filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_23574
import os from distutils.core import setup from distutils.command.install import INSTALL_SCHEMES app_name = 'templatesadmin' version = __import__(app_name).__version__ # Tell distutils to put the data_files in platform-specific installation # locations. See here for an explanation: # http://groups.google.com/group/comp.lang.python/browse_thread/thread/35ec7b2fed36eaec/2105ee4d9e8042cb for scheme in INSTALL_SCHEMES.values(): scheme['data'] = scheme['purelib'] # Compile the list of packages available, because distutils doesn't have # an easy way to do this. packages, data_files = [], [] root_dir = os.path.dirname(__file__) if root_dir: os.chdir(root_dir) for dirpath, dirnames, filenames in os.walk(app_name): # Ignore dirnames that start with '.' for i, dirname in enumerate(dirnames): if dirname.startswith('.'): del dirnames[i] if '__init__.py' in filenames: pkg = dirpath.replace(os.path.sep, '.') if os.path.altsep: pkg = pkg.replace(os.path.altsep, '.') packages.append(pkg) elif filenames: prefix = dirpath[len(app_name)+1:] # Strip "app_name/" or "app_name\" for f in filenames: data_files.append(os.path.join(prefix, f)) setup(name='django-'+app_name, version=version, description='A Django app to make minor changes to your templates on the fly.', long_description=open('README.md').read(), author='Pahaz Blinov', author_email='[email protected]', url='https://github.com/pahaz/django-templatesadmin/', package_dir={app_name: app_name}, packages=packages, package_data={app_name: data_files}, classifiers=['Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Utilities'], )
the-stack_106_23575
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class StorageQueueMessage(Model): """StorageQueueMessage. :param storage_account: Gets or sets the storage account name. :type storage_account: str :param queue_name: Gets or sets the queue name. :type queue_name: str :param sas_token: Gets or sets the SAS key. :type sas_token: str :param message: Gets or sets the message. :type message: str """ _attribute_map = { 'storage_account': {'key': 'storageAccount', 'type': 'str'}, 'queue_name': {'key': 'queueName', 'type': 'str'}, 'sas_token': {'key': 'sasToken', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__(self, storage_account=None, queue_name=None, sas_token=None, message=None): self.storage_account = storage_account self.queue_name = queue_name self.sas_token = sas_token self.message = message
the-stack_106_23576
# -*- coding: utf-8 -*- """ flask envs, based on flask_environments ~~~~~~~~~~~~~~~~~~ Environment tools and configuration for Flask applications :copyright: (c) 2012 by Matt Wright. :license: MIT, see LICENSE for more details. """ import os import yaml from flask import current_app class Environments(object): def __init__(self, app=None, var_name=None, default_env=None): self.app = app self.var_name = var_name or 'FLASK_ENV' self.default_env = default_env or 'DEVELOPMENT' self.env = os.environ.get(self.var_name, self.default_env) if app is not None: self.init_app(app) def init_app(self, app): app.config['ENVIRONMENT'] = self.env if app.extensions is None: app.extensions = {} app.extensions['environments'] = self def get_app(self, reference_app=None): if reference_app is not None: return reference_app if self.app is not None: return self.app return current_app def from_object(self, config_obj): app = self.get_app() for name in self._possible_names(): try: obj = '%s.%s' % (config_obj, name) app.config.from_object(obj) return except: pass app.config.from_object(config_obj) def from_yaml(self, path): with open(path) as f: c = yaml.load(f, Loader=yaml.FullLoader) for name in self._possible_names(): try: c = c[name] except: pass app = self.get_app() for key in c: if key.isupper(): app.config[key] = c[key] def _possible_names(self): return [self.env, self.env.capitalize(), self.env.lower()]
the-stack_106_23578
"""Transformer for Weisfeiler—Lehman Feature Vector calculations.""" # This code was originally used in the paper 'A Persistent Weisfeiler–Lehman # Procedure for Graph Classification'. The original author is Christian Bock. import collections import copy import numpy as np class WeisfeilerLehman: """Implement Weisfeiler–Lehman feature vector generation.""" def __init__(self): """Create new instance of class.""" self._relabel_steps = collections.defaultdict(dict) self._label_dict = {} self._last_new_label = -1 self._preprocess_relabel_dict = {} self._results = collections.defaultdict(dict) self._label_dicts = {} def _reset_label_generation(self): self._last_new_label = -1 def _get_next_label(self): self._last_new_label += 1 return self._last_new_label def _relabel_graphs(self, X): """Auxiliary function for relabelling a graph.""" preprocessed_graphs = [] for i, g in enumerate(X): x = g.copy() labels = x.vs['label'] new_labels = [] for label in labels: if label in self._preprocess_relabel_dict.keys(): new_labels.append(self._preprocess_relabel_dict[label]) else: self._preprocess_relabel_dict[label] = \ self._get_next_label() new_labels.append(self._preprocess_relabel_dict[label]) x.vs['label'] = new_labels self._results[0][i] = (labels, new_labels) preprocessed_graphs.append(x) self._reset_label_generation() return preprocessed_graphs def fit_transform(self, X, num_iterations=3): """Perform transformation of input list of graphs.""" X = self._relabel_graphs(X) for it in np.arange(1, num_iterations+1, 1): self._reset_label_generation() self._label_dict = {} for i, g in enumerate(X): # Get labels of current interation current_labels = g.vs['label'] # Get for each vertex the labels of its neighbors neighbor_labels = self._get_neighbor_labels(g, sort=True) # Prepend the vertex label to the list of labels of its # neighbors. merged_labels = [ [b]+a for a, b in zip(neighbor_labels, current_labels) ] # Generate a label dictionary based on the merged labels self._append_label_dict(merged_labels) # Relabel the graph new_labels = self._relabel_graph(g, merged_labels) self._relabel_steps[i][it] = { idx: { old_label: new_labels[idx] } for idx, old_label in enumerate(current_labels) } g.vs['label'] = new_labels self._results[it][i] = (merged_labels, new_labels) self._label_dicts[it] = copy.deepcopy(self._label_dict) return self._results def _relabel_graph(self, X, merged_labels): """Extend graph with new merged labels.""" new_labels = [] for merged in merged_labels: new_labels.append(self._label_dict['-'.join(map(str, merged))]) return new_labels def _append_label_dict(self, merged_labels): for merged_label in merged_labels: dict_key = '-'.join(map(str, merged_label)) if dict_key not in self._label_dict.keys(): self._label_dict[dict_key] = self._get_next_label() def _get_neighbor_labels(self, X, sort=True): neighbor_indices = [ [n_v.index for n_v in X.vs[X.neighbors(v.index)]] for v in X.vs ] neighbor_labels = [] for n_indices in neighbor_indices: if sort: neighbor_labels.append(sorted(X.vs[n_indices]['label'])) else: neighbor_labels.append(X.vs[n_indices]['label']) return neighbor_labels
the-stack_106_23579
import logging from easilyb.json_min_db import JsonMinConnexion from threading import Lock logger = logging.getLogger(__name__) NOTHING = object() def get_config_path(filename='config.yaml', appname=None, appauthor=None, appversion=None, dirpath=None, app_root_config=None, user_config=None, system_config=None, approot_config_dirname='config'): from os.path import join, dirname # There are 4 options for dirpath: # 0- given in dirpath argument # 1- application root dir # 2- user config dir # 3- system config dir if dirpath is None: if app_root_config is False and user_config is False and system_config is False: raise ValueError("Required one of: app_root_config, user_config, and system_config be True or None") if app_root_config is True or not (user_config or system_config): import sys dirpath = join(dirname(sys.modules['__main__'].__file__), approot_config_dirname) elif user_config is True or not system_config: import appdirs dirpath = appdirs.user_config_dir(appname, appauthor, appversion) else: import appdirs dirpath = appdirs.site_config_dir(appname, appauthor, appversion) return join(dirpath, filename) class EasyConfig: def __init__(self, appname=None, appauthor=None, appversion=None, filename=None, dirpath=None, app_root_config=None, user_config=None, system_config=None,approot_config_dirname='config', filepath=None, create=True, template=None, template_file=None, indent=3, driver="yaml"): if filepath is None: if filename is None: raise ValueError('Argument required: filepath or filename') filepath = get_config_path(filename, appname, appauthor, appversion, dirpath, app_root_config, user_config, system_config, approot_config_dirname) self.db = JsonMinConnexion(filepath, create=create, template=template, template_file=template_file, indent=indent, driver=driver) self._lock = Lock() self._save = True def get(self, key, default=NOTHING, set_default=True, save=True): try: return self.db[key] except: if default == NOTHING: raise KeyError(key) else: if set_default: self.set(key, default, save=save) return default def set(self, key, value, save=True): if self._save: with self._lock: self.db[key] = value if save: self.db.save() else: self.db[key] = value def save(self): self.db.save() def __enter__(self): self._lock.acquire() self._save = False self.db.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): try: self.db.__exit__(exc_type, exc_val, exc_tb) finally: self._save = True self._lock.release()
the-stack_106_23580
import heterocl as hcl import numpy as np from hlib.op.extern import create_extern_module, register_extern_ip import os dtype = hcl.Int() @register_extern_ip(vendor="intel") def byte_swap_rtl(input_vec, ret=None, name=None): if name is None: name = "my_byteswap" Len = input_vec.shape[0] return_tensors = False if ret is None: return_tensors = True ret = hcl.compute(input_vec.shape, lambda *args: 0, "vec") # functional behavior with hcl.Stage("ExternModule") as Module: hcl.update(ret, lambda *args: input_vec[args] << 16 | input_vec[args] >> 16, "swap") dicts = {} dicts["name"] = name tensors = [input_vec] dicts["args"] = [(_.name, _.dtype) for _ in tensors] # declare headers and typedef dicts["header"] = "unsigned int my_byteswap(unsigned int x);" dicts["func"] = """ for (int k = 0; k < {}; k++) {{ vec[k] = my_byteswap({}[k]); }} """.format(Len, input_vec.name) # add dependency files or folders # the dependencies are copied to project folder deps = os.path.dirname(os.path.abspath(__file__)) dicts["deps"] = deps + "/lib1" # custom compilation command (root path: project) # commands executed before impl or emulation dicts["cmds"] = "cd lib1; " + \ "aocl library hdl-comp-pkg opencl_lib.xml -o opencl_lib.aoco;" + \ "aocl library create -name opencl_lib opencl_lib.aoco;" # custom compiler flgas (load custom libs) dicts["flags"] = "-I lib1 -L lib1 -l opencl_lib.aoclib" create_extern_module(Module, dicts, ip_type="rtl") if return_tensors: return ret
the-stack_106_23581
"""The Flick Electric integration.""" from datetime import datetime as dt from pyflick import FlickAPI from pyflick.authentication import AbstractFlickAuth from pyflick.const import DEFAULT_CLIENT_ID, DEFAULT_CLIENT_SECRET from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_ACCESS_TOKEN, CONF_CLIENT_ID, CONF_CLIENT_SECRET, CONF_PASSWORD, CONF_USERNAME, ) from homeassistant.core import HomeAssistant from homeassistant.helpers import aiohttp_client from .const import CONF_TOKEN_EXPIRES_IN, CONF_TOKEN_EXPIRY, DOMAIN CONF_ID_TOKEN = "id_token" async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Flick Electric from a config entry.""" auth = HassFlickAuth(hass, entry) hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = FlickAPI(auth) hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, "sensor") ) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" if await hass.config_entries.async_forward_entry_unload(entry, "sensor"): hass.data[DOMAIN].pop(entry.entry_id) return True return False class HassFlickAuth(AbstractFlickAuth): """Implementation of AbstractFlickAuth based on a Home Assistant entity config.""" def __init__(self, hass: HomeAssistant, entry: ConfigEntry): """Flick authention based on a Home Assistant entity config.""" super().__init__(aiohttp_client.async_get_clientsession(hass)) self._entry = entry self._hass = hass async def _get_entry_token(self): # No token saved, generate one if ( CONF_TOKEN_EXPIRY not in self._entry.data or CONF_ACCESS_TOKEN not in self._entry.data ): await self._update_token() # Token is expired, generate a new one if self._entry.data[CONF_TOKEN_EXPIRY] <= dt.now().timestamp(): await self._update_token() return self._entry.data[CONF_ACCESS_TOKEN] async def _update_token(self): token = await self.get_new_token( username=self._entry.data[CONF_USERNAME], password=self._entry.data[CONF_PASSWORD], client_id=self._entry.data.get(CONF_CLIENT_ID, DEFAULT_CLIENT_ID), client_secret=self._entry.data.get( CONF_CLIENT_SECRET, DEFAULT_CLIENT_SECRET ), ) # Reduce expiry by an hour to avoid API being called after expiry expiry = dt.now().timestamp() + int(token[CONF_TOKEN_EXPIRES_IN] - 3600) self._hass.config_entries.async_update_entry( self._entry, data={ **self._entry.data, CONF_ACCESS_TOKEN: token, CONF_TOKEN_EXPIRY: expiry, }, ) async def async_get_access_token(self): """Get Access Token from HASS Storage.""" token = await self._get_entry_token() return token[CONF_ID_TOKEN]
the-stack_106_23582
# -*- coding: utf-8 -*- # # Jedi documentation build configuration file, created by # sphinx-quickstart on Wed Dec 26 00:11:34 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os, datetime # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('../jedi')) sys.path.append(os.path.abspath('_themes')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.todo', 'sphinx.ext.intersphinx', 'sphinx.ext.inheritance_diagram'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Jedi' copyright = u'2012 - {today.year}, Jedi contributors'.format(today=datetime.date.today()) import jedi _path = os.path.dirname(os.path.abspath(__file__)) _version_strs = [str(x) for x in jedi.__version__] # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(_version_strs[:2]) # The full version, including alpha/beta/rc tags. release = '.'.join(_version_strs) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'flask' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'sidebarlogo.html', 'localtoc.html', # 'relations.html', 'ghbuttons.html', # 'sourcelink.html', # 'searchbox.html' ] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Jedidoc' #html_style = 'default.css' # Force usage of default template on RTD # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Jedi.tex', u'Jedi Documentation', u'Jedi contributors', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'jedi', u'Jedi Documentation', [u'Jedi contributors'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Jedi', u'Jedi Documentation', u'Jedi contributors', 'Jedi', 'Awesome Python autocompletion library.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for todo module --------------------------------------------------- todo_include_todos = False # -- Options for autodoc module ------------------------------------------------ autoclass_content = 'both' autodoc_member_order = 'bysource' autodoc_default_flags = [] #autodoc_default_flags = ['members', 'undoc-members'] # -- Options for intersphinx module -------------------------------------------- intersphinx_mapping = { 'http://docs.python.org/': None, }
the-stack_106_23584
from discord.ext import commands import os import traceback bot = commands.Bot(command_prefix='/') token = os.environ['DISCORD_BOT_TOKEN'] @bot.event async def on_command_error(ctx, error): orig_error = getattr(error, "original", error) error_msg = ''.join(traceback.TracebackException.from_exception(orig_error).format()) await ctx.send(error_msg) bot.run(token)
the-stack_106_23585
import os ################ MAKE CHANGES HERE ################# inputDir = "input" # path to the input sequence PNGs inputFileFormat = "%03d" # name of input files, e.g., %03d if files are named 001.png, 002.png inputFileExt = "png" # extension of input files (without .), e.g., png, jpg flowFwdDir = "flow_fwd" # path to the output forward flow files flowBwdDir = "flow_bwd" # path to the output backward flow files FIRST = 1 # number of the first PNG file in the input folder LAST = 109 # number of the last PNG file in the input folder #################################################### if not os.path.exists(flowFwdDir): os.mkdir(flowFwdDir) if not os.path.exists(flowBwdDir): os.mkdir(flowBwdDir) inputFiles = inputDir + "/" + inputFileFormat + "." + inputFileExt flwFwdFile = flowFwdDir + "/" + inputFileFormat + ".A2V2f" flwBwdFile = flowBwdDir + "/" + inputFileFormat + ".A2V2f" firstFrame = FIRST+1 lastFrame = LAST frameStep = +1 for frame in range(firstFrame,lastFrame+frameStep,frameStep): os.system("disflow %s %s %s"%(inputFiles%(frame),inputFiles%(frame-frameStep),flwFwdFile%(frame))) firstFrame = LAST-1 lastFrame = FIRST frameStep = -1 for frame in range(firstFrame,lastFrame+frameStep,frameStep): os.system("disflow %s %s %s"%(inputFiles%(frame),inputFiles%(frame-frameStep),flwBwdFile%(frame)))
the-stack_106_23588
"""options table constraint Revision ID: b531c6dadfcf Revises: 8af57a53dc4e Create Date: 2019-11-15 17:22:40.911136 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'b531c6dadfcf' down_revision = '8af57a53dc4e' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('chat') op.drop_index('ix_option_chat_key', table_name='chat_option') op.drop_table('chat_option') op.drop_index('ix_chat_hash', table_name='photo') op.drop_index('ix_user_hash_date', table_name='photo') op.drop_table('photo') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('photo', sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('file_hash', sa.VARCHAR(length=240), nullable=False), sa.Column('chat_id', sa.INTEGER(), nullable=False), sa.Column('user_id', sa.INTEGER(), nullable=False), sa.Column('msg_date', sa.DATETIME(), nullable=False), sa.Column('msg_id', sa.INTEGER(), nullable=False), sa.Column('yd_path', sa.VARCHAR(length=240), nullable=False), sa.ForeignKeyConstraint(['chat_id'], ['chat.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index('ix_user_hash_date', 'photo', ['user_id', 'file_hash', 'msg_date'], unique=False) op.create_index('ix_chat_hash', 'photo', ['chat_id', 'file_hash'], unique=False) op.create_table('chat_option', sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('chat_id', sa.INTEGER(), nullable=True), sa.Column('key', sa.VARCHAR(length=50), nullable=False), sa.Column('value', sa.VARCHAR(length=240), nullable=True), sa.ForeignKeyConstraint(['chat_id'], ['chat.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index('ix_option_chat_key', 'chat_option', ['chat_id', 'key'], unique=False) op.create_table('chat', sa.Column('id', sa.INTEGER(), nullable=False), sa.Column('name', sa.VARCHAR(length=240), nullable=False), sa.Column('local_folder', sa.VARCHAR(length=240), nullable=False), sa.Column('yd_folder', sa.VARCHAR(length=240), nullable=False), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ###
the-stack_106_23589
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import time from src import InstaBot from src.check_status import check_status from src.feed_scanner import feed_scanner from src.follow_protocol import follow_protocol from src.unfollow_protocol import unfollow_protocol bot = InstaBot( login="timeless_hiphop", password="dwPW1506", like_per_day=750, comments_per_day=0, tag_list=['boombap', 'boombaphiphop', 'oldschoolrap', 'oldschoolhiphop','classichiphop','realrap', 'mosdef','nas','wutangclan','wutangforever','joeybadass','mfdoom'], tag_blacklist=['rain', 'thunderstorm'], user_blacklist={}, max_like_for_one_tag=50, follow_per_day=500, follow_time=1 * 60, unfollow_per_day=500, unfollow_break_min=15, unfollow_break_max=30, log_mod=0, proxy='mschun:[email protected]:29842', # List of list of words, each of which will be used to generate comment # For example: "This shot feels wow!" comment_list=[["this", "the", "your"], ["photo", "picture", "pic", "shot", "snapshot"], ["is", "looks", "feels", "is really"], ["great", "super", "good", "very good", "good", "wow", "WOW", "cool", "GREAT","magnificent", "magical", "very cool", "stylish", "beautiful", "so beautiful", "so stylish", "so professional", "lovely", "so lovely", "very lovely", "glorious","so glorious", "very glorious", "adorable", "excellent", "amazing"], [".", "..", "...", "!", "!!", "!!!"]], # Use unwanted_username_list to block usernames containing a string ## Will do partial matches; i.e. 'mozart' will block 'legend_mozart' ### 'free_followers' will be blocked because it contains 'free' unwanted_username_list=[ 'second', 'stuff', 'art', 'project', 'love', 'life', 'food', 'blog', 'free', 'keren', 'photo', 'graphy', 'indo', 'travel', 'art', 'shop', 'store', 'sex', 'toko', 'jual', 'online', 'murah', 'jam', 'kaos', 'case', 'baju', 'fashion', 'corp', 'tas', 'butik', 'grosir', 'karpet', 'sosis', 'salon', 'skin', 'care', 'cloth', 'tech', 'rental', 'kamera', 'beauty', 'express', 'kredit', 'collection', 'impor', 'preloved', 'follow', 'follower', 'gain', '.id', '_id', 'bags' ], unfollow_whitelist=['example_user_1', 'example_user_2']) while True: #print("# MODE 0 = ORIGINAL MODE BY LEVPASHA") #print("## MODE 1 = MODIFIED MODE BY KEMONG") #print("### MODE 2 = ORIGINAL MODE + UNFOLLOW WHO DON'T FOLLOW BACK") #print("#### MODE 3 = MODIFIED MODE : UNFOLLOW USERS WHO DON'T FOLLOW YOU BASED ON RECENT FEED") #print("##### MODE 4 = MODIFIED MODE : FOLLOW USERS BASED ON RECENT FEED ONLY") #print("###### MODE 5 = MODIFIED MODE : JUST UNFOLLOW EVERYBODY, EITHER YOUR FOLLOWER OR NOT") ################################ ## WARNING ### ################################ # DON'T USE MODE 5 FOR A LONG PERIOD. YOU RISK YOUR ACCOUNT FROM GETTING BANNED ## USE MODE 5 IN BURST MODE, USE IT TO UNFOLLOW PEOPLE AS MANY AS YOU WANT IN SHORT TIME PERIOD mode = 2 #print("You choose mode : %i" %(mode)) #print("CTRL + C to cancel this operation or wait 30 seconds to start") #time.sleep(30) if mode == 0: bot.new_auto_mod() elif mode == 1: check_status(bot) while bot.self_following - bot.self_follower > 200: unfollow_protocol(bot) time.sleep(10 * 60) check_status(bot) while bot.self_following - bot.self_follower < 400: while len(bot.user_info_list) < 50: feed_scanner(bot) time.sleep(5 * 60) follow_protocol(bot) time.sleep(10 * 60) check_status(bot) elif mode == 2: bot.bot_mode = 1 bot.new_auto_mod() elif mode == 3: bot.bot_mode = 3 while(bot.login_status == 1): bot.unfollow_recent_feed() time.sleep(5) elif mode == 4: feed_scanner(bot) time.sleep(60) follow_protocol(bot) time.sleep(10 * 60) elif mode == 5: bot.bot_mode = 2 unfollow_protocol(bot) else: print("Wrong mode!")
the-stack_106_23590
import gym class ContinuingTimeLimit(gym.Wrapper): """TimeLimit wrapper for continuing environments. This is similar gym.wrappers.TimeLimit, which sets a time limit for each episode, except that done=False is returned and that info['needs_reset'] is set to True when past the limit. Code that calls env.step is responsible for checking the info dict, the fourth returned value, and resetting the env if it has the 'needs_reset' key and its value is True. Args: env (gym.Env): Env to wrap. max_episode_steps (int): Maximum number of timesteps during an episode, after which the env needs a reset. """ def __init__(self, env, max_episode_steps): super(ContinuingTimeLimit, self).__init__(env) self._max_episode_steps = max_episode_steps self._elapsed_steps = None def step(self, action): assert ( self._elapsed_steps is not None ), "Cannot call env.step() before calling reset()" observation, reward, done, info = self.env.step(action) self._elapsed_steps += 1 if self._max_episode_steps <= self._elapsed_steps: info["needs_reset"] = True return observation, reward, done, info def reset(self): self._elapsed_steps = 0 return self.env.reset()
the-stack_106_23591
# %% [markdown] # # Inequality constraints # %% import numpy as np import tensorflow as tf np.random.seed(1799) tf.random.set_seed(1799) # %% [markdown] # ## The problem # # In this tutorial, we replicate one of the results of <cite data-cite="gardner14">[Gardner et al.](http://proceedings.mlr.press/v32/gardner14.html)</cite>, specifically their synthetic experiment "simulation 1", which consists of an objective function with a single constraint, defined over a two-dimensional input domain. We'll start by defining the problem parameters. The constraint is satisfied when `constraint(input_data) <= threshold`. # %% from trieste.space import Box class Sim: threshold = 0.5 @staticmethod def objective(input_data): x, y = input_data[..., -2], input_data[..., -1] z = tf.cos(2.0 * x) * tf.cos(y) + tf.sin(x) return z[:, None] @staticmethod def constraint(input_data): x, y = input_data[:, -2], input_data[:, -1] z = tf.cos(x) * tf.cos(y) - tf.sin(x) * tf.sin(y) return z[:, None] search_space = Box([0, 0], [6, 6]) # %% [markdown] # The objective and constraint functions are accessible as methods on the `Sim` class. Let's visualise these functions, as well as the constrained objective. We get the constrained objective by masking out regions where the constraint function is above the threshold. # %% import trieste import matplotlib.pyplot as plt from util.inequality_constraints_utils import plot_objective_and_constraints plot_objective_and_constraints(search_space, Sim) plt.show() # %% [markdown] # We'll make an observer that outputs both the objective and constraint data. Since the observer is outputting multiple datasets, we have to label them so that the optimization process knows which is which. # %% from trieste.data import Dataset OBJECTIVE = "OBJECTIVE" CONSTRAINT = "CONSTRAINT" def observer(query_points): return { OBJECTIVE: Dataset(query_points, Sim.objective(query_points)), CONSTRAINT: Dataset(query_points, Sim.constraint(query_points)), } # %% [markdown] # Let's randomly sample some initial data from the observer ... # %% num_initial_points = 5 initial_data = observer(search_space.sample(num_initial_points)) # %% [markdown] # ... and visualise those points on the constrained objective. Note how the generated data is labelled, like the observer. # %% from util.inequality_constraints_utils import plot_init_query_points plot_init_query_points( search_space, Sim, initial_data[OBJECTIVE].astuple(), initial_data[CONSTRAINT].astuple(), ) plt.show() # %% [markdown] # ## Modelling the two functions # # We'll model the objective and constraint data with their own Gaussian process regression model, as implemented in GPflow. The GPflow models cannot be used directly in our Bayesian optimization routines, so we build a GPflow's `GPR` model using Trieste's convenient model build function `build_gpr` and pass it to the `GaussianProcessRegression` wrapper. Note that we set the likelihood variance to a small number because we are dealing with a noise-free problem. # %% from trieste.models.gpflow import build_gpr, GaussianProcessRegression def create_bo_model(data): gpr = build_gpr(data, search_space, likelihood_variance=1e-7) return GaussianProcessRegression(gpr) initial_models = trieste.utils.map_values(create_bo_model, initial_data) # %% [markdown] # ## Define the acquisition process # # We can construct the _expected constrained improvement_ acquisition function defined in <cite data-cite="gardner14">[Gardner et al.](http://proceedings.mlr.press/v32/gardner14.html)</cite>, where they use the probability of feasibility with respect to the constraint model. # %% from trieste.acquisition.rule import EfficientGlobalOptimization pof = trieste.acquisition.ProbabilityOfFeasibility(threshold=Sim.threshold) eci = trieste.acquisition.ExpectedConstrainedImprovement( OBJECTIVE, pof.using(CONSTRAINT) ) rule = EfficientGlobalOptimization(eci) # type: ignore # %% [markdown] # ## Run the optimization loop # # We can now run the optimization loop. We obtain the final objective and constraint data using `.try_get_final_datasets()`. # %% num_steps = 20 bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) data = bo.optimize( num_steps, initial_data, initial_models, rule, track_state=False ).try_get_final_datasets() # %% [markdown] # To conclude this section, we visualise the resulting data. Orange dots show the new points queried during optimization. Notice the concentration of these points in regions near the local minima. # %% constraint_data = data[CONSTRAINT] new_query_points = constraint_data.query_points[-num_steps:] new_observations = constraint_data.observations[-num_steps:] new_data = (new_query_points, new_observations) plot_init_query_points( search_space, Sim, initial_data[OBJECTIVE].astuple(), initial_data[CONSTRAINT].astuple(), new_data, ) plt.show() # %% [markdown] # ## Batch-sequential strategy # # We'll now look at a batch-sequential approach to the same problem. Sometimes it's beneficial to query several points at a time instead of one. The acquisition function we used earlier, built by `ExpectedConstrainedImprovement`, only supports a batch size of 1, so we'll need a new acquisition function builder for larger batch sizes. We can implement this using the reparametrization trick with the Monte-Carlo sampler `BatchReparametrizationSampler`. Note that when we do this, we must initialise the sampler *outside* the acquisition function (here `batch_efi`). This is crucial: a given instance of a sampler produces repeatable, continuous samples, and we can use this to create a repeatable continuous acquisition function. Using a new sampler on each call would not result in a repeatable continuous acquisition function. # %% class BatchExpectedConstrainedImprovement( trieste.acquisition.AcquisitionFunctionBuilder ): def __init__(self, sample_size, threshold): self._sample_size = sample_size self._threshold = threshold def prepare_acquisition_function(self, models, datasets): objective_model = models[OBJECTIVE] objective_dataset = datasets[OBJECTIVE] samplers = { tag: trieste.models.gpflow.BatchReparametrizationSampler( self._sample_size, model ) for tag, model in models.items() } pf = trieste.acquisition.probability_of_feasibility( models[CONSTRAINT], self._threshold )(tf.expand_dims(objective_dataset.query_points, 1)) is_feasible = pf >= 0.5 mean, _ = objective_model.predict(objective_dataset.query_points) eta = tf.reduce_min(tf.boolean_mask(mean, is_feasible), axis=0) def batch_efi(at): samples = { tag: tf.squeeze(sampler.sample(at), -1) for tag, sampler in samplers.items() } feasible_mask = samples[CONSTRAINT] < self._threshold # [N, S, B] improvement = tf.where( feasible_mask, tf.maximum(eta - samples[OBJECTIVE], 0.0), 0.0 ) # [N, S, B] batch_improvement = tf.reduce_max(improvement, axis=-1) # [N, S] return tf.reduce_mean( batch_improvement, axis=-1, keepdims=True ) # [N, 1] return batch_efi num_query_points = 4 sample_size = 50 batch_eci = BatchExpectedConstrainedImprovement(sample_size, Sim.threshold) batch_rule = EfficientGlobalOptimization( # type: ignore batch_eci, num_query_points=num_query_points ) # %% [markdown] # We can now run the BO loop as before; note that here we also query twenty points, but in five batches of four points. # %% initial_models = trieste.utils.map_values(create_bo_model, initial_data) num_steps = 5 batch_data = bo.optimize( num_steps, initial_data, initial_models, batch_rule, track_state=False ).try_get_final_datasets() # %% [markdown] # We visualise the resulting data as before. # %% batch_constraint_data = batch_data[CONSTRAINT] new_batch_data = ( batch_constraint_data.query_points[-num_query_points * num_steps :], batch_constraint_data.observations[-num_query_points * num_steps :], ) plot_init_query_points( search_space, Sim, initial_data[OBJECTIVE].astuple(), initial_data[CONSTRAINT].astuple(), new_batch_data, ) plt.show() # %% [markdown] # Finally, we compare the regret from the non-batch strategy (left panel) to the regret from the batch strategy (right panel). # In the following plots each marker represents a query point. The x-axis is the index of the query point (where the first queried point has index 0), and the y-axis is the observed value. The vertical blue line denotes the end of initialisation/start of optimisation. Green points satisfy the constraint, red points do not. # %% from util.plotting import plot_regret mask_fail = constraint_data.observations.numpy() > Sim.threshold batch_mask_fail = batch_constraint_data.observations.numpy() > Sim.threshold fig, ax = plt.subplots(1, 2, sharey="all") plot_regret( data[OBJECTIVE].observations.numpy(), ax[0], num_init=num_initial_points, mask_fail=mask_fail.flatten(), ) plot_regret( batch_data[OBJECTIVE].observations.numpy(), ax[1], num_init=num_initial_points, mask_fail=batch_mask_fail.flatten(), ) # %% [markdown] # ## Constrained optimization with more than one constraint # # We'll now show how to use a reducer to combine multiple constraints. The new problem `Sim2` inherits from the previous one its objective and first constraint, but also adds a second constraint. We start by adding an output to our observer, and creating a set of three models. # %% class Sim2(Sim): threshold2 = 0.5 @staticmethod def constraint2(input_data): x, y = input_data[:, -2], input_data[:, -1] z = tf.sin(x) * tf.cos(y) - tf.cos(x) * tf.sin(y) return z[:, None] CONSTRAINT2 = "CONSTRAINT2" def observer_two_constraints(query_points): return { OBJECTIVE: Dataset(query_points, Sim2.objective(query_points)), CONSTRAINT: Dataset(query_points, Sim2.constraint(query_points)), CONSTRAINT2: Dataset(query_points, Sim2.constraint2(query_points)), } num_initial_points = 10 initial_data = observer_two_constraints(search_space.sample(num_initial_points)) initial_models = trieste.utils.map_values(create_bo_model, initial_data) # %% [markdown] # Now, the probability that the two constraints are feasible is the product of the two feasibilities. Hence, we combine the two `ProbabilityOfFeasibility` functions into one quantity by using a `Product` `Reducer`: # %% from trieste.acquisition.combination import Product pof1 = trieste.acquisition.ProbabilityOfFeasibility(threshold=Sim2.threshold) pof2 = trieste.acquisition.ProbabilityOfFeasibility(threshold=Sim2.threshold2) pof = Product(pof1.using(CONSTRAINT), pof2.using(CONSTRAINT2)) # type: ignore # %% [markdown] # We can now run the BO loop as before, and visualize the results: # %% eci = trieste.acquisition.ExpectedConstrainedImprovement(OBJECTIVE, pof) # type: ignore rule = EfficientGlobalOptimization(eci) num_steps = 20 bo = trieste.bayesian_optimizer.BayesianOptimizer( observer_two_constraints, search_space ) data = bo.optimize( num_steps, initial_data, initial_models, rule, track_state=False ).try_get_final_datasets() constraint_data = data[CONSTRAINT] new_query_points = constraint_data.query_points[-num_steps:] new_observations = constraint_data.observations[-num_steps:] new_data = (new_query_points, new_observations) def masked_objective(x): mask_nan = np.logical_or( Sim2.constraint(x) > Sim2.threshold, Sim2.constraint2(x) > Sim2.threshold2, ) y = np.array(Sim2.objective(x)) y[mask_nan] = np.nan return tf.convert_to_tensor(y.reshape(-1, 1), x.dtype) mask_fail1 = ( data[CONSTRAINT].observations.numpy().flatten().astype(int) > Sim2.threshold ) mask_fail2 = ( data[CONSTRAINT].observations.numpy().flatten().astype(int) > Sim2.threshold2 ) mask_fail = np.logical_or(mask_fail1, mask_fail2) import matplotlib.pyplot as plt from util.plotting import plot_function_2d, plot_bo_points fig, ax = plot_function_2d( masked_objective, search_space.lower, search_space.upper, grid_density=50, contour=True, ) plot_bo_points( data[OBJECTIVE].query_points.numpy(), ax=ax[0, 0], num_init=num_initial_points, mask_fail=mask_fail, ) plt.show() # %% [markdown] # ## LICENSE # # [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE)
the-stack_106_23592
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for comparing semantic versions. Basic rules of semver: Format: major.minor.patch-prerelease+build major, minor, patch, must all be present and integers with no leading zeros. They are compared numerically by segment. prerelease is an optional '.' separated series of identifiers where each is either an integer with no leading zeros, or an alphanumeric string (including '-'). Prereleases are compared by comparing each identifier in order. Integers are compared numerically, alphanumeric strings are compared lexigraphically. A prerelease version is lower precedence than it's associated normal version. The build number is optional and not included in the comparison. It is '.' separated series of alphanumeric identifiers. Two SemVer objects are considered equal if they represent the exact same string (including the build number and including case differences). For comparison operators, we follow the SemVer spec of precedence and ignore the build number and case of alphanumeric strings. """ import re # Only digits, with no leading zeros. _DIGITS = r'(?:0|[1-9][0-9]*)' # Digits, letters and dashes _ALPHA_NUM = r'[-0-9A-Za-z]+' # This is an alphanumeric string that must have at least once letter (or else it # would be considered digits). _STRICT_ALPHA_NUM = r'[-0-9A-Za-z]*[-A-Za-z]+[-0-9A-Za-z]*' _PRE_RELEASE_IDENTIFIER = r'(?:{0}|{1})'.format(_DIGITS, _STRICT_ALPHA_NUM) _PRE_RELEASE = r'(?:{0}(?:\.{0})*)'.format(_PRE_RELEASE_IDENTIFIER) _BUILD = r'(?:{0}(?:\.{0})*)'.format(_ALPHA_NUM) _SEMVER = ( r'^(?P<major>{digits})\.(?P<minor>{digits})\.(?P<patch>{digits})' r'(?:\-(?P<prerelease>{release}))?(?:\+(?P<build>{build}))?$' ).format(digits=_DIGITS, release=_PRE_RELEASE, build=_BUILD) class ParseError(Exception): """An exception for when a string failed to parse as a valid semver.""" pass class SemVer(object): """Object to hold a parsed semantic version string.""" def __init__(self, version): """Creates a SemVer object from the given version string. Args: version: str, The version string to parse. Raises: ParseError: If the version could not be correctly parsed. Returns: SemVer, The parsed version. """ (self.major, self.minor, self.patch, self.prerelease, self.build) = ( SemVer._FromString(version)) @classmethod def _FromString(cls, version): """Parse the given version string into its parts.""" if version is None: raise ParseError('The value is not a valid SemVer string: [None]') try: match = re.match(_SEMVER, version) except (TypeError, re.error) as e: raise ParseError('Error parsing version string: [{0}]. {1}' .format(version, e.message)) if not match: raise ParseError( 'The value is not a valid SemVer string: [{0}]'.format(version)) parts = match.groupdict() return ( int(parts['major']), int(parts['minor']), int(parts['patch']), parts['prerelease'], parts['build']) @classmethod def _ComparePrereleaseStrings(cls, s1, s2): """Compares the two given prerelease strings. Args: s1: str, The first prerelease string. s2: str, The second prerelease string. Returns: 1 if s1 is greater than s2, -1 if s2 is greater than s1, and 0 if equal. """ # No prerelease is greater than any version with a prerelease. if s1 is None and s2 is not None: return 1 if s2 is None and s1 is not None: return -1 # If both are the same (including None), they are equal if s1 == s2: return 0 # Convert numeric segments into ints for numerical comparison. to_comparable = lambda part: int(part) if part.isdigit() else part.lower() # Split the version by dots so each part can be compared. get_parts = lambda s: [to_comparable(part) for part in s.split('.')] return cmp(get_parts(s1), get_parts(s2)) def _Compare(self, other): """Compare this SemVer to other. Args: other: SemVer, the other version to compare this one to. Returns: 1 if self > other, -1 if other > self, 0 if equal. """ # Compare the required parts. result = cmp( (self.major, self.minor, self.patch), (other.major, other.minor, other.patch)) # Only if required parts are equal, compare the prerelease strings. # Never include build number in comparison. result = result or SemVer._ComparePrereleaseStrings( self.prerelease, other.prerelease) return result def Distance(self, other): """Compare this SemVer to other and returns the distances. Args: other: SemVer, the other version to compare this one to. Returns: Distances between the major, minor and patch versions. """ major_diff = self.major - other.major minor_diff = self.minor - other.minor patch_diff = self.patch - other.patch return major_diff, minor_diff, patch_diff def __eq__(self, other): return ( (self.major, self.minor, self.patch, self.prerelease, self.build) == (other.major, other.minor, other.patch, other.prerelease, other.build)) def __ne__(self, other): return not self == other def __gt__(self, other): return self._Compare(other) > 0 def __lt__(self, other): return self._Compare(other) < 0 def __ge__(self, other): return not self < other def __le__(self, other): return not self > other
the-stack_106_23593
from setuptools import setup with open('README.rst') as f: long_description = f.read() setup( name="gfwlist2dnsmasq", version="0.1.0", license='MIT', description="convert gfwlist to dnsmasq config file", author='nucbill', author_email='[email protected]', url='https://github.com/nucbill/gfwlist2dnsmasq', packages=['gfwlist2dnsmasq', 'gfwlist2dnsmasq.resources'], package_data={ 'gfwlist2dnsmasq': ['README.rst', 'LICENSE', 'resources/*'] }, install_requires=[], entry_points=""" [console_scripts] gfwlist2dnsmasq = gfwlist2dnsmasq.main:main """, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], long_description=long_description, )
the-stack_106_23596
from rest_framework import serializers from .models import User, Photo """ Code from: http://stackoverflow.com/questions/28036404/django-rest-framework-upload-image-the-submitted-data-was-not-a-file#28036805 """ class Base64ImageField(serializers.ImageField): """ A Django REST framework field for handling image-uploads through raw post data. It uses base64 for encoding and decoding the contents of the file. Heavily based on https://github.com/tomchristie/django-rest-framework/pull/1268 Updated for Django REST framework 3. """ def to_internal_value(self, data): from django.core.files.base import ContentFile import base64 import six import uuid if isinstance(data, six.string_types): if 'data:' in data and ';base64,' in data: header, data = data.split(';base64,') try: decoded_file = base64.b64decode(data) except TypeError: self.fail('invalid_image') file_name = str(uuid.uuid4())[:12] # 12 characters are more than enough. file_extension = self.get_file_extension(file_name, decoded_file) complete_file_name = "%s.%s" % (file_name, file_extension, ) data = ContentFile(decoded_file, name=complete_file_name) return super(Base64ImageField, self).to_internal_value(data) def get_file_extension(self, file_name, decoded_file): import imghdr extension = imghdr.what(file_name, decoded_file) extension = "jpg" if extension == "jpeg" else extension return extension class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = '__all__' class PhotoSerializer(serializers.ModelSerializer): image = Base64ImageField(max_length=None, use_url=True) class Meta: model = Photo fields = '__all__'
the-stack_106_23601
import torch import torch.nn.functional as F from torchvision import models import numpy as np import cv2 import os, sys from torchsummary import summary ######## config ############# test_images_path = sys.argv[1] classes = ('chair', 'people') input_shape = (3, 224, 224) cards_id = [2, 3] param_save_path = sys.argv[2] onnx_out_name = "out/classifier.onnx" ncnn_out_param = "out/classifier.param" ncnn_out_bin = "out/classifier.bin" os.environ['CUDA_VISIBLE_DEVICES'] = ",".join(f"{id}" for id in cards_id) def load_data(path, shape): data = [] exts = [".jpg", ".jpeg", ".png"] files = os.listdir(path) files = sorted(files) for name in files: if not os.path.splitext(name.lower())[1] in exts: continue img = cv2.imread(os.path.join(path, name)) if type(img) == type(None): print("read file {} fail".format(os.path.join(path, name))) continue img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (shape[2], shape[1])) img = np.transpose(img, (2, 0, 1)).astype(np.float32) # hwc to chw layout img = (img - 127.5) * 0.0078125 data.append((torch.from_numpy(img), name)) return data class Dataset: def __init__(self, data): self.data = data def __getitem__(self, i): return self.data[i] def __len__(self) -> int: return len(self.data) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) testset = load_data(test_images_path, input_shape) testset = Dataset(testset) net = models.resnet18(pretrained=False, num_classes = len(classes)) net.to(device) net.load_state_dict(torch.load(param_save_path)) # summary(net, input_size=input_shape) with torch.no_grad(): for i, data in enumerate(testset): input, name = data input = input.to(device) outputs = net(input.unsqueeze(0)) result = F.softmax(outputs[0], dim=0) print("image: {}, raw output: {}, ".format(name, outputs[0]), end="") for i, label in enumerate(classes): print("{}: {:.3f}, ".format(label, result[i]), end="") print("") print("export model") from convert import torch_to_onnx, onnx_to_ncnn if not os.path.exists("out"): os.makedirs("out") with torch.no_grad(): torch_to_onnx(net.to("cpu"), input_shape, out_name=onnx_out_name, device="cpu") onnx_to_ncnn(input_shape, onnx=onnx_out_name, ncnn_param=ncnn_out_param, ncnn_bin=ncnn_out_bin)
the-stack_106_23603
# pulled from the AWSCLI and modified by Globus # note that this file has also been modified by auotfixers (e.g. black, pyupgrade) # Copyright 2012-2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import errno import sys def _format_text(item, stream, identifier=None, scalar_keys=None): if isinstance(item, dict): _format_dict(scalar_keys, item, identifier, stream) elif isinstance(item, list): _format_list(item, identifier, stream) else: # If it's not a list or a dict, we just write the scalar # value out directly. stream.write(str(item)) stream.write("\n") def _format_list(item, identifier, stream): if not item: return if any(isinstance(el, dict) for el in item): all_keys = _all_scalar_keys(item) for element in item: _format_text( element, stream=stream, identifier=identifier, scalar_keys=all_keys ) elif any(isinstance(el, list) for el in item): scalar_elements, non_scalars = _partition_list(item) if scalar_elements: _format_scalar_list(scalar_elements, identifier, stream) for non_scalar in non_scalars: _format_text(non_scalar, stream=stream, identifier=identifier) else: _format_scalar_list(item, identifier, stream) def _partition_list(item): scalars = [] non_scalars = [] for element in item: if isinstance(element, (list, dict)): non_scalars.append(element) else: scalars.append(element) return scalars, non_scalars def _format_scalar_list(elements, identifier, stream): if identifier is not None: for item in elements: stream.write(f"{identifier.upper()}\t{item}\n") else: # For a bare list, just print the contents. stream.write("\t".join([str(item) for item in elements])) stream.write("\n") def _format_dict(scalar_keys, item, identifier, stream): scalars, non_scalars = _partition_dict(item, scalar_keys=scalar_keys) if scalars: if identifier is not None: scalars.insert(0, identifier.upper()) stream.write("\t".join(scalars)) stream.write("\n") for new_identifier, non_scalar in non_scalars: _format_text(item=non_scalar, stream=stream, identifier=new_identifier) def _all_scalar_keys(list_of_dicts): keys_seen = set() for item_dict in list_of_dicts: for key, value in item_dict.items(): if not isinstance(value, (dict, list)): keys_seen.add(key) return list(sorted(keys_seen)) def _partition_dict(item_dict, scalar_keys): # Given a dictionary, partition it into two list based on the # values associated with the keys. # {'foo': 'scalar', 'bar': 'scalar', 'baz': ['not, 'scalar']} # scalar = [('foo', 'scalar'), ('bar', 'scalar')] # non_scalar = [('baz', ['not', 'scalar'])] scalar = [] non_scalar = [] if scalar_keys is None: # scalar_keys can have more than just the keys in the item_dict, # but if user does not provide scalar_keys, we'll grab the keys # from the current item_dict for key, value in sorted(item_dict.items()): if isinstance(value, (dict, list)): non_scalar.append((key, value)) else: scalar.append(str(value)) else: for key in scalar_keys: scalar.append(str(item_dict.get(key, ""))) remaining_keys = sorted(set(item_dict.keys()) - set(scalar_keys)) for remaining_key in remaining_keys: non_scalar.append((remaining_key, item_dict[remaining_key])) return scalar, non_scalar def unix_formatted_print(data, stream=sys.stdout): _format_text(data, stream) try: sys.stdout.flush() except OSError as err: if err.errno is errno.EPIPE: pass else: raise
the-stack_106_23604
import pytest from eth_utils import ( ValidationError, ) from eth2.beacon.committee_helpers import ( get_beacon_proposer_index, ) from eth2.beacon.configs import ( CommitteeConfig, ) from eth2.beacon.helpers import ( get_epoch_start_slot, ) from eth2.beacon.types.blocks import ( BeaconBlockBody, ) from eth2.beacon.state_machines.forks.serenity.blocks import ( SerenityBeaconBlock, ) from eth2.beacon.state_machines.forks.serenity.operation_processing import ( process_attestations, process_proposer_slashings, process_attester_slashings, process_voluntary_exits, ) from eth2.beacon.tools.builder.validator import ( create_mock_attester_slashing_is_double_vote, create_mock_signed_attestations_at_slot, create_mock_proposer_slashing_at_block, create_mock_voluntary_exit, ) def test_process_max_attestations(genesis_state, genesis_block, sample_beacon_block_params, sample_beacon_block_body_params, config, keymap): attestation_slot = config.GENESIS_SLOT current_slot = attestation_slot + config.MIN_ATTESTATION_INCLUSION_DELAY state = genesis_state.copy( slot=current_slot, ) attestations = create_mock_signed_attestations_at_slot( state=state, config=config, attestation_slot=attestation_slot, beacon_block_root=genesis_block.root, keymap=keymap, voted_attesters_ratio=1.0, ) attestations_count = len(attestations) assert attestations_count > 0 block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( attestations=attestations * (attestations_count // config.MAX_ATTESTATIONS + 1), ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=current_slot, body=block_body, ) with pytest.raises(ValidationError): process_attestations( state, block, config, ) @pytest.mark.parametrize( ( 'num_validators', 'slots_per_epoch', 'target_committee_size', 'shard_count', 'block_root_1', 'block_root_2', 'success' ), [ (10, 2, 2, 2, b'\x11' * 32, b'\x22' * 32, True), (10, 2, 2, 2, b'\x11' * 32, b'\x11' * 32, False), ] ) def test_process_proposer_slashings(genesis_state, sample_beacon_block_params, sample_beacon_block_body_params, config, keymap, block_root_1, block_root_2, success): current_slot = config.GENESIS_SLOT + 1 state = genesis_state.copy( slot=current_slot, ) whistleblower_index = get_beacon_proposer_index( state, state.slot, CommitteeConfig(config), ) slashing_proposer_index = (whistleblower_index + 1) % len(state.validator_registry) proposer_slashing = create_mock_proposer_slashing_at_block( state, config, keymap, block_root_1=block_root_1, block_root_2=block_root_2, proposer_index=slashing_proposer_index, ) proposer_slashings = (proposer_slashing,) block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( proposer_slashings=proposer_slashings, ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=current_slot, body=block_body, ) if success: new_state = process_proposer_slashings( state, block, config, ) # Check if slashed assert ( new_state.validator_balances[slashing_proposer_index] < state.validator_balances[slashing_proposer_index] ) else: with pytest.raises(ValidationError): process_proposer_slashings( state, block, config, ) @pytest.mark.parametrize( ( 'num_validators', 'slots_per_epoch', 'target_committee_size', 'shard_count', 'min_attestation_inclusion_delay', ), [ (100, 2, 2, 2, 1), ] ) @pytest.mark.parametrize( ('success'), [ # (True), (False), ] ) def test_process_attester_slashings(genesis_state, sample_beacon_block_params, sample_beacon_block_body_params, config, keymap, min_attestation_inclusion_delay, success): attesting_state = genesis_state.copy( slot=genesis_state.slot + config.SLOTS_PER_EPOCH, ) valid_attester_slashing = create_mock_attester_slashing_is_double_vote( attesting_state, config, keymap, attestation_epoch=0, ) state = attesting_state.copy( slot=attesting_state.slot + min_attestation_inclusion_delay, ) if success: block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( attester_slashings=(valid_attester_slashing,), ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=state.slot, body=block_body, ) attester_index = valid_attester_slashing.slashable_attestation_1.validator_indices[0] new_state = process_attester_slashings( state, block, config, ) # Check if slashed assert ( new_state.validator_balances[attester_index] < state.validator_balances[attester_index] ) else: invalid_attester_slashing = valid_attester_slashing.copy( slashable_attestation_2=valid_attester_slashing.slashable_attestation_2.copy( data=valid_attester_slashing.slashable_attestation_1.data, ) ) block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( attester_slashings=(invalid_attester_slashing,), ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=state.slot, body=block_body, ) with pytest.raises(ValidationError): process_attester_slashings( state, block, config, ) @pytest.mark.parametrize( ( 'num_validators,' 'slots_per_epoch,' 'min_attestation_inclusion_delay,' 'target_committee_size,' 'shard_count,' 'success,' 'genesis_slot,' ), [ (10, 2, 1, 2, 2, True, 0), (10, 2, 1, 2, 2, False, 0), (40, 4, 2, 3, 5, True, 0), ] ) def test_process_attestations(genesis_state, genesis_block, sample_beacon_block_params, sample_beacon_block_body_params, config, keymap, success): attestation_slot = 0 current_slot = attestation_slot + config.MIN_ATTESTATION_INCLUSION_DELAY state = genesis_state.copy( slot=current_slot, ) attestations = create_mock_signed_attestations_at_slot( state=state, config=config, attestation_slot=attestation_slot, beacon_block_root=genesis_block.root, keymap=keymap, voted_attesters_ratio=1.0, ) assert len(attestations) > 0 if not success: # create invalid attestation in the future invalid_attestation_data = attestations[-1].data.copy( slot=state.slot + 10, ) invalid_attestation = attestations[-1].copy( data=invalid_attestation_data, ) attestations = attestations[:-1] + (invalid_attestation,) block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( attestations=attestations, ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=current_slot, body=block_body, ) if success: new_state = process_attestations( state, block, config, ) assert len(new_state.current_epoch_attestations) == len(attestations) else: with pytest.raises(ValidationError): process_attestations( state, block, config, ) @pytest.mark.parametrize( ( 'num_validators', 'slots_per_epoch', 'target_committee_size', 'activation_exit_delay', ), [ (40, 2, 2, 2), ] ) @pytest.mark.parametrize( ( 'success', ), [ (True,), (False,), ] ) def test_process_voluntary_exits(genesis_state, sample_beacon_block_params, sample_beacon_block_body_params, config, keymap, success): state = genesis_state.copy( slot=get_epoch_start_slot( config.GENESIS_EPOCH + config.PERSISTENT_COMMITTEE_PERIOD, config.SLOTS_PER_EPOCH, ), ) validator_index = 0 validator = state.validator_registry[validator_index].copy( activation_epoch=config.GENESIS_EPOCH, ) state = state.update_validator_registry(validator_index, validator) valid_voluntary_exit = create_mock_voluntary_exit( state, config, keymap, validator_index, ) if success: block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( voluntary_exits=(valid_voluntary_exit,), ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=state.slot, body=block_body, ) new_state = process_voluntary_exits( state, block, config, ) # Check if initiated exit assert ( new_state.validator_registry[validator_index].initiated_exit ) else: invalid_voluntary_exit = valid_voluntary_exit.copy( signature=b'\x12' * 96, # Put wrong signature ) block_body = BeaconBlockBody(**sample_beacon_block_body_params).copy( voluntary_exits=(invalid_voluntary_exit,), ) block = SerenityBeaconBlock(**sample_beacon_block_params).copy( slot=state.slot, body=block_body, ) with pytest.raises(ValidationError): process_voluntary_exits( state, block, config, )
the-stack_106_23606
"""Prepare a workflow for running on AWS using STORMSeq as a front end. http://www.stormseq.org/ """ import argparse import json import os import yaml from bcbio import utils from bcbio.upload import s3 from bcbio.workflow import xprize def parse_args(args): parser = xprize.HelpArgParser(description="Run STORMSeq processing on AWS") parser.add_argument("config_file", help="JSON configuration file with form parameters") parser.add_argument("base_dir", help="Base directory to process in") parser.add_argument("bcbio_config_file", help="bcbio system YAML config") args = parser.parse_args(args) return args def _get_s3_files(local_dir, file_info, params): """Retrieve s3 files to local directory, handling STORMSeq inputs. """ assert len(file_info) == 1 files = file_info.values()[0] fnames = [] for k in ["1", "2"]: if files[k] not in fnames: fnames.append(files[k]) out = [] for fname in fnames: bucket, key = fname.replace("s3://", "").split("/", 1) if params["access_key_id"] == "TEST": out.append(os.path.join(local_dir, os.path.basename(key))) else: out.append(s3.get_file(local_dir, bucket, key, params)) return out def setup(args): configdir = utils.safe_makedir(os.path.join(args.base_dir, "config")) inputdir = utils.safe_makedir(os.path.join(args.base_dir, "inputs")) workdir = utils.safe_makedir(os.path.join(args.base_dir, "work")) finaldir = utils.safe_makedir(os.path.join(args.base_dir, "ready")) out_config_file = os.path.join(configdir, "%s.yaml" % os.path.splitext(os.path.basename(args.config_file))[0]) with open(args.config_file) as in_handle: ss_config = json.load(in_handle) ss_params = ss_config["parameters"] out = {"fc_date": xprize.get_fc_date(out_config_file), "fc_name": ss_config["sample"], "upload": {"dir": finaldir, "method": "s3", "bucket": ss_params["s3_bucket"], "access_key_id": ss_params["access_key_id"], "secret_access_key": ss_params["secret_access_key"]}, "details": [{ "files": _get_s3_files(inputdir, ss_config["files"], ss_params), "lane": 1, "description": ss_params["sample"], "analysis": "variant", "genome_build": ss_params["genome_version"], "algorithm": { "aligner": ss_params["alignment_pipeline"], "variantcaller": ss_params["calling_pipeline"], "quality_format": "Standard", "coverage_interval": "genome" if ss_params["data_type"] == "data_wgs" else "exome", }}]} with open(out_config_file, "w") as out_handle: yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) return workdir, {"config_file": args.bcbio_config_file, "run_info_yaml": out_config_file}
the-stack_106_23607
"""Contains ECG Batch class.""" # pylint: disable=too-many-lines import copy from textwrap import dedent import numpy as np import pandas as pd import scipy import scipy.signal import matplotlib.pyplot as plt import pywt from .. import dataset as ds from . import kernels from . import ecg_batch_tools as bt from .utils import get_units_conversion_factor, partialmethod, LabelBinarizer ACTIONS_DICT = { "fft": (np.fft.fft, "numpy.fft.fft", "a Discrete Fourier Transform"), "ifft": (np.fft.ifft, "numpy.fft.ifft", "an inverse Discrete Fourier Transform"), "rfft": (np.fft.rfft, "numpy.fft.rfft", "a real-input Discrete Fourier Transform"), "irfft": (np.fft.irfft, "numpy.fft.irfft", "a real-input inverse Discrete Fourier Transform"), "dwt": (pywt.dwt, "pywt.dwt", "a single level Discrete Wavelet Transform"), "idwt": (lambda x, *args, **kwargs: pywt.idwt(*x, *args, **kwargs), "pywt.idwt", "a single level inverse Discrete Wavelet Transform"), "wavedec": (pywt.wavedec, "pywt.wavedec", "a multilevel 1D Discrete Wavelet Transform"), "waverec": (lambda x, *args, **kwargs: pywt.waverec(list(x), *args, **kwargs), "pywt.waverec", "a multilevel 1D Inverse Discrete Wavelet Transform"), "pdwt": (lambda x, part, *args, **kwargs: pywt.downcoef(part, x, *args, **kwargs), "pywt.downcoef", "a partial Discrete Wavelet Transform data decomposition"), "cwt": (lambda x, *args, **kwargs: pywt.cwt(x, *args, **kwargs)[0], "pywt.cwt", "a Continuous Wavelet Transform"), } TEMPLATE_DOCSTRING = """ Compute {description} for each slice of a signal over the axis 0 (typically the channel axis). This method simply wraps ``apply_to_each_channel`` method by setting the ``func`` argument to ``{full_name}``. Parameters ---------- src : str, optional Batch attribute or component name to get the data from. dst : str, optional Batch attribute or component name to put the result in. args : misc Any additional positional arguments to ``{full_name}``. kwargs : misc Any additional named arguments to ``{full_name}``. Returns ------- batch : EcgBatch Transformed batch. Changes ``dst`` attribute or component. """ TEMPLATE_DOCSTRING = dedent(TEMPLATE_DOCSTRING).strip() def add_actions(actions_dict, template_docstring): """Add new actions in ``EcgBatch`` by setting ``func`` argument in ``EcgBatch.apply_to_each_channel`` method to given callables. Parameters ---------- actions_dict : dict A dictionary, containing new methods' names as keys and a callable, its full name and description for each method as values. template_docstring : str A string, that will be formatted for each new method from ``actions_dict`` using ``full_name`` and ``description`` parameters and assigned to its ``__doc__`` attribute. Returns ------- decorator : callable Class decorator. """ def decorator(cls): """Returned decorator.""" for method_name, (func, full_name, description) in actions_dict.items(): docstring = template_docstring.format(full_name=full_name, description=description) method = partialmethod(cls.apply_to_each_channel, func) method.__doc__ = docstring setattr(cls, method_name, method) return cls return decorator @add_actions(ACTIONS_DICT, TEMPLATE_DOCSTRING) # pylint: disable=too-many-public-methods,too-many-instance-attributes class EcgBatch(ds.Batch): """Batch class for ECG signals storing. Contains ECG signals and additional metadata along with various processing methods. Parameters ---------- index : DatasetIndex Unique identifiers of ECGs in the batch. preloaded : tuple, optional Data to put in the batch if given. Defaults to ``None``. unique_labels : 1-D ndarray, optional Array with unique labels in a dataset. Attributes ---------- index : DatasetIndex Unique identifiers of ECGs in the batch. signal : 1-D ndarray Array of 2-D ndarrays with ECG signals in channels first format. annotation : 1-D ndarray Array of dicts with different types of annotations. meta : 1-D ndarray Array of dicts with metadata about signals. target : 1-D ndarray Array with signals' labels. unique_labels : 1-D ndarray Array with unique labels in a dataset. label_binarizer : LabelBinarizer Object for label one-hot encoding. Note ---- Some batch methods take ``index`` as their first argument after ``self``. You should not specify it in your code, it will be passed automatically by ``inbatch_parallel`` decorator. For example, ``resample_signals`` method with ``index`` and ``fs`` arguments should be called as ``batch.resample_signals(fs)``. """ def __init__(self, index, preloaded=None, unique_labels=None): super().__init__(index, preloaded) self.signal = self.array_of_nones self.annotation = self.array_of_dicts self.meta = self.array_of_dicts self.target = self.array_of_nones self._unique_labels = None self._label_binarizer = None self.unique_labels = unique_labels @property def components(self): """tuple of str: Data components names.""" return "signal", "annotation", "meta", "target" @property def array_of_nones(self): """1-D ndarray: ``NumPy`` array with ``None`` values.""" return np.array([None] * len(self.index)) @property def array_of_dicts(self): """1-D ndarray: ``NumPy`` array with empty ``dict`` values.""" return np.array([{} for _ in range(len(self.index))]) @property def unique_labels(self): """1-D ndarray: Unique labels in a dataset.""" return self._unique_labels @unique_labels.setter def unique_labels(self, val): """Set unique labels value to ``val``. Updates ``self.label_binarizer`` instance. Parameters ---------- val : 1-D ndarray New unique labels. """ self._unique_labels = val if self.unique_labels is None or len(self.unique_labels) == 0: self._label_binarizer = None else: self._label_binarizer = LabelBinarizer().fit(self.unique_labels) @property def label_binarizer(self): """LabelBinarizer: Label binarizer object for unique labels in a dataset.""" return self._label_binarizer def _reraise_exceptions(self, results): """Reraise all exceptions in the ``results`` list. Parameters ---------- results : list Post function computation results. Raises ------ RuntimeError If any paralleled action raised an ``Exception``. """ if ds.any_action_failed(results): all_errors = self.get_errors(results) raise RuntimeError("Cannot assemble the batch", all_errors) @staticmethod def _check_2d(signal): """Check if given signal is 2-D. Parameters ---------- signal : ndarray Signal to check. Raises ------ ValueError If given signal is not two-dimensional. """ if signal.ndim != 2: raise ValueError("Each signal in batch must be 2-D ndarray") # Input/output methods @ds.action def load(self, src=None, fmt=None, components=None, ann_ext=None, *args, **kwargs): """Load given batch components from source. Most of the ``EcgBatch`` actions work under the assumption that both ``signal`` and ``meta`` components are loaded. In case this assumption is not fulfilled, normal operation of the actions is not guaranteed. This method supports loading of signals from WFDB, DICOM, EDF, WAV, XML and Blosc formats. Parameters ---------- src : misc, optional Source to load components from. fmt : str, optional Source format. components : str or array-like, optional Components to load. ann_ext : str, optional Extension of the annotation file. Returns ------- batch : EcgBatch Batch with loaded components. Changes batch data inplace. """ if components is None: components = self.components components = np.asarray(components).ravel() if (fmt == "csv" or fmt is None and isinstance(src, pd.Series)) and np.all(components == "target"): return self._load_labels(src) if fmt in ["wfdb", "dicom", "edf", "wav", "xml"]: return self._load_data(src=src, fmt=fmt, components=components, ann_ext=ann_ext, *args, **kwargs) return super().load(src, fmt, components, *args, **kwargs) @ds.inbatch_parallel(init="indices", post="_assemble_load", target="threads") def _load_data(self, index, src=None, fmt=None, components=None, *args, **kwargs): """Load given components from WFDB, DICOM, EDF, WAV or XML files. Parameters ---------- src : misc, optional Source to load components from. Must be a collection, that can be indexed by indices of a batch. If ``None`` and ``index`` has ``FilesIndex`` type, the path from ``index`` is used. fmt : str, optional Source format. components : iterable, optional Components to load. ann_ext: str, optional Extension of the annotation file. Returns ------- batch : EcgBatch Batch with loaded components. Changes batch data inplace. Raises ------ ValueError If source path is not specified and batch's ``index`` is not a ``FilesIndex``. """ loaders = { "wfdb": bt.load_wfdb, "dicom": bt.load_dicom, "edf": bt.load_edf, "wav": bt.load_wav, "xml": bt.load_xml, } if src is not None: path = src[index] elif isinstance(self.index, ds.FilesIndex): path = self.index.get_fullpath(index) # pylint: disable=no-member else: raise ValueError("Source path is not specified") return loaders[fmt](path, components, *args, **kwargs) def _assemble_load(self, results, *args, **kwargs): """Concatenate results of different workers and update ``self``. Parameters ---------- results : list Workers' results. Returns ------- batch : EcgBatch Assembled batch. Changes components inplace. """ _ = args, kwargs self._reraise_exceptions(results) components = kwargs.get("components", None) if components is None: components = self.components for comp, data in zip(components, zip(*results)): if comp == "signal": data = np.array(data + (None,))[:-1] else: data = np.array(data) setattr(self, comp, data) return self def _load_labels(self, src): """Load labels from a csv file or ``pandas.Series``. Parameters ---------- src : str or Series Path to csv file or ``pandas.Series``. The file should contain two columns: ECG index and label. It shouldn't have a header. Returns ------- batch : EcgBatch Batch with loaded labels. Changes ``self.target`` inplace. Raises ------ TypeError If ``src`` is not a string or ``pandas.Series``. RuntimeError If ``unique_labels`` has not been defined and the batch was not created by a ``Pipeline``. """ if not isinstance(src, (str, pd.Series)): raise TypeError("Unsupported type of source") if isinstance(src, str): src = pd.read_csv(src, header=None, names=["index", "label"], index_col=0)["label"] self.target = src[self.indices].values if self.unique_labels is None: if self.pipeline is None: raise RuntimeError("Batch with undefined unique_labels must be created in a pipeline") ds_indices = self.pipeline.dataset.indices self.unique_labels = np.sort(src[ds_indices].unique()) return self def show_ecg(self, index=None, start=0, end=None, annot=None, subplot_size=(10, 4)): # pylint: disable=too-many-locals, line-too-long """Plot an ECG signal. Optionally highlight QRS complexes along with P and T waves. Each channel is displayed on a separate subplot. Parameters ---------- index : element of ``self.indices``, optional Index of a signal to plot. If undefined, the first ECG in the batch is used. start : int, optional The start point of the displayed part of the signal (in seconds). end : int, optional The end point of the displayed part of the signal (in seconds). annot : str, optional If not ``None``, specifies attribute that stores annotation obtained from ``cardio.models.HMModel``. subplot_size : tuple Width and height of each subplot in inches. Raises ------ ValueError If the chosen signal is not two-dimensional. """ i = 0 if index is None else self.get_pos(None, "signal", index) signal, meta = self.signal[i], self.meta[i] self._check_2d(signal) fs = meta["fs"] num_channels = signal.shape[0] start = np.int(start * fs) end = signal.shape[1] if end is None else np.int(end * fs) figsize = (subplot_size[0], subplot_size[1] * num_channels) _, axes = plt.subplots(num_channels, 1, squeeze=False, figsize=figsize) for channel, (ax,) in enumerate(axes): lead_name = "undefined" if meta["signame"][channel] == "None" else meta["signame"][channel] units = "undefined" if meta["units"][channel] is None else meta["units"][channel] ax.plot((np.arange(start, end) / fs), signal[channel, start:end]) ax.set_title("Lead name: {}".format(lead_name)) ax.set_xlabel("Time (sec)") ax.set_ylabel("Amplitude ({})".format(units)) ax.grid(True, which="major") if annot and hasattr(self, annot): def fill_segments(segment_states, color): """Fill ECG segments with a given color.""" starts, ends = bt.find_intervals_borders(signal_states, segment_states) for start_t, end_t in zip((starts + start) / fs, (ends + start) / fs): for (ax,) in axes: ax.axvspan(start_t, end_t, color=color, alpha=0.3) signal_states = getattr(self, annot)[i][start:end] fill_segments(bt.QRS_STATES, "red") fill_segments(bt.P_STATES, "green") fill_segments(bt.T_STATES, "blue") plt.tight_layout() plt.show() # Batch processing @classmethod def merge(cls, batches, batch_size=None): """Concatenate a list of ``EcgBatch`` instances and split the result into two batches of sizes ``batch_size`` and ``sum(lens of batches) - batch_size`` respectively. Parameters ---------- batches : list List of ``EcgBatch`` instances. batch_size : positive int, optional Length of the first resulting batch. If ``None``, equals the length of the concatenated batch. Returns ------- new_batch : EcgBatch Batch of no more than ``batch_size`` first items from the concatenation of input batches. Contains a deep copy of input batches' data. rest_batch : EcgBatch Batch of the remaining items. Contains a deep copy of input batches' data. Raises ------ ValueError If ``batch_size`` is non-positive or non-integer. """ batches = [batch for batch in batches if batch is not None] if len(batches) == 0: return None, None total_len = np.sum([len(batch) for batch in batches]) if batch_size is None: batch_size = total_len elif not isinstance(batch_size, int) or batch_size < 1: raise ValueError("Batch size must be positive int") indices = np.arange(total_len) data = [] for comp in batches[0].components: data.append(np.concatenate([batch.get(component=comp) for batch in batches])) data = copy.deepcopy(data) new_indices = indices[:batch_size] new_batch = cls(ds.DatasetIndex(new_indices), unique_labels=batches[0].unique_labels) new_batch._data = tuple(comp[:batch_size] for comp in data) # pylint: disable=protected-access, attribute-defined-outside-init, line-too-long if total_len <= batch_size: rest_batch = None else: rest_indices = indices[batch_size:] rest_batch = cls(ds.DatasetIndex(rest_indices), unique_labels=batches[0].unique_labels) rest_batch._data = tuple(comp[batch_size:] for comp in data) # pylint: disable=protected-access, attribute-defined-outside-init, line-too-long return new_batch, rest_batch # Versatile components processing @ds.action def apply_transform(self, func, *args, src="signal", dst="signal", **kwargs): """Apply a function to each item in the batch. Parameters ---------- func : callable A function to apply. Must accept an item of ``src`` as its first argument if ``src`` is not ``None``. src : str, array-like or ``None``, optional The source to get the data from. If ``src`` is ``str``, it is treated as the batch attribute or component name. Defaults to ``signal`` component. dst : str, writeable array-like or ``None``, optional The source to put the result in. If ``dst`` is ``str``, it is treated as the batch attribute or component name. Defaults to ``signal`` component. args : misc Any additional positional arguments to ``func``. kwargs : misc Any additional named arguments to ``func``. Returns ------- batch : EcgBatch Transformed batch. If ``dst`` is ``str``, the corresponding attribute or component is changed inplace. """ if isinstance(dst, str) and not hasattr(self, dst): setattr(self, dst, np.array([None] * len(self.index))) return super().apply_transform(func, *args, src=src, dst=dst, **kwargs) def _init_component(self, *args, **kwargs): """Create and preallocate a new attribute with the name ``dst`` if it does not exist and return batch indices.""" _ = args dst = kwargs.get("dst") if dst is None: raise KeyError("dst argument must be specified") if not hasattr(self, dst): setattr(self, dst, np.array([None] * len(self.index))) return self.indices @ds.action @ds.inbatch_parallel(init="_init_component", src="signal", dst="signal", target="threads") def apply_to_each_channel(self, index, func, *args, src="signal", dst="signal", **kwargs): """Apply a function to each slice of a signal over the axis 0 (typically the channel axis). Parameters ---------- func : callable A function to apply. Must accept a signal as its first argument. src : str, optional Batch attribute or component name to get the data from. Defaults to ``signal`` component. dst : str, optional Batch attribute or component name to put the result in. Defaults to ``signal`` component. args : misc Any additional positional arguments to ``func``. kwargs : misc Any additional named arguments to ``func``. Returns ------- batch : EcgBatch Transformed batch. Changes ``dst`` attribute or component. """ i = self.get_pos(None, src, index) src_data = getattr(self, src)[i] dst_data = np.array([func(slc, *args, **kwargs) for slc in src_data]) getattr(self, dst)[i] = dst_data # Labels processing def _filter_batch(self, keep_mask): """Drop elements from a batch with corresponding ``False`` values in ``keep_mask``. This method creates a new batch and updates only components and ``unique_labels`` attribute. The information stored in other attributes will be lost. Parameters ---------- keep_mask : bool 1-D ndarray Filtering mask. Returns ------- batch : same class as self Filtered batch. Raises ------ SkipBatchException If all batch data was dropped. If the batch is created by a ``pipeline``, its processing will be stopped and the ``pipeline`` will create the next batch. """ indices = self.indices[keep_mask] if len(indices) == 0: raise ds.SkipBatchException("All batch data was dropped") batch = self.__class__(ds.DatasetIndex(indices), unique_labels=self.unique_labels) for component in self.components: setattr(batch, component, getattr(self, component)[keep_mask]) return batch @ds.action def drop_labels(self, drop_list): """Drop elements whose labels are in ``drop_list``. This method creates a new batch and updates only components and ``unique_labels`` attribute. The information stored in other attributes will be lost. Parameters ---------- drop_list : list Labels to be dropped from a batch. Returns ------- batch : EcgBatch Filtered batch. Creates a new ``EcgBatch`` instance. Raises ------ SkipBatchException If all batch data was dropped. If the batch is created by a ``pipeline``, its processing will be stopped and the ``pipeline`` will create the next batch. """ drop_arr = np.asarray(drop_list) self.unique_labels = np.setdiff1d(self.unique_labels, drop_arr) keep_mask = ~np.in1d(self.target, drop_arr) return self._filter_batch(keep_mask) @ds.action def keep_labels(self, keep_list): """Drop elements whose labels are not in ``keep_list``. This method creates a new batch and updates only components and ``unique_labels`` attribute. The information stored in other attributes will be lost. Parameters ---------- keep_list : list Labels to be kept in a batch. Returns ------- batch : EcgBatch Filtered batch. Creates a new ``EcgBatch`` instance. Raises ------ SkipBatchException If all batch data was dropped. If the batch is created by a ``pipeline``, its processing will be stopped and the ``pipeline`` will create the next batch. """ keep_arr = np.asarray(keep_list) self.unique_labels = np.intersect1d(self.unique_labels, keep_arr) keep_mask = np.in1d(self.target, keep_arr) return self._filter_batch(keep_mask) @ds.action def rename_labels(self, rename_dict): """Rename labels with corresponding values from ``rename_dict``. Parameters ---------- rename_dict : dict Dictionary containing ``(old label : new label)`` pairs. Returns ------- batch : EcgBatch Batch with renamed labels. Changes ``self.target`` inplace. """ self.unique_labels = np.array(sorted({rename_dict.get(t, t) for t in self.unique_labels})) self.target = np.array([rename_dict.get(t, t) for t in self.target]) return self @ds.action def binarize_labels(self): """Binarize labels in a batch in a one-vs-all fashion. Returns ------- batch : EcgBatch Batch with binarized labels. Changes ``self.target`` inplace. """ self.target = self.label_binarizer.transform(self.target) return self # Channels processing @ds.inbatch_parallel(init="indices", target="threads") def _filter_channels(self, index, names=None, indices=None, invert_mask=False): """Build and apply a boolean mask for each channel of a signal based on provided channels ``names`` and ``indices``. Mask value for a channel is set to ``True`` if its name or index is contained in ``names`` or ``indices`` respectively. The mask can be inverted before its application if ``invert_mask`` flag is set to ``True``. Parameters ---------- names : str or list or tuple, optional Channels names used to construct the mask. indices : int or list or tuple, optional Channels indices used to construct the mask. invert_mask : bool, optional Specifies whether to invert the mask before its application. Returns ------- batch : EcgBatch Batch with filtered channels. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If both ``names`` and ``indices`` are empty. ValueError If all channels should be dropped. """ i = self.get_pos(None, "signal", index) channels_names = np.asarray(self.meta[i]["signame"]) mask = np.zeros_like(channels_names, dtype=np.bool) if names is None and indices is None: raise ValueError("Both names and indices cannot be empty") if names is not None: names = np.asarray(names) mask |= np.in1d(channels_names, names) if indices is not None: indices = np.asarray(indices) mask |= np.array([i in indices for i in range(len(channels_names))]) if invert_mask: mask = ~mask if np.sum(mask) == 0: raise ValueError("All channels cannot be dropped") self.signal[i] = self.signal[i][mask] self.meta[i]["signame"] = channels_names[mask] self.meta[i]["units"] = self.meta[i]["units"][mask] @ds.action def drop_channels(self, names=None, indices=None): """Drop channels whose names are in ``names`` or whose indices are in ``indices``. Parameters ---------- names : str or list or tuple, optional Names of channels to be dropped from a batch. indices : int or list or tuple, optional Indices of channels to be dropped from a batch. Returns ------- batch : EcgBatch Batch with dropped channels. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If both ``names`` and ``indices`` are empty. ValueError If all channels should be dropped. """ return self._filter_channels(names, indices, invert_mask=True) @ds.action def keep_channels(self, names=None, indices=None): """Drop channels whose names are not in ``names`` and whose indices are not in ``indices``. Parameters ---------- names : str or list or tuple, optional Names of channels to be kept in a batch. indices : int or list or tuple, optional Indices of channels to be kept in a batch. Returns ------- batch : EcgBatch Batch with dropped channels. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If both ``names`` and ``indices`` are empty. ValueError If all channels should be dropped. """ return self._filter_channels(names, indices, invert_mask=False) @ds.action @ds.inbatch_parallel(init="indices", target="threads") def rename_channels(self, index, rename_dict): """Rename channels with corresponding values from ``rename_dict``. Parameters ---------- rename_dict : dict Dictionary containing ``(old channel name : new channel name)`` pairs. Returns ------- batch : EcgBatch Batch with renamed channels. Changes ``self.meta`` inplace. """ i = self.get_pos(None, "signal", index) old_names = self.meta[i]["signame"] new_names = np.array([rename_dict.get(name, name) for name in old_names], dtype=object) self.meta[i]["signame"] = new_names @ds.action @ds.inbatch_parallel(init="indices", target="threads") def reorder_channels(self, index, new_order): """Change the order of channels in the batch according to the ``new_order``. Parameters ---------- new_order : array_like A list of channel names specifying the order of channels in the transformed batch. Returns ------- batch : EcgBatch Batch with reordered channels. