2_CHAR+ command2: "command" "<<<" (COMMAND2_FRAGMENT? /\$/* "${" placeholder "}")* COMMAND2_FRAGMENT? /\$/* ">>>" -> command ?workflow_outputs: "output" "{" workflow_output_decls "}" workflow_output_decls: workflow_output_decl* ?workflow_output_decl: bound_decl | namespaced_ident | workflow_wildcard_output workflow_wildcard_output: namespaced_ident "." "*" | namespaced_ident ".*" ?document_element: import_doc | task | workflow """ # 1.0+ productions: # - types can be any CNAME (structs) # - within interpolated strings and { } task commands, placeholders may be delimited by ${ } or ~{ } # - within <<< >>> commands, placeholders are delimited by ~{ } only # - workflow outputs are complete decls # - struct type definitions # - struct literals (as object literals) productions_1_0 = r""" | "object" "{" [object_kv ("," object_kv)*] "}" -> obj // appends to expr_core object_kv: CNAME ":" expr | string_literal ":" expr // WDL types type: CNAME _quant? | CNAME "[" type ["," type] "]" _quant? _EITHER_DELIM.2: "~{" | "${" // string (single-quoted) STRING1_CHAR: "\\'" | /[^'~$]/ | /\$[^{$~']/ | /\~[^{$~']/ STRING1_FRAGMENT: STRING1_CHAR+ string1: /'/ (STRING1_FRAGMENT? /\$/* /\~/* _EITHER_DELIM expr "}")* STRING1_FRAGMENT? /\$/* /\~/* /'/ -> string // string (double-quoted) STRING2_CHAR: "\\\"" | /[^"~$]/ | /\$[^{$~"]/ | /~[^{$~"]/ STRING2_FRAGMENT: STRING2_CHAR+ string2: /"/ (STRING2_FRAGMENT? /\$/* /\~/* _EITHER_DELIM expr "}")* STRING2_FRAGMENT? /\$/* /\~/* /"/ -> string COMMAND1_CHAR: /[^~$}]/ | /\$[^{$~]/ | /~[^{$~]/ COMMAND1_FRAGMENT: COMMAND1_CHAR+ command1: "command" "{" (COMMAND1_FRAGMENT? /\$/* /\~/* _EITHER_DELIM placeholder "}")* COMMAND1_FRAGMENT? /\$/* /\~/* "}" -> command COMMAND2_CHAR: /[^~>]/ | /~[^{~]/ | />[^>]/ | />>[^>]/ COMMAND2_FRAGMENT: COMMAND2_CHAR+ command2: "command" "<<<" (COMMAND2_FRAGMENT? /\~/? "~{" placeholder "}")* COMMAND2_FRAGMENT? /\~/* ">>>" -> command ?workflow_outputs: output_decls // struct definitions struct: "struct" CNAME "{" unbound_decl* "}" ?document_element: import_doc | task | workflow | struct """ _keywords = "Array Float Int Map None Pair String alias as call command else false if import input left meta object output parameter_meta right runtime scatter struct task then true workflow".split( " " ) def _grammar_for_version(version: Optional[str]) -> str: if version == "draft-2": return common_grammar + productions_pre_1_0 return common_grammar + productions_1_0 # memoize Lark parsers constructed for version & start symbol _lark_cache = {} def parse(txt: str, start: str, version: Optional[str] = None) -> lark.Tree: if (version, start) not in _lark_cache: _lark_cache[(version, start)] = lark.Lark( _grammar_for_version(version), start=start, parser="lalr", propagate_positions=True ) return _lark_cache[(version, start)].parse(txt) def sp(filename, meta) -> SourcePosition: return SourcePosition( filename=filename, line=meta.line, column=meta.column, end_line=meta.end_line, end_column=meta.end_column, ) def to_int(x): return int(x) def to_float(x): return float(x) # Transformer from lark.Tree to WDL.Expr class _ExprTransformer(lark.Transformer): # pylint: disable=no-self-use,unused-argument def __init__(self, file: str) -> None: self.filename = file def boolean_true(self, items, meta) -> E.Base: return E.Boolean(sp(self.filename, meta), True) def boolean_false(self, items, meta) -> E.Base: return E.Boolean(sp(self.filename, meta), False) def int(self, items, meta) -> E.Base: assert len(items) == 1 return E.Int(sp(self.filename, meta), to_int(items[0])) def float(self, items, meta) -> E.Base: assert len(items) == 1 return E.Float(sp(self.filename, meta), to_float(items[0])) def string(self, items, meta) -> E.Base: parts = [] for item in items: if isinstance(item, E.Base): parts.append(E.Placeholder(item.pos, {}, item)) else: parts.append(item.value) assert len(parts) >= 2 assert parts[0] in ['"', "'"] assert parts[-1] in ['"', "'"] return E.String(sp(self.filename, meta), parts) def string_literal(self, items, meta): assert len(items) == 1 assert items[0].value.startswith('"') or items[0].value.startswith("'") return str.encode(items[0].value[1:-1]).decode("unicode_escape") def array(self, items, meta) -> E.Base: return E.Array(sp(self.filename, meta), items) def apply(self, items, meta) -> E.Base: assert len(items) >= 1 assert not items[0].startswith("_") # TODO enforce in grammar return E.Apply(sp(self.filename, meta), items[0], items[1:]) def negate(self, items, meta) -> E.Base: return E.Apply(sp(self.filename, meta), "_negate", items) def at(self, items, meta) -> E.Base: return E.Apply(sp(self.filename, meta), "_at", items) def pair(self, items, meta) -> E.Base: assert len(items) == 2 return E.Pair(sp(self.filename, meta), items[0], items[1]) def map_kv(self, items, meta): assert len(items) == 2 return (items[0], items[1]) def map(self, items, meta) -> E.Base: return E.Map(sp(self.filename, meta), items) def object_kv(self, items, meta): assert len(items) == 2 k = items[0] assert isinstance(k, str), k assert isinstance(items[1], E.Base) return (k, items[1]) def obj(self, items, meta) -> E.Base: return E.Struct(sp(self.filename, meta), items) def ifthenelse(self, items, meta) -> E.Base: assert len(items) == 3 return E.IfThenElse(sp(self.filename, meta), *items) def left_name(self, items, meta) -> E.Base: assert len(items) == 1 and isinstance(items[0], str) return E.Get(sp(self.filename, meta), E._LeftName(sp(self.filename, meta), items[0]), None) def get_name(self, items, meta) -> E.Base: assert len(items) == 2 and isinstance(items[0], E.Base) and isinstance(items[1], str) return E.Get(sp(self.filename, meta), items[0], items[1]) # _ExprTransformer infix operators for op in [ "land", "lor", "add", "sub", "mul", "div", "rem", "eqeq", "neq", "lt", "lte", "gt", "gte", ]: def fn(self, items, meta, op=op): assert len(items) == 2 return E.Apply(sp(self.filename, meta), "_" + op, items) setattr(_ExprTransformer, op, lark.v_args(meta=True)(classmethod(fn))) # pyre-fixme class _TypeTransformer(lark.Transformer): # pylint: disable=no-self-use,unused-argument def __init__(self, file: str) -> None: self.filename = file def optional(self, items, meta): return set(["optional"]) def nonempty(self, items, meta): return set(["nonempty"]) def optional_nonempty(self, items, meta): return set(["optional", "nonempty"]) def type(self, items, meta): quantifiers = set() if len(items) > 1 and isinstance(items[-1], set): quantifiers = items.pop() param = items[1] if len(items) > 1 else None param2 = items[2] if len(items) > 2 else None if items[0].value == "Array": if not param or param2: raise Err.InvalidType(sp(self.filename, meta), "Array must have one type parameter") if quantifiers - set(["optional", "nonempty"]): raise Err.ValidationError( sp(self.filename, meta), "invalid type quantifier(s) for Array" ) return T.Array(param, "optional" in quantifiers, "nonempty" in quantifiers) if "nonempty" in quantifiers: raise Err.InvalidType( sp(self.filename, meta), "invalid type quantifier(s) for " + items[0].value ) atomic_types = { "Int": T.Int, "Float": T.Float, "Boolean": T.Boolean, "String": T.String, "File": T.File, } if items[0].value in atomic_types: if param or param2: raise Err.InvalidType( sp(self.filename, meta), items[0] + " type doesn't accept parameters" ) return atomic_types[items[0].value]("optional" in quantifiers) if items[0].value == "Map": if not (param and param2): raise Err.InvalidType(sp(self.filename, meta), "Map must have two type parameters") return T.Map((param, param2), "optional" in quantifiers) if items[0].value == "Pair": if not (param and param2): raise Err.InvalidType(sp(self.filename, meta), "Pair must have two type parameters") return T.Pair(param, param2, "optional" in quantifiers) if param or param2: raise Err.InvalidType(sp(self.filename, meta), "Unexpected type parameter(s)") return T.StructInstance(items[0].value, "optional" in quantifiers) def _check_keyword(pos, name): if name in _keywords: raise Err.SyntaxError(pos, "unexpected keyword {}".format(name)) class _DocTransformer(_ExprTransformer, _TypeTransformer): # pylint: disable=no-self-use,unused-argument def __init__(self, file: str) -> None: # pylint: disable=super-init-not-called self.filename = file def decl(self, items, meta): _check_keyword(sp(self.filename, meta), items[1].value) return D.Decl( sp(self.filename, meta), items[0], items[1].value, (items[2] if len(items) > 2 else None), ) def input_decls(self, items, meta): return {"inputs": items} def noninput_decls(self, items, meta): return {"decls": items} def placeholder_option(self, items, meta): assert len(items) == 2 return (items[0].value, items[1]) def placeholder(self, items, meta): options = dict(items[:-1]) if len(options.items()) < len(items) - 1: raise Err.MultipleDefinitions( sp(self.filename, meta), "duplicate options in expression placeholder" ) return E.Placeholder(sp(self.filename, meta), options, items[-1]) def command(self, items, meta): parts = [] for item in items: if isinstance(item, E.Placeholder): parts.append(item) else: parts.append(item.value) return {"command": E.String(sp(self.filename, meta), parts)} def output_decls(self, items, meta): return {"outputs": items} def meta_kv(self, items, meta): return (items[0].value, items[1]) def meta_object(self, items, meta): d = dict() for k, v in items: if k in d: raise Err.MultipleDefinitions( sp(self.filename, meta), "duplicate keys in meta object" ) d[k] = v return d def meta_array(self, items, meta): return items def meta_section(self, items, meta): kind = items[0].value assert kind in ["meta", "parameter_meta"] d = dict() d[kind] = items[1] return d def runtime_kv(self, items, meta): return (items[0].value, items[1]) def runtime_section(self, items, meta): d = dict() for k, v in items: # TODO: restore duplicate check, cf. https://github.com/gatk-workflows/five-dollar-genome-analysis-pipeline/blob/89f11befc13abae97ab8fb1b457731f390c8728d/tasks_pipelines/qc.wdl#L288 # if k in d: # raise Err.MultipleDefinitions(sp(self.filename, meta), "duplicate keys in runtime section") d[k] = v return {"runtime": d} def task(self, items, meta): d = {} for item in items: if isinstance(item, dict): for k, v in item.items(): if k in d: raise Err.MultipleDefinitions( sp(self.filename, meta), "redundant sections in task" ) d[k] = v else: assert isinstance(item, str) assert "name" not in d d["name"] = item.value _check_keyword(sp(self.filename, meta), d["name"]) return D.Task( sp(self.filename, meta), d["name"], d.get("inputs", None), d.get("decls", []), d["command"], d.get("outputs", []), d.get("parameter_meta", {}), d.get("runtime", {}), d.get("meta", {}), ) def tasks(self, items, meta): return items def namespaced_ident(self, items, meta) -> E.Base: assert items return [item.value for item in items] def call_input(self, items, meta): return (items[0].value, items[1]) def call_inputs(self, items, meta): d = dict() for k, v in items: if k in d: raise Err.MultipleDefinitions( sp(self.filename, meta), "duplicate keys in call inputs" ) d[k] = v return d def call(self, items, meta): return D.Call( sp(self.filename, meta), items[0], None, items[1] if len(items) > 1 else dict() ) def call_as(self, items, meta): _check_keyword(sp(self.filename, meta), items[1].value) return D.Call( sp(self.filename, meta), items[0], items[1].value, items[2] if len(items) > 2 else dict(), ) def scatter(self, items, meta): _check_keyword(sp(self.filename, meta), items[0].value) return D.Scatter(sp(self.filename, meta), items[0].value, items[1], items[2:]) def conditional(self, items, meta): return D.Conditional(sp(self.filename, meta), items[0], items[1:]) def workflow_wildcard_output(self, items, meta): return items[0] + ["*"] # return E.Ident(items[0].pos, items[0].namespace + [items[0].name, "*"]) def workflow_output_decls(self, items, meta): decls = [elt for elt in items if isinstance(elt, D.Decl)] idents = [elt for elt in items if isinstance(elt, list)] assert len(decls) + len(idents) == len(items) return {"outputs": decls, "output_idents": idents, "pos": sp(self.filename, meta)} def workflow(self, items, meta): elements = [] inputs = None outputs = None output_idents = None output_idents_pos = None parameter_meta = None meta_section = None for item in items[1:]: if isinstance(item, dict): if "inputs" in item: assert inputs is None inputs = item["inputs"] elif "outputs" in item: if outputs is not None: raise Err.MultipleDefinitions( sp(self.filename, meta), "redundant sections in workflow" ) outputs = item["outputs"] if "output_idents" in item: assert output_idents is None output_idents = item["output_idents"] output_idents_pos = item["pos"] elif "meta" in item: if meta_section is not None: raise Err.MultipleDefinitions( sp(self.filename, meta), "redundant sections in workflow" ) meta_section = item["meta"] elif "parameter_meta" in item: if parameter_meta is not None: raise Err.MultipleDefinitions( sp(self.filename, meta), "redundant sections in workflow" ) parameter_meta = item["parameter_meta"] else: assert False elif isinstance(item, (D.Call, D.Conditional, D.Decl, D.Scatter)): elements.append(item) else: assert False _check_keyword(sp(self.filename, meta), items[0].value) return D.Workflow( sp(self.filename, meta), items[0].value, inputs, elements, outputs, parameter_meta or dict(), meta_section or dict(), output_idents, output_idents_pos, ) def struct(self, items, meta): assert len(items) >= 1 name = items[0] _check_keyword(sp(self.filename, meta), name) members = {} for d in items[1:]: assert not d.expr if d.name in members: raise Err.MultipleDefinitions( sp(self.filename, meta), "duplicate members in struct" ) members[d.name] = d.type return D.StructTypeDef(sp(self.filename, meta), name, members) def import_alias(self, items, meta): assert len(items) == 2 _check_keyword(sp(self.filename, meta), items[1].value) return (items[0].value, items[1].value) def import_doc(self, items, meta): uri = items[0] if len(items) > 1 and isinstance(items[1], str): namespace = items[1].value else: namespace = uri try: namespace = namespace[namespace.rindex("/") + 1 :] except ValueError: pass if namespace.endswith(".wdl"): namespace = namespace[:-4] _check_keyword(sp(self.filename, meta), namespace) aliases = [p for p in items[1:] if isinstance(p, tuple)] return D.DocImport( pos=sp(self.filename, meta), uri=uri, namespace=namespace, aliases=aliases, doc=None ) def document(self, items, meta): imports = [] structs = {} tasks = [] workflow = None for item in items: if isinstance(item, D.Task): tasks.append(item) elif isinstance(item, D.Workflow): if workflow is not None: raise Err.MultipleDefinitions( sp(self.filename, meta), "Document has multiple workflows" ) workflow = item elif isinstance(item, D.StructTypeDef): if item.name in structs: raise Err.MultipleDefinitions( sp(self.filename, meta), "multiple structs named " + item.name ) structs[item.name] = item elif isinstance(item, lark.Tree) and item.data == "version": pass elif isinstance(item, D.DocImport): imports.append(item) else: assert False return D.Document(sp(self.filename, meta), imports, structs, tasks, workflow) # have lark pass the 'meta' with line/column numbers to each transformer method for _klass in [_ExprTransformer, _TypeTransformer, _DocTransformer]: for name, method in inspect.getmembers(_klass, inspect.isfunction): if not name.startswith("_"): setattr(_klass, name, lark.v_args(meta=True)(method)) # pyre-fixme def parse_expr(txt: str, version: Optional[str] = None) -> E.Base: try: return _ExprTransformer(txt).transform(parse(txt, "expr", version)) except lark.exceptions.UnexpectedInput as exn: pos = SourcePosition( filename="(buffer)", line=getattr(exn, "line", "?"), column=getattr(exn, "column", "?"), end_line=getattr(exn, "line", "?"), end_column=getattr(exn, "column", "?"), ) raise Err.SyntaxError(pos, str(exn)) from None except lark.exceptions.VisitError as exn: raise exn.__context__ def parse_tasks(txt: str, version: Optional[str] = None) -> List[D.Task]: try: return _DocTransformer("").transform(parse(txt, "tasks", version)) except lark.exceptions.VisitError as exn: raise exn.__context__ def parse_document(txt: str, version: Optional[str] = None, uri: str = "") -> D.Document: if version is None: # for now assume the version is 1.0 if the first line is "version <number>" # otherwise draft-2 version = "draft-2" for line in txt.split("\n"): line = line.strip() if line and line[0] != "#": if line.startswith("version ") and line[8].isdigit(): version = "1.0" break if not txt.strip(): return D.Document( SourcePosition(filename=uri, line=0, column=0, end_line=0, end_column=0), [], {}, [], None, ) try: return _DocTransformer(uri).transform(parse(txt, "document", version)) except lark.exceptions.UnexpectedInput as exn: pos = SourcePosition( filename=(uri if uri != "" else "(buffer)"), line=getattr(exn, "line", "?"), column=getattr(exn, "column", "?"), end_line=getattr(exn, "line", "?"), end_column=getattr(exn, "column", "?"), ) raise Err.SyntaxError(pos, str(exn)) from None except lark.exceptions.VisitError as exn: raise exn.__context__
the-stack_106_25876
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports import enum # Pip package imports from flask import Blueprint, current_app, make_response from flask.json import dumps, JSONEncoder as BaseJSONEncoder from flask.views import MethodViewType from flask_restful import Api as BaseApi from flask_sqlalchemy.model import camel_to_snake_case, Model # FIXME: This is no longer present #from marshmallow import MarshalResult from werkzeug.wrappers import Response # Internal package imports from backend.extensions import db from backend.utils import was_decorated_without_parenthesis from .constants import CREATE, DELETE, GET, LIST, PATCH, PUT from .model_resource import ModelResource from .utils import get_last_param_name def _get_model_resource_args(args): bp, model, urls = None, args[0], args[1:] if isinstance(args[0], Blueprint): bp, model, urls = args[0], args[1], args[2:] if not issubclass(model, db.Model): raise NotImplementedError( f"The {'second' if bp else 'first'} argument to Api.model_resource" ' must be a database model class') if not urls: raise NotImplementedError( 'Api.model_resource requires at least one url argument.') return bp, model, urls class Api(BaseApi): """Extends :class:`flask_restful.Api` to support integration with Flask-Marshmallow serializers, along with a few other minor enhancements: - can register individual view functions ala blueprints, via @api.route() - supports using flask.jsonify() in resource methods """ def __init__(self, name, app=None, prefix='', default_mediatype='application/json', decorators=None, catch_all_404s=False, serve_challenge_on_401=False, url_part_order='bae', errors=None): super().__init__(app, prefix=prefix, default_mediatype=default_mediatype, decorators=decorators, catch_all_404s=catch_all_404s, serve_challenge_on_401=serve_challenge_on_401, url_part_order=url_part_order, errors=errors) # name prefix for endpoints self.name = name # configure a customized output_json function so that we can use # Flask's current_app.json_encoder setting self.representations = { 'application/json': output_json, } # registry for individual view functions self._got_registered_once = False self.deferred_functions = [] # automatic serializer handling self.deferred_serializers = [] self.serializers = {} self.serializers_many = {} self.registered_endpoints = {} def _init_app(self, app): super()._init_app(app) self._got_registered_once = True # register individual view functions with the app for deferred in self.deferred_functions: deferred(app) # instantiate serializers for serializer_class in app.serializers.values(): model_name = serializer_class.Meta.model.__name__ self.serializers[model_name] = serializer_class() self.serializers_many[model_name] = serializer_class(many=True) # register serializer overrides for model_name, serializer_class, many in self.deferred_serializers: if many: self.serializers_many[model_name] = serializer_class(many=True) else: self.serializers[model_name] = serializer_class() # attach serializers to Resource instances so that they can perform # automatic deserialization from json requests for resource, _, _ in self.resources: model_name = resource.model.__name__ if model_name not in self.serializers: raise KeyError( f'Could not find a serializer for the {model_name} model!') resource.serializer = self.serializers[model_name] resource.serializer_create = self.serializers[model_name].__class__() resource.serializer_create.context['is_create'] = True self._register_json_encoder(app, self.serializers) def resource(self, *urls, **kwargs): """Decorator to wrap a :class:`~flask_restful.Resource` class, adding it to the api. Parameters are the same as :meth:`~flask_restful.Api.add_resource`. Example:: app = Flask(__name__) api = Api('api', app) @api.resource('/foo') class FooResource(Resource): def get(self): return 'Hello, World!' Overridden to customize the endpoint name """ if urls and isinstance(urls[0], Blueprint): bp = urls[0] urls = (f"{bp.url_prefix or ''}{url}" for url in urls[1:]) def decorator(cls): endpoint = self._get_endpoint(cls, kwargs.pop('endpoint', None)) self.add_resource(cls, *urls, endpoint=endpoint, **kwargs) return cls return decorator def model_resource(self, *args, **kwargs): """Decorator to wrap a :class:`backend.api.ModelResource` class, adding it to the api. There are two supported method signatures: `Api.model_resource(model, *urls, **kwargs)` and `Api.model_resource(blueprint, model, *urls, *kwargs)` Example without blueprint:: from backend.extensions.api import api from models import User @api.model_resource(User, '/users', '/users/<int:id>') class UserResource(Resource): def get(self, user): return user def list(self, users): return users Example with blueprint:: from backend.extensions.api import api from models import User from views import bp @api.model_resource(bp, User, '/users', '/users/<int:id>') class UserResource(Resource): def get(self, user): return user def list(self, users): return users """ bp, model, urls = _get_model_resource_args(args) if bp: urls = (f"{bp.url_prefix or ''}{url}" for url in urls) def decorator(cls): cls.model = model kw_endpoint = kwargs.pop('endpoint', None) if kw_endpoint: self.registered_endpoints[cls.__name__] = kw_endpoint endpoint = self._get_endpoint(cls, kw_endpoint) self.add_resource(cls, *urls, endpoint=endpoint, **kwargs) return cls return decorator def serializer(self, *args, many=False): """Decorator to wrap a :class:`~backend.api.ModelSerializer` class, registering the wrapped serializer as the specific one to use for the serializer's model. For example:: from backend.extensions.api import api from backend.api import ModelSerializer from models import Foo @api.serializer # @api.serializer() works too class FooSerializer(ModelSerializer): class Meta: model = Foo @api.serializer(many=True) class FooListSerializer(ModelSerializer): class Meta: model = Foo """ def decorator(serializer_class): model_name = serializer_class.Meta.model.__name__ self.deferred_serializers.append((model_name, serializer_class, many)) return serializer_class if was_decorated_without_parenthesis(args): return decorator(args[0]) return decorator def route(self, *args, **kwargs): """Decorator for registering individual view functions. Usage without blueprint:: api = Api('api', prefix='/api/v1') @api.route('/foo') # resulting url: /api/v1/foo def get_foo(): # do stuff Usage with blueprint:: api = Api('api', prefix='/api/v1') team = Blueprint('team', url_prefix='/team') @api.route(team, '/users') # resulting url: /api/v1/team/users def users(): # do stuff """ bp, url = None, args[0] if isinstance(args[0], Blueprint): bp, url = args[0], args[1] url = f"{bp.url_prefix or ''}{url}" def decorator(fn): endpoint = self._get_endpoint(fn, kwargs.pop('endpoint', None)) self.add_url_rule(url, endpoint, fn, **kwargs) return fn return decorator def add_url_rule(self, rule, endpoint=None, view_func=None, **kwargs): if not rule.startswith('/'): raise ValueError('URL rule must start with a forward slash (/)') rule = self.prefix + rule self.record( lambda _app: _app.add_url_rule(rule, endpoint, view_func, **kwargs) ) def record(self, fn): if self._got_registered_once: from warnings import warn warn(Warning('The api was already registered once but is getting' ' modified now. These changes will not show up.')) self.deferred_functions.append(fn) def _get_endpoint(self, view_func, endpoint=None, plural=False): def extract_endpoint(ep): ep = self.registered_endpoints.get(view_func.__name__, ep) if isinstance(endpoint, (list, tuple)): return ep else: return ep, None endpoint, endpoint_plural = extract_endpoint(endpoint) # Store each endpoint with the view func name if endpoint: assert '.' not in endpoint, 'Api endpoints should not contain dots' if isinstance(endpoint, (list, tuple)): endpoint = endpoint[1] if plural else endpoint[0] elif isinstance(view_func, MethodViewType): endpoint = camel_to_snake_case(view_func.__name__) if hasattr(view_func, 'model') and plural: if endpoint_plural: endpoint = endpoint_plural else: plural_model = camel_to_snake_case(view_func.model.__plural__) endpoint = f'{plural_model}_resource' else: endpoint = view_func.__name__ str_c = f'{self.name}.{endpoint}' return str_c def _register_json_encoder(self, app, serializers): BaseEncoderClass = app.json_encoder or BaseJSONEncoder class JSONEncoder(BaseEncoderClass): def default(self, o): if isinstance(o, enum.Enum): return o.name if isinstance(o, Model): model_name = o.__class__.__name__ base_model_name = type(o).__bases__[0].__name__ if model_name in serializers: return serializers[model_name].dump(o) elif base_model_name in serializers: return serializers[base_model_name].dump(o) return super().default(o) app.json_encoder = JSONEncoder def make_response(self, data, *args, **kwargs): """Overridden to support returning already-formed Responses unmodified, as well as automatic serialization of lists of sqlalchemy models (serialization of individual models is handled by a custom JSONEncoder class configured in the self._register_json_encoder method) """ print("Make response-data: ", data) # we've already got a response, eg, from jsonify if isinstance(data, Response): return (data, *args) if isinstance(data, (list, tuple)) and len(data) and isinstance(data[0], Model): model_name = data[0].__class__.__name__ print("Serializer-model_name: ", model_name) print("self.serializers_many: ", self.serializers_many) if model_name in self.serializers_many: data = self.serializers_many[model_name].dump(data) # we got the result of serializer.dump(obj) # FIXME: This is no longer present #if isinstance(data, MarshalResult): # data = data.data # we got plain python data types that need to be serialized return super().make_response(data, *args, **kwargs) def _register_view(self, app, resource, *urls, **kwargs): """Overridden to handle custom method names on ModelResources """ if not issubclass(resource, ModelResource) or 'methods' in kwargs: return super()._register_view(app, resource, *urls, **kwargs) for url in urls: endpoint = self._get_endpoint(resource) http_methods = [] has_last_param = get_last_param_name(url) if has_last_param: if ModelResource.has_method(resource, GET): http_methods += ['GET', 'HEAD'] if ModelResource.has_method(resource, DELETE): http_methods += ['DELETE'] if ModelResource.has_method(resource, PATCH): http_methods += ['PATCH'] if ModelResource.has_method(resource, PUT): http_methods += ['PUT'] else: endpoint = self._get_endpoint(resource, plural=True) if ModelResource.has_method(resource, LIST): http_methods += ['GET', 'HEAD'] if ModelResource.has_method(resource, CREATE): http_methods += ['POST'] kwargs['endpoint'] = endpoint super()._register_view(app, resource, url, **kwargs, methods=http_methods) def output_json(data, code, headers=None): """Replaces Flask-RESTful's default output_json function, using Flask.json's dumps method instead of the stock Python json.dumps. Mainly this means we end up using the current app's configured json_encoder class. """ settings = current_app.config.get('RESTFUL_JSON', {}) # If we're in debug mode, and the indent is not set, we set it to a # reasonable value here. if current_app.debug: settings.setdefault('indent', 4) # always end the json dumps with a new line # see https://github.com/mitsuhiko/flask/pull/1262 dumped = dumps(data, **settings) + '\n' response = make_response(dumped, code) response.headers.extend(headers or {}) return response
the-stack_106_25877
#!/usr/bin/env python #--coding:utf-8 -- """ 2018-03-08: modified default minPts to 3 2018-03-13: mode added for pre-set parameters 2018-03-26: modified cut option , removed """ __author__ = "CAO Yaqiang" __date__ = "" __modified__ = "" __email__ = "[email protected]" __version__ = "0.93" #sys library import os, time, sys, logging, gzip, argparse #glob settings #epilog for argparse EPILOG = "Any bug is welcome reported to [email protected], [email protected]" def getLogger(fn=None): """ Creat the logger system. """ #get the current time date = time.strftime(' %Y-%m-%d', time.localtime(time.time())) #if fn == None: # fn = os.getcwd() + "/" + date.strip() + ".log" #set up logging, both write log info to console and log file logging.basicConfig( level=logging.INFO, format='%(asctime)s %(name)-6s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename=fn, filemode='a') logger = logging.getLogger() handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.NOTSET) return logger def callSys(cmds, logger=None): """ Call systematic commands without return. """ for c in cmds: try: logger.info(c) except: print(c) try: os.system(c) except: try: logger.error(c) except: print("ERROR!", c) def cFlush(r): """ One line flush. """ sys.stdout.write("\r%s" % r) sys.stdout.flush() def mainHelp(): """ Create the command line interface of the main programme for calling loops. """ description = """ Intra-chromosomal loops calling for ChIA-PET,HiChIP and high-resolution Hi-C data. """ parser = argparse.ArgumentParser(description=description, epilog=EPILOG) parser.add_argument( "-f", dest="fnIn", required=True, type=str, help= "Input file is mapped PETs, tab-delimited BEDPE format in gzip. Replicates could be input as -f A.bedpe.gz,B.bedpe.gz,C.bedpe.gz. Loops will be called with pooled data." ) parser.add_argument("-o", dest="fnOut", required=True, type=str, help="Output prefix.") parser.add_argument( "-m", dest="mode", required=False, type=int, default=0, choices=[0, 1, 2, 3, 4], help= "Pre-set parameters and signicicance cutoff for different types of data. Default is 0, using values from -eps and -minPts. Set 1 for sharp peak like ChIA-PET data (CTCF,RAD21,eg..),set 2 for broad peak like ChIA-PET data (H3K27ac,H3K4me1 eg..), and set 3 for deep sequenced Hi-C (>200 million cis PETs), set 4 for HiChIP (>100 million cis PETs). Detail parameters will be logged in the log file." ) parser.add_argument( "-eps", dest="eps", default=0, required=False, help= "Distance that define two points being neighbors, eps in cDBSCAN as key parameter. For sharp peak like ChIA-PET data (CTCF), it can be set as 1000,2000. For broad peak like ChIA-PET data, such as H3K27ac/H3K4me1, set it to 2000,5000. For data like HiChIP and Hi-C, set it larger,set several eps like 5000,7500,10000. Default is 0, cLoops can auto estimate a eps for initial result, maybe not good." ) parser.add_argument( "-minPts", dest="minPts", default=0, help= "Points required in a cluster, minPts in cDBSCAN, key parameter. Empirically 5 is good for TFs and histone modification ChIA-PET data. For data like HiChIP and Hi-C, set it larger, like >=20. Since v0.9, it can be a seires, and the final loops will have the PETs>= max(minPts). For Hi-C data with ~200 million intra-chromosomal PETs, we set it to 20,30,40,50. For cohesin HiChIP data with ~30-40 million intra-chromosomal PETs, we set it to 10,15,20. You can custome it." ) parser.add_argument( "-p", dest="cpu", required=False, default=1, type=int, help= "CPU number used to run the job, default is 1,set -1 to use all cpus available. Too many CPU could cause memory error." ) parser.add_argument( "-c", dest="chroms", required=False, default="", type=str, help= "Whether to process limited chroms, specify it as chr1,chr2,chr3, default is not. Use this to filter reads in like chr22_KI270876v1_alt" ) parser.add_argument( "-w", dest="washU", required=False, action="store_true", help= "Whether to save tracks of loops to visualize in washU. Default is No, set this flag to save." ) parser.add_argument( "-j", dest="juice", required=False, action="store_true", help= "Whether to convert loops to 2d feature annotations to visualize in Juicebox. Default is No, set this flag to save." ) parser.add_argument( "-s", dest="tmp", required=False, action="store_true", help= "Whether or not to save temp files for each chromosomes during processing. Set this flag for following calling differentially enriched loops or converting PETs to washU track or hic file load into juicebox. Default is not." ) parser.add_argument( "-hic", dest="hic", required=False, action="store_true", help= "If input is HiChIP or high resolution Hi-C data, set this flag, using different significance cutoffs for loops than ChIA-PET data." ) parser.add_argument( "-cut", dest="cut", required=False, default=0, type=int, help= "Initial distance cutoff to filter PETs, default is 0, only used for debuging." ) parser.add_argument( "-max_cut", dest="max_cut", required=False, action="store_true", help= "When running cLoops with multiple eps or minPts, multiple distance cutoffs for self-ligation and inter-ligation will be esimated, defulat is the minimal one, set this flag to use maxmial one." ) parser.add_argument( "-plot", dest="plot", required=False, action="store_true", help= "Whether to plot estimated inter-ligation and self-ligation PETs distance distrbution, default is not." ) parser.add_argument( "-v", dest="version", action="version", version="cLoops v%s" % __version__, ) op = parser.parse_args() return op def deloopHelp(): """ Create the command line interface for the script of deLoops """ epilog = EPILOG description = """ Differentially enriched loops calling based on loops called by cLoops. For example: deLoops -fa a.loop -fb b.loop -da A -db B -p 10 """ parser = argparse.ArgumentParser(description=description, epilog=epilog) parser.add_argument( "-fa", dest="fa", required=True, type=str, help= "Loops file called by cLoops. Only using significant loops as mark 1, you can change this in the .loop file." ) parser.add_argument("-fb", dest="fb", required=True, type=str, help="Loops file called by cLoops.") parser.add_argument( "-da", dest="da", required=True, type=str, help= "Directory for .jd files of loop file a, generated by cLoops with option -s 1." ) parser.add_argument( "-db", dest="db", required=True, type=str, help= "Directory for .jd files of loop file b, generated by cLoops with option -s 1." ) parser.add_argument( "-p", dest="cpu", required=False, default=1, type=int, help= "CPU number used to run the job, default is 1,set -1 to use all cpus available. Too many CPU could cause memory error." ) parser.add_argument( "-c", dest="chroms", required=False, default="", type=str, help= "Whether to process limited chroms, specify it as chr1,chr2,chr3, default is not. Set it to the same one for cLoops." ) parser.add_argument( "-dis", dest="dis", required=False, default=0, type=int, help= "Set a distance cutoff to filter PETs, could be the inter-ligation and self-ligation cutoff, default is 0." ) op = parser.parse_args() return op def jd2washUHelp(): """ Create the command line interface for the script of jd2washU. """ description = """ Convert PETs level data to washU browser track for visualization. bedtools,bgzip,tabix are required. Example: jd2washU -d CTCF_ChIA-PET -o CTCF_ChIA-PET """ parser = argparse.ArgumentParser(description=description, epilog=EPILOG) parser.add_argument( "-d", dest="dir", required=True, type=str, help="Directory for .jd files, generated by cLoops with option -s 1.") parser.add_argument("-o", dest="output", required=True, type=str, help="Output prefix.") parser.add_argument( "-ext", dest="ext", type=int, default=75, help= "Extension from the middle center of the PET to both ends,default is 75." ) parser.add_argument( "-cut", dest="cut", type=int, default=0, help="Distance cutoff for PETs to filter, default is 0.") op = parser.parse_args() return op def jd2juiceHelp(): """ Create the command line interface for the script of jd2juice. """ description = """ Convert PETs level data to .hic file to load in juicebox. The command "juicer_tools pre" is required in the enviroment. For example: jd2juice -d CTCF -o test -org hg38 """ parser = argparse.ArgumentParser(description=description, epilog=EPILOG) parser.add_argument( "-d", dest="dir", required=True, type=str, help="Directory for .jd files, generated by cLoops with option -s 1.") parser.add_argument("-o", dest="output", required=True, type=str, help="Output prefix.") parser.add_argument( "-org", dest="org", required=True, type=str, default="hg38", help="Organism required to generate .hic file,default is hg38.") parser.add_argument( "-res", dest="resolution", type=str, default="1000,5000,10000,20000", help= "Resolutions used to generate .hic file,default is 1000,5000,10000,20000" ) parser.add_argument( "-cut", dest="cut", type=int, default=0, help="Distance cutoff for PETs to filter, default is 0.") op = parser.parse_args() return op def jd2saturationHelp(): """ Create the command line interface for the script of jd2saturation. """ description = """ Re-sampling PETs to estimate loops detection saturation. For example: jd2saturation -jd CTCF_chr21/chr21-chr21.jd -o test -s 5 -eps 750 -minPts 5 """ parser = argparse.ArgumentParser(description=description, epilog=EPILOG) parser.add_argument( "-jd", dest="jd", required=True, type=str, help= "The .jd file used to re-sampling, generated by cLoops with option -s 1. Small chromosome is recommended,like chr21 for human or chr19 for mouse." ) parser.add_argument("-o", dest="output", required=True, type=str, help="Output prefix.") parser.add_argument( "-r", dest="repeats", type=int, default=5, help="Re-sampling times for each sequencing depth,default is 5.") parser.add_argument("-s", dest="step", type=int, default=10, help="Re-sampling step,default is 10. ") parser.add_argument( "-eps", dest="eps", required=True, help="Eps to run. Eps will be the same for different sequencing depth. " ) parser.add_argument( "-minPts", dest="minPts", required=True, type=int, help= "minPts to run. minPts will be re-caculated according to re-sampling sequencing depth, say 0.5 PETs and it equals 0.5*minPts." ) parser.add_argument( "-cut", dest="cut", type=int, default=0, help="Distance cutoff for PETs to filter, default is 0.") parser.add_argument( "-p", dest="cpu", required=False, default=1, type=int, help= "CPU number used to run the job, default is 1,set -1 to use all cpus available. Too many CPU could cause memory error." ) parser.add_argument( "-hic", dest="hic", required=False, default=False, type=bool, help= "If input is HiChIP or high resolution Hi-C data, set this to 1, using different significance cutoffs for loops than ChIA-PET data." ) op = parser.parse_args() return op def jd2fingerprintHelp(): """ Create the command line interface for the script of jd2saturation. """ description = """ Get the finger print for the datasets using contact matrix with specific bin size, small bin sizes like 1000, 2000 are recommended. For exmaple: jd2fingerprint -d CTCF_ChIA-PET,cohesin_HiChIP,HiC -o test -bs 2000 -plot 1 -p 10 -labels CTCF_ChIA-PET,cohesin_HiChIP,HiC """ parser = argparse.ArgumentParser(description=description, epilog=EPILOG) parser.add_argument( "-d", dest="d", required=True, type=str, help= "The directory of cis .jd file used to draw quality control fingerprint,created by cLoops with option -s 1. Mutiple samples/datasets for comparasion should be assigned as -d a,b,c" ) parser.add_argument("-o", dest="output", required=True, type=str, help="Output prefix.") parser.add_argument("-bs", dest="binSize", default=2000, type=int, help="Bin sizes for contact matrix, default is 2000.") parser.add_argument( "-labels", dest="labels", default="", help= "Labels for the datasets for ploting, default is the directory name.") parser.add_argument( "-plot", dest="plot", default=0, type=bool, help= "Set 1 for ploting the finger print, set 0 for not, default is not. ") parser.add_argument( "-p", dest="cpu", required=False, default=1, type=int, help= "CPU number used to run the job, default is 1,set -1 to use all cpus available." ) parser.add_argument( "-cut", dest="cut", type=int, default=0, help="Distance cutoff for PETs to filter, default is 0.") op = parser.parse_args() return op
the-stack_106_25883
#!/usr/bin/python3 # Copyright 2022. FastyBird s.r.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ HomeKit connector logger module """ # Python base dependencies import logging import uuid from typing import Dict # Library libs from fastybird_homekit_connector.types import CONNECTOR_NAME class Logger: """ Connector logger @package FastyBird:HomeKitConnector! @module logger @author Adam Kadlec <[email protected]> """ __connector_id: uuid.UUID __logger: logging.Logger # ----------------------------------------------------------------------------- def __init__( self, connector_id: uuid.UUID, logger: logging.Logger = logging.getLogger("dummy"), ) -> None: self.__connector_id = connector_id self.__logger = logger # ----------------------------------------------------------------------------- def set_logger(self, logger: logging.Logger) -> None: """Configure custom logger handler""" self.__logger = logger # ----------------------------------------------------------------------------- @property def level(self) -> int: """Logger configured logging level""" return self.__logger.level # ----------------------------------------------------------------------------- def debug(self, msg: str, *args, **kwargs) -> None: # type: ignore[no-untyped-def] """Log debugging message""" extra = self.__get_connector_extra() if "extra" in kwargs: extra = {**extra, **kwargs.get("extra", {})} del kwargs["extra"] self.__logger.debug(msg, extra=extra, *args, **kwargs) # ----------------------------------------------------------------------------- def info(self, msg: str, *args, **kwargs) -> None: # type: ignore[no-untyped-def] """Log information message""" extra = self.__get_connector_extra() if "extra" in kwargs: extra = {**extra, **kwargs.get("extra", {})} del kwargs["extra"] self.__logger.info(msg, extra=extra, *args, **kwargs) # ----------------------------------------------------------------------------- def warning(self, msg: str, *args, **kwargs) -> None: # type: ignore[no-untyped-def] """Log warning message""" extra = self.__get_connector_extra() if "extra" in kwargs: extra = {**extra, **kwargs.get("extra", {})} del kwargs["extra"] self.__logger.warning(msg, extra=extra, *args, **kwargs) # ----------------------------------------------------------------------------- def error(self, msg: str, *args, **kwargs) -> None: # type: ignore[no-untyped-def] """Log error message""" extra = self.__get_connector_extra() if "extra" in kwargs: extra = {**extra, **kwargs.get("extra", {})} del kwargs["extra"] self.__logger.error(msg, extra=extra, *args, **kwargs) # ----------------------------------------------------------------------------- def exception(self, msg: Exception) -> None: """Log thrown exception""" self.__logger.exception(msg) # ----------------------------------------------------------------------------- def __get_connector_extra(self) -> Dict: return { "connector": { "type": CONNECTOR_NAME, "id": str(self.__connector_id), }, }
the-stack_106_25885
import atexit import functools import os import shutil import tempfile import time from copy import deepcopy as _deepcopy from taichi._lib import core as _ti_core from taichi._lib.utils import locale_encode from taichi.lang import impl from taichi.lang.expr import Expr from taichi.lang.impl import axes from taichi.lang.runtime_ops import sync from taichi.lang.snode import SNode from taichi.lang.util import warning from taichi.profiler.kernel_profiler import get_default_kernel_profiler from taichi.types.primitive_types import f32, f64, i32, i64 from taichi import _logging, _snode, _version_check i = axes(0) j = axes(1) k = axes(2) l = axes(3) ij = axes(0, 1) ik = axes(0, 2) il = axes(0, 3) jk = axes(1, 2) jl = axes(1, 3) kl = axes(2, 3) ijk = axes(0, 1, 2) ijl = axes(0, 1, 3) ikl = axes(0, 2, 3) jkl = axes(1, 2, 3) ijkl = axes(0, 1, 2, 3) cfg = impl.default_cfg() x86_64 = _ti_core.x64 """The x64 CPU backend. """ x64 = _ti_core.x64 """The X64 CPU backend. """ arm64 = _ti_core.arm64 """The ARM CPU backend. """ cuda = _ti_core.cuda """The CUDA backend. """ metal = _ti_core.metal """The Apple Metal backend. """ opengl = _ti_core.opengl """The OpenGL backend. OpenGL 4.3 required. """ # Skip annotating this one because it is barely maintained. cc = _ti_core.cc wasm = _ti_core.wasm """The WebAssembly backend. """ vulkan = _ti_core.vulkan """The Vulkan backend. """ dx11 = _ti_core.dx11 """The DX11 backend. """ gpu = [cuda, metal, opengl, vulkan, dx11] """A list of GPU backends supported on the current system. When this is used, Taichi automatically picks the matching GPU backend. If no GPU is detected, Taichi falls back to the CPU backend. """ cpu = _ti_core.host_arch() """A list of CPU backends supported on the current system. When this is used, Taichi automatically picks the matching CPU backend. """ timeline_clear = lambda: impl.get_runtime().prog.timeline_clear() # pylint: disable=unnecessary-lambda timeline_save = lambda fn: impl.get_runtime().prog.timeline_save(fn) # pylint: disable=unnecessary-lambda # Legacy API type_factory_ = _ti_core.get_type_factory_instance() def print_memory_profile_info(): """Memory profiling tool for LLVM backends with full sparse support. This profiler is automatically on. """ impl.get_runtime().materialize() impl.get_runtime().prog.print_memory_profiler_info() extension = _ti_core.Extension def is_extension_supported(arch, ext): """Checks whether an extension is supported on an arch. Args: arch (taichi_core.Arch): Specified arch. ext (taichi_core.Extension): Specified extension. Returns: bool: Whether `ext` is supported on `arch`. """ return _ti_core.is_extension_supported(arch, ext) def reset(): """Resets Taichi to its initial state. This would destroy all the fields and kernels. """ _ti_core.reset_snode_access_flag() impl.reset() global runtime runtime = impl.get_runtime() class _EnvironmentConfigurator: def __init__(self, kwargs, _cfg): self.cfg = _cfg self.kwargs = kwargs self.keys = [] def add(self, key, _cast=None): _cast = _cast or self.bool_int self.keys.append(key) # TI_ASYNC= : no effect # TI_ASYNC=0 : False # TI_ASYNC=1 : True name = 'TI_' + key.upper() value = os.environ.get(name, '') if len(value): self[key] = _cast(value) if key in self.kwargs: _ti_core.warn( f'ti.init argument "{key}" overridden by environment variable {name}={value}' ) del self.kwargs[key] # mark as recognized elif key in self.kwargs: self[key] = self.kwargs[key] del self.kwargs[key] # mark as recognized def __getitem__(self, key): return getattr(self.cfg, key) def __setitem__(self, key, value): setattr(self.cfg, key, value) @staticmethod def bool_int(x): return bool(int(x)) class _SpecialConfig: # like CompileConfig in C++, this is the configurations that belong to other submodules def __init__(self): self.log_level = 'info' self.gdb_trigger = False self.experimental_real_function = False self.short_circuit_operators = False self.ndarray_use_torch = False def prepare_sandbox(): ''' Returns a temporary directory, which will be automatically deleted on exit. It may contain the taichi_core shared object or some misc. files. ''' tmp_dir = tempfile.mkdtemp(prefix='taichi-') atexit.register(shutil.rmtree, tmp_dir) print(f'[Taichi] preparing sandbox at {tmp_dir}') os.mkdir(os.path.join(tmp_dir, 'runtime/')) return tmp_dir def init(arch=None, default_fp=None, default_ip=None, _test_mode=False, enable_fallback=True, **kwargs): """Initializes the Taichi runtime. This should always be the entry point of your Taichi program. Most importantly, it sets the backend used throughout the program. Args: arch: Backend to use. This is usually :const:`~taichi.lang.cpu` or :const:`~taichi.lang.gpu`. default_fp (Optional[type]): Default floating-point type. default_ip (Optional[type]): Default integral type. **kwargs: Taichi provides highly customizable compilation through ``kwargs``, which allows for fine grained control of Taichi compiler behavior. Below we list some of the most frequently used ones. For a complete list, please check out https://github.com/taichi-dev/taichi/blob/master/taichi/program/compile_config.h. * ``cpu_max_num_threads`` (int): Sets the number of threads used by the CPU thread pool. * ``debug`` (bool): Enables the debug mode, under which Taichi does a few more things like boundary checks. * ``print_ir`` (bool): Prints the CHI IR of the Taichi kernels. * ``packed`` (bool): Enables the packed memory layout. See https://docs.taichi.graphics/lang/articles/advanced/layout. """ # Check version for users every 7 days if not disabled by users. _version_check.start_version_check_thread() # Make a deepcopy in case these args reference to items from ti.cfg, which are # actually references. If no copy is made and the args are indeed references, # ti.reset() could override the args to their default values. default_fp = _deepcopy(default_fp) default_ip = _deepcopy(default_ip) kwargs = _deepcopy(kwargs) reset() spec_cfg = _SpecialConfig() env_comp = _EnvironmentConfigurator(kwargs, cfg) env_spec = _EnvironmentConfigurator(kwargs, spec_cfg) # configure default_fp/ip: # TODO: move these stuff to _SpecialConfig too: env_default_fp = os.environ.get("TI_DEFAULT_FP") if env_default_fp: if default_fp is not None: _ti_core.warn( f'ti.init argument "default_fp" overridden by environment variable TI_DEFAULT_FP={env_default_fp}' ) if env_default_fp == '32': default_fp = f32 elif env_default_fp == '64': default_fp = f64 elif env_default_fp is not None: raise ValueError( f'Invalid TI_DEFAULT_FP={env_default_fp}, should be 32 or 64') env_default_ip = os.environ.get("TI_DEFAULT_IP") if env_default_ip: if default_ip is not None: _ti_core.warn( f'ti.init argument "default_ip" overridden by environment variable TI_DEFAULT_IP={env_default_ip}' ) if env_default_ip == '32': default_ip = i32 elif env_default_ip == '64': default_ip = i64 elif env_default_ip is not None: raise ValueError( f'Invalid TI_DEFAULT_IP={env_default_ip}, should be 32 or 64') if default_fp is not None: impl.get_runtime().set_default_fp(default_fp) if default_ip is not None: impl.get_runtime().set_default_ip(default_ip) # submodule configurations (spec_cfg): env_spec.add('log_level', str) env_spec.add('gdb_trigger') env_spec.add('experimental_real_function') env_spec.add('short_circuit_operators') env_spec.add('ndarray_use_torch') # compiler configurations (ti.cfg): for key in dir(cfg): if key in ['arch', 'default_fp', 'default_ip']: continue _cast = type(getattr(cfg, key)) if _cast is bool: _cast = None env_comp.add(key, _cast) unexpected_keys = kwargs.keys() if len(unexpected_keys): raise KeyError( f'Unrecognized keyword argument(s) for ti.init: {", ".join(unexpected_keys)}' ) # dispatch configurations that are not in ti.cfg: if not _test_mode: _ti_core.set_core_trigger_gdb_when_crash(spec_cfg.gdb_trigger) impl.get_runtime().experimental_real_function = \ spec_cfg.experimental_real_function impl.get_runtime().short_circuit_operators = \ spec_cfg.short_circuit_operators impl.get_runtime().ndarray_use_torch = \ spec_cfg.ndarray_use_torch _logging.set_logging_level(spec_cfg.log_level.lower()) # select arch (backend): env_arch = os.environ.get('TI_ARCH') if env_arch is not None: _logging.info(f'Following TI_ARCH setting up for arch={env_arch}') arch = _ti_core.arch_from_name(env_arch) cfg.arch = adaptive_arch_select(arch, enable_fallback, cfg.use_gles) if cfg.arch == cc: _ti_core.set_tmp_dir(locale_encode(prepare_sandbox())) print(f'[Taichi] Starting on arch={_ti_core.arch_name(cfg.arch)}') # Torch based ndarray on opengl backend allocates memory on host instead of opengl backend. # So it won't work. if cfg.arch == opengl and spec_cfg.ndarray_use_torch: _logging.warn( 'Opengl backend doesn\'t support torch based ndarray. Setting ndarray_use_torch to False.' ) impl.get_runtime().ndarray_use_torch = False if _test_mode: return spec_cfg get_default_kernel_profiler().set_kernel_profiler_mode(cfg.kernel_profiler) # create a new program: impl.get_runtime().create_program() _logging.trace('Materializing runtime...') impl.get_runtime().prog.materialize_runtime() impl._root_fb = _snode.FieldsBuilder() if not os.environ.get("TI_DISABLE_SIGNAL_HANDLERS", False): impl.get_runtime()._register_signal_handlers() return None def no_activate(*args): for v in args: _ti_core.no_activate(v.snode.ptr) def block_local(*args): """Hints Taichi to cache the fields and to enable the BLS optimization. Please visit https://docs.taichi.graphics/lang/articles/advanced/performance for how BLS is used. Args: *args (List[Field]): A list of sparse Taichi fields. """ if impl.current_cfg().opt_level == 0: _logging.warn("""opt_level = 1 is enforced to enable bls analysis.""") impl.current_cfg().opt_level = 1 for a in args: for v in a.get_field_members(): _ti_core.insert_snode_access_flag( _ti_core.SNodeAccessFlag.block_local, v.ptr) def mesh_local(*args): for a in args: for v in a.get_field_members(): _ti_core.insert_snode_access_flag( _ti_core.SNodeAccessFlag.mesh_local, v.ptr) def cache_read_only(*args): for a in args: for v in a.get_field_members(): _ti_core.insert_snode_access_flag( _ti_core.SNodeAccessFlag.read_only, v.ptr) def assume_in_range(val, base, low, high): return _ti_core.expr_assume_in_range( Expr(val).ptr, Expr(base).ptr, low, high) def loop_unique(val, covers=None): if covers is None: covers = [] if not isinstance(covers, (list, tuple)): covers = [covers] covers = [x.snode.ptr if isinstance(x, Expr) else x.ptr for x in covers] return _ti_core.expr_loop_unique(Expr(val).ptr, covers) parallelize = _ti_core.parallelize serialize = lambda: parallelize(1) block_dim = _ti_core.block_dim global_thread_idx = _ti_core.insert_thread_idx_expr mesh_patch_idx = _ti_core.insert_patch_idx_expr def Tape(loss, clear_gradients=True): """Return a context manager of :class:`~taichi.lang.tape.TapeImpl`. The context manager would catching all of the callings of functions that decorated by :func:`~taichi.lang.kernel_impl.kernel` or :func:`~taichi.ad.grad_replaced` under `with` statement, and calculate all the partial gradients of a given loss variable by calling all of the gradient function of the callings caught in reverse order while `with` statement ended. See also :func:`~taichi.lang.kernel_impl.kernel` and :func:`~taichi.ad.grad_replaced` for gradient functions. Args: loss(:class:`~taichi.lang.expr.Expr`): The loss field, which shape should be (). clear_gradients(Bool): Before `with` body start, clear all gradients or not. Returns: :class:`~taichi.lang.tape.TapeImpl`: The context manager. Example:: >>> @ti.kernel >>> def sum(a: ti.float32): >>> for I in ti.grouped(x): >>> y[None] += x[I] ** a >>> >>> with ti.Tape(loss = y): >>> sum(2)""" impl.get_runtime().materialize() if len(loss.shape) != 0: raise RuntimeError( 'The loss of `Tape` must be a 0-D field, i.e. scalar') if not loss.snode.ptr.has_grad(): raise RuntimeError( 'Gradients of loss are not allocated, please use ti.field(..., needs_grad=True)' ' for all fields that are required by autodiff.') if clear_gradients: clear_all_gradients() from taichi._kernels import clear_loss # pylint: disable=C0415 clear_loss(loss) return impl.get_runtime().get_tape(loss) def clear_all_gradients(): """Set all fields' gradients to 0.""" impl.get_runtime().materialize() def visit(node): places = [] for _i in range(node.ptr.get_num_ch()): ch = node.ptr.get_ch(_i) if not ch.is_place(): visit(SNode(ch)) else: if not ch.is_primal(): places.append(ch.get_expr()) places = tuple(places) if places: from taichi._kernels import \ clear_gradients # pylint: disable=C0415 clear_gradients(places) for root_fb in _snode.FieldsBuilder.finalized_roots(): visit(root_fb) def benchmark(_func, repeat=300, args=()): def run_benchmark(): compile_time = time.time() _func(*args) # compile the kernel first sync() compile_time = time.time() - compile_time stat_write('compilation_time', compile_time) codegen_stat = _ti_core.stat() for line in codegen_stat.split('\n'): try: a, b = line.strip().split(':') except: continue a = a.strip() b = int(float(b)) if a == 'codegen_kernel_statements': stat_write('compiled_inst', b) if a == 'codegen_offloaded_tasks': stat_write('compiled_tasks', b) elif a == 'launched_tasks': stat_write('launched_tasks', b) # Use 3 initial iterations to warm up # instruction/data caches. Discussion: # https://github.com/taichi-dev/taichi/pull/1002#discussion_r426312136 for _ in range(3): _func(*args) sync() clear_kernel_profile_info() t = time.time() for _ in range(repeat): _func(*args) sync() elapsed = time.time() - t avg = elapsed / repeat stat_write('wall_clk_t', avg) device_time = kernel_profiler_total_time() avg_device_time = device_time / repeat stat_write('exec_t', avg_device_time) run_benchmark() def benchmark_plot(fn=None, cases=None, columns=None, column_titles=None, archs=None, title=None, bars='sync_vs_async', bar_width=0.4, bar_distance=0, left_margin=0, size=(12, 8)): import matplotlib.pyplot as plt # pylint: disable=C0415 import yaml # pylint: disable=C0415 if fn is None: fn = os.path.join(_ti_core.get_repo_dir(), 'benchmarks', 'output', 'benchmark.yml') with open(fn, 'r') as f: data = yaml.load(f, Loader=yaml.SafeLoader) if bars != 'sync_vs_async': # need baseline baseline_dir = os.path.join(_ti_core.get_repo_dir(), 'benchmarks', 'baseline') baseline_file = f'{baseline_dir}/benchmark.yml' with open(baseline_file, 'r') as f: baseline_data = yaml.load(f, Loader=yaml.SafeLoader) if cases is None: cases = list(data.keys()) assert len(cases) >= 1 if len(cases) == 1: cases = [cases[0], cases[0]] warning( 'Function benchmark_plot does not support plotting with only one case for now. Duplicating the item to move on.' ) if columns is None: columns = list(data[cases[0]].keys()) if column_titles is None: column_titles = columns normalize_to_lowest = lambda x: True figure, subfigures = plt.subplots(len(cases), len(columns)) if title is None: title = 'Taichi Performance Benchmarks (Higher means more)' figure.suptitle(title, fontweight="bold") for col_id in range(len(columns)): subfigures[0][col_id].set_title(column_titles[col_id]) for case_id, case in enumerate(cases): subfigures[case_id][0].annotate( case, xy=(0, 0.5), xytext=(-subfigures[case_id][0].yaxis.labelpad - 5, 0), xycoords=subfigures[case_id][0].yaxis.label, textcoords='offset points', size='large', ha='right', va='center') for col_id, col in enumerate(columns): if archs is None: current_archs = data[case][col].keys() else: current_archs = [ x for x in archs if x in data[case][col].keys() ] if bars == 'sync_vs_async': y_left = [ data[case][col][arch]['sync'] for arch in current_archs ] label_left = 'sync' y_right = [ data[case][col][arch]['async'] for arch in current_archs ] label_right = 'async' elif bars == 'sync_regression': y_left = [ baseline_data[case][col][arch]['sync'] for arch in current_archs ] label_left = 'before' y_right = [ data[case][col][arch]['sync'] for arch in current_archs ] label_right = 'after' elif bars == 'async_regression': y_left = [ baseline_data[case][col][arch]['async'] for arch in current_archs ] label_left = 'before' y_right = [ data[case][col][arch]['async'] for arch in current_archs ] label_right = 'after' else: raise RuntimeError('Unknown bars type') if normalize_to_lowest(col): for _i in range(len(current_archs)): maximum = max(y_left[_i], y_right[_i]) y_left[_i] = y_left[_i] / maximum if y_left[_i] != 0 else 1 y_right[ _i] = y_right[_i] / maximum if y_right[_i] != 0 else 1 ax = subfigures[case_id][col_id] bar_left = ax.bar(x=[ i - bar_width / 2 - bar_distance / 2 for i in range(len(current_archs)) ], height=y_left, width=bar_width, label=label_left, color=(0.47, 0.69, 0.89, 1.0)) bar_right = ax.bar(x=[ i + bar_width / 2 + bar_distance / 2 for i in range(len(current_archs)) ], height=y_right, width=bar_width, label=label_right, color=(0.68, 0.26, 0.31, 1.0)) ax.set_xticks(range(len(current_archs))) ax.set_xticklabels(current_archs) figure.legend((bar_left, bar_right), (label_left, label_right), loc='lower center') figure.subplots_adjust(left=left_margin) fig = plt.gcf() fig.set_size_inches(size) plt.show() def stat_write(key, value): import yaml # pylint: disable=C0415 case_name = os.environ.get('TI_CURRENT_BENCHMARK') if case_name is None: return if case_name.startswith('benchmark_'): case_name = case_name[10:] arch_name = _ti_core.arch_name(cfg.arch) async_mode = 'async' if cfg.async_mode else 'sync' output_dir = os.environ.get('TI_BENCHMARK_OUTPUT_DIR', '.') filename = f'{output_dir}/benchmark.yml' try: with open(filename, 'r') as f: data = yaml.load(f, Loader=yaml.SafeLoader) except FileNotFoundError: data = {} data.setdefault(case_name, {}) data[case_name].setdefault(key, {}) data[case_name][key].setdefault(arch_name, {}) data[case_name][key][arch_name][async_mode] = value with open(filename, 'w') as f: yaml.dump(data, f, Dumper=yaml.SafeDumper) def is_arch_supported(arch, use_gles=False): """Checks whether an arch is supported on the machine. Args: arch (taichi_core.Arch): Specified arch. use_gles (bool): If True, check is GLES is available otherwise check if GLSL is available. Only effective when `arch` is `ti.opengl`. Default is `False`. Returns: bool: Whether `arch` is supported on the machine. """ arch_table = { cuda: _ti_core.with_cuda, metal: _ti_core.with_metal, opengl: functools.partial(_ti_core.with_opengl, use_gles), cc: _ti_core.with_cc, vulkan: _ti_core.with_vulkan, dx11: _ti_core.with_dx11, wasm: lambda: True, cpu: lambda: True, } with_arch = arch_table.get(arch, lambda: False) try: return with_arch() except Exception as e: arch = _ti_core.arch_name(arch) _ti_core.warn( f"{e.__class__.__name__}: '{e}' occurred when detecting " f"{arch}, consider adding `TI_ENABLE_{arch.upper()}=0` " f" to environment variables to suppress this warning message.") return False def adaptive_arch_select(arch, enable_fallback, use_gles): if arch is None: return cpu if not isinstance(arch, (list, tuple)): arch = [arch] for a in arch: if is_arch_supported(a, use_gles): return a if not enable_fallback: raise RuntimeError(f'Arch={arch} is not supported') _logging.warn(f'Arch={arch} is not supported, falling back to CPU') return cpu def get_host_arch_list(): return [_ti_core.host_arch()] __all__ = [ 'i', 'ij', 'ijk', 'ijkl', 'ijl', 'ik', 'ikl', 'il', 'j', 'jk', 'jkl', 'jl', 'k', 'kl', 'l', 'cfg', 'x86_64', 'x64', 'dx11', 'wasm', 'arm64', 'cc', 'cpu', 'cuda', 'gpu', 'metal', 'opengl', 'vulkan', 'extension', 'parallelize', 'block_dim', 'global_thread_idx', 'Tape', 'assume_in_range', 'benchmark', 'benchmark_plot', 'block_local', 'cache_read_only', 'clear_all_gradients', 'init', 'mesh_local', 'no_activate', 'print_memory_profile_info', 'reset' ]
the-stack_106_25886
from numpy.lib.shape_base import take_along_axis from suzieq.poller.services.service import Service from suzieq.utils import convert_macaddr_format_to_colon, expand_ios_ifname import re import numpy as np class LldpService(Service): """LLDP service. Different class because of munging ifname""" def _common_data_cleaner(self, processed_data, raw_data): drop_indices = [] for i, entry in enumerate(processed_data): if not entry: continue if not entry.get('ifname', ''): drop_indices.append(i) continue self._common_cleaner(entry) processed_data = np.delete(processed_data, drop_indices).tolist() return processed_data def _common_cleaner(self, entry): chassis_type = entry.get('_chassisType', '') if not isinstance(chassis_type, str): if chassis_type == 7: chassis_type = 'peerHostname' else: chassis_type = 'unknown' chassis_type = chassis_type.lower() if chassis_type == 'mac address': entry['peerHostname'] = convert_macaddr_format_to_colon( entry.get('peerHostname', '0000.0000.0000')) subtype = entry.get('subtype', '') if not isinstance(subtype, str): if subtype == 7: subtype = 'interface name' else: subtype = 'unknown' subtype = subtype.lower() if subtype in ["interface name", '']: entry['peerMacaddr'] = '00:00:00:00:00:00' entry['peerIfindex'] = 0 entry['subtype'] = 'interface name' # IOS* don't provide subtype if subtype == 'mac address': entry['peerMacaddr'] = convert_macaddr_format_to_colon( entry.get('peerIfname', '0000.0000.0000')) entry['peerIfname'] = '-' entry['peerIfindex'] = 0 entry['subtype'] = 'mac address' elif subtype.startswith('locally'): entry['peerIfindex'] = entry['peerIfname'] entry['peerIfname'] = '-' entry['peerMacaddr'] = '00:00:00:00:00:00' entry['subtype'] = 'locally assigned' def _clean_nxos_data(self, processed_data, raw_data): drop_indices = [] entries = {} for i, entry in enumerate(processed_data): entry['peerHostname'] = re.sub(r'\(.*\)', '', entry['peerHostname']) entry['ifname'] = re.sub( r'^Eth?(\d)', 'Ethernet\g<1>', entry['ifname']) if entry['ifname'] in entries: # Description is sometimes filled in with CDP, but not LLDP if not entry.get('description', ''): old_entry = processed_data[entries[entry['ifname']]] entry['description'] = old_entry.get('description', '') drop_indices.append(entries[entry['ifname']]) else: entries[entry['ifname']] = i if entry.get('protocol', '') == 'cdp': entry['subtype'] = 'interface name' entry['peerIfname'] = expand_ios_ifname( entry.get('peerIfname', '')) if entry.get('mgmtIP', '') == "not advertised": entry['mgmtIP'] = '' # make it consistent with other NOS self._common_cleaner(entry) if not entry['peerHostname']: drop_indices.append(i) processed_data = np.delete(processed_data, drop_indices).tolist() return processed_data def _clean_junos_data(self, processed_data, raw_data): drop_indices = [] for i, entry in enumerate(processed_data): if not entry.get('ifname', ''): drop_indices.append(i) continue self._common_cleaner(entry) processed_data = np.delete(processed_data, drop_indices).tolist() return processed_data def _clean_eos_data(self, processed_data, raw_data): drop_indices = [] for i, entry in enumerate(processed_data): subtype = entry.get('subtype', '') if subtype == 'interfaceName': entry['subtype'] = 'interface name' elif subtype == 'macAddress': entry['subtype'] = 'mac address' elif subtype == "local": entry['subtype'] = 'locally assigned' self._common_cleaner(entry) if not entry['peerHostname']: drop_indices.append(i) processed_data = np.delete(processed_data, drop_indices).tolist() return processed_data def _clean_cumulus_data(self, processed_data, raw_data): for entry in processed_data: subtype = entry.get('subtype', '') if subtype == "ifname": entry['subtype'] = "interface name" elif subtype == "local": entry['subtype'] = "locally assigned" self._common_cleaner(entry) return processed_data def _clean_linux_data(self, processed_data, raw_data): for entry in processed_data: subtype = entry.get('subtype', '') if subtype == 'ifname': entry['subtype'] = 'interface name' elif subtype == 'local': entry['subtype'] = 'locally assigned' elif subtype == 'mac': entry['subtype'] = 'mac address' self._common_cleaner(entry) return processed_data def _clean_iosxr_data(self, processed_data, raw_data): for entry in processed_data: self._common_cleaner(entry) return processed_data def _clean_iosxe_data(self, processed_data, raw_data): for entry in processed_data: for field in ['ifname', 'peerIfname']: entry[field] = expand_ios_ifname(entry[field]) if ' ' in entry.get(field, ''): entry[field] = entry[field].replace(' ', '') self._common_cleaner(entry) return processed_data def _clean_ios_data(self, processed_data, raw_data): return self._clean_iosxe_data(processed_data, raw_data) def _clean_sonic_data(self, processed_data, raw_data): return self._clean_linux_data(processed_data, raw_data)
the-stack_106_25887
import json import numpy as np import gym from gym import spaces from game.simulator import Simulator class LilysGardenEnv(gym.Env): def __init__(self, level: int = 1, **kwargs): """The gym environment for Lily's Garden. Example of starting env: env = gym.make('lg-v0', level=1) Parameters ---------- simulator: Simulator instance of Simulator Returns ------- """ self.simulator = None self.level = level self.board_state = None self.board_state_full = None self.return_full_state = False self.latest_observation = None self.current_progress = None self.max_total_steps = None self.valid_steps = 0 self.total_steps = 0 self.collect_goal_goal = 0 self.sim_seed = None self.board_size = (13, 9) self.channels = 24 # 24 from sim + action mask from env self.observation_space = gym.spaces.Box(low=0, high=10., shape=(self.board_size[0], self.board_size[1], self.channels), dtype=np.float32) self.action_space = spaces.Discrete(self.board_size[0] * self.board_size[1]) self.valid_actions = [1] * self.action_space.n self.__dict__.update(kwargs) def reset(self, seed=None): self.valid_steps = 0 self.total_steps = 0 sim_seed = np.random.randint(1, 2 ** 31 - 1) if seed is None else seed self.sim_seed = sim_seed new_board = self.simulator.reset(self.get_level(), sim_seed) obs = new_board.get('multichannelArrayState', '{}') if obs: self.board_state = json.loads(obs) else: self.board_state = None self.latest_observation = self._observation_from_state() self.current_progress = self._calculate_progress() return self.latest_observation def step(self, action: int) -> any: coords = self._action_to_coord(action) result = self.simulator.step(coords['x'], coords['y']) self.board_state = json.loads(result.get('multichannelArrayState', '{}')) valid_action = result.get('clickSuccessful', False) new_progress = self._calculate_progress() observation = self._observation_from_state() self.latest_observation = observation self.valid_steps += 1 * valid_action goal_reached = self.board_state['collectGoalRemaining'] < 1e-6 self.total_steps += 1 info_dict = dict(valid_steps=self.valid_steps, total_steps=self.total_steps, successful_click=valid_action, new_progress=new_progress) info_dict['goal_reached'] = goal_reached reward = self._calculate_reward(info_dict) # Should the env be reset? done = goal_reached self.current_progress = new_progress return observation, reward, done, info_dict def render(self, mode='human'): raise NotImplementedError def get_level(self): return self.level def set_level(self, level): self.level = level def set_simulator(self, simulator: Simulator): self.simulator = simulator def _calculate_progress(self): try: progress = self.board_state['collectGoalGoal'] - self.board_state['collectGoalRemaining'] except (TypeError, KeyError): progress = self.current_progress return progress def _calculate_reward(self, info_dict) -> float: reward = (self.current_progress - info_dict['new_progress']) - .1 - .5 * (not info_dict['successful_click']) reward += 5 * info_dict.get('goal_reached', False) return reward def _observation_from_state(self): try: obs = np.array(self.board_state['board'], dtype=np.float64).reshape(self.board_state['boardSize'], order='F') except (TypeError, KeyError): obs = None return obs def _action_to_coord(self, action: int) -> dict: indexes = self._action_to_index(action) return {'x': int(indexes['idx'] - self.board_size[0] // 2), 'y': int(indexes['idy'] - self.board_size[1] // 2)} def _action_to_index(self, action: int) -> dict: return {'idx': action % self.board_size[0], 'idy': action // self.board_size[0]} def _coord_to_index(self, x: int, y: int) -> dict: return {'idx': int(x + self.board_size[0] // 2), 'idy': int(y + self.board_size[1] // 2)} def _coord_to_action(self, x: int, y: int) -> int: return self._index_to_action(**self._coord_to_index(x, y)) def _index_to_action(self, idx: int, idy: int) -> int: return idx + idy * self.board_size[0] def _index_to_coord(self, idx: int, idy: int) -> dict: return {'x': idx - self.board_size[0] // 2, 'y': idy - self.board_size[1] // 2}
the-stack_106_25888
# Copyright 2018 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from c7n.provider import clouds from collections import Counter import contextlib import copy import datetime import itertools import logging import os import shutil import sys import tempfile import time import traceback import boto3 from c7n.credentials import SessionFactory from c7n.config import Bag from c7n.log import CloudWatchLogHandler # Import output registries aws provider extends. from c7n.output import ( api_stats_outputs, blob_outputs, log_outputs, metrics_outputs, tracer_outputs ) # Output base implementations we extend. from c7n.output import ( Metrics, DeltaStats, DirectoryOutput, LogOutput, ) from c7n.registry import PluginRegistry from c7n import credentials, utils log = logging.getLogger('custodian.aws') try: from aws_xray_sdk.core import xray_recorder, patch from aws_xray_sdk.core.context import Context HAVE_XRAY = True except ImportError: HAVE_XRAY = False class Context(object): pass # NOQA _profile_session = None DEFAULT_NAMESPACE = "CloudMaid" def get_profile_session(options): global _profile_session if _profile_session: return _profile_session profile = getattr(options, 'profile', None) _profile_session = boto3.Session(profile_name=profile) return _profile_session def _default_region(options): marker = object() value = getattr(options, 'regions', marker) if value is marker: return if len(value) > 0: return try: options.regions = [get_profile_session(options).region_name] except Exception: log.warning('Could not determine default region') options.regions = [None] if options.regions[0] is None: log.error('No default region set. Specify a default via AWS_DEFAULT_REGION ' 'or setting a region in ~/.aws/config') sys.exit(1) log.debug("using default region:%s from boto" % options.regions[0]) def _default_account_id(options): if options.assume_role: try: options.account_id = options.assume_role.split(':')[4] return except IndexError: pass try: session = get_profile_session(options) options.account_id = utils.get_account_id_from_sts(session) except Exception: options.account_id = None @metrics_outputs.register('aws') class MetricsOutput(Metrics): """Send metrics data to cloudwatch """ permissions = ("cloudWatch:PutMetricData",) retry = staticmethod(utils.get_retry(('Throttling',))) def __init__(self, ctx, config=None): super(MetricsOutput, self).__init__(ctx, config) self.namespace = self.config.get('namespace', DEFAULT_NAMESPACE) def _format_metric(self, key, value, unit, dimensions): d = { "MetricName": key, "Timestamp": datetime.datetime.utcnow(), "Value": value, "Unit": unit} d["Dimensions"] = [ {"Name": "Policy", "Value": self.ctx.policy.name}, {"Name": "ResType", "Value": self.ctx.policy.resource_type}] for k, v in dimensions.items(): d['Dimensions'].append({"Name": k, "Value": v}) return d def _put_metrics(self, ns, metrics): watch = utils.local_session(self.ctx.session_factory).client('cloudwatch') return self.retry( watch.put_metric_data, Namespace=ns, MetricData=metrics) @log_outputs.register('aws') class CloudWatchLogOutput(LogOutput): log_format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s' def get_handler(self): return CloudWatchLogHandler( log_group=self.ctx.options.log_group, log_stream=self.ctx.policy.name, session_factory=lambda x=None: self.ctx.session_factory( assume=False)) def __repr__(self): return "<%s to group:%s stream:%s>" % ( self.__class__.__name__, self.ctx.options.log_group, self.ctx.policy.name) class XrayEmitter(object): def __init__(self): self.buf = [] self.client = None def send_entity(self, entity): self.buf.append(entity) if len(self.buf) > 49: self.flush() def flush(self): buf = self.buf self.buf = [] for segment_set in utils.chunks(buf, 50): self.client.put_trace_segments( TraceSegmentDocuments=[ s.serialize() for s in segment_set]) class XrayContext(Context): def __init__(self, *args, **kw): super(XrayContext, self).__init__(*args, **kw) # We want process global semantics as policy execution # can span threads. self._local = Bag() self._current_subsegment = None def handle_context_missing(self): """Custodian has a few api calls out of band of policy execution. - Resolving account alias. - Cloudwatch Log group/stream discovery/creation (when using -l on cli) Also we want to folks to optionally based on configuration using xray so default to disabling context missing output. """ @tracer_outputs.register('xray', condition=HAVE_XRAY) class XrayTracer(object): emitter = XrayEmitter() in_lambda = 'LAMBDA_TASK_ROOT' in os.environ use_daemon = 'AWS_XRAY_DAEMON_ADDRESS' in os.environ service_name = 'custodian' context = XrayContext() if HAVE_XRAY: xray_recorder.configure( emitter=use_daemon is False and emitter or None, context=context, sampling=True, context_missing='LOG_ERROR' ) patch(['boto3', 'requests']) logging.getLogger('aws_xray_sdk.core').setLevel(logging.ERROR) def __init__(self, ctx, config): self.ctx = ctx self.config = config or {} self.client = None self.metadata = {} @contextlib.contextmanager def subsegment(self, name): segment = xray_recorder.begin_subsegment(name) try: yield segment except Exception as e: stack = traceback.extract_stack(limit=xray_recorder.max_trace_back) segment.add_exception(e, stack) raise finally: xray_recorder.end_subsegment(time.time()) def __enter__(self): if self.client is None: self.client = self.ctx.session_factory(assume=False).client('xray') self.emitter.client = self.client if self.in_lambda: self.segment = xray_recorder.begin_subsegment(self.service_name) else: self.segment = xray_recorder.begin_segment( self.service_name, sampling=True) p = self.ctx.policy xray_recorder.put_annotation('policy', p.name) xray_recorder.put_annotation('resource', p.resource_type) if self.ctx.options.account_id: xray_recorder.put_annotation('account', self.ctx.options.account_id) def __exit__(self, exc_type=None, exc_value=None, exc_traceback=None): metadata = self.ctx.get_metadata(('api-stats',)) metadata.update(self.metadata) xray_recorder.put_metadata('custodian', metadata) if self.in_lambda: xray_recorder.end_subsegment() return xray_recorder.end_segment() if not self.use_daemon: self.emitter.flush() self.metadata.clear() @api_stats_outputs.register('aws') class ApiStats(DeltaStats): def __init__(self, ctx, config=None): super(ApiStats, self).__init__(ctx, config) self.api_calls = Counter() def get_snapshot(self): return dict(self.api_calls) def get_metadata(self): return self.get_snapshot() def __enter__(self): if isinstance(self.ctx.session_factory, credentials.SessionFactory): self.ctx.session_factory.set_subscribers((self,)) self.push_snapshot() def __exit__(self, exc_type=None, exc_value=None, exc_traceback=None): if isinstance(self.ctx.session_factory, credentials.SessionFactory): self.ctx.session_factory.set_subscribers(()) self.ctx.metrics.put_metric( "ApiCalls", sum(self.api_calls.values()), "Count") self.ctx.policy._write_file( 'api-stats.json', utils.dumps(dict(self.api_calls))) self.pop_snapshot() def __call__(self, s): s.events.register( 'after-call.*.*', self._record, unique_id='c7n-api-stats') def _record(self, http_response, parsed, model, **kwargs): self.api_calls["%s.%s" % ( model.service_model.endpoint_prefix, model.name)] += 1 @blob_outputs.register('s3') class S3Output(DirectoryOutput): """ Usage: .. code-block:: python with S3Output(session_factory, 's3://bucket/prefix'): log.info('xyz') # -> log messages sent to custodian-run.log.gz """ permissions = ('S3:PutObject',) def __init__(self, ctx, config): self.ctx = ctx self.config = config self.output_path = self.get_output_path(self.config['url']) self.s3_path, self.bucket, self.key_prefix = utils.parse_s3( self.output_path) self.root_dir = tempfile.mkdtemp() self.transfer = None def __repr__(self): return "<%s to bucket:%s prefix:%s>" % ( self.__class__.__name__, self.bucket, self.key_prefix) def get_output_path(self, output_url): if '{' not in output_url: date_path = datetime.datetime.now().strftime('%Y/%m/%d/%H') return self.join( output_url, self.ctx.policy.name, date_path) return output_url.format(**self.get_output_vars()) @staticmethod def join(*parts): return "/".join([s.strip('/') for s in parts]) def __exit__(self, exc_type=None, exc_value=None, exc_traceback=None): from boto3.s3.transfer import S3Transfer if exc_type is not None: log.exception("Error while executing policy") log.debug("Uploading policy logs") self.leave_log() self.compress() self.transfer = S3Transfer( self.ctx.session_factory(assume=False).client('s3')) self.upload() shutil.rmtree(self.root_dir) log.debug("Policy Logs uploaded") def upload(self): for root, dirs, files in os.walk(self.root_dir): for f in files: key = "%s%s" % ( self.key_prefix, "%s/%s" % ( root[len(self.root_dir):], f)) key = key.strip('/') self.transfer.upload_file( os.path.join(root, f), self.bucket, key, extra_args={ 'ACL': 'bucket-owner-full-control', 'ServerSideEncryption': 'AES256'}) @clouds.register('aws') class AWS(object): resource_prefix = 'aws' # legacy path for older plugins resources = PluginRegistry('resources') def initialize(self, options): """ """ _default_region(options) _default_account_id(options) return options def get_session_factory(self, options): return SessionFactory( options.region, options.profile, options.assume_role, options.external_id) def initialize_policies(self, policy_collection, options): """Return a set of policies targetted to the given regions. Supports symbolic regions like 'all'. This will automatically filter out policies if their being targetted to a region that does not support the service. Global services will target a single region (us-east-1 if only all specified, else first region in the list). Note for region partitions (govcloud and china) an explicit region from the partition must be passed in. """ from c7n.policy import Policy, PolicyCollection policies = [] service_region_map, resource_service_map = get_service_region_map( options.regions, policy_collection.resource_types) for p in policy_collection: available_regions = service_region_map.get( resource_service_map.get(p.resource_type), ()) # its a global service/endpoint, use user provided region # or us-east-1. if not available_regions and options.regions: candidates = [r for r in options.regions if r != 'all'] candidate = candidates and candidates[0] or 'us-east-1' svc_regions = [candidate] elif 'all' in options.regions: svc_regions = available_regions else: svc_regions = options.regions for region in svc_regions: if available_regions and region not in available_regions: level = ('all' in options.regions and logging.DEBUG or logging.WARNING) # TODO: fixme policy_collection.log.log( level, "policy:%s resources:%s not available in region:%s", p.name, p.resource_type, region) continue options_copy = copy.copy(options) options_copy.region = str(region) if len(options.regions) > 1 or 'all' in options.regions and getattr( options, 'output_dir', None): options_copy.output_dir = ( options.output_dir.rstrip('/') + '/%s' % region) policies.append( Policy(p.data, options_copy, session_factory=policy_collection.session_factory())) return PolicyCollection(policies, options) def get_service_region_map(regions, resource_types): # we're not interacting with the apis just using the sdk meta information. session = boto3.Session( region_name='us-east-1', aws_access_key_id='never', aws_secret_access_key='found') normalized_types = [] for r in resource_types: if r.startswith('aws.'): normalized_types.append(r[4:]) else: normalized_types.append(r) resource_service_map = { r: clouds['aws'].resources.get(r).resource_type.service for r in normalized_types if r != 'account'} # support for govcloud and china, we only utilize these regions if they # are explicitly passed in on the cli. partition_regions = {} for p in ('aws-cn', 'aws-us-gov'): for r in session.get_available_regions('s3', partition_name=p): partition_regions[r] = p partitions = ['aws'] for r in regions: if r in partition_regions: partitions.append(partition_regions[r]) service_region_map = {} for s in set(itertools.chain(resource_service_map.values())): for partition in partitions: service_region_map.setdefault(s, []).extend( session.get_available_regions(s, partition_name=partition)) return service_region_map, resource_service_map
the-stack_106_25889
# Copyright (c) ByteDance, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Copy-paste from mmcv library: https://github.com/open-mmlab/mmcv/ """ import os.path as osp import time import mmcv import torch try: import apex except: print('apex is not installed') from tempfile import TemporaryDirectory from torch.optim import Optimizer from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelscloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
the-stack_106_25890
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import ( date, datetime, time, ) from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import ( _gt14, read_sql_query, read_sql_table, ) try: import sqlalchemy from sqlalchemy import inspect from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "read_no_parameters_with_percent": { "sqlite": "SELECT * FROM iris WHERE Name LIKE '%'", "mysql": "SELECT * FROM iris WHERE `Name` LIKE '%'", "postgresql": "SELECT * FROM iris WHERE \"Name\" LIKE '%'", }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): # https://docs.sqlalchemy.org/en/13/core/connections.html#engine-disposal self.conn.dispose() class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("io", "data", "csv", "iris.csv")]) def load_iris_data(self, datapath, request): iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with open(iris_csv_file, newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( { "A": [4, 1, 3, 6], "B": ["asd", "gsq", "ylt", "jkl"], "C": [1.1, 3.1, 6.9, 5.3], "D": [False, True, True, False], "E": ["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], } ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_types_test_data(self, data): def _filter_to_flavor(flavor, df): flavor_dtypes = { "sqlite": { "TextCol": "str", "DateCol": "str", "IntDateCol": "int64", "IntDateOnlyCol": "int64", "FloatCol": "float", "IntCol": "int64", "BoolCol": "int64", "IntColWithNull": "float", "BoolColWithNull": "float", }, "mysql": { "TextCol": "str", "DateCol": "str", "IntDateCol": "int64", "IntDateOnlyCol": "int64", "FloatCol": "float", "IntCol": "int64", "BoolCol": "bool", "IntColWithNull": "float", "BoolColWithNull": "float", }, "postgresql": { "TextCol": "str", "DateCol": "str", "DateColWithTz": "str", "IntDateCol": "int64", "IntDateOnlyCol": "int64", "FloatCol": "float", "IntCol": "int64", "BoolCol": "bool", "IntColWithNull": "float", "BoolColWithNull": "float", }, } dtypes = flavor_dtypes[flavor] return df[dtypes.keys()].astype(dtypes) df = DataFrame(data) self.types_test = { flavor: _filter_to_flavor(flavor, df) for flavor in ("sqlite", "mysql", "postgresql") } def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) self._load_types_test_data(data) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_no_parameter_with_percent(self): query = SQL_STRINGS["read_no_parameters_with_percent"][self.flavor] iris_frame = self.pandasSQL.read_query(query, params=None) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_with_chunksize_no_result(self): query = "SELECT * FROM iris_view WHERE SepalLength < 0.0" with_batch = sql.read_sql_query(query, self.conn, chunksize=5) without_batch = sql.read_sql_query(query, self.conn) tm.assert_frame_equal(concat(with_batch), without_batch) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ Timestamp(2000, 1, 3, 0, 0, 0), Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ Timestamp(2000, 1, 3, 0, 0, 0), Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ Timestamp(1986, 12, 25, 0, 0, 0), Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ Timestamp(1986, 12, 25, 0, 0, 0), Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ Timestamp("2010-10-10"), Timestamp("2010-12-12"), ] @pytest.mark.parametrize("error", ["ignore", "raise", "coerce"]) @pytest.mark.parametrize( "read_sql, text, mode", [ (sql.read_sql, "SELECT * FROM types_test_data", ("sqlalchemy", "fallback")), (sql.read_sql, "types_test_data", ("sqlalchemy")), ( sql.read_sql_query, "SELECT * FROM types_test_data", ("sqlalchemy", "fallback"), ), (sql.read_sql_table, "types_test_data", ("sqlalchemy")), ], ) def test_custom_dateparsing_error(self, read_sql, text, mode, error): if self.mode in mode: expected = self.types_test[self.flavor].astype( {"DateCol": "datetime64[ns]"} ) result = read_sql( text, con=self.conn, parse_dates={ "DateCol": {"errors": error}, }, ) tm.assert_frame_equal(result, expected) def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].view("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) @pytest.mark.parametrize( "dtype", [ None, int, float, {"A": int, "B": float}, ], ) def test_dtype_argument(self, dtype): # GH10285 Add dtype argument to read_sql_query df = DataFrame([[1.2, 3.4], [5.6, 7.8]], columns=["A", "B"]) df.to_sql("test_dtype_argument", self.conn) expected = df.astype(dtype) result = sql.read_sql_query( "SELECT A, B FROM test_dtype_argument", con=self.conn, dtype=dtype ) tm.assert_frame_equal(result, expected) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_with_schema(self): # GH28486 create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, schema="pypi" ) assert "CREATE TABLE pypi." in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["John P. Doe", "Jane Dove", "John P. Doe"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) @pytest.mark.parametrize( "integer, expected", [ ("int8", "SMALLINT"), ("Int8", "SMALLINT"), ("uint8", "SMALLINT"), ("UInt8", "SMALLINT"), ("int16", "SMALLINT"), ("Int16", "SMALLINT"), ("uint16", "INTEGER"), ("UInt16", "INTEGER"), ("int32", "INTEGER"), ("Int32", "INTEGER"), ("uint32", "BIGINT"), ("UInt32", "BIGINT"), ("int64", "BIGINT"), ("Int64", "BIGINT"), (int, "BIGINT" if np.dtype(int).name == "int64" else "INTEGER"), ], ) def test_sqlalchemy_integer_mapping(self, integer, expected): # GH35076 Map pandas integer to optimal SQLAlchemy integer type df = DataFrame([0, 1], columns=["a"], dtype=integer) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) result = str(table.table.c.a.type) assert result == expected @pytest.mark.parametrize("integer", ["uint64", "UInt64"]) def test_sqlalchemy_integer_overload_mapping(self, integer): # GH35076 Map pandas integer to optimal SQLAlchemy integer type df = DataFrame([0, 1], columns=["a"], dtype=integer) db = sql.SQLDatabase(self.conn) with pytest.raises( ValueError, match="Unsigned 64 bit integer datatype is not supported" ): sql.SQLTable("test_type", db, frame=df) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} def test_column_with_percentage(self): # GH 37157 df = DataFrame({"A": [0, 1, 2], "%_variation": [3, 4, 5]}) df.to_sql("test_column_percentage", self.conn, index=False) res = sql.read_sql_table("test_column_percentage", self.conn) tm.assert_frame_equal(res, df) class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") if _gt14(): insp = inspect(temp_conn) assert insp.has_table("temp_frame") else: assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") if _gt14(): insp = inspect(temp_conn) assert insp.has_table("temp_frame") else: assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") if _gt14(): assert not insp.has_table("temp_frame") else: assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = concat( list( read_sql_query("select * from types_test_data", self.conn, chunksize=1) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_out_of_bounds_datetime(self): # GH 26761 data = DataFrame({"date": datetime(9999, 1, 1)}, index=[0]) data.to_sql("test_datetime_obb", self.conn, index=False) result = sql.read_sql_table("test_datetime_obb", self.conn) expected = DataFrame([pd.NaT], columns=["date"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H")._with_freq(None) expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2 ** 25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) df.to_sql("test_nan", self.conn, index=False) # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy import inspect insp = inspect(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = "test_get_schema_create_table" create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, sqlalchemy.TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": str}) # GH9083 df.to_sql("dtype_test3", self.conn, dtype={"B": sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql("single_dtype_test", self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == "mysql": my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, sqltypes.DateTime) assert isinstance(col_dict["Int"].type, sqltypes.Integer) assert isinstance(col_dict["Float"].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) df.to_sql( "test_dtypes", self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": sqlalchemy.Float(precision=23)}, ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, sqltypes.Float) assert isinstance(col_dict["f64"].type, sqltypes.Float) assert isinstance(col_dict["i32"].type, sqltypes.Integer) assert isinstance(col_dict["i64"].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def main(connectable): with connectable.connect() as conn: with conn.begin(): if _gt14(): # https://github.com/sqlalchemy/sqlalchemy/commit/ # 00b5c10846e800304caa86549ab9da373b42fa5d#r48323973 foo_data = foo(conn) bar(conn, foo_data) else: foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn) main(self.conn) @pytest.mark.parametrize( "input", [{"foo": [np.inf]}, {"foo": [-np.inf]}, {"foo": [-np.inf], "infe0": ["bar"]}], ) def test_to_sql_with_negative_npinf(self, input, request): # GH 34431 df = DataFrame(input) if self.flavor == "mysql": # GH 36465 # The input {"foo": [-np.inf], "infe0": ["bar"]} does not raise any error # for pymysql version >= 0.10 # TODO: remove this version check after GH 36465 is fixed import pymysql if pymysql.VERSION[0:3] >= (0, 10, 0) and "infe0" in df.columns: mark = pytest.mark.xfail(reason="GH 36465") request.node.add_marker(mark) msg = "inf cannot be used with MySQL" with pytest.raises(ValueError, match=msg): df.to_sql("foobar", self.conn, index=False) else: df.to_sql("foobar", self.conn, index=False) res = sql.read_sql_table("foobar", self.conn) tm.assert_equal(df, res) def test_temporary_table(self): test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=sqlalchemy.select([Temporary.spam]), con=conn) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip("Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy: """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") df.to_sql("test_bigintwarning", self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table("test_bigintwarning", self.conn) assert len(w) == 0 class _TestMySQLAlchemy: """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" port = 3306 @classmethod def connect(cls): return sqlalchemy.create_engine( f"mysql+{cls.driver}://root@localhost:{cls.port}/pandas", connect_args=cls.connect_args, ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): import pymysql # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql("test_procedure", self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except pymysql.Error: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy: """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" port = 5432 @classmethod def connect(cls): return sqlalchemy.create_engine( f"postgresql+{cls.driver}://postgres:postgres@localhost:{cls.port}/pandas" ) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql("test_schema_public", self.conn, index=False) df.to_sql( "test_schema_public_explicit", self.conn, index=False, schema="public" ) df.to_sql("test_schema_other", self.conn, index=False, schema="other") # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql("test_schema_other", self.conn, schema="other", index=False) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="replace", ) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="append", ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema="other") pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, "test_schema_other2", index=False) pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_copy_from_callable_insertion_method(self): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join(f'"{k}"' for k in keys) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) expected.to_sql( "test_copy_insert", self.conn, index=False, method=psql_insert_copy ) result = sql.read_sql_table("test_copy_insert", self.conn) tm.assert_frame_equal(result, expected) @pytest.mark.single @pytest.mark.db class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback @pytest.mark.single class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlite3.connect(":memory:") def setup_connect(self): self.conn = self.connect() def load_test_data_and_sql(self): self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): # GH 29921 self._to_sql(method="multi") def test_create_and_drop_table(self): temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) self.pandasSQL.to_sql(temp_frame, "drop_test_frame") assert self.pandasSQL.has_table("drop_test_frame") self.pandasSQL.drop_table("drop_test_frame") assert not self.pandasSQL.has_table("drop_test_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_query("SELECT * FROM test_date", self.conn) if self.flavor == "sqlite": # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == "mysql": tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_query("SELECT * FROM test_time", self.conn) if self.flavor == "sqlite": # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + f"AND tbl_name = '{tbl_name}'", self.conn, ) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute(f"PRAGMA table_info({table})") for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError(f"Table {table}, column {column} not found") def test_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": "STRING"}) # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER" assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING" msg = r"B \(<class 'bool'>\) not a string" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": bool}) # single dtype df.to_sql("single_dtype_test", self.conn, dtype="STRING") assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING" assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING" def test_notna_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) assert self._get_sqlite_column_type(tbl, "Bool") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Date") == "TIMESTAMP" assert self._get_sqlite_column_type(tbl, "Int") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Float") == "REAL" def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) msg = "Empty table or column name specified" with pytest.raises(ValueError, match=msg): df.to_sql("", self.conn) for ndx, weird_name in enumerate( [ "test_weird_name]", "test_weird_name[", "test_weird_name`", 'test_weird_name"', "test_weird_name'", "_b.test_weird_name_01-30", '"_b.test_weird_name_01-30"', "99beginswithnumber", "12345", "\xe9", ] ): df.to_sql(weird_name, self.conn) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) c_tbl = f"test_weird_col_name{ndx:d}" df2.to_sql(c_tbl, self.conn) sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) def date_format(dt): """Returns date in YYYYMMDD format.""" return dt.strftime("%Y%m%d") _formatters = { datetime: "'{}'".format, str: "'{}'".format, np.str_: "'{}'".format, bytes: "'{}'".format, float: "{:.8f}".format, int: "{:d}".format, type(None): lambda x: "NULL", np.float64: "{:.10f}".format, bool: "'{!s}'".format, } def format_query(sql, *args): processed_args = [] for arg in args: if isinstance(arg, float) and isna(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None, cur=None): """Replace removed sql.tquery function""" res = sql.execute(query, con=con, cur=cur).fetchall() if res is None: return None else: return list(res) @pytest.mark.single class TestXSQLite(SQLiteMixIn): @pytest.fixture(autouse=True) def setup_method(self, request, datapath): self.method = request.function self.conn = sqlite3.connect(":memory:") # In some test cases we may close db connection # Re-open conn here so we can perform cleanup in teardown yield self.method = request.function self.conn = sqlite3.connect(":memory:") def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) cur = self.conn.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, rtol=1e-3) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.iloc[0] sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for line in lines: tokens = line.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert 'PRIMARY KEY ("A", "B")' in create_sql cur = self.conn.cursor() cur.execute(create_sql) def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(sql.DatabaseError, match="Execution failed on sql"): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with tm.external_error_raised(sqlite3.ProgrammingError): tquery("select * from test", con=self.conn) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.to_sql(frame, name="test_table", con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() new_idx = Index(np.arange(len(frame2))) + 10 frame2["Idx"] = new_idx.copy() sql.to_sql(frame2, name="test_table2", con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col="Idx") expected = frame.copy() expected.index = new_idx expected.index.name = "Idx" tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({"From": np.ones(5)}) sql.to_sql(df, con=self.conn, name="testkeywords", index=False) def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=["c0"]) sql.to_sql(mono_df, con=self.conn, name="mono_df", index=False) # computing the sum via sql con_x = self.conn the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) # it should not fail, and gives 3 ( Issue #3628 ) assert the_sum == 3 result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) table_name = "table_if_exists" sql_select = f"SELECT * FROM {table_name}" def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) msg = "'notvalidvalue' is not valid for if_exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="notvalidvalue", ) clean_up(table_name) # test if_exists='fail' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) msg = "Table 'table_if_exists' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) # test if_exists='replace' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(3, "C"), (4, "D"), (5, "E")] clean_up(table_name) # test if_exists='append' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="append", index=False, ) assert tquery(sql_select, con=self.conn) == [ (1, "A"), (2, "B"), (3, "C"), (4, "D"), (5, "E"), ] clean_up(table_name) @pytest.mark.single @pytest.mark.db @pytest.mark.skip( reason="gh-13611: there is no support for MySQL if SQLAlchemy is not installed" ) class TestXMySQL(MySQLMixIn): @pytest.fixture(autouse=True, scope="class") def setup_class(cls): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError as err: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) from err except pymysql.Error as err: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) from err @pytest.fixture(autouse=True) def setup_method(self, request, datapath): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError as err: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) from err except pymysql.Error as err: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) from err self.method = request.function def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, rtol=1e-3) # GH#32571 result comes back rounded to 6 digits in some builds; # no obvious pattern def test_chunksize_read_type(self): frame = tm.makeTimeDataFrame() frame.index.name = "index" drop_sql = "DROP TABLE IF EXISTS test" cur = self.conn.cursor() cur.execute(drop_sql) sql.to_sql(frame, name="test", con=self.conn) query = "select * from test" chunksize = 5 chunk_gen = read_sql_query( sql=query, con=self.conn, chunksize=chunksize, index_col="index" ) chunk_df = next(chunk_gen) tm.assert_frame_equal(frame[:chunksize], chunk_df) def test_execute(self): frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" row = frame.iloc[0].values.tolist() sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for line in lines: tokens = line.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert "PRIMARY KEY (`A`, `B`)" in create_sql cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) def test_execute_fail(self): drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception, match="<insert message here>"): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self, request, datapath): drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception, match="<insert message here>"): tquery("select * from test", con=self.conn) # Initialize connection again (needed for tearDown) self.setup_method(request, datapath) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame, name="test_table", con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index result.index.name = frame.index.name expected = frame tm.assert_frame_equal(result, expected) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() index = Index(np.arange(len(frame2))) + 10 frame2["Idx"] = index drop_sql = "DROP TABLE IF EXISTS test_table2" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame2, name="test_table2", con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col="Idx") expected = frame.copy() # HACK! Change this once indexes are handled properly. expected.index = index expected.index.names = result.index.names tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({"From": np.ones(5)}) sql.to_sql( df, con=self.conn, name="testkeywords", if_exists="replace", index=False ) def test_if_exists(self): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) table_name = "table_if_exists" sql_select = f"SELECT * FROM {table_name}" def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) # test if invalid value for if_exists raises appropriate error with pytest.raises(ValueError, match="<insert message here>"): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="notvalidvalue", ) clean_up(table_name) # test if_exists='fail' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail", index=False, ) with pytest.raises(ValueError, match="<insert message here>"): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) # test if_exists='replace' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(3, "C"), (4, "D"), (5, "E")] clean_up(table_name) # test if_exists='append' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="append", index=False, ) assert tquery(sql_select, con=self.conn) == [ (1, "A"), (2, "B"), (3, "C"), (4, "D"), (5, "E"), ] clean_up(table_name)
the-stack_106_25891
############################################################################## # # Copyright (c) 2012 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """``pdfInclude`` Directive. """ __docformat__ = "reStructuredText" from reportlab.platypus import flowables from z3c.rml import attr, flowable, interfaces, occurence class StoryPlaceFlowable(flowables.Flowable): def __init__(self, x, y, width, height, origin, flows): flowables.Flowable.__init__(self) self.x = x self.y = y self.width = width self.height = height self.origin = origin self.flows = flows def wrap(self, *args): return (0, 0) def draw(self): saveState = False x, y = self.x, self.y self.canv.restoreState() if self.origin == 'frame': x += self._frame._x1 y += self._frame._y1 elif self.origin == 'local': x += self._frame._x y += self._frame._y else: # origin == 'page' pass width, height = self.width, self.height y += height for flow in self.flows.flow: flowWidth, flowHeight = flow.wrap(width, height) if flowWidth <= width and flowHeight <= height: y -= flowHeight flow.drawOn(self.canv, x, y) height -= flowHeight else: raise ValueError("Not enough space") self.canv.saveState() class IStoryPlace(interfaces.IRMLDirectiveSignature): """Draws a set of flowables on the canvas within a given region.""" x = attr.Measurement( title=u'X-Coordinate', description=(u'The X-coordinate of the lower-left position of the ' u'place.'), required=True) y = attr.Measurement( title=u'Y-Coordinate', description=(u'The Y-coordinate of the lower-left position of the ' u'place.'), required=True) width = attr.Measurement( title=u'Width', description=u'The width of the place.', required=False) height = attr.Measurement( title=u'Height', description=u'The height of the place.', required=False) origin = attr.Choice( title=u'Origin', description=u'The origin of the coordinate system for the story.', choices=('page', 'frame', 'local'), default = 'page', required=False) class StoryPlace(flowable.Flowable): signature = IStoryPlace def process(self): x, y, width, height, origin = self.getAttributeValues( select=('x', 'y', 'width', 'height', 'origin'), valuesOnly=True) flows = flowable.Flow(self.element, self.parent) flows.process() self.parent.flow.append( StoryPlaceFlowable(x, y, width, height, origin, flows)) flowable.Flow.factories['storyPlace'] = StoryPlace flowable.IFlow.setTaggedValue( 'directives', flowable.IFlow.getTaggedValue('directives') + (occurence.ZeroOrMore('storyPlace', IStoryPlace),) )
the-stack_106_25892
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Exp Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors import bijector_test_util from tensorflow.contrib.distributions.python.ops.bijectors import exp as exp_lib from tensorflow.python.platform import test class ExpBijectorTest(test.TestCase): """Tests correctness of the Y = g(X) = exp(X) transformation.""" def testBijector(self): with self.test_session(): bijector = exp_lib.Exp(event_ndims=1) self.assertEqual("exp", bijector.name) x = [[[1.], [2.]]] y = np.exp(x) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( -np.sum(np.log(y), axis=-1), bijector.inverse_log_det_jacobian(y).eval()) self.assertAllClose(-bijector.inverse_log_det_jacobian(np.exp(x)).eval(), bijector.forward_log_det_jacobian(x).eval()) def testScalarCongruency(self): with self.test_session(): bijector = exp_lib.Exp() bijector_test_util.assert_scalar_congruency( bijector, lower_x=-2., upper_x=1.5, rtol=0.05) def testBijectiveAndFinite(self): with self.test_session(): bijector = exp_lib.Exp(event_ndims=0) x = np.linspace(-10, 10, num=10).astype(np.float32) y = np.logspace(-10, 10, num=10).astype(np.float32) bijector_test_util.assert_bijective_and_finite(bijector, x, y) if __name__ == "__main__": test.main()
the-stack_106_25893
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and Xinlei Chen # -------------------------------------------------------- """Compute minibatch blobs for training a Fast R-CNN network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import numpy.random as npr import cv2 try: from model.config import cfg, tmp_lam from utils.blob import prep_im_for_blob, im_list_to_blob except: from lib.model.config import cfg, tmp_lam from lib.utils.blob import prep_im_for_blob, im_list_to_blob def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) # Get the input image blob, formatted for caffe if cfg.MIX_TRAINING: im_blob, im_scales, trans_scales = _get_mix_image_blob(roidb, random_scale_inds) if cfg.MIX_TEST: print("MIX-TRAINING: TEST: im_scalse {} \n\t trans_scales {}".format(im_scales, trans_scales)) blobs = {'data': im_blob} assert len(im_scales) == 2, "MIX-TRAINING ERROR! Single batch only" if cfg.TRAIN.USE_ALL_GT: gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] gt_inds2 = np.where(roidb[1]['gt_classes'] != 0)[0] if cfg.MIX_TEST: print("MIX-TRAINING: TEST: gt_inds {} ?? {}".format(gt_inds, gt_inds2)) else: gt_inds = np.where(roidb[0]['gt_classes'] != 0 & np.all(roidb[0]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_inds2 = np.where(roidb[1]['gt_classes'] != 0 & np.all(roidb[1]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0] gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] gt_boxes2 = np.empty((len(gt_inds2), 5), dtype=np.float32) gt_boxes2[:, 0:4] = roidb[1]['boxes'][gt_inds2, :] * im_scales[1] gt_boxes2[:, 0] *= trans_scales[1] gt_boxes2[:, 1] *= trans_scales[0] gt_boxes2[:, 2] *= trans_scales[1] gt_boxes2[:, 3] *= trans_scales[0] gt_boxes2[:, 4] = roidb[1]['gt_classes'][gt_inds2] blobs['gt_boxes'] = gt_boxes blobs['gt_boxes2'] = gt_boxes2 blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs else: im_blob, im_scales = _get_image_blob(roidb, random_scale_inds) blobs = {'data': im_blob} assert len(im_scales) == 1, "Single batch only" # assert len(roidb) == 1, "Single batch only" # gt boxes: (x1, y1, x2, y2, cls) if cfg.TRAIN.USE_ALL_GT: # Include all ground truth boxes gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] if cfg.MIX_TEST: print("TEST: gt_inds {} ".format(gt_inds)) else: # For the COCO ground truth boxes, exclude the ones that are ''iscrowd'' gt_inds = np.where(roidb[0]['gt_classes'] != 0 & np.all(roidb[0]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0] if cfg.MIX_TEST: print("TEST: gt_boxes {} ".format(gt_boxes)) print(roidb[0]['gt_classes'][gt_inds]) gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['gt_boxes2'] = None blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales def _get_mix_image_blob(roidb, scale_inds): num_images = len(roidb) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # add two image im1 = processed_ims[0] im2_tmp = processed_ims[1] s1, s2 = np.array(im1.shape, dtype=np.float32), np.array(im2_tmp.shape, dtype=np.float32) trans_scales = s1 / s2 im2 = cv2.resize(im2_tmp, None, None, fx=trans_scales[1], fy=trans_scales[0], interpolation=cv2.INTER_LINEAR) assert im1.shape == im2.shape, " {} ? {} tr scales {}, s1,s2 {} ? {}".format(im1.shape, im2.shape, trans_scales, s1, s2) lam = tmp_lam im = lam * im1 + (1-lam) * im2 processed_ims = [im] # im_scales # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales, trans_scales
the-stack_106_25899
import pandas as pd, os.path as path import numpy as np import os setting_folder=r'./results/' fns=os.listdir(setting_folder) transfer_type = '_gen_feat' #transfer_type = '_None' all_label = [] all_pred = [] for item in fns: if item != 'rd_idx': pred = np.load(setting_folder + item + '/pred' + transfer_type + '.npy', allow_pickle=True) label = np.load(setting_folder + item + '/label' + transfer_type + '.npy', allow_pickle=True) all_pred.append(pred) all_label.append(label) #print(len(all_label)) all_label = np.concatenate(all_label, axis=0) all_pred = np.concatenate(all_pred, axis=0) print(all_label.shape) print(all_pred.shape) print(np.mean(np.abs(all_pred-all_label), axis=0)) print(np.mean(np.abs(all_pred-all_label)))
the-stack_106_25901
# -------------------------------------------------------------------- # Copyright (c) iEXBase. All rights reserved. # Licensed under the MIT License. # See License.txt in the project root for license information. # -------------------------------------------------------------------- import binascii import codecs import string from typing import ( Any, AnyStr ) # Type ignored for `codecs.decode()` due to lack of mypy support for 'hex' encoding # https://github.com/python/typeshed/issues/300 from trx_utils.types import ( is_text, is_string ) def decode_hex(value: str) -> bytes: if not is_text(value): raise TypeError("Value must be an instance of str") return codecs.decode(remove_0x_prefix(value), "hex") # type: ignore def encode_hex(value: AnyStr) -> str: if not is_string(value): raise TypeError("Value must be an instance of str or unicode") binary_hex = codecs.encode(value, "hex") # type: ignore return add_0x_prefix(binary_hex.decode("ascii")) def is_0x_prefixed(value: Any) -> bool: if not is_text(value): raise TypeError( "is_0x_prefixed requires text typed arguments. Got: {0}".format(repr(value)) ) return value.startswith("0x") or value.startswith("0X") def remove_0x_prefix(value: str) -> str: if is_0x_prefixed(value): return value[2:] return value def add_0x_prefix(value: str) -> str: if is_0x_prefixed(value): return value return "0x" + value def is_hex(value: Any) -> bool: if not is_text(value): raise TypeError( "is_hex requires text typed arguments. Got: {0}".format(repr(value)) ) elif value.lower() == "0x": return True unprefixed_value = remove_0x_prefix(value) if len(unprefixed_value) % 2 != 0: value_to_decode = "0" + unprefixed_value else: value_to_decode = unprefixed_value if any(char not in string.hexdigits for char in value_to_decode): return False try: value_as_bytes = codecs.decode(value_to_decode, "hex") # type: ignore except binascii.Error: return False except TypeError: return False else: return bool(value_as_bytes)
the-stack_106_25903
"""Tests that ensure the dask-based fit matches. https://github.com/DEAP/deap/issues/75 """ import unittest import nose from sklearn.datasets import make_classification from tpot import TPOTClassifier try: import dask # noqa import dask_ml # noqa except ImportError: raise nose.SkipTest() class TestDaskMatches(unittest.TestCase): def test_dask_matches(self): with dask.config.set(scheduler='single-threaded'): for n_jobs in [-1]: X, y = make_classification(random_state=42) a = TPOTClassifier( generations=0, population_size=5, cv=3, random_state=42, n_jobs=n_jobs, use_dask=False, verbosity=3 ) b = TPOTClassifier( generations=0, population_size=5, cv=3, random_state=42, n_jobs=n_jobs, use_dask=True, verbosity=3 ) a.fit(X, y) b.fit(X, y) self.assertEqual(a.score(X, y), b.score(X, y)) self.assertEqual(a.pareto_front_fitted_pipelines_.keys(), b.pareto_front_fitted_pipelines_.keys()) self.assertEqual(a.evaluated_individuals_, b.evaluated_individuals_)
the-stack_106_25904
from typing import Optional import discord class DropdownSelect(discord.ui.Select['DropdownView']): def __init__(self, options: list[discord.SelectOption], placeholder: str): super().__init__( placeholder=placeholder, min_values=1, max_values=1, options=options ) async def callback(self, interaction: discord.Interaction): self.view.answer = self.values[0] await self.view.on_timeout() self.view.stop() class DropdownView(discord.ui.View): def __init__(self, options: list[discord.SelectOption], context: discord.ApplicationContext, placeholder: str='\u200b', *, public: bool=False, timeout: int=60): super().__init__(timeout=timeout) self.ctx = context self.public = public self.options = options self.add_item(DropdownSelect(options, placeholder)) self.answer = None async def interaction_check(self, interaction: discord.Interaction): if self.public == True or interaction.channel.type == discord.ChannelType.private: return True return interaction.user == self.ctx.author async def on_timeout(self): self.clear_items() await self.ctx.edit(view=self)
the-stack_106_25905
import hassapi as hass import requests import xml.etree.ElementTree as ET from datetime import datetime, timedelta """ Get detailed Yr weather data Arguments: - event: Entity name when publishing event - interval: Update interval, in minutes. Must be at least 10 - source: Yr xml source - hours: Number of hours to forecast, at most 48 """ disclaimer = "Weather forecast from Yr, delivered by the Norwegian Meteorological Institute and NRK" user_agent = "HomeAssistant/Appdaemon Python/requests" class Yr(hass.Hass): def initialize(self): self.url = self.args["source"] self.entity = self.args["event"] self.hours = self.args["hours"] inOneMinute = datetime.now() + timedelta(minutes=1) interval = int(self.args["interval"]) if interval < 10: raise Exception("Update interval ({}) must be at least 10 minutes".format(interval)) # delay first launch with one minute, run every 'interval' minutes self.run_every(self.updateState, inOneMinute, interval * 60) def updateState(self, kwargs): forecast = self.fetchForecast() self.set_app_state(self.entity, {"state": "", "attributes": forecast}) def fetchData(self): res = requests.get(self.url, headers={"User-Agent": user_agent}) return res.text def fetchForecast(self): data = self.fetchData() root = ET.fromstring(data) periods = root.find(".//tabular") return { "disclaimer": disclaimer, "forecast": [ { "from": x.get("from"), "to": x.get("to"), "weather": x.find("symbol").get("name"), "symbol": x.find("symbol").get("var"), "precip": x.find("precipitation").get("value"), "windSpeed": x.find("windSpeed").get("mps"), "windDirection": x.find("windDirection").get("deg"), "temp": x.find("temperature").get("value"), } for x in periods[: self.hours] ], }
the-stack_106_25907
#!/usr/bin/env python # # Copyright (c) 2014, 2016 Apple Inc. All rights reserved. # Copyright (c) 2014 University of Washington. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. import logging import os.path import re from generator import ucfirst, Generator from models import PrimitiveType, ObjectType, ArrayType, EnumType, AliasedType, Frameworks log = logging.getLogger('global') _PRIMITIVE_TO_CPP_NAME_MAP = { 'boolean': 'bool', 'integer': 'int', 'number': 'double', 'string': 'String', 'object': 'JSON::Object', 'array': 'JSON::Array', 'any': 'JSON::Value' } class CppGenerator(Generator): def __init__(self, *args, **kwargs): Generator.__init__(self, *args, **kwargs) def protocol_name(self): return self.model().framework.setting('cpp_protocol_group', '') def helpers_namespace(self): return '%sHelpers' % self.protocol_name() # Miscellaneous text manipulation routines. @staticmethod def cpp_getter_method_for_type(_type): if isinstance(_type, ObjectType): return 'getObject' if isinstance(_type, ArrayType): return 'getArray' if isinstance(_type, PrimitiveType): if _type.raw_name() is 'integer': return 'getInteger' elif _type.raw_name() is 'number': return 'getDouble' elif _type.raw_name() is 'any': return 'getValue' else: return 'get' + ucfirst(_type.raw_name()) if isinstance(_type, AliasedType): return CppGenerator.cpp_getter_method_for_type(_type.aliased_type) if isinstance(_type, EnumType): return CppGenerator.cpp_getter_method_for_type(_type.primitive_type) @staticmethod def cpp_setter_method_for_type(_type): if isinstance(_type, ObjectType): return 'setObject' if isinstance(_type, ArrayType): return 'setArray' if isinstance(_type, PrimitiveType): if _type.raw_name() is 'integer': return 'setInteger' elif _type.raw_name() is 'number': return 'setDouble' elif _type.raw_name() is 'any': return 'setValue' else: return 'set' + ucfirst(_type.raw_name()) if isinstance(_type, AliasedType): return CppGenerator.cpp_setter_method_for_type(_type.aliased_type) if isinstance(_type, EnumType): return CppGenerator.cpp_setter_method_for_type(_type.primitive_type) # Generate type representations for various situations. @staticmethod def cpp_protocol_type_for_type(_type): if isinstance(_type, ObjectType) and len(_type.members) == 0: return 'JSON::Object' if isinstance(_type, ArrayType): if _type.raw_name() is None: # Otherwise, fall through and use typedef'd name. return 'Inspector::Protocol::Array<%s>' % CppGenerator.cpp_protocol_type_for_type(_type.element_type) if isinstance(_type, (ObjectType, AliasedType, EnumType, ArrayType)): return 'Inspector::Protocol::%s::%s' % (_type.type_domain().domain_name, _type.raw_name()) if isinstance(_type, PrimitiveType): return CppGenerator.cpp_name_for_primitive_type(_type) @staticmethod def cpp_protocol_type_for_type_member(type_member, object_declaration): if isinstance(type_member.type, EnumType) and type_member.type.is_anonymous: return '::'.join([CppGenerator.cpp_protocol_type_for_type(object_declaration.type), ucfirst(type_member.member_name)]) else: return CppGenerator.cpp_protocol_type_for_type(type_member.type) @staticmethod def cpp_type_for_unchecked_formal_in_parameter(parameter): _type = parameter.type if isinstance(_type, AliasedType): _type = _type.aliased_type # Fall through to enum or primitive. if isinstance(_type, EnumType): _type = _type.primitive_type # Fall through to primitive. # This handles the 'any' type and objects with defined properties. if isinstance(_type, ObjectType) or _type.qualified_name() is 'object': cpp_name = 'JSON::Object' if parameter.is_optional: return 'const %s*' % cpp_name else: return 'const %s&' % cpp_name if isinstance(_type, ArrayType): cpp_name = 'JSON::Array' if parameter.is_optional: return 'const %s*' % cpp_name else: return 'const %s&' % cpp_name if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if parameter.is_optional: return 'const %s* const' % cpp_name elif _type.raw_name() in ['string']: return 'const %s&' % cpp_name else: return cpp_name return "unknown_unchecked_formal_in_parameter_type" @staticmethod def cpp_type_for_checked_formal_event_parameter(parameter): return CppGenerator.cpp_type_for_type_with_name(parameter.type, parameter.parameter_name, parameter.is_optional) @staticmethod def cpp_type_for_type_member(member): return CppGenerator.cpp_type_for_type_with_name(member.type, member.member_name, False) @staticmethod def cpp_type_for_type_with_name(_type, type_name, is_optional): if isinstance(_type, (ArrayType, ObjectType)): return 'RefPtr<%s>' % CppGenerator.cpp_protocol_type_for_type(_type) if isinstance(_type, AliasedType): builder_type = CppGenerator.cpp_protocol_type_for_type(_type) if is_optional: return 'const %s* const' % builder_type elif _type.aliased_type.qualified_name() in ['integer', 'number']: return CppGenerator.cpp_name_for_primitive_type(_type.aliased_type) elif _type.aliased_type.qualified_name() in ['string']: return 'const %s&' % builder_type else: return builder_type if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if _type.qualified_name() in ['object']: return 'RefPtr<JSON::Object>' elif _type.qualified_name() in ['any']: return 'RefPtr<JSON::Value>' elif is_optional: return 'const %s* const' % cpp_name elif _type.qualified_name() in ['string']: return 'const %s&' % cpp_name else: return cpp_name if isinstance(_type, EnumType): if _type.is_anonymous: enum_type_name = ucfirst(type_name) else: enum_type_name = 'Inspector::Protocol::%s::%s' % (_type.type_domain().domain_name, _type.raw_name()) if is_optional: return '%s*' % enum_type_name else: return '%s' % enum_type_name @staticmethod def cpp_type_for_formal_out_parameter(parameter): _type = parameter.type if isinstance(_type, AliasedType): _type = _type.aliased_type # Fall through. if isinstance(_type, (ObjectType, ArrayType)): return 'RefPtr<%s>&' % CppGenerator.cpp_protocol_type_for_type(_type) if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if parameter.is_optional: return "Inspector::Protocol::OptOutput<%s>*" % cpp_name else: return '%s*' % cpp_name if isinstance(_type, EnumType): if _type.is_anonymous: return '%sBackendDispatcherHandler::%s*' % (_type.type_domain().domain_name, ucfirst(parameter.parameter_name)) else: return 'Inspector::Protocol::%s::%s*' % (_type.type_domain().domain_name, _type.raw_name()) raise ValueError("unknown formal out parameter type.") # FIXME: this is only slightly different from out parameters; they could be unified. @staticmethod def cpp_type_for_formal_async_parameter(parameter): _type = parameter.type if isinstance(_type, AliasedType): _type = _type.aliased_type # Fall through. if isinstance(_type, EnumType): _type = _type.primitive_type # Fall through. if isinstance(_type, (ObjectType, ArrayType)): return 'RefPtr<%s>&&' % CppGenerator.cpp_protocol_type_for_type(_type) if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if parameter.is_optional: return "Inspector::Protocol::OptOutput<%s>*" % cpp_name elif _type.qualified_name() in ['integer', 'number']: return CppGenerator.cpp_name_for_primitive_type(_type) elif _type.qualified_name() in ['string']: return 'const %s&' % cpp_name else: return cpp_name raise ValueError("Unknown formal async parameter type.") # In-parameters don't use builder types, because they could be passed # "open types" that are manually constructed out of InspectorObjects. # FIXME: Only parameters that are actually open types should need non-builder parameter types. @staticmethod def cpp_type_for_stack_in_parameter(parameter): _type = parameter.type if isinstance(_type, AliasedType): _type = _type.aliased_type # Fall through. if isinstance(_type, EnumType): _type = _type.primitive_type # Fall through. if isinstance(_type, ObjectType): return "RefPtr<JSON::Object>" if isinstance(_type, ArrayType): return "RefPtr<JSON::Array>" if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if _type.qualified_name() in ['any', 'object']: return "RefPtr<%s>" % CppGenerator.cpp_name_for_primitive_type(_type) elif parameter.is_optional and _type.qualified_name() not in ['boolean', 'string', 'integer']: return "Inspector::Protocol::OptOutput<%s>" % cpp_name else: return cpp_name @staticmethod def cpp_type_for_stack_out_parameter(parameter): _type = parameter.type if isinstance(_type, (ArrayType, ObjectType)): return 'RefPtr<%s>' % CppGenerator.cpp_protocol_type_for_type(_type) if isinstance(_type, AliasedType): builder_type = CppGenerator.cpp_protocol_type_for_type(_type) if parameter.is_optional: return "Inspector::Protocol::OptOutput<%s>" % builder_type return '%s' % builder_type if isinstance(_type, PrimitiveType): cpp_name = CppGenerator.cpp_name_for_primitive_type(_type) if parameter.is_optional: return "Inspector::Protocol::OptOutput<%s>" % cpp_name else: return cpp_name if isinstance(_type, EnumType): if _type.is_anonymous: return '%sBackendDispatcherHandler::%s' % (_type.type_domain().domain_name, ucfirst(parameter.parameter_name)) else: return 'Inspector::Protocol::%s::%s' % (_type.type_domain().domain_name, _type.raw_name()) @staticmethod def cpp_assertion_method_for_type_member(type_member, object_declaration): def assertion_method_for_type(_type): return 'BindingTraits<%s>::assertValueHasExpectedType' % CppGenerator.cpp_protocol_type_for_type(_type) if isinstance(type_member.type, AliasedType): return assertion_method_for_type(type_member.type.aliased_type) if isinstance(type_member.type, EnumType) and type_member.type.is_anonymous: return 'BindingTraits<%s>::assertValueHasExpectedType' % CppGenerator.cpp_protocol_type_for_type_member(type_member, object_declaration) return assertion_method_for_type(type_member.type) @staticmethod def cpp_name_for_primitive_type(_type): return _PRIMITIVE_TO_CPP_NAME_MAP.get(_type.raw_name()) # Decide whether certain helpers are necessary in a situation. @staticmethod def should_use_wrapper_for_return_type(_type): return not isinstance(_type, (ArrayType, ObjectType)) @staticmethod def should_use_references_for_type(_type): return isinstance(_type, (ArrayType, ObjectType)) or (isinstance(_type, (PrimitiveType)) and _type.qualified_name() in ["any", "object"]) @staticmethod def should_pass_by_copy_for_return_type(_type): return isinstance(_type, (ArrayType, ObjectType)) or (isinstance(_type, (PrimitiveType)) and _type.qualified_name() == "object")
the-stack_106_25909
# Tempest documentation build configuration file, created by # sphinx-quickstart on Tue May 21 17:43:32 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import subprocess import warnings # Build the plugin registry def build_plugin_registry(app): root_dir = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) subprocess.call(['tools/generate-tempest-plugins-list.sh'], cwd=root_dir) def setup(app): app.connect('builder-inited', build_plugin_registry) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.viewcode', 'oslosphinx', 'oslo_config.sphinxconfiggen', ] config_generator_config_file = '../../tempest/cmd/config-generator.tempest.conf' sample_config_basename = '_static/tempest' todo_include_todos = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Tempest' copyright = u'2013, OpenStack QA Team' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['tempest.'] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. git_cmd = ["git", "log", "--pretty=format:'%ad, commit %h'", "--date=local", "-n1"] try: html_last_updated_fmt = subprocess.Popen(git_cmd, stdout=subprocess.PIPE).\ communicate()[0] except Exception: warnings.warn('Cannot get last updated time from git repository. ' 'Not setting "html_last_updated_fmt".') # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. html_use_smartypants = False # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Tempestdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Tempest.tex', u'Tempest Documentation', u'OpenStack QA Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'tempest', u'Tempest Documentation', [u'OpenStack QA Team'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Tempest', u'Tempest Documentation', u'OpenStack QA Team', 'Tempest', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'Tempest' epub_author = u'Sean Dague' epub_publisher = u'OpenStack QA Team' epub_copyright = u'2013, OpenStack QA Team' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True
the-stack_106_25912
from drf_yasg import openapi from drf_yasg.utils import swagger_auto_schema from rest_framework import status from rest_framework.generics import GenericAPIView from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from auction_api.models import Auction from auction_api.serializers.auction import AuctionSerializer from auction_api.services.email import send_new_auction_notifications class AuctionAPIView(GenericAPIView): permission_classes = [IsAuthenticated] serializer_class = AuctionSerializer queryset = Auction.objects.all() def post(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) auction_instance = serializer.save() send_new_auction_notifications(auction_instance) return Response(serializer.data, status=status.HTTP_200_OK) @swagger_auto_schema( manual_parameters=[ openapi.Parameter(name="all", in_="query", type=openapi.TYPE_BOOLEAN), openapi.Parameter( name="only_active", in_="query", type=openapi.TYPE_BOOLEAN ), openapi.Parameter( name="only_closed", in_="query", type=openapi.TYPE_BOOLEAN ), ] ) def get(self, request): if len(request.query_params) > 1: return Response( "Using more than one parameter is not allowed", status=status.HTTP_400_BAD_REQUEST, ) if request.query_params.get("only_active") == "true": self.queryset = self.get_queryset().is_active() elif request.query_params.get("only_closed") == "true": self.queryset = self.get_queryset().is_closed() return Response( self.serializer_class(instance=self.get_queryset(), many=True).data )
the-stack_106_25914
import numpy as np import scipy as sp import logging import osr import ogr import gdal from shapely.geometry import Polygon from biopal.agb.processing_AGB import ( check_intersection, interp2d_wrapper, merge_agb_intermediate, compute_processing_blocs_order, ) # %% def sample_and_tabulate_data( block_extents, pixel_axis_east, pixel_axis_north, sampling_polygons, stack_in_block, stack_info_table, stack_info_table_column_names, formula_observables, observable_for_forest_class, formula_parameters, number_of_subsets, ): """ ( observable_table, observable_names identifier_table, identifier_names, parameter_position_table, parameter_position_names, parameter_tables, parameter_table_columns, sample_info_table, sample_info_table_columns, ) = sample_and_tabulate_data( block_extents, # extent of the current area for which the table is created pixel_axis_east, # east north axes onto which data are interpolated pixel_axis_north, sampling_polygons, # additional arbitrarily shaped polygons stack_in_block, # flags whether each stack is in current block stack_info_table, # info table with stack properties (stack id, headings, etc., defining the acquisition parameters) stack_info_table_column_names, # column names for the abovementioned table formula_observables, observable_for_forest_class, formula_parameters, number_of_subsets, # number of subsets to use (used to allocate columns in parameter tables) ) Reads input data images, averages over polygons, and tabulates INPUT: block_extents contains the extents of the current block pixel_axis_east, pixel_axis_north are vectors defining the grid to which the read data has to be interpolated sampling_polygons is a list of Polygon objects over which the sampling is to be done stack_in_block is a vector of bools with the same length as the number of stacks, indicating whether each stack exists within the current block stack_info_table is a 2D array linking stack IDs to selected identifiers stack_info_table_column_names is the corresponding list of column names formula_observables is a named tuple with information about formula observables observale_for_forest_class is the name of the observable that acts as a forest_class observable formula_parameters is a named tuple with information about formula parameters number_of_subsets is the number subsets (independent tests) to be run OUTPUT: observable_table is a 2D table with observable data averaged over the polygons observable_names is a corresponding list of observables (column names for the table above) identifier_table is a 2D table with identifiers matching the observable_table identifier_names is a corresponding list of identifier names (column names for the table above) parameter_position_table is a 2D table with columnwise unique indices for each parameter parameter_position_names is the corresponding list of column names for the table above parameter_tables is a list of minimal-sized 2D arrays within which the estimated parameter values for each parameter will be saved (one list element for each unknown parameter) parameter_table_columns is a corresponding list of lists with table column names sample_info_table is a 2D table with information about each sample sample_info_table_columns is the corresponding list with names for the columns of the table above """ # derived parameters number_of_stacks = stack_info_table.shape[0] stack_id_vector = stack_info_table[:, 0] number_of_samples = len(sampling_polygons) number_of_parameters = len(formula_parameters.name) number_of_observables = len(formula_observables.name) pixel_mesh_east, pixel_mesh_north = np.meshgrid(pixel_axis_east, pixel_axis_north) # defining names for identifiers (sampleID & forest class ID and then all columns from stack info table) identifier_names = [ "sample_id", "forest_class_id", ] + stack_info_table_column_names # + ["resolution_m"] number_of_identifiers = len(identifier_names) identifier_table = np.nan * np.zeros( (number_of_samples * number_of_stacks, number_of_identifiers) ) # filling out the first column with sample IDs identifier_table[:, 0] = np.kron( np.arange(number_of_samples), np.ones(number_of_stacks) ) # filling out columns 3-8 with stack IDs and corresponding other identifications from stack_info_table identifier_table[:, 2] = np.kron(np.ones(number_of_samples), stack_id_vector) for id_idx in range(5): identifier_table[:, 3 + id_idx] = sp.interpolate.interp1d( stack_id_vector, stack_info_table[:, 1 + id_idx], kind="nearest" )(identifier_table[:, 2]) # allocate observable table observable_table = np.nan * np.zeros( (number_of_samples * number_of_stacks, number_of_observables) ) sample_info_table_columns = [ "easting", "northing", "area", "east_range", "north_range", ] sample_info_table = np.nan * np.zeros( (number_of_samples * number_of_stacks, len(sample_info_table_columns)) ) ## get info about samples (coordinates, area, shape factor) # calculating sample area and coordinates sample_info_table = [] for current_map, current_stat, current_name in zip( [ pixel_mesh_east, pixel_mesh_north, pixel_mesh_east * 0 + np.abs(np.diff(pixel_axis_east)[0] * np.diff(pixel_axis_north)[0]), pixel_mesh_east, pixel_mesh_north, ], ["mean", "mean", "sum", "range", "range"], sample_info_table_columns, ): logging.info("AGB: calculating sample statistic '{}'".format(current_name)) sample_info_table.append( np.round( stats_on_all_samples( current_map, 0, pixel_mesh_east, pixel_mesh_north, sampling_polygons, current_stat, ) ) ) sample_info_table = np.column_stack(sample_info_table) sample_info_table = np.kron(sample_info_table, np.ones((number_of_stacks, 1))) ### READING OBSERVABLE DATA # cycle through observable sources in the stack for observable_idx in range(number_of_observables): # number of stacks in current observable (must be either 1 or number_of_stacks) current_number_of_stacks = len(formula_observables.source_paths[observable_idx]) is_stacked = current_number_of_stacks == number_of_stacks # cycle over stacks for stack_idx in range(current_number_of_stacks): # go ahead only if current stack is (at least partially) contained in the current parameter block: if (is_stacked and stack_in_block[stack_idx]) or not is_stacked: # cycle over all the equi7 tiles, interpolate over pixel grid and average source_data_interp = np.NaN * np.zeros( (len(pixel_axis_north), len(pixel_axis_east)), dtype="float" ) for file_idx, file_source in enumerate( formula_observables.source_paths[observable_idx][stack_idx] ): if ( file_source[0] != "none" ): # np.round(file_source[2])<=current_resolution: source_data_interp_curr = interp2d_wrapper( file_source[0], file_source[1] + 1, pixel_axis_east, pixel_axis_north, fill_value=np.NaN, ) source_data_interp = merge_agb_intermediate( source_data_interp, source_data_interp_curr, method="nan_mean", ) # # masking the stack: # source_data_interp[forest_class_map_interp == 0] = np.NaN if is_stacked: logging.info( "AGB: sampling and transforming data for stacked observable '{}' (stack {}/{}, file {}/{})".format( formula_observables.name[observable_idx], stack_idx + 1, number_of_stacks, file_idx + 1, len( formula_observables.source_paths[ observable_idx ][stack_idx] ), ) ) else: logging.info( "AGB: sampling and transforming data for unstacked observable '{}' (file {}/{})".format( formula_observables.name[observable_idx], file_idx + 1, len( formula_observables.source_paths[ observable_idx ][stack_idx] ), ) ) # calculate sample statistics temp_transformed_sampled_data = transform_function( stats_on_all_samples( source_data_interp, formula_observables.source_resolution[observable_idx], pixel_mesh_east, pixel_mesh_north, sampling_polygons, formula_observables.averaging_method[observable_idx], ), formula_observables.limits[observable_idx], formula_observables.transform[observable_idx], ) # check if observable is stacked (i.e., the list length equals number of stacks) if is_stacked: # find rows where the stack id matches the current stack id current_rows = ( identifier_table[:, 2] == stack_id_vector[stack_idx] ) # & (identifier_table[:,-1]==current_resolution) # fill out the table observable_table[ current_rows, observable_idx ] = temp_transformed_sampled_data else: # fill out the table by replicating the averaged data observable_table[:, observable_idx] = np.kron( temp_transformed_sampled_data, np.ones(number_of_stacks) ) # break if this is a required observable and all sampled data are nan # (speeds up the reading) if ( np.all(np.isnan(observable_table[:, observable_idx])) & formula_observables.is_required[observable_idx] ): logging.info( "AGB: no data for the first required observable, skipping the rest" ) break # repeating it across stacks and inserting into observable data table (note: forest class assumed constant across stacks) # identifier_table[:, 1] = np.kron(temp_forest_class_vector, np.ones(number_of_stacks)) forest_class_position = np.where( match_string_lists( formula_observables.name, [observable_for_forest_class] ).flatten() >= 0 )[0] if len(forest_class_position) == 0: logging.error( "AGB: cannot find forest class observable {}.".format( observable_for_forest_class ) ) else: forest_class_position = forest_class_position[0] identifier_table[:, 1] = observable_table[:, forest_class_position] # observable_table = np.nan*observable_table # this is just a dummy thing to check the behaviour of this function in case of lack of data # mark rows in observable data table that have negative identifiers, nan-valued sar observables, infinite sar observables, or negative agb values invalid_rows = ( np.any(identifier_table < 0, axis=1) | np.any(np.isnan(observable_table[:, formula_observables.is_required]), axis=1) | np.any( ~np.isfinite(observable_table[:, formula_observables.is_required]), axis=1 ) ) # exclude invalid rows observable_table = observable_table[~invalid_rows, :] identifier_table = identifier_table[~invalid_rows, :] sample_info_table = sample_info_table[~invalid_rows, :] # number of rows in data table number_of_rows_in_observable_table = observable_table.shape[0] ### PREPARING PARAMETER TABLES parameter_property_names = ["lower_limit", "upper_limit", "initial_value"] + [ "estimate_%d" % (ii) for ii in np.arange(number_of_subsets) + 1 ] parameter_position_names = [ "row_" + parameter_name for parameter_name in formula_parameters.name ] parameter_tables = [] parameter_table_columns = [] parameter_position_table = np.nan * np.zeros( (number_of_rows_in_observable_table, number_of_parameters) ) # creating parameter matrices for parameter_idx, parameter_variability in enumerate( formula_parameters.parameter_variabilities ): # take out only the relevant identifiers (the ones that change as per parameter variability) # and create column names by adding four additional columns: min, max and initial value, and estimated value (later set to NaN) parameter_table_columns.append( np.concatenate( ( np.array(identifier_names)[parameter_variability], np.array(parameter_property_names), ) ) ) # create the minimal ID table (without unnecessary columns for those dimension across which the parameter doesn't change) temp_ids_table = identifier_table[:, np.where(parameter_variability)[0]] # create the last four columns temp_minmax_table = np.array( [formula_parameters.limits[parameter_idx]] ) * np.ones((number_of_rows_in_observable_table, 1)) temp_initial_table = np.mean(temp_minmax_table, axis=1) temp_estimated_table = np.kron( np.ones((1, number_of_subsets)), np.array([np.mean(temp_minmax_table, axis=1)]).transpose(), ) # create the full table # note: this table has initially the same shape as the observable table temp_full_table = np.column_stack( ( temp_ids_table, temp_minmax_table, temp_initial_table, temp_estimated_table, ) ) # take out unique rows and the inverse vector recreating the rows of the observable table # the inverse vector is critical as it relates the positions in the observable table to positions in each parameter table temp_full_table, temp_position_in_observable_table = np.unique( temp_full_table, axis=0, return_inverse=True ) # set the last colum of the full table to nan (estimated value unavailable now) temp_full_table[:, -number_of_subsets:] = np.nan # append the table parameter_tables.append(temp_full_table) # include the inverse vector in the observable data table at the correct position parameter_position_table[:, parameter_idx] = temp_position_in_observable_table return ( observable_table, formula_observables.name, identifier_table, identifier_names, parameter_position_table, parameter_position_names, parameter_tables, parameter_table_columns, sample_info_table, sample_info_table_columns, ) # %% def fit_formula_to_random_subsets( formula_terms, number_of_subsets, observable_table, observable_names, identifier_table, identifier_names, parameter_position_table, parameter_names, parameter_tables, parameter_table_columns, parameter_variabilities, calibration_fraction, estimation_fraction, calibration_areas_per_test, estimation_areas_per_test, transfer_function_name, ): """ ( parameter_tables, space_invariant_parameter_table, space_invariant_parameter_names, space_variant_parameter_table, space_variant_parameter_names, ) = fit_formula_to_random_subsets( formula_terms, number_of_subsets, observable_table, observable_names, identifier_table, identifier_names, parameter_position_table, parameter_names, parameter_tables, parameter_table_columns, parameter_variabilities, calibration_fraction, estimation_fraction, calibration_areas_per_test, estimation_areas_per_test, transfer_function_name, ) Fits space invariant and space variant parameters to the data by minimising the residuals defined in the formulas INPUT: formula_terms is a named tuple with formula strings and associated formula weights number_of_subsets is the number of random subsets to be created observable_table is a 2D numpy array with observable data observable_names is a corresponding list of observable names identifier_table is a 2D numpy array with identifiers identifier_names is a corresponding list of identifier names parameter_position_table is a 2D numpy array with indices indicating how the parameters to be estimated vary across samples parameter_names is a corresonding list of parameter names parameter_tables is a list of parameter tables, each containing the minimal number of rows and columns for each parameter, where the rows contain individual parameter values and columns contain estimates from each subset and required identifiers parameter_columns is a list of lists with parameter column names parameter_variabilities contains the variabilities of each parameter across the predefined dimensions calibration_fraction is the fraction of samples with all required and non-requried data to be used in each subset estimation_fraction is the fraction of all samples with all required, but with some missing non-required data to be used in each subset calibration_areas_per_test is the minimal number of calibration areas required for this function to be run estimation_areas_per_test is the minimal number of esti9mation areas required for this function to be run transfer_function_name is the name of the transfer function used in this function OUTPUT: parameter_tables is the updated list of parameter tables space_invariant_parameter_table is a 2D numpy array on the same format as observable_table (same number of rows), with the estimated space invariant parameter values replicated as parameter_position_table space_invariant_parameter_names is a corresponding list of space invariant parameter names space_variant_parameter_table is a 2D numpy array on the same format as observable_table (same number of rows), with the estimated space variant parameter values replicated as parameter_position_table space_variant_parameter_names is a corresponding list of space variant parameter names """ ### minimal and maximal number of tests with different initial start values (assess local minima and avoids occasional failures) min_max_number_of_tests = [3,30] ### CREATE CALIBRATION AND ESTIMATION SUBSETS logging.info("AGB: creating {} subsets".format(number_of_subsets)) # select rows with available agb information as calibration data and those without as estimation data columns_with_nans = np.all(np.isnan(observable_table), axis=0) calibration_rows = np.where( np.all(~np.isnan(observable_table[:, ~columns_with_nans]), axis=1) )[0] estimation_rows = np.where( np.any(np.isnan(observable_table[:, ~columns_with_nans]), axis=1) )[0] calibration_sample_ids = np.unique(identifier_table[calibration_rows, 0]) estimation_sample_ids = np.unique(identifier_table[estimation_rows, 0]) # calculate subset sizes estimation_subset_size = np.int32( np.ceil(len(estimation_sample_ids) * estimation_fraction) ) calibration_subset_size = np.int32( np.ceil(len(calibration_sample_ids) * calibration_fraction) ) # find random data subsetting vectors making sure that the number of calibration and estimation areas # is the same in all subset_indexing_vectors = [] number_of_accepted_subsets = 0 max_number_of_subsets_to_test = number_of_subsets * 10 tested_subset_counter = 0 while (number_of_accepted_subsets < number_of_subsets) & ( tested_subset_counter < max_number_of_subsets_to_test ): # create a random subset of calibration and estimation samples current_random_estimation_subset = np.sort( np.random.permutation(estimation_sample_ids)[:estimation_subset_size] ) current_random_calibration_subset = np.sort( np.random.permutation(calibration_sample_ids)[:calibration_subset_size] ) # calculate the minimal number of calibration and estimation samples for the space-invariant parameters # (for the latter, we use the column with parameter positions in parameter tables - the same value indicates the same parameter) current_parameter_position_columns = np.where( ~np.row_stack(parameter_variabilities)[:, 0] )[0] current_calibration_rows = np.isin( identifier_table[:, 0], current_random_calibration_subset ) min_number_of_calibration_measurements_per_space_invariant_parameter = np.inf for column_idx in current_parameter_position_columns: # calculate the minimal number of samples for all parameter values within this column and all different parameters until the current one if np.any(current_calibration_rows): min_number_of_calibration_measurements_per_space_invariant_parameter = np.minimum( min_number_of_calibration_measurements_per_space_invariant_parameter, np.min( np.unique( parameter_position_table[ current_calibration_rows, column_idx ], return_counts=True, )[1] ), ) else: min_number_of_calibration_measurements_per_space_invariant_parameter = 0 current_estimation_rows = np.isin( identifier_table[:, 0], current_random_estimation_subset ) min_number_of_estimation_measurements_per_space_invariant_parameter = np.inf for column_idx in current_parameter_position_columns: # calculate the minimal number of samples for all parameter values within this column and all different parameters until the current one if np.any(current_estimation_rows): min_number_of_estimation_measurements_per_space_invariant_parameter = np.minimum( min_number_of_estimation_measurements_per_space_invariant_parameter, np.min( np.unique( parameter_position_table[ current_estimation_rows, column_idx ], return_counts=True, )[1] ), ) else: min_number_of_estimation_measurements_per_space_invariant_parameter = 0 # if the minimal number of samples is larger than the one specified in the xml configuration file, accept this subset # (at the moment, we don't perform other tests, which means that subsets may be repeated) if ( min_number_of_calibration_measurements_per_space_invariant_parameter >= calibration_areas_per_test ) & ( min_number_of_estimation_measurements_per_space_invariant_parameter >= estimation_areas_per_test ): subset_indexing_vectors.append( np.isin( identifier_table[:, 0], np.sort( np.concatenate( ( current_random_calibration_subset, current_random_estimation_subset, ) ) ), ) ) number_of_accepted_subsets += 1 tested_subset_counter += 1 # subset success flag subset_success = np.ones(number_of_subsets) == 0 if number_of_accepted_subsets == 0: logging.info("AGB: no accepted subsets found in current block.") space_invariant_parameter_table = [] space_invariant_parameter_names = [] space_variant_parameter_table = [] space_variant_parameter_names = [] else: if number_of_accepted_subsets < number_of_subsets: logging.warning( "AGB: number of accepted subsets ({}) is less than the required number of subsets ({}).".format( number_of_accepted_subsets, number_of_subsets ) ) # detect observables without data (used to remove formula terms that would generate nans) observables_without_data = [ observable_name for is_nan, observable_name in zip( np.all(np.isnan(observable_table), axis=0), observable_names ) if is_nan ] terms_with_nan_observables = np.any( match_string_lists(formula_terms.string, observables_without_data) >= 0, axis=1, ) if np.any(terms_with_nan_observables): logging.warning( "AGB: skipping formula terms: {} in steps 1-3 due to lack of useful data for observables: {}.".format( ", ".join( [ "%s" % (curr_name) for curr_name in subset_iterable( formula_terms.name, terms_with_nan_observables ) ] ), ", ".join(observables_without_data), ) ) ### FIRST, WE PERFORM THE ESTIMATION OF PARAMETERS FOR SUBSETS logging.info("AGB: parameter estimation step 1: estimation for subsets") #### select relevant formula and weights for this step terms_with_zero_weight_step1 = ( np.array(formula_terms.formula_weights.step1) == 0 ) if np.any(terms_with_zero_weight_step1): logging.warning( "AGB: skipping formula terms: {} in step 1 due to zero weights.".format( ", ".join( [ "%s" % (curr_name) for curr_name in subset_iterable( formula_terms.name, terms_with_zero_weight_step1 ) ] ), ) ) terms_to_take_step1 = ~( terms_with_nan_observables | terms_with_zero_weight_step1 ) formula_step1 = subset_iterable(formula_terms.string, terms_to_take_step1) formula_names_step1 = subset_iterable(formula_terms.name, terms_to_take_step1) formula_weights_step1 = subset_iterable( formula_terms.formula_weights.step1, terms_to_take_step1 ) # find observables and parameters in formula and create # vectors for selecting parameters and observables that exist in formula observables_in_formula_step1 = np.any( match_string_lists(formula_step1, observable_names) >= 0, axis=0 ) observables_in_parameters = np.any( match_string_lists(parameter_names, observable_names) >= 0, axis=0 ) parameters_in_formula_step1 = np.any( match_string_lists(formula_step1, parameter_names) >= 0, axis=0 ) # find parameters that do not change between samples space_invariant_parameters = ( False == np.column_stack(parameter_variabilities)[0, :] ) # some more flag vectors space_invariant_parameters_in_formula_step1 = ( space_invariant_parameters & parameters_in_formula_step1 ) # loop through calibration subsets for subset_idx, current_subset in enumerate(subset_indexing_vectors): logging.info( "AGB: minimising cost function for subset {} out of {}...".format( subset_idx + 1, number_of_subsets ) ) # subset parameter and observable tables current_parameter_position_table = parameter_position_table[ current_subset, : ][:, parameters_in_formula_step1] current_parameter_names = subset_iterable( parameter_names, parameters_in_formula_step1, False ) current_observable_table = observable_table[current_subset, :][ :, observables_in_formula_step1 ] current_observable_names = subset_iterable( observable_names, observables_in_formula_step1, False ) # create min-max tables individual_parameter_min_max_tables = subset_iterable( parameter_tables, parameters_in_formula_step1, False ) for parameter_idx in range(len(individual_parameter_min_max_tables)): individual_parameter_min_max_tables[ parameter_idx ] = individual_parameter_min_max_tables[parameter_idx][ :, -number_of_subsets - 3 : -number_of_subsets - 1 ] # estimate both parameters and AGB for the subset (current_lut_all_parameters, _, curr_cost_function_values) = fit_formula_to_table_data( formula_step1, formula_names_step1, formula_weights_step1, current_observable_table, # subset_iterable(current_observable_table.transpose(),~np.all(np.isnan(current_observable_table),axis=0),return_array=True).transpose(), current_observable_names, # subset_iterable(current_observable_names,~np.all(np.isnan(current_observable_table),axis=0)), current_parameter_position_table, current_parameter_names, individual_parameter_min_max_tables, transfer_function_name, min_max_number_of_tests, ) # check if success subset_success[subset_idx] = ~np.any(np.isnan(curr_cost_function_values)) # fill out parameter tables with estimates of space invariant parameters for current_parameter_idx in np.where( space_invariant_parameters_in_formula_step1 )[0]: # identify column in the current output table current_column_idx = np.where( np.array(current_parameter_names) == np.array(parameter_names[current_parameter_idx]) )[0][0] # identify valid rows in the current output lut current_rows = ( current_lut_all_parameters[:, 1] == current_column_idx ) & ( np.abs( current_lut_all_parameters[:, -2] - current_lut_all_parameters[:, -1] ) > 1e-10 # checking if the parameter has changed from the initial value ) # write the relevant rows of the parameter table parameter_tables[current_parameter_idx][ np.int32(current_lut_all_parameters[current_rows, 2]), -number_of_subsets + subset_idx, ] = current_lut_all_parameters[current_rows, -1] ### THEN, WE ESTIMATE SPACE VARIANT PARAMETERS FOR ALL SAMPLES USING SPACE INVARIANT PARAMETERS FROM SUBSETS logging.info( "AGB: parameter estimation step 2: estimation of AGB from subset estimated parameters" ) #### select relevant formula and weights for this step terms_with_zero_weight_step2 = ( np.array(formula_terms.formula_weights.step2) == 0 ) if np.any(terms_with_zero_weight_step2): logging.warning( "AGB: skipping formula terms: {} in step 2 due to zero weights.".format( ", ".join( [ "%s" % (curr_name) for curr_name in subset_iterable( formula_terms.name, terms_with_zero_weight_step2 ) ] ), ) ) terms_to_take_step2 = ~( terms_with_nan_observables | terms_with_zero_weight_step2 ) formula_step2 = subset_iterable(formula_terms.string, terms_to_take_step2) formula_names_step2 = subset_iterable(formula_terms.name, terms_to_take_step2) formula_weights_step2 = subset_iterable( formula_terms.formula_weights.step2, terms_to_take_step2 ) observables_in_formula_step2 = np.any( match_string_lists(formula_step2, observable_names) >= 0, axis=0 ) parameters_in_formula_step2 = np.any( match_string_lists(formula_step2, parameter_names) >= 0, axis=0 ) space_invariant_parameters_in_formula_step2 = ( space_invariant_parameters & parameters_in_formula_step2 ) space_variant_parameters_in_formula_step2 = ( ~space_invariant_parameters & parameters_in_formula_step2 ) observables_in_formula_step2_not_in_parameters = ( observables_in_formula_step2 & ~observables_in_parameters ) # loop through calibration subsets for subset_idx in range(number_of_subsets): if not subset_success[subset_idx]: logging.warning( "AGB: skipping space-invariant parameter set {} out of {}. Proceed with caution. ".format( subset_idx + 1, number_of_subsets ) ) continue logging.info( "AGB: estimating space-variant parameters for all samples using space-invariant parameter set {} out of {}...".format( subset_idx + 1, number_of_subsets ) ) # create a table with all space invariant parameters space_invariant_parameter_names = subset_iterable( parameter_names, space_invariant_parameters_in_formula_step2, False ) current_space_invariant_parameter_table = [] for current_parameter_idx in np.where( space_invariant_parameters_in_formula_step2 )[0]: # extract current parameter table current_parameter_table = parameter_tables[current_parameter_idx] # extract the current position vector current_parameter_position_vector = np.int32( parameter_position_table[:, current_parameter_idx] ) # extract the column with the current subset estimates current_column_in_parameter_table = -number_of_subsets + subset_idx # add the current data current_space_invariant_parameter_table.append( current_parameter_table[ current_parameter_position_vector, current_column_in_parameter_table, ] ) current_space_invariant_parameter_table = np.column_stack( current_space_invariant_parameter_table ) # these parameters are now treated as observables, so # space invariant parameter table is merged with observable table new_observable_table = np.column_stack( ( observable_table[:, observables_in_formula_step2_not_in_parameters], current_space_invariant_parameter_table, ) ) new_observable_names = ( subset_iterable( observable_names, observables_in_formula_step2_not_in_parameters, False, ) + space_invariant_parameter_names ) # now, only the space-variant parameters are treated us unknown parameters # the corresponding tables and lists are now created new_parameter_position_table = parameter_position_table[ :, space_variant_parameters_in_formula_step2 ] new_parameter_names = subset_iterable( parameter_names, space_variant_parameters_in_formula_step2, False ) new_individual_parameter_min_max_tables = subset_iterable( parameter_tables, space_variant_parameters_in_formula_step2, False ) for parameter_idx in range(len(new_individual_parameter_min_max_tables)): new_individual_parameter_min_max_tables[ parameter_idx ] = new_individual_parameter_min_max_tables[parameter_idx][ :, -number_of_subsets - 3 : -number_of_subsets - 1 ] # estimate space variant parameters for all samples ( current_lut_space_variant_parameters, space_variant_parameter_table, curr_cost_function_values ) = fit_formula_to_table_data( formula_step2, formula_names_step2, formula_weights_step2, new_observable_table, new_observable_names, new_parameter_position_table, new_parameter_names, new_individual_parameter_min_max_tables, transfer_function_name, min_max_number_of_tests, ) # check if success subset_success[subset_idx] = ~np.any(np.isnan(curr_cost_function_values)) # fill out parameter tables with estimates of space invariant parameters for current_parameter_idx in np.where( space_variant_parameters_in_formula_step2 )[0]: # identify column current_column_idx = np.where( np.array(new_parameter_names) == np.array(parameter_names[current_parameter_idx]) )[0][0] # identify valid rows current_rows = ( current_lut_space_variant_parameters[:, 1] == current_column_idx ) & ( np.abs( current_lut_space_variant_parameters[:, -2] - current_lut_space_variant_parameters[:, -1] ) > 1e-10 ) # save current estimates to parameter tables parameter_tables[np.int32(current_parameter_idx)][ np.int32(current_lut_space_variant_parameters[current_rows, 2]), -number_of_subsets + subset_idx, ] = current_lut_space_variant_parameters[current_rows, -1] if np.all(subset_success): logging.info("AGB: all subsets passed steps 1 and 2. Continuing with step 3.") else: if np.any(subset_success): logging.warning("AGB: {} out of {} subsets passed steps 1 and 2. Continuing with step 3. Proceed with care.".format(np.sum(subset_success),len(subset_success))) else: logging.info("AGB: no subsets passed steps 1 and 2. Skipping step 3.") if np.any(subset_success): ### FINALLY, WE ESTIMATE SPACE INVARIANT PARAMETERS USING THE AVERAGE SPACE VARIANT PARAMETER VALUES FROM ALL SUBSETS FOR ALL SAMPLES logging.info( "AGB: parameter estimation step 3: fitting space-invariant parameters using space-variant parameter estimate" ) terms_with_zero_weight_step3 = ( np.array(formula_terms.formula_weights.step3) == 0 ) if np.any(terms_with_zero_weight_step3): logging.warning( "AGB: skipping formula terms: {} in step 3 due to zero weights.".format( ", ".join( [ "%s" % (curr_name) for curr_name in subset_iterable( formula_terms.name, terms_with_zero_weight_step3 ) ] ), ) ) terms_to_take_step3 = ~( terms_with_nan_observables | terms_with_zero_weight_step3 ) formula_step3 = subset_iterable(formula_terms.string, terms_to_take_step3) formula_names_step3 = subset_iterable(formula_terms.name, terms_to_take_step3) formula_weights_step3 = subset_iterable( formula_terms.formula_weights.step3, terms_to_take_step3 ) observables_in_formula_step3 = np.any( match_string_lists(formula_step3, observable_names) >= 0, axis=0 ) parameters_in_formula_step3 = np.any( match_string_lists(formula_step3, parameter_names) >= 0, axis=0 ) space_invariant_parameters_in_formula_step3 = ( space_invariant_parameters & parameters_in_formula_step3 ) space_variant_parameters_in_formula_step3 = ( ~space_invariant_parameters & parameters_in_formula_step3 ) observables_in_formula_step3_not_in_parameters = ( observables_in_formula_step3 & ~observables_in_parameters ) # names for table columns space_variant_parameter_names = subset_iterable( parameter_names, space_variant_parameters_in_formula_step3, False ) # create table with all space invariant parameters current_space_variant_parameter_table = [] for position_in_parameter_table_list in np.where( space_variant_parameters_in_formula_step3 )[0]: current_parameter_table = parameter_tables[position_in_parameter_table_list] current_parameter_position_vector = np.int32( parameter_position_table[:, position_in_parameter_table_list] ) current_columns_in_parameter_table = np.arange(-number_of_subsets, 0) current_space_variant_parameter_table.append( np.mean( current_parameter_table[current_parameter_position_vector, :][ :, current_columns_in_parameter_table ], axis=1, ) ) current_space_variant_parameter_table = np.column_stack( current_space_variant_parameter_table ) # new observable table is the combination of observable table and space variant parameter table new_observable_table = np.column_stack( ( observable_table[:, observables_in_formula_step3_not_in_parameters], current_space_variant_parameter_table, ) ) new_observable_names = ( subset_iterable( observable_names, observables_in_formula_step3_not_in_parameters, False ) + space_variant_parameter_names ) new_parameter_position_table = parameter_position_table[ :, space_invariant_parameters_in_formula_step3 ] new_parameter_names = subset_iterable( parameter_names, space_invariant_parameters_in_formula_step3, False ) new_individual_parameter_min_max_tables = subset_iterable( parameter_tables, space_invariant_parameters_in_formula_step3, False ) for parameter_idx in range(len(new_individual_parameter_min_max_tables)): new_individual_parameter_min_max_tables[ parameter_idx ] = new_individual_parameter_min_max_tables[parameter_idx][ :, -number_of_subsets - 3 : -number_of_subsets - 1 ] # estimate space variant parameters for all samples (_, space_invariant_parameter_table, _,) = fit_formula_to_table_data( formula_step3, formula_names_step3, formula_weights_step3, new_observable_table, new_observable_names, new_parameter_position_table, new_parameter_names, new_individual_parameter_min_max_tables, transfer_function_name, min_max_number_of_tests, ) else: space_invariant_parameter_table = [] space_invariant_parameter_names = [] space_variant_parameter_table = [] space_variant_parameter_names = [] return ( parameter_tables, space_invariant_parameter_table, space_invariant_parameter_names, space_variant_parameter_table, space_variant_parameter_names, ) # %% functions needed for function above # swap variable names in formulas to slices of an array def swap_names_and_merge_formula( original_formulas, observable_names, parameter_names, new_table_name, use_observable_if_repeated_and_available=True, ): """ new_formulas = swap_names_and_merge_formula( original_formulas, observable_names, parameter_names, new_table_name, use_observable_if_repeated_and_available=True ) Swaps observable names and parameter names in the original formulas for slices of a table. Column names are determined by position of parameter/observable names in the combined list of observable and parameter names INPUT: original_formulas is a list with formula strings observable_names is a list of observable names parameter_names is a list of parameter names new_table_name is the name for the new table use_observable_if_repeated_and_available indicates whether observables should be prioritised if the same name occurs both in the parameter_names and observable_names lists OUTPUT: new_formulas is a list of formula strings where the observable/parameter names have been replaced with slices of the new table """ original_variable_names = observable_names + parameter_names unique_variable_names, name_counts = np.unique( np.array(original_variable_names), return_counts=True ) new_formula = [] for current_formula in original_formulas: for unique_variable_name, name_count in zip(unique_variable_names, name_counts): if name_count == 1: position_in_variable_names_vector = np.where( np.array(original_variable_names) == unique_variable_name )[0][0] elif name_count == 2: position_in_variable_names_vector = np.where( np.array(original_variable_names) == unique_variable_name )[0][np.int32(~use_observable_if_repeated_and_available)] current_formula = current_formula.replace( unique_variable_name, new_table_name + ("[:,%d]" % (position_in_variable_names_vector)), ) new_formula.append(current_formula) return new_formula # %% # function for converting columnwise indices (which are repeated within the same column if they represent identical values, # but which may be repeated across different columns without meaning that they represent identical values) # to unique indices (which are only repeated within the same table if they are to have identical values) def regularise_indices(columnwise_index_table): """ regularised_index_table = regularise_indices(columnwise_index_table) Converts columnwise indices to global indices. INPUT: columnwise_index_table is a 2D numpy array with different numbers indicating different parameter values within each column OUTPUT: regularised_index_table is a 2D numpy array with different numbers indicating different parameter values within the entire table """ offset = 0 unique_index_table = [] # position in a single x-vector columnwise_to_unique_index_lut = ( [] ) # lut for converting between parameter id and column and parameter position in x for column_idx, parameter_column in enumerate(columnwise_index_table.transpose()): # add -1 at the beginning to avoid vectors with one element (which will not work with interp1d) old_indices = np.concatenate((-1 * np.ones(1), np.unique(parameter_column))) # new indices is a simple sequence from 0 to number of parameters-1 + offset due to previous parameters new_indices = np.arange(len(old_indices)) - 1 + offset # convert parameter indices and add to the list unique_index_table.append( sp.interpolate.interp1d(old_indices, new_indices, kind="nearest")( parameter_column ) ) # save the lut, removing the first, unnecessary element columnwise_to_unique_index_lut.append( np.column_stack( ( new_indices[old_indices > -1], column_idx + np.zeros(len(old_indices[old_indices > -1])), old_indices[old_indices > -1], ) ) ) # update offset based on current parameter column offset = np.max(new_indices) + 1 # convert the list of vectors to an array unique_index_table = np.int32(np.column_stack(unique_index_table)) # stack all luts to one lut columnwise_to_unique_index_lut = np.row_stack(columnwise_to_unique_index_lut) # # length of beta vector # length_of_p_vector = columnwise_to_unique_index_lut.shape[0] return unique_index_table, columnwise_to_unique_index_lut # %% def cost_function( x_vector, converted_formulas, formula_weights, observable_table, index_table, name_of_table_in_converted_formula, transfer_function, return_one_value=True, ): """ cost_function_value = cost_function( x_vector, converted_formulas, formula_weights, observable_table, index_table, name_of_table_in_converted_formula, transfer_function, return_one_value=True ) Calculates the cost function value from a one-dimensional vector INPUT: x_vector is a one-dimensional vector as required by the sp.optimize.minimize function converted_formulas is a list of formula strings converted to use columns of one single table formula_weights is a list of formula weights observable_table is a 2D numpy array with observables index_table is a 2D numpy array with parameter indices in x_vector name_of_table_in_converted_formula is a string with the name that is used in the converted formulas for the combined table transfer_function is a string with the transfer function type return_one_value is a bool indicating if one value should be returned (default: True), or if the function should return one value for each formula term (False) OUTPUT: cost_function_value is either a scalar or an array of the same length as the list of formula strings """ p_vector = transfer_function(x_vector) table_in_converted_formula = np.column_stack( (observable_table, p_vector[index_table]) ) final_expression = "0" for converted_formula, formula_weight in zip(converted_formulas, formula_weights): final_expression += ",%.18f*np.nanmean((%s)**2)" % ( formula_weight / np.sum(formula_weights) * len(formula_weights), converted_formula, ) final_expression = "np.array([%s])" % (final_expression) total_cost = eval( final_expression, {name_of_table_in_converted_formula: table_in_converted_formula, "np": np}, )[1:] if return_one_value: return np.sqrt(np.nansum(total_cost)) else: return total_cost # %% def fit_formula_to_table_data( original_formula, formula_names, formula_weights, observable_table, observable_table_column_names, parameter_position_table, parameter_position_table_column_names, individual_parameter_min_max_tables, transfer_function_name, min_and_max_tests, ): """ estimated_parameter_lut, estimated_parameter_table, cost_function_values = fit_formula_to_table_data( original_formula, formula_names, formula_weights, observable_table, observable_table_column_names, parameter_position_table, parameter_position_table_column_names, individual_parameter_min_max_tables, transfer_function_name, min_and_max_tests, ) Performs minimisation of the cost function defined by a formula and weights and returns a look-up-table with the estimated parameters, an estimated parameter table, and cost function values INPUT: original_formula is a list of formula strings formula_names is a list of formula names (to be used in logging) formula_weights is a nested list of formula weights observable_table is a numpy array with the observables observable_table_column_names is a list of strings with names for each of the observables in the observable table parameter_position_table is a numpy array matching observable_table in number of rows with the positions of each unknown parameter in its unique table parameter_position_table_column_names is a list of strings with the names for each column in parameter_position_table individual_parameter_min_max_tables is a list of numpy arrays for each parameter, with min and max values for each parameter transfer_function_name is a string with the transfer function to be used min_and_max_tests is a 2-element list with the required minimum number of tests that need to be run with different start values and the maximal allowed number of tests to be run OUTPUT: estimated_parameters_lut is a minimal-size look-up-table with the estimated parameter values estimated_parameter_table is a table matching parameter_position_table in size, where the parameters have been distributed across rows and columns using the estimated_parameters_lut cost_function_values is a list of values for each cost function, including the weights """ # convert the columnwise indices in "parameter_position_table" to unique indices unique_index_table, columnwise_to_unique_index_lut = regularise_indices( parameter_position_table ) # number of unique parameters to estimate length_of_p_vector = columnwise_to_unique_index_lut.shape[0] # create a table of min and max parameter values (requires looping through parameter tables and extracting relevant rows) # this allows a possible flexible setting of intervals in the future p_min_max_table = np.nan * np.zeros((length_of_p_vector, 2)) for parameter_idx, individual_parameter_min_max_table in enumerate( individual_parameter_min_max_tables ): current_rows_in_lut = columnwise_to_unique_index_lut[:, 1] == parameter_idx current_positions_in_individual_parameter_table = np.int32( columnwise_to_unique_index_lut[current_rows_in_lut, 2] ) p_min_max_table[current_rows_in_lut, :] = individual_parameter_min_max_table[ current_positions_in_individual_parameter_table, : ] # extract min, max, intiial values p_lower = p_min_max_table[:, 0] p_upper = p_min_max_table[:, 1] # the name of the table that is used in the original_formula string # (could be anything as long as the same string is used in swap_names_in_original_formula and cost_function) table_name_in_converted_formula = "current_data_table" # find rows for which all observable data exist # rows_with_all_observables = np.all(~np.isnan(observable_table), axis=1) # in this case, the formula should use the first occurence of the same quantity, if it is observed in both "observables" and "parameters" converted_formula = swap_names_and_merge_formula( original_formula, observable_table_column_names, parameter_position_table_column_names, table_name_in_converted_formula, use_observable_if_repeated_and_available=True, ) cost_function_arguments = ( converted_formula, formula_weights, observable_table, unique_index_table, table_name_in_converted_formula, lambda x: parameter_transfer_function( x, p_lower, p_upper, False, transfer_function_name ), True, ) # iterate a few times with different initial values in case some initial value set fails max_count = min_and_max_tests[1] min_count = min_and_max_tests[0] success_count = 0 # allocate list for estimated parameters p_estimated = [] cost_function_values = [] # loop through tests for counter in range(max_count): # creating initial values by randomising p_initial = p_lower + np.random.rand(length_of_p_vector) * (p_upper - p_lower) # converting to x x_initial = parameter_transfer_function( p_initial, p_lower, p_upper, True, transfer_function_name ) # fit the model fitted_model = sp.optimize.minimize( cost_function, x_initial, cost_function_arguments, method="BFGS" ) if fitted_model.success: # calculate parameters and cost function values curr_p_estimated = parameter_transfer_function( fitted_model.x, p_lower, p_upper, False, transfer_function_name ) curr_cost_function_values = cost_function( parameter_transfer_function( curr_p_estimated, p_lower, p_upper, True, transfer_function_name ), *cost_function_arguments[:-1], False ) if np.any(np.isnan(curr_cost_function_values)): print('breaking') # add current estimates to the lists p_estimated.append(curr_p_estimated) cost_function_values.append(curr_cost_function_values) success_count += 1 # report and continue with next run or report and finish if (success_count<min_count) & (counter<(max_count-1)): logging.info( " ... test with different initial values finished with success (%d/%d, cost function values: [%s]). Running next test..." % (success_count,min_count, ", ".join( [ "%s: %.2f" % (curr_name, curr_value) for curr_value, curr_name in zip( curr_cost_function_values, formula_names ) ] ) ) ) continue else: # stack the results p_estimated = np.row_stack(p_estimated) cost_function_values = np.row_stack(cost_function_values) # check if variability across estimates with different start values is not too big parameter_consistency = np.nanmean(np.nanstd(p_estimated,axis=0)) min_pos = np.where(np.sum(cost_function_values,axis=1)==np.min(np.sum(cost_function_values,axis=1)))[0] if len(min_pos)==0: print('breaking') selected_position = min_pos[0] p_estimated = p_estimated[selected_position,:] cost_function_values = cost_function_values[selected_position,:] if (parameter_consistency<1e-4) & (success_count>1): if success_count<min_count: logging.warning( " ... test with different initial values finished with success, but the obtained number of successes was not sufficient (%d/%d, cost function values: [%s]). Finishing (mean standard deviation for parameters across tests: %f)..." % (success_count,min_count, ", ".join( [ "%s: %.2f" % (curr_name, curr_value) for curr_value, curr_name in zip( curr_cost_function_values, formula_names ) ] ), parameter_consistency, ) ) else: logging.info( " ... test with different initial values finished with success (%d/%d, cost function values: [%s]). Finishing (mean standard deviation for parameters across tests: %f)..." % (success_count,min_count, ", ".join( [ "%s: %.2f" % (curr_name, curr_value) for curr_value, curr_name in zip( curr_cost_function_values, formula_names ) ] ), parameter_consistency, ) ) else: if (parameter_consistency>=1e-4) & (success_count>1): logging.warning( " ... test with different initial values finished with suspicion of multiple minima (%d/%d, cost function values: [%s]). Mean standard deviation for parameters across tests: %f. Continue with caution..." % (success_count,min_count, ", ".join( [ "%s: %.2f" % (curr_name, curr_value) for curr_value, curr_name in zip( curr_cost_function_values, formula_names ) ] ), parameter_consistency, ) ) elif success_count==1: logging.warning( " ... test with different initial values finished with only one success (%d/%d, cost function values: [%s]). Mean standard deviation for parameters across tests: %f. Impossible to assess if there are multiple minima. Continue with caution..." % (success_count,min_count, ", ".join( [ "%s: %.2f" % (curr_name, curr_value) for curr_value, curr_name in zip( curr_cost_function_values, formula_names ) ] ), parameter_consistency, ) ) break else: if counter < (max_count - 1): logging.info( " ... finished with failure (message: {}). Rerunning with different initial values...".format( fitted_model.message ) ) continue else: p_estimated = np.nan * np.zeros(length_of_p_vector) cost_function_values = np.nan * np.ones(len(converted_formula)) logging.info( " ... finished with failure (message: {}). Entire estimation failed (skipping this subset)...".format( fitted_model.message ) ) break return ( np.column_stack((columnwise_to_unique_index_lut, p_initial, p_estimated)), p_estimated[unique_index_table], cost_function_values, ) # %% def read_and_organise_3d_data( current_block_extents, block_has_data, pixel_axis_north, pixel_axis_east, stack_info_table, stack_info_table_column_names, observable_names, observable_sources, observable_transforms, observable_averaging_methods, observable_ranges, observable_is_required, forest_class_sources, forest_class_boundaries, stack_id_vector, forest_class_id_vector, space_invariant_parameter_table, space_invariant_parameter_names, mask_out_area_outside_block=False, ): """ ( forest_class_3d, observables_3d, observable_names, space_invariant_parameters_3d, space_invariant_parameter_names, identifiers_3d, identifiers_3d_names, ) = read_and_organise_3d_data( current_block_extents, block_has_data, pixel_axis_north, pixel_axis_east, stack_info_table, stack_info_table_column_names, observable_names, observable_sources, observable_transforms, observable_averaging_methods, observable_ranges, observable_is_required, forest_class_sources, forest_class_boundaries, stack_id_vector, forest_class_id_vector, space_invariant_parameter_table, space_invariant_parameter_names, mask_out_area_outside_block=False, ) Uses a newton-based method to fit space variant parameters to observable data and space invariant parameters based on the formula that has to be minimised INPUT: current_block_extents contains the east and north boundaries of the current block block_has_data contains a bool for each stack indicating whether this stack has any data within the block pixel_axis_north, pixel_axis_east are the two axes onto which the read data should be interpolated stack_info_table is a table with identifier values for each stack, each stack is represented by a new row stack_info_table_column_names is a list of strings with column names for the stack_info_table observable_names is a list of strings with names for the observables (quantities to be read) observable_sources is a nested list with source data (paths & band_ids) for each stack observable_transforms is a list of strings with transforms to be applied to each observable observable_averaging_methods is a list of strings with methods of averaging to be applied to each observable observable_ranges is a list of accepted ranges for each observable (prior to transformation) observable_is_required is a list of bools telling the algorithm if the observable is required for AGB estimation or just optional forest_class_sources is a nested list with source data for forest class forest_class_boundaries is a list of min and max coordinates for the forest class images stack_id_vector is a vector of stack ids matching the space_invariant_parameter_table (below) forest_class_id_vector is a vector with forest class ids matching the space_invariant_parameter_table (below) space_invariant_parameter_table is a table with the estimated space invariant parameters (which will be rasterised) space_invariant_parameter_names is a list of names for the columns of the table above mask_out_area_outside_block is a bool indicating whether the area outside block should be set to nan for the rasterised parameter images OUTPUT: forest_class_3d is a numpy array with forest class observables_3d is a list of numpy_arrays with the observables observable_names is a corresponding list of observable names space_invariant_parameters_3d is a list of numpy arrays with space invariant parameters (rasterised from the table) space_invariant_parameter_names is a corresponding list of parameter names identifiers_3d is a numpy array with the identifiers identifiers_3d_names is a corresponding list of identifier names """ # create mask for current block current_block_mask = np.zeros( (len(pixel_axis_north), len(pixel_axis_east)), dtype="bool" ) # set areas within block to true current_block_mask[ np.array( [ np.where( (pixel_axis_north > current_block_extents[3]) & (pixel_axis_north < current_block_extents[2]) )[0] ] ).transpose(), np.array( [ np.where( (pixel_axis_east > current_block_extents[0]) & (pixel_axis_east < current_block_extents[1]) )[0] ] ), ] = True def apply_look_up_table(lut_x, lut_y, output_xs): output_y = np.nan * np.zeros(np.prod(output_xs).shape) for row_in_lut in range(len(lut_y)): positions_in_output = ( np.prod( [ lut_x[row_in_lut, column_in_lut] == output_xs[column_in_lut] for column_in_lut in range(len(output_xs)) ] ) == 1 ) output_y[positions_in_output] = lut_y[row_in_lut] return output_y # # derived parameters number_of_stacks = stack_info_table.shape[0] number_of_observables = len(observable_names) # number_of_space_invariant_parameters = len(space_invariant_parameter_names) ### READING AND SAMPLING FOREST CLASS DATA logging.info("AGB: reading forest class map") forest_class_3d = np.zeros( (len(pixel_axis_north), len(pixel_axis_east)), dtype="float" ) for file_idx, file_source in enumerate(forest_class_sources): forest_class_map_boundaries = forest_class_boundaries[file_idx] forest_class_map_is_inside = check_intersection( forest_class_map_boundaries[0], forest_class_map_boundaries[1], forest_class_map_boundaries[2], forest_class_map_boundaries[3], current_block_extents[0], current_block_extents[1], current_block_extents[3], current_block_extents[2], ) if forest_class_map_is_inside: forest_class_3d_curr = np.round( interp2d_wrapper( file_source[0], file_source[1] + 1, pixel_axis_east, pixel_axis_north, fill_value=float(0), ) ) # mean all the fnf tiles forest_class_3d = np.ceil( merge_agb_intermediate( forest_class_3d, forest_class_3d_curr, method="nan_mean" ) ) logging.info( "AGB: reading forest class image data (file {}/{})".format( file_idx + 1, len(forest_class_sources) ) ) # set all unrealistic values to 0 = non-forest forest_class_3d[(forest_class_3d <= 0) | np.isnan(forest_class_3d)] = 0 forest_class_3d = np.array([forest_class_3d]).transpose([1, 2, 0]) ### READING OBSERVABLE DATA # allocate observable tables (one table in a list for each observable) observables_3d = [] # cycle through observable sources in the stack for observable_idx in range(number_of_observables): observables_3d.append( np.nan * np.zeros((len(pixel_axis_north), len(pixel_axis_east), number_of_stacks)) ) # number of stacks in current observable (must be either 1 or number_of_stacks) current_number_of_stacks = len(observable_sources[observable_idx]) # check if observable is stacked (i.e., the list length equals number of stacks) if current_number_of_stacks == number_of_stacks: # cycle over stacks for stack_idx in range(number_of_stacks): # go ahead only if current stack is (at least partially) contained in the current parameter block: if block_has_data[stack_idx]: # cycle over all the equi7 tiles, interpolate over pixel grid and average source_data_interp = np.NaN * np.zeros( (len(pixel_axis_north), len(pixel_axis_east)), dtype="float" ) for file_idx, file_source in enumerate( observable_sources[observable_idx][stack_idx] ): source_data_interp_curr = interp2d_wrapper( file_source[0], file_source[1] + 1, pixel_axis_east, pixel_axis_north, fill_value=np.NaN, ) source_data_interp = merge_agb_intermediate( source_data_interp, source_data_interp_curr, method="nan_mean", ) # masking the stack: source_data_interp[forest_class_3d[:, :, 0] == 0] = np.NaN logging.info( "AGB: reading stacked image data for observable '{}' (stack {}/{}, file {}/{})".format( observable_names[observable_idx], stack_idx + 1, number_of_stacks, file_idx + 1, len(observable_sources[observable_idx][stack_idx]), ) ) observables_3d[observable_idx][ :, :, stack_idx ] = transform_function( source_data_interp, observable_ranges[observable_idx], observable_transforms[observable_idx], ) # otherwise, replicate across stacks elif current_number_of_stacks == 1: source_data_interp = np.nan * np.zeros( (len(pixel_axis_north), len(pixel_axis_east)), dtype="float" ) for file_idx, file_source in enumerate( observable_sources[observable_idx][0] ): source_data_interp_curr = interp2d_wrapper( file_source[0], file_source[1] + 1, pixel_axis_east, pixel_axis_north, fill_value=np.NaN, ) source_data_interp = merge_agb_intermediate( source_data_interp, source_data_interp_curr, method="nan_mean" ) # masking the stack: source_data_interp[forest_class_3d[:, :, 0] == 0] = np.NaN logging.info( "AGB: reading unstacked image data for observable '{}' (file {}/{})".format( observable_names[observable_idx], file_idx + 1, len(observable_sources[observable_idx][0]), ) ) temporary_transf_image = transform_function( source_data_interp, observable_ranges[observable_idx], observable_transforms[observable_idx], ) for stack_idx in range(number_of_stacks): observables_3d[observable_idx][:, :, stack_idx] = temporary_transf_image # break if this is a required observable and all sampled data are nan # (speeds up the reading) if ( np.all(np.isnan(observables_3d[observable_idx])) & observable_is_required[observable_idx] ): logging.info( "AGB: no data for the first required observable, skipping the rest" ) break identifiers_3d = [] for identifier_idx in range(stack_info_table.shape[1]): identifiers_3d.append(np.array([[stack_info_table[:, identifier_idx]]])) # create maps for the space invariant parameters space_invariant_parameters_3d = [] for parameter_idx, parameter_name in enumerate(space_invariant_parameter_names): current_lut = np.column_stack( ( forest_class_id_vector, stack_id_vector, space_invariant_parameter_table[:, parameter_idx], ) ) current_lut = np.unique(current_lut, axis=0) current_parameter_map_3d = apply_look_up_table( current_lut[:, :-1], current_lut[:, -1], (forest_class_3d, identifiers_3d[0]), ) if mask_out_area_outside_block: current_parameter_map_3d[~current_block_mask] = np.nan space_invariant_parameters_3d.append(current_parameter_map_3d) # return maps return ( forest_class_3d, observables_3d, observable_names, space_invariant_parameters_3d, space_invariant_parameter_names, identifiers_3d, stack_info_table_column_names, ) # %% def map_space_variant_parameters( formula, formula_weights, forest_class_3d, observables_3d, observables_3d_names, space_invariant_parameters_3d, space_invariant_parameters_3d_names, identifiers_3d, identifiers_3d_names, space_variant_parameters_3d_names, space_variant_parameters_3d_variabilities, space_variant_parameters_3d_limits, transfer_function_name, ): """ space_variant_parameters_3d, space_variant_parameters_3d_names = map_space_variant_parameters( formula, formula_weights, forest_class_3d, observables_3d, observables_3d_names, space_invariant_parameters_3d, space_invariant_parameters_3d_names, identifiers_3d, identifiers_3d_names, space_variant_parameters_3d_names, space_variant_parameters_3d_variabilities, space_variant_parameters_3d_limits, transfer_function_name, ) Uses a newton-based method to fit space variant parameters to observable data and space invariant parameters based on the formula that has to be minimised INPUT: formula is a list of strings with the original formulas formula_weights is a list or array of floats representing weights for each formula forest_class_3d is a numpy array with the forest class data observables_3d is a list of numpy arrays with the observable data rasters observables_3d_names is a list of strings with names for each observable space_invariant_parameters_3d is a list of numpy arrays with the space invariant parameter rasters space_invariant_parameters_3d_names is a corresponding list of space invariant parameter names identifiers_3d is a list of numpy arrays with identifiers for stacks identifiers_3d_names is a corresponding list of identifier names space_variant_parameters_3d_names is a list of names for the space variant parameters space_variant_parameters_3d_variabilities is a corresponding list of variabilities accross the eight dimesnions space_variant_parameters_3d_limits is a corresponding list of 2 element vectors with lower and upper limits for each space variant parameter, transfer_function_name is the name of the transfer function to be used for constraining parameters to their limits OUTPUT: space_variant_parameters_3d is a list of numpy arrays with the estimated space variant parameter maps space_variant_parameters_3d_names is a corresponding list of parameter names """ def small_change_in_intermediate_parameters_3d( intermediate_parameter, additional_arguments, small_step ): def cost_function_3d(intermediate_parameter, additional_arguments): # print(np.nanmean(intermediate_parameter)) ( converted_formula, all_observables_3d, transfer_function, transfer_function_name, space_variant_parameter_limits, data_list_name, ) = additional_arguments space_variant_parameter = np.kron( np.ones((1, 1, all_observables_3d[0].shape[2])), transfer_function( intermediate_parameter, space_variant_parameter_limits[0], space_variant_parameter_limits[1], False, transfer_function_name, ), ) data_list = all_observables_3d + [space_variant_parameter] return np.sqrt( np.nanmean( eval(converted_formula, {data_list_name: data_list, "np": np}), axis=2, ) ) cost_function_value = cost_function_3d( intermediate_parameter, additional_arguments ) cost_function_value_after = cost_function_3d( intermediate_parameter + small_step, additional_arguments ) cost_function_value_before = cost_function_3d( intermediate_parameter - small_step, additional_arguments ) small_change = ( small_step * (cost_function_value_after - cost_function_value_before) / ( 2 * ( cost_function_value_after - 2 * cost_function_value + cost_function_value_before ) ) ) return np.array([small_change]).transpose([1, 2, 0]), cost_function_value if (not len(space_variant_parameters_3d_names) == 1) or ( np.any(space_variant_parameters_3d_variabilities[0][1:]) ): logging.error( "AGB: map creation is currently not implemented for multiple space-variant parameters or space-variant parameters that change in time or with forest class.", exc_info=False, ) else: data_list_name = "data_list" all_observables_3d_names = ( observables_3d_names + space_invariant_parameters_3d_names ) converted_formula = swap_names_and_merge_formula_3d( formula, formula_weights, all_observables_3d_names, space_variant_parameters_3d_names, data_list_name, use_observable_if_repeated_and_available=True, ) all_observables_3d = observables_3d + space_invariant_parameters_3d # intermediate_parameters_3d = np.pi/4+np.zeros((len(pixel_axis_north),len(pixel_axis_east),1)) space_variant_parameters_3d_initial = np.mean( space_variant_parameters_3d_limits[0] ) * np.ones((observables_3d[0].shape[0], observables_3d[0].shape[1], 1)) intermediate_parameters_3d = parameter_transfer_function( space_variant_parameters_3d_initial, space_variant_parameters_3d_limits[0][0], space_variant_parameters_3d_limits[0][1], True, transfer_function_name, ) additional_arguments = ( converted_formula, all_observables_3d, parameter_transfer_function, transfer_function_name, space_variant_parameters_3d_limits[0], data_list_name, ) # this is a tricky part because the small step and max change depend on the quantity that we optimise for if transfer_function_name == "sin2": small_step = 0.01 maximal_change_magnitude = 0.03 else: small_step = 0.25 maximal_change_magnitude = 1 number_of_iterations = 1000 scaling_factor = 0.8 for ii in np.arange(number_of_iterations): ( small_change, cost_function_value, ) = small_change_in_intermediate_parameters_3d( intermediate_parameters_3d, additional_arguments, small_step ) intermediate_parameters_3d = intermediate_parameters_3d - np.maximum( -maximal_change_magnitude, np.minimum(maximal_change_magnitude, scaling_factor * small_change), ) space_variant_parameters_3d = parameter_transfer_function( intermediate_parameters_3d, space_variant_parameters_3d_limits[0][0], space_variant_parameters_3d_limits[0][1], False, transfer_function_name, ) logging.info( "AGB: map creation successful (average cost function value: %.2f)" % (np.nanmean(cost_function_value)) ) return ( [space_variant_parameters_3d], space_variant_parameters_3d_names, ) # %% swap variable names in formulas to elements of a list def swap_names_and_merge_formula_3d( original_formulas, weights, observable_names, parameter_names, new_table_name, use_observable_if_repeated_and_available=True, ): """ new_formula = swap_names_and_merge_formula_3d( original_formulas, weights, observable_names, parameter_names, new_table_name, use_observable_if_repeated_and_available=True ) Merges individual formula strings and weights to one formula strings and replaces observable and parameter names with elements of a list with pre-defined name. INPUT: original_formulas is a list of strings with the original formulas weights is a list or array of floats representing weights for each formula observable_names is a list of names to formula terms which are to be treated as observables (i.e., known values) parameter_names is a list of names to formula terms which are to be treated as parameters (i.e., unknown values) new_table_name is a string with the name for the list that contains both the observables and parameters use_observable_if_repeated_and_available is a bool indicating whether a name that is observed both in the observable_names and parameter_names should be treated as observable; by default this is True; however, this function is going to be depraceted OUTPUT: new_formula is the output formula as a single string, where each of the original formulas have been squared and summed using the weights """ original_variable_names = observable_names + parameter_names unique_variable_names, name_counts = np.unique( np.array(original_variable_names), return_counts=True ) new_formula = "0" for current_formula, current_weight in zip(original_formulas, weights): for unique_variable_name, name_count in zip(unique_variable_names, name_counts): if name_count == 1: position_in_variable_names_vector = np.where( np.array(original_variable_names) == unique_variable_name )[0][0] elif name_count == 2: position_in_variable_names_vector = np.where( np.array(original_variable_names) == unique_variable_name )[0][np.int32(~use_observable_if_repeated_and_available)] current_formula = current_formula.replace( unique_variable_name, new_table_name + ("[%d]" % (position_in_variable_names_vector)), ) new_formula = new_formula + " + %f*(%s)**2" % (current_weight, current_formula) return new_formula.replace("0 + ", "") # %% def match_string_lists(ref_string_list, test_string_list): """ match_array = match_string_lists(ref_string_list, test_string_list) Matches a test string list to a refernece string list element-by-element and returns positions at which the test strings are found in the reference strings INPUT: ref_string_list is a list with reference strings test_string_list is a list with test strings OUTPUT: match_array is a 2D numpy array containing the positions at which strings from test_string_list are found in ref_string_list, -1 is returned if the string is not found """ is_in = np.zeros((len(ref_string_list), len(test_string_list))) for ref_idx, current_ref_string in enumerate(ref_string_list): for test_idx, current_test_string in enumerate(test_string_list): is_in[ref_idx, test_idx] = current_ref_string.find(current_test_string) return is_in # %% define parameter transfer functions def parameter_transfer_function( in_vector, p_lower, p_upper, in_vector_is_p=False, transfer_function_name="sin2" ): """ out_vector = parameter_transfer_function(in_vector, p_lower, p_upper, in_vector_is_p=False,transfer_function_name='sin2') Transforms an unconstrained parameter onto a constrained parameter or vice versa. INPUT: in_vector is a numpy array with data to be transformed p_lower, p_upper are the lower and upper limits for the constrained parameter, they can be either scalars of numpy arrays of the same size as in_vector in_vector_is_p determines if the in_vector is the constrained or the unconstrained parameter, if False, then in_vector is unconstrained and out_vector is constrained to [p_lower,p_upper], otherwise, the in_vector is constrained to [p_lower,p_upper] and this function performs the inverted transform transfer_function_name is a string defining the transfer function, currently the only allowed transform is "sin2", any other string will return in_vector as out_vector OUTPUT: out_vector is the transformed version of in_vector """ # note: no check of x_vector, p_upper, p_lower is done here, # it is assumed that the inputs are correct if transfer_function_name == "sin2": if not in_vector_is_p: return p_lower + (p_upper - p_lower) * np.sin(in_vector) ** 2 else: return np.arcsin(np.sqrt((in_vector - p_lower) / (p_upper - p_lower))) else: return in_vector # %% def save_human_readable_table( path, table, column_names, data_type_lut, table_delimiter, table_precision, table_column_width, ): """ save_human_readable_table( path, table, column_names, data_type_lut, table_delimiter, table_precision, table_column_width ) Saves a text file with the table on a nice, human-readable, fixed_width format. INPUT: path is a string with the table path table is a n x m numpy array with the data column_names is a list of length m with the names for each column data_type_lut is a list of length 2, where the first contains all possible column names and the second contains associated data types ("f" or "d") table_delimiter is the delimiter table_precision is the precision for data of type "f" table_column_width is the column width OUTPUT: no output returned """ table_format, table_header = get_fmt_and_header( column_names, data_type_lut[0], data_type_lut[1], table_delimiter, table_precision, table_column_width, ) np.savetxt( path, table, fmt=table_format, delimiter=table_delimiter, header=table_header, comments="", ) path_npy = ".".join(path.split(".")[:-1]) + ".npy" np.save(path_npy, table) # %% function for creating list of format strings and a header for subsequent saving of tables into text files def get_fmt_and_header( column_names, all_column_groups, all_data_types, delimiter="\t", precision=2, column_width=10, ): """ out_format, out_header = get_fmt_and_header(column_names, all_column_groups, all_data_types, delimiter="\t", precision=2, column_width=10) Prepares an fmt string and a header string for saving in a nice, human-readable table of fixed column width using np.savetxt INPUT: column_names is a list of strings for the current table columns all_column_groups is a list of strings for all possible table columns all_data_types is a list of strings for each of the columns in all_column_groups (two strings are currently allowed: "d" indicating integer and "f" indicating float) delimiter is the delimiter to be used (default is tab) precision is the precision to be used for data with type "f" (default is 2) column_width is the width of each column (default is 10) OUTPUT: out_format is the fmt string required by np.savetxt out_header is the header required by np.savetxt """ out_format = [] out_header = [] for curr_column in column_names: for curr_column_group, curr_data_type in zip(all_column_groups, all_data_types): if curr_column in curr_column_group: if curr_data_type == "d": out_format.append("%s%dd" % (r"%", column_width)) elif curr_data_type == "f": out_format.append("%s%d.%df" % (r"%", column_width, precision)) break out_header.append("%s%ds" % (r"%", column_width) % curr_column) return out_format, delimiter.join(out_header) # %% def subset_iterable(iterable_to_subset, validity_mask, return_array=False): """ out_iterable = subset_iterable(in_iterable,validity_mask, return_array=False) Applies validity mask to an interable, where the iterable can be numpy vector, a list, or a tuple INPUT: in_iterable is any iterable of length N (numpy vector, list, tuple) validity_mask is a boolean vector of length with True marking that this particular item has to be taken out return_array is a boolean indicating if the returned iterable should be a numpy vector OUTPUT: out_iterable is an iterable of length=sum(validity_mask) containing a subset of the in_iterable matching the validity_mask, if return_array=True then out_iterable is a numpy array """ out = [value for value, flag in zip(iterable_to_subset, validity_mask) if flag] if return_array: return np.array(out) else: return out # %% ## in the future, improve this so it can handle polygons etc def check_block_for_data_and_cal( block_extents, stack_boundaries, calibration_boundaries ): """ block_has_data, block_has_cal = check_block_for_data_and_cal(block_extents, stack_boundaries, calibration_boundaries) Checks if the current block has any stack data and calibration data INPUT: block_extents is a list with min and max easting and northing coordinates stack_boundaries is an array with min and max easting and northing coordinates for each stack calibration_boundaries is an array with min and max easting and northing coordinates for each calibration dataset OUTPUT: block_has_data is a vector of bools with length equal to the number of stacks, indicating if the block contains each stack block_has_cal is a vector of bools with length equal to the number of calibration datasets, indicating if the block contains the calibration dataset """ # cycle through stacks and check that there are some data within current block block_has_data = np.zeros(stack_boundaries.shape[0], dtype="bool") for stack_idx, stack_boundary in enumerate(stack_boundaries): # go ahead only if current parameter block is at least partially contained in the data stack: block_has_data[stack_idx] = check_intersection( stack_boundary[0], stack_boundary[1], stack_boundary[2], stack_boundary[3], block_extents[0], block_extents[1], block_extents[3], block_extents[2], ) # cycle through cals and see that there are some cals within current block block_has_cal = np.zeros(calibration_boundaries.shape[0], dtype="bool") for calibration_idx, calibration_boundary in enumerate(calibration_boundaries): # go ahead only if current parameter block is at least partially contained in the data stack: block_has_cal[calibration_idx] = check_intersection( calibration_boundary[0], calibration_boundary[1], calibration_boundary[2], calibration_boundary[3], block_extents[0], block_extents[1], block_extents[3], block_extents[2], ) return block_has_data, block_has_cal # %% def compute_block_processing_order( block_corner_coordinates_east, block_corner_coordinates_north, block_size_east, block_size_north, calibration_area_coordinates, stack_data_coordinates, ): """ block_order = compute_block_processing_order( block_corner_coordinates_east, block_corner_coordinates_north, block_size_east, block_size_north, calibration_area_coordinates, stack_data_coordinates, ) Calculates the order in which blocks are to be processed, based on the available calibration area coordinates and stack data coordinates INPUT: block_corner_coordinates_east,block_corner_coordinates_north are vectors of matching size specifying the corner coordinates of each block (in metres) block_size_east,block_size_north are scalars specifying the block size in each direction (in metres) calibration_area_coordinates, stack_data_coordiantes are arrays with coordinates for calibration and stack data, respectively, with one row for each calibration dataset/stack OUTPUT: block_order is a vector of the same length as the number of blocks containing block IDs in the order in which they should be run """ # in the future, this should be capable of reading polygons for both calibration areas and stack data # now, it's just a wrapper around an old function (current_block_index, block_order) = compute_processing_blocs_order( calibration_area_coordinates, block_corner_coordinates_east, block_size_east, block_corner_coordinates_north, block_size_north, ) return block_order # %% transform functions def transform_function(in_data, interval, kind, do_forward=True): """ out_data = transform_function(in_data,interval,kind,do_forward=True) Transforms data within a certain interval using a transformation INPUT: in_data is a scalar or a numpy array with the data to be transformed interval is a list/vector/tuple of length 2 with the lower and upper interval bounds (prior to transformation); outside this interval, the transformed values are nan kind is a string with the type of transformation do_forward is a bool determining the direction of the transformation (True means forward transformation, False means inverse transformation) OUTPUT: out_data is the transformed dataset with the same shape as in_data and with nans for values outside the interval """ out_data = np.copy(in_data) out_data[(out_data < interval[0]) | (out_data > interval[1])] = np.nan # note: no check of data and kind is done here, # it is assumed that the inputs are correct if kind == "db": if do_forward: out_data = 10 * np.log10(out_data) else: out_data = 10 ** (0.1 * in_data) elif kind == "-db": if do_forward: out_data = -10 * np.log10(in_data) else: out_data = 10 ** (-0.1 * in_data) elif kind == "-2db": if do_forward: out_data = -10 * np.log10(2 * in_data) else: out_data = 10 ** (-0.1 * in_data) / 2 elif kind == "cosdb": if do_forward: out_data = 10 * np.log10(np.cos(in_data)) else: out_data = np.arccos(10 ** (0.1 * in_data)) elif kind == "cos": if do_forward: out_data = np.cos(in_data) else: out_data = np.arccos(in_data) elif kind == "round": out_data = np.round(in_data) else: out_data = np.copy(in_data) return out_data # %% function for calculating a given statistic for polygons of arbitrary shape def stats_on_polygons( data, pixel_axis_east, pixel_axis_north, reference_polygons, method ): """ stats = stats_on_polygons(data_image,pixel_axis_east,pixel_axis_north,polygons,method) Calculates a statistic from an image over all polygons INPUT: data_image is a 2D array pixel_axis_east, pixel_axis_north are two 1D arrays defining the east and north axes for the data_image polygons is a list of N Polygon objects over which the statistic is calculated method is a string with the statistic to be calculated (see "stats_on_polygons" to see the statistics that can be calculated) OUTPUT: stats isa 1D array with length N containing the statistic calculated for each polygon """ # initialize inputs: Nx, Ny = data.shape data_east_min = min(pixel_axis_east.flatten()) data_east_delta = ( max(pixel_axis_east.flatten()) - min(pixel_axis_east.flatten()) ) / Nx data_north_in = pixel_axis_north.flatten()[0] data_north_delta = ( pixel_axis_north.flatten()[-1] - pixel_axis_north.flatten()[0] ) / Ny # input data geotransform: data_geotransform = [ data_east_min, data_east_delta, 0, data_north_in, 0, data_north_delta, ] # Setup working spatial reference sr_wkt = 'LOCAL_CS["arbitrary"]' sr = osr.SpatialReference(sr_wkt) # initiale output stats vector polygon_means_vec = np.nan * np.zeros(len(reference_polygons)) for index, polygon in enumerate(reference_polygons): # Create a memory raster (gdal raster) to rasterize into. raster_support_driver = gdal.GetDriverByName("MEM").Create( "", Ny, Nx, 1, gdal.GDT_Byte ) raster_support_driver.SetGeoTransform(data_geotransform) raster_support_driver.SetProjection(sr_wkt) # Create a memory ploygon layer (ogr vector) to rasterize from. poly_layer_support_driver = ogr.GetDriverByName("Memory").CreateDataSource( "wrk" ) poly_layer = poly_layer_support_driver.CreateLayer("poly", srs=sr) # Add a polygon to the layer. if isinstance(polygon, str): wkt_geom = polygon elif isinstance(polygon, Polygon): wkt_geom = polygon.wkt feat = ogr.Feature(poly_layer.GetLayerDefn()) feat.SetGeometryDirectly(ogr.Geometry(wkt=wkt_geom)) poly_layer.CreateFeature(feat) # Run the rasterization of polygon over raster data driver gdal.RasterizeLayer(raster_support_driver, [1], poly_layer, burn_values=[1]) # read the mask from the rasterized polygon over data driver bandmask = raster_support_driver.GetRasterBand(1) datamask = bandmask.ReadAsArray().astype(np.bool) if np.any(datamask): # Calculate statistics of zonal raster if method == "mean": polygon_means_vec[index] = np.mean(data[datamask]) elif method == "nan_mean": polygon_means_vec[index] = np.nanmean(data[datamask]) elif method == "median": polygon_means_vec[index] = np.median(data[datamask]) elif method == "nan_median": polygon_means_vec[index] = np.nanmedian(data[datamask]) elif method == "mode": polygon_means_vec[index] = sp.stats.mode(data[datamask])[0] elif method == "mode_knp": if np.any(data[datamask] <= 0): polygon_means_vec[index] = np.nan else: polygon_means_vec[index] = sp.stats.mode(data[datamask])[0] elif method == "sum": polygon_means_vec[index] = np.sum(data[datamask]) elif method == "range": polygon_means_vec[index] = np.max(data[datamask]) - np.min( data[datamask] ) raster_support_driver = None poly_layer_support_driver = None return polygon_means_vec # %% function for calculating a given statistic on all samples on a grid and all polygons def stats_on_all_samples( data_image, data_resolution, pixel_axis_east, pixel_axis_north, polygons, method, ): """ stats = stats_on_all_samples(data_image,data_resolution,pixel_axis_east,pixel_axis_north,polygons,method) Calculates a statistic from an image over all polygons with size larger or equal to the resolution INPUT: data_image is a 2D array data_resolution is resolution in metres pixel_axis_east, pixel_axis_north are two 1D arrays defining the east and north axes for the data_image polygons is a list of N Polygon objects over which the statistic is calculated method is a string with the statistic to be calculated (see "stats_on_polygons" to see the statistics that can be calculated) OUTPUT: stats isa 1D array with length N containing the statistic calculated for each polygon (nan is returned if polygon.area < data_resolution**2) """ stats_polygons = stats_on_polygons( data_image, pixel_axis_east, pixel_axis_north, polygons, method ) def get_polygon_areas(polygons): return np.array([polygon.area for polygon in polygons]) # kill the polygons with area smaller than the resolution cell stats_polygons[get_polygon_areas(polygons) < data_resolution ** 2] = np.nan return stats_polygons
the-stack_106_25916
#!/usr/bin/env python # coding: utf-8 # Copyright (c) cccs-is. # Distributed under the terms of the Modified BSD License. import pytest from ipykernel.comm import Comm from ipywidgets import Widget class MockComm(Comm): """A mock Comm object. Can be used to inspect calls to Comm's open/send/close methods. """ comm_id = 'a-b-c-d' kernel = 'Truthy' def __init__(self, *args, **kwargs): self.log_open = [] self.log_send = [] self.log_close = [] super(MockComm, self).__init__(*args, **kwargs) def open(self, *args, **kwargs): self.log_open.append((args, kwargs)) def send(self, *args, **kwargs): self.log_send.append((args, kwargs)) def close(self, *args, **kwargs): self.log_close.append((args, kwargs)) _widget_attrs = {} undefined = object() @pytest.fixture def mock_comm(): _widget_attrs['_comm_default'] = getattr(Widget, '_comm_default', undefined) Widget._comm_default = lambda self: MockComm() _widget_attrs['_ipython_display_'] = Widget._ipython_display_ def raise_not_implemented(*args, **kwargs): raise NotImplementedError() Widget._ipython_display_ = raise_not_implemented yield MockComm() for attr, value in _widget_attrs.items(): if value is undefined: delattr(Widget, attr) else: setattr(Widget, attr, value)
the-stack_106_25918
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.util import CLIError from knack.log import get_logger from azure.cli.core.profiles import ResourceType, get_sdk from azure.cli.core.commands.client_factory import get_mgmt_service_client, get_data_service_client logger = get_logger(__name__) aem_extension_info = { 'Linux': { 'publisher': 'Microsoft.OSTCExtensions', 'name': 'AzureEnhancedMonitorForLinux', 'version': '3.0' }, 'Windows': { 'publisher': 'Microsoft.AzureCAT.AzureEnhancedMonitoring', 'name': 'AzureCATExtensionHandler', 'version': '2.2' } } def set_aem(cmd, resource_group_name, vm_name, skip_storage_analytics=False): aem = EnhancedMonitoring(cmd, resource_group_name, vm_name, vm_client=get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_COMPUTE), storage_client=get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_STORAGE), skip_storage_analytics=skip_storage_analytics) aem.enable() def delete_aem(cmd, resource_group_name, vm_name): aem = EnhancedMonitoring(cmd, resource_group_name, vm_name, vm_client=get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_COMPUTE), storage_client=None) aem.delete() def verify_aem(cmd, resource_group_name, vm_name, wait_time_in_minutes=15, skip_storage_check=False): aem = EnhancedMonitoring(cmd, resource_group_name, vm_name, vm_client=get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_COMPUTE), storage_client=get_mgmt_service_client(cmd.cli_ctx, ResourceType.MGMT_STORAGE)) aem.verify(skip_storage_check, wait_time_in_minutes) class EnhancedMonitoring(object): def __init__(self, cmd, resource_group, vm_name, vm_client, storage_client, skip_storage_analytics=None): self._vm_client = vm_client self._storage_client = storage_client self._resource_group = resource_group self._cmd = cmd self._vm = vm_client.virtual_machines.get(resource_group, vm_name, expand='instanceView') os_type = self._vm.storage_profile.os_disk.os_type.value.lower() self._extension = aem_extension_info['Linux'] if (os_type == 'linux') else aem_extension_info['Windows'] self._skip_storage_analytics = skip_storage_analytics def enable(self): pub_cfg, pri_cfg = self._build_extension_cfgs(self._get_disk_info()) VirtualMachineExtension = self._cmd.get_models('VirtualMachineExtension', resource_type=ResourceType.MGMT_COMPUTE, operation_group='virtual_machine_extensions') existing_ext = self._get_aem_extension() extension_instance_name = existing_ext.name if existing_ext else self._extension['name'] existing_ext = VirtualMachineExtension(location=self._vm.location, publisher=self._extension['publisher'], virtual_machine_extension_type=self._extension['name'], protected_settings={ 'cfg': [{'key': k, 'value': pri_cfg[k]} for k in pri_cfg] }, type_handler_version=self._extension['version'], settings={ 'cfg': [{'key': k, 'value': pub_cfg[k]} for k in pub_cfg] }, auto_upgrade_minor_version=True) return self._vm_client.virtual_machine_extensions.create_or_update(self._resource_group, self._vm.name, extension_instance_name, existing_ext) def delete(self): existing_ext = self._get_aem_extension() if not existing_ext: raise CLIError("'{}' is not installed".format(self._extension['name'])) return self._vm_client.virtual_machine_extensions.delete(self._resource_group, self._vm.name, existing_ext.name) def verify(self, skip_storage_check, wait_time_in_minutes): import datetime success = True aem_ext = self._get_aem_extension() result = {} succ_word, fail_word = 'OK', 'Not OK' if aem_ext: logger.warning('Azure Enhanced Monitoring Extension for SAP Installation check: %s', succ_word) else: raise CLIError('Azure Enhanced Monitoring Extension for SAP was not installed') disk_info = self._get_disk_info() managed_disk = disk_info['managed_disk'] # os disk logger.warning('Storage Metrics check...') if not skip_storage_check: unmanaged_disks = [] if managed_disk else [disk_info['os_disk']] + disk_info['data_disks'] for disk in unmanaged_disks: storage_account_name = disk['account_name'] logger.warning("\tStorage Metrics check for '%s'...", storage_account_name) if disk['is_premium']: logger.warning("\t\tStorage Metrics not available for Premium Storage account '%s'...", storage_account_name) else: logger.warning("\t\tStorage Metrics configuration check for '%s'...", storage_account_name) storage_client = self._get_storage_client(storage_account_name, disk['key']) service_properties = storage_client.get_blob_service_properties() storage_cfg_ok = EnhancedMonitoring._check_storage_analytics(service_properties) if storage_cfg_ok: logger.warning('\t\tStorage Metrics configuration check: %s', succ_word) else: success = False logger.error('\t\tMetrics configuration check: %s', fail_word) if storage_cfg_ok: logger.warning("\t\tStorage Metrics data check for '%s'. Wait up to %s minutes ...", storage_account_name, wait_time_in_minutes) filter_str = "Timestamp gt datetime'{}'".format( (datetime.datetime.utcnow() + datetime.timedelta(minutes=-5)).isoformat()) result = self._check_table_and_content(storage_account_name, disk['key'], '$MetricsMinutePrimaryTransactionsBlob', filter_str, wait_time_in_minutes) if result: logger.warning("\t\tStorage Metrics data check '%s': %s", storage_account_name, succ_word) else: success = False logger.error("\t\tStorage Metrics data check '%s': %s", storage_account_name, fail_word) logger.warning('Azure Enhanced Monitoring Extension for SAP public configuration check...') expected, _ = self._build_extension_cfgs(disk_info) expected.pop('wad.isenabled') public_cfg = {x['key']: x['value'] for x in self._vm.resources[0].settings['cfg']} diffs = {k: [expected[k], public_cfg.get(k, None)] for k in expected if expected[k] != public_cfg.get(k, None)} if diffs: success = False for err in diffs: logger.error("\tConfiguration Error: Expected: '%s' Actual: '%s'", diffs[err][0], diffs[err][1]) else: logger.warning('Configuration OK') if not success: raise CLIError('Configuration Not OK.') def _build_extension_cfgs(self, disk_info): vm_size = str(self._vm.hardware_profile.vm_size) pub_cfg = pri_cfg = {} vm_size_mapping = { 'ExtraSmall': 'ExtraSmall (A0)', 'Standard_A0': 'ExtraSmall (A0)', 'Basic_A0': 'ExtraSmall (A0)', 'Small': 'Small (A1)', 'Medium': 'Medium (A2)', 'Large': 'Large (A3)', 'ExtraLarge': 'ExtraLarge (A4)' } vm_size_mapping.get(vm_size, vm_size) pub_cfg.update({ 'vmsize': vm_size, 'vm.role': 'IaaS', 'vm.memory.isovercommitted': 0, 'vm.cpu.isovercommitted': 1 if vm_size == 'ExtraSmall (A0)' else 0, 'script.version': '3.0.0.0', 'verbose': '0', 'href': 'http://aka.ms/sapaem' }) vm_sla_mappings = EnhancedMonitoring._populate_vm_sla_mappings() vm_sla = vm_sla_mappings.get(vm_size) if vm_sla: pub_cfg.update({ 'vm.sla.throughput': vm_sla['TP'], 'vm.sla.iops': vm_sla['IOPS'] }) managed_disk = disk_info['managed_disk'] # os disk os_disk = disk_info['os_disk'] if os_disk['is_premium']: sla = EnhancedMonitoring._get_disk_sla(os_disk['size']) pub_cfg.update({ 'osdisk.type': 'Premium', 'osdisk.sla.throughput': sla['TP'], 'osdisk.sla.iops': sla['IOPS'], }) if managed_disk and not os_disk['is_premium']: logger.warning('Standard Managed Disks are not supported. ' 'Extension will be installed but no disk metrics will be available.') else: pub_cfg.update({ 'osdisk.name': os_disk['name'], 'osdisk.caching': os_disk['caching'], }) if not managed_disk: pub_cfg.update({ 'osdisk.account': os_disk['account_name'] }) if not os_disk['is_premium']: pub_cfg.update({ 'osdisk.type': 'Standard', 'osdisk.connminute': os_disk['account_name'] + '.minute', 'osdisk.connhour': os_disk['account_name'] + '.hour', }) # data disks for i, disk in enumerate(disk_info['data_disks']): suffix = '.' + str(i + 1) if disk['is_premium']: sla = EnhancedMonitoring._get_disk_sla(disk['size']) pub_cfg.update({ 'disk.type' + suffix: 'Premium', 'disk.sla.throughput' + suffix: sla['TP'], 'disk.sla.iops' + suffix: sla['IOPS'], }) if managed_disk and not disk['is_premium']: logger.warning('Standard Managed Disks are not supported. ' 'Extension will be installed but no disk metrics will be available.') else: pub_cfg.update({ 'disk.lun' + suffix: disk['lun'], 'disk.name' + suffix: disk['name'], 'disk.caching' + suffix: disk['caching'], }) if not managed_disk: pub_cfg.update({ 'disk.account' + suffix: disk['account_name'] }) if not os_disk['is_premium']: pub_cfg.update({ 'disk.type' + suffix: 'Standard', 'disk.connminute' + suffix: disk['account_name'] + '.minute', 'disk.connhour' + suffix: disk['account_name'] + '.hour', }) if not managed_disk: unmanaged_disks = [disk_info['os_disk']] + disk_info['data_disks'] for disk in unmanaged_disks: account_name = disk['account_name'] if disk['is_premium']: logger.info("'%s' is skipped - Storage Account Metrics are not available " "for Premium Type Storage.", disk['name']) pub_cfg.update({ account_name + '.hour.ispremium': 1, account_name + '.minute.ispremium': 1, }) else: if not self._skip_storage_analytics: self._enable_storage_analytics(account_name, disk['key']) pri_cfg.update({ account_name + '.hour.key': disk['key'], account_name + '.minute.key': disk['key'], }) pub_cfg.update({ account_name + '.hour.uri': disk['table_endpoint'] + '$MetricsHourPrimaryTransactionsBlob', account_name + '.minute.uri': disk['table_endpoint'] + '$MetricsMinutePrimaryTransactionsBlob', account_name + '.hour.name': disk['account_name'], account_name + '.minute.name': disk['account_name'] }) pub_cfg['wad.isenabled'] = 0 return pub_cfg, pri_cfg def _get_aem_extension(self): existing_ext = None if self._vm.resources: existing_ext = next((x for x in self._vm.resources if x.virtual_machine_extension_type.lower() == self._extension['name'].lower() and x.publisher.lower() == self._extension['publisher'].lower()), None) return existing_ext def _get_disk_info(self): from msrestazure.tools import parse_resource_id # pylint: disable=import-error disks_info = {} disks_info['managed_disk'] = bool(getattr(self._vm.storage_profile.os_disk, 'managed_disk', None)) if disks_info['managed_disk']: res_info = parse_resource_id(self._vm.storage_profile.os_disk.managed_disk.id) disk = self._vm_client.disks.get(res_info['resource_group'], res_info['name']) disks_info['os_disk'] = { 'name': disk.name, 'size': disk.disk_size_gb, 'is_premium': disk.sku.tier.lower() == 'premium', 'caching': self._vm.storage_profile.os_disk.caching.value, } disks_info['data_disks'] = [] for data_disk in self._vm.storage_profile.data_disks: res_info = parse_resource_id(data_disk.managed_disk.id) disk = self._vm_client.disks.get(res_info['resource_group'], res_info['name']) disks_info['data_disks'].append({ 'name': disk.name, 'size': disk.disk_size_gb, 'is_premium': disk.sku.tier.lower() == 'premium', 'caching': data_disk.caching.value, 'lun': data_disk.lun }) else: storage_accounts = list(self._storage_client.storage_accounts.list()) blob_uri = self._vm.storage_profile.os_disk.vhd.uri parts = list(filter(None, blob_uri.split('/'))) storage_account_name = parts[1].split('.')[0] disk_name, container_name = parts[-1], parts[-2] storage_account = next(x for x in storage_accounts if x.name.lower() == storage_account_name.lower()) rg = parse_resource_id(storage_account.id)['resource_group'] key = self._storage_client.storage_accounts.list_keys(rg, storage_account.name).keys[0].value disks_info['os_disk'] = { 'name': disk_name, 'account_name': storage_account_name, 'table_endpoint': storage_account.primary_endpoints.table, 'is_premium': storage_account.sku.tier.value.lower() == 'premium', 'caching': self._vm.storage_profile.os_disk.caching.value, 'key': key } if disks_info['os_disk']['is_premium']: disks_info['os_disk']['size'] = self._get_blob_size(storage_account.name, container_name, disk_name, key) disks_info['data_disks'] = [] for data_disk in self._vm.storage_profile.data_disks: blob_uri = data_disk.vhd.uri parts = list(filter(None, blob_uri.split('/'))) storage_account_name = parts[1].split('.')[0] disk_name, container_name = parts[-1], parts[-2] storage_account = next(x for x in storage_accounts if x.name.lower() == storage_account_name.lower()) rg = parse_resource_id(storage_account.id)['resource_group'] key = self._storage_client.storage_accounts.list_keys(rg, storage_account.name).keys[0].value is_premium = storage_account.sku.tier.value.lower() == 'premium' disks_info['data_disks'].append({ 'name': disk_name, 'account_name': storage_account_name, 'table_endpoint': storage_account.primary_endpoints.table, 'is_premium': is_premium, 'caching': self._vm.storage_profile.os_disk.caching.value, 'key': key, 'lun': data_disk.lun }) if is_premium: disks_info['data_disks'][-1]['size'] = self._get_blob_size(storage_account.name, container_name, disk_name, key) return disks_info def _get_blob_size(self, storage_account_name, container, blob, key): storage_client = self._get_storage_client(storage_account_name, key) # convert to GB return int(storage_client.get_blob_properties(container, blob).properties.content_length / (1 << 30)) def _get_storage_client(self, storage_account_name, key): BlockBlobService = get_sdk(self._cmd.cli_ctx, ResourceType.DATA_STORAGE, 'blob.blockblobservice#BlockBlobService') return get_data_service_client( self._cmd.cli_ctx, BlockBlobService, storage_account_name, key, endpoint_suffix=self._cmd.cli_ctx.cloud.suffixes.storage_endpoint) # pylint: disable=no-member def _enable_storage_analytics(self, storage_account_name, key): storage_client = self._get_storage_client(storage_account_name, key) service_properties = storage_client.get_blob_service_properties() if not EnhancedMonitoring._check_storage_analytics(service_properties): t_logging, t_retention_policy, t_metrics = get_sdk(self._cmd.cli_ctx, ResourceType.DATA_STORAGE, 'Logging', 'RetentionPolicy', 'Metrics', mod='common.models') retention_policy = t_retention_policy(enabled=True, days=13) logging = t_logging(delete=True, read=True, write=True, retention_policy=retention_policy) minute_metrics = t_metrics(enabled=True, include_apis=True, retention_policy=retention_policy) if getattr(service_properties, 'hour_metrics', None): service_properties.hour_metrics.retention_policy.days = 13 storage_client.set_blob_service_properties(logging, minute_metrics=minute_metrics, hour_metrics=service_properties.hour_metrics) @staticmethod def _check_storage_analytics(service_properties): return (service_properties and service_properties.logging and service_properties.minute_metrics and service_properties.minute_metrics.include_apis and service_properties.minute_metrics.retention_policy.days) def _check_table_and_content(self, storage_account_name, key, table_name, filter_string, timeout_in_minutes): import time sleep_period = 15 TableService = get_sdk(self._cmd.cli_ctx, ResourceType.DATA_COSMOS_TABLE, 'table#TableService') table_client = get_data_service_client( self._cmd.cli_ctx, TableService, storage_account_name, key, endpoint_suffix=self._cmd.cli_ctx.cloud.suffixes.storage_endpoint) seconds = 60 * timeout_in_minutes waited = 0 while waited < seconds: entities = table_client.query_entities(table_name, filter_string) if entities.items: return True logger.warning("\t\t\tWait %s seconds for table '%s' has date propagated ...", sleep_period, table_name) time.sleep(sleep_period) waited += sleep_period return False @staticmethod def _get_disk_sla(disk_size): sla = {} if 0 < disk_size <= 32: # P4 sla['IOPS'] = 120 sla['TP'] = 125 elif 0 < disk_size <= 64: # P6 sla['IOPS'] = 240 sla['TP'] = 50 elif 0 < disk_size <= 128: # P10 sla['IOPS'] = 500 sla['TP'] = 100 elif 0 < disk_size <= 512: # P20 sla['IOPS'] = 2300 sla['TP'] = 150 elif 0 < disk_size <= 1024: # P30 sla['IOPS'] = 5000 sla['TP'] = 200 elif 0 < disk_size <= 2048: # P40 sla['IOPS'] = 7500 sla['TP'] = 250 elif 0 < disk_size <= 4095: # P50 sla['IOPS'] = 7500 sla['TP'] = 250 else: raise CLIError("unsupported disk size for Premium Storage: '{}'".format(disk_size)) return sla @staticmethod def _populate_vm_sla_mappings(): mapping = {} mapping['Standard_DS1'] = { 'IOPS': 3200, 'TP': 32, } mapping.update(dict.fromkeys(['Standard_DS1_v2', 'Standard_D2s_v3', 'Standard_E2s_v3'], { 'IOPS': 3200, 'TP': 48, })) mapping['Standard_DS2'] = { 'IOPS': 6400, 'TP': 64, } mapping.update(dict.fromkeys(['Standard_DS2_v2', 'Standard_D4s_v3', 'Standard_E4s_v3'], { 'IOPS': 6400, 'TP': 96, })) mapping['Standard_DS3'] = { 'IOPS': 12800, 'TP': 128, } mapping.update(dict.fromkeys(['Standard_DS3_v2', 'Standard_D8s_v3', 'Standard_E8s_v3'], { 'IOPS': 12800, 'TP': 192, })) mapping['Standard_DS4'] = { 'IOPS': 25600, 'TP': 256, } mapping.update(dict.fromkeys(['Standard_DS4_v2', 'Standard_D16s_v3', 'Standard_E16s_v3'], { 'IOPS': 25600, 'TP': 384, })) mapping.update(dict.fromkeys(['Standard_DS5_v2', 'Standard_D32s_v3'], { 'IOPS': 51200, 'TP': 768, })) mapping['Standard_DS11'] = { 'IOPS': 6400, 'TP': 64, } mapping['Standard_DS11_v2'] = { 'IOPS': 6400, 'TP': 96, } mapping['Standard_DS12'] = { 'IOPS': 12800, 'TP': 128, } mapping['Standard_DS12_v2'] = { 'IOPS': 12800, 'TP': 192, } mapping['Standard_DS13'] = { 'IOPS': 25600, 'TP': 256, } mapping['Standard_DS13_v2'] = { 'IOPS': 25600, 'TP': 384, } mapping['Standard_DS14'] = { 'IOPS': 51200, 'TP': 512, } mapping.update(dict.fromkeys(['Standard_DS14_v2', 'Standard_E32s_v3'], { 'IOPS': 51200, 'TP': 768, })) mapping['Standard_DS15_v2'] = { 'IOPS': 64000, 'TP': 960, } mapping['Standard_GS1'] = { 'IOPS': 5000, 'TP': 125, } mapping['Standard_GS2'] = { 'IOPS': 10000, 'TP': 250, } mapping['Standard_GS3'] = { 'IOPS': 20000, 'TP': 500, } mapping['Standard_GS4'] = { 'IOPS': 40000, 'TP': 1000, } mapping['Standard_GS5'] = { 'IOPS': 80000, 'TP': 2000, } mapping.update(dict.fromkeys(['Standard_M64ms', 'Standard_M64s'], { 'IOPS': 40000, 'TP': 1000, })) mapping['Standard_M128s'] = { 'IOPS': 80000, 'TP': 2000, } mapping.update(dict.fromkeys(['Standard_E64s_v3', 'Standard_D64s_v3'], { 'IOPS': 80000, 'TP': 1200, })) return mapping
the-stack_106_25919
__version__ = '4.14.0' def setup(app): # We can't do the import at the module scope as setup.py has to be able to # import this file to read __version__ without hitting any syntax errors # from both Python 2 & Python 3. # By the time this function is called, the directives code will have been # converted with 2to3 if appropriate from . import directives directives.setup(app) return { 'version': __version__, 'parallel_read_safe': True, 'parallel_write_safe': True }
the-stack_106_25922
#!/usr/bin/env python3 # coding: utf-8 from src.lappy.models.well import Well from src.lappy.models.point import Point from src.lappy.models.pointPair import PointPair from src.lappy.models.vector import Vector from src.lappy.services import geom_oper, vect_oper, geom_numpy from src.lappy.services import well_track_service import numpy as np class HorWellMaker(object): """ """ class PointPairs(object): def __init__(self): self.pairs = [] def make_thin(self, well, nw): """ args: nw - segment points count """ if well is None or well.track is None or nw is None: return None, None pts = np.empty((0, 2)) seg = np.empty((0, 2)) # forward for k in range(len(well.track)-1): res = geom_numpy.line(well.track[k], well.track[k+1], nw, use_last_pt=False) if res[0] is not None: pts = np.vstack([pts, res[0]]) # backward for k in range(len(well.track)-1, 0, -1): res = geom_numpy.line(well.track[k], well.track[k-1], nw, use_last_pt=False) if res[0] is not None: pts = np.vstack([pts, res[0]]) N = len(pts) i = np.arange(N) seg = np.stack([i, i + 1], axis=1) % N return [[well.track[0].x, well.track[0].y], pts, seg] def make_real(self, well: Well, nw: int, hnw: int): """ """ # check well track suitable if not well_track_service.well_track_suits(well.track): print('well track is not suitable: sharp angles') return None, None tp = self.__get_line_points(well) pts = np.empty((0, 2)) sf = geom_numpy.sector(tp[0].pl, well.track[0], nw, well.track[1], np.pi, use_last_pt=False) if sf[0] is not None: pts = np.vstack([pts, sf[0]]) ltp = len(tp) for i in range(ltp-1): lnn = geom_numpy.line(tp[i].pr, tp[i+1].pr, hnw, use_last_pt=False) if lnn[0] is not None: pts = np.vstack([pts, lnn[0]]) sf = geom_numpy.sector(tp[ltp-1].pr, well.track[ltp-1], nw, well.track[ltp-2], np.pi, use_last_pt=False) if sf[0] is not None: pts = np.vstack([pts, sf[0]]) for i in range(ltp-1): lnn = geom_numpy.line(tp[ltp-1 - i].pl, tp[ltp-1 - (i+1)].pl, hnw, use_last_pt=False) if lnn[0] is not None: pts = np.vstack([pts, lnn[0]]) N = len(pts) i = np.arange(N) seg = np.stack([i, i + 1], axis=1) % N return [[well.track[0].x, well.track[0].y], pts, seg] def __get_line_points(self, well: Well): """ """ rw = well.radius track = well.track prs = [self.PointPairs() for i in range(len(well.track))] for i in range(len(well.track)-1): p0, p1 = track[i], track[i + 1] pr1 = self.__get_bound_points(p0, p1, rw) pr2 = self.__get_bound_points(p1, p0, rw) prs[i].pairs.append(pr1) prs[i+1].pairs.append(pr2) # swap left and right self.__order_left_right_points(prs, well.track) result = self.__merge_points(prs, well.track, well.radius) return result def __order_left_right_points(self, pts, track): """ Args: pts : list[PointPairs] track : well track """ def check_swap(p1, q1, p2, q2): res, p = geom_oper.is_segments_intersect(p1, q1, p2, q2) return True if res else False def do_swap(pts, k, j): pts[k].pairs[j].pl, pts[k].pairs[j].pr = \ pts[k].pairs[j].pr, pts[k].pairs[j].pl def intersect_track(p1, q1, track): for k in range(len(track)-1): p2 = track[k] q2 = track[k+1] res = check_swap(p1, q1, p2, q2) if res: return True return False for k, p in enumerate(pts): for j in range(1, len(p.pairs)+1): if k == len(pts)-1 and j == len(p.pairs): continue p1 = p.pairs[j-1].pr q1 = pts[k+1].pairs[0].pr if j == len(p.pairs) \ else p.pairs[j].pr if intersect_track(p1, q1, track): if j == len(p.pairs): a, b = k+1, 0 else: a, b = k, j do_swap(pts, a, b) def __merge_points(self, prs, track, r): result = [] for i, pr in enumerate(prs): while (len(pr.pairs) != 1): prs[i].pairs = self.__merge_inner_points(pr.pairs, track[i], r) result.append(PointPair(pr.pairs[0].pl, pr.pairs[0].pr)) return result def __merge_inner_points(self, prs, tp, r): """ """ if len(prs) == 1: return prs[0] result = [] for i in range(1, len(prs)): pl1, pr1 = prs[i-1].pl, prs[i-1].pr pl2, pr2 = prs[i].pl, prs[i].pr pl = self.__get_merged_inner_pair(pl1, pl2, tp, r) pr = self.__get_merged_inner_pair(pr1, pr2, tp, r) pp = PointPair(pl, pr) result.append(pp) return result def __get_merged_inner_pair(self, p1, p2, tp, r): """ """ e = Point((p1.x + p2.x) / 2.0, (p1.y + p2.y) / 2.0, -1) ux, uy = vect_oper.normalize(e, tp) x, y = tp.x - r * ux, tp.y - r * uy return Point(x, y, -1) def __get_bound_points(self, pt_main, pt2, rw): """ returns: PointPair with "left" and "right" points """ [x0, y0] = [pt_main.x, pt_main.y] [x1, y1] = [pt2.x, pt2.y] [asg, bsg] = geom_oper.get_line_cf(x0, y0, x1, y1) if asg is None: # x=const xp0 = x0 + rw yp0 = y0 xp1 = x0 - rw yp1 = y0 elif abs(asg - 0.0) < 1e-6: # y = const xp0 = x0 yp0 = y0 + rw xp1 = x0 yp1 = y0 - rw else: [ap, bp] = geom_oper.ortho_line_cf(asg, bsg, x0, y0) x2 = x0 + 1.0 y2 = ap * x2 + bp vx, vy = x2 - x0, y2 - y0 ux, uy = vect_oper.normalize(vx, vy) xp0 = x0 + rw * ux yp0 = y0 + rw * uy xp1 = x0 - rw * ux yp1 = y0 - rw * uy p0 = Point(xp0, yp0, -1) p1 = Point(xp1, yp1, -1) result = PointPair(p0, p1) return result
the-stack_106_25925
# -*- coding: UTF-8 -*- ####################################################################### # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # @tantrumdev wrote this file. As long as you retain this notice you # can do whatever you want with this stuff. If we meet some day, and you think # this stuff is worth it, you can buy me a beer in return. - Muad'Dib # ---------------------------------------------------------------------------- ####################################################################### # Addon Name: Placenta # Addon id: plugin.video.placenta # Addon Provider: MuadDib import re,traceback,urllib,urlparse,json from resources.lib.modules import cleantitle from resources.lib.modules import client from resources.lib.modules import directstream from resources.lib.modules import source_utils from resources.lib.modules import tvmaze class source: def __init__(self): self.priority = 1 self.language = ['en'] self.genre_filter = ['animation', 'anime'] self.domains = ['gogoanimemobile.com', 'gogoanimemobile.net', 'gogoanime.io'] self.base_link = 'http://ww1.gogoanime.io' self.search_link = '/search.html?keyword=%s' self.episode_link = '/%s-episode-%s' def tvshow(self, imdb, tvdb, tvshowtitle, localtvshowtitle, aliases, year): try: tv_maze = tvmaze.tvMaze() tvshowtitle = tv_maze.showLookup('thetvdb', tvdb) tvshowtitle = tvshowtitle['name'] t = cleantitle.get(tvshowtitle) q = urlparse.urljoin(self.base_link, self.search_link) q = q % urllib.quote_plus(tvshowtitle) r = client.request(q) r = client.parseDOM(r, 'ul', attrs={'class': 'items'}) r = client.parseDOM(r, 'li') r = [(client.parseDOM(i, 'a', ret='href'), client.parseDOM(i, 'a', ret='title'), re.findall('\d{4}', i)) for i in r] r = [(i[0][0], i[1][0], i[2][-1]) for i in r if i[0] and i[1] and i[2]] r = [i for i in r if t == cleantitle.get(i[1]) and year == i[2]] r = r[0][0] url = re.findall('(?://.+?|)(/.+)', r)[0] url = client.replaceHTMLCodes(url) url = url.encode('utf-8') return url except: failure = traceback.format_exc() log_utils.log('GoGoAnime - Exception: \n' + str(failure)) return def episode(self, url, imdb, tvdb, title, premiered, season, episode): try: if url == None: return tv_maze = tvmaze.tvMaze() num = tv_maze.episodeAbsoluteNumber(tvdb, int(season), int(episode)) url = [i for i in url.strip('/').split('/')][-1] url = self.episode_link % (url, num) return url except: failure = traceback.format_exc() log_utils.log('GoGoAnime - Exception: \n' + str(failure)) return def sources(self, url, hostDict, hostprDict): try: sources = [] if url == None: return sources url = urlparse.urljoin(self.base_link, url) r = client.request(url) r = client.parseDOM(r, 'iframe', ret='src') for u in r: try: if not u.startswith('http') and not 'vidstreaming' in u: raise Exception() url = client.request(u) url = client.parseDOM(url, 'source', ret='src') for i in url: try: sources.append({'source': 'gvideo', 'quality': directstream.googletag(i)[0]['quality'], 'language': 'en', 'url': i, 'direct': True, 'debridonly': False}) except: pass except: pass return sources except: failure = traceback.format_exc() log_utils.log('GoGoAnime - Exception: \n' + str(failure)) return sources def resolve(self, url): return directstream.googlepass(url)
the-stack_106_25927
#!/usr/bin/env python # # Use the raw transactions API to spend bullets received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a bulletd or Bullet-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the Bullet Core data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/BulletCore/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "BulletCore") return os.path.expanduser("~/.bulletcore") def read_bitcoin_config(dbdir): """Read the bullet.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "bullet.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a Bullet Core JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 19998 if testnet else 9998 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the bulletd we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(bulletd): info = bulletd.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") bulletd.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = bulletd.getinfo() return int(info['unlocked_until']) > time.time() def list_available(bulletd): address_summary = dict() address_to_account = dict() for info in bulletd.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = bulletd.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = bulletd.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-bullet-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(bulletd, fromaddresses, toaddress, amount, fee): all_coins = list_available(bulletd) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to bulletd. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = bulletd.createrawtransaction(inputs, outputs) signed_rawtx = bulletd.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(bulletd, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = bulletd.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(bulletd, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = bulletd.decoderawtransaction(txdata_hex) total_in = compute_amount_in(bulletd, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get bullets from") parser.add_option("--to", dest="to", default=None, help="address to get send bullets to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of bullet.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True bulletd = connect_JSON(config) if options.amount is None: address_summary = list_available(bulletd) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(bulletd) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(bulletd, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(bulletd, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = bulletd.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
the-stack_106_25929
from random import random, randrange from .config import cfg from .vocab_pick import calc_progress class WordIterator: def __init__(self, words: list): self.__words = words self.__add_after_iter = None def __iter__(self): return self def add_word(self, index: int, value): self.__add_after_iter = (index, value) def __next__(self): ws = self.__words if not any(ws[:-1]): i, res = self.__add_after_iter self.__add_after_iter = None if i < len(self.__words): return i == 1, i, res raise StopIteration # Get non-empty buckets, position new word bucket at nwi nwi = cfg['new-words-index'] ws = [l for l in ws[1:nwi+1] + [ws[0]] + ws[nwi+1:] if l] # Pick a random word, favor lower indices l = ws[int(random() ** cfg['critical-word-weight'] * len(ws))] img_idx = randrange(len(l)) i = next(i for i, l_ in enumerate(self.__words) if l_ is l) if self.__add_after_iter: index, value = self.__add_after_iter self.__add_after_iter = None self.__words[min(len(self.__words)-1, index)].append(value) # Calculate progress before popping the word return i == 0, i, calc_progress(self.__words), l.pop(img_idx)
the-stack_106_25930
from sqlalchemy import * from sqlalchemy.orm import * engine = create_engine('sqlite:///data/db.sqlite', echo=False) metadata = MetaData() metadata.bind = engine ranking = Table( 'ranking', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('hiScore', Float), Column('latestScore', Float) ) class data(): """docstring for data.""" def __init__(self): metadata.create_all(engine) def add(self, personId, personName, score): if ranking.select().where(ranking.c.id == personId).execute().fetchone() != None: #update if ranking.select().where(ranking.c.id == personId).execute().fetchone()[2] > score: ranking.update().where(ranking.c.id == personId).execute(latestScore=score, hiScore=score) else: ranking.update().where(ranking.c.id == personId).execute(latestScore=score) else: #create new record ranking.insert().execute(id=personId, name=personName, latestScore=score, hiScore=score) def rank(self, personId): pass
the-stack_106_25931
# -*- coding: utf-8 -*- # Copyright 2020 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from synapse.module_api import ModuleApi from tests.unittest import HomeserverTestCase class ModuleApiTestCase(HomeserverTestCase): def prepare(self, reactor, clock, homeserver): self.store = homeserver.get_datastore() self.module_api = ModuleApi(homeserver, homeserver.get_auth_handler()) def test_can_register_user(self): """Tests that an external module can register a user""" # Register a new user user_id, access_token = self.get_success( self.module_api.register( "bob", displayname="Bobberino", emails=["[email protected]"] ) ) # Check that the new user exists with all provided attributes self.assertEqual(user_id, "@bob:test") self.assertTrue(access_token) self.assertTrue(self.get_success(self.store.get_user_by_id(user_id))) # Check that the email was assigned emails = self.get_success(self.store.user_get_threepids(user_id)) self.assertEqual(len(emails), 1) email = emails[0] self.assertEqual(email["medium"], "email") self.assertEqual(email["address"], "[email protected]") # Should these be 0? self.assertEqual(email["validated_at"], 0) self.assertEqual(email["added_at"], 0) # Check that the displayname was assigned displayname = self.get_success(self.store.get_profile_displayname("bob")) self.assertEqual(displayname, "Bobberino")
the-stack_106_25935
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Contains definitions of RevNet.""" from typing import Any, Callable, Dict, Optional # Import libraries import tensorflow as tf from official.modeling import hyperparams from official.modeling import tf_utils from official.vision.modeling.backbones import factory from official.vision.modeling.layers import nn_blocks # Specifications for different RevNet variants. # Each entry specifies block configurations of the particular RevNet variant. # Each element in the block configuration is in the following format: # (block_fn, num_filters, block_repeats) REVNET_SPECS = { 38: [ ('residual', 32, 3), ('residual', 64, 3), ('residual', 112, 3), ], 56: [ ('bottleneck', 128, 2), ('bottleneck', 256, 2), ('bottleneck', 512, 3), ('bottleneck', 832, 2), ], 104: [ ('bottleneck', 128, 2), ('bottleneck', 256, 2), ('bottleneck', 512, 11), ('bottleneck', 832, 2), ], } @tf.keras.utils.register_keras_serializable(package='Vision') class RevNet(tf.keras.Model): """Creates a Reversible ResNet (RevNet) family model. This implements: Aidan N. Gomez, Mengye Ren, Raquel Urtasun, Roger B. Grosse. The Reversible Residual Network: Backpropagation Without Storing Activations. (https://arxiv.org/pdf/1707.04585.pdf) """ def __init__( self, model_id: int, input_specs: tf.keras.layers.InputSpec = tf.keras.layers.InputSpec( shape=[None, None, None, 3]), activation: str = 'relu', use_sync_bn: bool = False, norm_momentum: float = 0.99, norm_epsilon: float = 0.001, kernel_initializer: str = 'VarianceScaling', kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None, **kwargs): """Initializes a RevNet model. Args: model_id: An `int` of depth/id of ResNet backbone model. input_specs: A `tf.keras.layers.InputSpec` of the input tensor. activation: A `str` name of the activation function. use_sync_bn: If True, use synchronized batch normalization. norm_momentum: A `float` of normalization momentum for the moving average. norm_epsilon: A `float` added to variance to avoid dividing by zero. kernel_initializer: A str for kernel initializer of convolutional layers. kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D. Default to None. **kwargs: Additional keyword arguments to be passed. """ self._model_id = model_id self._input_specs = input_specs self._use_sync_bn = use_sync_bn self._activation = activation self._norm_momentum = norm_momentum self._norm_epsilon = norm_epsilon self._kernel_initializer = kernel_initializer self._kernel_regularizer = kernel_regularizer if use_sync_bn: self._norm = tf.keras.layers.experimental.SyncBatchNormalization else: self._norm = tf.keras.layers.BatchNormalization axis = -1 if tf.keras.backend.image_data_format() == 'channels_last' else 1 # Build RevNet. inputs = tf.keras.Input(shape=input_specs.shape[1:]) x = tf.keras.layers.Conv2D( filters=REVNET_SPECS[model_id][0][1], kernel_size=7, strides=2, use_bias=False, padding='same', kernel_initializer=self._kernel_initializer, kernel_regularizer=self._kernel_regularizer)(inputs) x = self._norm( axis=axis, momentum=norm_momentum, epsilon=norm_epsilon)(x) x = tf_utils.get_activation(activation)(x) x = tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x) endpoints = {} for i, spec in enumerate(REVNET_SPECS[model_id]): if spec[0] == 'residual': inner_block_fn = nn_blocks.ResidualInner elif spec[0] == 'bottleneck': inner_block_fn = nn_blocks.BottleneckResidualInner else: raise ValueError('Block fn `{}` is not supported.'.format(spec[0])) if spec[1] % 2 != 0: raise ValueError('Number of output filters must be even to ensure ' 'splitting in channel dimension for reversible blocks') x = self._block_group( inputs=x, filters=spec[1], strides=(1 if i == 0 else 2), inner_block_fn=inner_block_fn, block_repeats=spec[2], batch_norm_first=(i != 0), # Only skip on first block name='revblock_group_{}'.format(i + 2)) endpoints[str(i + 2)] = x self._output_specs = {l: endpoints[l].get_shape() for l in endpoints} super(RevNet, self).__init__(inputs=inputs, outputs=endpoints, **kwargs) def _block_group(self, inputs: tf.Tensor, filters: int, strides: int, inner_block_fn: Callable[..., tf.keras.layers.Layer], block_repeats: int, batch_norm_first: bool, name: str = 'revblock_group') -> tf.Tensor: """Creates one reversible block for RevNet model. Args: inputs: A `tf.Tensor` of size `[batch, channels, height, width]`. filters: An `int` number of filters for the first convolution of the layer. strides: An `int` stride to use for the first convolution of the layer. If greater than 1, this block group will downsample the input. inner_block_fn: Either `nn_blocks.ResidualInner` or `nn_blocks.BottleneckResidualInner`. block_repeats: An `int` number of blocks contained in this block group. batch_norm_first: A `bool` that specifies whether to apply BatchNormalization and activation layer before feeding into convolution layers. name: A `str` name for the block. Returns: The output `tf.Tensor` of the block layer. """ x = inputs for i in range(block_repeats): is_first_block = i == 0 # Only first residual layer in block gets downsampled curr_strides = strides if is_first_block else 1 f = inner_block_fn( filters=filters // 2, strides=curr_strides, batch_norm_first=batch_norm_first and is_first_block, kernel_regularizer=self._kernel_regularizer) g = inner_block_fn( filters=filters // 2, strides=1, batch_norm_first=batch_norm_first and is_first_block, kernel_regularizer=self._kernel_regularizer) x = nn_blocks.ReversibleLayer(f, g)(x) return tf.identity(x, name=name) def get_config(self) -> Dict[str, Any]: config_dict = { 'model_id': self._model_id, 'activation': self._activation, 'use_sync_bn': self._use_sync_bn, 'norm_momentum': self._norm_momentum, 'norm_epsilon': self._norm_epsilon, 'kernel_initializer': self._kernel_initializer, 'kernel_regularizer': self._kernel_regularizer, } return config_dict @classmethod def from_config(cls, config: Dict[str, Any], custom_objects: Optional[Any] = None) -> tf.keras.Model: return cls(**config) @property def output_specs(self) -> Dict[int, tf.TensorShape]: """A dict of {level: TensorShape} pairs for the model output.""" return self._output_specs @factory.register_backbone_builder('revnet') def build_revnet( input_specs: tf.keras.layers.InputSpec, backbone_config: hyperparams.Config, norm_activation_config: hyperparams.Config, l2_regularizer: tf.keras.regularizers.Regularizer = None) -> tf.keras.Model: # pytype: disable=annotation-type-mismatch # typed-keras """Builds RevNet backbone from a config.""" backbone_type = backbone_config.type backbone_cfg = backbone_config.get() assert backbone_type == 'revnet', (f'Inconsistent backbone type ' f'{backbone_type}') return RevNet( model_id=backbone_cfg.model_id, input_specs=input_specs, activation=norm_activation_config.activation, use_sync_bn=norm_activation_config.use_sync_bn, norm_momentum=norm_activation_config.norm_momentum, norm_epsilon=norm_activation_config.norm_epsilon, kernel_regularizer=l2_regularizer)
the-stack_106_25936
# Copyright (c) 2010 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Represents an EC2 Placement Group """ from boto.ec2.ec2object import EC2Object from boto.exception import BotoClientError class PlacementGroup(EC2Object): def __init__(self, connection=None, name=None, strategy=None, state=None): super(PlacementGroup, self).__init__(connection) self.name = name self.strategy = strategy self.state = state def __repr__(self): return 'PlacementGroup:%s' % self.name def endElement(self, name, value, connection): if name == 'groupName': self.name = value elif name == 'strategy': self.strategy = value elif name == 'state': self.state = value else: setattr(self, name, value) def delete(self, dry_run=False): return self.connection.delete_placement_group( self.name, dry_run=dry_run )
the-stack_106_25937
import random from typing import Sequence print("Hello, what is your name?") name = input() secretNum = random.randint(1,20) print("Well, " + name + ", I am thinking of a number between 1 and 20") guess = 0 for guessesTaken in range(1,7): print("Take a guess.") try: guess = int(input()) if guess < secretNum: print("Too low") elif guess > secretNum: print("Too high") else: break except ValueError: print("That's not a number") if guess == secretNum: print("Good job " + name + "! You got it right in " + str(guessesTaken) + " guesses") else: print("Nupe, the number was " + str(secretNum))
the-stack_106_25939
from typing import Dict from cereal import car from selfdrive.car import dbc_dict from selfdrive.car.docs_definitions import CarInfo Ecu = car.CarParams.Ecu SPEED_FROM_RPM = 0.008587 class CarControllerParams: ANGLE_DELTA_BP = [0., 5., 15.] ANGLE_DELTA_V = [5., .8, .15] # windup limit ANGLE_DELTA_VU = [5., 3.5, 0.4] # unwind limit LKAS_MAX_TORQUE = 1 # A value of 1 is easy to overpower STEER_THRESHOLD = 1.0 class CAR: BODY = "COMMA BODY" CAR_INFO: Dict[str, CarInfo] = { CAR.BODY: CarInfo("comma body", package="All", good_torque=True), } FW_VERSIONS = { CAR.BODY: { (Ecu.engine, 0x720, None): [ b'0.0.01', b'02/27/2022' ], (Ecu.debug, 0x721, None): [ b'166bd860' # git hash of the firmware used ], }, } DBC = { CAR.BODY: dbc_dict('comma_body', None), }
the-stack_106_25943
#!/usr/bin/env python3 import requests import bs4 import json import format_json import argparse # following values(URL,FILENAME) are dummy and sample values URL = "https://scholar.google.co.jp/scholar?start=10&hl=ja&as_sdt=2005&sciodt=0,5&cites=3982677450424843587&scipsc=" FILENAME = "Minimal solvers for generalized pose and scale estimation from two rays and one point2" def get_soup(): get_url_info = requests.get(URL) bs4Obj = bs4.BeautifulSoup(get_url_info.text, "lxml") return bs4Obj def get_link_section(soup): temp = soup.find_all("div", attrs={"class": "gs_ri"}) list_section = [] for e in temp: list_section.append(e) return list_section def get_dict_link_data(list_dict_result): soup = get_soup() list_section = get_link_section(soup) for e in list_section: dict_temp = format_json.get_dict_data_sub(e) if not dict_temp in list_dict_result: list_dict_result.append(dict_temp) else: print("same page") return list_dict_result def savejson_dict(list_dict_results): count = 1 json_data_temp = {} for e in list_dict_results: json_data_temp["id_" + str(count)] = e count += 1 format_json.savejson_dict(json_data_temp, FILENAME + ".json") # ---- ---- # main if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('URL', metavar='URL', type=str, nargs='+', help='A Page URL in Google Sholar ') parser.add_argument('Filename', metavar='F', type=str, nargs='+', help='Filename for saving data') args = parser.parse_args() FILENAME = args.Filename[0] URL = args.URL[0] list_dict_result = [] result = get_dict_link_data(list_dict_result) #print (result) savejson_dict(result)
the-stack_106_25946
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import Boolean, Column, DateTime, Integer from sqlalchemy import MetaData, String, Table from cinder.i18n import _LE from cinder.openstack.common import log as logging LOG = logging.getLogger(__name__) TABLE_NAME = 'migrations' def upgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine table = Table(TABLE_NAME, meta, autoload=True) try: table.drop() except Exception: LOG.error(_LE("migrations table not dropped")) raise def downgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine table = Table( TABLE_NAME, meta, Column('created_at', DateTime(timezone=False)), Column('updated_at', DateTime(timezone=False)), Column('deleted_at', DateTime(timezone=False)), Column('deleted', Boolean), Column('id', Integer, primary_key=True, nullable=False), Column('source_compute', String(length=255)), Column('dest_compute', String(length=255)), Column('dest_host', String(length=255)), Column('old_instance_type_id', Integer), Column('new_instance_type_id', Integer), Column('instance_uuid', String(length=255), nullable=True), Column('status', String(length=255)), mysql_engine='InnoDB', mysql_charset='utf8' ) try: table.create() except Exception: LOG.error(_LE("Table |%s| not created"), repr(table)) raise
the-stack_106_25948
from . import test_table from ..src import table from ..src import button def test_init_seat_neg1(): t = test_table.custom_tbl(players=6) btn = button.Button(t) assert btn.seat == -1 def test_init_repr_neg1_str(): t = test_table.custom_tbl(players=6) btn = button.Button(t) assert repr(btn) == '-1' def test_init_int_neg1(): t = test_table.custom_tbl(players=6) btn = button.Button(t) assert int(btn) == -1 def test_movebutton_newTable_returns0(): t = test_table.custom_tbl(players=6) btn = button.Button(t) btn.move() assert btn.seat == 0 def test_movebutton_seat0removed_returns1(): t = test_table.custom_tbl(players=6) t.pop(0) btn = button.Button(t) btn.move() assert btn.seat == 1 def test_movebutton_2x_returns1(): t = test_table.custom_tbl(players=6) btn = button.Button(t) btn.move() btn.move() assert btn.seat == 1 def test_randomize_2seats_inrange0to1(): # Randomize button on table size 2, button is in range 0-1 seats = 2 t = test_table.custom_tbl(players=seats) btn = button.Button(t) btn.randomize() assert btn.seat >= 0 assert btn.seat < seats def test_randomize_6seats_validbtn(): seats = 6 t = test_table.custom_tbl(players=seats) btn = button.Button(t) btn.randomize() assert btn.seat >= 0 assert btn.seat < seats def test_randomize_9seats_inrange0to8(): # Randomize button on table size 9, button is in range 0-8 seats = 9 t = test_table.custom_tbl(players=seats) btn = button.Button(t) btn.randomize() assert btn.seat >= 0 assert btn.seat < seats def test_randomize_noplayers_raisesException(): # Randomize button on table size 9, but no players seats = 9 t = table.Table(seats) btn = button.Button(t) assert btn.seat == -1
the-stack_106_25949