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If unknown lead names are specified. ValueError If all channels should be dropped. """ i = self.get_pos(None, "signal", index) old_order = self.meta[i]["signame"] diff = np.setdiff1d(new_order, old_order) if diff.size > 0: raise ValueError("Unknown lead names: {}".format(", ".join(diff))) if len(new_order) == 0: raise ValueError("All channels cannot be dropped") transform_dict = {k: v for v, k in enumerate(old_order)} indices = [transform_dict[k] for k in new_order] self.signal[i] = self.signal[i][indices] self.meta[i]["signame"] = self.meta[i]["signame"][indices] self.meta[i]["units"] = self.meta[i]["units"][indices] @ds.action @ds.inbatch_parallel(init="indices", target="threads") def convert_units(self, index, new_units): """Convert units of signal's channels to ``new_units``. Parameters ---------- new_units : str, dict or array_like New units of signal's channels. Must be specified in SI format and can be of one of the following types: * ``str`` - defines the same new units for each channel. * ``dict`` - defines the mapping from channel names to new units. Channels, whose names are not in the dictionary, remain unchanged. * ``array_like`` - defines new units for corresponding channels. The length of the sequence in this case must match the number of channels. Returns ------- batch : EcgBatch Batch with converted units. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If ``new_units`` is ``array_like`` and its length doesn't match the number of channels. ValueError If unknown units are used. ValueError If conversion between incompatible units is performed. """ i = self.get_pos(None, "signal", index) old_units = self.meta[i]["units"] channels_names = self.meta[i]["signame"] if isinstance(new_units, str): new_units = [new_units] * len(old_units) elif isinstance(new_units, dict): new_units = [new_units.get(name, unit) for name, unit in zip(channels_names, old_units)] elif len(new_units) != len(old_units): raise ValueError("The length of the new and old units lists must be the same") factors = [get_units_conversion_factor(old, new) for old, new in zip(old_units, new_units)] factors = np.array(factors).reshape(*([-1] + [1] * (self.signal[i].ndim - 1))) self.signal[i] *= factors self.meta[i]["units"] = np.asarray(new_units) # Signal processing @ds.action def convolve_signals(self, kernel, padding_mode="edge", axis=-1, **kwargs): """Convolve signals with given ``kernel``. Parameters ---------- kernel : 1-D array_like Convolution kernel. padding_mode : str or function, optional ``np.pad`` padding mode. axis : int, optional Axis along which signals are sliced. Default value is -1. kwargs : misc Any additional named arguments to ``np.pad``. Returns ------- batch : EcgBatch Convolved batch. Changes ``self.signal`` inplace. Raises ------ ValueError If ``kernel`` is not one-dimensional or has non-numeric ``dtype``. """ for i in range(len(self.signal)): self.signal[i] = bt.convolve_signals(self.signal[i], kernel, padding_mode, axis, **kwargs) return self @ds.action @ds.inbatch_parallel(init="indices", target="threads") def band_pass_signals(self, index, low=None, high=None, axis=-1): """Reject frequencies outside a given range. Parameters ---------- low : positive float, optional High-pass filter cutoff frequency (in Hz). high : positive float, optional Low-pass filter cutoff frequency (in Hz). axis : int, optional Axis along which signals are sliced. Default value is -1. Returns ------- batch : EcgBatch Filtered batch. Changes ``self.signal`` inplace. """ i = self.get_pos(None, "signal", index) self.signal[i] = bt.band_pass_signals(self.signal[i], self.meta[i]["fs"], low, high, axis) @ds.action def drop_short_signals(self, min_length, axis=-1): """Drop short signals from a batch. Parameters ---------- min_length : positive int Minimal signal length. axis : int, optional Axis along which length is calculated. Default value is -1. Returns ------- batch : EcgBatch Filtered batch. Creates a new ``EcgBatch`` instance. """ keep_mask = np.array([sig.shape[axis] >= min_length for sig in self.signal]) return self._filter_batch(keep_mask) @ds.action @ds.inbatch_parallel(init="indices", target="threads") def flip_signals(self, index, window_size=None, threshold=0): """Flip 2-D signals whose R-peaks are directed downwards. Each element of ``self.signal`` must be a 2-D ndarray. Signals are flipped along axis 1 (signal axis). For each subarray of ``window_size`` length skewness is calculated and compared with ``threshold`` to decide whether this subarray should be flipped or not. Then the mode of the result is calculated to make the final decision. Parameters ---------- window_size : int, optional Signal is split into K subarrays of ``window_size`` length. If it is not possible, data in the end of the signal is removed. If ``window_size`` is not given, the whole array is checked without splitting. threshold : float, optional If skewness of a subarray is less than the ``threshold``, it "votes" for flipping the signal. Default value is 0. Returns ------- batch : EcgBatch Batch with flipped signals. Changes ``self.signal`` inplace. Raises ------ ValueError If given signal is not two-dimensional. """ i = self.get_pos(None, "signal", index) self._check_2d(self.signal[i]) sig = bt.band_pass_signals(self.signal[i], self.meta[i]["fs"], low=5, high=50) sig = bt.convolve_signals(sig, kernels.gaussian(11, 3)) if window_size is None: window_size = sig.shape[1] number_of_splits = sig.shape[1] // window_size sig = sig[:, : window_size * number_of_splits] splits = np.split(sig, number_of_splits, axis=-1) votes = [np.where(scipy.stats.skew(subseq, axis=-1) < threshold, -1, 1).reshape(-1, 1) for subseq in splits] mode_of_votes = scipy.stats.mode(votes)[0].reshape(-1, 1) self.signal[i] *= mode_of_votes @ds.action @ds.inbatch_parallel(init="indices", target="threads") def slice_signals(self, index, selection_object): """Perform indexing or slicing of signals in a batch. Allows basic ``NumPy`` indexing and slicing along with advanced indexing. Parameters ---------- selection_object : slice or int or a tuple of slices and ints An object that is used to slice signals. Returns ------- batch : EcgBatch Batch with sliced signals. Changes ``self.signal`` inplace. """ i = self.get_pos(None, "signal", index) self.signal[i] = self.signal[i][selection_object] @staticmethod def _pad_signal(signal, length, pad_value): """Pad signal with ``pad_value`` to the left along axis 1 (signal axis). Parameters ---------- signal : 2-D ndarray Signals to pad. length : positive int Length of padded signal along axis 1. pad_value : float Padding value. Returns ------- signal : 2-D ndarray Padded signals. """ pad_len = length - signal.shape[1] sig = np.pad(signal, ((0, 0), (pad_len, 0)), "constant", constant_values=pad_value) return sig @staticmethod def _get_segmentation_arg(arg, arg_name, target): """Get segmentation step or number of segments for a given signal. Parameters ---------- arg : int or dict Segmentation step or number of segments. arg_name : str Argument name. target : hashable Signal target. Returns ------- arg : positive int Segmentation step or number of segments for given signal. Raises ------ KeyError If ``arg`` dict has no ``target`` key. ValueError If ``arg`` is not int or dict. """ if isinstance(arg, int): return arg if isinstance(arg, dict): arg = arg.get(target) if arg is None: raise KeyError("Undefined {} for target {}".format(arg_name, target)) else: return arg else: raise ValueError("Unsupported {} type".format(arg_name)) @staticmethod def _check_segmentation_args(signal, target, length, arg, arg_name): """Check values of segmentation parameters. Parameters ---------- signal : 2-D ndarray Signals to segment. target : hashable Signal target. length : positive int Length of each segment along axis 1. arg : positive int or dict Segmentation step or number of segments. arg_name : str Argument name. Returns ------- arg : positive int Segmentation step or number of segments for given signal. Raises ------ ValueError If: * given signal is not two-dimensional, * ``arg`` is not int or dict, * ``length`` or ``arg`` for a given signal is negative or non-integer. KeyError If ``arg`` dict has no ``target`` key. """ EcgBatch._check_2d(signal) if (length <= 0) or not isinstance(length, int): raise ValueError("Segment length must be positive integer") arg = EcgBatch._get_segmentation_arg(arg, arg_name, target) if (arg <= 0) or not isinstance(arg, int): raise ValueError("{} must be positive integer".format(arg_name)) return arg @ds.action @ds.inbatch_parallel(init="indices", target="threads") def split_signals(self, index, length, step, pad_value=0): """Split 2-D signals along axis 1 (signal axis) with given ``length`` and ``step``. If signal length along axis 1 is less than ``length``, it is padded to the left with ``pad_value``. Notice, that each resulting signal will be a 3-D ndarray of shape ``[n_segments, n_channels, length]``. If you would like to get a number of 2-D signals of shape ``[n_channels, length]`` as a result, you need to apply ``unstack_signals`` method then. Parameters ---------- length : positive int Length of each segment along axis 1. step : positive int or dict Segmentation step. If ``step`` is dict, segmentation step is fetched by signal's target key. pad_value : float, optional Padding value. Defaults to 0. Returns ------- batch : EcgBatch Batch of split signals. Changes ``self.signal`` inplace. Raises ------ ValueError If: * given signal is not two-dimensional, * ``step`` is not int or dict, * ``length`` or ``step`` for a given signal is negative or non-integer. KeyError If ``step`` dict has no signal's target key. """ i = self.get_pos(None, "signal", index) step = self._check_segmentation_args(self.signal[i], self.target[i], length, step, "step size") if self.signal[i].shape[1] < length: tmp_sig = self._pad_signal(self.signal[i], length, pad_value) self.signal[i] = tmp_sig[np.newaxis, ...] else: self.signal[i] = bt.split_signals(self.signal[i], length, step) @ds.action @ds.inbatch_parallel(init="indices", target="threads") def random_split_signals(self, index, length, n_segments, pad_value=0): """Split 2-D signals along axis 1 (signal axis) ``n_segments`` times with random start position and given ``length``. If signal length along axis 1 is less than ``length``, it is padded to the left with ``pad_value``. Notice, that each resulting signal will be a 3-D ndarray of shape ``[n_segments, n_channels, length]``. If you would like to get a number of 2-D signals of shape ``[n_channels, length]`` as a result, you need to apply ``unstack_signals`` method then. Parameters ---------- length : positive int Length of each segment along axis 1. n_segments : positive int or dict Number of segments. If ``n_segments`` is dict, number of segments is fetched by signal's target key. pad_value : float, optional Padding value. Defaults to 0. Returns ------- batch : EcgBatch Batch of split signals. Changes ``self.signal`` inplace. Raises ------ ValueError If: * given signal is not two-dimensional, * ``n_segments`` is not int or dict, * ``length`` or ``n_segments`` for a given signal is negative or non-integer. KeyError If ``n_segments`` dict has no signal's target key. """ i = self.get_pos(None, "signal", index) n_segments = self._check_segmentation_args(self.signal[i], self.target[i], length, n_segments, "number of segments") if self.signal[i].shape[1] < length: tmp_sig = self._pad_signal(self.signal[i], length, pad_value) self.signal[i] = np.tile(tmp_sig, (n_segments, 1, 1)) else: self.signal[i] = bt.random_split_signals(self.signal[i], length, n_segments) @ds.action def unstack_signals(self): """Create a new batch in which each signal's element along axis 0 is considered as a separate signal. This method creates a new batch and updates only components and ``unique_labels`` attribute. Signal's data from non-``signal`` components is duplicated using a deep copy for each of the resulting signals. The information stored in other attributes will be lost. Returns ------- batch : same class as self Batch with split signals and duplicated other components. Examples -------- >>> batch.signal array([array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])], dtype=object) >>> batch = batch.unstack_signals() >>> batch.signal array([array([0, 1, 2, 3]), array([4, 5, 6, 7]), array([ 8, 9, 10, 11])], dtype=object) """ n_reps = [sig.shape[0] for sig in self.signal] signal = np.array([channel for signal in self.signal for channel in signal] + [None])[:-1] index = ds.DatasetIndex(np.arange(len(signal))) batch = self.__class__(index, unique_labels=self.unique_labels) batch.signal = signal for component_name in set(self.components) - {"signal"}: val = [] component = getattr(self, component_name) is_object_dtype = (component.dtype.kind == "O") for elem, n in zip(component, n_reps): for _ in range(n): val.append(copy.deepcopy(elem)) if is_object_dtype: val = np.array(val + [None])[:-1] else: val = np.array(val) setattr(batch, component_name, val) return batch def _safe_fs_resample(self, index, fs): """Resample 2-D signal along axis 1 (signal axis) to given sampling rate. New sampling rate is guaranteed to be positive float. Parameters ---------- fs : positive float New sampling rate. Raises ------ ValueError If given signal is not two-dimensional. """ i = self.get_pos(None, "signal", index) self._check_2d(self.signal[i]) new_len = max(1, int(fs * self.signal[i].shape[1] / self.meta[i]["fs"])) self.meta[i]["fs"] = fs self.signal[i] = bt.resample_signals(self.signal[i], new_len) @ds.action @ds.inbatch_parallel(init="indices", target="threads") def resample_signals(self, index, fs): """Resample 2-D signals along axis 1 (signal axis) to given sampling rate. Parameters ---------- fs : positive float New sampling rate. Returns ------- batch : EcgBatch Resampled batch. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If given signal is not two-dimensional. ValueError If ``fs`` is negative or non-numeric. """ if fs <= 0: raise ValueError("Sampling rate must be a positive float") self._safe_fs_resample(index, fs) @ds.action @ds.inbatch_parallel(init="indices", target="threads") def random_resample_signals(self, index, distr, **kwargs): """Resample 2-D signals along axis 1 (signal axis) to a new sampling rate, sampled from a given distribution. If new sampling rate is negative, the signal is left unchanged. Parameters ---------- distr : str or callable ``NumPy`` distribution name or a callable to sample from. kwargs : misc Distribution parameters. Returns ------- batch : EcgBatch Resampled batch. Changes ``self.signal`` and ``self.meta`` inplace. Raises ------ ValueError If given signal is not two-dimensional. ValueError If ``distr`` is not a string or a callable. """ if hasattr(np.random, distr): distr_fn = getattr(np.random, distr) fs = distr_fn(**kwargs) elif callable(distr): fs = distr_fn(**kwargs) else: raise ValueError("Unknown type of distribution parameter") if fs <= 0: fs = self[index].meta["fs"] self._safe_fs_resample(index, fs) # Complex ECG processing @ds.action @ds.inbatch_parallel(init="_init_component", src="signal", dst="signal", target="threads") def spectrogram(self, index, *args, src="signal", dst="signal", **kwargs): """Compute a spectrogram for each slice of a signal over the axis 0 (typically the channel axis). This method is a wrapper around ``scipy.signal.spectrogram``, that accepts the same arguments, except the ``fs`` which is substituted automatically from signal's meta. The method returns only the spectrogram itself. Parameters ---------- src : str, optional Batch attribute or component name to get the data from. dst : str, optional Batch attribute or component name to put the result in. args : misc Any additional positional arguments to ``scipy.signal.spectrogram``. kwargs : misc Any additional named arguments to ``scipy.signal.spectrogram``. Returns ------- batch : EcgBatch Transformed batch. Changes ``dst`` attribute or component. """ i = self.get_pos(None, src, index) fs = self.meta[i]["fs"] src_data = getattr(self, src)[i] dst_data = np.array([scipy.signal.spectrogram(slc, fs, *args, **kwargs)[-1] for slc in src_data]) getattr(self, dst)[i] = dst_data @ds.action @ds.inbatch_parallel(init="_init_component", src="signal", dst="signal", target="threads") def standardize(self, index, axis=None, eps=1e-10, *, src="signal", dst="signal"): """Standardize data along specified axes by removing the mean and scaling to unit variance. Parameters ---------- axis : ``None`` or int or tuple of ints, optional Axis or axes along which standardization is performed. The default is to compute for the flattened array. eps: float Small addition to avoid division by zero. src : str, optional Batch attribute or component name to get the data from. dst : str, optional Batch attribute or component name to put the result in. Returns ------- batch : EcgBatch Transformed batch. Changes ``dst`` attribute or component. """ i = self.get_pos(None, src, index) src_data = getattr(self, src)[i] dst_data = ((src_data - np.mean(src_data, axis=axis, keepdims=True)) / np.std(src_data, axis=axis, keepdims=True) + eps) getattr(self, dst)[i] = dst_data @ds.action @ds.inbatch_parallel(init="indices", target="threads") def calc_ecg_parameters(self, index, src=None): """Calculate ECG report parameters and write them to the ``meta`` component. Calculates PQ, QT, QRS intervals along with their borders and the heart rate value based on the annotation and writes them to the ``meta`` component. Parameters ---------- src : str Batch attribute or component name to get the annotation from. Returns ------- batch : EcgBatch Batch with report parameters stored in the ``meta`` component. Raises ------ ValueError If ``src`` is ``None`` or is not an attribute of a batch. """ if not (src and hasattr(self, src)): raise ValueError("Batch does not have an attribute or component {}!".format(src)) i = self.get_pos(None, "signal", index) src_data = getattr(self, src)[i] self.meta[i]["hr"] = bt.calc_hr(self.signal[i], src_data, np.float64(self.meta[i]["fs"]), bt.R_STATE) self.meta[i]["pq"] = bt.calc_pq(src_data, np.float64(self.meta[i]["fs"]), bt.P_STATES, bt.Q_STATE, bt.R_STATE) self.meta[i]["qt"] = bt.calc_qt(src_data, np.float64(self.meta[i]["fs"]), bt.T_STATES, bt.Q_STATE, bt.R_STATE) self.meta[i]["qrs"] = bt.calc_qrs(src_data, np.float64(self.meta[i]["fs"]), bt.S_STATE, bt.Q_STATE, bt.R_STATE) self.meta[i]["qrs_segments"] = np.vstack(bt.find_intervals_borders(src_data, bt.QRS_STATES)) self.meta[i]["p_segments"] = np.vstack(bt.find_intervals_borders(src_data, bt.P_STATES)) self.meta[i]["t_segments"] = np.vstack(bt.find_intervals_borders(src_data, bt.T_STATES))
the-stack_106_23608
## @package gradient_checker # Module caffe2.python.gradient_checker from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import core, workspace from caffe2.proto import caffe2_pb2 class NetGradientChecker(object): @staticmethod def Check(net, outputs_with_grad, input_values, input_to_check, step_size=0.0001, threshold=0.05, print_net=True): assert input_to_check in input_values.keys() net_copy = net.Clone(net.Name() + "_copy") grad_map = net_copy.AddGradientOperators(outputs_with_grad) assert input_to_check in grad_map, ( '{} has no gradient, cannot check net gradient.'.format( input_to_check)) for name, value in input_values.items(): workspace.blobs[name] = value def GetLoss(new_value): workspace.blobs[input_to_check] = new_value workspace.RunNetOnce(net_copy) return sum([ workspace.blobs[output] for output in outputs_with_grad ]).sum() def GetValue(dim, delta): input_value = input_values[input_to_check].copy() input_value.flat[dim] += delta return input_value workspace.RunNetOnce(net_copy) grad_blob = grad_map[input_to_check] def get_analytic_grad(grad_blob): if isinstance(grad_blob, core.BlobReference): return workspace.blobs[grad_blob] # If grad_blob is not a single blob, it should be a gradient slice. # To make it comparable with the estimiated gradient which is dense, # we need to first convert grad_blob to dense gradient. assert isinstance(grad_blob, core.GradientSlice) dense_grad = 'tmp_dense_grad' sparse_to_dense_op = core.CreateOperator( 'SparseToDense', [grad_blob.indices, grad_blob.values, input_to_check], dense_grad, ) workspace.RunOperatorOnce(sparse_to_dense_op) return workspace.blobs[dense_grad] analytic_grad = get_analytic_grad(grad_blob) grad_estimate = np.zeros_like(input_values[input_to_check]) for dim in range(input_values[input_to_check].size): pos_loss = GetLoss(GetValue(dim, step_size)) neg_loss = GetLoss(GetValue(dim, -step_size)) grad_estimate.flat[dim] = (pos_loss - neg_loss) / step_size / 2 err_msg = "Error in gradient check for net_copy {}".format( net.Name()) if print_net: err_msg += ": {}".format(net.Proto()) np.testing.assert_allclose( analytic_grad, grad_estimate, atol=threshold, rtol=threshold, err_msg=err_msg, ) delta = np.abs(grad_estimate - analytic_grad).flatten() return np.mean(delta), max(delta) class GradientChecker: """A gradient checker in Python. This is not the most efficient way to check gradients, as the Python interface will involve a lot of copy back and forth operations. Use at your own risk. """ def __init__( self, stepsize, threshold, device_option=caffe2_pb2.DeviceOption(), workspace_name="gradient_check" ): self._stepsize = stepsize self._threshold = threshold self._device_option = device_option self._workspace_name = workspace_name def GetLossAndGrad( self, op, grad_ops, x, input_name, grad_name, outputs_with_grads ): # First, feed in the current input. Note that we are not changing # anything else, so we don't need to feed in others. workspace.FeedBlob(input_name, x, self._device_option) # Run. workspace.RunOperatorOnce(op) loss = 0. # Get Loss and feed in the gradients, run gradient ops. for idx in outputs_with_grads: name = op.output[idx] arr = workspace.FetchBlob(name) loss += (arr**2).sum() workspace.FeedBlob(name + '_grad', arr, self._device_option) loss /= 2. # Run gradient ops workspace.RunOperatorsOnce(grad_ops) # Get gradients if isinstance(grad_name, core.GradientSlice): workspace.FeedBlob('zeros', np.zeros_like(x, dtype=np.float32)) workspace.FeedBlob('ones', np.ones(1, dtype=np.float32)) gv_cpu_op = core.CreateOperator( 'EnsureCPUOutput', grad_name.values, grad_name.values + '_cpu', device_option=self._device_option ) gi_cpu_op = core.CreateOperator( 'EnsureCPUOutput', grad_name.indices, grad_name.indices + '_cpu', device_option=self._device_option ) sparse_to_dense_op = core.CreateOperator( 'ScatterWeightedSum', [ 'zeros', 'ones', grad_name.indices + '_cpu', grad_name.values + '_cpu', 'ones' ], 'zeros', ) workspace.RunOperatorOnce(gv_cpu_op) workspace.RunOperatorOnce(gi_cpu_op) workspace.RunOperatorOnce(sparse_to_dense_op) grad = workspace.FetchBlob('zeros') else: grad = workspace.FetchBlob(grad_name) return loss, grad def CheckSimple( self, op, inputs, input_to_check, outputs_with_grads, grad_ops=None, input_device_options=None ): """Checks the operator in a very simple fashion by stacking a sum of squares on the top. Inputs: op: the operator to be checked. inputs: the input data in numpy arrays. input_to_check: an index specifying which input blob we should check. outputs_with_grads: indices specifying which output blobs will we need to check gradients with. For these outputs, we will collect a squared sum and also feed in their gradients. grad_operator: the gradient operator. If not given, we will get the gradient operator from the gradient registry. input_device_options: an optional mapping from input names to DeviceOptions (to override the default DeviceOption) Outputs: boolean: True if it passes, False if it does not pass. """ if input_device_options is None: input_device_options = {} # Entering the checker workspace old_ws_name = workspace.CurrentWorkspace() if self._workspace_name != old_ws_name: workspace.SwitchWorkspace(self._workspace_name, True) op.device_option.CopyFrom(self._device_option) if grad_ops is None: # TODO(jiayq): use the gradient registration instead of the old # hack. grad_ops, g_input = core.GradientRegistry.GetGradientForOp( op, [s + '_grad' for s in op.output]) dims_to_check = inputs[input_to_check].size # First, feed in the input. for i, arr in enumerate(inputs): workspace.FeedBlob( op.input[i], arr, input_device_options.get( op.input[i], self._device_option)) # Get the loss and gradient for the original. input_name = op.input[input_to_check] grad_name = g_input[input_to_check] loss, grad = self.GetLossAndGrad( op, grad_ops, inputs[input_to_check], input_name, grad_name, outputs_with_grads ) grad_estimate = np.zeros_like(inputs[input_to_check]) if grad_estimate.shape != grad.shape: raise Exception( "Mismatched gradient shapes: estimated ({}), grad ({})".format( grad_estimate.shape, grad.shape)) for current_dim in range(dims_to_check): # Positive gradient inputs[input_to_check].flat[current_dim] += self._stepsize pos_loss, _ = self.GetLossAndGrad( op, grad_ops, inputs[input_to_check], input_name, grad_name, outputs_with_grads ) # Negative gradient inputs[input_to_check].flat[current_dim] -= self._stepsize * 2 neg_loss, _ = self.GetLossAndGrad( op, grad_ops, inputs[input_to_check], input_name, grad_name, outputs_with_grads ) # Recover the value inputs[input_to_check].flat[current_dim] += self._stepsize grad_estimate.flat[current_dim] = ( pos_loss - neg_loss) / self._stepsize / 2 # Now, check correctness fail_mat = ~np.isclose( grad, grad_estimate, atol=self._threshold, rtol=self._threshold) if np.any(fail_mat): idx = np.flatnonzero(fail_mat) print('Failed. [idx, grad, grad_estimate] are:') print(np.vstack([idx, grad.flat[idx], grad_estimate.flat[idx]]).T) ret = False else: ret = True # After finishing, cleaning up things. if self._workspace_name != old_ws_name: # We reset the workspace to make sure everything intermediate is # cleaned up. Note that there is no need to delete a workspace - # when empty it takes a very limited amount of memory. workspace.ResetWorkspace() workspace.SwitchWorkspace(old_ws_name) return ret, grad, grad_estimate
the-stack_106_23609
## ## MIT License ## ## Copyright (c) 2016 Luca Angioloni ## ## Permission is hereby granted, free of charge, to any person obtaining a copy ## of this software and associated documentation files (the "Software"), to deal ## in the Software without restriction, including without limitation the rights ## to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ## copies of the Software, and to permit persons to whom the Software is ## furnished to do so, subject to the following conditions: ## ## The above copyright notice and this permission notice shall be included in all ## copies or substantial portions of the Software. ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ## OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ## SOFTWARE. ## import numpy as np import cv2 from timeit import default_timer as timer # face_cascade = cv2.CascadeClassifier('/usr/local/Cellar/opencv3/3.1.0_3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml') # eye_cascade = cv2.CascadeClassifier('/usr/local/Cellar/opencv3/3.1.0_3/share/OpenCV/haarcascades/haarcascade_eye.xml') face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') # fullBody = cv2.CascadeClassifier('/usr/local/Cellar/opencv3/3.1.0_3/share/OpenCV/haarcascades/haarcascade_fullbody.xml') print(face_cascade.empty()) camera = cv2.VideoCapture(0) if camera.isOpened(): # try to get the first frame rval, frame = camera.read() else: rval = False count = 0 start_time = timer() while rval: count += 1 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = frame[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) cv2.imshow("preview", frame) now = timer() if (now - start_time >= 1): print(str(count) + "fps") count = 0 start_time = now rval, frame = camera.read() key = cv2.waitKey(20) if key == 27: # exit on ESC break cv2.destroyWindow("preview")
the-stack_106_23611
vowels = 'aiyeou' consonants = 'bkxznhdcwgpvjqtsrlmf' ans = '' while True: try: text = input() for t in text: lowerT = t.lower() if lowerT in vowels: tmp = vowels[(vowels.index(lowerT) + 3) % 6] ans += tmp.upper() if t.isupper() else tmp elif lowerT in consonants: tmp = consonants[(consonants.index(lowerT) + 10) % 20] ans += tmp.upper() if t.isupper() else tmp else: ans += t ans += '\n' except: break print(ans)
the-stack_106_23612
#!/usr/bin/python # Representation of logic circuit as AIG import sys class AigRef: node = None negate = False def __init__(self, node, negate): self.node = node self.negate = negate def encode(self): return 2 * self.node.id + (1 if self.negate else 0) def isZero(self): return self.node.id == 0 and not self.negate def isOne(self): return self.node.id == 0 and self.negate def __str__(self): if self.isZero(): return "0" elif self.isOne(): return "1" else: return ("!" if self.negate else "") + str(self.node.id) def __eq__(self, other): return self.node == other.node and self.negate == other.negate def __hash__(self): return self.encode() # Represent either AND node or input node class AigNode: id = 0 children = [] # AigRefs of children. Empty if input node isInput = False def __init__(self, id, children): self.id = id self.children = children self.isInput = len(children) == 0 # Generate string representing declaration line def declare(self): ilist = [2*self.id] + [c.encode() for c in self.children] slist = [str(i) for i in ilist] return " ".join(slist) def __str__(self): if len(self.children) > 1: return "%d = %s & %s" % (self.id, str(self.children[0]), str(self.children[1])) else: return "%d = input" % (self.id) def __eq__(self, other): return self.id == other.id def __hash__(self): return self.id # Restricted form of AIG, only having combinational circuit class AiGraph: inputs = [] outputs = [] gates = [] # Set of all gates, including constant zero gateMap = {} # Mapping from ref X ref --> gate nextId = 1 comments = [] # Lines of comment text zeroRef = None # Ref representing constant zero oneRef = None # Ref representing constant one def __init__(self, inputCount): self.outputs = [] cnode = AigNode(0, []) self.gates = [cnode] self.refMap = {} self.comments = [] self.nextId = 1 self.zeroRef = self.makeRef(cnode, False) self.oneRef = self.makeRef(cnode, True) self.inputs = [self.makeRef(self.newNode([]), False) for id in range(inputCount)] def newNode(self, children): node = AigNode(self.nextId, children) self.nextId += 1 self.gates.append(node) return node def makeRef(self, node, negate): return AigRef(node, negate) def makeOutput(self, ref): self.outputs.append(ref) # Generate and of two refs. # Handle degenerate cases # Reuse existing gate if available def findOrMake(self, ref1, ref2): # Constant cases if ref1.isZero() or ref2.isZero(): return self.zeroRef elif ref1.isOne(): return ref2 elif ref2.isOne(): return ref1 key = (ref1, ref2) if (ref1, ref2) not in self.gateMap: gate = self.newNode([ref1, ref2]) self.gateMap[key] = gate return self.makeRef(self.gateMap[key], False) def negOp(self, ref): return AigRef(ref.node, not ref.negate) def andOp(self, ref1, ref2): ref = self.findOrMake(ref1, ref2) print("And(%s,%s)-->%s" % (str(ref1), str(ref2), str(ref))) return ref def orOp(self, ref1, ref2): nref1 = self.negOp(ref1) nref2 = self.negOp(ref2) return self.negOp(self.andOp(nref1, nref2)) def iteOp(self, iref, tref, fref): if tref == fref: return tref hi = self.andOp(iref, tref) lo = self.andOp(self.negOp(iref), fref) return self.orOp(hi, lo) def comment(self, line): self.comments.append(line) def header(self, I): M = len(self.inputs) L = 0 O = len(self.outputs) A = len(self.gates)-1 ilist = [M, I, L, O, A] slist = ["aag"] + [str(i) for i in ilist] return " ".join(slist) def generate(self, outfile = sys.stdout): realInputs = set([]) for oref in self.outputs: onode = oref.node if onode != self.gates[0] and onode.isInput and onode not in realInputs: realInputs |= { onode } for g in self.gates: for cref in g.children: c = cref.node if c != self.gates[0] and c.isInput and c not in realInputs: realInputs |= { c } rlist = sorted([i for i in realInputs], key=lambda g: g.id) h = self.header(len(rlist)) outfile.write(h + '\n') for inode in rlist: outfile.write(inode.declare() + '\n') for oref in self.outputs: outfile.write(str(oref.encode()) + '\n') for gnode in self.gates[1:]: if not gnode.isInput: outfile.write(gnode.declare() + '\n') if len(self.comments) > 1: outfile.write("c\n") for line in self.comments: outfile.write(line + '\n')
the-stack_106_23613
import time import numpy as np import cudarray as ca from ..feed import Feed from ..parameter import SharedParameter import logging log = logging.getLogger(__name__) class GradientDescent(object): def __init__(self, model, feed, learn_rule): self.feed = Feed.from_any(feed) self.learn_rule = learn_rule self.model = model self.params = None self.learn_rule_states = None self.reset() def reset(self): self.feed.reset() self.model.setup(*self.feed.shapes) self.params = [p for p in self.model.params if not isinstance(p, SharedParameter)] self.learn_rule_states = [self.learn_rule.init_state(p) for p in self.params] n_params = np.sum([p.array.size for p in self.params]) log.info('SGD: Model contains %i parameters.', n_params) log.info('SGD: %d gradient updates per epoch.', self.feed.epoch_size) def train_epoch(self): batch_losses = [] for batch in self.feed.batches(): loss = np.array(ca.mean(self.model.update(*batch))) for param, state in zip(self.params, self.learn_rule_states): self.learn_rule.step(param, state) batch_losses.append(loss) epoch_loss = np.mean(batch_losses) return epoch_loss def train_epochs(self, n_epochs, annealer=None, error_fun=None): self.train_patience(annealer, error_fun, min_epochs=n_epochs, max_epochs=n_epochs) def train_patience(self, annealer=None, error_fun=None, min_epochs=5, max_epochs=1000, improvement_thresh=0.995, patience_incr=1.5): epoch = 0 converged = False patience = min_epochs best_score = np.inf start_time = time.clock() while epoch < max_epochs and not converged: epoch += 1 self.model.phase = 'train' self.model.setup(*self.feed.shapes) epoch_loss = self.train_epoch() if error_fun is None: epoch_error = epoch_loss else: epoch_error = error_fun() if epoch_error < best_score: improvement = epoch_error / best_score if improvement < improvement_thresh: # increase patience on significant improvement patience = max(patience, epoch*patience_incr) best_score = epoch_error if error_fun is None: log.info('epoch %d/%d, loss %f', epoch, patience, epoch_loss) else: log.info('epoch %d/%d, loss %f, error %.4f', epoch, patience, epoch_loss, epoch_error) for param in self.params: param.monitor() if patience < epoch: log.info('SGD: Converged.') converged = True if annealer is not None: self.learn_rule.learn_rate = annealer.value(epoch) end_time = time.clock() if not converged: log.info('SGD: Stopped by max_epochs.') duration = float(end_time - start_time) log.info('SGD: Optimization ran for %.2f minutes (%d epochs, ' '%.1f s/epoch)', duration/60, epoch, duration/epoch)
the-stack_106_23615
# -*- coding: utf-8 -*- # Copyright (c) 2015, Mayo Clinic # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of the Mayo Clinic nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import os import sys import traceback import shlex from typing import List, Optional, Callable, Tuple def _parser_exit(parser: argparse.ArgumentParser, proc: "DirectoryListProcessor", _=0, message: Optional[str]=None) -> None: """ Override the default exit in the parser. :param parser: :param _: exit code. Unused because we don't exit :param message: Optional message """ if message: parser._print_message(message, sys.stderr) proc.successful_parse = False class DirectoryListProcessor: def __init__(self, args: Optional[List[str]], description: str, infile_suffix: Optional[str], outfile_suffix: Optional[str], addargs: Optional[Callable[[argparse.ArgumentParser], None]]=None, postparse: Optional[Callable[[argparse.Namespace], None]]=None, noexit: bool=False, fromfile_prefix_chars: Optional[str]=None): """ Build a directory list processor :param args: Input arguments such as supplied from sys.argv. None means use sys.argv :param description: Description of the function. Appears in a help string :param infile_suffix: Suffix filter on input file. If absent, all files not starting with "." pass :param outfile_suffix: Suffix to add to output file. If absent, name is same as input :param addargs: Function to add arguments before parsing. Signature: addargs(parser: argparse.ArgumentParser) :param postparse: Function to review arguments post parsing. Signature: postparse(opts: argparse.Namespace) :param noexit: Do not exit the parser on error. Primarily for testing. If an exitable error occurs, succesful_parse is set to False :param fromfile_prefix_chars: parser file prefix characters """ self.infile_suffix = infile_suffix self.outfile_suffix = outfile_suffix self.successful_parse = True self.fromfile_prefix_chars = fromfile_prefix_chars if fromfile_prefix_chars else "" self.parser = argparse.ArgumentParser(description=description, fromfile_prefix_chars=fromfile_prefix_chars) self.parser.add_argument("-i", "--infile", help="Input file(s)", nargs="*") self.parser.add_argument("-id", "--indir", help="Input directory") self.parser.add_argument("-o", "--outfile", help="Output file(s)", nargs="*") self.parser.add_argument("-od", "--outdir", help="Output directory") self.parser.add_argument("-f", "--flatten", help="Flatten output directory", action="store_true") self.parser.add_argument("-s", "--stoponerror", help="Stop on processing error", action="store_true") if addargs is not None: addargs(self.parser) if noexit: self.parser.exit = lambda *args: _parser_exit(self.parser, self, *args) self.opts = self.parser.parse_args(self.decode_file_args(args if args is not None else sys.argv[1:])) if self.successful_parse: if self.opts.indir and not os.path.isdir(self.opts.indir): if os.path.exists(self.opts.indir): self.parser.error("{} is not a directory".format(self.opts.indir)) else: self.parser.error("Directory {} does not exist".format(self.opts.indir)) return n_infiles = len(self.opts.infile) if self.opts.infile else 0 n_outfiles = len(self.opts.outfile) if self.opts.outfile else 0 if (n_infiles > 1 or n_outfiles > 1) and n_infiles != n_outfiles and n_outfiles > 1: self.parser.error("Number of input and output files must match") return if postparse is not None: postparse(self.opts) def decode_file_args(self, argv: List[str]) -> List[str]: """ Preprocess any arguments that begin with the fromfile prefix char(s). This replaces the one in Argparse because it a) doesn't process "-x y" correctly and b) ignores bad files :param argv: raw options list :return: options list with file references replaced """ for arg in [arg for arg in argv if arg[0] in self.fromfile_prefix_chars]: argv.remove(arg) with open(arg[1:]) as config_file: argv += shlex.split(config_file.read()) return self.decode_file_args(argv) return argv @staticmethod def _proc_error(ifn: str, e: Exception) -> None: """ Report an error :param ifn: Input file name :param e: Exception to report """ type_, value_, traceback_ = sys.exc_info() traceback.print_tb(traceback_, file=sys.stderr) print(file=sys.stderr) print("***** ERROR: %s" % ifn, file=sys.stderr) print(str(e), file=sys.stderr) def _call_proc(self, proc: Callable[[Optional[str], Optional[str], argparse.Namespace], bool], ifn: Optional[str], ofn: Optional[str]) -> bool: """ Call the actual processor and intercept anything that goes wrong :param proc: Process to call :param ifn: Input file name to process. If absent, typical use is stdin :param ofn: Output file name. If absent, typical use is stdout :return: true means process was successful """ rslt = False try: rslt = proc(ifn, ofn, self.opts) except Exception as e: self._proc_error(ifn, e) return True if rslt or rslt is None else False def _check_filter(self, fn: Optional[str], dirpath: Optional[str], file_filter: Optional[Callable[[str], bool]], file_filter_2: Optional[Callable[[Optional[str], str, argparse.Namespace], bool]]) -> bool: rval = (fn is None or ('://' in fn or fn.endswith(self.infile_suffix))) and \ (not file_filter or file_filter(fn)) and \ (not file_filter_2 or file_filter_2(fn, dirpath if dirpath is not None else '', self.opts)) and \ (file_filter or file_filter_2 or fn is None or not fn.startswith('.')) return rval def run(self, proc: Callable[[Optional[str], Optional[str], argparse.Namespace], Optional[bool]], file_filter: Optional[Callable[[str], bool]]=None, file_filter_2: Optional[Callable[[Optional[str], str, argparse.Namespace], bool]]=None) \ -> Tuple[int, int]: """ Run the directory list processor calling a function per file. :param proc: Process to invoke. Args: input_file_name, output_file_name, argparse options. Return pass or fail. No return also means pass :param file_filter: Additional filter for testing file names, types, etc. :param file_filter_2: File filter that includes directory, filename and opts (separate for backwards compatibility) :return: tuple - (number of files passed to proc: int, number of files that passed proc) """ nfiles = 0 nsuccess = 0 # List of one or more input and output files if self.opts.infile: for file_idx in range(len(self.opts.infile)): in_f = self.opts.infile[file_idx] if self._check_filter(in_f, self.opts.indir, file_filter, file_filter_2): fn = os.path.join(self.opts.indir, in_f) if self.opts.indir else in_f nfiles += 1 if self._call_proc(proc, fn, self._outfile_name('', fn, outfile_idx=file_idx)): nsuccess += 1 elif self.opts.stoponerror: return nfiles, nsuccess # Single input from the command line elif not self.opts.indir: if self._check_filter(None, None, file_filter, file_filter_2): nfiles += 1 if self._call_proc(proc, None, self._outfile_name('', '')): nsuccess += 1 # Input directory that needs to be navigated else: for dirpath, _, filenames in os.walk(self.opts.indir): for fn in filenames: if self._check_filter(fn, dirpath, file_filter, file_filter_2): nfiles += 1 if self._call_proc(proc, os.path.join(dirpath, fn), self._outfile_name(dirpath, fn)): nsuccess += 1 elif self.opts.stoponerror: return nfiles, nsuccess return nfiles, nsuccess def _outfile_name(self, dirpath: str, infile: str, outfile_idx: int=0) -> Optional[str]: """ Construct the output file name from the input file. If a single output file was named and there isn't a directory, return the output file. :param dirpath: Directory path to infile :param infile: Name of input file :param outfile_idx: Index into output file list (for multiple input/output files) :return: Full name of output file or None if output is not otherwise supplied """ if not self.opts.outfile and not self.opts.outdir: # Up to the process itself to decide what do do with it return None if self.opts.outfile: # Output file specified - either one aggregate file or a 1 to 1 list outfile_element = self.opts.outfile[0] if len(self.opts.outfile) == 1 else self.opts.outfile[outfile_idx] elif self.opts.infile: # Input file name(s) have been supplied if '://' in infile: # Input file is a URL -- generate an output file of the form "_url[n]" outfile_element = "_url{}".format(outfile_idx + 1) else: outfile_element = os.path.basename(infile).rsplit('.', 1)[0] else: # Doing an input directory to an output directory relpath = dirpath[len(self.opts.indir) + 1:] if not self.opts.flatten and self.opts.indir else '' outfile_element = os.path.join(relpath, os.path.split(infile)[1][:-len(self.infile_suffix)]) return (os.path.join(self.opts.outdir, outfile_element) if self.opts.outdir else outfile_element) + \ (self.outfile_suffix if not self.opts.outfile and self.outfile_suffix else '') def default_proc(ifn: Optional[str], ofn: Optional[str], _: argparse.Namespace) -> bool: print("Input file name: %s -- Output file name: %s" % (ifn if ifn is not None else "stdin", ofn if ofn is not None else "stdout")) return True if __name__ == '__main__': DirectoryListProcessor(None, "DLP Framework", "", "").run(default_proc)
the-stack_106_23616
import discord import src.commands as cmd import src.config as cfg from .log import logger client = discord.Client() @client.event async def on_ready(*args, **kwargs) -> None: logger.info('discord ready') @client.event async def on_message(message: discord.Message) -> None: if message.author.id == client.user.id and message.content.startswith(cfg.prefix): parts = message.content.split(' ') command = cmd.commands[parts[0][len(cfg.prefix):]] await command(message)
the-stack_106_23617
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'epmcoin_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
the-stack_106_23619
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="youtubedata", version="1.1.1", author="ofc", author_email="[email protected]", description="YouTube Data provides comprehensive YouTube video metadata scraping. Results are returned in a dictionary containing likes, dislikes, views, published dates and more.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/AAbdelmalek/youtubedata_library", packages=setuptools.find_packages(), install_requires=["requests","beautifulsoup4","lxml"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Intended Audience :: Developers", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Multimedia :: Video" ], )
the-stack_106_23620
from __future__ import absolute_import import logging import six from django.core.context_processors import csrf from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_protect from django.views.generic import View from sudo.views import redirect_to_sudo from sentry import roles from sentry.auth import access from sentry.models import ( AuditLogEntry, Organization, OrganizationMember, OrganizationStatus, Project, ProjectStatus, Team, TeamStatus ) from sentry.utils import auth from sentry.web.helpers import render_to_response from sentry.api.serializers import serialize logger = logging.getLogger(__name__) audit_logger = logging.getLogger('sentry.audit.ui') class OrganizationMixin(object): # TODO(dcramer): move the implicit organization logic into its own class # as it's only used in a single location and over complicates the rest of # the code def get_active_organization(self, request, organization_slug=None): """ Returns the currently active organization for the request or None if no organization. """ # TODO(dcramer): this is a huge hack, and we should refactor this # it is currently needed to handle the is_auth_required check on # OrganizationBase active_organization = getattr(self, '_active_org', None) cached_active_org = ( active_organization and active_organization[0].slug == organization_slug and active_organization[1] == request.user ) if cached_active_org: return active_organization[0] active_organization = None is_implicit = organization_slug is None if is_implicit: organization_slug = request.session.get('activeorg') if organization_slug is not None: if request.is_superuser(): try: active_organization = Organization.objects.get_from_cache( slug=organization_slug, ) if active_organization.status != OrganizationStatus.VISIBLE: raise Organization.DoesNotExist except Organization.DoesNotExist: logger.info('Active organization [%s] not found', organization_slug) if active_organization is None: organizations = Organization.objects.get_for_user( user=request.user, ) if active_organization is None and organization_slug: try: active_organization = six.next( o for o in organizations if o.slug == organization_slug ) except StopIteration: logger.info('Active organization [%s] not found in scope', organization_slug) if is_implicit: del request.session['activeorg'] active_organization = None if active_organization is None: if not is_implicit: return None try: active_organization = organizations[0] except IndexError: logger.info('User is not a member of any organizations') pass if active_organization and self._is_org_member(request.user, active_organization): if active_organization.slug != request.session.get('activeorg'): request.session['activeorg'] = active_organization.slug self._active_org = (active_organization, request.user) return active_organization def _is_org_member(self, user, organization): return OrganizationMember.objects.filter( user=user, organization=organization, ).exists() def get_active_team(self, request, organization, team_slug): """ Returns the currently selected team for the request or None if no match. """ try: team = Team.objects.get_from_cache( slug=team_slug, organization=organization, ) except Team.DoesNotExist: return None if team.status != TeamStatus.VISIBLE: return None return team def get_active_project(self, request, organization, project_slug): try: project = Project.objects.get_from_cache( slug=project_slug, organization=organization, ) except Project.DoesNotExist: return None if project.status != ProjectStatus.VISIBLE: return None return project def redirect_to_org(self, request): from sentry import features # TODO(dcramer): deal with case when the user cannot create orgs organization = self.get_active_organization(request) if organization: url = reverse('sentry-organization-home', args=[organization.slug]) elif not features.has('organizations:create'): return self.respond('sentry/no-organization-access.html', status=403) else: url = '/organizations/new/' return HttpResponseRedirect(url) class BaseView(View, OrganizationMixin): auth_required = True # TODO(dcramer): change sudo so it can be required only on POST sudo_required = False def __init__(self, auth_required=None, sudo_required=None, *args, **kwargs): if auth_required is not None: self.auth_required = auth_required if sudo_required is not None: self.sudo_required = sudo_required super(BaseView, self).__init__(*args, **kwargs) @method_decorator(csrf_protect) def dispatch(self, request, *args, **kwargs): if self.is_auth_required(request, *args, **kwargs): return self.handle_auth_required(request, *args, **kwargs) if self.is_sudo_required(request, *args, **kwargs): return self.handle_sudo_required(request, *args, **kwargs) args, kwargs = self.convert_args(request, *args, **kwargs) request.access = self.get_access(request, *args, **kwargs) if not self.has_permission(request, *args, **kwargs): return self.handle_permission_required(request, *args, **kwargs) self.request = request self.default_context = self.get_context_data(request, *args, **kwargs) return self.handle(request, *args, **kwargs) def get_access(self, request, *args, **kwargs): return access.DEFAULT def convert_args(self, request, *args, **kwargs): return (args, kwargs) def handle(self, request, *args, **kwargs): return super(BaseView, self).dispatch(request, *args, **kwargs) def is_auth_required(self, request, *args, **kwargs): return ( self.auth_required and not (request.user.is_authenticated() and request.user.is_active) ) def handle_auth_required(self, request, *args, **kwargs): auth.initiate_login(request, next_url=request.get_full_path()) if 'organization_slug' in kwargs: redirect_to = reverse('sentry-auth-organization', args=[kwargs['organization_slug']]) else: redirect_to = auth.get_login_url() return self.redirect(redirect_to) def is_sudo_required(self, request, *args, **kwargs): return self.sudo_required and not request.is_sudo() def handle_sudo_required(self, request, *args, **kwargs): return redirect_to_sudo(request.get_full_path()) def has_permission(self, request, *args, **kwargs): return True def handle_permission_required(self, request, *args, **kwargs): redirect_uri = self.get_no_permission_url(request, *args, **kwargs) return self.redirect(redirect_uri) def get_no_permission_url(request, *args, **kwargs): return reverse('sentry-login') def get_context_data(self, request, **kwargs): context = csrf(request) return context def respond(self, template, context=None, status=200): default_context = self.default_context if context: default_context.update(context) return render_to_response(template, default_context, self.request, status=status) def redirect(self, url): return HttpResponseRedirect(url) def get_team_list(self, user, organization): return Team.objects.get_for_user( organization=organization, user=user, with_projects=True, ) def create_audit_entry(self, request, transaction_id=None, **kwargs): entry = AuditLogEntry( actor=request.user if request.user.is_authenticated() else None, # TODO(jtcunning): assert that REMOTE_ADDR is a real IP. ip_address=request.META['REMOTE_ADDR'], **kwargs ) # Only create a real AuditLogEntry record if we are passing an event type # otherwise, we want to still log to our actual logging if entry.event is not None: entry.save() extra = { 'ip_address': entry.ip_address, 'organization_id': entry.organization_id, 'object_id': entry.target_object, 'entry_id': entry.id, 'actor_label': entry.actor_label } if transaction_id is not None: extra['transaction_id'] = transaction_id audit_logger.info(entry.get_event_display(), extra=extra) return entry class OrganizationView(BaseView): """ Any view acting on behalf of an organization should inherit from this base. The 'organization' keyword argument is automatically injected into the resulting dispatch. """ required_scope = None valid_sso_required = True def get_access(self, request, organization, *args, **kwargs): if organization is None: return access.DEFAULT return access.from_request(request, organization) def get_context_data(self, request, organization, **kwargs): context = super(OrganizationView, self).get_context_data(request) context['organization'] = organization context['TEAM_LIST'] = self.get_team_list(request.user, organization) context['ACCESS'] = request.access.to_django_context() return context def has_permission(self, request, organization, *args, **kwargs): if organization is None: return False if self.valid_sso_required: if not request.access.sso_is_valid: return False if self.needs_sso(request, organization): return False if self.required_scope and not request.access.has_scope(self.required_scope): logger.info( 'User %s does not have %s permission to access organization %s', request.user, self.required_scope, organization ) return False return True def is_auth_required(self, request, organization_slug=None, *args, **kwargs): result = super(OrganizationView, self).is_auth_required(request, *args, **kwargs) if result: return result # if the user is attempting to access an organization that *may* be # accessible if they simply re-authenticate, we want to allow that # this opens up a privacy hole, but the pros outweigh the cons if not organization_slug: return False active_organization = self.get_active_organization( request=request, organization_slug=organization_slug, ) if not active_organization: try: Organization.objects.get_from_cache(slug=organization_slug) except Organization.DoesNotExist: pass else: return True return False def handle_permission_required(self, request, organization, *args, **kwargs): if self.needs_sso(request, organization): logger.info( 'access.must-sso', extra={ 'organization_id': organization.id, 'user_id': request.user.id, } ) auth.initiate_login(request, next_url=request.get_full_path()) redirect_uri = reverse('sentry-auth-organization', args=[organization.slug]) else: redirect_uri = self.get_no_permission_url(request, *args, **kwargs) return self.redirect(redirect_uri) def needs_sso(self, request, organization): if not organization: return False # XXX(dcramer): this branch should really never hit if not request.user.is_authenticated(): return False if not self.valid_sso_required: return False if not request.access.requires_sso: return False if not auth.has_completed_sso(request, organization.id): return True if not request.access.sso_is_valid: return True return False def convert_args(self, request, organization_slug=None, *args, **kwargs): active_organization = self.get_active_organization( request=request, organization_slug=organization_slug, ) kwargs['organization'] = active_organization return (args, kwargs) def get_allowed_roles(self, request, organization, member=None): can_admin = request.access.has_scope('member:admin') allowed_roles = [] if can_admin and not request.is_superuser(): acting_member = OrganizationMember.objects.get( user=request.user, organization=organization, ) if member and roles.get(acting_member.role).priority < roles.get(member.role).priority: can_admin = False else: allowed_roles = [ r for r in roles.get_all() if r.priority <= roles.get(acting_member.role).priority ] can_admin = bool(allowed_roles) elif request.is_superuser(): allowed_roles = roles.get_all() return (can_admin, allowed_roles, ) class TeamView(OrganizationView): """ Any view acting on behalf of a team should inherit from this base and the matching URL pattern must pass 'team_slug'. Two keyword arguments are added to the resulting dispatch: - organization - team """ def get_context_data(self, request, organization, team, **kwargs): context = super(TeamView, self).get_context_data(request, organization) context['team'] = team return context def has_permission(self, request, organization, team, *args, **kwargs): if team is None: return False rv = super(TeamView, self).has_permission(request, organization) if not rv: return rv if self.required_scope: if not request.access.has_team_scope(team, self.required_scope): logger.info( 'User %s does not have %s permission to access team %s', request.user, self.required_scope, team ) return False elif not request.access.has_team(team): logger.info('User %s does not have access to team %s', request.user, team) return False return True def convert_args(self, request, organization_slug, team_slug, *args, **kwargs): active_organization = self.get_active_organization( request=request, organization_slug=organization_slug, ) if active_organization: active_team = self.get_active_team( request=request, team_slug=team_slug, organization=active_organization, ) else: active_team = None kwargs['organization'] = active_organization kwargs['team'] = active_team return (args, kwargs) class ProjectView(TeamView): """ Any view acting on behalf of a project should inherit from this base and the matching URL pattern must pass 'team_slug' as well as 'project_slug'. Three keyword arguments are added to the resulting dispatch: - organization - team - project """ def get_context_data(self, request, organization, team, project, **kwargs): context = super(ProjectView, self).get_context_data(request, organization, team) context['project'] = project context['processing_issues'] = serialize(project).get('processingIssues', 0) return context def has_permission(self, request, organization, team, project, *args, **kwargs): if project is None: return False if team is None: return False rv = super(ProjectView, self).has_permission(request, organization, team) if not rv: return rv if self.required_scope: if not request.access.has_team_scope(team, self.required_scope): logger.info( 'User %s does not have %s permission to access project %s', request.user, self.required_scope, project ) return False elif not request.access.has_team(team): logger.info('User %s does not have access to project %s', request.user, project) return False return True def convert_args(self, request, organization_slug, project_slug, *args, **kwargs): active_organization = self.get_active_organization( request=request, organization_slug=organization_slug, ) if active_organization: active_project = self.get_active_project( request=request, organization=active_organization, project_slug=project_slug, ) else: active_project = None if active_project: active_team = active_project.team else: active_team = None kwargs['project'] = active_project kwargs['team'] = active_team kwargs['organization'] = active_organization return (args, kwargs)
the-stack_106_23621
from django.contrib.auth import get_user_model from django.core.management import call_command from qcat.tests import TestCase User = get_user_model() def create_new_user(id=1, email='[email protected]', lastname='foo', firstname='bar'): user, created = User.objects.get_or_create( id=id, email=email, defaults={'lastname': lastname, 'firstname': firstname} ) return user class SuperUserCommandTest(TestCase): """ Tests for management commands. """ def setUp(self): self.user = create_new_user() def tearDown(self): self.user.delete() def test_command_set_one_superuser(self): self.assertFalse(self.user.is_superuser) call_command('set_superuser', '[email protected]') # Refresh the object, as it was changed externally. self.user.refresh_from_db(fields=['is_superuser']) self.assertTrue(self.user.is_superuser) def test_command_set_multiple_superusers(self): make_superuser = ['[email protected]', '[email protected]'] for index, email in enumerate(make_superuser): create_new_user(id=index + 5, email=email) call_command('set_superuser', *make_superuser) superuser_emails = get_user_model().objects.filter( is_superuser=True ).values_list('email', flat=True) self.assertListEqual( sorted(list(superuser_emails)), sorted(make_superuser))
the-stack_106_23623
from typing import ( Iterator, NamedTuple, ) from async_service import ( as_service, ManagerAPI, ) from eth_utils import to_tuple import psutil from p2p import trio_utils from trinity.components.builtin.metrics.registry import HostMetricsRegistry from trinity.exceptions import MetricsReportingError class CpuStats(NamedTuple): # Time spent on all processes global_time: int # Time spent waiting on IO global_wait_io: int class DiskStats(NamedTuple): # Number of read operations executed read_count: int # Number of bytes read read_bytes: int # Number of write operations executed write_count: int # Number of bytes written write_bytes: int class NetworkStats(NamedTuple): # Number of network packets sent out_packets: int # Number of network packets received in_packets: int class ProcessStats(NamedTuple): process_count: int thread_count: int class SystemStats(NamedTuple): cpu_stats: CpuStats disk_stats: DiskStats network_stats: NetworkStats process_stats: ProcessStats def read_cpu_stats() -> CpuStats: stats = psutil.cpu_times() try: # iowait is only available with linux iowait = stats.iowait except AttributeError: iowait = 0 return CpuStats( global_time=int(stats.user + stats.nice + stats.system), global_wait_io=int(iowait), ) def read_disk_stats() -> DiskStats: stats = psutil.disk_io_counters() return DiskStats( read_count=stats.read_count, read_bytes=stats.read_bytes, write_count=stats.write_count, write_bytes=stats.write_bytes, ) def read_network_stats() -> NetworkStats: stats = psutil.net_io_counters() return NetworkStats( in_packets=stats.packets_recv, out_packets=stats.packets_sent, ) @to_tuple def get_all_python_processes() -> Iterator[psutil.Process]: for process in psutil.process_iter(): try: commands = process.cmdline() except psutil.AccessDenied: continue except psutil.ZombieProcess: continue if any('python' in cmd for cmd in commands): yield process def get_main_trinity_process() -> psutil.Process: python_processes = get_all_python_processes() for process in python_processes: if any('trinity' in cmd for cmd in process.cmdline()): return process raise MetricsReportingError("No 'trinity' process found.") def read_process_stats() -> ProcessStats: main_trinity_process = get_main_trinity_process() child_processes = main_trinity_process.children(recursive=True) num_processes = len(child_processes) + 1 num_child_threads = sum([process.num_threads() for process in child_processes]) num_threads = num_child_threads + main_trinity_process.num_threads() return ProcessStats( process_count=num_processes, thread_count=num_threads, ) @as_service async def collect_process_metrics(manager: ManagerAPI, registry: HostMetricsRegistry, frequency_seconds: int) -> None: previous: SystemStats = None cpu_sysload_gauge = registry.gauge('trinity.system/cpu/sysload.gauge') cpu_syswait_gauge = registry.gauge('trinity.system/cpu/syswait.gauge') disk_readdata_meter = registry.meter('trinity.system/disk/readdata.meter') disk_writedata_meter = registry.meter('trinity.system/disk/writedata.meter') network_in_packets_meter = registry.meter('trinity.network/in/packets/total.meter') network_out_packets_meter = registry.meter('trinity.network/out/packets/total.meter') process_count_gauge = registry.gauge('trinity.system/processes/count.gauge') thread_count_gauge = registry.gauge('trinity.system/threads/count.gauge') async for _ in trio_utils.every(frequency_seconds): current = SystemStats( cpu_stats=read_cpu_stats(), disk_stats=read_disk_stats(), network_stats=read_network_stats(), process_stats=read_process_stats(), ) if previous is not None: global_time = current.cpu_stats.global_time - previous.cpu_stats.global_time cpu_sysload_gauge.set_value(global_time / frequency_seconds) global_wait = current.cpu_stats.global_wait_io - previous.cpu_stats.global_wait_io cpu_syswait_gauge.set_value(global_wait / frequency_seconds) read_bytes = current.disk_stats.read_bytes - previous.disk_stats.read_bytes disk_readdata_meter.mark(read_bytes) write_bytes = current.disk_stats.write_bytes - previous.disk_stats.write_bytes disk_writedata_meter.mark(write_bytes) in_packets = current.network_stats.in_packets - previous.network_stats.in_packets network_in_packets_meter.mark(in_packets) out_packets = current.network_stats.out_packets - previous.network_stats.out_packets network_out_packets_meter.mark(out_packets) process_count_gauge.set_value(current.process_stats.process_count) thread_count_gauge.set_value(current.process_stats.thread_count) previous = current
the-stack_106_23626
"""The actual implementation.""" import os from typing import List from docutils import nodes from docutils.parsers.rst import directives from sphinx.transforms.post_transforms import SphinxPostTransform from sphinx.util.docutils import SphinxDirective from sphinx.util.nodes import NodeMatcher def setup(app): """Entry point for sphinx theming.""" app.require_sphinx("3.0") app.add_directive("tab", TabDirective) app.add_post_transform(TabHtmlTransform) app.add_node(_TabInput, html=(_TabInput.visit, _TabInput.depart)) app.add_node(_TabLabel, html=(_TabLabel.visit, _TabLabel.depart)) # Include our static assets static_dir = os.path.join(os.path.dirname(__file__), "static") app.connect( "builder-inited", (lambda app: app.config.html_static_path.append(static_dir)) ) app.add_js_file("tabs.js") app.add_css_file("tabs.css") class TabContainer(nodes.container): """The initial tree-node for holding tab content.""" class _GeneralHTMLTagElement(nodes.Element, nodes.General): @staticmethod def visit(translator, node): attributes = node.attributes.copy() # Nobody needs this crap. attributes.pop("ids") attributes.pop("classes") attributes.pop("names") attributes.pop("dupnames") attributes.pop("backrefs") text = translator.starttag(node, node.tagname, **attributes) translator.body.append(text.strip()) @staticmethod def depart(translator, node): if node.endtag: translator.body.append(f"</{node.tagname}>") class _TabInput(_GeneralHTMLTagElement): tagname = "input" endtag = False class _TabLabel(_GeneralHTMLTagElement): tagname = "label" endtag = True class TabDirective(SphinxDirective): """Tabbed content in Sphinx documentation.""" required_arguments = 1 # directive takes a single argument. final_argument_whitespace = True # this allows that argument to contain spaces. has_content = True option_spec = { "new-set": directives.flag, } def run(self): """Parse a tabs directive.""" self.assert_has_content() container = TabContainer("", type="tab", new_set="new-set" in self.options) self.set_source_info(container) # Handle the label (non-plain-text variants allowed) textnodes, messages = self.state.inline_text(self.arguments[0], self.lineno) label = nodes.rubric(self.arguments[0], *textnodes) # Handle the content content = nodes.container("", is_div=True, classes=["tab-content"]) self.state.nested_parse(self.content, self.content_offset, content) container += label container += content return [container] def _should_start_new_set(node, current_tab_set): # The current set is empty. if not current_tab_set: return False # Explicitly requested for a new tab set. if node["new_set"]: return True # From here, this code is trying to figure if the given node immediately # follows the previous tab, and hence should be in the same set. prev_node = current_tab_set[-1] if prev_node.parent != node.parent: # Different parent return True parent = node.parent if parent.index(node) - 1 != parent.index(prev_node): return True # This node should be in the same set, so don't start a new one. return False class TabHtmlTransform(SphinxPostTransform): """Transform output of TabDirective into usable chunks.""" default_priority = 200 formats = ["html"] def run(self): """Locate and replace `TabContainer`s.""" matcher = NodeMatcher(TabContainer) set_counter = 0 current_tab_set = [] # type: List[TabContainer] for node in self.document.traverse(matcher): # type: TabContainer if _should_start_new_set(node, current_tab_set): self.finalize_set(current_tab_set, set_counter) set_counter += 1 current_tab_set = [] current_tab_set.append(node) if current_tab_set: self.finalize_set(current_tab_set, set_counter) def finalize_set(self, tab_set: List[TabContainer], set_counter: int): """Add these TabContainers as a single-set-of-tabs.""" assert tab_set parent = tab_set[0].parent container = nodes.container("", is_div=True, classes=["tab-set"]) container.parent = parent tab_set_name = f"tab-set--{set_counter}" node_counter = 0 for node in tab_set: node_counter += 1 tab_id = tab_set_name + f"-input--{node_counter}" title, content = node.children # <input>, for storing state in radio boxes. input_node = _TabInput( type="radio", ids=[tab_id], name=tab_set_name, classes=["tab-input"] ) # <label> label_node = _TabLabel( "", *title.children, **{"for": tab_id}, classes=["tab-label"] ) # For error messages input_node.source = node.source input_node.line = node.line label_node.source = node.source label_node.line = node.line # Populate with the content. container += input_node container += label_node container += content container.children[0]["checked"] = True # Replace all nodes in tab_set, with the container. start_at = parent.index(tab_set[0]) end_at = parent.index(tab_set[-1]) parent.children = ( parent.children[:start_at] + [container] + parent[end_at + 1 :] )
the-stack_106_23631
''' Module : Main Description : The main entry point for the program. Copyright : (c) Bernie Pope, 16 Oct 2019 License : MIT Maintainer : [email protected] Portability : POSIX A plotting and data analytics program for the command line ''' import sys import logging import pandas as pd from hatch.command_base import CommandBase import hatch.args as args import hatch.utils as utils import hatch.constants as const import hatch.plot import hatch.transform import hatch.io import hatch.pca import hatch.info import hatch.stats import hatch.cluster def init_logging(log_filename=None): '''If the log_filename is defined, then initialise the logging facility, and write log statement indicating the program has started, and also write out the command line from sys.argv Arguments: log_filename: either None, if logging is not required, or the string name of the log file to write to Result: None ''' if log_filename is not None: logging.basicConfig(filename=log_filename, #level=logging.INFO, level=logging.CRITICAL, filemode='w', format='%(asctime)s %(levelname)s - %(message)s', datefmt='%m-%d-%Y %H:%M:%S') logging.info('program started') logging.info('command line: %s', ' '.join(sys.argv)) else: logging.basicConfig(level=logging.CRITICAL) def is_first_command_input(commands): if len(commands) > 0: first_command = commands[0] type_first_command = type(first_command) return (type_first_command is hatch.io.In) or (type_first_command is hatch.io.Stdin) else: return False def is_last_command_transform_or_input(commands): if len(commands) > 0: last_command = commands[-1] type_last_command = type(last_command) return (last_command.category == 'transformation') or (type_last_command is hatch.io.In) or (type_last_command is hatch.io.Stdin) else: return False # stdin may only be used at most once, and only at the beginning of the command sequence def stdin_used_safely(commands): count = 0 for command in commands: if type(command) is hatch.io.Stdin: count += 1 if count == 0: return True elif count == 1: return type(commands[0] is hatch.io.Stdin) else: return False def main(): df = None original_commands = args.parse_commandline() new_commands = original_commands init_logging() if not is_first_command_input(original_commands): # If the first command is not an explict read of input data # either from stdin or a file then we add an implicit read from # stdin to the command stream stdin_reader = hatch.io.Stdin() stdin_reader.parse_args() new_commands = [stdin_reader] + new_commands if (len(original_commands) == 0) or is_last_command_transform_or_input(original_commands): # If the last command is a data transformation command or an input command then # we add an implicit print to stdout to the command stream stdout_writer = hatch.io.Stdout() stdout_writer.parse_args() new_commands = new_commands + [stdout_writer] if not stdin_used_safely(new_commands): utils.exit_with_error(f"stdin may only be used at most once, and only as the first command", const.EXIT_COMMAND_LINE_ERROR) else: for command in new_commands: try: df = command.run(df) except ValueError as e: utils.exit_with_error(f"Error: {str(e)}", const.EXIT_COMMAND_LINE_ERROR) if df is None: break logging.info("Completed") exit(0) # If this script is run from the command line then call the main function. if __name__ == '__main__': main()
the-stack_106_23633
import random from collections import ( deque, namedtuple, ) import numpy as np import torch class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, buffer_size, batch_size, seed, device): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): random seed """ self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) random.seed(seed) self.device = device def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(self.device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to( self.device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to( self.device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory)
the-stack_106_23635
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional, Union, Any from datetime import datetime from ask_smapi_model.v1.skill.interaction_model.dialog_intents import DialogIntents as DialogIntents_30175679 from ask_smapi_model.v1.skill.interaction_model.delegation_strategy_type import DelegationStrategyType as DelegationStrategyType_41525f1c class Dialog(object): """ Defines dialog rules e.g. slot elicitation and validation, intent chaining etc. :param delegation_strategy: Defines a delegation strategy for the dialogs in this dialog model. :type delegation_strategy: (optional) ask_smapi_model.v1.skill.interaction_model.delegation_strategy_type.DelegationStrategyType :param intents: List of intents that have dialog rules associated with them. Dialogs can also span multiple intents. :type intents: (optional) list[ask_smapi_model.v1.skill.interaction_model.dialog_intents.DialogIntents] """ deserialized_types = { 'delegation_strategy': 'ask_smapi_model.v1.skill.interaction_model.delegation_strategy_type.DelegationStrategyType', 'intents': 'list[ask_smapi_model.v1.skill.interaction_model.dialog_intents.DialogIntents]' } # type: Dict attribute_map = { 'delegation_strategy': 'delegationStrategy', 'intents': 'intents' } # type: Dict supports_multiple_types = False def __init__(self, delegation_strategy=None, intents=None): # type: (Optional[DelegationStrategyType_41525f1c], Optional[List[DialogIntents_30175679]]) -> None """Defines dialog rules e.g. slot elicitation and validation, intent chaining etc. :param delegation_strategy: Defines a delegation strategy for the dialogs in this dialog model. :type delegation_strategy: (optional) ask_smapi_model.v1.skill.interaction_model.delegation_strategy_type.DelegationStrategyType :param intents: List of intents that have dialog rules associated with them. Dialogs can also span multiple intents. :type intents: (optional) list[ask_smapi_model.v1.skill.interaction_model.dialog_intents.DialogIntents] """ self.__discriminator_value = None # type: str self.delegation_strategy = delegation_strategy self.intents = intents def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, Dialog): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
the-stack_106_23637
#!/usr/bin/env python """Trains a classifier for frames from the Simpsons. Useful for testing data tables. """ # we need this so strings are written to bigquery as strings rather than bytes from __future__ import unicode_literals import math import os import subprocess import keras from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dropout, Dense, Flatten from keras.preprocessing.image import ImageDataGenerator from keras import optimizers import numpy as np import pandas import six import wandb def main(): run = wandb.init() config = run.config config.img_size = 50 config.batch_size = 32 config.epochs = 0 config.train_path = os.path.join('simpsons', 'train') config.test_path = os.path.join('simpsons', 'test') # download the data if it doesn't exist if not os.path.exists("simpsons"): print("Downloading Simpsons dataset...") subprocess.check_output( "curl https://storage.googleapis.com/wandb-production.appspot.com/mlclass/simpsons.tar.gz | tar xvz", shell=True) # this is the augmentation configuration we will use for training # see: https://keras.io/preprocessing/image/#imagedatagenerator-class train_datagen = ImageDataGenerator( rescale=1./255) # only rescaling augmentation for testing: test_datagen = ImageDataGenerator(rescale=1./255) # this is a generator that will read pictures found in # subfolers of 'data/train', and indefinitely generate # batches of augmented image data train_generator = train_datagen.flow_from_directory( config.train_path, target_size=(config.img_size, config.img_size), batch_size=config.batch_size) # this is a similar generator, for validation data test_generator = test_datagen.flow_from_directory( config.test_path, target_size=(config.img_size, config.img_size), batch_size=config.batch_size) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=( config.img_size, config.img_size, 3), activation="relu")) model.add(MaxPooling2D()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(50, activation="relu")) model.add(Dropout(0.4)) model.add(Dense(13, activation="softmax")) model.compile(optimizer=optimizers.Adam(), loss='categorical_crossentropy', metrics=['accuracy']) def results_data_frame(test_datagen, model): gen = test_datagen.flow_from_directory( config.test_path, target_size=(config.img_size, config.img_size), batch_size=config.batch_size, shuffle=False) class_cols = [] class_names = [] for class_col, i in sorted(six.iteritems(gen.class_indices), key=lambda c_i: c_i[1]): class_cols.append(class_col) class_names.append(class_col.replace('_', ' ')) cards = [] true_class_is = [] true_classes = [] true_probs = [] pred_classes = [] pred_probs = [] class_probs = [[] for c in class_names] num_batches = int(math.ceil(len(gen.filenames) / float(gen.batch_size))) #num_batches = 1 for batch_i in range(num_batches): examples, truth = next(gen) preds = model.predict(np.stack(examples)) this_true_class_is = [np.argmax(probs) for probs in truth] true_class_is.extend(this_true_class_is) true_classes.extend(class_names[i] for i in this_true_class_is) true_probs.extend(ps[i] for ps, i in zip(preds, true_class_is)) pred_classes.extend(class_names[np.argmax(probs)] for probs in preds) pred_probs.extend(np.max(probs) for probs in preds) for cp, p in zip(class_probs, preds.T): cp.extend(p) base_i = batch_i * gen.batch_size for i in range(base_i, base_i + len(examples)): cards.append('''```Predicted: {pred_class} ({pred_prob:.2%}) Actual: {true_class} ({true_prob:.2%}) ![](https://api.wandb.ai/adrianbg/simpsons/tgw7wnqj/simpsons/{idx}.jpg) ```'''.format(true_class=true_classes[i], true_prob=true_probs[i], pred_class=pred_classes[i], pred_prob=pred_probs[i], idx=i)) all_cols = ['wandb_example_id', 'image', 'card', 'true_class', 'true_prob', 'pred_class', 'pred_prob'] + class_cols frame_dict = { 'wandb_example_id': [six.text_type(s) for s in gen.filenames[:len(cards)]], 'image': [wandb.Image(os.path.join(config.test_path, f)) for f in gen.filenames[:len(cards)]], 'card': cards, 'true_class': true_classes, 'true_prob': true_probs, 'pred_class': pred_classes, 'pred_prob': pred_probs, } for c, col in zip(class_cols, class_probs): frame_dict[c] = col table = pandas.DataFrame(frame_dict, columns=all_cols) number_cols = ['true_prob', 'pred_prob'] + class_cols table[number_cols] = table[number_cols].apply(pandas.to_numeric) #from IPython import embed; embed() return table class ResultsDataFrameCallback(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): run.summary["results"] = results_data_frame(test_datagen, model) model.fit_generator( train_generator, steps_per_epoch=len(train_generator), epochs=config.epochs, workers=4, callbacks=[ResultsDataFrameCallback()], validation_data=test_generator, validation_steps=len(test_generator)) if config.epochs == 0: #run.summary["results"] = results_data_frame(test_datagen, model) run.summary.update({ "results3": results_data_frame(test_datagen, model) }) if __name__ == '__main__': main()
the-stack_106_23638
'''Train CIFAR10 with PyTorch.''' from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse import csv from models import * from utils import progress_bar, mixup_data, mixup_criterion from torch.autograd import Variable parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--sess', default='mixup_default', type=str, help='session id') parser.add_argument('--seed', default=0, type=int, help='rng seed') parser.add_argument('--alpha', default=1., type=float, help='interpolation strength (uniform=1., ERM=0.)') parser.add_argument('--decay', default=1e-4, type=float, help='weight decay (default=1e-4)') args = parser.parse_args() torch.manual_seed(args.seed) use_cuda = torch.cuda.is_available() best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch batch_size = 128 base_learning_rate = 0.1 if use_cuda: # data parallel n_gpu = torch.cuda.device_count() batch_size *= n_gpu base_learning_rate *= n_gpu # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt.t7.' + args.sess + '_' + str(args.seed)) net = checkpoint['net'] best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] + 1 torch.set_rng_state(checkpoint['rng_state']) else: print('==> Building model..') # net = VGG('VGG19') net = PreActResNet18() # net = ResNet18() # net = GoogLeNet() # net = DenseNet121() # net = ResNeXt29_2x64d() # net = MobileNet() # net = DPN92() # net = ShuffleNetG2() # net = SENet18() result_folder = './results/' if not os.path.exists(result_folder): os.makedirs(result_folder) logname = result_folder + net.__class__.__name__ + '_' + args.sess + '_' + str(args.seed) + '.csv' if use_cuda: net.cuda() net = torch.nn.DataParallel(net) print('Using', torch.cuda.device_count(), 'GPUs.') cudnn.benchmark = True print('Using CUDA..') criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=base_learning_rate, momentum=0.9, weight_decay=args.decay) # Training def train(epoch): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() # generate mixed inputs, two one-hot label vectors and mixing coefficient inputs, targets_a, targets_b, lam = mixup_data(inputs, targets, args.alpha, use_cuda) optimizer.zero_grad() inputs, targets_a, targets_b = Variable(inputs), Variable(targets_a), Variable(targets_b) outputs = net(inputs) loss_func = mixup_criterion(targets_a, targets_b, lam) loss = loss_func(criterion, outputs) loss.backward() optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += lam * predicted.eq(targets_a.data).cpu().sum() + (1 - lam) * predicted.eq(targets_b.data).cpu().sum() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) return (train_loss/batch_idx, 100.*correct/total) def test(epoch): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(testloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) # Save checkpoint. acc = 100.*correct/total if acc > best_acc: best_acc = acc checkpoint(acc, epoch) return (test_loss/batch_idx, 100.*correct/total) def checkpoint(acc, epoch): # Save checkpoint. print('Saving..') state = { 'net': net, 'acc': acc, 'epoch': epoch, 'rng_state': torch.get_rng_state() } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt.t7.' + args.sess + '_' + str(args.seed)) def adjust_learning_rate(optimizer, epoch): """decrease the learning rate at 100 and 150 epoch""" lr = base_learning_rate if epoch <= 9 and lr > 0.1: # warm-up training for large minibatch lr = 0.1 + (base_learning_rate - 0.1) * epoch / 10. if epoch >= 100: lr /= 10 if epoch >= 150: lr /= 10 for param_group in optimizer.param_groups: param_group['lr'] = lr if not os.path.exists(logname): with open(logname, 'w') as logfile: logwriter = csv.writer(logfile, delimiter=',') logwriter.writerow(['epoch', 'train loss', 'train acc', 'test loss', 'test acc']) for epoch in range(start_epoch, 200): adjust_learning_rate(optimizer, epoch) train_loss, train_acc = train(epoch) test_loss, test_acc = test(epoch) with open(logname, 'a') as logfile: logwriter = csv.writer(logfile, delimiter=',') logwriter.writerow([epoch, train_loss, train_acc, test_loss, test_acc])
the-stack_106_23640
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe import re from frappe import _ from frappe.utils import (flt, getdate, get_first_day, get_last_day, date_diff, add_months, add_days, formatdate, cint) from erpnext.accounts.utils import get_fiscal_year def get_period_list(from_fiscal_year, to_fiscal_year, periodicity, accumulated_values=False, company=None, reset_period_on_fy_change=True): """Get a list of dict {"from_date": from_date, "to_date": to_date, "key": key, "label": label} Periodicity can be (Yearly, Quarterly, Monthly)""" fiscal_year = get_fiscal_year_data(from_fiscal_year, to_fiscal_year) validate_fiscal_year(fiscal_year, from_fiscal_year, to_fiscal_year) # start with first day, so as to avoid year to_dates like 2-April if ever they occur] year_start_date = getdate(fiscal_year.year_start_date) year_end_date = getdate(fiscal_year.year_end_date) months_to_add = { "Yearly": 12, "Half-Yearly": 6, "Quarterly": 3, "Monthly": 1 }[periodicity] period_list = [] start_date = year_start_date months = get_months(year_start_date, year_end_date) for i in xrange(months / months_to_add): period = frappe._dict({ "from_date": start_date }) to_date = add_months(start_date, months_to_add) start_date = to_date if to_date == get_first_day(to_date): # if to_date is the first day, get the last day of previous month to_date = add_days(to_date, -1) if to_date <= year_end_date: # the normal case period.to_date = to_date else: # if a fiscal year ends before a 12 month period period.to_date = year_end_date period.to_date_fiscal_year = get_fiscal_year(period.to_date, company=company)[0] period.from_date_fiscal_year_start_date = get_fiscal_year(period.from_date, company=company)[1] period_list.append(period) if period.to_date == year_end_date: break # common processing for opts in period_list: key = opts["to_date"].strftime("%b_%Y").lower() if periodicity == "Monthly" and not accumulated_values: label = formatdate(opts["to_date"], "MMM YYYY") else: if not accumulated_values: label = get_label(periodicity, opts["from_date"], opts["to_date"]) else: if reset_period_on_fy_change: label = get_label(periodicity, opts.from_date_fiscal_year_start_date, opts["to_date"]) else: label = get_label(periodicity, period_list[0].from_date, opts["to_date"]) opts.update({ "key": key.replace(" ", "_").replace("-", "_"), "label": label, "year_start_date": year_start_date, "year_end_date": year_end_date }) return period_list def get_fiscal_year_data(from_fiscal_year, to_fiscal_year): fiscal_year = frappe.db.sql("""select min(year_start_date) as year_start_date, max(year_end_date) as year_end_date from `tabFiscal Year` where name between %(from_fiscal_year)s and %(to_fiscal_year)s""", {'from_fiscal_year': from_fiscal_year, 'to_fiscal_year': to_fiscal_year}, as_dict=1) return fiscal_year[0] if fiscal_year else {} def validate_fiscal_year(fiscal_year, from_fiscal_year, to_fiscal_year): if not fiscal_year.get('year_start_date') and not fiscal_year.get('year_end_date'): frappe.throw(_("End Year cannot be before Start Year")) def get_months(start_date, end_date): diff = (12 * end_date.year + end_date.month) - (12 * start_date.year + start_date.month) return diff + 1 def get_label(periodicity, from_date, to_date): if periodicity=="Yearly": if formatdate(from_date, "YYYY") == formatdate(to_date, "YYYY"): label = formatdate(from_date, "YYYY") else: label = formatdate(from_date, "YYYY") + "-" + formatdate(to_date, "YYYY") else: label = formatdate(from_date, "MMM YY") + "-" + formatdate(to_date, "MMM YY") return label def get_data(company, root_type, balance_must_be, period_list, filters=None, accumulated_values=1, only_current_fiscal_year=True, ignore_closing_entries=False, ignore_accumulated_values_for_fy=False): accounts = get_accounts(company, root_type) if not accounts: return None accounts, accounts_by_name, parent_children_map = filter_accounts(accounts) company_currency = frappe.db.get_value("Company", company, "default_currency") gl_entries_by_account = {} for root in frappe.db.sql("""select lft, rgt from tabAccount where root_type=%s and ifnull(parent_account, '') = ''""", root_type, as_dict=1): set_gl_entries_by_account(company, period_list[0]["year_start_date"] if only_current_fiscal_year else None, period_list[-1]["to_date"], root.lft, root.rgt, filters, gl_entries_by_account, ignore_closing_entries=ignore_closing_entries) calculate_values(accounts_by_name, gl_entries_by_account, period_list, accumulated_values, ignore_accumulated_values_for_fy) accumulate_values_into_parents(accounts, accounts_by_name, period_list, accumulated_values) out = prepare_data(accounts, balance_must_be, period_list, company_currency) out = filter_out_zero_value_rows(out, parent_children_map) if out: add_total_row(out, root_type, balance_must_be, period_list, company_currency) return out def calculate_values(accounts_by_name, gl_entries_by_account, period_list, accumulated_values, ignore_accumulated_values_for_fy): for entries in gl_entries_by_account.values(): for entry in entries: d = accounts_by_name.get(entry.account) if not d: frappe.msgprint( _("Could not retrieve information for {0}.".format(entry.account)), title="Error", raise_exception=1 ) for period in period_list: # check if posting date is within the period if entry.posting_date <= period.to_date: if (accumulated_values or entry.posting_date >= period.from_date) and \ (not ignore_accumulated_values_for_fy or entry.fiscal_year == period.to_date_fiscal_year): d[period.key] = d.get(period.key, 0.0) + flt(entry.debit) - flt(entry.credit) if entry.posting_date < period_list[0].year_start_date: d["opening_balance"] = d.get("opening_balance", 0.0) + flt(entry.debit) - flt(entry.credit) def accumulate_values_into_parents(accounts, accounts_by_name, period_list, accumulated_values): """accumulate children's values in parent accounts""" for d in reversed(accounts): if d.parent_account: for period in period_list: accounts_by_name[d.parent_account][period.key] = \ accounts_by_name[d.parent_account].get(period.key, 0.0) + d.get(period.key, 0.0) accounts_by_name[d.parent_account]["opening_balance"] = \ accounts_by_name[d.parent_account].get("opening_balance", 0.0) + d.get("opening_balance", 0.0) def prepare_data(accounts, balance_must_be, period_list, company_currency): data = [] year_start_date = period_list[0]["year_start_date"].strftime("%Y-%m-%d") year_end_date = period_list[-1]["year_end_date"].strftime("%Y-%m-%d") for d in accounts: # add to output has_value = False total = 0 row = frappe._dict({ "account_name": _(d.account_name), "account": _(d.name), "parent_account": _(d.parent_account), "indent": flt(d.indent), "year_start_date": year_start_date, "year_end_date": year_end_date, "currency": company_currency, "opening_balance": d.get("opening_balance", 0.0) * (1 if balance_must_be=="Debit" else -1) }) for period in period_list: if d.get(period.key) and balance_must_be=="Credit": # change sign based on Debit or Credit, since calculation is done using (debit - credit) d[period.key] *= -1 row[period.key] = flt(d.get(period.key, 0.0), 3) if abs(row[period.key]) >= 0.005: # ignore zero values has_value = True total += flt(row[period.key]) row["has_value"] = has_value row["total"] = total data.append(row) return data def filter_out_zero_value_rows(data, parent_children_map, show_zero_values=False): data_with_value = [] for d in data: if show_zero_values or d.get("has_value"): data_with_value.append(d) else: # show group with zero balance, if there are balances against child children = [child.name for child in parent_children_map.get(d.get("account")) or []] if children: for row in data: if row.get("account") in children and row.get("has_value"): data_with_value.append(d) break return data_with_value def add_total_row(out, root_type, balance_must_be, period_list, company_currency): total_row = { "account_name": "'" + _("Total {0} ({1})").format(_(root_type), _(balance_must_be)) + "'", "account": "'" + _("Total {0} ({1})").format(_(root_type), _(balance_must_be)) + "'", "currency": company_currency } for row in out: if not row.get("parent_account"): for period in period_list: total_row.setdefault(period.key, 0.0) total_row[period.key] += row.get(period.key, 0.0) row[period.key] = 0.0 total_row.setdefault("total", 0.0) total_row["total"] += flt(row["total"]) row["total"] = "" if total_row.has_key("total"): out.append(total_row) # blank row after Total out.append({}) def get_accounts(company, root_type): return frappe.db.sql("""select name, parent_account, lft, rgt, root_type, report_type, account_name from `tabAccount` where company=%s and root_type=%s order by lft""", (company, root_type), as_dict=True) def filter_accounts(accounts, depth=10): parent_children_map = {} accounts_by_name = {} for d in accounts: accounts_by_name[d.name] = d parent_children_map.setdefault(d.parent_account or None, []).append(d) filtered_accounts = [] def add_to_list(parent, level): if level < depth: children = parent_children_map.get(parent) or [] if parent == None: sort_root_accounts(children) for child in children: child.indent = level filtered_accounts.append(child) add_to_list(child.name, level + 1) add_to_list(None, 0) return filtered_accounts, accounts_by_name, parent_children_map def sort_root_accounts(roots): """Sort root types as Asset, Liability, Equity, Income, Expense""" def compare_roots(a, b): if a.value and re.split('\W+', a.value)[0].isdigit(): # if chart of accounts is numbered, then sort by number return cmp(a.value, b.value) if a.report_type != b.report_type and a.report_type == "Balance Sheet": return -1 if a.root_type != b.root_type and a.root_type == "Asset": return -1 if a.root_type == "Liability" and b.root_type == "Equity": return -1 if a.root_type == "Income" and b.root_type == "Expense": return -1 return 1 roots.sort(compare_roots) def set_gl_entries_by_account(company, from_date, to_date, root_lft, root_rgt, filters, gl_entries_by_account, ignore_closing_entries=False): """Returns a dict like { "account": [gl entries], ... }""" additional_conditions = get_additional_conditions(from_date, ignore_closing_entries, filters) draft_gl_entries = get_draft_gl_entries(filters,from_date,to_date) accounts_filterd = frappe.db.sql("""select name from `tabAccount` where company =%(company)s and lft >= %(lft)s and rgt <= %(rgt)s""", { "company": company, "lft": root_lft, "rgt": root_rgt }) print ("accounts_filterd") print (accounts_filterd) #~ if filters.get("project"): #~ additional_conditions.append("project = '%s'"%(frappe.db.escape(filters.get("project")))) #~ if filters.get("cost_center"): #~ additional_conditions.append(get_cost_center_cond(filters.get("cost_center"))) #~ filterd_draft_gl_entries = draft_gl_entries filterd_draft_gl_entries = [] for draft_gl in draft_gl_entries : if (draft_gl.account,) in accounts_filterd: filterd_draft_gl_entries.append(draft_gl) gl_entries = frappe.db.sql("""select posting_date, account, debit, credit, is_opening, fiscal_year from `tabGL Entry` where company=%(company)s {additional_conditions} and posting_date <= %(to_date)s and account in (select name from `tabAccount` where lft >= %(lft)s and rgt <= %(rgt)s) order by account, posting_date""".format(additional_conditions=additional_conditions), { "company": company, "from_date": from_date, "to_date": to_date, "lft": root_lft, "rgt": root_rgt }, as_dict=True) if filters.get("show_draft") !=1 and filters.get("show_submitted") != 1 : gl_entries = [] elif filters.get("show_draft") == 1 and filters.get("show_submitted") != 1 : gl_entries = filterd_draft_gl_entries elif filters.get("show_draft") != 1 and filters.get("show_submitted") == 1 : pass elif filters.get("show_draft") == 1 and filters.get("show_submitted") == 1 : gl_entries.extend(filterd_draft_gl_entries) for entry in gl_entries: gl_entries_by_account.setdefault(entry.account, []).append(entry) return gl_entries_by_account def get_draft_gl_entries(filters,from_date,to_date): from frappe.utils import cint, getdate, formatdate target_docs_list = ["Payment Entry","Purchase Invoice","Expense Claim","Journal Entry", "Sales Invoice","Purchase Receipt","Delivery Note"] gl_entries = [] for target_doc in target_docs_list : get_all_docs = frappe.get_list(target_doc,fields=['name'], filters=[ ['docstatus',"=", 0], ['company',"=", filters.get('company')], ["posting_date",">=",getdate(from_date)], ["posting_date","<=",getdate(to_date)] ]) for doc_name in get_all_docs : doc = frappe.get_doc(target_doc,doc_name["name"]) if target_doc == "Payment Entry": if doc.payment_type in ("Receive", "Pay") and not doc.get("party_account_field"): doc.setup_party_account_field() doc.add_party_gl_entries(gl_entries) doc.add_bank_gl_entries(gl_entries) doc.add_deductions_gl_entries(gl_entries) if target_doc == "Journal Entry": gl_map = [] for d in doc.get("accounts"): if d.debit or d.credit: gl_map.append( doc.get_gl_dict({ "account": d.account, "party_type": d.party_type, "party": d.party, "against": d.against_account, "debit": flt(d.debit, d.precision("debit")), "credit": flt(d.credit, d.precision("credit")), "account_currency": d.account_currency, "debit_in_account_currency": flt(d.debit_in_account_currency, d.precision("debit_in_account_currency")), "credit_in_account_currency": flt(d.credit_in_account_currency, d.precision("credit_in_account_currency")), "against_voucher_type": d.reference_type, "against_voucher": d.reference_name, "remarks": doc.remark, "cost_center": d.cost_center, "project": d.project }) ) gl_entries.extend(gl_map) if target_doc in ["Purchase Receipt"]: from erpnext.stock import get_warehouse_account_map warehouse_account = get_warehouse_account_map() gl_entries.extend(doc.get_gl_entries(warehouse_account)) if target_doc in ["Purchase Invoice","Expense Claim","Sales Invoice","Delivery Note"]: gl_entries.extend(doc.get_gl_entries()) return gl_entries def get_additional_conditions(from_date, ignore_closing_entries, filters): additional_conditions = [] if ignore_closing_entries: additional_conditions.append("ifnull(voucher_type, '')!='Period Closing Voucher'") if from_date: additional_conditions.append("posting_date >= %(from_date)s") if filters: if filters.get("project"): additional_conditions.append("project = '%s'"%(frappe.db.escape(filters.get("project")))) if filters.get("cost_center"): additional_conditions.append(get_cost_center_cond(filters.get("cost_center"))) return " and {}".format(" and ".join(additional_conditions)) if additional_conditions else "" def get_cost_center_cond(cost_center): lft, rgt = frappe.db.get_value("Cost Center", cost_center, ["lft", "rgt"]) return (""" cost_center in (select name from `tabCost Center` where lft >=%s and rgt <=%s)"""%(lft, rgt)) def get_columns(periodicity, period_list, accumulated_values=1, company=None): columns = [{ "fieldname": "account", "label": _("Account"), "fieldtype": "Link", "options": "Account", "width": 300 }] if company: columns.append({ "fieldname": "currency", "label": _("Currency"), "fieldtype": "Link", "options": "Currency", "hidden": 1 }) for period in period_list: columns.append({ "fieldname": period.key, "label": period.label, "fieldtype": "Currency", "options": "currency", "width": 150 }) if periodicity!="Yearly": if not accumulated_values: columns.append({ "fieldname": "total", "label": _("Total"), "fieldtype": "Currency", "width": 150 }) return columns
the-stack_106_23642
# coding: utf-8 import pprint import re import six class ProxyTokenDTO: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'access_token': 'str', 'long_access_token': 'str', 'valid_period': 'int', 'middle_end_url': 'str', 'middle_end_inner_url': 'str', 'enable_rerouting': 'bool' } attribute_map = { 'access_token': 'accessToken', 'long_access_token': 'longAccessToken', 'valid_period': 'validPeriod', 'middle_end_url': 'middleEndUrl', 'middle_end_inner_url': 'middleEndInnerUrl', 'enable_rerouting': 'enableRerouting' } def __init__(self, access_token=None, long_access_token=None, valid_period=None, middle_end_url=None, middle_end_inner_url=None, enable_rerouting=None): """ProxyTokenDTO - a model defined in huaweicloud sdk""" self._access_token = None self._long_access_token = None self._valid_period = None self._middle_end_url = None self._middle_end_inner_url = None self._enable_rerouting = None self.discriminator = None self.access_token = access_token if long_access_token is not None: self.long_access_token = long_access_token if valid_period is not None: self.valid_period = valid_period if middle_end_url is not None: self.middle_end_url = middle_end_url if middle_end_inner_url is not None: self.middle_end_inner_url = middle_end_inner_url if enable_rerouting is not None: self.enable_rerouting = enable_rerouting @property def access_token(self): """Gets the access_token of this ProxyTokenDTO. 代理鉴权服务器的短token字符串 :return: The access_token of this ProxyTokenDTO. :rtype: str """ return self._access_token @access_token.setter def access_token(self, access_token): """Sets the access_token of this ProxyTokenDTO. 代理鉴权服务器的短token字符串 :param access_token: The access_token of this ProxyTokenDTO. :type: str """ self._access_token = access_token @property def long_access_token(self): """Gets the long_access_token of this ProxyTokenDTO. 代理鉴权服务器的长token字符串 :return: The long_access_token of this ProxyTokenDTO. :rtype: str """ return self._long_access_token @long_access_token.setter def long_access_token(self, long_access_token): """Sets the long_access_token of this ProxyTokenDTO. 代理鉴权服务器的长token字符串 :param long_access_token: The long_access_token of this ProxyTokenDTO. :type: str """ self._long_access_token = long_access_token @property def valid_period(self): """Gets the valid_period of this ProxyTokenDTO. token有效时长,单位:秒。 :return: The valid_period of this ProxyTokenDTO. :rtype: int """ return self._valid_period @valid_period.setter def valid_period(self, valid_period): """Sets the valid_period of this ProxyTokenDTO. token有效时长,单位:秒。 :param valid_period: The valid_period of this ProxyTokenDTO. :type: int """ self._valid_period = valid_period @property def middle_end_url(self): """Gets the middle_end_url of this ProxyTokenDTO. 中台地址。 :return: The middle_end_url of this ProxyTokenDTO. :rtype: str """ return self._middle_end_url @middle_end_url.setter def middle_end_url(self, middle_end_url): """Sets the middle_end_url of this ProxyTokenDTO. 中台地址。 :param middle_end_url: The middle_end_url of this ProxyTokenDTO. :type: str """ self._middle_end_url = middle_end_url @property def middle_end_inner_url(self): """Gets the middle_end_inner_url of this ProxyTokenDTO. 中台内网地址 :return: The middle_end_inner_url of this ProxyTokenDTO. :rtype: str """ return self._middle_end_inner_url @middle_end_inner_url.setter def middle_end_inner_url(self, middle_end_inner_url): """Sets the middle_end_inner_url of this ProxyTokenDTO. 中台内网地址 :param middle_end_inner_url: The middle_end_inner_url of this ProxyTokenDTO. :type: str """ self._middle_end_inner_url = middle_end_inner_url @property def enable_rerouting(self): """Gets the enable_rerouting of this ProxyTokenDTO. 是否开启二次路由 :return: The enable_rerouting of this ProxyTokenDTO. :rtype: bool """ return self._enable_rerouting @enable_rerouting.setter def enable_rerouting(self, enable_rerouting): """Sets the enable_rerouting of this ProxyTokenDTO. 是否开启二次路由 :param enable_rerouting: The enable_rerouting of this ProxyTokenDTO. :type: bool """ self._enable_rerouting = enable_rerouting def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProxyTokenDTO): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_23646
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import unittest import pytest import pickle from sklearn.linear_model import LinearRegression, Lasso, LassoCV, LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder, FunctionTransformer, PolynomialFeatures from sklearn.model_selection import KFold, GroupKFold from econml.dml import DML, LinearDML, SparseLinearDML, KernelDML, CausalForestDML from econml.dml import NonParamDML import numpy as np from econml.utilities import shape, hstack, vstack, reshape, cross_product from econml.inference import BootstrapInference from contextlib import ExitStack from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier import itertools from econml.sklearn_extensions.linear_model import WeightedLasso, StatsModelsRLM from econml.tests.test_statsmodels import _summarize import econml.tests.utilities # bugfix for assertWarns from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier # all solutions to underdetermined (or exactly determined) Ax=b are given by A⁺b+(I-A⁺A)w for some arbitrary w # note that if Ax=b is overdetermined, this will raise an assertion error def rand_sol(A, b): """Generate a random solution to the equation Ax=b.""" assert np.linalg.matrix_rank(A) <= len(b) A_plus = np.linalg.pinv(A) x = A_plus @ b return x + (np.eye(x.shape[0]) - A_plus @ A) @ np.random.normal(size=x.shape) class TestDML(unittest.TestCase): def test_cate_api(self): """Test that we correctly implement the CATE API.""" n_c = 20 # number of rows for continuous models n_d = 30 # number of rows for discrete models def make_random(n, is_discrete, d): if d is None: return None sz = (n, d) if d >= 0 else (n,) if is_discrete: while True: arr = np.random.choice(['a', 'b', 'c'], size=sz) # ensure that we've got at least 6 of every element # 2 outer splits, 3 inner splits when model_t is 'auto' and treatment is discrete # NOTE: this number may need to change if the default number of folds in # WeightedStratifiedKFold changes _, counts = np.unique(arr, return_counts=True) if len(counts) == 3 and counts.min() > 5: return arr else: return np.random.normal(size=sz) for d_t in [2, 1, -1]: for is_discrete in [True, False] if d_t <= 1 else [False]: for d_y in [3, 1, -1]: for d_x in [2, None]: for d_w in [2, None]: n = n_d if is_discrete else n_c W, X, Y, T = [make_random(n, is_discrete, d) for is_discrete, d in [(False, d_w), (False, d_x), (False, d_y), (is_discrete, d_t)]] for featurizer, fit_cate_intercept in\ [(None, True), (PolynomialFeatures(degree=2, include_bias=False), True), (PolynomialFeatures(degree=2, include_bias=True), False)]: d_t_final = 2 if is_discrete else d_t effect_shape = (n,) + ((d_y,) if d_y > 0 else ()) effect_summaryframe_shape = (n * (d_y if d_y > 0 else 1), 6) marginal_effect_shape = ((n,) + ((d_y,) if d_y > 0 else ()) + ((d_t_final,) if d_t_final > 0 else ())) marginal_effect_summaryframe_shape = (n * (d_y if d_y > 0 else 1), 6 * (d_t_final if d_t_final > 0 else 1)) # since T isn't passed to const_marginal_effect, defaults to one row if X is None const_marginal_effect_shape = ((n if d_x else 1,) + ((d_y,) if d_y > 0 else ()) + ((d_t_final,) if d_t_final > 0 else())) const_marginal_effect_summaryframe_shape = ( (n if d_x else 1) * (d_y if d_y > 0 else 1), 6 * (d_t_final if d_t_final > 0 else 1)) fd_x = featurizer.fit_transform(X).shape[1:] if featurizer and d_x\ else ((d_x,) if d_x else (0,)) coef_shape = Y.shape[1:] + (T.shape[1:] if not is_discrete else (2,)) + fd_x coef_summaryframe_shape = ( (d_y if d_y > 0 else 1) * (fd_x[0] if fd_x[0] > 0 else 1), (d_t_final if d_t_final > 0 else 1) * 6) intercept_shape = Y.shape[1:] + (T.shape[1:] if not is_discrete else (2,)) intercept_summaryframe_shape = ( (d_y if d_y > 0 else 1), (d_t_final if d_t_final > 0 else 1) * 6) model_t = LogisticRegression() if is_discrete else Lasso() all_infs = [None, 'auto', BootstrapInference(2)] for est, multi, infs in\ [(DML(model_y=Lasso(), model_t=model_t, model_final=Lasso(alpha=0.1, fit_intercept=False), featurizer=featurizer, fit_cate_intercept=fit_cate_intercept, discrete_treatment=is_discrete), True, [None] + ([BootstrapInference(n_bootstrap_samples=20)] if not is_discrete else [])), (DML(model_y=Lasso(), model_t=model_t, model_final=StatsModelsRLM(fit_intercept=False), featurizer=featurizer, fit_cate_intercept=fit_cate_intercept, discrete_treatment=is_discrete), True, ['auto']), (LinearDML(model_y=Lasso(), model_t='auto', featurizer=featurizer, fit_cate_intercept=fit_cate_intercept, discrete_treatment=is_discrete), True, all_infs), (SparseLinearDML(model_y=WeightedLasso(), model_t=model_t, featurizer=featurizer, fit_cate_intercept=fit_cate_intercept, discrete_treatment=is_discrete), True, [None, 'auto'] + ([BootstrapInference(n_bootstrap_samples=20)] if not is_discrete else [])), (KernelDML(model_y=WeightedLasso(), model_t=model_t, fit_cate_intercept=fit_cate_intercept, discrete_treatment=is_discrete), False, [None]), (CausalForestDML(model_y=WeightedLasso(), model_t=model_t, featurizer=featurizer, n_estimators=4, n_jobs=1, discrete_treatment=is_discrete), True, ['auto', 'blb'])]: if not(multi) and d_y > 1: continue if X is None and isinstance(est, CausalForestDML): continue # ensure we can serialize the unfit estimator pickle.dumps(est) for inf in infs: with self.subTest(d_w=d_w, d_x=d_x, d_y=d_y, d_t=d_t, is_discrete=is_discrete, est=est, inf=inf): if X is None and (not fit_cate_intercept): with pytest.raises(AttributeError): est.fit(Y, T, X=X, W=W, inference=inf) continue est.fit(Y, T, X=X, W=W, inference=inf) # ensure we can pickle the fit estimator pickle.dumps(est) # make sure we can call the marginal_effect and effect methods const_marg_eff = est.const_marginal_effect(X) marg_eff = est.marginal_effect(T, X) self.assertEqual(shape(marg_eff), marginal_effect_shape) self.assertEqual(shape(const_marg_eff), const_marginal_effect_shape) np.testing.assert_allclose( marg_eff if d_x else marg_eff[0:1], const_marg_eff) assert isinstance(est.score_, float) for score in est.nuisance_scores_y: assert isinstance(score, float) for score in est.nuisance_scores_t: assert isinstance(score, float) T0 = np.full_like(T, 'a') if is_discrete else np.zeros_like(T) eff = est.effect(X, T0=T0, T1=T) self.assertEqual(shape(eff), effect_shape) if ((not isinstance(est, KernelDML)) and (not isinstance(est, CausalForestDML))): self.assertEqual(shape(est.coef_), coef_shape) if fit_cate_intercept: self.assertEqual(shape(est.intercept_), intercept_shape) else: with pytest.raises(AttributeError): self.assertEqual(shape(est.intercept_), intercept_shape) if inf is not None: const_marg_eff_int = est.const_marginal_effect_interval(X) marg_eff_int = est.marginal_effect_interval(T, X) self.assertEqual(shape(marg_eff_int), (2,) + marginal_effect_shape) self.assertEqual(shape(const_marg_eff_int), (2,) + const_marginal_effect_shape) self.assertEqual(shape(est.effect_interval(X, T0=T0, T1=T)), (2,) + effect_shape) if ((not isinstance(est, KernelDML)) and (not isinstance(est, CausalForestDML))): self.assertEqual(shape(est.coef__interval()), (2,) + coef_shape) if fit_cate_intercept: self.assertEqual(shape(est.intercept__interval()), (2,) + intercept_shape) else: with pytest.raises(AttributeError): self.assertEqual(shape(est.intercept__interval()), (2,) + intercept_shape) const_marg_effect_inf = est.const_marginal_effect_inference(X) T1 = np.full_like(T, 'b') if is_discrete else T effect_inf = est.effect_inference(X, T0=T0, T1=T1) marg_effect_inf = est.marginal_effect_inference(T, X) # test const marginal inference self.assertEqual(shape(const_marg_effect_inf.summary_frame()), const_marginal_effect_summaryframe_shape) self.assertEqual(shape(const_marg_effect_inf.point_estimate), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.stderr), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.var), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.pvalue()), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.zstat()), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.conf_int()), (2,) + const_marginal_effect_shape) np.testing.assert_array_almost_equal( const_marg_effect_inf.conf_int()[0], const_marg_eff_int[0], decimal=5) const_marg_effect_inf.population_summary()._repr_html_() # test effect inference self.assertEqual(shape(effect_inf.summary_frame()), effect_summaryframe_shape) self.assertEqual(shape(effect_inf.point_estimate), effect_shape) self.assertEqual(shape(effect_inf.stderr), effect_shape) self.assertEqual(shape(effect_inf.var), effect_shape) self.assertEqual(shape(effect_inf.pvalue()), effect_shape) self.assertEqual(shape(effect_inf.zstat()), effect_shape) self.assertEqual(shape(effect_inf.conf_int()), (2,) + effect_shape) np.testing.assert_array_almost_equal( effect_inf.conf_int()[0], est.effect_interval(X, T0=T0, T1=T1)[0], decimal=5) effect_inf.population_summary()._repr_html_() # test marginal effect inference self.assertEqual(shape(marg_effect_inf.summary_frame()), marginal_effect_summaryframe_shape) self.assertEqual(shape(marg_effect_inf.point_estimate), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.stderr), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.var), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.pvalue()), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.zstat()), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.conf_int()), (2,) + marginal_effect_shape) np.testing.assert_array_almost_equal( marg_effect_inf.conf_int()[0], marg_eff_int[0], decimal=5) marg_effect_inf.population_summary()._repr_html_() # test coef__inference and intercept__inference if ((not isinstance(est, KernelDML)) and (not isinstance(est, CausalForestDML))): if X is not None: self.assertEqual( shape(est.coef__inference().summary_frame()), coef_summaryframe_shape) np.testing.assert_array_almost_equal( est.coef__inference().conf_int() [0], est.coef__interval()[0], decimal=5) if fit_cate_intercept: cm = ExitStack() # ExitStack can be used as a "do nothing" ContextManager else: cm = pytest.raises(AttributeError) with cm: self.assertEqual(shape(est.intercept__inference(). summary_frame()), intercept_summaryframe_shape) np.testing.assert_array_almost_equal( est.intercept__inference().conf_int() [0], est.intercept__interval()[0], decimal=5) est.summary() est.score(Y, T, X, W) if isinstance(est, CausalForestDML): np.testing.assert_array_equal(est.feature_importances_.shape, ((d_y,) if d_y > 0 else()) + fd_x) # make sure we can call effect with implied scalar treatments, # no matter the dimensions of T, and also that we warn when there # are multiple treatments if d_t > 1: cm = self.assertWarns(Warning) else: # ExitStack can be used as a "do nothing" ContextManager cm = ExitStack() with cm: effect_shape2 = (n if d_x else 1,) + ((d_y,) if d_y > 0 else()) eff = est.effect(X) if not is_discrete else est.effect( X, T0='a', T1='b') self.assertEqual(shape(eff), effect_shape2) def test_cate_api_nonparam(self): """Test that we correctly implement the CATE API.""" n = 20 def make_random(is_discrete, d): if d is None: return None sz = (n, d) if d >= 0 else (n,) if is_discrete: while True: arr = np.random.choice(['a', 'b'], size=sz) # ensure that we've got at least two of every element _, counts = np.unique(arr, return_counts=True) if len(counts) == 2 and counts.min() > 2: return arr else: return np.random.normal(size=sz) for d_t in [1, -1]: for is_discrete in [True, False] if d_t <= 1 else [False]: for d_y in [3, 1, -1]: for d_x in [2, None]: for d_w in [2, None]: W, X, Y, T = [make_random(is_discrete, d) for is_discrete, d in [(False, d_w), (False, d_x), (False, d_y), (is_discrete, d_t)]] d_t_final = 1 if is_discrete else d_t effect_shape = (n,) + ((d_y,) if d_y > 0 else ()) effect_summaryframe_shape = (n * (d_y if d_y > 0 else 1), 6) marginal_effect_shape = ((n,) + ((d_y,) if d_y > 0 else ()) + ((d_t_final,) if d_t_final > 0 else ())) marginal_effect_summaryframe_shape = (n * (d_y if d_y > 0 else 1), 6 * (d_t_final if d_t_final > 0 else 1)) # since T isn't passed to const_marginal_effect, defaults to one row if X is None const_marginal_effect_shape = ((n if d_x else 1,) + ((d_y,) if d_y > 0 else ()) + ((d_t_final,) if d_t_final > 0 else())) const_marginal_effect_summaryframe_shape = ( (n if d_x else 1) * (d_y if d_y > 0 else 1), 6 * (d_t_final if d_t_final > 0 else 1)) model_t = LogisticRegression() if is_discrete else WeightedLasso() base_infs = [None, BootstrapInference(2)] for est, multi, infs in [(NonParamDML(model_y=WeightedLasso(), model_t=model_t, model_final=WeightedLasso(), featurizer=None, discrete_treatment=is_discrete), True, base_infs), (NonParamDML(model_y=WeightedLasso(), model_t=model_t, model_final=WeightedLasso(), featurizer=FunctionTransformer(), discrete_treatment=is_discrete), True, base_infs), ]: if not(multi) and d_y > 1: continue for inf in infs: with self.subTest(d_w=d_w, d_x=d_x, d_y=d_y, d_t=d_t, is_discrete=is_discrete, est=est, inf=inf): if X is None: with pytest.raises(AttributeError): est.fit(Y, T, X=X, W=W, inference=inf) continue est.fit(Y, T, X=X, W=W, inference=inf) # make sure we can call the marginal_effect and effect methods const_marg_eff = est.const_marginal_effect(X) marg_eff = est.marginal_effect(T, X) self.assertEqual(shape(marg_eff), marginal_effect_shape) self.assertEqual(shape(const_marg_eff), const_marginal_effect_shape) np.testing.assert_array_equal( marg_eff if d_x else marg_eff[0:1], const_marg_eff) T0 = np.full_like(T, 'a') if is_discrete else np.zeros_like(T) eff = est.effect(X, T0=T0, T1=T) self.assertEqual(shape(eff), effect_shape) if inf is not None: const_marg_eff_int = est.const_marginal_effect_interval(X) marg_eff_int = est.marginal_effect_interval(T, X) self.assertEqual(shape(marg_eff_int), (2,) + marginal_effect_shape) self.assertEqual(shape(const_marg_eff_int), (2,) + const_marginal_effect_shape) self.assertEqual(shape(est.effect_interval(X, T0=T0, T1=T)), (2,) + effect_shape) if inf in ['auto', 'statsmodels', 'debiasedlasso', 'blb']: const_marg_effect_inf = est.const_marginal_effect_inference(X) T1 = np.full_like(T, 'b') if is_discrete else T effect_inf = est.effect_inference(X, T0=T0, T1=T1) marg_effect_inf = est.marginal_effect_inference(T, X) # test const marginal inference self.assertEqual(shape(const_marg_effect_inf.summary_frame()), const_marginal_effect_summaryframe_shape) self.assertEqual(shape(const_marg_effect_inf.point_estimate), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.stderr), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.var), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.pvalue()), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.zstat()), const_marginal_effect_shape) self.assertEqual(shape(const_marg_effect_inf.conf_int()), (2,) + const_marginal_effect_shape) np.testing.assert_array_almost_equal( const_marg_effect_inf.conf_int()[0], const_marg_eff_int[0], decimal=5) const_marg_effect_inf.population_summary()._repr_html_() # test effect inference self.assertEqual(shape(effect_inf.summary_frame()), effect_summaryframe_shape) self.assertEqual(shape(effect_inf.point_estimate), effect_shape) self.assertEqual(shape(effect_inf.stderr), effect_shape) self.assertEqual(shape(effect_inf.var), effect_shape) self.assertEqual(shape(effect_inf.pvalue()), effect_shape) self.assertEqual(shape(effect_inf.zstat()), effect_shape) self.assertEqual(shape(effect_inf.conf_int()), (2,) + effect_shape) np.testing.assert_array_almost_equal( effect_inf.conf_int()[0], est.effect_interval(X, T0=T0, T1=T1)[0], decimal=5) effect_inf.population_summary()._repr_html_() # test marginal effect inference self.assertEqual(shape(marg_effect_inf.summary_frame()), marginal_effect_summaryframe_shape) self.assertEqual(shape(marg_effect_inf.point_estimate), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.stderr), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.var), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.pvalue()), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.zstat()), marginal_effect_shape) self.assertEqual(shape(marg_effect_inf.conf_int()), (2,) + marginal_effect_shape) np.testing.assert_array_almost_equal( marg_effect_inf.conf_int()[0], marg_eff_int[0], decimal=5) marg_effect_inf.population_summary()._repr_html_() est.score(Y, T, X, W) # make sure we can call effect with implied scalar treatments, no matter the # dimensions of T, and also that we warn when there are multiple treatments if d_t > 1: cm = self.assertWarns(Warning) else: cm = ExitStack() # ExitStack can be used as a "do nothing" ContextManager with cm: effect_shape2 = (n if d_x else 1,) + ((d_y,) if d_y > 0 else()) eff = est.effect(X) if not is_discrete else est.effect(X, T0='a', T1='b') self.assertEqual(shape(eff), effect_shape2) def test_bad_splits_discrete(self): """ Tests that when some training splits in a crossfit fold don't contain all treatments then an error is raised. """ Y = np.array([2, 3, 1, 3, 2, 1, 1, 1]) T = np.array([2, 2, 1, 2, 1, 1, 1, 1]) X = np.ones((8, 1)) est = LinearDML(n_splits=[(np.arange(4, 8), np.arange(4))], discrete_treatment=True) with pytest.raises(AttributeError): est.fit(Y, T, X=X) Y = np.array([2, 3, 1, 3, 2, 1, 1, 1]) T = np.array([2, 2, 1, 2, 2, 2, 2, 2]) X = np.ones((8, 1)) est = LinearDML(n_splits=[(np.arange(4, 8), np.arange(4))], discrete_treatment=True) with pytest.raises(AttributeError): est.fit(Y, T, X=X) def test_bad_treatment_nonparam(self): """ Test that the non-parametric dml raises errors when treatment is not binary or single dimensional """ Y = np.array([2, 3, 1, 3, 2, 1, 1, 1]) T = np.array([3, 2, 1, 2, 1, 2, 1, 3]) X = np.ones((8, 1)) est = NonParamDML(model_y=WeightedLasso(), model_t=LogisticRegression(), model_final=WeightedLasso(), discrete_treatment=True) with pytest.raises(AttributeError): est.fit(Y, T, X=X) T = np.ones((8, 2)) est = NonParamDML(model_y=WeightedLasso(), model_t=LinearRegression(), model_final=WeightedLasso(), discrete_treatment=False) with pytest.raises(AttributeError): est.fit(Y, T, X=X) def test_access_to_internal_models(self): """ Test that API related to accessing the nuisance models, cate_model and featurizer is working. """ Y = np.array([2, 3, 1, 3, 2, 1, 1, 1]) T = np.array([3, 2, 1, 2, 1, 2, 1, 3]) X = np.ones((8, 1)) est = DML(model_y=WeightedLasso(), model_t=LogisticRegression(), model_final=WeightedLasso(), featurizer=PolynomialFeatures(degree=2, include_bias=False), fit_cate_intercept=True, discrete_treatment=True) est.fit(Y, T, X=X) assert isinstance(est.original_featurizer, PolynomialFeatures) assert isinstance(est.featurizer, Pipeline) assert isinstance(est.model_cate, WeightedLasso) for mdl in est.models_y: assert isinstance(mdl, WeightedLasso) for mdl in est.models_t: assert isinstance(mdl, LogisticRegression) np.testing.assert_array_equal(est.cate_feature_names(['A']), ['A', 'A^2']) np.testing.assert_array_equal(est.cate_feature_names(), ['x0', 'x0^2']) est = DML(model_y=WeightedLasso(), model_t=LogisticRegression(), model_final=WeightedLasso(), featurizer=None, fit_cate_intercept=True, discrete_treatment=True) est.fit(Y, T, X=X) assert est.original_featurizer is None assert isinstance(est.featurizer, FunctionTransformer) assert isinstance(est.model_cate, WeightedLasso) for mdl in est.models_y: assert isinstance(mdl, WeightedLasso) for mdl in est.models_t: assert isinstance(mdl, LogisticRegression) np.testing.assert_array_equal(est.cate_feature_names(['A']), ['A']) def test_forest_dml_perf(self): """Testing accuracy of forest DML is reasonable""" np.random.seed(1234) n = 20000 # number of raw samples d = 10 for _ in range(2): X = np.random.binomial(1, .5, size=(n, d)) T = np.random.binomial(1, .5, size=(n,)) def true_fn(x): return -1 + 2 * x[:, 0] + x[:, 1] * x[:, 2] y = true_fn(X) * T + X[:, 0] + (1 * X[:, 0] + 1) * np.random.normal(0, 1, size=(n,)) XT = np.hstack([T.reshape(-1, 1), X]) X1, X2, y1, y2, X1_sum, X2_sum, y1_sum, y2_sum, n1_sum, n2_sum, var1_sum, var2_sum = _summarize(XT, y) # We concatenate the two copies data X_sum = np.vstack([np.array(X1_sum)[:, 1:], np.array(X2_sum)[:, 1:]]) T_sum = np.concatenate((np.array(X1_sum)[:, 0], np.array(X2_sum)[:, 0])) y_sum = np.concatenate((y1_sum, y2_sum)) # outcome n_sum = np.concatenate((n1_sum, n2_sum)) # number of summarized points var_sum = np.concatenate((var1_sum, var2_sum)) # variance of the summarized points for summarized, min_samples_leaf in [(False, 20), (True, 1)]: est = CausalForestDML(model_y=GradientBoostingRegressor(n_estimators=30, min_samples_leaf=30), model_t=GradientBoostingClassifier(n_estimators=30, min_samples_leaf=30), discrete_treatment=True, n_crossfit_splits=2, n_estimators=1000, max_samples=.4, min_samples_leaf=min_samples_leaf, min_impurity_decrease=0.001, verbose=0, min_var_fraction_leaf=.1, fit_intercept=False, random_state=12345) if summarized: est.fit(y_sum, T_sum, X=X_sum[:, :4], W=X_sum[:, 4:], sample_weight=n_sum) else: est.fit(y, T, X=X[:, :4], W=X[:, 4:]) X_test = np.array(list(itertools.product([0, 1], repeat=4))) point = est.effect(X_test) truth = true_fn(X_test) lb, ub = est.effect_interval(X_test, alpha=.01) np.testing.assert_allclose(point, truth, rtol=0, atol=.3) np.testing.assert_array_less(lb - .01, truth) np.testing.assert_array_less(truth, ub + .01) est = CausalForestDML(model_y=GradientBoostingRegressor(n_estimators=50, min_samples_leaf=100), model_t=GradientBoostingRegressor(n_estimators=50, min_samples_leaf=100), discrete_treatment=False, n_crossfit_splits=2, n_estimators=1000, max_samples=.4, min_samples_leaf=min_samples_leaf, min_impurity_decrease=0.001, verbose=0, min_var_fraction_leaf=.1, fit_intercept=False, random_state=12345) if summarized: est.fit(y_sum, T_sum, X=X_sum[:, :4], W=X_sum[:, 4:], sample_weight=n_sum) else: est.fit(y, T, X=X[:, :4], W=X[:, 4:]) X_test = np.array(list(itertools.product([0, 1], repeat=4))) point = est.effect(X_test) truth = true_fn(X_test) lb, ub = est.effect_interval(X_test, alpha=.01) np.testing.assert_allclose(point, truth, rtol=0, atol=.3) np.testing.assert_array_less(lb - .01, truth) np.testing.assert_array_less(truth, ub + .01) def test_can_use_vectors(self): """Test that we can pass vectors for T and Y (not only 2-dimensional arrays).""" dmls = [ LinearDML(LinearRegression(), LinearRegression(), fit_cate_intercept=False), SparseLinearDML(LinearRegression(), LinearRegression(), fit_cate_intercept=False) ] for dml in dmls: dml.fit(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), X=np.ones((6, 1))) self.assertAlmostEqual(dml.coef_.reshape(())[()], 1) score = dml.score(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), np.ones((6, 1))) self.assertAlmostEqual(score, 0) def test_can_use_sample_weights(self): """Test that we can pass sample weights to an estimator.""" dmls = [ LinearDML(LinearRegression(), 'auto', fit_cate_intercept=False), SparseLinearDML(LinearRegression(), 'auto', fit_cate_intercept=False) ] for dml in dmls: dml.fit(np.array([1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]), X=np.ones((12, 1)), sample_weight=np.ones((12, ))) self.assertAlmostEqual(dml.coef_.reshape(())[()], 1) def test_discrete_treatments(self): """Test that we can use discrete treatments""" dmls = [ LinearDML(LinearRegression(), LogisticRegression(C=1000), fit_cate_intercept=False, discrete_treatment=True), SparseLinearDML(LinearRegression(), LogisticRegression(C=1000), fit_cate_intercept=False, discrete_treatment=True) ] for dml in dmls: # create a simple artificial setup where effect of moving from treatment # 1 -> 2 is 2, # 1 -> 3 is 1, and # 2 -> 3 is -1 (necessarily, by composing the previous two effects) # Using an uneven number of examples from different classes, # and having the treatments in non-lexicographic order, # Should rule out some basic issues. dml.fit(np.array([2, 3, 1, 3, 2, 1, 1, 1]), np.array([3, 2, 1, 2, 3, 1, 1, 1]), X=np.ones((8, 1))) np.testing.assert_almost_equal( dml.effect( np.ones((9, 1)), T0=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), T1=np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) ), [0, 2, 1, -2, 0, -1, -1, 1, 0], decimal=2) dml.score(np.array([2, 3, 1, 3, 2, 1, 1, 1]), np.array([3, 2, 1, 2, 3, 1, 1, 1]), np.ones((8, 1))) def test_can_custom_splitter(self): # test that we can fit with a KFold instance dml = LinearDML(LinearRegression(), LogisticRegression(C=1000), discrete_treatment=True, n_splits=KFold()) dml.fit(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), X=np.ones((6, 1))) dml.score(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), np.ones((6, 1))) # test that we can fit with a train/test iterable dml = LinearDML(LinearRegression(), LogisticRegression(C=1000), discrete_treatment=True, n_splits=[([0, 1, 2], [3, 4, 5])]) dml.fit(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), X=np.ones((6, 1))) dml.score(np.array([1, 2, 3, 1, 2, 3]), np.array([1, 2, 3, 1, 2, 3]), np.ones((6, 1))) def test_can_use_featurizer(self): "Test that we can use a featurizer, and that fit is only called during training" # predetermined splits ensure that all features are seen in each split splits = ([0, 2, 3, 6, 8, 11, 13, 15, 16], [1, 4, 5, 7, 9, 10, 12, 14, 17]) dml = LinearDML(LinearRegression(), LinearRegression(), fit_cate_intercept=False, featurizer=OneHotEncoder(sparse=False), n_splits=[splits, splits[::-1]]) T = np.tile([1, 2, 3], 6) Y = np.array([1, 2, 3, 1, 2, 3]) Y = np.concatenate([Y, 0 * Y, -Y]) X = np.repeat([[7, 8, 9]], 6, axis=1).T dml.fit(Y, T, X=X) # because there is one fewer unique element in the test set, fit_transform would return the wrong number of fts X_test = np.array([[7, 8]]).T np.testing.assert_equal(dml.effect(X_test)[::-1], dml.effect(X_test[::-1])) eff_int = np.array(dml.effect_interval(X_test)) eff_int_rev = np.array(dml.effect_interval(X_test[::-1])) np.testing.assert_equal(eff_int[:, ::-1], eff_int_rev) eff_int = np.array(dml.const_marginal_effect_interval(X_test)) eff_int_rev = np.array(dml.const_marginal_effect_interval(X_test[::-1])) np.testing.assert_equal(eff_int[:, ::-1], eff_int_rev) def test_can_use_statsmodel_inference(self): """Test that we can use statsmodels to generate confidence intervals""" dml = LinearDML(LinearRegression(), LogisticRegression(C=1000), discrete_treatment=True) dml.fit(np.array([2, 3, 1, 3, 2, 1, 1, 1]), np.array( [3, 2, 1, 2, 3, 1, 1, 1]), X=np.ones((8, 1))) interval = dml.effect_interval(np.ones((9, 1)), T0=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), T1=np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]), alpha=0.05) point = dml.effect(np.ones((9, 1)), T0=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), T1=np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])) assert len(interval) == 2 lo, hi = interval assert lo.shape == hi.shape == point.shape assert (lo <= point).all() assert (point <= hi).all() assert (lo < hi).any() # for at least some of the examples, the CI should have nonzero width interval = dml.const_marginal_effect_interval(np.ones((9, 1)), alpha=0.05) point = dml.const_marginal_effect(np.ones((9, 1))) assert len(interval) == 2 lo, hi = interval assert lo.shape == hi.shape == point.shape assert (lo <= point).all() assert (point <= hi).all() assert (lo < hi).any() # for at least some of the examples, the CI should have nonzero width interval = dml.coef__interval(alpha=0.05) point = dml.coef_ assert len(interval) == 2 lo, hi = interval assert lo.shape == hi.shape == point.shape assert (lo <= point).all() assert (point <= hi).all() assert (lo < hi).any() # for at least some of the examples, the CI should have nonzero width interval = dml.intercept__interval(alpha=0.05) point = dml.intercept_ assert len(interval) == 2 lo, hi = interval assert (lo <= point).all() assert (point <= hi).all() assert (lo < hi).any() # for at least some of the examples, the CI should have nonzero width def test_ignores_final_intercept(self): """Test that final model intercepts are ignored (with a warning)""" class InterceptModel: def fit(self, Y, X): pass def predict(self, X): return X + 1 def prediction_stderr(self, X): return np.zeros(X.shape[0]) # (incorrectly) use a final model with an intercept dml = DML(LinearRegression(), LinearRegression(), model_final=InterceptModel()) # Because final model is fixed, actual values of T and Y don't matter t = np.random.normal(size=100) y = np.random.normal(size=100) with self.assertWarns(Warning): # we should warn whenever there's an intercept dml.fit(y, t) assert dml.const_marginal_effect() == 1 # coefficient on X in InterceptModel is 1 assert dml.const_marginal_effect_inference().point_estimate == 1 assert dml.const_marginal_effect_inference().conf_int() == (1, 1) assert dml.const_marginal_effect_interval() == (1, 1) assert dml.effect() == 1 assert dml.effect_inference().point_estimate == 1 assert dml.effect_inference().conf_int() == (1, 1) assert dml.effect_interval() == (1, 1) assert dml.marginal_effect(1) == 1 # coefficient on X in InterceptModel is 1 assert dml.marginal_effect_inference(1).point_estimate == 1 assert dml.marginal_effect_inference(1).conf_int() == (1, 1) assert dml.marginal_effect_interval(1) == (1, 1) def test_sparse(self): for _ in range(5): # Ensure reproducibility np.random.seed(1234) n_p = np.random.randint(2, 5) # 2 to 4 products d_w = np.random.randint(0, 5) # random number of covariates min_n = np.ceil(2 + d_w * (1 + (d_w + 1) / n_p)) # minimum number of rows per product n_r = np.random.randint(min_n, min_n + 3) with self.subTest(n_p=n_p, d_w=d_w, n_r=n_r): TestDML._test_sparse(n_p, d_w, n_r) def test_linear_sparse(self): """SparseDML test with a sparse DGP""" # Sparse DGP np.random.seed(123) n_x = 50 n_nonzero = 5 n_w = 5 n = 1000 # Treatment effect coef a = np.zeros(n_x) nonzero_idx = np.random.choice(n_x, size=n_nonzero, replace=False) a[nonzero_idx] = 1 # Other coefs b = np.zeros(n_x + n_w) g = np.zeros(n_x + n_w) b_nonzero = np.random.choice(n_x + n_w, size=n_nonzero, replace=False) g_nonzero = np.random.choice(n_x + n_w, size=n_nonzero, replace=False) b[b_nonzero] = 1 g[g_nonzero] = 1 # Features and controls x = np.random.normal(size=(n, n_x)) w = np.random.normal(size=(n, n_w)) xw = np.hstack([x, w]) err_T = np.random.normal(size=n) T = xw @ b + err_T err_Y = np.random.normal(size=n, scale=0.5) Y = T * (x @ a) + xw @ g + err_Y # Test sparse estimator # --> test coef_, intercept_ sparse_dml = SparseLinearDML(fit_cate_intercept=False) sparse_dml.fit(Y, T, X=x, W=w) np.testing.assert_allclose(a, sparse_dml.coef_, atol=2e-1) with pytest.raises(AttributeError): sparse_dml.intercept_ # --> test treatment effects # Restrict x_test to vectors of norm < 1 x_test = np.random.uniform(size=(10, n_x)) true_eff = (x_test @ a) eff = sparse_dml.effect(x_test, T0=0, T1=1) np.testing.assert_allclose(true_eff, eff, atol=0.5) # --> check inference y_lower, y_upper = sparse_dml.effect_interval(x_test, T0=0, T1=1) in_CI = ((y_lower < true_eff) & (true_eff < y_upper)) # Check that a majority of true effects lie in the 5-95% CI self.assertTrue(in_CI.mean() > 0.8) @staticmethod def _generate_recoverable_errors(a_X, X, a_W=None, W=None, featurizer=None): """Return error vectors e_t and e_y such that OLS can recover the true coefficients from both stages.""" if W is None: W = np.empty((shape(X)[0], 0)) if a_W is None: a_W = np.zeros((shape(W)[1],)) # to correctly recover coefficients for T via OLS, we need e_t to be orthogonal to [W;X] WX = hstack([W, X]) e_t = rand_sol(WX.T, np.zeros((shape(WX)[1],))) # to correctly recover coefficients for Y via OLS, we need ([X; W]⊗[1; ϕ(X); W])⁺ e_y = # -([X; W]⊗[1; ϕ(X); W])⁺ ((ϕ(X)⊗e_t)a_X+(W⊗e_t)a_W) # then, to correctly recover a in the third stage, we additionally need (ϕ(X)⊗e_t)ᵀ e_y = 0 ϕ = featurizer.fit_transform(X) if featurizer is not None else X v_X = cross_product(ϕ, e_t) v_W = cross_product(W, e_t) M = np.linalg.pinv(cross_product(WX, hstack([np.ones((shape(WX)[0], 1)), ϕ, W]))) e_y = rand_sol(vstack([M, v_X.T]), vstack([-M @ (v_X @ a_X + v_W @ a_W), np.zeros((shape(v_X)[1],))])) return e_t, e_y # sparse test case: heterogeneous effect by product @staticmethod def _test_sparse(n_p, d_w, n_r): # need at least as many rows in e_y as there are distinct columns # in [X;X⊗W;W⊗W;X⊗e_t] to find a solution for e_t assert n_p * n_r >= 2 * n_p + n_p * d_w + d_w * (d_w + 1) / 2 a = np.random.normal(size=(n_p,)) # one effect per product n = n_p * n_r * 100 p = np.tile(range(n_p), n_r * 100) # product id b = np.random.normal(size=(d_w + n_p,)) g = np.random.normal(size=(d_w + n_p,)) x = np.empty((2 * n, n_p)) # product dummies w = np.empty((2 * n, d_w)) y = np.empty(2 * n) t = np.empty(2 * n) for fold in range(0, 2): x_f = OneHotEncoder().fit_transform(np.reshape(p, (-1, 1))).toarray() w_f = np.random.normal(size=(n, d_w)) xw_f = hstack([x_f, w_f]) e_t_f, e_y_f = TestDML._generate_recoverable_errors(a, x_f, W=w_f) t_f = xw_f @ b + e_t_f y_f = t_f * np.choose(p, a) + xw_f @ g + e_y_f x[fold * n:(fold + 1) * n, :] = x_f w[fold * n:(fold + 1) * n, :] = w_f y[fold * n:(fold + 1) * n] = y_f t[fold * n:(fold + 1) * n] = t_f dml = SparseLinearDML(LinearRegression(fit_intercept=False), LinearRegression( fit_intercept=False), fit_cate_intercept=False) dml.fit(y, t, X=x, W=w) np.testing.assert_allclose(a, dml.coef_.reshape(-1), atol=1e-1) eff = reshape(t * np.choose(np.tile(p, 2), a), (-1,)) np.testing.assert_allclose(eff, dml.effect(x, T0=0, T1=t), atol=1e-1) def test_nuisance_scores(self): X = np.random.choice(np.arange(5), size=(100, 3)) y = np.random.normal(size=(100,)) T = T0 = T1 = np.random.choice(np.arange(3), size=(100, 2)) W = np.random.normal(size=(100, 2)) for n_splits in [1, 2, 3]: est = LinearDML(n_splits=n_splits) est.fit(y, T, X=X, W=W) assert len(est.nuisance_scores_t) == len(est.nuisance_scores_y) == n_splits def test_categories(self): dmls = [LinearDML, SparseLinearDML] for ctor in dmls: dml1 = ctor(LinearRegression(), LogisticRegression(C=1000), fit_cate_intercept=False, discrete_treatment=True, random_state=123) dml2 = ctor(LinearRegression(), LogisticRegression(C=1000), fit_cate_intercept=False, discrete_treatment=True, categories=['c', 'b', 'a'], random_state=123) # create a simple artificial setup where effect of moving from treatment # a -> b is 2, # a -> c is 1, and # b -> c is -1 (necessarily, by composing the previous two effects) # Using an uneven number of examples from different classes, # and having the treatments in non-lexicographic order, # should rule out some basic issues. # Note that explicitly specifying the dtype as object is necessary until # there's a fix for https://github.com/scikit-learn/scikit-learn/issues/15616 for dml in [dml1, dml2]: dml.fit(np.array([2, 3, 1, 3, 2, 1, 1, 1]), np.array(['c', 'b', 'a', 'b', 'c', 'a', 'a', 'a'], dtype='object'), X=np.ones((8, 1))) # estimated effects should be identical when treatment is explicitly given np.testing.assert_almost_equal( dml1.effect( np.ones((9, 1)), T0=np.array(['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], dtype='object'), T1=np.array(['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'], dtype='object') ), dml2.effect( np.ones((9, 1)), T0=np.array(['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], dtype='object'), T1=np.array(['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c'], dtype='object') ), decimal=4) # but const_marginal_effect should be reordered based on the explicit cagetories cme1 = dml1.const_marginal_effect(np.ones((1, 1))).reshape(-1) cme2 = dml2.const_marginal_effect(np.ones((1, 1))).reshape(-1) self.assertAlmostEqual(cme1[1], -cme2[1], places=3) # 1->3 in original ordering; 3->1 in new ordering # 1-> 2 in original ordering; combination of 3->1 and 3->2 self.assertAlmostEqual(cme1[0], -cme2[1] + cme2[0], places=3) def test_groups(self): groups = [1, 2, 3, 4, 5, 6] * 10 t = groups y = groups est = LinearDML() with pytest.raises(Exception): # can't pass groups without a compatible n_split est.fit(y, t, groups=groups) # test outer grouping est = LinearDML(LinearRegression(), LinearRegression(), n_splits=GroupKFold(2)) est.fit(y, t, groups=groups) # test nested grouping class NestedModel(LassoCV): def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, precompute='auto', max_iter=1000, tol=1e-4, normalize=False, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False, random_state=None, selection='cyclic'): super().__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) def fit(self, X, y): # ensure that the grouping has worked correctly and we get all 10 copies of the items in # whichever groups we saw (yvals, cts) = np.unique(y, return_counts=True) for (yval, ct) in zip(yvals, cts): if ct != 10: raise Exception("Grouping failed; received {0} copies of {1} instead of 10".format(ct, yval)) return super().fit(X, y) # test nested grouping est = LinearDML(NestedModel(cv=2), NestedModel(cv=2), n_splits=GroupKFold(2)) est.fit(y, t, groups=groups) # by default, we use 5 split cross-validation for our T and Y models # but we don't have enough groups here to split both the outer and inner samples with grouping # TODO: does this imply we should change some defaults to make this more likely to succeed? est = LinearDML(n_splits=GroupKFold(2)) with pytest.raises(Exception): est.fit(y, t, groups=groups)
the-stack_106_23648
import logging, importlib, sys, os log = logging.getLogger('genthemall.utils') def load_class(clazz): """ util method for dynamic load class. """ dotIdx = clazz.rindex('.') mod = importlib.import_module(clazz[0:dotIdx]) return getattr(mod, clazz[dotIdx+1:]) def load_function(fn): """ util method for dynamic load function. """ return load_class(fn) def load_command(cmdName): """ util method for dynamic load genthemall command. """ return load_class('genthemall.commands.Command%s%s' % \ (cmdName[0].upper(), cmdName[1:])) def transform_config(config, _type): """ Transform config to some type config. """ try: confFn = load_function('genthemall.conf.%s' % _type) confFn(config) except AttributeError: log.error('config type [%s] not found.' % (_type)) sys.exit(1) def copyfile(source, dest, buffer_size=1024*1024): """ Copy a file from source to dest. source and dest can either be strings or any object with a read or write method, like StringIO for example. """ if not hasattr(source, 'read'): source = open(source, 'rb') if not hasattr(dest, 'write'): dest = open(dest, 'wb') while 1: copy_buffer = source.read(buffer_size) if copy_buffer: dest.write(copy_buffer) else: break source.close() dest.close() def copyfiles(src, dest, ignore=None): if os.path.isdir(src): if not os.path.isdir(dest): os.makedirs(dest) files = os.listdir(src) if ignore is not None: ignored = ignore(src, files) else: ignored = set() for f in files: if f not in ignored: copyfiles(os.path.join(src, f), os.path.join(dest, f), ignore) else: copyfile(src, dest)
the-stack_106_23650
#!/usr/bin/python from mininet.net import Mininet from mininet.node import Controller, RemoteController, OVSController from mininet.node import CPULimitedHost, Host, Node from mininet.node import OVSKernelSwitch, UserSwitch from mininet.node import IVSSwitch from mininet.cli import CLI from mininet.log import setLogLevel, info from mininet.link import TCLink, Intf from mininet.util import dumpNodeConnections from subprocess import call import os import time import subprocess path_home = os.getenv("HOME") #Captura o caminho da pasta HOME def myNetwork(i): net = Mininet( topo=None, build=False, host=CPULimitedHost, link=TCLink, ipBase='10.0.0.0/8') info( '*** Adding controller\n' ) c0=net.addController(name='c0', controller=RemoteController, ip='127.0.0.1', protocol='tcp', port=6633) info( '*** Add switches\n') s3 = net.addSwitch('s3', cls=OVSKernelSwitch) s5 = net.addSwitch('s5', cls=OVSKernelSwitch) s4 = net.addSwitch('s4', cls=OVSKernelSwitch) s1 = net.addSwitch('s1', cls=OVSKernelSwitch) s2 = net.addSwitch('s2', cls=OVSKernelSwitch) info( '*** Add hosts\n') h1 = net.addHost('h1', cls=Host, ip='10.0.0.1') h2 = net.addHost('h2', cls=Host, ip='10.0.0.2') h3 = net.addHost('h3', cls=Host, ip='10.0.0.3') h4 = net.addHost('h4', cls=Host, ip='10.0.0.4') h5 = net.addHost('h5', cls=Host, ip='10.0.0.5') h6 = net.addHost('h6', cls=Host, ip='10.0.0.6') h7 = net.addHost('h7', cls=Host, ip='10.0.0.7') srv1 = net.addHost('srv1', cls=Host, ip='10.0.0.8') srv2 = net.addHost('srv2', cls=Host, ip='10.0.0.9') info( '*** Add links\n') s1h1 = {'bw':25} net.addLink(s1, h1, cls=TCLink , **s1h1) s1h2 = {'bw':25} net.addLink(s1, h2, cls=TCLink , **s1h2) s1h3 = {'bw':25} net.addLink(s1, h3, cls=TCLink , **s1h3) s4h4 = {'bw':25} net.addLink(s4, h4, cls=TCLink , **s4h4) s4h5 = {'bw':25} net.addLink(s4, h5, cls=TCLink , **s4h5) s5h6 = {'bw':25} net.addLink(s5, h6, cls=TCLink , **s5h6) s5h7 = {'bw':25} net.addLink(s5, h7, cls=TCLink , **s5h7) s3h8 = {'bw':25} net.addLink(s3, h8, cls=TCLink , **s3h8) s3h9 = {'bw':25} net.addLink(s3, h9, cls=TCLink , **s3h9) s1s2 = {'bw':25} net.addLink(s1, s2, cls=TCLink , **s1s2) s3s2 = {'bw':25} net.addLink(s3, s2, cls=TCLink , **s3s2) s4s2 = {'bw':25} net.addLink(s4, s2, cls=TCLink , **s4s2) s5s2 = {'bw':25} net.addLink(s5, s2, cls=TCLink , **s5s2) info( '*** Starting network\n') net.build() info( '*** Starting controllers\n') for controller in net.controllers: controller.start() info( '*** Starting switches\n') net.get('s3').start([c0]) net.get('s5').start([c0]) net.get('s4').start([c0]) net.get('s1').start([c0]) net.get('s2').start([c0]) info( '*** Setting routes\n') h1.cmd('route add default dev h1-eth1') h2.cmd('route add default dev h2-eth1') h3.cmd('route add default dev h3-eth1') h4.cmd('route add default dev h4-eth1') h5.cmd('route add default dev h5-eth1') h6.cmd('route add default dev h6-eth1') h7.cmd('route add default dev h7-eth1') srv1.cmd('route add default dev srv1-eth1') srv2.cmd('route add default dev srv2-eth1') info( '*** Post configure switches and hosts\n') dumpNodeConnections(net.hosts) #Instala as filas de QoS os.system('python /home/bruno/ryu/Bruno/plotagem.py &') os.system('python /home/bruno/ryu/Bruno/admin.py &') os.system('python /home/bruno/ryu/Bruno/Resultados/dados_ovs.py '+str(i+1)+' 2 &') # 2 = 2 Iperf net.pingAll() #Pinga todos os hosts srv1.cmd('python /home/bruno/ryu/Bruno/EnviaPacoteUDP_Server.py &') #Envia pacote para instalar a regras de QoS h2.cmd('iperf -s -u &') h3.cmd('iperf -s -u &') print('Iperf 1 Iniciado!!!') srv2.cmd('iperf -c 10.0.0.2 -u -t 500 -i 1 -b 20m &') print('Iperf 2 Iniciado!!!') srv2.cmd('iperf -c 10.0.0.3 -u -t 500 -i 1 -b 20m &') time.sleep(29) print('Iniciando Server!!') srv1.cmd('python /home/bruno/ryu/Bruno/server_semQoS.py &') time.sleep(1) print('Iniciando Client!!') h1.cmd('python /home/bruno/ryu/Bruno/client_semQoS.py &') time.sleep(1) print('Rodada: '+str(i+1)) for r in range(32,215): if r%10 == 0: print('Tempo: '+str(r)+' Rodada: '+str(i+1)) time.sleep(1) #CLI(net) info('*** Fim...Aguardando os 30 segundos!!!') net.stop() if __name__ == '__main__': setLogLevel( 'info' ) for i in range(0,30): myNetwork(i) time.sleep(30)
the-stack_106_23651
from functools import cache, partial, reduce from math import prod import pdb import aoc from toolz import keyfilter from tadhg_utils import lcompact, lfilter, lmap, splitstrip, splitstriplines INPUT, TEST = aoc.get_inputs(__file__) TA1 = 15 TA2 = 1134 A1 = 530 A2 = 1019494 def process_one(data): return sum(map(lambda x: x[1][1], get_lows(data))) def get_lows(data): grid = [] gridd = {} for y, row in enumerate(data): for x, char in enumerate(row): grid.append(aoc.Point(x=x, y=y)) gridd[aoc.Point(x=x, y=y)] = (char, None) for pt in gridd: above = gridd.get(aoc.Point(x=pt.x, y=pt.y - 1)) below = gridd.get(aoc.Point(x=pt.x, y=pt.y + 1)) left = gridd.get(aoc.Point(x=pt.x - 1, y=pt.y)) right = gridd.get(aoc.Point(x=pt.x + 1, y=pt.y)) adjs = lcompact([above, below, left, right]) curr = int(gridd[pt][0]) low = True for adj in adjs: if curr >= int(adj[0]): low = False if low: gridd[pt] = (gridd[pt][0], curr + 1) lows = lmap( lambda x: x, lfilter(lambda x: x[1][1] is not None, gridd.items()) ) return lows def explore(gridd, start, future, basin): dirs = [ aoc.Point(x=start.x, y=start.y - 1), aoc.Point(x=start.x, y=start.y + 1), aoc.Point(x=start.x - 1, y=start.y), aoc.Point(x=start.x + 1, y=start.y), ] near = keyfilter(lambda x: x in dirs and x not in basin, gridd) for pt, data in near.items(): if data and int(data[0]) not in (None, 9): if pt not in future: future.append(pt) if pt not in basin: basin.append(pt) for pt in future: basin = explore(gridd, pt, [], basin) return basin def process_two(data): grid = {} for y, row in enumerate(data): for x, char in enumerate(row): grid[aoc.Point(x=x, y=y)] = (char, None) lows = get_lows(data) basins = lmap(lambda x: explore(grid, x[0], [], [x[0]]), lows) sbasins = sorted(basins, key=len) threebasins = sbasins[-3:] return prod(map(len, threebasins)) return data def cli_main() -> None: input_funcs = [splitstriplines] data = aoc.load_and_process_input(INPUT, input_funcs) aoc.run_tests(TEST, TA1, TA2, A1, input_funcs, process_one, process_two) result_one = process_one(data) print(result_one) result_two = process_two(data) aoc.finish(result_one, A1, result_two, A2) if __name__ == "__main__": cli_main() """ --- Day 9: Smoke Basin --- These caves seem to be lava tubes. Parts are even still volcanically active; small hydrothermal vents release smoke into the caves that slowly settles like rain. If you can model how the smoke flows through the caves, you might be able to avoid it and be that much safer. The submarine generates a heightmap of the floor of the nearby caves for you (your puzzle input). Smoke flows to the lowest point of the area it's in. For example, consider the following heightmap: 2199943210 3987894921 9856789892 8767896789 9899965678 Each number corresponds to the height of a particular location, where 9 is the highest and 0 is the lowest a location can be. Your first goal is to find the low points - the locations that are lower than any of its adjacent locations. Most locations have four adjacent locations (up, down, left, and right); locations on the edge or corner of the map have three or two adjacent locations, respectively. (Diagonal locations do not count as adjacent.) In the above example, there are four low points, all highlighted: two are in the first row (a 1 and a 0), one is in the third row (a 5), and one is in the bottom row (also a 5). All other locations on the heightmap have some lower adjacent location, and so are not low points. The risk level of a low point is 1 plus its height. In the above example, the risk levels of the low points are 2, 1, 6, and 6. The sum of the risk levels of all low points in the heightmap is therefore 15. Find all of the low points on your heightmap. What is the sum of the risk levels of all low points on your heightmap? Your puzzle answer was 530. --- Part Two --- Next, you need to find the largest basins so you know what areas are most important to avoid. A basin is all locations that eventually flow downward to a single low point. Therefore, every low point has a basin, although some basins are very small. Locations of height 9 do not count as being in any basin, and all other locations will always be part of exactly one basin. The size of a basin is the number of locations within the basin, including the low point. The example above has four basins. The top-left basin, size 3: 2199943210 3987894921 9856789892 8767896789 9899965678 The top-right basin, size 9: 2199943210 3987894921 9856789892 8767896789 9899965678 The middle basin, size 14: 2199943210 3987894921 9856789892 8767896789 9899965678 The bottom-right basin, size 9: 2199943210 3987894921 9856789892 8767896789 9899965678 Find the three largest basins and multiply their sizes together. In the above example, this is 9 * 14 * 9 = 1134. What do you get if you multiply together the sizes of the three largest basins? Your puzzle answer was 1019494. """
the-stack_106_23652
from __future__ import unicode_literals import json from urllib.parse import urlencode import re import sure # noqa import moto.server as server """ Test the different server responses """ def test_cloudformation_server_get(): backend = server.create_backend_app("cloudformation") stack_name = "test stack" test_client = backend.test_client() template_body = {"Resources": {}} create_stack_resp = test_client.action_data( "CreateStack", StackName=stack_name, TemplateBody=json.dumps(template_body) ) create_stack_resp.should.match( r"<CreateStackResponse>.*<CreateStackResult>.*<StackId>.*</StackId>.*</CreateStackResult>.*</CreateStackResponse>", re.DOTALL, ) stack_id_from_create_response = re.search( "<StackId>(.*)</StackId>", create_stack_resp ).groups()[0] list_stacks_resp = test_client.action_data("ListStacks") stack_id_from_list_response = re.search( "<StackId>(.*)</StackId>", list_stacks_resp ).groups()[0] stack_id_from_create_response.should.equal(stack_id_from_list_response)
the-stack_106_23658
INCLUDE_VALUE_IN_NAME = ["display"] class StyleMap(): map = {} def __init__(self, map): self.map = map pass def removeById(self, id): del self.map[id] def getElementIds(self): return set(self.map.keys()) def renameId(self, old_id, new_id): if old_id in self.map: self.map[new_id] = self.map[old_id] del self.map[old_id] def all_style_names(self): """Return all style names in this style map as a set Include style values for certain styles""" all_styles = set() for _elementid, styles in self.map.items(): for style_name, style_value in styles.items(): if style_name in INCLUDE_VALUE_IN_NAME: all_styles.add(f"{style_name}:{style_value}") else: all_styles.add(style_name) return all_styles def toJS(self): """ Create a string that will make style changes in javascript Example Output: var abeofmwlekrifj = document.getElementById("abeofmwlekrifj"); if (abeofmwlekrifj) { abeofmwlekrifj.style["min-width"] = "200px"; abeofmwlekrifj.style["margin-left"] = "10em"; } var zomelfjeiwle = document.getElementById("zomelfjeiwle"); if (zomelfjeiwle) { zomelfjeiwle.style["background-color"] = "blue"; } """ ret_string = "" for (elementId, styles) in self.map.items(): elementStyles = list(styles.items()) elementStyles.sort() # Sort alphabetical order by style name (to enforce the same order every time) if elementStyles: ret_string += f'var {elementId} = document.getElementById("{elementId}");\n' ret_string += 'if (' + elementId + ') {\n' for (style_name, style_value) in elementStyles: ret_string += f' {elementId}.style["{style_name}"] = "{style_value}";\n' ret_string += '}\n' return ret_string
the-stack_106_23659
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import re import time from six import string_types from six.moves.urllib.request import urlopen from .errors import RetryError from .structures import LazyFunction from .subprocess import run_command from .utils import file_exists class CheckEndpoints(LazyFunction): def __init__(self, endpoints, timeout=1, attempts=60, wait=1): self.endpoints = [endpoints] if isinstance(endpoints, string_types) else endpoints self.timeout = timeout self.attempts = attempts self.wait = wait def __call__(self): last_endpoint = '' last_error = '' for _ in range(self.attempts): for endpoint in self.endpoints: last_endpoint = endpoint try: request = urlopen(endpoint, timeout=self.timeout) except Exception as e: last_error = str(e) break else: status_code = request.getcode() if 400 <= status_code < 600: last_error = 'status {}'.format(status_code) break else: break time.sleep(self.wait) else: raise RetryError( 'Endpoint: {}\n' 'Error: {}'.format( last_endpoint, last_error ) ) class CheckCommandOutput(LazyFunction): def __init__(self, command, patterns, matches=1, stdout=True, stderr=True, attempts=60, wait=1): self.command = command self.stdout = stdout self.stderr = stderr self.attempts = attempts self.wait = wait if not (self.stdout or self.stderr): raise ValueError('Must capture stdout, stderr, or both.') if isinstance(patterns, string_types): patterns = [patterns] self.patterns = [ re.compile(pattern, re.M) if isinstance(pattern, string_types) else pattern for pattern in patterns ] if matches == 'all': self.matches = len(patterns) else: self.matches = matches def __call__(self): log_output = '' exit_code = 0 for _ in range(self.attempts): result = run_command(self.command, capture=True) exit_code = result.code if self.stdout and self.stderr: log_output = result.stdout + result.stderr elif self.stdout: log_output = result.stdout else: log_output = result.stderr matches = 0 for pattern in self.patterns: if pattern.search(log_output): matches += 1 if matches >= self.matches: return matches time.sleep(self.wait) else: raise RetryError( 'Command: {}\n' 'Exit code: {}\n' 'Captured Output: {}'.format( self.command, exit_code, log_output ) ) class CheckDockerLogs(CheckCommandOutput): def __init__(self, identifier, patterns, matches=1, stdout=True, stderr=True, attempts=60, wait=1): if file_exists(identifier): command = ['docker-compose', '-f', identifier, 'logs'] else: command = ['docker', 'logs', identifier] super(CheckDockerLogs, self).__init__( command, patterns, matches=matches, stdout=stdout, stderr=stderr, attempts=attempts, wait=wait ) self.identifier = identifier
the-stack_106_23660
from ...plugin import hook from .trezor import TrezorPlugin from ..hw_wallet import CmdLineHandler class Plugin(TrezorPlugin): handler = CmdLineHandler() @hook def init_keystore(self, keystore): if not isinstance(keystore, self.keystore_class): return keystore.handler = self.handler def create_handler(self, window): return self.handler
the-stack_106_23662
# -*- coding: utf-8 -*- """ Provides support to compose user-defined parse types. Cardinality ------------ It is often useful to constrain how often a data type occurs. This is also called the cardinality of a data type (in a context). The supported cardinality are: * 0..1 zero_or_one, optional<T>: T or None * 0..N zero_or_more, list_of<T> * 1..N one_or_more, list_of<T> (many) .. doctest:: cardinality >>> from parse_type import TypeBuilder >>> from parse import Parser >>> def parse_number(text): ... return int(text) >>> parse_number.pattern = r"\d+" >>> parse_many_numbers = TypeBuilder.with_many(parse_number) >>> more_types = { "Numbers": parse_many_numbers } >>> parser = Parser("List: {numbers:Numbers}", more_types) >>> parser.parse("List: 1, 2, 3") <Result () {'numbers': [1, 2, 3]}> Enumeration Type (Name-to-Value Mappings) ----------------------------------------- An Enumeration data type allows to select one of several enum values by using its name. The converter function returns the selected enum value. .. doctest:: make_enum >>> parse_enum_yesno = TypeBuilder.make_enum({"yes": True, "no": False}) >>> more_types = { "YesNo": parse_enum_yesno } >>> parser = Parser("Answer: {answer:YesNo}", more_types) >>> parser.parse("Answer: yes") <Result () {'answer': True}> Choice (Name Enumerations) ----------------------------- A Choice data type allows to select one of several strings. .. doctest:: make_choice >>> parse_choice_yesno = TypeBuilder.make_choice(["yes", "no"]) >>> more_types = { "ChoiceYesNo": parse_choice_yesno } >>> parser = Parser("Answer: {answer:ChoiceYesNo}", more_types) >>> parser.parse("Answer: yes") <Result () {'answer': 'yes'}> """ from __future__ import absolute_import from .cardinality import \ Cardinality, TypeBuilder as CardinalityTypeBuilder from parse_type.cardinality import pattern_group_count import enum import inspect import re __all__ = ["TypeBuilder", "build_type_dict", "parse_anything"] class TypeBuilder(CardinalityTypeBuilder): """ Provides a utility class to build type-converters (parse_types) for the :mod:`parse` module. """ default_strict = True default_re_opts = (re.IGNORECASE | re.DOTALL) @classmethod def make_list(cls, item_converter=None, listsep=','): """ Create a type converter for a list of items (many := 1..*). The parser accepts anything and the converter needs to fail on errors. :param item_converter: Type converter for an item. :param listsep: List separator to use (as string). :return: Type converter function object for the list. """ if not item_converter: item_converter = parse_anything return cls.with_cardinality(Cardinality.many, item_converter, pattern=cls.anything_pattern, listsep=listsep) @staticmethod def make_enum(enum_mappings): """ Creates a type converter for an enumeration or text-to-value mapping. :param enum_mappings: Defines enumeration names and values. :return: Type converter function object for the enum/mapping. """ if (inspect.isclass(enum_mappings) and issubclass(enum_mappings, enum.Enum)): enum_class = enum_mappings enum_mappings = enum_class.__members__ def convert_enum(text): if text not in convert_enum.mappings: text = text.lower() # REQUIRED-BY: parse re.IGNORECASE return convert_enum.mappings[text] #< text.lower() ??? convert_enum.pattern = r"|".join(enum_mappings.keys()) convert_enum.mappings = enum_mappings return convert_enum @staticmethod def _normalize_choices(choices, transform): assert transform is None or callable(transform) if transform: choices = [transform(value) for value in choices] else: choices = list(choices) return choices @classmethod def make_choice(cls, choices, transform=None, strict=None): """ Creates a type-converter function to select one from a list of strings. The type-converter function returns the selected choice_text. The :param:`transform()` function is applied in the type converter. It can be used to enforce the case (because parser uses re.IGNORECASE). :param choices: List of strings as choice. :param transform: Optional, initial transform function for parsed text. :return: Type converter function object for this choices. """ # -- NOTE: Parser uses re.IGNORECASE flag # => transform may enforce case. choices = cls._normalize_choices(choices, transform) if strict is None: strict = cls.default_strict def convert_choice(text): if transform: text = transform(text) if strict and not (text in convert_choice.choices): values = ", ".join(convert_choice.choices) raise ValueError("%s not in: %s" % (text, values)) return text convert_choice.pattern = r"|".join(choices) convert_choice.choices = choices return convert_choice @classmethod def make_choice2(cls, choices, transform=None, strict=None): """ Creates a type converter to select one item from a list of strings. The type converter function returns a tuple (index, choice_text). :param choices: List of strings as choice. :param transform: Optional, initial transform function for parsed text. :return: Type converter function object for this choices. """ choices = cls._normalize_choices(choices, transform) if strict is None: strict = cls.default_strict def convert_choice2(text): if transform: text = transform(text) if strict and not (text in convert_choice2.choices): values = ", ".join(convert_choice2.choices) raise ValueError("%s not in: %s" % (text, values)) index = convert_choice2.choices.index(text) return index, text convert_choice2.pattern = r"|".join(choices) convert_choice2.choices = choices return convert_choice2 @classmethod def make_variant(cls, converters, re_opts=None, compiled=False, strict=True): """ Creates a type converter for a number of type converter alternatives. The first matching type converter is used. REQUIRES: type_converter.pattern attribute :param converters: List of type converters as alternatives. :param re_opts: Regular expression options zu use (=default_re_opts). :param compiled: Use compiled regexp matcher, if true (=False). :param strict: Enable assertion checks. :return: Type converter function object. .. note:: Works only with named fields in :class:`parse.Parser`. Parser needs group_index delta for unnamed/fixed fields. This is not supported for user-defined types. Otherwise, you need to use :class:`parse_type.parse.Parser` (patched version of the :mod:`parse` module). """ # -- NOTE: Uses double-dispatch with regex pattern rematch because # match is not passed through to primary type converter. assert converters, "REQUIRE: Non-empty list." if len(converters) == 1: return converters[0] if re_opts is None: re_opts = cls.default_re_opts pattern = r")|(".join([tc.pattern for tc in converters]) pattern = r"("+ pattern + ")" group_count = len(converters) for converter in converters: group_count += pattern_group_count(converter.pattern) if compiled: convert_variant = cls.__create_convert_variant_compiled(converters, re_opts, strict) else: convert_variant = cls.__create_convert_variant(re_opts, strict) convert_variant.pattern = pattern convert_variant.converters = tuple(converters) convert_variant.group_count = group_count return convert_variant @staticmethod def __create_convert_variant(re_opts, strict): # -- USE: Regular expression pattern (compiled on use). def convert_variant(text, m=None): for converter in convert_variant.converters: if re.match(converter.pattern, text, re_opts): return converter(text) # -- pragma: no cover assert not strict, "OOPS-VARIANT-MISMATCH: %s" % text return None return convert_variant @staticmethod def __create_convert_variant_compiled(converters, re_opts, strict): # -- USE: Compiled regular expression matcher. for converter in converters: matcher = getattr(converter, "matcher", None) if not matcher: converter.matcher = re.compile(converter.pattern, re_opts) def convert_variant(text, m=None): for converter in convert_variant.converters: if converter.matcher.match(text): return converter(text) # -- pragma: no cover assert not strict, "OOPS-VARIANT-MISMATCH: %s" % text return None return convert_variant def build_type_dict(converters): """ Builds type dictionary for user-defined type converters, used by :mod:`parse` module. This requires that each type converter has a "name" attribute. :param converters: List of type converters (parse_types) :return: Type converter dictionary """ more_types = {} for converter in converters: assert callable(converter) more_types[converter.name] = converter return more_types # ----------------------------------------------------------------------------- # COMMON TYPE CONVERTERS # ----------------------------------------------------------------------------- def parse_anything(text, match=None, match_start=0): """ Provides a generic type converter that accepts anything and returns the text (unchanged). :param text: Text to convert (as string). :return: Same text (as string). """ return text parse_anything.pattern = TypeBuilder.anything_pattern # ----------------------------------------------------------------------------- # Copyright (c) 2012-2013 by Jens Engel (https://github/jenisys/parse_type) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.