import operator import unittest from metafunctions.core import FunctionMerge from metafunctions.core import SimpleFunction from metafunctions.tests.util import BaseTestCase from metafunctions.operators import concat from metafunctions import exceptions from metafunctions.api import node, star class TestUnit(BaseTestCase): def test_str(self): cmp = FunctionMerge(operator.add, (a, b)) self.assertEqual(str(cmp), '(a + b)') self.assertEqual(repr(cmp), 'FunctionMerge({}, {})'.format(operator.add, (a, b))) def test_call(self): cmp = FunctionMerge(operator.add, (a, b)) self.assertEqual(cmp('_'), '_a_b') self.assertEqual(cmp('-', '_'), '-a_b') with self.assertRaises(exceptions.CallError): cmp('_', '_', '_') @SimpleFunction def d(): return 'd' abd = a & b & d self.assertEqual(abd('-', '_'), ('-a', '_b', 'd')) def test_format(self): cmp = FunctionMerge(operator.add, (a, b), function_join_str='tacos') self.assertEqual(str(cmp), '(a tacos b)') def test_non_binary(self): def my_concat(*args): return ''.join(args) cmp = FunctionMerge(my_concat, (a, a, a, a)) self.assertEqual(cmp('_'), '_a_a_a_a') self.assertEqual(str(cmp), '(a {m} a {m} a {m} a)'.format(m=my_concat)) d = FunctionMerge(my_concat, (b, b), function_join_str='q') self.assertEqual(str(d), '(b q b)') def test_join(self): # The first real non-binary function! Like the example above. cmp = a & a & 'sweet as' self.assertTupleEqual(cmp('_'), ('_a', '_a', 'sweet as')) self.assertEqual(str(cmp), "(a & a & 'sweet as')") self.assertEqual(repr(cmp), "FunctionMerge({}, {})".format(concat, (a, a, cmp._functions[-1]))) #__rand__ works too a_ = 'sweet as' & a self.assertEqual(a_('+'), ('sweet as', '+a')) abc = (a & (b & c)) | ''.join self.assertEqual(abc('_'), '_a_b_c') def test_combine(self): # Only combine FunctionMerges that have the same MergeFunc add = a + b also_add = b + a div = a / b #This combined FunctionMerge will fail if called (because addition is binary, #operator.add only takes two args). I'm just using to combine for test purposes. abba = FunctionMerge.combine(operator.add, add, also_add) self.assertEqual(str(abba), '(a + b + b + a)') self.assertEqual(repr(abba), "FunctionMerge({}, {})".format(operator.add, (a, b, b, a))) ab_ba = FunctionMerge.combine(operator.sub, add, also_add) self.assertEqual(str(ab_ba), '((a + b) - (b + a))') self.assertEqual(repr(ab_ba), "FunctionMerge({}, {})".format(operator.sub, (add, also_add))) abab = FunctionMerge.combine(operator.add, add, div) self.assertEqual(str(abab), '(a + b + (a / b))') self.assertEqual(repr(abab), "FunctionMerge({}, {})".format(operator.add, (a, b, div))) def custom(): pass abba_ = FunctionMerge.combine(custom, add, also_add, function_join_str='<>') self.assertEqual(str(abba_), '((a + b) <> (b + a))') self.assertEqual(repr(abba_), "FunctionMerge({}, {})".format(custom, (add, also_add))) def my_concat(*args): return ''.join(args) bb = FunctionMerge(my_concat, (b, b), function_join_str='q') aa = FunctionMerge(my_concat, (a, a), function_join_str='q') bbaa = FunctionMerge.combine(my_concat, bb, aa, function_join_str='q') self.assertEqual(str(bbaa), '(b q b q a q a)') self.assertEqual(repr(bbaa), "FunctionMerge({}, {})".format(my_concat, (b, b, a, a))) def test_len_mismatch(self): # If len(inputs) <= len(functions), call remaining functions with no args. @node def f(x=None): if x: return x + 'f' return 'F' cmp = (a & b) | star(f&f&f&f) self.assertEqual(cmp('_'), ('_af', '_bf', 'F', 'F')) # if len(inputs) > len(functions), fail. cmp = (a & b & c) | star(f+f) with self.assertRaises(exceptions.CallError): cmp('_') @unittest.skip('TODO') def test_binary_functions(self): # The issue here is that f + f + f + f is not converted to a single FunctionMerge. Rather # it becomes nested FunctionMerges: (((f + f) + f) + f). Ideally we would be able to # handle this. One potential solution is to 'flatten' the FunctionMerge, but this doesn't # work for functions that aren't commutative. E.g., (a / b / c) != (a / (b / c)). I'm # leaving this test for now as a todo. @node def f(x=None): if x: return x + 'f' return 'F' cmp = (a & b) | star(f+f+f+f) self.assertEqual(cmp('_'), '_af_bfFF') @SimpleFunction def a(x): return x + 'a' @SimpleFunction def b(x): return x + 'b' @node def c(x): return x + 'c' l = SimpleFunction(lambda x: x + 'l')
the-stack_106_25950
"""Test fixtures for the generic component.""" from io import BytesIO from PIL import Image import pytest @pytest.fixture(scope="package") def fakeimgbytes_png(): """Fake image in RAM for testing.""" buf = BytesIO() Image.new("RGB", (1, 1)).save(buf, format="PNG") yield bytes(buf.getbuffer()) @pytest.fixture(scope="package") def fakeimgbytes_jpg(): """Fake image in RAM for testing.""" buf = BytesIO() # fake image in ram for testing. Image.new("RGB", (1, 1)).save(buf, format="jpeg") yield bytes(buf.getbuffer()) @pytest.fixture(scope="package") def fakeimgbytes_svg(): """Fake image in RAM for testing.""" yield bytes( '<svg xmlns="http://www.w3.org/2000/svg"><circle r="50"/></svg>', encoding="utf-8", )
the-stack_106_25951
# Copyright (c) 2007-2019 UShareSoft, All rights reserved # # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import os.path import ntpath from ussclicore.utils import generics_utils, printer from hammr.utils import constants from uforge.objects.uforge import * def check_bundle(bundle): if not "name" in bundle: printer.out("There is no attribute [name] for a [bundle]", printer.ERROR) return if not "version" in bundle: printer.out("no attribute [version] for [bundle]", printer.ERROR) return if not "files" in bundle: printer.out("no attribute [files] for [bundle]", printer.ERROR) return for file in bundle["files"]: bundle = check_files(bundle, file, 0) if bundle is None: return return bundle def check_files(bundle, file, level): if not "name" in file: printer.out("There is no attribute [name] for a [file]", printer.ERROR) return if not "source" in file: printer.out("There is no attribute [source] for a [file]", printer.ERROR) return if level > 0 and "tag" in file and (file["tag"] == "ospkg" or file["tag"] == "bootscript"): printer.out("The file '" + file["name"] + ", with tag '" + file["tag"] + "' must be in the first level files section", printer.ERROR) return if ("bootOrder" in file or "bootType" in file) and (not "tag" in file or file["tag"] != "bootscript"): printer.out("There is the attribute [bootOrder] or [bootType] for file '" + file["name"] + "' but is not tagged as 'bootscript'", printer.ERROR) return if ("ownerGroup" in file or "rights" in file or "symlink" in file) and "tag" in file and file["tag"] != "softwarefile": printer.out("There is the attribute [ownerGroup], [rights] or [symlink] for file '" + file["name"] + "' but is not tagged as 'softwarefile'", printer.ERROR) return if "files" in file: if len(file["files"]) > 0: if "tag" in file and file["tag"] != "softwarefile": printer.out("The list of files is not empty for file '" + file["name"] + "' but is not tagged as 'softwarefile'", printer.ERROR) return elif not os.path.isdir(file["source"]): printer.out("The list of files is not empty for file '" + file["name"] + "' but [source] doesn't represent a folder", printer.ERROR) return for subFile in file["files"]: bundle = check_files(bundle, subFile, level + 1) return bundle def recursively_append_to_archive(bundle, files, parent_dir, duplicate_check_list, archive_files): #must save the filepath before changing it after archive filePathBeforeTar = files["source"] if not "tag" in files or ("tag" in files and files["tag"] != "ospkg"): add_file_to_archive_and_update_file_source(bundle, files, parent_dir, duplicate_check_list, archive_files) if "files" in files: for subFiles in files["files"]: duplicate_check_list,archive_files = recursively_append_to_archive( bundle, subFiles, parent_dir + ntpath.basename(files["source"]), duplicate_check_list, archive_files) if (not "tag" in files or files["tag"] != "ospkg") and os.path.isdir(filePathBeforeTar): duplicate_check_list, archive_files = process_files_from_folder( bundle, files, filePathBeforeTar, parent_dir + ntpath.basename(filePathBeforeTar), duplicate_check_list, archive_files) return duplicate_check_list, archive_files def process_files_from_folder(bundle, files, filePath, parentDir, duplicate_check_list, archive_files): for subFiles in os.listdir(filePath): subFilesDict = dict({"name" : ntpath.basename(subFiles), "source" : filePath + os.sep + ntpath.basename(subFiles), "files" : []}) #must save the filepath before changing it after archive subFilePathBeforeTar = subFilesDict["source"] if add_file_to_archive_and_update_file_source( bundle, subFilesDict, parentDir, duplicate_check_list, archive_files, False): files["files"].append(subFilesDict) if os.path.isdir(subFilePathBeforeTar): duplicate_check_list,archive_files = process_files_from_folder( bundle, subFilesDict, subFilePathBeforeTar, parentDir + ntpath.basename(subFilePathBeforeTar), duplicate_check_list, archive_files) return duplicate_check_list, archive_files def add_file_to_archive_and_update_file_source(bundle, file, parent_dir, duplicate_check_list, archive_files, fail_on_duplicates=True): file_tar_path = build_file_tar_path(bundle, file, parent_dir) if file_tar_path not in duplicate_check_list: duplicate_check_list.append(file_tar_path) archive_files.append([file_tar_path, file["source"]]) # changing source path to archive related source path file["source"] = file_tar_path return True elif fail_on_duplicates: raise ValueError( "Cannot have identical files in the bundles section: " + file_tar_path + " from " + file["source"]) return False def build_file_tar_path(bundle, file, parent_dir): # if parentDir is a no empty path or already ending with os.sep, add os.sep at the end if parent_dir and not parent_dir.endswith(os.sep): parent_dir = parent_dir + os.sep return constants.FOLDER_BUNDLES + os.sep + generics_utils.remove_URI_forbidden_char(bundle["name"]) \ + os.sep + generics_utils.remove_URI_forbidden_char(bundle["version"]) \ + os.sep + parent_dir \ + generics_utils.remove_URI_forbidden_char(ntpath.basename(file["name"]))
the-stack_106_25953
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Contains code for epoch modifiers in Keras """ from sparseml.keras.optim.modifier import KerasModifierYAML, ScheduledModifier from sparseml.sparsification import EpochRangeModifier as BaseEpochRangeModifier __all__ = ["EpochRangeModifier"] @KerasModifierYAML() class EpochRangeModifier(BaseEpochRangeModifier, ScheduledModifier): """ Simple modifier to set the range of epochs to train over for the recalibration process. Note, that if other modifiers exceed the range of this one for min or max epochs, this modifier will not have an effect. | Sample yaml: | !EpochRangeModifier: | start_epoch: 0 | end_epoch: 90 """ def __init__( self, start_epoch: float, end_epoch: float, ): """ :param start_epoch: The epoch to start the modifier at :param end_epoch: The epoch to end the modifier at """ super(EpochRangeModifier, self).__init__( start_epoch=start_epoch, end_epoch=end_epoch, end_comparator=-1 )
the-stack_106_25954
import os import numpy as np import shutil import logging from oggm import cfg, utils, GlacierDirectory, tasks from oggm.core import gcm_climate from oggm.workflow import init_glacier_regions, execute_entity_task from oggm.core.flowline import FileModel, run_from_climate_data from relic.preprocessing import merge_pair_dict log = logging.getLogger(__name__) def run_and_store_from_disk(rgi, histalp_storage, storage): cmip = ['CCSM4', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'CanESM2', 'GFDL-CM3', 'GFDL-ESM2G', 'GISS-E2-R', 'IPSL-CM5A-LR', 'MPI-ESM-LR', 'NorESM1-M'] bp = 'https://cluster.klima.uni-bremen.de/~oggm/cmip5-ng/pr/pr_mon_{}_{}_r1i1p1_g025.nc' bt = 'https://cluster.klima.uni-bremen.de/~oggm/cmip5-ng/tas/tas_mon_{}_{}_r1i1p1_g025.nc' for i in np.arange(999): # Local working directory (where OGGM will write its output) storage_dir = os.path.join(histalp_storage, rgi, '{:02d}'.format(i), rgi[:8], rgi[:11], rgi) new_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier', rgi[:8], rgi[:11], rgi) # make sure directory is empty: try: shutil.rmtree(new_dir) except FileNotFoundError: pass # if path does not exist, we handled all ensemble members: try: shutil.copytree(storage_dir, new_dir) except FileNotFoundError: log.info('processed {:02d} ensemble members'.format(i)) break gdir = GlacierDirectory(rgi) pdict = gdir.get_climate_info()['ensemble_calibration'] cfg.PARAMS['prcp_scaling_factor'] = pdict['prcp_scaling_factor'] default_glena = 2.4e-24 cfg.PARAMS['glen_a'] = pdict['glena_factor'] * default_glena cfg.PARAMS['inversion_glen_a'] = pdict['glena_factor'] * default_glena mbbias = pdict['mbbias'] tmp_mod = FileModel( gdir.get_filepath('model_run', filesuffix='_histalp_{:02d}'.format(i))) tmp_mod.run_until(tmp_mod.last_yr) for cm in cmip: for rcp in ['rcp26', 'rcp45', 'rcp60', 'rcp85']: ft = utils.file_downloader(bt.format(cm, rcp)) fp = utils.file_downloader(bp.format(cm, rcp)) if ft is None: log.warning('no {} for model {}'.format(rcp, cm)) continue filesuffix = '_{}_{}'.format(cm, rcp) # bias correct them if '_merged' in rgi: process_cmip_for_merged_glacier(gdir, filesuffix, ft, fp) else: gcm_climate.process_cmip5_data(gdir, filesuffix=filesuffix, fpath_temp=ft, fpath_precip=fp) rid = '_{}_{}'.format(cm, rcp) rid_out = '{}_{:02d}'.format(rid, i) run_from_climate_data(gdir, ys=2014, ye=2100, climate_filename='gcm_data', climate_input_filesuffix=rid, init_model_fls=tmp_mod.fls, output_filesuffix=rid_out, bias=mbbias ) fn1 = 'model_diagnostics{}.nc'.format(rid_out) shutil.copyfile( gdir.get_filepath('model_diagnostics', filesuffix=rid_out), os.path.join(storage, fn1)) fn4 = 'model_run{}.nc'.format(rid_out) shutil.copyfile( gdir.get_filepath('model_run', filesuffix=rid_out), os.path.join(storage, fn4)) def process_cmip_for_merged_glacier(gdir, filesuffix, ft, fp): rgi = gdir.rgi_id.split('_')[0] rgis = merge_pair_dict(rgi)[0] + [rgi] gdirs = init_glacier_regions(rgis, prepro_border=10, from_prepro_level=1) execute_entity_task(tasks.process_histalp_data, gdirs) execute_entity_task(gcm_climate.process_cmip5_data, gdirs, filesuffix=filesuffix, fpath_temp=ft, fpath_precip=fp) for gd in gdirs: # copy climate files shutil.copyfile( gd.get_filepath('gcm_data', filesuffix=filesuffix), gdir.get_filepath('gcm_data', filesuffix='_{}{}'.format(gd.rgi_id, filesuffix) ))
the-stack_106_25956
""" Main script for the project that runs the program from start to finish. :author: Jacob Singleton """ from pathlib import Path from random import randint from time import sleep from audio import Audio from config import Config def show_startup_banner() -> None: """ Displays an ASCII art startup banner explaining the program. """ print( '+------------------------------------------------------------------+', '| Water Reminder |', '+------------------------------------------------------------------+', '', 'This program is designed to periodically remind you to drink water.', 'Water is the source of all life and is vital to living well!', '', 'An audio segment will play to remind you to drink water periodically.', '', 'Head to the \'config.yml\' file to configure this program to your needs.', 'To add more sounds, simply put audio files into the audio directory!', '', '----------------------------------------------------------------------', '', sep='\n' ) def water_reminder_loop(audio_player: Audio, config: Config) -> None: """ Main loop of the program that periodically plays water reminding audio files. :param audio_player: The Audio object for playing the water reminding audio files. :param config: The configuration variables for the program. """ while True: sleep(randint(config.min_interval, config.max_interval) * 60) audio_player.play_random_audio() if __name__ == '__main__': show_startup_banner() config: Config = Config(Path('config.yml')) audio_player = Audio(config.audio_path) audio_player.play_random_audio() water_reminder_loop(audio_player, config)
the-stack_106_25958
import fechbase class Records(fechbase.RecordsBase): def __init__(self): fechbase.RecordsBase.__init__(self) self.fields = [ {'name': 'FORM TYPE', 'number': '1'}, {'name': 'FILER COMMITTEE ID NUMBER', 'number': '2'}, {'name': 'CHANGE OF COMMITTEE NAME', 'number': '3'}, {'name': 'COMMITTEE NAME', 'number': '4'}, {'name': 'CHANGE OF ADDRESS', 'number': '5'}, {'name': 'STREET 1', 'number': '6'}, {'name': 'STREET 2', 'number': '7'}, {'name': 'CITY', 'number': '8'}, {'name': 'STATE', 'number': '9'}, {'name': 'ZIP', 'number': '10'}, {'name': 'COMMITTEE EMAIL', 'number': '11'}, {'name': 'COMMITTEE WEB URL', 'number': '12'}, {'name': 'COMMITTEE FAX NUMBER', 'number': '13'}, {'name': 'SUBMISSION DATE', 'number': '14'}, {'name': 'SIGNATURE LAST NAME', 'number': '15'}, {'name': 'SIGNATURE FIRST NAME', 'number': '16'}, {'name': 'SIGNATURE MIDDLE NAME', 'number': '17'}, {'name': 'SIGNATURE PREFIX', 'number': '18'}, {'name': 'SIGNATURE SUFFIX', 'number': '19'}, {'name': 'DATE SIGNED', 'number': '20'}, {'name': 'COMMITTEE TYPE', 'number': '21-5.'}, {'name': 'CANDIDATE ID NUMBER', 'number': '22-5.'}, {'name': 'CANDIDATE LAST NAME', 'number': '23-5.'}, {'name': 'CANDIDATE FIRST NAME', 'number': '24-5.'}, {'name': 'CANDIDATE MIDDLE NAME', 'number': '25-5.'}, {'name': 'CANDIDATE PREFIX', 'number': '26-5.'}, {'name': 'CANDIDATE SUFFIX', 'number': '27-5.'}, {'name': 'CANDIDATE OFFICE', 'number': '28-5.'}, {'name': 'CANDIDATE STATE', 'number': '29-5.'}, {'name': 'CANDIDATE DISTRICT', 'number': '30-5.'}, {'name': 'PARTY CODE', 'number': '31-5.'}, {'name': 'PARTY TYPE', 'number': '32-5.'}, {'name': 'CUSTODIAN LAST NAME', 'number': '33-7.'}, {'name': 'CUSTODIAN FIRST NAME', 'number': '34-7.'}, {'name': 'CUSTODIAN MIDDLE NAME', 'number': '35-7.'}, {'name': 'CUSTODIAN PREFIX', 'number': '36-7.'}, {'name': 'CUSTODIAN SUFFIX', 'number': '37-7.'}, {'name': 'CUSTODIAN STREET 1', 'number': '38-7.'}, {'name': 'CUSTODIAN STREET 2', 'number': '39-7.'}, {'name': 'CUSTODIAN CITY', 'number': '40-7.'}, {'name': 'CUSTODIAN STATE', 'number': '41-7.'}, {'name': 'CUSTODIAN ZIP', 'number': '42-7.'}, {'name': 'CUSTODIAN TITLE', 'number': '43-7.'}, {'name': 'CUSTODIAN TELEPHONE', 'number': '44-7.'}, {'name': 'TREASURER LAST NAME', 'number': '45-8.'}, {'name': 'TREASURER FIRST NAME', 'number': '46-8.'}, {'name': 'TREASURER MIDDLE NAME', 'number': '47-8.'}, {'name': 'TREASURER PREFIX', 'number': '48-8.'}, {'name': 'TREASURER SUFFIX', 'number': '49-8.'}, {'name': 'TREASURER STREET 1', 'number': '50-8.'}, {'name': 'TREASURER STREET 2', 'number': '51-8.'}, {'name': 'TREASURER CITY', 'number': '52-8.'}, {'name': 'TREASURER STATE', 'number': '53-8.'}, {'name': 'TREASURER ZIP', 'number': '54-8.'}, {'name': 'TREASURER TITLE', 'number': '55-8.'}, {'name': 'TREASURER TELEPHONE', 'number': '56-8.'}, {'name': 'AFFILIATED Committee ID NUM', 'number': '57-6.'}, {'name': 'AFFILIATED Committee NAME', 'number': '58-6.'}, {'name': 'AFFILIATED STREET 1', 'number': '59-6.'}, {'name': 'AFFILIATED STREET 2', 'number': '60-6.'}, {'name': 'AFFILIATED CITY', 'number': '61-6.'}, {'name': 'AFFILIATED STATE', 'number': '62-6.'}, {'name': 'AFFILIATED ZIP', 'number': '63-6.'}, {'name': 'RELATIONSHIP', 'number': '64-6.'}, {'name': 'ORGANIZATION TYPE', 'number': '65-6.'}, {'name': 'AGENT LAST NAME', 'number': '66-8.'}, {'name': 'AGENT FIRST NAME', 'number': '67-8.'}, {'name': 'AGENT MIDDLE NAME', 'number': '68-8.'}, {'name': 'AGENT PREFIX', 'number': '69-8.'}, {'name': 'AGENT SUFFIX', 'number': '70-8.'}, {'name': 'AGENT STREET 1', 'number': '71-8.'}, {'name': 'AGENT STREET 2', 'number': '72-8.'}, {'name': 'AGENT CITY', 'number': '73-8.'}, {'name': 'AGENT STATE', 'number': '74-8.'}, {'name': 'AGENT ZIP', 'number': '75-8.'}, {'name': 'AGENT TITLE', 'number': '76-8.'}, {'name': 'AGENT TELEPHONE', 'number': '77-8.'}, {'name': 'BANK NAME', 'number': '78-9. a)'}, {'name': 'BANK STREET 1', 'number': '79-9. a)'}, {'name': 'BANK STREET 2', 'number': '80-9. a)'}, {'name': 'BANK CITY', 'number': '81-9. a)'}, {'name': 'BANK STATE', 'number': '82-9. a)'}, {'name': 'BANK ZIP', 'number': '83-9. a)'}, {'name': 'BANK NAME', 'number': '84-9. b)'}, {'name': 'BANK STREET 1', 'number': '85-9. b)'}, {'name': 'BANK STREET 2', 'number': '86-9. b)'}, {'name': 'BANK CITY', 'number': '87-9. b)'}, {'name': 'BANK STATE', 'number': '88-9. b)'}, {'name': 'BANK ZIP', 'number': '89-9. b)'}, ] self.fields_names = self.hash_names(self.fields)
the-stack_106_25959
# -*- coding: utf-8 -*- """ Testing class for report-data-entry endpoint of the Castor EDC API Wrapper. Link: https://data.castoredc.com/api#/report-data-entry @author: R.C.A. van Linschoten https://orcid.org/0000-0003-3052-596X """ import pytest from httpx import HTTPStatusError from castoredc_api import CastorException from castoredc_api.tests.test_api_endpoints.data_models import ( study_data_point_extended_model, ) from castoredc_api.tests.test_api_endpoints.helpers_api_endpoints import allowed_value class TestStudyDataEntry: model_keys = study_data_point_extended_model.keys() test_field = { "record_id": "000004", "field_variable_name": "ic_versions", "field_id": "28D1A17B-51C3-4BDC-A604-7B2F6D5D5924", "value": "1", "updated_on": "2019-11-04 16:47:38", "_embedded": { "record": { "id": "000004", "record_id": "000004", "ccr_patient_id": "", "last_opened_step": "FFF23B2C-AEE6-4304-9CC4-9C7C431D5387", "locked": False, "progress": 17, "status": "open", "archived": False, "archived_reason": None, "created_by": "B23ABCC4-3A53-FB32-7B78-3960CC907F25", "created_on": { "date": "2019-10-28 10:54:07.000000", "timezone_type": 3, "timezone": "Europe/Amsterdam", }, "updated_by": "B23ABCC4-3A53-FB32-7B78-3960CC907F25", "updated_on": { "date": "2020-08-14 15:20:27.000000", "timezone_type": 3, "timezone": "Europe/Amsterdam", }, "randomized_id": None, "randomized_on": None, "randomization_group": None, "randomization_group_name": None, "_embedded": { "institute": { "id": "1CFF5802-0B07-471F-B97E-B5166332F2C5", "institute_id": "1CFF5802-0B07-471F-B97E-B5166332F2C5", "name": "Test Institute", "abbreviation": "TES", "code": "TES", "order": 0, "deleted": False, "country_id": 169, "_links": { "self": { "href": "https://data.castoredc.com/api/study/D234215B-D956-482D-BF17-71F2BB12A2FD/institute/1CFF5802-0B07-471F-B97E-B5166332F2C5" } }, } }, "_links": { "self": { "href": "https://data.castoredc.com/api/study/D234215B-D956-482D-BF17-71F2BB12A2FD/record/000004" } }, }, "field": { "id": "28D1A17B-51C3-4BDC-A604-7B2F6D5D5924", "parent_id": "FFF23B2C-AEE6-4304-9CC4-9C7C431D5387", "field_id": "28D1A17B-51C3-4BDC-A604-7B2F6D5D5924", "field_image": "", "field_number": 3, "field_label": "Consent forms (CFs) reviewed:", "field_variable_name": "ic_versions", "field_type": "checkbox", "field_required": 1, "field_hidden": 0, "field_info": "", "field_units": "", "field_min": None, "field_min_label": "", "field_max": None, "field_max_label": "", "field_summary_template": "", "field_slider_step": None, "report_id": "", "field_length": None, "additional_config": "", "exclude_on_data_export": False, "field_enforce_decimals": None, "option_group": None, "metadata_points": [], "validations": [], "dependency_parents": [], "dependency_children": [], "_links": { "self": { "href": "https://data.castoredc.com/api/study/D234215B-D956-482D-BF17-71F2BB12A2FD/field/28D1A17B-51C3-4BDC-A604-7B2F6D5D5924" } }, }, }, "_links": { "self": { "href": "https://data.castoredc.com/api/study/D234215B-D956-482D-BF17-71F2BB12A2FD/record/000004/data-point/study/28D1A17B-51C3-4BDC-A604-7B2F6D5D5924" } }, } def test_all_study_data_record_success(self, client): """Test returning all study_data_points for a record""" study_data = client.all_study_fields_record("000001") for field in study_data: field_keys = field.keys() assert len(field_keys) == len(self.model_keys) for key in field_keys: assert key in self.model_keys assert type(field[key]) in study_data_point_extended_model[key] def test_all_study_data_record_fail(self, client): """Test failing to return all study_data_points for a record""" with pytest.raises(HTTPStatusError) as e: client.all_study_fields_record("00FAKE") assert "404 Client Error: Not Found for url" in str(e.value) def test_single_study_data_point_record_success(self, client): """Tests returning a single study data point for a record""" study_data = client.single_study_field_record( "000004", "28D1A17B-51C3-4BDC-A604-7B2F6D5D5924" ) assert study_data == self.test_field def test_single_study_data_point_record_fail(self, client): """Tests failing to return a single study data point for a record""" with pytest.raises(HTTPStatusError) as e: client.single_study_field_record( "000004", "28D1A17B-51C3-4BDC-A604-7B2F6D5DFAKE" ) assert "500 Server Error: Internal Server Error for url:" in str(e.value) def test_update_single_study_field_record_success(self, client): """Tests changing a single study field.""" record = "000010" field = "7E7868E1-946B-41EF-A96D-E3248251C6F1" post_value = allowed_value(client, field) # Update the field change_reason = "Testing API" client.update_single_study_field_record( record, field, change_reason, post_value ) # Check if changing worked new_value = client.single_study_field_record(record, field) assert new_value["value"] == str(post_value) def test_update_single_study_field_record_fail(self, client): """Tests failing to change a single study field.""" record = "000010" field = "7E7868E1-946B-41EF-A96D-E3248251C6F1" post_value = allowed_value(client, field) old_value = client.single_study_field_record(record, field) # Update the field change_reason = "Testing API" with pytest.raises(HTTPStatusError) as e: client.update_single_study_field_record( record, "FAKE" + field + "FAKE", change_reason, post_value ) assert "500 Server Error: Internal Server Error for url:" in str(e.value) new_value = client.single_study_field_record(record, field) assert new_value["value"] == old_value["value"]
the-stack_106_25960
#!/usr/bin/python import os import re import sys import time from rancher_metadata import MetadataAPI __author__ = 'Sebastien LANGOUREAUX' BACKUP_DIR = '/backup/gluster' class ServiceRun(): def backup_duplicity_ftp(self, backend, target_path, full_backup_frequency, nb_full_backup_keep, nb_increment_backup_chain_keep, volume_size, is_init=False): global BACKUP_DIR if backend is None or backend == "": raise KeyError("You must set the target backend") if target_path is None or target_path == "": raise KeyError("You must set the target path") if full_backup_frequency is None or full_backup_frequency == "": raise KeyError("You must set the full backup frequency") if nb_full_backup_keep is None or nb_full_backup_keep == "": raise KeyError("You must set how many full backup you should to keep") if nb_increment_backup_chain_keep is None or nb_increment_backup_chain_keep == "": raise KeyError("You must set how many incremental chain with full backup you should to keep") if volume_size is None or volume_size == "": raise KeyError("You must set the volume size") backend = "%s%s" % (backend, target_path) cmd = "duplicity" # First, we restore the last backup if is_init is True: print("Starting init the backup folder") os.system("%s --no-encryption %s %s" % (cmd, backend, BACKUP_DIR)) else: # We backup on FTP print("Starting backup") os.system("%s --volsize %s --no-encryption --allow-source-mismatch --full-if-older-than %s %s %s" % (cmd, volume_size, full_backup_frequency, BACKUP_DIR, backend)) # We clean old backup print("Starting cleanup") os.system("%s remove-all-but-n-full %s --force --allow-source-mismatch --no-encryption %s" % (cmd, nb_full_backup_keep, backend)) os.system("%s remove-all-inc-of-but-n-full %s --force --allow-source-mismatch --no-encryption %s" % (cmd, nb_increment_backup_chain_keep, backend)) os.system("%s cleanup --force --no-encryption %s" % (cmd, backend)) def detect_gluster(self): global BACKUP_DIR # Identity database to backup metadata_manager = MetadataAPI() list_services = metadata_manager.get_service_links() list_gluster = [] for service in list_services: service_name = list_services[service] service_name_env = service_name.upper().replace('-', '_') gluster = {} gluster['host'] = service_name gluster['name'] = service gluster['volumes'] = os.getenv(service_name_env + '_ENV_GLUSTER_VOLUMES').split(',') list_gluster.append(gluster) print("Found Gluster host to backup : %s (%s)" % (service, service_name)) return list_gluster def mount_gluster(self, list_gluster): global BACKUP_DIR # Loop over gluster host and volume to mount it for gluster in list_gluster: for volume in gluster['volumes']: # We mount the volume to backup it path = "%s/%s/%s" % (BACKUP_DIR, gluster['name'], volume) os.system('mkdir -p ' + path) cmd = "mount -t glusterfs %s:%s %s" % (gluster['host'], volume, path) os.system(cmd) print("Mount %s:%s in %s to backup it" % (gluster['host'], volume, path)) def umount_gluster(self, list_gluster): global BACKUP_DIR # Loop over gluster host and volume to mount it for gluster in list_gluster: for volume in gluster['volumes']: # We mount the volume to backup it path = "%s/%s/%s" % (BACKUP_DIR, gluster['name'], volume) os.system("umount " + path) print("Umount %s" % (path)) if __name__ == '__main__': service = ServiceRun() service.backup_duplicity_ftp(os.getenv('TARGET_BACKEND'), os.getenv('TARGET_PATH', "/backup/postgres"),os.getenv('BK_FULL_FREQ', "7D"), os.getenv('BK_KEEP_FULL', "3"), os.getenv('BK_KEEP_FULL_CHAIN', "1"), os.getenv('VOLUME_SIZE', "25"), True) list_gluster = service.detect_gluster() service.mount_gluster(list_gluster) service.backup_duplicity_ftp(os.getenv('TARGET_BACKEND'), os.getenv('TARGET_PATH', "/backup/postgres"),os.getenv('BK_FULL_FREQ', "7D"), os.getenv('BK_KEEP_FULL', "3"), os.getenv('BK_KEEP_FULL_CHAIN', "1"), os.getenv('VOLUME_SIZE', "25")) service.umount_gluster(list_gluster)
the-stack_106_25961
""" Copyright (c) 2018-2019 Ad Schellevis <[email protected]> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import subprocess import tempfile import collections try: from configparser import ConfigParser except ImportError: from ConfigParser import ConfigParser import netaddr import ujson BASE_URL = 'https://opnsense.emergingthreats.net' RELATED_SIDS_FILE = '/usr/local/etc/suricata/rules/telemetry_sids.txt' UNFILTERED_OUTPUT_FIELDS = [ 'timestamp', 'flow_id', 'in_iface', 'event_type', 'vlan', 'src_port', 'dest_port', 'proto', 'alert', 'tls', 'http', 'app_proto' ] # remove from output, either sensitive or irrelevant CLEANUP_OUTPUT_FIELDS = [ 'alert.category', 'alert.severity', 'alert.gid', 'alert.signature', 'alert.metadata', 'http.http_user_agent', 'http.url', 'http.redirect' ] def get_config(rule_update_config): """ retrieve device token, since we align our telemetry data to the existing rule download feature in OPNsense it should be safe to assume rule-updater.config contains the token that is used. :param rule_update_config: path to OPNsense rule update configuration :return: token id or None if not found """ response = collections.namedtuple('sensor', 'token') if os.path.exists(rule_update_config): cnf = ConfigParser() cnf.read(rule_update_config) if cnf.has_section('__properties__'): if cnf.has_option('__properties__', 'et_telemetry.token'): response.token = cnf.get('__properties__', 'et_telemetry.token') return response def telemetry_sids(): """ collect sids of interest, which are part of the ET-Telemetry delivery :return: set """ our_sids = set() if os.path.isfile(RELATED_SIDS_FILE): for line in open(RELATED_SIDS_FILE, 'r'): if line.strip().isdigit(): our_sids.add(int(line.strip())) return our_sids class EventCollector: """ Event collector, responsible for extracting and anonymising from an eve.json stream """ def __init__(self): self._tmp_handle = tempfile.NamedTemporaryFile() self._local_networks = list() self._our_sids = telemetry_sids() self._get_local_networks() def _is_rule_of_interest(self, record): """ check if rule is of interest for delivery :param record: parsed eve log record :return: boolean """ if not self._our_sids: return True elif 'alert' in record and 'signature_id' in record['alert']: if record['alert']['signature_id'] in self._our_sids: return True return False def _get_local_networks(self): """ collect local attached networks for anonymization purposes :return: None """ if os.path.isfile('/usr/local/etc/suricata/suricata.yaml'): # home nets are considered local with open('/usr/local/etc/suricata/suricata.yaml') as f_in: parts = f_in.read().split('HOME_NET:') if len(parts) > 1: for net in parts[1].split("\n")[0].strip('" [ ]').split(','): try: self._local_networks.append(netaddr.IPNetwork(net)) except netaddr.core.AddrFormatError: pass with tempfile.NamedTemporaryFile() as output_stream: subprocess.call(['ifconfig', '-a'], stdout=output_stream, stderr=open(os.devnull, 'wb')) output_stream.seek(0) for line in output_stream: if line.startswith(b'\tinet'): parts = line.split() if len(parts) > 3: if parts[0] == 'inet6' and parts[2] == 'prefixlen': # IPv6 addresses self._local_networks.append( netaddr.IPNetwork("%s/%s" % (parts[1].split('%')[0], parts[3])) ) elif parts[0] == 'inet' and len(parts) > 3 and parts[2] == 'netmask': # IPv4 addresses mask = int(parts[3], 16) self._local_networks.append( netaddr.IPNetwork("%s/%s" % (netaddr.IPAddress(parts[1]), netaddr.IPAddress(mask))) ) def is_local_address(self, address): """ check if provided address is local for this device :param address: address (string) :return: boolean """ addr_to_check = netaddr.IPAddress(address) for local_network in self._local_networks: if addr_to_check in local_network: return True return False def push(self, record): """ cleanup and write record :param record: parsed eve log record :return: None """ if self._is_rule_of_interest(record): to_push = dict() for address in ['src_ip', 'dest_ip']: if address in record: if self.is_local_address(record[address]): if record[address].find(':') > -1: # replace local IPv6 address to_push[address] = 'xxxx:xxxx:%s' % ':'.join(record[address].split(':')[-2:]) else: to_push[address] = 'xxx.xxx.xxx.%s' % record[address].split('.')[-1] else: # non local address to_push[address] = record[address] # unfiltered output fields for attr in UNFILTERED_OUTPUT_FIELDS: if attr in record: to_push[attr] = record[attr] # exclude partial fields for attr in CLEANUP_OUTPUT_FIELDS: to_push_ref = to_push attr_parts = attr.split('.') for item in attr_parts[:-1]: if item in to_push_ref: to_push_ref = to_push_ref[item] else: to_push_ref = None continue if to_push_ref and attr_parts[-1] in to_push_ref: del to_push_ref[attr_parts[-1]] self._tmp_handle.write(("%s\n" % ujson.dumps(to_push)).encode()) def get(self): """ fetch all data from temp :return: """ self._tmp_handle.seek(0) return self._tmp_handle.read() def __iter__(self): """ Iterate parsed events :return: """ self._tmp_handle.seek(0) for line in self._tmp_handle: yield line
the-stack_106_25962
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "pilpol-33525.botics.co" site_params = { "name": "PilPol", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
the-stack_106_25965
import numpy as np import time as tm import sys def PrettyPrintComplexMatrix(matrix,prec=3,linewidth1=150,suppressOn=True): np.set_printoptions(precision=prec,linewidth=linewidth1,suppress=suppressOn) print('RE=\n', np.real(matrix)) print('Im=\n', np.imag(matrix)) def matrixMatrixMultiplication_good(A,B): return np.dot(A,B) def matrixMatrixMultiplication_dummy(A,B): N = len(A) C = np.zeros((N,N),dtype=complex) for ii in range(0,N): for jj in range(0,N): for kk in range(0,N): C[ii,jj] += A[ii,kk]*B[kk,jj] return C N = int(sys.argv[1]) print(N) A = np.zeros((N,N),dtype=complex) B = np.zeros((N,N),dtype=complex) omega = np.exp(2.j*np.pi/N) omega_i = 1. omega_ij = 1. # A is the Discrete Fourier Transform (DFT) matrix. for ii in range(0,N): for jj in range(0,N): A[ii,jj] = omega_ij B[jj,ii] = np.conj(A[ii,jj])/N omega_ij *= omega_i omega_i *= omega print('\nA=\n') PrettyPrintComplexMatrix(A) print('\nB=\n') PrettyPrintComplexMatrix(B) t1 = tm.time() C = matrixMatrixMultiplication_good(A,B) print('\nC=\n') PrettyPrintComplexMatrix(C) print('\n\ntime for matrix multiplication: ', tm.time() - t1)
the-stack_106_25966
from django.shortcuts import render, redirect from django.conf.timezone import now from .models import ( SandType, Topdressing, GreenTopdressing, TeeTopdressing, FairwayTopdressing ) def curr_time(): return now() def index(request): context = { 'curr_time': curr_time(), } return render(request, 'topdressing/index.html', context) def sandIndex(request): sands = SandType.objects.all() context = { 'curr_time': curr_time(), 'sands': sands, } return render(request, 'topdressing/sand_index.html', context) def sandNew(request): form = SandTypeForm() context = { 'curr_time': curr_time(), 'form': form, } return render(request, 'topdressing/sand_new.html', context) def sandCreate(request): if request.method == 'POST': form = SandTypeForm(data=request.POST) if form.is_valid() and request.user.is_authenticated(): pending_form = form.save(commit=False) pending_form.save() return redirect('topd:sand_detail', pk=pending_form.pk) def sandDetail(request, pk): sand = SandType.objects.get(pk=pk) context = { 'curr_time': curr_time(), 'sand': sand, } return render(request, 'topdressing/sand_detail.html', context) def sandEdit(request, pk): sand = SandType.objects.get(pk=pk) form = SandTypeForm(instance=sand) context = { 'curr_time': curr_time(), 'sand': sand, 'form': form, } return render(request, 'topressing/sand_edit.html', context) def sandUpdate(request, pk): sand = SandType.objects.get(pk=pk) if request.method == 'POST': form = SandTypeForm(request.POST, instance=sand) if form.is_valid() and request.user.is_authenticated(): pending_form = form.save(commit=False) pending_form.save() return redirect('topd:sand_detail', pk=sand.pk) def greensIndex(request): topd = GreenTopdressing.objects.all().order_by( '-topdress_date')[:20] context = { 'curr_time': curr_time(), 'topd': topd, } return render(request, 'topdressing/greens_index.html', context)
the-stack_106_25967
from __future__ import annotations from typing import Union from pathlib import Path from dataclasses import dataclass, field import math import uuid # useful geometric constants TWO_PI = 2 * math.pi PI_OVER_TWO = math.pi / 2 THREE_PI_OVER_TWO = 3 * math.pi / 2 def get_oriented_distance(p0: Point, p1: Point, p2: Point): """Calculate the oriented distance between a point and a line Calculate the distance between a point p0 and a line formed between p1 and p2. This result is the "oriented" distance, meaning it is signed. What this means that if you thought of the line from p1-to-p2 as a vector that pointed up, as positive result would mean p0 was on the right side of the vector and a negative result would mean p0 was on the left side. """ p21 = p2 - p1 p10 = p1 - p0 return (p21.x * p10.y - p21.y * p10.x) / abs(p21) def get_distance(p0: Point, p1: Point, p2: Point): """Calculate the distance between a point and a line Calculate the distance between a point p0 and a line formed between p1 and p2 """ return abs(get_oriented_distance(p0, p1, p2)) @dataclass class Point: x: float y: float def __str__(self): return f"{self.x} {self.y}" def __add__(self, other: Point) -> Point: return Point(self.x + other.x, self.y + other.y) def __sub__(self, other: Point) -> Point: return Point(self.x - other.x, self.y - other.y) def __abs__(self) -> float: return math.sqrt(self.x ** 2 + self.y ** 2) def __eq__(self, other: Point) -> bool: if not math.isclose(self.x, other.x): return False if not math.isclose(self.y, other.y): return False return True def __ne__(self, other: Point) -> bool: return not self.__eq__(other) def __mul__(self, scaler: float) -> Point: return Point(scaler * self.x, scaler * self.y) def rotate_about(self, about: Point, angle: float): """ Rotate a point around a reference point""" delta = self - about r = abs(delta) a = math.atan2(delta.y, delta.x) x = r * math.cos(a + angle) y = r * math.sin(a + angle) return Point(x, y) def mirror_x(self): return Point(self.x, -self.y) def mirror_y(self): return Point(-self.x, self.y) def point_from_polar(radius, angle): x = radius * math.cos(angle) y = radius * math.sin(angle) return Point(x, y) @dataclass class Arc: center: Point radius: float start_angle: float end_angle: float start: Point = field(init=False) mid: Point = field(init=False) end: Point = field(init=False) bulge: float = field(init=False) def __post_init__(self): """Derived parameters""" # three-point representation mid_angle = (self.start_angle + self.end_angle) / 2 self.start = self.center + point_from_polar(self.radius, self.start_angle) self.mid = self.center + point_from_polar(self.radius, mid_angle) self.end = self.center + point_from_polar(self.radius, self.end_angle) # bulge (for dxf generation) width = abs(self.end - self.start) if self.start == self.end: self.buldge = 2 else: sagitta = get_oriented_distance(self.mid, self.start, self.end) self.bulge = 2 * sagitta / width def __str__(self): return f"(arc (start {self.start}) (mid {self.mid}) (end {self.end}))" def __add__(self, other: Point): return Arc(self.center + other, self.radius, self.start_angle, self.end_angle) def __mul__(self, scaler: float) -> Arc: return Arc( scaler * self.center, scaler * self.radius, self.start_angle, self.end_angle ) def rotates_clockwise(self): return self.end_angle < self.start_angle def rotates_counterclockwise(self): return self.end_angle > self.start_angle def reverse(self): return Arc(self.center, self.radius, self.end_angle, self.start_angle) def rotate(self, angle: float): """Rotate an arc about its center""" return Arc( self.center, self.radius, self.start_angle + angle, self.end_angle + angle ) def rotate_about(self, about: Point, angle: float): """ Rotate an arc around a reference point""" # calculate the new center for the arc center = self.center.rotate_about(about, angle) return Arc( center, self.radius, self.start_angle + angle, self.end_angle + angle ) def mirror_x(self): """Mirror across the x axis""" center = self.center.mirror_x() start_angle = -self.start_angle end_angle = -self.end_angle return Arc(center, self.radius, start_angle, end_angle) def mirror_y(self): """Mirror across the x axis""" center = self.center.mirror_y() start_angle = math.pi - self.start_angle end_angle = math.pi - self.end_angle return Arc(center, self.radius, start_angle, end_angle) def interpolate(self, max_angle: float = math.pi / 36): """Create a PWL approximation of the arc with a list of points """ points = [] angle = self.start_angle if self.rotates_counterclockwise(): while angle < self.end_angle: point = Point( self.radius * math.cos(angle), self.radius * math.sin(angle) ) points.append(self.center + point) angle += max_angle else: while angle > self.end_angle: point = Point( self.radius * math.cos(angle), self.radius * math.sin(angle) ) points.append(self.center + point) angle -= max_angle point = Point( self.radius * math.cos(self.end_angle), self.radius * math.sin(self.end_angle), ) points.append(self.center + point) return points def add_to_dxf_model(self, modelspace): """Add Arc to DXF model""" modelspace.add_arc( center=(self.center.x, self.center.y), radius=self.radius, start_angle=self.start_angle, end_angle=self.end_angle, ) @dataclass class Polygon: points: [Point] layer: str = "F.Cu" width: float = 0 fill: str = "solid" tstamp: uuid.UUID = uuid.uuid4() def __add__(self, other: Point): return Polygon( [point + other for point in self.points], self.layer, self.width, self.fill ) def __mul__(self, scaler: float) -> Polygon: return Polygon( [scaler * point for point in self.points], self.layer, self.width, self.fill ) def __str__(self): points = "".join( [ f"{point}" if isinstance(point, Arc) else f"(xy {point})" for point in self.points ] ) expression = f"(fp_poly(pts{points})(layer {self.layer}) (width {self.width}) (fill {self.fill}) (tstamp {self.tstamp}))" return expression def mirror_x(self): """Mirror the polygon about the x-axis""" return Polygon( [point.mirror_x() for point in self.points], self.layer, self.width, self.fill, ) def mirror_y(self): """Mirror the polygon about the x-axis""" return Polygon( [point.mirror_y() for point in self.points], self.layer, self.width, self.fill, ) def rotate_about(self, about: Point, angle: float): """ Rotate a poygon around a reference point""" return Polygon( [point.rotate_about(about, angle) for point in self.points], self.layer, self.width, self.fill, ) def to_poly_path(self): """Create a true arc polypath """ points = [] last = None for point in self.points: if isinstance(point, Arc): # if the start of this is not the end of the last arc, we need to add a point if last is not None and point.start != last: points.append((last.x, last.y)) points.append((point.start.x, point.start.y, 0, 0, point.bulge)) last = point.end continue if last is not None and point != last: points.append((last.x, last.y)) points.append((point.x, point.y)) last = None # Make sure to add the last point if there is one left over from an arc if last is not None: points.append((last.x, last.y)) return points def to_pwl_path(self, max_angle: float = math.pi / 36): """Create a list of tuples representing the polypath as a PWL approximation """ points = [] for point in self.points: if isinstance(point, Arc): points.extend([(p.x, p.y) for p in point.interpolate(max_angle)]) continue points.append((point.x, point.y)) return points def to_wire( self, z=0, closed=True, freecad_path: str = "C:/Program Files/FreeCAD 0.19/bin" ): """Convert the polygon to a FreeCAD Wire """ # try and import the FreeCAD python extension try: import sys sys.path.append(freecad_path) import FreeCAD as cad except Exception: raise ImportError("You must have FeeCAD installed") import Part # first covert the polygon into a simple path of points points = self.to_pwl_path() verts = [cad.Vector(p[0], p[1], z) for p in points] if closed: if verts[0] != verts[-1]: verts.append(verts[0]) return Part.makePolygon(verts) def to_dxf( self, filename: Union[str, Path], version: str = "R2000", encoding: str = None, fmt: str = "asc", ) -> None: """Export the polygon to a dxf file Args: filename: file name as string version: DXF version encoding: override default encoding as Python encoding string like ``'utf-8'`` fmt: ``'asc'`` for ASCII DXF (default) or ``'bin'`` for Binary DXF """ import ezdxf doc = ezdxf.new(version) msp = doc.modelspace() path = self.to_poly_path() msp.add_lwpolyline(path, close=True) doc.saveas(filename, encoding, fmt) def plot(self, ax=None, max_angle: float = math.pi / 36): """Create a plot preview of the polygon """ import matplotlib.pyplot as mp path = self.to_pwl_path(max_angle) x, y = zip(*path) if ax is None: mp.figure(figsize=(8, 8)) mp.axis("equal") mp.fill(x, y) else: ax.fill(x, y) ax.axis("equal") if __name__ == "__main__": p0 = Point(0, 4) p1 = Point(4, 4) p2 = Point(4, 0) p3 = Point(0, 0) arc = Arc(Point(2, 4), 1, math.pi, 0) polygon = Polygon([p0, arc, p1, p2, p3]) # polygon.plot(max_angle=math.pi / 8) path = polygon.to_poly_path() print(path)
the-stack_106_25968
import netCDF4 as nc import sys import argparse import numpy as np import configparser from itertools import islice, chain, repeat from netcdfTools import * from mapTools import readNumpyZTile ''' Tools for genPIDSInput.py Author: Sasu Karttunen [email protected] Institute for Atmospheric and Earth System Research (INAR) / Physics University of Helsinki UPDATE: - Jani Stromberg: Added building type and surface fraction type/dimension. Fixed a bug in building ids. - Mona Kurppa: Added and modified chemistry and salsa variables + changes in the function "map". Does not return a list in Python 3. - Jukka-Pekka Keskinen: Added CRS support. ''' # =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def setPIDSGlobalAtrributes(ds, globalAttributes): ''' Set PIDS global attributes to data set file ''' strAttributeKeys = ['acronym', 'author', 'campaign', 'contact_person', 'creation_time',\ 'comment', 'Conventions', 'data_content', 'dependencies', 'history'\ 'keywords', 'license', 'location', 'origin_time', 'references', 'site',\ 'source', 'title'] floatAttributeKeys = ['origin_x', 'origin_y', 'origin_z', 'origin_lat', 'origin_lon',\ 'rotation_angle'] intAttributeKeys = ['version'] for key in strAttributeKeys: try: setattr(ds, key, globalAttributes[key]) except KeyError: if(getattr(ds, key, "")==""): setattr(ds, key, "") # Mandatory setattr(ds, 'Conventions', "CF-1.7") for key in floatAttributeKeys: try: setattr(ds, key, float(globalAttributes[key])) except KeyError: if key=='origin_lat': if(getattr(ds, key, 0.0)==0.0): print("WARNING: origin_lat (latitude) not set. Using default value (55˚).") setattr(ds, key, 55.0) else: if key in ['origin_lon', 'rotation_angle']: print("WARNING: "+key+" not set. Using default value (0.0).") if(getattr(ds, key, 0.0)==0.0): setattr(ds, key, 0.0) for key in intAttributeKeys: try: setattr(ds, key, int(globalAttributes[key])) except KeyError: if(getattr(ds, key, 0)==0): setattr(ds, key, 0) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def readConfigSection(config, name): ''' Prints and returns variables found from given section ''' try: configSection = config._sections[name] except KeyError: return None for attr, val in configSection.items(): print("{}: {}".format(attr,val)) return configSection #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def readConfigVariable(config, section, name): try: var = config.get(section, name) except configparser.NoOptionError: return None return var #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def parseStringArrayInput(input_str, dtype): # Return string type input as 2D numpy array # Example input: "2,5,6\n3,6,7\n6,7,9" # Example output np.array([[2,5,6],[3,6,7],[6,7,9]]) rows = input_str.split("\\n") if(len(rows[0].split(","))==1): rows=rows[1:] arr = np.zeros((len(rows),len(rows[0].split(","))),dtype=dtype) for i in range(len(rows)): items = rows[i].split(",") try: arr[i,:] = np.array(list(map(dtype, items))) except ValueError: continue return arr #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def parseCharacterArray(input_str, maxstrlen): # Return string type input as 2D character array # Example input: "abba,cd,acdc" # Example output np.array([['a','b','b','a'],['c','d','',''],['a','c','d','c']]) items = input_str.split(",") charr = map(list, items) # Fill missing elements with empty char and construct a 2d array def pad_array(charr): return list(islice(chain(charr, repeat('')),maxstrlen)) charr = np.array(list(map(pad_array, charr))) return charr #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* # UNIVERSAL # #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createXDim(ds, nPx, dPx, dims, offset=0.0): # Creates a new x-axis unless it already exists if('x' not in dims): x_dim = createCoordinateAxis(ds, nPx, dPx, 1, 'x', 'f4', 'm', True, False, verbose=False, offset=offset) x_dim.long_name = "distance to origin in x-direction" dims.append('x') return x_dim else: x_dim = ds.variables['x'] return x_dim #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createYDim(ds, nPx, dPx, dims, offset=0.0): # Creates a new y-axis unless it already exists if('y' not in dims): y_dim = createCoordinateAxis(ds, nPx, dPx, 0, 'y', 'f4', 'm', True, False, verbose=False, offset=offset) y_dim.long_name = "distance to origin in y-direction" dims.append('y') return y_dim else: y_dim = ds.variables['y'] return y_dim #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createZDim(ds, nPx, dPx, dims, offset=0.0): # Creates a new z-axis unless it already exists if('z' not in dims): z_dim = createCoordinateAxis(ds, nPx, dPx, 2, 'z', 'f4', 'm', True, False, verbose=False, offset=offset) z_dim.long_name = "height above origin" dims.append('z') return z_dim else: z_dim = ds.variables['z'] return z_dim #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* # PIDS_STATIC # #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createZLADDim(ds, nPx, dPx, dims): # Creates a new zlad-axis unless it already exists if('zlad' not in dims): zlad_dim = createCoordinateAxis(ds, nPx, dPx, 2, 'zlad', 'f4', 'm', True, False, verbose=False) zlad_dim.long_name = "height above origin" dims.append('zlad') return zlad_dim else: zlad_dim = ds.variables['zlad'] return zlad_dim #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createZnsurfaceFractionDim(ds, nPx, dPx, dims): # Creates a new nsurface_fraction-axis unless it already exists if('nsurface_fraction' not in dims): znsurfaceFraction_dim = createCoordinateAxis(ds, nPx, dPx, 2, 'nsurface_fraction', 'i4', '', True, False, verbose=False) znsurfaceFraction_dim.long_name = "height above origin" dims.append('nsurface_fraction') return znsurfaceFraction_dim else: znsurfaceFraction_dim = ds.variables['nsurface_fraction'] return znsurfaceFraction_dim #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processOrography(fname,ds,vars,dims): # Write orography data to given ds oroDict = readNumpyZTile(fname,verbose=False) oroR = oroDict['R'][::-1,:] oroDPx = oroDict['dPx'] oroNPx = np.shape(oroR) if('zt' in vars): ds.variables['zt'][:]=oroR return ds.variables['zt'] else: # Create new dimensions or check if the orography matches old ones x_dim = createXDim(ds, oroNPx, oroDPx, dims) y_dim = createYDim(ds, oroNPx, oroDPx, dims) oroNCVar = createNetcdfVariable(ds, oroR, 'zt', 0, 'm', 'f4', ('y','x'), False, False, fill_value=-9999., verbose=False) oroNCVar.long_name= "terrain_height" return oroNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processLAD(fname,ds,vars,dims): ladDict = readNumpyZTile(fname,verbose=False) if( 'R' in ladDict ): ladR = ladDict['R'][::-1,:] elif('S' in ladDict ): ladR = ladDict['S'][::-1,:,:] # Mirror j-direction in 3D array data (at this point) ladDPx = ladDict['dPx'] ladNPx = np.shape(ladR) ladLOD = len(ladNPx)-1 # 1=2D height field, 2=3D mask ladR = np.rollaxis(ladR, 2, 0) # i.e. take axis=2 and position it _before_ axis=0 if('lad' in vars): print(' lad is in vars ') ds.variables['lad'][:]=ladR return ds.variables['lad'] else: print(' lad is NOT in vars ') x_dim = createXDim(ds, ladNPx, ladDPx, dims) y_dim = createYDim(ds, ladNPx, ladDPx, dims) zlad_dim = createZLADDim(ds, ladNPx, ladDPx, dims) ladNCVar = createNetcdfVariable(ds, ladR, 'lad', 0, 'm', 'f4', ('zlad','y','x'), False, False, fill_value=-9999., verbose=False) ladNCVar.long_name = "basal area density" return ladNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processBuildings(fname,ds,vars,dims): buildDict = readNumpyZTile(fname,verbose=False) if ('R' in buildDict): buildR = buildDict['R'][::-1,:] elif ('S' in buildDict): buildR = buildDict['S'][::-1,:,:] # Mirror j-direction in 3D array data (at this point) else: sys.exit('No R or S array present in the given building file.') buildDPx = buildDict['dPx'] buildNPx = np.shape(buildR) buildLOD = len(buildNPx)-1 # 1=2D height field, 2=3D mask if(buildLOD==1): # Save as a 2D building height array if('buildings_2d' in vars): ds.variables['buildings_2d'][:]=buildR return ds.variables['buildings_2d'] else: x_dim = createXDim(ds, buildNPx, buildDPx, dims) y_dim = createYDim(ds, buildNPx, buildDPx, dims) buildNCVar = createNetcdfVariable(ds, buildR, 'buildings_2d', 0, 'm', 'f4', ('y','x'), False, False, fill_value=-9999., verbose=False) buildNCVar.long_name = "building_height" buildNCVar.lod = int(buildLOD) return buildNCVar elif(buildLOD==2): ''' The 3d numpy array must come in in [j,i,k] order. Here it is rolled back into [k,j,i] for NetCDF output. Thus, we roll axis=2 such that it ends up before the 0th axis. ''' topo = np.rollaxis(buildR, 2, 0) # i.e. take axis=2 and position it _before_ axis=0 if('buildings_3d' in vars): ds.variables['buildings_3d'][:]=topo return ds.variables['buildings_3d'] else: x_dim = createXDim(ds, buildNPx, buildDPx, dims) y_dim = createYDim(ds, buildNPx, buildDPx, dims) z_dim = createZDim(ds, buildNPx, buildDPx, dims, offset=-0.5) buildNCVar = createNetcdfVariable(ds, topo, 'buildings_3d', 0, 'm', 'b', ('z','y','x'), False, False, fill_value=-127, verbose=False) buildNCVar.long_name = "building_flag" buildNCVar.lod = int(buildLOD) return buildNCVar else: raise ValueError("invalid number of dimensions in buildings array: {}".format(buildLOD+1)) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processSurfaceTemperature(fname,ds,vars,dims): stDict = readNumpyZTile(fname,verbose=False) if ('R' in stDict): Rst = stDict['R'][::-1,:] elif ('S' in stDict): Rst = stDict['S'][::-1,:,:] # Mirror j-direction in 3D array data (at this point) else: sys.exit('No R or S array present in the given surface temperature file.') dPx = stDict['dPx'] NPx = np.shape(Rst) LOD = len(NPx)-1 # 1=2D height field, 2=3D mask if(LOD==1): # Save as a 2D building height array if('theta_2d' in vars): ds.variables['theta_2d'][:]=Rst return ds.variables['theta_2d'] else: x_dim = createXDim(ds, NPx, dPx, dims) y_dim = createYDim(ds, NPx, dPx, dims) NCVar = createNetcdfVariable(ds, Rst, 'theta_2d', 0, 'K', 'f4', ('y','x'), False, False, fill_value=-9999., verbose=False) NCVar.long_name = "surface_temperature" NCVar.lod = int(LOD) return NCVar elif(LOD==2): ''' The 3d numpy array must come in in [j,i,k] order. Here it is rolled back into [k,j,i] for NetCDF output. Thus, we roll axis=2 such that it ends up before the 0th axis. ''' T3d = np.rollaxis(Rst, 2, 0) # i.e. take axis=2 and position it _before_ axis=0 Rst = None # clear memory if('theta_3d' in vars): ds.variables['theta_3d'][:]=T3d return ds.variables['theta_3d'] else: x_dim = createXDim(ds, NPx, dPx, dims) y_dim = createYDim(ds, NPx, dPx, dims) z_dim = createZDim(ds, NPx, dPx, dims, offset=-0.5) NCVar = createNetcdfVariable(ds, T3d, 'theta_3d', 0, 'K', 'f4', ('z','y','x'), False, False, fill_value=-9999., verbose=False) NCVar.long_name = "surface temperature" NCVar.lod = int(LOD) return NCVar else: raise ValueError("invalid number of dimensions in surface temperature array: {}".format(LOD+1)) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processBuildingIDs(fname,ds,vars,dims): buildIDDict = readNumpyZTile(fname,verbose=False) buildIDR = buildIDDict['R'][::-1,:] buildIDDPx = buildIDDict['dPx'] buildIDNPx = np.shape(buildIDR) if('building_id' in vars): ds.variables['building_id'][:]=buildIDR return ds.variables['building_id'] else: x_dim = createXDim(ds, buildIDNPx, buildIDDPx, dims) y_dim = createYDim(ds, buildIDNPx, buildIDDPx, dims) buildIDNCVar = createNetcdfVariable(ds, buildIDR, 'building_id', 0, 'm', 'i4', ('y','x'), False, False, fill_value=-9999, verbose=False) buildIDNCVar.long_name = "building id numbers" return buildIDNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processPavementType(fname,ds,vars,dims): pavementTypeDict = readNumpyZTile(fname,verbose=False) pavementTypeR = pavementTypeDict['R'][::-1,:] pavementTypeDPx = pavementTypeDict['dPx'] pavementTypeNPx = np.shape(pavementTypeR) if('pavement_type' in vars): ds.variables['pavement_type'][:]=pavementTypeR return ds.variables['pavement_type'] else: x_dim = createXDim(ds, pavementTypeNPx, pavementTypeDPx, dims) y_dim = createYDim(ds, pavementTypeNPx, pavementTypeDPx, dims) pavementTypeNCVar = createNetcdfVariable(ds, pavementTypeR, 'pavement_type', 0, 'm', 'b', ('y','x'), False, False, fill_value=-127, verbose=False) pavementTypeNCVar.long_name = "pavement type classification" return pavementTypeNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processWaterType(fname,ds,vars,dims): waterTypeDict = readNumpyZTile(fname,verbose=False) waterTypeR = waterTypeDict['R'][::-1,:] waterTypeDPx = waterTypeDict['dPx'] waterTypeNPx = np.shape(waterTypeR) if('water_type' in vars): ds.variables['water_type'][:]=waterTypeR return ds.variables['water_type'] else: x_dim = createXDim(ds, waterTypeNPx, waterTypeDPx, dims) y_dim = createYDim(ds, waterTypeNPx, waterTypeDPx, dims) waterTypeNCVar = createNetcdfVariable(ds, waterTypeR, 'water_type', 0, 'm', 'b', ('y','x'), False, False, fill_value=-127, verbose=False) waterTypeNCVar.long_name = "water type classification" return waterTypeNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processSoilType(fname,ds,vars,dims): soilTypeDict = readNumpyZTile(fname,verbose=False) soilTypeR = soilTypeDict['R'][::-1,:] soilTypeDPx = soilTypeDict['dPx'] soilTypeNPx = np.shape(soilTypeR) if('soil_type' in vars): ds.variables['soil_type'][:]=soilTypeR return ds.variables['soil_type'] else: x_dim = createXDim(ds, soilTypeNPx, soilTypeDPx, dims) y_dim = createYDim(ds, soilTypeNPx, soilTypeDPx, dims) soilTypeNCVar = createNetcdfVariable(ds, soilTypeR, 'soil_type', 0, 'm', 'b', ('y','x'), False, False, fill_value=-127, verbose=False) soilTypeNCVar.long_name = "soil type classification" return soilTypeNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processStreetType(fname,ds,vars,dims): streetTypeDict = readNumpyZTile(fname,verbose=False) streetTypeR = streetTypeDict['R'][::-1,:] streetTypeDPx = streetTypeDict['dPx'] streetTypeNPx = np.shape(streetTypeR) if('street_type' in vars): ds.variables['street_type'][:]=streetTypeR return ds.variables['street_type'] else: x_dim = createXDim(ds, streetTypeNPx, streetTypeDPx, dims) y_dim = createYDim(ds, streetTypeNPx, streetTypeDPx, dims) streetTypeNCVar = createNetcdfVariable(ds, streetTypeR, 'street_type', 0, 'm', 'b', ('y','x'), False, False, fill_value=-127, verbose=False) streetTypeNCVar.long_name = "street type classification" return streetTypeNCVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processVegetationType(fname,ds,vars,dims): vegetationTypeDict = readNumpyZTile(fname,verbose=False) vegetationTypeR = vegetationTypeDict['R'][::-1,:] vegetationTypeDPx = vegetationTypeDict['dPx'] vegetationTypeNPx = np.shape(vegetationTypeR) if('vegetation_type' in vars): ds.variables['vegetation_type'][:]=vegetationTypeR return ds.variables['vegetation_type'] else: x_dim = createXDim(ds, vegetationTypeNPx, vegetationTypeDPx, dims) y_dim = createYDim(ds, vegetationTypeNPx, vegetationTypeDPx, dims) vegetationTypeNCVar = createNetcdfVariable(ds, vegetationTypeR, 'vegetation_type', 0, 'm', 'b', ('y','x'), False, False, fill_value=-127, verbose=False) vegetationTypeNCVar.long_name = "vegetation type classification" return vegetationTypeNCVar # =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processBuildingType(fname, ds, vars, dims): buildingTypeDict = readNumpyZTile(fname, verbose=False) buildingTypeR = buildingTypeDict['R'][::-1, :] buildingTypeDPx = buildingTypeDict['dPx'] buildingTypeNPx = np.shape(buildingTypeR) if ('building_type' in vars): ds.variables['building_type'][:] = buildingTypeR return ds.variables['building_type'] else: x_dim = createXDim(ds, buildingTypeNPx, buildingTypeDPx, dims) y_dim = createYDim(ds, buildingTypeNPx, buildingTypeDPx, dims) buildingTypeNCVar = createNetcdfVariable(ds, buildingTypeR, 'building_type', 0, 'm', 'b', ('y', 'x'), False, False, fill_value=-127, verbose=False) buildingTypeNCVar.long_name = "building type classification" return buildingTypeNCVar # =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processSurfaceFraction(fname, ds, vars, dims): surfaceFractionDict = readNumpyZTile(fname, verbose=False) surfaceFractionR = surfaceFractionDict['R'][::-1, :, :] surfaceFractionDPx = surfaceFractionDict['dPx'] surfaceFractionNPx = np.shape(surfaceFractionR) # Same here as in buildings_3d, idk why this has to be done for 3D arrays surfaceFractionR = np.swapaxes(surfaceFractionR, 0, 2) surfaceFractionR = np.swapaxes(surfaceFractionR, 2, 1) if ('surface_fraction' in vars): ds.variables['surface_fraction'][:] = surfaceFractionR return ds.variables['surface_fraction'] else: x_dim = createXDim(ds, surfaceFractionNPx, surfaceFractionDPx, dims) y_dim = createYDim(ds, surfaceFractionNPx, surfaceFractionDPx, dims) znsurface_fraction_dim = createZnsurfaceFractionDim(ds, surfaceFractionNPx, surfaceFractionDPx, dims) surfaceFractionNCVar = createNetcdfVariable(ds, surfaceFractionR, 'surface_fraction', 0, 'm', 'f4', ('nsurface_fraction', 'y', 'x'), False, False, fill_value=-9999., verbose=False) surfaceFractionNCVar.long_name = "surface fraction" return surfaceFractionNCVar def processCRS(ds,cConf): try: crsVar = createNetcdfVariable(ds, None, 'crs', 0, cConf['units'], 'i4', [], False, False, fill_value=None, verbose=False) except KeyError: print("WARNING: units for CRS are not set, using default (m)") crsVar = createNetcdfVariable(ds, None, 'crs', 0, 'm', 'i4', [], False, False, fill_value=None, verbose=False) crsVar.long_name = 'coordinate reference system' try: crsVar.grid_mapping_name = cConf['grid_mapping_name'] except KeyError: crsVar.grid_mapping_name = 'transverse_mercator' print("WARNING: grid_mapping_name for CRS is not set, using default (transverse_mercator)") try: crsVar.semi_major_axis = float(cConf['semi_major_axis']) crsVar.inverse_flattening = float(cConf['inverse_flattening']) crsVar.longitude_of_prime_meridian = float(cConf['longitude_of_prime_meridian']) crsVar.longitude_of_central_meridian = float(cConf['longitude_of_central_meridian']) crsVar.latitude_of_projection_origin = float(cConf['latitude_of_projection_origin']) crsVar.scale_factor_at_central_meridian = float(cConf['scale_factor_at_central_meridian']) crsVar.false_easting = float(cConf['false_easting']) crsVar.false_northing = float(cConf['false_northing']) crsVar.epsg_code = cConf['epsg_code'] except KeyError: print('\nOne or more mandatory crs keys are missing. Make sure you specify all: \n - semi_major_axis\n - inverse_flattening \n' ' - longitude_of_prime_meridian\n - longitude_of_central_meridian\n - latitude_of_projection_origin\n' ' - scale_factor_at_central_meridian\n - false_easting\n - false_northing\n - epsg_code\n') raise KeyError("Missing CRS key(s)") return crsVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* # Both PIDS_CHEM and PIDS_SALSA # #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createNcatDim(ds, ncat, dims): # Creates a new ncat dim unless it already exists if ('ncat' not in dims): ncat_dim = createNetcdfVariable(ds, ncat, 'ncat', len(ncat), '', 'i4', ('ncat',), parameter=True, verbose=False) ncat_dim.long_name = "number of emission categories" dims.append('ncat') return ncat_dim else: return ds.variables['ncat'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createStrlenDim(ds, strlen, dims): # Creates a new strlen dim unless it already exists if ('strlen' not in dims): strlen_dim = createNetcdfVariable(ds, strlen, 'strlen', len(strlen), '', 'i4', ('strlen',), parameter=True, verbose=False) dims.append('strlen') return strlen_dim else: return ds.variables['strlen'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createNhoursyearDim(ds, nhoursyear, dims): # Creates a new nhoursyear dim unless it already exists if ('nhoursyear' not in dims): nhoursyear_dim = createNetcdfVariable(ds, nhoursyear, 'nhoursyear', len(nhoursyear), '', 'i4', ('nhoursyear',), parameter=True, verbose=False) dims.append('nhoursyear') return nhoursyear_dim else: return ds.variables['nhoursyear'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createNmonthdayhourDim(ds, nmonthdayhour, dims): # Creates a new nmonthdayhour dim unless it already exists if ('nmonthdayhour' not in dims): nmonthdayhour_dim = createNetcdfVariable(ds, nmonthdayhour, 'nmonthdayhour', len(nmonthdayhour), '', 'i4', ('nmonthdayhour',), parameter=True, verbose=False) dims.append('nmonthdayhour') return nmonthdayhour_dim else: return ds.variables['nmonthdayhour'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createTimeDim(ds, time, dims): # Creates a new ncat dim unless it already exists if ('time' not in dims): time = list(map(float, time.split(","))) time_dim = createNetcdfVariable(ds, time, 'time', len(time), 's', 'f4', ('time',), parameter=True, verbose=False) time_dim.long_name = "seconds since the beginning of the simulation" dims.append('time') return time_dim else: return ds.variables['time'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionTimestamp(ds, originTime, vars, dims): # Creates a new ncat dim unless it already exists from datetime import datetime, timedelta if ('field_len' not in dims): field_len = 64 # some default value, I don't know why (Mona) ds.createDimension('field_len', field_len) if ('timestamp' not in vars): time = ds.variables['time'][:] dtOriginTime = datetime.strptime(originTime+"00", "%Y-%m-%d %H:%M:%S %z") timestamp = [] emptyStr = " " * field_len for t in range(len(time)): dt = timedelta(seconds = int(time[t])) dtStr = dtOriginTime + dt timestampStr = dtStr.strftime("%Y-%m-%d %H:%M:%S %z")[:-2].ljust(field_len) timestamp.append(timestampStr) timestampVar = ds.createVariable('timestamp', 'S1', ('time','field_len',)) timestampVar[:] = list(map(lambda x : list(x), timestamp)) timestampVar.long_name = "timestamps since the beginning of the simulation" vars.append('timestamp') return timestampVar else: return ds.variables['timestamp'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionCategoryIndices(emiCatInds, ds, vars, dims): # In my opinion ncat is completely redundant parameter, emission_category_index should # be a coordinate variable with a length of ncat instead. Current setup in PALM doesn't # make any sense (Sasu) try: emiCatInds = list(map(int, emiCatInds.split(","))) except TypeError: print("Error: invalid value for emission_category_index in configuration file, expected a"+ " comma-delimited list") exit(1) if ('emission_category_index' in vars): ds.variables['emission_category_index'][:] = emiCatInds return ds.variables['emission_category_index'] else: ncat_dim = createNcatDim(ds, np.arange(1, len(emiCatInds)+1, 1), dims) emiCatIndsVar = createNetcdfVariable(ds, emiCatInds, 'emission_category_index', 0, '', 'i1', ('ncat',), parameter=False, verbose=False) emiCatIndsVar.long_name = "emission category index" emiCatIndsVar.standard_name = 'emission_cat_index' return emiCatIndsVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionCategoryNames(emiCatName, ds, vars, dims): # Creates emission_category_name unless it already exists try: # Max string length is chosen quite arbitralily here maxstrlen = 25 emiCatName = parseCharacterArray(emiCatName, maxstrlen) except TypeError: print("Error: invalid value for emission_category_name in configuration file, expected a " + "comma delimited array") exit(1) if ('emission_category_name' in vars): ds.variables['emission_category_name'][:] = emiCatName return ds.variables['emission_category_name'] else: ncat_dim = createNcatDim(ds, np.arange(1, np.shape(emiCatName)[0]+1, 1), dims) strlen_dim = createStrlenDim(ds, np.arange(1, maxstrlen+1, 1), dims) emiCatNameVar = createNetcdfVariable(ds, np.array(emiCatName), 'emission_category_name', 0, '', 'S1', ('ncat','strlen',), parameter=False, verbose=False) emiCatNameVar.long_name = 'emission category name' return emiCatNameVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionTimeFactors(fname, lod, ds, vars, dims): # Create emission_time_factors unless it already exists # Try to read 'emission_time_factors' array from a given input file constant_factor = False try: emiTimeFactors = np.genfromtxt(fname, delimiter=",") ncat = np.shape(emiTimeFactors)[0] ncat_dim = createNcatDim(ds, np.arange(1, np.shape(emiTimeFactors)[0]+1, 1), dims) except: print("Cannot read emission_time_factors data from file \"{}\"".format(fname) + ". Use a constant factor emission_time_factors=1.0 and ncat=1.") factor = 1.0 constant_factor = True if ('ncat' in dims): ncat = len(ds.variables['ncat'][:]) else: ncat = 1 ncat_dim = createNcatDim(ds, [ncat], dims) # Check the level of detail if (lod is None or lod=='2'): # Using a weighting factors given separately for each hour of the year nhoursyear = np.arange(1, 8760+1, 1) # 24*365 if constant_factor: emiTimeFactors = np.zeros([ncat, len(nhoursyear)], dtype=float) + factor if (np.shape(emiTimeFactors)[-1]!=8760): raise ValueError("emission_time_factors data must contain exactly 8760 datapoints for "+ "every emission category when emission_time_factors_lod = 2") if ('emission_time_factors' in vars): if (np.shape(ds.variables['emission_time_factors'])[-1]!=8760): raise ValueError("The dimensions of the existing emission_time_factors does not match "+ "with the new emission_time_factors data") ds.variables['emission_time_factors'][:] = emiTimeFactors return ds.variables['emission_time_factors'] else: nhoursyear_dim = createNhoursyearDim(ds, nhoursyear, dims) emiTimeFactorsVar = createNetcdfVariable(ds, emiTimeFactors, 'emission_time_factors', 0, '', 'f4', ('ncat','nhoursyear',), parameter=False, verbose=False) emiTimeFactorsVar.long_name = "emission time scaling factors" emiTimeFactorsVar.lod = 2 return emiTimeFactorsVar elif (lod=='1'): # Using a weighting factors based on the month, day of week and hour nmonthdayhour = np.arange(1, 91+1, 1) # see the documentation if constant_factor: emiTimeFactors = np.zeros([ncat, len(monthdayhour)], dtype=float) + factor if (np.shape(emiTimeFactors)[-1]!=91): raise ValueError("emission_time_factors data must contain exactly 90 datapoints for "+ "every emission category when emission_time_factors_lod = 1") if ('emission_time_factors' in vars): if (np.shape(ds.variables['emission_time_factors'])[-1]!=90): raise ValueError("The dimensions of the existing emission_time_factors does not match "+ "with the new emission_time_factors data") ds.variables['emission_time_factors'][:] = emiTimeFactors return ds.variables['emission_time_factors'] else: nhoursyear_dim = createNmonthdayhourDim(ds, nmonthdayhour, dims) emiTimeFactorsVar = createNetcdfVariable(ds, emiTimeFactors, 'emission_time_factors', 0, '', 'f4', ('ncat','nmonthdayhour',), parameter=False, verbose=False) emiTimeFactorsVar.long_name = "emission time scaling factors" emiTimeFactorsVar.lod = 1 return emiTimeFactorsVar else: raise ValueError("invalid value for emission_time_factors_lod: {}".format(lod)) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* # PIDS_CHEM # #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createZChemDim(ds, z, dims): # Creates a new z dim unless it already exists if ('z' not in dims): zchem_dim = createNetcdfVariable(ds, z, 'z', len(z), '', 'i4', ('z',), parameter=True, verbose=False) zchem_dim.long_name = "distance to origin in z-direction" dims.append('z') return zchem_dim else: return ds.variables['z'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createNspeciesDim(ds, nspecies, dims): # Creates a new nspecies dim unless it already exists if ('nspecies' not in dims): nspecies_dim = createNetcdfVariable(ds, nspecies, 'nspecies', len(nspecies), '', 'i4', ('nspecies',), parameter=True, verbose=False) nspecies_dim.long_name = "number of emission species" dims.append('nspecies') return nspecies_dim else: return ds.variables['nspecies'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionIndices(emiInds, ds, vars, dims): # Creates emission_index unless it already exists. Again, nspecies is redundant (Sasu) try: emiInds = list(map(int, emiInds.split(","))) except TypeError: print("Error: invalid value for emission_index in configuration file, expected a comma " + "delimited list") exit(1) if ('emission_index' in vars): ds.variables['emission_index'][:] = emiInds return ds.variables['emission_index'] else: nspecies_dim = createNspeciesDim(ds, np.arange(1, len(emiInds)+1, 1), dims) emiIndsVar = createNetcdfVariable(ds, emiInds, 'emission_index', 0, '', 'u2', ('nspecies',), parameter=False, verbose=False) emiIndsVar.long_name = "emission species index" return emiIndsVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionNames(emiName, ds, vars, dims): # Creates emission_name unless it already exists try: # Max string length is chosen quite arbitralily here maxstrlen = 25 emiName = parseCharacterArray(emiName, maxstrlen) except TypeError: print("Error: invalid value for emission_name in configuration file, expected a "+ "comma delimited array") exit(1) if ('emission_name' in vars): ds.variables['emission_name'][:] = emiName return ds.variables['emission_name'] else: strlen_dim = createStrlenDim(ds, np.arange(1, maxstrlen+1, 1), dims) emiNameVar = createNetcdfVariable(ds, np.array(emiName), 'emission_name', 0, '', 'S1', ('nspecies','strlen',), parameter=False, verbose=False) emiNameVar.long_name = "emission species name" return emiNameVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionValues(emiStr, fnameSource, unit, lod, ds, vars, dims): # Creates aerosol_emission_values unless it already exists # Read in a source map: contains emission category (ncat) values sourceDict = readNumpyZTile(fnameSource, verbose=False) sourceR = sourceDict['R'][::-1,:,:] sourceDPx = sourceDict['dPx'] sourceNPx = np.shape(sourceR) try: emiVals = parseStringArrayInput(emiStr, float) # emission value (per time and) per category except TypeError: print("Error: invalid value for emission_values in configuration file, expected a " + "comma-delimited list") exit(1) nspecies = len(ds.variables['nspecies'][:]) # number of chemical species ncat = len(ds.variables['ncat'][:]) # number of emission categories if (not 'emission_values' in vars): x_dim = createXDim(ds, sourceNPx, sourceDPx, dims) y_dim = createYDim(ds, sourceNPx, sourceDPx, dims) z_dim = createZChemDim(ds, np.array([1]), dims) if (lod == '1'): # emission_values(z,y,x,nspecies,ncat) where z=1 emission_values = np.zeros([1, sourceNPx[0], sourceNPx[1], nspecies, ncat], dtype=float) - 9999. emiVals = np.squeeze(emiVals) for ispec in range(nspecies): for n in range(ncat): emission_values[0,sourceR[:,:,n]==1,ispec,n] = emiVals[ispec,n] if ('emission_values' in vars): ds.variables['emission_values'][:] = emission_values return ds.variables['emission_values'] else: emiValVar = createNetcdfVariable(ds, emission_values, 'emission_values', 0, unit, 'f4', ('z','y','x','nspecies','ncat',), False, False, fill_value=-9999., verbose=False) emiValVar.long_name= 'emission values' emiValVar.lod = 1 return emiValVar elif (lod is None or lod == '2'): # emission_values(time,z,y,x,nspecies) where z=1 times = ds.variables['time'] emission_values = np.zeros([len(times), 1, sourceNPx[0], sourceNPx[1], nspecies], dtype=float) for n in range(ncat): for t in range(len(times)): for ispec in range(nspecies): emission_values[t,0,sourceR[:,:,n]==1,ispec] += emiVals[ispec,t] emission_values[emission_values < 1e-30] = -9999. # fill value if ('emission_values' in vars): ds.variables['emission_values'][:] = emission_values return ds.variables['emission_values'] else: emiValVar = createNetcdfVariable(ds, emission_values, 'emission_values', 0, unit, 'f4', ('time','z','y','x','nspecies',), False, False, fill_value=-9999., verbose=False) emiValVar.long_name= 'emission values' emiValVar.lod = 2 return emiValVar else: raise ValueError("invalid value for emission_lod: {}".format(lod)) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* # PIDS_SALSA # #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def createCompositionIndexDim(ds, composition_index, dims): # Creates a new composition_index dim unless it already exists if ('composition_index' not in dims): composition_index_dim = createNetcdfVariable(ds, composition_index, 'composition_index', len(composition_index), '', 'i4', ('composition_index',), parameter=True, verbose=False) composition_index_dim.long_name = "aerosol composition index" dims.append('composition_index') return composition_index_dim else: return ds.variables['composition_index'] #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processCompositionNames(compName, ds, vars, dims): # Creates a new composition_name variable unless it already exists try: # Max string length is chosen quite arbitralily here maxstrlen = 25 compName = parseCharacterArray(compName, maxstrlen) except TypeError: print("Error: invalid value for composition_name in configuration file, expected a "+ "comma delimited array") exit(1) if ('composition_name' in vars): ds.variables['composition_name'][:] = compName return ds.variables['composition_name'] else: composition_index = np.arange(1, np.shape(np.array(compName))[0]+1, 1) composition_index_dim = createCompositionIndexDim(ds, composition_index, dims) compNameVar = ds.createVariable('composition_name', 'S1', ('composition_index','strlen',)) compNameVar[:] = list(map(lambda x : list(x), compName)) compNameVar.long_name = 'aerosol composition name' return compNameVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processAerosolEmissionValues(emiStr, fnameSource, unit, lod, ds, vars, dims): # Creates aerosol_emission_values unless it already exists # Read in a source map: contains emission category (ncat) values sourceDict = readNumpyZTile(fnameSource, verbose=False) sourceR = sourceDict['R'][::-1,:,:] sourceDPx = sourceDict['dPx'] sourceNPx = np.shape(sourceR) try: emiVals = parseStringArrayInput(emiStr, float) # emission value (per time and) per category except TypeError: print("Error: invalid value for aerosol_emission_values in configuration file, expected a " + "comma-delimited list") exit(1) if ('aerosol_emission_values' not in vars): x_dim = createXDim(ds, sourceNPx, sourceDPx, dims) y_dim = createYDim(ds, sourceNPx, sourceDPx, dims) ncat = np.shape(emiVals)[0] ncat_dim = createNcatDim(ds, np.arange(1, ncat+1, 1), dims) if (lod == '1'): aerosol_emission_values = np.zeros([sourceNPx[0], sourceNPx[1], ncat], dtype=float) - 9999. emiVals = np.squeeze(emiVals) for n in range(ncat): aerosol_emission_values[sourceR[:,:,n]==1,n] = emiVals[n] if ('aerosol_emission_values' in vars): ds.variables['aerosol_emission_values'][:] = aerosol_emission_values return ds.variables['aerosol_emission_values'] else: emiValVar = createNetcdfVariable(ds, aerosol_emission_values, 'aerosol_emission_values', 0, unit, 'f4', ('y','x','ncat',), False, False, fill_value=-9999., verbose=False) emiValVar.long_name= 'aerosol emission values' emiValVar.lod = 1 return emiValVar elif (lod is None or lod == '2'): times = ds.variables['time'] aerosol_emission_values = np.zeros([len(times), sourceNPx[0], sourceNPx[1], ncat], dtype=float) - 9999. for t in range(len(times)): for n in range(ncat): aerosol_emission_values[t,sourceR[:,:,n]==1,n] = emiVals[n,t] if ('aerosol_emission_values' in vars): ds.variables['aerosol_emission_values'][:] = aerosol_emission_values return ds.variables['aerosol_emission_values'] else: emiValVar = createNetcdfVariable(ds, aerosol_emission_values, 'aerosol_emission_values', 0, unit, 'f4', ('time','y','x','ncat',), False, False, fill_value=-9999., verbose=False) emiValVar.long_name= 'aerosol emission values' emiValVar.lod = 2 return emiValVar else: raise ValueError("invalid value for aerosol_emission_lod: {}".format(lod)) #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionMassFracs(emiMassFracsD, ds, vars, dims): # Creates emission_mass_fracs unless it already exists ncat = len(ds.variables['ncat']) try: emiMassFracs = parseStringArrayInput(emiMassFracsD, float) except TypeError: print("Error: invalid value for emission_mass_fracs in configuration file, expected a " + "newline and comma delimited matrix") exit(1) if (np.shape(emiMassFracs)[0] != ncat): raise ValueError("Not correct dimensions of emission_mass_fracs(ncat,composition_index)") if (np.shape(emiMassFracs)[1] != len(ds.variables['composition_index'])): raise ValueError("Not correct dimensions of emission_mass_fracs(ncat,composition_index)") if ('emission_mass_fracs' in vars): ds.variables['emission_mass_fracs'][:] = emiMassFracs return ds.variables['emission_mass_fracs'] else: emiMassFracsVar = createNetcdfVariable(ds, emiMassFracs, 'emission_mass_fracs', 0, '', 'f4', ('ncat','composition_index',), False, False, fill_value=-9999., verbose=False) emiMassFracsVar.long_name = "mass fractions of chemical components in aerosol emissions" emiMassFracsVar.units = "" return emiMassFracsVar #=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=* def processEmissionNumberFracs(emiNumberFracsD, emiDmid, ds, vars, dims): # Creates emission_numbs_fracs unless it already exists ncat = len(ds.variables['ncat']) if ('Dmid' in dims): emiDmids = ds.variables['Dmid'] else: try: emiDmids = list(map(float, emiDmid.split(","))) dmid_Dim = createNetcdfVariable(ds, emiDmids, 'Dmid', len(emiDmids), 'm', 'f4', ('Dmid',), parameter=True, verbose=False) dims.append('Dmid') except TypeError: print("Error: invalid value for aerosol_emission_dmid in configuration file, expected a " + "comma-delimited list") exit(1) nbins = len(emiDmids) try: emiNumberFracs = parseStringArrayInput(emiNumberFracsD, float) except TypeError: print("Error: invalid value for composition_aerosol in configuration file, expected a " + "newline and comma delimited matrix") exit(1) if (np.shape(emiNumberFracs)[0] != ncat): raise ValueError("Incorrect 0 dimension in emission_number_fracs(ncat,Dmid)") if (np.shape(emiNumberFracs)[1] != nbins): raise ValueError("Incorrect 1 dimension in emission_number_fracs(ncat,Dmid)") if ('emission_number_fracs' in vars): ds.variables['emission_number_fracs'][:] = emiNumberFracs return ds.variables['emission_number_fracs'] else: emiNumberFracsVar = createNetcdfVariable(ds, emiNumberFracs, 'emission_number_fracs', 0, '', 'f4', ('ncat','Dmid',), False, False, fill_value=-9999., verbose=False) emiNumberFracsVar.long_name = "number fractions of aerosol size bins in aerosol emissions" emiNumberFracsVar.units = "" return emiNumberFracsVar
the-stack_106_25970
import os import sys import time from contextlib import contextmanager from dagster import check if sys.version_info.major >= 3 and sys.version_info.minor >= 3: time_fn = time.perf_counter elif os.name == 'nt': time_fn = time.clock else: time_fn = time.time class TimerResult(object): def __init__(self): self.start_time = time_fn() self.end_time = None @property def seconds(self): check.invariant(self.end_time is not None, 'end time is not set') return self.end_time - self.start_time @property def millis(self): return self.seconds * 1000 @contextmanager def time_execution_scope(): '''Usage: from solid_util.timing import time_execution_scope with time_execution_scope() as timer_result: do_some_operation() print( 'do_some_operation took {timer_result.millis} milliseconds'.format( timer_result=timer_result ) ) ''' timer_result = TimerResult() yield timer_result timer_result.end_time = time_fn()
the-stack_106_25972