the-stack_106_23663
from dataclasses import dataclass, field from functools import partial import jax import jax.numpy as jnp import numpy as np from braceexpand import braceexpand from datasets import Dataset, load_dataset from .text import TextNormalizer @dataclass class Dataset: dataset_repo_or_path: str train_file: str = None validation_file: str = None streaming: bool = True use_auth_token: bool = False text_column: str = "caption" encoding_column: str = "encoding" max_train_samples: int = None max_eval_samples: int = None preprocessing_num_workers: int = None overwrite_cache: bool = False do_train: bool = False do_eval: bool = True seed_dataset: int = None shard_by_host: bool = False train_dataset: Dataset = field(init=False) eval_dataset: Dataset = field(init=False) rng_dataset: jnp.ndarray = field(init=False) multi_hosts: bool = field(init=False) def __post_init__(self): self.multi_hosts = jax.process_count() > 1 # define data_files if self.train_file is not None or self.validation_file is not None: # accept braceexpand notation for k in ["train_file", "validation_file"]: f = getattr(self, k) if isinstance(f, str): setattr(self, k, list(braceexpand(f))) # for list of files, split training data shards by host if ( isinstance(self.train_file, list) and self.multi_hosts and self.shard_by_host ): self.train_file = self.train_file[ jax.process_index() :: jax.process_count() ] data_files = { "train": self.train_file, "validation": self.validation_file, } else: data_files = None # load dataset dataset = load_dataset( self.dataset_repo_or_path, data_files=data_files, streaming=self.streaming, use_auth_token=self.use_auth_token, ) if self.do_train: if "train" not in dataset: raise ValueError("Training requires a training dataset") self.train_dataset = dataset["train"] if self.max_train_samples is not None: self.train_dataset = ( self.train_dataset.take(self.max_train_samples) if self.streaming else self.train_dataset.select(range(self.max_train_samples)) ) if self.do_eval: if "validation" not in dataset: raise ValueError("Evaluating requires a validation dataset") self.eval_dataset = dataset["validation"] if self.max_eval_samples is not None: self.eval_dataset = ( self.eval_dataset.take(self.max_eval_samples) if self.streaming else self.eval_dataset.select(range(self.max_eval_samples)) ) def preprocess(self, tokenizer, decoder_start_token_id, normalize_text, max_length): if self.streaming: # we need to shuffle early in streaming mode if hasattr(self, "train_dataset"): self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset) else: # prepare rng for later shuffling if self.seed_dataset is None: self.seed_dataset = np.random.get_state()[1][0] self.rng_dataset = jax.random.PRNGKey(self.seed_dataset) # normalize text if normalize_text: text_normalizer = TextNormalizer() partial_normalize_function = partial( normalize_function, text_column=self.text_column, text_normalizer=text_normalizer, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map(partial_normalize_function) if self.streaming else getattr(self, ds).map( partial_normalize_function, num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Normalizing datasets", ) ), ) # preprocess partial_preprocess_function = partial( preprocess_function, tokenizer=tokenizer, text_column=self.text_column, encoding_column=self.encoding_column, max_length=max_length, decoder_start_token_id=decoder_start_token_id, ) for ds in ["train_dataset", "eval_dataset"]: if hasattr(self, ds): setattr( self, ds, ( getattr(self, ds).map( partial_preprocess_function, batched=True, ) if self.streaming else getattr(self, ds).map( partial_preprocess_function, batched=True, remove_columns=getattr(ds, "column_names"), num_proc=self.preprocessing_num_workers, load_from_cache_file=not self.overwrite_cache, desc="Preprocessing datasets", ) ), ) def dataloader(self, split, batch_size, epoch=None): def _dataloader_datasets_non_streaming( dataset: Dataset, rng: jax.random.PRNGKey = None, ): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if rng is set. """ steps_per_epoch = len(dataset) // batch_size if rng is not None: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[ : steps_per_epoch * batch_size ] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} yield batch def _dataloader_datasets_streaming( dataset: Dataset, epoch: int, ): keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] batch = {k: [] for k in keys} first_loop = True # stop after one loop in some cases while (self.multi_hosts and split == "train") or first_loop: # in multi-host, we run forever (no epoch) as hosts need to stop # at the same time and training data may not be split equally # For validation data we put the entire set on each host as we could lose # too many samples on pods if epoch is not None: assert split == "train" # reshuffle training data at each epoch dataset.set_epoch(epoch) epoch += 1 for item in dataset: for k, v in item.items(): batch[k].append(v) if len(batch[keys[0]]) == batch_size: batch = {k: jnp.array(v) for k, v in batch.items()} yield batch batch = {k: [] for k in keys} first_loop = False if split == "train": ds = self.train_dataset elif split == "eval": ds = self.eval_dataset else: raise ValueError(f'split must be "train" or "eval", got {split}') if self.streaming: return _dataloader_datasets_streaming(ds, epoch) else: if split == "train": self.rng_dataset, input_rng = jax.random.split(self.rng_dataset) return _dataloader_datasets_non_streaming(ds, input_rng) @property def length(self): len_train_dataset, len_eval_dataset = None, None if self.streaming: # we don't know the length, let's just assume max_samples if defined if self.max_train_samples is not None: len_train_dataset = self.max_train_samples if self.max_eval_samples is not None: len_eval_dataset = self.max_eval_samples else: len_train_dataset = ( len(self.train_dataset) if hasattr(self, "train_dataset") else None ) len_eval_dataset = ( len(self.eval_dataset) if hasattr(self, "eval_dataset") else None ) return len_train_dataset, len_eval_dataset def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id return shifted_input_ids def normalize_function(example, text_column, text_normalizer): example[text_column] = text_normalizer(example[text_column]) return example def preprocess_function( examples, tokenizer, text_column, encoding_column, max_length, decoder_start_token_id, ): inputs = examples[text_column] # Setting padding="max_length" as we need fixed length inputs for jitted functions model_inputs = tokenizer( inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="np", ) # set up targets # Note: labels correspond to our target indices # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token) labels = examples[encoding_column] labels = np.asarray(labels) # We need the labels, in addition to the decoder_input_ids, for the compute_loss function model_inputs["labels"] = labels # In our case, this prepends the bos token and removes the last one decoder_input_ids = shift_tokens_right(labels, decoder_start_token_id) model_inputs["decoder_input_ids"] = decoder_input_ids return model_inputs
the-stack_106_23665
import argparse import gym from dqn.trainer import Trainer from dqn.tester import Tester from envs.env_wrappers import wrap_dqn def main(): parser = argparse.ArgumentParser(description='Deep Q Network') # 環境側のパラメータ parser.add_argument('--env_name', default='PongNoFrameskip-v4', help='Environment name') parser.add_argument('--width', type=int, default=84, help='Width of resized frame') parser.add_argument('--height', type=int, default=84, help='Height of resized frame') # DQNのアルゴリズムのパラメータ parser.add_argument('--tmax', type=int, default=2000000, help='Number of action selections to finish learning.') parser.add_argument('--batch_size', type=int, default=32, help='Number of training cases over which each SGD update is computed.') parser.add_argument('--mem_size', type=int, default=10000, help='SGD updates are sampled from this number of most recent frames.') parser.add_argument('--history_len', type=int, default=4, help='Number of most recent frames experienced ' 'by the agent that are given as input to the Q-Network.') parser.add_argument('--update_freq', type=int, default=1000, help='Frequency (measured in the number of action selections) ' 'with which the target network is updated.') parser.add_argument('--discount_fact', type=float, default=0.99, help='Discount factor gamma used in the Q-Learning update.') parser.add_argument('--action_repeat', type=int, default=4, help='Repeat each action selected by the agent this many times.') parser.add_argument('--learn_freq', type=int, default=4, help='Number of actions selected by the agent between successive SGD updates.') parser.add_argument('--learn_rate', type=float, default=1e-4, help='Learning rate used by Adam.') parser.add_argument('--fin_expl', type=float, default=0.01, help='Final value of ε in ε-greedy exploration.') parser.add_argument('--expl_frac', type=float, default=0.1, help='Fraction of entire training period over which the value of ε is annealed.') parser.add_argument('--replay_st_size', type=int, default=10000, help='Uniform random policy is run for this number of frames before learning starts ' 'and the resulting experience is used to populate the replay memory.') parser.add_argument('--no_op_max', type=int, default=30, help='Maximum number of "do nothing" actions to be performed ' 'by the agent at the start of an episode.') # 学習時の設定 parser.add_argument('--test', action='store_true', help='Whether to test') parser.set_defaults(test=False) parser.add_argument('--render', action='store_true', help='Whether to render') parser.set_defaults(render=False) parser.add_argument('--save_network_freq', type=int, default=100000, help='Frequency (measured in the number of action selections) ' 'with which the Q-Network is saved.') parser.add_argument('--save_network_path', default='saved_networks', help='Path to save Q-Network.') parser.add_argument('--save_summary_path', default='summary', help='Path to save summary.') parser.add_argument('--save_option_name', default='', help='Option saving name') args = parser.parse_args() env = gym.make(args.env_name) env = wrap_dqn(env, args.history_len, args.action_repeat, args.no_op_max) # 学習またはテスト実行 if args.test: tester = Tester(env, args) tester.test() else: trainer = Trainer(env, args) trainer.learn() if __name__ == '__main__': main()
the-stack_106_23666
from reportlab.lib.pagesizes import letter, landscape from reportlab.lib.units import inch from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.enums import TA_CENTER from reportlab.lib import colors from reportlab.graphics.charts.piecharts import Pie from reportlab.graphics.shapes import * # not used? from reportlab.graphics.charts.barcharts import VerticalBarChart from reportlab.graphics.charts.textlabels import Label import energyusage.convert as convert import energyusage.evaluate as evaluate import locate import math year = "2016" styles = getSampleStyleSheet() TitleStyle = ParagraphStyle(name='Normal', fontSize=16, alignment= TA_CENTER, fontName="Times-Bold") SubtitleStyle = ParagraphStyle(name='Normal',fontSize=12, alignment= TA_CENTER, fontName="Times-Roman") # MonospacedSubtitleStyle = ParagraphStyle(name='Normal',fontSize=12, alignment= TA_CENTER, fontName="Courier") HeaderStyle = ParagraphStyle(name='Normal',fontSize=16) SubheaderStyle = ParagraphStyle(name='Normal', fontName="Times-Roman") DescriptorStyle = ParagraphStyle(name='Normal',fontSize=14, alignment= TA_CENTER) BodyTextStyle = styles["BodyText"] def bold(text): return "<b>"+text+"</b>" def title(text, Elements, style=TitleStyle, klass=Paragraph, sep=0.3): """ Creates title of report """ t = klass(bold(text), style) Elements.append(t) def subtitle(text, Elements, style=SubtitleStyle, klass=Paragraph, sep=0.1, spaceBefore=True, spaceAfter = True): """ Creates descriptor text for a (sub)section; sp adds space before text """ s = Spacer(0, 1.5*sep*inch) if spaceBefore: Elements.append(s) d = klass(text, style) Elements.append(d) if spaceAfter: Elements.append(s) def readings_and_mix_table(reading_data, mix_data, breakdown, state_emission, location, Elements): ''' Creates 2 tables that are then embedded as the columns of 1 bigger table ''' no_rows = 1 # not used no_cols = 1 col_size = 4.5 readings_table = Table(reading_data, no_cols*[col_size/2*inch], 5*[0.25*inch] + [0.3*inch], hAlign="LEFT") readings_table.setStyle(TableStyle([('FONT', (0,0), (-1,-1), "Times-Roman"), ('FONT', (0,0), (-1,0), "Times-Bold"), ('FONTSIZE', (0,0), (-1,-1), 12), ('FONTSIZE', (0,0), (-1,0), 13), ('ALIGN', (0,0), (0,-1), "RIGHT"), ('VALIGN', (-1,-1), (-1,-1), "TOP")])) d = Drawing(100, 100) pc = Pie() data = [] if state_emission: data = ["Coal", "Oil", "Natural Gas", "Low Carbon"] else: data = ["Coal", "Petroleum", "Natural Gas", "Low Carbon"] for i in range(4): data[i] += ": " + str(round(breakdown[i], 1)) + "%" pc.x = 45 pc.y = 0 pc.width = 55 pc.height = 55 pc.data = breakdown[:4] pc.slices[0].fillColor = colors.Color(202.0/255, 0.0/255, 32.0/255) pc.slices[1].fillColor = colors.Color(244.0/255, 165.0/255, 130.0/255) pc.slices[2].fillColor = colors.Color(5.0/255, 113.0/255, 176.0/255) pc.slices[3].fillColor = colors.Color(146.0/255, 197.0/255, 222.0/255) pc.labels = data pc.slices.strokeWidth=0.5 pc.sideLabels = True d.add(pc) mix_data = [['Energy Mix Data'], [d], ['Location: ' + location]] mix_table = Table(mix_data, no_cols*[col_size/2*inch], [.25*inch, 1*inch, .3*inch], hAlign="RIGHT") mix_table.setStyle(TableStyle([('FONT', (0,0), (-1,-1), "Times-Roman"), ('FONT', (0,0), (0,0), "Times-Bold"), ('FONTSIZE', (0,0), (0,0), 13), ('FONTSIZE', (-1,-1), (-1,-1), 12), ('ALIGN', (0,0), (0,0), "LEFT")])) table_data = [(readings_table, mix_table)] t = Table(table_data, [4.25*inch, 3*inch], hAlign='CENTER') t.setStyle(TableStyle([('VALIGN', (-1,-1), (-1,-1), "TOP")])) Elements.append(t) def kwh_and_emissions_table(data, Elements): s = Spacer(9*inch, .2*inch) Elements.append(s) no_rows = 1 no_cols = 2 col_size = 2 t = Table(data, [2.75*inch, 2.15*inch],[.25*inch, .29*inch], hAlign="CENTER") t.setStyle([('FONT',(0,0),(-1,-1),"Times-Roman"), ('FONT',(0,0),(0,-1),"Times-Bold"), ('FONTSIZE', (0,0), (-1,-1), 12), ('ALIGN', (0,0), (0,-1), "RIGHT"), ('ALIGN',(1,1),(1,-1), "LEFT"), ('BOX', (0,0), (-1,-1), 1, colors.black), ('VALIGN', (0,0), (-1,-1), "TOP")]) Elements.append(t) def equivs_and_emission_equivs(equivs_data, emissions_data, Elements): ''' Creates a table with 2 columns, each with their own embedded table The embedded tables contain 2 vertically-stacked tables, one for the header and the other one for the actual data in order to have better alignment The first row of the 2nd vertically-stacked table is smaller than the rest in order to remove the extra space and make these tables look cohesive with the energy usage readings and energy mix tables Setup: * Table(data[array of arrays, one for each row], [column widths], [row heights]) * Spacer(width, height) ''' s = Spacer(9*inch, .2*inch) Elements.append(s) no_rows = 1 no_cols = 1 col_size = 4.5 equivs_header_data = [["Assumed Carbon Equivalencies"]] # Table(data) equivs_header_table = Table(equivs_header_data, [3*inch], [.25*inch]) equivs_header_table.setStyle(TableStyle([('FONT',(0,0),(0,-1),"Times-Bold"), ('FONTSIZE', (0,0), (-1,-1), 13)])) equivs_data_table = Table(equivs_data, [1*inch, 2*inch], [0.17*inch, 0.25*inch, 0.25*inch, 0.25*inch],hAlign="LEFT") equivs_data_table.setStyle(TableStyle([('FONT', (0,0), (-1,-1), "Times-Roman"), ('FONTSIZE', (0,0), (-1,-1), 12), ('ALIGN', (0,0), (0,-1), "RIGHT"), ('VALIGN', (-1,-1), (-1,-1), "TOP")])) t1_data = [[equivs_header_table],[equivs_data_table]] t1 = Table(t1_data, [3*inch]) emission_equiv_para = Paragraph('<font face="times" size=13><strong>CO<sub rise = -10 size = 8>2</sub>' + ' Emissions Equivalents</strong></font>', style = styles["Normal"]) emissions_header_data = [[emission_equiv_para]] emissions_header_table = Table(emissions_header_data, [3*inch], [.25*inch]) emissions_header_table.setStyle(TableStyle([('FONT',(0,0),(0,-1),"Times-Bold"), ('FONTSIZE', (0,0), (-1,-1), 13)])) emissions_data_table = Table(emissions_data, [2.1*inch, 1.5*inch], [0.17*inch, 0.25*inch, 0.25*inch],hAlign="LEFT") emissions_data_table.setStyle(TableStyle([('FONT', (0,0), (-1,-1), "Times-Roman"), ('FONTSIZE', (0,0), (-1,-1), 12), ('ALIGN', (0,0), (0,-1), "RIGHT"), ('VALIGN', (-1,-1), (-1,-1), "TOP")])) t2_data = [[emissions_header_table],[emissions_data_table]] t2 = Table(t2_data, [3*inch]) table_data = [(t1, t2)] t = Table(table_data, [4.25*inch, 3*inch], hAlign='CENTER') t.setStyle(TableStyle([('VALIGN', (-1,-1), (-1,-1), "TOP")])) Elements.append(t) def gen_bar_graphs(comparison_values, location, emission): bc = VerticalBarChart() labels = [] data = [] comparison_values.append([location, emission]) comparison_values.sort(key = lambda x: x[1]) for pair in comparison_values: labels.append(pair[0]) data.append(pair[1]) data = [data] location_index = labels.index(location) bc.x = -150 bc.y = -110 bc.height = 100 bc.width = 150 bc.data = data bc.strokeColor = colors.black bc.valueAxis.valueMin = 0 bc.valueAxis.valueMax = data[0][-1] + data[0][-1] * .1 distance = abs(int(math.log10(abs(data[0][-1])))) + 1 # distance of 1 significant figure to decimal point bc.valueAxis.valueStep = float(format(data[0][-1], '.1g')) / 3 bc.valueAxis.labelTextFormat = '%0.' + str(distance) + 'g' bc.categoryAxis.labels.boxAnchor = 'ne' bc.categoryAxis.labels.dx = 8 bc.categoryAxis.labels.dy = -2 bc.categoryAxis.labels.angle = 30 bc.categoryAxis.categoryNames = labels for i in range(len(labels)): bc.bars[(0, i)].fillColor = colors.Color(166.0/255, 189.0/255, 219.0/255) bc.bars[(0, location_index)].fillColor = colors.Color(28.0/255, 144.0/255, 153.0/255) return bc def comparison_graphs(comparison_values, location, emission, default_emissions, default_location, Elements): s = Spacer(9*inch, .2*inch) Elements.append(s) drawing = Drawing(0, 0) if not default_location: bc = gen_bar_graphs(comparison_values, location, emission) bc.y = -120 bc.height = 125 bc.width = 300 drawing.add(bc) else: bc1 = gen_bar_graphs(default_emissions[:3], location, emission) bc2 = gen_bar_graphs(default_emissions[3:6], location, emission) bc3 = gen_bar_graphs(default_emissions[6:], location, emission) offset = -257 bc1.x = -10 + offset bc2.x = 190 + offset bc3.x = 390 + offset drawing.add(bc1) drawing.add(bc2) drawing.add(bc3) label_offset = offset + 80 label1, label2, label3 = Label(), Label(), Label() label1.setText("Global (excluding Europe and US)") label1.x, label1.y = -17 + label_offset, -160 label1.fontName = "Times-Bold" label2.setText("Europe") label2.x, label2.y = 185 + label_offset, -160 label2.fontName = "Times-Bold" label3.setText("United States") label3.x, label3.y = 385 + label_offset, -160 label3.fontName = "Times-Bold" drawing.add(label1) drawing.add(label2) drawing.add(label3) if_elsewhere_para = Paragraph('<font face="times" size=12>Kilograms of CO<sub rise = -10 size' + ' = 8>2 </sub> emissions for the function if the computation had been performed elsewhere</font>', style = styles["Normal"]) graph_data = [['Emission Comparison'], [if_elsewhere_para], [drawing]] graph_table = Table(graph_data, [6.5*inch], [.25*inch, .25*inch, .25*inch], hAlign="CENTER") graph_table.setStyle(TableStyle([('FONT', (0,0), (0,0), "Times-Bold"), ('FONT', (0,1),(0,1),"Times-Roman"), ('FONTSIZE', (0,0), (0,0), 13), ('FONTSIZE', (0,1), (0,1), 12), ('ALIGN', (0,0), (-1,-1), "CENTER")])) Elements.append(graph_table) def report_header(kwh, emission, Elements): effective_emission = Paragraph('<font face="times" size=12>{:.2e} kg CO<sub rise = -10 size = 8>2 </sub></font>'.format(emission), style = styles["Normal"]) # Total kWhs used and effective emissions kwh_and_emissions_data = [["Total kilowatt hours used:", "{:.2e} kWh".format(kwh)], ["Effective emissions:", effective_emission]] kwh_and_emissions_table(kwh_and_emissions_data, Elements) def report_equivalents(emission, state_emission, Elements): # Equivalencies and CO2 emission equivalents per_house = Paragraph('<font face="times" size=12>% of CO<sub rise = -10 size = 8>2</sub> per US house/day:</font>'.format(emission), style = styles["Normal"]) emissions_data = [ ['Miles driven:', "{:.2e} miles".format(convert.carbon_to_miles(emission))], ['Min. of 32-in. LCD TV:', "{:.2e} minutes".format(convert.carbon_to_tv(emission))], [per_house, \ "{:.2e}%".format(convert.carbon_to_home(emission))]] coal_para = Paragraph('<font face="times" size=12>996 kg CO<sub rise = -10 size = 8>2 </sub>/MWh</font>', style = styles["Normal"]) oil_para = Paragraph('<font face="times" size=12>817 kg CO<sub rise = -10 size = 8>2 </sub>/MWh</font>', style = styles["Normal"]) gas_para = Paragraph('<font face="times" size=12>744 kg CO<sub rise = -10 size = 8>2 </sub>/MWh</font>', style = styles["Normal"]) low_para = Paragraph('<font face="times" size=12>0 kg CO<sub rise = -10 size = 8>2 </sub>/MWh</font>', style = styles["Normal"]) if state_emission: equivs_data = [['Coal:', coal_para], ['Oil:', oil_para], ['Natural gas:', gas_para], ['Low carbon:', low_para]] else: equivs_data = [['Coal:', coal_para], ['Petroleum:', oil_para], ['Natural gas:', gas_para], ['Low carbon:', low_para]] equivs_and_emission_equivs(equivs_data, emissions_data, Elements) # utils.log("Assumed Carbon Equivalencies") # utils.log("Emissions", emission) def generate(location, watt_averages, breakdown, kwh_and_emissions, func_info, \ comparison_values, default_emissions, default_location): # TODO: remove state_emission and just use location """ Generates the entire pdf report Parameters: location (str): user's location, locations=["Romania", "Brazil"] watt_averages (list): list of baseline, total, process wattage, process duration breakdown (list): [% coal, % oil/petroleum, % natural gas, % low carbon] kwh_and_emissions (list): [kwh used, emission in kg CO2, state emission > 0 for US states] func_info (list): [user func name, user func args (0 or more)] """ Elements = [] kwh, emission, state_emission = kwh_and_emissions baseline_average, process_average, difference_average, process_duration = watt_averages # Initializing document doc = SimpleDocTemplate("energy-usage-report.pdf",pagesize=landscape(letter), topMargin=.3*inch) title("Energy Usage Report", Elements) # Handling header with function name and arguments func_name, *func_args = func_info info_text = " for the function " + func_name if len(func_args) > 0: if len(func_args) == 1: info_text += " with the input " + str(func_args[0]) + "." else: info_text += " with the inputs " for arg in func_args: info_text += arg + "," info_text = info_text[len(info_text)-1] + "." else: info_text += "." subtitle("Energy usage and carbon emissions" + info_text, Elements, spaceBefore=True) # Energy Usage Readings and Energy Mix Data readings_data = [['Energy Usage Readings', ''], ['Average baseline wattage:', "{:.2f} watts".format(baseline_average)], ['Average total wattage:', "{:.2f} watts".format(process_average)], ['Average process wattage:', "{:.2f} watts".format(difference_average)], ['Process duration:', process_duration], ['','']] #hack for the alignment if state_emission: coal, oil, natural_gas, low_carbon = breakdown mix_data = [['Energy Mix Data', ''], ['Coal', "{:.2f}%".format(coal)], ['Oil', "{:.2f}%".format(oil)], ['Natural gas', "{:.2f}%".format(natural_gas)], ['Low carbon', "{:.2f}%".format(low_carbon)]] else: coal, petroleum, natural_gas, low_carbon = breakdown mix_data = [['Energy Mix Data', ''], ['Coal', "{:.2f}%".format(coal)], ['Petroleum', "{:.2f}%".format(petroleum)], ['Natural gas', "{:.2f}%".format(natural_gas)], ['Low carbon', "{:.2f}%".format(low_carbon)]] readings_and_mix_table(readings_data, mix_data, breakdown, state_emission, location, Elements) report_header(kwh, emission, Elements) report_equivalents(emission, state_emission, Elements) comparison_graphs(comparison_values, location, emission, default_emissions, default_location, Elements) doc.build(Elements)
the-stack_106_23668
#!/usr/bin/env python """Setup script for ConferenceScheduler.""" import setuptools from conference_scheduler import __project__, __version__ import os if os.path.exists('README.rst'): README = open('README.rst').read() else: README = "" # a placeholder, readme is generated on release CHANGES = open('CHANGES.md').read() setuptools.setup( name=__project__, version=__version__, description="ConferenceScheduler is a Python 3 package template.", url='https://github.com/DanLindeman/conference-scheduler', author='Dan Lindeman', author_email='[email protected]', packages=setuptools.find_packages(), entry_points={'console_scripts': []}, long_description=(README + '\n' + CHANGES), license='MIT', classifiers=[ 'Development Status :: 1 - Planning', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.3', ], install_requires=open('requirements.txt').readlines(), )
the-stack_106_23670
# -*- test-case-name: foolscap.test.test_banana -*- from __future__ import print_function from twisted.python import log from twisted.internet.defer import Deferred from foolscap.tokens import Violation from foolscap.slicer import BaseSlicer, BaseUnslicer from foolscap.constraint import OpenerConstraint, Any, IConstraint from foolscap.util import AsyncAND class ListSlicer(BaseSlicer): opentype = ("list",) trackReferences = True slices = list def sliceBody(self, streamable, banana): for i in self.obj: yield i class ListUnslicer(BaseUnslicer): opentype = ("list",) maxLength = None itemConstraint = None debug = False def setConstraint(self, constraint): if isinstance(constraint, Any): return assert isinstance(constraint, ListConstraint) self.maxLength = constraint.maxLength self.itemConstraint = constraint.constraint def start(self, count): #self.opener = foo # could replace it if we wanted to self.list = [] self.count = count if self.debug: log.msg("%s[%d].start with %s" % (self, self.count, self.list)) self.protocol.setObject(count, self.list) self._ready_deferreds = [] def checkToken(self, typebyte, size): if self.maxLength != None and len(self.list) >= self.maxLength: # list is full, no more tokens accepted # this is hit if the max+1 item is a primitive type raise Violation("the list is full") if self.itemConstraint: self.itemConstraint.checkToken(typebyte, size) def doOpen(self, opentype): # decide whether the given object type is acceptable here. Raise a # Violation exception if not, otherwise give it to our opener (which # will normally be the RootUnslicer). Apply a constraint to the new # unslicer. if self.maxLength != None and len(self.list) >= self.maxLength: # this is hit if the max+1 item is a non-primitive type raise Violation("the list is full") if self.itemConstraint: self.itemConstraint.checkOpentype(opentype) unslicer = self.open(opentype) if unslicer: if self.itemConstraint: unslicer.setConstraint(self.itemConstraint) return unslicer def update(self, obj, index): # obj has already passed typechecking if self.debug: log.msg("%s[%d].update: [%d]=%s" % (self, self.count, index, obj)) assert isinstance(index, int) self.list[index] = obj return obj def receiveChild(self, obj, ready_deferred=None): if ready_deferred: self._ready_deferreds.append(ready_deferred) if self.debug: log.msg("%s[%d].receiveChild(%s)" % (self, self.count, obj)) # obj could be a primitive type, a Deferred, or a complex type like # those returned from an InstanceUnslicer. However, the individual # object has already been through the schema validation process. The # only remaining question is whether the larger schema will accept # it. if self.maxLength != None and len(self.list) >= self.maxLength: # this is redundant # (if it were a non-primitive one, it would be caught in doOpen) # (if it were a primitive one, it would be caught in checkToken) raise Violation("the list is full") if isinstance(obj, Deferred): if self.debug: log.msg(" adding my update[%d] to %s" % (len(self.list), obj)) obj.addCallback(self.update, len(self.list)) obj.addErrback(self.printErr) placeholder = "list placeholder for arg[%d], rd=%s" % \ (len(self.list), ready_deferred) self.list.append(placeholder) else: self.list.append(obj) def printErr(self, why): print("ERR!") print(why.getBriefTraceback()) log.err(why) def receiveClose(self): ready_deferred = None if self._ready_deferreds: ready_deferred = AsyncAND(self._ready_deferreds) return self.list, ready_deferred def describe(self): return "[%d]" % len(self.list) class ListConstraint(OpenerConstraint): """The object must be a list of objects, with a given maximum length. To accept lists of any length, use maxLength=None. All member objects must obey the given constraint.""" opentypes = [("list",)] name = "ListConstraint" def __init__(self, constraint, maxLength=None, minLength=0): self.constraint = IConstraint(constraint) self.maxLength = maxLength self.minLength = minLength def checkObject(self, obj, inbound): if not isinstance(obj, list): raise Violation("not a list") if self.maxLength is not None and len(obj) > self.maxLength: raise Violation("list too long") if len(obj) < self.minLength: raise Violation("list too short") for o in obj: self.constraint.checkObject(o, inbound)
the-stack_106_23671
from types import SimpleNamespace from syncx import manage from syncx import tag from syncx.manager import Manager from syncx.manager import ManagerInterface from syncx.serializer import JsonSerializer from syncx.serializer import YamlSerializer def test_get_serializer(): assert Manager.get_serializer('foo') is YamlSerializer assert Manager.get_serializer('foo.yml') is YamlSerializer assert Manager.get_serializer('foo.yaml') is YamlSerializer assert Manager.get_serializer('foo.json') is JsonSerializer def test_interface(): my_data = {'value': 'initial'} my_data = tag(my_data) manager_interface = manage(my_data) assert type(manager_interface) == ManagerInterface manager_interface_2 = manage(my_data) assert manager_interface.history == manager_interface_2.history def test_start_sync__defaults(get_test_data_file, tmp_path): expected_contents = get_test_data_file('dump.yaml') my_data = {'a': ['b', {'c': 0, 'd': 1}], 'e': {1}} manager = Manager() already_wrapped = tag(my_data) wrapped = manager.start_sync(already_wrapped, str(tmp_path / 'test.yaml')) assert wrapped == already_wrapped assert (tmp_path / 'test.yaml').read_text() == expected_contents def test_start_sync__file_exists(path_to_test_data): initial_data = tag({}) name = str(path_to_test_data / 'dump.yaml') wrapped = initial_data._manager.start_sync(initial_data, name) assert wrapped == {'a': ['b', {'c': 0, 'd': 1}], 'e': {1}} def test_start_sync__file_exists__custom_type(path_to_test_data): initial_data = tag(SimpleNamespace) name = str(path_to_test_data / 'dump.yaml') wrapped = initial_data._manager.start_sync(initial_data, name) assert wrapped.a == ['b', {'c': 0, 'd': 1}] assert wrapped.e == {1}
the-stack_106_23672
from warnings import warn from .Abi import dec_uint from .JsonRpc import JsonRpc from .JsonRpc import JsonRpcError class BlockDataDict(object): ''' Represents the parsed return of the Block data. ''' integer_fields = ["nonce", "number", "difficulty", "totalDifficulty", "size", "gasLimit", "gasUsed", "timestamp"] def __init__(self, data): for key in data.keys(): if key in self.integer_fields: setattr(self,key,dec_uint(data[key])) else: setattr(self,key,data[key]) def __repr__(self): return 'BlockLogDict(%s)' % str(dict(self)) def __iter__(self): for k in self.__dict__.keys(): if k == "integer_fields": continue yield k, self.__dict__[k] def __getitem__(self,key): return getattr(self,key) class TransactionDict(object): ''' Represent the transction ''' integer_fields = ["blockNumber", "gas", "gasPrice", "value", "nonce"] def __init__(self, data): for key in data.keys(): if key in self.integer_fields: setattr(self,key,dec_uint(data[key])) else: setattr(self,key,data[key]) def __repr__(self): return 'TransactionDict(%s)' % str(dict(self)) def __iter__(self): for k in self.__dict__.keys(): if k == "integer_fields": continue yield k, self.__dict__[k] def __getitem__(self,key): return getattr(self,key) class CommittedTransaction(object): def __init__(self, transactionHash, jsonrpc_provider): self.transactionHash = transactionHash self.jsonrpc_provider = jsonrpc_provider self.receipt_returned = None def __str__(self): return 'CommittedTransaction(%s)' % self.transactionHash def receipt(self): uint_keys = ['blockNumber', 'cumulativeGasUsed', 'gasUsed', 'status', 'transactionIndex'] if self.receipt_returned != None: return self.receipt_returned response = self.jsonrpc_provider.eth_getTransactionReceipt(self.transactionHash) if 'result' in response: if response['result'] == None: return None receipt = response['result'] for key in uint_keys: receipt[key] = dec_uint(receipt[key]) self.receipt_returned = receipt return receipt else: raise JsonRpcError(str(response)) class NetworkUtil(object): ''' A class to contain all network attributes and contract's methods/functions ''' def __init__(self,provider=None,basicauth=()): if provider is not None: self.jsonrpc_provider = provider if basicauth != (): self.jsonrpc_provider.auth = basicauth self.__chainId = None def getTransactionByHash(self, txHash): if isinstance(self.__jsonrpc_provider, JsonRpc): if isinstance(txHash, str): if not txHash.startswith('0x'): txHash = '0x' + txHash response = self.jsonrpc_provider.eth_getTransactionByHash(txHash) else: raise TypeError('getTransactionByHash(): txHash must be a hexstring') if 'result' in response: return TransactionDict(response['result']) else: raise TypeError('getTransactionByHash(): unable to found a valid JsonRpc Provider') def getBlockByNumber(self, blockNumber, withTx=False): if isinstance(self.__jsonrpc_provider, JsonRpc): if isinstance(blockNumber, str): if blockNumber.startswith('0x') or blockNumber in ["earliest","latest","pending"]: response = self.jsonrpc_provider.eth_getBlockByNumber(blockNumber, withTx) else: raise TypeError('getBlockByNumber(): blockNumber must be a hexstring or an integer') elif isinstance(blockNumber, int): response = self.jsonrpc_provider.eth_getBlockByNumber(hex(blockNumber), withTx) else: raise TypeError('getBlockByNumber(): blockNumber must be a hexstring or an integer') if 'result' in response: return BlockDataDict(response['result']) @property def chainId(self): if self.__chainId != None: return self.__chainId else: try: response = self.jsonrpc_provider.eth_chainId() if 'result' in response: self.__chainId = response['result'] else: warn('jsonrpc_provider: No support eth_chainId() method -> ' + str(response)) self.__chainId = None except Exception as e: warn('jsonrpc_provider: throw ->' + str(e)) self.__chainId = None return self.__chainId @property def blockNumber(self): if isinstance(self.__jsonrpc_provider, JsonRpc): response = self.jsonrpc_provider.eth_blockNumber() if 'result' in response: return dec_uint(response['result']) else: raise JsonRpcError(str(response)) else: return None @blockNumber.setter def blockNumber(self, blockNumber): raise AttributeError('Only the network can set a blockNumer') @property def jsonrpc_provider(self): return self.__jsonrpc_provider @jsonrpc_provider.setter def jsonrpc_provider(self, jsonrpc_provider): if isinstance(jsonrpc_provider, JsonRpc): self.__jsonrpc_provider = jsonrpc_provider else: self.__jsonrpc_provider = JsonRpc(jsonrpc_provider)
the-stack_106_23674
import numpy as np from core.variable import Variable from core.constraint import Constraint from core.agent_state import AgentState class Agent: def __init__(self, name, variables=[], constraints=[], seed=1234): self.name = name self.variables = variables.copy() # the set of constraints involving variables of this agent in their scope self.constraints = constraints.copy() # the set of constraints controlled by this agent self.controlled_constraints = constraints.copy() self.prng = np.random.RandomState(seed) self.neighbors = [] self.state = AgentState(name, self, seed) def addNeighbor(self, neighbor, con): if neighbor not in self.neighbors: self.neighbors.append(neighbor) self.state.addNeighborsVariables(neighbor) # Initialize controlled constraints: This agent controls the constraint f only if f has in its scope var x # this agent controls x and x is the variable with smallest index among all vars in the scope of f if con in self.controlled_constraints: v_agt = [v.name for v in self.variables] v_con = sorted([v.name for v in con.scope]) if v_con[0] not in v_agt: self.controlled_constraints.remove(con) def setRandomAssignment(self): '''Initializes values of all its variables to random values''' for v in self.variables: v.setRandomAssignment() def setStateAssignment(self): '''Sets the agent variable assignment equal to those in its state''' for var in self.variables: var.setAssignment(self.state.variables_assignments[var.name]) def __str__(self): return 'agent: ' + str(self.name) \ + '\tN='+ str([a.name for a in self.neighbors]) \ + '\t controls:' \ + str([var.name for var in self.variables]) \ + ' constraints: ' + str([con.name for con in self.constraints]) \ + ' controlled: ' + str([con.name for con in self.controlled_constraints])
the-stack_106_23675
import sys import scipy.io as sio import glob ## OBJ file #v -0.3925 -0.8111 2.0260 s = int(sys.argv[1]) with open('scenes', 'r') as fin: scene_id = fin.readlines()[s].strip() mats = glob.glob('scannet/%s/*.mat' % scene_id) for mat_f in mats: obj = mat_f.replace('.mat', '.obj') mat = sio.loadmat(mat_f) #print(mat.keys()) with open(obj, 'w') as fout: fout.write('# OBJ file\n') v = mat['vertex'] assert v.shape[0] == 3 for i in range(v.shape[1]): fout.write('v %.4f %.4f %.4f\n' % (v[0, i], v[1, i], v[2, i]))
the-stack_106_23677
# search_helpers.py from typing import List from pybraries.helpers import sess, extract from pybraries.make_request import make_request def search_api(action, *args, **kwargs): """ build and call for search Args: action (str): function action name *args (str): positional arguments **kwargs (str): keyword arguments Returns: (list): list of dicts response from libraries.io. according to page and per page Many are dicts or list of dicts. """ kind = "get" url_end_list = handle_path_params(action, *args, **kwargs) handle_query_params(action, **kwargs) url_combined = "/".join(url_end_list) return make_request(url_combined, kind) def handle_query_params(action, **kwargs): if action == "special_project_search": try: sess.params["q"] = kwargs["keywords"] except: print("A string of keywords must be passed as a keyword argument") if "platforms" in kwargs: sess.params["platforms"] = kwargs["platforms"] if "licenses" in kwargs: sess.params["licenses"] = kwargs["licenses"] if "languages" in kwargs: sess.params["languages"] = kwargs["languages"] elif "project" in kwargs: sess.params["q"] = kwargs["project"] if "filters" in kwargs: extract(*list(kwargs["filters"].keys())).of(kwargs["filters"]).then( sess.params.__setitem__ ) if "sort" in kwargs: sess.params["sort"] = kwargs["sort"] if "page" in kwargs: sess.params["page"] = kwargs["page"] if "per_page" in kwargs: sess.params["per_page"] = kwargs["per_page"] def handle_path_params(action, *args, **kwargs): def from_kwargs(*keys): return extract(*keys).of(kwargs).then([].append) url_end_list: List[str] = ["https://libraries.io/api"] # start of list to build url if action == "special_project_search": url_end_list.append("search?") elif action == "platforms": url_end_list.append("platforms") elif action.startswith("project"): action = action[7:] # remove action prefix url_end_list += [*from_kwargs("platforms", "project"), *args] if action.startswith("_"): action = action[1:] # remove remaining underscore from operation name if action == "dependencies": version = kwargs.pop("version") or "latest" # defaults to latest url_end_list.append(version) url_end_list.append(action) elif action.startswith("repository"): action = action[len("repository") :] url_end_list += [*from_kwargs("host", "owner", "repo"), *args] if action.startswith("_"): url_end_list.append(action[1:]) elif "user" in action: url_end_list += [*from_kwargs("host", "user"), *args] if action == "user_repositories": url_end_list.append("repositories") if action == "user_projects": url_end_list.append("projects") if action == "user_projects_contributions": url_end_list.append("project-contributions") if action == "user_repositories_contributions": url_end_list.append("repository-contributions") if action == "user_dependencies": url_end_list.append("dependencies") return url_end_list
the-stack_106_23683
# coding: utf-8 import pprint import re import six class ListResourceTypesRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'x_language': 'str', 'resource_type_code': 'str' } attribute_map = { 'x_language': 'X-Language', 'resource_type_code': 'resource_type_code' } def __init__(self, x_language='zh_cn', resource_type_code=None): """ListResourceTypesRequest - a model defined in huaweicloud sdk""" self._x_language = None self._resource_type_code = None self.discriminator = None if x_language is not None: self.x_language = x_language if resource_type_code is not None: self.resource_type_code = resource_type_code @property def x_language(self): """Gets the x_language of this ListResourceTypesRequest. :return: The x_language of this ListResourceTypesRequest. :rtype: str """ return self._x_language @x_language.setter def x_language(self, x_language): """Sets the x_language of this ListResourceTypesRequest. :param x_language: The x_language of this ListResourceTypesRequest. :type: str """ self._x_language = x_language @property def resource_type_code(self): """Gets the resource_type_code of this ListResourceTypesRequest. :return: The resource_type_code of this ListResourceTypesRequest. :rtype: str """ return self._resource_type_code @resource_type_code.setter def resource_type_code(self, resource_type_code): """Sets the resource_type_code of this ListResourceTypesRequest. :param resource_type_code: The resource_type_code of this ListResourceTypesRequest. :type: str """ self._resource_type_code = resource_type_code def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListResourceTypesRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_23684
import sys, os import subprocess #from utilix.rundb import pymongo_collection from utilix import xent_collection import re import time import datetime _date = sys.argv[1] single_calibration = int(sys.argv[2]) date = datetime.datetime(int(_date[:4]), int(_date[4:6]), int(_date[6:])) runs = sys.argv[3:11] print('Date: ', date) print('Runs: ', runs) print('Single calibration: ', single_calibration) if len(runs) != 0: if len(runs) != 8: check = False raise SystemExit('Not enough runs!') compare = True else: compare = False print('Compare? ', compare) #coll = pymongo_collection() coll = xent_collection() check = False runs_ = [ ] for i in [0,1,2,3]: query = {'mode': 'tpc_pmtgain', #'tpc_commissioning_pmtgain', 'comments': {'$elemMatch': {'comment': re.compile(f'.*SPE_calibration_step{i}.*')}}, 'tags.name': {'$not': {'$in': ['bad', 'messy', 'abandon']}}, 'start': {'$gte': date, '$lt': date + datetime.timedelta(days=1)} } cursor = list(coll.find(query, {'number': 1})) if len(cursor) == 0: print('SPE cursor 0 so check False') check = False break; else: check = True for run in cursor: runs_.append('0'+str(run['number'])) for i in [0,1,2,3]: query = {'mode': 'tpc_pmtgain', #'tpc_commissioning_pmtgain', 'comments': {'$elemMatch': {'comment': re.compile(f'.*Gain_calibration_step{i}.*')}}, 'tags.name': {'$not': {'$in': ['bad', 'messy', 'abandon']}}, 'start': {'$gte': date, '$lt': date + datetime.timedelta(days=1)} } cursor = list(coll.find(query, {'number': 1})) if len(cursor) == 0: print('GAIN cursor 0 so check False') check = False break; else: check = True for run in cursor: runs_.append('0'+str(run['number'])) print('Runs_: ', runs_) if (compare)&(single_calibration==1): print('Let\'s compare: ') if (runs == runs_): check = True else: check = False print('Check: ', check) else: print('I will not compare. You are doing HV scan, or there are more then one calibration per day or this is cron job.') if check: sys.exit(1) else: sys.exit(0)
the-stack_106_23685
from typing import Callable, Optional from testutils.trees import TreeNode, build_tree def preorder_string(node: Optional[TreeNode]) -> str: """Returns a uniquely identifyable preorder string of the tree""" if not node: return '' return f"# {node.val} {preorder_string(node.left)} {preorder_string(node.right)}" class Solution: def isSubtree(self, tree: Optional[TreeNode], subtree: Optional[TreeNode]) -> bool: return preorder_string(subtree) in preorder_string(tree) tests = [ ( ([3, 4, 5, 1, 2, None, None, None, None, 0], [4, 1, 2],), False, ), ( ([3, 4, 5, 1, 2], [4, 1, 2],), True, ), ] def validator( isSubtree: Callable[[Optional[TreeNode], Optional[TreeNode]], bool], inputs: tuple[list[Optional[int]], list[Optional[int]]], expected: bool, ) -> None: tree_vals, subtree_vals = inputs tree = build_tree(tree_vals) subtree = build_tree(subtree_vals) output = isSubtree(tree, subtree) assert output == expected, (output, expected)
the-stack_106_23686
import configparser import re import sys from loguru import logger as logger class Config: def __init__(self, config_file: str): self.config_file = config_file def check_setting(self, category: str, option: str) -> str: config = configparser.ConfigParser() config.read(self.config_file) selected = config[category][option] selected = selected.replace('"', '') selected = selected.replace("'", '') return selected # Remove special characters and return remainders @staticmethod def remove_special_chars(file_name: str) -> str: name_list = re.findall(u"[a-zA-Z0-9_+ .]", file_name) name_list = ''.join(name_list) if len(name_list) > 20: logger.error("Invalid file name detected.") sys.exit("Invalid file name processed.") return name_list.strip('.')
the-stack_106_23691
import copy import logging from typing import List, Tuple import torch import wandb from torch.utils.data import DataLoader, TensorDataset from torchvision.utils import make_grid import torchvision.transforms as tfs from FID.FIDScorer import FIDScorer from fedml_api.standalone.fedgdkd.ac_gan_model_trainer import ACGANModelTrainer from fedml_api.standalone.fedgdkd.client import FedGDKDClient from fedml_api.standalone.fedgdkd.model_trainer import FedGDKDModelTrainer from fedml_api.standalone.utils.HeterogeneousModelBaseTrainerAPI import HeterogeneousModelBaseTrainerAPI class FedGDKDAPI(HeterogeneousModelBaseTrainerAPI): def __init__(self, dataset, device, args, generator, client_models: List[Tuple[torch.nn.Module, int]]): """ Args: dataset: Dataset presplit into data loaders device: Device to run training on args: Additional args client_models: List of client models and their frequency participating (assuming a stateful algorithm for simplicity) """ super().__init__(dataset, device, args) self.mean = torch.Tensor([0.5]) self.std = torch.Tensor([0.5]) self.generator = ACGANModelTrainer(generator, None) self.generator_model = self.generator.generator # For logging GAN progress self.fixed_labels = self.generator_model.generate_balanced_labels( self.generator_model.num_classes * 8, device='cpu') self.fixed_noise = self.generator_model.generate_noise_vector(self.generator_model.num_classes * 8, device='cpu') self._setup_clients(self.train_data_local_num_dict, self.train_data_local_dict, self.test_data_local_dict, client_models) self._plot_client_training_data_distribution() # Generate dataset that can be used to calculate FID score self.FID_source_set = self._generate_train_subset(num_samples=10000) self.FIDScorer = FIDScorer() def _setup_clients(self, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, client_models): logging.info("############setup_clients (START)#############") c_idx = 0 for local_model, freq in client_models: for i in range(freq): model_trainer = FedGDKDModelTrainer( copy.deepcopy(self.generator.model), copy.deepcopy(local_model) ) c = FedGDKDClient(c_idx, train_data_local_dict[c_idx], test_data_local_dict[c_idx], train_data_local_num_dict[c_idx], self.test_global, self.args, self.device, model_trainer) c_idx += 1 self.client_list.append(c) logging.info("############setup_clients (END)#############") def train(self): w_global = self.generator.get_model_params() DISTILLATION_DATASET_SIZE = self.args.distillation_dataset_size distillation_dataset = None teacher_logits = None prev_client_subset = None for round_idx in range(self.args.comm_round): logging.info("################Communication round : {}".format(round_idx)) client_subset = self._client_sampling(round_idx) # --------------- # GAN Training # --------------- logging.info('########## Gan Training ########') w_locals = [] client: FedGDKDClient for client in client_subset: # Perform knowledge distillation (model drift correction) on current participating clients if prev_client_subset is not None and client.client_idx not in prev_client_subset: logging.info(f"######## KD for new client {client.client_idx} ########") assert distillation_dataset is not None and teacher_logits is not None, 'Need both to perform KD' # Calculate teacher logits as mean of logits belonging to other clients client.classifier_knowledge_distillation(teacher_logits, distillation_dataset) # Perform local training as usual w_local = client.train(copy.deepcopy(w_global), round_idx) w_locals.append(w_local) # update global weights w_global = self._aggregate(w_locals) # self.generator.set_model_params(g_global) # self.discriminator.set_model_params(d_global) self.generator.set_model_params(w_global) # --------------- # Distillation Phase # --------------- logging.info('########## Distillation ########') # Creating distillation dataset here to save memory but same as if sending noise vector to clients distillation_dataset = self.generate_fake_dataset(DISTILLATION_DATASET_SIZE) local_logits = [] logging.info("########## Acquiring distillation logits... #########") for client in client_subset: logits = client.get_distillation_logits(copy.deepcopy(w_global), distillation_dataset) local_logits.append(logits) logging.info(f"Client {client.client_idx} complete") # Calculate average soft labels logging.info(f"######## Knowledge distillation stage ########") for idx, client in enumerate(client_subset): # Calculate teacher logits for client logging.info(f"##### Client {client.client_idx} #####") teacher_logits = torch.mean(torch.stack(local_logits[:idx] + local_logits[idx + 1:]), dim=0) teacher_logits = DataLoader(TensorDataset(teacher_logits), batch_size=self.args.batch_size) client.classifier_knowledge_distillation(teacher_logits, distillation_dataset) # For next round teacher_logits = torch.mean(torch.stack(local_logits), dim=0) teacher_logits = DataLoader(TensorDataset(teacher_logits), batch_size=self.args.batch_size) prev_client_subset = {c.client_idx for c in client_subset} if round_idx % 1 == 0: logging.info("########## Logging generator images... #########") self.log_gan_images(caption=f'Generator Output, communication round: {round_idx}', round_idx=round_idx) logging.info("########## Logging generator images... Complete #########") logging.info("########## Calculating FID Score... #########") fake = distillation_dataset if DISTILLATION_DATASET_SIZE != 10000: fake = self.generate_fake_dataset(DISTILLATION_DATASET_SIZE) fid_score = self.FIDScorer.calculate_fid(images_real=self.FID_source_set, images_fake=fake, device=self.device) if DISTILLATION_DATASET_SIZE != 10000: del fake logging.info(f'FID Score: {fid_score}') wandb.log({'Gen/FID Score Distillation Set': fid_score, 'Round': round_idx}) logging.info("########## Calculating FID Score... Complete #########") # test results # at last round if round_idx == self.args.comm_round - 1: self._local_test_on_all_clients(round_idx) # per {frequency_of_the_test} round elif round_idx % self.args.frequency_of_the_test == 0: if self.args.dataset.startswith("stackoverflow"): self._local_test_on_validation_set(round_idx) else: self._local_test_on_all_clients(round_idx) def _aggregate(self, w_locals): w = 1 / len(w_locals) averaged_params = w_locals[0] for k in averaged_params.keys(): for i, local_model_params in enumerate(w_locals): if i == 0: averaged_params[k] = local_model_params[k] * w else: averaged_params[k] += local_model_params[k] * w return averaged_params def log_gan_images(self, caption, round_idx): images = make_grid( self.denorm( self.generator_model(self.fixed_noise.to(self.device), self.fixed_labels.to(self.device))), nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0) images = wandb.Image(images, caption=caption) wandb.log({f"Generator Outputs": images, 'Round': round_idx}) def denorm(self, x, channels=None, w=None, h=None, resize=False, device='cpu'): unnormalize = tfs.Normalize((-self.mean / self.std).tolist(), (1.0 / self.std).tolist()).to(device) x = unnormalize(x) if resize: if channels is None or w is None or h is None: print('Number of channels, width and height must be provided for resize.') x = x.view(x.size(0), channels, w, h) return x def generate_fake_dataset(self, size): # Creating distillation dataset here to save memory but same as if sending noise vector to clients noise_vector = self.generator_model.generate_noise_vector(size, device=self.device) labels = self.generator_model.generate_balanced_labels(size, device=self.device) noise_labels = TensorDataset(noise_vector, labels) noise_labels_loader = DataLoader(noise_labels, batch_size=self.args.batch_size) synth_data = self.generator.generate_distillation_dataset(noise_labels_loader, device=self.device) del noise_labels_loader return DataLoader(TensorDataset(synth_data, labels), batch_size=self.args.batch_size)
the-stack_106_23692
import logging import spotipy from interaction_manager.utils import config_helper logger = logging.getLogger("Spotify Config") default_spotify_settings = config_helper.get_spotify_settings() scope = "user-library-read, playlist-read-private, app-remote-control, streaming, " \ "user-read-playback-state, user-modify-playback-state" username = default_spotify_settings["username"] client_id = default_spotify_settings["client_id"] client_secret = default_spotify_settings["client_secret"] redirect_uri = default_spotify_settings["redirect_uri"] def connect(): logger.info("Connecting...") try: client_credentials_manager = spotipy.SpotifyOAuth(client_id=client_id, client_secret=client_secret, redirect_uri=redirect_uri, scope=scope, username=username) spotify = spotipy.Spotify(client_credentials_manager=client_credentials_manager) playlists = spotify.user_playlists(username, limit=5) if playlists is None or len(playlists["items"]) == 0: logger.warning("*** Couldn't find any playlist! Please try with another username.") else: for playlist in playlists["items"]: # if playlist['owner']['id'] == self.username: logger.info("Playlist '{}' has {} tracks".format(playlist["name"], playlist["tracks"]["total"])) logger.info("Successfully connected to spotify.") except Exception as e: logger.error("Error while connecting to spotify! {}".format(e)) connect()
the-stack_106_23693
from __future__ import absolute_import, division, print_function # XXX this is intended to be a simple template for debugging queueing system # support issues, not a full regression test. class target(object): def __init__(self, x): self.x = x def __call__(self): import math results = [] for n in range(x): nn = math.sqrt(n**3) print(nn) results.append(nn) def exercise(): from libtbx.queuing_system_utils import generic as queuing t = target(1000000) job = queuing.qsub( target=t, platform="sge") job.start() assert (isinstance(job.jobid, int)) while job.is_alive(): pass print("done") if (__name__ == "__main__"): exercise()
the-stack_106_23695
from tqdm import tqdm import torch class Trainer: def __init__(self, cfg, model, criterion, optimizer, loader): self.cfg = cfg self.model = model self.criterion = criterion self.optimizer = optimizer self.train_loader = loader['train'] self.val_loader = loader['val'] def train(self): best_val = -1 for epoch in range(self.cfg.epochs): self.model.train() pbar = tqdm(self.train_loader, total=len(self.train_loader), desc='Training') for idx, data in enumerate(pbar): if self.cfg.mode == 'ecfp': tokens, segments, input_mask, length, label, ecfp = data elif self.cfg.mode == 'smiles': tokens, segments, input_mask, length, label = data else: raise NotImplementedError tokens, segments = tokens.to(self.cfg.device), segments.to(self.cfg.device) input_mask, label = input_mask.to(self.cfg.device), label.to(self.cfg.device) if self.cfg.mode == 'smiles': pred = self.model(tokens, segments, input_mask) elif self.cfg.mode == 'ecfp': ecfp = ecfp.to(self.cfg.device) pred = self.model(tokens, segments, input_mask, ecfp) else: raise NotImplementedError loss = self.criterion(pred, label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() if epoch % self.cfg.val_interval == 0 or epoch == (self.cfg.epochs - 1): val_loss, val_acc = self.evaluate(self.val_loader, 'Validation') if val_acc > best_val: torch.save(self.model.state_dict(), self.cfg.save_path + 'best_acc.pt') best_val = val_acc print('Best Checkpoint Saved') print('Train Finished') def evaluate(self, loader, name): self.model.eval() pbar = tqdm(loader, total=len(loader), desc=name) total_loss, total_acc, n_data = 0, 0, 0 for idx, data in enumerate(pbar): if self.cfg.mode == 'ecfp': tokens, segments, input_mask, length, label, ecfp = data elif self.cfg.mode == 'smiles': tokens, segments, input_mask, length, label = data else: raise NotImplementedError tokens, segments = tokens.to(self.cfg.device), segments.to(self.cfg.device) input_mask, label = input_mask.to(self.cfg.device), label.to(self.cfg.device) with torch.no_grad(): if self.cfg.mode == 'smiles': pred = self.model(tokens, segments, input_mask) elif self.cfg.mode == 'ecfp': ecfp = ecfp.to(self.cfg.device) pred = self.model(tokens, segments, input_mask, ecfp) else: raise NotImplementedError loss = self.criterion(pred, label) total_loss += loss.item() total_acc += torch.eq(torch.argmax(pred, dim=1), label).to(torch.int32).sum().item() n_data += tokens.size(0) avg_loss = total_loss / n_data avg_acc = total_acc / n_data print(f'{name} Finished - Average loss: {avg_loss}, Average Acc: {avg_acc}') return avg_loss, avg_acc
the-stack_106_23697
import base64 import os import sys import threading from collections import defaultdict from functools import partial from io import BytesIO from mimetypes import guess_extension from tempfile import mkstemp from typing import Any, Union import numpy as np import six from PIL import Image from ...debugging.log import LoggerRoot from ..frameworks import _patched_call, WeightsFileHandler, _Empty from ..import_bind import PostImportHookPatching from ...config import running_remotely from ...model import InputModel, OutputModel, Framework try: from google.protobuf.json_format import MessageToDict # noqa except ImportError: MessageToDict = None try: from PIL import GifImagePlugin # noqa except ImportError: pass class TensorflowBinding(object): @classmethod def update_current_task(cls, task, patch_reporting=True, patch_model_io=True): if not task: IsTensorboardInit.clear_tensorboard_used() EventTrainsWriter.update_current_task(task) if patch_reporting: PatchSummaryToEventTransformer.update_current_task(task) PatchTensorFlowEager.update_current_task(task) if patch_model_io: PatchKerasModelIO.update_current_task(task) PatchTensorflowModelIO.update_current_task(task) PatchTensorflow2ModelIO.update_current_task(task) class IsTensorboardInit(object): _tensorboard_initialized = False @classmethod def tensorboard_used(cls): return cls._tensorboard_initialized @classmethod def set_tensorboard_used(cls): cls._tensorboard_initialized = True @classmethod def clear_tensorboard_used(cls): cls._tensorboard_initialized = False @staticmethod def _patched_tb__init__(original_init, self, *args, **kwargs): IsTensorboardInit._tensorboard_initialized = True return original_init(self, *args, **kwargs) # noinspection PyProtectedMember class WeightsGradientHistHelper(object): def __init__(self, logger, report_freq=100, histogram_update_freq_multiplier=10, histogram_granularity=50): self._logger = logger self.report_freq = report_freq self._histogram_granularity = histogram_granularity self._histogram_update_freq_multiplier = histogram_update_freq_multiplier self._histogram_update_call_counter = 0 self._hist_report_cache = {} self._hist_x_granularity = 50 @staticmethod def _sample_histograms(_hist_iters, _histogram_granularity): # re-sample history based on distribution of samples across time (steps) ratio = ((_hist_iters[-1] - _hist_iters[_histogram_granularity]) / (_hist_iters[_histogram_granularity - 1] - _hist_iters[0])) if \ _hist_iters.size > _histogram_granularity else 0. cur_idx_below = np.arange(0, min(_hist_iters.size, _histogram_granularity - 1)) np.random.shuffle(cur_idx_below) cur_idx_below = cur_idx_below[:int(_histogram_granularity * (1.0 - ratio / (1 + ratio)) + 0.5)] if ratio > 0.0: cur_idx_above = np.arange(_histogram_granularity - 1, _hist_iters.size) np.random.shuffle(cur_idx_above) cur_idx_above = cur_idx_above[:int(_histogram_granularity * ratio / (1 + ratio))] else: cur_idx_above = np.array([]) _cur_idx = np.unique(np.sort(np.concatenate((cur_idx_below, cur_idx_above)).astype(np.int))) return _cur_idx def add_histogram(self, title, series, step, hist_data): # only collect histogram every specific interval self._histogram_update_call_counter += 1 if self._histogram_update_call_counter % self.report_freq != 0 or \ self._histogram_update_call_counter < self.report_freq - 1: return None if isinstance(hist_data, dict): pass elif isinstance(hist_data, np.ndarray) and len(hist_data.shape) == 2 and np.atleast_2d(hist_data).shape[1] == 3: # prepare the dictionary, assume numpy # hist_data['bucketLimit'] is the histogram bucket right side limit, meaning X axis # hist_data['bucket'] is the histogram height, meaning the Y axis # notice hist_data[:, 1] is the right side limit, for backwards compatibility we take the left side hist_data = {'bucketLimit': hist_data[:, 0].tolist(), 'bucket': hist_data[:, 2].tolist()} else: # assume we have to do the histogram on the data hist_data = np.histogram(hist_data, bins=32) hist_data = {'bucketLimit': hist_data[1].tolist(), 'bucket': hist_data[0].tolist()} self._add_histogram(title=title, series=series, step=step, hist_data=hist_data) def _add_histogram(self, title, series, step, hist_data): # only collect histogram every specific interval self._histogram_update_call_counter += 1 if self._histogram_update_call_counter % self.report_freq != 0 or \ self._histogram_update_call_counter < self.report_freq - 1: return None # generate forward matrix of the histograms # Y-axis (rows) is iteration (from 0 to current Step) # X-axis averaged bins (conformed sample 'bucketLimit') # Z-axis actual value (interpolated 'bucket') step = EventTrainsWriter._fix_step_counter(title, series, step) # get histograms from cache hist_list, hist_iters, minmax = self._hist_report_cache.get((title, series), ([], np.array([]), None)) # resample data so we are always constrained in number of histogram we keep if hist_iters.size >= self._histogram_granularity ** 2: idx = self._sample_histograms(hist_iters, self._histogram_granularity) hist_iters = hist_iters[idx] hist_list = [hist_list[i] for i in idx] # check if current sample is not already here (actually happens some times) if step in hist_iters: return None # add current sample, if not already here hist_iters = np.append(hist_iters, step) # hist_data['bucketLimit'] is the histogram bucket right side limit, meaning X axis # hist_data['bucket'] is the histogram height, meaning the Y axis hist = np.array(list(zip(hist_data['bucketLimit'], hist_data['bucket'])), dtype=np.float32) hist = hist[~np.isinf(hist[:, 0]), :] hist_list.append(hist) # keep track of min/max values of histograms (for later re-binning) if minmax is None: minmax = hist[:, 0].min(), hist[:, 0].max() else: # noinspection PyUnresolvedReferences minmax = min(minmax[0], hist[:, 0].min()), max(minmax[1], hist[:, 0].max()) # update the cache self._hist_report_cache[(title, series)] = hist_list, hist_iters, minmax # only report histogram every specific interval, but do report the first few, so you know there are histograms if hist_iters.size < 1 or (hist_iters.size >= self._histogram_update_freq_multiplier and hist_iters.size % self._histogram_update_freq_multiplier != 0): return None # resample histograms on a unified bin axis +- epsilon _epsilon = abs((minmax[1] - minmax[0])/float(self._hist_x_granularity)) if _epsilon == 0: _epsilon = 0.01 _minmax = minmax[0] - _epsilon, minmax[1] + _epsilon prev_xedge = np.arange(start=_minmax[0], step=(_minmax[1] - _minmax[0]) / float(self._hist_x_granularity - 2), stop=_minmax[1]) # uniformly select histograms and the last one cur_idx = self._sample_histograms(hist_iters, self._histogram_granularity) report_hist = np.zeros(shape=(len(cur_idx), prev_xedge.size), dtype=np.float32) for i, n in enumerate(cur_idx): h = hist_list[n] report_hist[i, :] = np.interp(prev_xedge, h[:, 0], h[:, 1], right=0, left=0) yedges = hist_iters[cur_idx] xedges = prev_xedge # if only a single line make, add another zero line, for the scatter plot to draw if report_hist.shape[0] < 2: report_hist = np.vstack((np.zeros_like(report_hist), report_hist)) # create 3d line (scatter) of histograms skipx = max(1, int(xedges.size / 10)) skipy = max(1, int(yedges.size / 10)) xlabels = ['%.2f' % v if i % skipx == 0 else '' for i, v in enumerate(xedges[:-1])] ylabels = [str(int(v)) if i % skipy == 0 else '' for i, v in enumerate(yedges)] self._logger.report_surface( title=title, series=series, iteration=0, xaxis=' ', yaxis='iteration', xlabels=xlabels, ylabels=ylabels, matrix=report_hist, camera=(-0.1, +1.3, 1.4)) # noinspection PyMethodMayBeStatic,PyProtectedMember,SpellCheckingInspection class EventTrainsWriter(object): """ TF SummaryWriter implementation that converts the tensorboard's summary into ClearML events and reports the events (metrics) for an ClearML task (logger). """ __main_task = None _add_lock = threading.RLock() _series_name_lookup = {} # store all the created tensorboard writers in the system # this allows us to as weather a certain tile/series already exist on some EventWriter # and if it does, then we add to the series name the last token from the logdir # (so we can differentiate between the two) # key, value: key=hash(title, graph), value=EventTrainsWriter._id _title_series_writers_lookup = {} _event_writers_id_to_logdir = {} # Protect against step (iteration) reuse, for example, # steps counter inside an epoch, but wrapping around when epoch ends # i.e. step = 0..100 then epoch ends and again step = 0..100 # We store the first report per title/series combination, and if wraparound occurs # we synthetically continue to increase the step/iteration based on the previous epoch counter # example: _title_series_wraparound_counter[('title', 'series')] = # {'first_step':None, 'last_step':None, 'adjust_counter':0,} _title_series_wraparound_counter = {} @property def variants(self): return self._variants def prepare_report(self): return self.variants.copy() def tag_splitter(self, tag, num_split_parts, split_char='/', join_char='_', default_title='variant', logdir_header='series', auto_reduce_num_split=False, force_add_prefix=None): """ Split a tf.summary tag line to variant and metric. Variant is the first part of the split tag, metric is the second. :param str tag: :param int num_split_parts: :param str split_char: a character to split the tag on :param str join_char: a character to join the the splits :param str default_title: variant to use in case no variant can be inferred automatically :param str logdir_header: if 'series_last' then series=header: series, if 'series then series=series :header, if 'title_last' then title=header title, if 'title' then title=title header :param bool auto_reduce_num_split: if True and the tag is split for less parts then requested, then requested number of split parts is adjusted. :param str force_add_prefix: always add the prefix to the series name :return: (str, str) variant and metric """ splitted_tag = tag.split(split_char) if auto_reduce_num_split and num_split_parts > len(splitted_tag) - 1: num_split_parts = max(1, len(splitted_tag) - 1) series = join_char.join(splitted_tag[-num_split_parts:]) title = join_char.join(splitted_tag[:-num_split_parts]) or default_title if force_add_prefix: series = str(force_add_prefix)+series # check if we already decided that we need to change the title/series graph_id = hash((title, series)) if graph_id in self._graph_name_lookup: return self._graph_name_lookup[graph_id] # check if someone other than us used this combination with self._add_lock: event_writer_id = self._title_series_writers_lookup.get(graph_id, None) if not event_writer_id: # put us there self._title_series_writers_lookup[graph_id] = self._id elif event_writer_id != self._id: # if there is someone else, change our series name and store us org_series = series org_title = title other_logdir = self._event_writers_id_to_logdir[event_writer_id] split_logddir = self._logdir.split('/') unique_logdir = set(split_logddir) - set(other_logdir.split('/')) header = '/'.join(s for s in split_logddir if s in unique_logdir) if logdir_header == 'series_last': series = header + ': ' + series elif logdir_header == 'series': series = series + ' :' + header elif logdir_header == 'title': title = title + ' ' + header else: # logdir_header == 'title_last': title = header + ' ' + title graph_id = hash((title, series)) # check if for some reason the new series is already occupied new_event_writer_id = self._title_series_writers_lookup.get(graph_id) if new_event_writer_id is not None and new_event_writer_id != self._id: # well that's about it, nothing else we could do if logdir_header == 'series_last': series = str(self._logdir) + ': ' + org_series elif logdir_header == 'series': series = org_series + ' :' + str(self._logdir) elif logdir_header == 'title': title = org_title + ' ' + str(self._logdir) else: # logdir_header == 'title_last': title = str(self._logdir) + ' ' + org_title graph_id = hash((title, series)) self._title_series_writers_lookup[graph_id] = self._id # store for next time self._graph_name_lookup[graph_id] = (title, series) return title, series def __init__(self, logger, logdir=None, report_freq=100, image_report_freq=None, histogram_update_freq_multiplier=10, histogram_granularity=50, max_keep_images=None): """ Create a compatible ClearML backend to the TensorFlow SummaryToEventTransformer Everything will be serialized directly to the ClearML backend, instead of to the standard TF FileWriter :param logger: The task.logger to use for sending the metrics (def: task.get_logger()) :param report_freq: How often to update the statistics values :param image_report_freq: How often to upload images (step % image_update_freq == 0) :param histogram_update_freq_multiplier: How often to upload histogram (step//update_freq) % histogram_update_freq_multiplier == 0 :param histogram_granularity: How many histograms (lines) to display in the 3d histogram plot :param max_keep_images: Maximum number of images to save before starting to reuse files (per title/metric pair) """ # We are the events_writer, so that's what we'll pass IsTensorboardInit.set_tensorboard_used() self._logdir = logdir or ('unknown %d' % len(self._event_writers_id_to_logdir)) # conform directory structure to unix if os.path.sep == '\\': self._logdir = self._logdir.replace('\\', '/') self._id = hash(self._logdir) self._event_writers_id_to_logdir[self._id] = self._logdir self.max_keep_images = max_keep_images self.report_freq = report_freq self.image_report_freq = image_report_freq if image_report_freq else report_freq self.histogram_granularity = histogram_granularity self.histogram_update_freq_multiplier = histogram_update_freq_multiplier self._histogram_update_call_counter = 0 self._logger = logger self._visualization_mode = 'RGB' # 'BGR' self._variants = defaultdict(lambda: ()) self._scalar_report_cache = {} self._hist_report_cache = {} self._hist_x_granularity = 50 self._max_step = 0 self._graph_name_lookup = {} self._generic_tensor_type_name_lookup = {} self._grad_helper = WeightsGradientHistHelper( logger=logger, report_freq=report_freq, histogram_update_freq_multiplier=histogram_update_freq_multiplier, histogram_granularity=histogram_granularity ) def _decode_image(self, img_str, width=None, height=None, color_channels=None): # noinspection PyBroadException try: if isinstance(img_str, bytes): imdata = img_str else: imdata = base64.b64decode(img_str) output = BytesIO(imdata) im = Image.open(output) # if this is a GIF store as is if getattr(im, 'is_animated', None): output.close() fd, temp_file = mkstemp( suffix=guess_extension(im.get_format_mimetype()) if hasattr(im, 'get_format_mimetype') else ".{}".format(str(im.format).lower()) ) os.write(fd, imdata) os.close(fd) return temp_file image = np.asarray(im) output.close() if height is not None and height > 0 and width is not None and width > 0: # noinspection PyArgumentList val = image.reshape(height, width, -1).astype(np.uint8) else: val = image.astype(np.uint8) if val.ndim == 3 and val.shape[2] == 3: if self._visualization_mode == 'BGR': val = val[:, :, [2, 1, 0]] else: val = val elif (val.ndim == 2) or (val.ndim == 3 and val.shape[2] == 1): val = np.tile(np.atleast_3d(val), (1, 1, 3)) elif val.ndim == 3 and val.shape[2] == 4: if self._visualization_mode == 'BGR': val = val[:, :, [2, 1, 0]] else: val = val[:, :, [0, 1, 2]] except KeyboardInterrupt: raise except Exception as e: logger = LoggerRoot.get_base_logger(TensorflowBinding) logger.warning('Failed decoding debug image [%s, %s, %s]' % (width, height, color_channels)) logger.warning('Error: %s' % e) val = None return val def _add_image_numpy(self, tag, step, img_data_np, max_keep_images=None): # type: (str, int, Union[None, np.ndarray, str], int) -> () # only report images every specific interval if step % self.image_report_freq != 0: return None if img_data_np is None: return # noinspection PyProtectedMember title, series = self.tag_splitter(tag, num_split_parts=3, default_title='Images', logdir_header='title', auto_reduce_num_split=True, force_add_prefix=self._logger._get_tensorboard_series_prefix()) step = self._fix_step_counter(title, series, step) # check if this is a local temp file if isinstance(img_data_np, str): self._logger.report_image( title=title, series=series, iteration=step, local_path=img_data_np, delete_after_upload=True, max_image_history=self.max_keep_images if max_keep_images is None else max_keep_images, ) return if img_data_np.dtype != np.uint8: # assume scale 0-1 img_data_np = (img_data_np * 255).astype(np.uint8) # if 3d, pack into one big image if img_data_np.ndim == 4: dims = img_data_np.shape stack_dim = int(np.sqrt(dims[0])) # noinspection PyArgumentList res = img_data_np.reshape(stack_dim, stack_dim, *dims[1:]).transpose((0, 2, 1, 3, 4)) tile_size_h = res.shape[0] * res.shape[1] tile_size_w = res.shape[2] * res.shape[3] img_data_np = res.reshape(tile_size_h, tile_size_w, -1) self._logger.report_image( title=title, series=series, iteration=step, image=img_data_np, max_image_history=self.max_keep_images if max_keep_images is None else max_keep_images, ) def _add_image(self, tag, step, img_data): # only report images every specific interval if step % self.image_report_freq != 0: return None width = img_data.get('width') height = img_data.get('height') colorspace = img_data.get('colorspace') img_str = img_data['encodedImageString'] matrix = self._decode_image(img_str, width=width, height=height, color_channels=colorspace) if matrix is None: return return self._add_image_numpy(tag=tag, step=step, img_data_np=matrix) def _add_scalar(self, tag, step, scalar_data): default_title = tag if not self._logger._get_tensorboard_auto_group_scalars() else 'Scalars' series_per_graph = self._logger._get_tensorboard_single_series_per_graph() # noinspection PyProtectedMember title, series = self.tag_splitter( tag, num_split_parts=1, default_title=default_title, logdir_header='title' if series_per_graph else 'series_last', force_add_prefix=self._logger._get_tensorboard_series_prefix() ) step = self._fix_step_counter(title, series, step) tag = self._get_add_scalars_event_tag(default_title) possible_title = tag if series_per_graph else None possible_tag = None if series_per_graph else tag title = title + possible_title if possible_title else title series = possible_tag or series # update scalar cache num, value = self._scalar_report_cache.get((title, series), (0, 0)) # nan outputs is a string, it's probably a NaN if isinstance(scalar_data, six.string_types): # noinspection PyBroadException try: scalar_data = float(scalar_data) except Exception: scalar_data = float('nan') # nan outputs nan self._scalar_report_cache[(title, series)] = \ (num + 1, (value + scalar_data) if scalar_data == scalar_data else scalar_data) # only report images every specific interval if step % self.report_freq != 0: return None # calculate mean and zero cache num, value = self._scalar_report_cache.get((title, series), (0, 0)) scalar_data = value / num self._scalar_report_cache[(title, series)] = (0, 0) self._logger.report_scalar( title=title, series=series, iteration=step, value=scalar_data, ) def _add_histogram(self, tag, step, hist_data): # noinspection PyProtectedMember title, series = self.tag_splitter(tag, num_split_parts=1, default_title='Histograms', logdir_header='series', force_add_prefix=self._logger._get_tensorboard_series_prefix()) self._grad_helper.add_histogram( title=title, series=series, step=step, hist_data=hist_data ) def _add_plot(self, tag, step, values, vdict): # noinspection PyBroadException try: if values.get('floatVal'): plot_values = np.array(values.get('floatVal'), dtype=np.float32) else: plot_values = np.frombuffer(base64.b64decode(values['tensorContent'].encode('utf-8')), dtype=np.float32) plot_values = plot_values.reshape((int(values['tensorShape']['dim'][0]['size']), int(values['tensorShape']['dim'][1]['size']))) if 'metadata' in vdict: if tag not in self._series_name_lookup: self._series_name_lookup[tag] = [(tag, vdict['metadata'].get('displayName', ''), vdict['metadata']['pluginData']['pluginName'])] else: # this should not happen, maybe it's another run, let increase the value self._series_name_lookup[tag] += [(tag + '_%d' % (len(self._series_name_lookup[tag]) + 1), vdict['metadata'].get('displayName', ''), vdict['metadata']['pluginData']['pluginName'])] tag, series, plugin_name = self._series_name_lookup.get(tag, [(tag, tag, '')])[-1] if 'pr_curve' in plugin_name: # our thresholds are evenly distributed, in that # width = 1.0 / (num_thresholds - 1) # thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0] num_thresholds = plot_values.shape[1] width = 1.0 / num_thresholds thresholds = np.arange(0.0, 1.0, width, dtype=plot_values.dtype) data_points = ['Threshold ', 'TP ', 'FP ', 'TN ', 'FN ', 'Precision ', ' Recall'] series = [{'name': series, 'data': np.vstack((plot_values[-1], plot_values[-2])).T, 'labels': [''.join(data_points) + '<br> {:.3f} '.format(thresholds[j]) + ' '.join(['%-3.2f' % v for v in plot_values[:, j]]) for j in range(num_thresholds)]}] reverse_xaxis = False else: reverse_xaxis = False series = [{'name': series, 'data': plot_values}] self._logger.report_line_plot(title=tag, series=series, xaxis='', yaxis='', iteration=step, reverse_xaxis=reverse_xaxis) except Exception: pass def _add_audio(self, tag, step, values, audio_data=None): # only report images every specific interval if step % self.image_report_freq != 0: return None if values: audio_str = values['encodedAudioString'] audio_data = base64.b64decode(audio_str) if audio_data is None: return # noinspection PyProtectedMember title, series = self.tag_splitter(tag, num_split_parts=3, default_title='Audio', logdir_header='title', auto_reduce_num_split=True, force_add_prefix=self._logger._get_tensorboard_series_prefix()) step = self._fix_step_counter(title, series, step) stream = BytesIO(audio_data) if values: file_extension = guess_extension(values['contentType']) or \ '.