#!/usr/bin/env python # # Electrum - Lightweight Bitcoin Client # Copyright (C) 2015 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from functools import partial import threading import sys import os from PyQt5.QtGui import QPixmap from PyQt5.QtCore import QObject, pyqtSignal from PyQt5.QtWidgets import (QTextEdit, QVBoxLayout, QLabel, QGridLayout, QHBoxLayout, QRadioButton, QCheckBox, QLineEdit) from electrum_redd.gui.qt.util import (read_QIcon, WindowModalDialog, WaitingDialog, OkButton, CancelButton, Buttons, icon_path, WWLabel, CloseButton) from electrum_redd.gui.qt.qrcodewidget import QRCodeWidget from electrum_redd.gui.qt.amountedit import AmountEdit from electrum_redd.gui.qt.main_window import StatusBarButton from electrum_redd.gui.qt.installwizard import InstallWizard from electrum_redd.i18n import _ from electrum_redd.plugin import hook from electrum_redd.util import is_valid_email from electrum_redd.logging import Logger from electrum_redd.base_wizard import GoBack from .trustedcoin import TrustedCoinPlugin, server class TOS(QTextEdit): tos_signal = pyqtSignal() error_signal = pyqtSignal(object) class HandlerTwoFactor(QObject, Logger): def __init__(self, plugin, window): QObject.__init__(self) self.plugin = plugin self.window = window Logger.__init__(self) def prompt_user_for_otp(self, wallet, tx, on_success, on_failure): if not isinstance(wallet, self.plugin.wallet_class): return if wallet.can_sign_without_server(): return if not wallet.keystores['x3/'].can_sign(tx, ignore_watching_only=True): self.logger.info("twofactor: xpub3 not needed") return window = self.window.top_level_window() auth_code = self.plugin.auth_dialog(window) WaitingDialog(parent=window, message=_('Waiting for TrustedCoin server to sign transaction...'), task=lambda: wallet.on_otp(tx, auth_code), on_success=lambda *args: on_success(tx), on_error=on_failure) class Plugin(TrustedCoinPlugin): def __init__(self, parent, config, name): super().__init__(parent, config, name) @hook def on_new_window(self, window): wallet = window.wallet if not isinstance(wallet, self.wallet_class): return wallet.handler_2fa = HandlerTwoFactor(self, window) if wallet.can_sign_without_server(): msg = ' '.join([ _('This wallet was restored from seed, and it contains two master private keys.'), _('Therefore, two-factor authentication is disabled.') ]) action = lambda: window.show_message(msg) else: action = partial(self.settings_dialog, window) button = StatusBarButton(read_QIcon("trustedcoin-status.png"), _("TrustedCoin"), action) window.statusBar().addPermanentWidget(button) self.start_request_thread(window.wallet) def auth_dialog(self, window): d = WindowModalDialog(window, _("Authorization")) vbox = QVBoxLayout(d) pw = AmountEdit(None, is_int = True) msg = _('Please enter your Google Authenticator code') vbox.addWidget(QLabel(msg)) grid = QGridLayout() grid.setSpacing(8) grid.addWidget(QLabel(_('Code')), 1, 0) grid.addWidget(pw, 1, 1) vbox.addLayout(grid) msg = _('If you have lost your second factor, you need to restore your wallet from seed in order to request a new code.') label = QLabel(msg) label.setWordWrap(1) vbox.addWidget(label) vbox.addLayout(Buttons(CancelButton(d), OkButton(d))) if not d.exec_(): return return pw.get_amount() def prompt_user_for_otp(self, wallet, tx, on_success, on_failure): wallet.handler_2fa.prompt_user_for_otp(wallet, tx, on_success, on_failure) def waiting_dialog_for_billing_info(self, window, *, on_finished=None): def task(): return self.request_billing_info(window.wallet, suppress_connection_error=False) def on_error(exc_info): e = exc_info[1] window.show_error("{header}\n{exc}\n\n{tor}" .format(header=_('Error getting TrustedCoin account info.'), exc=repr(e), tor=_('If you keep experiencing network problems, try using a Tor proxy.'))) return WaitingDialog(parent=window, message=_('Requesting account info from TrustedCoin server...'), task=task, on_success=on_finished, on_error=on_error) @hook def abort_send(self, window): wallet = window.wallet if not isinstance(wallet, self.wallet_class): return if wallet.can_sign_without_server(): return if wallet.billing_info is None: self.waiting_dialog_for_billing_info(window) return True return False def settings_dialog(self, window): self.waiting_dialog_for_billing_info(window, on_finished=partial(self.show_settings_dialog, window)) def show_settings_dialog(self, window, success): if not success: window.show_message(_('Server not reachable.')) return wallet = window.wallet d = WindowModalDialog(window, _("TrustedCoin Information")) d.setMinimumSize(500, 200) vbox = QVBoxLayout(d) hbox = QHBoxLayout() logo = QLabel() logo.setPixmap(QPixmap(icon_path("trustedcoin-status.png"))) msg = _('This wallet is protected by TrustedCoin\'s two-factor authentication.') + '<br/>'\ + _("For more information, visit") + " <a href=\"https://api.trustedcoin.com/#/electrum-help\">https://api.trustedcoin.com/#/electrum-help</a>" label = QLabel(msg) label.setOpenExternalLinks(1) hbox.addStretch(10) hbox.addWidget(logo) hbox.addStretch(10) hbox.addWidget(label) hbox.addStretch(10) vbox.addLayout(hbox) vbox.addStretch(10) msg = _('TrustedCoin charges a small fee to co-sign transactions. The fee depends on how many prepaid transactions you buy. An extra output is added to your transaction every time you run out of prepaid transactions.') + '<br/>' label = QLabel(msg) label.setWordWrap(1) vbox.addWidget(label) vbox.addStretch(10) grid = QGridLayout() vbox.addLayout(grid) price_per_tx = wallet.price_per_tx n_prepay = wallet.num_prepay() i = 0 for k, v in sorted(price_per_tx.items()): if k == 1: continue grid.addWidget(QLabel("Pay every %d transactions:"%k), i, 0) grid.addWidget(QLabel(window.format_amount(v/k) + ' ' + window.base_unit() + "/tx"), i, 1) b = QRadioButton() b.setChecked(k == n_prepay) b.clicked.connect(lambda b, k=k: self.config.set_key('trustedcoin_prepay', k, True)) grid.addWidget(b, i, 2) i += 1 n = wallet.billing_info.get('tx_remaining', 0) grid.addWidget(QLabel(_("Your wallet has {} prepaid transactions.").format(n)), i, 0) vbox.addLayout(Buttons(CloseButton(d))) d.exec_() def go_online_dialog(self, wizard: InstallWizard): msg = [ _("Your wallet file is: {}.").format(os.path.abspath(wizard.path)), _("You need to be online in order to complete the creation of " "your wallet. If you generated your seed on an offline " 'computer, click on "{}" to close this window, move your ' "wallet file to an online computer, and reopen it with " "Electrum.").format(_('Cancel')), _('If you are online, click on "{}" to continue.').format(_('Next')) ] msg = '\n\n'.join(msg) wizard.reset_stack() try: wizard.confirm_dialog(title='', message=msg, run_next = lambda x: wizard.run('accept_terms_of_use')) except GoBack: # user clicked 'Cancel' and decided to move wallet file manually storage, db = wizard.create_storage(wizard.path) raise def accept_terms_of_use(self, window): vbox = QVBoxLayout() vbox.addWidget(QLabel(_("Terms of Service"))) tos_e = TOS() tos_e.setReadOnly(True) vbox.addWidget(tos_e) tos_received = False vbox.addWidget(QLabel(_("Please enter your e-mail address"))) email_e = QLineEdit() vbox.addWidget(email_e) next_button = window.next_button prior_button_text = next_button.text() next_button.setText(_('Accept')) def request_TOS(): try: tos = server.get_terms_of_service() except Exception as e: self.logger.exception('Could not retrieve Terms of Service') tos_e.error_signal.emit(_('Could not retrieve Terms of Service:') + '\n' + repr(e)) return self.TOS = tos tos_e.tos_signal.emit() def on_result(): tos_e.setText(self.TOS) nonlocal tos_received tos_received = True set_enabled() def on_error(msg): window.show_error(str(msg)) window.terminate() def set_enabled(): next_button.setEnabled(tos_received and is_valid_email(email_e.text())) tos_e.tos_signal.connect(on_result) tos_e.error_signal.connect(on_error) t = threading.Thread(target=request_TOS) t.setDaemon(True) t.start() email_e.textChanged.connect(set_enabled) email_e.setFocus(True) window.exec_layout(vbox, next_enabled=False) next_button.setText(prior_button_text) email = str(email_e.text()) self.create_remote_key(email, window) def request_otp_dialog(self, window, short_id, otp_secret, xpub3): vbox = QVBoxLayout() if otp_secret is not None: uri = "otpauth://totp/%s?secret=%s"%('trustedcoin.com', otp_secret) l = QLabel("Please scan the following QR code in Google Authenticator. You may as well use the following key: %s"%otp_secret) l.setWordWrap(True) vbox.addWidget(l) qrw = QRCodeWidget(uri) vbox.addWidget(qrw, 1) msg = _('Then, enter your Google Authenticator code:') else: label = QLabel( "This wallet is already registered with TrustedCoin. " "To finalize wallet creation, please enter your Google Authenticator Code. " ) label.setWordWrap(1) vbox.addWidget(label) msg = _('Google Authenticator code:') hbox = QHBoxLayout() hbox.addWidget(WWLabel(msg)) pw = AmountEdit(None, is_int = True) pw.setFocus(True) pw.setMaximumWidth(50) hbox.addWidget(pw) vbox.addLayout(hbox) cb_lost = QCheckBox(_("I have lost my Google Authenticator account")) cb_lost.setToolTip(_("Check this box to request a new secret. You will need to retype your seed.")) vbox.addWidget(cb_lost) cb_lost.setVisible(otp_secret is None) def set_enabled(): b = True if cb_lost.isChecked() else len(pw.text()) == 6 window.next_button.setEnabled(b) pw.textChanged.connect(set_enabled) cb_lost.toggled.connect(set_enabled) window.exec_layout(vbox, next_enabled=False, raise_on_cancel=False) self.check_otp(window, short_id, otp_secret, xpub3, pw.get_amount(), cb_lost.isChecked())
the-stack_106_25973
import logging import os import sys import httpx from coverage_comment import badge, comment_file from coverage_comment import coverage as coverage_module from coverage_comment import ( github, github_client, log, settings, subprocess, template, wiki, ) def main(): logging.basicConfig(level="INFO") log.info("Starting action") config = settings.Config.from_environ(environ=os.environ) if config.VERBOSE: logging.getLogger().setLevel("DEBUG") log.debug(f"Settings: {config}") github_session = httpx.Client( base_url="https://api.github.com", follow_redirects=True, headers={"Authorization": f"token {config.GITHUB_TOKEN}"}, ) #http_session = httpx.Client() git = subprocess.Git() exit_code = action( config=config, github_session=github_session, #http_session=http_session, git=git, ) log.info("Ending action") sys.exit(exit_code) def action( config: settings.Config, github_session: httpx.Client, #http_session: httpx.Client, git: subprocess.Git, ): log.debug(f"Operating on {config.GITHUB_REF}") event_name = config.GITHUB_EVENT_NAME if event_name not in {"pull_request", "push", "workflow_run"}: log.error( 'This action has only been designed to work for "pull_request", "branch" ' f'or "workflow_run" actions, not "{event_name}". Because there are security ' "implications. If you have a different usecase, please open an issue, " "we'll be glad to add compatibility." ) return 1 if event_name in {"pull_request", "push"}: coverage = coverage_module.get_coverage_info(merge=config.MERGE_COVERAGE_FILES) log.info("coverage_percent = %s" % coverage.info.percent_covered) if event_name == "pull_request": return generate_comment( config=config, coverage=coverage, github_session=github_session, #http_session=http_session, git=git, ) else: # event_name == "push" return save_badge( config=config, coverage=coverage, github_session=github_session, git=git, ) else: # event_name == "workflow_run" return post_comment( config=config, github_session=github_session, ) def generate_comment( config: settings.Config, coverage: coverage_module.Coverage, github_session: httpx.Client, #http_session: httpx.Client, git: subprocess.Git, ): log.info("Generating comment for PR") diff_coverage = coverage_module.get_diff_coverage_info( base_ref=config.GITHUB_BASE_REF ) previous_coverage_data_file = wiki.get_file_contents( github_token=config.GITHUB_TOKEN, repository=config.GITHUB_REPOSITORY, filename=config.BADGE_FILENAME, git=git, ) previous_coverage = None if previous_coverage_data_file: previous_coverage = badge.parse_badge(contents=previous_coverage_data_file) comment = template.get_markdown_comment( coverage=coverage, diff_coverage=diff_coverage, previous_coverage_rate=previous_coverage, template=template.read_template_file(), ) gh = github_client.GitHub(session=github_session) try: github.post_comment( github=gh, me=github.get_my_login(github=gh), repository=config.GITHUB_REPOSITORY, pr_number=config.GITHUB_PR_NUMBER, contents=comment, marker=template.MARKER, ) except github.CannotPostComment: log.debug("Exception when posting comment", exc_info=True) log.info( "Cannot post comment. This is probably because this is an external PR, so " "it's expected. Ensure you have an additional `workflow_run` step " "configured as explained in the documentation (or alternatively, give up " "on PR comments for external PRs)." ) comment_file.store_file( filename=config.COMMENT_FILENAME, content=comment, ) github.set_output(COMMENT_FILE_WRITTEN=True) log.debug("Comment stored locally on disk") else: github.set_output(COMMENT_FILE_WRITTEN=False) log.debug("Comment not generated") return 0 def post_comment(config: settings.Config, github_session: httpx.Client): log.info("Posting comment to PR") if not config.GITHUB_PR_RUN_ID: log.error("Missing input GITHUB_PR_RUN_ID. Please consult the documentation.") return 1 gh = github_client.GitHub(session=github_session) me = github.get_my_login(github=gh) log.info(f"Search for PR associated with run id {config.GITHUB_PR_RUN_ID}") try: pr_number = github.get_pr_number_from_workflow_run( github=gh, run_id=config.GITHUB_PR_RUN_ID, repository=config.GITHUB_REPOSITORY, ) except github.CannotDeterminePR: log.error( "The PR cannot be found. That's strange. Please open an " "issue at https://github.com/ewjoachim/python-coverage-comment-action", exc_info=True, ) return 1 log.info(f"PR number: {pr_number}") log.info("Download associated artifacts") try: comment = github.download_artifact( github=gh, repository=config.GITHUB_REPOSITORY, artifact_name=config.COMMENT_ARTIFACT_NAME, run_id=config.GITHUB_PR_RUN_ID, filename=config.COMMENT_FILENAME, ) except github.NoArtifact: log.info( "Artifact was not found, which is probably because it was probably " "already posted by a previous step.", exc_info=True, ) return 0 log.info("Comment file found in artifact, posting to PR") github.post_comment( github=gh, me=me, repository=config.GITHUB_REPOSITORY, pr_number=pr_number, contents=comment, marker=template.MARKER, ) log.info("Comment posted in PR") return 0 def save_badge( config: settings.Config, coverage: coverage_module.Coverage, github_session: httpx.Client, git: subprocess.Git, ): gh = github_client.GitHub(session=github_session) is_default_branch = github.is_default_branch( github=gh, repository=config.GITHUB_REPOSITORY, branch=config.GITHUB_REF, ) log.debug(f"On default branch: {is_default_branch}") if not is_default_branch: log.info("Skipping badge save as we're not on the default branch") return 0 log.info("Saving Badge into the repo wiki") badge_info = badge.compute_badge( line_rate=coverage.info.percent_covered, minimum_green=config.MINIMUM_GREEN, minimum_orange=config.MINIMUM_ORANGE, ) log.info("badge_info: %s" % badge_info) wiki.upload_file( github_token=config.GITHUB_TOKEN, repository=config.GITHUB_REPOSITORY, filename=config.BADGE_FILENAME, contents=badge_info, git=git, ) url = wiki.get_wiki_file_url( repository=config.GITHUB_REPOSITORY, filename=config.BADGE_FILENAME ) badge_url = badge.get_badge_shield_url(json_url=url) log.info(f"Badge JSON stored at {url}") log.info(f"Badge URL: {badge_url}") return 0
the-stack_106_25976
import os import sys import cv2 curdir = os.path.dirname(__file__) files = os.listdir(curdir) for file in files: _, ext = os.path.splitext(file) if ext == '.py': continue img = cv2.imread(file) size = img.shape h, w = size[:2] print('{} {}x{}'.format(file, w, h))
the-stack_106_25981
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test RPC calls related to net. Tests correspond to code in rpc/net.cpp. """ from decimal import Decimal from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than_or_equal, assert_greater_than, assert_raises_rpc_error, connect_nodes_bi, p2p_port, wait_until, ) from test_framework.mininode import P2PInterface from test_framework.messages import CAddress, msg_addr, NODE_NETWORK, NODE_WITNESS class NetTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [["-minrelaytxfee=0.00001000"],["-minrelaytxfee=0.00000500"]] def run_test(self): self._test_connection_count() self._test_getnettotals() self._test_getnetworkinginfo() self._test_getaddednodeinfo() self._test_getpeerinfo() self._test_getnodeaddresses() def _test_connection_count(self): # connect_nodes_bi connects each node to the other assert_equal(self.nodes[0].getconnectioncount(), 2) def _test_getnettotals(self): # getnettotals totalbytesrecv and totalbytessent should be # consistent with getpeerinfo. Since the RPC calls are not atomic, # and messages might have been recvd or sent between RPC calls, call # getnettotals before and after and verify that the returned values # from getpeerinfo are bounded by those values. net_totals_before = self.nodes[0].getnettotals() peer_info = self.nodes[0].getpeerinfo() net_totals_after = self.nodes[0].getnettotals() assert_equal(len(peer_info), 2) peers_recv = sum([peer['bytesrecv'] for peer in peer_info]) peers_sent = sum([peer['bytessent'] for peer in peer_info]) assert_greater_than_or_equal(peers_recv, net_totals_before['totalbytesrecv']) assert_greater_than_or_equal(net_totals_after['totalbytesrecv'], peers_recv) assert_greater_than_or_equal(peers_sent, net_totals_before['totalbytessent']) assert_greater_than_or_equal(net_totals_after['totalbytessent'], peers_sent) # test getnettotals and getpeerinfo by doing a ping # the bytes sent/received should change # note ping and pong are 32 bytes each self.nodes[0].ping() wait_until(lambda: (self.nodes[0].getnettotals()['totalbytessent'] >= net_totals_after['totalbytessent'] + 32 * 2), timeout=1) wait_until(lambda: (self.nodes[0].getnettotals()['totalbytesrecv'] >= net_totals_after['totalbytesrecv'] + 32 * 2), timeout=1) peer_info_after_ping = self.nodes[0].getpeerinfo() for before, after in zip(peer_info, peer_info_after_ping): assert_greater_than_or_equal(after['bytesrecv_per_msg'].get('pong', 0), before['bytesrecv_per_msg'].get('pong', 0) + 32) assert_greater_than_or_equal(after['bytessent_per_msg'].get('ping', 0), before['bytessent_per_msg'].get('ping', 0) + 32) def _test_getnetworkinginfo(self): assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) self.nodes[0].setnetworkactive(state=False) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], False) # Wait a bit for all sockets to close wait_until(lambda: self.nodes[0].getnetworkinfo()['connections'] == 0, timeout=3) self.nodes[0].setnetworkactive(state=True) connect_nodes_bi(self.nodes, 0, 1) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) def _test_getaddednodeinfo(self): assert_equal(self.nodes[0].getaddednodeinfo(), []) # add a node (node2) to node0 ip_port = "127.0.0.1:{}".format(p2p_port(2)) self.nodes[0].addnode(node=ip_port, command='add') # check that the node has indeed been added added_nodes = self.nodes[0].getaddednodeinfo(ip_port) assert_equal(len(added_nodes), 1) assert_equal(added_nodes[0]['addednode'], ip_port) # check that a non-existent node returns an error assert_raises_rpc_error(-24, "Node has not been added", self.nodes[0].getaddednodeinfo, '1.1.1.1') def _test_getpeerinfo(self): peer_info = [x.getpeerinfo() for x in self.nodes] # check both sides of bidirectional connection between nodes # the address bound to on one side will be the source address for the other node assert_equal(peer_info[0][0]['addrbind'], peer_info[1][0]['addr']) assert_equal(peer_info[1][0]['addrbind'], peer_info[0][0]['addr']) assert_equal(peer_info[0][0]['minfeefilter'], Decimal("0.00000500")) assert_equal(peer_info[1][0]['minfeefilter'], Decimal("0.00001000")) def _test_getnodeaddresses(self): self.nodes[0].add_p2p_connection(P2PInterface()) # send some addresses to the node via the p2p message addr msg = msg_addr() imported_addrs = [] for i in range(256): a = "123.123.123.{}".format(i) imported_addrs.append(a) addr = CAddress() addr.time = 100000000 addr.nServices = NODE_NETWORK | NODE_WITNESS addr.ip = a addr.port = 9666 msg.addrs.append(addr) self.nodes[0].p2p.send_and_ping(msg) # obtain addresses via rpc call and check they were ones sent in before REQUEST_COUNT = 10 node_addresses = self.nodes[0].getnodeaddresses(REQUEST_COUNT) assert_equal(len(node_addresses), REQUEST_COUNT) for a in node_addresses: assert_greater_than(a["time"], 1527811200) # 1st June 2018 assert_equal(a["services"], NODE_NETWORK | NODE_WITNESS) assert a["address"] in imported_addrs assert_equal(a["port"], 9666) assert_raises_rpc_error(-8, "Address count out of range", self.nodes[0].getnodeaddresses, -1) # addrman's size cannot be known reliably after insertion, as hash collisions may occur # so only test that requesting a large number of addresses returns less than that LARGE_REQUEST_COUNT = 10000 node_addresses = self.nodes[0].getnodeaddresses(LARGE_REQUEST_COUNT) assert_greater_than(LARGE_REQUEST_COUNT, len(node_addresses)) if __name__ == '__main__': NetTest().main()
the-stack_106_25983
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/12/17 13:19 # @Author : glacier # @Site : # @File : db_test.py # @Software: PyCharm Edu import pymysql import pymysql def db_deal(title_url,title,count): # 打开数据库连接 db = pymysql.connect( "localhost", "root", "123456", "python", charset='utf8' ) # 使用 cursor() 方法创建一个游标对象 cursor cursor = db.cursor() # 使用预处理语句创建表 # SQL 插入语句 sql = "INSERT INTO p_zhihu_topic(title,title_url, \ vote_count) \ VALUES ('%s', '%s', '%s')" % \ (title_url,title,count) try: # 执行SQL语句 cursor.execute(sql) print('插入成功') # 提交到数据库执行 db.commit() except: print("出错啦!") # 发生错误时回滚 db.rollback() if __name__ == '__main__': title_url ="/question/22425541" title ="一个人旅行应该怎样自拍" count ="24K" db_deal(title_url,title,count)
the-stack_106_25984
# This code is modified from https://github.com/facebookresearch/low-shot-shrink-hallucinate import torch import torch.nn as nn import math import torch.nn.functional as F from torch.nn.utils import weight_norm # Basic ResNet model def init_layer(L): # Initialization using fan-in if isinstance(L, nn.Conv2d): n = L.kernel_size[0]*L.kernel_size[1]*L.out_channels L.weight.data.normal_(0,math.sqrt(2.0/float(n))) elif isinstance(L, nn.BatchNorm2d): L.weight.data.fill_(1) L.bias.data.fill_(0) class distLinear(nn.Module): def __init__(self, indim, outdim): super(distLinear, self).__init__() self.L = weight_norm(nn.Linear(indim, outdim, bias=False), name='weight', dim=0) self.relu = nn.ReLU() def forward(self, x): x_norm = torch.norm(x, p=2, dim =1).unsqueeze(1).expand_as(x) x_normalized = x.div(x_norm + 0.00001) L_norm = torch.norm(self.L.weight.data, p=2, dim =1).unsqueeze(1).expand_as(self.L.weight.data) self.L.weight.data = self.L.weight.data.div(L_norm + 0.00001) cos_dist = self.L(x_normalized) #matrix product by forward function scores = 10 * cos_dist #a fixed scale factor to scale the output of cos value into a reasonably large input for softmax return scores class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() def forward(self, x): return x.view(x.size(0), -1) class Linear_fw(nn.Linear): #used in MAML to forward input with fast weight def __init__(self, in_features, out_features): super(Linear_fw, self).__init__(in_features, out_features) self.weight.fast = None #Lazy hack to add fast weight link self.bias.fast = None def forward(self, x): if self.weight.fast is not None and self.bias.fast is not None: out = F.linear(x, self.weight.fast, self.bias.fast) else: out = super(Linear_fw, self).forward(x) return out class Conv2d_fw(nn.Conv2d): #used in MAML to forward input with fast weight def __init__(self, in_channels, out_channels, kernel_size, stride=1,padding=0, bias = True): super(Conv2d_fw, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias) self.weight.fast = None if not self.bias is None: self.bias.fast = None def forward(self, x): if self.bias is None: if self.weight.fast is not None: out = F.conv2d(x, self.weight.fast, None, stride= self.stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) else: if self.weight.fast is not None and self.bias.fast is not None: out = F.conv2d(x, self.weight.fast, self.bias.fast, stride= self.stride, padding=self.padding) else: out = super(Conv2d_fw, self).forward(x) return out class BatchNorm2d_fw(nn.BatchNorm2d): #used in MAML to forward input with fast weight def __init__(self, num_features): super(BatchNorm2d_fw, self).__init__(num_features) self.weight.fast = None self.bias.fast = None def forward(self, x): running_mean = torch.zeros(x.data.size()[1]).cuda() running_var = torch.ones(x.data.size()[1]).cuda() if self.weight.fast is not None and self.bias.fast is not None: out = F.batch_norm(x, running_mean, running_var, self.weight.fast, self.bias.fast, training = True, momentum = 1) #batch_norm momentum hack: follow hack of Kate Rakelly in pytorch-maml/src/layers.py else: out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias, training = True, momentum = 1) return out # Simple Conv Block class ConvBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, pool = True, padding = 1): super(ConvBlock, self).__init__() self.indim = indim self.outdim = outdim if self.maml: self.C = Conv2d_fw(indim, outdim, 3, padding = padding) self.BN = BatchNorm2d_fw(outdim) else: self.C = nn.Conv2d(indim, outdim, 3, padding= padding) self.BN = nn.BatchNorm2d(outdim) self.relu = nn.ReLU(inplace=True) self.parametrized_layers = [self.C, self.BN, self.relu] if pool: self.pool = nn.MaxPool2d(2) self.parametrized_layers.append(self.pool) for layer in self.parametrized_layers: init_layer(layer) self.trunk = nn.Sequential(*self.parametrized_layers) def forward(self,x): out = self.trunk(x) return out # Simple ResNet Block class SimpleBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(SimpleBlock, self).__init__() self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = BatchNorm2d_fw(outdim) self.C2 = Conv2d_fw(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) self.BN1 = nn.BatchNorm2d(outdim) self.C2 = nn.Conv2d(outdim, outdim,kernel_size=3, padding=1,bias=False) self.BN2 = nn.BatchNorm2d(outdim) self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = BatchNorm2d_fw(outdim) else: self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False) self.BNshortcut = nn.BatchNorm2d(outdim) self.parametrized_layers.append(self.shortcut) self.parametrized_layers.append(self.BNshortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): out = self.C1(x) out = self.BN1(out) out = self.relu1(out) out = self.C2(out) out = self.BN2(out) short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x)) out = out + short_out out = self.relu2(out) return out # Bottleneck block class BottleneckBlock(nn.Module): maml = False #Default def __init__(self, indim, outdim, half_res): super(BottleneckBlock, self).__init__() bottleneckdim = int(outdim/4) self.indim = indim self.outdim = outdim if self.maml: self.C1 = Conv2d_fw(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = BatchNorm2d_fw(bottleneckdim) self.C2 = Conv2d_fw(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = BatchNorm2d_fw(bottleneckdim) self.C3 = Conv2d_fw(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = BatchNorm2d_fw(outdim) else: self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False) self.BN1 = nn.BatchNorm2d(bottleneckdim) self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1) self.BN2 = nn.BatchNorm2d(bottleneckdim) self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False) self.BN3 = nn.BatchNorm2d(outdim) self.relu = nn.ReLU() self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3] self.half_res = half_res # if the input number of channels is not equal to the output, then need a 1x1 convolution if indim!=outdim: if self.maml: self.shortcut = Conv2d_fw(indim, outdim, 1, stride=2 if half_res else 1, bias=False) else: self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False) self.parametrized_layers.append(self.shortcut) self.shortcut_type = '1x1' else: self.shortcut_type = 'identity' for layer in self.parametrized_layers: init_layer(layer) def forward(self, x): short_out = x if self.shortcut_type == 'identity' else self.shortcut(x) out = self.C1(x) out = self.BN1(out) out = self.relu(out) out = self.C2(out) out = self.BN2(out) out = self.relu(out) out = self.C3(out) out = self.BN3(out) out = out + short_out out = self.relu(out) return out class ConvNet(nn.Module): def __init__(self, depth, flatten = True): super(ConvNet,self).__init__() self.grads = [] self.fmaps = [] trunk = [] for i in range(depth): indim = 3 if i == 0 else 64 outdim = 64 B = ConvBlock(indim, outdim, pool = ( i <4 ) ) #only pooling for fist 4 layers trunk.append(B) if flatten: trunk.append(Flatten()) self.trunk = nn.Sequential(*trunk) if flatten: self.final_feat_dim = 1600 else: self.final_feat_dim = [64, 5, 5] def forward(self,x): out = self.trunk(x) return out class ResNet(nn.Module): maml = True #Default def __init__(self, block, list_of_num_layers, list_of_out_dims, flatten=True): # list_of_num_layers specifies number of layers in each stage # list_of_out_dims specifies number of output channel for each stage super(ResNet, self).__init__() self.grads = [] self.fmaps = [] assert len(list_of_num_layers)==4, 'Can have only four stages' # initial layers if self.maml: conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = BatchNorm2d_fw(64) else: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) bn1 = nn.BatchNorm2d(64) relu = nn.ReLU(inplace=True) pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) init_layer(conv1) init_layer(bn1) # residual blocks trunk = [conv1, bn1, relu, pool1] indim = 64 for i in range(4): for j in range(list_of_num_layers[i]): half_res = (i>=1) and (j==0) B = block(indim, list_of_out_dims[i], half_res) trunk.append(B) indim = list_of_out_dims[i] # final pooling if flatten: avgpool = nn.AvgPool2d(7) trunk.append(avgpool) trunk.append(Flatten()) self.final_feat_dim = indim else: self.final_feat_dim = [ indim, 7, 7] self.trunk = nn.Sequential(*trunk) def forward(self,x): out = self.trunk(x) return out def Conv4(flatten=True): return ConvNet(4, flatten) def Conv6(flatten=True): return ConvNet(6, flatten) def ResNet10(flatten=True): return ResNet(SimpleBlock, [1,1,1,1],[64,128,256,512], flatten) def ResNet18(flatten=True): return ResNet(SimpleBlock, [2,2,2,2],[64,128,256,512], flatten) def ResNet34(flatten=True): return ResNet(SimpleBlock, [3,4,6,3],[64,128,256,512], flatten) def ResNet50(flatten=True): return ResNet(BottleneckBlock, [3,4,6,3], [256,512,1024,2048], flatten) def ResNet101(flatten=True): return ResNet(BottleneckBlock, [3,4,23,3],[256,512,1024,2048], flatten) model_dict = dict(Conv4 = Conv4, Conv6 = Conv6, ResNet10 = ResNet10, ResNet18 = ResNet18, ResNet34 = ResNet34, ResNet50 = ResNet50, ResNet101 = ResNet101)
the-stack_106_25985
from unittest.mock import patch from django.shortcuts import reverse from api.tests.helpers import ( BaseFeedAPITestCase, create_entry_objects, FEED_DETAIL_FIELDS ) from feeds.models import Feed class FeedListTest(BaseFeedAPITestCase): """Tests GET request on `feed-list` endpoint. This API call should return a JSON payload that includes a paginated list of Feed objects. """ def setUp(self): self.create_and_authenticate_user('testadmin') self.endpoint_url = reverse('feed-list') def test_successful_get_request(self): response = self.client.get(self.endpoint_url) payload = response.json() self.assert_http_status(response) self.assertIsInstance(payload['results'], list) self.assertEqual(payload['count'], self.n_items) def test_has_no_feeds_to_fetch(self): # delete all entries currently in db Feed.objects.all().delete() response = self.client.get(self.endpoint_url) payload = response.json() self.assert_http_status(response) self.assertIsInstance(payload['results'], list) self.assertEqual(payload['count'], 0) class FeedDetailTest(BaseFeedAPITestCase): """Tests GET request on `feed-detail` endpoint. This API call should retrieve a single Feed object. """ def setUp(self): self.create_and_authenticate_user('testadmin') def test_successful_retrieval(self): url = reverse('feed-detail', kwargs={'pk': self.pk}) response = self.client.get(url) payload = response.json() self.assert_http_status(response) self.assertIsInstance(payload, dict) self.assertCountEqual(payload.keys(), FEED_DETAIL_FIELDS) def test_retrieving_nonexistent_feed(self): url = reverse('feed-detail', kwargs={'pk': 100}) response = self.client.get(url) self.assert_http_status(response, 404) @patch('feeds.api.views.Feed.fetch_and_set_feed_details') class CreateFeedTest(BaseFeedAPITestCase): """Tests POST request on `feed-list` endpoint. This API call should create a new Feed object. """ def setUp(self): self.create_and_authenticate_user('testadmin') self.endpoint_url = reverse('feed-list') def test_successful_feed_creation(self, mock_fetch): valid_payload = { 'link': 'https://www.feeds-me-up.com/', 'title': 'Title 1', 'description': 'Description', 'version': 'rss20' } response = self.client.post( self.endpoint_url, data=valid_payload, format='json' ) self.assert_http_status(response, 201) self.assertTrue(mock_fetch.called) def test_feed_creation_with_link_only(self, mock_fetch): valid_payload = {'link': 'https://www.feeds-me-up-x.com/'} response = self.client.post( self.endpoint_url, data=valid_payload, format='json' ) self.assert_http_status(response, 201) self.assertTrue(mock_fetch.called) def test_invalid_feed_creation_request(self, mock_fetch): invalid_payload = {'link': 'invalid'} response = self.client.post( self.endpoint_url, data=invalid_payload, format='json' ) self.assert_http_status(response, 400) self.assertFalse(mock_fetch.called) @patch('feeds.api.views.Feed.fetch_and_set_feed_details') class UpdateFeedTest(BaseFeedAPITestCase): """Tests PUT requests on `feed-detail` endpoint. This API call should update a given Feed object. """ def setUp(self): self.create_and_authenticate_user('testadmin') self.feed = Feed.objects.get(pk=self.pk) self.valid_payload = {'link': self.feed.link} self.endpoint_url = reverse('feed-detail', kwargs={'pk': self.pk}) def test_valid_update(self, mock_fetch): self.valid_payload['title'] = 'New Title' self.valid_payload['description'] = 'New description' response = self.client.put( self.endpoint_url, data=self.valid_payload, format='json' ) self.assert_http_status(response) def test_invalid_update(self, mock_fetch): invalid_payload = {'notvalid': 'notvalid'} response = self.client.put( self.endpoint_url, data=invalid_payload, format='json' ) self.assert_http_status(response, 400) class DeleteFeedTest(BaseFeedAPITestCase): """Tests DELETE requests on `feed-detail` endpoint. This API call should delete a given Feed object. """ def setUp(self): self.create_and_authenticate_user('testadmin') self.feed = Feed.objects.get(pk=self.pk) self.endpoint_url = reverse('feed-detail', kwargs={'pk': self.pk}) def test_successful_delete(self): response = self.client.delete(self.endpoint_url) self.assert_http_status(response, 204) with self.assertRaises(Feed.DoesNotExist): Feed.objects.get(pk=self.pk) class FeedEntriesListTest(BaseFeedAPITestCase): """Tests GET requests on `feed-entries` endpoint. This API call should return a JSON payload that includes a list of Entry objects associated with a given Feed object. """ def setUp(self): self.create_and_authenticate_user('testadmin') self.endpoint_url = reverse('feed-entries', kwargs={'pk': self.pk}) self.feed = Feed.objects.get(pk=self.pk) def test_valid_feed_entries_retrieval(self): # Create some Entry objects and associate with a Feed n_entries = 120 feed_url = self.feed.link entries = create_entry_objects(n_entries, feed_url) for entry in entries: self.feed.entries.add(entry) # Fetch this feed's entries via API endpoint response = self.client.get(self.endpoint_url) payload = response.json() self.assert_http_status(response) self.assertIsInstance(payload['results'], list) self.assertEqual(payload['count'], self.feed.entries.count())
the-stack_106_25987
import array import logging from . import machine from spec_exceptions import ChannelError log = logging.getLogger('puka') class ChannelCollection(object): channel_max = 65535 def __init__(self): self.channels = {} self.free_channels = [] # Channel 0 is a special case. self.free_channel_numbers = [0] zero_channel = self.new() self.free_channels.append( zero_channel ) def tune_channel_max(self, new_channel_max): new_channel_max = new_channel_max if new_channel_max != 0 else 65535 self.channel_max = min(self.channel_max, new_channel_max) self.free_channel_numbers = array.array('H', xrange(self.channel_max, 0, -1)) return self.channel_max def new(self): try: number = self.free_channel_numbers.pop() except IndexError: raise ChannelError('No free channels') channel = Channel(number) self.channels[number] = channel return channel def allocate(self, promise, on_channel): if self.free_channels: channel = self.free_channels.pop() channel.promise = promise promise.channel = channel promise.after_machine_callback = on_channel else: channel = self.new() channel.promise = promise promise.channel = channel machine.channel_open(promise, on_channel) return channel def deallocate(self, channel): channel.promise.channel = channel.promise = None if channel.alive: self.free_channels.append( channel ) else: del self.channels[channel.number] self.free_channel_numbers.append( channel.number ) class Channel(object): alive = False def __init__(self, number): self.number = number self.promise = None self._clear_inbound_state() def _clear_inbound_state(self): self.method_frame = self.props = None self.body_chunks = [] self.body_len = self.body_size = 0 def inbound_method(self, frame): if frame.has_content: self.method_frame = frame else: self._handle_inbound(frame) def inbound_props(self, body_size, props): self.body_size = body_size self.props = props if self.body_size == 0: # don't expect body frame self.inbound_body('') def inbound_body(self, body_chunk): self.body_chunks.append( body_chunk ) self.body_len += len(body_chunk) if self.body_len == self.body_size: result = self.method_frame props = self.props result['body'] = ''.join(self.body_chunks) result['headers'] = props.get('headers', {}) # Aint need a reference loop. if 'headers' in props: del props['headers'] result['headers'].update( props ) self._clear_inbound_state() return self._handle_inbound(result) def _handle_inbound(self, result): self.promise.recv_method(result)
the-stack_106_25988
"""Test figures.tasks Daily task functions # Overview of daily pipeline Figures daily pipeline collects and aggregates data from Open edX (edx-platform) into Figures models. The Figures task functions are Celery tasks. However currently only the top level task function is called asynchronously. # Daily pipeline execution The daily pipeline executes at the following levels 1. Top level initiates the daily metrics collection job. It iterates over each site to be processed (currently all sites) 2. Per site execution. It iterates over each course in the site. After all the courses have been processed, Figures `EnrollmentData` are updated 3. Per course execution. It iterates over each enrollment in the course 4. Per enrollment exeuction. It processes per enrollment (learner + course pair) These are the functions called, the purpose and details 1. 'populate_daily_metrics' * Gets list (queryset) of Site objects * Iterates over each site and calls 'populate_daily_metrics_for_site' for each site 2. 'populate_daily_metrics_for_site' * Gets list (queryset) of course id strings for the site * Iterates over each course id and calls 'populate_single_cdm' for each course * After all the CourseDailyMetrics records have been collected, calls 'populate_single_sdm' 3. 'populate_single_sdm' * Fills the SiteDailyMetrics record for the site + date pair 4. 'populate_single_cdm' * Fills the CourseDailyMetrics record for the specified course 5. 'update_enrollment_data' * Updates Figures 'EnrollmentData' records. These records provide a current snapshot of enrollment data # Testing priorities We have two top priorities for this testing module: 1. Verify nominal operation will work 2. Verify failures at one level do not cause any of the levels above to fail Of secondary importance is testing log output """ from __future__ import absolute_import from datetime import date import pytest from six.moves import range from django.contrib.sites.models import Site from figures.helpers import as_date, as_datetime from figures.models import (CourseDailyMetrics, SiteDailyMetrics) from figures.tasks import (FPD_LOG_PREFIX, populate_single_cdm, populate_single_sdm, populate_daily_metrics_for_site, populate_daily_metrics) from tests.factories import (CourseDailyMetricsFactory, CourseOverviewFactory, SiteDailyMetricsFactory, SiteFactory) from tests.helpers import OPENEDX_RELEASE, GINKGO, FakeException def test_populate_single_cdm(transactional_db, monkeypatch): """Test figures.tasks.populate_single_cdm nominal case This tests the normal execution to popluate a single CourseDailyMetrics record """ assert CourseDailyMetrics.objects.count() == 0 date_for = '2019-01-02' course_id = "course-v1:certs-appsembler+001+2019" created = False def mock_cdm_load(self, date_for, **kwargs): return (CourseDailyMetricsFactory(date_for=date_for), created, ) monkeypatch.setattr('figures.sites.get_site_for_course', lambda val: SiteFactory()) monkeypatch.setattr( 'figures.pipeline.course_daily_metrics.CourseDailyMetricsLoader.load', mock_cdm_load) populate_single_cdm(course_id, date_for) assert CourseDailyMetrics.objects.count() == 1 assert as_date(CourseDailyMetrics.objects.first().date_for) == as_date(date_for) def test_populate_single_sdm(transactional_db, monkeypatch): """Test figures.tasks.populate_single_sdm Test the task function that fills the SiteDailyMetrics record for a given site """ assert SiteDailyMetrics.objects.count() == 0 date_for = '2019-01-02' created = False site = SiteFactory() def mock_sdm_load(self, site, date_for, **kwargs): return (SiteDailyMetricsFactory(site=site), created, ) monkeypatch.setattr( 'figures.pipeline.site_daily_metrics.SiteDailyMetricsLoader.load', mock_sdm_load) populate_single_sdm(site.id, date_for=date_for) assert SiteDailyMetrics.objects.count() == 1 @pytest.mark.parametrize('date_for', [ '2020-12-12', as_date('2020-12-12'), as_datetime('2020-12-12') ]) def test_populate_daily_metrics_for_site_basic(transactional_db, monkeypatch, date_for): site = SiteFactory() course_ids = ['fake-course-1', 'fake-course-2'] collected_course_ids = [] def fake_populate_single_cdm(course_id, **_kwargs): collected_course_ids.append(course_id) def fake_populate_single_sdm(site_id, **_kwargs): assert site_id == site.id monkeypatch.setattr('figures.tasks.site_course_ids', lambda site: course_ids) monkeypatch.setattr('figures.tasks.populate_single_cdm', fake_populate_single_cdm) monkeypatch.setattr('figures.tasks.populate_single_sdm', fake_populate_single_sdm) populate_daily_metrics_for_site(site_id=site.id, date_for=date_for) assert set(collected_course_ids) == set(course_ids) @pytest.mark.skipif(OPENEDX_RELEASE == GINKGO, reason='Apparent Django 1.8 incompatibility') def test_populate_daily_metrics_for_site_error_on_cdm(transactional_db, monkeypatch, caplog): date_for = date.today() site = SiteFactory() fake_course_ids = ['fake-course-id-1'] def fake_pop_single_cdm_fails(**kwargs): # TODO: test with different exceptions # At least one with and without `message_dict` raise FakeException('Hey!') monkeypatch.setattr('figures.tasks.site_course_ids', lambda site: fake_course_ids) monkeypatch.setattr('figures.tasks.populate_single_cdm', fake_pop_single_cdm_fails) populate_daily_metrics_for_site(site_id=site.id, date_for=date_for) last_log = caplog.records[-1] expected_msg = ('{prefix}:SITE:COURSE:FAIL:populate_daily_metrics_for_site. ' 'site_id:{site_id}, date_for:{date_for}. ' 'course_id:{course_id} exception:{exception}' ).format(prefix=FPD_LOG_PREFIX, site_id=site.id, date_for=date_for, course_id=fake_course_ids[0], exception='Hey!') assert last_log.message == expected_msg @pytest.mark.skipif(OPENEDX_RELEASE == GINKGO, reason='Apparent Django 1.8 incompatibility') def test_populate_daily_metrics_for_site_site_dne(transactional_db, monkeypatch, caplog): """ If there is an invalid site id, logs error and raises it """ bad_site_id = Site.objects.order_by('id').last().id + 1 date_for = date.today() assert not Site.objects.filter(id=bad_site_id).exists() with pytest.raises(Exception) as e: populate_daily_metrics_for_site(site_id=bad_site_id, date_for=date_for) assert str(e.value) == 'Site matching query does not exist.' last_log = caplog.records[-1] expected_message = ('FIGURES:PIPELINE:DAILY:SITE:FAIL:' 'populate_daily_metrics_for_site:site_id: {} does not exist') assert last_log.message == expected_message.format(bad_site_id) @pytest.mark.skipif(OPENEDX_RELEASE == GINKGO, reason='Apparent Django 1.8 incompatibility') def test_populate_daily_metrics_site_level_error(transactional_db, monkeypatch, caplog): """ Generic test that the first site fails but we can process the second site """ assert Site.objects.count() == 1 # Because we always have 'example.com' good_site = Site.objects.first() bad_site = SiteFactory() populated_site_ids = [] failed_site_ids = [] date_for = date.today() def fake_populate_daily_metrics_for_site(site_id, **_kwargs): """ """ if site_id == bad_site.id: failed_site_ids.append(site_id) raise FakeException('Hey!') else: populated_site_ids.append(site_id) monkeypatch.setattr('figures.tasks.populate_daily_metrics_for_site', fake_populate_daily_metrics_for_site) populate_daily_metrics(date_for=date_for) assert set(populated_site_ids) == set([good_site.id]) assert set(failed_site_ids) == set([bad_site.id]) last_log = caplog.records[-1] expected_msg = ('{prefix}:FAIL populate_daily_metrics unhandled site level' ' exception for site[{site_id}]={domain}').format( prefix=FPD_LOG_PREFIX, site_id=bad_site.id, domain=bad_site.domain) assert last_log.message == expected_msg # TODO: def test_populate_daily_metrics_future_date_error @pytest.mark.skipif(OPENEDX_RELEASE == GINKGO, reason='Apparent Django 1.8 incompatibility') def test_populate_daily_metrics_enrollment_data_error(transactional_db, monkeypatch, caplog): # Needs to be 'today' so that enrollment data update gets called date_for = date.today() site = SiteFactory() def fake_populate_daily_metrics_for_site(**_kwargs): pass def fake_update_enrollment_data_fails(**kwargs): # TODO: test with different exceptions # At least one with and without `message_dict` raise FakeException('Hey!') monkeypatch.setattr('figures.tasks.populate_daily_metrics_for_site', fake_populate_daily_metrics_for_site) monkeypatch.setattr('figures.tasks.update_enrollment_data', fake_update_enrollment_data_fails) populate_daily_metrics(date_for=date_for) last_log = caplog.records[-1] expected_msg = ('{prefix}:FAIL figures.tasks update_enrollment_data ' ' unhandled exception. site[{site_id}]:{domain}').format( prefix=FPD_LOG_PREFIX, site_id=site.id, domain=site.domain) assert last_log.message == expected_msg @pytest.mark.skipif(OPENEDX_RELEASE == GINKGO, reason='Broken test. Apparent Django 1.8 incompatibility') def test_populate_daily_metrics_multisite(transactional_db, monkeypatch): # Stand up test data date_for = '2019-01-02' site_links = [] for domain in ['alpha.domain', 'bravo.domain']: site_links.append(dict( site=SiteFactory(domain=domain), courses=[CourseOverviewFactory() for i in range(2)], )) populate_daily_metrics(date_for=date_for)
the-stack_106_25989
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import os from os.path import join as pjoin import numpy as np from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext def find_in_path(name, path): "Find a file in a search path" #adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin') nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path) if nvcc is None: raise EnvironmentError('The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME') home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = {'home':home, 'nvcc':nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64')} for k, v in cudaconfig.items(): if not os.path.exists(v): raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig CUDA = locate_cuda() # Obtain the numpy include directory. This logic works across numpy versions. try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): print(extra_postargs) if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) ext_modules = [ Extension( "utils.bbox", ["utils/bbox.pyx"], extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]}, include_dirs = [numpy_include] ), Extension( "nms.cpu_nms", ["nms/cpu_nms.pyx"], extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]}, include_dirs = [numpy_include] ), Extension('nms.gpu_nms', ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'], library_dirs=[CUDA['lib64']], libraries=['cudart'], language='c++', runtime_library_dirs=[CUDA['lib64']], # this syntax is specific to this build system # we're only going to use certain compiler args with nvcc and not with gcc # the implementation of this trick is in customize_compiler() below extra_compile_args={'gcc': ["-Wno-unused-function"], 'nvcc': ['-arch=sm_52', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'"]}, include_dirs = [numpy_include, CUDA['include']] ) ] setup( name='tf_faster_rcnn', ext_modules=ext_modules, # inject our custom trigger cmdclass={'build_ext': custom_build_ext}, )
the-stack_106_25992
# -*- coding: utf-8 -*- # Author: XuMing <[email protected]> # Brief: from xml.dom import minidom import pycorrector.rnn_crf.rnn_crf_config as config from pycorrector.tokenizer import segment def parse_xml_file(path): print('Parse data from %s' % path) id_lst, word_lst, label_lst = [], [], [] with open(path, 'r', encoding='utf-8') as f: dom_tree = minidom.parse(path) docs = dom_tree.documentElement.getElementsByTagName('DOC') for doc in docs: # Input the text text = doc.getElementsByTagName('TEXT')[0]. \ childNodes[0].data.strip() text_id = doc.getElementsByTagName('TEXT')[0].getAttribute('id') errors = doc.getElementsByTagName('ERROR') # Locate the error position and error type locate_dict = {} for error in errors: start_off = error.getAttribute('start_off') end_off = error.getAttribute('end_off') error_type = error.getAttribute('type') for i in range(int(start_off) - 1, int(end_off)): if i == int(start_off) - 1: error_type_change = 'B-' + error_type else: error_type_change = 'I-' + error_type # locate_dict[i] = error_type_change locate_dict[i] = error_type # Segment with pos word_seq, pos_seq = segment(text, cut_type='char', pos=True) word_arr, label_arr = [], [] for i in range(len(word_seq)): if i in locate_dict: word_arr.append(word_seq[i]) # Fill with error type label_arr.append(locate_dict[i]) else: word_arr.append(word_seq[i]) # Fill with pos tag label_arr.append(pos_seq[i]) id_lst.append(text_id) word_lst.append(word_arr) label_lst.append(label_arr) return id_lst, word_lst, label_lst def parse_txt_file(input_path, truth_path): print('Parse data from %s and %s' % (input_path, truth_path)) id_lst, word_lst, label_lst = [], [], [] # read truth file truth_dict = {} with open(truth_path, 'r', encoding='utf-8') as truth_f: for line in truth_f: parts = line.strip().split(',') # Locate the error position locate_dict = {} if len(parts) == 4: text_id = parts[0] start_off = parts[1] end_off = parts[2] error_type = parts[3].strip() for i in range(int(start_off) - 1, int(end_off)): if i == int(start_off) - 1: error_type_change = 'B-' + error_type else: error_type_change = 'I-' + error_type # locate_dict[i] = error_type_change locate_dict[i] = error_type # for i in range(int(start_off) - 1, int(end_off)): # locate_dict[i] = error_type if text_id in truth_dict: truth_dict[text_id].update(locate_dict) else: truth_dict[text_id] = locate_dict # read input file and get token with open(input_path, 'r', encoding='utf-8') as input_f: for line in input_f: parts = line.strip().split('\t') text_id = parts[0].replace('(sid=', '').replace(')', '') text = parts[1] # segment with pos word_seq, pos_seq = segment(text, cut_type='char', pos=True) word_arr, label_arr = [], [] if text_id in truth_dict: locate_dict = truth_dict[text_id] for i in range(len(word_seq)): if i in locate_dict: word_arr.append(word_seq[i]) # fill with error type label_arr.append(locate_dict[i]) else: word_arr.append(word_seq[i]) # fill with pos tag label_arr.append(pos_seq[i]) else: word_arr = word_seq label_arr = pos_seq id_lst.append(text_id) word_lst.append(word_arr) label_lst.append(label_arr) return id_lst, word_lst, label_lst def save_data_list(data_list, data_path): with open(data_path, 'w', encoding='utf-8') as f: count = 0 for line in data_list: f.write(' '.join(line) + '\n') count += 1 print("save line size:%d to %s" % (count, data_path)) if __name__ == '__main__': # train data train_words, train_labels = [], [] for path in config.train_paths: _, word_list, label_list = parse_xml_file(path) train_words.extend(word_list) train_labels.extend(label_list) save_data_list(train_words, config.train_word_path) save_data_list(train_labels, config.train_label_path) # test data test_ids, test_words, test_labels = [], [], [] for input_path, truth_path in config.test_paths.items(): id_list, word_list, label_list = parse_txt_file(input_path, truth_path) test_ids.extend(id_list) test_words.extend(word_list) test_labels.extend(label_list) save_data_list(test_ids, config.test_id_path) save_data_list(test_words, config.test_word_path) save_data_list(test_labels, config.test_label_path)
the-stack_106_25993
import os import pandas as pd import numpy as np import shutil from data_handling_functions import get_article_row, m_j_dict import math this_path = 'Bilbokning/' #PARAMETERS EUR_PALLET_VOLUME = 1.20*0.80*1.00 NUM_OF_ZONES = 9 def calculate_dij_mj(degree_of_filling, date): #Remove /csv/... if it exists, then create a new if os.path.exists(this_path+"csv"): shutil.rmtree(this_path+"csv") os.mkdir(this_path+"csv") df_utlev = pd.read_csv(this_path+'data/df_utleveranser_TATA62.csv', sep=';') df_prod = pd.read_csv(this_path+'data/df_artiklar_TATA62.csv', sep=';') #Select only todays orders todays_date = df_utlev[df_utlev.Datum == date] #---------------------------Augmenting todays_date------------------------- #Augment todays_date with Zone, Volumes, Type and Quantities) zone_list=[] article_volume_list=[] pack_volume_list=[] pallet_volume_list=[] pickup_type_list=[] pack_quantity_list=[] pallet_quantity_list=[] for i in todays_date["Artikelnr"]: zone_list.append(df_prod.loc[get_article_row(i, df_prod), "PlockOmråde"]) for i in todays_date["Artikelnr"]: article_volume_list.append(df_prod.loc[get_article_row(i, df_prod), "ArtikelVolym"]) for i in todays_date["Artikelnr"]: pack_volume_list.append(df_prod.loc[get_article_row(i, df_prod), "FörpVolym"]) for i in todays_date["Artikelnr"]: pallet_volume_list.append(df_prod.loc[get_article_row(i, df_prod), "PallVolym"]) for i in todays_date["Artikelnr"]: pickup_type_list.append(df_prod.loc[get_article_row(i, df_prod), "PlockTyp"]) for i in todays_date["Artikelnr"]: pack_quantity_list.append(df_prod.loc[get_article_row(i, df_prod), "FörpQ"]) for i in todays_date["Artikelnr"]: pallet_quantity_list.append(df_prod.loc[get_article_row(i, df_prod), "PallQ"]) todays_date.loc[:,"PlockOmråde"] = zone_list todays_date.loc[:,"ArtikelVolym"] = article_volume_list todays_date.loc[:,"FörpVolym"] = pack_volume_list todays_date.loc[:,"PallVolym"] = pallet_volume_list todays_date.loc[:,"PlockTyp"] = pickup_type_list todays_date.loc[:,"FörpQ"] = pack_quantity_list todays_date.loc[:,"PallQ"] = pallet_quantity_list #-------------------------------------------------------------------------- todays_date.to_csv(this_path+"csv/"+date+".csv", index=False) #List with shop_ids shop_ids = set(todays_date["Butiksnr"].tolist()) #Create directories and sorted csv-files (shop-ids, product_types) os.mkdir(this_path+"csv/stores") dij = np.array([]) dij.shape=(NUM_OF_ZONES,0) m_j = [] for shop in shop_ids: os.mkdir(this_path+"csv/stores/"+str(shop)) specific_shop = todays_date[todays_date.Butiksnr == shop] specific_shop.to_csv(this_path+"csv/stores/"+str(shop)+"/"+str(shop)+".csv", index=False) product_types = set(specific_shop["Varugrupp"].tolist()) Dij = np.array([]) Dij.shape=(NUM_OF_ZONES,0) for product_type in product_types: os.mkdir(this_path+"csv/stores/"+str(shop)+"/"+str(product_type)) specific_product = specific_shop[specific_shop.Varugrupp == product_type] specific_product.to_csv(this_path+"csv/stores/"+str(shop)+"/"+str(product_type)+"/"+str(product_type)+".csv", index=False) #----------------------------Packing problem---------------------------- num_of_rows = range(specific_product.shape[0]) zone_volume_article = np.zeros((NUM_OF_ZONES,1)) zone_volume_pack = np.zeros((NUM_OF_ZONES,1)) zone_pallet_pallets = np.zeros((NUM_OF_ZONES,1)) for i in num_of_rows: item = specific_product.iloc[i,:] #Decide the real zone (The order is important!!) if item.PlockOmråde == "Tält": real_zone = 0 elif item.PlockOmråde == "Fristapling" or item.PlockOmråde == "Udda": real_zone = 1 elif item.PlockOmråde == "Helpall" or item.PlockTyp == "Pall": real_zone = 5 elif item.PlockOmråde == "ADR": real_zone = 6 elif product_type == "2 El & belysning": real_zone = 7 elif item.PlockOmråde == "Entresol": real_zone = 8 elif product_type == "6 Trädgård" or product_type == "5 Färg": real_zone = 2 elif product_type == "3 VVS & Bad" or product_type == "4 Bygg": real_zone = 3 elif product_type == "1 Järn": real_zone = 4 #Sort pallets after zone for each product_type if item.PlockTyp == "Styck": zone_volume_article[real_zone] += item.Kvantitet * float(item.ArtikelVolym.replace(',', '.')) elif item.PlockTyp == "Förpackning" or item.PlockTyp == "": zone_volume_pack[real_zone] += (item.Kvantitet / item.FörpQ) * float(item.FörpVolym.replace(',', '.')) elif item.PlockTyp == "Pall": zone_pallet_pallets[real_zone] += math.ceil(item.Kvantitet / item.PallQ) zone_article_pallets = np.ceil(zone_volume_article / (degree_of_filling * EUR_PALLET_VOLUME)) zone_pack_pallets = np.ceil(zone_volume_pack / (degree_of_filling * EUR_PALLET_VOLUME)) #Number of pallets from a zone for a specific product_type for a specific shop pallets_from_zone = zone_article_pallets + zone_pack_pallets + zone_pallet_pallets #One failsafe. It is now okay to send 96 pallets from one zone for one product type. if np.any((pallets_from_zone > 48) == True) or pallets_from_zone[0] > 30: tmp = np.floor(pallets_from_zone / 2) pallets_from_zone -= tmp Dij = np.append(Dij, tmp, axis=1) #Control to check if any zone sends more than 48 pallets for one product type if np.any((pallets_from_zone > 48) == True): print(str(shop)+" "+str(product_type)+" "+ str(real_zone) + " greater than 48 will generate error, or tent greater than 30") Dij = np.append(Dij, pallets_from_zone, axis=1) #----------------------------------------------------------------------- #----------------------------Combination problem--------------------------- #Every initial order is set to less than 48 (Split large product_types) col = 0 while col < Dij.shape[1]: max_pallets = 0 new_column = np.zeros((NUM_OF_ZONES,1)) for i in range(Dij.shape[0]): if Dij[i,col] + max_pallets <= 48: max_pallets += Dij[i,col] new_column[i,:] = 0 else: new_column[i,:] = Dij[i,col] Dij[i,col] = 0 if sum(new_column[:,:]) != 0: Dij = np.append(Dij,new_column,axis=1) col += 1 #Combine orders fixed_Dij = np.zeros((NUM_OF_ZONES,Dij.shape[1])) deleted = [] for j in range(fixed_Dij.shape[1]): test_range = range(Dij.shape[1]) for k in test_range: if k in deleted: continue if sum(fixed_Dij[:,j]) + sum(Dij[:,k]) <= 48 and (fixed_Dij[0,j] + Dij[0,k]) <= 30: fixed_Dij[:,j] = fixed_Dij[:,j] + Dij[:,k] deleted.append(k) #Delete empty columns delete_col = [] for j in range(fixed_Dij.shape[1]): if sum(fixed_Dij[:,j]) == 0: delete_col.append(j) fixed_Dij = np.delete(fixed_Dij,delete_col,axis=1) #Generate m_j for n in range(fixed_Dij.shape[1]): m_j = np.append(m_j,m_j_dict[str(shop)]) #Append Dij for specific shop to total dij dij = np.append(dij,fixed_Dij,axis=1) #-------------------------------------------------------------------------- return dij, m_j
the-stack_106_25994
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause """ Sections in this module are 1. top-level functions 2. plan creators 3. plan runners 4. individual operations 5. helper functions The top-level functions compose and execute full plans. A plan is created by composing various individual operations. The plan data structure is a list of dicts, where each dict represents an individual operation. The dict contains two keys--`function` and `kwargs`--where function is the name of the individual operation function within this module. Each individual operation must a) return a `Result` (i.e. NEEDS_SUDO, MODIFIED, or NO_CHANGE) b) have no side effects if context.dry_run is True c) be verbose and descriptive about the changes being made or proposed is context.verbosity >= 1 The plan runner functions take the plan (list of dicts) as an argument, and then coordinate the execution of each individual operation. The docstring for `run_plan_elevated()` has details on how that strategy is implemented. """ from __future__ import absolute_import, division, print_function, unicode_literals from difflib import unified_diff from errno import ENOENT from glob import glob from itertools import chain import json from logging import getLogger import os from os.path import abspath, basename, dirname, exists, expanduser, isdir, isfile, join from random import randint import re import sys from tempfile import NamedTemporaryFile from .. import CONDA_PACKAGE_ROOT, CondaError, __version__ as CONDA_VERSION from .._vendor.auxlib.ish import dals from ..activate import (CshActivator, FishActivator, PosixActivator, XonshActivator, PowerShellActivator) from ..base.context import context from ..common.compat import (PY2, ensure_binary, ensure_fs_path_encoding, ensure_text_type, on_mac, on_win, open) from ..common.path import (expand, get_bin_directory_short_path, get_python_short_path, get_python_site_packages_short_path, win_path_ok) from ..exceptions import CondaValueError from ..gateways.disk.create import copy, mkdir_p from ..gateways.disk.delete import rm_rf from ..gateways.disk.link import lexists from ..gateways.disk.permissions import make_executable from ..gateways.disk.read import compute_md5sum from ..gateways.subprocess import subprocess_call if on_win: if PY2: import _winreg as winreg else: import winreg from menuinst.knownfolders import get_folder_path, FOLDERID from menuinst.winshortcut import create_shortcut log = getLogger(__name__) CONDA_INITIALIZE_RE_BLOCK = (r"^# >>> conda initialize >>>(?:\n|\r\n)" r"([\s\S]*?)" r"# <<< conda initialize <<<(?:\n|\r\n)?") class Result: NEEDS_SUDO = "needs sudo" MODIFIED = "modified" NO_CHANGE = "no change" # ##################################################### # top-level functions # ##################################################### def install(conda_prefix): plan = make_install_plan(conda_prefix) run_plan(plan) if not context.dry_run: assert not any(step['result'] == Result.NEEDS_SUDO for step in plan) print_plan_results(plan) return 0 def initialize(conda_prefix, shells, for_user, for_system, anaconda_prompt): plan1 = [] if os.getenv('CONDA_PIP_UNINITIALIZED') == 'true': plan1 = make_install_plan(conda_prefix) run_plan(plan1) if not context.dry_run: run_plan_elevated(plan1) plan2 = make_initialize_plan(conda_prefix, shells, for_user, for_system, anaconda_prompt) run_plan(plan2) if not context.dry_run: run_plan_elevated(plan2) plan = plan1 + plan2 print_plan_results(plan) if any(step['result'] == Result.NEEDS_SUDO for step in plan): print("Operation failed.", file=sys.stderr) return 1 def initialize_dev(shell, dev_env_prefix=None, conda_source_root=None): # > alias conda-dev='eval "$(python -m conda init --dev)"' # > eval "$(python -m conda init --dev)" dev_env_prefix = expand(dev_env_prefix or sys.prefix) conda_source_root = expand(conda_source_root or os.getcwd()) python_exe, python_version, site_packages_dir = _get_python_info(dev_env_prefix) if not isfile(join(conda_source_root, 'conda', '__main__.py')): raise CondaValueError("Directory is not a conda source root: %s" % conda_source_root) plan = make_install_plan(dev_env_prefix) plan.append({ 'function': remove_conda_in_sp_dir.__name__, 'kwargs': { 'target_path': site_packages_dir, }, }) plan.append({ 'function': make_conda_egg_link.__name__, 'kwargs': { 'target_path': join(site_packages_dir, 'conda.egg-link'), 'conda_source_root': conda_source_root, }, }) plan.append({ 'function': modify_easy_install_pth.__name__, 'kwargs': { 'target_path': join(site_packages_dir, 'easy-install.pth'), 'conda_source_root': conda_source_root, }, }) plan.append({ 'function': make_dev_egg_info_file.__name__, 'kwargs': { 'target_path': join(conda_source_root, 'conda.egg-info'), }, }) run_plan(plan) if context.dry_run or context.verbosity: print_plan_results(plan, sys.stderr) if any(step['result'] == Result.NEEDS_SUDO for step in plan): # pragma: no cover raise CondaError("Operation failed. Privileged install disallowed for 'conda init --dev'.") env_vars = { 'ADD_COV': '--cov-report xml --cov-report term-missing --cov conda', 'PYTHONHASHSEED': str(randint(0, 4294967296)), 'PYTHON_MAJOR_VERSION': python_version[0], 'TEST_PLATFORM': 'win' if on_win else 'unix', } unset_env_vars = ( 'CONDA_DEFAULT_ENV', 'CONDA_EXE', 'CONDA_PREFIX', 'CONDA_PREFIX_1', 'CONDA_PREFIX_2', 'CONDA_PROMPT_MODIFIER', 'CONDA_PYTHON_EXE', 'CONDA_SHLVL', ) if shell == "bash": builder = [] builder += ["unset %s" % unset_env_var for unset_env_var in unset_env_vars] builder += ["export %s='%s'" % (key, env_vars[key]) for key in sorted(env_vars)] sys_executable = abspath(sys.executable) if on_win: sys_executable = "$(cygpath '%s')" % sys_executable builder += [ "eval \"$(\"%s\" -m conda shell.bash hook)\"" % sys_executable, "conda activate '%s'" % dev_env_prefix, ] print("\n".join(builder)) elif shell == 'cmd.exe': builder = [] builder += ["@IF NOT \"%CONDA_PROMPT_MODIFIER%\" == \"\" @CALL " "SET \"PROMPT=%%PROMPT:%CONDA_PROMPT_MODIFIER%=%_empty_not_set_%%%\""] builder += ["@SET %s=" % unset_env_var for unset_env_var in unset_env_vars] builder += ['@SET "%s=%s"' % (key, env_vars[key]) for key in sorted(env_vars)] builder += [ '@CALL \"%s\"' % join(dev_env_prefix, 'condabin', 'conda_hook.bat'), '@IF %errorlevel% NEQ 0 @EXIT /B %errorlevel%', '@CALL \"%s\" activate \"%s\"' % (join(dev_env_prefix, 'condabin', 'conda.bat'), dev_env_prefix), '@IF %errorlevel% NEQ 0 @EXIT /B %errorlevel%', ] if not context.dry_run: with open('dev-init.bat', 'w') as fh: fh.write('\n'.join(builder)) if context.verbosity: print('\n'.join(builder)) print("now run > .\\dev-init.bat") else: raise NotImplementedError() return 0 # ##################################################### # plan creators # ##################################################### def make_install_plan(conda_prefix): try: python_exe, python_version, site_packages_dir = _get_python_info(conda_prefix) except EnvironmentError: python_exe, python_version, site_packages_dir = None, None, None # NOQA plan = [] # ###################################### # executables # ###################################### if on_win: conda_exe_path = join(conda_prefix, 'Scripts', 'conda-script.py') conda_env_exe_path = join(conda_prefix, 'Scripts', 'conda-env-script.py') plan.append({ 'function': make_entry_point_exe.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'Scripts', 'conda.exe'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': make_entry_point_exe.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'Scripts', 'conda-env.exe'), 'conda_prefix': conda_prefix, }, }) else: # We can't put a conda.exe in condabin on Windows. It'll conflict with conda.bat. plan.append({ 'function': make_entry_point.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'conda'), 'conda_prefix': conda_prefix, 'module': 'conda.cli', 'func': 'main', }, }) conda_exe_path = join(conda_prefix, 'bin', 'conda') conda_env_exe_path = join(conda_prefix, 'bin', 'conda-env') plan.append({ 'function': make_entry_point.__name__, 'kwargs': { 'target_path': conda_exe_path, 'conda_prefix': conda_prefix, 'module': 'conda.cli', 'func': 'main', }, }) plan.append({ 'function': make_entry_point.__name__, 'kwargs': { 'target_path': conda_env_exe_path, 'conda_prefix': conda_prefix, 'module': 'conda_env.cli.main', 'func': 'main', }, }) # ###################################### # shell wrappers # ###################################### if on_win: plan.append({ 'function': install_condabin_conda_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'conda.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_library_bin_conda_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'Library', 'bin', 'conda.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_condabin_conda_activate_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', '_conda_activate.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_condabin_conda_auto_activate_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'conda_auto_activate.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_condabin_hook_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'conda_hook.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_Scripts_activate_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'Scripts', 'activate.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_activate_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'activate.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_deactivate_bat.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'deactivate.bat'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_activate.__name__, 'kwargs': { 'target_path': join(conda_prefix, get_bin_directory_short_path(), 'activate'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_deactivate.__name__, 'kwargs': { 'target_path': join(conda_prefix, get_bin_directory_short_path(), 'deactivate'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_conda_sh.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'etc', 'profile.d', 'conda.sh'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_conda_fish.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'etc', 'fish', 'conf.d', 'conda.fish'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_conda_psm1.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'shell', 'condabin', 'Conda.psm1'), 'conda_prefix': conda_prefix, }, }) plan.append({ 'function': install_conda_hook_ps1.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'shell', 'condabin', 'conda-hook.ps1'), 'conda_prefix': conda_prefix, }, }) if site_packages_dir: plan.append({ 'function': install_conda_xsh.__name__, 'kwargs': { 'target_path': join(site_packages_dir, 'xonsh', 'conda.xsh'), 'conda_prefix': conda_prefix, }, }) else: print("WARNING: Cannot install xonsh wrapper without a python interpreter in prefix: " "%s" % conda_prefix, file=sys.stderr) plan.append({ 'function': install_conda_csh.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'etc', 'profile.d', 'conda.csh'), 'conda_prefix': conda_prefix, }, }) return plan def make_initialize_plan(conda_prefix, shells, for_user, for_system, anaconda_prompt): plan = make_install_plan(conda_prefix) shells = set(shells) if shells & {'bash', 'zsh'}: if 'bash' in shells and for_user: bashrc_path = expand(join('~', '.bash_profile' if on_mac else '.bashrc')) plan.append({ 'function': init_sh_user.__name__, 'kwargs': { 'target_path': bashrc_path, 'conda_prefix': conda_prefix, 'shell': 'bash', }, }) if 'zsh' in shells and for_user: zshrc_path = expand(join('~', '.zshrc')) plan.append({ 'function': init_sh_user.__name__, 'kwargs': { 'target_path': zshrc_path, 'conda_prefix': conda_prefix, 'shell': 'zsh', }, }) if for_system: plan.append({ 'function': init_sh_system.__name__, 'kwargs': { 'target_path': '/etc/profile.d/conda.sh', 'conda_prefix': conda_prefix, }, }) if 'fish' in shells: if for_user: config_fish_path = expand(join('~', '.config', 'config.fish')) plan.append({ 'function': init_fish_user.__name__, 'kwargs': { 'target_path': config_fish_path, 'conda_prefix': conda_prefix, }, }) if for_system: raise NotImplementedError() if 'tcsh' in shells: if for_user: raise NotImplementedError() if for_system: raise NotImplementedError() if 'powershell' in shells: # There's several places PowerShell can store its path, depending # on if it's Windows PowerShell, PowerShell Core on Windows, or # PowerShell Core on macOS/Linux. The easiest way to resolve it is to # just ask different possible installations of PowerShell where their # profiles are. def find_powershell_paths(*exe_names): for exe_name in exe_names: try: yield subprocess_call( (exe_name, '-NoProfile', '-Command', '$PROFILE') ).stdout.strip() except Exception: pass config_powershell_paths = tuple( find_powershell_paths('powershell', 'pwsh', 'pwsh-preview') ) for config_path in config_powershell_paths: if config_path is not None: plan.append({ 'function': init_powershell_user.__name__, 'kwargs': { 'target_path': config_path, 'conda_prefix': conda_prefix } }) if for_system: raise NotImplementedError( "PowerShell hooks are only implemented for per-user profiles." ) if 'cmd.exe' in shells: if for_user: plan.append({ 'function': init_cmd_exe_registry.__name__, 'kwargs': { 'target_path': 'HKEY_CURRENT_USER\\Software\\Microsoft\\' 'Command Processor\\AutoRun', 'conda_prefix': conda_prefix, }, }) if for_system: plan.append({ 'function': init_cmd_exe_registry.__name__, 'kwargs': { 'target_path': 'HKEY_LOCAL_MACHINE\\Software\\Microsoft\\' 'Command Processor\\AutoRun', 'conda_prefix': conda_prefix, }, }) # it would be nice to enable this on a user-level basis, but unfortunately, it is # a system-level key only. plan.append({ 'function': init_long_path.__name__, 'kwargs': { 'target_path': 'HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Control\\' 'FileSystem\\LongPathsEnabled' } }) if anaconda_prompt: plan.append({ 'function': install_anaconda_prompt.__name__, 'kwargs': { 'target_path': join(conda_prefix, 'condabin', 'Anaconda Prompt.lnk'), 'conda_prefix': conda_prefix, }, }) if on_win: desktop_dir, exception = get_folder_path(FOLDERID.Desktop) assert not exception else: desktop_dir = join(expanduser('~'), "Desktop") plan.append({ 'function': install_anaconda_prompt.__name__, 'kwargs': { 'target_path': join(desktop_dir, "Anaconda Prompt.lnk"), 'conda_prefix': conda_prefix, }, }) return plan # ##################################################### # plan runners # ##################################################### def run_plan(plan): for step in plan: previous_result = step.get('result', None) if previous_result in (Result.MODIFIED, Result.NO_CHANGE): continue try: result = globals()[step['function']](*step.get('args', ()), **step.get('kwargs', {})) except EnvironmentError as e: log.info("%s: %r", step['function'], e, exc_info=True) result = Result.NEEDS_SUDO step['result'] = result def run_plan_elevated(plan): """ The strategy of this function differs between unix and Windows. Both strategies use a subprocess call, where the subprocess is run with elevated privileges. The executable invoked with the subprocess is `python -m conda.core.initialize`, so see the `if __name__ == "__main__"` at the bottom of this module. For unix platforms, we convert the plan list to json, and then call this module with `sudo python -m conda.core.initialize` while piping the plan json to stdin. We collect json from stdout for the results of the plan execution with elevated privileges. For Windows, we create a temporary file that holds the json content of the plan. The subprocess reads the content of the file, modifies the content of the file with updated execution status, and then closes the file. This process then reads the content of that file for the individual operation execution results, and then deletes the file. """ if any(step['result'] == Result.NEEDS_SUDO for step in plan): if on_win: from ..common.os.windows import run_as_admin temp_path = None try: with NamedTemporaryFile('w+b', suffix='.json', delete=False) as tf: # the default mode is 'w+b', and universal new lines don't work in that mode tf.write(ensure_binary(json.dumps(plan, ensure_ascii=False))) temp_path = tf.name python_exe = '"%s"' % abspath(sys.executable) hinstance, error_code = run_as_admin((python_exe, '-m', 'conda.core.initialize', '"%s"' % temp_path)) if error_code is not None: print("ERROR during elevated execution.\n rc: %s" % error_code, file=sys.stderr) with open(temp_path) as fh: _plan = json.loads(ensure_text_type(fh.read())) finally: if temp_path and lexists(temp_path): rm_rf(temp_path) else: stdin = json.dumps(plan) result = subprocess_call( 'sudo %s -m conda.core.initialize' % sys.executable, env={}, path=os.getcwd(), stdin=stdin ) stderr = result.stderr.strip() if stderr: print(stderr, file=sys.stderr) _plan = json.loads(result.stdout.strip()) del plan[:] plan.extend(_plan) def run_plan_from_stdin(): stdin = sys.stdin.read().strip() plan = json.loads(stdin) run_plan(plan) sys.stdout.write(json.dumps(plan)) def run_plan_from_temp_file(temp_path): with open(temp_path) as fh: plan = json.loads(ensure_text_type(fh.read())) run_plan(plan) with open(temp_path, 'w+b') as fh: fh.write(ensure_binary(json.dumps(plan, ensure_ascii=False))) def print_plan_results(plan, stream=None): if not stream: stream = sys.stdout for step in plan: print("%-14s%s" % (step.get('result'), step['kwargs']['target_path']), file=stream) changed = any(step.get('result') == Result.MODIFIED for step in plan) if changed: print("\n==> For changes to take effect, close and re-open your current shell. <==\n", file=stream) else: print("No action taken.", file=stream) # ##################################################### # individual operations # ##################################################### def make_entry_point(target_path, conda_prefix, module, func): # target_path: join(conda_prefix, 'bin', 'conda') conda_ep_path = target_path if isfile(conda_ep_path): with open(conda_ep_path) as fh: original_ep_content = fh.read() else: original_ep_content = "" if on_win: # no shebang needed on windows new_ep_content = "" else: new_ep_content = "#!%s\n" % join(conda_prefix, get_python_short_path()) conda_extra = dals(""" # Before any more imports, leave cwd out of sys.path for internal 'conda shell.*' commands. # see https://github.com/conda/conda/issues/6549 if len(sys.argv) > 1 and sys.argv[1].startswith('shell.') and sys.path and sys.path[0] == '': # The standard first entry in sys.path is an empty string, # and os.path.abspath('') expands to os.getcwd(). del sys.path[0] """) new_ep_content += dals(""" # -*- coding: utf-8 -*- import sys %(extra)s if __name__ == '__main__': from %(module)s import %(func)s sys.exit(%(func)s()) """) % { 'extra': conda_extra if module == 'conda.cli' else '', 'module': module, 'func': func, } if new_ep_content != original_ep_content: if context.verbosity: print('\n') print(target_path) print(make_diff(original_ep_content, new_ep_content)) if not context.dry_run: mkdir_p(dirname(conda_ep_path)) with open(conda_ep_path, 'w') as fdst: fdst.write(new_ep_content) if not on_win: make_executable(conda_ep_path) return Result.MODIFIED else: return Result.NO_CHANGE def make_entry_point_exe(target_path, conda_prefix): # target_path: join(conda_prefix, 'Scripts', 'conda.exe') exe_path = target_path bits = 8 * tuple.__itemsize__ source_exe_path = join(CONDA_PACKAGE_ROOT, 'shell', 'cli-%d.exe' % bits) if isfile(exe_path): if compute_md5sum(exe_path) == compute_md5sum(source_exe_path): return Result.NO_CHANGE if not context.dry_run: if not isdir(dirname(exe_path)): mkdir_p(dirname(exe_path)) # prefer copy() over create_hard_link_or_copy() because of windows file deletion issues # with open processes copy(source_exe_path, exe_path) return Result.MODIFIED def install_anaconda_prompt(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'Anaconda Prompt.lnk') # target: join(os.environ["HOMEPATH"], "Desktop", "Anaconda Prompt.lnk") icon_path = join(CONDA_PACKAGE_ROOT, 'shell', 'conda_icon.ico') args = ( '/K', '""%s" && "%s""' % (join(conda_prefix, 'condabin', 'conda_hook.bat'), join(conda_prefix, 'condabin', 'conda_auto_activate.bat')), ) # The API for the call to 'create_shortcut' has 3 # required arguments (path, description, filename) # and 4 optional ones (args, working_dir, icon_path, icon_index). if not context.dry_run: create_shortcut( "%windir%\\System32\\cmd.exe", "Anconda Prompt", '' + target_path, ' '.join(args), '' + expanduser('~'), '' + icon_path, ) # TODO: need to make idempotent / support NO_CHANGE return Result.MODIFIED def _install_file(target_path, file_content): if isfile(target_path): with open(target_path) as fh: original_content = fh.read() else: original_content = "" new_content = file_content if new_content != original_content: if context.verbosity: print('\n') print(target_path) print(make_diff(original_content, new_content)) if not context.dry_run: mkdir_p(dirname(target_path)) with open(target_path, 'w') as fdst: fdst.write(new_content) return Result.MODIFIED else: return Result.NO_CHANGE def install_conda_sh(target_path, conda_prefix): # target_path: join(conda_prefix, 'etc', 'profile.d', 'conda.sh') file_content = PosixActivator().hook(auto_activate_base=False) return _install_file(target_path, file_content) def install_Scripts_activate_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'Scripts', 'activate.bat') src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'Scripts', 'activate.bat') with open(src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_activate_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'activate.bat') src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'activate.bat') with open(src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_deactivate_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'deactivate.bat') src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'deactivate.bat') with open(src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_activate(target_path, conda_prefix): # target_path: join(conda_prefix, get_bin_directory_short_path(), 'activate') src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'bin', 'activate') file_content = ( "#!/bin/sh\n" "_CONDA_ROOT=\"%s\"\n" ) % conda_prefix with open(src_path) as fsrc: file_content += fsrc.read() return _install_file(target_path, file_content) def install_deactivate(target_path, conda_prefix): # target_path: join(conda_prefix, get_bin_directory_short_path(), 'deactivate') src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'bin', 'deactivate') file_content = ( "#!/bin/sh\n" "_CONDA_ROOT=\"%s\"\n" ) % conda_prefix with open(src_path) as fsrc: file_content += fsrc.read() return _install_file(target_path, file_content) def install_condabin_conda_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'conda.bat') conda_bat_src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'conda.bat') with open(conda_bat_src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_library_bin_conda_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'Library', 'bin', 'conda.bat') conda_bat_src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'Library', 'bin', 'conda.bat') with open(conda_bat_src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_condabin_conda_activate_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', '_conda_activate.bat') conda_bat_src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', '_conda_activate.bat') with open(conda_bat_src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_condabin_conda_auto_activate_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'conda_auto_activate.bat') conda_bat_src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'conda_auto_activate.bat') with open(conda_bat_src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_condabin_hook_bat(target_path, conda_prefix): # target_path: join(conda_prefix, 'condabin', 'conda_hook.bat') conda_bat_src_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'conda_hook.bat') with open(conda_bat_src_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_conda_fish(target_path, conda_prefix): # target_path: join(conda_prefix, 'etc', 'fish', 'conf.d', 'conda.fish') file_content = FishActivator().hook(auto_activate_base=False) return _install_file(target_path, file_content) def install_conda_psm1(target_path, conda_prefix): # target_path: join(conda_prefix, 'shell', 'condabin', 'Conda.psm1') conda_psm1_path = join(CONDA_PACKAGE_ROOT, 'shell', 'condabin', 'Conda.psm1') with open(conda_psm1_path) as fsrc: file_content = fsrc.read() return _install_file(target_path, file_content) def install_conda_hook_ps1(target_path, conda_prefix): # target_path: join(conda_prefix, 'shell', 'condabin', 'conda-hook.ps1') file_content = PowerShellActivator().hook(auto_activate_base=False) return _install_file(target_path, file_content) def install_conda_xsh(target_path, conda_prefix): # target_path: join(site_packages_dir, 'xonsh', 'conda.xsh') file_content = XonshActivator().hook(auto_activate_base=False) return _install_file(target_path, file_content) def install_conda_csh(target_path, conda_prefix): # target_path: join(conda_prefix, 'etc', 'profile.d', 'conda.csh') file_content = CshActivator().hook(auto_activate_base=False) return _install_file(target_path, file_content) def _config_fish_content(conda_prefix): if on_win: from ..activate import native_path_to_unix conda_exe = native_path_to_unix(join(conda_prefix, 'Scripts', 'conda.exe')) else: conda_exe = join(conda_prefix, 'bin', 'conda') conda_initialize_content = dals(""" # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! eval (eval %(conda_exe)s shell.fish hook $argv) # <<< conda initialize <<< """) % { 'conda_exe': conda_exe, } return conda_initialize_content def init_fish_user(target_path, conda_prefix): # target_path: ~/.config/config.fish user_rc_path = target_path with open(user_rc_path) as fh: rc_content = fh.read() rc_original_content = rc_content conda_initialize_content = _config_fish_content(conda_prefix) if not on_win: rc_content = re.sub( r"^[ \t]*?(set -gx PATH ([\'\"]?).*?%s\/bin\2 [^\n]*?\$PATH)" r"" % basename(conda_prefix), r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) rc_content = re.sub( r"^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*etc\/fish\/conf\.d\/conda\.fish.*?)\n" r"(conda activate.*?)$", r"# \1 # commented out by conda initialize\n# \2 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) rc_content = re.sub( r"^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*etc\/fish\/conda\.d\/conda\.fish.*?)$", r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) replace_str = "__CONDA_REPLACE_ME_123__" rc_content = re.sub( CONDA_INITIALIZE_RE_BLOCK, replace_str, rc_content, flags=re.MULTILINE, ) # TODO: maybe remove all but last of replace_str, if there's more than one occurrence rc_content = rc_content.replace(replace_str, conda_initialize_content) if "# >>> conda initialize >>>" not in rc_content: rc_content += '\n%s\n' % conda_initialize_content if rc_content != rc_original_content: if context.verbosity: print('\n') print(target_path) print(make_diff(rc_original_content, rc_content)) if not context.dry_run: with open(user_rc_path, 'w') as fh: fh.write(rc_content) return Result.MODIFIED else: return Result.NO_CHANGE def _bashrc_content(conda_prefix, shell): if on_win: from ..activate import native_path_to_unix conda_exe = native_path_to_unix(join(conda_prefix, 'Scripts', 'conda.exe')) conda_initialize_content = dals(""" # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! eval "$('%(conda_exe)s' shell.%(shell)s hook)" # <<< conda initialize <<< """) % { 'conda_exe': conda_exe, 'shell': shell, } else: conda_exe = join(conda_prefix, 'bin', 'conda') conda_initialize_content = dals(""" # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('%(conda_exe)s' shell.%(shell)s hook 2> /dev/null)" if [ $? -eq 0 ]; then eval "$__conda_setup" else if [ -f "%(conda_prefix)s/etc/profile.d/conda.sh" ]; then . "%(conda_prefix)s/etc/profile.d/conda.sh" else export PATH="%(conda_bin)s:$PATH" fi fi unset __conda_setup # <<< conda initialize <<< """) % { 'conda_exe': conda_exe, 'shell': shell, 'conda_bin': dirname(conda_exe), 'conda_prefix': conda_prefix, } return conda_initialize_content def init_sh_user(target_path, conda_prefix, shell): # target_path: ~/.bash_profile user_rc_path = target_path with open(user_rc_path) as fh: rc_content = fh.read() rc_original_content = rc_content conda_initialize_content = _bashrc_content(conda_prefix, shell) if not on_win: rc_content = re.sub( r"^[ \t]*?(export PATH=[\'\"].*?%s\/bin:\$PATH[\'\"])" r"" % basename(conda_prefix), r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) rc_content = re.sub( r"^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*etc\/profile\.d\/conda\.sh.*?)\n" r"(conda activate.*?)$", r"# \1 # commented out by conda initialize\n# \2 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) rc_content = re.sub( r"^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*etc\/profile\.d\/conda\.sh.*?)$", r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) if on_win: rc_content = re.sub( r"^[ \t]*^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*Scripts[/\\]activate.*?)$", r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) else: rc_content = re.sub( r"^[ \t]*^[ \t]*[^#\n]?[ \t]*((?:source|\.) .*bin/activate.*?)$", r"# \1 # commented out by conda initialize", rc_content, flags=re.MULTILINE, ) replace_str = "__CONDA_REPLACE_ME_123__" rc_content = re.sub( CONDA_INITIALIZE_RE_BLOCK, replace_str, rc_content, flags=re.MULTILINE, ) # TODO: maybe remove all but last of replace_str, if there's more than one occurrence rc_content = rc_content.replace(replace_str, conda_initialize_content) if "# >>> conda initialize >>>" not in rc_content: rc_content += '\n%s\n' % conda_initialize_content if rc_content != rc_original_content: if context.verbosity: print('\n') print(target_path) print(make_diff(rc_original_content, rc_content)) if not context.dry_run: with open(user_rc_path, 'w') as fh: fh.write(rc_content) return Result.MODIFIED else: return Result.NO_CHANGE def init_sh_system(target_path, conda_prefix): # target_path: '/etc/profile.d/conda.sh' conda_sh_system_path = target_path if exists(conda_sh_system_path): with open(conda_sh_system_path) as fh: conda_sh_system_contents = fh.read() else: conda_sh_system_contents = "" conda_sh_contents = _bashrc_content(conda_prefix, 'posix') if conda_sh_system_contents != conda_sh_contents: if context.verbosity: print('\n') print(target_path) print(make_diff(conda_sh_contents, conda_sh_system_contents)) if not context.dry_run: if lexists(conda_sh_system_path): rm_rf(conda_sh_system_path) mkdir_p(dirname(conda_sh_system_path)) with open(conda_sh_system_path, 'w') as fh: fh.write(conda_sh_contents) return Result.MODIFIED else: return Result.NO_CHANGE def _read_windows_registry(target_path): # pragma: no cover # HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor\AutoRun # HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun # returns value_value, value_type -or- None, None if target does not exist main_key, the_rest = target_path.split('\\', 1) subkey_str, value_name = the_rest.rsplit('\\', 1) main_key = getattr(winreg, main_key) try: key = winreg.OpenKey(main_key, subkey_str, 0, winreg.KEY_READ) except EnvironmentError as e: if e.errno != ENOENT: raise return None, None try: value_tuple = winreg.QueryValueEx(key, value_name) value_value = value_tuple[0] if isinstance(value_value, str): value_value = value_value.strip() value_type = value_tuple[1] return value_value, value_type except Exception: # [WinError 2] The system cannot find the file specified winreg.CloseKey(key) return None, None finally: winreg.CloseKey(key) def _write_windows_registry(target_path, value_value, value_type): # pragma: no cover main_key, the_rest = target_path.split('\\', 1) subkey_str, value_name = the_rest.rsplit('\\', 1) main_key = getattr(winreg, main_key) try: key = winreg.OpenKey(main_key, subkey_str, 0, winreg.KEY_WRITE) except EnvironmentError as e: if e.errno != ENOENT: raise key = winreg.CreateKey(main_key, subkey_str) try: winreg.SetValueEx(key, value_name, 0, value_type, value_value) finally: winreg.CloseKey(key) def init_cmd_exe_registry(target_path, conda_prefix): # HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor\AutoRun # HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun prev_value, value_type = _read_windows_registry(target_path) if prev_value is None: prev_value = "" value_type = winreg.REG_EXPAND_SZ hook_path = '"%s"' % join(conda_prefix, 'condabin', 'conda_hook.bat') replace_str = "__CONDA_REPLACE_ME_123__" new_value = re.sub( r'(\"[^\"]*?conda[-_]hook\.bat\")', replace_str, prev_value, count=1, flags=re.IGNORECASE | re.UNICODE, ) new_value = new_value.replace(replace_str, hook_path) if hook_path not in new_value: if new_value: new_value += ' & ' + hook_path else: new_value = hook_path if prev_value != new_value: if context.verbosity: print('\n') print(target_path) print(make_diff(prev_value, new_value)) if not context.dry_run: _write_windows_registry(target_path, new_value, value_type) return Result.MODIFIED else: return Result.NO_CHANGE def init_long_path(target_path): win_ver, _, win_rev = context.os_distribution_name_version[1].split('.') # win10, build 14352 was the first preview release that supported this if int(win_ver) >= 10 and int(win_rev) >= 14352: prev_value, value_type = _read_windows_registry(target_path) if str(prev_value) != "1": if context.verbosity: print('\n') print(target_path) print(make_diff(str(prev_value), '1')) if not context.dry_run: _write_windows_registry(target_path, 1, winreg.REG_DWORD) return Result.MODIFIED else: return Result.NO_CHANGE else: if context.verbosity: print('\n') print('Not setting long path registry key; Windows version must be at least 10 with ' 'the fall 2016 "Anniversary update" or newer.') return Result.NO_CHANGE def _powershell_profile_content(conda_prefix): if on_win: conda_exe = join(conda_prefix, 'Scripts', 'conda.exe') else: conda_exe = join(conda_prefix, 'bin', 'conda') conda_powershell_module = dals(""" #region conda initialize # !! Contents within this block are managed by 'conda init' !! (& {conda_exe} shell.powershell hook) | Out-String | Invoke-Expression #endregion """.format(conda_exe=conda_exe)) return conda_powershell_module def init_powershell_user(target_path, conda_prefix): # target_path: $PROFILE profile_path = target_path # NB: the user may not have created a profile. We need to check # if the file exists first. if os.path.exists(profile_path): with open(profile_path) as fp: profile_content = fp.read() else: profile_content = "" profile_original_content = profile_content # Find what content we need to add. conda_initialize_content = _powershell_profile_content(conda_prefix) # TODO: comment out old ipmos and Import-Modules. if "#region conda initialize" not in profile_content: profile_content += "\n{}\n".format(conda_initialize_content) else: re.sub( r"\#region conda initialize.*\#endregion", "__CONDA_REPLACE_ME_123__", profile_content, count=1, flags=re.DOTALL | re.MULTILINE ).replace( "__CONDA_REPLACE_ME_123__", conda_initialize_content ) if profile_content != profile_original_content: if context.verbosity: print('\n') print(target_path) print(make_diff(profile_original_content, profile_content)) if not context.dry_run: # Make the directory if needed. if not exists(dirname(profile_path)): mkdir_p(dirname(profile_path)) with open(profile_path, 'w') as fp: fp.write(profile_content) return Result.MODIFIED else: return Result.NO_CHANGE def remove_conda_in_sp_dir(target_path): # target_path: site_packages_dir modified = False site_packages_dir = target_path rm_rf_these = chain.from_iterable(( glob(join(site_packages_dir, "conda-*info")), glob(join(site_packages_dir, "conda.*")), glob(join(site_packages_dir, "conda-*.egg")), )) rm_rf_these = (p for p in rm_rf_these if not p.endswith('conda.egg-link')) for fn in rm_rf_these: print("rm -rf %s" % join(site_packages_dir, fn), file=sys.stderr) if not context.dry_run: rm_rf(join(site_packages_dir, fn)) modified = True others = ( "conda", "conda_env", ) for other in others: path = join(site_packages_dir, other) if lexists(path): print("rm -rf %s" % path, file=sys.stderr) if not context.dry_run: rm_rf(path) modified = True if modified: return Result.MODIFIED else: return Result.NO_CHANGE def make_conda_egg_link(target_path, conda_source_root): # target_path: join(site_packages_dir, 'conda.egg-link') conda_egg_link_contents = conda_source_root + os.linesep if isfile(target_path): with open(target_path) as fh: conda_egg_link_contents_old = fh.read() else: conda_egg_link_contents_old = "" if conda_egg_link_contents_old != conda_egg_link_contents: if context.verbosity: print('\n', file=sys.stderr) print(target_path, file=sys.stderr) print(make_diff(conda_egg_link_contents_old, conda_egg_link_contents), file=sys.stderr) if not context.dry_run: with open(target_path, 'w') as fh: fh.write(ensure_fs_path_encoding(conda_egg_link_contents)) return Result.MODIFIED else: return Result.NO_CHANGE def modify_easy_install_pth(target_path, conda_source_root): # target_path: join(site_packages_dir, 'easy-install.pth') easy_install_new_line = conda_source_root if isfile(target_path): with open(target_path) as fh: old_contents = fh.read() else: old_contents = "" old_contents_lines = old_contents.splitlines() if easy_install_new_line in old_contents_lines: return Result.NO_CHANGE ln_end = os.sep + "conda" old_contents_lines = tuple(ln for ln in old_contents_lines if not ln.endswith(ln_end)) new_contents = easy_install_new_line + '\n' + '\n'.join(old_contents_lines) + '\n' if context.verbosity: print('\n', file=sys.stderr) print(target_path, file=sys.stderr) print(make_diff(old_contents, new_contents), file=sys.stderr) if not context.dry_run: with open(target_path, 'w') as fh: fh.write(ensure_fs_path_encoding(new_contents)) return Result.MODIFIED def make_dev_egg_info_file(target_path): # target_path: join(conda_source_root, 'conda.egg-info') if isfile(target_path): with open(target_path) as fh: old_contents = fh.read() else: old_contents = "" new_contents = dals(""" Metadata-Version: 1.1 Name: conda Version: %s Platform: UNKNOWN Summary: OS-agnostic, system-level binary package manager. """) % CONDA_VERSION if old_contents == new_contents: return Result.NO_CHANGE if context.verbosity: print('\n', file=sys.stderr) print(target_path, file=sys.stderr) print(make_diff(old_contents, new_contents), file=sys.stderr) if not context.dry_run: if lexists(target_path): rm_rf(target_path) with open(target_path, 'w') as fh: fh.write(new_contents) return Result.MODIFIED # ##################################################### # helper functions # ##################################################### def make_diff(old, new): return '\n'.join(unified_diff(old.splitlines(), new.splitlines())) def _get_python_info(prefix): python_exe = join(prefix, get_python_short_path()) result = subprocess_call("%s --version" % python_exe) stdout, stderr = result.stdout.strip(), result.stderr.strip() if stderr: python_version = stderr.split()[1] elif stdout: # pragma: no cover python_version = stdout.split()[1] else: # pragma: no cover raise ValueError("No python version information available.") site_packages_dir = join(prefix, win_path_ok(get_python_site_packages_short_path(python_version))) return python_exe, python_version, site_packages_dir if __name__ == "__main__": if on_win: temp_path = sys.argv[1] run_plan_from_temp_file(temp_path) else: run_plan_from_stdin()
the-stack_106_25997
import gym from torch import nn as nn from rlkit.exploration_strategies.base import \ PolicyWrappedWithExplorationStrategy from rlkit.exploration_strategies.epsilon_greedy import EpsilonGreedy from rlkit.policies.argmax import ArgmaxDiscretePolicy from rlkit.torch.policies.softmax_policy import SoftmaxPolicy from rlkit.torch.networks import Mlp import rlkit.torch.pytorch_util as ptu from rlkit.data_management.env_replay_buffer import EnvReplayBuffer from rlkit.launchers.launcher_util import setup_logger from rlkit.samplers.data_collector import MdpPathCollector from rlkit.torch.torch_rl_algorithm import TorchOnlineRLAlgorithm from log_path import get_traffic_path_information def experiment(variant): import sys from traffic.make_env import make_env expl_env = make_env(args.exp_name,**variant['env_kwargs']) eval_env = make_env(args.exp_name,**variant['env_kwargs']) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.n from graph_builder_multi import MultiTrafficGraphBuilder gb = MultiTrafficGraphBuilder(input_dim=4, node_num=expl_env.max_veh_num+1, ego_init=torch.tensor([0.,1.]), other_init=torch.tensor([1.,0.]), ) from gnn_net import GNNNet gnn = GNNNet( pre_graph_builder = gb, node_dim = 16, num_conv_layers=3) from layers import SelectLayer encoders = [] encoders.append(nn.Sequential(gnn,SelectLayer(1,0),nn.ReLU())) sup_learners = [] for i in range(expl_env.max_veh_num): sup_learner = nn.Sequential( gnn, SelectLayer(1,i+1), nn.ReLU(), nn.Linear(16, 2), ) sup_learner = SoftmaxPolicy(sup_learner, learn_temperature=False) sup_learners.append(sup_learner) encoders.append(sup_learner) decoder = Mlp(input_size=int(16+2*expl_env.max_veh_num), output_size=action_dim, hidden_sizes=[], ) from layers import ConcatLayer need_gradients = np.array([True]*len(encoders)) if variant['no_gradient']: need_gradients[1:] = False policy = nn.Sequential( ConcatLayer(encoders, need_gradients=list(need_gradients), dim=1), decoder, ) policy = SoftmaxPolicy(policy, learn_temperature=False) vf = Mlp( hidden_sizes=[32, 32], input_size=obs_dim, output_size=1, ) vf_criterion = nn.MSELoss() eval_policy = ArgmaxDiscretePolicy(policy,use_preactivation=True) expl_policy = policy eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, expl_policy, ) from sup_replay_buffer import SupReplayBuffer replay_buffer = SupReplayBuffer( observation_dim = obs_dim, label_dims = [1]*expl_env.max_veh_num, max_replay_buffer_size = int(1e6), ) from rlkit.torch.vpg.ppo_sup import PPOSupTrainer trainer = PPOSupTrainer( policy=policy, value_function=vf, vf_criterion=vf_criterion, sup_learners=sup_learners, replay_buffer=replay_buffer, **variant['trainer_kwargs'] ) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, log_path_function = get_traffic_path_information, **variant['algorithm_kwargs'] ) algorithm.to(ptu.device) algorithm.train() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser = argparse.ArgumentParser() parser.add_argument('--exp_name', type=str, default='t_intersection_multi') parser.add_argument('--nob', action='store_true', default=False) parser.add_argument('--yld', type=float, default=0.5) parser.add_argument('--ds', type=float, default=0.1) parser.add_argument('--log_dir', type=str, default='PPOSupGNN') parser.add_argument('--ng', action='store_true', default=False) # no shared gradient parser.add_argument('--eb', type=float, default=None) parser.add_argument('--lr', type=float, default=None) parser.add_argument('--bs', type=int, default=None) parser.add_argument('--epoch', type=int, default=None) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--snapshot_mode', type=str, default="gap_and_last") parser.add_argument('--snapshot_gap', type=int, default=500) args = parser.parse_args() import os.path as osp pre_dir = './Data/'+args.exp_name+'yld'+str(args.yld)+'ds'+str(args.ds)+'full' main_dir = args.log_dir\ +('ng' if args.ng else '')\ +(('eb'+str(args.eb)) if args.eb else '')\ +(('lr'+str(args.lr)) if args.lr else '')\ +(('bs'+str(args.bs)) if args.bs else '') log_dir = osp.join(pre_dir,main_dir,'seed'+str(args.seed)) max_path_length = 200 # noinspection PyTypeChecker variant = dict( no_gradient=args.ng, env_kwargs=dict( observe_mode='full', yld=args.yld, driver_sigma=args.ds, ), algorithm_kwargs=dict( num_epochs=(args.epoch if args.epoch else 1000), num_eval_steps_per_epoch=1000, num_train_loops_per_epoch=1, num_trains_per_train_loop=1, num_expl_steps_per_train_loop=(args.bs if args.bs else 1000), max_path_length=max_path_length, save_best=True, ), trainer_kwargs=dict( discount=0.99, max_path_length=max_path_length, policy_lr=(args.lr if args.lr else 1e-4), vf_lr=(args.lr if args.lr else 1e-3), exploration_bonus=(args.eb if args.eb else 0.), ), vf_kwargs=dict( hidden_sizes=[64], ), ) import os if not os.path.isdir(log_dir): os.makedirs(log_dir) with open(osp.join(log_dir,'variant.json'),'w') as out_json: import json json.dump(variant,out_json,indent=2) import sys cmd_input = 'python ' + ' '.join(sys.argv) + '\n' with open(osp.join(log_dir, 'cmd_input.txt'), 'a') as f: f.write(cmd_input) setup_logger(args.exp_name+'/'+main_dir, variant=variant, snapshot_mode=args.snapshot_mode, snapshot_gap=args.snapshot_gap, log_dir=log_dir) import numpy as np import torch np.random.seed(args.seed) torch.manual_seed(args.seed) # ptu.set_gpu_mode(True) # optionally set the GPU (default=False) experiment(variant)
the-stack_106_25999
# # Created on Wed Sep 08 2021 # # The MIT License (MIT) # Copyright (c) 2021 Maatuq # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED # TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from typing import List class Solution: def __init__(self): self.ans = float("inf") def splitArray(self, nums: List[int], m: int) -> int: def dfs(i, subarrays_cnt, cur_sum, max_sum): if i == n and subarrays_cnt == m: self.ans = min(self.ans, max_sum) return if i == n: return if i > 0: dfs( i + 1, subarrays_cnt, cur_sum + nums[i], max(max_sum, cur_sum + nums[i]), ) if subarrays_cnt < m: dfs(i + 1, subarrays_cnt + 1, nums[i], max(max_sum, nums[i])) n = len(nums) dfs(0, 0, 0, 0) return self.ans class Solution_2: def splitArray(self, nums: List[int], m: int) -> int: left, right = 0, 0 for e in nums: right += e if left < e: left = e ans = right while left <= right: mid = (left + right) // 2 a_sum = 0 cnt = 1 for e in nums: if a_sum + e > mid: cnt += 1 a_sum = e else: a_sum += e if cnt <= m: ans = min(ans, mid) right = mid - 1 else: left = mid + 1 return ans S = Solution_2() nums = [7, 2, 5, 10, 8] m = 2 print(S.splitArray(nums, m))
the-stack_106_26000
# Copyright 2009 by Peter Cock. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Unittests for the Seq objects.""" import warnings import unittest import sys from Bio import BiopythonWarning from Bio import SeqIO from Bio.Alphabet import generic_protein, generic_nucleotide from Bio.Alphabet import generic_dna, generic_rna from Bio.Alphabet.IUPAC import protein, extended_protein from Bio.Alphabet.IUPAC import unambiguous_dna, ambiguous_dna, ambiguous_rna from Bio.Data.IUPACData import ambiguous_dna_values, ambiguous_rna_values from Bio.Seq import Seq, UnknownSeq, MutableSeq, translate from Bio.Data.CodonTable import TranslationError, CodonTable if sys.version_info[0] < 3: from string import maketrans else: maketrans = str.maketrans # This is just the standard table with less stop codons # (replaced with coding for O as an artificial example) special_table = CodonTable(forward_table={ "TTT": "F", "TTC": "F", "TTA": "L", "TTG": "L", "TCT": "S", "TCC": "S", "TCA": "S", "TCG": "S", "TAT": "Y", "TAC": "Y", "TAA": "O", "TGT": "C", "TGC": "C", "TGA": "O", "TGG": "W", "CTT": "L", "CTC": "L", "CTA": "L", "CTG": "L", "CCT": "P", "CCC": "P", "CCA": "P", "CCG": "P", "CAT": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "CGT": "R", "CGC": "R", "CGA": "R", "CGG": "R", "ATT": "I", "ATC": "I", "ATA": "I", "ATG": "M", "ACT": "T", "ACC": "T", "ACA": "T", "ACG": "T", "AAT": "N", "AAC": "N", "AAA": "K", "AAG": "K", "AGT": "S", "AGC": "S", "AGA": "R", "AGG": "R", "GTT": "V", "GTC": "V", "GTA": "V", "GTG": "V", "GCT": "A", "GCC": "A", "GCA": "A", "GCG": "A", "GAT": "D", "GAC": "D", "GAA": "E", "GAG": "E", "GGT": "G", "GGC": "G", "GGA": "G", "GGG": "G"}, start_codons=["TAA", "TAG", "TGA"], stop_codons=["TAG"]) Chilodonella_uncinata_table = CodonTable(forward_table={ "TTT": "F", "TTC": "F", "TTA": "L", "TTG": "L", "TCT": "S", "TCC": "S", "TCA": "S", "TCG": "S", "TAT": "Y", "TAC": "Y", "TAG": "Q", # noqa: E241 "TGT": "C", "TGC": "C", "TGA": "W", "TGG": "W", "CTT": "L", "CTC": "L", "CTA": "L", "CTG": "L", "CCT": "P", "CCC": "P", "CCA": "P", "CCG": "P", "CAT": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "CGT": "R", "CGC": "R", "CGA": "R", "CGG": "R", "ATT": "I", "ATC": "I", "ATA": "I", "ATG": "M", "ACT": "T", "ACC": "T", "ACA": "T", "ACG": "T", "AAT": "N", "AAC": "N", "AAA": "K", "AAG": "K", "AGT": "S", "AGC": "S", "AGA": "R", "AGG": "R", "GTT": "V", "GTC": "V", "GTA": "V", "GTG": "V", "GCT": "A", "GCC": "A", "GCA": "A", "GCG": "A", "GAT": "D", "GAC": "D", "GAA": "E", "GAG": "E", "GGT": "G", "GGC": "G", "GGA": "G", "GGG": "G"}, start_codons=["ATG"], stop_codons=["TAA"]) class StringMethodTests(unittest.TestCase): _examples = [ # These are length 9, a multiple of 3 for translation tests: Seq("ACGTGGGGT", generic_protein), Seq("ACGTGGGGT", generic_nucleotide), Seq("ACGTGGGGT", generic_dna), Seq("ACGUGGGGU", generic_rna), Seq("GG", generic_protein), Seq("GG", generic_nucleotide), Seq("GG", generic_dna), Seq("GG", generic_rna), Seq("A", generic_protein), Seq("A", generic_nucleotide), Seq("A", generic_dna), Seq("A", generic_rna), UnknownSeq(1), UnknownSeq(1, character="n"), UnknownSeq(1, generic_rna), UnknownSeq(1, generic_rna, "n"), UnknownSeq(1, generic_rna, "N"), UnknownSeq(12, generic_rna, "N"), UnknownSeq(12, generic_dna, "N"), UnknownSeq(12, generic_nucleotide, "N"), UnknownSeq(12, generic_protein, "X"), UnknownSeq(12, character="X"), UnknownSeq(12), ] for seq in _examples[:]: if isinstance(seq, Seq): _examples.append(seq.tomutable()) _start_end_values = [0, 1, 2, 1000, -1, -2, -999, None] def _test_method(self, method_name, pre_comp_function=None, start_end=False): """Check this method matches the plain string's method.""" if pre_comp_function is None: # Define a no-op function: def pre_comp_function(x): return x self.assertTrue(isinstance(method_name, str)) for example1 in self._examples: if not hasattr(example1, method_name): # e.g. MutableSeq does not support find continue str1 = str(example1) for example2 in self._examples: if not hasattr(example2, method_name): # e.g. MutableSeq does not support find continue if method_name in ("index", "rindex") and isinstance(example1, MutableSeq) and len(example2) > 1: # MutableSeq index only supports single entries continue str2 = str(example2) try: i = pre_comp_function(getattr(example1, method_name)(str2)) except ValueError: i = ValueError try: j = pre_comp_function(getattr(str1, method_name)(str2)) except ValueError: j = ValueError if i != j: raise ValueError("%s.%s(%s) = %r, not %r" % (repr(example1), method_name, repr(str2), i, j)) try: try: i = pre_comp_function(getattr(example1, method_name)(example2)) except ValueError: i = ValueError try: j = pre_comp_function(getattr(str1, method_name)(str2)) except ValueError: j = ValueError if i != j: raise ValueError("%s.%s(%s) = %r, not %r" % (repr(example1), method_name, repr(example2), i, j)) except TypeError: # TODO - Check the alphabets do clash! pass if start_end: if isinstance(example1, MutableSeq): # Does not support start/end arguments continue for start in self._start_end_values: try: i = pre_comp_function(getattr(example1, method_name)(str2, start)) except ValueError: i = ValueError try: j = pre_comp_function(getattr(str1, method_name)(str2, start)) except ValueError: j = ValueError if i != j: raise ValueError("%s.%s(%s, %i) = %r, not %r" % (repr(example1), method_name, repr(str2), start, i, j)) for end in self._start_end_values: try: i = pre_comp_function(getattr(example1, method_name)(str2, start, end)) except ValueError: i = ValueError try: j = pre_comp_function(getattr(str1, method_name)(str2, start, end)) except ValueError: j = ValueError if i != j: raise ValueError("%s.%s(%s, %i, %i) = %r, not %r" % (repr(example1), method_name, repr(str2), start, end, i, j)) def test_str_count(self): """Check matches the python string count method.""" self._test_method("count", start_end=True) def test_str_count_overlap_GG(self): """Check our count_overlap method using GG.""" # Testing with self._examples expected = [3, 3, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, # Seq() Tests 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # UnknownSeq() Tests expected *= 2 # MutableSeq() Tests assert len(self._examples) == len(expected) for seq, exp in zip(self._examples, expected): # Using search term GG as a string self.assertEqual(seq.count_overlap("GG"), exp) self.assertEqual(seq.count_overlap("G" * 5), 0) # Using search term GG as a Seq with generic alphabet self.assertEqual(seq.count_overlap(Seq("GG")), exp) self.assertEqual(seq.count_overlap(Seq("G" * 5)), 0) def test_count_overlap_start_end_GG(self): """Check our count_overlap method using GG with variable ends and starts.""" # Testing Seq() and MutableSeq() with variable start and end arguments start_end_exp = [(1, 7, 3), (3, None, 3), (3, 6, 2), (4, 6, 1), (4, -1, 2), (-5, None, 2), (-5, 7, 2), (7, -5, 0), (-100, None, 3), (None, 100, 3), (-100, 1000, 3)] testing_seq = "GTAGGGGAG" for start, end, exp in start_end_exp: self.assertEqual(Seq(testing_seq).count_overlap("GG", start, end), exp) self.assertEqual(MutableSeq(testing_seq).count_overlap("GG", start, end), exp) # Testing Seq() and MutableSeq() with a more heterogeneous sequenece self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("GG"), 5) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("GG"), 5) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("GG", 2, 8), 1) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("GG", 2, 8), 1) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("GG", -11, 6), 3) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("GG", -11, 6), 3) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("GG", 7, 2), 0) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("GG", 7, 2), 0) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("GG", -2, -10), 0) # Testing UnknownSeq() with variable start and end arguments alphabet_char_start_end_exp = [(generic_rna, "N", 1, 7, 0), (generic_dna, "N", 1, 7, 0), (generic_rna, "N", -4, None, 0), (generic_dna, "N", -4, None, 0), (generic_protein, "X", 1, 7, 0)] for alpha, char, start, end, exp in alphabet_char_start_end_exp: self.assertEqual(UnknownSeq(12, alpha, char).count_overlap("GG", start, end), exp) self.assertEqual(UnknownSeq(12, character="X").count_overlap("GG", 1, 7), 0) # Testing UnknownSeq() with some more cases including unusual edge cases substr_start_end_exp = [("G", 100, 105, 0), ("G", -1, 4, 0), ("G", 4, -1, 0), ("G", -8, -2, 0), ("G", -2, -8, 0), ("G", 8, 2, 0), ("G", 2, 8, 0), ("GG", 8, 2, 0), ("GG", 2, 8, 0), ("GG", -5, -1, 0), ("GG", 1, 5, 0), ("GGG", None, None, 0), ("GGGGGGGGG", None, None, 0), ("GGG", 1, 2, 0)] for substr, start, end, exp in substr_start_end_exp: self.assertEqual(UnknownSeq(7, character="N").count_overlap(substr, start, end), exp) self.assertEqual(UnknownSeq(7, character="N").count_overlap("GG", 1), 0) def test_str_count_overlap_NN(self): """Check our count_overlap method using NN.""" # Testing with self._examples expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # Seq() Tests 0, 0, 0, 0, 0, 11, 11, 11, 0, 0, 0] # UnknownSeq() Tests expected *= 2 # MutableSeq() Tests assert len(self._examples) == len(expected) for seq, exp in zip(self._examples, expected): # Using search term NN as a string self.assertEqual(seq.count_overlap("NN"), exp) self.assertEqual(seq.count_overlap("N" * 13), 0) # Using search term NN as a Seq with generic alphabet self.assertEqual(seq.count_overlap(Seq("NN")), exp) self.assertEqual(seq.count_overlap(Seq("N" * 13)), 0) def test_count_overlap_start_end_NN(self): """Check our count_overlap method using NN with variable ends and starts.""" # Testing Seq() and MutableSeq() with variable start and end arguments start_end_exp = [(1, 7, 0), (3, None, 0), (3, 6, 0), (4, 6, 0), (4, -1, 0), (-5, None, 0), (-5, 7, 0), (7, -5, 0), (-100, None, 0), (None, 100, 0), (-100, 1000, 0)] testing_seq = "GTAGGGGAG" for start, end, exp in start_end_exp: self.assertEqual(Seq(testing_seq).count_overlap("NN", start, end), exp) self.assertEqual(MutableSeq(testing_seq).count_overlap("NN", start, end), exp) # Testing Seq() and MutableSeq() with a more heterogeneous sequenece self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("NN"), 0) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("NN"), 0) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("NN", 2, 8), 0) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("NN", 2, 8), 0) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("NN", -11, 6), 0) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("NN", -11, 6), 0) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("NN", 7, 2), 0) self.assertEqual(MutableSeq("GGGTGGTAGGG").count_overlap("NN", 7, 2), 0) self.assertEqual(Seq("GGGTGGTAGGG").count_overlap("NN", -10, -2), 0) # Testing UnknownSeq() with variable start and end arguments alphabet_char_start_end_exp = [(generic_rna, "N", 1, 7, 5), (generic_dna, "N", 1, 7, 5), (generic_rna, "N", -4, None, 3), (generic_dna, "N", -4, None, 3), (generic_protein, "X", 1, 7, 0)] for alpha, char, start, end, exp in alphabet_char_start_end_exp: self.assertEqual(UnknownSeq(12, alpha, char).count_overlap("NN", start, end), exp) self.assertEqual(UnknownSeq(12, character="X").count_overlap("NN", 1, 7), 0) # Testing UnknownSeq() with some more cases including unusual edge cases substr_start_end_exp = [("N", 100, 105, 0), ("N", -1, 4, 0), ("N", 4, -1, 2), ("N", -8, -2, 5), ("N", -2, -8, 0), ("N", 8, 2, 0), ("N", 2, 8, 5), ("NN", 8, 2, 0), ("NN", 2, 8, 4), ("NN", -5, -1, 3), ("NN", 1, 5, 3), ("NNN", None, None, 5), ("NNNNNNNNN", None, None, 0), ("NNN", 1, 2, 0)] for substr, start, end, exp in substr_start_end_exp: self.assertEqual(UnknownSeq(7, character="N").count_overlap(substr, start, end), exp) self.assertEqual(UnknownSeq(7, character="N").count_overlap("NN", 1), 5) def test_str_find(self): """Check matches the python string find method.""" self._test_method("find", start_end=True) def test_str_rfind(self): """Check matches the python string rfind method.""" self._test_method("rfind", start_end=True) def test_str_index(self): """Check matches the python string index method.""" self._test_method("index", start_end=True) def test_str_rindex(self): """Check matches the python string rindex method.""" self._test_method("rindex", start_end=True) def test_str_startswith(self): """Check matches the python string startswith method.""" self._test_method("startswith", start_end=True) self.assertTrue("ABCDE".startswith(("ABE", "OBE", "ABC"))) # Now check with a tuple of sub sequences for example1 in self._examples: if not hasattr(example1, "startswith"): # e.g. MutableSeq does not support this continue subs = tuple(example1[start:start + 2] for start in range(0, len(example1) - 2, 3)) subs_str = tuple(str(s) for s in subs) self.assertEqual(str(example1).startswith(subs_str), example1.startswith(subs)) self.assertEqual(str(example1).startswith(subs_str), example1.startswith(subs_str)) # strings! self.assertEqual(str(example1).startswith(subs_str, 3), example1.startswith(subs, 3)) self.assertEqual(str(example1).startswith(subs_str, 2, 6), example1.startswith(subs, 2, 6)) def test_str_endswith(self): """Check matches the python string endswith method.""" self._test_method("endswith", start_end=True) self.assertTrue("ABCDE".endswith(("ABE", "OBE", "CDE"))) # Now check with a tuple of sub sequences for example1 in self._examples: if not hasattr(example1, "endswith"): # e.g. MutableSeq does not support this continue subs = tuple(example1[start:start + 2] for start in range(0, len(example1) - 2, 3)) subs_str = tuple(str(s) for s in subs) self.assertEqual(str(example1).endswith(subs_str), example1.endswith(subs)) self.assertEqual(str(example1).startswith(subs_str), example1.startswith(subs_str)) # strings! self.assertEqual(str(example1).endswith(subs_str, 3), example1.endswith(subs, 3)) self.assertEqual(str(example1).endswith(subs_str, 2, 6), example1.endswith(subs, 2, 6)) def test_str_strip(self): """Check matches the python string strip method.""" self._test_method("strip", pre_comp_function=str) def test_str_rstrip(self): """Check matches the python string rstrip method.""" self._test_method("rstrip", pre_comp_function=str) def test_str_split(self): """Check matches the python string rstrip method.""" # Calling (r)split should return a list of Seq-like objects, we'll # just apply str() to each of them so it matches the string method self._test_method("rstrip", pre_comp_function=lambda x: [str(y) for y in x]) # noqa: E731 def test_str_rsplit(self): """Check matches the python string rstrip method.""" # Calling (r)split should return a list of Seq-like objects, we'll # just apply str() to each of them so it matches the string method self._test_method("rstrip", pre_comp_function=lambda x: [str(y) for y in x]) # noqa: E731 def test_str_lsplit(self): """Check matches the python string rstrip method.""" # Calling (r)split should return a list of Seq-like objects, we'll # just apply str() to each of them so it matches the string method self._test_method("rstrip", pre_comp_function=lambda x: [str(y) for y in x]) # noqa: E731 def test_str_length(self): """Check matches the python string __len__ method.""" for example1 in self._examples: str1 = str(example1) self.assertEqual(len(example1), len(str1)) def test_str_upper(self): """Check matches the python string upper method.""" for example1 in self._examples: if isinstance(example1, MutableSeq): continue str1 = str(example1) self.assertEqual(str(example1.upper()), str1.upper()) def test_str_lower(self): """Check matches the python string lower method.""" for example1 in self._examples: if isinstance(example1, MutableSeq): continue str1 = str(example1) self.assertEqual(str(example1.lower()), str1.lower()) def test_str_encode(self): """Check matches the python string encode method.""" for example1 in self._examples: if isinstance(example1, MutableSeq): continue str1 = str(example1) self.assertEqual(example1.encode("ascii"), str1.encode("ascii")) self.assertEqual(example1.encode(), str1.encode()) def test_str_hash(self): for example1 in self._examples: if isinstance(example1, MutableSeq): continue with warnings.catch_warnings(): # Silence change in behaviour warning warnings.simplefilter("ignore", BiopythonWarning) self.assertEqual(hash(str(example1)), hash(example1), "Hash mismatch, %r for %r vs %r for %r" % (hash(str(example1)), id(example1), hash(example1), example1)) def test_str_comparison(self): for example1 in self._examples: for example2 in self._examples: with warnings.catch_warnings(): # Silence alphabet warning warnings.simplefilter("ignore", BiopythonWarning) self.assertEqual(str(example1) == str(example2), example1 == example2, "Checking %r == %r" % (example1, example2)) self.assertEqual(str(example1) != str(example2), example1 != example2, "Checking %r != %r" % (example1, example2)) self.assertEqual(str(example1) < str(example2), example1 < example2, "Checking %r < %r" % (example1, example2)) self.assertEqual(str(example1) <= str(example2), example1 <= example2, "Checking %r <= %r" % (example1, example2)) self.assertEqual(str(example1) > str(example2), example1 > example2, "Checking %r > %r" % (example1, example2)) self.assertEqual(str(example1) >= str(example2), example1 >= example2, "Checking %r >= %r" % (example1, example2)) def test_str_getitem(self): """Check slicing and indexing works like a string.""" for example1 in self._examples: str1 = str(example1) for i in self._start_end_values: if i is not None and abs(i) < len(example1): self.assertEqual(str(example1[i]), str1[i]) self.assertEqual(str(example1[:i]), str1[:i]) self.assertEqual(str(example1[i:]), str1[i:]) for j in self._start_end_values: self.assertEqual(str(example1[i:j]), str1[i:j]) for step in range(-3, 4): if step == 0: try: print(example1[i:j:step]) self._assert(False) # Should fail! except ValueError: pass else: self.assertEqual(str(example1[i:j:step]), str1[i:j:step]) def test_tomutable(self): """Check obj.tomutable() method.""" for example1 in self._examples: if isinstance(example1, MutableSeq): continue mut = example1.tomutable() self.assertTrue(isinstance(mut, MutableSeq)) self.assertEqual(str(mut), str(example1)) self.assertEqual(mut.alphabet, example1.alphabet) def test_toseq(self): """Check obj.toseq() method.""" for example1 in self._examples: try: seq = example1.toseq() except AttributeError: self.assertTrue(isinstance(example1, Seq)) continue self.assertTrue(isinstance(seq, Seq)) self.assertEqual(str(seq), str(example1)) self.assertEqual(seq.alphabet, example1.alphabet) def test_the_complement(self): """Check obj.complement() method.""" mapping = "" for example1 in self._examples: if isinstance(example1, MutableSeq): continue try: comp = example1.complement() except ValueError as e: self.assertEqual(str(e), "Proteins do not have complements!") continue str1 = str(example1) # This only does the unambiguous cases if any(("U" in str1, "u" in str1, example1.alphabet == generic_rna)): mapping = maketrans("ACGUacgu", "UGCAugca") elif any(("T" in str1, "t" in str1, example1.alphabet == generic_dna, example1.alphabet == generic_nucleotide)): mapping = maketrans("ACGTacgt", "TGCAtgca") elif "A" not in str1 and "a" not in str1: mapping = maketrans("CGcg", "GCgc") else: # TODO - look at alphabet? raise ValueError(example1) self.assertEqual(str1.translate(mapping), str(comp)) self.assertEqual(comp.alphabet, example1.alphabet) def test_the_reverse_complement(self): """Check obj.reverse_complement() method.""" mapping = "" for example1 in self._examples: if isinstance(example1, MutableSeq): continue try: comp = example1.reverse_complement() except ValueError as e: self.assertEqual(str(e), "Proteins do not have complements!") continue str1 = str(example1) # This only does the unambiguous cases if any(("U" in str1, "u" in str1, example1.alphabet == generic_rna)): mapping = maketrans("ACGUacgu", "UGCAugca") elif any(("T" in str1, "t" in str1, example1.alphabet == generic_dna, example1.alphabet == generic_nucleotide)): mapping = maketrans("ACGTacgt", "TGCAtgca") elif "A" not in str1 and "a" not in str1: mapping = maketrans("CGcg", "GCgc") else: # TODO - look at alphabet? continue self.assertEqual(str1.translate(mapping)[::-1], str(comp)) self.assertEqual(comp.alphabet, example1.alphabet) def test_the_transcription(self): """Check obj.transcribe() method.""" mapping = "" for example1 in self._examples: if isinstance(example1, MutableSeq): continue try: tran = example1.transcribe() except ValueError as e: if str(e) == "Proteins cannot be transcribed!": continue if str(e) == "RNA cannot be transcribed!": continue raise e str1 = str(example1) if len(str1) % 3 != 0: # TODO - Check for or silence the expected warning? continue self.assertEqual(str1.replace("T", "U").replace("t", "u"), str(tran)) self.assertEqual(tran.alphabet, generic_rna) # based on limited examples def test_the_back_transcription(self): """Check obj.back_transcribe() method.""" mapping = "" for example1 in self._examples: if isinstance(example1, MutableSeq): continue try: tran = example1.back_transcribe() except ValueError as e: if str(e) == "Proteins cannot be back transcribed!": continue if str(e) == "DNA cannot be back transcribed!": continue raise e str1 = str(example1) self.assertEqual(str1.replace("U", "T").replace("u", "t"), str(tran)) self.assertEqual(tran.alphabet, generic_dna) # based on limited examples def test_the_translate(self): """Check obj.translate() method.""" mapping = "" for example1 in self._examples: if isinstance(example1, MutableSeq): continue if len(example1) % 3 != 0: # TODO - Check for or silence the expected warning? continue try: tran = example1.translate() except ValueError as e: if str(e) == "Proteins cannot be translated!": continue raise e # This is based on the limited example not having stop codons: if tran.alphabet not in [extended_protein, protein, generic_protein]: print(tran.alphabet) self.fail() # TODO - check the actual translation, and all the optional args def test_the_translation_of_stops(self): """Check obj.translate() method with stop codons.""" misc_stops = "TAATAGTGAAGAAGG" for nuc in [Seq(misc_stops), Seq(misc_stops, generic_nucleotide), Seq(misc_stops, generic_dna), Seq(misc_stops, unambiguous_dna)]: self.assertEqual("***RR", str(nuc.translate())) self.assertEqual("***RR", str(nuc.translate(1))) self.assertEqual("***RR", str(nuc.translate("SGC0"))) self.assertEqual("**W**", str(nuc.translate(table=2))) self.assertEqual("**WRR", str(nuc.translate(table="Yeast Mitochondrial"))) self.assertEqual("**WSS", str(nuc.translate(table=5))) self.assertEqual("**WSS", str(nuc.translate(table=9))) self.assertEqual("**CRR", str(nuc.translate(table="Euplotid Nuclear"))) self.assertEqual("***RR", str(nuc.translate(table=11))) self.assertEqual("***RR", str(nuc.translate(table="11"))) self.assertEqual("***RR", str(nuc.translate(table="Bacterial"))) self.assertEqual("**GRR", str(nuc.translate(table=25))) self.assertEqual("", str(nuc.translate(to_stop=True))) self.assertEqual("O*ORR", str(nuc.translate(table=special_table))) self.assertEqual("*QWRR", str(nuc.translate(table=Chilodonella_uncinata_table))) # These test the Bio.Seq.translate() function - move these?: self.assertEqual("*QWRR", translate(str(nuc), table=Chilodonella_uncinata_table)) self.assertEqual("O*ORR", translate(str(nuc), table=special_table)) self.assertEqual("", translate(str(nuc), to_stop=True)) self.assertEqual("***RR", translate(str(nuc), table="Bacterial")) self.assertEqual("***RR", translate(str(nuc), table="11")) self.assertEqual("***RR", translate(str(nuc), table=11)) self.assertEqual("**W**", translate(str(nuc), table=2)) self.assertEqual(str(Seq("TAT").translate()), "Y") self.assertEqual(str(Seq("TAR").translate()), "*") self.assertEqual(str(Seq("TAN").translate()), "X") self.assertEqual(str(Seq("NNN").translate()), "X") self.assertEqual(str(Seq("TAt").translate()), "Y") self.assertEqual(str(Seq("TaR").translate()), "*") self.assertEqual(str(Seq("TaN").translate()), "X") self.assertEqual(str(Seq("nnN").translate()), "X") self.assertEqual(str(Seq("tat").translate()), "Y") self.assertEqual(str(Seq("tar").translate()), "*") self.assertEqual(str(Seq("tan").translate()), "X") self.assertEqual(str(Seq("nnn").translate()), "X") def test_the_translation_of_invalid_codons(self): """Check obj.translate() method with invalid codons.""" for codon in ["TA?", "N-N", "AC_", "Ac_"]: for nuc in [Seq(codon), Seq(codon, generic_nucleotide), Seq(codon, generic_dna), Seq(codon, unambiguous_dna)]: try: print(nuc.translate()) self.fail("Translating %s should fail" % codon) except TranslationError: pass def test_the_translation_of_ambig_codons(self): """Check obj.translate() method with ambiguous codons.""" for letters, ambig_values in [(ambiguous_dna.letters, ambiguous_dna_values), (ambiguous_rna.letters, ambiguous_rna_values)]: ambig = set(letters) for c1 in ambig: for c2 in ambig: for c3 in ambig: values = {str(Seq(a + b + c).translate()) for a in ambig_values[c1] for b in ambig_values[c2] for c in ambig_values[c3]} t = str(Seq(c1 + c2 + c3).translate()) if t == "*": self.assertEqual(values, set("*")) elif t == "X": self.assertTrue(len(values) > 1, "translate('%s') = '%s' not '%s'" % (c1 + c2 + c3, t, ",".join(values))) elif t == "Z": self.assertEqual(values, set("EQ")) elif t == "B": self.assertEqual(values, set("DN")) elif t == "J": self.assertEqual(values, set("LI")) else: self.assertEqual(values, set(t)) # TODO - Use the Bio.Data.IUPACData module for the # ambiguous protein mappings? def test_init_typeerror(self): """Check Seq __init__ gives TypeError exceptions.""" # Only expect it to take strings and unicode - not Seq objects! self.assertRaises(TypeError, Seq, (1066)) self.assertRaises(TypeError, Seq, (Seq("ACGT", generic_dna))) def test_MutableSeq_init_typeerror(self): """Check MutableSeq __init__ gives TypeError exceptions.""" self.assertRaises(TypeError, MutableSeq, (Seq("A"))) self.assertRaises(TypeError, MutableSeq, (UnknownSeq(1))) self.assertRaises(TypeError, MutableSeq, 1) self.assertRaises(TypeError, MutableSeq, 1.0) def test_join_Seq_ValueError(self): """Checks that a ValueError is thrown for all non-iterable types.""" # No iterable types which contain non-accepted types either. spacer = Seq("NNNNN") self.assertRaises(ValueError, spacer.join, 5) self.assertRaises(ValueError, spacer.join, "ATG") self.assertRaises(ValueError, spacer.join, Seq("ATG")) self.assertRaises(ValueError, spacer.join, MutableSeq("ATG")) self.assertRaises(ValueError, spacer.join, ["ATG", "ATG", 5, "ATG"]) def test_join_UnknownSeq_ValueError(self): """Checks that a ValueError is thrown for all non-iterable types.""" # No iterable types which contain non-accepted types either. spacer = UnknownSeq(5, character="-") self.assertRaises(ValueError, spacer.join, 5) self.assertRaises(ValueError, spacer.join, "ATG") self.assertRaises(ValueError, spacer.join, Seq("ATG")) self.assertRaises(ValueError, spacer.join, MutableSeq("ATG")) self.assertRaises(ValueError, spacer.join, ["ATG", "ATG", 5, "ATG"]) def test_join_MutableSeq_ValueError(self): """Checks that a ValueError is thrown for all non-iterable types.""" # No iterable types which contain non-accepted types either. spacer = MutableSeq("MMMMM") self.assertRaises(ValueError, spacer.join, 5) self.assertRaises(ValueError, spacer.join, "ATG") self.assertRaises(ValueError, spacer.join, Seq("ATG")) self.assertRaises(ValueError, spacer.join, MutableSeq("ATG")) self.assertRaises(ValueError, spacer.join, ["ATG", "ATG", 5, "ATG"]) def test_join_Seq_TypeError(self): """Checks that a TypeError is thrown for incompatible alphabets.""" spacer = Seq("NNNNN", generic_dna) self.assertRaises(TypeError, spacer.join, [Seq("NNNNN", generic_rna), Seq("NNNNN", generic_rna)]) self.assertRaises(TypeError, spacer.join, [Seq("NNNNN", generic_protein), Seq("NNNNN", generic_protein)]) def test_join_UnknownSeq_TypeError(self): """Checks that a TypeError is thrown for incompatible alphabets.""" spacer = UnknownSeq(5, character="-", alphabet=generic_dna) self.assertRaises(TypeError, spacer.join, [UnknownSeq(5, character="-", alphabet=generic_rna), UnknownSeq(5, character="-", alphabet=generic_rna)]) self.assertRaises(TypeError, spacer.join, [Seq("NNNNN", generic_protein), UnknownSeq(5, character="-", alphabet=generic_protein)]) def test_join_MutableSeq_TypeError(self): """Checks that a TypeError is thrown for incompatible alphabets.""" spacer = MutableSeq("NNNNN", generic_dna) self.assertRaises(TypeError, spacer.join, [MutableSeq("NNNNN", generic_rna), MutableSeq("NNNNN", generic_rna)]) self.assertRaises(TypeError, spacer.join, [Seq("NNNNN", generic_protein), MutableSeq("NNNNN", generic_protein)]) def test_join_Seq(self): """Checks if Seq join correctly concatenates sequence with the spacer.""" # Only expect it to take Seq objects and/or strings in an iterable! spacer1 = Seq("", generic_dna) spacers = [spacer1, Seq("NNNNN", generic_dna), Seq("GGG", generic_nucleotide)] example_strings = ["ATG", "ATG", "ATG", "ATG"] example_strings_seqs = ["ATG", "ATG", Seq("ATG", generic_dna), "ATG"] # strings with empty spacer str_concatenated = spacer1.join(example_strings) self.assertEqual(str(str_concatenated), "".join(example_strings)) self.assertEqual(str_concatenated.alphabet, spacer1.alphabet) for spacer in spacers: seq_concatenated = spacer.join(example_strings_seqs) self.assertEqual(str(seq_concatenated), str(spacer).join(example_strings)) self.assertEqual(seq_concatenated.alphabet, spacer.alphabet) def test_join_Seq_with_file(self): """Checks if Seq join correctly concatenates sequence from a file with the spacer.""" filename = "Fasta/f003" seqlist = [record.seq for record in SeqIO.parse(filename, "fasta")] seqlist_as_strings = [str(_) for _ in seqlist] spacer = Seq("NNNNN") spacer1 = Seq("") # seq objects with spacer seq_concatenated = spacer.join(seqlist) # seq objects with empty spacer seq_concatenated1 = spacer1.join(seqlist) ref_data = ref_data1 = "" ref_data = str(spacer).join(seqlist_as_strings) ref_data1 = str(spacer1).join(seqlist_as_strings) self.assertEqual(str(seq_concatenated), ref_data) self.assertEqual(str(seq_concatenated1), ref_data1) with self.assertRaises(TypeError): spacer.join(SeqIO.parse(filename, "fasta")) def test_join_UnknownSeq(self): """Checks if UnknownSeq join correctly concatenates sequence with the spacer.""" # Only expect it to take Seq objects and/or strings in an iterable! spacer1 = UnknownSeq(0, character="-", alphabet=generic_dna) spacers = [spacer1, UnknownSeq(5, character="-", alphabet=generic_dna), UnknownSeq(5, character="-", alphabet=generic_nucleotide)] example_strings = ["ATG", "ATG", "ATG", "ATG"] example_strings_seqs = ["ATG", "ATG", Seq("ATG", generic_dna), "ATG"] # strings with empty spacer str_concatenated = spacer1.join(example_strings) self.assertEqual(str(str_concatenated), "".join(example_strings)) self.assertEqual(str_concatenated.alphabet, spacer1.alphabet) for spacer in spacers: seq_concatenated = spacer.join(example_strings_seqs) self.assertEqual(str(seq_concatenated), str(spacer).join(example_strings)) self.assertEqual(seq_concatenated.alphabet, spacer.alphabet) def test_join_UnknownSeq_with_file(self): """Checks if UnknownSeq join correctly concatenates sequence from a file with the spacer.""" filename = "Fasta/f003" seqlist = [record.seq for record in SeqIO.parse(filename, "fasta")] seqlist_as_strings = [str(_) for _ in seqlist] spacer = UnknownSeq(0, character="-", alphabet=generic_dna) spacer1 = UnknownSeq(5, character="-", alphabet=generic_dna) # seq objects with spacer seq_concatenated = spacer.join(seqlist) # seq objects with empty spacer seq_concatenated1 = spacer1.join(seqlist) ref_data = ref_data1 = "" ref_data = str(spacer).join(seqlist_as_strings) ref_data1 = str(spacer1).join(seqlist_as_strings) self.assertEqual(str(seq_concatenated), ref_data) self.assertEqual(str(seq_concatenated1), ref_data1) with self.assertRaises(TypeError): spacer.join(SeqIO.parse(filename, "fasta")) def test_join_MutableSeq(self): """Checks if MutableSeq join correctly concatenates sequence with the spacer.""" # Only expect it to take Seq objects and/or strings in an iterable! spacer1 = MutableSeq("", generic_dna) spacers = [spacer1, MutableSeq("NNNNN", generic_dna), MutableSeq("GGG", generic_nucleotide)] example_strings = ["ATG", "ATG", "ATG", "ATG"] example_strings_seqs = ["ATG", "ATG", Seq("ATG", generic_dna), "ATG"] # strings with empty spacer str_concatenated = spacer1.join(example_strings) self.assertEqual(str(str_concatenated), "".join(example_strings)) self.assertEqual(str_concatenated.alphabet, spacer1.alphabet) for spacer in spacers: seq_concatenated = spacer.join(example_strings_seqs) self.assertEqual(str(seq_concatenated), str(spacer).join(example_strings)) self.assertEqual(seq_concatenated.alphabet, spacer.alphabet) def test_join_MutableSeq_with_file(self): """Checks if MutableSeq join correctly concatenates sequence from a file with the spacer.""" filename = "Fasta/f003" seqlist = [record.seq for record in SeqIO.parse(filename, "fasta")] seqlist_as_strings = [str(_) for _ in seqlist] spacer = MutableSeq("NNNNN") spacer1 = MutableSeq("") # seq objects with spacer seq_concatenated = spacer.join(seqlist) # seq objects with empty spacer seq_concatenated1 = spacer1.join(seqlist) ref_data = ref_data1 = "" ref_data = str(spacer).join(seqlist_as_strings) ref_data1 = str(spacer1).join(seqlist_as_strings) self.assertEqual(str(seq_concatenated), ref_data) self.assertEqual(str(seq_concatenated1), ref_data1) with self.assertRaises(TypeError): spacer.join(SeqIO.parse(filename, "fasta")) # TODO - Addition... class FileBasedTests(unittest.TestCase): """Test Seq objects created from files by SeqIO.""" def test_unknown_seq_ungap(self): """Test ungap() works properly on UnknownSeq instances.""" rec = SeqIO.read("GenBank/NT_019265.gb", "genbank") self.assertIsInstance(rec.seq, UnknownSeq) ungapped_seq = rec.features[1].extract(rec.seq).ungap("-") self.assertIsInstance(ungapped_seq, UnknownSeq) if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) unittest.main(testRunner=runner)
the-stack_106_26006
"""application URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from captcha.conf import settings as ca_settings from captcha.helpers import captcha_image_url, captcha_audio_url from captcha.models import CaptchaStore from django.conf import settings from django.urls import re_path, include from django.views.static import serve from rest_framework.views import APIView from apps.vadmin.op_drf.response import SuccessResponse from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi schema_view = get_schema_view( openapi.Info( title="Snippets API", default_version='v1', description="Test description", terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(email="[email protected]"), license=openapi.License(name="BSD License"), ), public=True, permission_classes=[permissions.AllowAny], ) class CaptchaRefresh(APIView): authentication_classes = [] permission_classes = [] def get(self, request): new_key = CaptchaStore.pick() to_json_response = { "key": new_key, "image_url": captcha_image_url(new_key), "audio_url": captcha_audio_url(new_key) if ca_settings.CAPTCHA_FLITE_PATH else None, } return SuccessResponse(to_json_response) urlpatterns = [ re_path(r'media/(?P<path>.*)', serve, {"document_root": settings.MEDIA_ROOT}), re_path(r'^admin/', include('apps.vadmin.urls')), re_path(r'^$', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), re_path(r'^swagger(?P<format>\.json|\.yaml)$', schema_view.without_ui(cache_timeout=0), name='schema-json'), re_path(r'^swagger/$', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), re_path(r'^redoc/$', schema_view.with_ui('redoc', cache_timeout=0), name='schema-redoc'), re_path(r'^device/', include('apps.device.urls')), # 注册设备模块 ]
the-stack_106_26007
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Evaluate pre-trained model trained for ppl metric. """ from parlai_internal.scripts.eval_ppl import eval_ppl, setup_args from parlai_internal.scripts.utils import write_result_to_csv, update_opt import os if __name__ == '__main__': parser = setup_args() parser.add_argument('-ds','--dataset', default='barista-personalised', type=str, help='Dataset name. Choices: barista, barista-personalised, barista-personalised-order.') parser.add_argument('-ts', '--task-size', default='Task1k', type=str, help='Task size folder,' 'choices: SecondInteraction, Task1k, Task10k for barista-personalised and barista-personalised-order' 'choices: Task100, Task1k, Task10k for barista.') parser.add_argument('-tid', '--task-id', type=int, default=1, help='Task number, default is 1. For personalised sets, 0-8, for barista 1-7.') parser.add_argument('-ne', '--num-examples', default=100000000) parser.add_argument('-d', '--display-examples', type='bool', default=False) parser.add_argument('-ltim', '--log-every-n-secs', type=float, default=2) parser.set_defaults( task='internal:barista-personalised:Task1k:1', model='parlai_internal.agents.seq2seq.seq2seq_v0:PerplexityEvaluatorAgent', model_file='izoo:Seq2Seq/model', datatype='test', ) opt = parser.parse_args(print_args=False) # add additional model args opt = update_opt(opt, "Seq2Seq", log_incorrect=True, log_correct=True) new_parser = setup_args(parser=parser) new_parser.set_params( task=opt['task'], model_file=opt['model_file'], log_predictions=opt['log_predictions'], dump_incorrect_predictions_path=opt['dump_incorrect_predictions_path'], dump_correct_predictions_path=opt['dump_correct_predictions_path'], datatype='test', numthreads=1, batchsize=1, hide_labels=False, dict_lower=True, dict_include_valid=False, dict_tokenizer='split', rank_candidates=True, metrics='accuracy,f1,hits@1', no_cuda=True, ) opt = new_parser.parse_args() report = eval_ppl(opt) result_file = os.path.join("izoo:" + "Seq2Seq", opt['dataset'], opt['task_size'], "log") + "/results_test.csv" write_result_to_csv(report, result_file, opt['task_id'], opt['datapath'])
the-stack_106_26012
import torch import torch.nn as nn import torch.nn.functional as F from mmseg.core import add_prefix from mmseg.ops import resize from .. import builder from ..builder import SEGMENTORS from .base import BaseSegmentor @SEGMENTORS.register_module() class EncoderDecoder(BaseSegmentor): """Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be dumped during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoder, self).__init__(init_cfg) if pretrained is not None: assert backbone.get('pretrained') is None, \ 'both backbone and segmentor set pretrained weight' backbone.pretrained = pretrained self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = builder.build_head(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(builder.build_head(head_cfg)) else: self.auxiliary_head = builder.build_head(auxiliary_head) def extract_feat(self, img): """Extract features from images.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def encode_decode(self, img, img_metas): """Encode images with backbone and decode into a semantic segmentation map of the same size as input.""" x = self.extract_feat(img) out = self._decode_head_forward_test(x, img_metas) out = resize( input=out, size=img.shape[2:], mode='bilinear', align_corners=self.align_corners) return out def _decode_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, gt_semantic_seg): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, gt_semantic_seg, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def forward_dummy(self, img): """Dummy forward function.""" seg_logit = self.encode_decode(img, None) return seg_logit def forward_train(self, img, img_metas, gt_semantic_seg): """Forward function for training. Args: img (Tensor): Input images. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. gt_semantic_seg (Tensor): Semantic segmentation masks used if the architecture supports semantic segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, gt_semantic_seg) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, gt_semantic_seg) losses.update(loss_aux) return losses # TODO refactor def slide_inference(self, img, img_meta, rescale): """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = img.size() num_classes = self.num_classes h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = img.new_zeros((batch_size, num_classes, h_img, w_img)) count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = img[:, :, y1:y2, x1:x2] crop_seg_logit = self.encode_decode(crop_img, img_meta) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 if torch.onnx.is_in_onnx_export(): # cast count_mat to constant while exporting to ONNX count_mat = torch.from_numpy( count_mat.cpu().detach().numpy()).to(device=img.device) preds = preds / count_mat if rescale: preds = resize( preds, size=img_meta[0]['ori_shape'][:2], mode='bilinear', align_corners=self.align_corners, warning=False) return preds def whole_inference(self, img, img_meta, rescale): """Inference with full image.""" seg_logit = self.encode_decode(img, img_meta) if rescale: # support dynamic shape for onnx if torch.onnx.is_in_onnx_export(): size = img.shape[2:] else: size = img_meta[0]['ori_shape'][:2] seg_logit = resize( seg_logit, size=size, mode='bilinear', align_corners=self.align_corners, warning=False) return seg_logit def inference(self, img, img_meta, rescale): """Inference with slide/whole style. Args: img (Tensor): The input image of shape (N, 3, H, W). img_meta (dict): Image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:Collect`. rescale (bool): Whether rescale back to original shape. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = img_meta[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in img_meta) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(img, img_meta, rescale) else: seg_logit = self.whole_inference(img, img_meta, rescale) output = F.softmax(seg_logit, dim=1) flip = img_meta[0]['flip'] if flip: flip_direction = img_meta[0]['flip_direction'] assert flip_direction in ['horizontal', 'vertical'] if flip_direction == 'horizontal': output = output.flip(dims=(3, )) elif flip_direction == 'vertical': output = output.flip(dims=(2, )) return output def simple_test(self, img, img_meta, rescale=True): """Simple test with single image.""" seg_logit = self.inference(img, img_meta, rescale) seg_pred = seg_logit.argmax(dim=1) if torch.onnx.is_in_onnx_export(): # our inference backend only support 4D output seg_pred = seg_pred.unsqueeze(0) return seg_pred seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred def aug_test(self, imgs, img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(imgs[0], img_metas[0], rescale) for i in range(1, len(imgs)): cur_seg_logit = self.inference(imgs[i], img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(imgs) seg_pred = seg_logit.argmax(dim=1) seg_pred = seg_pred.cpu().numpy() # unravel batch dim seg_pred = list(seg_pred) return seg_pred
the-stack_106_26013
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Stream(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "contour" _path_str = "contour.stream" _valid_props = {"maxpoints", "token"} # maxpoints # --------- @property def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"] @maxpoints.setter def maxpoints(self, val): self["maxpoints"] = val # token # ----- @property def token(self): """ The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"] @token.setter def token(self, val): self["token"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. """ def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.contour.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.contour.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.contour.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) _v = maxpoints if maxpoints is not None else _v if _v is not None: self["maxpoints"] = _v _v = arg.pop("token", None) _v = token if token is not None else _v if _v is not None: self["token"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
the-stack_106_26017
""" Tests for the basic masking and filtering operations """ from ccd.qa import * from ccd.app import get_default_params clear = 0 water = 1 fill = 255 snow = 3 clear_thresh = 0.25 snow_thresh = 0.75 default_params = get_default_params() def test_checkbit(): packint = 1 offset = 0 assert checkbit(packint, offset) offset = 1 assert not checkbit(packint, offset) def test_qabitval(): # [fill, clear, water, cloud shadow, snow, cloud, # High Cirrus + low cloud conf, high cirrus + medium cloud conf, terrain occlusion] packints = [1, 2, 4, 8, 16, 32, 832, 896, 1024] ans = [0, 1, 2, 3, 4, 5, 1, 1, 1] for i, a in zip(packints, ans): assert qabitval(i, default_params) == a def test_count_clear_or_water(): arr = np.arange(5) ans = 2 assert ans == count_clear_or_water(arr, clear, water) def test_count_total(): arr = np.arange(5) arr[-1] = 255 ans = 4 assert ans == count_total(arr, fill) def test_ratio_clear(): arr = np.arange(5) arr[-1] = 255 ans = 0.5 assert ans == ratio_clear(arr, clear, water, fill) def test_ratio_snow(): arr = np.arange(5) ans = 1/3.01 assert ans == ratio_snow(arr, clear, water, snow) def test_enough_clear(): arr = np.arange(5) ans = True assert ans == enough_clear(arr, clear, water, fill, clear_thresh) arr[1:] = snow ans = False assert ans == enough_clear(arr, clear, water, fill, clear_thresh) def test_enough_snow(): arr = np.arange(5) ans = False assert ans == enough_snow(arr, clear, water, snow, snow_thresh) arr[1:] = snow ans = True assert ans == enough_snow(arr, clear, water, snow, snow_thresh) def test_filter_median_green(): arr = np.arange(10) ans = np.array([True, True, True, True, True, True, True, True, False, False]) assert np.array_equal(ans, filter_median_green(arr, 3)) def test_duplicate_values(): arr = np.array([1, 2, 2, 3, 4, 5, 5]) ans = np.array([True, True, False, True, True, True, False], dtype=bool) assert np.array_equal(ans, mask_duplicate_values(arr))
the-stack_106_26019
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ libcloud provides a unified interface to the cloud computing resources. :var __version__: Current version of libcloud """ __all__ = ['__version__', 'enable_debug'] __version__ = '0.14.1' import os try: import paramiko have_paramiko = True except ImportError: have_paramiko = False def enable_debug(fo): """ Enable library wide debugging to a file-like object. :param fo: Where to append debugging information :type fo: File like object, only write operations are used. """ from libcloud.common.base import (Connection, LoggingHTTPConnection, LoggingHTTPSConnection) LoggingHTTPSConnection.log = fo LoggingHTTPConnection.log = fo Connection.conn_classes = (LoggingHTTPConnection, LoggingHTTPSConnection) def _init_once(): """ Utility function that is ran once on Library import. This checks for the LIBCLOUD_DEBUG environment variable, which if it exists is where we will log debug information about the provider transports. """ path = os.getenv('LIBCLOUD_DEBUG') if path: fo = open(path, 'a') enable_debug(fo) if have_paramiko: paramiko.common.logging.basicConfig(level=paramiko.common.DEBUG) _init_once()
the-stack_106_26022
# Specify an Exasim version to run version = "Version0.1"; # import external modules import numpy, os # Add Exasim to Python search path cdir = os.getcwd(); ii = cdir.find("Exasim"); exec(open(cdir[0:(ii+6)] + "/Installation/setpath.py").read()); # import internal modules import Preprocessing, Postprocessing, Gencode, Mesh # Create pde object and mesh object pde,mesh = Preprocessing.initializeexasim(version); # Define a PDE model: governing equations and boundary conditions pde['model'] = "ModelD"; # ModelC, ModelD, ModelW pde['modelfile'] = "pdemodel"; # name of a file defining the PDE model # Choose computing platform and set number of processors #pde['platform'] = "gpu"; # choose this option if NVIDIA GPUs are available pde['mpiprocs'] = 1; # number of MPI processors # Set discretization parameters, physical parameters, and solver parameters pde['porder'] = 3; # polynomial degree pde['physicsparam'] = numpy.array([0.01, 0.0, 1.0, 0.5, 0.0]); # unit thermal conductivity pde['tau'] = numpy.array([1.0]); # DG stabilization parameter # create a mesh of 8 by 8 quads on a square domain mesh['p'], mesh['t'] = Mesh.SquareMesh(16,16,1)[0:2]; # expressions for domain boundaries mesh['boundaryexpr'] = [lambda p: (p[1,:] < 1e-3), lambda p: (p[0,:] > 1-1e-3), lambda p: (p[1,:] > 1-1e-3), lambda p: (p[0,:] < 1e-3)]; mesh['boundarycondition'] = numpy.array([1, 1, 2, 1]); # Set boundary condition for each boundary # call exasim to generate and run C++ code to solve the PDE model sol, pde, mesh = Postprocessing.exasim(pde,mesh)[0:3]; # visualize the numerical solution of the PDE model using Paraview pde['visscalars'] = ["temperature", 0]; # list of scalar fields for visualization pde['visvectors'] = ["temperature gradient", numpy.array([1, 2]).astype(int)]; # list of vector fields for visualization Postprocessing.vis(sol,pde,mesh); # visualize the numerical solution print("Done!"); # npf = dmd[0]['facecon'].shape[0]; # nf = dmd[0]['facecon'].shape[2]; # print(numpy.reshape(dmd[0]['facecon'][:,0,:],(npf,nf),'F').T) # print(numpy.reshape(dmd[0]['facecon'][:,1,:],(npf,nf),'F').T) # fileapp1 = cdir + "/datain/app.bin"; # app1 = Preprocessing.readapp(fileapp1); # fileapp2 = cdir + "/Applications/Poisson/Poisson2d/datain/app.bin"; # app2 = Preprocessing.readapp(fileapp2); # diff = Preprocessing.checkapp(app1,app2); # print(app1['problem']) # print(app2['problem']) # print(diff) # filemaster1 = cdir + "/datain/master.bin"; # tm1 = numpy.fromfile(open(filemaster1, "r"), dtype=numpy.float64); # filemaster2 = cdir + "/Applications/Poisson/Poisson2d/datain/master.bin"; # tm2 = numpy.fromfile(open(filemaster2, "r"), dtype=numpy.float64); # print(max(abs(tm1.flatten('F')-tm2.flatten('F')))) # filemesh1 = cdir + "/datain/mesh1.bin"; # mesh1 = Preprocessing.readmesh(filemesh1); # filemesh2 = cdir + "/Applications/Poisson/Poisson2d/datain/mesh1.bin"; # mesh2 = Preprocessing.readmesh(filemesh2); # diff = Preprocessing.checkmesh(mesh1,mesh2); # print(mesh1['nbsd']) # print(mesh2['nbsd']) # print(diff) # # filemesh1 = cdir + "/datain/mesh2.bin"; # mesh1 = Preprocessing.readmesh(filemesh1); # filemesh2 = cdir + "/Applications/Poisson/Poisson2d/datain/mesh2.bin"; # mesh2 = Preprocessing.readmesh(filemesh2); # diff = Preprocessing.checkmesh(mesh1,mesh2); # print(mesh1['nbsd']) # print(mesh2['nbsd']) # print(diff) # print(mesh1['ndims']) # print(mesh2['ndims']) # print(mesh1['nsize']) # print(mesh2['nsize']) # print(mesh1['facecon'][0:10]) # print(mesh2['facecon'][0:10]) # print(dmd[0]['facecon'][:,:,0]) # fileapp1 = cdir + "/datain/app['bin"; # app1 = Preprocessing.readapp(fileapp1); # fileapp2 = cdir + "/Applications/Poisson2d/datain/app['bin"; # app2 = Preprocessing.readapp(fileapp2); # diff = Preprocessing.checkapp(app1,app2); # print(diff) # # filemaster1 = cdir + "/datain/master.bin"; # tm1 = numpy.fromfile(open(filemaster1, "r"), dtype=numpy.float64); # filemaster2 = cdir + "/Applications/Poisson2d/datain/master.bin"; # tm2 = numpy.fromfile(open(filemaster2, "r"), dtype=numpy.float64); # print(max(abs(tm1.flatten('F')-tm2.flatten('F')))) # # filemesh1 = cdir + "/datain/mesh.bin"; # mesh1 = Preprocessing.readmesh(filemesh1); # filemesh2 = cdir + "/Applications/Poisson2d/datain/mesh.bin"; # mesh2 = Preprocessing.readmesh(filemesh2); # diff = Preprocessing.checkmesh(mesh1,mesh2); # print(diff) # tm1 = numpy.fromfile(open(filemesh1, "r"), dtype=numpy.float64); # tm2 = numpy.fromfile(open(filemesh2, "r"), dtype=numpy.float64); # print(mesh1['nsize']) # print(mesh2['nsize']) # k1 = 0; k2 = 20; # print(max(abs(tm1[k1:k2].flatten('F')-tm2[k1:k2].flatten('F')))) # k1 = 20; k2 = 1152+20; # print(max(abs(tm1[k1:k2].flatten('F')-tm2[k1:k2].flatten('F')))) # print(tm1[k1:k2]) # print(tm2[k1:k2]) # print(mesh1['facecon'].flatten('F')) # print(mesh2['facecon'].flatten('F')) # print(tm1.shape) # print(tm2.shape) # print(mesh1['colent2elem'].T) # print(mesh2['colent2elem'].T) # print(mesh['f'].T) # print(mesh['dgnodes'][:,:,0]) # print(mesh['dgnodes'][:,:,-1])
the-stack_106_26023
# _________________________________________________________________________ # # PyUtilib: A Python utility library. # Copyright (c) 2008 Sandia Corporation. # This software is distributed under the BSD License. # Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, # the U.S. Government retains certain rights in this software. # _________________________________________________________________________ import logging import re import sys import textwrap _indention = re.compile('\s*') class LogHandler(logging.Handler): def __init__( self, base='', stream=None, level=logging.NOTSET, verbosity=None ): logging.Handler.__init__(self, level=level) if verbosity is None: verbosity = lambda: True if stream is None: stream = sys.stdout self.verbosity = verbosity self.stream = stream self.basepath = base # Public attributes (because embedded constants in functions are evil) self.wrap = 78 self.initial_indent = '' self.subsequent_indent = ' '*4 def emit(self, record): level = record.levelname msg = record.getMessage() # Most of the messages are either unformatted long lines or # triple-quote blocks of text. In the latter case, if the text # starts on the same line as the triple-quote, then it is almost # certainly NOT indented with the bulk of the text, which will # cause dedent to get confused and not strip any leading # whitespace. This attempts to work around that case: # #if not ( msg.startswith('\n') or _indention.match(msg).group() ): # # copy the indention for the second line to the first: # lines = msg.splitlines() # if len(lines) > 1: # msg = _indention.match(lines[1]).group() + msg # # The problem with the above logic is that users may want a # simple introductory line followed by an intented line (our # tests did this!), and cannot specify it without adding an # extra blank line to the output. In contrast, it is possible # for the user to fix the scenario above that motivated this # code by just indenting their first line correctly. # TBD: dedent does not convert \t to ' '*8. Should we do that? msg = textwrap.dedent(msg) # As textwrap only works on single paragraphs, we need to break # up the incoming message into paragraphs before we pass it to # textwrap. paragraphs = [] indent = _indention.match(msg).group() par_lines = [] for line in msg.splitlines(): leading = _indention.match(line).group() content = line.strip() if not content: paragraphs.append((indent, par_lines)) par_lines = [] # Blank lines reset the indentation level indent = None elif indent == leading: # Catch things like bulleted lists if len(content) > 1 and par_lines and content[1] == ' ' \ and content[0] in '-* ': paragraphs.append((indent, par_lines)) par_lines = [] par_lines.append( content ) else: paragraphs.append((indent, par_lines)) par_lines = [ content ] indent = leading # Collect the final paragraph if par_lines: paragraphs.append((indent, par_lines)) # Skip any leading/trailing blank lines while paragraphs and not paragraphs[-1][1]: paragraphs.pop() while paragraphs and not paragraphs[0][1]: paragraphs.pop(0) if self.verbosity(): # # If verbosity is on, the first logged line is the file, # line, and function name that called the logger. The first # line of the message is actually the second line of the # output (and so is indented/wrapped the same as the rest of # the message) # filename = record.pathname # file path lineno = record.lineno try: function = record.funcName except AttributeError: function = '(unknown)' if self.basepath and filename.startswith(self.basepath): filename = '[base]' + filename[len(self.basepath):] self.stream.write( '%s: "%s", %d, %s\n' % ( level, filename, lineno, function.strip(), )) else: # # If verbosity is off, prepend the log level name to the # beginning of the message and format the line without the # 'subsequent' indentation of the remainder of the message # if paragraphs: firstPar = ' '.join(paragraphs.pop(0)[1]).strip() if level: firstPar = ('%s: %s' % (level, firstPar)) else: firstPar = level self.stream.write( '%s\n' % ( textwrap.fill( firstPar, width=self.wrap, initial_indent=self.initial_indent, subsequent_indent=self.subsequent_indent ), )) for indent, par in paragraphs: if not indent: indent = '' # Bulleted lists get indented with a hanging indent if par and len(par[0]) > 1 and par[0][0] in '-*': hang = ' '*4 else: hang = '' self.stream.write( '%s\n' % ( textwrap.fill( ' '.join(par), width=self.wrap, initial_indent=self.subsequent_indent+indent, subsequent_indent=self.subsequent_indent+indent+hang ), )) # # Set up default logging for PyUtilib # # __file__ fails if script is called in different ways on Windows # __file__ fails if someone does os.chdir() before # sys.argv[0] also fails because it does not always contain the path from os.path import dirname as _dir, abspath as _abs import inspect _pyutilib_base = _dir(_dir(_dir(_abs(inspect.getfile(inspect.currentframe()))))) _logger = logging.getLogger('pyutilib') _logger.setLevel(logging.WARNING) _logger.addHandler( LogHandler( _pyutilib_base, verbosity=lambda: _logger.isEnabledFor(logging.DEBUG)))
the-stack_106_26025
from flask import Flask, render_template, request, redirect, jsonify, make_response, json, request, url_for, send_from_directory, flash from collections import namedtuple from werkzeug import secure_filename import sys import types import time import datetime import re import json import untangle import uuid import sqlalchemy import os import io from datetime import date, timedelta from .DBSetup import * from sqlalchemy import * from sqlalchemy.orm import aliased from .config import * from .SMTPemail import * from .tablefunctions import * from io import StringIO #Make the WSGI interface available at the top level so wfastcgi can get it. app = Flask(__name__) wsgi_app = app.wsgi_app #These are the extension types that we are accepting to be uploaded app.config['ALLOWED_EXTENSIONS'] = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif', 'xml', 'csv']) app.secret_key = getconfig('SecretKey') Session = sessionmaker(bind=engine) #For a given file, return whether it's an allowed type or not def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in app.config['ALLOWED_EXTENSIONS'] def errorpage(thisuser,message): return render_template('errorpage.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ errormessage = message ) #the root page isn't meant to be navigable. It shows the user an error and #tells them how to get to their user home. @app.route('/') def rootpage(): return render_template('index.html') #upon the URL request in the form domain/user/<logonid> the user receives their home. The home contains the groups they #are playing in. Optionally, this page presents their home in the future or the past, and gives them further options. @app.route('/user/<logonid>/') def home(logonid,inputdate='n'): try: session = Session() thisuser = getuser(session,logonid,True) log('HOME: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: debuglog('HOME: date modifier is currently set to %s' % inputdate) #get the current announcement currentannouncement = session.query(announcement).order_by(desc(announcement.creationtime)).first() if currentannouncement is not None: announcementcontent = currentannouncement.content.replace("\n","<br />") else: announcementcontent = '' #get impontant datetimes today = datetime.datetime.combine(datetime.date.today(), datetime.time.min) #get today's date debuglog('HOME: Today is %s' % today.strftime('%Y-%m-%d %H:%M')) campstarttime = datetime.datetime.strptime(getconfig('StartTime'), '%Y-%m-%d %H:%M') campendtime = datetime.datetime.strptime(getconfig('EndTime'), '%Y-%m-%d %H:%M') #if the suer has submitted a date, convert it to a datetime and use it as the display date if inputdate != 'n': displaydate = datetime.datetime.strptime(inputdate, '%Y-%m-%d') #if the user has not submitted a date and today is before the start of camp, use the first day of camp as the display date elif today < datetime.datetime.strptime(getconfig('StartTime'), '%Y-%m-%d %H:%M'): displaydate = datetime.datetime.strptime(getconfig('StartTime').split()[0], '%Y-%m-%d') #if today is after the start of camp, use today as the display date else: displaydate = today previousday = displaydate + datetime.timedelta(days=-1) midday = displaydate + datetime.timedelta(hours=12) nextday = displaydate + datetime.timedelta(days=1) #get an array containing the dates that the camp is running dates = [] for d in range((campendtime-campstarttime).days + 2): dates.append(campstarttime + timedelta(days=d)) #get the user's schedule, an array of objects depending on the user's state during each period schedule = getschedule(session,thisuser,displaydate) unscheduled = False for p in schedule: if session.query(group).filter(group.periodid == p.periodid, group.status == "Confirmed", or_(group.ismusical == 1, group.iseveryone == 1)).first() is None: unscheduled = True break session.close() return render_template('home.html', \ thisuser=thisuser, \ date=displaydate,\ schedule=schedule, \ dates=dates, \ previousday=previousday, \ nextday=nextday, \ today=today, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ currentannouncement=announcementcontent, \ now = datetime.datetime.now(), \ midday=midday, \ unscheduled=unscheduled, \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return render_template('errorpage.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ errormessage = 'Failed to display page. %s' % ex ) else: return jsonify(message = message, url = 'none') #NOT CURRENTLY USED Currently broken. Doesn't like the fact that the getschedule function returns an array of inconsistant objects. Either make them consistant, #or put logic into the 'for s in ...' part of the below function. Or maybe improve the query in the getschedule function. """@app.route('/user/<logonid>/requestschedule/', methods=["POST"]) def requestschedule(logonid): log('Schedule request for date %s' % request.json['date']) #convert the inputdate to a datetime object date = datetime.datetime.strptime(request.json['date'], '%Y-%m-%d') session = Session() #gets the data associated with this user thisuser = session.query(user).filter(user.logonid == logonid).first() if thisuser is None: session.close() return jsonify(message = 'Your user does not exist. Something went wrong.', url = 'none', status_code = 400) schedule_serialized = [] for s in getschedule(session,thisuser,date): schedule_serialized.append({'groupname': s.groupname, 'starttime': s.starttime, 'endtime': s.endtime,\ 'locationname': s.locationname, 'groupid': s.groupid, 'ismusical': s.ismusical, 'iseveryone': s.iseveryone,\ 'preiodid': s.periodid, 'periodname': s.periodname, 'instrumentname': s.instrumentname}) return jsonify(schedule_serialized)""" #When the user selects the "next day" and "previous day" links on their home, it goes to this URL. this route redirects them back #to the user home with a date modifier. @app.route('/user/<logonid>/date/<date>/') def homeDateModifier(logonid,date): return home(logonid,date) #Makes a post query that marks a player adsent for a given period. This is triggered off the above (two) home functions. @app.route("/user/<logonid>/period/<periodid>/absent/<command>/", methods=["POST"]) def mark_absent(logonid,periodid,command): try: session = Session() thisuser = getuser(session,logonid,True) log('ABSENTREQUEST: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: thisperiod = getperiod(session,periodid) if command == 'confirm': thisuser.markabsent(session,thisperiod) if command == 'cancel': thisuser.markpresent(session,thisperiod) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() else: session.commit() session.close() return jsonify(message = 'success', url = 'none') #The group page displays all the people in a given group, along with possible substitutes @app.route('/user/<logonid>/group/<groupid>/') def grouppage(logonid,groupid): try: session = Session() thisuser = getuser(session,logonid,True) log('GROUPPAGE: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: thisgroup = getgroup(session,groupid) thislocation = getlocation(session,thisgroup.locationid) thisperiod = getperiod(session,thisgroup.periodid) thisgrouprequestor = getuser(session,thisgroup.requesteduserid) if thisgroup.musicid is not None: thismusic = getmusic(session, thisgroup.musicid) else: thismusic = None #gets the list of players playing in the given group players = session.query(user.userid, user.firstname, user.lastname, groupassignment.instrumentname).join(groupassignment).join(group).\ filter(group.groupid == groupid).order_by(groupassignment.instrumentname).all() #find the substitutes for this group if thisgroup.status == 'Confirmed' and thisgroup.iseveryone != 1 and thisgroup.groupname != 'absent': minimumlevel = thisgroup.getminlevel(session) maximumlevel = thisgroup.getmaxlevel(session) #get the list of instruments played in this group and removes duplicates to be used as a subquery later instruments_in_group_query = session.query(groupassignment.instrumentname).join(group).filter(group.groupid == thisgroup.groupid).group_by(groupassignment.instrumentname) debuglog('GROUPPAGE: Found instruments in group to be %s' % instruments_in_group_query.all()) #get the userids of everyone that's already playing in something this period everyone_playing_in_periodquery = session.query(user.userid).join(groupassignment).join(group).join(period).filter(period.periodid == thisgroup.periodid) #combine the last two queries with another query, finding everyone that both plays an instrument that's found in this #group AND isn't in the list of users that are already playing in this period. substitutes = session.query( instrument.instrumentname, user.userid, user.firstname, user.lastname ).join(user ).filter( ~user.userid.in_(everyone_playing_in_periodquery), user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.endtime, instrument.instrumentname.in_(instruments_in_group_query), instrument.level >= minimumlevel, instrument.level <= maximumlevel, instrument.isactive == 1 ).order_by(instrument.instrumentname) else: substitutes = None session.close() return render_template('grouppage.html', \ thisperiod=thisperiod, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ thisgroup=thisgroup, \ players=players, \ substitutes=substitutes, \ thisuser=thisuser, \ thislocation=thislocation, \ thismusic=thismusic, \ thisgrouprequestor=thisgrouprequestor, \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return render_template('errorpage.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ errormessage = 'Failed to display page. %s' % ex ) else: return jsonify(message = message, url = 'none') #Group editor page. Only accessable by admins. Navigate here from a group to edit group. @app.route('/user/<logonid>/group/<groupid>/edit/', methods=['GET', 'POST', 'DELETE']) def editgroup(logonid,groupid,periodid=None): try: session = Session() thisuser = getuser(session,logonid,True) log('GROUPEDIT: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isadmin != 1: session.close() raise Exception('You do not have permission to do this') if periodid == 'None': periodid = None if groupid == 'new' or groupid is None: groupid = None thisgroup = group(ismusical = 1, requesteduserid = thisuser.userid) requestor = thisuser else: thisgroup = session.query(group).filter(group.groupid == groupid).first() requestor = session.query(user).filter(user.userid == thisgroup.requesteduserid).first() if request.method == 'GET': tomorrow = datetime.datetime.combine(datetime.date.today(), datetime.time.min) + datetime.timedelta(days=1) #Current period tracks the period that the group is already set to (none, if it's a new group) currentperiod = session.query(period).filter(period.periodid == thisgroup.periodid).first() #print out the list of players and remove any that have already left camp thisgroupplayers = session.query(user.userid, user.firstname, user.lastname, groupassignment.instrumentname, user.departure).join(groupassignment).join(group).filter(group.groupid == thisgroup.groupid).order_by(groupassignment.instrumentname).all() #find all periods from now until the end of time to display to the user, then removes any periods that the people in this group cannot play in thisgroupplayers_query = session.query(user.userid).join(groupassignment).join(group).filter(group.groupid == thisgroup.groupid).order_by(groupassignment.instrumentname) periodlist = session.query(period).order_by(period.starttime).all() if thisgroupplayers_query.first() is not None: lastarrival = session.query(func.max(user.arrival).label("lastarrival")).filter(user.userid.in_(thisgroupplayers_query)).first().lastarrival firstdeparture = session.query(func.min(user.departure).label("firstdeparture")).filter(user.userid.in_(thisgroupplayers_query)).first().firstdeparture else: lastarrival = datetime.datetime.strptime(getconfig('StartTime'), '%Y-%m-%d %H:%M') firstdeparture = datetime.datetime.strptime(getconfig('EndTime'), '%Y-%m-%d %H:%M') debuglog('GROUPEDIT: Last Arrival time of players in this group: %s' % lastarrival) debuglog('GROUPEDIT: First Departure time of players in this group: %s' % firstdeparture) periods = [] for p in periodlist: if thisgroupplayers_query.first() is None or ((currentperiod and p.periodid == currentperiod.periodid) \ or (len(session.query(user.userid).join(groupassignment).join(group).join(period).filter(group.periodid == p.periodid, or_(user.userid.in_(thisgroupplayers_query))).all()) == 0\ and p.starttime >= lastarrival and p.starttime <= firstdeparture)): periods.append(p) #if there was no selected period by the user, select the first period if periodid is not None: selectedperiod = session.query(period).filter(period.periodid == periodid).first() elif currentperiod is None: debuglog('GROUPEDIT: This is a periodless group. Selecting a period for the group.') foundperiod = False for p in periods: if p.starttime > tomorrow and session.query(period.periodid).join(group).filter(period.periodid == p.periodid, group.iseveryone == 1).first() is None: selectedperiod = p foundperiod = True break if not foundperiod: selectedperiod = None else: selectedperiod = currentperiod thislocation = session.query(location).join(group).filter(group.groupid == groupid).first() #gets the list of players playing in the given group thisgroupplayers = session.query(user.userid, user.firstname, user.lastname, groupassignment.instrumentname).join(groupassignment).join(group).\ filter(group.groupid == thisgroup.groupid).order_by(groupassignment.instrumentname).all() thisgroupplayers_serialized = [] for p in thisgroupplayers: thisgroupplayers_serialized.append({'userid': p.userid, 'firstname': p.firstname, 'lastname': p.lastname, 'instrumentname': p.instrumentname}) if selectedperiod is not None: #Finds all players who are already playing in this period (except in this specific group) playersPlayingInPeriod = session.query(user.userid).join(groupassignment).join(group).filter(group.groupid != thisgroup.groupid).filter(group.periodid == selectedperiod.periodid) #finds all players who are available to play in this group (they aren't already playing in other groups) playersdump = session.query(user.userid,user.firstname,user.lastname,user.agecategory,instrument.instrumentname,instrument.level,instrument.isprimary).\ join(instrument).filter(~user.userid.in_(playersPlayingInPeriod), user.isactive == 1, user.arrival <= selectedperiod.starttime, user.departure >= selectedperiod.endtime, instrument.isactive == 1).all() else: playersdump = session.query(user.userid,user.firstname,user.lastname,user.agecategory,instrument.instrumentname,instrument.level,instrument.isprimary).