{}'.format(values['contentType'].split('/')[-1]) else: # assume wav as default file_extension = '.wav' self._logger.report_media( title=title, series=series, iteration=step, stream=stream, file_extension=file_extension, max_history=self.max_keep_images, ) def _add_text(self, tag, step, tensor_bytes): # noinspection PyProtectedMember title, series = self.tag_splitter(tag, num_split_parts=3, default_title='Text', logdir_header='title', auto_reduce_num_split=True, force_add_prefix=self._logger._get_tensorboard_series_prefix()) step = self._fix_step_counter(title, series, step) text = tensor_bytes.decode('utf-8', errors='replace') self._logger.report_media( title=title, series=series, iteration=step, stream=six.StringIO(text), file_extension='.txt', max_history=self.max_keep_images, ) @staticmethod def _fix_step_counter(title, series, step): key = (title, series) if key not in EventTrainsWriter._title_series_wraparound_counter: EventTrainsWriter._title_series_wraparound_counter[key] = {'first_step': step, 'last_step': step, 'adjust_counter': 0} return step wraparound_counter = EventTrainsWriter._title_series_wraparound_counter[key] # we decide on wrap around if the current step is less than 10% of the previous step # notice since counter is int and we want to avoid rounding error, we have double check in the if if step < wraparound_counter['last_step'] and step < 0.9 * wraparound_counter['last_step']: # adjust step base line wraparound_counter['adjust_counter'] += wraparound_counter['last_step'] + (1 if step <= 0 else step) # return adjusted step wraparound_counter['last_step'] = step return step + wraparound_counter['adjust_counter'] def add_event(self, event, step=None, walltime=None, **_): supported_metrics = { 'simpleValue', 'image', 'histo', 'tensor', 'audio' } def get_data(value_dict, metric_search_order): data = None metric_type = 'Unsupported' for variant in metric_search_order: data = value_dict.get(variant) if data is not None: metric_type = variant break return metric_type, data # Support multiple threads accessing this instance (i.e. let TF/Keras do what they need) with self._add_lock: # TODO: add report frequency threshold (i.e. if we are sending too much data, increase the report_freq) # we should measure reports per second and throttle back the reporting details accordingly msg_dict = MessageToDict(event) summary = msg_dict.get('summary') if summary is None: msg_dict.pop('step', None) msg_dict.pop('wallTime', None) keys_list = [key for key in msg_dict.keys() if len(key) > 0] keys_list = ', '.join(keys_list) LoggerRoot.get_base_logger(TensorflowBinding).debug( 'event summary not found, message type unsupported: %s' % keys_list) return value_dicts = summary.get('value') # noinspection PyUnusedLocal walltime = walltime or msg_dict.get('step') step = step or msg_dict.get('step') if step is None: # when we start a new epoch there is no step in the msg_dict, # we have to extract it manually if hasattr(event, 'step'): step = int(event.step) else: step = 0 LoggerRoot.get_base_logger(TensorflowBinding).debug( 'Received event without step, assuming step = {}'.format(step)) else: step = int(step) self._max_step = max(self._max_step, step) if value_dicts is None: LoggerRoot.get_base_logger(TensorflowBinding).debug("Summary arrived without 'value'") return for vdict in value_dicts: tag = vdict.pop('tag', None) if tag is None: # we should not get here LoggerRoot.get_base_logger(TensorflowBinding).debug( 'No tag for \'value\' existing keys %s' % ', '.join(vdict.keys())) continue metric, values = get_data(vdict, supported_metrics) if metric == 'simpleValue': self._add_scalar(tag=tag, step=step, scalar_data=values) elif metric == 'histo': self._add_histogram(tag=tag, step=step, hist_data=values) elif metric == 'image': self._add_image(tag=tag, step=step, img_data=values) elif metric == 'audio': self._add_audio(tag, step, values) elif metric == 'tensor' and values.get('dtype') == 'DT_STRING': # generic tensor tensor_bytes = base64.b64decode('\n'.join(values['stringVal'])) plugin_type = self._generic_tensor_type_name_lookup.get(tag) or \ vdict.get('metadata', {}).get('pluginData', {}).get('pluginName', '').lower() if plugin_type == 'audio': self._generic_tensor_type_name_lookup[tag] = plugin_type self._add_audio(tag, step, None, tensor_bytes) elif plugin_type == 'text': self._generic_tensor_type_name_lookup[tag] = plugin_type self._add_text(tag, step, tensor_bytes) else: # we do not support it pass elif metric == 'tensor' and values.get('dtype') == 'DT_FLOAT': self._add_plot(tag, step, values, vdict) else: LoggerRoot.get_base_logger(TensorflowBinding).debug( 'Event unsupported. tag = %s, vdict keys [%s]' % (tag, ', '.join(vdict.keys()))) continue def get_logdir(self): """ Returns a temporary directory name for compatibility with FileWriter. This directory is not actually used. :return: '.' """ return '.' def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ self._logger.flush() def close(self): """Flushes the event file to disk and close the file. Call this method when you do not need the summary writer anymore. """ self._logger.flush() def reopen(self): """Reopens the EventFileWriter. Can be called after `close` to add more events in the same directory. The events will go into a new events file. Does nothing if the EventFileWriter was not closed. """ pass def _get_add_scalars_event_tag(self, title_prefix): """ :param str title_prefix: the table title prefix that was added to the series. :return: str same as tensorboard use """ # HACK - this is tensorboard Summary util function, original path: # ~/torch/utils/tensorboard/summary.py def _clean_tag(name): import re as _re # noinspection RegExpRedundantEscape _INVALID_TAG_CHARACTERS = _re.compile(r'[^-/\w\.]') if name is not None: new_name = _INVALID_TAG_CHARACTERS.sub('_', name) new_name = new_name.lstrip('/') # Remove leading slashes if new_name != name: LoggerRoot.get_base_logger(TensorflowBinding).debug( 'Summary name %s is illegal; using %s instead.' % (name, new_name)) name = new_name return name main_path = self._logdir # noinspection PyBroadException try: main_path = _clean_tag(main_path) origin_tag = main_path.rpartition("/")[2].replace(title_prefix, "", 1) if title_prefix and origin_tag[0] == "_": # add_scalars tag origin_tag = origin_tag[1:] # Remove the first "_" that was added by the main_tag in tensorboard else: return "" except Exception: origin_tag = "" return origin_tag @classmethod def update_current_task(cls, task): if cls.__main_task != task: with cls._add_lock: cls._series_name_lookup = {} cls._title_series_writers_lookup = {} cls._event_writers_id_to_logdir = {} cls._title_series_wraparound_counter = {} cls.__main_task = task # noinspection PyCallingNonCallable class ProxyEventsWriter(object): def __init__(self, events): IsTensorboardInit.set_tensorboard_used() self._events = events def _get_sentinel_event(self): ret = None for ev in self._events: if hasattr(ev, '_get_sentinel_event'): # noinspection PyProtectedMember ret = ev._get_sentinel_event() return ret def get_logdir(self): ret = None for ev in self._events: if hasattr(ev, 'get_logdir'): ret = ev.get_logdir() return ret def reopen(self): ret = None for ev in self._events: if hasattr(ev, 'reopen'): ret = ev.reopen() return ret def add_event(self, *args, **kwargs): ret = None for ev in self._events: if hasattr(ev, 'add_event'): ret = ev.add_event(*args, **kwargs) return ret def flush(self): ret = None for ev in self._events: if hasattr(ev, 'flush'): ret = ev.flush() return ret def close(self): ret = None for ev in self._events: if hasattr(ev, 'close'): ret = ev.close() return ret # noinspection PyPep8Naming class PatchSummaryToEventTransformer(object): __main_task = None __original_getattribute = None __original_getattributeX = None _original_add_event = None _original_add_eventT = None _original_add_eventX = None defaults_dict = dict( report_freq=1, image_report_freq=1, histogram_update_freq_multiplier=5, histogram_granularity=50) @staticmethod def trains_object(self): if isinstance(self.event_writer, ProxyEventsWriter): # noinspection PyProtectedMember trains_writer = [e for e in self.event_writer._events if isinstance(e, EventTrainsWriter)] return trains_writer[0] if trains_writer else None elif isinstance(self.event_writer, EventTrainsWriter): return self.event_writer if not self.__dict__.get('_trains_defaults'): self.__dict__['_trains_defaults'] = {} return self.__dict__['_trains_defaults'] @staticmethod def update_current_task(task, **kwargs): PatchSummaryToEventTransformer.defaults_dict.update(kwargs) PatchSummaryToEventTransformer.__main_task = task # make sure we patched the SummaryToEventTransformer PatchSummaryToEventTransformer._patch_summary_to_event_transformer() PostImportHookPatching.add_on_import('tensorflow', PatchSummaryToEventTransformer._patch_summary_to_event_transformer) PostImportHookPatching.add_on_import('torch', PatchSummaryToEventTransformer._patch_summary_to_event_transformer) PostImportHookPatching.add_on_import('tensorboardX', PatchSummaryToEventTransformer._patch_summary_to_event_transformer) @staticmethod def _patch_summary_to_event_transformer(): if 'tensorflow' in sys.modules: try: from tensorflow.python.summary.writer.writer import SummaryToEventTransformer # noqa # only patch once if PatchSummaryToEventTransformer.__original_getattribute is None: PatchSummaryToEventTransformer.__original_getattribute = SummaryToEventTransformer.__getattribute__ SummaryToEventTransformer.__getattribute__ = PatchSummaryToEventTransformer._patched_getattribute setattr(SummaryToEventTransformer, 'clearml', property(PatchSummaryToEventTransformer.trains_object)) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).debug(str(ex)) if 'torch' in sys.modules: try: # only patch once if PatchSummaryToEventTransformer._original_add_eventT is None: # noinspection PyUnresolvedReferences from torch.utils.tensorboard.writer import FileWriter as FileWriterT # noqa PatchSummaryToEventTransformer._original_add_eventT = FileWriterT.add_event FileWriterT.add_event = PatchSummaryToEventTransformer._patched_add_eventT setattr(FileWriterT, 'clearml', None) except ImportError: # this is a new version of TensorflowX pass except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).debug(str(ex)) if 'tensorboardX' in sys.modules: try: # only patch once if PatchSummaryToEventTransformer.__original_getattributeX is None: # noinspection PyUnresolvedReferences from tensorboardX.writer import SummaryToEventTransformer as SummaryToEventTransformerX # noqa PatchSummaryToEventTransformer.__original_getattributeX = \ SummaryToEventTransformerX.__getattribute__ SummaryToEventTransformerX.__getattribute__ = PatchSummaryToEventTransformer._patched_getattributeX setattr(SummaryToEventTransformerX, 'clearml', property(PatchSummaryToEventTransformer.trains_object)) except ImportError: # this is a new version of TensorflowX pass except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).debug(str(ex)) if PatchSummaryToEventTransformer.__original_getattributeX is None: try: # only patch once if PatchSummaryToEventTransformer._original_add_eventX is None: from tensorboardX.writer import FileWriter as FileWriterX # noqa PatchSummaryToEventTransformer._original_add_eventX = FileWriterX.add_event FileWriterX.add_event = PatchSummaryToEventTransformer._patched_add_eventX setattr(FileWriterX, 'clearml', None) except ImportError: # this is a new version of TensorflowX pass except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).debug(str(ex)) @staticmethod def _patched_add_eventT(self, *args, **kwargs): if not hasattr(self, 'clearml') or not PatchSummaryToEventTransformer.__main_task: return PatchSummaryToEventTransformer._original_add_eventT(self, *args, **kwargs) if not self.clearml: # noqa # noinspection PyBroadException try: logdir = self.get_logdir() except Exception: logdir = None self.clearml = EventTrainsWriter(PatchSummaryToEventTransformer.__main_task.get_logger(), logdir=logdir, **PatchSummaryToEventTransformer.defaults_dict) # noinspection PyBroadException try: self.clearml.add_event(*args, **kwargs) except Exception: pass return PatchSummaryToEventTransformer._original_add_eventT(self, *args, **kwargs) @staticmethod def _patched_add_eventX(self, *args, **kwargs): if not hasattr(self, 'clearml') or not PatchSummaryToEventTransformer.__main_task: return PatchSummaryToEventTransformer._original_add_eventX(self, *args, **kwargs) if not self.clearml: # noinspection PyBroadException try: logdir = self.get_logdir() except Exception: logdir = None self.clearml = EventTrainsWriter(PatchSummaryToEventTransformer.__main_task.get_logger(), logdir=logdir, **PatchSummaryToEventTransformer.defaults_dict) # noinspection PyBroadException try: self.clearml.add_event(*args, **kwargs) except Exception: pass return PatchSummaryToEventTransformer._original_add_eventX(self, *args, **kwargs) @staticmethod def _patched_getattribute(self, attr): get_base = PatchSummaryToEventTransformer.__original_getattribute return PatchSummaryToEventTransformer._patched_getattribute_(self, attr, get_base) @staticmethod def _patched_getattributeX(self, attr): get_base = PatchSummaryToEventTransformer.__original_getattributeX return PatchSummaryToEventTransformer._patched_getattribute_(self, attr, get_base) @staticmethod def _patched_getattribute_(self, attr, get_base): # no main task, zero chance we have an ClearML event logger if PatchSummaryToEventTransformer.__main_task is None: return get_base(self, attr) # check if we already have an ClearML event logger __dict__ = get_base(self, '__dict__') if 'event_writer' not in __dict__ or \ isinstance(__dict__['event_writer'], (ProxyEventsWriter, EventTrainsWriter)): return get_base(self, attr) # patch the events writer field, and add a double Event Logger (ClearML and original) base_eventwriter = __dict__['event_writer'] # noinspection PyBroadException try: logdir = base_eventwriter.get_logdir() except Exception: logdir = None defaults_dict = __dict__.get('_trains_defaults') or PatchSummaryToEventTransformer.defaults_dict trains_event = EventTrainsWriter(PatchSummaryToEventTransformer.__main_task.get_logger(), logdir=logdir, **defaults_dict) # order is important, the return value of ProxyEventsWriter is the last object in the list __dict__['event_writer'] = ProxyEventsWriter([trains_event, base_eventwriter]) return get_base(self, attr) class _ModelAdapter(object): """ Model adapter which extends the save and save_weights methods of a Keras Model instance """ _model = None # type: Any _output_model = None # type: OutputModel def __init__(self, model, output_model): super(_ModelAdapter, self).__init__() super(_ModelAdapter, self).__setattr__('_model', model) super(_ModelAdapter, self).__setattr__('_output_model', output_model) super(_ModelAdapter, self).__setattr__('_logger', LoggerRoot.get_base_logger(TensorflowBinding)) def __getattr__(self, attr): return getattr(self._model, attr) def __setattr__(self, key, value): return setattr(self._model, key, value) def save(self, filepath, overwrite=True, include_optimizer=True): self._model.save(filepath=filepath, overwrite=overwrite, include_optimizer=include_optimizer) # TODO: auto generate new objects of filename changes try: self._output_model.update_weights(weights_filename=filepath, auto_delete_file=True) except Exception as ex: self._logger.error(str(ex)) def save_weights(self, filepath, overwrite=True): self._model.save_weights(filepath=filepath, overwrite=overwrite) # TODO: auto generate new objects of filename changes try: self._output_model.update_weights(weights_filename=filepath, auto_delete_file=True) except Exception as ex: self._logger.error(str(ex)) class PatchModelCheckPointCallback(object): __main_task = None __original_getattribute = None defaults_dict = dict( config_text=None, config_dict=None, label_enumeration=None, name=None, comment=None) @staticmethod def trains_object(self): if isinstance(self.model, _ModelAdapter): # noinspection PyProtectedMember return self.model._output_model if not self.__dict__.get('_trains_defaults'): self.__dict__['_trains_defaults'] = {} return self.__dict__['_trains_defaults'] @staticmethod def update_current_task(task, **kwargs): PatchModelCheckPointCallback.defaults_dict.update(kwargs) PatchModelCheckPointCallback.__main_task = task # make sure we patched the SummaryToEventTransformer PatchModelCheckPointCallback._patch_model_checkpoint() PostImportHookPatching.add_on_import('keras', PatchModelCheckPointCallback._patch_model_checkpoint) PostImportHookPatching.add_on_import('tensorflow', PatchModelCheckPointCallback._patch_model_checkpoint) @staticmethod def _patch_model_checkpoint(): is_keras = 'keras' in sys.modules is_tf_keras = 'tensorflow' in sys.modules callbacks = None if is_keras: try: import keras.callbacks as callbacks # noqa except ImportError: is_keras = False if not is_keras and is_tf_keras: try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa import tensorflow.python.keras.callbacks as callbacks # noqa except ImportError: is_tf_keras = False callbacks = None # we have nothing, quit if not is_keras and not is_tf_keras: return try: # only patch once if PatchModelCheckPointCallback.__original_getattribute is None and callbacks is not None: PatchModelCheckPointCallback.__original_getattribute = callbacks.ModelCheckpoint.__getattribute__ callbacks.ModelCheckpoint.__getattribute__ = PatchModelCheckPointCallback._patched_getattribute setattr(callbacks.ModelCheckpoint, 'clearml', property(PatchModelCheckPointCallback.trains_object)) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) @staticmethod def _patched_getattribute(self, attr): get_base = PatchModelCheckPointCallback.__original_getattribute # no main task, zero chance we have an ClearML event logger if PatchModelCheckPointCallback.__main_task is None: return get_base(self, attr) # check if we already have an ClearML event logger __dict__ = get_base(self, '__dict__') if 'model' not in __dict__ or \ isinstance(__dict__['model'], _ModelAdapter): return get_base(self, attr) # patch the events writer field, and add a double Event Logger (ClearML and original) base_model = __dict__['model'] defaults_dict = __dict__.get('_trains_defaults') or PatchModelCheckPointCallback.defaults_dict output_model = OutputModel( PatchModelCheckPointCallback.__main_task, config_text=defaults_dict.get('config_text'), config_dict=defaults_dict.get('config_dict'), name=defaults_dict.get('name'), comment=defaults_dict.get('comment'), label_enumeration=defaults_dict.get('label_enumeration') or PatchModelCheckPointCallback.__main_task.get_labels_enumeration(), framework=Framework.keras, ) output_model.set_upload_destination( PatchModelCheckPointCallback.__main_task.get_output_destination(raise_on_error=False)) trains_model = _ModelAdapter(base_model, output_model) # order is important, the return value of ProxyEventsWriter is the last object in the list __dict__['model'] = trains_model return get_base(self, attr) # noinspection PyProtectedMember,PyUnresolvedReferences class PatchTensorFlowEager(object): __main_task = None __original_fn_scalar = None __original_fn_hist = None __original_fn_image = None __trains_event_writer = {} defaults_dict = dict( report_freq=1, image_report_freq=1, histogram_update_freq_multiplier=5, histogram_granularity=50) @staticmethod def update_current_task(task, **kwargs): if task != PatchTensorFlowEager.__main_task: PatchTensorFlowEager.__trains_event_writer = {} PatchTensorFlowEager.defaults_dict.update(kwargs) PatchTensorFlowEager.__main_task = task # make sure we patched the SummaryToEventTransformer PatchTensorFlowEager._patch_summary_ops() PostImportHookPatching.add_on_import('tensorflow', PatchTensorFlowEager._patch_summary_ops) @staticmethod def _patch_summary_ops(): if PatchTensorFlowEager.__original_fn_scalar is not None: return if 'tensorflow' in sys.modules: try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.ops import gen_summary_ops # noqa PatchTensorFlowEager.__original_fn_scalar = gen_summary_ops.write_scalar_summary gen_summary_ops.write_scalar_summary = PatchTensorFlowEager._write_scalar_summary PatchTensorFlowEager.__original_fn_image = gen_summary_ops.write_image_summary gen_summary_ops.write_image_summary = PatchTensorFlowEager._write_image_summary PatchTensorFlowEager.__original_fn_hist = gen_summary_ops.write_histogram_summary gen_summary_ops.write_histogram_summary = PatchTensorFlowEager._write_hist_summary PatchTensorFlowEager.__write_summary = gen_summary_ops.write_summary gen_summary_ops.write_summary = PatchTensorFlowEager._write_summary gen_summary_ops.create_summary_file_writer = partial(IsTensorboardInit._patched_tb__init__, gen_summary_ops.create_summary_file_writer) gen_summary_ops.create_summary_db_writer = partial(IsTensorboardInit._patched_tb__init__, gen_summary_ops.create_summary_db_writer) except ImportError: pass except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).debug(str(ex)) @staticmethod def _get_event_writer(writer): if not PatchTensorFlowEager.__main_task: return None if not PatchTensorFlowEager.__trains_event_writer.get(id(writer)): # noinspection PyBroadException try: logdir = writer.get_logdir() except Exception: # check if we are in eager mode, let's get the global context lopdir # noinspection PyBroadException try: from tensorflow.python.eager import context # noqa logdir = context.context().summary_writer._init_op_fn.keywords.get('logdir') except Exception: # noinspection PyBroadException try: from tensorflow.python.ops.summary_ops_v2 import _summary_state # noqa logdir = _summary_state.writer._init_op_fn.keywords.get('logdir') except Exception: logdir = None # noinspection PyBroadException try: if logdir is not None: logdir = logdir.numpy().decode() except Exception: logdir = None PatchTensorFlowEager.__trains_event_writer[id(writer)] = EventTrainsWriter( logger=PatchTensorFlowEager.__main_task.get_logger(), logdir=logdir, **PatchTensorFlowEager.defaults_dict) return PatchTensorFlowEager.__trains_event_writer[id(writer)] @staticmethod def trains_object(self): if not PatchTensorFlowEager.__trains_event_writer: return None return PatchTensorFlowEager.__trains_event_writer.get( id(self), list(PatchTensorFlowEager.__trains_event_writer.values())[0]) @staticmethod def _write_summary(writer, step, tensor, tag, summary_metadata, name=None, **kwargs): event_writer = PatchTensorFlowEager._get_event_writer(writer) # make sure we can get the tensors values if event_writer and isinstance(step, int) or hasattr(step, 'numpy'): # noinspection PyBroadException try: plugin_type = summary_metadata.decode() # remove any none alpha numeric value plugin_type = plugin_type[next(i for i, c in enumerate(plugin_type) if c >= 'A'):] if plugin_type.startswith('scalars'): event_writer._add_scalar(tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, scalar_data=tensor.numpy()) elif plugin_type.startswith('images'): img_data_np = tensor.numpy() PatchTensorFlowEager._add_image_event_helper(event_writer, img_data_np=img_data_np, tag=tag, step=step, **kwargs) elif plugin_type.startswith('histograms'): event_writer._add_histogram( tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, hist_data=tensor.numpy() ) elif plugin_type.startswith('text'): event_writer._add_text( tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, tensor_bytes=tensor.numpy() ) elif 'audio' in plugin_type: audio_bytes_list = [a for a in tensor.numpy().flatten() if a] for i, audio_bytes in enumerate(audio_bytes_list): event_writer._add_audio(tag=str(tag) + ('/{}'.format(i) if len(audio_bytes_list) > 1 else ''), step=int(step.numpy()) if not isinstance(step, int) else step, values=None, audio_data=audio_bytes) else: pass # print('unsupported plugin_type', plugin_type) except Exception: pass return PatchTensorFlowEager.__write_summary(writer, step, tensor, tag, summary_metadata, name, **kwargs) @staticmethod def _write_scalar_summary(writer, step, tag, value, name=None, **kwargs): event_writer = PatchTensorFlowEager._get_event_writer(writer) if event_writer and isinstance(step, int) or hasattr(step, 'numpy'): try: event_writer._add_scalar(tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, scalar_data=value.numpy()) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) elif event_writer: def _report_summary_op(a_writer, a_step, a_tag, a_value, a_name=None, **_): if isinstance(a_step, int) or hasattr(a_step, 'numpy'): try: str_tag = a_tag.numpy() str_tag = str_tag.decode() if isinstance(str_tag, bytes) else str(str_tag) event_writer._add_scalar( tag=str_tag, step=int(a_step.numpy()) if not isinstance(a_step, int) else a_step, scalar_data=a_value.numpy()) except Exception as a_ex: LoggerRoot.get_base_logger(TensorflowBinding).warning( '_report_summary_op: {}'.format(str(a_ex))) # this is a mix of eager and graph execution try: from tensorflow.python.eager import context as _context if not _context.executing_eagerly(): from tensorflow import py_function # just creating the operator is enough (for some reason) # to make sure it is added into the execution tree. # the operator itself, will do the reporting to the backend py_function( _report_summary_op, inp=[writer, step, tag, value, name], Tout=[]) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) return PatchTensorFlowEager.__original_fn_scalar(writer, step, tag, value, name, **kwargs) @staticmethod def _write_hist_summary(writer, step, tag, values, name, **kwargs): event_writer = PatchTensorFlowEager._get_event_writer(writer) if event_writer and isinstance(step, int) or hasattr(step, 'numpy'): try: event_writer._add_histogram( tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, hist_data=values.numpy() ) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) elif event_writer: def _report_summary_op(a_writer, a_step, a_tag, a_value, a_name=None, **_): if isinstance(a_step, int) or hasattr(a_step, 'numpy'): try: str_tag = a_tag.numpy() str_tag = str_tag.decode() if isinstance(str_tag, bytes) else str(str_tag) event_writer._add_histogram( tag=str_tag, step=int(a_step.numpy()) if not isinstance(a_step, int) else a_step, hist_data=a_value.numpy() ) except Exception as a_ex: LoggerRoot.get_base_logger(TensorflowBinding).warning( '_report_summary_op: {}'.format(str(a_ex))) # this is a mix of eager and graph execution try: from tensorflow.python.eager import context as _context if not _context.executing_eagerly(): from tensorflow import py_function # just creating the operator is enough (for some reason) # to make sure it is added into the execution tree. # the operator itself, will do the reporting to the backend py_function( _report_summary_op, inp=[writer, step, tag, values, name], Tout=[]) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) return PatchTensorFlowEager.__original_fn_hist(writer, step, tag, values, name, **kwargs) @staticmethod def _write_image_summary(writer, step, tag, tensor, bad_color, max_images, name, **kwargs): event_writer = PatchTensorFlowEager._get_event_writer(writer) if event_writer and isinstance(step, int) or hasattr(step, 'numpy'): try: PatchTensorFlowEager._add_image_event_helper(event_writer, img_data_np=tensor.numpy(), tag=tag, step=step, **kwargs) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) elif event_writer: def _report_summary_op(a_writer, a_step, a_tag, a_tensor, a_bad_color, a_max_images, a_name=None, **_): if isinstance(a_step, int) or hasattr(a_step, 'numpy'): try: str_tag = a_tag.numpy() str_tag = str_tag.decode() if isinstance(str_tag, bytes) else str(str_tag) PatchTensorFlowEager._add_image_event_helper( event_writer, img_data_np=a_tensor.numpy(), tag=str_tag, step=a_step, **kwargs) except Exception as a_ex: LoggerRoot.get_base_logger(TensorflowBinding).warning( '_report_summary_op: {}'.format(str(a_ex))) # this is a mix of eager and graph execution try: from tensorflow.python.eager import context as _context if not _context.executing_eagerly(): from tensorflow import py_function # just creating the operator is enough (for some reason) # to make sure it is added into the execution tree. # the operator itself, will do the reporting to the backend py_function( _report_summary_op, inp=[writer, step, tag, tensor, bad_color, max_images, name], Tout=[]) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) return PatchTensorFlowEager.__original_fn_image( writer, step, tag, tensor, bad_color, max_images, name, **kwargs) @staticmethod def _add_image_event_helper(event_writer, img_data_np, tag, step, **kwargs): if img_data_np.ndim == 1 and img_data_np.size >= 3 and \ (len(img_data_np[0]) < 10 and len(img_data_np[1]) < 10): # this is just for making sure these are actually valid numbers width = int(img_data_np[0].decode()) # noqa: F841 height = int(img_data_np[1].decode()) # noqa: F841 for i in range(2, img_data_np.size): img_data = {'width': None, 'height': None, 'colorspace': 'RGB', 'encodedImageString': img_data_np[i]} image_tag = str(tag) + '/sample_{}'.format(i - 2) if img_data_np.size > 3 else str(tag) event_writer._add_image(tag=image_tag, step=int(step.numpy()) if not isinstance(step, int) else step, img_data=img_data) else: event_writer._add_image_numpy(tag=str(tag), step=int(step.numpy()) if not isinstance(step, int) else step, img_data_np=img_data_np, max_keep_images=kwargs.get('max_images')) @staticmethod def _nothing_op(*_, **__): """Convenient else branch for when summaries do not record.""" from tensorflow.python.framework import constant_op return constant_op.constant(False) # noinspection PyPep8Naming,SpellCheckingInspection class PatchKerasModelIO(object): __main_task = None __patched_keras = None __patched_tensorflow = None @staticmethod def update_current_task(task, **_): PatchKerasModelIO.__main_task = task PatchKerasModelIO._patch_model_checkpoint() PostImportHookPatching.add_on_import('tensorflow', PatchKerasModelIO._patch_model_checkpoint) PostImportHookPatching.add_on_import('keras', PatchKerasModelIO._patch_model_checkpoint) @staticmethod def _patch_model_checkpoint(): if 'keras' in sys.modules and not PatchKerasModelIO.__patched_keras: try: from keras.engine.network import Network # noqa except ImportError: Network = None try: from keras.engine.functional import Functional # noqa except ImportError: Functional = None try: from keras.engine.sequential import Sequential # noqa except ImportError: Sequential = None try: from keras import models as keras_saving # noqa except ImportError: keras_saving = None # check that we are not patching anything twice if PatchKerasModelIO.__patched_tensorflow: PatchKerasModelIO.__patched_keras = [ Network if PatchKerasModelIO.__patched_tensorflow[0] != Network else None, Sequential if PatchKerasModelIO.__patched_tensorflow[1] != Sequential else None, keras_saving if PatchKerasModelIO.__patched_tensorflow[2] != keras_saving else None, Functional if PatchKerasModelIO.__patched_tensorflow[3] != Functional else None, None, None, ] else: PatchKerasModelIO.__patched_keras = [Network, Sequential, keras_saving, Functional, None, None] PatchKerasModelIO._patch_io_calls(*PatchKerasModelIO.__patched_keras) if 'tensorflow' in sys.modules and not PatchKerasModelIO.__patched_tensorflow: try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.keras.engine.network import Network # noqa except ImportError: Network = None try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.keras.engine.functional import Functional # noqa except ImportError: Functional = None try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.keras.engine.sequential import Sequential # noqa except ImportError: Sequential = None try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.keras import models as keras_saving_legacy # noqa except ImportError: keras_saving_legacy = None try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.keras import models as keras_saving # noqa except ImportError: keras_saving = None try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.keras.saving import hdf5_format as keras_hdf5 # noqa except ImportError: keras_hdf5 = None if PatchKerasModelIO.__patched_keras: PatchKerasModelIO.__patched_tensorflow = [ Network if PatchKerasModelIO.__patched_keras[0] != Network else None, Sequential if PatchKerasModelIO.__patched_keras[1] != Sequential else None, keras_saving if PatchKerasModelIO.__patched_keras[2] != keras_saving else None, Functional if PatchKerasModelIO.__patched_keras[3] != Functional else None, keras_saving_legacy if PatchKerasModelIO.__patched_keras[4] != keras_saving_legacy else None, keras_hdf5 if PatchKerasModelIO.__patched_keras[5] != keras_hdf5 else None, ] else: PatchKerasModelIO.__patched_tensorflow = [ Network, Sequential, keras_saving, Functional, keras_saving_legacy, keras_hdf5] PatchKerasModelIO._patch_io_calls(*PatchKerasModelIO.__patched_tensorflow) @staticmethod def _patch_io_calls(Network, Sequential, keras_saving, Functional, keras_saving_legacy=None, keras_hdf5=None): try: if Sequential is not None: Sequential._updated_config = _patched_call(Sequential._updated_config, PatchKerasModelIO._updated_config) if hasattr(Sequential.from_config, '__func__'): # noinspection PyUnresolvedReferences Sequential.from_config = classmethod(_patched_call(Sequential.from_config.__func__, PatchKerasModelIO._from_config)) else: Sequential.from_config = _patched_call(Sequential.from_config, PatchKerasModelIO._from_config) if Network is not None: Network._updated_config = _patched_call(Network._updated_config, PatchKerasModelIO._updated_config) if hasattr(Sequential.from_config, '__func__'): # noinspection PyUnresolvedReferences Network.from_config = classmethod(_patched_call(Network.from_config.__func__, PatchKerasModelIO._from_config)) else: Network.from_config = _patched_call(Network.from_config, PatchKerasModelIO._from_config) Network.save = _patched_call(Network.save, PatchKerasModelIO._save) Network.save_weights = _patched_call(Network.save_weights, PatchKerasModelIO._save_weights) Network.load_weights = _patched_call(Network.load_weights, PatchKerasModelIO._load_weights) elif Functional is not None: Functional._updated_config = _patched_call( Functional._updated_config, PatchKerasModelIO._updated_config) if hasattr(Sequential.from_config, '__func__'): # noinspection PyUnresolvedReferences Functional.from_config = classmethod(_patched_call(Functional.from_config.__func__, PatchKerasModelIO._from_config)) else: Functional.from_config = _patched_call(Functional.from_config, PatchKerasModelIO._from_config) Functional.save = _patched_call(Functional.save, PatchKerasModelIO._save) Functional.save_weights = _patched_call(Functional.save_weights, PatchKerasModelIO._save_weights) Functional.load_weights = _patched_call(Functional.load_weights, PatchKerasModelIO._load_weights) if keras_saving is not None: keras_saving.save_model = _patched_call(keras_saving.save_model, PatchKerasModelIO._save_model) keras_saving.load_model = _patched_call(keras_saving.load_model, PatchKerasModelIO._load_model) if keras_saving_legacy is not None: keras_saving_legacy.save_model = _patched_call( keras_saving_legacy.save_model, PatchKerasModelIO._save_model) keras_saving_legacy.load_model = _patched_call( keras_saving_legacy.load_model, PatchKerasModelIO._load_model) if keras_hdf5 is not None: keras_hdf5.save_weights_to_hdf5_group = _patched_call( keras_hdf5.save_weights_to_hdf5_group, PatchKerasModelIO._save_weights) keras_hdf5.load_weights_from_hdf5_group = _patched_call( keras_hdf5.load_weights_from_hdf5_group, PatchKerasModelIO._load_weights) keras_hdf5.load_weights_from_hdf5_group_by_name = _patched_call( keras_hdf5.load_weights_from_hdf5_group_by_name, PatchKerasModelIO._load_weights) if hasattr(keras_hdf5, 'load_model_from_hdf5'): keras_hdf5.load_model_from_hdf5 = _patched_call( keras_hdf5.load_model_from_hdf5, PatchKerasModelIO._load_model) if hasattr(keras_hdf5, 'save_model_to_hdf5'): keras_hdf5.save_model_to_hdf5 = _patched_call( keras_hdf5.save_model_to_hdf5, PatchKerasModelIO._save_model) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) @staticmethod def _updated_config(original_fn, self): config = original_fn(self) # check if we have main task if PatchKerasModelIO.__main_task is None: return config try: # there is no actual file, so we create the OutputModel without one # check if object already has InputModel if not hasattr(self, 'trains_out_model'): self.trains_out_model = [] # check if object already has InputModel model_name_id = config.get('name', getattr(self, 'name', 'unknown')) if self.trains_out_model: self.trains_out_model[-1].config_dict = config else: # todo: support multiple models for the same task self.trains_out_model.append(OutputModel( task=PatchKerasModelIO.__main_task, config_dict=config, name=PatchKerasModelIO.__main_task.name + ' ' + model_name_id, label_enumeration=PatchKerasModelIO.__main_task.get_labels_enumeration(), framework=Framework.keras, )) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) return config @staticmethod def _from_config(original_fn, *args, **kwargs): try: self = original_fn(*args, **kwargs) except Exception as ex: if not running_remotely(): raise ex self = _Empty() # check if we have main task if PatchKerasModelIO.__main_task is None: return self try: # check if object already has InputModel if not hasattr(self, 'trains_in_model'): self.trains_in_model = None # get config config_dict = kwargs['config'] if 'config' in kwargs else args[0] # check if object already has InputModel self.trains_in_model = InputModel.empty( config_dict=config_dict, label_enumeration=PatchKerasModelIO.__main_task.get_labels_enumeration(), ) # todo: support multiple models for the same task PatchKerasModelIO.__main_task.connect(self.trains_in_model) # if we are running remotely we should deserialize the object # because someone might have changed the configuration # Hack: disabled if False and running_remotely(): # reload the model model_config = self.trains_in_model.config_dict # verify that this is the same model so we are not deserializing a diff model if (config_dict and config_dict.get('config') and model_config and model_config.get('config') and config_dict.get('config').get('name') == model_config.get('config').get('name')) or \ (not config_dict and not model_config): if 'config' in kwargs: kwargs['config'] = model_config else: args = (model_config,) + args[1:] model = original_fn(*args, **kwargs) model.trains_in_model = self.trains_in_model return model except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) return self @staticmethod def _load_weights(original_fn, self, *args, **kwargs): # check if we have main task if PatchKerasModelIO.__main_task is None: return original_fn(self, *args, **kwargs) # get filepath if self and getattr(self, 'filename', None): filepath = getattr(self, 'filename', None) else: filepath = kwargs['filepath'] if 'filepath' in kwargs else args[0] # Hack: disabled if False and running_remotely(): # register/load model weights filepath = WeightsFileHandler.restore_weights_file(self, filepath, Framework.keras, PatchKerasModelIO.__main_task) if 'filepath' in kwargs: kwargs['filepath'] = filepath else: args = (filepath,) + args[1:] # load model return original_fn(self, *args, **kwargs) # try to load the files, if something happened exception will be raised before we register the file model = original_fn(self, *args, **kwargs) # register/load model weights WeightsFileHandler.restore_weights_file(self, filepath, Framework.keras, PatchKerasModelIO.__main_task) return model @staticmethod def _save(original_fn, self, *args, **kwargs): if hasattr(self, 'trains_out_model') and self.trains_out_model: # noinspection PyProtectedMember self.trains_out_model[-1]._processed = False original_fn(self, *args, **kwargs) # no need to specially call, because the original save uses "save_model" which we overload # noinspection PyProtectedMember if not hasattr(self, 'trains_out_model') or not self.trains_out_model or \ not hasattr(self.trains_out_model[-1], '_processed') or not self.trains_out_model[-1]._processed: PatchKerasModelIO._update_outputmodel(self, *args, **kwargs) @staticmethod def _save_weights(original_fn, self, *args, **kwargs): original_fn(self, *args, **kwargs) PatchKerasModelIO._update_outputmodel(self, *args, **kwargs) @staticmethod def _update_outputmodel(self, *args, **kwargs): # check if we have main task if PatchKerasModelIO.__main_task is None: return try: # get filepath if self and getattr(self, 'filename', None): filepath = getattr(self, 'filename', None) else: filepath = kwargs['filepath'] if 'filepath' in kwargs else args[0] # this will already generate an output model # noinspection PyBroadException try: config = self._updated_config() except Exception: # we failed to convert the network to json, for some reason (most likely internal keras error) config = {} if filepath: WeightsFileHandler.create_output_model( self, filepath, Framework.keras, PatchKerasModelIO.__main_task, config_obj=config or None, singlefile=True) except Exception as ex: LoggerRoot.get_base_logger(TensorflowBinding).warning(str(ex)) @staticmethod def _save_model(original_fn, model, filepath, *args, **kwargs): original_fn(model, filepath, *args, **kwargs) if PatchKerasModelIO.__main_task: PatchKerasModelIO._update_outputmodel(model, filepath) @staticmethod def _load_model(original_fn, filepath, *args, **kwargs): if not PatchKerasModelIO.__main_task: return original_fn(filepath, *args, **kwargs) empty = _Empty() # Hack: disabled if False and running_remotely(): # register/load model weights filepath = WeightsFileHandler.restore_weights_file(empty, filepath, Framework.keras, PatchKerasModelIO.__main_task) model = original_fn(filepath, *args, **kwargs) else: model = original_fn(filepath, *args, **kwargs) # register/load model weights WeightsFileHandler.restore_weights_file(empty, filepath, Framework.keras, PatchKerasModelIO.__main_task) # update the input model object if empty.trains_in_model: # noinspection PyBroadException try: model.trains_in_model = empty.trains_in_model except Exception: pass return model class PatchTensorflowModelIO(object): __main_task = None __patched = None @staticmethod def update_current_task(task, **_): PatchTensorflowModelIO.__main_task = task PatchTensorflowModelIO._patch_model_checkpoint() PostImportHookPatching.add_on_import('tensorflow', PatchTensorflowModelIO._patch_model_checkpoint) @staticmethod def _patch_model_checkpoint(): if PatchTensorflowModelIO.__patched: return if 'tensorflow' not in sys.modules: return PatchTensorflowModelIO.__patched = True # noinspection PyBroadException try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa # noinspection PyUnresolvedReferences from tensorflow.python.training.saver import Saver # noqa # noinspection PyBroadException try: Saver.save = _patched_call(Saver.save, PatchTensorflowModelIO._save) except Exception: pass # noinspection PyBroadException try: Saver.restore = _patched_call(Saver.restore, PatchTensorflowModelIO._restore) except Exception: pass except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow') # noinspection PyBroadException try: # make sure we import the correct version of save import tensorflow # noqa from tensorflow.saved_model import save # noqa # actual import from tensorflow.python.saved_model import save as saved_model # noqa except ImportError: # noinspection PyBroadException try: # make sure we import the correct version of save import tensorflow # noqa from tensorflow.saved_model.experimental import save # noqa # actual import import tensorflow.saved_model.experimental as saved_model # noqa except ImportError: saved_model = None except Exception: saved_model = None except Exception: saved_model = None if saved_model is not None: saved_model.save = _patched_call(saved_model.save, PatchTensorflowModelIO._save_model) # noinspection PyBroadException try: # make sure we import the correct version of save import tensorflow # noqa # actual import from tensorflow.saved_model import load # noqa # noinspection PyUnresolvedReferences import tensorflow.saved_model as saved_model_load # noqa saved_model_load.load = _patched_call(saved_model_load.load, PatchTensorflowModelIO._load) except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow') # noinspection PyBroadException try: # make sure we import the correct version of save import tensorflow # noqa # actual import # noinspection PyUnresolvedReferences from tensorflow.saved_model import loader as loader1 # noqa loader1.load = _patched_call(loader1.load, PatchTensorflowModelIO._load) except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow') # noinspection PyBroadException try: # make sure we import the correct version of save import tensorflow # noqa # actual import # noinspection PyUnresolvedReferences from tensorflow.compat.v1.saved_model import loader as loader2 # noqa loader2.load = _patched_call(loader2.load, PatchTensorflowModelIO._load) except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow') # noinspection PyBroadException try: import tensorflow # noqa from tensorflow.train import Checkpoint # noqa # noinspection PyBroadException try: Checkpoint.save = _patched_call(Checkpoint.save, PatchTensorflowModelIO._ckpt_save) except Exception: pass # noinspection PyBroadException try: Checkpoint.restore = _patched_call(Checkpoint.restore, PatchTensorflowModelIO._ckpt_restore) except Exception: pass # noinspection PyBroadException try: Checkpoint.write = _patched_call(Checkpoint.write, PatchTensorflowModelIO._ckpt_write) except Exception: pass except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow') @staticmethod def _save(original_fn, self, sess, save_path, *args, **kwargs): saved_path = original_fn(self, sess, save_path, *args, **kwargs) if not saved_path: return saved_path # store output Model return WeightsFileHandler.create_output_model(self, saved_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) @staticmethod def _save_model(original_fn, obj, export_dir, *args, **kwargs): original_fn(obj, export_dir, *args, **kwargs) # store output Model WeightsFileHandler.create_output_model(obj, export_dir, Framework.tensorflow, PatchTensorflowModelIO.__main_task) @staticmethod def _restore(original_fn, self, sess, save_path, *args, **kwargs): if PatchTensorflowModelIO.__main_task is None: return original_fn(self, sess, save_path, *args, **kwargs) # Hack: disabled if False and running_remotely(): # register/load model weights save_path = WeightsFileHandler.restore_weights_file(self, save_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) # load model return original_fn(self, sess, save_path, *args, **kwargs) # load model, if something is wrong, exception will be raised before we register the input model model = original_fn(self, sess, save_path, *args, **kwargs) # register/load model weights WeightsFileHandler.restore_weights_file(self, save_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) return model @staticmethod def _load(original_fn, sess, tags, export_dir, *args, **saver_kwargs): if PatchTensorflowModelIO.__main_task is None: return original_fn(sess, tags, export_dir, *args, **saver_kwargs) # register input model empty = _Empty() # Hack: disabled if False and running_remotely(): export_dir = WeightsFileHandler.restore_weights_file(empty, export_dir, Framework.tensorflow, PatchTensorflowModelIO.__main_task) model = original_fn(sess, tags, export_dir, *args, **saver_kwargs) else: # try to load model before registering, it might fail model = original_fn(sess, tags, export_dir, *args, **saver_kwargs) WeightsFileHandler.restore_weights_file(empty, export_dir, Framework.tensorflow, PatchTensorflowModelIO.__main_task) if empty.trains_in_model: # noinspection PyBroadException try: model.trains_in_model = empty.trains_in_model except Exception: pass return model @staticmethod def _ckpt_save(original_fn, self, file_prefix, *args, **kwargs): checkpoint_path = original_fn(self, file_prefix, *args, **kwargs) if PatchTensorflowModelIO.__main_task is None: return checkpoint_path WeightsFileHandler.create_output_model(self, checkpoint_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) return checkpoint_path @staticmethod def _ckpt_write(original_fn, self, file_prefix, *args, **kwargs): checkpoint_path = original_fn(self, file_prefix, *args, **kwargs) if PatchTensorflowModelIO.__main_task is None: return checkpoint_path WeightsFileHandler.create_output_model(self, checkpoint_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) return checkpoint_path @staticmethod def _ckpt_restore(original_fn, self, save_path, *args, **kwargs): if PatchTensorflowModelIO.__main_task is None: return original_fn(self, save_path, *args, **kwargs) # register input model empty = _Empty() # Hack: disabled if False and running_remotely(): save_path = WeightsFileHandler.restore_weights_file(empty, save_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) model = original_fn(self, save_path, *args, **kwargs) else: # try to load model before registering it, in case it fails. model = original_fn(self, save_path, *args, **kwargs) WeightsFileHandler.restore_weights_file(empty, save_path, Framework.tensorflow, PatchTensorflowModelIO.__main_task) if empty.trains_in_model: # noinspection PyBroadException try: model.trains_in_model = empty.trains_in_model except Exception: pass return model class PatchTensorflow2ModelIO(object): __main_task = None __patched = None @staticmethod def update_current_task(task, **_): PatchTensorflow2ModelIO.__main_task = task PatchTensorflow2ModelIO._patch_model_checkpoint() PostImportHookPatching.add_on_import('tensorflow', PatchTensorflow2ModelIO._patch_model_checkpoint) @staticmethod def _patch_model_checkpoint(): if PatchTensorflow2ModelIO.__patched: return if 'tensorflow' not in sys.modules: return PatchTensorflow2ModelIO.__patched = True # noinspection PyBroadException try: # hack: make sure tensorflow.__init__ is called import tensorflow # noqa from tensorflow.python.training.tracking import util # noqa # noinspection PyBroadException try: util.TrackableSaver.save = _patched_call(util.TrackableSaver.save, PatchTensorflow2ModelIO._save) except Exception: pass # noinspection PyBroadException try: util.TrackableSaver.restore = _patched_call(util.TrackableSaver.restore, PatchTensorflow2ModelIO._restore) except Exception: pass except ImportError: pass except Exception: LoggerRoot.get_base_logger(TensorflowBinding).debug('Failed patching tensorflow v2') @staticmethod def _save(original_fn, self, file_prefix, *args, **kwargs): model = original_fn(self, file_prefix, *args, **kwargs) # store output Model # noinspection PyBroadException try: WeightsFileHandler.create_output_model(self, file_prefix, Framework.tensorflow, PatchTensorflow2ModelIO.__main_task) except Exception: pass return model @staticmethod def _restore(original_fn, self, save_path, *args, **kwargs): if PatchTensorflow2ModelIO.__main_task is None: return original_fn(self, save_path, *args, **kwargs) # Hack: disabled if False and running_remotely(): # register/load model weights # noinspection PyBroadException try: save_path = WeightsFileHandler.restore_weights_file(self, save_path, Framework.tensorflow, PatchTensorflow2ModelIO.__main_task) except Exception: pass # load model return original_fn(self, save_path, *args, **kwargs) # load model, if something is wrong, exception will be raised before we register the input model model = original_fn(self, save_path, *args, **kwargs) # register/load model weights # noinspection PyBroadException try: WeightsFileHandler.restore_weights_file(self, save_path, Framework.tensorflow, PatchTensorflow2ModelIO.__main_task) except Exception: pass return model
the-stack_106_23699
"""CSC110 Fall 2020: Climate Change and Natural Disaster Sentiment Analysis This is the main module that converts dataset of ids to tweet sentiments and then plots the results. Copyright and Usage Information ============================== This file is Copyright (c) 2020 Akash Ilangovan, Vijay Sambamurthy, Dharmpreet Atwal, Issam Arabi. """ from datetime import datetime, timedelta from typing import List, Tuple import matplotlib.pyplot as plt import matplotlib.dates as mdates import data_management import gen_ids import sentiment import hydration API_KEY = "" # OMITTED KEY_SECRET = "" # OMITTED ACCESS_TOKEN = "" # OMITTED ACCESS_TOKEN_SECRET = "" # OMITTED KEYS = (API_KEY, KEY_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) def ids_to_sentiment(directory: str, max_tweets: int, keys: Tuple[str, str, str, str], random: bool, output_file: str) -> None: """ Generates a csv of tweet sentiments from a directory of tweet ids. """ if directory[-1] != "/" and directory[-1] != "\\": directory += "/" tweet_ids = directory csv_store = directory if random: gen_ids.randomize_csvs(directory, max_tweets) tweet_ids += 'generated_ids/randomized.txt' csv_store += 'randomized_data.csv' else: gen_ids.gen_regular_csvs(directory, max_tweets) tweet_ids += 'generated_ids/regularized.txt' csv_store += 'regularized_data.csv' print("Tweet Ids Generated.") hydration.generate_tweets(tweet_ids, csv_store, keys) print("Tweets Hydrated.") dat = data_management.read_csv_dict(csv_store) averages = sentiment.generate_average_sentiments(dat) data_management.convert_list_to_csv(output_file, averages) def plot_with_dd_csv(filename: str, disaster_data: str) -> None: """ Plot tweet sentiment data points in conjunction with natural disaster data points """ data = data_management.read_csv_dict(filename) disaster_info = data_management.read_csv_dict(disaster_data) data = data_management.dict_to_list(data) disaster_info = data_management.dict_to_list(disaster_info) disaster_tweets = near_disater_data(data, disaster_info) plottable = list_to_plottable(data) plottable1 = list_to_plottable(disaster_tweets) legend = ["Non-Disaster Tweets", "Disaster Tweets"] plot([plottable, plottable1], legend) print("Average for non-disaster:", average_of_all(data)) print("Average for disaster:", average_of_all(disaster_tweets)) def average_of_all(data: List[Tuple[datetime, float]]) -> float: """ Return average sentiment of a list of tweet sentiments >>> average_of_all([(datetime(2020, 12, 11), 2.0), \ (datetime(2020, 12, 11), 4.0), (datetime(2020, 12, 12), 3.0)]) 3.0 """ sum_value = 0 for value in data: sum_value += value[1] return sum_value / len(data) def near_disater_data(data: List[Tuple[datetime, float]], info: List[Tuple[datetime]]) -> List[Tuple[datetime, float]]: """ Remove any tweets that are within three days of a natural disaster and add them to a list for only disaster tweets. >>> tweets = [(datetime(2020, 12, 6), 2.0), (datetime(2020, 12, 12), 4.0),\ (datetime(2020, 12, 10), 3.0)] >>> disaster_info = [(datetime(2020, 12, 11),)] >>> near_disater_data(tweets, disaster_info) [(datetime.datetime(2020, 12, 12, 0, 0), 4.0), (datetime.datetime(2020, 12, 10, 0, 0), 3.0)] >>> tweets [(datetime.datetime(2020, 12, 6, 0, 0), 2.0)] """ near_disasters = [] for value in data: for event in info: span_start = event[0] - timedelta(days=3) span_end = event[0] + timedelta(days=3) if span_end >= value[0] >= span_start and value not in near_disasters: near_disasters.append(value) for item in near_disasters: data.remove(item) return near_disasters def list_to_plottable(data: List) -> Tuple[List[datetime], List[float]]: """ Convert a list to a set of parallel lists >>> list_to_plottable([(datetime(2020, 12, 6), 2.0), (datetime(2020, 12, 10), 3.0)]) ([datetime.datetime(2020, 12, 6, 0, 0), datetime.datetime(2020, 12, 10, 0, 0)], [2.0, 3.0]) """ list1 = [] list2 = [] for value in data: list1.append(value[0]) list2.append(value[1]) return (list1, list2) ############################ def plot(data: List[Tuple[List, List]], legend: List[str]) -> None: """ Creates a scatter plot based on the input data(data) and legend (legend). """ colors = ['blue', 'red', 'green'] fig = plt.figure() ax = fig.add_subplot() plt.xlabel("Date") for values in data: ax.scatter(values[0], values[1], color=colors[data.index(values)]) ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.ylabel("Average Sentiment Value of Tweets") fig.legend(legend) plt.show() def plot_from_csv(filename: str) -> None: """ Directly attempts to plot from a given CSV File. """ data = data_management.read_csv_dict(filename) data = data_management.dict_to_list(data) plottable = list_to_plottable(data) plot([plottable], ['All tweets on the day']) if __name__ == "__main__": data_file = "data/backup_sentiments.csv" # This file has already been generated by the output of the line of code below # calling ids_to_sentiment. # In order to run it, please fill in the twitter api KEYS at the top. For more reference # please check twarc documentation at https://github.com/DocNow/twarc. # Also check twitter TOS and api https://developer.twitter.com/ # Make sure there are txt/csv files within twarc_data/csvs/ for this program to work. Any number # of csvs would work. # Un-comment this line if you would like to test this with hydration. # ids_to_sentiment("twarc_data/", 20000, KEYS, False, data_file) plot_with_dd_csv(data_file, 'data/Disasters_Data.csv') import doctest doctest.testmod()
the-stack_106_23702
from tello import Tello import sys from datetime import datetime import time # from PIL import Image import cv2 import numpy as np import rospy import std_msgs.msg from sensor_msgs.msg import Image from cv_bridge import CvBridge import camera_info_manager as cim from sensor_msgs.msg import CameraInfo import tf import tf2_ros import tf2_msgs.msg import geometry_msgs.msg class TelloVisualOdometry(): def __init__(self): # Parameters self.loop_rate = rospy.Rate(30) self.drone_speed = int(100) #Speed of the Tello drone in cm/s (10-100) self.drone_speed = np.clip(self.drone_speed, 10, 100) # Set waypoints self.final_goal_reached = False self.goal_index = 0 self.relative_waypoints = [] half_box_len = 0.5 # Half the length of the box in meterss # Start with Drone placed at the center. self.relative_waypoints.append([half_box_len, half_box_len, 0]) # Center to Top Left self.relative_waypoints.append([-2*half_box_len, 0, 0]) # Top Left to Bottom Left self.relative_waypoints.append([0, -2*half_box_len, 0]) # Bottom Left to Bottom Right self.relative_waypoints.append([2*half_box_len, 0, 0]) # Bottom right to Top Right self.relative_waypoints.append([0, 2*half_box_len, 0]) # Top Right to Top Left self.relative_waypoints.append([-2*half_box_len, 0, 0]) # Top Left to Bottom Left self.relative_waypoints.append([0, -2*half_box_len, 0]) # Bottom Left to Bottom Right self.relative_waypoints.append([2*half_box_len, 0, 0]) # Bottom right to Top Right # self.relative_waypoints.append([-half_box_len, half_box_len, 0]) # Top Left to Center # Connect to Tello self.command_lock = False self.tello = Tello('', 8889) self.send_command_until_ack('command') self.send_command_until_ack('streamon') def check_battery(self): while self.command_lock: rospy.sleep(0.1) print("Checking battery percentage.") if not self.command_lock: self.command_lock = True max_n_retry = 10 n_retry = 0 battery_percentage = -1 while n_retry < max_n_retry: response = self.tello.send_command("battery?") try: battery_percentage = int(response) print("Battery at {} percent.".format(battery_percentage)) self.command_lock = False return battery_percentage except: print("Error: Could not convert response = {} to battery precentage.".format(response)) rospy.sleep(0.1) n_retry = n_retry + 1 self.command_lock = False if n_retry == max_n_retry: raise ValueError('Error: Max number of retries reached.') def send_command_until_ack(self, cmd_str): if not self.command_lock: self.command_lock = True ack = "not ok" max_n_retry = 10 n_retry = 0 while ack != 'ok' and n_retry < max_n_retry: ack = self.tello.send_command(cmd_str) print(ack) rospy.sleep(0.1) n_retry = n_retry + 1 self.command_lock = False if n_retry == max_n_retry: raise ValueError('Error: Max number of retries reached.') def start(self): # Takeoff self.send_command_until_ack('takeoff') self.is_drone_in_the_air = True rospy.sleep(5) # Set Tello speed. self.send_command_until_ack('speed ' + str(self.drone_speed)) for i in range(len(self.relative_waypoints)): # Extract translations (convert from m to cm) x_cm = int(np.round(self.relative_waypoints[i][0]*100)) y_cm = int(np.round(self.relative_waypoints[i][1]*100)) z_cm = int(np.round(self.relative_waypoints[i][2]*100)) x_cm = np.clip(x_cm, -500, 500) y_cm = np.clip(y_cm, -500, 500) z_cm = np.clip(z_cm, -500, 500) print("Moving to x={}, y={}, z={} relative to the current position. ".format(x_cm, y_cm, z_cm)) self.send_command_until_ack('go {} {} {} {}'.format(x_cm, y_cm, z_cm, self.drone_speed)) d = np.sqrt(x_cm**2 + y_cm**2 + z_cm**2) time_to_move = d / self.drone_speed rospy.sleep(time_to_move + 5.0) self.final_goal_reached = True self.end() def end(self): # Stop drone video self.tello.video_freeze() if self.final_goal_reached: print("\n\n\nFinal goal reached!!! Landing drone. =)\n\n\n") # Land the drone. self.send_command_until_ack('land') rospy.sleep(5) print("Drone has landed.") # Print final battery percentage. self.check_battery() def __del__(self): print("TelloVisualOdometry object deconstructor called.") self.end() # Delete tello object to close socket. del self.tello print("tello object deconstructed") if __name__ == "__main__": rospy.init_node("Tello_Visual_Odometry_Node", anonymous=False) tello_node = TelloVisualOdometry() tello_node.start() del tello_node
the-stack_106_23703
# -*- coding: utf-8 -*- def main(): import sys input = sys.stdin.readline x = list(map(int, input().split())) for index, xi in enumerate(x, 1): if xi == 0: print(index) exit() if __name__ == '__main__': main()
the-stack_106_23705
from brownie import interface from rich.console import Console from tabulate import tabulate from helpers.utils import val from helpers.multicall import Call, as_wei, func from .StrategyCoreResolver import StrategyCoreResolver console = Console() class StrategyDiggRewardsResolver(StrategyCoreResolver): # ===== Strategies must implement ===== def confirm_rebase(self, before, after, value): """ bDIGG values should stay the same. """ super().confirm_rebase(before, after, value) assert after.get("sett.totalSupply") == before.get("sett.totalSupply") def printHarvestState(self, event, keys): table = [] console.print("[blue]== Harvest State ==[/blue]") for key in keys: table.append([key, val(event[key])]) print(tabulate(table, headers=["account", "value"])) def confirm_harvest_events(self, before, after, tx): key = 'HarvestState' assert key in tx.events assert len(tx.events[key]) == 1 event = tx.events[key][0] keys = [ 'totalDigg', 'totalShares', 'totalScaledShares', 'diggIncrease', 'sharesIncrease', 'scaledSharesIncrease', ] for key in keys: assert key in event self.printHarvestState(event, keys) def confirm_harvest(self, before, after, tx): super().confirm_harvest(before, after, tx) # No staking position, strategy want should increase irrespective of # current balance. # TODO: Add more specific check that the correct reward amount was deposited. assert ( after.get("strategy.balanceOf") >= before.get("strategy.balanceOf") ) # PPFS should not decrease assert after.get("sett.pricePerFullShare") >= before.get( "sett.pricePerFullShare" ) def confirm_deposit(self, before, after, params): """ Since DIGG is a rebasing token, the amount of shares transferred per DIGG changes over time so we need to calculated expected shares using the following equation: (sharesTransferred * totalSupply) / poolBefore Note that shares scale values are scaled down to 18 decimal values (e.g. sharesTransferred, poolBefore). """ digg = self.manager.badger.digg.token sharesTransferred = after.get("sett.shares") - before.get("sett.shares") sharesTransferredScaled = digg.sharesToScaledShares(sharesTransferred) totalSupply = before.get("sett.totalSupply") # bDIGG is already at 18 decimal scale if totalSupply == 0: expected_shares = sharesTransferredScaled else: poolBefore = before.get("sett.shares") poolBeforeScaled = digg.sharesToScaledShares(poolBefore) expected_shares = (sharesTransferredScaled * totalSupply) / poolBeforeScaled params["expected_shares"] = expected_shares # We need to pass in expected_shares to the core resolver so we call the # super method down here. super().confirm_deposit(before, after, params) def add_balances_snap(self, calls, entities): calls = super().add_balances_snap(calls, entities) digg = interface.IERC20(self.manager.strategy.want()) calls = self.add_entity_balances_for_tokens(calls, "digg", digg, entities) calls = self.add_entity_shares_for_tokens(calls, "digg", digg, entities) return calls def get_strategy_destinations(self): strategy = self.manager.strategy return { "diggFaucet": strategy.diggFaucet(), } def add_strategy_snap(self, calls, entities=None): super().add_strategy_snap(calls) sett = self.manager.sett strategy = self.manager.strategy calls.append( Call( strategy.diggFaucet(), [func.diggFaucet.earned], [["diggFaucet.earned", as_wei]], ) ) # Sett Shares calls.append(Call(sett.address, [func.sett.shares], [["sett.shares", as_wei]],)) # Strategy Shares calls.append( Call( strategy.address, [func.strategy.sharesOf], [["strategy.sharesOf", as_wei]], ) ) calls.append( Call( strategy.address, [func.strategy.sharesOfPool], [["strategy.sharesOfPool", as_wei]], ) ) calls.append( Call( strategy.address, [func.strategy.sharesOfWant], [["strategy.sharesOfWant", as_wei]], ) ) return calls
the-stack_106_23707
#!/usr/bin/env python3 # Foundations of Python Network Programming, Third Edition # https://github.com/brandon-rhodes/fopnp/blob/m/py3/chapter06/test_tls.py # Attempt a TLS connection and, if successful, report its properties import argparse, socket, ssl, sys, textwrap import ctypes from pprint import pprint def open_tls(context, address, server=False): raw_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if server: raw_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) raw_sock.bind(address) raw_sock.listen(1) say('Interface where we are listening', address) raw_client_sock, address = raw_sock.accept() say('Client has connected from address', address) return context.wrap_socket(raw_client_sock, server_side=True) else: say('Address we want to talk to', address) raw_sock.connect(address) return context.wrap_socket(raw_sock) def describe(ssl_sock, hostname, server=False, debug=False): cert = ssl_sock.getpeercert() if cert is None: say('Peer certificate', 'none') else: say('Peer certificate', 'provided') subject = cert.get('subject', []) names = [name for names in subject for (key, name) in names if key == 'commonName'] if 'subjectAltName' in cert: names.extend(name for (key, name) in cert['subjectAltName'] if key == 'DNS') say('Name(s) on peer certificate', *names or ['none']) if (not server) and names: try: ssl.match_hostname(cert, hostname) except ssl.CertificateError as e: message = str(e) else: message = 'Yes' say('Whether name(s) match the hostname', message) for category, count in sorted(context.cert_store_stats().items()): say('Certificates loaded of type {}'.format(category), count) try: protocol_version = SSL_get_version(ssl_sock) except Exception: if debug: raise else: say('Protocol version negotiated', protocol_version) cipher, version, bits = ssl_sock.cipher() compression = ssl_sock.compression() say('Cipher chosen for this connection', cipher) say('Cipher defined in TLS version', version) say('Cipher key has this many bits', bits) say('Compression algorithm in use', compression or 'none') return cert class PySSLSocket(ctypes.Structure): """The first few fields of a PySSLSocket (see Python's Modules/_ssl.c).""" _fields_ = [('ob_refcnt', ctypes.c_ulong), ('ob_type', ctypes.c_void_p), ('Socket', ctypes.c_void_p), ('ssl', ctypes.c_void_p)] def SSL_get_version(ssl_sock): """Reach behind the scenes for a socket's TLS protocol version.""" if sys.version_info >= (3, 5): return ssl_sock.version() lib = ctypes.CDLL(ssl._ssl.__file__) lib.SSL_get_version.restype = ctypes.c_char_p address = id(ssl_sock._sslobj) struct = ctypes.cast(address, ctypes.POINTER(PySSLSocket)).contents version_bytestring = lib.SSL_get_version(struct.ssl) return version_bytestring.decode('ascii') def lookup(prefix, name): if not name.startswith(prefix): name = prefix + name try: return getattr(ssl, name) except AttributeError: matching_names = (s for s in dir(ssl) if s.startswith(prefix)) message = 'Error: {!r} is not one of the available names:\n {}'.format( name, ' '.join(sorted(matching_names))) print(fill(message), file=sys.stderr) sys.exit(2) def say(title, *words): print(fill(title.ljust(36, '.') + ' ' + ' '.join(str(w) for w in words))) def fill(text): return textwrap.fill(text, subsequent_indent=' ', break_long_words=False, break_on_hyphens=False) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Protect a socket with TLS') parser.add_argument('host', help='hostname or IP address') parser.add_argument('port', type=int, help='TCP port number') parser.add_argument('-a', metavar='cafile', default=None, help='authority: path to CA certificate PEM file') parser.add_argument('-c', metavar='certfile', default=None, help='path to PEM file with client certificate') parser.add_argument('-C', metavar='ciphers', default='ALL', help='list of ciphers, formatted per OpenSSL') parser.add_argument('-p', metavar='PROTOCOL', default='SSLv23', help='protocol version (default: "SSLv23")') parser.add_argument('-s', metavar='certfile', default=None, help='run as server: path to certificate PEM file') parser.add_argument('-d', action='store_true', default=False, help='debug mode: do not hide "ctypes" exceptions') parser.add_argument('-v', action='store_true', default=False, help='verbose: print out remote certificate') args = parser.parse_args() address = (args.host, args.port) protocol = lookup('PROTOCOL_', args.p) context = ssl.SSLContext(protocol) context.set_ciphers(args.C) context.check_hostname = False if (args.s is not None) and (args.c is not None): parser.error('you cannot specify both -c and -s') elif args.s is not None: context.verify_mode = ssl.CERT_OPTIONAL purpose = ssl.Purpose.CLIENT_AUTH context.load_cert_chain(args.s) else: context.verify_mode = ssl.CERT_REQUIRED purpose = ssl.Purpose.SERVER_AUTH if args.c is not None: context.load_cert_chain(args.c) if args.a is None: context.load_default_certs(purpose) else: context.load_verify_locations(args.a) print() ssl_sock = open_tls(context, address, args.s) cert = describe(ssl_sock, args.host, args.s, args.d) print() if args.v: pprint(cert)
the-stack_106_23708
# -*- coding: utf-8 -*- import pandas as pd from functools import wraps from ..common import _getJson, _dateRange, _strOrDate, _toDatetime def timeSeriesInventory(token='', version=''): '''Get inventory of available time series endpoints Returns: result (dict) ''' return _getJson('time-series/', token, version) def timeSeriesInventoryDF(token='', version=''): '''Get inventory of available time series endpoints Returns: result (DataFrame) ''' return pd.io.json.json_normalize(timeSeriesInventory(token=token, version=version)) def timeSeries(id='', key='', subkey='', range=None, calendar=False, limit=1, subattribute='', dateField=None, from_=None, to_=None, on=None, last=0, first=0, token='', version='', filter=''): '''This is a meeting where company executives provide information about the company’s performance and its future prospects. 6am , 10am , 2pm , 6pm and 9pm daily https://iexcloud.io/docs/api/#time-series Args: id (str): ID used to identify a time series dataset. key (str): Key used to identify data within a dataset. A common example is a symbol such as AAPL. subkey (str): The optional subkey can used to further refine data for a particular key if available. range (str): Returns data for a given range. Supported ranges described below. calendar (bool): Used in conjunction with range to return data in the future. limit (int): Limits the number of results returned. Defaults to 1. subattribute (str): Allows you to query time series by any field in the result set. All time series data is stored by ID, then key, then subkey. If you want to query by any other field in the data, you can use subattribute. For example, news may be stored as /news/{symbol}/{newsId}, and the result data returns the keys id, symbol, date, sector, hasPaywall By default you can only query by symbol or id. Maybe you want to query all news where the sector is Technology. Your query would be: /time-series/news?subattribute=source|WSJ The syntax is subattribute={keyName}|{value}. Both the key name and the value are case sensitive. A pipe symbol is used to represent ‘equal to’. dateField (str or datetime): All time series data is stored by a single date field, and that field is used for any range or date parameters. You may want to query time series data by a different date in the result set. To change the date field used by range queries, pass the case sensitive field name with this parameter. For example, corporate buy back data may be stored by announce date, but also contains an end date which you’d rather query by. To query by end date you would use dateField=endDate&range=last-week from_ (str or datetime): Returns data on or after the given from date. Format YYYY-MM-DD to_ (str or datetime): Returns data on or before the given to date. Format YYYY-MM-DD on (str or datetime): Returns data on the given date. Format YYYY-MM-DD last (int): Returns the latest n number of records in the series first (int): Returns the first n number of records in the series token (string); Access token version (string); API version filter (string); filters: https://iexcloud.io/docs/api/#filter-results Returns: dict: result Date Ranges: today Returns data for today yesterday Returns data for yesterday ytd Returns data for the current year last-week Returns data for Sunday-Saturday last week last-month Returns data for the last month last-quarter Returns data for the last quarter d Use the short hand d to return a number of days. Example: 2d returns 2 days. If calendar=true, data is returned from today forward. w Use the short hand w to return a number of weeks. Example: 2w returns 2 weeks. If calendar=true, data is returned from today forward. m Use the short hand m to return a number of months. Example: 2m returns 2 months. If calendar=true, data is returned from today forward. q Use the short hand q to return a number of quarters. Example: 2q returns 2 quarters. If calendar=true, data is returned from today forward. y Use the short hand y to return a number of years. Example: 2y returns 2 years. If calendar=true, data is returned from today forward. tomorrow Calendar data for tomorrow. Requires calendar=true this-week Calendar data for Sunday-Saturday this week. Requires calendar=true this-month Calendar data for current month. Requires calendar=true this-quarter Calendar data for current quarter. Requires calendar=true next-week Calendar data for Sunday-Saturday next week. Requires calendar=true next-month Calendar data for next month. Requires calendar=true next-quarter Calendar data for next quarter. Requires calendar=true ''' if not id: return timeSeriesInventory(token=token, version=version) base_url = 'time-series/{}'.format(id) if key: base_url += '/{}'.format(key) if subkey: base_url += '/{}'.format(subkey) base_url += '?' if range: range = _dateRange(range) base_url += 'range={}&'.format(range) base_url += 'calendar={}&'.format(str(calendar)) base_url += 'limit={}&'.format(str(limit)) if subattribute: base_url += 'subattribute={}&'.format(subattribute) if dateField: base_url += 'dateField={}&'.format(dateField) if from_: base_url += 'from={}&'.format(_strOrDate(from_)) if to_: base_url += 'to={}&'.format(_strOrDate(to_)) if on: base_url += 'on={}&'.format(_strOrDate(on)) if last: base_url += 'last={}&'.format(str(last)) if first: base_url += 'first={}&'.format(str(first)) return _getJson(base_url, token, version, filter) @wraps(timeSeries) def timeSeriesDF(*args, **kwargs): df = pd.io.json.json_normalize(timeSeries(*args, **kwargs)) _toDatetime(df) return df @wraps(timeSeries) def tenQ(symbol, **kwargs): kwargs.pop('id') kwargs.pop('key') kwargs.pop('subkey') return timeSeries(id='REPORTED_FINANCIALS', key=symbol, subkey='10-Q', **kwargs) @wraps(timeSeries) def tenK(symbol, **kwargs): kwargs.pop('id') kwargs.pop('key') kwargs.pop('subkey') return timeSeries(id='REPORTED_FINANCIALS', key=symbol, subkey='10-Q', **kwargs)
the-stack_106_23710
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for long running jobs and continuous computations.""" import ast import logging import re from core import jobs from core import jobs_registry from core.domain import event_services from core.domain import exp_domain from core.domain import exp_services from core.platform import models from core.platform.taskqueue import gae_taskqueue_services as taskqueue_services from core.tests import test_utils import feconf from google.appengine.ext import ndb from mapreduce import input_readers (base_models, exp_models, stats_models, job_models) = ( models.Registry.import_models([ models.NAMES.base_model, models.NAMES.exploration, models.NAMES.statistics, models.NAMES.job])) taskqueue_services = models.Registry.import_taskqueue_services() transaction_services = models.Registry.import_transaction_services() JOB_FAILED_MESSAGE = 'failed (as expected)' class MockJobManagerOne(jobs.BaseDeferredJobManager): @classmethod def _run(cls, additional_job_params): return 'output' class MockJobManagerTwo(jobs.BaseDeferredJobManager): pass class MockJobManagerWithParams(jobs.BaseDeferredJobManager): @classmethod def _run(cls, additional_job_params): return additional_job_params['correct'] class MockFailingJobManager(jobs.BaseDeferredJobManager): @classmethod def _run(cls, additional_job_params): raise Exception(JOB_FAILED_MESSAGE) class MockJobManagerWithNoRunMethod(jobs.BaseDeferredJobManager): pass class JobManagerUnitTests(test_utils.GenericTestBase): """Test basic job manager operations.""" def test_create_new(self): """Test the creation of a new job.""" job_id = MockJobManagerOne.create_new() self.assertTrue(job_id.startswith('MockJobManagerOne')) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_NEW) self.assertIsNone(MockJobManagerOne.get_time_queued_msec(job_id)) self.assertIsNone(MockJobManagerOne.get_time_started_msec(job_id)) self.assertIsNone(MockJobManagerOne.get_time_finished_msec(job_id)) self.assertIsNone(MockJobManagerOne.get_metadata(job_id)) self.assertIsNone(MockJobManagerOne.get_output(job_id)) self.assertIsNone(MockJobManagerOne.get_error(job_id)) self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertFalse(MockJobManagerOne.has_finished(job_id)) def test_base_job_manager_enqueue_raises_error(self): with self.assertRaisesRegexp( NotImplementedError, 'Subclasses of BaseJobManager should implement _real_enqueue().'): jobs.BaseJobManager._real_enqueue( # pylint: disable=protected-access 'job_id', taskqueue_services.QUEUE_NAME_DEFAULT, None) def test_failing_jobs(self): observed_log_messages = [] def _mock_logging_function(msg, *args): """Mocks logging.error().""" observed_log_messages.append(msg % args) logging_swap = self.swap(logging, 'error', _mock_logging_function) # Mocks GoogleCloudStorageInputReader() to fail a job. _mock_input_reader = lambda _, __: 1 / 0 input_reader_swap = self.swap( input_readers, 'GoogleCloudStorageInputReader', _mock_input_reader) assert_raises_context_manager = self.assertRaises(Exception) job_id = MockJobManagerOne.create_new() store_map_reduce_results = jobs.StoreMapReduceResults() with input_reader_swap, assert_raises_context_manager, logging_swap: store_map_reduce_results.run( job_id, 'core.jobs_test.MockJobManagerOne', 'output') expected_log_message = 'Job %s failed at' % job_id # The first log message is ignored as it is the traceback. self.assertEqual(len(observed_log_messages), 2) self.assertTrue( observed_log_messages[1].startswith(expected_log_message)) def test_enqueue_job(self): """Test the enqueueing of a job.""" job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_QUEUED) self.assertIsNotNone(MockJobManagerOne.get_time_queued_msec(job_id)) self.assertIsNone(MockJobManagerOne.get_output(job_id)) def test_failure_for_job_enqueued_using_wrong_manager(self): job_id = MockJobManagerOne.create_new() with self.assertRaisesRegexp(Exception, 'Invalid job type'): MockJobManagerTwo.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) def test_failure_for_job_with_no_run_method(self): job_id = MockJobManagerWithNoRunMethod.create_new() MockJobManagerWithNoRunMethod.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) with self.assertRaisesRegexp(Exception, 'NotImplementedError'): self.process_and_flush_pending_tasks() def test_complete_job(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.process_and_flush_pending_tasks() self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_COMPLETED) time_queued_msec = MockJobManagerOne.get_time_queued_msec(job_id) time_started_msec = MockJobManagerOne.get_time_started_msec(job_id) time_finished_msec = MockJobManagerOne.get_time_finished_msec(job_id) self.assertIsNotNone(time_queued_msec) self.assertIsNotNone(time_started_msec) self.assertIsNotNone(time_finished_msec) self.assertLess(time_queued_msec, time_started_msec) self.assertLess(time_started_msec, time_finished_msec) metadata = MockJobManagerOne.get_metadata(job_id) output = MockJobManagerOne.get_output(job_id) error = MockJobManagerOne.get_error(job_id) self.assertIsNone(metadata) self.assertEqual(output, ['output']) self.assertIsNone(error) self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertTrue(MockJobManagerOne.has_finished(job_id)) def test_deferred_job_with_additional_params(self): """Test the enqueueing of a job with additional parameters.""" job_id_1 = MockJobManagerWithParams.create_new() MockJobManagerWithParams.enqueue( job_id_1, taskqueue_services.QUEUE_NAME_DEFAULT, additional_job_params={'random': 3, 'correct': 60}) job_id_2 = MockJobManagerWithParams.create_new() MockJobManagerWithParams.enqueue( job_id_2, taskqueue_services.QUEUE_NAME_DEFAULT, additional_job_params={'random': 20, 'correct': 25}) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 2) self.process_and_flush_pending_tasks() self.assertTrue(MockJobManagerWithParams.has_finished(job_id_1)) self.assertEqual(MockJobManagerWithParams.get_output(job_id_1), ['60']) self.assertTrue(MockJobManagerWithParams.has_finished(job_id_2)) self.assertEqual(MockJobManagerWithParams.get_output(job_id_2), ['25']) def test_job_failure(self): job_id = MockFailingJobManager.create_new() MockFailingJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) with self.assertRaisesRegexp(Exception, 'Task failed'): self.process_and_flush_pending_tasks() self.assertEqual( MockFailingJobManager.get_status_code(job_id), jobs.STATUS_CODE_FAILED) time_queued_msec = MockFailingJobManager.get_time_queued_msec(job_id) time_started_msec = MockFailingJobManager.get_time_started_msec( job_id) time_finished_msec = MockFailingJobManager.get_time_finished_msec( job_id) self.assertIsNotNone(time_queued_msec) self.assertIsNotNone(time_started_msec) self.assertIsNotNone(time_finished_msec) self.assertLess(time_queued_msec, time_started_msec) self.assertLess(time_started_msec, time_finished_msec) metadata = MockFailingJobManager.get_metadata(job_id) output = MockFailingJobManager.get_output(job_id) error = MockFailingJobManager.get_error(job_id) self.assertIsNone(metadata) self.assertIsNone(output) self.assertIn(JOB_FAILED_MESSAGE, error) self.assertFalse(MockFailingJobManager.is_active(job_id)) self.assertTrue(MockFailingJobManager.has_finished(job_id)) def test_status_code_transitions(self): """Test that invalid status code transitions are caught.""" job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) MockJobManagerOne.register_start(job_id) MockJobManagerOne.register_completion(job_id, ['output']) with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.register_completion(job_id, ['output']) with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.register_failure(job_id, 'error') def test_different_jobs_are_independent(self): job_id = MockJobManagerOne.create_new() another_job_id = MockJobManagerTwo.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) MockJobManagerOne.register_start(job_id) MockJobManagerTwo.enqueue( another_job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_STARTED) self.assertEqual( MockJobManagerTwo.get_status_code(another_job_id), jobs.STATUS_CODE_QUEUED) def test_cannot_instantiate_jobs_from_abstract_base_classes(self): with self.assertRaisesRegexp( Exception, 'directly create a job using the abstract base' ): jobs.BaseJobManager.create_new() def test_cannot_enqueue_same_job_twice(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) def test_can_enqueue_two_instances_of_the_same_job(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) job_id_2 = MockJobManagerOne.create_new() MockJobManagerOne.enqueue( job_id_2, taskqueue_services.QUEUE_NAME_DEFAULT) def test_cancel_kills_queued_job(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertTrue(MockJobManagerOne.is_active(job_id)) MockJobManagerOne.cancel(job_id, 'admin_user_id') self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_CANCELED) self.assertIsNone(MockJobManagerOne.get_output(job_id)) self.assertEqual( MockJobManagerOne.get_error(job_id), 'Canceled by admin_user_id') def test_cancel_kills_started_job(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertTrue(MockJobManagerOne.is_active(job_id)) MockJobManagerOne.register_start(job_id) # Cancel the job immediately after it has started. MockJobManagerOne.cancel(job_id, 'admin_user_id') # The job then finishes. with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.register_completion(job_id, ['job_output']) self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_CANCELED) # Note that no results are recorded for this job. self.assertIsNone(MockJobManagerOne.get_output(job_id)) self.assertEqual( MockJobManagerOne.get_error(job_id), 'Canceled by admin_user_id') def test_cancel_does_not_kill_completed_job(self): job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertTrue(MockJobManagerOne.is_active(job_id)) # Complete the job. self.process_and_flush_pending_tasks() self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_COMPLETED) # Cancel the job after it has finished. with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockJobManagerOne.cancel(job_id, 'admin_user_id') # The job should still have 'completed' status. self.assertFalse(MockJobManagerOne.is_active(job_id)) self.assertEqual( MockJobManagerOne.get_status_code(job_id), jobs.STATUS_CODE_COMPLETED) self.assertEqual(MockJobManagerOne.get_output(job_id), ['output']) self.assertIsNone(MockJobManagerOne.get_error(job_id)) def test_cancel_does_not_kill_failed_job(self): job_id = MockFailingJobManager.create_new() MockFailingJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertTrue(MockFailingJobManager.is_active(job_id)) with self.assertRaisesRegexp(Exception, 'Task failed'): self.process_and_flush_pending_tasks() self.assertFalse(MockFailingJobManager.is_active(job_id)) self.assertEqual( MockFailingJobManager.get_status_code(job_id), jobs.STATUS_CODE_FAILED) # Cancel the job after it has finished. with self.assertRaisesRegexp(Exception, 'Invalid status code change'): MockFailingJobManager.cancel(job_id, 'admin_user_id') # The job should still have 'failed' status. self.assertFalse(MockFailingJobManager.is_active(job_id)) self.assertEqual( MockFailingJobManager.get_status_code(job_id), jobs.STATUS_CODE_FAILED) self.assertIsNone(MockFailingJobManager.get_output(job_id)) self.assertIn( 'raise Exception', MockFailingJobManager.get_error(job_id)) def test_cancelling_multiple_unfinished_jobs(self): job1_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue( job1_id, taskqueue_services.QUEUE_NAME_DEFAULT) job2_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue( job2_id, taskqueue_services.QUEUE_NAME_DEFAULT) MockJobManagerOne.register_start(job1_id) MockJobManagerOne.register_start(job2_id) MockJobManagerOne.cancel_all_unfinished_jobs('admin_user_id') self.assertFalse(MockJobManagerOne.is_active(job1_id)) self.assertFalse(MockJobManagerOne.is_active(job2_id)) self.assertEqual( MockJobManagerOne.get_status_code(job1_id), jobs.STATUS_CODE_CANCELED) self.assertEqual( MockJobManagerOne.get_status_code(job2_id), jobs.STATUS_CODE_CANCELED) self.assertIsNone(MockJobManagerOne.get_output(job1_id)) self.assertIsNone(MockJobManagerOne.get_output(job2_id)) self.assertEqual( 'Canceled by admin_user_id', MockJobManagerOne.get_error(job1_id)) self.assertEqual( 'Canceled by admin_user_id', MockJobManagerOne.get_error(job2_id)) def test_cancelling_one_unfinished_job(self): job1_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue( job1_id, taskqueue_services.QUEUE_NAME_DEFAULT) job2_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue( job2_id, taskqueue_services.QUEUE_NAME_DEFAULT) MockJobManagerOne.register_start(job1_id) MockJobManagerOne.register_start(job2_id) MockJobManagerOne.cancel(job1_id, 'admin_user_id') with self.assertRaisesRegexp(Exception, 'Invalid status code change'): self.process_and_flush_pending_tasks() MockJobManagerOne.register_completion(job2_id, ['output']) self.assertFalse(MockJobManagerOne.is_active(job1_id)) self.assertFalse(MockJobManagerOne.is_active(job2_id)) self.assertEqual( MockJobManagerOne.get_status_code(job1_id), jobs.STATUS_CODE_CANCELED) self.assertEqual( MockJobManagerOne.get_status_code(job2_id), jobs.STATUS_CODE_COMPLETED) self.assertIsNone(MockJobManagerOne.get_output(job1_id)) self.assertEqual(MockJobManagerOne.get_output(job2_id), ['output']) self.assertEqual( 'Canceled by admin_user_id', MockJobManagerOne.get_error(job1_id)) self.assertIsNone(MockJobManagerOne.get_error(job2_id)) def test_compress_output_list_with_single_char_outputs(self): input_list = [1, 2, 3, 4, 5] expected_output = ['1', '2', '3', '<TRUNCATED>'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, test_only_max_output_len_chars=3) self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_multi_char_outputs(self): input_list = ['abcd', 'efgh', 'ijkl'] expected_output = ['abcd', 'efgh', 'ij <TRUNCATED>'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, test_only_max_output_len_chars=10) self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_zero_max_output_len(self): input_list = [1, 2, 3] expected_output = ['<TRUNCATED>'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, test_only_max_output_len_chars=0) self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_exact_max_output_len(self): input_list = ['abc'] expected_output = ['abc'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, test_only_max_output_len_chars=3) self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_empty_outputs(self): input_list = [] expected_output = [] actual_output = jobs.BaseJobManager._compress_output_list(input_list) # pylint: disable=protected-access self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_duplicate_outputs(self): input_list = ['bar', 'foo'] * 3 expected_output = ['(3x) bar', '(3x) foo'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, # Make sure no output gets truncated. test_only_max_output_len_chars=sum(len(s) for s in expected_output)) self.assertEqual(actual_output, expected_output) def test_compress_output_list_with_truncated_duplicate_outputs(self): input_list = ['supercalifragilisticexpialidocious'] * 3 expected_output = ['(3x) super <TRUNCATED>'] actual_output = jobs.BaseJobManager._compress_output_list( # pylint: disable=protected-access input_list, test_only_max_output_len_chars=10) self.assertEqual(actual_output, expected_output) SUM_MODEL_ID = 'all_data_id' class MockNumbersModel(ndb.Model): number = ndb.IntegerProperty() class MockSumModel(ndb.Model): total = ndb.IntegerProperty(default=0) failed = ndb.BooleanProperty(default=False) class TestDeferredJobManager(jobs.BaseDeferredJobManager): """Base class for testing deferred jobs.""" pass class TestAdditionJobManager(TestDeferredJobManager): """Test job that sums all MockNumbersModel data. The result is stored in a MockSumModel entity with id SUM_MODEL_ID. """ @classmethod def _run(cls, additional_job_params): total = sum([ numbers_model.number for numbers_model in MockNumbersModel.query()]) MockSumModel(id=SUM_MODEL_ID, total=total).put() class FailingAdditionJobManager(TestDeferredJobManager): """Test job that stores stuff in MockSumModel and then fails.""" @classmethod def _run(cls, additional_job_params): total = sum([ numbers_model.number for numbers_model in MockNumbersModel.query()]) MockSumModel(id=SUM_MODEL_ID, total=total).put() raise Exception('Oops, I failed.') @classmethod def _post_failure_hook(cls, job_id): model = MockSumModel.get_by_id(SUM_MODEL_ID) model.failed = True model.put() class DatastoreJobIntegrationTests(test_utils.GenericTestBase): """Tests the behavior of a job that affects data in the datastore. This job gets all MockNumbersModel instances and sums their values, and puts the summed values in a MockSumModel instance with id SUM_MODEL_ID. The computation is redone from scratch each time the job is run. """ def _get_stored_total(self): """Returns the total summed values of all the MockNumbersModel instances stored in a MockSumModel instance. """ sum_model = MockSumModel.get_by_id(SUM_MODEL_ID) return sum_model.total if sum_model else 0 def _populate_data(self): """Populate the datastore with four MockNumbersModel instances.""" MockNumbersModel(number=1).put() MockNumbersModel(number=2).put() MockNumbersModel(number=1).put() MockNumbersModel(number=2).put() def test_sequential_jobs(self): self._populate_data() self.assertEqual(self._get_stored_total(), 0) TestAdditionJobManager.enqueue( TestAdditionJobManager.create_new(), taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.process_and_flush_pending_tasks() self.assertEqual(self._get_stored_total(), 6) MockNumbersModel(number=3).put() TestAdditionJobManager.enqueue( TestAdditionJobManager.create_new(), taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.process_and_flush_pending_tasks() self.assertEqual(self._get_stored_total(), 9) def test_multiple_enqueued_jobs(self): self._populate_data() TestAdditionJobManager.enqueue( TestAdditionJobManager.create_new(), taskqueue_services.QUEUE_NAME_DEFAULT) MockNumbersModel(number=3).put() TestAdditionJobManager.enqueue( TestAdditionJobManager.create_new(), taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 2) self.process_and_flush_pending_tasks() self.assertEqual(self._get_stored_total(), 9) def test_failing_job(self): self._populate_data() job_id = FailingAdditionJobManager.create_new() FailingAdditionJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) with self.assertRaisesRegexp( taskqueue_services.PermanentTaskFailure, 'Oops, I failed' ): self.process_and_flush_pending_tasks() # The work that the failing job did before it failed is still done. self.assertEqual(self._get_stored_total(), 6) # The post-failure hook should have run. self.assertTrue(MockSumModel.get_by_id(SUM_MODEL_ID).failed) self.assertTrue( FailingAdditionJobManager.get_status_code(job_id), msg=jobs.STATUS_CODE_FAILED) class SampleMapReduceJobManager(jobs.BaseMapReduceJobManager): """Test job that counts the total number of explorations.""" @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): current_class = SampleMapReduceJobManager if current_class.entity_created_before_job_queued(item): yield ('sum', 1) @staticmethod def reduce(key, values): yield (key, sum([int(value) for value in values])) class MapReduceJobForCheckingParamNames(jobs.BaseMapReduceOneOffJobManager): """Test job that checks correct param_name.""" @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel] @staticmethod def map(item): jobs.BaseMapReduceOneOffJobManager.get_mapper_param('exp_id') class ParamNameTests(test_utils.GenericTestBase): def test_job_raises_error_with_invalid_param_name(self): exploration = exp_domain.Exploration.create_default_exploration( 'exp_id_1') exp_services.save_new_exploration('owner_id', exploration) job_id = MapReduceJobForCheckingParamNames.create_new() params = { 'invalid_param_name': 'exp_id_1' } MapReduceJobForCheckingParamNames.enqueue( job_id, additional_job_params=params) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_ONE_OFF_JOBS), 1) assert_raises_regexp_context_manager = self.assertRaisesRegexp( Exception, 'MapReduce task to URL .+ failed') with assert_raises_regexp_context_manager: self.process_and_flush_pending_tasks() def test_job_with_correct_param_name(self): exploration = exp_domain.Exploration.create_default_exploration( 'exp_id_1') exp_services.save_new_exploration('owner_id', exploration) job_id = MapReduceJobForCheckingParamNames.create_new() params = { 'exp_id': 'exp_id_1' } MapReduceJobForCheckingParamNames.enqueue( job_id, additional_job_params=params) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_ONE_OFF_JOBS), 1) self.process_and_flush_pending_tasks() self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_ONE_OFF_JOBS), 0) class MapReduceJobIntegrationTests(test_utils.GenericTestBase): """Tests MapReduce jobs end-to-end.""" def setUp(self): """Create an exploration so that there is something to count.""" super(MapReduceJobIntegrationTests, self).setUp() exploration = exp_domain.Exploration.create_default_exploration( 'exp_id') exp_services.save_new_exploration('owner_id', exploration) self.process_and_flush_pending_tasks() def test_count_all_explorations(self): job_id = SampleMapReduceJobManager.create_new() SampleMapReduceJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.process_and_flush_pending_tasks() self.assertEqual(jobs.get_job_output(job_id), ['[u\'sum\', 1]']) self.assertEqual( SampleMapReduceJobManager.get_status_code(job_id), jobs.STATUS_CODE_COMPLETED) def test_base_map_reduce_job_manager_entity_classes_to_map_over_raise_error( self): with self.assertRaisesRegexp( NotImplementedError, 'Classes derived from BaseMapReduceJobManager must implement ' 'entity_classes_to_map_over()'): jobs.BaseMapReduceJobManager.entity_classes_to_map_over() def test_base_map_reduce_job_manager_map_raise_error(self): with self.assertRaisesRegexp( NotImplementedError, 'Classes derived from BaseMapReduceJobManager must implement ' 'map as a @staticmethod.'): jobs.BaseMapReduceJobManager.map('item') def test_base_map_reduce_job_manager_reduce_raise_error(self): with self.assertRaisesRegexp( NotImplementedError, 'Classes derived from BaseMapReduceJobManager must implement ' 'reduce as a @staticmethod'): jobs.BaseMapReduceJobManager.reduce('key', []) def test_raises_error_with_existing_mapper_param(self): job_id = SampleMapReduceJobManager.create_new() with self.assertRaisesRegexp( Exception, 'Additional job param entity_kinds shadows an existing mapper ' 'param'): SampleMapReduceJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT, additional_job_params={'entity_kinds': ''}) class JobRegistryTests(test_utils.GenericTestBase): """Tests job registry.""" def test_each_one_off_class_is_subclass_of_base_job_manager(self): for klass in jobs_registry.ONE_OFF_JOB_MANAGERS: self.assertTrue(issubclass(klass, jobs.BaseJobManager)) def test_each_one_off_class_is_not_abstract(self): for klass in jobs_registry.ONE_OFF_JOB_MANAGERS: self.assertFalse(klass._is_abstract()) # pylint: disable=protected-access def test_validity_of_each_continuous_computation_class(self): for klass in jobs_registry.ALL_CONTINUOUS_COMPUTATION_MANAGERS: self.assertTrue( issubclass(klass, jobs.BaseContinuousComputationManager)) event_types_listened_to = klass.get_event_types_listened_to() self.assertTrue(isinstance(event_types_listened_to, list)) for event_type in event_types_listened_to: self.assertTrue(isinstance(event_type, basestring)) self.assertTrue(issubclass( event_services.Registry.get_event_class_by_type( event_type), event_services.BaseEventHandler)) rdc = klass._get_realtime_datastore_class() # pylint: disable=protected-access self.assertTrue(issubclass( rdc, jobs.BaseRealtimeDatastoreClassForContinuousComputations)) # The list of allowed base classes. This can be extended as the # need arises, though we may also want to implement # _get_continuous_computation_class() and # entity_created_before_job_queued() for other base classes # that are added to this list. allowed_base_batch_job_classes = [ jobs.BaseMapReduceJobManagerForContinuousComputations] self.assertTrue(any([ issubclass(klass._get_batch_job_manager_class(), superclass) # pylint: disable=protected-access for superclass in allowed_base_batch_job_classes])) class BaseMapReduceJobManagerForContinuousComputationsTests( test_utils.GenericTestBase): def test_raise_error_with_get_continuous_computation_class(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of ' 'BaseMapReduceJobManagerForContinuousComputations must ' 'implement the _get_continuous_computation_class() method.')): ( jobs.BaseMapReduceJobManagerForContinuousComputations. # pylint: disable=protected-access _get_continuous_computation_class() ) def test_raise_error_with_post_cancel_hook(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of ' 'BaseMapReduceJobManagerForContinuousComputations must ' 'implement the _get_continuous_computation_class() method.')): ( jobs.BaseMapReduceJobManagerForContinuousComputations. # pylint: disable=protected-access _post_cancel_hook('job_id', 'cancel message') ) def test_raise_error_with_post_failure_hook(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of ' 'BaseMapReduceJobManagerForContinuousComputations must ' 'implement the _get_continuous_computation_class() method.')): ( jobs.BaseMapReduceJobManagerForContinuousComputations. # pylint: disable=protected-access _post_failure_hook('job_id') ) class BaseContinuousComputationManagerTests(test_utils.GenericTestBase): def test_raise_error_with_get_event_types_listened_to(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of BaseContinuousComputationManager must implement ' 'get_event_types_listened_to(). This method should return a ' 'list of strings, each representing an event type that this ' 'class subscribes to.')): jobs.BaseContinuousComputationManager.get_event_types_listened_to() def test_raise_error_with_get_realtime_datastore_class(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of BaseContinuousComputationManager must implement ' '_get_realtime_datastore_class(). This method should return ' 'the datastore class to be used by the realtime layer.')): jobs.BaseContinuousComputationManager._get_realtime_datastore_class( # pylint: disable=protected-access ) def test_raise_error_with_get_batch_job_manager_class(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of BaseContinuousComputationManager must implement ' '_get_batch_job_manager_class(). This method should return the' 'manager class for the continuously-running batch job.')): jobs.BaseContinuousComputationManager._get_batch_job_manager_class() # pylint: disable=protected-access def test_raise_error_with_handle_incoming_event(self): with self.assertRaisesRegexp( NotImplementedError, re.escape( 'Subclasses of BaseContinuousComputationManager must implement ' '_handle_incoming_event(...). Please check the docstring of ' 'this method in jobs.BaseContinuousComputationManager for ' 'important developer information.')): jobs.BaseContinuousComputationManager._handle_incoming_event( # pylint: disable=protected-access 1, 'event_type') class JobQueriesTests(test_utils.GenericTestBase): """Tests queries for jobs.""" def test_get_data_for_recent_jobs(self): self.assertEqual(jobs.get_data_for_recent_jobs(), []) job_id = MockJobManagerOne.create_new() MockJobManagerOne.enqueue(job_id, taskqueue_services.QUEUE_NAME_DEFAULT) recent_jobs = jobs.get_data_for_recent_jobs() self.assertEqual(len(recent_jobs), 1) self.assertDictContainsSubset({ 'id': job_id, 'status_code': jobs.STATUS_CODE_QUEUED, 'job_type': 'MockJobManagerOne', 'is_cancelable': True, 'error': None }, recent_jobs[0]) class TwoClassesMapReduceJobManager(jobs.BaseMapReduceJobManager): """A test job handler that counts entities in two datastore classes.""" @classmethod def entity_classes_to_map_over(cls): return [exp_models.ExplorationModel, exp_models.ExplorationRightsModel] @staticmethod def map(item): yield ('sum', 1) @staticmethod def reduce(key, values): yield [key, sum([int(value) for value in values])] class TwoClassesMapReduceJobIntegrationTests(test_utils.GenericTestBase): """Tests MapReduce jobs using two classes end-to-end.""" def setUp(self): """Create an exploration so that there is something to count.""" super(TwoClassesMapReduceJobIntegrationTests, self).setUp() exploration = exp_domain.Exploration.create_default_exploration( 'exp_id') # Note that this ends up creating an entry in the # ExplorationRightsModel as well. exp_services.save_new_exploration('owner_id', exploration) self.process_and_flush_pending_tasks() def test_count_entities(self): self.assertEqual(exp_models.ExplorationModel.query().count(), 1) self.assertEqual(exp_models.ExplorationRightsModel.query().count(), 1) job_id = TwoClassesMapReduceJobManager.create_new() TwoClassesMapReduceJobManager.enqueue( job_id, taskqueue_services.QUEUE_NAME_DEFAULT) self.assertEqual( self.count_jobs_in_taskqueue(taskqueue_services.QUEUE_NAME_DEFAULT), 1) self.process_and_flush_pending_tasks() self.assertEqual( TwoClassesMapReduceJobManager.get_output(job_id), ['[u\'sum\', 2]']) self.assertEqual( TwoClassesMapReduceJobManager.get_status_code(job_id), jobs.STATUS_CODE_COMPLETED) class MockStartExplorationRealtimeModel( jobs.BaseRealtimeDatastoreClassForContinuousComputations): count = ndb.IntegerProperty(default=0) class MockStartExplorationMRJobManager( jobs.BaseMapReduceJobManagerForContinuousComputations): @classmethod def _get_continuous_computation_class(cls): return StartExplorationEventCounter @classmethod def entity_classes_to_map_over(cls): return [stats_models.StartExplorationEventLogEntryModel] @staticmethod def map(item): current_class = MockStartExplorationMRJobManager if current_class.entity_created_before_job_queued(item): yield ( item.exploration_id, { 'event_type': item.event_type, }) @staticmethod def reduce(key, stringified_values): started_count = 0 for value_str in stringified_values: value = ast.literal_eval(value_str) if value['event_type'] == feconf.EVENT_TYPE_START_EXPLORATION: started_count += 1 stats_models.ExplorationAnnotationsModel( id=key, num_starts=started_count).put() class StartExplorationEventCounter(jobs.BaseContinuousComputationManager): """A continuous-computation job that counts 'start exploration' events. This class should only be used in tests. """ @classmethod def get_event_types_listened_to(cls): return [feconf.EVENT_TYPE_START_EXPLORATION] @classmethod def _get_realtime_datastore_class(cls): return MockStartExplorationRealtimeModel @classmethod def _get_batch_job_manager_class(cls): return MockStartExplorationMRJobManager @classmethod def _kickoff_batch_job_after_previous_one_ends(cls): """Override this method so that it does not immediately start a new MapReduce job. Non-test subclasses should not do this. """ pass @classmethod def _handle_incoming_event( cls, active_realtime_layer, event_type, exp_id, unused_exp_version, unused_state_name, unused_session_id, unused_params, unused_play_type): def _increment_counter(): """Increments the count, if the realtime model corresponding to the active real-time model id exists. """ realtime_class = cls._get_realtime_datastore_class() realtime_model_id = realtime_class.get_realtime_id( active_realtime_layer, exp_id) realtime_class( id=realtime_model_id, count=1, realtime_layer=active_realtime_layer).put() transaction_services.run_in_transaction(_increment_counter) # Public query method. @classmethod def get_count(cls, exploration_id): """Return the number of 'start exploration' events received. Answers the query by combining the existing MR job output and the active realtime_datastore_class. """ mr_model = stats_models.ExplorationAnnotationsModel.get( exploration_id, strict=False) realtime_model = cls._get_realtime_datastore_class().get( cls.get_active_realtime_layer_id(exploration_id), strict=False) answer = 0 if mr_model is not None: answer += mr_model.num_starts if realtime_model is not None: answer += realtime_model.count return answer class MockMRJobManager(jobs.BaseMapReduceJobManagerForContinuousComputations): @classmethod def _get_continuous_computation_class(cls): return MockContinuousComputationManager @classmethod def entity_classes_to_map_over(cls): return [] class MockContinuousComputationManager(jobs.BaseContinuousComputationManager): TIMES_RUN = 0 @classmethod def get_event_types_listened_to(cls): return [] @classmethod def _get_realtime_datastore_class(cls): return MockStartExplorationRealtimeModel @classmethod def _get_batch_job_manager_class(cls): return MockMRJobManager @classmethod def _kickoff_batch_job_after_previous_one_ends(cls): if cls.TIMES_RUN < 2: ( super(cls, MockContinuousComputationManager) ._kickoff_batch_job_after_previous_one_ends() ) cls.TIMES_RUN = cls.TIMES_RUN + 1 class ContinuousComputationTests(test_utils.GenericTestBase): """Tests continuous computations for 'start exploration' events.""" EXP_ID = 'exp_id' ALL_CC_MANAGERS_FOR_TESTS = [ StartExplorationEventCounter, MockContinuousComputationManager] def setUp(self): """Create an exploration and register the event listener manually.""" super(ContinuousComputationTests, self).setUp() exploration = exp_domain.Exploration.create_default_exploration( self.EXP_ID) exp_services.save_new_exploration('owner_id', exploration) self.process_and_flush_pending_tasks() def test_cannot_get_entity_with_invalid_id(self): with self.assertRaisesRegexp( ValueError, 'Invalid realtime id: invalid_entity_id'): MockStartExplorationRealtimeModel.get('invalid_entity_id') def test_cannot_put_realtime_class_with_invalid_id(self): realtime_class = MockStartExplorationRealtimeModel with self.assertRaisesRegexp( Exception, 'Realtime layer 1 does not match realtime id ' 'invalid_realtime_model_id'): realtime_class( id='invalid_realtime_model_id', count=1, realtime_layer=1).put() def test_continuous_computation_workflow(self): """An integration test for continuous computations.""" with self.swap( jobs_registry, 'ALL_CONTINUOUS_COMPUTATION_MANAGERS', self.ALL_CC_MANAGERS_FOR_TESTS ): self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 0) # Record an event. This will put the event in the task queue. event_services.StartExplorationEventHandler.record( self.EXP_ID, 1, feconf.DEFAULT_INIT_STATE_NAME, 'session_id', {}, feconf.PLAY_TYPE_NORMAL) self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 0) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_EVENTS), 1) # When the task queue is flushed, the data is recorded in the two # realtime layers. self.process_and_flush_pending_tasks() self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_EVENTS), 0) self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 1) self.assertEqual(MockStartExplorationRealtimeModel.get( '0:%s' % self.EXP_ID).count, 1) self.assertEqual(MockStartExplorationRealtimeModel.get( '1:%s' % self.EXP_ID).count, 1) # The batch job has not run yet, so no entity for self.EXP_ID will # have been created in the batch model yet. with self.assertRaises(base_models.BaseModel.EntityNotFoundError): stats_models.ExplorationAnnotationsModel.get(self.EXP_ID) # Launch the batch computation. StartExplorationEventCounter.start_computation() # Data in realtime layer 0 is still there. self.assertEqual(MockStartExplorationRealtimeModel.get( '0:%s' % self.EXP_ID).count, 1) # Data in realtime layer 1 has been deleted. self.assertIsNone(MockStartExplorationRealtimeModel.get( '1:%s' % self.EXP_ID, strict=False)) self.assertEqual( self.count_jobs_in_taskqueue( taskqueue_services.QUEUE_NAME_CONTINUOUS_JOBS), 1) self.process_and_flush_pending_tasks() self.assertEqual( stats_models.ExplorationAnnotationsModel.get( self.EXP_ID).num_starts, 1) # The overall count is still 1. self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 1) # Data in realtime layer 0 has been deleted. self.assertIsNone(MockStartExplorationRealtimeModel.get( '0:%s' % self.EXP_ID, strict=False)) # Data in realtime layer 1 has been deleted. self.assertIsNone(MockStartExplorationRealtimeModel.get( '1:%s' % self.EXP_ID, strict=False)) def test_events_coming_in_while_batch_job_is_running(self): with self.swap( jobs_registry, 'ALL_CONTINUOUS_COMPUTATION_MANAGERS', self.ALL_CC_MANAGERS_FOR_TESTS ): # Currently no events have been recorded. self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 0) # Enqueue the batch computation. (It is running on 0 events). StartExplorationEventCounter._kickoff_batch_job() # pylint: disable=protected-access # Record an event while this job is in the queue. Simulate # this by directly calling on_incoming_event(), because using # StartExplorationEventHandler.record() would just put the event # in the task queue, which we don't want to flush yet. event_services.StartExplorationEventHandler._handle_event( # pylint: disable=protected-access self.EXP_ID, 1, feconf.DEFAULT_INIT_STATE_NAME, 'session_id', {}, feconf.PLAY_TYPE_NORMAL) StartExplorationEventCounter.on_incoming_event( event_services.StartExplorationEventHandler.EVENT_TYPE, self.EXP_ID, 1, feconf.DEFAULT_INIT_STATE_NAME, 'session_id', {}, feconf.PLAY_TYPE_NORMAL) # The overall count is now 1. self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 1) # Finish the job. self.process_and_flush_pending_tasks() # When the batch job completes, the overall count is still 1. self.assertEqual( StartExplorationEventCounter.get_count(self.EXP_ID), 1) # The batch job result should still be 0, since the event arrived # after the batch job started. with self.assertRaises(base_models.BaseModel.EntityNotFoundError): stats_models.ExplorationAnnotationsModel.get(self.EXP_ID) def test_cannot_start_new_job_while_existing_job_still_running(self): with self.swap( jobs_registry, 'ALL_CONTINUOUS_COMPUTATION_MANAGERS', self.ALL_CC_MANAGERS_FOR_TESTS ): StartExplorationEventCounter.start_computation() with self.assertRaisesRegexp( Exception, 'Attempted to start computation StartExplorationEventCounter, ' 'which is already running'): StartExplorationEventCounter.start_computation() self.process_and_flush_pending_tasks() StartExplorationEventCounter.stop_computation('admin_user_id') def test_get_continuous_computations_info_with_existing_model(self): job_models.ContinuousComputationModel( id='StartExplorationEventCounter').put() continuous_computations_data = jobs.get_continuous_computations_info( [StartExplorationEventCounter]) expected_continuous_computations_data = [{ 'active_realtime_layer_index': 0, 'computation_type': 'StartExplorationEventCounter', 'status_code': 'idle', 'is_startable': True, 'is_stoppable': False, 'last_finished_msec': None, 'last_started_msec': None, 'last_stopped_msec': None }] self.assertEqual( expected_continuous_computations_data, continuous_computations_data) def test_failing_continuous_job(self): observed_log_messages = [] def _mock_logging_function(msg, *args): """Mocks logging.error().""" observed_log_messages.append(msg % args) StartExplorationEventCounter.start_computation() status = StartExplorationEventCounter.get_status_code() self.assertEqual( status, job_models.CONTINUOUS_COMPUTATION_STATUS_CODE_RUNNING) with self.swap(logging, 'error', _mock_logging_function): StartExplorationEventCounter.on_batch_job_failure() self.run_but_do_not_flush_pending_tasks() StartExplorationEventCounter.stop_computation('admin_user_id') self.assertEqual( observed_log_messages, ['Job StartExplorationEventCounter failed.']) def test_cancelling_continuous_job(self): observed_log_messages = [] def _mock_logging_function(msg, *args): """Mocks logging.error().""" observed_log_messages.append(msg % args) StartExplorationEventCounter.start_computation() status = StartExplorationEventCounter.get_status_code() self.assertEqual( status, job_models.CONTINUOUS_COMPUTATION_STATUS_CODE_RUNNING) with self.swap(logging, 'info', _mock_logging_function): StartExplorationEventCounter.on_batch_job_canceled() self.run_but_do_not_flush_pending_tasks() StartExplorationEventCounter.stop_computation('admin_user_id') self.assertEqual( observed_log_messages, ['Job StartExplorationEventCounter canceled.']) def test_kickoff_batch_job_after_previous_one_ends(self): with self.swap( jobs_registry, 'ALL_CONTINUOUS_COMPUTATION_MANAGERS', self.ALL_CC_MANAGERS_FOR_TESTS ): self.assertEqual(MockContinuousComputationManager.TIMES_RUN, 0) MockContinuousComputationManager.start_computation() ( MockContinuousComputationManager # pylint: disable=protected-access ._kickoff_batch_job_after_previous_one_ends() ) status = MockContinuousComputationManager.get_status_code() self.assertEqual( status, job_models.CONTINUOUS_COMPUTATION_STATUS_CODE_RUNNING) self.run_but_do_not_flush_pending_tasks() MockContinuousComputationManager.stop_computation('admin_user_id') status = MockContinuousComputationManager.get_status_code() self.assertEqual( status, job_models.CONTINUOUS_COMPUTATION_STATUS_CODE_IDLE) self.assertEqual(MockContinuousComputationManager.TIMES_RUN, 1) # TODO(sll): When we have some concrete ContinuousComputations running in # production, add an integration test to ensure that the registration of event # handlers in the main codebase is happening correctly.
the-stack_106_23712
from os import path, mkdir import numpy as np np.random.seed(1) import random random.seed(1) import tensorflow as tf tf.set_random_seed(1) import timeit import cv2 from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler #, TensorBoard from models import get_densenet121_unet_softmax, dice_coef_rounded_ch0, dice_coef_rounded_ch1, schedule_steps, softmax_dice_loss import tensorflow.keras.backend as K import pandas as pd from tqdm import tqdm from transforms import aug_mega_hardcore from tensorflow.keras import metrics from abc import abstractmethod from tensorflow.keras.preprocessing.image import Iterator import time from skimage import measure from skimage.morphology import square, erosion, dilation, watershed from skimage.filters import median cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) data_folder = path.join('..', 'data') masks_folder = path.join(data_folder, 'masks_all') images_folder = path.join(data_folder, 'images_all') labels_folder = path.join(data_folder, 'labels_all') models_folder = 'nn_models' input_shape = (256, 256) df = pd.read_csv(path.join(data_folder, 'folds.csv')) all_ids = [] all_images = [] all_masks = [] all_labels = [] all_good4copy = [] def preprocess_inputs(x): x = np.asarray(x, dtype='float32') x /= 127.5 x -= 1. return x def bgr_to_lab(img): lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(17, 17)) lab = clahe.apply(lab[:, :, 0]) if lab.mean() > 127: lab = 255 - lab return lab[..., np.newaxis] def create_mask(labels): labels = measure.label(labels, neighbors=8, background=0) tmp = dilation(labels > 0, square(9)) tmp2 = watershed(tmp, labels, mask=tmp, watershed_line=True) > 0 tmp = tmp ^ tmp2 tmp = dilation(tmp, square(7)) msk = (255 * tmp).astype('uint8') props = measure.regionprops(labels) msk0 = 255 * (labels > 0) msk0 = msk0.astype('uint8') msk1 = np.zeros_like(labels, dtype='bool') max_area = np.max([p.area for p in props]) for y0 in range(labels.shape[0]): for x0 in range(labels.shape[1]): if not tmp[y0, x0]: continue if labels[y0, x0] == 0: if max_area > 4000: sz = 6 else: sz = 3 else: sz = 3 if props[labels[y0, x0] - 1].area < 300: sz = 1 elif props[labels[y0, x0] - 1].area < 2000: sz = 2 uniq = np.unique(labels[max(0, y0-sz):min(labels.shape[0], y0+sz+1), max(0, x0-sz):min(labels.shape[1], x0+sz+1)]) if len(uniq[uniq > 0]) > 1: msk1[y0, x0] = True msk0[y0, x0] = 0 msk1 = 255 * msk1 msk1 = msk1.astype('uint8') msk2 = np.zeros_like(labels, dtype='uint8') msk = np.stack((msk0, msk1, msk2)) msk = np.rollaxis(msk, 0, 3) return msk class BaseMaskDatasetIterator(Iterator): def __init__(self, image_ids, random_transformers=None, batch_size=8, shuffle=True, seed=None ): self.image_ids = image_ids self.random_transformers = random_transformers if seed is None: seed = np.uint32(time.time() * 1000) super(BaseMaskDatasetIterator, self).__init__(len(self.image_ids), batch_size, shuffle, seed) @abstractmethod def transform_mask(self, mask, image): raise NotImplementedError def transform_batch_y(self, batch_y): return batch_y def _get_batches_of_transformed_samples(self, index_array): batch_x = [] batch_y = [] for batch_index, image_index in enumerate(index_array): _idx = self.image_ids[image_index] img0 = all_images[_idx].copy() msk0 = all_masks[_idx].copy() lbl0 = all_labels[_idx].copy() good4copy = all_good4copy[_idx] x0 = random.randint(0, img0.shape[1] - input_shape[1]) y0 = random.randint(0, img0.shape[0] - input_shape[0]) img = img0[y0:y0+input_shape[0], x0:x0+input_shape[1], :] msk = msk0[y0:y0+input_shape[0], x0:x0+input_shape[1], :] if len(good4copy) > 0 and random.random() > 0.75: num_copy = random.randrange(1, min(6, len(good4copy)+1)) lbl_max = lbl0.max() for i in range(num_copy): lbl_max += 1 l_id = random.choice(good4copy) lbl_msk = all_labels[_idx] == l_id row, col = np.where(lbl_msk) y1, x1 = np.min(np.where(lbl_msk), axis=1) y2, x2 = np.max(np.where(lbl_msk), axis=1) lbl_msk = lbl_msk[y1:y2+1, x1:x2+1] lbl_img = img0[y1:y2+1, x1:x2+1, :] if random.random() > 0.5: lbl_msk = lbl_msk[:, ::-1, ...] lbl_img = lbl_img[:, ::-1, ...] rot = random.randrange(4) if rot > 0: lbl_msk = np.rot90(lbl_msk, k=rot) lbl_img = np.rot90(lbl_img, k=rot) x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2), min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2)) y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2), min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2)) tmp = erosion(lbl_msk, square(5)) lbl_msk_dif = lbl_msk ^ tmp tmp = dilation(lbl_msk, square(5)) lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk) lbl0[y1:y1+lbl_msk.shape[0], x1:x1+lbl_msk.shape[1]][lbl_msk] = lbl_max img0[y1:y1+lbl_msk.shape[0], x1:x1+lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk] full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool') full_diff_mask[y1:y1+lbl_msk.shape[0], x1:x1+lbl_msk.shape[1]] = lbl_msk_dif img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask] img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask] img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask] img = img0[y0:y0+input_shape[0], x0:x0+input_shape[1], :] lbl = lbl0[y0:y0+input_shape[0], x0:x0+input_shape[1]] msk = create_mask(lbl) if 'ic100_' in all_ids[_idx] or 'gnf_' in all_ids[_idx]: data = self.random_transformers[1](image=img[..., ::-1], mask=msk) else: data = self.random_transformers[0](image=img[..., ::-1], mask=msk) img = data['image'][..., ::-1] msk = data['mask'] msk = msk.astype('float') msk[..., 0] = (msk[..., 0] > 127) * 1 msk[..., 1] = (msk[..., 1] > 127) * (msk[..., 0] == 0) * 1 msk[..., 2] = (msk[..., 1] == 0) * (msk[..., 0] == 0) * 1 otp = msk img = np.concatenate([img, bgr_to_lab(img)], axis=2) batch_x.append(img) batch_y.append(otp) batch_x = np.array(batch_x, dtype="float32") batch_y = np.array(batch_y, dtype="float32") batch_x = preprocess_inputs(batch_x) return self.transform_batch_x(batch_x), self.transform_batch_y(batch_y) def transform_batch_x(self, batch_x): return batch_x def next(self): with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array) def val_data_generator(val_idx, batch_size, validation_steps): while True: inputs = [] outputs = [] step_id = 0 for i in val_idx: img = all_images[i] msk = all_masks[i].copy() x0 = 16 y0 = 16 x1 = 16 y1 = 16 if (img.shape[1] % 32) != 0: x0 = int((32 - img.shape[1] % 32) / 2) x1 = (32 - img.shape[1] % 32) - x0 x0 += 16 x1 += 16 if (img.shape[0] % 32) != 0: y0 = int((32 - img.shape[0] % 32) / 2) y1 = (32 - img.shape[0] % 32) - y0 y0 += 16 y1 += 16 img = np.pad(img, ((y0,y1), (x0,x1), (0, 0)), 'symmetric') msk = np.pad(msk, ((y0,y1), (x0,x1), (0, 0)), 'symmetric') msk = msk.astype('float') msk[..., 0] = (msk[..., 0] > 127) * 1 msk[..., 1] = (msk[..., 1] > 127) * (msk[..., 0] == 0) * 1 msk[..., 2] = (msk[..., 1] == 0) * (msk[..., 0] == 0) * 1 otp = msk img = np.concatenate([img, bgr_to_lab(img)], axis=2) for j in range(batch_size): inputs.append(img) outputs.append(otp) if len(inputs) == batch_size: step_id += 1 inputs = np.asarray(inputs) outputs = np.asarray(outputs, dtype='float') inputs = preprocess_inputs(inputs) yield inputs, outputs inputs = [] outputs = [] if step_id == validation_steps: break def is_grayscale(image): return np.allclose(image[..., 0], image[..., 1], atol=0.001) and np.allclose(image[..., 1], image[..., 2], atol=0.001) if __name__ == '__main__': t0 = timeit.default_timer() fold_nums = [0, 1, 2, 3] if not path.isdir(models_folder): mkdir(models_folder) all_ids = df['img_id'].values all_sources = df['source'].values for i in tqdm(range(len(all_ids))): img_id = all_ids[i] msk = cv2.imread(path.join(masks_folder, '{0}.png'.format(img_id)), cv2.IMREAD_UNCHANGED) img = cv2.imread(path.join(images_folder, '{0}.png'.format(img_id)), cv2.IMREAD_COLOR) lbl = cv2.imread(path.join(labels_folder, '{0}.tif'.format(img_id)), cv2.IMREAD_UNCHANGED) if img.shape[0] < 256 or img.shape[1] < 256: y_pad = 0 x_pad = 0 if img.shape[1] < 256: x_pad = 256 - img.shape[1] if img.shape[0] < 256: y_pad = 256 - img.shape[0] img = np.pad(img, ((0, y_pad), (0, x_pad), (0, 0)), 'constant') msk = np.pad(msk, ((0, y_pad), (0, x_pad), (0, 0)), 'constant') lbl = np.pad(lbl, ((0, y_pad), (0, x_pad)), 'constant') all_images.append(img) all_masks.append(msk) all_labels.append(lbl) tmp = np.zeros_like(msk[..., 0], dtype='uint8') tmp[1:-1, 1:-1] = msk[1:-1, 1:-1, 0] good4copy = list(set(np.unique(lbl[lbl > 0])).symmetric_difference(np.unique(lbl[(lbl > 0) & (tmp == 0)]))) all_good4copy.append(good4copy) batch_size = 16 val_batch = 1 polosa_id = '193ffaa5272d5c421ae02130a64d98ad120ec70e4ed97a72cdcd4801ce93b066' for it in range(4): if it not in fold_nums: continue train_idx0 = df[(df['fold'] != it) | (df['img_id'] == polosa_id)].index.values train_groups = df[(df['fold'] != it) | (df['img_id'] == polosa_id)]['cluster'].values train_ids = df[(df['fold'] != it) | (df['img_id'] == polosa_id)]['img_id'].values train_idx = [] for i in range(len(train_idx0)): rep = 1 if train_groups[i] in ['b', 'd', 'e', 'n']: rep = 3 elif train_groups[i] in ['c', 'g', 'k', 'l']: rep = 2 if train_ids[i] == polosa_id: rep = 5 train_idx.extend([train_idx0[i]] * rep) train_idx = np.asarray(train_idx) val_idx0 = df[(df['fold'] == it)].index.values val_groups = df[(df['fold'] == it)]['cluster'].values val_idx = [] for i in range(len(val_idx0)): rep = 1 if val_groups[i] in ['b', 'd', 'e', 'n']: rep = 3 elif val_groups[i] in ['c', 'g', 'k', 'l']: rep = 2 val_idx.extend([val_idx0[i]] * rep) val_idx = np.asarray(val_idx) validation_steps = len(val_idx) steps_per_epoch = 5 * int(len(train_idx) / batch_size) print('Training fold', it) print('steps_per_epoch', steps_per_epoch, 'validation_steps', validation_steps) data_gen = BaseMaskDatasetIterator(train_idx, random_transformers=[aug_mega_hardcore((-0.25, 0.6)), aug_mega_hardcore((-0.6, 0.25))], batch_size=batch_size, shuffle=True, seed=1 ) np.random.seed(it+111) random.seed(it+111) tf.set_random_seed(it+111) # tbCallback = TensorBoard(log_dir="tb_logs/densenet_softmax_{0}".format(it), histogram_freq=0, write_graph=True, write_images=False) lrSchedule = LearningRateScheduler(lambda epoch: schedule_steps(epoch, [(1e-5, 2), (3e-4, 4), (1e-4, 6)])) model = get_densenet121_unet_softmax((None, None), weights='imagenet') model.compile(loss=softmax_dice_loss, optimizer=Adam(lr=3e-4, amsgrad=True), metrics=[dice_coef_rounded_ch0, dice_coef_rounded_ch1, metrics.categorical_crossentropy]) model.fit_generator(generator=data_gen, epochs=6, steps_per_epoch=steps_per_epoch, verbose=2, validation_data=val_data_generator(val_idx, val_batch, validation_steps), validation_steps=validation_steps, callbacks=[lrSchedule], max_queue_size=5, workers=6) lrSchedule = LearningRateScheduler(lambda epoch: schedule_steps(epoch, [(5e-6, 2), (2e-4, 15), (1e-4, 50), (5e-5, 70), (2e-5, 80), (1e-5, 90)])) for l in model.layers: l.trainable = True model.compile(loss=softmax_dice_loss, optimizer=Adam(lr=5e-6, amsgrad=True), metrics=[dice_coef_rounded_ch0, dice_coef_rounded_ch1, metrics.categorical_crossentropy]) model_checkpoint = ModelCheckpoint(path.join(models_folder, 'densenet_weights_{0}.h5'.format(it)), monitor='val_loss', save_best_only=True, save_weights_only=True, mode='min') model.fit_generator(generator=data_gen, epochs=90, steps_per_epoch=steps_per_epoch, verbose=2, validation_data=val_data_generator(val_idx, val_batch, validation_steps), validation_steps=validation_steps, callbacks=[lrSchedule, model_checkpoint], #, tbCallback max_queue_size=5, workers=6) del model del model_checkpoint K.clear_session() np.random.seed(it+222) random.seed(it+222) tf.set_random_seed(it+222) model = get_densenet121_unet_softmax((None, None), weights=None) model.load_weights(path.join(models_folder, 'densenet_weights_{0}.h5'.format(it))) lrSchedule = LearningRateScheduler(lambda epoch: schedule_steps(epoch, [(1e-6, 92), (3e-5, 100), (2e-5, 120), (1e-5, 130)])) model.compile(loss=softmax_dice_loss, optimizer=Adam(lr=1e-6, amsgrad=True), metrics=[dice_coef_rounded_ch0, dice_coef_rounded_ch1, metrics.categorical_crossentropy]) model_checkpoint2 = ModelCheckpoint(path.join(models_folder, 'densenet_weights_{0}.h5'.format(it)), monitor='val_loss', save_best_only=True, save_weights_only=True, mode='min') model.fit_generator(generator=data_gen, epochs=130, steps_per_epoch=steps_per_epoch, verbose=2, validation_data=val_data_generator(val_idx, val_batch, validation_steps), validation_steps=validation_steps, callbacks=[lrSchedule, model_checkpoint2], #, tbCallback max_queue_size=5, workers=6, initial_epoch=90) del model del model_checkpoint2 K.clear_session() elapsed = timeit.default_timer() - t0 print('Time: {:.3f} min'.format(elapsed / 60))
the-stack_106_23713
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training-related utilities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import numpy as np from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import context from tensorflow.python.framework import tensor_util from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras import losses from tensorflow.python.keras._impl.keras import metrics as metrics_module from tensorflow.python.ops import math_ops def check_num_samples(ins, batch_size=None, steps=None, steps_name='steps'): """Determine the number of samples provided for training and evaluation. The number of samples is not defined when running with `steps`, in which case the number of samples is set to `None`. Arguments: ins: List of tensors to be fed to the Keras function. batch_size: Integer batch size or `None` if not defined. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. steps_name: The public API's parameter name for `steps`. Raises: ValueError: when `steps` is `None` and the attribute `ins.shape` does not exist. Also raises ValueError when `steps` is not `None` and `batch_size` is not `None` because they are mutually exclusive. Returns: When steps is `None`, returns the number of samples to be processed based on the size of the first dimension of the first input numpy array. When steps is not `None` and `batch_size` is `None`, returns `None`. Raises: ValueError: In case of invalid arguments. """ if steps is not None and batch_size is not None: raise ValueError( 'If ' + steps_name + ' is set, the `batch_size` must be None.') if check_steps_argument(ins, steps, steps_name): return None if hasattr(ins[0], 'shape'): return int(ins[0].shape[0]) return None # Edge case where ins == [static_learning_phase] def standardize_single_array(x): if x is None: return None elif tensor_util.is_tensor(x): return x elif x.ndim == 1: x = np.expand_dims(x, 1) return x def standardize_input_data(data, names, shapes=None, check_batch_axis=True, exception_prefix=''): """Normalizes inputs and targets provided by users. Users may pass data as a list of arrays, dictionary of arrays, or as a single array. We normalize this to an ordered list of arrays (same order as `names`), while checking that the provided arrays have shapes that match the network's expectations. Arguments: data: User-provided input data (polymorphic). names: List of expected array names. shapes: Optional list of expected array shapes. check_batch_axis: Boolean; whether to check that the batch axis of the arrays matches the expected value found in `shapes`. exception_prefix: String prefix used for exception formatting. Returns: List of standardized input arrays (one array per model input). Raises: ValueError: in case of improperly formatted user-provided data. """ if not names: if data is not None and hasattr(data, '__len__') and len(data): raise ValueError('Error when checking model ' + exception_prefix + ': ' 'expected no data, but got:', data) return [] if data is None: return [None for _ in range(len(names))] if isinstance(data, dict): try: data = [ data[x].values if data[x].__class__.__name__ == 'DataFrame' else data[x] for x in names ] except KeyError as e: raise ValueError('No data provided for "' + e.args[0] + '". Need data ' 'for each key in: ' + str(names)) elif isinstance(data, list): if isinstance(data[0], list): data = [np.asarray(d) for d in data] elif len(names) == 1 and isinstance(data[0], (float, int)): data = [np.asarray(data)] else: data = [ x.values if x.__class__.__name__ == 'DataFrame' else x for x in data ] else: data = data.values if data.__class__.__name__ == 'DataFrame' else data data = [data] data = [standardize_single_array(x) for x in data] if len(data) != len(names): if data and hasattr(data[0], 'shape'): raise ValueError('Error when checking model ' + exception_prefix + ': the list of Numpy arrays that you are passing to ' 'your model is not the size the model expected. ' 'Expected to see ' + str(len(names)) + ' array(s), ' 'but instead got the following list of ' + str(len(data)) + ' arrays: ' + str(data)[:200] + '...') elif len(names) > 1: raise ValueError( 'Error when checking model ' + exception_prefix + ': you are passing a list as input to your model, ' 'but the model expects a list of ' + str(len(names)) + ' Numpy arrays instead. The list you passed was: ' + str(data)[:200]) elif len(data) == 1 and not hasattr(data[0], 'shape'): raise TypeError('Error when checking model ' + exception_prefix + ': data should be a Numpy array, or list/dict of ' 'Numpy arrays. Found: ' + str(data)[:200] + '...') elif len(names) == 1: data = [np.asarray(data)] # Check shapes compatibility. if shapes: for i in range(len(names)): if shapes[i] is not None and not tensor_util.is_tensor(data[i]): data_shape = data[i].shape shape = shapes[i] if data[i].ndim != len(shape): raise ValueError('Error when checking ' + exception_prefix + ': expected ' + names[i] + ' to have ' + str(len(shape)) + ' dimensions, but got array ' 'with shape ' + str(data_shape)) if not check_batch_axis: data_shape = data_shape[1:] shape = shape[1:] for dim, ref_dim in zip(data_shape, shape): if ref_dim != dim and ref_dim: raise ValueError( 'Error when checking ' + exception_prefix + ': expected ' + names[i] + ' to have shape ' + str(shape) + ' but got array with shape ' + str(data_shape)) return data def standardize_sample_or_class_weights(x_weight, output_names, weight_type): """Maps `sample_weight` or `class_weight` to model outputs. Arguments: x_weight: User-provided `sample_weight` or `class_weight` argument. output_names: List of output names (strings) in the model. weight_type: A string used purely for exception printing. Returns: A list of `sample_weight` or `class_weight` where there are exactly one element per model output. Raises: ValueError: In case of invalid user-provided argument. """ if x_weight is None or len(x_weight) == 0: # pylint: disable=g-explicit-length-test return [None for _ in output_names] if len(output_names) == 1: if isinstance(x_weight, list) and len(x_weight) == 1: return x_weight if isinstance(x_weight, dict) and output_names[0] in x_weight: return [x_weight[output_names[0]]] else: return [x_weight] if isinstance(x_weight, list): if len(x_weight) != len(output_names): raise ValueError('Provided `' + weight_type + '` was a list of ' + str(len(x_weight)) + ' elements, but the model has ' + str(len(output_names)) + ' outputs. ' 'You should provide one `' + weight_type + '`' 'array per model output.') return x_weight if isinstance(x_weight, dict): x_weights = [] for name in output_names: x_weights.append(x_weight.get(name)) return x_weights else: raise TypeError( 'The model has multiple outputs, so `' + weight_type + '` ' 'should be either a list or a dict. ' 'Provided `' + weight_type + '` type not understood: ' + str(x_weight)) def standardize_class_weights(class_weight, output_names): return standardize_sample_or_class_weights(class_weight, output_names, 'class_weight') def standardize_sample_weights(sample_weight, output_names): return standardize_sample_or_class_weights(sample_weight, output_names, 'sample_weight') def check_array_lengths(inputs, targets, weights=None): """Does user input validation for numpy arrays. Arguments: inputs: list of Numpy arrays of inputs. targets: list of Numpy arrays of targets. weights: list of Numpy arrays of sample weights. Raises: ValueError: in case of incorrectly formatted data. """ def set_of_lengths(x): # Returns a set with the variation between # different shapes, with None => 0 if x is None: return {} else: return set([y.shape[0] for y in x if y is not None and not tensor_util.is_tensor(y)]) set_x = set_of_lengths(inputs) set_y = set_of_lengths(targets) set_w = set_of_lengths(weights) if len(set_x) > 1: raise ValueError('All input arrays (x) should have ' 'the same number of samples. Got array shapes: ' + str([x.shape for x in inputs])) if len(set_y) > 1: raise ValueError('All target arrays (y) should have ' 'the same number of samples. Got array shapes: ' + str([y.shape for y in targets])) if set_x and set_y and list(set_x)[0] != list(set_y)[0]: raise ValueError('Input arrays should have ' 'the same number of samples as target arrays. ' 'Found ' + str(list(set_x)[0]) + ' input samples ' 'and ' + str(list(set_y)[0]) + ' target samples.') if len(set_w) > 1: raise ValueError('All sample_weight arrays should have ' 'the same number of samples. Got array shapes: ' + str([w.shape for w in weights])) if set_y and set_w and list(set_y)[0] != list(set_w)[0]: raise ValueError('Sample_weight arrays should have ' 'the same number of samples as target arrays. Got ' + str(list(set_y)[0]) + ' input samples and ' + str(list(set_w)[0]) + ' target samples.') def check_loss_and_target_compatibility(targets, loss_fns, output_shapes): """Does validation on the compatibility of targets and loss functions. This helps prevent users from using loss functions incorrectly. This check is purely for UX purposes. Arguments: targets: list of Numpy arrays of targets. loss_fns: list of loss functions. output_shapes: list of shapes of model outputs. Raises: ValueError: if a loss function or target array is incompatible with an output. """ key_losses = { losses.mean_squared_error, losses.binary_crossentropy, losses.categorical_crossentropy } for y, loss, shape in zip(targets, loss_fns, output_shapes): if y is None or loss is None or tensor_util.is_tensor(y): continue if loss is losses.categorical_crossentropy: if y.shape[-1] == 1: raise ValueError('You are passing a target array of shape ' + str( y.shape) + ' while using as loss `categorical_crossentropy`. ' '`categorical_crossentropy` expects ' 'targets to be binary matrices (1s and 0s) ' 'of shape (samples, classes). ' 'If your targets are integer classes, ' 'you can convert them to the expected format via:\n' '```\n' 'from keras.utils import to_categorical\n' 'y_binary = to_categorical(y_int)\n' '```\n' '\n' 'Alternatively, you can use the loss function ' '`sparse_categorical_crossentropy` instead, ' 'which does expect integer targets.') if loss in key_losses: for target_dim, out_dim in zip(y.shape[1:], shape[1:]): if out_dim is not None and target_dim != out_dim: raise ValueError('A target array with shape ' + str(y.shape) + ' was passed for an output of shape ' + str(shape) + ' while using as loss `' + loss.__name__ + '`. ' 'This loss expects ' 'targets to have the same shape ' 'as the output.') def collect_metrics(metrics, output_names): """Maps metric functions to model outputs. Arguments: metrics: a list or dict of metric functions. output_names: a list of the names (strings) of model outputs. Returns: A list (one entry per model output) of lists of metric functions. For instance, if the model has 2 outputs, and for the first output we want to compute "binary_accuracy" and "binary_crossentropy", and just "binary_accuracy" for the second output, the list would look like: `[[binary_accuracy, binary_crossentropy], [binary_accuracy]]` Raises: TypeError: if an incorrect type is passed for the `metrics` argument. """ if not metrics: return [[] for _ in output_names] if isinstance(metrics, list): # we then apply all metrics to all outputs. return [copy.copy(metrics) for _ in output_names] elif isinstance(metrics, dict): nested_metrics = [] for name in output_names: output_metrics = metrics.get(name, []) if not isinstance(output_metrics, list): output_metrics = [output_metrics] nested_metrics.append(output_metrics) return nested_metrics else: raise TypeError('Type of `metrics` argument not understood. ' 'Expected a list or dictionary, found: ' + str(metrics)) def batch_shuffle(index_array, batch_size): """Shuffles an array in a batch-wise fashion. Useful for shuffling HDF5 arrays (where one cannot access arbitrary indices). Arguments: index_array: array of indices to be shuffled. batch_size: integer. Returns: The `index_array` array, shuffled in a batch-wise fashion. """ batch_count = int(len(index_array) / batch_size) # to reshape we need to be cleanly divisible by batch size # we stash extra items and reappend them after shuffling last_batch = index_array[batch_count * batch_size:] index_array = index_array[:batch_count * batch_size] index_array = index_array.reshape((batch_count, batch_size)) np.random.shuffle(index_array) index_array = index_array.flatten() return np.append(index_array, last_batch) def weighted_masked_objective(fn): """Adds support for masking and sample-weighting to an objective function. It transforms an objective function `fn(y_true, y_pred)` into a sample-weighted, cost-masked objective function `fn(y_true, y_pred, weights, mask)`. Arguments: fn: The objective function to wrap, with signature `fn(y_true, y_pred)`. Returns: A function with signature `fn(y_true, y_pred, weights, mask)`. """ if fn is None: return None def weighted(y_true, y_pred, weights, mask=None): """Wrapper function. Arguments: y_true: `y_true` argument of `fn`. y_pred: `y_pred` argument of `fn`. weights: Weights tensor. mask: Mask tensor. Returns: Scalar tensor. """ # score_array has ndim >= 2 score_array = fn(y_true, y_pred) if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano mask = math_ops.cast(mask, K.floatx()) # mask should have the same shape as score_array score_array *= mask # the loss per batch should be proportional # to the number of unmasked samples. score_array /= K.mean(mask) # apply sample weighting if weights is not None: # reduce score_array to same ndim as weight array ndim = K.ndim(score_array) weight_ndim = K.ndim(weights) score_array = K.mean(score_array, axis=list(range(weight_ndim, ndim))) score_array *= weights score_array /= K.mean( math_ops.cast(math_ops.not_equal(weights, 0), K.floatx())) return K.mean(score_array) return weighted def standardize_weights(y, sample_weight=None, class_weight=None, sample_weight_mode=None): """Performs sample weight validation and standardization. Everything gets normalized to a single sample-wise (or timestep-wise) weight array. Arguments: y: Numpy array of model targets to be weighted. sample_weight: User-provided `sample_weight` argument. class_weight: User-provided `class_weight` argument. sample_weight_mode: One of `None` or `"temporal"`. `"temporal"` indicated that we expect 2D weight data that will be applied to the last 2 dimensions of the targets (i.e. we are weighting timesteps, not samples). Returns: A numpy array of target weights, one entry per sample to weight. Raises: ValueError: In case of invalid user-provided arguments. """ if sample_weight_mode is not None: if sample_weight_mode != 'temporal': raise ValueError('"sample_weight_mode ' 'should be None or "temporal". ' 'Found: ' + str(sample_weight_mode)) if len(y.shape) < 3: raise ValueError('Found a sample_weight array for ' 'an input with shape ' + str(y.shape) + '. ' 'Timestep-wise sample weighting (use of ' 'sample_weight_mode="temporal") is restricted to ' 'outputs that are at least 3D, i.e. that have ' 'a time dimension.') if sample_weight is not None and len(sample_weight.shape) != 2: raise ValueError('Found a sample_weight array with shape ' + str(sample_weight.shape) + '. ' 'In order to use timestep-wise sample weighting, ' 'you should pass a 2D sample_weight array.') else: if sample_weight is not None and len(sample_weight.shape) != 1: raise ValueError('Found a sample_weight array with shape ' + str(sample_weight.shape) + '. ' 'In order to use timestep-wise sample weights, ' 'you should specify ' 'sample_weight_mode="temporal" ' 'in compile(). If you just mean to use ' 'sample-wise weights, make sure your ' 'sample_weight array is 1D.') if sample_weight is not None: if len(sample_weight.shape) > len(y.shape): raise ValueError( 'Found a sample_weight with shape' + str(sample_weight.shape) + '.' 'Expected sample_weight with rank ' 'less than or equal to ' + str(len(y.shape))) if y.shape[:sample_weight.ndim] != sample_weight.shape: raise ValueError( 'Found a sample_weight array with shape ' + str(sample_weight.shape) + ' for an input with shape ' + str(y.shape) + '. ' 'sample_weight cannot be broadcast.') return sample_weight elif isinstance(class_weight, dict): if len(y.shape) > 2: raise ValueError('`class_weight` not supported for ' '3+ dimensional targets.') if y.shape[1] > 1: y_classes = np.argmax(y, axis=1) elif y.shape[1] == 1: y_classes = np.reshape(y, y.shape[0]) else: y_classes = y weights = np.asarray( [class_weight[cls] for cls in y_classes if cls in class_weight]) if len(weights) != len(y_classes): # subtract the sets to pick all missing classes existing_classes = set(y_classes) existing_class_weight = set(class_weight.keys()) raise ValueError('`class_weight` must contain all classes in the data.' ' The classes %s exist in the data but not in ' '`class_weight`.' % (existing_classes - existing_class_weight)) return weights else: return None def has_symbolic_tensors(ls): if context.executing_eagerly(): return False if isinstance(ls, (list, tuple)): return any(tensor_util.is_tensor(v) for v in ls) return tensor_util.is_tensor(ls) def populate_metric_names(model): for i in range(len(model.outputs)): metrics = model.nested_metrics[i] for metric in metrics: base_metric_name = get_base_metric_name(metric) add_metric_name(model, base_metric_name, i) def get_base_metric_name(metric, weighted=False): """Returns the metric name given the metric function. Arguments: metric: Metric function name or reference. weighted: Boolean indicating if the metric for which we are adding names is weighted. Returns: a metric name. """ metric_name_prefix = 'weighted_' if weighted else '' if metric in ('accuracy', 'acc', 'crossentropy', 'ce'): if metric in ('accuracy', 'acc'): suffix = 'acc' elif metric in ('crossentropy', 'ce'): suffix = 'ce' metric_name = metric_name_prefix + suffix else: metric_fn = metrics_module.get(metric) # Get metric name as string if hasattr(metric_fn, 'name'): metric_name = metric_fn.name else: metric_name = metric_fn.__name__ metric_name = metric_name_prefix + metric_name return metric_name def add_metric_name(model, metric_name, index): """Makes the metric name unique and adds it to the model's metric name list. If there are multiple outputs for which the metrics are calculated, the metric names have to be made unique by appending an integer. Arguments: model: Model to which we are adding metric names. metric_name: Metric name that corresponds to the metric specified by the user. For example: 'acc' index: The index of the model output for which the metric name is being added. """ if len(model.output_names) > 1: metric_name = '%s_%s' % (model.output_names[index], metric_name) j = 1 base_metric_name = metric_name while metric_name in model.metrics_names: metric_name = '%s_%d' % (base_metric_name, j) j += 1 model.metrics_names.append(metric_name) def validate_iterator_input(x, y, sample_weight, validation_split=None): """Validates user input arguments when a dataset iterator is passed. Arguments: x: Input data. A `tf.data` dataset iterator. y: Target data. It could be either Numpy array(s) or TensorFlow tensor(s). Expected to be `None` when `x` is a dataset iterator. sample_weight: An optional sample-weight array passed by the user to weight the importance of each sample in `x`. Expected to be `None` when `x` is a dataset iterator validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. Expected to be `None` when `x` is a dataset iterator. Raises: ValueError: if argument `y` or `sample_weight` or `validation_split` are provided by user. """ if y is not None: raise ValueError('You passed a dataset iterator (%s) as input `x` to ' 'your model. In that case, you should not specify ' 'a target (`y`) argument, since the dataset iterator ' 'generates both input data and target data. ' 'Received: %s' % (x, y)) if sample_weight is not None: raise ValueError('`sample_weight` argument is not supported when input' ' `x` is a dataset iterator. ' 'Received: x=%s, sample_weight=%s' % (x, sample_weight)) if validation_split is not None and validation_split != 0.0: raise ValueError( '`validation_split` argument is not supported when ' 'input `x` is a dataset iterator. ' 'Received: x=%s, validation_split=%f' % (x, validation_split)) def check_steps_argument(input_data, steps, steps_name): """Validates `steps` argument based on input data's type. The cases when `steps` value must be provided are when 1. input data passed is an iterator. 2. model was built on top of symbolic tensors, input data is not required and is `None`. 3. input data passed is a symbolic tensor. Arguments: input_data: Input data. Can be Numpy array(s) or TensorFlow tensor(s) or tf.data.Dataset iterator or `None`. steps: Integer or `None`. Total number of steps (batches of samples) to execute. steps_name: The public API's parameter name for `steps`. Returns: boolean, True if `steps` argument is required, else False. Raises: ValueError: if `steps` argument is required for given input data type but not provided. """ is_x_iterator = ( isinstance(input_data, iterator_ops.Iterator) or isinstance(input_data, iterator_ops.EagerIterator)) if (input_data is None or is_x_iterator or has_symbolic_tensors(input_data) or (isinstance(input_data, list) and not input_data)): if steps is None: input_type_str = 'iterators' if is_x_iterator else 'data tensors' raise ValueError('When using {input_type} as input to a model, you should' ' specify the `{steps_name}` argument.'.format( input_type=input_type_str, steps_name=steps_name)) return True return False
the-stack_106_23715
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import unittest import random import logging from pio_tests.integration import BaseTestCase, AppContext from utils import AppEngine, srun, pjoin def read_events(file_path): RATE_ACTIONS_DELIMITER = "::" with open(file_path, 'r') as f: events = [] for line in f: data = line.rstrip('\r\n').split(RATE_ACTIONS_DELIMITER) if random.randint(0, 1) == 1: events.append( { "event": "rate", "entityType": "user", "entityId": data[0], "targetEntityType": "item", "targetEntityId": data[1], "properties": { "rating" : float(data[2]) } }) else: events.append({ "event": "buy", "entityType": "user", "entityId": data[0], "targetEntityType": "item", "targetEntityId": data[1] }) return events class QuickStartTest(BaseTestCase): def setUp(self): self.log.info("Setting up the engine") template_path = pjoin( self.test_context.engine_directory, "recommendation-engine") engine_json_path = pjoin( self.test_context.data_directory, "quickstart_test/engine.json") self.training_data_path = pjoin( self.test_context.data_directory, "quickstart_test/training_data.txt") # downloading training data srun('curl https://raw.githubusercontent.com/apache/spark/master/' \ 'data/mllib/sample_movielens_data.txt --create-dirs -o {}' .format(self.training_data_path)) app_context = AppContext( name="MyRecommender", template=template_path, engine_json_path=engine_json_path) self.app = AppEngine(self.test_context, app_context) def runTest(self): self.log.info("Adding a new application") self.app.new() event1 = { "event" : "rate", "entityType" : "user", "entityId" : "u0", "targetEntityType" : "item", "targetEntityId" : "i0", "properties" : { "rating" : 5 }, "eventTime" : "2014-11-02T09:39:45.618-08:00" } event2 = { "event" : "buy", "entityType" : "user", "entityId" : "u1", "targetEntityType" : "item", "targetEntityId" : "i2", "eventTime" : "2014-11-10T12:34:56.123-08:00" } self.log.info("Sending two test events") self.assertListEqual( [201, 201], [self.app.send_event(e).status_code for e in [event1, event2]]) self.log.info("Checking the number of events stored on the server") r = self.app.get_events() self.assertEquals(200, r.status_code) stored_events = r.json() self.assertEqual(2, len(stored_events)) self.log.info("Importing many events") new_events = read_events(self.training_data_path) for ev in new_events: r = self.app.send_event(ev) self.assertEqual(201, r.status_code) self.log.info("Checking the number of events stored on the server after the update") r = self.app.get_events(params={'limit': -1}) self.assertEquals(200, r.status_code) stored_events = r.json() self.assertEquals(len(new_events) + 2, len(stored_events)) self.log.info("Building an engine...") self.app.build() self.log.info("Training...") self.app.train() self.log.info("Deploying and waiting 15s for it to start...") self.app.deploy(wait_time=15) self.log.info("Sending a single query and checking results") user_query = { "user": 1, "num": 4 } r = self.app.query(user_query) self.assertEqual(200, r.status_code) result = r.json() self.assertEqual(4, len(result['itemScores'])) def tearDown(self): self.log.info("Stopping deployed engine") self.app.stop() self.log.info("Deleting all related data") self.app.delete_data() self.log.info("Removing an app") self.app.delete()
the-stack_106_23716
from __future__ import print_function import numpy as np from scipy.sparse.linalg.isolve.utils import make_system from pyamg.util.linalg import norm from warnings import warn __all__ = ['cr'] def cr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None, residuals=None): """Conjugate Residual algorithm. Solves the linear system Ax = b. Left preconditioning is supported. The matrix A must be Hermitian symmetric (but not necessarily definite). Parameters ---------- A : array, matrix, sparse matrix, LinearOperator n x n, linear system to solve b : array, matrix right hand side, shape is (n,) or (n,1) x0 : array, matrix initial guess, default is a vector of zeros tol : float relative convergence tolerance, i.e. tol is scaled by the preconditioner norm of r_0, or ||r_0||_M. maxiter : int maximum number of allowed iterations xtype : type dtype for the solution, default is automatic type detection M : array, matrix, sparse matrix, LinearOperator n x n, inverted preconditioner, i.e. solve M A x = M b. callback : function User-supplied function is called after each iteration as callback(xk), where xk is the current solution vector residuals : list residuals contains the residual norm history, including the initial residual. The preconditioner norm is used, instead of the Euclidean norm. Returns ------- (xNew, info) xNew : an updated guess to the solution of Ax = b info : halting status of cr == ======================================= 0 successful exit >0 convergence to tolerance not achieved, return iteration count instead. <0 numerical breakdown, or illegal input == ======================================= Notes ----- The LinearOperator class is in scipy.sparse.linalg.interface. Use this class if you prefer to define A or M as a mat-vec routine as opposed to explicitly constructing the matrix. A.psolve(..) is still supported as a legacy. The 2-norm of the preconditioned residual is used both for halting and returned in the residuals list. Examples -------- >>> from pyamg.krylov.cr import cr >>> from pyamg.util.linalg import norm >>> import numpy as np >>> from pyamg.gallery import poisson >>> A = poisson((10,10)) >>> b = np.ones((A.shape[0],)) >>> (x,flag) = cr(A,b, maxiter=2, tol=1e-8) >>> print norm(b - A*x) 10.9370700187 References ---------- .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems, Second Edition", SIAM, pp. 262-67, 2003 http://www-users.cs.umn.edu/~saad/books.html """ A, M, x, b, postprocess = make_system(A, M, x0, b) # n = len(b) # Ensure that warnings are always reissued from this function import warnings warnings.filterwarnings('always', module='pyamg.krylov._cr') # determine maxiter if maxiter is None: maxiter = int(1.3*len(b)) + 2 elif maxiter < 1: raise ValueError('Number of iterations must be positive') # choose tolerance for numerically zero values # t = A.dtype.char # eps = np.finfo(np.float).eps # feps = np.finfo(np.single).eps # geps = np.finfo(np.longfloat).eps # _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2} # numerically_zero = {0: feps*1e3, 1: eps*1e6, # 2: geps*1e6}[_array_precision[t]] # setup method r = b - A*x z = M*r p = z.copy() zz = np.inner(z.conjugate(), z) # use preconditioner norm normr = np.sqrt(zz) if residuals is not None: residuals[:] = [normr] # initial residual # Check initial guess ( scaling by b, if b != 0, # must account for case when norm(b) is very small) normb = norm(b) if normb == 0.0: normb = 1.0 if normr < tol*normb: return (postprocess(x), 0) # Scale tol by ||r_0||_M if normr != 0.0: tol = tol*normr # How often should r be recomputed recompute_r = 8 iter = 0 Az = A*z rAz = np.inner(r.conjugate(), Az) Ap = A*p while True: rAz_old = rAz alpha = rAz / np.inner(Ap.conjugate(), Ap) # 3 x += alpha * p # 4 if np.mod(iter, recompute_r) and iter > 0: # 5 r -= alpha * Ap else: r = b - A*x z = M*r Az = A*z rAz = np.inner(r.conjugate(), Az) beta = rAz/rAz_old # 6 p *= beta # 7 p += z Ap *= beta # 8 Ap += Az iter += 1 zz = np.inner(z.conjugate(), z) normr = np.sqrt(zz) # use preconditioner norm if residuals is not None: residuals.append(normr) if callback is not None: callback(x) if normr < tol: return (postprocess(x), 0) elif zz == 0.0: # important to test after testing normr < tol. rz == 0.0 is an # indicator of convergence when r = 0.0 warn("\nSingular preconditioner detected in CR, ceasing \ iterations\n") return (postprocess(x), -1) if iter == maxiter: return (postprocess(x), iter) if __name__ == '__main__': # from numpy import diag # A = random((4,4)) # A = A*A.transpose() + diag([10,10,10,10]) # b = random((4,1)) # x0 = random((4,1)) from pyamg.gallery import stencil_grid from numpy.random import random import time from pyamg.krylov._gmres import gmres A = stencil_grid([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], (100, 100), dtype=float, format='csr') b = random((A.shape[0],)) x0 = random((A.shape[0],)) print('\n\nTesting CR with %d x %d 2D Laplace Matrix' % (A.shape[0], A.shape[0])) t1 = time.time() r = [] (x, flag) = cr(A, b, x0, tol=1e-8, maxiter=100, residuals=r) t2 = time.time() print('%s took %0.3f ms' % ('cr', (t2-t1)*1000.0)) print('norm = %g' % (norm(b - A*x))) print('info flag = %d' % (flag)) t1 = time.time() r2 = [] (x, flag) = gmres(A, b, x0, tol=1e-8, maxiter=100, residuals=r2) t2 = time.time() print('%s took %0.3f ms' % ('gmres', (t2-t1)*1000.0)) print('norm = %g' % (norm(b - A*x))) print('info flag = %d' % (flag)) # from scipy.sparse.linalg.isolve import cg as icg # t1=time.time() # (y,flag) = icg(A,b,x0,tol=1e-8,maxiter=100) # t2=time.time() # print '\n%s took %0.3f ms' % ('linalg cg', (t2-t1)*1000.0) # print 'norm = %g'%(norm(b - A*y)) # print 'info flag = %d'%(flag)
the-stack_106_23718