\ join(instrument).filter(user.isactive == 1, instrument.isactive == 1).all() playersdump_serialized = [] for p in playersdump: playersdump_serialized.append({'userid': p.userid, 'firstname': p.firstname, 'lastname': p.lastname, 'agecategory': p.agecategory, 'instrumentname': p.instrumentname, 'level': p.level, 'isprimary': p.isprimary}) #Get a list of the available music not being used in the period selected if selectedperiod is not None: musics_used_query = session.query(music.musicid).join(group).join(period).filter(period.periodid == selectedperiod.periodid, group.groupid != thisgroup.groupid) musics = session.query(music).filter(~music.musicid.in_(musics_used_query)).all() else: musics = session.query(music).all() musics_serialized = [i.serialize for i in musics] #get a list of the locations not being used in this period if selectedperiod is not None: locations_used_query = session.query(location.locationid).join(group).join(period).filter(period.periodid == selectedperiod.periodid, group.groupid != thisgroup.groupid, location.locationname != 'None') locations = session.query(location).filter(~location.locationid.in_(locations_used_query)).all() else: locations = session.query(location).all() debuglog('GROUPEDIT: This groups status is %s' % thisgroup.status) #find all group templates to show in a dropdown grouptemplates = session.query(grouptemplate).all() grouptemplates_serialized = [i.serialize for i in grouptemplates] template = render_template('editgroup.html', \ currentperiod=currentperiod, \ selectedperiod=selectedperiod, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ thisgroup=thisgroup, \ thisgroupplayers=thisgroupplayers, \ thisuser=thisuser, \ periods=periods, \ thislocation=thislocation, \ locations=locations, \ playersdump=playersdump, \ playersdump_serialized=playersdump_serialized, \ thisgroupplayers_serialized=thisgroupplayers_serialized, \ maximumlevel=int(getconfig('MaximumLevel')), \ grouptemplates=grouptemplates, \ grouptemplates_serialized=grouptemplates_serialized, \ musics=musics, \ musics_serialized=musics_serialized, \ thismusic=getmusic(session,thisgroup.musicid), \ instrumentlist_string=getconfig('Instruments'), \ groupmin=thisgroup.getminlevel(session), \ groupmax=thisgroup.getmaxlevel(session), \ requestor=requestor, \ ) session.close() return template if request.method == 'DELETE': if groupid is not None: thisgroup.delete(session) url = ('/user/' + str(thisuser.logonid) + '/') message = 'none' flash(u'Group Deleted','message') debuglog('Sending user to URL: %s' % url) session.close() return jsonify(message = message, url = url) else: raise Exception('You must have a period selected before autofilling.') if request.method == 'POST': #format the packet received from the server as JSON content = request.json if content['groupname'] == '' or content['groupname'] == 'null' or content['groupname'] is None: raise Exception('You must give this group a name before saving or autofilling.') if content['periodid'] != '' and content['periodid'] != 'null' and content['periodid'] is not None: thisperiod = session.query(period).filter(period.periodid == content['periodid']).first() else: raise Exception('Could not find a period with the selected id. Refresh the page and try again.') thisgroupassignments = session.query(groupassignment).filter(groupassignment.groupid == thisgroup.groupid).all() for a in thisgroupassignments: session.delete(a) #add the content in the packet to this group's attributes for key,value in content.items(): if (value is None or value == 'null' or value == '') and key != 'primary_only': debuglog('Setting %s to be NULL' % (key)) setattr(thisgroup,key,None) elif key != 'primary_only': debuglog('Setting %s to be %s' % (key, value)) setattr(thisgroup,key,value) if groupid == None: session.add(thisgroup) thisgroup.requesttime = datetime.datetime.now() session.commit() if content['locationid'] is not None and content['locationid'] != '': location_clash = session.query(location.locationname, group.groupid).join(group).join(period).filter(period.periodid == thisperiod.periodid, location.locationid == content['locationid'], group.groupid != thisgroup.groupid).first() if location_clash is not None: debuglog('Group %s is already using this location %s' % (location_clash.groupid, location_clash.locationname)) raise Exception('This location is already being used at this time. Select another.') if content['musicid'] != '' and content['musicid'] != 'null' and content['musicid'] is not None: music_clash = session.query(music.musicname, music.composer, group.groupid).join(group).join(period).filter(period.periodid == thisperiod.periodid, music.musicid == content['musicid'], group.groupid != thisgroup.groupid).first() if music_clash is not None: debuglog('Group %s is already using this music %s %s' % (music_clash.groupid, music_clash.composer, music_clash.musicname)) raise Exception('This music is already being used at this time. You cannot schedule in this period.') foundfilled = False for p in content['objects']: if p['userid'] != '' and p['userid'] is not None: foundfilled = True playeruser = session.query(user).filter(user.userid == p['userid']).first() #if the player is already playing in something, we have a clash and we have to exit completely. This may happen if multiple people are creating groups at the same time. currentassignment = session.query(groupassignment.instrumentname, group.groupname, group.groupid).join(group).filter(groupassignment.userid == p['userid']).filter(group.periodid == thisperiod.periodid).first() if currentassignment is not None: #if the player is already playing in something, we have a clash and we have to exit completely. This may happen if multiple people are creating groups at the same time. if currentassignment.groupid != thisgroup.groupid: raise Exception('Found a clash for %s. They are already playing %s in %s. Refresh the page and try again.' % (playeruser.firstname, currentassignment.instrumentname, currentassignment.groupname)) #if we found a player and no clash, we can assign this player to the group if playeruser is None: url = ('/user/' + str(thisuser.logonid) + '/') raise Exception(message = 'Could not find one of your selected players in the database. Please refresh the page and try again.') else: #if the player is inactive or not attending camp at this time, they should never have been shown to the admin and chosen - this could happen if they were set to inactive while the admin had the page open if playeruser.isactive != 1 or playeruser.arrival > thisperiod.starttime or playeruser.departure < thisperiod.endtime: raise Exception('The user %s %s is set to inactive and they cannot be assigned. Refresh the page and try again with a different user.' % (playeruser.firstname, playeruser.lastname)) else: playergroupassignment = groupassignment(userid = playeruser.userid, groupid = thisgroup.groupid, instrumentname = p['instrumentname']) session.add(playergroupassignment) if thisgroup.status == 'Confirmed' and ( thisgroup.periodid == '' or thisgroup.periodid is None or thisgroup.groupname == '' or thisgroup.groupname is None or thisgroup.locationid == '' or thisgroup.locationid is None ): raise Exception(message = 'Confirmed groups must have a name, assigned period, assigned location and no empty player slots.') if content['submittype'] == 'autofill': debuglog('GROUPEDIT: User selected to autofill the group') debuglog('GROUPEDIT: Primary_only switch set to %s' % content['primary_only']) if content['periodid'] == '' or content['periodid'] is None: raise Exception('You must select a period before autofilling') else: if thisperiod is not None: #get the optimal list of players to be filled into this group final_list = autofill(session,thisgroup,thisperiod,int(content['primary_only'])) #create group assignments for each player in the final_list thisgroup.addplayers(session,final_list) #Check for empty instrument slots if group is set to confirmed - if there are empties we have to switch it back to queued if thisgroup.status == 'Confirmed': for i in getconfig('Instruments').split(","): debuglog('This group has a required %s number of %s and an assigned %s.' % (i, getattr(thisgroup,i), session.query(user).join(groupassignment).filter(groupassignment.groupid == thisgroup.groupid, groupassignment.instrumentname == i).count())) if thisgroup.locationid is None or thisgroup.locationid == '' or thisgroup.totalinstrumentation != thisgroup.totalallocatedplayers: thisgroup.status = 'Queued' session.merge(thisgroup) session.commit() url = '/user/' + str(thisuser.logonid) + '/group/' + str(thisgroup.groupid) + '/edit/' session.close() flash(u'Changes Partially Saved','message') return jsonify(message = 'Your group is not confirmed because there are empty instrument slots or your location is blank. Your other changes have been saved.', url = url) session.merge(thisgroup) session.commit() if content['submittype'] == 'autofill': url = '/user/' + str(thisuser.logonid) + '/group/' + str(thisgroup.groupid) + '/edit/' message = 'none' flash(u'Autofill Completed','message') elif content['submittype'] == 'save': if groupid == None: url = '/user/' + str(thisuser.logonid) + '/group/' + str(thisgroup.groupid) + '/edit/' else: url = 'none' message = 'none' else: url = '/user/' + str(thisuser.logonid) + '/group/' + str(thisgroup.groupid) + '/' message = 'none' if thisgroup.status == 'Confirmed': flash(u'Group Confirmed and Scheduled','message') else: flash(u'Changes Saved','success') session.close() return jsonify(message = message, url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/group/<groupid>/period/<periodid>/edit/', methods=['GET', 'POST', 'DELETE']) def editgroupperiod(logonid,groupid,periodid): return editgroup(logonid,groupid,periodid) @app.route('/user/<logonid>/grouphistory/') def grouphistory(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('GROUPHISTORY: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: now = datetime.datetime.now() #get the time now groups = session.query(group.groupname, group.groupid, period.periodid, period.starttime, period.endtime, groupassignment.instrumentname, group.status, location.locationname).\ join(groupassignment).outerjoin(period).outerjoin(location).filter(groupassignment.userid == thisuser.userid, group.groupname != 'absent').order_by(period.starttime).all() debuglog(groups) count = playcount(session, thisuser.userid) thisuserprimary = session.query(instrument.instrumentname).filter(instrument.userid == thisuser.userid, instrument.isprimary == 1).first().instrumentname total = 0 number = 0 for p in session.query(instrument.userid).filter(instrument.isactive == 1, instrument.isprimary == 1, instrument.instrumentname == thisuserprimary).group_by(instrument.userid).all(): total = total + playcount(session, p.userid) number = number + 1 average = "%.2f" % (float(total) / float(number)) debuglog('Found total number of %s players to be %s and plays by all of them totalling %s giving an average of %s' % (thisuserprimary, number, total, average)) session.close() return render_template('grouphistory.html', \ thisuser=thisuser, \ groups = groups, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ now=now, \ playcount=count, \ average=average, \ thisuserprimary=thisuserprimary, \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/musiclibrary/') def musiclibrary(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('MUSICLIBRARY: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: musics = session.query(music).all() grouptemplates = session.query(grouptemplate).filter(grouptemplate.size == 'S').all() session.close() return render_template('musiclibrary.html', \ thisuser=thisuser, \ musics=musics, \ grouptemplates=grouptemplates, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s.' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/musiclibrary/details/<musicid>/') def musicdetails(logonid,musicid): try: session = Session() thisuser = getuser(session,logonid,True) log('MUSICDETAILS: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: thismusic = session.query(music).filter(music.musicid == musicid).first() if thismusic is None: session.close() return errorpage(thisuser,'The music you selected does not exist in the database.') thisuserinstruments = session.query(instrument).filter(instrument.userid == thisuser.userid, instrument.isactive == 1).all() canplay = False for i in thisuserinstruments: for j in getconfig('Instruments').split(","): if i.instrumentname == j and getattr(thismusic,j) > 0: canplay = True break if canplay == True: break grouptemplates = session.query(grouptemplate).filter(grouptemplate.size == 'S').all() playcount = session.query(group).filter(group.musicid == thismusic.musicid).count() grouphistory = session.query(group.groupname, group.status, group.groupid, period.starttime ).join(period, group.periodid == period.periodid ).filter(group.musicid == thismusic.musicid).all() session.close() return render_template('musicdetails.html', \ thisuser=thisuser, \ now=datetime.datetime.now(), \ thismusic=thismusic, \ grouptemplates=grouptemplates, \ canplay=canplay, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ playcount=playcount, \ grouphistory=grouphistory ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/musiclibrary/new/', methods=['GET', 'POST']) def newmusic(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('NEWMUSIC: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if request.method == 'GET': grouptemplates = session.query(grouptemplate).all() grouptemplates_serialized = [i.serialize for i in grouptemplates] return render_template('newmusic.html', \ thisuser=thisuser, \ grouptemplates=grouptemplates, \ grouptemplates_serialized=grouptemplates_serialized, \ instrumentlist_string=getconfig('Instruments'), \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) if request.method == 'POST': #format the packet received from the server as JSON content = request.json found_non_zero = False for i in getconfig('Instruments').split(","): if content[i] != 0 and content[i] != '' and content[i] != '0' and content[i] is not None: found_non_zero = True if not found_non_zero: session.rollback() session.close() return jsonify(message = 'You cannot submit music without instrumentation.', url = 'none') thismusic = music() debuglog('New Music: Submitted by user %s %s' % (thisuser.firstname, thisuser.lastname)) for key,value in content.items(): if (value is None or value == 'null' or value == '') and key == 'composer': session.rollback() session.close() return jsonify(message = 'You must enter a composer', url = 'none') if (value is None or value == 'null' or value == '') and key == 'name': session.rollback() session.close() return jsonify(message = 'You must enter a name', url = 'none') debuglog('New Music: setting %s to be %s' % (key,value)) setattr(thismusic,key,value) #try to find a grouptemplate that matches this instrumentation matchingtemplate = session.query(grouptemplate) for i in instrumentlist: matchingtemplate = matchingtemplate.filter(getattr(thismusic,i) == getattr(grouptemplate,i)) matchingtemplate = matchingtemplate.first() if matchingtemplate is not None: debuglog('New Music: Found a template matching this music: %s' % matchingtemplate.grouptemplatename) thismusic.grouptemplateid = matchingtemplate.grouptemplateid session.add(thismusic) session.commit() debuglog('New Music: Successfully created') url = ('/user/' + str(thisuser.logonid) + '/musiclibrary/') session.close() flash(u'New Music Accepted', 'success') return jsonify(message = 'none', url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #Handles the group request page. If a user visits the page, it gives them a form to create a new group request. Pressing submit #sends a post containing configuration data. Their group request is queued until an adminsitrator approves it and assigns it to #a period. @app.route('/user/<logonid>/grouprequest/', methods=['GET', 'POST']) def grouprequest(logonid,periodid=None,musicid=None): try: session = Session() thisuser = getuser(session,logonid,True) log('GROUPREQUEST: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: today = datetime.datetime.combine(datetime.date.today(), datetime.time.min) #get today's date intwodays = today + datetime.timedelta(days=2) now = datetime.datetime.now() #get the time now #if this camper is inactive, has not arrived at camp yet, or is departing before the end of tomorrow if (thisuser.isactive != 1) and periodid is None: session.close() return errorpage(thisuser,'Your account is currently set to inactive. Inactive users cannot request groups. Is this is a mistake, navigate to your settings and set yourself to active.') if (thisuser.departure < intwodays) and periodid is None: session.close() return errorpage(thisuser,"You are set to depart camp in less than one days' time, so you cannot request a group. If this is incorrect, you can change your departure time in your settings.") #find the instruments this user plays thisuserinstruments = session.query(instrument).filter(instrument.userid == thisuser.userid, instrument.isactive == 1).all() thisuserinstruments_serialized = [i.serialize for i in thisuserinstruments] #check if this user is really a conductor and actually requested a conductorpage for a specific period if thisuser.isconductor == 1 and periodid is not None: conductorpage = True thisperiod = session.query(period).filter(period.periodid == periodid).first() if thisperiod is None: return ('Did not find period in database. Something has gone wrong.') elif thisuserinstruments is None: session.close() return errorpage(thisuser,'Failed to display page. %s' % ex) else: conductorpage = False thisperiod = None #if this user isn't a conductor and/or they didn't request the conductor page and they've already surpassed their group-per-day limit, deny them. if conductorpage == False: if thisuser.grouprequestcount == 0 or thisuser.grouprequestcount == None or thisuser.grouprequestcount == '': thisuser.grouprequestcount = 0 debuglog('GROUPREQUEST: User has requested %s groups' % thisuser.grouprequestcount) debuglog('GROUPREQUEST: Maximum allowance is %s plus an extra %s per day' % (getconfig('BonusGroupRequests'), getconfig('DailyGroupRequestLimit'))) debuglog('GROUPREQUEST: User arrived at camp at %s.' % thisuser.arrival) if (now - thisuser.arrival).days < 0: allowedRequests = float(getconfig('BonusGroupRequests')) else: allowedRequests = float((now - thisuser.arrival).days + 2) * float(getconfig('DailyGroupRequestLimit')) + float(getconfig('BonusGroupRequests')) debuglog('GROUPREQUEST: User is allowed total %s requests.' % (allowedRequests)) if thisuser.grouprequestcount >= allowedRequests: debuglog('GROUPREQUEST: This user is denied access to request another group.') session.close() return errorpage(thisuser,"You have requested %s groups throughout the camp, and you're allowed %s per day (as well as %s welcome bonus requests!). You've reached your limit for today. Come back tomorrow!" % \ (thisuser.grouprequestcount, getconfig('DailyGroupRequestLimit'), getconfig('BonusGroupRequests'))) #The below runs when a user visits the grouprequest page if request.method == 'GET': #if this is the conductorpage, the user will need a list of the locations that are not being used in the period selected if conductorpage == True: locations_used_query = session.query(location.locationid).join(group).join(period).filter(period.periodid == periodid) locations = session.query(location).filter(~location.locationid.in_(locations_used_query)).all() musics_used_query = session.query(music.musicid).join(group).join(period).filter(period.periodid == periodid) musics = session.query(music).filter(~music.musicid.in_(musics_used_query)).all() else: locations = None musics = session.query(music).filter(or_(*[(getattr(music,getattr(i,'instrumentname')) > 0) for i in session.query(instrument.instrumentname).filter(instrument.userid == thisuser.userid, instrument.isactive == 1)])).all() musics_serialized = [i.serialize for i in musics] #checks if the requested music exists and sets it up for the page if musicid is not None: requestedmusic = session.query(music).filter(music.musicid == musicid).first() if requestedmusic is None: return errorpage(thisuser,"You have requested music that could not be found in the database. Talk to the administrator." % (thisuser.grouprequestcount, getconfig('DailyGroupRequestLimit'), (now - datetime.datetime.strptime(getconfig('StartTime'), '%Y-%m-%d %H:%M')).days)) else: requestedmusic = None if conductorpage == True: #Finds all players who aren't already playing in this period playersPlayingInPeriod = session.query(user.userid).join(groupassignment).join(group).filter(group.periodid == periodid) playersdump = session.query(user.userid,user.firstname,user.lastname,instrument.instrumentname,instrument.level,instrument.isprimary).\ join(instrument).filter(~user.userid.in_(playersPlayingInPeriod), user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.endtime).all() else: #find all the instruments that everyone plays and serialize them to prepare to inject into the javascript playersdump = session.query(user.userid,user.firstname,user.lastname,instrument.instrumentname,instrument.level,instrument.isprimary).\ join(instrument).filter(user.userid != thisuser.userid, user.isactive == 1, instrument.isactive == 1).all() playersdump_serialized = [] for p in playersdump: playersdump_serialized.append({'userid': p.userid, 'firstname': p.firstname, 'lastname': p.lastname, 'instrumentname': p.instrumentname, 'level': p.level, 'isprimary': p.isprimary}) #find all group templates and serialize them to prepare to inject into the javascript allgrouptemplates = session.query(grouptemplate).filter(grouptemplate.size == 'S').all() #if we are not on the conductorpage, filter the group templates so the user only sees templates that are covered by their instruments if conductorpage == False: grouptemplates = [] for t in allgrouptemplates: found = False for i in thisuserinstruments: if getattr(t, i.instrumentname) > 0 and found == False: grouptemplates.append(t) found = True #if we are on the conductorpage, show the user all the grouptemplates else: grouptemplates = allgrouptemplates #serialize the grouptemplates so the JS can read them properly grouptemplates_serialized = [i.serialize for i in grouptemplates] session.close() return render_template('grouprequest.html', \ thisuser=thisuser, \ thisuserinstruments=thisuserinstruments, \ thisuserinstruments_serialized=thisuserinstruments_serialized, \ playerlimit = int(getconfig('GroupRequestPlayerLimit')), \ grouptemplates = grouptemplates, \ grouptemplates_serialized=grouptemplates_serialized, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ instrumentlist_string=getconfig('Instruments'), \ playersdump_serialized=playersdump_serialized, \ conductorpage=conductorpage, \ thisperiod=thisperiod, \ locations=locations, \ musics=musics, \ musics_serialized=musics_serialized, \ requestedmusic=requestedmusic, \ ) #The below runs when a user presses "Submit" on the grouprequest page. It creates a group object with the configuraiton selected by #the user, and creates groupassignments for all players they selected (and the user themselves) if request.method == 'POST': instrumentlist = getconfig('Instruments').split(",") #format the packet received from the server as JSON content = request.json session = Session() log('GROUPREQUEST: Grouprequest received. Whole content of JSON returned is: %s' % content) #if we received too many players, send the user an error if (content['musicid'] == '' or content['musicid'] is None or content['musicid'] == 'null') and (len(content['objects']) > int(getconfig('GroupRequestPlayerLimit'))) and conductorpage == False: session.rollback() session.close() return jsonify(message = 'You have entered too many players. You may only submit grouprequests of players %s or less.' % getconfig('GroupRequestPlayerLimit'), url = 'none') if len(content['objects']) == 0: session.rollback() session.close() return jsonify(message = 'You must have at least one player in the group', url = 'none') #establish the 'grouprequest' group object. This will be built up from the JSON packet, and then added to the database #a minimumlevel and maximumlevel of 0 indicates that they will be automatically be picked on group confirmation grouprequest = group(ismusical = 1, requesteduserid = thisuser.userid, requesttime = datetime.datetime.now(), minimumlevel = 0, maximumlevel = 0) if content['musicid'] is not None and content['musicid'] != '': grouprequest.musicid = content['musicid'] else: grouprequest.musicwritein = content['musicwritein'] #if the conductorpage is false, we need to set the status to queued if conductorpage == False: grouprequest.status = "Queued" #if the conductorpage is true, we expect to also receive a locationid from the JSON packet, so we add it to the grouprequest, we also confirm the request if conductorpage == True: if content['locationid'] == '': session.rollback() session.close() return jsonify(message = 'You must select a location for this group', url = 'none') grouprequest.locationid = content['locationid'] grouprequest.status = "Queued" #for each instrument for i in instrumentlist: #set a default value of 0 setattr(grouprequest,i,0) #iterate over the objects in the request corresponding with that instrument, and increment the counter for each for p in content['objects']: if p['instrumentname'] == i: #if it has a corresponding user, check that that user exists if p['userid'] != 'null' and p['userid'] != '': #try to find a user that matches this id puser = session.query(user).filter(user.userid == p['userid']).first() #if we don't find one, this grouprequset is a failiure if puser is None: debuglog('Input error. user %s does not exist in the database.' % p['userid']) session.rollback() session.close() return jsonify(message = 'Input error. One of the sent users does not exist in the database.', url = 'none') #if we find an inactive user, it's also a failure elif puser.isactive != 1: debuglog('User %s %s is inactive. Cannot accept this group request.' % (puser.firstname, puser.lastname)) session.rollback() session.close() return jsonify(message = 'A selected user is inactive. Cannot accept this group request.', url = 'none') #increment the instrument counter setattr(grouprequest,i,getattr(grouprequest,i) + 1) debuglog('Instrument %s is value %s' % (i, getattr(grouprequest,i))) #run the getgroupname function, which logically names the group grouprequest.groupname = getgroupname(session,grouprequest) #if we are on the conductorpage, assign it to the period the user submitted if conductorpage == True: grouprequest.periodid = thisperiod.periodid #--------MATCHMAKING SECTION----------- #try to find an existing group request with the same music and instrumentation configuration as the request musicstatus = None if (content['musicid'] != '' and content['musicid'] != 'null' and content['musicid'] != None): debuglog('MATCHMAKING: Found that user has requested the music to be %s' % content['musicid']) matchinggroups = session.query(group).filter(group.musicid == content['musicid'], group.ismusical == 1, group.periodid == None, group.iseveryone == 0).order_by(group.requesttime).all() musicstatus = 'musicid' musicvalue = content['musicid'] elif (content['musicwritein'] != '' and content['musicwritein'] != 'null' and content['musicwritein'] != None): debuglog('MATCHMAKING: Found that user has written in %s for their music' % content['musicwritein']) matchinggroups = session.query(group).filter(group.musicwritein == content['musicwritein'], group.iseveryone == 0, group.ismusical == 1, group.periodid == None) for i in instrumentlist: matchinggroups = matchinggroups.filter(getattr(grouprequest,i) == getattr(group,i)) matchinggroups = matchinggroups.order_by(group.requesttime).all() musicstatus = 'musicwritein' musicvalue = content['musicwritein'] else: debuglog('MATCHMAKING: User did not specify any music in their request') matchinggroups = session.query(group).filter(group.iseveryone == 0, group.ismusical == 1, group.periodid == None) for i in instrumentlist: matchinggroups = matchinggroups.filter(getattr(grouprequest,i) == getattr(group,i)) matchinggroups = matchinggroups.order_by(group.requesttime).all() Match = False #if we found at least one matching group if matchinggroups is not None: #check each group that matched the instrumentation for player slots for m in matchinggroups: debuglog("MATCHMAKING: Instrumentation and music match found, requested by %s at time %s" % (m.requesteduserid, m.requesttime)) #check if this group is a suitable level groupmin = m.getminlevel(session) groupmax = m.getmaxlevel(session) #for each specific player in the request, check if there's a free spot in the matching group #for each player in the group request clash = False instrumentsThatFit = {} for p in content['objects']: #if it's a named player, not a blank drop-down if p['userid'] != 'null' and p['userid'] != '': #find a list of players that are already assigned to this group, and play the instrument requested by the grouprequest instrumentclash = session.query(groupassignment).filter(groupassignment.instrumentname == p['instrumentname'], groupassignment.groupid == m.groupid).all() #if the list of players already matches the group instrumentation for this instrument, this match fails and break out if instrumentclash is not None and instrumentclash != []: #find the number of slots already taken up by this instrument in the group slotsTaken = len(instrumentclash) #find the number of slots we need to fill this request slotsNeeded = sum(o['instrumentname'] == p['instrumentname'] for o in content['objects']) #if these are greater than the maximum number in the group, this is a clash if slotsTaken + slotsNeeded > getattr(m, p['instrumentname']): debuglog('MATCHMAKING: Found group not suitable, does not have an open slot for this player.') clash = True break #find out if this group's level is unsuitable for this player on this instrument and make a clash if they are playerinstrument = session.query(instrument).filter(instrument.userid == p['userid'], instrument.instrumentname == p['instrumentname']).first() if groupmin > playerinstrument.level or groupmax < playerinstrument.level : debuglog('MATCHMAKING: Found group not suitable, the current players are of unsuitable level. Current min: %s, Current max: %s, this players level: %s.' % (groupmin,groupmax,playerinstrument.level)) clash = True break #find out if this player is already playing in the found group and make a clash if they are playerclash = session.query(groupassignment).filter(groupassignment.userid == p['userid'], groupassignment.groupid == m.groupid).all() if playerclash is not None and playerclash != []: debuglog('MATCHMAKING: Found group not suitable, already has this player playing in it. Found the following group assignment: %s' % playerclash) clash = True break #if we didn't have a clash while iterating over this group, we have a match! set the grouprequest group to be the old group and break out if clash == False: debuglog('MATCHMAKING: Match found. Adding the players in this request to the already formed group.') grouprequest = m #if the original group doesn't have music already assigned, we can assign it music from the user request if musicstatus is not None: setattr(grouprequest,musicstatus,musicvalue) if musicstatus == 'musicid': musicrequest = session.query(music).filter(music.musicid == content['musicid']).first() grouprequest.addtolog('Setting group music to %s: %s (Requested by %s %s)' % (musicrequest.composer,musicrequest.musicname, thisuser.firstname, thisuser.lastname)) elif musicstatus == 'musicwritein': grouprequest.addtolog('Setting group music to be custom value "%s" (Requested by %s %s)' % (content['musicwritein'], thisuser.firstname, thisuser.lastname)) session.merge(grouprequest) Match = True break #if we didn't get a match, we need to create the grouprequest, we won't be using an old one if Match == False: debuglog('MATCHMAKING: No group already exists with the correct instrumentation slots. Creating a new group.') #add the grouprequest to the database session.add(grouprequest) grouprequest.addtolog('Group initially created (Requested by %s %s)' % (thisuser.firstname,thisuser.lastname)) #If we have got to here, the user successfully created their group (or was matchmade). We need to increment their total. if not conductorpage: thisuser.grouprequestcount = thisuser.grouprequestcount + 1 debuglog('%s %s has now made %s group requests' % (thisuser.firstname, thisuser.lastname, thisuser.grouprequestcount)) #for each player object in the players array in the JSON packet for p in content['objects']: #if we are on the conductorpage, you cannot submit blank players. Give the user an error and take them back to their home. if (p['userid'] == 'null' or p['userid'] == '') and conductorpage == True: url = ('/user/' + str(thisuser.logonid) + '/') session.rollback() session.close() return jsonify(message = 'You cannot have any empty player boxes in the group, because this is the conductor version of the group request page.', url = 'none') #if the playerid is not null, we create a groupassignment for them and bind it to this group if p['userid'] != 'null' and p['userid'] != '': playeruser = session.query(user).filter(user.userid == p['userid']).first() if playeruser is not None: grouprequest.addplayer(session,playeruser,p['instrumentname']) grouprequest.addtolog('Adding player %s %s to group with instrument %s (Requested by %s %s)' % (playeruser.firstname,playeruser.lastname,p['instrumentname'],thisuser.firstname,thisuser.lastname)) else: url = ('/user/' + str(thisuser.logonid) + '/') session.rollback() session.close() return jsonify(message = 'Could not find one of your selected players in the database. Please refresh the page and try again.', url = url) #if none of the above are satisfied - that's ok. you're allowed to submit null playernames in the user request page, these will be #allocated by the admin when the group is confirmed. #create the group and the groupassinments configured above in the database session.merge(thisuser) session.commit() #send the URL for the group that was just created to the user, and send them to that page url = ('/user/' + str(thisuser.logonid) + '/group/' + str(grouprequest.groupid) + '/') debuglog('Sending user to URL: %s' % url) session.close() flash(u'Request Successful', 'success') return jsonify(message = 'none', url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/grouprequest/conductor/<periodid>/', methods=['GET', 'POST']) def conductorgrouprequest(logonid,periodid): try: session = Session() thisuser = getuser(session,logonid,True) log('CONDUCTORGROUPREQUEST: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isconductor != 1: log('CONDUCTORGROUPREQUEST: user %s %s is not allowed to view this page' % (thisuser.firstname, thisuser.lastname)) raise Exception('You are not a conductor and cannot visit this page.') else: session.close() return grouprequest(logonid,periodid,None) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/grouprequest/music/<musicid>/', methods=['GET', 'POST']) def musicgrouprequest(logonid,musicid): return grouprequest(logonid,None,musicid) #This page is used by an "announcer" to edit the announcement that users see when they open their homes @app.route('/user/<logonid>/announcement/', methods=['GET', 'POST']) def announcementpage(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('ANNOUNCEMENT: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isannouncer != 1: session.close() return 'You do not have permission to view this page' else: #if this is a user requesting the page if request.method == 'GET': #get the current announcement currentannouncement = session.query(announcement).order_by(desc(announcement.creationtime)).first() session.close() return render_template('announcement.html', \ currentannouncement=currentannouncement, \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) #if this is a user that just pressed submit if request.method == 'POST': #create a new announcement object with the submitted content, and send it newannouncement = announcement(content = request.json['content'], creationtime = datetime.datetime.now()) session.add(newannouncement) session.commit() url = ('/user/' + str(thisuser.logonid) + '/') session.close() #send the user back to their home flash(u'Changes Saved', 'success') return jsonify(message = 'none', url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #This page shows the queued groups, it is only accessible by the admin @app.route('/user/<logonid>/groupscheduler/', methods=['GET', 'POST']) def groupscheduler(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('GROUPSCHEDULER: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if request.method == 'GET': if thisuser.isadmin != 1: session.close() return 'You do not have permission to view this page' else: groups = session.query(*[c for c in group.__table__.c] ).add_columns( period.periodid, period.periodname, period.starttime, period.endtime, user.firstname, user.lastname, music.composer, music.musicname ).outerjoin(period ).outerjoin(user ).outerjoin(music ).filter( group.groupname != 'absent', group.iseveryone != 1, or_( period.starttime == None, period.starttime > datetime.datetime.now() ) ).order_by( group.status.desc(), group.periodid.nullslast(), group.requesttime ).all() debuglog("GROUPSCHEDULER: Found %s queued groups to show the user" % len(groups)) #find all periods after now so the admin can choose which they want to fill with groups periods = session.query(period).filter(period.starttime > datetime.datetime.now()).all() session.close() return render_template('groupscheduler.html', \ groups=groups, \ periods=periods, \ thisuser=thisuser, \ now=datetime.datetime.now(), \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) if request.method == 'POST': log('GROUPSCHEDULER: POST received with submittype %s' % request.json['submittype']) if request.json['submittype'] == 'reset': thisgroup = session.query(group).filter(group.groupid == request.json['groupid']).first() if thisgroup is None: session.rollback() session.close() return jsonify(message = 'Could not find this group in the database. Refresh your page and try again.', success = 'false') else: thisgroup.periodid = None thisgroup.locationid = None session.merge(thisgroup) session.commit() session.close() return jsonify(message = 'none', success = 'true') elif request.json['submittype'] == 'fillall': debuglog('FILLALL: Admin has initiated a fill_all action for period id:%s' % request.json['periodid']) #first, check if the period they selected is valid and in the future if request.json['periodid'] is None or request.json['periodid'] == '': raise Exception('You must choose a period before requesting the fill-all.') else: thisperiod = getperiod(session,request.json['periodid']) debuglog('FILLALL: Filling period name:%s id:%s' % (thisperiod.periodname,thisperiod.periodid)) if thisperiod is None: raise Exception('Could not find the requested period, or the selected period is in the past. Refresh the page and try again.') #iterate through the groups that already have this period assigned. If we fail to allocate on just one of these, we need to break out and inform the admin possiblegroups = session.query(group ).outerjoin(period ).filter( or_( group.periodid == thisperiod.periodid, group.periodid == None ), group.status == "Queued" ).order_by( group.periodid.nullslast(), group.requesttime ).all() debuglog('FILLALL: Found %s groups to be filled' % len(possiblegroups)) for g in possiblegroups: #first, purge any players that have since left the camp or are marked inactive g.purgeoldplayers(session) #then, if this group is empty, has no allocated period and was requested by a player that is old, delete it requesteduser = getuser(session,g.requesteduserid) if g.periodid is None and \ g.totalallocatedplayers == 0 and \ (requesteduser.isactive != 1 or requesteduser.departure < datetime.datetime.now()): debuglog('FILLALL: Group name:%s id:%s is an orphan group and will now be deleted' % (g.groupname,g.groupid)) g.delete(session) #then, check if any of the players in this group are already playing in this period elif g.checkplayerclash(session,thisperiod): debuglog('FILLALL: Found that group %s cannot be autofilled because players already in this group are already playing in this period. Skipping this group.') else: debuglog('FILLALL: Attempting autofill, location allocation and confirmation for group name:%s id:%s' % (g.groupname,g.groupid)) #see if we can assign the group a location for this period if g.locationid is None or g.locationid == '': #get the instruments in this group to check against the location restrictions instruments = g.instruments #get the locations already being used in this period locations_used_query = session.query(location.locationid).join(group).join(period).filter(period.periodid == thisperiod.periodid) #get the location with the minimum capacity that fits this group, is currently free, and does not void any instrument restrictions thislocation = session.query( location ).filter( ~location.locationid.in_(locations_used_query), location.capacity >= g.totalinstrumentation, *[getattr(location,i) > 0 for i in instruments] ).order_by( location.capacity ).first() else: thislocation = getlocation(session,g.locationid) #if we could not find a suitable location, break out and send the user a message informing them if thislocation is None: debuglog('FILLALL: No suitable location exists for group with name %s and id %s. Can not autofill this group.' % (g.groupname,g.groupid)) if g.periodid is not None: message = 'Fill-All failed at group "%s". Could not find a suitable location for this group. Try editing other groups in the period to make room, or reduce the number of players in the group.' % g.groupname url = 'refresh' session.commit() session.close() flash(u'Period Partially Filled', 'message') return jsonify(message = message, url = url ) else: #find how many players can be autofilled into this group players = autofill(session,g,thisperiod) #if the autofill didn't completely fill the group and this group already has an assigned period, we need to break out and inform the admin that they need to do this group manually if g.totalinstrumentation != g.totalallocatedplayers + len(players) and g.periodid is not None: message = 'Fill-All failed at group "%s". This is because the group requires %s players, but the autofill algorythm only found %s players. Select this group and fill it manually, then attempt to fill-all again.' % (g.groupname,g.totalinstrumentation,g.totalallocatedplayers+len(players)) url = 'refresh' debuglog('FILLALL: Autofill failed to completely fill group name:%s id:%s totalinstrumentation:%s totalallocatedplayers:%s. Found only %s players to autofill. Sending an error to the admin.' % (g.groupname,g.groupid,g.totalinstrumentation,g.totalallocatedplayers,len(players))) session.commit() session.close() flash(u'Period Partially Filled', 'message') return jsonify(message = message, url = url) #if this group doesn't have an assigned period and can't be assigned to the selected period - just skip it. elif g.totalinstrumentation != g.totalallocatedplayers + len(players): debuglog('FILLALL: Found that group %s cannot be autofilled with current players in the pool. Skipping this group.') else: #if we got here, this group is good to go #assign the location as found in a previous query g.locationid = thislocation.locationid #assign the period as selected g.periodid = thisperiod.periodid #allocate the players g.addplayers(session,players) #confirm the group g.status = "Confirmed" session.merge(g) session.commit() debuglog('FILLALL: Group confirmed - Status:%s Name:%s Locationid:%s Periodid:%s TotalPlayers:%s TotalSetInstrumentation:%s' % (g.status,g.groupname,g.locationid,g.periodid,g.totalallocatedplayers,g.totalinstrumentation)) session.commit() session.close() debuglog('FILLALL: Fill-all operitaion successful') flash(u'Period Sucessfully Filled', 'success') return jsonify(message = 'none', url = 'refresh') except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #This page is for creating a public event. It comes up as an option for adminsitrators on their homes @app.route('/user/<logonid>/publicevent/<periodid>/', methods=['GET', 'POST']) def publiceventpage(logonid,periodid): try: session = Session() thisuser = getuser(session,logonid,True) log('PUBLICEVENT: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isadmin != 1: raise Exception(thisuser,'You do not have permission to view this page') else: #if the user requested the public event page if request.method == 'GET': #get the locations that aren't being used yet for this period locations_used_query = session.query(location.locationid).join(group).join(period).filter(period.periodid == periodid) locations = session.query(location).filter(~location.locationid.in_(locations_used_query)).all() #get the period details to display to the user on the page thisperiod = session.query(period).filter(period.periodid == periodid).first() session.close() return render_template('publicevent.html', \ locations=locations, \ thisuser=thisuser, \ thisperiod=thisperiod, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) #if the user pressed "submit" on the public event page if request.method == 'POST': if request.json['locationid'] == '' or request.json['groupname'] == '': raise Exception('Submission failed. You must submit both an event name and location.') event = group(periodid = periodid, iseveryone = 1, groupname = request.json['groupname'], requesteduserid = thisuser.userid,\ ismusical = 0, locationid = request.json['locationid'], status = "Confirmed", requesttime = datetime.datetime.now()) if request.json['groupdescription'] and request.json['groupdescription'] != '': event.groupdescription = request.json['groupdescription'] session.add(event) session.commit() url = ('/user/' + str(thisuser.logonid) + '/group/' + str(event.groupid) + '/') session.close() flash(u'Event Created', 'success') return jsonify(message = 'none', url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #this page is the full report for any given period @app.route('/user/<logonid>/period/<periodid>/') def periodpage(logonid,periodid): try: session = Session() thisuser = getuser(session,logonid,True) log('PERIODPAGE: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: thisperiod = session.query(period).filter(period.periodid == periodid).first() #find any public events on during this period publicevents = session.query( group.groupname, group.groupid, location.locationname, group.groupdescription ).join(location ).filter( group.iseveryone == 1, group.periodid == periodid ).all() #start with the players that are playing in groups in the period players = session.query( user.userid, user.firstname, user.lastname, user.dietaryrequirements, user.agecategory, period.starttime, period.endtime, group.groupname, groupassignment.instrumentname, location.locationname, groupassignment.groupid ).join(groupassignment, user.userid == groupassignment.userid ).join(group ).join(period ).outerjoin(location ).filter( user.arrival <= thisperiod.starttime, user.departure >= thisperiod.endtime, group.periodid == thisperiod.periodid, group.status == 'Confirmed', group.groupname != 'absent' ).order_by( group.groupid, groupassignment.instrumentname ).all() #grab just the userids of those players to be used in the next query players_in_groups_query = session.query(user.userid).\ join(groupassignment).join(group).join(period).\ filter(user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.starttime, group.periodid == thisperiod.periodid, group.status == 'Confirmed') #find all other players to be displayed to the user unallocatedplayers = session.query(user.userid, user.firstname, user.lastname, user.dietaryrequirements, user.agecategory,instrument.instrumentname).join(instrument).filter(~user.userid.in_(players_in_groups_query), user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.starttime, instrument.isprimary == 1, instrument.isactive == 1).all() unallocatedplayers_query = session.query(user.userid).join(instrument).filter(~user.userid.in_(players_in_groups_query), user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.starttime, instrument.isprimary == 1, instrument.isactive == 1) nonplayers = session.query(user.userid, user.firstname, user.lastname, user.dietaryrequirements,user.agecategory, sqlalchemy.sql.expression.literal_column("'Non Player'").label("instrumentname")).filter(~user.userid.in_(players_in_groups_query), ~user.userid.in_(unallocatedplayers_query), user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.starttime).all() thisperiod = session.query(period).filter(period.periodid == periodid).first() nextperiod = session.query(period).filter(period.starttime > thisperiod.starttime).order_by(period.starttime).first() previousperiod = session.query(period).filter(period.starttime < thisperiod.starttime).order_by(desc(period.starttime)).first() mealstats = thisperiod.getmealstats(session) session.close() return render_template('periodpage.html', \ players=players, \ unallocatedplayers=unallocatedplayers, \ publicevents=publicevents, \ nonplayers=nonplayers, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=(getconfig('Instruments') + ',Non Player').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ thisuser=thisuser, \ thisperiod=thisperiod, \ mealstats=mealstats, \ previousperiod=previousperiod, \ nextperiod=nextperiod, \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #handles the admin page @app.route('/user/<logonid>/useradmin/') def useradmin(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('USERADMIN: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: #check if this user is a conductor, if they are not, deny them. if thisuser.isadmin != 1 and thisuser.logonid != getconfig('AdminUUID'): raise Exception('You are not allowed to view this page.') else: #get the userids and their associated primary instruments primaryinstruments_subquery = session.query( instrument.userid.label('primaryinstruments_userid'), instrument.instrumentname.label('instrumentname') ).filter( instrument.isactive == 1, instrument.isprimary == 1 ).subquery() #make a query that totals the nmber of times each potential user has played at camp. playcounts_subquery = session.query( user.userid.label('playcounts_userid'), func.count(user.userid).label("playcount") ).group_by( user.userid ).outerjoin(groupassignment, groupassignment.userid == user.userid ).outerjoin(group, group.groupid == groupassignment.groupid ).filter( groupassignment.instrumentname != 'Conductor', group.ismusical == 1, group.periodid != None, ).subquery() users = session.query( user.userid, user.logonid, user.isactive, user.firstname, user.lastname, user.isadmin, user.isconductor, user.isannouncer, user.grouprequestcount, primaryinstruments_subquery.c.instrumentname, playcounts_subquery.c.playcount, ).outerjoin(primaryinstruments_subquery, primaryinstruments_subquery.c.primaryinstruments_userid == user.userid ).outerjoin(playcounts_subquery, playcounts_subquery.c.playcounts_userid == user.userid ).order_by( user.firstname, user.lastname ).all() return render_template('useradmin.html', \ thisuser=thisuser, \ users=users, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #handles the useredit page @app.route('/user/<logonid>/edituser/<targetuserid>/', methods=['GET', 'POST']) def edituser(logonid, targetuserid): try: session = Session() thisuser = getuser(session,logonid,True) log('EDITUSER: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isadmin != 1 and targetuserid is None: session.close() return errorpage(thisuser,'You do not have permission to view this page.') if targetuserid is not None: if targetuserid == 'self': targetuser = session.query(user).filter(user.userid == thisuser.userid).first() else: targetuser = session.query(user).filter(user.userid == targetuserid).first() if targetuser is None: session.close() return errorpage(thisuser,'Could not find requested user in database.') elif thisuser.isadmin != 1 and (thisuser.userid != targetuser.userid): session.close() return errorpage(thisuser,'You do not have permission to view this page.') else: targetuser = user() targetuserinstruments = session.query(instrument).filter(instrument.userid == targetuser.userid).all() periods = session.query(period).order_by(period.starttime).all() #if this is a user requesting the page if request.method == 'GET': session.close() return render_template('edituser.html', \ thisuser=thisuser, \ targetuser=targetuser, \ targetuserinstruments=targetuserinstruments, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ periods=periods, \ maximumlevel=int(getconfig('MaximumLevel')), \ ) #if this is a user that just pressed submit if request.method == 'POST': #format the packet received from the server as JSON content = request.json if thisuser.isadmin == 1: #is this user doesn't have an ID yet, they are new and we must set them up if targetuser.userid is None: #assign them a userid from a randomly generated uuid targetuser.userid = str(uuid.uuid4()) targetuser.logonid = str(uuid.uuid4()) session.add(targetuser) elif content['submittype'] == 'reset': targetuser.logonid = str(uuid.uuid4()) session.merge(targetuser) session.commit() session.close() return jsonify(message = 'User logon reset.', url = 'none', success='true') if content['firstname'] == '' or content['firstname'] == 'null' or content['firstname'] == 'None' or \ content['lastname'] == '' or content['lastname'] == 'null' or content['lastname'] == 'None': session.rollback() session.close() return jsonify(message = 'You cannot save a user without a firstname and lastname.', url = 'none') if content['arrival'] >= content['departure']: session.rollback() session.close() return jsonify(message = 'Your departure time must be after your arrival time.', url = 'none') #add the content in the packet to this group's attributes for key,value in content.items(): if (thisuser.isadmin != 1 and thisuser.isadmin != '1') and key != 'arrival' and key != 'departure' and key != 'isactive' and key != 'submittype' and key != 'objects': session.rollback() session.close() return jsonify(message = 'Users are not allowed to edit this attribute. The page should not have given you this option.', url = 'none') elif not isinstance(value, list) and value is not None and value != 'null' and value != '' and value != 'None' and value != 'HIDDEN': debuglog('Setting %s to be %s' % (key, value)) setattr(targetuser,key,value) session.merge(targetuser) session.commit() newinstrument = False #for each instrument object in the receiving packet for i in content['objects']: if i['instrumentid'] == 'new' and thisuser.isadmin == 1: thisinstrument = instrument(userid = targetuser.userid) session.add(thisinstrument) debuglog('Added new instrument for user %s' % targetuser.firstname) newinstrument = True elif i['instrumentid'] != 'new': thisinstrument = session.query(instrument).filter(instrument.instrumentid == i['instrumentid']).first() if thisinstrument is None: session.rollback() session.close() return jsonify(message = 'Instrument listing not found, could not modify the listing.', url = 'none') if thisuser.isadmin != 1 and thisinstrument.userid != thisuser.userid: session.rollback() session.close() return jsonify(message = 'You cannot change an instrument listing for another user.', url = 'none') else: session.rollback() session.close() return jsonify(message = 'You have submitted illegal parameters for your instrument. No changes have been made to your instrument listings.', url = 'none') for key,value in i.items(): if key != 'instrumentid': if thisuser.isadmin != 1 and key != 'isactive' and key != 'isprimary': session.rollback() session.close() return jsonify(message = 'You have submitted illegal parameters for your instrument. No changes have been made to your instrument listings.', url = 'none') elif value != 'None': setattr(thisinstrument,key,value) session.merge(thisinstrument) session.commit() if content['submittype'] == 'submit': url = '/user/' + str(thisuser.logonid) + '/' message = 'none' flash(u'Changes Saved', 'success') elif content['submittype'] == 'save': if targetuserid is None: url = ('/user/' + str(thisuser.logonid) + '/edituser/' + str(targetuser.userid) + '/') message = 'none' flash(u'New User Successfully Created', 'success') else: if newinstrument == True: url = 'refresh' flash(u'New Instrument Successfully Added', 'success') else: url = 'none' message = 'none' else: url = 'none' message = 'Incomplete request. Request failed.' session.close() #send the user back to their home return jsonify(message = message, url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/user/<logonid>/newuser/', methods=['GET', 'POST']) def newuser(logonid): return edituser(logonid,None) @app.route('/user/<logonid>/settings/', methods=['GET', 'POST']) def settings(logonid): return edituser(logonid,'self') #sends bulk emails to an array of users sent with the request @app.route('/user/<logonid>/email/', methods=['POST']) def sendlinkemail(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('SENDLINKEMAIL: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isadmin != 1: session.close() return errorpage(thisuser,'You do not have permission to view this page') content = request.json log('SENDLINKEMAIL: Content received: %s' % content) errors = '' success = 'true' for u in content['objects']: targetuser = session.query(user).filter(user.userid == u['userid']).first() if targetuser is None: errors = errors + ('Could not find user with id %s in database\n' % u['userid']) elif targetuser.email is None or targetuser.email == '': errors = errors + ('Could not find email for user %s %s\n' % (targetuser.firstname, targetuser.lastname)) else: subject = ('Your %s Daily Schedule' % getconfig('Name')) body = """Hi %s, welcome to %s!\n Your homepage, containing your daily schedule, is here:\n %s/user/%s/ \n WARNING: DO NOT GIVE THIS LINK, OR ANY LINK ON THIS WEBSITE TO ANYONE ELSE. It is yours, and yours alone and contains your connection credentials.\n If you're new to camp please stay after the first dinner and we'll walk you through how to use this website, including how to make your first group request.\n If you have any questions, please reply to this email or contact us on %s.\n Thanks!\n %s %s""" % (targetuser.firstname, \ getconfig('Name'), \ getconfig('Website_URL'), \ targetuser.logonid, \ getconfig('SupportEmailAddress'), \ thisuser.firstname, \ getconfig('Name')\ ) message = send_email(targetuser.email, subject, body) if message == 'Failed to Send Email': errors = errors + ('Failed to send email to %s %s\n' % (targetuser.firstname, targetuser.lastname)) session.close() if errors != '': message = 'Completed with errors:\n' + errors success = 'false' return jsonify(message = message, url = 'none', success = success) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #Handles the conductor instrumentation page. @app.route('/user/<logonid>/instrumentation/<periodid>/', methods=['GET', 'POST']) def instrumentation(logonid,periodid): try: session = Session() thisuser = getuser(session,logonid,True) log('INSTRUMENTATION: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: #check if this user is a conductor, if they are not, deny them. if thisuser.isconductor != 1: return ('You are not allowed to view this page.') else: #gets the data associated with this period thisperiod = session.query(period).filter(period.periodid == periodid).first() if thisperiod is None: return ('Could not find the period requested.') #The below runs when a user visits the instrumentation page if request.method == 'GET': #Get a list of the locations that are not being used in the period selected locations_used_query = session.query(location.locationid).join(group).join(period).filter(period.periodid == periodid) locations = session.query(location).filter(~location.locationid.in_(locations_used_query)).all() #Get a list of the available music not being used in the period selected musics_used_query = session.query(music.musicid).join(group).join(period).filter(period.periodid == periodid) musics = session.query(music).filter(~music.musicid.in_(musics_used_query)).all() musics_serialized = [i.serialize for i in musics] #get a list of conductors to fill the dropdown on the page everyone_playing_in_periodquery = session.query(user.userid).join(groupassignment).join(group).join(period).filter(period.periodid == thisperiod.periodid) conductors = session.query(user).join(instrument, user.userid == instrument.userid).filter(instrument.instrumentname == 'Conductor', instrument.isactive == 1).filter(~user.userid.in_(everyone_playing_in_periodquery)).all() #get the list of instruments from the config file instrumentlist = getconfig('Instruments').split(",") #find all large group templates and serialize them to prepare to inject into the javascript grouptemplates = session.query(grouptemplate).filter(grouptemplate.size == 'L').all() grouptemplates_serialized = [i.serialize for i in grouptemplates] session.close() return render_template('instrumentation.html', \ thisuser=thisuser, \ grouptemplates = grouptemplates, \ conductors=conductors, \ grouptemplates_serialized=grouptemplates_serialized, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ thisperiod=thisperiod, \ locations=locations, \ maximumlevel=int(getconfig('MaximumLevel')), \ musics=musics, \ musics_serialized=musics_serialized, \ instrumentlist_string=getconfig('Instruments'), \ ) #The below runs when a user presses "Submit" on the instrumentation page. It creates a group object with the configuraiton selected by #the user, and creates groupassignments if needed if request.method == 'POST': #format the packet received from the server as JSON content = request.json session = Session() debuglog('Grouprequest received. Whole content of JSON returned is: %s' % content) #establish the 'grouprequest' group object. This will be built up from the JSON packet, and then added to the database grouprequest = group(ismusical = 1, requesteduserid = thisuser.userid, periodid = thisperiod.periodid, status = "Queued", requesttime = datetime.datetime.now()) #check if a group already exists for this period with the same name namecheck = session.query(group).filter(group.groupname == content['groupname'], group.periodid == thisperiod.periodid).first() if namecheck is not None: raise Exception('Could not create instrumentation, there is already a group named %s in this period.' % namecheck.groupname) #for each player object in the players array in the JSON packet for key, value in content.items(): if (key == 'groupname' or key == 'maximumlevel' or key == 'mininumlevel') and value == '': raise Exception('Could not create instrumentation, you must enter a groupname, music, maximumlevel and mininumlevel') if value != '' and value is not None and value != 'null' and value != 'None': setattr(grouprequest, key, value) else: setattr(grouprequest, key, None) #create the group and the groupassinments configured above in the database session.add(grouprequest) #if the user plays the "conductor" instrument (i.e. they are actually a conductor) assign them to this group if content['conductoruserid'] is not None and content['conductoruserid'] != 'null' and content['conductoruserid'] != '': userconductor = session.query(user).join(instrument, user.userid == instrument.userid).filter(user.userid == content['conductoruserid'], instrument.instrumentname == "Conductor", instrument.isactive == 1, user.isactive == 1, user.arrival <= thisperiod.starttime, user.departure >= thisperiod.endtime).first() if userconductor is not None: userplayinginperiod = session.query(user.userid).join(groupassignment).join(group).join(period).filter(period.periodid == thisperiod.periodid, user.userid == content['conductoruserid']).first() if userplayinginperiod is None: grouprequest.addplayer(session,getuser(session,content['conductoruserid']),'Conductor') else: raise Exception('Could not create instrumentation, %s is already assigned to a group during this period.' % userconductor.firstname) else: raise Exception('The user requested as the conductor is not set up to be a conductor in the database.') session.commit() #send the URL for the group that was just created to the user, and send them to that page url = ('/user/' + str(thisuser.logonid) + '/group/' + str(grouprequest.groupid) + '/') log('Sending user to URL: %s' % url) session.close() flash(u'Instrumentation Accepted', 'success') return jsonify(message = 'none', url = url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #Application setup page. This needs to be run at the start, just after the app has been deployed. The user uploads config files and user lists to populate the database. @app.route('/user/<logonid>/setup/', methods=["GET", "POST"]) def setup(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('SETUP: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: #check if this user is an admin or the Administrator superuser, if they are not, deny them. if thisuser.isadmin != 1 and thisuser.logonid != getconfig('AdminUUID'): return errorpage(thisuser,'You are not allowed to view this page.') else: if request.method == 'GET': session.close() return render_template('setup.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) if request.method == 'POST': session.close() # Get the name of the uploaded file file_bytes = request.files['file'] filename = secure_filename(file_bytes.filename) if file_bytes and allowed_file(filename): log('SETUP: File received named %s' % filename) file_string = file_bytes.getvalue() file_text = file_string.decode('utf-8') csv = StringIO(file_text) if filename == 'config.xml': message = dbbuild(file_text) if filename == 'campers.csv': message = importusers(csv) if filename == 'musiclibrary.csv': message = importmusic(csv) if message == 'Success': flash(message,'success') else: flash(message,'error') return redirect(request.url) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #This page is viewable by the admin only, it lets them edit different objects in the database - grouptemplates, locations, periods, etc. @app.route('/user/<logonid>/objecteditor/<input>/', methods=["GET","POST","DELETE"]) def objecteditor(logonid, input, objectid=None): try: session = Session() thisuser = getuser(session,logonid,True) log('OBJECTEDITOR: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) try: if thisuser.isadmin != 1: session.close() return render_template('errorpage.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ errormessage = 'You do not have permission to view this page.' ) debuglog('User requested objects with type %s' % input) if input == 'grouptemplate': table = 'grouptemplate' type = 'Group Template' objects_query = session.query(grouptemplate) elif input == 'location': table = 'location' type = 'Location' objects_query = session.query(location) elif input == 'period': table = 'period' type = 'Period' objects_query = session.query(period) elif input == 'music': table = 'music' type = 'Music' objects_query = session.query(music) elif input == 'group': table = 'group' type = 'Group' objects_query = session.query(group) else: session.close() return render_template('errorpage.html', \ thisuser=thisuser, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ errormessage = 'Invalid input.' ) if request.method == 'GET': object_dict = dict((col, getattr(objects_query.first(), col)) for col in objects_query.first().__table__.columns.keys()) objects = objects_query.all() session.close() return render_template('objecteditor.html', \ thisuser=thisuser, \ object_dict=object_dict, \ objects=objects, \ type=type, \ table=table, \ objectid=objectid, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress'), \ ) if request.method == 'POST': try: #format the packet received from the server as JSON content = request.json debuglog('Received packet for modifying %ss with content: %s' % (type, content)) for o in content['objects']: if o[table + 'id'] != '' and o[table + 'id'] is not None: if o[table + 'id'] == 'new': debuglog('Found a new object to create') if table == 'grouptemplate': object = grouptemplate() elif table == 'location': object = location() elif table == 'period': object = period() elif table == 'music': object = music() elif table == 'group': object = group() session.add(object) else: debuglog('Trying to find a %s object with id %s' % (table, o[table + 'id'])) object = objects_query.filter(getattr(globals()[table],(table + 'id')) == o[table + 'id']).first() if object is None: session.rollback() session.close() return jsonify(message = 'Could not find one of your requested objects. This is a malformed request packet.', url = 'none') for key, value in o.items(): if key != table + 'id': debuglog('Changing object %s key %s to %s' % (table, key, value)) setattr(object,key,value) session.merge(object) url = '/user/' + thisuser.logonid + '/objecteditor/' + table + '/' session.commit() session.close() return jsonify(message = 'none', url = url) except Exception as ex: session.rollback() session.close() return jsonify(message = 'Failed to post update with exception: %s' % ex, url = url) if request.method == 'DELETE': try: session.delete(objects_query.filter(getattr(globals()[table],(table + 'id')) == request.json).first()) url = '/user/' + thisuser.logonid + '/objecteditor/' + table + '/' session.commit() session.close() return jsonify(message = 'none', url = url) except Exception as ex: session.rollback() session.close() return jsonify(message = 'Failed to delete object with exception %s' % ex, url = 'none') except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') #The catering page displays all periods flagged as a meal, along with numbers and dietary requirements @app.route('/user/<logonid>/catering/') def cateringpage(logonid): try: session = Session() thisuser = getuser(session,logonid,True) log('CATERINGPAGE: user firstname:%s lastname:%s method:%s' % (thisuser.firstname, thisuser.lastname, request.method)) except Exception as ex: session.close() return str(ex) start = datetime.datetime.strptime(getconfig('StartTime').split(' ')[0], '%Y-%m-%d') end = datetime.datetime.strptime(getconfig('EndTime').split(' ')[0], '%Y-%m-%d') campdays = [start + datetime.timedelta(days=x) for x in range(0, (end-start).days + 1)] try: days = [] for day in campdays: thisday = {} thisday['date'] = day meals = [] nextday = day + timedelta(days=1) mealperiods = session.query(period).filter(period.meal == 1, period.starttime >= day, period.starttime < nextday).all() for thisperiod in mealperiods: meals.append(thisperiod.getmealstats(session)) thisday['meals'] = meals days.append(thisday) session.close() return render_template('cateringpage.html', \ thisuser=thisuser, \ days=days, \ campname=getconfig('Name'), favicon=getconfig('Favicon_URL'), instrumentlist=getconfig('Instruments').split(","), supportemailaddress=getconfig('SupportEmailAddress') ) except Exception as ex: log('Failed to execute %s for user %s %s with exception: %s.' % (request.method, thisuser.firstname, thisuser.lastname, ex)) message = ('Failed to execute %s with exception: %s. Try refreshing the page and trying again or contact camp administration.' % (request.method, ex)) session.rollback() session.close() if request.method == 'GET': return errorpage(thisuser,'Failed to display page. %s' % ex) else: return jsonify(message = message, url = 'none') @app.route('/js/<path:path>') def send_js(path): return send_from_directory('js', path) @app.route('/css/<path:path>') def send_css(path): return send_from_directory('css', path) @app.route('/img/<path:path>') def send_png(path): return send_from_directory('img', path)
the-stack_106_26029
from flask_mail import Message from flask import render_template from . import mail subject_prefix = 'Phil Blog' sender_email = '[email protected]' def mail_message(subject,template,to,**kwargs): email = Message(subject, sender=sender_email, recipients=[to]) email.body= render_template(template + ".txt",**kwargs) email.html = render_template(template + ".html",**kwargs) mail.send(email)
the-stack_106_26031
import distutils.command.build_clib as orig from distutils.errors import DistutilsSetupError from distutils import log from setuptools.dep_util import newer_pairwise_group class build_clib(orig.build_clib): """ Override the default build_clib behaviour to do the following: 1. Implement a rudimentary timestamp-based dependency system so 'compile()' doesn't run every time. 2. Add more keys to the 'build_info' dictionary: * obj_deps - specify dependencies for each object compiled. this should be a dictionary mapping a key with the source filename to a list of dependencies. Use an empty string for global dependencies. * cflags - specify a list of additional flags to pass to the compiler. """ def build_libraries(self, libraries): for (lib_name, build_info) in libraries: sources = build_info.get('sources', ) if sources is None or not isinstance(sources, (list, tuple)): raise DistutilsSetupError( "in 'libraries' option (library '%s'), " "'sources' must be present and must be " "a list of source filenames" % lib_name) sources = list(sources) log.info("building '%s' library", lib_name) # Make sure everything is the correct type. # obj_deps should be a dictionary of keys as sources # and a list/tuple of files that are its dependencies. obj_deps = build_info.get('obj_deps', ) if not isinstance(obj_deps, dict): raise DistutilsSetupError( "in 'libraries' option (library '%s'), " "'obj_deps' must be a dictionary of " "type 'source: list'" % lib_name) dependencies = [] # Get the global dependencies that are specified by the '' key. # These will go into every source's dependency list. global_deps = obj_deps.get('', list()) if not isinstance(global_deps, (list, tuple)): raise DistutilsSetupError( "in 'libraries' option (library '%s'), " "'obj_deps' must be a dictionary of " "type 'source: list'" % lib_name) # Build the list to be used by newer_pairwise_group # each source will be auto-added to its dependencies. for source in sources: src_deps = [source] src_deps.extend(global_deps) extra_deps = obj_deps.get(source, list()) if not isinstance(extra_deps, (list, tuple)): raise DistutilsSetupError( "in 'libraries' option (library '%s'), " "'obj_deps' must be a dictionary of " "type 'source: list'" % lib_name) src_deps.extend(extra_deps) dependencies.append(src_deps) expected_objects = self.compiler.object_filenames( sources, output_dir=self.build_temp, ) if ( newer_pairwise_group(dependencies, expected_objects) != ([], []) ): # First, compile the source code to object files in the library # directory. (This should probably change to putting object # files in a temporary build directory.) macros = build_info.get('macros', ) include_dirs = build_info.get('include_dirs', ) cflags = build_info.get('cflags', ) self.compiler.compile( sources, output_dir=self.build_temp, macros=macros, include_dirs=include_dirs, extra_postargs=cflags, debug=self.debug ) # Now "link" the object files together into a static library. # (On Unix at least, this isn't really linking -- it just # builds an archive. Whatever.) self.compiler.create_static_lib( expected_objects, lib_name, output_dir=self.build_clib, debug=self.debug )
the-stack_106_26032
# An Accessory for Adafruit NeoPixels attached to GPIO Pin18 # Tested using Python 3.6 Raspberry Pi # This device uses all available services for the Homekit Lightbulb API # Note: set your neopixels settings under the #NeoPixel constructor arguments # Note: RPi GPIO must be PWM. Neopixels.py will warn if wrong GPIO is used # at runtime # Note: This Class requires the installation of rpi_ws281x lib # Follow the instllation instructions; # git clone https://github.com/jgarff/rpi_ws281x.git # cd rpi_ws281x # scons # # cd python # sudo python3.6 setup.py install # https://learn.adafruit.com/neopixels-on-raspberry-pi/software # Apple Homekit API Call Order # User changes light settings on iOS device # Changing Brightness - State - Hue - Brightness # Changing Color - Saturation - Hue # Changing Temp/Sat - Saturation - Hue # Changing State - State # import logging from neopixel import * from pyhap.accessory import Accessory from pyhap.const import CATEGORY_LIGHTBULB class NeoPixelLightStrip(Accessory): category = CATEGORY_LIGHTBULB __accessoryState = 0 # State of the neo light On/Off __hue = 0 # Hue Value 0 - 360 Homekit API __saturation = 100 # Saturation Values 0 - 100 Homekit API __brightness = 100 # Brightness value 0 - 100 Homekit API # NeoPixel constructor arguments LED_COUNT = 8 LED_PIN = 18 LED_FREQ_HZ = 800000 LED_DMA = 10 LED_BRIGHTNESS = 255 # Note this is for the neopixel object construct only LED_INVERT = False __neo_strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Set our neopixel API services up using Lightbulb base serv_light = self.add_preload_service( 'Lightbulb', chars=['On', 'Hue', 'Saturation', 'Brightness']) # Configure our callbacks self.char_hue = serv_light.configure_char( 'Hue', setter_callback=self.set_hue) self.char_saturation = serv_light.configure_char( 'Saturation', setter_callback=self.set_saturation) self.char_on = serv_light.configure_char( 'On', setter_callback=self.set_bulb) self.char_on = serv_light.configure_char( 'Brightness', setter_callback=self.set_brightness) # Must be called before any colors can be applied to neoPixels self.__neo_strip.begin() # def __setstate__(self, state): # print("___ setstate ___") # self.__dict__.update(state) def set_bulb(self, value): self.__accessoryState = value if value == 1: # On self.set_hue(self.__hue) else: self.Update_NeoPixel_With_Color(0, 0, 0) # Off def set_hue(self, value): # Lets only write the new RGB values if the power is on # otherwise update the hue value only if self.__accessoryState == 1: self.__hue = value rgb_tuple = self.hsv_to_rgb( self.__hue, self.__saturation, self.__brightness) if len(rgb_tuple) == 3: self.Update_NeoPixel_With_Color( rgb_tuple[0], rgb_tuple[1], rgb_tuple[2]) else: self.__hue = value def set_brightness(self, value): self.__brightness = value self.set_hue(self.__hue) def set_saturation(self, value): self.__saturation = value self.set_hue(self.__hue) def Update_NeoPixel_With_Color(self, red, green, blue): # For some reason the neopixels I have are G-R-B # or it could be the neopixel.py library # Change the setPixelColor inputs for yourself below for i in range(self.LED_COUNT): self.__neo_strip.setPixelColor( i, Color(int(green), int(red), int(blue))) self.__neo_strip.show() def stop(self): super().stop() def hsv_to_rgb(self, h, s, v): # This function takes # h - 0 - 360 Deg # s - 0 - 100 % # v - 0 - 100 % hPri = h / 60 s = s / 100 v = v / 100 if s <= 0.0: return int(0), int(0), int(0) C = v * s # Chroma X = C * (1 - abs(hPri % 2 - 1)) RGB_Pri = [0.0, 0.0, 0.0] if 0 <= hPri <= 1: RGB_Pri = [C, X, 0] elif 1 <= hPri <= 2: RGB_Pri = [X, C, 0] elif 2 <= hPri <= 3: RGB_Pri = [0, C, X] elif 3 <= hPri <= 4: RGB_Pri = [0, X, C] elif 4 <= hPri <= 5: RGB_Pri = [X, 0, C] elif 5 <= hPri <= 6: RGB_Pri = [C, 0, X] else: RGB_Pri = [0, 0, 0] m = v - C return int((RGB_Pri[0] + m) * 255), int((RGB_Pri[1] + m) * 255), int((RGB_Pri[2] + m) * 255)
the-stack_106_26034
import numpy as np import os.path as osp import sys import pyrado from direct.showbase.ShowBase import ShowBase from direct.task import Task from panda3d.core import * from pyrado.environments.sim_base import SimEnv # Configuration for panda3d-window confVars = """ win-size 1280 720 framebuffer-multisample 1 multisamples 2 show-frame-rate-meter 1 sync-video 0 threading-model Cull/Cull """ loadPrcFileData("", confVars) class PandaVis(ShowBase): def __init__(self, rendering: bool): """ Constructor :param rendering: boolean indicating whether to use RenderPipeline or default Panda3d as visualization-module. """ super().__init__(self) self.dir = Filename.fromOsSpecific(pyrado.PANDA_ASSETS_DIR).getFullpath() # Initialize RenderPipeline if rendering: sys.path.insert(0, pyrado.RENDER_PIPELINE_DIR) from rpcore import RenderPipeline self.render_pipeline = RenderPipeline() self.render_pipeline.pre_showbase_init() self.render_pipeline.set_loading_screen_image(osp.join(self.dir, "logo.png")) self.render_pipeline.settings["pipeline.display_debugger"] = False self.render_pipeline.create(self) self.render_pipeline.daytime_mgr.time = "17:00" # Activate antialiasing self.render.setAntialias(AntialiasAttrib.MAuto) # Set window properties self.windowProperties = WindowProperties() self.windowProperties.setForeground(True) self.windowProperties.setTitle("Experiment") # Set background color self.setBackgroundColor(1, 1, 1) # Configuration of the lighting self.directionalLight1 = DirectionalLight("directionalLight") self.directionalLightNP1 = self.render.attachNewNode(self.directionalLight1) self.directionalLightNP1.setHpr(0, -8, 0) self.render.setLight(self.directionalLightNP1) self.directionalLight2 = DirectionalLight("directionalLight") self.directionalLightNP2 = self.render.attachNewNode(self.directionalLight2) self.directionalLightNP2.setHpr(180, -20, 0) self.render.setLight(self.directionalLightNP2) self.ambientLight = AmbientLight("ambientLight") self.ambientLightNP = self.render.attachNewNode(self.ambientLight) self.ambientLight.setColor((0.1, 0.1, 0.1, 1)) self.render.setLight(self.ambientLightNP) # Create a text node displaying the physic parameters on the top left of the screen self.text = TextNode("parameters") self.textNodePath = aspect2d.attachNewNode(self.text) self.text.setTextColor(0, 0, 0, 1) # black self.textNodePath.setScale(0.07) self.textNodePath.setPos(-1.9, 0, 0.9) # Configure trace self.trace = LineSegs() self.trace.setThickness(3) self.trace.setColor(0.8, 0.8, 0.8) # light grey self.lines = self.render.attachNewNode("Lines") self.last_pos = None # Adds one instance of the update function to the task-manager, thus initializes the animation self.taskMgr.add(self.update, "update") def update(self, task: Task): """ Updates the visualization with every call. :param task: Needed by panda3d task manager. :return Task.cont: indicates that task should be called again next frame. """ return Task.cont def reset(self): """ Resets the the visualization to a certain state, so that in can be run again. Removes the trace. """ self.lines.getChildren().detach() self.last_pos = None def draw_trace(self, point): """ Draws a line from the last point to the current point :param point: Current position of pen. Needs 3 value vector. """ # Check if trace initialized if self.last_pos: # Set starting point of new line self.trace.moveTo(self.last_pos) # Draw line to that point self.trace.drawTo(point) # Save last position of pen self.last_pos = point # Show drawing self.trace_np = NodePath(self.trace.create()) self.trace_np.reparentTo(self.lines) class BallOnBeamVis(PandaVis): def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize :param rendering """ super().__init__(rendering) # Accessing variables of environment class self._env = env r_ball = self._env.domain_param["r_ball"] l_beam = self._env.domain_param["l_beam"] d_beam = self._env.domain_param["d_beam"] x = float(self._env.state[0]) # ball position along the beam axis [m] a = float(self._env.state[1]) # angle [rad] # Scaling of the animation so the camera can move smoothly self._scale = 10 / l_beam # Set window title self.windowProperties.setTitle("Ball on Beam") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setY(-3.0 * self._scale) # Ball self.ball = self.loader.loadModel(osp.join(self.dir, "ball_red.egg")) self.ball.setScale(r_ball * self._scale) self.ball.setPos(x * self._scale, 0, (d_beam / 2.0 + r_ball) * self._scale) self.ball.reparentTo(self.render) # Beam self.beam = self.loader.loadModel(osp.join(self.dir, "cube_green.egg")) self.beam.setScale(l_beam / 2 * self._scale, d_beam * self._scale, d_beam / 2 * self._scale) self.beam.setR(-a * 180 / np.pi) self.beam.reparentTo(self.render) def update(self, task: Task): # Accessing the current parameter values g = self._env.domain_param["g"] m_ball = self._env.domain_param["m_ball"] r_ball = self._env.domain_param["r_ball"] m_beam = self._env.domain_param["m_beam"] l_beam = self._env.domain_param["l_beam"] d_beam = self._env.domain_param["d_beam"] ang_offset = self._env.domain_param["ang_offset"] c_frict = self._env.domain_param["c_frict"] x = float(self._env.state[0]) # ball position along the beam axis [m] a = float(self._env.state[1]) # angle [rad] ball_pos = ( (np.cos(a) * x - np.sin(a) * (d_beam / 2.0 + r_ball)) * self._scale, 0, (np.sin(a) * x + np.cos(a) * (d_beam / 2.0 + r_ball)) * self._scale, ) # Update position of ball self.ball.setPos(ball_pos) # Draw trace self.draw_trace(ball_pos) # Update rotation of joint self.beam.setR(-a * 180 / np.pi) # Update displayed text self.text.setText( f""" dt: {self._env._dt : 1.4f} g: {g : 1.3f} m_ball: {m_ball: 1.2f} r_ball: {r_ball : 1.3f} m_beam: {m_beam : 1.2f} l_beam: {l_beam : 1.2f} d_beam: {d_beam : 1.2f} c_frict: {c_frict : 1.3f} ang_offset: {ang_offset : 1.3f} """ ) return Task.cont class OneMassOscillatorVis(PandaVis): def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize """ super().__init__(rendering) # Accessing variables of environment class self._env = env c = 0.1 * self._env.obs_space.bound_up[0] # Scaling of the animation so the camera can move smoothly self._scale = 5 / c # Set window title self.windowProperties.setTitle("One Mass Oscillator") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setY(-5 * self._scale) # Ground self.ground = self.loader.loadModel(osp.join(self.dir, "cube_green.egg")) self.ground.setPos(0, 0, -0.02 * self._scale) self.ground.setScale(self._env.obs_space.bound_up[0] * self._scale, 1.5 * c * self._scale, 0.01 * self._scale) self.ground.reparentTo(self.render) # Object self.mass = self.loader.loadModel(osp.join(self.dir, "cube_blue.egg")) self.mass.setPos(self._env.state[0] * self._scale, 0, c / 2.0 * self._scale) self.mass.setScale(c * 0.5 * self._scale, c * 0.5 * self._scale, c * 0.5 * self._scale) self.mass.reparentTo(self.render) # Desired state self.des = self.loader.loadModel(osp.join(self.dir, "cube_green.egg")) self.des.setPos(self._env._task.state_des[0] * self._scale, 0, 0.4 * c * self._scale) self.des.setScale(0.4 * c * self._scale, 0.4 * c * self._scale, 0.4 * c * self._scale) self.des.setTransparency(1) self.des.setColorScale(1, 0, 0, 0.5) self.des.reparentTo(self.render) # Force self.force = self.loader.loadModel(osp.join(self.dir, "arrow_red.egg")) self.force.setPos(self._env.state[0] * self._scale, 0, c / 2.0 * self._scale) self.force.setScale( 0.1 * self._env._curr_act / 10.0 * self._scale, 0.1 * c * self._scale, 0.1 * c * self._scale ) self.force.reparentTo(self.render) # Spring self.spring = self.loader.loadModel(osp.join(self.dir, "spring_orange.egg")) self.spring.setPos(0, 0, c / 2.0 * self._scale) self.spring.setScale( (self._env.state[0] - c / 2.0) / 7.3 * self._scale, c / 6.0 * self._scale, c / 6.0 * self._scale ) self.spring.reparentTo(self.render) def update(self, task: Task): # Accessing the current parameter values m = self._env.domain_param["m"] k = self._env.domain_param["k"] d = self._env.domain_param["d"] c = 0.1 * self._env.obs_space.bound_up[0] # Update position of mass pos_mass = (self._env.state[0] * self._scale, 0, c / 2.0 * self._scale) self.mass.setPos(pos_mass) # And force self.force.setPos(self._env.state[0] * self._scale, 0, c / 2.0 * self._scale) # Update scale of force capped_act = np.sign(self._env._curr_act) * max(0.1 * np.abs(self._env._curr_act), 0.3) if capped_act == 0: self.force.setSx(0.00001) # has_mat error if scale = 0 else: self.force.setSx(capped_act / 10.0 * self._scale) # Update scale of spring self.spring.setSx((self._env.state[0] - c / 2.0) / 7.3 * self._scale) # Update displayed text self.text.setText( f""" mass_x: {np.round(self.mass.getX(), 3)} spring_Sx: {np.round(self.spring.getSx(), 3)} dt: {self._env.dt :1.4f} m: {m : 1.3f} k: {k : 2.2f} d: {d : 1.3f} """ ) return Task.cont class PendulumVis(PandaVis): def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize """ super().__init__(rendering) # Accessing variables of environment class self._env = env th, _ = self._env.state l_pole = float(self._env.domain_param["l_pole"]) r_pole = 0.05 # Scaling of the animation so the camera can move smoothly self._scale = 10 / l_pole # Set window title self.windowProperties.setTitle("Pendulum") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setY(-20 * self._scale) # Joint self.joint = self.loader.loadModel(osp.join(self.dir, "ball_grey.egg")) self.joint.setPos(0, r_pole * self._scale, 0) self.joint.setScale(r_pole * self._scale, r_pole * self._scale, r_pole * self._scale) self.joint.reparentTo(self.render) # Pole self.pole = self.loader.loadModel(osp.join(self.dir, "cylinder_top_red.egg")) self.pole.setPos(0, r_pole * self._scale, 0) self.pole.setScale(r_pole * self._scale, r_pole * self._scale, 2 * l_pole * self._scale) self.pole.reparentTo(self.render) def update(self, task: Task): # Accessing the current parameter values th, _ = self._env.state g = self._env.domain_param["g"] m_pole = self._env.domain_param["m_pole"] l_pole = float(self._env.domain_param["l_pole"]) d_pole = self._env.domain_param["d_pole"] tau_max = self._env.domain_param["tau_max"] # Update position and rotation of pole self.pole.setR(-th * 180 / np.pi) # Get position of pole pole_pos = self.pole.getPos(self.render) # Calculate position of new point current_pos = ( pole_pos[0] + 4 * l_pole * np.sin(th) * self._scale, pole_pos[1], pole_pos[2] - 4 * l_pole * np.cos(th) * self._scale, ) # Update displayed text self.text.setText( f""" dt: {self._env._dt :1.4f} theta: {self._env.state[0] * 180 / np.pi : 2.3f} sin theta: {np.sin(self._env.state[0]) : 1.3f} cos theta: {np.cos(self._env.state[0]) : 1.3f} theta_dot: {self._env.state[1] * 180 / np.pi : 2.3f} tau: {self._env._curr_act[0] : 1.3f} g: {g : 1.3f} m_pole: {m_pole : 1.3f} l_pole: {l_pole : 1.3f} d_pole: {d_pole : 1.3f} tau_max: {tau_max: 1.3f} """ ) return Task.cont class QBallBalancerVis(PandaVis): def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize """ super().__init__(rendering) # Accessing variables of environment class self._env = env l_plate = self._env.domain_param["l_plate"] r_ball = self._env.domain_param["r_ball"] # Only for animation d_plate = 0.01 r_pole = 0.005 l_pole = 0.02 # Scaling of the animation so the camera can move smoothly self._scale = 1 / r_pole # Set window title self.windowProperties.setTitle("Quanser Ball Balancer") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setY(-1.3 * self._scale) # Ball self.ball = self.loader.loadModel(osp.join(self.dir, "ball_red.egg")) self.ball.setPos( self._env.state[2] * self._scale, self._env.state[3] * self._scale, (r_ball + d_plate / 2.0) * self._scale ) self.ball.setScale(r_ball * self._scale) self.ball.reparentTo(self.render) # Plate self.plate = self.loader.loadModel(osp.join(self.dir, "cube_blue.egg")) self.plate.setScale(l_plate * 0.5 * self._scale, l_plate * 0.5 * self._scale, d_plate * 0.5 * self._scale) self.plate.reparentTo(self.render) # Joint self.joint = self.loader.loadModel(osp.join(self.dir, "ball_grey.egg")) self.joint.setPos(0, 0, -d_plate * self._scale) self.joint.setScale(r_pole * self._scale, r_pole * self._scale, r_pole * self._scale) self.joint.reparentTo(self.render) # Pole self.pole = self.loader.loadModel(osp.join(self.dir, "cylinder_top_grey.egg")) self.pole.setPos(0, 0, -d_plate * self._scale) self.pole.setScale(r_pole * self._scale, r_pole * self._scale, l_pole * self._scale) self.pole.reparentTo(self.render) # Null_plate self.null_plate = self.loader.loadModel(osp.join(self.dir, "cube_grey.egg")) self.null_plate.setPos(0, 0, -2.5 * l_pole * self._scale) self.null_plate.setScale( l_plate * 1.5 * 0.5 * self._scale, l_plate * 1.5 * 0.5 * self._scale, d_plate / 20.0 * self._scale ) self.null_plate.reparentTo(self.render) def update(self, task: Task): # Accessing the current parameter values g = self._env.domain_param["g"] l_plate = self._env.domain_param["l_plate"] m_ball = self._env.domain_param["m_ball"] r_ball = self._env.domain_param["r_ball"] eta_g = self._env.domain_param["eta_g"] eta_m = self._env.domain_param["eta_m"] K_g = self._env.domain_param["K_g"] J_m = self._env.domain_param["J_m"] J_l = self._env.domain_param["J_l"] r_arm = self._env.domain_param["r_arm"] k_m = self._env.domain_param["k_m"] R_m = self._env.domain_param["R_m"] B_eq = self._env.domain_param["B_eq"] c_frict = self._env.domain_param["c_frict"] V_thold_x_neg = self._env.domain_param["V_thold_x_neg"] V_thold_x_pos = self._env.domain_param["V_thold_x_pos"] V_thold_y_neg = self._env.domain_param["V_thold_y_neg"] V_thold_y_pos = self._env.domain_param["V_thold_y_pos"] offset_th_x = self._env.domain_param["offset_th_x"] offset_th_y = self._env.domain_param["offset_th_y"] d_plate = 0.01 # only for animation # Get ball position x = self._env.state[2] y = self._env.state[3] # Compute plate orientation a_vp = -self._env.plate_angs[0] b_vp = self._env.plate_angs[1] # Update rotation of plate self.plate.setR(-a_vp * 180 / np.pi) self.plate.setP(b_vp * 180 / np.pi) # Update position of ball ball_pos = ( x * np.cos(a_vp) * self._scale, y * np.cos(b_vp) * self._scale, (r_ball + x * np.sin(a_vp) + y * np.sin(b_vp) + np.cos(a_vp) * d_plate / 2.0) * self._scale, ) self.ball.setPos(ball_pos) # Draw line to that point self.draw_trace(ball_pos) # Update displayed text self.text.setText( f""" x-axis is pos to the right, y-axis is pos up Commanded voltage: x servo : {self._env._curr_act[0] : 1.2f}, y servo : {self._env._curr_act[1] : 1.2f} Plate angle around x axis: {self._env.plate_angs[1] * 180 / np.pi : 2.2f} Plate angle around y axis: {self._env.plate_angs[0] * 180 / np.pi : 2.2f} Shaft angles: {self._env.state[0] * 180 / np.pi : 2.2f}, {self._env.state[1] * 180 / np.pi : 2.2f} Ball position: {x : 1.3f}, {y : 1.3f} g: {g : 1.3f} m_ball: {m_ball : 1.3f} r_ball: {r_ball : 1.3f} r_arm: {r_arm : 1.3f} l_plate: {l_plate : 1.3f} K_g: {K_g : 2.2f} J_m: {J_m : 1.7f} J_l: {J_l : 1.6f} eta_g: {eta_g : 1.3f} eta_m: {eta_m : 1.3f} k_mt: {k_m : 1.3f} R_m: {R_m : 1.3f} B_eq: {B_eq : 1.3f} c_frict: {c_frict : 1.3f} V_thold_x_pos: {V_thold_x_pos : 2.3f} V_thold_x_neg: {V_thold_x_neg : 2.3f} V_thold_y_pos: {V_thold_y_pos : 2.3f} V_thold_y_neg: {V_thold_y_neg : 2.3f} offset_th_x: {offset_th_x : 2.3f} offset_th_y: {offset_th_y : 2.3f} """ ) return Task.cont class QCartPoleVis(PandaVis): """ Visualization for QCartPoleSim """ def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize """ super().__init__(rendering) # Accessing variables of environment class self._env = env x, th, _, _ = self._env.state l_pole = float(self._env.domain_param["l_pole"]) l_rail = float(self._env.domain_param["l_rail"]) # Only for animation l_cart, h_cart = 0.08, 0.08 r_pole, r_rail = 0.01, 0.005 # Scaling of the animation so the camera can move smoothly self._scale = 10 / l_pole # Set window title self.windowProperties.setTitle("Quanser Cartpole") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setY(-5 * self._scale) # Rail self.rail = self.loader.loadModel(osp.join(self.dir, "cylinder_middle_grey.egg")) self.rail.setPos(0, 0, (-h_cart - r_rail) * self._scale) self.rail.setScale(r_rail * self._scale, r_rail * self._scale, l_rail * self._scale) self.rail.reparentTo(self.render) self.rail.setR(90) # Cart self.cart = self.loader.loadModel(osp.join(self.dir, "cube_green.egg")) self.cart.setX(x * self._scale) self.cart.setScale(l_cart * self._scale, h_cart / 2 * self._scale, h_cart * self._scale) self.cart.reparentTo(self.render) # Joint self.joint = self.loader.loadModel(osp.join(self.dir, "ball_grey.egg")) self.joint.setPos(x * self._scale, (-r_pole - h_cart / 2) * self._scale, 0) self.joint.setScale(r_pole * self._scale) self.joint.reparentTo(self.render) # Pole self.pole = self.loader.loadModel(osp.join(self.dir, "cylinder_top_red.egg")) self.pole.setPos(x * self._scale, (-r_pole - h_cart / 2) * self._scale, 0) self.pole.setScale(r_pole * self._scale, r_pole * self._scale, 2 * l_pole * self._scale) self.pole.reparentTo(self.render) def update(self, task: Task): # Accessing the current parameter values x, th, _, _ = self._env.state g = self._env.domain_param["g"] m_cart = self._env.domain_param["m_cart"] m_pole = self._env.domain_param["m_pole"] l_pole = float(self._env.domain_param["l_pole"]) l_rail = float(self._env.domain_param["l_rail"]) eta_m = self._env.domain_param["eta_m"] eta_g = self._env.domain_param["eta_g"] K_g = self._env.domain_param["K_g"] J_m = self._env.domain_param["J_m"] R_m = self._env.domain_param["R_m"] k_m = self._env.domain_param["k_m"] r_mp = self._env.domain_param["r_mp"] B_eq = self._env.domain_param["B_eq"] B_pole = self._env.domain_param["B_pole"] # Update position of Cart, Joint and Pole self.cart.setX(x * self._scale) self.joint.setX(x * self._scale) self.pole.setX(x * self._scale) # Update rotation of Pole self.pole.setR(-th * 180 / np.pi) # Get position of pole pole_pos = self.pole.getPos(self.render) # Calculate position of new point current_pos = ( pole_pos[0] + 4 * l_pole * np.sin(th) * self._scale, pole_pos[1], pole_pos[2] - 4 * l_pole * np.cos(th) * self._scale, ) # Draw line to that point self.draw_trace(current_pos) # Update displayed text self.text.setText( f""" theta: {self._env.state[1] * 180 / np.pi : 2.3f} dt: {self._env._dt :1.4f} g: {g : 1.3f} m_cart: {m_cart : 1.4f} l_rail: {l_rail : 1.3f} l_pole: {l_pole : 1.3f} eta_m: {eta_m : 1.3f} eta_g: {eta_g : 1.3f} K_g: {K_g : 1.3f} J_m: {J_m : 1.8f} r_mp: {r_mp : 1.4f} R_m: {R_m : 1.3f} k_m: {k_m : 1.6f} B_eq: {B_eq : 1.2f} B_pole: {B_pole : 1.3f} m_pole: {m_pole : 1.3f} """ ) return Task.cont class QQubeVis(PandaVis): def __init__(self, env: SimEnv, rendering: bool): """ Constructor :param env: environment to visualize """ super().__init__(rendering) # Accessing variables of environment class self._env = env Lr = self._env.domain_param["Lr"] Lp = self._env.domain_param["Lp"] # Only for animation arm_radius = 0.003 pole_radius = 0.0045 # Scaling of the animation so the camera can move smoothly self._scale = 20 / Lp # Set window title self.windowProperties.setTitle("Quanser Qube") self.win.requestProperties(self.windowProperties) # Set pov self.cam.setPos(-0.4 * self._scale, -1.3 * self._scale, 0.4 * self._scale) self.cam.setHpr(-20, -10, 0) # Box self.box = self.loader.loadModel(osp.join(self.dir, "cube_green.egg")) self.box.setPos(0, 0.07 * self._scale, 0) self.box.setScale(0.09 * self._scale, 0.1 * self._scale, 0.09 * self._scale) self.box.reparentTo(self.render) # Cylinder self.cylinder = self.loader.loadModel(osp.join(self.dir, "cylinder_middle_grey.egg")) self.cylinder.setScale(0.005 * self._scale, 0.005 * self._scale, 0.03 * self._scale) self.cylinder.setPos(0, 0.07 * self._scale, 0.12 * self._scale) self.cylinder.reparentTo(self.render) # Joint 1 self.joint1 = self.loader.loadModel(osp.join(self.dir, "ball_grey.egg")) self.joint1.setScale(0.005 * self._scale) self.joint1.setPos(0.0, 0.07 * self._scale, 0.15 * self._scale) self.joint1.reparentTo(self.render) # Arm self.arm = self.loader.loadModel(osp.join(self.dir, "cylinder_top_blue.egg")) self.arm.setScale(arm_radius * self._scale, arm_radius * self._scale, Lr * self._scale) self.arm.setP(90) self.arm.setPos(0, 0.07 * self._scale, 0.15 * self._scale) self.arm.reparentTo(self.render) # Joint 2 self.joint2 = self.loader.loadModel(osp.join(self.dir, "ball_grey.egg")) self.joint2.setScale(pole_radius * self._scale) self.joint2.setPos(0.0, (0.07 + 2 * Lr) * self._scale, 0.15 * self._scale) self.joint2.wrtReparentTo(self.arm) # Pole self.pole = self.loader.loadModel(osp.join(self.dir, "cylinder_bottom_red.egg")) self.pole.setScale(pole_radius * self._scale, pole_radius * self._scale, Lp * self._scale) self.pole.setPos(0, (0.07 + 2 * Lr) * self._scale, 0.15 * self._scale) self.pole.wrtReparentTo(self.arm) def update(self, task: Task): # Accessing the current parameter values g = self._env.domain_param["g"] Mr = self._env.domain_param["Mr"] Mp = self._env.domain_param["Mp"] Lr = float(self._env.domain_param["Lr"]) Lp = float(self._env.domain_param["Lp"]) km = self._env.domain_param["km"] Rm = self._env.domain_param["Rm"] Dr = self._env.domain_param["Dr"] Dp = self._env.domain_param["Dp"] th, al, _, _ = self._env.state # Update rotation of arm self.arm.setH(th * 180 / np.pi - 180) # Update rotation of pole self.pole.setR(al * 180 / np.pi) # Get position of pole pole_pos = self.pole.getPos(self.render) # Calculate position of new point current_pos = ( pole_pos[0] + 2 * Lp * np.sin(al) * np.cos(th) * self._scale, pole_pos[1] + 2 * Lp * np.sin(al) * np.sin(th) * self._scale, pole_pos[2] - 2 * Lp * np.cos(al) * self._scale, ) # Draw line to that point self.draw_trace(current_pos) # Update displayed text self.text.setText( f""" theta: {self._env.state[0] * 180 / np.pi : 3.1f} alpha: {self._env.state[1] * 180 / np.pi : 3.1f} dt: {self._env._dt :1.4f} g: {g : 1.3f} Mr: {Mr : 1.4f} Mp: {Mp : 1.4f} Lr: {Lr : 1.4f} Lp: {Lp : 1.4f} Dr: {Dr : 1.7f} Dp: {Dp : 1.7f} Rm: {Rm : 1.3f} km: {km : 1.4f} """ ) return Task.cont
the-stack_106_26035
import torch from torch import nn from torch.autograd import Variable from torch.nn import functional as F # Module for residual/skip connections class FCResBlock(nn.Module): def __init__(self, dim, n, nonlinearity, batch_norm=True): """ :param dim: :param n: :param nonlinearity: """ super(FCResBlock, self).__init__() self.n = n self.nonlinearity = nonlinearity self.batch_norm = batch_norm if self.batch_norm: self.block = nn.ModuleList( [nn.ModuleList([nn.Linear(dim, dim), nn.BatchNorm1d(num_features=dim)]) for _ in range(self.n)] ) else: self.block = nn.ModuleList([nn.Linear(dim, dim) for _ in range(self.n)]) def forward(self, x): e = x + 0 if self.batch_norm: for i, pair in enumerate(self.block): fc, bn = pair e = fc(e) e = bn(e) if i < (self.n - 1): e = self.nonlinearity(e) else: for i, layer in enumerate(self.block): e = layer(e) if i < (self.n - 1): e = self.nonlinearity(e) return self.nonlinearity(e + x) # Building block for convolutional encoder with same padding class Conv2d3x3(nn.Module): def __init__(self, in_channels, out_channels, downsample=False): super(Conv2d3x3, self).__init__() stride = 2 if downsample else 1 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride) def forward(self, x): return self.conv(x) # SHARED CONVOLUTIONAL ENCODER class SharedConvolutionalEncoder(nn.Module): def __init__(self, nonlinearity): super(SharedConvolutionalEncoder, self).__init__() self.nonlinearity = nonlinearity self.conv_layers = nn.ModuleList([ Conv2d3x3(in_channels=1, out_channels=64), Conv2d3x3(in_channels=64, out_channels=64), Conv2d3x3(in_channels=64, out_channels=64, downsample=True), # shape is now (-1, 64, 14 , 14) Conv2d3x3(in_channels=64, out_channels=128), Conv2d3x3(in_channels=128, out_channels=128), Conv2d3x3(in_channels=128, out_channels=128, downsample=True), # shape is now (-1, 128, 7, 7) Conv2d3x3(in_channels=128, out_channels=256), Conv2d3x3(in_channels=256, out_channels=256), Conv2d3x3(in_channels=256, out_channels=256, downsample=True) # shape is now (-1, 256, 4, 4) ]) self.bn_layers = nn.ModuleList([ nn.BatchNorm2d(num_features=64), nn.BatchNorm2d(num_features=64), nn.BatchNorm2d(num_features=64), nn.BatchNorm2d(num_features=128), nn.BatchNorm2d(num_features=128), nn.BatchNorm2d(num_features=128), nn.BatchNorm2d(num_features=256), nn.BatchNorm2d(num_features=256), nn.BatchNorm2d(num_features=256), ]) def forward(self, x): h = x.view(-1, 1, 28, 28) for conv, bn in zip(self.conv_layers, self.bn_layers): h = conv(h) h = bn(h) h = self.nonlinearity(h) return h # PRE-POOLING FOR STATISTIC NETWORK class PrePool(nn.Module): """ """ def __init__(self, batch_size, n_features, n_hidden, hidden_dim, nonlinearity): super(PrePool, self).__init__() self.batch_size = batch_size self.n_features = n_features self.n_hidden = n_hidden self.hidden_dim = hidden_dim self.nonlinearity = nonlinearity # modules self.fc = nn.Linear(self.n_features, self.hidden_dim) self.bn = nn.BatchNorm1d(self.hidden_dim) def forward(self, h): # reshape and affine e = h.view(-1, self.n_features) e = self.fc(e) e = self.bn(e) e = self.nonlinearity(e) return e # POST POOLING FOR STATISTIC NETWORK class PostPool(nn.Module): """ """ def __init__(self, n_hidden, hidden_dim, c_dim, nonlinearity): super(PostPool, self).__init__() self.n_hidden = n_hidden self.hidden_dim = hidden_dim + 1 self.c_dim = c_dim self.nonlinearity = nonlinearity # modules self.fc_layers = nn.ModuleList([nn.Linear(self.hidden_dim, self.hidden_dim), nn.Linear(self.hidden_dim, self.hidden_dim)]) self.bn_layers = nn.ModuleList([nn.BatchNorm1d(self.hidden_dim), nn.BatchNorm1d(self.hidden_dim)]) self.fc_params = nn.Linear(self.hidden_dim, 2 * self.c_dim) self.bn_params = nn.BatchNorm1d(1, eps=1e-3, momentum=1e-2) def forward(self, e): for fc, bn in zip(self.fc_layers, self.bn_layers): e = fc(e) e = bn(e) e = self.nonlinearity(e) # affine transformation to parameters e = self.fc_params(e) # 'global' batch norm e = e.view(-1, 1, 2 * self.c_dim) e = self.bn_params(e) e = e.view(-1, 2 * self.c_dim) mean, logvar = e[:, :self.c_dim], e[:, self.c_dim:] return mean, logvar # STATISTIC NETWORK q(c|D) class StatisticNetwork(nn.Module): """ """ def __init__(self, batch_size, sample_size, n_features, n_hidden, hidden_dim, c_dim, nonlinearity): super(StatisticNetwork, self).__init__() self.batch_size = batch_size self.sample_size = sample_size self.n_features = n_features self.n_hidden = n_hidden self.hidden_dim = hidden_dim self.c_dim = c_dim self.nonlinearity = nonlinearity # modules self.prepool = PrePool(self.batch_size, self.n_features, self.n_hidden, self.hidden_dim, self.nonlinearity) self.postpool = PostPool(self.n_hidden, self.hidden_dim, self.c_dim, self.nonlinearity) def forward(self, h, summarize=False, single_sample=False): e = self.prepool(h) if summarize or single_sample or not self.training: ef = Variable(torch.ones(e.shape[0],1).cuda()) e = torch.cat([e, ef], -1) else: e = self.sample_dropout(e) e = self.pool(e, summarize, single_sample) e = self.postpool(e) return e def pool(self, e, summarize=False, single_sample=False): if summarize: e = e.view(1, -1, self.hidden_dim + 1) else: if single_sample: e = e.view(-1, 1, self.hidden_dim + 1) else: e = e.view(-1, self.sample_size, self.hidden_dim + 1) e = e.mean(1).view(-1, self.hidden_dim + 1) return e def sample_dropout(self, e): # create mask a = Variable(torch.ones((self.batch_size, 1, 1)).cuda()) p = 0.8 if self.training else 1 b = Variable(torch.bernoulli(p * torch.ones((self.batch_size, self.sample_size - 1, 1)).cuda())) mask = torch.cat([a, b], 1) sample_size = self.sample_size e = e.view(self.batch_size, sample_size, self.hidden_dim) # zero out samples e = e * mask.expand_as(e) extra_feature = torch.sum(mask, 1) extra_feature = extra_feature.repeat(1, sample_size).unsqueeze(2) # add number of retained samples as extra feature cc = torch.cat([e, extra_feature], 2) cc = cc * mask.expand_as(cc) return cc class InferenceNetwork(nn.Module): """ Inference network q(z|h, z, c) gives approximate posterior over latent variables. """ def __init__(self, batch_size, sample_size, n_features, n_hidden, hidden_dim, c_dim, z_dim, nonlinearity): super(InferenceNetwork, self).__init__() self.batch_size = batch_size self.sample_size = sample_size self.n_features = n_features self.n_hidden = n_hidden self.hidden_dim = hidden_dim self.c_dim = c_dim self.z_dim = z_dim self.nonlinearity = nonlinearity # modules self.fc_h = nn.Linear(self.n_features, self.hidden_dim) self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc_z = nn.Linear(self.z_dim, self.hidden_dim) self.fc_res_block = FCResBlock(dim=self.hidden_dim*3, n=self.n_hidden, nonlinearity=self.nonlinearity, batch_norm=True) self.fc_params = nn.Linear(3*self.hidden_dim, 2 * self.z_dim) self.bn_params = nn.BatchNorm1d(1, eps=1e-3, momentum=1e-2) def forward(self, h, z, c): # combine h, z, and c # embed h eh = h.view(-1, self.n_features) eh = self.fc_h(eh) eh = eh.view(self.batch_size, self.sample_size, self.hidden_dim) # embed z if we have more than one stochastic layer if z is not None: ez = z.view(-1, self.z_dim) ez = self.fc_z(ez) ez = ez.view(self.batch_size, self.sample_size, self.hidden_dim) else: ez = Variable(torch.zeros(eh.size()).cuda()) # embed c and expand for broadcast addition ec = self.fc_c(c) ec = ec.view(self.batch_size, 1, self.hidden_dim).expand_as(eh) # sum and reshape e = torch.cat([eh, ez, ec],2) e = e.view(self.batch_size * self.sample_size, 3 * self.hidden_dim) e = self.nonlinearity(e) # for layer in self.fc_block: e = self.fc_res_block(e) # affine transformation to parameters e = self.fc_params(e) # 'global' batch norm e = e.view(-1, 1, 2 * self.z_dim) e = self.bn_params(e) e = e.view(-1, 2 * self.z_dim) mean, logvar = e[:, :self.z_dim].contiguous(), e[:, self.z_dim:].contiguous() return mean, logvar # LATENT DECODER p(z|z, c) class LatentDecoder(nn.Module): """ """ def __init__(self, batch_size, sample_size, n_features, n_hidden, hidden_dim, c_dim, z_dim, nonlinearity): super(LatentDecoder, self).__init__() self.batch_size = batch_size self.sample_size = sample_size self.n_features = n_features self.n_hidden = n_hidden self.hidden_dim = hidden_dim self.c_dim = c_dim self.z_dim = z_dim self.nonlinearity = nonlinearity # modules self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc_z = nn.Linear(self.z_dim, self.hidden_dim) self.fc_res_block = FCResBlock(dim=2*self.hidden_dim, n=self.n_hidden, nonlinearity=self.nonlinearity, batch_norm=False) self.fc_params = nn.Linear(2*self.hidden_dim, 2 * self.z_dim) self.bn_params = nn.BatchNorm1d(1, eps=1e-3, momentum=1e-2) def forward(self, z, c): # combine z and c # embed z if we have more than one stochastic layer if z is not None: ez = z.view(-1, self.z_dim) ez = self.fc_z(ez) ez = ez.view(self.batch_size, self.sample_size, self.hidden_dim) else: ez = Variable(torch.zeros(self.batch_size, 1, self.hidden_dim).cuda()) # embed c and expand for broadcast addition ec = self.fc_c(c) ec = ec.view(self.batch_size, 1, self.hidden_dim).expand_as(ez) # sum and reshape e = torch.cat([ez, ec],2) e = e.view(-1, 2*self.hidden_dim) e = self.nonlinearity(e) # for layer in self.fc_block: e = self.fc_res_block(e) # affine transformation to parameters e = self.fc_params(e) # 'global' batch norm e = e.view(-1, 1, 2 * self.z_dim) e = self.bn_params(e) e = e.view(-1, 2 * self.z_dim) mean, logvar = e[:, :self.z_dim].contiguous(), e[:, self.z_dim:].contiguous() return mean, logvar # Observation Decoder p(x|z, c) class ObservationDecoder(nn.Module): """ """ def __init__(self, batch_size, sample_size, n_features, n_hidden, hidden_dim, c_dim, n_stochastic, z_dim, nonlinearity): super(ObservationDecoder, self).__init__() self.batch_size = batch_size self.sample_size = sample_size self.n_features = n_features self.n_hidden = n_hidden self.hidden_dim = hidden_dim self.c_dim = c_dim self.n_stochastic = n_stochastic self.z_dim = z_dim self.nonlinearity = nonlinearity # modules self.fc_zs = nn.Linear(self.n_stochastic * self.z_dim, self.hidden_dim) self.fc_c = nn.Linear(self.c_dim, self.hidden_dim) self.fc_initial = nn.Linear(2*self.hidden_dim, 256 * 4 * 4) self.conv_layers = nn.ModuleList([ Conv2d3x3(256, 256), Conv2d3x3(256, 256), nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2), Conv2d3x3(256, 128), Conv2d3x3(128, 128), nn.ConvTranspose2d(128, 128, kernel_size=2, stride=2), Conv2d3x3(128, 64), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0), nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2) ]) self.bn_layers = nn.ModuleList([ nn.BatchNorm2d(256), nn.BatchNorm2d(256), nn.BatchNorm2d(256), nn.BatchNorm2d(128), nn.BatchNorm2d(128), nn.BatchNorm2d(128), nn.BatchNorm2d(64), nn.BatchNorm2d(64), nn.BatchNorm2d(64), ]) self.conv_final = nn.Conv2d(64, 1, kernel_size=1) def forward(self, zs, c): # concatenate zs and c ezs = self.fc_zs(zs) ezs = ezs.view(self.batch_size, self.sample_size, self.hidden_dim) ec = self.fc_c(c) ec = ec.view(self.batch_size, 1, self.hidden_dim).expand_as(ezs) e = torch.cat([ezs, ec],2) e = self.nonlinearity(e) e = e.view(-1, 2*self.hidden_dim) e = self.fc_initial(e) e = e.view(-1, self.hidden_dim, 4, 4) for conv, bn in zip(self.conv_layers, self.bn_layers): e = conv(e) e = bn(e) e = self.nonlinearity(e) e = self.conv_final(e) e = F.sigmoid(e) return e
the-stack_106_26036
import astropy.units as u from astropy.coordinates import SkyCoord from astropy import wcs from astropy.nddata import Cutout2D import astropy.io.fits as fits import numpy as np import matplotlib.pyplot as plt import os from astropy.table import Table, join from matplotlib.patches import Circle from aspecs_catalog_builder import get_aspecs_radec catalog_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst.v4.1.cats/Catalog/goodss_3dhst.v4.1.cat.FITS") skelton_goodss = catalog_goodss[1].data print(catalog_goodss[0].header) print(skelton_goodss.columns) print(skelton_goodss['id']) def create_cutout(ax, wcs_header, image, ra, dec, aspecs_ra, aspecs_dec): """ :param ax: Matplotlib ax to use :param wcs_header: Image header with WCS info :param image: Image :param ra: RA coordiantes for center in J2000 :param dec: DEC coordinates for center in J2000 :param size: Size, in degrees, of the cutout :return: """ w = wcs.WCS(wcs_header) center = SkyCoord(ra * u.deg, dec * u.deg, frame='fk5') aspecs_ra_dec_center = SkyCoord(aspecs_ra * u.deg, aspecs_dec * u.deg, frame='fk5') size = np.ceil(center.separation(aspecs_ra_dec_center).arcsecond * 2.) if size < 4.0: size = 4 # then make an array cutout aspecs_cutout = Cutout2D(image, aspecs_ra_dec_center, size=size * u.arcsec, wcs=w) co = Cutout2D(image, center, size=size * u.arcsec, wcs=w) ax.imshow(co.data, origin='lower', cmap='gray') center_image = Circle((co.center_cutout[0], co.center_cutout[1]), 5, fill=False, color='r') ax.add_patch(center_image) aspecs_loc_x, aspecs_loc_y = co.to_cutout_position(aspecs_cutout.center_original) ax.errorbar(aspecs_loc_x, aspecs_loc_y, yerr=5, xerr=5, color='r') return ax def create_ax_cutout(ax, name, fit_data, aspecs_coordinate, catalog_coordinate): ax = create_cutout(ax, fit_data[0].header, fit_data[0].data, catalog_coordinate.ra.deg, catalog_coordinate.dec.deg, aspecs_coordinate.ra.deg, aspecs_coordinate.dec.deg) ax.set_title(name) ax.tick_params(direction='in', colors='w', bottom=True, top=True, left=True, right=True, labelbottom=True, labeltop=False, labelleft=True, labelright=False) return ax def create_aspecs_cutouts(aspecs_coordinates, fits_files, fits_names, wcs_data, catalog_coordinates, id, aspecs_freqs): # get size of file shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) f.suptitle('ID: ' + str(id) + " ALMA Freq: " + str(aspecs_freqs[id])) for index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, index + 1, projection=wcs_data) create_ax_cutout(ax, fits_names[index], image, aspecs_coordinates, catalog_coordinates) return f hdu_list = fits.open("data/jacob_aspecs_catalog_fixed_magphys_jcb3.fits") print(hdu_list[1].columns) roberto_muse = hdu_list[1].data from astropy.utils import data from spectral_cube import SpectralCube # ASPECS_Data Cubes # aspecs_a1_chn = SpectralCube.read("/home/jacob/Research/gs_A1_2chn.fits") # aspecs_a2_chn = SpectralCube.read("/home/jacob/Research/gs_A2_2chn.fits") # plt.imshow(aspecs_a1_chn.unitless[1,:,:]) # plt.show() # print(aspecs_a1_chn) summed_cub = fits.open("/home/jacob/Research/Wide_ASPECS/Data/gs_C1_2chn.fits") summed_cub = summed_cub[0].data summed_cub = np.reshape(summed_cub, (480, 2048, 2048)) print(summed_cub.shape) summed_cub = np.sum(summed_cub, axis=0) plt.imshow(summed_cub) plt.show() f160w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f160w/goodss_3dhst.v4.0.F160W_orig_sci.fits") w = wcs.WCS(f160w_goodss[0].header) roberto_muse = Table.read("roberto_catalog_muse.fits", format='fits') test_roberto = Table.read("/home/jacob/Development/Wide_ASPECS/mapghys_in_nov2018_all.fits", format='fits') # Add in RA and Dec to test_roberto roberto_muse = join(test_roberto, roberto_muse, keys='id') muse_catalog = fits.open(os.path.join("data", "MW_44fields_main_table_v1.0.fits"))[1].data roberto_ra_dec = SkyCoord(roberto_muse['ra'] * u.deg, roberto_muse['dc'] * u.deg, frame='fk5') muse_ra_dec = SkyCoord(muse_catalog['RA'] * u.deg, muse_catalog['DEC'] * u.deg, frame='fk5') indicies_to_use = [] muse_ids_to_use = [] # For ones with same ID from matplotlib.text import OffsetFrom # For ones with off Z f125w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f125w/goodss_3dhst.v4.0.F125W_orig_sci.fits") f140w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f140w/goodss_3dhst.v4.0.F140W_orig_sci.fits") f160w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f160w/goodss_3dhst.v4.0.F160W_orig_sci.fits") f435w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f435w/goodss_3dhst.v4.0.F435W_orig_sci.fits") f606w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst.v4.0.f606wcand/goodss_3dhst.v4.0.F606Wcand_orig_sci.fits") f775w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f775w/goodss_3dhst.v4.0.F775W_orig_sci.fits") f850lp_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst_v4.0_f850lp/goodss_3dhst.v4.0.F850LP_orig_sci.fits") R_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_R/GOODS-S_R_sci.fits") U38_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_WFI_U38/GOODS-S_WFI_U38_sci.fits") V_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_WFI_V/GOODS-S_WFI_V_sci.fits") B_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_WFI_B/GOODS-S_WFI_B_sci.fits") # U_goodss = fits.open("/home/jacob/Research/GOODS-S_U/GOODS-S_U_sci.fits") J_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_convJ/GOODS-S_convJ_sci.fits") H_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_convH/GOODS-S_convH_sci.fits") f814w_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst.v4.0.f814wcand/goodss_3dhst.v4.0.F814Wcand_orig_sci.fits") I_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_WFI_I/GOODS-S_WFI_I_sci.fits") # Tenis Ones tKs_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_tenisK/GOODS-S_tenisK_sci.fits") tJ_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_tenisJ/GOODS-S_tenisJ_sci.fits") # MUSYC # ia427_goodss = fits.open("/home/jacob/Research/GOODS-S_IA427/GOODS-S_IA427_sci.fits") # ia445_goodss = fits.open("/home/jacob/Research/GOODS-S_IA445/GOODS-S_IA445_sci.fits") # ia505_goodss = fits.open("/home/jacob/Research/GOODS-S_IA505/GOODS-S_IA505_sci.fits") # ia527_goodss = fits.open("/home/jacob/Research/GOODS-S_IA527/GOODS-S_IA527_sci.fits") # ia550_goodss = fits.open("/home/jacob/Research/GOODS-S_IA550/GOODS-S_IA550_sci.fits") # ia574_goodss = fits.open("/home/jacob/Research/GOODS-S_IA574/GOODS-S_IA574_sci.fits") # ia624_goodss = fits.open("/home/jacob/Research/GOODS-S_IA624/GOODS-S_IA624_sci.fits") # ia651_goodss = fits.open("/home/jacob/Research/GOODS-S_IA651/GOODS-S_IA651_sci.fits") # ia679_goodss = fits.open("/home/jacob/Research/GOODS-S_IA679/GOODS-S_IA679_sci.fits") # ia738_foodss = fits.open("/home/jacob/Research/GOODS-S_IA738/GOODS-S_IA738_sci.fits") # ia797_foodss = fits.open("/home/jacob/Research/GOODS-S_IA797/GOODS-S_IA797_sci.fits") # IRAC irac1_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_SEDS1/GOODS-S_SEDS1_sci_sub.fits") irac2_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_SEDS2/GOODS-S_SEDS2_sci_sub.fits") irac3_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_irac3/GOODS-S_irac3_s1_sci.fits") irac4_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/GOODS-S_irac4/GOODS-S_irac4_s1_sci.fits") # Add to the list with names # ia_ones = [ia427_goodss, ia445_goodss, ia505_goodss, ia527_goodss, ia550_goodss, ia574_goodss, # ia624_goodss, ia651_goodss, ia679_goodss, ia738_foodss, ia797_foodss, ] fits_files = [f125w_goodss, f140w_goodss, f160w_goodss, f435w_goodss, f606w_goodss, f775w_goodss, f850lp_goodss, f814w_goodss, R_goodss, U38_goodss, V_goodss, B_goodss, J_goodss, H_goodss, I_goodss, tKs_goodss, tJ_goodss, irac1_goodss, irac2_goodss, irac3_goodss, irac4_goodss] ia_nmes = ["IA427", "IA445", "IA505", "IA527", "IA550", "IA574", "IA624", "IA651", "IA679", "IA738", "IA797", ] fits_names = ["F125W", "F140W", "F160W", "F435W", "F606W", "F775W", "F850LP", "F814W", "R", "U38", "V", "B", "J", "H", "I", "tKs", "tJ", "IRAC1", "IRAC2", "IRAC3", "IRAC4"] catalog_goodss = fits.open("/home/jacob/Research/Wide_ASPECS/Historical_Data/goodss_3dhst.v4.1.cats/Catalog/goodss_3dhst.v4.1.cat.FITS") skelton_goodss = catalog_goodss[1].data def create_overlap_cutout(ax, wcs_header, image, muse, row, other_row, index, other_index): """ :param ax: Matplotlib ax to use :param wcs_header: Image header with WCS info :param image: Image :param ra: RA coordiantes for center in J2000 :param dec: DEC coordinates for center in J2000 :param size: Size, in degrees, of the cutout :return: """ w = wcs.WCS(wcs_header) muse_mask = (muse['UNIQUE_ID'] == int(other_row['muse_id'])) center = SkyCoord(muse[muse_mask]['RA'] * u.deg, muse[muse_mask]['DEC'] * u.deg, frame='fk5') row_center = roberto_ra_dec[index] other_row_center = roberto_ra_dec[other_index] size = np.ceil( np.max([center.separation(row_center).arcsecond * 2., center.separation(other_row_center).arcsecond * 2.])) if size < 3.0: size = 3 # then make an array cutout row_cutout = Cutout2D(image, row_center, size=size * u.arcsec, wcs=w) other_row_cutout = Cutout2D(image, other_row_center, size=size * u.arcsec, wcs=w) co = Cutout2D(image, center, size=size * u.arcsec, wcs=w) ax.imshow(co.data, origin='lower', cmap='gray') center_image = Circle((co.center_cutout[0], co.center_cutout[1]), 3, fill=False, color='r') ax.add_patch(center_image) ax.annotate(str(int(row['muse_id'])), xy=(co.center_cutout[0], co.center_cutout[1]), textcoords='offset pixels', xytext=(2, 1), color='r') aspecs_loc_x, aspecs_loc_y = co.to_cutout_position(row_cutout.center_original) aspecs_loc_x_other, aspecs_loc_y_other = co.to_cutout_position(other_row_cutout.center_original) first_image = Circle((aspecs_loc_x, aspecs_loc_y), 3, fill=False, color='g') ax.add_patch(first_image) ax.annotate(row['id'], xy=(aspecs_loc_x, aspecs_loc_y), textcoords='offset pixels', xytext=(2, 1), color='g') other_image = Circle((aspecs_loc_x_other, aspecs_loc_y_other), 3, fill=False, color='w') ax.add_patch(other_image) ax.annotate(other_row['id'], xy=(aspecs_loc_x_other, aspecs_loc_y_other), textcoords='offset pixels', xytext=(2, 1), color='w') return ax def create_overlap_ax_cutout(ax, name, fit_data, aspecs_coordinate, catalog_coordinate, other_row, index, other_index): ax = create_overlap_cutout(ax, fit_data[0].header, fit_data[0].data, catalog_coordinate, aspecs_coordinate, other_row, index, other_index) ax.set_title(name) ax.tick_params(direction='in', colors='w', bottom=True, top=True, left=True, right=True, labelbottom=True, labeltop=False, labelleft=True, labelright=False) return ax """ row_mask = (roberto_muse['id'] == 51778) | (roberto_muse['id'] == 57545) |(roberto_muse['id'] == 62887) |(roberto_muse['id'] == 18816) row_masked = roberto_muse[row_mask] row_masked[0]['muse_id'] = 125009025 row_masked[1]['muse_id'] = 125009025 row_masked[2]['muse_id'] = 119002002 row_masked[3]['muse_id'] = 119002002 print(row_masked) shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) f.suptitle( 'MUSE ID: ' + str(int(row_masked[0]['muse_id'])) + " Roberto IDs: " + str(row_masked[0]['id']) + "/" + str(row_masked[1]['id'])) for third_index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, third_index + 1, projection=w) create_overlap_ax_cutout(ax, fits_names[third_index], image, catalog_coordinate=muse_catalog, aspecs_coordinate=row_masked[0], other_row=row_masked[1], index=46881, other_index=46963) plt.show() f.savefig(str("Overlap_2_MUSE_Cutout_" + str(46881) + "MUSE" + str(row_masked[0]['muse_id']) + ".png"), dpi=300) f.clf() shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) f.suptitle( 'MUSE ID: ' + str(int(row_masked[0]['muse_id'])) + " Roberto IDs: " + str(row_masked[2]['id']) + "/" + str(row_masked[3]['id'])) for third_index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, third_index + 1, projection=w) create_overlap_ax_cutout(ax, fits_names[third_index], image, catalog_coordinate=muse_catalog, aspecs_coordinate=row_masked[2], other_row=row_masked[3], index=50461, other_index=50464) plt.show() f.savefig(str("Overlap_2_MUSE_Cutout_" + str(50461) + "MUSE" + str(row_masked[3]['muse_id']) + ".png"), dpi=300) f.clf() """ def create_multi_overlap_cutout(ax, wcs_header, image, aspecs, matches, ra_dec=roberto_ra_dec, rob_z=0): """ :param ax: Matplotlib ax to use :param wcs_header: Image header with WCS info :param image: Image :param ra: RA coordiantes for center in J2000 :param dec: DEC coordinates for center in J2000 :param size: Size, in degrees, of the cutout :return: :return: """ w = wcs.WCS(wcs_header) center = aspecs other_centers = [] for coord in matches: other_centers.append(ra_dec[coord]) size = 10 cutouts = [] for row_center in other_centers: # then make an array cutout cutouts.append(Cutout2D(image, row_center, size=size * u.arcsec, wcs=w)) co = Cutout2D(image, center, size=size * u.arcsec, wcs=w) ax.imshow(co.data, origin='lower', cmap='gray_r') center_image = Circle((co.center_cutout[0], co.center_cutout[1]), 3, fill=False, color='r') ax.add_patch(center_image) if rob_z > 0: ax.annotate(str(np.round(rob_z,3)), xy=(co.center_cutout[0], co.center_cutout[1]), textcoords='offset pixels', xytext=(2, 1), color='r') for idx, cutout in enumerate(cutouts): aspecs_loc_x, aspecs_loc_y = co.to_cutout_position(cutout.center_original) first_image = Circle((aspecs_loc_x, aspecs_loc_y), 3, fill=False, color='g') ax.add_patch(first_image) #ax.annotate(freqs[matches[idx]], xy=(aspecs_loc_x, aspecs_loc_y), textcoords='offset pixels', xytext=(5, 20), # color='g') #ax.annotate(np.round(z_s[matches[idx]],3), xy=(aspecs_loc_x, aspecs_loc_y), textcoords='offset pixels', xytext=(5, -20), # color='orange') return ax def create_multi_overlap_ax_cutout(ax, name, fit_data, catalog_coordinate, matches, ra_dec=roberto_ra_dec, rob_z=0): ax = create_multi_overlap_cutout(ax, fit_data[0].header, fit_data[0].data, aspecs=catalog_coordinate, matches=matches, ra_dec=ra_dec, rob_z=rob_z) ax.set_title(name) ax.tick_params(direction='in', colors='w', bottom=True, top=True, left=True, right=True, labelbottom=True, labeltop=False, labelleft=True, labelright=False) return ax def create_multi_matches_ax_cutout(ax, name, fit_data, catalog_coordinates, matches, ra_dec=roberto_ra_dec): """ Makes a plot of all the matches on the same wavelength cutout :param ax: :param name: :param fit_data: The FIT image to use :param catalog_coordinates: Coordinates for the catalog matches :param matches: The coordinates of the matches :param redshifts: The redshifts in tuple format (CO, match) :param ra_dec: :return: """ ax.set_title(name) ax.tick_params(direction='in', colors='w', bottom=True, top=True, left=True, right=True, labelbottom=True, labeltop=False, labelleft=True, labelright=False) return ax def convert_to_rest_frame_ghz(z, ghz): """ Take a measured GHz value, and calculates the restframe GHz value based on the given z of the matched galaxy :param z: :param ghz: :return: """ # First step is to convert to nm rom rest rame GHz nm = (ghz * u.GHz).to(u.nm, equivalencies=u.spectral()) # Second step is to convert from nm observed to restframe nm # Obseved/(z+1) = emitted nm_emitted = nm / (z + 1) print("Nm Emitted: {}, Z: {}".format(nm_emitted, z)) # third step is to convert from restframe nm back to GHz final_ghz = (nm_emitted).to(u.GHz, equivalencies=u.spectral()) return final_ghz #aspecs_lines = Table.read("ASPECS_Line_Candidates_Z44_Total_Z_Limit.txt", format="ascii", header_start=0, data_start=1) """ aspecs_lines = Table.read("/home/jacob/Development/Wide_ASPECS/independent/ASPECS_Line_Candidates_all_closest_Sep_1.5_SN_6.0.ecsv", format='ascii.ecsv') transitions = {"1-0": [0.0030, 0.3694, 115.271], "2-1": [1.0059, 1.7387, 230.538], "3-2": [2.0088, 3.1080, 345.796], "4-3": [3.0115, 4.4771, 461.041], "5-4": [4.0142, 5.8460, 576.268], "6-5": [5.0166, 7.2146, 691.473], "7-6": [6.0188, 8.5829, 806.652], "C1 1-0": [3.2823, 4.8468, 492.161], "C1 2-1": [6.0422, 8.6148, 809.342]} coords = SkyCoord(aspecs_lines['RA (J2000)'] * u.deg, aspecs_lines['DEC (J2000)'] * u.deg, frame='fk5') freqs = aspecs_lines['Observed CO (GHz)'] z_s = aspecs_lines['Z (CO)'] rob_z = aspecs_lines['Z (Matched)'] # Now plot all Radio Sources and see what is around them for all ones without a match for index, row in enumerate(aspecs_lines): if row['Roberto ID'] < 0: # Make the cutouts shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) # no counterpart distances = [0] freq_valus = [np.round(row['Observed CO (GHz)'], 3)] rest_frame_ghz = [np.round(row['Restframe CO (GHz)'], 3)] f.suptitle( " Z: " + str(row['Z (CO)']) + " Delta_Z: " + str( row['Delta Z']) + " Observed: " + str(freq_valus) + "\n Spec Z: " + str( row['Spec Z']) + "\n Rest Frame GHz: " + str(rest_frame_ghz)) for third_index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, third_index + 1, projection=w) create_multi_overlap_ax_cutout(ax, fits_names[third_index], image, catalog_coordinate=coords[index], matches=[index], ra_dec=coords) f.savefig(str("March_Output/ASPECS_Cutout_NoCounter_Sep1.5_SN6.0_" + str(index) + ".png"), dpi=300) f.clf() plt.close() idx, d2d, d3d = coords.match_to_catalog_sky(roberto_ra_dec) """ from astropy.coordinates import match_coordinates_sky, search_around_sky # idxc, idxcatalog, d2d, d3d = search_around_sky(coords, roberto_ra_dec, 2.0 * u.arcsecond) def make_skycoords(source, ra='ra', dec='dec', distance=None): """ Makes and returns a SkyCoord array from given source :param source: Source with information :param ra: Key for RA :param dec: Key for Dec :return: SkyCoord list """ try: skycoords = SkyCoord(source[ra] * u.deg, source[dec] * u.deg, frame='icrs') except: skycoords = SkyCoord(source[ra], source[dec], unit=(u.hour, u.deg), frame='icrs') return skycoords def load_table(ascii_table, header=0, start=1): ascii_table_data = Table.read(ascii_table, format="ascii", header_start=header, data_start=start) return ascii_table_data aspecs_lines = load_table("ASPECS_Pilot_C_Matches.txt") coords = make_skycoords(aspecs_lines, ra='rra', dec='rdc') idxc, idxcatalog, d2d, d3d = search_around_sky(coords, roberto_ra_dec, 1.0 * u.arcsecond) aspecs_matches = [[] for _ in range(len(aspecs_lines))] back_match = {} z_specs = {} for index, id in enumerate(idxc): if coords[idxc[index]].separation(roberto_ra_dec[idxcatalog[index]]).arcsecond < 1.0:# and np.abs(aspecs_lines[idxc[index]]['Z (CO)'] - roberto_muse[idxcatalog[index]]['z_1']) < 0.3: test_mask = (roberto_muse['id'] == roberto_muse[idxcatalog[index]]['id']) test_rob = roberto_muse[test_mask] spec_z_mask = (test_rob["z_spec_3dh"] > 0.001) | (test_rob["zm_vds"] > 0.001) | ( test_rob["zm_coeS"] > 0.001) | (test_rob['muse_wide_z'] > 0.0001) \ | (test_rob["zs_mor"] > 0.001) | (test_rob["zm_ina"] > 0.001) | (test_rob["zm_her"] > 0.001) #if int(aspecs_lines[idxc[index]]["Roberto ID"]) == int(roberto_muse[idxcatalog[index]]['id']): aspecs_matches[idxc[index]].append(roberto_muse[idxcatalog[index]]['id']) if roberto_muse[idxcatalog[index]]['id'] in back_match.keys(): back_match[roberto_muse[idxcatalog[index]]['id']].append(idxc[index]) z_specs[roberto_muse[idxcatalog[index]]['id']].append(len(test_rob[spec_z_mask])) else: back_match[roberto_muse[idxcatalog[index]]['id']] = [idxc[index]] z_specs[roberto_muse[idxcatalog[index]]['id']] = [len(test_rob[spec_z_mask])] for fits_index in range(len(fits_files)): f = plt.figure(figsize=(20, 20)) f.suptitle( 'Continuum Lines Matched To Galaxies') image_index = 0 for key, values in back_match.items(): if len(values) > 0: # Make the cutouts shape_file = int(np.ceil(np.sqrt(len(fits_files)))) test_mask = (roberto_muse['id'] == key) roberto_ra_dec_index = 1e30 for index, i in enumerate(roberto_muse): if i['id'] == key: roberto_ra_dec_index = index for third_index, image in enumerate([fits_files[fits_index]]): ax = f.add_subplot(shape_file, shape_file, image_index + 1, projection=w) create_multi_overlap_ax_cutout(ax, fits_names[fits_index], image, catalog_coordinate=roberto_ra_dec[roberto_ra_dec_index], matches=values, ra_dec=coords, rob_z=0) ax.set_title(aspecs_lines[values]['name']) image_index += 1 # plt.show() f.savefig(str("Continuum/ASPECS_Continuum_{}.png".format(fits_names[fits_index])), dpi=300) f.clf() plt.close() exit() # exit() # Now have the matches, plot them on the sky all_restframe_ghz = {} # Since all of them have a single match, just check if each one has a value > 0 and go with those for fits_index in range(len(fits_files)): f = plt.figure(figsize=(20, 20)) f.suptitle( 'CO Lines Matched To Galaxies') image_index = 0 for key, values in back_match.items(): if len(values) > 0: # Make the cutouts shape_file = int(np.ceil(np.sqrt(len(fits_files)))) test_mask = (roberto_muse['id'] == key) roberto_ra_dec_index = 1e30 for index, i in enumerate(roberto_muse): if i['id'] == key: roberto_ra_dec_index = index for third_index, image in enumerate([fits_files[fits_index]]): ax = f.add_subplot(shape_file, shape_file, image_index + 1, projection=w) create_multi_overlap_ax_cutout(ax, fits_names[fits_index], image, catalog_coordinate=roberto_ra_dec[roberto_ra_dec_index], matches=values, ra_dec=coords, rob_z=rob_z[values[0]]) image_index += 1 # plt.show() f.savefig(str("March_Output/ASPECS_Cutout_Matched_Galaxies_Sep1.5_SN6.0_{}.png".format(fits_names[fits_index])), dpi=300) f.clf() plt.close() all_restframe_ghz = {} for key, values in back_match.items(): if len(values) > 0: # Make the cutouts shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) test_mask = (roberto_muse['id'] == key) roberto_ra_dec_index = 1e30 for index, i in enumerate(roberto_muse): if i['id'] == key: roberto_ra_dec_index = index distances = [] freq_valus = [] rest_frame_ghz = [] for value in values: print("Value: ", value) print("Freq: ", freqs[value]) freq_valus.append(freqs[value]) print("Rest Frame GHz: " + str(convert_to_rest_frame_ghz(roberto_muse[test_mask]['z_1'][0], freqs[value]))) rest_frame_ghz.append( np.round(convert_to_rest_frame_ghz(np.round(roberto_muse[test_mask]['z_1'][0], 3), freqs[value]), 3)) for index, id in enumerate(idx): if index == value: distances.append(np.round(coords[index].separation(roberto_ra_dec[id]).arcsecond, 4)) all_restframe_ghz[value] = (np.round(roberto_muse[test_mask]['z_1'][0], 3), np.round( convert_to_rest_frame_ghz(np.round(roberto_muse[test_mask]['z_1'][0], 3), freqs[value]), 3), key) f.suptitle( 'Roberto ID: ' + str(key) + " Z_1: " + str(roberto_muse[test_mask]['z_1'][0]) + " Z_2: " + str( roberto_muse[test_mask]['z_2'][0]) + " Matches: " + str(freq_valus) + " \nDistance: " + str(distances) + "\n Spec Z: " + str( z_specs[roberto_muse[test_mask]['id'][0]]) + "\n Rest Frame GHz: " + str(rest_frame_ghz)) for third_index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, third_index + 1, projection=w) create_multi_overlap_ax_cutout(ax, fits_names[third_index], image, catalog_coordinate=roberto_ra_dec[roberto_ra_dec_index], matches=values, index=idx, ra_dec=coords) # plt.show() f.savefig(str("March_Output/ASPECS_Cutout_" + str(key) + ".png"), dpi=300) f.clf() plt.close() for key, values in enumerate(aspecs_matches): if len(values) > 0: # Make the cutouts shape_file = int(np.ceil(np.sqrt(len(fits_files)))) f = plt.figure(figsize=(20, 20)) test_mask = (roberto_muse['id'] == key) roberto_ra_dec_index = 1e30 for index, i in enumerate(roberto_muse): if i['id'] == key: roberto_ra_dec_index = index distances = [] freq_valus = [] rest_frame_ghz = [] for value in values: print("Value: ", value) print("Freq: ", freqs[value]) freq_valus.append(freqs[value]) print("Rest Frame GHz: " + str(convert_to_rest_frame_ghz(roberto_muse[test_mask]['z_1'][0], freqs[value]))) rest_frame_ghz.append( np.round(convert_to_rest_frame_ghz(np.round(roberto_muse[test_mask]['z_1'][0], 3), freqs[value]), 3)) for index, id in enumerate(idx): if index == value: distances.append(np.round(coords[index].separation(roberto_ra_dec[id]).arcsecond, 4)) all_restframe_ghz[value] = (np.round(roberto_muse[test_mask]['z_1'][0], 3), np.round( convert_to_rest_frame_ghz(np.round(roberto_muse[test_mask]['z_1'][0], 3), freqs[value]), 3), key) f.suptitle( 'Roberto ID: ' + str(key) + " Z_1: " + str(roberto_muse[test_mask]['z_1'][0]) + " Z_2: " + str( roberto_muse[test_mask]['z_2'][0]) + " Matches: " + str(freq_valus) + " \nDistance: " + str(distances) + "\n Spec Z: " + str( z_specs[roberto_muse[test_mask]['id'][0]]) + "\n Rest Frame GHz: " + str(rest_frame_ghz)) for third_index, image in enumerate(fits_files): ax = f.add_subplot(shape_file, shape_file, third_index + 1, projection=w) create_multi_overlap_ax_cutout(ax, fits_names[third_index], image, catalog_coordinate=roberto_ra_dec[roberto_ra_dec_index], matches=values, index=idx, ra_dec=coords) # plt.show() f.savefig(str("March_Output/ASPECS_Cutout_" + str(key) + ".png"), dpi=300) f.clf() plt.close() exit()
the-stack_106_26040
import pprint import json import pandas as pd import numpy as np from json_shot_scraper import flatten_shot, flatten_corner #flatten_goal, flatten_complete_pass, flatten_incomplete_pass from player_scraper import flatten_player, flatten_sub from dataframe_cleaner import (pass_to_shot, corner_to_shot, transpose_coordinates, coord_to_yards, shot_distance_angle, dummy_columns, drop_own_goals, goal_dummy, minutes_played) def game_to_player_df(game): """input game from db and output pandas dataframe with plaer information + minutes played""" game_id = game['match']['matchId'] players = list(game['players'].items()) player_list_dicts = [flatten_player(player, game_id) for player in players] player_df = pd.DataFrame(player_list_dicts) subs = list(game['incidences']['substitutions'].items()) subs_dicts = [flatten_sub(sub, game_id) for sub in subs] subs_df = pd.DataFrame(subs_dicts) minutes_player_df = minutes_played(subs_df, player_df) return minutes_player_df def afa_player_dict(games): """ turns game from mongodb into pd --> back into dictionary parameters ---------------- game: a game from mongodb returns: dictionary of player_info and total_minutes player """ player_dict = {} for game in games: temp_df = game_to_player_df(game) for player in temp_df['player_id'].unique(): if player not in player_dict: player_dict[player] = {'name': temp_df[temp_df['player_id'] == player]['name'].values[0] , 'position_id': temp_df[temp_df['player_id'] == player]['position_id'].values[0], 'squad_num': temp_df[temp_df['player_id'] == player]['squad_number'].values[0], 'team_id': temp_df[temp_df['player_id'] == player]['team_id'].values[0], 'minutes_played': temp_df[temp_df['player_id'] == player]['minutes_played'].values[0], 'player_id': temp_df[temp_df['player_id'] == player]['player_id'].values[0] } else: player_dict[player]['minutes_played'] += temp_df.loc[temp_df['player_id']==player, 'minutes_played'].values[0] return player_dict def create_player_min_frame(): """return a dataframe to concat to for player_sub_information""" attach_to_df = pd.DataFrame(columns = ['game_id', 'name', 'player_id', 'position_id', 'squad_number', 'substitute', 'team_id', 'minutes_played']) return attach_to_df # def create_master_player_min_df(games): # """input games from mongodb by db.games.find() and return a cleaned dataframe with club # abbreviation instead of club_id""" # columns = ['game_id', 'name', 'player_id', 'position_id', 'squad_number', # 'substitute', 'team_id', 'minutes_played'] # afa_team_dict = {20: 'VEL', 13: 'NOB', 136: 'TIG', 19: 'SLO', 8: 'GIM', 2: 'ARG', # 137: 'UNI', 122: 'ALD', 869: 'PA', 6: 'COL', 124: 'BEL', 134: 'SMS', # 5: 'BOC', 135: 'TAL', 132: 'GOD', 7: 'EST', 12: 'LAN', 129: 'DEF', # 18: 'ROS', 4: 'BAN', 100: 'HUR', 17: 'RIV', 815: 'ATT', 16: 'RAC', 10: 'IND', # 490: 'SMT'} # attach_df = create_player_min_frame() # for game in games: # df = game_to_player_df(game) # merged_df = pd.concat([attach_df, df], axis=0, ignore_index=True) # attach_df = merged_df.copy() # merged_df['club_brev'] = merged_df['team_id'].map(afa_team_dict) # return merged_df # from ..scraping_tools.html_scraper import db # def game_to_cleaned_df(game): # """input game pulled from mongoDB 'db' and run through cleaning functions # output: pandas dataframe""" # shots = list(game['incidences']['shots'].items()) # game_id = game['match']['matchId'] # shot_list_dicts = [flatten_shot(shot, game_id) for shot in shots] # shot_df = pd.DataFrame(shot_list_dicts) # completed_passes = list(game['incidences']['correctPasses'].items()) # completed_list_dicts = [flatten_complete_pass(apass, game_id) for apass in completed_passes] # completed_passes_df = pd.DataFrame(completed_list_dicts) # shot_pass_df = pass_to_shot(shot_df, completed_passes_df) # corners = list(game['incidences']['cornerKicks'].items()) # if len(corners) > 0: # corner_dicts = [flatten_corner(kick, game_id) for kick in corners] # corner_df = pd.DataFrame(corner_dicts) # shot_pass_corner = corner_to_shot(shot_pass_df, corner_df) # transposed_df = transpose_coordinates(shot_pass_corner) # else: # transposed_df = transpose_coordinates(shot_pass_df) # yard_df = coord_to_yards(transposed_df) # shot_distance_df = shot_distance_angle(yard_df) # df = dummy_columns(shot_distance_df) # df_no_own = drop_own_goals(df) # df_final = goal_dummy(df_no_own) # return df_final # def create_frame(): # """create dataframe to concat new dataframes to""" # attach_to_df = pd.DataFrame(columns=['game_id', 'player_id', 'shot_coord_x1', 'shot_coord_x2', # 'shot_coord_y1', 'shot_coord_y2', 'shot_coord_z1', 'shot_coord_z2', # 'shot_id', 'shot_type', 'team_id', 'time_of_event(min)', # 'passed_from_id', 'pass_coord_x1', 'pass_coord_x2', 'pass_coord_y1', # 'pass_coord_y2', 'pass_coord_z1', 'pass_coord_z2', 'corner_kick', # 'shot_distance', 'shot_angle', 'assisted_shot', 'is_penalty_attempt', # 'is_goal']) # return attach_to_df # def create_master_df(games): # """input games from mongodb by db.games.find() and return a cleaned dataframe # """ # columns = ['game_id', 'player_id', 'shot_coord_x1', 'shot_coord_x2', # 'shot_coord_y1', 'shot_coord_y2', 'shot_coord_z1', 'shot_coord_z2', # 'shot_id', 'shot_type', 'team_id', 'time_of_event(min)', # 'passed_from_id', 'pass_coord_x1', 'pass_coord_x2', 'pass_coord_y1', # 'pass_coord_y2', 'pass_coord_z1', 'pass_coord_z2', 'corner_kick', # 'shot_distance', 'shot_angle', 'assisted_shot', 'is_penalty_attempt', # 'is_goal'] # attach_to_df = create_frame() # for game in games: # df = game_to_cleaned_df(game) # final_df = pd.concat([attach_to_df, df], axis=0, ignore_index=True, sort=True) # ### may get a warning because a game doesn't have corner_kick values ### # attach_to_df = final_df[columns].copy() # return final_df[columns].copy() ###below is for players
the-stack_106_26041
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Built-in WideNDeep model classes.""" from tensorflow.python.eager import backprop from tensorflow.python.keras import activations from tensorflow.python.keras import backend from tensorflow.python.keras import layers as layer_module from tensorflow.python.keras.engine import base_layer from tensorflow.python.keras.engine import data_adapter from tensorflow.python.keras.engine import training as keras_training from tensorflow.python.keras.utils import generic_utils from tensorflow.python.util import nest from tensorflow.python.util.tf_export import keras_export @keras_export('keras.experimental.WideDeepModel') class WideDeepModel(keras_training.Model): r"""Wide & Deep Model for regression and classification problems. This model jointly train a linear and a dnn model. Example: ```python linear_model = LinearModel() dnn_model = keras.Sequential([keras.layers.Dense(units=64), keras.layers.Dense(units=1)]) combined_model = WideDeepModel(linear_model, dnn_model) combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse']) # define dnn_inputs and linear_inputs as separate numpy arrays or # a single numpy array if dnn_inputs is same as linear_inputs. combined_model.fit([linear_inputs, dnn_inputs], y, epochs) # or define a single `tf.data.Dataset` that contains a single tensor or # separate tensors for dnn_inputs and linear_inputs. dataset = tf.data.Dataset.from_tensors(([linear_inputs, dnn_inputs], y)) combined_model.fit(dataset, epochs) ``` Both linear and dnn model can be pre-compiled and trained separately before jointly training: Example: ```python linear_model = LinearModel() linear_model.compile('adagrad', 'mse') linear_model.fit(linear_inputs, y, epochs) dnn_model = keras.Sequential([keras.layers.Dense(units=1)]) dnn_model.compile('rmsprop', 'mse') dnn_model.fit(dnn_inputs, y, epochs) combined_model = WideDeepModel(linear_model, dnn_model) combined_model.compile(optimizer=['sgd', 'adam'], 'mse', ['mse']) combined_model.fit([linear_inputs, dnn_inputs], y, epochs) ``` """ def __init__(self, linear_model, dnn_model, activation=None, **kwargs): """Create a Wide & Deep Model. Args: linear_model: a premade LinearModel, its output must match the output of the dnn model. dnn_model: a `tf.keras.Model`, its output must match the output of the linear model. activation: Activation function. Set it to None to maintain a linear activation. **kwargs: The keyword arguments that are passed on to BaseLayer.__init__. Allowed keyword arguments include `name`. """ super(WideDeepModel, self).__init__(**kwargs) base_layer.keras_premade_model_gauge.get_cell('WideDeep').set(True) self.linear_model = linear_model self.dnn_model = dnn_model self.activation = activations.get(activation) def call(self, inputs, training=None): if not isinstance(inputs, (tuple, list)) or len(inputs) != 2: linear_inputs = dnn_inputs = inputs else: linear_inputs, dnn_inputs = inputs linear_output = self.linear_model(linear_inputs) # pylint: disable=protected-access if self.dnn_model._expects_training_arg: if training is None: training = backend.learning_phase() dnn_output = self.dnn_model(dnn_inputs, training=training) else: dnn_output = self.dnn_model(dnn_inputs) output = nest.map_structure(lambda x, y: (x + y), linear_output, dnn_output) if self.activation: return nest.map_structure(self.activation, output) return output # This does not support gradient scaling and LossScaleOptimizer. def train_step(self, data): x, y, sample_weight = data_adapter.unpack_x_y_sample_weight(data) x, y, sample_weight = data_adapter.expand_1d((x, y, sample_weight)) with backprop.GradientTape() as tape: y_pred = self(x, training=True) loss = self.compiled_loss( y, y_pred, sample_weight, regularization_losses=self.losses) self.compiled_metrics.update_state(y, y_pred, sample_weight) if isinstance(self.optimizer, (list, tuple)): linear_vars = self.linear_model.trainable_variables dnn_vars = self.dnn_model.trainable_variables linear_grads, dnn_grads = tape.gradient(loss, (linear_vars, dnn_vars)) linear_optimizer = self.optimizer[0] dnn_optimizer = self.optimizer[1] linear_optimizer.apply_gradients(zip(linear_grads, linear_vars)) dnn_optimizer.apply_gradients(zip(dnn_grads, dnn_vars)) else: trainable_variables = self.trainable_variables grads = tape.gradient(loss, trainable_variables) self.optimizer.apply_gradients(zip(grads, trainable_variables)) return {m.name: m.result() for m in self.metrics} def _make_train_function(self): # Only needed for graph mode and model_to_estimator. has_recompiled = self._recompile_weights_loss_and_weighted_metrics() self._check_trainable_weights_consistency() # If we have re-compiled the loss/weighted metric sub-graphs then create # train function even if one exists already. This is because # `_feed_sample_weights` list has been updated on re-compile. if getattr(self, 'train_function', None) is None or has_recompiled: # Restore the compiled trainable state. current_trainable_state = self._get_trainable_state() self._set_trainable_state(self._compiled_trainable_state) inputs = ( self._feed_inputs + self._feed_targets + self._feed_sample_weights) if not isinstance(backend.symbolic_learning_phase(), int): inputs += [backend.symbolic_learning_phase()] if isinstance(self.optimizer, (list, tuple)): linear_optimizer = self.optimizer[0] dnn_optimizer = self.optimizer[1] else: linear_optimizer = self.optimizer dnn_optimizer = self.optimizer with backend.get_graph().as_default(): with backend.name_scope('training'): # Training updates updates = [] linear_updates = linear_optimizer.get_updates( params=self.linear_model.trainable_weights, # pylint: disable=protected-access loss=self.total_loss) updates += linear_updates dnn_updates = dnn_optimizer.get_updates( params=self.dnn_model.trainable_weights, # pylint: disable=protected-access loss=self.total_loss) updates += dnn_updates # Unconditional updates updates += self.get_updates_for(None) # Conditional updates relevant to this model updates += self.get_updates_for(self.inputs) metrics = self._get_training_eval_metrics() metrics_tensors = [ m._call_result for m in metrics if hasattr(m, '_call_result') # pylint: disable=protected-access ] with backend.name_scope('training'): # Gets loss and metrics. Updates weights at each call. fn = backend.function( inputs, [self.total_loss] + metrics_tensors, updates=updates, name='train_function', **self._function_kwargs) setattr(self, 'train_function', fn) # Restore the current trainable state self._set_trainable_state(current_trainable_state) def get_config(self): linear_config = generic_utils.serialize_keras_object(self.linear_model) dnn_config = generic_utils.serialize_keras_object(self.dnn_model) config = { 'linear_model': linear_config, 'dnn_model': dnn_config, 'activation': activations.serialize(self.activation), } base_config = base_layer.Layer.get_config(self) return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): linear_config = config.pop('linear_model') linear_model = layer_module.deserialize(linear_config, custom_objects) dnn_config = config.pop('dnn_model') dnn_model = layer_module.deserialize(dnn_config, custom_objects) activation = activations.deserialize( config.pop('activation', None), custom_objects=custom_objects) return cls( linear_model=linear_model, dnn_model=dnn_model, activation=activation, **config)
the-stack_106_26042
import discord import os from lxml import etree from discord.ext import commands import asyncio, json import youtube_dl import youtube_search playlists = {} # playlists loaded from each guild will be stored here musics = {} # musics from each guild will be stored here. now_playing = {} # music actually playing will be stored here ytdl_opts = { # Youtube-dl options to improve the quality 'format' : 'bestaudio/best', 'quiet' : True, 'postprocessors' : [{ 'key' : 'FFmpegExtractAudio', 'preferredcodec' : 'wav', 'preferredquality' : '192' }] } ytdl = youtube_dl.YoutubeDL(ytdl_opts) bot = commands.Bot(command_prefix=">", case_insensitive=True, help_command=None) async def sendMsg(ctx, str_to_send, title=None, color=None, old_msg=None): ''' Function used to send discord message. return: (discord.Message) ctx: context from discord.py str_to_send: (str) --> message content title: (str) --> title of the embed. if None, message will not be a discord.Embed but a discord.Message color: (hexa) --> value of the embed color in hexa. If none, embed will not have a color. old_msg: (discord.Message) --> message that will be suppressed before sending the new one ''' if title == None: await ctx.send(str_to_send) else: if color == None: embed = discord.Embed() else: embed = discord.Embed(color=color) embed.add_field(name=title, value=str_to_send, inline=False) if old_msg != None: await old_msg.delete() msg = await ctx.send(embed=embed) return msg async def addReactions(msg, tab): ''' Function used to add reactions to a message. msg: (discord.Message) --> message to add reactions to. tab: (list) --> list of reaction to add ''' for reaction in tab: await msg.add_reaction(reaction) def isPlaylist(ctx, name): """ Return True if the named playlist exists. False if not. """ ### CREATING/OPENING STORAGE FILE ### if not os.path.exists('commands/playlists'): os.makedirs('commands/playlists') STORAGE_FOLDER = os.path.dirname('commands/playlists/') REL_PATH = f'{ctx.guild}.xml' # name of the output file abs_file_path = os.path.join(STORAGE_FOLDER, REL_PATH) try: f = open(abs_file_path, "r+") # open the file in read+write except: f = open(abs_file_path, "w+") f.close() ##################################### # Parse xml file try: tree = etree.parse(f'commands/playlists/{ctx.guild}.xml') root = tree.getroot() noms = [] for playlist in root: noms.append(playlist.values()[0]) if name not in noms: return False else: return True except: return False class Video: def __init__(self, ctx, link=None, video=None): if video == None and link == None: raise ValueError else: if video: video_format = video["formats"][0] self.url = video["webpage_url"] self.stream_url = video_format["url"] self.title = video["title"] self.duration = video["duration"] if link: try: video = ytdl.extract_info(link, download=False) video_format = video["formats"][0] self.url = video["webpage_url"] self.stream_url = video_format["url"] self.title = video["title"] self.duration = video["duration"] except Exception as e: to_print = """Impossible de charger la vidéo à cause des erreurs suivantes :\n""" to_print += e.args[0][e.args[0].index(' '):] msg = asyncio.run_coroutine_threadsafe(sendMsg(ctx, str_to_send=to_print, title="Error", color=0x00ffb7), bot.loop) raise e class Music: def __init__(self, title, url, stream_url, duration): self.title = title self.url = url self.stream_url = stream_url self.duration = duration class Playlist: def __init__(self, ctx, name, video_list, load=False): """ Init a playlist ctx: context from discord.py name: (str) video_list: (list) of Video object """ if load == False: if isPlaylist(ctx, name) == True: asyncio.run_coroutine_threadsafe(sendMsg(ctx, f"Playlist {name} already exists.", "Playlist", 0x00ffb7), bot.loop) raise ValueError else: self.name = name self.author = ctx.author self.lenght = len(video_list) self.list = video_list else: self.name = name self.lenght = len(video_list) self.list = video_list asyncio.run_coroutine_threadsafe(sendMsg(ctx, f"Playlist {name} created.", "Playlist", 0x00ffb7), bot.loop) @staticmethod def load(ctx): try: tree = etree.parse(f'commands/playlists/{ctx.guild}.xml') except: asyncio.run_coroutine_threadsafe(sendMsg(ctx, "No playlist to load from this server.", "Playlist", 0x00ffb7), bot.loop) return if ctx.guild not in playlists: playlists[ctx.guild] = [] root = tree.getroot() for playlist in root: p_name = playlist.values()[0] music_list = [] for music in playlist: elems = [] for elem in music: elems.append(elem.text) music_list.append(Music(elems[0], elems[1], elems[2], elems[3])) playlists[ctx.guild].append(Playlist(p_name, music_list, load=True)) def save(self, ctx): try: parser = etree.XMLParser(remove_blank_text=True) tree = etree.parse(f'commands/playlists/{ctx.guild}.xml', parser) root = tree.getroot() playlist = root.find(f"Playlist[@name='{self.name}']") if not playlist: playlist = etree.SubElement(root, "Playlist", name=f"{self.name}", lenght=f"{self.lenght}", author=f"{self.author}") existing_music = [] for music in playlist: for elem in music: if elem.tag == "title": existing_music.append(elem.text) except: root = etree.Element("data") playlist = etree.SubElement(root, "Playlist", name=f"{self.name}", lenght=f"{self.lenght}", author=f"{self.author}") for music in self.list: if music.title not in existing_music: e = etree.Element("Music") etree.SubElement(e, "title").text = f"{music.title}" etree.SubElement(e, "url").text = f"{music.url}" etree.SubElement(e, "stream_url").text = f"{music.stream_url}" etree.SubElement(e, "duration").text = f"{music.duration}" playlist.append(e) tree = etree.ElementTree(element=root) tree.write("tests/playlists/864029702708264960.xml", pretty_print=True, xml_declaration=True, encoding="utf-8") def addMusic(self, ctx, name, video): if name not in self.playlist[ctx.guild]: asyncio.run_coroutine_threadsafe(sendMsg(ctx, "Specified playlist does not exist.", "Error", 0x00ffb7), bot.loop) else: if video.title not in self.playlist[ctx.guild][name]: self.playlist[ctx.guild][name][video.title] = [video.url, video.stream_url, video.duration] else: asyncio.run_coroutine_threadsafe(sendMsg(ctx, f"{video.title} is already in the playlist.", "Error", 0x00ffb7), bot.loop) def buildStrFromArgs(args): ''' Function used to transform a tab of str into one str with spaces. return: (str) args: (tab)[(str)] ''' string = "" for mot in args: string += mot + " " return string async def add_to_queue(ctx, selected): ''' Function used to add the selected music in the queue. selected: (dict) of the video from youtub_dl ''' client = ctx.guild.voice_client title = selected['title'] id = selected['id'] url = 'https://www.youtube.com/watch?v=' + id to_print = f"**[{title}]({url})**" if client and client.channel: # if bot already connected to a channel video = Video(ctx, link=url) musics[ctx.guild].append(video) to_print += f"\n\n`Position in queue : {len(musics[ctx.guild])}`" msg = await sendMsg(ctx, str_to_send=to_print, title="Queued", color=0x00ffb7) else: try: # try to retrieve the channel of the author of the msg channel = ctx.author.voice.channel except: msg = await sendMsg(ctx, str_to_send="**You have to be connected to a channel to play music.**", title="Error", color=0x00ffb7) return video = Video(ctx, link=url) musics[ctx.guild] = [] now_playing[ctx.guild] = [video] msg = await sendMsg(ctx, str_to_send=to_print, title="Now playing", color=0x00ffb7) try: client = await channel.connect() await play_song(client, musics[ctx.guild], video, [ctx, msg]) except: msg = await sendMsg(ctx, str_to_send="**Unable to connect to the channel.**", title="Error", color=0x00ffb7) async def Search(ctx, args, robot): ''' Function used to search musics with youtube_search. ctx: context from discord.py args: (list)[(str)] robot: (object) --> commands.Bot from bot.py ''' search = buildStrFromArgs(args) # Parsing args nb_results = 20 # Define how many musics will be fetched from youtube_search api try: # Retrieving data yt = youtube_search.YoutubeSearch(search, max_results=nb_results).to_json() results = json.loads(yt)['videos'] except: msg = await sendMsg(ctx, str_to_send="No results", title="Error", color=0x00ffb7) return i = 0 def to_send(results, i): ''' Function to build a string from the data retrieved earlier. return: (str) results: (list) --> list of videos from json i: (int) --> starting index of the "results" list ''' k = 1 max = i+4 to_print = "```\n" while i <= max and i < len(results): music = results[i] title = music['title'] duration = music['duration'] to_print += f"{k}. {title} ({duration})\n" i += 1 k += 1 to_print += "```" return to_print # Send first results msg = await sendMsg(ctx, str_to_send=to_send(results, i), title="Search", color=0x00ffb7) await addReactions(msg, ['1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣', '➡️']) # Add reactions to first msg # Handler of reaction events of first message def check1(reaction): if reaction.user_id == ctx.author.id and msg.id == reaction.message_id: if reaction.emoji.name in ['1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣', '➡️']: return reaction # Handler of reaction events of next messages def check2(reaction): if reaction.user_id == ctx.author.id and msg.id == reaction.message_id: if reaction.emoji.name in ['1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣', '⬅️', '➡️']: return reaction try: choice = await robot.wait_for("raw_reaction_add", check=check1, timeout=60) # Handling events choice = choice.emoji.name # retrieving emote # In case user does not react, handle TimeoutError and exit the function. except asyncio.TimeoutError: return dictio = { # Emote-to-value matching dictionary "1️⃣" : 1, "2️⃣" : 2, "3️⃣" : 3, "4️⃣" : 4, "5️⃣" : 5 } start = 0 async def next(msg, start, results, nb_results): ''' Function used to define what will be send when the RIGHT_ARROW emote is pressed, and which emote should be added. return: (discord.Message) msg: (discord.Message) --> old message start: (int) --> starting index of the results list results: (list) --> list of videos from json nb_results: (int) --> len(results) ''' new_msg = await sendMsg(ctx, str_to_send=to_send(results, start), title="Search", color=0x00ffb7, old_msg=msg) k = 0 i = start tab = ['1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣'] emote_to_add = [] while i < len(results) and k < len(tab): emote_to_add += [tab[k]] i += 1 k += 1 emote_to_add += ['⬅️'] if start < nb_results-5: emote_to_add += ['➡️'] await addReactions(new_msg, emote_to_add) return new_msg async def prev(msg, start, results): ''' Function used to define what will be send when the LEFT_ARROW emote is pressed, and which emote should be added. return: (discord.Message) msg: (discord.Message) --> old message start: (int) --> starting index of the results list results: (list) --> list of videos from json ''' new_msg = await sendMsg(ctx, str_to_send=to_send(results, start), title="Search", color=0x00ffb7, old_msg=msg) tab = ['1️⃣', '2️⃣', '3️⃣', '4️⃣', '5️⃣'] if start > 4: tab += ['⬅️'] tab += ['➡️'] await addReactions(new_msg, tab) return new_msg async def decision(choice, start, msg, results, nb_results): ''' Function used to decide what to do according to the "choice" variable. return: (discord.Message) --> actual msg, (int) --> actual index of "results" list, (bool) --> True if a music got added to the queue choice: (str) --> emote from the reaction of the user msg: (discord.Message) --> last message sent results: (list) --> list of videos from json nb_results: (int) --> len(results) ''' added_to_queue = False if choice in dictio: nb = dictio[choice] - 1 nb += start selected = results[nb] await add_to_queue(ctx, selected) added_to_queue = True elif choice == '➡️': if start < len(results): start += 5 msg = await next(msg, start, results, nb_results) elif choice == '⬅️': if start >= 5: start -= 5 msg = await prev(msg, start, results) return msg, start, added_to_queue # Choose what to do msg, start, added_to_queue = await decision(choice, start, msg, results, nb_results) # Continue this until user select a music to add to the queue while added_to_queue == False: try: # Handling events choice = await robot.wait_for("raw_reaction_add", check=check2, timeout=60) choice = choice.emoji.name # retreiving emote except asyncio.TimeoutError: return # Choose what to do msg, start, added_to_queue = await decision(choice, start, msg, results, nb_results) async def Delete(ctx, nb): ''' Function used to delete a music from the queue. ctx: context from discord.py nb: (str) --> index of the music to delete ''' nb = int(nb) # casting str to int if len(musics[ctx.guild]) >= nb: title = musics[ctx.guild][nb-1].title url = musics[ctx.guild][nb-1].url del musics[ctx.guild][nb-1] msg = await sendMsg(ctx, str_to_send=f"**[{title}]({url}) is deleted from the queue.**", title="Queue update", color=0x00ffb7) else: msg = await sendMsg(ctx, str_to_send="**There isn't as much musics in the queue or the queue is empty.**", title="Error", color=0x00ffb7) async def Leave(ctx): ''' Function used to make the bot quit the audio channel. (Empty the queue at the same time) ctx: context from discord.py ''' client = ctx.guild.voice_client if client: await client.disconnect() musics[ctx.guild] = [] async def Resume(ctx): ''' Function used to resume the music on the bot. ctx: context from discord.py ''' client = ctx.guild.voice_client if client.is_paused(): client.resume() async def Pause(ctx): ''' Function used to pause the music on the bot. ctx: context from discord.py ''' client = ctx.guild.voice_client if not client.is_paused(): client.pause() async def Skip(ctx): ''' Function used to skip the music currently playing on the bot. ctx: context from discord.py ''' client = ctx.guild.voice_client if client: client.stop() async def Queue(ctx, robot): def getTime(duration): ''' Function used to transform a duration(int) in sec into a duration(str) like hh:mm:ss. return: (str) duration: (int) ''' total_sec = duration h = (total_sec - (total_sec % 3600)) / 3600 sec_min_h = (total_sec - h * 3600) min = (sec_min_h - (sec_min_h % 60)) / 60 sec = sec_min_h - min * 60 time = '{}:{}:{}'.format(int(h), str( min/10).replace('.', ''), int(sec)) return time # Check if the bot is connected to a vocal channel client = ctx.guild.voice_client pages = [] # if the queue is split into pages, each page will be inside this list def check(reaction): if reaction.user_id == ctx.author.id and msg.id == reaction.message_id: if reaction.emoji.name in ['⬅️', '➡️']: return reaction if client: # if connected # retrieve duration in desired format time = getTime(now_playing[ctx.guild][0].duration) # starting to build the string to send to_print = "```\n" + f"Now playing:\n\t{now_playing[ctx.guild][0].title} ({time})\n\n" i = 1 queue = musics[ctx.guild] to_print += f"Total queued: {len(queue)} song(s)\n\n" if len(queue) > 10: # if queue is too long y = 1 actual_page = to_print for music in queue: time = getTime(music.duration) # retrieve duration actual_page += f"{i}. {music.title} ({time})\n" # build string to send if y == 10 or music == queue[-1]: # each 10 music, or at the end of the queue, we end the page actual_page += "```" # ending actual page pages += [actual_page] # adding the page to the list of pages actual_page = "```\n" # starting a new page y = 1 else: y += 1 i += 1 i = 0 nb_page = 1 msg = await sendMsg(ctx, str_to_send=pages[i], title=f"Queue (Page {nb_page})", color=0x00ffb7) while True: old = msg msg = await sendMsg(ctx, str_to_send=pages[i], title=f"Queue (Page {nb_page})", color=0x00ffb7, old_msg=old) if nb_page > 1 and nb_page < len(pages): emotes = ['⬅️', '➡️'] elif nb_page >= len(pages): emotes = ['⬅️'] else: emotes = ['➡️'] await addReactions(msg, emotes) try: # handling events react = await robot.wait_for("raw_reaction_add", check=check, timeout=60) except asyncio.TimeoutError: return # exit the function if user stop reacting emoji = react.emoji.name if emoji == '⬅️': nb_page -= 1 i -= 1 if emoji == '➡️': nb_page += 1 i += 1 else: # if queue isn't too loong for music in queue: time = getTime(music.duration) # retrieve duration to_print += f"{i}. {music.title} ({time})\n" # build string to send i += 1 to_print += "```" # end of the string msg = await sendMsg(ctx, str_to_send=to_print, title="Music(s) in queue :", color=0x00ffb7) else: # if bot not connected msg = await sendMsg(ctx, str_to_send="**Bot should be connected to your channel to print the queue.**", title="Error", color=0x00ffb7) async def play_song(client, queue, song, tab_ctx): ''' Function used to play a music on the bot. client: (ctx.author.voice.channel.connect()) queue: (list) --> list of musics from youtube_dl song: ((class)Video) --> Video object tab_ctx: (list)[ctx, old_msg] ''' source = discord.PCMVolumeTransformer(discord.FFmpegPCMAudio(song.stream_url, before_options= "-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5")) ctx = tab_ctx[0] msg = await sendMsg(ctx, str_to_send=f"**[{song.title}]({song.url})**", title="Now playing", color=0x00ffb7, old_msg=tab_ctx[1]) def next(_): if len(queue) > 0: new_song = queue[0] now_playing[ctx.guild] = [queue[0]] del queue[0] asyncio.run_coroutine_threadsafe(play_song(client, queue, new_song, [ctx, msg]), bot.loop) else: asyncio.run_coroutine_threadsafe(client.disconnect(), bot.loop) try: client.play(source, after=next) except: pass async def playlist(ctx, url): ''' Function used to add a playlist to the queue. ctx: context from discord.py url: (str) --> link of a youtube playlist ''' client = ctx.guild.voice_client status = await sendMsg(ctx, "***downloading playlist...***", "Status", 0x00ffb7) playlist = ytdl.extract_info(url, download=False) if client and client.channel: # if bot connected for video in playlist['entries']: # for each music of the playlist to_append = Video(ctx, video=video) musics[ctx.guild].append(to_append) # add each music of the playlist inside the queue msg = await sendMsg(ctx, f"**[{playlist['title']}]({playlist['webpage_url']})**", "Playlist queued", 0x00ffb7, status) else: # if bot not connected try: # try to connect channel = ctx.author.voice.channel except: # if error msg = await sendMsg(ctx, str_to_send="***You must join a channel for that !***", old_msg=status) return musics[ctx.guild] = [] # creating the queue now_playing[ctx.guild] = [] # creating now playing i = 0 for video in playlist['entries']: # for each video of the playlist if i == 0: to_play = Video(ctx, video=video) now_playing[ctx.guild] = [to_play] # currently playing music is stored in there else: to_append = Video(ctx, video=video) musics[ctx.guild].append(to_append) # add each music to queue i+=1 try: # try to connect to the channel of the user client = await channel.connect() except: # if error msg = await sendMsg(ctx, "**Unable to connect to voice channel**", "Error", 0x00ffb7) return msg = await sendMsg(ctx, f"**[{playlist['title']}]({playlist['webpage_url']})**", "Now playing playlist", 0x00ffb7) tab_ctx = [ctx, msg] # start to play the song await play_song(client, musics[ctx.guild], to_play, tab_ctx) async def Play(ctx, args): client = ctx.guild.voice_client search = "" for mot in args: search += mot + " " if "https://youtube.com/playlist" in search: await playlist(ctx, search) return elif "https://" in search: url = search else: try: yt = youtube_search.YoutubeSearch(search, max_results=1).to_json() except Exception as e: to_print = "Impossible de charger la vidéo à cause des erreurs suivantes :\n" to_print += e.args[0][e.args[0].index(' '):] msg = await sendMsg(ctx, to_print, "Error", 0x00ffb7) return try: yt_id = str(json.loads(yt)['videos'][0]['id']) url = 'https://www.youtube.com/watch?v=' + yt_id except: msg = await sendMsg(ctx, "No results", "Error", 0x00ffb7) return if client and client.channel: video = Video(ctx, url) musics[ctx.guild].append(video) msg = await sendMsg(ctx, f"**[{video.title}]({video.url})**\n\n`Position in queue : {len(musics[ctx.guild])}`", "Queued", 0x00ffb7) else: try: video = Video(ctx, url) except: return try: channel = ctx.author.voice.channel except: msg = await sendMsg(ctx, "***You must be connected to a channel to do that.***", "Error", 0x00ffb7) return musics[ctx.guild] = [] now_playing[ctx.guild] = [video] client = await channel.connect() msg = await sendMsg(ctx, f"**[{video.title}]({video.url})**", "Now playing", 0x00ffb7) await play_song(client, musics[ctx.guild], video, [ctx, msg]) async def Playtop(ctx, args): client = ctx.guild.voice_client search = "" for mot in args: search += mot + " " if "https://" in search: url = search else: try: yt = youtube_search.YoutubeSearch(search, max_results=1).to_json() except Exception as e: to_print = "Impossible de charger la vidéo à cause des erreurs suivantes :\n" to_print += e.args[0][e.args[0].index(' '):] msg = await sendMsg(ctx, to_print, "Error", 0x00ffb7) return try: yt_id = str(json.loads(yt)['videos'][0]['id']) url = 'https://www.youtube.com/watch?v=' + yt_id except: msg = await sendMsg(ctx, "No results", "Error", 0x00ffb7) return if client and client.channel: try: video = Video(url, ctx) except: return musics[ctx.guild].insert(0, video) msg = await sendMsg(ctx, f"**[{video.title}]({video.url})**", "Queued", 0x00ffb7) else: try: video = Video(url, ctx) except: return try: channel = ctx.author.voice.channel except: msg = await sendMsg(ctx, "***You must be connected to a channel to do that.***", "Error", 0x00ffb7) return musics[ctx.guild] = [] client = await channel.connect() msg = await sendMsg(ctx, f"**[{video.title}]({video.url})**", "Now playing", 0x00ffb7) await play_song(client, musics[ctx.guild], video, [ctx, msg])
the-stack_106_26044
# Copyright (c) LinkedIn Corporation. All rights reserved. Licensed under the BSD-2 Clause license. # See LICENSE in the project root for license information. from iris_relay.app import read_config_from_argv from iris_relay.gmail import Gmail config = read_config_from_argv() gmclient = Gmail(config.get('gmail'), config.get('proxy')) print('Fetching unread messages...') for msg_id_gmail, headers, body in gmclient.list_unread_message(): print({'body': body, 'headers': headers})
the-stack_106_26045
import os import re from datetime import timedelta from django.core.urlresolvers import reverse from django.core.management import call_command from django.contrib.contenttypes.models import ContentType from django.utils import timezone from ecs.utils.testcases import LoginTestCase from ecs.documents.models import DocumentType from ecs.notifications.models import NotificationType, Notification, ProgressReportNotification from ecs.votes.models import Vote from ecs.core.tests.test_submissions import create_submission_form class NotificationFormTest(LoginTestCase): '''Tests for the Notification and NotificationType module Tests for creating Notifications, upload of Notification documents, PDF document generation and Notification type selection. ''' def test_creation_type_selection(self): '''Tests if a notification type can be created and if the view for its selection is accessible. ''' NotificationType.objects.create(name='foo notif') response = self.client.get(reverse('ecs.notifications.views.select_notification_creation_type')) self.assertEqual(response.status_code, 200) self.assertTrue(b'foo notif' in response.content) def _create_POST_data(self, **extra): data = { 'comments': 'foo comment', } data.update(extra) return data def test_notification_form(self): '''Tests notification creation and autosave mode. Further tests if notification can be saved, submited with incomplete data and finally if the correct redirect happens if submitted with complete data. ''' notification_type = NotificationType.objects.create(name='foo notif') # GET the form and expect a docstash transactions redirect, then follow this redirect response = self.client.get(reverse('ecs.notifications.views.create_notification', kwargs={'notification_type_pk': notification_type.pk})) self.assertEqual(response.status_code, 302) url = response['Location'] response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertTrue(b'foo notif' in response.content) self.assertTrue(b'<form' in response.content) # POST the form in `autosave` mode response = self.client.post(url, self._create_POST_data(autosave='autosave')) self.assertEqual(response.status_code, 200) self.assertFalse(b'<form' in response.content) # POST the form in `save` mode response = self.client.post(url, self._create_POST_data(save='save', comments='bar comment')) self.assertEqual(response.status_code, 200) self.assertFalse(b'<form' in response.content) # POST the form in `submit` mode (incomplete data) response = self.client.post(url, self._create_POST_data(submit='submit')) self.assertEqual(response.status_code, 200) self.assertTrue(b'<form' in response.content) form = response.context['form'] self.assertEqual(form['comments'].data, 'foo comment') # POST the form in `submit` mode (complete data) and follow the redirect submission_form = create_submission_form() response = self.client.post(url, self._create_POST_data(submit='submit', submission_forms=submission_form.pk)) self.assertEqual(response.status_code, 302) view_url = response['Location'] response = self.client.get(view_url) obj = response.context['notification'] self.assertEqual(obj.comments, 'foo comment') self.assertEqual(obj.submission_forms.all()[0], submission_form) def test_submission_data_for_notification(self): '''Tests if the submission_data_for_notification view is accessible for a created notification for a submission. ''' notification_type, _ = NotificationType.objects.get_or_create(name='foo notif') notification = Notification.objects.create(type=notification_type) submission_form = create_submission_form() response = self.client.get(reverse('ecs.notifications.views.submission_data_for_notification'), {'submission_form': submission_form.pk}) self.assertEqual(response.status_code, 200) def test_notification_pdf(self): '''Tests if a pdf is produced if a Notification is created. ''' notification_type, _ = NotificationType.objects.get_or_create(name='foo notif') notification = Notification.objects.create(type=notification_type) notification.render_pdf_document() response = self.client.get(reverse('ecs.notifications.views.notification_pdf', kwargs={'notification_pk': notification.pk})) self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-Type'], 'application/pdf') self.assertEqual(next(response.streaming_content)[:5], b'%PDF-') def _setup_POST_url(self): notification_type = NotificationType.objects.create(name='foo notif') response = self.client.get(reverse('ecs.notifications.views.create_notification', kwargs={'notification_type_pk': notification_type.pk})) return response['Location'] def test_document_upload(self): '''Tests if a pdf file can be uploaded. Further tests if meta data of the document is stored correctly and if the resuting download link contains a PDF file. ''' url = self._setup_POST_url() upload_url = re.sub(r'new/\d+/', 'doc/upload/', url) # XXX: ugly data = self._create_POST_data() doctype = DocumentType.objects.create(name='foo doctype') f = open(os.path.join(os.path.dirname(__file__), '..', 'core', 'tests', 'data', 'menschenrechtserklaerung.pdf'), 'rb') data.update({ 'document-file': f, 'document-doctype': doctype.pk, 'document-name': 'menschenrechtserklärung', 'document-version': '3.1415', 'document-date': '17.03.2010', }) response = self.client.post(upload_url, data) f.close() self.assertTrue(b'<form' in response.content) documents = response.context['documents'] self.assertEqual(len(documents), 1) doc = documents[0] self.assertEqual(doc.version, '3.1415') response = self.client.get( reverse('ecs.docstash.views.download_document', kwargs={ 'docstash_key': response.context['request'].docstash.key, 'document_pk': doc.pk }) ) self.assertEqual(response.status_code, 200) self.assertEqual(response['Content-Type'], 'application/pdf') self.assertEqual(next(response.streaming_content)[:5], b'%PDF-') def test_incomplete_upload(self): '''Tests an incomplete document upload. Regression test for the KeyError bug fixed in r729:b022598f8e55 ''' url = self._setup_POST_url() upload_url = re.sub(r'new/\d+/', 'doc/upload/', url) # XXX: ugly data = self._create_POST_data() doctype = DocumentType.objects.create(name='regression doctype') data.update({ 'document-0-doctype': doctype.pk, 'document-0-version': '3.1415', 'document-0-date': '30.03.2010', }) response = self.client.post(upload_url, data) self.assertEqual(response.status_code, 200) self.assertTrue(b'<form' in response.content) def test_vote_extension_workflow(self): from django.contrib.auth.models import Group call_command('bootstrap') now = timezone.now() nt = NotificationType.objects.get(form='ecs.notifications.forms.ProgressReportNotificationForm') presenter = self.create_user('test_presenter') office = self.create_user('test_office', profile_extra={'is_internal': True}) office.groups.add(Group.objects.get(name='EC-Office')) executive = self.create_user('text_executive', profile_extra={'is_internal': True, 'is_executive': True}) executive.groups.add( Group.objects.get(name='EC-Executive'), Group.objects.get(name='EC-Office'), ) sf = create_submission_form(presenter=presenter) with self.login('test_presenter'): response = self.client.get(reverse('ecs.notifications.views.create_notification', kwargs={'notification_type_pk': nt.pk})) url = response['Location'] # docstash redirect # no vote yet => we cannot select the submission form response = self.client.get(url) self.assertFalse(response.context['form'].fields['submission_form'].queryset.filter(pk=sf.pk).exists()) # create a permanent final postive vote vote = sf.votes.create(result='1', is_final_version=True, signed_at=now, published_at=now, valid_until=now.replace(year=now.year + 1)) # now we have a vote => submission form is selectable response = self.client.get(url) self.assertTrue(response.context['form'].fields['submission_form'].queryset.filter(pk=sf.pk).exists()) # create a notification, request a vote extension response = self.client.post(url, { 'submission_form': sf.pk, 'extension_of_vote_requested': 'on', 'runs_till': '12.12.2012', 'submit': 'on', 'SAE_count': '0', 'SUSAR_count': '0', 'study_started': 'on', 'comments': 'foo', }) self.assertEqual(response.status_code, 302) notification = self.client.get(response['Location']).context['notification'] def do_review(user, action='complete'): response = self.client.get(reverse('ecs.tasks.views.my_tasks', kwargs={'submission_pk': sf.submission.pk})) task = response.context['open_tasks'].get( data_id=notification.pk, content_type=ContentType.objects.get_for_model(ProgressReportNotification), ) task.accept(user) response = self.client.get(task.url) self.assertEqual(response.status_code, 200) response = self.client.post(task.url, { 'task_management-submit': 'Abschicken', 'task_management-action': action, 'task_management-post_data': 'text=Test.', }) self.assertEqual(response.status_code, 302) # office review with self.login('test_office'): do_review(office) # executive review with self.login('text_executive'): do_review(executive, 'complete_0') notification = ProgressReportNotification.objects.get(pk=notification.pk) old_valid_until = vote.valid_until vote = Vote.objects.get(pk=vote.pk) self.assertEqual(vote.valid_until, old_valid_until + timedelta(365))