import os import shutil from bson.json_util import dumps import numpy as np from pax import plugin, exceptions, datastructure from pax.formats import flat_data_formats class TableWriter(plugin.OutputPlugin): """Output data to flat table formats Convert our data structure to numpy record arrays, one for each class (Event, Peak, ReconstructedPosition, ...). Then output to one of several output formats (see formats.py) For each index, an extra column is added (e.g. ReconstructedPosition has an extra column 'Event', 'Peak' and 'ReconstructedPosition', each restarting from 0 whenever the corresponding higher-level entity changes). The timestamp, pax configuration and version number are stored in a separate table/array: pax_info. Because numpy arrays are optimized for working with large data structures, converting/appending each instance separately would take long. Hence, we store data in lists first, then convert those once we've collected a bunch. Available configuration options: - output_format: Name of output format to produce. Must be child class of TableFormat - output_name: The name of the output file or folder, WITHOUT file extension. - fields_to_ignore: Fields which will not be stored. - overwrite_data: If True, overwrite if a file/directory with the same name exists - string_data_length: Maximum length of strings in string data fields; longer strings will be truncated. (the pax configuration is always stored fully) - append_data: Append data to an existing file, if output format supports it - buffer_size: Convert to numpy record arrays after every nth event. - write_in_chunks: Write to disk every time after converting to numpy record arrays, if the output format supports it. Else all data is kept in memory, then written to disk on shutdown. """ def startup(self): # Check if user forgot to specify some fields in fields_to_ignore if 'hits' not in self.config['fields_to_ignore'] and 'all_hits' not in self.config['fields_to_ignore']: raise ValueError("You must ignore either (peak.)hits or (event.)all_hits to avoid duplicating" "the hit info in the tabular output.") if 'sum_waveforms' not in self.config['fields_to_ignore']: self.log.warning("You did not ignore the (event.)sum_waveforms field. This means you're trying to dump the" "entire event sum waveform to the tabular output. " "I'll try, but if it fails, you have been warned...") if 'raw_data' not in self.config['fields_to_ignore']: self.log.warning("You did not ignore the (pulse.)raw_data field. This means you're trying to dump the" "entire raw data for every pulse to the tabular output!!! " "I'll try, but if it fails, you have been warned...") metadata_dump = dumps(self.processor.get_metadata()) # Dictionary to contain the data # Every class in the datastructure is a key; values are dicts: # { # tuples : list of data tuples not yet converted to records, # records : numpy record arrays, # dtype : dtype of numpy record (includes field names), # } self.data = { # Write pax configuration and version to pax_info dataframe # Will be a table with one row # If you append to an existing HDF5 file, it will make a second row # TODO: However, it will probably crash if the configuration is a # longer string... 'pax_info': { 'tuples': [(metadata_dump,)], 'records': None, 'dtype': [('metadata_json', 'S%d' % len(metadata_dump))]} } self.events_ready_for_conversion = 0 # Init the output format self.output_format = of = flat_data_formats[self.config['output_format']](log=self.log) if self.config['append_data'] and self.config['overwrite_data']: raise ValueError('Invalid configuration for TableWriter: Cannot both' ' append and overwrite') # Check if options are supported if not of.supports_write_in_chunks and self.config['write_in_chunks']: self.log.warning('Output format %s does not support write_in_chunks: will write all at end.' % of.__class__.__name__) self.config['write_in_chunks'] = False if self.config['append_data'] and not of.supports_append: self.log.warning('Output format %s does not support append: setting to False.') self.config['append_data'] = False # Append extension to outfile, if this format has one if of.file_extension and of.file_extension != 'DIRECTORY': self.config['output_name'] += '.' + of.file_extension # Deal with existing files or non-existing dirs outfile = self.config['output_name'] if os.path.exists(outfile): if self.config['append_data'] and of.supports_append: self.log.info('Output file/dir %s already exists: appending.' % outfile) elif self.config['overwrite_data']: self.log.info('Output file/dir %s already exists, and you ' 'wanted to overwrite, so deleting it!' % outfile) if self.output_format.file_extension == 'DIRECTORY': self.log.warning('Deleting recursively %s...', outfile) shutil.rmtree(outfile) # Deletes directory and contents os.mkdir(outfile) else: os.remove(outfile) else: raise exceptions.OutputFileAlreadyExistsError('%s already exists, and you did not specify append or ' 'overwrite...' % outfile) elif of.file_extension is 'DIRECTORY': # We are a dir output format: dir must exist os.mkdir(outfile) # Open the output file self.log.info("Opening output file/directory %s" % self.config['output_name']) self.output_format.open(self.config['output_name'], mode='w') def write_event(self, event): """Receive event and determine what to do with it Store all the event data internally, write to disk when appropriate. This function follows the plugin API. """ self._model_to_tuples(event, index_fields=[('Event', event.event_number), ]) self.events_ready_for_conversion += 1 if self.events_ready_for_conversion >= self.config['buffer_size']: self._convert_to_records() if self.config['write_in_chunks']: self._write_to_disk() def _convert_to_records(self): """Convert buffer data to numpy record arrays """ for dfname in self.data.keys(): self.log.debug("Converting %s " % dfname) # Set index at which next set of tuples begins self.data[dfname]['first_index'] = len(self.data[dfname]['tuples']) + \ self.data[dfname].get('first_index', 0) # Convert tuples to records newrecords = np.array(self.data[dfname]['tuples'], self.data[dfname]['dtype']) # Clear tuples. Enjoy the freed memory. self.data[dfname]['tuples'] = [] # Append new records if self.data[dfname]['records'] is None: self.data[dfname]['records'] = newrecords else: self.data[dfname]['records'] = np.concatenate((self.data[dfname]['records'], newrecords)) self.events_ready_for_conversion = 0 def _write_to_disk(self): """Write buffered data to disk """ self.log.debug("Writing to disk...") # If any records are present, call output format to write records to # disk if 'Event' not in self.data: # The processor crashed, don't want to make things worse! self.log.warning('No events to write: did you crash pax?') return if self.data['Event']['records'] is not None: self.output_format.write_data({k: v['records'] for k, v in self.data.items()}) # Delete records we've just written to disk for d in self.data.keys(): self.data[d]['records'] = None def shutdown(self): # hasattr check is needed to prevent extra error if pax crashes before the plugin runs if hasattr(self, 'output_format'): if self.events_ready_for_conversion: self._convert_to_records() self._write_to_disk() self.output_format.close() def get_index_of(self, mname): # Returns index +1 of last last entry in self.data[mname]. Returns 0 # if no mname seen before. if mname not in self.data: return 0 else: return self.data[mname]['first_index'] + len(self.data[mname]['tuples']) def _model_to_tuples(self, m, index_fields): """Convert one of our data model instances to a tuple while storing its field names & dtypes, handling subcollections recursively, keeping track of index hierarchy :param m: instance to convert :param index_fields: list of (index_field_name, value) tuples denoting multi-index trail """ # List to contain data from this model, will be made into tuple later m_name = m.__class__.__name__ m_indices = [x[1] for x in index_fields] m_data = [] # Have we seen this model before? If not, initialize stuff first_time_seen = False if m_name not in self.data: self.data[m_name] = { 'tuples': [], 'records': None, # Initialize dtype with the index fields 'dtype': [(x[0], np.int64) for x in index_fields], 'index_depth': len(m_indices), 'first_index': 0 } first_time_seen = True for field_name, field_value in m.get_fields_data(): if field_name in self.config['fields_to_ignore']: continue if field_name is "sum_waveforms": # Hack to prepare SumWaveform object data to be stored as hdf5 field_value_tmp = [] def _set_attr(old_obj, new_obj): """ Set attributes from SumWaveform instance onto new instance of metaclass SumWaveform_x and its subclass. """ # Constant WaveForm array size const_array_size = 250000 # Fields to make constant fields_to_extend = ['samples'] attr = old_obj.__dict__ for key, val in attr.items(): if key in fields_to_extend: extend_with = const_array_size - len(val) if extend_with > 0: val = np.pad(val, (0,extend_with), 'constant', constant_values=np.nan) setattr(new_obj, key, val) # This is needed for get_fields_data() to work properly # for the new metaclass setattr(new_obj.__class__, key, None) return new_obj def _set_class(class_name, old_obj): """ Create metaclass from SumWaveform instance with all attributes set to those of the SumWaveform instance. """ metaClass = type(class_name, (type(old_obj),), {}) new_obj = _set_attr(old_obj, metaClass()) return new_obj # Iterate over SumWaveform objects in field_value # and replace field_value with instances of the metaclass for m_sw in field_value: new_name = type(m_sw).__name__ + '_%s' % m_sw.name m_sw_tmp = _set_class(new_name, m_sw) field_value_tmp.append(m_sw_tmp) field_value = field_value_tmp if isinstance(field_value, list): # This is a model collection field. # Get its type (can't get from the list itself, could be empty) child_class_name = m.get_list_field_info()[field_name] # Store the absolute start index & number of children child_start = self.get_index_of(child_class_name) n_children = len(field_value) if first_time_seen: # Add data types for n_x (unless already present, e.g. peak.n_hits) and x_start field names. # Will have int type. if not hasattr(m, 'n_%s' % field_name): self.data[m_name]['dtype'].append(self._numpy_field_dtype('n_%s' % field_name, 0)) self.data[m_name]['dtype'].append(self._numpy_field_dtype('%s_start' % field_name, 0)) if not hasattr(m, 'n_%s' % field_name): m_data.append(n_children) m_data.append(child_start) # We'll ship model collections off to their own tuples (later record arrays) # Convert each child_model to a dataframe, with a new index # appended to the index trail for new_index, child_model in enumerate(field_value): self._model_to_tuples(child_model, index_fields + [(type(child_model).__name__, new_index)]) elif isinstance(field_value, np.ndarray) and field_value.dtype.names is not None: # Hey this is already a structured array :-) Treat like a collection field (except don't recurse) if field_name not in self.data: self.data[field_name] = { 'tuples': [], 'records': None, # Initialize dtype with the index fields + every column # in array becomes a field.... :-( 'dtype': [(x[0], np.int64) for x in index_fields] + [(fn, field_value[fn].dtype) for fn in field_value.dtype.names], 'index_depth': len(m_indices), } for element in field_value.tolist(): self.data[field_name]['tuples'].append(tuple(m_indices + list(element))) elif isinstance(field_value, np.ndarray) and not self.output_format.supports_array_fields: # Hack for formats without array field support: NumpyArrayFields must get their own dataframe # -- assumes field names are unique! # dataframe columns = str(positions in the array) ('0', '1', '2', ...) # Is this the first time we see this numpy array field? if field_name not in self.data: # Must be the first time we see dataframe as well assert first_time_seen self.data[field_name] = { 'tuples': [], 'records': None, # Initialize dtype with the index fields + every column # in array becomes a field.... :-( 'dtype': [(x[0], np.int64) for x in index_fields] + [(str(i), field_value.dtype) for i in range(len(field_value))], 'index_depth': len(m_indices), } self.data[field_name]['tuples'].append(tuple(m_indices + field_value.tolist())) else: m_data.append(field_value) if first_time_seen: # Store this field's data type self.data[m_name]['dtype'].append(self._numpy_field_dtype(field_name, field_value)) # Store m_indices + m_data in self.data['tuples'] self.data[m_name]['tuples'].append(tuple(m_indices + m_data)) def _numpy_field_dtype(self, name, x): """Return field dtype of numpy record with field name name and value (of type of) x """ if name == 'metadata_dump': return name, 'O' if isinstance(x, int): return name, np.int64 if isinstance(x, float): return name, 'f' if isinstance(x, str): if self.output_format.prefers_python_strings: return name, 'O' else: return name, 'S' + str(self.config['string_data_length']) if isinstance(x, np.ndarray): return name, x.dtype, x.shape else: # Some weird numpy type, hopefully return name, type(x) class TableReader(plugin.InputPlugin): """Read data from TableWriter for reprocessing 'Reprocessing' means: reading in old processed data, then start somewhere in middle of processing chain, (e.g. redo classification), and finally write to new file. Reprocessing WITHOUT reading in the individual hits is very fast. This is fine for re-doing peak classification and anything higher-level we may come up with. For re-doing clustering and/or peak property computation you must read in the hits, which is slow. The speed is set by overhead in the datastructure: 1/3 of runtime due to type checking, rest due to converting between all the internal formats). We can try to optimize this at some point. However, for this kind of reprocessing we may eventually need to read the raw data and build a sum waveform as well, which takes time too. TODO: Check if all the tables / dnames we want to read in are present in the file, else give error """ def startup(self): self.chunk_size = self.config['chunk_size'] self.read_hits = self.config['read_hits'] self.read_recposes = self.config['read_recposes'] self.read_interactions = self.config['read_interactions'] self.output_format = of = flat_data_formats[self.config['format']](log=self.log) if not of.supports_read_back: raise NotImplementedError("Output format %s does not " "support reading data back in!" % self.config['format']) of.open(name=self.config['input_name'], mode='r') self.dnames = ['Event', 'Peak'] if self.read_hits: self.dnames.append('Hit') if self.read_recposes: if 'ReconstructedPosition' not in of.data_types_present: self.log.warning("You asked to read ReconstructedPosition, " "but this file has no ReconstructedPositions!") self.read_recposes = False else: self.dnames.append('ReconstructedPosition') if self.read_interactions: if 'Interaction' not in of.data_types_present: self.log.warning("You asked to read interactions, but this file has no interactions!") self.read_interactions = False else: self.dnames.append('Interaction') # Dict of numpy record arrays just read from disk, waiting to be sorted self.cache = {} self.max_n = {x: of.n_in_data(x) for x in self.dnames} self.number_of_events = self.max_n['Event'] self.current_pos = {x: 0 for x in self.dnames} def get_events(self): """Get events from processed data source """ of = self.output_format for event_i in range(self.number_of_events): in_this_event = {} # Check if we should fill the cache. for dname in self.dnames: # dname -> event, peak, etc. # Check if what is stored in the cache for 'dname' is either # nonexistent, empty, or incomplete. If so, keep reading new # chunks of data to populate the cache. while dname not in self.cache or len(self.cache[dname]) == 0 \ or self.cache[dname][0]['Event'] == self.cache[dname][-1]['Event']: # If no data of this dname left in the file, we of course # stop filling the cache if self.current_pos[dname] == self.max_n[dname]: break new_pos = min(self.max_n[dname], self.current_pos[dname] + self.chunk_size) new_chunk = of.read_data(dname, self.current_pos[dname], new_pos) self.current_pos[dname] = new_pos # Add new chunk to cache bla = np.concatenate((self.cache.get(dname, np.empty(0, dtype=new_chunk.dtype)), new_chunk)) self.cache[dname] = bla # What number is the next event? this_event_i = self.cache['Event'][0]['Event'] # Get all records belonging to this event: for dname in self.dnames: mask = self.cache[dname]['Event'] == this_event_i in_this_event[dname] = self.cache[dname][mask] # Chop records in this event from cache inverted_mask = True ^ mask # XOR self.cache[dname] = self.cache[dname][inverted_mask] # Convert records to pax data assert len(in_this_event['Event']) == 1 e_record = in_this_event['Event'][0] peaks = in_this_event['Peak'] event = self.convert_record(datastructure.Event, e_record) if self.config.get('read_hits_only', False): # Read in only hits for reclustering for hit_record in in_this_event['Hit']: cp = self.convert_record(datastructure.Hit, hit_record) event.all_hits.append(cp) else: for peak_i, p_record in enumerate(peaks): peak = self.convert_record(datastructure.Peak, p_record) if self.read_recposes: for rp_record in in_this_event['ReconstructedPosition'][ in_this_event['ReconstructedPosition']['Peak'] == peak_i]: peak.reconstructed_positions.append( self.convert_record(datastructure.ReconstructedPosition, rp_record) ) if self.read_hits: for hit_record in in_this_event['Hit'][(in_this_event['Hit']['Peak'] == peak_i)]: cp = self.convert_record(datastructure.Hit, hit_record) peak.hits.append(cp) event.all_hits.append(cp) event.peaks.append(peak) if self.read_interactions: interactions = in_this_event['Interaction'] for intr_record in interactions: event.interactions.append(self.convert_record(datastructure.Interaction, intr_record)) yield event def convert_record(self, class_to_load_to, record): # We defined a nice custom init for event... ahem... now we have to do # cumbersome stuff... if class_to_load_to == datastructure.Event: result = datastructure.Event(n_channels=self.config['n_channels'], start_time=record['start_time'], stop_time=record['stop_time'], sample_duration=record['sample_duration']) else: result = class_to_load_to() for k, v in self._numpy_record_to_dict(record).items(): # If result doesn't have this attribute, ignore it # This happens for n_peaks etc. and attributes that have been removed if hasattr(result, k): setattr(result, k, v) return result def _numpy_record_to_dict(self, record): """Convert a single numpy record to a dict (keys=field names, values=values) """ names = record.dtype.names result = {} for k, v in zip(names, record): # Skip index fields, if present if k in ('Event', 'Peak', 'Hit', 'ReconstructedPosition'): continue if isinstance(v, np.bytes_): v = v.decode("utf-8") # For py2 compatibility: if v.__class__.__name__ == 'unicode': v = str(v) result[k] = v return result
the-stack_106_23721
#!/usr/bin/env python # -*- coding: utf-8 -*- # # repeat.py # shelly # """ Repeat a command a given number of times (or, infinitely). """ import sys import optparse import subprocess def repeat(cmd_args, n=None): run = lambda: subprocess.Popen([' '.join(cmd_args)], stdout=sys.stdout, stderr=sys.stderr, shell=True) if n is None: while True: run() else: while n > 0: run() n -= 1 def _create_option_parser(): usage = \ """%prog repeat [options] <command string> Runs the given shell command over and over indefinitely, or N times with the -n option. If the command has arguments, include it and them in a single quoted string.""" parser = optparse.OptionParser(usage) parser.add_option('-n', action='store', dest='n', default=None, type='int', help='Finish after n iterations.') return parser def main(argv): parser = _create_option_parser() (options, args) = parser.parse_args(argv) if not args: parser.print_help() sys.exit(1) try: repeat(args, n=options.n) except (KeyboardInterrupt, IOError): pass if __name__ == '__main__': main(sys.argv[1:])
the-stack_106_23723
# Copyright 2020 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=unused-argument import subprocess import sys from pathlib import Path import pytest from click.testing import CliRunner from kedro.framework.cli.project import NO_DEPENDENCY_MESSAGE @pytest.fixture(autouse=True) def call_mock(mocker): return mocker.patch("kedro.framework.cli.project.call") @pytest.fixture(autouse=True) def python_call_mock(mocker): return mocker.patch("kedro.framework.cli.project.python_call") @pytest.fixture def fake_ipython_message(mocker): return mocker.patch("kedro.framework.cli.project.ipython_message") @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestActivateNbstripoutCommand: @staticmethod @pytest.fixture() def fake_nbstripout(): """ ``nbstripout`` tries to access ``sys.stdin.buffer.readable`` on import, but it's patches by pytest. Let's replace it by the fake! """ sys.modules["nbstripout"] = "fake" yield del sys.modules["nbstripout"] @staticmethod @pytest.fixture def fake_git_repo(mocker): return mocker.patch("subprocess.run", return_value=mocker.Mock(returncode=0)) @staticmethod @pytest.fixture def without_git_repo(mocker): return mocker.patch("subprocess.run", return_value=mocker.Mock(returncode=1)) def test_install_successfully( self, fake_kedro_cli, call_mock, fake_nbstripout, fake_git_repo ): result = CliRunner().invoke(fake_kedro_cli.cli, ["activate-nbstripout"]) assert not result.exit_code call_mock.assert_called_once_with(["nbstripout", "--install"]) fake_git_repo.assert_called_once_with( ["git", "rev-parse", "--git-dir"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) def test_nbstripout_not_installed(self, fake_kedro_cli, fake_git_repo, mocker): """ Run activate-nbstripout target without nbstripout installed There should be a clear message about it. """ mocker.patch.dict("sys.modules", {"nbstripout": None}) result = CliRunner().invoke(fake_kedro_cli.cli, ["activate-nbstripout"]) assert result.exit_code assert "nbstripout is not installed" in result.stdout def test_no_git_repo(self, fake_kedro_cli, fake_nbstripout, without_git_repo): """ Run activate-nbstripout target with no git repo available. There should be a clear message about it. """ result = CliRunner().invoke(fake_kedro_cli.cli, ["activate-nbstripout"]) assert result.exit_code assert "Not a git repository" in result.stdout def test_no_git_executable(self, fake_kedro_cli, fake_nbstripout, mocker): mocker.patch("subprocess.run", side_effect=FileNotFoundError) result = CliRunner().invoke(fake_kedro_cli.cli, ["activate-nbstripout"]) assert result.exit_code assert "Git executable not found. Install Git first." in result.stdout @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestTestCommand: def test_happy_path(self, fake_kedro_cli, python_call_mock): result = CliRunner().invoke( fake_kedro_cli.cli, ["test", "--random-arg", "value"] ) assert not result.exit_code python_call_mock.assert_called_once_with("pytest", ("--random-arg", "value")) def test_pytest_not_installed( self, fake_kedro_cli, python_call_mock, mocker, fake_repo_path ): mocker.patch.dict("sys.modules", {"pytest": None}) result = CliRunner().invoke( fake_kedro_cli.cli, ["test", "--random-arg", "value"] ) expected_message = NO_DEPENDENCY_MESSAGE.format( module="pytest", src=str(fake_repo_path / "src") ) assert result.exit_code assert expected_message in result.stdout python_call_mock.assert_not_called() @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestLintCommand: @pytest.mark.parametrize("files", [(), ("src",)]) def test_lint( self, fake_kedro_cli, python_call_mock, files, mocker, fake_repo_path ): result = CliRunner().invoke(fake_kedro_cli.cli, ["lint", *files]) assert not result.exit_code, result.stdout expected_files = files or ( str(fake_repo_path / "src/tests"), str(fake_repo_path / "src/dummy_package"), ) expected_calls = [ mocker.call("black", expected_files), mocker.call("flake8", ("--max-line-length=88",) + expected_files), mocker.call( "isort", ("-rc", "-tc", "-up", "-fgw=0", "-m=3", "-w=88") + expected_files, ), ] assert python_call_mock.call_args_list == expected_calls @pytest.mark.parametrize( "check_flag,files", [ ("-c", ()), ("--check-only", ()), ("-c", ("src",)), ("--check-only", ("src",)), ], ) def test_lint_check_only( self, fake_kedro_cli, python_call_mock, check_flag, mocker, files, fake_repo_path, ): result = CliRunner().invoke(fake_kedro_cli.cli, ["lint", check_flag, *files]) assert not result.exit_code, result.stdout expected_files = files or ( str(fake_repo_path / "src/tests"), str(fake_repo_path / "src/dummy_package"), ) expected_calls = [ mocker.call("black", ("--check",) + expected_files), mocker.call("flake8", ("--max-line-length=88",) + expected_files), mocker.call( "isort", ("-c", "-rc", "-tc", "-up", "-fgw=0", "-m=3", "-w=88") + expected_files, ), ] assert python_call_mock.call_args_list == expected_calls @pytest.mark.parametrize("module_name", ["flake8", "isort"]) def test_import_not_installed( self, fake_kedro_cli, python_call_mock, module_name, mocker, fake_repo_path ): mocker.patch.dict("sys.modules", {module_name: None}) result = CliRunner().invoke(fake_kedro_cli.cli, ["lint"]) expected_message = NO_DEPENDENCY_MESSAGE.format( module=module_name, src=str(fake_repo_path / "src") ) assert result.exit_code, result.stdout assert expected_message in result.stdout python_call_mock.assert_not_called() @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestInstallCommand: def test_happy_path( self, python_call_mock, call_mock, fake_kedro_cli, fake_repo_path ): result = CliRunner().invoke(fake_kedro_cli.cli, ["install"]) assert not result.exit_code python_call_mock.assert_called_once_with( "pip", ["install", "-U", "-r", str(fake_repo_path / "src/requirements.txt")] ) call_mock.assert_not_called() def test_with_env_file( self, python_call_mock, call_mock, fake_kedro_cli, mocker, fake_repo_path ): # Pretend env file exists: mocker.patch.object(Path, "is_file", return_value=True) result = CliRunner().invoke(fake_kedro_cli.cli, ["install"]) assert not result.exit_code, result.stdout python_call_mock.assert_called_once_with( "pip", ["install", "-U", "-r", str(fake_repo_path / "src/requirements.txt")] ) call_mock.assert_called_once_with( [ "conda", "install", "--file", str(fake_repo_path / "src/environment.yml"), "--yes", ] ) def test_windows(self, fake_kedro_cli, mocker, fake_repo_path): mock_subprocess = mocker.patch("kedro.framework.cli.project.subprocess") # pretend we are on Windows mocker.patch("kedro.framework.cli.project.os").name = "nt" result = CliRunner().invoke(fake_kedro_cli.cli, ["install"]) assert not result.exit_code, result.stdout command = [ sys.executable, "-m", "pip", "install", "-U", "-r", str(fake_repo_path / "src/requirements.txt"), ] mock_subprocess.Popen.assert_called_once_with( command, creationflags=mock_subprocess.CREATE_NEW_CONSOLE ) @pytest.fixture def os_mock(mocker): return mocker.patch("kedro.framework.cli.project.os") @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log", "os_mock") class TestIpythonCommand: def test_happy_path( self, call_mock, fake_kedro_cli, fake_ipython_message, os_mock, fake_repo_path ): result = CliRunner().invoke( fake_kedro_cli.cli, ["ipython", "--random-arg", "value"] ) assert not result.exit_code, result.stdout fake_ipython_message.assert_called_once_with() call_mock.assert_called_once_with(["ipython", "--random-arg", "value"]) os_mock.environ.__setitem__.assert_called_once_with( "IPYTHONDIR", str(fake_repo_path / ".ipython") ) @pytest.mark.parametrize("help_flag", ["-h", "--help"]) def test_help(self, help_flag, call_mock, fake_kedro_cli, fake_ipython_message): result = CliRunner().invoke(fake_kedro_cli.cli, ["ipython", help_flag]) assert not result.exit_code, result.stdout fake_ipython_message.assert_not_called() call_mock.assert_called_once_with(["ipython", help_flag]) @pytest.mark.parametrize("env_flag,env", [("--env", "base"), ("-e", "local")]) def test_env( self, env_flag, env, fake_kedro_cli, call_mock, fake_repo_path, os_mock, mocker ): """This tests starting ipython with specific env.""" result = CliRunner().invoke(fake_kedro_cli.cli, ["ipython", env_flag, env]) assert not result.exit_code, result.stdout calls = [ mocker.call("IPYTHONDIR", str(fake_repo_path / ".ipython")), mocker.call("KEDRO_ENV", env), ] os_mock.environ.__setitem__.assert_has_calls(calls) def test_load_context_error(self, fake_kedro_cli): result = CliRunner().invoke( fake_kedro_cli.cli, ["ipython", "--env", "fake_env"] ) expected_output = ( "Error: Unable to load Kedro context with environment `fake_env`. " "Make sure it exists in the project configuration.\n" ) assert result.exit_code assert expected_output in result.output @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestPackageCommand: def test_happy_path(self, call_mock, fake_kedro_cli, mocker, fake_repo_path): result = CliRunner().invoke(fake_kedro_cli.cli, ["package"]) assert not result.exit_code, result.stdout call_mock.assert_has_calls( [ mocker.call( [sys.executable, "setup.py", "clean", "--all", "bdist_egg"], cwd=str(fake_repo_path / "src"), ), mocker.call( [sys.executable, "setup.py", "clean", "--all", "bdist_wheel"], cwd=str(fake_repo_path / "src"), ), ] ) @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestBuildDocsCommand: def test_happy_path( self, call_mock, python_call_mock, fake_kedro_cli, mocker, fake_repo_path ): fake_rmtree = mocker.patch("shutil.rmtree") result = CliRunner().invoke(fake_kedro_cli.cli, ["build-docs"]) assert not result.exit_code, result.stdout call_mock.assert_has_calls( [ mocker.call( [ "sphinx-apidoc", "--module-first", "-o", "docs/source", str(fake_repo_path / "src/dummy_package"), ] ), mocker.call( ["sphinx-build", "-M", "html", "docs/source", "docs/build", "-a"] ), ] ) python_call_mock.assert_has_calls( [ mocker.call("pip", ["install", str(fake_repo_path / "src/[docs]")]), mocker.call( "pip", ["install", "-r", str(fake_repo_path / "src/requirements.txt")], ), mocker.call("ipykernel", ["install", "--user", "--name=dummy_package"]), ] ) fake_rmtree.assert_called_once_with("docs/build", ignore_errors=True) @pytest.mark.parametrize("open_flag", ["-o", "--open"]) def test_open_docs(self, open_flag, fake_kedro_cli, mocker): mocker.patch("shutil.rmtree") patched_browser = mocker.patch("webbrowser.open") result = CliRunner().invoke(fake_kedro_cli.cli, ["build-docs", open_flag]) assert not result.exit_code, result.stdout expected_path = (Path.cwd() / "docs" / "build" / "html" / "index.html").as_uri() patched_browser.assert_called_once_with(expected_path) @pytest.mark.usefixtures("chdir_to_dummy_project", "patch_log") class TestBuildReqsCommand: def test_requirements_file_exists( self, python_call_mock, fake_kedro_cli, mocker, fake_repo_path ): # File exists: mocker.patch.object(Path, "is_file", return_value=True) result = CliRunner().invoke(fake_kedro_cli.cli, ["build-reqs"]) assert not result.exit_code, result.stdout assert "Requirements built!" in result.stdout python_call_mock.assert_called_once_with( "piptools", ["compile", str(fake_repo_path / "src" / "requirements.in")] ) def test_requirements_file_doesnt_exist( self, python_call_mock, fake_kedro_cli, mocker, fake_repo_path ): # File does not exist: # 'is_file' is called multiple times in different places mocker.patch.object(Path, "is_file", side_effect=[True, True, False]) mocker.patch.object(Path, "read_text", return_value="fake requirements") fake_writer = mocker.patch.object(Path, "write_text") result = CliRunner().invoke(fake_kedro_cli.cli, ["build-reqs"]) assert not result.exit_code, result.stdout assert "Requirements built!" in result.stdout python_call_mock.assert_called_once_with( "piptools", ["compile", str(fake_repo_path / "src" / "requirements.in")] ) fake_writer.assert_called_once_with("fake requirements")
the-stack_106_23728
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=22 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=5 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=6 c.append(cirq.H.on(input_qubit[1])) # number=9 c.append(cirq.H.on(input_qubit[0])) # number=13 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=14 c.append(cirq.H.on(input_qubit[0])) # number=15 c.append(cirq.H.on(input_qubit[0])) # number=16 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=17 c.append(cirq.H.on(input_qubit[0])) # number=18 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=19 c.append(cirq.X.on(input_qubit[3])) # number=20 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=21 c.append(cirq.X.on(input_qubit[3])) # number=11 c.append(cirq.X.on(input_qubit[2])) # number=12 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma802.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
the-stack_106_23730
import time import win32api import win32con # https://gist.github.com/chriskiehl/2906125 VK_CODES = { 'backspace': 0x08, 'tab': 0x09, 'clear': 0x0C, 'enter': 0x0D, 'shift': 0x10, 'ctrl': 0x11, 'alt': 0x12, 'pause': 0x13, 'caps_lock': 0x14, 'esc': 0x1B, 'spacebar': 0x20, 'page_up': 0x21, 'page_down': 0x22, 'end': 0x23, 'home': 0x24, 'left_arrow': 0x25, 'up_arrow': 0x26, 'right_arrow': 0x27, 'down_arrow': 0x28, 'select': 0x29, 'print': 0x2A, 'execute': 0x2B, 'print_screen': 0x2C, 'ins': 0x2D, 'del': 0x2E, 'help': 0x2F, '0': 0x30, '1': 0x31, '2': 0x32, '3': 0x33, '4': 0x34, '5': 0x35, '6': 0x36, '7': 0x37, '8': 0x38, '9': 0x39, 'a': 0x41, 'b': 0x42, 'c': 0x43, 'd': 0x44, 'e': 0x45, 'f': 0x46, 'g': 0x47, 'h': 0x48, 'i': 0x49, 'j': 0x4A, 'k': 0x4B, 'l': 0x4C, 'm': 0x4D, 'n': 0x4E, 'o': 0x4F, 'p': 0x50, 'q': 0x51, 'r': 0x52, 's': 0x53, 't': 0x54, 'u': 0x55, 'v': 0x56, 'w': 0x57, 'x': 0x58, 'y': 0x59, 'z': 0x5A, 'numpad_0': 0x60, 'numpad_1': 0x61, 'numpad_2': 0x62, 'numpad_3': 0x63, 'numpad_4': 0x64, 'numpad_5': 0x65, 'numpad_6': 0x66, 'numpad_7': 0x67, 'numpad_8': 0x68, 'numpad_9': 0x69, 'multiply_key': 0x6A, 'add_key': 0x6B, 'separator_key': 0x6C, 'subtract_key': 0x6D, 'decimal_key': 0x6E, 'divide_key': 0x6F, 'F1': 0x70, 'F2': 0x71, 'F3': 0x72, 'F4': 0x73, 'F5': 0x74, 'F6': 0x75, 'F7': 0x76, 'F8': 0x77, 'F9': 0x78, 'F10': 0x79, 'F11': 0x7A, 'F12': 0x7B, 'F13': 0x7C, 'F14': 0x7D, 'F15': 0x7E, 'F16': 0x7F, 'F17': 0x80, 'F18': 0x81, 'F19': 0x82, 'F20': 0x83, 'F21': 0x84, 'F22': 0x85, 'F23': 0x86, 'F24': 0x87, 'num_lock': 0x90, 'scroll_lock': 0x91, 'left_shift': 0xA0, 'right_shift ': 0xA1, 'left_control': 0xA2, 'right_control': 0xA3, 'left_menu': 0xA4, 'right_menu': 0xA5, 'browser_back': 0xA6, 'browser_forward': 0xA7, 'browser_refresh': 0xA8, 'browser_stop': 0xA9, 'browser_search': 0xAA, 'browser_favorites': 0xAB, 'browser_start_and_home': 0xAC, 'volume_mute': 0xAD, 'volume_Down': 0xAE, 'volume_up': 0xAF, 'next_track': 0xB0, 'previous_track': 0xB1, 'stop_media': 0xB2, 'play/pause_media': 0xB3, 'start_mail': 0xB4, 'select_media': 0xB5, 'start_application_1': 0xB6, 'start_application_2': 0xB7, 'attn_key': 0xF6, 'crsel_key': 0xF7, 'exsel_key': 0xF8, 'play_key': 0xFA, 'zoom_key': 0xFB, 'clear_key': 0xFE, '+': 0xBB, ',': 0xBC, '-': 0xBD, '.': 0xBE, '/': 0xBF, '`': 0xC0, ';': 0xBA, '[': 0xDB, '\\': 0xDC, ']': 0xDD, "'": 0xDE, '`': 0xC0, } last_pressed_hotkeys = time.time() - 1 def get_pressed_keyboard_keys(): res = {} for key in VK_CODES: code = VK_CODES[key] res[key] = win32api.GetAsyncKeyState(code) != 0 return res def check_for_capturing_hotkeys(keyboard, toggle_capturing_hotkeys): global last_pressed_hotkeys now = time.time() toggle_hotkeys_pressed = 0 for hotkey in toggle_capturing_hotkeys: if keyboard[hotkey]: toggle_hotkeys_pressed += 1 diff = now - last_pressed_hotkeys if toggle_hotkeys_pressed == len(toggle_capturing_hotkeys) and diff > 1: last_pressed_hotkeys = time.time() return True return False
the-stack_106_23731
import os import numpy as np import tensorflow as tf import random IGNORE_LABEL = 255 IMG_MEAN = np.array((125.0, 114.4, 107.9), dtype=np.float32) def image_scaling(img, label, edge): """ Randomly scales the images between 0.5 to 1.5 times the original size. Args: img: Training image to scale. label: Segmentation mask to scale. """ scale = tf.random_uniform([1], minval=0.5, maxval=2.0, dtype=tf.float32, seed=None) h_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[0]), scale)) w_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[1]), scale)) new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1]) img = tf.image.resize_images(img, new_shape) label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape) label = tf.squeeze(label, squeeze_dims=[0]) edge = tf.image.resize_nearest_neighbor(tf.expand_dims(edge, 0), new_shape) edge = tf.squeeze(edge, squeeze_dims=[0]) return img, label, edge def image_mirroring(img, label, edge): """ Randomly mirrors the images. Args: img: Training image to mirror. label: Segmentation mask to mirror. """ distort_left_right_random = tf.random_uniform([1], 0, 1.0, dtype=tf.float32)[0] mirror = tf.less(tf.stack([1.0, distort_left_right_random, 1.0]), 0.5) mirror = tf.boolean_mask([0, 1, 2], mirror) img = tf.reverse(img, mirror) label = tf.reverse(label, mirror) edge = tf.reverse(edge, mirror) return img, label, edge def random_resize_img_labels(image, label, resized_h, resized_w): scale = tf.random_uniform([1], minval=0.75, maxval=1.25, dtype=tf.float32, seed=None) h_new = tf.to_int32(tf.multiply(tf.to_float(resized_h), scale)) w_new = tf.to_int32(tf.multiply(tf.to_float(resized_w), scale)) new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1]) img = tf.image.resize_images(image, new_shape) label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape) label = tf.squeeze(label, squeeze_dims=[0]) return img, label def resize_img_labels(image, label, resized_h, resized_w): new_shape = tf.stack([tf.to_int32(resized_h), tf.to_int32(resized_w)]) img = tf.image.resize_images(image, new_shape) label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape) label = tf.squeeze(label, squeeze_dims=[0]) return img, label def random_crop_and_pad_image_and_labels(image, label, edge, crop_h, crop_w, ignore_label=255): """ Randomly crop and pads the input images. Args: image: Training image to crop/ pad. label: Segmentation mask to crop/ pad. crop_h: Height of cropped segment. crop_w: Width of cropped segment. ignore_label: Label to ignore during the training. """ label = tf.cast(label, dtype=tf.float32) label = label - ignore_label # Needs to be subtracted and later added due to 0 padding. edge = tf.cast(edge, dtype=tf.float32) edge = edge - 0 combined = tf.concat([image, label, edge], 2) image_shape = tf.shape(image) combined_pad = tf.image.pad_to_bounding_box(combined, 0, 0, tf.maximum(crop_h, image_shape[0]), tf.maximum(crop_w, image_shape[1])) last_image_dim = tf.shape(image)[-1] last_label_dim = tf.shape(label)[-1] combined_crop = tf.random_crop(combined_pad, [crop_h, crop_w, 4 + 1]) img_crop = combined_crop[:, :, :last_image_dim] label_crop = combined_crop[:, :, last_image_dim:last_image_dim + last_label_dim] edge_crop = combined_crop[:, :, last_image_dim + last_label_dim:] label_crop = label_crop + ignore_label label_crop = tf.cast(label_crop, dtype=tf.uint8) edge_crop = edge_crop + 0 edge_crop = tf.cast(edge_crop, dtype=tf.uint8) # Set static shape so that tensorflow knows shape at compile time. img_crop.set_shape((crop_h, crop_w, 3)) label_crop.set_shape((crop_h, crop_w, 1)) edge_crop.set_shape((crop_h, crop_w, 1)) return img_crop, label_crop, edge_crop def read_labeled_image_reverse_list(data_dir, data_list): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') images = [] masks = [] masks_rev = [] for line in f: try: image, mask, mask_rev = line.strip("\n").split(' ') except ValueError: # Adhoc for test. image = mask = mask_rev = line.strip("\n") images.append(data_dir + image) masks.append(data_dir + mask) masks_rev.append(data_dir + mask_rev) return images, masks, masks_rev def read_labeled_image_list(data_dir, data_list): """Reads txt file containing paths to images and ground truth masks. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. Returns: Two lists with all file names for images and masks, respectively. """ f = open(data_list, 'r') images = [] masks = [] for line in f: try: image, mask = line.strip("\n").split(' ') except ValueError: # Adhoc for test. image = mask = line.strip("\n") images.append(data_dir + image) masks.append(data_dir + mask) return images, masks def read_edge_list(data_dir, data_id_list): f = open(data_id_list, 'r') edges = [] for line in f: edge = line.strip("\n") edges.append(data_dir + '/edges/' + edge + '.png') return edges def read_images_from_disk(input_queue, input_size, random_scale, random_mirror=False): # optional pre-processing arguments """Read one image and its corresponding mask with optional pre-processing. Args: input_queue: tf queue with paths to the image and its mask. input_size: a tuple with (height, width) values. If not given, return images of original size. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. Returns: Two tensors: the decoded image and its mask. """ img_contents = tf.read_file(input_queue[0]) label_contents = tf.read_file(input_queue[1]) edge_contents = tf.read_file(input_queue[2]) img = tf.image.decode_jpeg(img_contents, channels=3) img_r, img_g, img_b = tf.split(value=img, num_or_size_splits=3, axis=2) img = tf.cast(tf.concat([img_b, img_g, img_r], 2), dtype=tf.float32) # Extract mean. img -= IMG_MEAN label = tf.image.decode_png(label_contents, channels=1) edge = tf.image.decode_png(edge_contents, channels=1) if input_size is not None: h, w = input_size # Randomly scale the images and labels. if random_scale: img, label, edge = image_scaling(img, label, edge) # Randomly mirror the images and labels. if random_mirror: img, label, edge = image_mirroring(img, label, edge) # Randomly crops the images and labels. img, label, edge = random_crop_and_pad_image_and_labels(img, label, edge, h, w, IGNORE_LABEL) return img, label, edge class ImageReader(object): '''Generic ImageReader which reads images and corresponding segmentation masks from the disk, and enqueues them into a TensorFlow queue. ''' def __init__(self, data_dir, data_list, data_id_list, input_size, random_scale, random_mirror, shuffle, coord): '''Initialise an ImageReader. Args: data_dir: path to the directory with images and masks. data_list: path to the file with lines of the form '/path/to/image /path/to/mask'. data_id_list: path to the file of image id. input_size: a tuple with (height, width) values, to which all the images will be resized. random_scale: whether to randomly scale the images prior to random crop. random_mirror: whether to randomly mirror the images prior to random crop. coord: TensorFlow queue coordinator. ''' self.data_dir = data_dir self.data_list = data_list self.data_id_list = data_id_list self.input_size = input_size self.coord = coord self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list) self.edge_list = read_edge_list(self.data_dir, self.data_id_list) self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string) self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string) self.edges = tf.convert_to_tensor(self.edge_list, dtype=tf.string) self.queue = tf.train.slice_input_producer([self.images, self.labels, self.edges], shuffle=shuffle) self.image, self.label, self.edge = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror) def dequeue(self, num_elements): '''Pack images and labels into a batch. Args: num_elements: the batch size. Returns: Two tensors of size (batch_size, h, w, {3, 1}) for images and masks.''' batch_list = [self.image, self.label, self.edge] image_batch, label_batch, edge_batch = tf.train.batch([self.image, self.label, self.edge], num_elements) return image_batch, label_batch, edge_batch class UnlabeledImageReader(object): '''ImageReader which reads images and enqueues them into a TensorFlow queue. ''' def __init__(self, data_dir, coord): '''Initialise an ImageReader. Args: data_dir: path to the directory with images. coord: TensorFlow queue coordinator. ''' self.data_dir = data_dir self.coord = coord self.image_list = list([os.path.join(self.data_dir, f) for f in os.listdir(self.data_dir) if f.endswith(('.png', '.jpg', '.jpeg'))]) self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string) self.queue = tf.train.slice_input_producer([self.images], shuffle=False) img_contents = tf.read_file(self.queue[0]) img = tf.image.decode_jpeg(img_contents, channels=3) img_r, img_g, img_b = tf.split(value=img, num_or_size_splits=3, axis=2) img = tf.cast(tf.concat([img_b, img_g, img_r], 2), dtype=tf.float32) # Extract mean. img -= IMG_MEAN self.image = img def dequeue(self, num_elements): '''Pack images and labels into a batch. Args: num_elements: the batch size. Returns: Two tensors of size (batch_size, h, w, {3, 1}) for images and masks.''' batch_list = [self.image] image_batch = tf.train.batch([self.image], num_elements) return image_batch
the-stack_106_23732
# Copyright 2018-2021 Alvaro Bartolome, alvarobartt @ GitHub # See LICENSE for details. import json import requests from unidecode import unidecode from .utils import constant as cst from .utils.search_obj import SearchObj from .utils.extra import random_user_agent from lxml.html import fromstring def search_quotes(text, products=None, countries=None, n_results=None): """ This function will use the Investing.com search engine so to retrieve the search results of the introduced text. This function will create a :obj:`list` of :obj:`investpy.utils.search_obj.SearchObj` class instances which will contain the search results so that they can be easily accessed and so to ease the data retrieval process since it can be done calling the methods `self.retrieve_recent_data()` or `self.retrieve_historical_data(from_date, to_date)` from each class instance, which will fill the historical data attribute, `self.data`. The information of the financial product can also be retrieved using the function `self.retrieve_information()`, that will also dump the information in the attribute `self.info`. Args: text (:obj:`str`): text to search in Investing.com among all its indexed data. products (:obj:`list` of :obj:`str`, optional): list with the product type filter/s to be applied to search result quotes so that they match the filters. Possible products are: `indices`, `stocks`, `etfs`, `funds`, `commodities`, `currencies`, `crypto`, `bonds`, `certificates` and `fxfutures`, by default this parameter is set to `None` which means that no filter will be applied, and all product type quotes will be retrieved. countries (:obj:`list` of :obj:`str`, optional): list with the country name filter/s to be applied to search result quotes so that they match the filters. Possible countries can be found in the docs, by default this paremeter is set to `None` which means that no filter will be applied, and quotes from every country will be retrieved. n_results (:obj:`int`, optional): number of search results to retrieve and return. Returns: :obj:`list` of :obj:`investpy.utils.search_obj.SearchObj` or :obj:`investpy.utils.search_obj.SearchObj`: The resulting :obj:`list` of :obj:`investpy.utils.search_obj.SearchObj` will contained the retrieved financial products matching the introduced text if found, otherwise a RuntimeError will be raised, so as to let the user know that no results were found for the introduced text. But note that if the n_results value is equal to 1, a single value will be returned, instead of a list of values. Raises: ValueError: raised whenever any of the introduced parameter is not valid or errored. ConnectionError: raised whenever the connection to Investing.com failed. RuntimeError: raised when there was an error while executing the function. """ if not text: raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') if not isinstance(text, str): raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') if products and not isinstance(products, list): raise ValueError( 'ERR#0094: products filtering parameter is optional, but if specified, it must be a list of str.') if countries and not isinstance(countries, list): raise ValueError( 'ERR#0128: countries filtering parameter is optional, but if specified, it must be a list of str.') if n_results and not isinstance(n_results, int): raise ValueError( 'ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') if n_results is not None: if n_results < 1: raise ValueError( 'ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') if products: try: products = list(map(lambda product: unidecode(product.lower().strip()), products)) except: raise ValueError("ERR#0130: the introduced products filter must be a list of str in order to be valid.") condition = set(products).issubset(cst.PRODUCT_FILTERS.keys()) if condition is False: # TODO: instead of printing the possible filters, reference the docs raise ValueError('ERR#0095: products filtering parameter possible values are: \"' + ', '.join( cst.PRODUCT_FILTERS.keys()) + '\".') products = [cst.PRODUCT_FILTERS[product] for product in products] else: products = list(cst.PRODUCT_FILTERS.values()) if countries: try: countries = list(map(lambda country: unidecode(country.lower().strip()), countries)) except: raise ValueError("ERR#0131: the introduced countries filter must be a list of str in order to be valid.") condition = set(countries).issubset(cst.COUNTRY_FILTERS.keys()) if condition is False: # TODO: instead of printing the possible filters, reference the docs raise ValueError('ERR#0129: countries filtering parameter possible values are: \"' + ', '.join( cst.COUNTRY_FILTERS.keys()) + '\".') countries = [cst.COUNTRY_FILTERS[country] for country in countries] else: countries = list(cst.COUNTRY_FILTERS.values()) params = { 'search_text': text, 'tab': 'quotes', 'isFilter': True, 'limit': 270, 'offset': 0 } head = { "User-Agent": random_user_agent(), "X-Requested-With": "XMLHttpRequest", "Accept": "text/html", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", } url = 'https://www.investing.com/search/service/SearchInnerPage' search_results = list() total_results = None while True: req = requests.post(url, headers=head, data=params) if req.status_code != 200: raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.") data = req.json() if data['total']['quotes'] == 0: raise RuntimeError("ERR#0093: no results found on Investing.com for the introduced text.") if total_results is None: total_results = data['total']['quotes'] if n_results is None: n_results = data['total']['quotes'] for quote in data['quotes']: country, pair_type = quote['flag'], quote['pair_type'] if countries is not None: if quote['flag'] in countries: country = cst.FLAG_FILTERS[quote['flag']] else: continue if products is not None: if quote['pair_type'] in products: pair_type = cst.PAIR_FILTERS[quote['pair_type']] else: continue search_obj = SearchObj(id_=quote['pairId'], name=quote['name'], symbol=quote['symbol'], country=country, tag=quote['link'], pair_type=pair_type, exchange=quote['exchange']) # Solved search_quotes returns unconsistent type #339 # if n_results == 1: return search_obj if search_obj not in search_results: search_results.append(search_obj) params['offset'] += 270 if len(search_results) >= n_results or len(search_results) >= total_results or params[ 'offset'] >= total_results: break return search_results[:n_results] def search_events(text, importances=None, countries=None, n_results=None): """ TODO """ if not text: raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') if not isinstance(text, str): raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') if importances and not isinstance(importances, list): raise ValueError( 'ERR#0138: importances filtering parameter is optional, but if specified, it must be a list of str.') if countries and not isinstance(countries, list): raise ValueError( 'ERR#0128: countries filtering parameter is optional, but if specified, it must be a list of str.') if n_results and not isinstance(n_results, int): raise ValueError( 'ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') if n_results is not None: if n_results < 1: raise ValueError( 'ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') text_alt = text.replace(' ', '%20') params = { 'search_text': text_alt, 'tab': 'ec_event', 'limit': 270, 'offset': 0 } headers = { "User-Agent": random_user_agent(), "X-Requested-With": "XMLHttpRequest", "Accept": "text/html", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", } # text_alt = text.replace(' ', '%20') # text_alt = text_alt + "&tab=ec_event" # url = "https://www.investing.com/search/?q=" + text + "&tab=ec_event" url = 'https://www.investing.com/search/service/SearchInnerPage' search_results = list() total_results = None while True: response = requests.post(url, data=params, headers=headers) if response.status_code != 200: raise ConnectionError(f"ERR#0015: error {response.status_code}, try again later.") # resp_dict = json.load(response.text) # print(json.dumps(response.text)) events = response.json()['ec_event'] if len(events) == 0: raise RuntimeError("ERR#0093: no results found on Investing.com for the introduced text.") print(text) for returned in events: if returned["searchable"] == text: target_url = "https://www.investing.com" + returned["link"] response_economic = requests.post(target_url, data=params, headers=headers) if response.status_code != 200: raise ConnectionError(f"ERR#0015: error {response.status_code}, try again later.") root = fromstring(response_economic.text) table = root.xpath(".//table[contains(@class, 'genTbl openTbl ecHistoryTbl')]/tbody/tr") for row in table: counter = 0 for value in row.xpath("td"): print(value.text) counter = counter + 1 break # def search_events(text, importances=None, countries=None, n_results=None): # """ # TODO # """ # # if not text: # raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') # # if not isinstance(text, str): # raise ValueError('ERR#0074: text parameter is mandatory and it should be a valid str.') # # if importances and not isinstance(importances, list): # raise ValueError('ERR#0138: importances filtering parameter is optional, but if specified, it must be a list of str.') # # if countries and not isinstance(countries, list): # raise ValueError('ERR#0128: countries filtering parameter is optional, but if specified, it must be a list of str.') # # if n_results and not isinstance(n_results, int): # raise ValueError('ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') # # if n_results is not None: # if n_results < 1: # raise ValueError('ERR#0088: n_results parameter is optional, but if specified, it must be an integer equal or higher than 1.') # # params = { # 'search_text': text, # 'tab': 'ec_event', # 'limit': 270, # 'offset': 0 # } # # headers = { # "User-Agent": random_user_agent(), # "X-Requested-With": "XMLHttpRequest", # "Accept": "text/html", # "Accept-Encoding": "gzip, deflate, br", # "Connection": "keep-alive", # } # # print(text) # text_alt = text.replace(' ', '%20') # text_alt = text_alt + "&tab=ec_event" # url = "https://www.investing.com/search/?q=" + text_alt # print(url) # # # search_results = list() # # # # total_results = None # # # while True: # response = requests.post(url, data=params, headers=headers) # tester = fromstring(response.text) # print(tester)
the-stack_106_23735
# -*- coding: utf-8 -*- from .buffer import Buffer from .timeout import Timeout from .. import context, term, atexit from ..util import misc, fiddling from ..context import context import re, threading, sys, time, subprocess, logging, string log = logging.getLogger(__name__) class tube(Timeout): """ Container of all the tube functions common to sockets, TTYs and SSH connetions. """ #: Delimiter to use for :meth:`sendline`, :meth:`recvline`, #: and related functions. newline = '\n' def __init__(self, timeout=None): # assert type(self) == tube # assert isinstance(self, tube), (id(type(self)), id(tube)) super(tube, self).__init__(timeout) self.buffer = Buffer() atexit.register(self.close) # Functions based on functions from subclasses def recv(self, numb = 2**20, timeout = None): r"""recv(numb = 2**31, timeout = None) -> str Receives up to `numb` bytes of data from the tube, and returns as soon as any quantity of data is available. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Raises: exceptions.EOFError: The connection is closed Returns: A string containing bytes received from the socket, or ``''`` if a timeout occurred while waiting. Examples: >>> t = tube() >>> # Fake a data source >>> t.recv_raw = lambda n: 'Hello, world' >>> t.recv() == 'Hello, world' True >>> t.unrecv('Woohoo') >>> t.recv() == 'Woohoo' True >>> context.log_level = 'debug' >>> _ = t.recv() # doctest: +ELLIPSIS [...] Received 0xc bytes: 'Hello, world' >>> context.clear() """ return self._recv(numb, timeout) or '' def unrecv(self, data): """unrecv(data) Puts the specified data back at the beginning of the receive buffer. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: 'hello' >>> t.recv() 'hello' >>> t.recv() 'hello' >>> t.unrecv('world') >>> t.recv() 'world' >>> t.recv() 'hello' """ self.buffer.unget(data) def _fillbuffer(self, timeout = None): """_fillbuffer(timeout = None) Fills the internal buffer from the pipe, by calling :meth:`recv_raw` exactly once. Returns: The bytes of data received, or ``''`` if no data was received. Examples: >>> t = tube() >>> t.recv_raw = lambda *a: 'abc' >>> len(t.buffer) 0 >>> t._fillbuffer() 'abc' >>> len(t.buffer) 3 """ data = '' with self.countdown(timeout): data = self.recv_raw(2**20) if data and log.isEnabledFor(logging.DEBUG): log.debug('Received %#x bytes:' % len(data)) if all(c in string.printable for c in data): for line in data.splitlines(True): log.indented(repr(line), level=logging.DEBUG) else: log.indented(fiddling.hexdump(data)) if data: self.buffer.add(data) return data def _recv(self, numb = 2**20, timeout = None): """_recv(numb = 2**20, timeout = None) -> str Recieves one chunk of from the internal buffer or from the OS if the buffer is empty. """ data = '' # No buffered data, could not put anything in the buffer # before timeout. if not self.buffer and not self._fillbuffer(timeout): return '' return self.buffer.get(numb) def recvpred(self, pred, timeout = None): """recvpred(pred, timeout = None) -> str Receives one byte at a time from the tube, until ``pred(bytes)`` evaluates to True. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Arguments: pred(callable): Function to call, with the currently-accumulated data. timeout(int): Timeout for the operation Raises: exceptions.EOFError: The connection is closed Returns: A string containing bytes received from the socket, or ``''`` if a timeout occurred while waiting. """ data = '' with self.countdown(timeout): while not pred(data): try: res = self.recv(1) except: self.unrecv(data) return '' if res: data += res else: self.unrecv(data) return '' return data def recvn(self, numb, timeout = None): """recvn(numb, timeout = None) -> str Recieves exactly `n` bytes. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Raises: exceptions.EOFError: The connection closed before the request could be satisfied Returns: A string containing bytes received from the socket, or ``''`` if a timeout occurred while waiting. Examples: .. doctest:: >>> t = tube() >>> data = 'hello world' >>> t.recv_raw = lambda *a: data >>> t.recvn(len(data)) == data True >>> t.recvn(len(data)+1) == data + data[0] True >>> t.recv_raw = lambda *a: None >>> # The remaining data is buffered >>> t.recv() == data[1:] True """ # Keep track of how much data has been received # It will be pasted together at the end if a # timeout does not occur, or put into the tube buffer. with self.countdown(timeout): while self.timeout and len(self.buffer) < numb: self._fillbuffer() return self.buffer.get(numb) def recvuntil(self, delims, drop=False, timeout = None): """recvuntil(delims, timeout = None) -> str Recieve data until one of `delims` is encountered. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. arguments: delims(str,tuple): String of delimiters characters, or list of delimiter strings. drop(bool): Drop the ending. If ``True`` it is removed from the end of the return value. Raises: exceptions.EOFError: The connection closed before the request could be satisfied Returns: A string containing bytes received from the socket, or ``''`` if a timeout occurred while waiting. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: "Hello World!" >>> t.recvuntil(' ') 'Hello ' >>> t.clean(0) >>> # Matches on 'o' in 'Hello' >>> t.recvuntil(tuple(' Wor')) 'Hello' >>> t.clean(0) >>> # Matches expressly full string >>> t.recvuntil(' Wor') 'Hello Wor' >>> t.clean(0) >>> # Matches on full string, drops match >>> t.recvuntil(' Wor', drop=True) 'Hello' >>> # Try with regex special characters >>> t = tube() >>> t.recv_raw = lambda n: "Hello|World" >>> t.recvuntil('|', drop=True) 'Hello' """ # Convert string into list of characters if not hasattr(delims, '__iter__'): delims = (delims,) def escape_regex_special(sz): specials = '\\/.*+?|()[]{}^$' for s in specials: sz = sz.replace(s, '\\' + s) return sz delims = map(escape_regex_special, delims) expr = re.compile('(%s)' % '|'.join(delims)) data = '' with self.countdown(timeout): while self.timeout: try: res = self.recv() except: self.unrecv(data) raise if res: data += res if not res: self.unrecv(data) return '' match = expr.search(data) if match: # Re-queue evrything after the match self.unrecv(data[match.end():]) # If we're dropping the match, return everything up to start if drop: return data[:match.start()] return data[:match.end()] return '' def recvlines(self, numlines, keep = False, timeout = None): r"""recvlines(numlines, keep = False, timeout = None) -> str list Recieve up to ``numlines`` lines. A "line" is any sequence of bytes terminated by the byte sequence set by :attr:`newline`, which defaults to ``'\n'``. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Arguments: numlines(int): Maximum number of lines to receive keep(bool): Keep newlines at the end of each line (``False``). timeout(int): Maximum timeout Raises: exceptions.EOFError: The connection closed before the request could be satisfied Returns: A string containing bytes received from the socket, or ``''`` if a timeout occurred while waiting. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: '\n' >>> t.recvlines(3) ['', '', ''] >>> t.recv_raw = lambda n: 'Foo\nBar\nBaz\n' >>> t.recvlines(3) ['Foo', 'Bar', 'Baz'] >>> t.recvlines(3, True) ['Foo\n', 'Bar\n', 'Baz\n'] """ lines = [] with self.countdown(timeout): for _ in xrange(numlines): try: # We must set 'keep' to True here so that we can # restore the original, unmodified data to the buffer # in the event of a timeout. res = self.recvline(keep=True, timeout=timeout) except: self.unrecv(''.join(lines)) raise if res: lines.append(res) else: break if not keep: lines = [line.rstrip('\n') for line in lines] return lines def recvline(self, keep = True, timeout = None): r"""recvline(keep = True) -> str Receive a single line from the tube. A "line" is any sequence of bytes terminated by the byte sequence set in :attr:`newline`, which defaults to ``'\n'``. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Arguments: keep(bool): Keep the line ending (``True``). timeout(int): Timeout Return: All bytes received over the tube until the first newline ``'\n'`` is received. Optionally retains the ending. Examples: >>> t = tube() >>> t.recv_raw = lambda n: 'Foo\nBar\r\nBaz\n' >>> t.recvline() 'Foo\n' >>> t.recvline() 'Bar\r\n' >>> t.recvline(keep = False) 'Baz' >>> t.newline = '\r\n' >>> t.recvline(keep = False) 'Foo\nBar' """ return self.recvuntil(self.newline, drop = not keep, timeout = timeout) def recvline_pred(self, pred, keep = False, timeout = None): r"""recvline_pred(pred, keep = False) -> str Receive data until ``pred(line)`` returns a truthy value. Drop all other data. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Arguments: pred(callable): Function to call. Returns the line for which this function returns ``True``. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: "Foo\nBar\nBaz\n" >>> t.recvline_pred(lambda line: line == "Bar\n") 'Bar' >>> t.recvline_pred(lambda line: line == "Bar\n", keep=True) 'Bar\n' >>> t.recvline_pred(lambda line: line == 'Nope!', timeout=0.1) '' """ tmpbuf = Buffer() line = '' with self.countdown(timeout): while self.timeout: try: line = self.recvline(keep=True) except: self.buffer.add(tmpbuf) raise if not line: self.buffer.add(tmpbuf) return '' if pred(line): if not keep: line = line[:-len(self.newline)] return line else: tmpbuf.add(line) return '' def recvline_startswith(self, delims, keep = False, timeout = None): r"""recvline_startswith(delims, keep = False, timeout = None) -> str Keep recieving lines until one is found that starts with one of `delims`. Returns the last line recieved. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. Arguments: delims(str,tuple): List of strings to search for, or string of single characters keep(bool): Return lines with newlines if ``True`` timeout(int): Timeout, in seconds Returns: The first line received which starts with a delimiter in ``delims``. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: "Hello\nWorld\nXylophone\n" >>> t.recvline_startswith(tuple('WXYZ')) 'World' >>> t.recvline_startswith(tuple('WXYZ'), True) 'Xylophone\n' >>> t.recvline_startswith('Wo') 'World' """ if not hasattr(delims, '__iter__'): delims = (delims,) return self.recvline_pred(lambda line: any(map(line.startswith, delims)), keep=keep, timeout=timeout) def recvline_endswith(self, delims, keep = False, timeout = None): r"""recvline_endswith(delims, keep = False, timeout = None) -> str Keep recieving lines until one is found that starts with one of `delims`. Returns the last line recieved. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. See :meth:`recvline_startswith` for more details. Examples: .. doctest:: >>> t = tube() >>> t.recv_raw = lambda n: 'Foo\nBar\nBaz\nKaboodle\n' >>> t.recvline_endswith('r') 'Bar' >>> t.recvline_endswith(tuple('abcde'), True) 'Kaboodle\n' >>> t.recvline_endswith('oodle') 'Kaboodle' """ if not hasattr(delims, '__iter__'): delims = (delims,) delims = tuple(delim + self.newline for delim in delims) return self.recvline_pred(lambda line: any(map(line.endswith, delims)), keep=keep, timeout=timeout) def recvregex(self, regex, exact = False, timeout = None): """recvregex(regex, exact = False, timeout = None) -> str Wrapper around :func:`recvpred`, which will return when a regex matches the string in the buffer. By default :func:`re.RegexObject.search` is used, but if `exact` is set to True, then :func:`re.RegexObject.match` will be used instead. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. """ if isinstance(regex, (str, unicode)): regex = re.compile(regex) if exact: pred = regex.match else: pred = regex.search return self.recvpred(pred, timeout = timeout) def recvline_regex(self, regex, exact = False, keep = False, timeout = None): """recvregex(regex, exact = False, keep = False, timeout = None) -> str Wrapper around :func:`recvline_pred`, which will return when a regex matches a line. By default :func:`re.RegexObject.search` is used, but if `exact` is set to True, then :func:`re.RegexObject.match` will be used instead. If the request is not satisfied before ``timeout`` seconds pass, all data is buffered and an empty string (``''``) is returned. """ if isinstance(regex, (str, unicode)): regex = re.compile(regex) if exact: pred = regex.match else: pred = regex.search return self.recvline_pred(pred, keep = keep, timeout = timeout) def recvrepeat(self, timeout = None): """recvrepeat() Receives data until a timeout or EOF is reached. Examples: >>> data = [ ... 'd', ... '', # simulate timeout ... 'c', ... 'b', ... 'a', ... ] >>> def delayrecv(n, data=data): ... return data.pop() >>> t = tube() >>> t.recv_raw = delayrecv >>> t.recvrepeat(0.2) 'abc' >>> t.recv() 'd' """ while self._fillbuffer(timeout=timeout): pass return self.buffer.get() def recvall(self): """recvall() -> str Receives data until EOF is reached. """ with log.waitfor('Recieving all data') as h: l = len(self.buffer) with self.local('inf'): data = 'yay truthy strings' try: while self._fillbuffer(): h.status(misc.size(len(self.buffer))) except EOFError: pass h.success("Done (%s)" % misc.size(l)) self.close() return self.buffer.get() def send(self, data): """send(data) Sends data. If log level ``DEBUG`` is enabled, also prints out the data received. If it is not possible to send anymore because of a closed connection, it raises ``exceptions.EOFError`` Examples: >>> def p(x): print repr(x) >>> t = tube() >>> t.send_raw = p >>> t.send('hello') 'hello' """ if log.isEnabledFor(logging.DEBUG): log.debug('Sent %#x bytes:' % len(data)) if all(c in string.printable for c in data): for line in data.splitlines(True): log.indented(repr(line), level=logging.DEBUG) else: log.indented(fiddling.hexdump(data)) self.send_raw(data) def sendline(self, line): r"""sendline(data) Shorthand for ``t.send(data + t.newline)``. Examples: >>> def p(x): print repr(x) >>> t = tube() >>> t.send_raw = p >>> t.sendline('hello') 'hello\n' >>> t.newline = '\r\n' >>> t.sendline('hello') 'hello\r\n' """ self.send(line + self.newline) def sendafter(self, delim, data, timeout = None): """sendafter(delim, data, timeout = None) -> str A combination of ``recvuntil(delim, timeout)`` and ``send(data)``. """ res = self.recvuntil(delim, timeout) self.send(data) return res def sendlineafter(self, delim, data, timeout = None): """sendlineafter(delim, data, timeout = None) -> str A combination of ``recvuntil(delim, timeout)`` and ``sendline(data)``.""" res = self.recvuntil(delim, timeout) self.sendline(data) return res def sendthen(self, delim, data, timeout = None): """sendthen(delim, data, timeout = None) -> str A combination of ``send(data)`` and ``recvuntil(delim, timeout)``.""" self.send(data) return self.recvuntil(delim, timeout) def sendlinethen(self, delim, data, timeout = None): """sendlinethen(delim, data, timeout = None) -> str A combination of ``sendline(data)`` and ``recvuntil(delim, timeout)``.""" self.send(data + self.newline) return self.recvuntil(delim, timeout) def interactive(self, prompt = term.text.bold_red('$') + ' '): """interactive(prompt = pwnlib.term.text.bold_red('$') + ' ') Does simultaneous reading and writing to the tube. In principle this just connects the tube to standard in and standard out, but in practice this is much more usable, since we are using :mod:`pwnlib.term` to print a floating prompt. Thus it only works in while in :data:`pwnlib.term.term_mode`. """ log.info('Switching to interactive mode') go = threading.Event() def recv_thread(): while not go.isSet(): try: cur = self.recv(timeout = 0.05) if cur: sys.stdout.write(cur) sys.stdout.flush() except EOFError: log.info('Got EOF while reading in interactive') break t = context.thread(target = recv_thread) t.daemon = True t.start() try: while not go.isSet(): if term.term_mode: data = term.readline.readline(prompt = prompt, float = True) else: data = sys.stdin.read(1) if data: try: self.send(data) except EOFError: go.set() log.info('Got EOF while sending in interactive') else: go.set() except KeyboardInterrupt: log.info('Interrupted') go.set() while t.is_alive(): t.join(timeout = 0.1) def clean(self, timeout = 0.05): """clean(timeout = 0.05) Removes all the buffered data from a tube by calling :meth:`pwnlib.tubes.tube.tube.recv` with a low timeout until it fails. If ``timeout`` is zero, only cached data will be cleared. Note: If timeout is set to zero, the underlying network is not actually polled; only the internal buffer is cleared. Examples: >>> t = tube() >>> t.unrecv('clean me up') >>> t.clean(0) >>> len(t.buffer) 0 """ # Clear the internal buffer early, so that _recv() # does not loop over it and concatenate unnecessarily. self.buffer.get() data = 'demo' while timeout and data: data = self.recv(timeout = timeout) def clean_and_log(self, timeout = 0.05): """clean_and_log(timeout = 0.05) Works exactly as :meth:`pwnlib.tubes.tube.tube.clean`, but logs recieved data with :meth:`pwnlib.log.info`. Examples: >>> def recv(n, data=['', 'hooray_data']): ... while data: return data.pop() >>> context.log_level = 'info' >>> t = tube() >>> t.recv_raw = recv >>> t.connected_raw = lambda d: True >>> t.fileno = lambda: 1234 >>> t.clean_and_log() #doctest: +ELLIPSIS [...] Cleaning tube (fileno = 1234): hooray_data >>> context.clear() """ if self.connected(): log.info('Cleaning tube (fileno = %d):' % self.fileno()) log.indented(self.recvrepeat(timeout = timeout)) def connect_input(self, other): """connect_input(other) Connects the input of this tube to the output of another tube object. Examples: >>> def p(x): print x >>> def recvone(n, data=['data']): ... while data: return data.pop() ... raise EOFError >>> a = tube() >>> b = tube() >>> a.recv_raw = recvone >>> b.send_raw = p >>> a.connected_raw = lambda d: True >>> b.connected_raw = lambda d: True >>> a.shutdown = lambda d: True >>> b.shutdown = lambda d: True >>> import time >>> _=(b.connect_input(a), time.sleep(0.1)) data """ def pump(): import sys as _sys while self.timeout: if not (self.connected('send') and other.connected('recv')): break try: data = other.recv(timeout = 0.05) except EOFError: break if not _sys: return if not data: continue try: self.send(data) except EOFError: break if not _sys: return self.shutdown('send') other.shutdown('recv') t = context.thread(target = pump) t.daemon = True t.start() def connect_output(self, other): """connect_output(other) Connects the output of this tube to the input of another tube object. Examples: >>> def p(x): print x >>> def recvone(n, data=['data']): ... while data: return data.pop() ... raise EOFError >>> a = tube() >>> b = tube() >>> a.recv_raw = recvone >>> b.send_raw = p >>> a.connected_raw = lambda d: True >>> b.connected_raw = lambda d: True >>> a.shutdown = lambda d: True >>> b.shutdown = lambda d: True >>> _=(a.connect_output(b), time.sleep(0.1)) data """ other.connect_input(self) def connect_both(self, other): """connect_both(other) Connects the both ends of this tube object with another tube object.""" self.connect_input(other) self.connect_output(other) def spawn_process(self, *args, **kwargs): """Spawns a new process having this tube as stdin, stdout and stderr. Takes the same arguments as :class:`subprocess.Popen`.""" return subprocess.Popen( *args, stdin = self.fileno(), stdout = self.fileno(), stderr = self.fileno(), **kwargs ) def __lshift__(self, other): """ Shorthand for connecting multiple tubes. See :meth:`connect_input` for more information. Examples: The following are equivalent :: tube_a >> tube.b tube_a.connect_input(tube_b) This is useful when chaining multiple tubes :: tube_a >> tube_b >> tube_a tube_a.connect_input(tube_b) tube_b.connect_input(tube_a) """ self.connect_input(other) return other def __rshift__(self, other): """ Inverse of the ``<<`` operator. See :meth:`__lshift__`. See :meth:`connect_input` for more information. """ self.connect_output(other) return other def __ne__(self, other): """ Shorthand for connecting tubes to eachother. The following are equivalent :: a >> b >> a a <> b See :meth:`connect_input` for more information. """ self << other << self def wait_for_close(self): """Waits until the tube is closed.""" while self.connected(): time.sleep(0.05) def can_recv(self, timeout = 0): """can_recv(timeout = 0) -> bool Returns True, if there is data available within `timeout` seconds. Examples: >>> import time >>> t = tube() >>> t.can_recv_raw = lambda *a: False >>> t.can_recv() False >>> _=t.unrecv('data') >>> t.can_recv() True >>> _=t.recv() >>> t.can_recv() False """ return bool(self.buffer or self.can_recv_raw(timeout)) def settimeout(self, timeout): """settimeout(timeout) Set the timeout for receiving operations. If the string "default" is given, then :data:`context.timeout` will be used. If None is given, then there will be no timeout. Examples: >>> t = tube() >>> t.settimeout_raw = lambda t: None >>> t.settimeout(3) >>> t.timeout == 3 True """ self.timeout = timeout self.settimeout_raw(self.timeout) shutdown_directions = { 'in': 'recv', 'read': 'recv', 'recv': 'recv', 'out': 'send', 'write': 'send', 'send': 'send', } connected_directions = shutdown_directions.copy() connected_directions['any'] = 'any' def shutdown(self, direction = "send"): """shutdown(direction = "send") Closes the tube for futher reading or writing depending on `direction`. Args: direction(str): Which direction to close; "in", "read" or "recv" closes the tube in the ingoing direction, "out", "write" or "send" closes it in the outgoing direction. Returns: :const:`None` Examples: >>> def p(x): print x >>> t = tube() >>> t.shutdown_raw = p >>> _=map(t.shutdown, ('in', 'read', 'recv', 'out', 'write', 'send')) recv recv recv send send send >>> t.shutdown('bad_value') #doctest: +ELLIPSIS Traceback (most recent call last): ... KeyError: "direction must be in ['in', 'out', 'read', 'recv', 'send', 'write']" """ try: direction = self.shutdown_directions[direction] except KeyError: raise KeyError('direction must be in %r' % sorted(self.shutdown_directions)) else: self.shutdown_raw(self.shutdown_directions[direction]) def connected(self, direction = 'any'): """connected(direction = 'any') -> bool Returns True if the tube is connected in the specified direction. Args: direction(str): Can be the string 'any', 'in', 'read', 'recv', 'out', 'write', 'send'. Doctest: >>> def p(x): print x >>> t = tube() >>> t.connected_raw = p >>> _=map(t.connected, ('any', 'in', 'read', 'recv', 'out', 'write', 'send')) any recv recv recv send send send >>> t.connected('bad_value') #doctest: +ELLIPSIS Traceback (most recent call last): ... KeyError: "direction must be in ['any', 'in', 'out', 'read', 'recv', 'send', 'write']" """ try: direction = self.connected_directions[direction] except KeyError: raise KeyError('direction must be in %r' % sorted(self.connected_directions)) else: return self.connected_raw(direction) def __enter__(self): """Permit use of 'with' to control scoping and closing sessions. Examples: .. doctest:: >>> t = tube() >>> def p(x): print x >>> t.close = lambda: p("Closed!") >>> with t: pass Closed! """ return self def __exit__(self, type, value, traceback): """Handles closing for 'with' statement See :meth:`__enter__` """ self.close() # The minimal interface to be implemented by a child def recv_raw(self, numb): """recv_raw(numb) -> str Should not be called directly. Receives data without using the buffer on the object. Unless there is a timeout or closed connection, this should always return data. In case of a timeout, it should return None, in case of a closed connection it should raise an ``exceptions.EOFError``. """ raise EOFError('Not implemented') def send_raw(self, data): """send_raw(data) Should not be called directly. Sends data to the tube. Should return ``exceptions.EOFError``, if it is unable to send any more, because of a close tube. """ raise EOFError('Not implemented') def settimeout_raw(self, timeout): """settimeout_raw(timeout) Should not be called directly. Sets the timeout for the tube. """ raise NotImplementedError() def timeout_change(self): """ Informs the raw layer of the tube that the timeout has changed. Should not be called directly. Inherited from :class:`Timeout`. """ try: self.settimeout_raw(self.timeout) except NotImplementedError: pass def can_recv_raw(self, timeout): """can_recv_raw(timeout) -> bool Should not be called directly. Returns True, if there is data available within the timeout, but ignores the buffer on the object. """ raise NotImplementedError() def connected_raw(self, direction): """connected(direction = 'any') -> bool Should not be called directly. Returns True iff the tube is connected in the given direction. """ raise NotImplementedError() def close(self): """close() Closes the tube. """ pass # Ideally we could: # raise NotImplementedError() # But this causes issues with the unit tests. def fileno(self): """fileno() -> int Returns the file number used for reading. """ raise NotImplementedError() def shutdown_raw(self, direction): """shutdown_raw(direction) Should not be called directly. Closes the tube for further reading or writing. """ raise NotImplementedError()
the-stack_106_23737
# Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from builtins import object from mock import MagicMock, patch from nose.plugins.attrib import attr from nose.tools import assert_raises, assert_false, eq_ from nose import SkipTest from django.contrib.auth.models import User from desktop.auth.backend import rewrite_user from desktop.lib.fs import ProxyFS from desktop.lib.django_test_util import make_logged_in_client from desktop.lib.test_utils import add_permission, remove_from_group def test_fs_selection(): make_logged_in_client(username='test', groupname='default', recreate=True, is_superuser=False) user = User.objects.get(username='test') with patch('desktop.lib.fs.ProxyFS._has_access') as _has_access: _has_access.return_value = True s3fs, adls, hdfs, abfs = MagicMock(), MagicMock(), MagicMock(), MagicMock() proxy_fs = ProxyFS({'s3a': wrapper(s3fs), 'hdfs': wrapper(hdfs), 'adl': wrapper(adls), 'abfs': wrapper(abfs)}, 'hdfs') proxy_fs.setuser(user) proxy_fs.isdir('s3a://bucket/key') s3fs.isdir.assert_called_once_with('s3a://bucket/key') assert_false(hdfs.isdir.called) proxy_fs.isfile('hdfs://localhost:42/user/alice/file') hdfs.isfile.assert_called_once_with('hdfs://localhost:42/user/alice/file') assert_false(s3fs.isfile.called) proxy_fs.isdir('adl://net/key') adls.isdir.assert_called_once_with('adl://net/key') assert_false(hdfs.isdir.called) proxy_fs.isdir('abfs://net/key') abfs.isdir.assert_called_once_with('abfs://net/key') assert_false(hdfs.isdir.called) assert_raises(IOError, proxy_fs.stats, 'ftp://host') def wrapper(mock): def tmp(*args, **kwargs): return mock return tmp def test_multi_fs_selection(): make_logged_in_client(username='test', groupname='default', recreate=True, is_superuser=False) user = User.objects.get(username='test') with patch('desktop.lib.fs.ProxyFS._has_access') as _has_access: _has_access.return_value = True s3fs, adls, hdfs, abfs = MagicMock(), MagicMock(), MagicMock(), MagicMock() proxy_fs = ProxyFS({'s3a': wrapper(s3fs), 'hdfs': wrapper(hdfs), 'adl': wrapper(adls), 'abfs': wrapper(abfs)}, 'hdfs') proxy_fs.setuser(user) proxy_fs.copy('s3a://bucket1/key', 's3a://bucket2/key') s3fs.copy.assert_called_once_with('s3a://bucket1/key', 's3a://bucket2/key') assert_false(hdfs.copy.called) proxy_fs.copyfile('s3a://bucket/key', 'key2') s3fs.copyfile.assert_called_once_with('s3a://bucket/key', 'key2') assert_false(hdfs.copyfile.called) proxy_fs.copyfile('adl://net/key', 'key2') adls.copyfile.assert_called_once_with('adl://net/key', 'key2') assert_false(hdfs.copyfile.called) proxy_fs.copyfile('abfs:/key', 'key2') abfs.copyfile.assert_called_once_with('abfs:/key', 'key2') assert_false(hdfs.copyfile.called) proxy_fs.rename('/tmp/file', 'shmile') hdfs.rename.assert_called_once_with('/tmp/file', 'shmile') assert_false(s3fs.rename.called) # Will be addressed in HUE-2934 assert_raises(NotImplementedError, proxy_fs.copy_remote_dir, 's3a://bucket/key', 'adl://tmp/dir') # Exception can only be thrown if scheme is specified, else default to 1st scheme def test_constructor_given_invalid_arguments(): assert_raises(ValueError, ProxyFS, {'s3a': {}}, 'hdfs') class MockFs(object): def __init__(self, filebrowser_action=None): self.user = None self._filebrowser_action = filebrowser_action def setuser(self, user): self.user = user def filebrowser_action(self): return self._filebrowser_action class TestFsPermissions(object): def test_fs_permissions_regular_user(self): user_client = make_logged_in_client(username='test', groupname='default', recreate=True, is_superuser=False) user = User.objects.get(username='test') s3fs, adls, hdfs, abfs = MockFs("s3_access"), MockFs("adls_access"), MockFs(), MockFs("abfs_access") proxy_fs = ProxyFS({'s3a': wrapper(s3fs), 'hdfs': wrapper(hdfs), 'adl': wrapper(adls), 'abfs': wrapper(abfs)}, 'hdfs') proxy_fs.setuser(user) f = proxy_fs._get_fs remove_from_group(user.username, 'has_s3') remove_from_group(user.username, 'has_adls') remove_from_group(user.username, 'has_abfs') # No perms by default assert_raises(Exception, f, 's3a://bucket') assert_raises(Exception, f, 'S3A://bucket/key') assert_raises(Exception, f, 'adl://net/key') assert_raises(Exception, f, 'adl:/key') assert_raises(Exception, f, 'abfs:/key') f('hdfs://path') f('/tmp') try: # Add perm add_permission('test', 'has_s3', permname='s3_access', appname='filebrowser') add_permission('test', 'has_adls', permname='adls_access', appname='filebrowser') add_permission('test', 'has_abfs', permname='abfs_access', appname='filebrowser') f('s3a://bucket') f('S3A://bucket/key') f('adl://net/key') f('adl:/key') f('abfs:/key') f('hdfs://path') f('/tmp') finally: remove_from_group(user.username, 'has_s3') remove_from_group(user.username, 'has_adls') remove_from_group(user.username, 'has_abfs') def test_fs_permissions_admin_user(self): user_client = make_logged_in_client(username='admin', groupname='default', recreate=True, is_superuser=True) user = User.objects.get(username='admin') s3fs, adls, hdfs, abfs = MockFs("s3_access"), MockFs("adls_access"), MockFs(), MockFs("abfs_access") proxy_fs = ProxyFS({'s3a': wrapper(s3fs), 'hdfs': wrapper(hdfs), 'adl': wrapper(adls), 'abfs': wrapper(abfs)}, 'hdfs') proxy_fs.setuser(user) f = proxy_fs._get_fs f('s3a://bucket') f('S3A://bucket/key') f('adl://net/key') f('adl:/key') f('abfs:/key') f('hdfs://path') f('/tmp')
the-stack_106_23741
#!/usr/bin/env python # Copyright (c) 2018 Andy Zeng import socket import struct import time import numpy as np import os import sys import math import matplotlib.pyplot as plt import pybullet as p import pybullet_data from datetime import datetime import gym from gym import spaces from gym.utils import seeding from robot import Robot class PyBulletSim(gym.Env): def __init__(self, gui=True, timeStep=0.01, NAgents=2, maxEpisodeLength=1000): self._timeStep = timeStep self._p = p self._gui = gui if gui: cid = p.connect(p.SHARED_MEMORY) # What does this do??? if (cid < 0): cid = p.connect(p.GUI) # What does this do??? else: p.connect(p.DIRECT) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setGravity(0, 0, -9.81) p.setTimeStep(self._timeStep) p.setRealTimeSimulation(0) self._plane_id = p.loadURDF("plane.urdf") self._boxId = p.loadURDF("assets/objects/cube/cube.urdf") # how many steps to stepSimulation before punishing illegal actions self._actionSteps = 50 self.NAgents = NAgents ################################# ##########SET UP ROBOT########### ################################# positions = [[0.8, 0, 0], [-0.8, 0, 0], [0, 0.8, 0], [0, -0.8, 0]] rotations = [[0, 0, np.pi], [0, 0, 0], [0, 1, 0], [0, -1, 0]] self.robots = [] for i in range(self.NAgents): self.robots.append( Robot(self._timeStep, pos=positions[i], rot=rotations[i])) maxVelocity, timeStep, Njoints = self.robots[0].getConfigs() ################################# #######SET UP ACTION SPACE####### ################################# action_dim = Njoints action_high = np.array( [maxVelocity*timeStep*self._actionSteps] * action_dim) self.action_space = np.array( [spaces.Box(-action_high, action_high) for _ in range(self.NAgents)]) ################################# ####SET UP OBSERVATION SPACE##### ################################# self._observation = [] # Each agents have 6 joints and box position and poses # observation dimension for each agent observation_dim = Njoints * self.NAgents + 7 observation_high = np.array([1] * observation_dim) self.observation_space = np.array( [spaces.Box(-observation_high, observation_high) for _ in range(self.NAgents)]) self.viewer = None # TODO what is this for ################################# #####OTHER OPENAI GYM STUFF###### ################################# self._max_episode_steps = maxEpisodeLength self._current_episode_step = 0 ### TEMP FOR DEBUGGING ### self._read_time_debug = p.addUserDebugParameter( 'real-time', 0.0, 1.0, 0.0) self.seed() # TODO self.reset() def reset(self): self.terminate_episode = False for robot in self.robots: robot.reset() for _ in range(50): p.stepSimulation() self._current_episode_step = 0 self.resetBox() p.stepSimulation() self._observation = self._getObservation() return self._observation def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _getObservation(self): robotJoints = [] for robot in self.robots: robotJoints.append(robot.getJoints()) observation = [] boxPos, boxRot = p.getBasePositionAndOrientation(self._boxId) boxPos = np.array(boxPos) boxRot = np.array(boxRot) boxObservation = np.concatenate((boxPos, boxRot)) for i in range(len(self.robots)): robotObservation = np.array([]) # Relative box position and rotation boxObservation = np.concatenate( (boxPos - self.robots[i]._pos, boxRot)) robotObservation = np.concatenate( (robotObservation, boxObservation)) # Self Joints robotObservation = np.concatenate( (robotObservation, robotJoints[i])) # Other's joints for j in range(len(self.robots)): if j != i: robotObservation = np.concatenate(( robotObservation, robotJoints[j])) observation.append(robotObservation) return np.array(observation) def step(self, actions): assert len(actions) == self.NAgents, "Wrong Action Dimensions" self._current_episode_step += 1 rewards = np.zeros(len(self.robots)) # Compute target joint state target_joint_states = [robot.getJoints() + action for robot, action in zip(self.robots, actions)] # Set Robot's target joint state for i, robot in enumerate(self.robots): robot.setTargetJointState(target_joint_states[i]) for _ in range(self._actionSteps): p.stepSimulation() if p.readUserDebugParameter(self._read_time_debug) == 1.0: time.sleep(0.01) rewards += self._getReward() # Punish agent if suggested illegal action for i, robot in enumerate(self.robots): actual_joint_state = robot.getJoints() if not all([np.abs(actual_joint_state[joint_id]-target_joint_states[i][joint_id]) < 0.01 for joint_id in range(6)]): rewards[i] -= 1 done = self.terminate_episode or self._current_episode_step >= self._max_episode_steps if not done and self._gui: self._observation = self._getObservation() return self._observation, rewards, done, {} def _getReward(self): rewards = np.zeros(len(self.robots)) for i, robot in enumerate(self.robots): touchedBox = p.getContactPoints( self._boxId, robot._palm_body_id) != () # touchedGround = p.getContactPoints( # self._plane_id, robot._palm_body_id) != () # touchedPalmSelf = p.getContactPoints( # robot._robot_body_id, robot._palm_body_id) != () # touchedSelf = p.getContactPoints( # robot._robot_body_id, robot._robot_body_id) != () if touchedBox: rewards[i] += 1 # print("[{}] {} touched box!".format( # datetime.now().strftime("%H:%M:%S"), i)) # if touchedPalmSelf: # rewards[i] -= 1 # if touchedSelf: # rewards[i] -= 1 # print("[{}] {} self collision!".format( # int(round(time.time() * 1000)) % 100000, i)) # if touchedGround: # rewards[i] -= 1 return rewards def resetBox(self): random_orientation = [ np.random.randint(2)*np.pi/2, np.random.randint(2)*np.pi/2, np.random.random_sample()*2*np.pi-np.pi] p.resetBasePositionAndOrientation( self._boxId, [0, 1*(np.random.random_sample()-0.5), 0.3], p.getQuaternionFromEuler(random_orientation)) for _ in range(10): p.stepSimulation()
the-stack_106_23742
# -*- coding: utf-8 -*- import scrapy # from scrapy.shell import inspect_response from scrapy import signals from jobcrawl.items import JobItem from scrapy.http import HtmlResponse from jobcrawl.selenium_scraper import DrushimScraper from pydispatch import dispatcher # from scrapy.xlib.pydispatch import dispatcher # import sys # import locale # import codecs import re import datetime class DrushimSpider(scrapy.Spider): name = "drushim" allowed_domains = ["drushim.co.il"] base_url = "https://www.drushim.co.il" scrape_url = 'https://www.drushim.co.il/jobs/search/%22%22/?ssaen=1' start_urls = (scrape_url, ) seen_job_ids = set() def __init__(self): # sys.stdout = codecs.getwriter( # locale.getpreferredencoding())(sys.stdout) # reload(sys) # sys.setdefaultencoding('utf-8') self.selenium_scraper = DrushimScraper(self.scrape_url, self.logger) dispatcher.connect(self.spider_closed, signals.spider_closed) self.total_jobs = 0 def parse(self, response): page = 1 for page_source in self.selenium_scraper.scrape(): response = HtmlResponse(url=self.scrape_url, body=page_source, encoding='utf-8') page_job_count = 0 for item in self.parse_html(response): self.total_jobs += 1 page_job_count += 1 yield item self.logger.info("Drushim: Page %s job count = %s, total_jobs=%s", page, page_job_count, self.total_jobs) page += 1 def parse_html(self, response): job_container_list = response.xpath( "//div[@class='job-item-main pb-3 job-hdr']") for job_container in job_container_list: job_link = job_container.xpath( ".//div[@class='flex nowrap align-self-center pc-view open-job text-center']/a/@href").extract_first() if job_link: job_link = "{}{}".format(self.base_url, job_link) try: job_id = "-".join(job_link.split("/")[-2:]) except: job_id = "" if not job_id or job_id in self.seen_job_ids: continue self.seen_job_ids.add(job_id) try: job_title = job_container.xpath( ".//span[@class='job-url primary--text font-weight-bold primary--text']").xpath( "normalize-space(string())").extract_first() except: job_title = "" try: company = job_container.xpath( ".//div[@class='layout job-details-top mt-md-2 align-baseline']" "/div[@class='flex grow-none ml-3']/p").xpath("normalize-space(string())").extract_first() except: company = "" try: company_jobs = job_container.xpath( ".//div[@class='layout job-details-top mt-md-2 align-baseline']" "/div[@class='flex grow-none ml-3']/p/a/@href").extract_first() except: company_jobs = job_link job_description = "" job_sub_details = job_container.xpath(".//div[@class='layout job-details-sub']").xpath( "normalize-space(string())").extract_first() jsd_val = [] if job_sub_details: jsd_val = job_sub_details.split("|") country_areas = jsd_val[0].strip() if jsd_val else "" category = jsd_val[2].strip() if jsd_val and len(jsd_val) == 4 else "" job_post_date = jsd_val[-1].strip() if jsd_val and len(jsd_val) == 4 else "" try: job_post_date_num = re.findall(r'[\d]+', job_post_date)[0] job_post_date_num = int(job_post_date_num) if job_post_date_num: second = 'שְׁנִיָה'.decode('utf-8') seconds = 'שניות'.decode('utf-8') minute = 'דַקָה'.decode('utf-8') minutes = 'דקות'.decode('utf-8') hour = 'שָׁעָה'.decode('utf-8') hours = 'שעות'.decode('utf-8') day = 'יְוֹם'.decode('utf-8') days = 'ימים'.decode('utf-8') # month = 'חוֹדֶשׁ'.decode('utf-8') # months = 'חודשים'.decode('utf-8') hms = [second, seconds, minute, minutes, hour, hours] if day in job_post_date: job_post_date = datetime.date.today() - \ datetime.timedelta(days=job_post_date_num) job_post_date = job_post_date.strftime("%d/%m/%Y") elif days in job_post_date: job_post_date = datetime.date.today() - \ datetime.timedelta(days=job_post_date_num) job_post_date = job_post_date.strftime("%d/%m/%Y") elif [x for x in hms if x in job_post_date]: job_post_date = datetime.date.today() job_post_date = job_post_date.strftime("%d/%m/%Y") elif job_post_date_num == 0: job_post_date = datetime.date.today() job_post_date = job_post_date.strftime("%d/%m/%Y") else: job_post_date = job_post_date except: job_post_date = "" item = JobItem() item['Job'] = { 'Site': 'Drushim', 'Company': company, 'Company_jobs': company_jobs, 'Job_id': job_id, 'Job_title': job_title, 'Job_Description': job_description, 'Job_Post_Date': job_post_date, 'Job_URL': job_link, 'Country_Areas': country_areas, 'Job_categories': category, 'AllJobs_Job_class': '', 'unique_id': 'drushim_{}'.format(job_id) } yield item def spider_closed(self, spider): self.selenium_scraper.close_driver()
the-stack_106_23743
"""Functions to load demo datasets.""" import io import logging import os import urllib.request from datetime import datetime, timedelta from zipfile import ZipFile import numpy as np import pandas as pd import scipy as sp from faker import Faker from sdv.metadata import Metadata, Table LOGGER = logging.getLogger(__name__) DEMO_METADATA = { 'tables': { 'users': { 'primary_key': 'user_id', 'fields': { 'user_id': { 'type': 'id', 'subtype': 'integer' }, 'country': { 'type': 'categorical' }, 'gender': { 'type': 'categorical' }, 'age': { 'type': 'numerical', 'subtype': 'integer' } } }, 'sessions': { 'primary_key': 'session_id', 'fields': { 'session_id': { 'type': 'id', 'subtype': 'integer' }, 'user_id': { 'ref': { 'field': 'user_id', 'table': 'users' }, 'type': 'id', 'subtype': 'integer' }, 'device': { 'type': 'categorical' }, 'os': { 'type': 'categorical' }, 'minutes': { 'type': 'numerical', 'subtype': 'integer' } } }, 'transactions': { 'primary_key': 'transaction_id', 'fields': { 'transaction_id': { 'type': 'id', 'subtype': 'integer' }, 'session_id': { 'ref': { 'field': 'session_id', 'table': 'sessions' }, 'type': 'id', 'subtype': 'integer' }, 'timestamp': { 'type': 'datetime', 'format': '%Y-%m-%dT%H:%M' }, 'amount': { 'type': 'numerical', 'subtype': 'float' }, 'cancelled': { 'type': 'boolean' } } } } } DATA_PATH = os.path.join(os.path.dirname(__file__), 'data') DATA_URL = 'https://sdv-datasets.s3.amazonaws.com/{}.zip' DATASETS_URL = 'https://sdv-datasets.s3.amazonaws.com/datasets.csv' def _dtypes64(table): for name, column in table.items(): if column.dtype == np.int32: table[name] = column.astype('int64') elif column.dtype == np.float32: table[name] = column.astype('float64') return table def _download(dataset_name, data_path): url = DATA_URL.format(dataset_name) LOGGER.info('Downloading dataset {} from {}'.format(dataset_name, url)) response = urllib.request.urlopen(url) bytes_io = io.BytesIO(response.read()) LOGGER.info('Extracting dataset into {}'.format(data_path)) with ZipFile(bytes_io) as zf: zf.extractall(data_path) def _get_dataset_path(dataset_name, data_path): if not os.path.exists(data_path): os.makedirs(data_path) if not os.path.exists(os.path.join(data_path, dataset_name)): _download(dataset_name, data_path) return os.path.join(data_path, dataset_name) def _load_relational_dummy(): users = pd.DataFrame({ 'user_id': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'country': ['US', 'UK', 'ES', 'UK', 'US', 'DE', 'BG', 'ES', 'FR', 'UK'], 'gender': ['M', 'F', None, 'M', 'F', 'M', 'F', None, 'F', None], 'age': [34, 23, 44, 22, 54, 57, 45, 41, 23, 30] }) sessions = pd.DataFrame({ 'session_id': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'user_id': [0, 1, 1, 2, 4, 5, 6, 6, 6, 8], 'device': ['mobile', 'tablet', 'tablet', 'mobile', 'mobile', 'mobile', 'mobile', 'tablet', 'mobile', 'tablet'], 'os': ['android', 'ios', 'android', 'android', 'ios', 'android', 'ios', 'ios', 'ios', 'ios'], 'minutes': [23, 12, 8, 13, 9, 32, 7, 21, 29, 34], }) transactions = pd.DataFrame({ 'transaction_id': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'session_id': [0, 0, 1, 3, 5, 5, 7, 8, 9, 9], 'timestamp': ['2019-01-01T12:34:32', '2019-01-01T12:42:21', '2019-01-07T17:23:11', '2019-01-10T11:08:57', '2019-01-10T21:54:08', '2019-01-11T11:21:20', '2019-01-22T14:44:10', '2019-01-23T10:14:09', '2019-01-27T16:09:17', '2019-01-29T12:10:48'], 'amount': [100.0, 55.3, 79.5, 112.1, 110.0, 76.3, 89.5, 132.1, 68.0, 99.9], 'cancelled': [False, False, False, True, True, False, False, True, False, False], }) transactions['timestamp'] = pd.to_datetime(transactions['timestamp']) tables = { 'users': _dtypes64(users), 'sessions': _dtypes64(sessions), 'transactions': _dtypes64(transactions), } return Metadata(DEMO_METADATA), tables def sample_relational_demo(size=30): """Sample demo data with the indicate number of rows in the parent table.""" # Users faker = Faker() countries = [faker.country_code() for _ in range(5)] country = np.random.choice(countries, size=size) gender = np.random.choice(['F', 'M', None], p=[0.5, 0.4, 0.1], size=size) age = ( sp.stats.truncnorm.rvs(-1.2, 1.5, loc=30, scale=10, size=size).astype(int) + 3 * (gender == 'M') + 3 * (country == countries[0]).astype(int) ) num_sessions = ( sp.stats.gamma.rvs(1, loc=0, scale=2, size=size) * (0.8 + 0.2 * (gender == 'F')) ).round().astype(int) users = pd.DataFrame({ 'country': country, 'gender': gender, 'age': age, 'num_sessions': num_sessions }) users.index.name = 'user_id' # Sessions sessions = pd.DataFrame() for user_id, user in users.iterrows(): device_weights = [0.1, 0.4, 0.5] if user.gender == 'M' else [0.3, 0.4, 0.3] devices = np.random.choice( ['mobile', 'tablet', 'pc'], size=user.num_sessions, p=device_weights ) os = [] pc_weights = [0.6, 0.3, 0.1] if user.age > 30 else [0.2, 0.4, 0.4] pc_os = np.random.choice(['windows', 'macos', 'linux'], p=pc_weights) phone_weights = [0.7, 0.3] if user.age > 30 else [0.9, 0.1] phone_os = np.random.choice(['android', 'ios'], p=phone_weights) for device in devices: os.append(pc_os if device == 'pc' else phone_os) minutes = ( sp.stats.truncnorm.rvs(-3, 3, loc=30, scale=10, size=user.num_sessions) * (1 + 0.1 * (user.gender == 'M')) * (1 + user.age / 100) * (1 + 0.1 * (devices == 'pc')) ) num_transactions = (minutes / 10) * (0.5 + (user.gender == 'F')) sessions = sessions.append(pd.DataFrame({ 'user_id': np.full(user.num_sessions, int(user_id)), 'device': devices, 'os': os, 'minutes': minutes.round().astype(int), 'num_transactions': num_transactions.round().astype(int), }), ignore_index=True) sessions.index.name = 'session_id' del users['num_sessions'] # Transactions transactions = pd.DataFrame() for session_id, session in sessions.iterrows(): size = session.num_transactions if size: amount_base = sp.stats.truncnorm.rvs(-2, 4, loc=100, scale=50, size=size) is_apple = session['os'] in ('ios', 'macos') amount_modif = np.random.random(size) * 100 * is_apple amount = amount_base / np.random.randint(1, size + 1) + amount_modif seconds = np.random.randint(3600 * 24 * 365) start = datetime(2019, 1, 1) + timedelta(seconds=seconds) timestamp = sorted([ start + timedelta(seconds=int(seconds)) for seconds in np.random.randint(60 * session.minutes, size=size) ]) cancelled = np.random.random(size=size) < (1 / (size * 2)) transactions = transactions.append(pd.DataFrame({ 'session_id': np.full(session.num_transactions, int(session_id)), 'timestamp': timestamp, 'amount': amount.round(2), 'cancelled': cancelled, }), ignore_index=True) transactions.index.name = 'transaction_id' del sessions['num_transactions'] tables = { 'users': _dtypes64(users.reset_index()), 'sessions': _dtypes64(sessions.reset_index()), 'transactions': _dtypes64(transactions.reset_index()), } return Metadata(DEMO_METADATA), tables def _load_demo_dataset(dataset_name, data_path): dataset_path = _get_dataset_path(dataset_name, data_path) meta = Metadata(metadata=os.path.join(dataset_path, 'metadata.json')) tables = { name: _dtypes64(table) for name, table in meta.load_tables().items() } return meta, tables def load_demo(dataset_name=None, data_path=DATA_PATH, metadata=False): """Load relational demo data. If a dataset name is given, it is downloaded from the sdv-datasets S3 bucket. Otherwise, a toy dataset with three simple tables is loaded: * users: user data including country, gender and age. * sessions: sessions data with a foreign key to user. * transactions: transactions data with a foreign key to sessions. If ``metadata`` is ``True``, the output will be a tuple with a ``Metadata`` instance for the dataset and a ``tables`` dict that contains the tables loaded as ``pandas.DataFrames``. If ``metadata`` is ``False``, only the ``tables`` are returned. Args: dataset_name (str): Dataset name to be downloaded, if ``None`` use default demo data. Defaults to ``None``. data_path (str): Data path to save the dataset files, only used if dataset_name is provided. Defaults to ``DATA_PATH``. metadata (bool): If ``True`` return Metadata object. Defaults to ``False``. Returns: dict or tuple: If ``metadata`` is ``False`` return a ``dict`` with the tables data. If ``metadata`` is ``True`` return a ``tuple`` with Metadata and tables data. """ if dataset_name: meta, tables = _load_demo_dataset(dataset_name, data_path) else: meta, tables = _load_relational_dummy() if metadata: return meta, tables return tables def _load_tabular_dummy(): """Load a dummy tabular demo dataframe.""" age = np.random.randint(30, 50, 12) age_when_joined = age - np.random.randint(0, 10, 12) faker = Faker() names = [faker.name() for _ in range(12)] adresses = [faker.address() for _ in range(12)] salary = np.random.uniform(30000, 160000, 12).round(2) years_exp = np.random.randint(1, 6, 12) return pd.DataFrame({ 'company': ['Pear', 'Pear', 'Glasses', 'Glasses', 'Cheerper', 'Cheerper'] * 2, 'department': ['Sales', 'Design', 'AI', 'Search Engine', 'BigData', 'Support'] * 2, 'name': names, 'address': adresses, 'age': age, 'age_when_joined': age_when_joined, 'years_in_the_company': age - age_when_joined, 'salary': salary, 'prior_years_experience': years_exp, 'full_time': [1.0, 0.0, 1.0, 1.0, 0.0, 0.0] * 2, 'part_time': [0.0, 0.0, 0.0, 0.0, 1.0, 1.0] * 2, 'contractor': [0.0, 1.0, 0.0, 0.0, 0.0, 0.0] * 2 }) def load_tabular_demo(dataset_name=None, table_name=None, data_path=DATA_PATH, metadata=False): """Load a tabular demo. If a dataset name is given, it is downloaded from the sdv-datasets S3 bucket. Otherwise, a toy dataset with a single table that contains data from a short fake collection of employees. If ``metadata`` is ``True``, the output will be a tuple with a ``Metadata`` instance for the dataset and a ``pandas.DataFrame`` with the data from the table. If ``metadata`` is ``False``, only the ``pandas.DataFrame`` is returned. Args: dataset_name (str): Dataset name to be downloaded, if ``None`` use default demo data. Defaults to ``None``. table_name (str): If a table name is given, return this table from the indicated dataset. Otherwise, return the first one. data_path (str): Data path to save the dataset files, only used if dataset_name is provided. Defaults to ``DATA_PATH``. metadata (bool): If ``True`` also return a Table object. Defaults to ``False``. Returns: pandas.DataFrame or tuple: If ``metadata`` is ``False`` return a ``pandas.DataFrame`` with the tables data. If ``metadata`` is ``True`` return a ``tuple`` with a Table and the data. """ if dataset_name: meta, tables = _load_demo_dataset(dataset_name, data_path) if table_name is None: table_name = meta.get_tables()[0] table = _dtypes64(tables[table_name]) if metadata: return Table.from_dict(meta.get_table_meta(table_name)), table return table table = _dtypes64(_load_tabular_dummy()) if metadata: table_meta = Table.from_dict({ 'fields': { 'company': {'type': 'categorical'}, 'department': {'type': 'categorical'}, 'name': {'type': 'categorical'}, 'address': {'type': 'categorical'}, 'age': {'type': 'numerical', 'subtype': 'integer'}, 'age_when_joined': {'type': 'numerical', 'subtype': 'integer'}, 'years_in_the_company': {'type': 'numerical', 'subtype': 'integer'}, 'salary': {'type': 'numerical', 'subtype': 'float'}, 'prior_years_experience': {'type': 'numerical', 'subtype': 'integer'} }, 'constraints': [ { 'constraint': 'UniqueCombinations', 'columns': ['company', 'department'], }, { 'constraint': 'GreaterThan', 'low': 'age_when_joined', 'high': 'age' }, { 'constraint': 'GreaterThan', 'low': 30000, 'high': 'salary' }, { 'constraint': 'Positive', 'high': 'prior_years_experience' }, { 'constraint': 'Rounding', 'columns': 'salary', 'digits': 2 } ], 'model_kwargs': {} }) return table_meta, table return table def load_timeseries_demo(dataset_name=None, table_name=None, metadata=False): """Load a timeseries demo. If a dataset name is given, it is downloaded from the sdv-datasets S3 bucket. Otherwise, a the NASDAQ100_2019 dataset is loaded. If ``metadata`` is ``True``, the output will be a tuple with a ``Metadata`` instance for the dataset and a ``pandas.DataFrame`` with the data from the table. If ``metadata`` is ``False``, only the ``pandas.DataFrame`` is returned. Args: dataset_name (str): Dataset name to be downloaded, if ``None`` use default dataset. Defaults to ``None``. table_name (str): If a table name is given, return this table from the indicated dataset. Otherwise, return the first one. data_path (str): Data path to save the dataset files, only used if dataset_name is provided. Defaults to ``DATA_PATH``. metadata (bool): If ``True`` also return a Table object. Defaults to ``False``. Returns: pandas.DataFrame or tuple: If ``metadata`` is ``False`` return a ``pandas.DataFrame`` with the tables data. If ``metadata`` is ``True`` return a ``tuple`` with a Table and the data. """ dataset_name = dataset_name or 'nasdaq100_2019' return load_tabular_demo(dataset_name, table_name, data_path=DATA_PATH, metadata=metadata) def get_available_demos(): """Get available demos and information about them. Returns: pandas.DataFrame: Table with the available demos. """ return pd.read_csv(DATASETS_URL)
the-stack_106_23744
import data_utils def _get_feed_dict_for_others(model, x_batch, y_batch, x_lens, use_pos=True, use_ner=True, use_deprel=True): feed = {model.word_inputs:x_batch[data_utils.WORD_FIELD], model.labels:y_batch, model.seq_lens:x_lens} if use_pos: feed[model.pos_inputs] = x_batch[data_utils.POS_FIELD] if use_ner: feed[model.ner_inputs] = x_batch[data_utils.NER_FIELD] if use_deprel: feed[model.deprel_inputs] = x_batch[data_utils.DEPREL_FIELD] return feed def _get_feed_dict_for_sprnn(model, x_batch, y_batch, x_lens, use_pos=True, use_ner=True, use_deprel=True): all_fields = [data_utils.WORD_FIELD, data_utils.POS_FIELD, data_utils.NER_FIELD, data_utils.DEPREL_FIELD, data_utils.ROOT_FIELD] # convert root sequence into a list of ROOT index's root_seq = x_batch[data_utils.ROOT_FIELD] max_len = len(root_seq[0]) root_index_seq = [] for s in root_seq: root_index_seq.append(s.index('ROOT')) # find the root position # for each sequence type, divide the sequence based on the index sequence and pad to max length # left batch: from subject to root; right_batch: from object to root left_batch = {} right_batch = {} for k in all_fields: # each value is a batch of different sequence batch = x_batch[k] left_batch_seq, right_batch_seq = [], [] assert(len(batch) == len(root_index_seq)) for s, idx, length in zip(batch, root_index_seq, x_lens): l = s[:idx+1] r = s[idx:length][::-1] # remember to inverse the right batch so that ROOT is at the end left_batch_seq.append(l + [data_utils.PAD_ID] * (max_len-len(l))) # pad right_batch_seq.append(r + [data_utils.PAD_ID] * (max_len-len(r))) left_batch[k], right_batch[k] = left_batch_seq, right_batch_seq # calculate left and right seq lengths left_lens = [idx + 1 for idx in root_index_seq] right_lens = [(l - idx) for idx, l in zip(root_index_seq, x_lens)] # now create the feed dict feed = {model.word_inputs: left_batch[data_utils.WORD_FIELD] + right_batch[data_utils.WORD_FIELD], \ model.seq_lens: left_lens + right_lens, model.labels: y_batch} if use_pos: feed[model.pos_inputs] = left_batch[data_utils.POS_FIELD] + right_batch[data_utils.POS_FIELD] if use_ner: feed[model.ner_inputs] = left_batch[data_utils.NER_FIELD] + right_batch[data_utils.NER_FIELD] if use_deprel: feed[model.deprel_inputs] = left_batch[data_utils.DEPREL_FIELD] + right_batch[data_utils.DEPREL_FIELD] return feed
the-stack_106_23745
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SqlPoolUsagesOperations: """SqlPoolUsagesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.synapse.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, workspace_name: str, sql_pool_name: str, **kwargs ) -> AsyncIterable["_models.SqlPoolUsageListResult"]: """Gets SQL pool usages. Gets SQL pool usages. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param sql_pool_name: SQL pool name. :type sql_pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SqlPoolUsageListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.synapse.models.SqlPoolUsageListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SqlPoolUsageListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'workspaceName': self._serialize.url("workspace_name", workspace_name, 'str'), 'sqlPoolName': self._serialize.url("sql_pool_name", sql_pool_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('SqlPoolUsageListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorContract, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Synapse/workspaces/{workspaceName}/sqlPools/{sqlPoolName}/usages'} # type: ignore
the-stack_106_23746
# Owner(s): ["module: sparse"] import torch import itertools import functools import operator import random import unittest from torch.testing import make_tensor from torch.testing._internal.common_dtype import ( all_types_and_complex, ) from torch.testing._internal.common_utils import TestCase, run_tests, skipIfRocm, do_test_dtypes, \ do_test_empty_full, load_tests, TEST_NUMPY, IS_WINDOWS, gradcheck, coalescedonoff, \ DeterministicGuard from torch.testing._internal.common_cuda import TEST_CUDA, _get_torch_cuda_version from numbers import Number from typing import Dict, Any from distutils.version import LooseVersion from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes from torch.testing._internal.common_cuda import \ (SM53OrLater, SM80OrLater, CUDA11OrLater) from torch.testing._internal.common_device_type import \ (instantiate_device_type_tests, ops, dtypes, dtypesIfCUDA, onlyCPU, onlyCUDA, precisionOverride, deviceCountAtLeast, OpDTypes) from torch.testing._internal.common_methods_invocations import \ (sparse_unary_ufuncs) from torch.testing._internal.common_dtype import ( floating_and_complex_types, floating_and_complex_types_and, get_all_dtypes, get_all_int_dtypes, ) # load_tests from torch.testing._internal.common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests # batched grad doesn't support sparse gradcheck = functools.partial(gradcheck, check_batched_grad=False) CUSPARSE_SPMM_COMPLEX128_SUPPORTED = ( IS_WINDOWS and torch.version.cuda and LooseVersion(torch.version.cuda) > "11.2" ) or (not IS_WINDOWS and CUDA11OrLater) class TestSparse(TestCase): def setUp(self): self.index_tensor = lambda *args, **kwargs: torch.tensor(*args, **kwargs, dtype=torch.int64) def sparse_empty_factory(*args, **kwargs): kwargs['layout'] = kwargs.get('layout', torch.sparse_coo) return torch.empty(*args, **kwargs) self.sparse_empty = sparse_empty_factory def sparse_tensor_factory(*args, **kwargs): return torch.sparse_coo_tensor(*args, **kwargs) self.sparse_tensor = sparse_tensor_factory self.legacy_sparse_tensor = torch.sparse.DoubleTensor def _gen_sparse(self, sparse_dim, nnz, with_size, dtype, device, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dim x, i, v = self.genSparseTensor(with_size, sparse_dim, nnz, not coalesced, dtype=dtype, device=device) if not coalesced: self.assert_uncoalesced(x) return x, i, v def assert_uncoalesced(self, x): """ Test if a CPU tensor is uncoalesced. This is used to ensure correctness of the uncoalesced tensor generation algorithm. """ assert not x.is_coalesced() existing_indices = set() for i in range(x._nnz()): index = str(x._indices()[:, i]) if index in existing_indices: return True else: existing_indices.add(index) def randn(self, *args, **kwargs): """ Variant of torch.randn that also works in the TEST_CUDA case. """ # TODO: Put this in torch.cuda.randn return torch.empty(*args, **kwargs).normal_() @dtypes(torch.double) def test_print_coalesced(self, device, dtype): self._test_print(device, dtype, True) @dtypes(torch.double) def test_print_uncoalesced(self, device, dtype): self._test_print(device, dtype, False) def _test_print(self, device, dtype, coalesced): shape_sparse_dim_nnz = [ ((), 0, 2), ((0,), 0, 10), ((2,), 0, 3), ((100, 3), 1, 3), ((100, 20, 3), 2, 0), ((10, 0, 3), 0, 3), ((10, 0, 3), 0, 0), ] printed = [] for shape, sparse_dim, nnz in shape_sparse_dim_nnz: indices_shape = torch.Size((sparse_dim, nnz)) values_shape = torch.Size((nnz,) + shape[sparse_dim:]) printed.append("# shape: {}".format(torch.Size(shape))) printed.append("# nnz: {}".format(nnz)) printed.append("# sparse_dim: {}".format(sparse_dim)) printed.append("# indices shape: {}".format(indices_shape)) printed.append("# values shape: {}".format(values_shape)) indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, device=device).view(indices_shape) for d in range(sparse_dim): indices[d].clamp_(max=(shape[d] - 1)) # make it valid index if not coalesced and indices.numel() > 0: indices[:, -1] = indices[:, 0] # make it uncoalesced values_numel = values_shape.numel() values = torch.arange(values_numel, dtype=dtype, device=device).view(values_shape).div_(values_numel / 2.) sp_tensor = self.sparse_tensor(indices, values, shape, dtype=dtype, device=device) dtypes = [torch.int32] if values.dtype == torch.double: dtypes.append(torch.float) else: dtypes.append(torch.double) for dtype in dtypes: printed.append("########## {} ##########".format(dtype)) x = sp_tensor.detach().to(dtype) printed.append("# sparse tensor") printed.append(str(x)) if x.dtype.is_floating_point: printed.append("# after requires_grad_") printed.append(str(x.requires_grad_())) printed.append("# after addition") printed.append(str(x + x)) printed.append("# _indices") printed.append(str(x._indices())) printed.append("# _values") printed.append(str(x._values())) printed.append('') self.assertExpected('\n'.join(printed)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_basic(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) self.assertEqual(i, x._indices()) self.assertEqual(v, x._values()) self.assertEqual(x.ndimension(), len(with_size)) self.assertEqual(x.coalesce()._nnz(), nnz) self.assertEqual(list(x.size()), with_size) # Test .indices() and .values() if not coalesced: with self.assertRaisesRegex(RuntimeError, "Cannot get indices on an uncoalesced tensor"): x.indices() with self.assertRaisesRegex(RuntimeError, "Cannot get values on an uncoalesced tensor"): x.values() else: self.assertEqual(x.indices(), x._indices()) self.assertEqual(x.values(), x._values()) test_shape(3, 10, 100) test_shape(3, 10, [100, 100, 100]) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) # Make sure that coalesce handles duplicate indices correctly i = self.index_tensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]], device=device) v = torch.tensor([[idx**2, idx] for idx in range(i.size(1))], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([10, 2]), dtype=dtype, device=device) self.assertEqual(x.coalesce()._nnz(), 9) # Make sure we can access empty indices / values x = self.legacy_sparse_tensor() self.assertEqual(x._indices().numel(), 0) self.assertEqual(x._values().numel(), 0) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_coalesce(self, device, dtype, coalesced): def _test_coalesce(t): tc = t.coalesce() self.assertEqual(tc.to_dense(), t.to_dense()) self.assertTrue(tc.is_coalesced()) # Our code below doesn't work when nnz is 0, because # then it's a 0D tensor, not a 2D tensor. if t._nnz() == 0: self.assertEqual(t._indices(), tc._indices()) self.assertEqual(t._values(), tc._values()) return tc value_map: Dict[Any, Any] = {} for idx, val in zip(t._indices().t(), t._values()): idx_tup = tuple(idx.tolist()) if idx_tup in value_map: value_map[idx_tup] += val else: value_map[idx_tup] = val.clone() if isinstance(val, torch.Tensor) else val new_indices = sorted(list(value_map.keys())) _new_values = [value_map[idx] for idx in new_indices] if t._values().ndimension() < 2: new_values = t._values().new(_new_values) else: new_values = torch.stack(_new_values) new_indices = t._indices().new(new_indices).t() tg = t.new(new_indices, new_values, t.size()) self.assertEqual(tc._indices(), tg._indices()) self.assertEqual(tc._values(), tg._values()) if t.is_coalesced(): self.assertEqual(tc._indices(), t._indices()) self.assertEqual(tc._values(), t._values()) for empty_i, empty_v, empty_nnz in itertools.product([True, False], repeat=3): sparse_size = [] if empty_i else [2, 1] dense_size = [1, 0, 2] if empty_v else [1, 2] nnz = 0 if empty_nnz else 5 t, _, _ = self._gen_sparse(len(sparse_size), nnz, sparse_size + dense_size, dtype, device, coalesced) _test_coalesce(t) # this tests correctness @dtypes(torch.double) def test_coalesce_reference_cycle(self, device, dtype): # Test coalesce doesn't create autograd graph cycles (gh-52253) # Sanity check that the helper class works as expected t = torch.rand(2) t_ref = torch._C._WeakTensorRef(t) self.assertFalse(t_ref.expired()) del t self.assertTrue(t_ref.expired()) def test_sparse_sum(): i = torch.tensor([[0], [4]], dtype=torch.long, device=device) v = torch.tensor([[[-0.4567, -1.8797, 0.0380, 1.4316]]], dtype=dtype, device=device) S = torch.sparse_coo_tensor(i, v) S = S.coalesce() S.requires_grad_(True) S2 = S.coalesce() self.assertTrue(S2.is_coalesced()) return torch._C._WeakTensorRef(S2) ref = test_sparse_sum() self.assertTrue(ref.expired()) @dtypes(torch.double) def test_ctor_large_sizes(self, device, dtype): # Test that integer overflow is detected when computing numel # of a sparse tensor with large dimensions (gh-57416). Notice # that numel is computed internally when constructing a # tensor, hence the overflow may appear during the tensor # construction step. N = 100000 indices = torch.tensor([[N, N - 1]] * 4, dtype=torch.int64, device=device) values = torch.tensor([1, 2], dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.sparse_coo_tensor( indices, values, (N + 1,) * 4, device=device)) @dtypes(torch.double, torch.cdouble) def test_ctor_size_checks(self, device, dtype): indices = self.index_tensor([ [0, 0, 0], [0, 3, 0], [0, 0, 0], [0, 0, 0], ], device=device) values = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) # indices inconsistent with size self.assertRaises( RuntimeError, lambda: self.sparse_tensor(indices, values, torch.Size([2, 1, 1]))) # values inconsistent with size values = torch.tensor([ [2, 1, 2, 1], [1, 0, 5, 2], ], dtype=dtype, device=device) self.assertRaises( RuntimeError, lambda: self.sparse_tensor(indices, values, torch.Size([2, 4, 2, 1]))) @dtypes(*floating_and_complex_types_and(torch.float16)) def test_to_dense(self, device, dtype): def test_tensor(x, res): x.to_dense() # Tests triple to_dense for memory corruption x.to_dense() x.to_dense() # We dont have to_dense for half types, so we don't request # exact_dtype if res.type is torch.float16. dense_x = x.to_dense() safe_dense_x = self.safeToDense(x) if (res.dtype == torch.float16): exact_dtype = False else: exact_dtype = True dense_x = dense_x.to(res.dtype) safe_dense_x = safe_dense_x.to(res.dtype) self.assertEqual(res, dense_x, exact_dtype=exact_dtype) self.assertEqual(res, safe_dense_x, exact_dtype=exact_dtype) def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) for value_type in [torch.double, torch.cdouble]: i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) # we don't have to_dense for half types on CPU because it is implemented # with a slower add_ operation v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5]), dtype=value_type, device=device) res = torch.tensor([ [[2, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 3, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 4]], ], dtype=dtype, device=device) test_tensor(x, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) v = torch.empty(4, 0, dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0]), dtype=value_type, device=device) res = torch.empty((3, 4, 5, 0), dtype=dtype, device=device) test_tensor(x, res) # half tensors on cpu don't implement to_dense, so need to convert to float def _to_dense_half_safe(self, tensor): if(tensor.dtype == torch.half and tensor.device.type == 'cpu'): return tensor.to(torch.float).to_dense().to(torch.half) else: return tensor.to_dense() @coalescedonoff @skipIfRocm @dtypes(torch.float16, torch.float64, torch.int, torch.cfloat, torch.cdouble) def test_to_sparse(self, device, dtype, coalesced): shape = [5, 2, 10, 4] max_nnz = 1 for value_type in [torch.double, torch.cdouble]: for dim, dim_sz in enumerate(shape, 1): max_nnz *= dim_sz rnnz = torch.randint(2, max_nnz, (1,)).item() for nnz in [0, 1, rnnz]: expected, _, _ = self._gen_sparse(dim, nnz, shape, dtype=value_type, device=device, coalesced=coalesced) expected = expected.to(dtype) d = self._to_dense_half_safe(expected) result = d.to_sparse(dim) self.assertEqual(d, self._to_dense_half_safe(result)) # == not implemented for sparse tensors yet self.assertEqual(expected.size(), result.size()) self.assertEqual(dim, result.sparse_dim()) sp, _, _ = self._gen_sparse(2, 10, [3, 3, 3], dtype=value_type, device=device, coalesced=coalesced) self.assertRaises(RuntimeError, lambda: sp.to_sparse()) @dtypes(torch.double, torch.cdouble) def test_sparse_bool(self, device, dtype): a = torch.tensor([True, False], dtype=dtype, device=device).to(torch.bool) b = a.to_sparse().to_dense() self.assertEqual(a, b) @dtypes(torch.double, torch.cdouble) def test_scalar(self, device, dtype): # tensor with value a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1), 12.3, [], dtype=dtype, device=device) self.assertEqual(1, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(12.3, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a, a.to_dense().to_sparse()) # tensor with multiple values a = self.sparse_tensor(self.index_tensor([], device=device).unsqueeze(1).expand(0, 2), [12.3, 12.3], [], dtype=dtype, device=device) self.assertEqual(2, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(12.3 * 2, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a, a.to_dense().to_sparse()) # tensor without value a = self.sparse_empty((), dtype=dtype, device=device) self.assertEqual(0, a._values().numel()) self.assertEqual(a, a.clone()) a_coalesced = a.coalesce() self.assertTrue(a_coalesced.is_coalesced()) self.assertEqual(torch.tensor(0, dtype=dtype, device=device), a.to_dense()) self.assertEqual(a, a.to_dense().to_sparse()) @dtypes(torch.double, torch.cdouble) def test_shared(self, device, dtype): i = self.index_tensor([[2]], device=device) v = torch.tensor([5], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3])) v[0] = 6 self.assertEqual(torch.tensor([0, 0, 6], dtype=dtype, device=device), self.safeToDense(x)) i[0][0] = 0 self.assertEqual(torch.tensor([6, 0, 0], dtype=dtype, device=device), self.safeToDense(x)) i = self.index_tensor([[2]], device=device) v = torch.empty((1, 0), dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 0])) i[0][0] = 0 self.assertEqual(torch.empty((3, 0), dtype=dtype, device=device), self.safeToDense(x)) @dtypes(torch.double, torch.cdouble) def test_to_dense_hybrid(self, device, dtype): def test_tensor(x, res): x.to_dense() # Tests double to_dense for memory corruption x.to_dense() x.to_dense() self.assertEqual(res, x.to_dense()) self.assertEqual(res, self.safeToDense(x)) def fn(x): return x.to_dense() x.requires_grad_(True) gradcheck(fn, (x,), check_sparse_nnz=True) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], ], device=device) v = torch.tensor([[2, 3], [1, 2], [3, 4], [4, 5]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 2])) res = torch.tensor([ [[2, 3], [0, 0], [0, 0], [0, 0]], [[1, 2], [0, 0], [0, 0], [0, 0]], [[3, 4], [0, 0], [0, 0], [4, 5]], ], dtype=dtype, device=device) test_tensor(x, res) i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], ], device=device) v = torch.empty((4, 2, 0), dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 2, 0])) res = torch.empty((3, 4, 2, 0), dtype=dtype, device=device) test_tensor(x, res) @dtypes(torch.double, torch.cdouble) def test_contig(self, device, dtype): def test_tensor(x, exp_i, exp_v): x = x.coalesce() self.assertEqual(exp_i, x._indices()) self.assertEqual(exp_v, x._values()) i = self.index_tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], device=device) v = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([100, 100])) exp_i = self.index_tensor([ [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], ], device=device) exp_v = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.tensor([2, 1, 3, 4], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) # Duplicate indices i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.tensor([3, 2, 4, 1], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.tensor([6, 4], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 0])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.empty([2, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) @dtypes(torch.double, torch.cdouble) def test_contig_hybrid(self, device, dtype): def test_tensor(x, exp_i, exp_v): x = x.coalesce() self.assertEqual(exp_i, x._indices()) self.assertEqual(exp_v, x._values()) i = self.index_tensor([ [1, 0, 35, 14, 39, 6, 71, 66, 40, 27], [92, 31, 62, 50, 22, 65, 89, 74, 56, 34], ], device=device) v = torch.tensor([ [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 9], [9, 10], [10, 11], ], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([100, 100, 2])) exp_i = self.index_tensor([ [0, 1, 6, 14, 27, 35, 39, 40, 66, 71], [31, 92, 65, 50, 34, 62, 22, 56, 74, 89], ], device=device) exp_v = torch.tensor([ [2, 3], [1, 2], [6, 7], [4, 5], [10, 11], [3, 4], [5, 6], [9, 10], [8, 9], [7, 8], ], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.tensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.tensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [2, 0, 2, 1], [0, 0, 3, 0], [1, 0, 4, 0], ], device=device) v = torch.empty([4, 3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) exp_i = self.index_tensor([ [0, 1, 2, 2], [0, 0, 0, 3], [0, 0, 1, 4], ], device=device) exp_v = torch.empty([4, 3, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) # Duplicate indices i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.tensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.tensor([[6, 4, 5], [4, 3, 4]], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) i = self.index_tensor([ [0, 0, 2, 0], [0, 0, 3, 0], [0, 0, 4, 0], ], device=device) v = torch.empty([4, 3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 4, 5, 3, 0])) exp_i = self.index_tensor([ [0, 2], [0, 3], [0, 4], ], device=device) exp_v = torch.empty([2, 3, 0], dtype=dtype, device=device) test_tensor(x, exp_i, exp_v) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_clone(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] if not coalesced: self.assertFalse(x.is_coalesced()) y = x.clone() self.assertFalse(y.is_coalesced()) x = x.coalesce() self.assertTrue(x.is_coalesced()) y = x.clone() self.assertTrue(y.is_coalesced()) test_shape(4, 20, 5) test_shape(3, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(3, 0, [0, 0, 100, 5, 5, 5, 0]) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_Sparse_to_Sparse_copy_(self, device, dtype, coalesced): # This is for testing torch.copy_(SparseTensor, SparseTensor) sparse_dims = 3 nnz = 10 sizes = [2, 3, 4, 5] # hybrid sparse x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) # test copy x2_dense = x2.to_dense() x1.copy_(x2) self.assertEqual(x2_dense, x1.to_dense()) # test type conversion (when x1.copy_(x2), x1.dtype should stay the same) x1 = x1.to(torch.float32) x2 = x2.to(torch.float16) x1_dtype = x1.dtype x1.copy_(x2) self.assertEqual(x1_dtype, x1.dtype) x2 = x2.to(torch.float64) x1_dtype = x1.dtype x1.copy_(x2) self.assertEqual(x1_dtype, x1.dtype) # test no broadcast self.assertRaises(RuntimeError, lambda: x1.copy_(x2.narrow_copy(0, 0, 1))) # test raise error on copy_() between dense and sparse Tensors self.assertRaises(RuntimeError, lambda: x1.copy_(torch.randn(5, 5))) # test autograd x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) x2.requires_grad_(True) x1.copy_(x2) y = x1 * 2 x2_clone = x2.clone() y.backward(x2_clone) expected_grad = x2_clone * 2 self.assertEqual(expected_grad.to_dense(), x2.grad.to_dense()) self.assertEqual(None, x1.grad) @coalescedonoff @unittest.skipIf(torch.cuda.device_count() < 2, "no multi-GPU") @dtypes(torch.double, torch.cdouble) def test_Sparse_to_Sparse_copy_multi_gpu(self, device, dtype, coalesced): # This is for testing torch.copy_(SparseTensor, SparseTensor) across GPU devices sparse_dims = 3 nnz = 10 sizes = [2, 3, 4, 5] # hybrid sparse x1, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) x2, _, _ = self._gen_sparse(sparse_dims, nnz + 10, sizes, dtype, device, coalesced) x1 = x1.to('cuda:0') def test_cross_device(x1, x2): x1_device = x1.device x1.copy_(x2) self.assertEqual(x2.to('cuda:0').to_dense(), x1.to_dense()) self.assertEqual(x1_device, x1.device) test_cross_device(x1, x2.to('cuda:1')) # test across gpu devices test_cross_device(x1, x2.to('cpu')) # test between cpu and gpu # test autograd x2 = x2.to('cuda:1') x2.requires_grad_(True) x1.copy_(x2) y = x1 * 2 x2_clone = x2.clone().to('cuda:0') y.backward(x2_clone) expected_grad = x2_clone * 2 self.assertEqual(expected_grad.to_dense(), x2.grad.to('cuda:0').to_dense()) self.assertEqual(None, x1.grad) @onlyCUDA def test_cuda_empty(self, device): def test_tensor(x): y = x.to(device) self.assertEqual(x.sparse_dim(), y.sparse_dim()) self.assertEqual(x.dense_dim(), y.dense_dim()) x = y.cpu() self.assertEqual(y.sparse_dim(), x.sparse_dim()) self.assertEqual(y.dense_dim(), x.dense_dim()) x = torch.sparse.FloatTensor(2, 3, 4) test_tensor(x) x = torch.sparse.HalfTensor(2, 3, 4) test_tensor(x) x = torch.cuda.sparse.HalfTensor(2, 3, 4) test_tensor(x) x = torch.sparse.FloatTensor(2, 3, 4, 0) test_tensor(x) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_transpose(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] y = self.safeToDense(x) for i, j in itertools.combinations(range(4), 2): x = x.transpose_(i, j) y = y.transpose(i, j) self.assertEqual(self.safeToDense(x), y) x = x.transpose(i, j) y = y.transpose(i, j) self.assertEqual(self.safeToDense(x), y) test_shape(4, 6, 3) test_shape(4, 3, [7, 7, 7, 3, 3, 3, 0]) test_shape(4, 0, [0, 0, 7, 3, 3, 3, 0]) @coalescedonoff @onlyCPU @dtypes(torch.double) def test_coalesce_transpose_mm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [dj, di], dtype, device, coalesced) y = torch.randn(dj, dk, dtype=dtype, device=device) x_coalesced = x.coalesce() self.assertTrue(x_coalesced.is_coalesced()) x_coalesced_t = x_coalesced.t() # Transpose is `colasced`-preserving if the indices tensor is empty. self.assertEqual(x_coalesced_t.is_coalesced(), di * nnz == 0) res = torch.mm(x_coalesced_t, y) expected = torch.mm(self.safeToDense(x_coalesced_t), y) self.assertEqual(res, expected) test_shape(10, 20, 30, 20) test_shape(0, 20, 30, 0) test_shape(10, 0, 30, 0) test_shape(10, 20, 0, 0) test_shape(10, 20, 0, 20) @dtypes(torch.double, torch.cdouble) def test_t_empty(self, device, dtype): def test_in_place(x): shape_original = x.shape x.t_() self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), x.size()) self.assertEqual(0, x._indices().numel()) self.assertEqual(0, x._values().numel()) self.assertEqual(x.sparse_dim(), 2) self.assertEqual(x.dense_dim(), 0) def test_not_in_place(x): shape_original = x.shape y = x.t() self.assertEqual(torch.Size([shape_original[1], shape_original[0]]), y.size()) self.assertEqual(0, y._indices().numel()) self.assertEqual(0, y._values().numel()) self.assertEqual(x.sparse_dim(), 2) self.assertEqual(x.dense_dim(), 0) x = self.sparse_empty(2, 3, dtype=dtype, device=device) test_in_place(x) test_not_in_place(x) x = self.sparse_empty(2, 0, dtype=dtype, device=device) test_in_place(x) test_not_in_place(x) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_add_zeros(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device) r1 = zeros + x r2 = x + zeros self.assertEqual(r1, x) self.assertEqual(r2, x) test_shape(1, 20, [1]) test_shape(4, 20, [3, 17, 19, 5]) test_shape(2, 20, [3, 17, 19, 5]) test_shape(2, 20, [3, 17, 19, 0]) @dtypes(torch.double, torch.cdouble) def test_add_sub_nnz(self, device, dtype): # nnz should not grow unbounded (gh-34964) x = torch.randn(10, dtype=dtype, device=device).to_sparse() x.add_(x) x.add_(x) self.assertLessEqual(x._nnz(), 10) x.sub_(2 * x) x.sub_(2 * x) self.assertLessEqual(x._nnz(), 10) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_cat(self, device, dtype, coalesced): # shapes: list of tuples (sparse_dims, nnz, sizes) def test_shapes(shapes, dim, fail_message=None): inputs = [self._gen_sparse(shape[0], shape[1], shape[2], dtype, device, coalesced)[0] for shape in shapes] if fail_message: with self.assertRaisesRegex(RuntimeError, fail_message): torch.cat(inputs, dim) else: result = torch.cat(inputs, dim) dense_result = torch.cat([t.to_dense() for t in inputs], dim) self.assertEqual(dense_result, result.to_dense()) test_shapes( [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], 1) # mismatched sizes test_shapes([(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4])], 0, "All tensors must have the same shape: \\[2, 3, 4].*\\[2, 1, 4]") # hybrid sparse/dense test_shapes( [(2, 10, [2, 3, 4]), (2, 10, [2, 1, 4]), (2, 10, [2, 4, 4])], 1) # cat along dense dim test_shapes([(2, 10, [2, 3, 4]), (2, 10, [2, 3, 7])], 2) test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 1) test_shapes([(1, 10, [2, 3, 4]), (1, 10, [2, 3, 4])], 2) # mismatched dimensions test_shapes([(2, 10, [2, 3, 4]), (3, 10, [2, 3, 4])], 0, "All tensors must have the same.*2, 1, but tensor at position 1 has 3, 0.") # wrapped dimension test_shapes( [(3, 10, [2, 3, 4]), (3, 10, [2, 1, 4]), (3, 10, [2, 4, 4])], -2) # sparse with dense sp = self._gen_sparse(3, 10, [2, 3, 4], dtype, device, coalesced)[0] dn = sp.to_dense() with self.assertRaisesRegex(RuntimeError, "Concatenating sparse tensors, but a dense tensor was found at position 1."): torch.cat((sp, dn)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_unsqueeze(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, unsqueeze_dim, fail_message=None): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.unsqueeze(x, unsqueeze_dim) else: result = torch.unsqueeze(x, unsqueeze_dim) dense_result = torch.unsqueeze(x.to_dense(), unsqueeze_dim) self.assertEqual(dense_result, result.to_dense()) # basic case test_shape(3, 10, [5, 7, 11], 0) # hybrid sparse/dense, unsqueeze along sparse dim test_shape(3, 10, [5, 7, 11, 13, 17], 0) test_shape(3, 10, [5, 7, 11, 13, 17], 3) # unsqueeze along dense dimensions test_shape(3, 10, [5, 7, 11, 13, 17], 4) test_shape(3, 10, [5, 7, 11, 13, 17], 5) # wrapped dimensions test_shape(3, 10, [5, 7, 11, 13, 17], -1) test_shape(3, 10, [5, 7, 11, 13, 17], -6) # bounds test_shape(3, 10, [5, 7, 11, 13, 17], -7, "Dimension out of range") test_shape(3, 10, [5, 7, 11, 13, 17], 6, "Dimension out of range") @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_select(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.select(x, select_dim, select_index) else: result = torch.select(x, select_dim, select_index) if result.is_sparse: result = result.to_dense() dense_result = torch.select(x.to_dense(), select_dim, select_index) self.assertEqual(dense_result, result) sizes = [5, 7, 11, 13, 17] # hybrid sparse/dense, select sparse dim, result is dense for i in range(sizes[0]): test_shape(1, 10, sizes, 0, i) test_shape(1, 10, sizes, 0, sizes[0] + 1, r'select[(][)][:] index \d out of range.*') # hybrid sparse/dense, select sparse dim, result is sparse for d in range(3): for i in range(sizes[d]): test_shape(3, 10, sizes, d, i) # hybrid sparse/dense, select dense dim, result is sparse for d in range(1, 3): for i in range(sizes[d]): test_shape(1, 10, sizes, d, i) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_index_select(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, sizes, select_dim, select_index, fail_message=None): if isinstance(select_index, int): select_index = [select_index] if isinstance(select_index, list): select_index = torch.tensor(select_index, device=device, dtype=torch.long) x, _, _ = self._gen_sparse(sparse_dims, nnz, sizes, dtype, device, coalesced) if fail_message: with self.assertRaisesRegex(IndexError, fail_message): torch.index_select(x, select_dim, select_index) else: result = torch.index_select(x, select_dim, select_index) if result.is_sparse: result = result.to_dense() dense_result = torch.index_select(x.to_dense(), select_dim, select_index) self.assertEqual(dense_result, result) sizes = [5, 7, 11, 13, 17] for d in range(len(sizes)): for index in [0, sizes[d] - 1, [0, sizes[d] // 2, sizes[d] - 1]]: test_shape(1, 10, sizes, d, index) test_shape(len(sizes) // 2, 10, sizes, d, index) test_shape(len(sizes), 10, sizes, d, index) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_mm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) t = torch.randn(di, dk, dtype=dtype, device=device) y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = torch.addmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(t, self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(res, expected) res = torch.addmm(t, x, y) expected = torch.addmm(t, self.safeToDense(x), y) self.assertEqual(res, expected) res = torch.mm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res, expected) test_shape(10, 100, 100, 20) test_shape(100, 1000, 200, 20) test_shape(64, 10000, 300, 20) test_shape(0, 100, 100, 0) test_shape(10, 0, 100, 0) test_shape(10, 100, 0, 0) test_shape(10, 100, 0, 20) @unittest.skipIf( IS_WINDOWS and TEST_CUDA, "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" ) @unittest.skipIf( TEST_CUDA and _get_torch_cuda_version() < (10, 1), "bmm sparse-dense requires CUDA 10.1 or greater" ) @coalescedonoff @dtypes(torch.double) def test_bmm(self, device, dtype, coalesced): def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): a_list = [] b_list = [] for mat_idx in range(num_mats): a_mat = self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0] b_mat = torch.randn([dim_j, dim_k], dtype=dtype, device=device) a_list.append(a_mat) b_list.append(b_mat) a = torch.stack(a_list) b = torch.stack(b_list) ab = a.bmm(b) # Compare each matrix against result from mm() for mat_idx in range(num_mats): a_mat = a_list[mat_idx] b_mat = b_list[mat_idx] ab_mat_bmm = ab[mat_idx] ab_mat_mm = a_mat.mm(b_mat) self.assertEqual(ab_mat_bmm, ab_mat_mm) test_shape(10, 10, 100, 99, 20) test_shape(10, 100, 1000, 200, 20) test_shape(10, 64, 10000, 300, 20) test_shape(10, 0, 100, 99, 0) test_shape(10, 10, 0, 100, 0) test_shape(10, 10, 100, 0, 0) test_shape(10, 10, 100, 0, 20) test_shape(10, 10, 100, 0, 20) a = torch.rand([10, 23, 32], dtype=dtype, device=device) a[3] = torch.zeros(23, 32, dtype=dtype, device=device) a[6] = torch.zeros(23, 32, dtype=dtype, device=device) a = a.to_sparse() b = torch.rand([10, 32, 10], dtype=dtype, device=device) b[4] = torch.zeros(32, 10, dtype=dtype, device=device) b[6] = torch.zeros(32, 10, dtype=dtype, device=device) ab = a.bmm(b) for mat_idx in range(ab.size(0)): ab_mat = ab[mat_idx] ab_mat_check = a[mat_idx].mm(b[mat_idx]) self.assertEqual(ab_mat, ab_mat_check) ab_traspose_check = b.transpose(1, 2).to_sparse().bmm( a.transpose(1, 2).to_dense() ).transpose(1, 2) self.assertEqual(ab, ab_traspose_check) @onlyCUDA @coalescedonoff @dtypes(torch.double) @unittest.skipIf( IS_WINDOWS, "bmm sparse-dense CUDA is not yet supported in Windows, at least up to CUDA 10.1" ) @unittest.skipIf( _get_torch_cuda_version() < (10, 1), "bmm sparse-dense requires CUDA 10.1 or greater" ) def test_bmm_deterministic(self, device, dtype, coalesced): def test_shape(num_mats, dim_i, dim_j, dim_k, nnz): a_list = [] b_list = [] for mat_idx in range(num_mats): a_list.append(self._gen_sparse(2, nnz, [dim_i, dim_j], dtype, device, coalesced)[0]) b_list.append(torch.randn([dim_j, dim_k], dtype=dtype, device=device)) a = torch.stack(a_list).cuda() b = torch.stack(b_list).cuda() with DeterministicGuard(torch.are_deterministic_algorithms_enabled()): torch.use_deterministic_algorithms(False) ab_nondeterministic = torch.bmm(a, b) torch.use_deterministic_algorithms(True) ab_deterministic = torch.bmm(a, b) diff_abs = (ab_deterministic - ab_nondeterministic).abs() diff_rel = diff_abs / ab_deterministic.abs() diff_rel[torch.isnan(diff_rel)] = 0 # deterministic and non-deterministic results should either be # equal or within a small relative difference equal_abs_or_rel = diff_abs.eq(0).logical_or(diff_rel.lt(0.001)) self.assertTrue(equal_abs_or_rel.all()) test_shape(10, 10, 100, 99, 20) test_shape(10, 100, 1000, 200, 20) test_shape(10, 64, 10000, 300, 20) test_shape(10, 0, 100, 99, 0) test_shape(10, 10, 0, 100, 0) test_shape(10, 10, 100, 0, 0) test_shape(10, 10, 100, 0, 20) test_shape(10, 10, 100, 0, 20) @onlyCUDA @unittest.skipIf( not IS_WINDOWS or _get_torch_cuda_version() >= (11, 0), "this test ensures bmm sparse-dense CUDA gives an error when run on Windows with CUDA < 11.0" ) @dtypes(torch.double) def test_bmm_windows_error(self, device, dtype): a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda() b = torch.rand(2, 2, 2, dtype=dtype).cuda() with self.assertRaisesRegex( RuntimeError, "bmm sparse-dense CUDA is not supported on Windows with cuda before 11.0"): ab = a.bmm(b) @onlyCUDA @skipIfRocm @unittest.skipIf( _get_torch_cuda_version() >= (10, 1), "this test ensures bmm gives error if CUDA version is less than 10.1" ) @dtypes(torch.double) def test_bmm_cuda_version_error(self, device, dtype): a = torch.rand(2, 2, 2, dtype=dtype).to_sparse().cuda() b = torch.rand(2, 2, 2, dtype=dtype).cuda() with self.assertRaisesRegex( RuntimeError, "bmm sparse-dense requires CUDA 10.1 or greater"): ab = a.bmm(b) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_saddmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = torch.saddmm(t, x, y, beta=beta, alpha=alpha) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(self.safeToDense(res), expected) res = torch.saddmm(t, x, y) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) res = torch.smm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) @onlyCPU @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sspaddmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] t = self._gen_sparse(2, nnz, [di, dk], dtype, device, coalesced)[0] y = torch.randn(dj, dk, dtype=dtype, device=device) alpha = random.random() beta = random.random() res = t.sspaddmm(x, y, beta=beta, alpha=alpha) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y, beta=beta, alpha=alpha) self.assertEqual(self.safeToDense(res), expected) res = t.sspaddmm(x, y) expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y) self.assertEqual(self.safeToDense(res), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) # Test code from issue https://github.com/pytorch/pytorch/issues/45113 batch_size, input_size, hidden_size = 5, 3, 7 # Create coalesced sparse tensor with non-contiguous indices weight = torch.randn(hidden_size, input_size, dtype=dtype, device=device).to_sparse() self.assertTrue(weight.is_coalesced()) non_contig_indices = weight.indices().mT.contiguous().mT weight = torch.sparse_coo_tensor( indices=non_contig_indices, values=weight.values(), size=weight.shape) weight._coalesced_(True) self.assertFalse(weight._indices().is_contiguous()) # Create un/coalesced sparse tensor bias = torch.randn((hidden_size, 1), dtype=dtype, device=device).to_sparse() bias = torch.cat([bias] * batch_size, dim=1) if coalesced: bias = bias.coalesce() x = torch.randn(input_size, batch_size, dtype=dtype, device=device) res = bias.sspaddmm(weight, x) true_result = (bias.to_dense() + torch.matmul(weight.to_dense(), x)).to_sparse() self.assertEqual(self.safeToDense(res), self.safeToDense(true_result)) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_addmm(self, device, dtype, coalesced): def test_shape(m, n, p, nnz, broadcast, alpha_beta=None): if alpha_beta is None: alpha = random.random() beta = random.random() else: alpha, beta = alpha_beta if broadcast: D1 = make_tensor((), dtype=dtype, device=device, requires_grad=True) else: D1 = make_tensor([n, p], dtype=dtype, device=device, requires_grad=True) D2 = make_tensor([m, p], dtype=dtype, device=device, requires_grad=True) S = self._gen_sparse(2, nnz, [n, m], dtype, device, coalesced)[0] S_dense = S.to_dense().requires_grad_(True) S.requires_grad_(True) Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha) self.assertEqual(Y, Y_dense) def fn(S, D1, D2, beta=beta, alpha=alpha): return torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha) gradcheck(fn, (S, D1, D2), check_sparse_nnz=True) test_shape(7, 8, 9, 20, False, None) test_shape(7, 8, 9, 20, True, None) test_shape(7, 8, 9, 20, False, (1, 0)) test_shape(7, 8, 9, 20, True, (1, 0)) test_shape(7, 8, 9, 20, False, (1, 1)) test_shape(7, 8, 9, 20, True, (1, 1)) @coalescedonoff @dtypes(torch.double) def test_sparse_mm(self, device, dtype, coalesced): def test_shape(d1, d2, d3, nnz, transposed): if transposed: D = torch.randn(d3, d2, dtype=dtype, device=device).t_().requires_grad_(True) else: D = torch.randn(d2, d3, dtype=dtype, device=device).requires_grad_(True) S = self._gen_sparse(2, nnz, [d1, d2], dtype, device, coalesced)[0] S_dense = S.to_dense().requires_grad_(True) S.requires_grad_(True) self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D)) def fn(S, D): return torch.sparse.mm(S, D) gradcheck(fn, (S, D), check_sparse_nnz=True) test_shape(7, 8, 9, 20, False) test_shape(7, 8, 9, 20, True) @coalescedonoff @dtypes(torch.double) def test_dsmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] y = self.randn(dj, dk, dtype=dtype, device=device) res = torch.dsmm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res, expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) test_shape(1000, 100, 0, 20) @coalescedonoff @dtypes(torch.double) def test_hsmm(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced)[0] y = self.randn(dj, dk, dtype=dtype, device=device) res = torch.hsmm(x, y) expected = torch.mm(self.safeToDense(x), y) self.assertEqual(res.to_dense(), expected) test_shape(7, 5, 3, 20) test_shape(1000, 100, 100, 20) test_shape(3000, 64, 300, 20) test_shape(0, 100, 100, 0) test_shape(1000, 0, 100, 0) test_shape(1000, 100, 0, 0) test_shape(1000, 100, 0, 20) @coalescedonoff @dtypes(torch.double) def test_spadd(self, device, dtype, coalesced): def _test_spadd_shape(nnz, shape_i, shape_v=None): shape = shape_i + (shape_v or []) x, _, _ = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) y = self.randn(*shape, dtype=dtype, device=device) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * self.safeToDense(x) self.assertEqual(res, expected) # Non contiguous dense tensor s = list(shape) s[0] = shape[-1] s[-1] = shape[0] y = self.randn(*s, dtype=dtype, device=device) y.transpose_(0, len(s) - 1) r = random.random() res = torch.add(y, x, alpha=r) expected = y + r * self.safeToDense(x) self.assertEqual(res, expected) x, i, v = self._gen_sparse(len(shape_i), nnz, shape, dtype, device, coalesced) nnz = i.size(1) # Non contiguous sparse indices tensor x_ = self.sparse_tensor(i[:, ::2], v[:(nnz + 1) // 2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) # Non contiguous sparse values tensor x_ = self.sparse_tensor(i[:, :(nnz + 1) // 2], v[::2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) # Non contiguous sparse indices and values tensors x_ = self.sparse_tensor(i[:, 1::2], v[1::2], x.shape, dtype=dtype, device=device) res = torch.add(y, x_, alpha=r) expected = y + r * self.safeToDense(x_) self.assertEqual(res, expected) def _test_spadd(): _test_spadd_shape(10, [5, 6]) _test_spadd_shape(10, [10, 10, 10]) _test_spadd_shape(10, [50, 30, 20]) _test_spadd_shape(10, [5, 5, 5, 5, 5, 5]) _test_spadd_shape(0, [0, 30, 20]) _test_spadd_shape(0, [50, 0, 20]) _test_spadd_shape(0, [50, 30, 0]) def _test_spadd_hybrid(): _test_spadd_shape(10, [5, 6], [2, 3]) _test_spadd_shape(10, [10, 10, 10], [3]) _test_spadd_shape(10, [50, 30, 20], [2]) _test_spadd_shape(10, [5, 5, 5, 5, 5, 5], [2]) _test_spadd_shape(0, [0, 30, 20], [2, 0]) _test_spadd_shape(0, [50, 0, 20], [2, 0]) _test_spadd_shape(0, [50, 30, 0], [2, 0]) _test_spadd_shape(10, [50, 30, 20], [2, 0]) _test_spadd() _test_spadd_hybrid() @onlyCUDA @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_add_out_bfloat16(self, device, dtype, coalesced): # fp32 x, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) y, _, _ = self._gen_sparse(3, 5, 10, dtype, device, coalesced) x = x.float().cuda() y = y.float().cuda() res_fp32 = torch.add(x, y) # bfloat16 x = x.bfloat16() y = y.bfloat16() res_bf16 = torch.add(x, y) res_bf16 = res_bf16.float() # to compare with reference self.assertEqual(res_fp32, res_bf16, atol=1e-2, rtol=0) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_norm(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x, _, _ = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) y = x.coalesce() self.assertEqual(x.norm(), y._values().norm()) test_shape(3, 10, 100) test_shape(4, 10, [100, 100, 100, 5, 5, 5, 0]) test_shape(4, 0, [0, 0, 100, 5, 5, 5, 0]) # Unsupported arguments should error kwarg_error_pairs = [ ({'keepdim': True}, RuntimeError, r'norm_sparse currently does not support keepdim=True'), ({'dim': 0}, RuntimeError, r'norm_sparse currently only supports full reductions'), ({'dtype': torch.double, 'p': 'fro'}, ValueError, r'dtype argument is not supported in frobenius norm'), ({'dtype': torch.double, 'p': 0}, RuntimeError, r"norm_sparse currently does not support 'dtype' argument") ] x = self._gen_sparse(3, 10, 100, dtype, device, coalesced)[0] for kwargs, err, msg in kwarg_error_pairs: with self.assertRaisesRegex(err, msg): x.norm(**kwargs) @coalescedonoff @dtypes(torch.double) def test_sparse_sum(self, device, dtype, coalesced): def run_tests(S, td=None): D = S.coalesce().to_dense().detach().requires_grad_(True) if td is None: S_sum = torch.sparse.sum(S) D_sum = D.sum() self.assertEqual(S_sum.item(), D_sum.item()) def fn(S): res = torch.sparse.sum(S) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) else: S_sum = torch.sparse.sum(S, td) D_sum = D.sum(td) self.assertEqual(S_sum.to_dense() if S_sum.is_sparse else S_sum, D_sum) def fn(S): res = torch.sparse.sum(S, td) if res.is_sparse: res = res.to_dense() return res gradcheck(fn, (S,), check_sparse_nnz=True) nnz = 10 sparse_dims = 2 with_size = [5, 5, 1, 4] # use a dense dim = 1 to test for squeeze test_dims = [] for i in range(1, 5): test_dims += itertools.combinations(range(len(with_size)), i) # https://github.com/pytorch/pytorch/issues/16501 x = torch.tensor([[1., 0., 0., 1.], [0., 1., 0., 0.], [0., 1., 1., 0.], [0., 1., 0., 2.]], dtype=dtype, device=device).to_sparse() self.assertEqual(torch.sparse.sum(x, dim=0), torch.sparse.sum(x, dim=-2)) self.assertEqual(torch.sum(x.to_dense(), dim=0), torch.sparse.sum(x, dim=0).to_dense()) # not support SparseTensor.sum() S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] self.assertRaises(RuntimeError, lambda: S.sum()) # dim out of range self.assertRaises(IndexError, lambda: torch.sparse.sum(S, 5)) # dim 0 appears multiple times in the list of dims self.assertRaises(RuntimeError, lambda: torch.sparse.sum(S, [0, 0])) # sum an empty tensor empty_S = torch.sparse_coo_tensor(size=with_size, dtype=dtype, device=device) self.assertRaises(RuntimeError, lambda: torch.sparse.sum(empty_S, [0])) self.assertEqual(torch.sparse.sum(empty_S), torch.tensor(0, dtype=dtype, device=device)) empty_S.requires_grad_(True) empty_S_sum = torch.sparse.sum(empty_S) empty_S_sum.backward() self.assertEqual(empty_S.grad.to_dense(), empty_S.clone().detach().to_dense()) # test values().sum() S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True)) for test_dim in test_dims: S = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced)[0] run_tests(S.requires_grad_(True), test_dim) def _test_basic_ops_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): shape = shape_i + (shape_v) x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) y1 = x1 + x2 y2 = x1.clone() y2.add_(x2) expected = self.safeToDense(x1) + self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 - x2 y2 = x1.clone() y2.sub_(x2) expected = self.safeToDense(x1) - self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 * x2 y2 = x1.clone() y2.mul_(x2) expected = self.safeToDense(x1) * self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 * 37.5 y2 = x1.clone() y2.mul_(37.5) expected = self.safeToDense(x1) * 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y1 = x1 / 37.5 y2 = x1.clone() y2.div_(37.5) expected = self.safeToDense(x1) / 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) with self.assertWarnsOnceRegex(UserWarning, '__floordiv__'): y1 = x1 // 37.5 y2 = x1.clone() with self.assertWarnsOnceRegex(UserWarning, 'floor_divide'): y2.floor_divide_(37.5) expected = self.safeToDense(x1) // 37.5 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) # TODO: add back inplace support y1 = x1 ** 2 y2 = x1.clone() y2 = y2.pow(2) expected = self.safeToDense(x1) ** 2 self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) y = x1.clone() y.zero_() expected = torch.zeros(x1.size(), dtype=dtype, device=device) self.assertEqual(self.safeToDense(y), expected) self.assertEqual(x1.is_coalesced(), coalesced) y = x1.coalesce() z = x1.coalesce() self.assertEqual(x1.is_coalesced(), coalesced) self.assertTrue(y.is_coalesced()) self.assertEqual(x1, y) y._values().add_(1) if not x1.is_coalesced(): # check that coalesce is out of place if the original tensor is not # coalesced. self.assertEqual(z._values() + 1, y._values()) else: # check that coalesce is in-place if the original tensor is # coalesced. self.assertEqual(z._values(), y._values()) @coalescedonoff @dtypes(torch.double) def test_basic_ops(self, device, dtype, coalesced): def _test_basic_ops(): self._test_basic_ops_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) def _test_basic_ops_hybrid(): self._test_basic_ops_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_basic_ops_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_basic_ops_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) _test_basic_ops() _test_basic_ops_hybrid() @dtypes(torch.double, torch.cdouble) def test_add_dense_sparse_mismatch(self, device, dtype): def test_shape(dense_size, sparse_dims_shape, dense_dims_shape, sparse_size): x = torch.zeros(dense_size, dtype=dtype, device=device) sparse_y = self.sparse_tensor(torch.zeros(sparse_dims_shape, dtype=torch.int64, device=device), torch.randn(dense_dims_shape, dtype=dtype, device=device), torch.Size(sparse_size)) with self.assertRaisesRegex( RuntimeError, "add: expected 'self' and 'other' to have same size"): x + sparse_y test_shape([3, 4], [1, 4], [4, 4, 4], [3, 4, 4]) test_shape([3, 4, 0], [1, 4], [4, 4, 4, 0], [3, 4, 4, 0]) @dtypes(torch.double, torch.cdouble) def test_add_noncontiguous(self, device, dtype): indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([1.], dtype=dtype, device=device).expand(2, 3, 4, 5) x = self.sparse_tensor(indices, values, dtype=dtype, device=device) assert not x._values().is_contiguous() y = x + x expected = self.safeToDense(x) + self.safeToDense(x) self.assertEqual(self.safeToDense(y), expected) def _test_sparse_mask_shape(self, nnz_x1, nnz_x2, shape_i, shape_v, dtype, device, coalesced): shape = shape_i + (shape_v or []) x1, _, _ = self._gen_sparse(len(shape_i), nnz_x1, shape, dtype, device, coalesced) x2, _, _ = self._gen_sparse(len(shape_i), nnz_x2, shape, dtype, device, coalesced) y1 = x1 + x2 y2 = x1.clone() y2.add_(x2) expected = self.safeToDense(x1) + self.safeToDense(x2) self.assertEqual(self.safeToDense(y1), expected) self.assertEqual(self.safeToDense(y2), expected) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_mask(self, device, dtype, coalesced): def _test_sparse_mask_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.tensor([1, 2, 3, 4], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4]), dtype=dtype, device=device).coalesce() dense = torch.tensor([ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20], ], dtype=dtype, device=device) exp_v = torch.tensor([7, 14, 3, 20], dtype=dtype, device=device) res = dense.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4]), dtype=dtype, device=device) self.assertEqual(res, expected) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ], device=device) v = torch.empty([4, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([5, 4, 0])).coalesce() dense = torch.empty([5, 4, 0], dtype=dtype, device=device) exp_v = torch.empty([4, 0], dtype=dtype, device=device) res = dense.sparse_mask(x) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 0]), dtype=dtype, device=device) self.assertEqual(res, expected) _test_sparse_mask_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [], dtype, device, coalesced) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_sparse_mask_hybrid(self, device, dtype, coalesced): def _test_sparse_mask_hybrid_fixed(): i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ]) v = torch.tensor([[1, 2], [2, 3], [3, 4], [4, 5]]) # TODO: This is also testing that, if coalesce is a no-op, # the indices don't get permuted. I don't know if we actually # want to give this invariant. x = self.sparse_tensor(i, v, torch.Size([5, 4, 2])).coalesce() dense = torch.tensor([ [[1, 3], [2, 2], [3, 3], [4, 2]], [[5, 7], [6, 7], [7, 9], [8, 9]], [[9, 2], [10, 4], [11, 1], [12, 3]], [[13, 5], [14, 1], [15, 1], [16, 6]], [[17, 7], [18, 2], [19, 7], [20, 1]], ]) res = dense.sparse_mask(x) exp_v = torch.tensor([[7, 9], [14, 1], [3, 3], [20, 1]]) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2])) self.assertEqual(res, expected) i = self.index_tensor([ [1, 3, 0, 4], [2, 1, 2, 3], ]) v = torch.empty(4, 2, 0) x = self.sparse_tensor(i, v, torch.Size([5, 4, 2, 0])).coalesce() dense = torch.empty(5, 4, 2, 0) res = dense.sparse_mask(x) exp_v = torch.empty(4, 2, 0) expected = self.sparse_tensor(i, exp_v, torch.Size([5, 4, 2, 0])) self.assertEqual(res, expected) _test_sparse_mask_hybrid_fixed() self._test_sparse_mask_shape(9, 12, [5, 6], [2, 3], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [3], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [50, 30, 20], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [5, 5, 5, 5, 5, 5], [2], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2], dtype, device, coalesced) self._test_sparse_mask_shape(9, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 12, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(9, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 10], [2, 0], dtype, device, coalesced) self._test_sparse_mask_shape(0, 0, [10, 10, 0], [2, 0], dtype, device, coalesced) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_zeros(self, device, dtype, coalesced): def _test_zeros(nnzs, shape, out_shape_i, out_shape_v=None): out_shape = out_shape_i + (out_shape_v or []) for nnz in nnzs: out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape, dtype, device, coalesced) torch.zeros(*shape, out=out, dtype=dtype, device=device) self.assertEqual(tuple(out.size()), tuple(shape)) self.assertTrue(out._indices().numel() == out._values().numel() == 0) self.assertEqual(out._nnz(), 0) self.assertEqual(out.sparse_dim(), len(shape)) self.assertEqual(out.dense_dim(), 0) def test_shape(i_shapes, v_shapes, shape, nnzs): for i_dim in range(1, len(i_shapes) + 1): for v_dim in range(len(v_shapes) + 1): _test_zeros(nnzs, shape, i_shapes[:i_dim], v_shapes[:v_dim]) test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 4], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 4], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 4], [9, 12]) test_shape([2, 3, 4], [3, 4, 5, 6], [2, 3, 0], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [2, 3, 0], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [2, 3, 0], [9, 12]) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_zeros_like(self, device, dtype, coalesced): def _test_zeros_like(nnzs, template_shape_i, template_shape_v=None): template_shape_v = template_shape_v or [] template_shape = template_shape_i + template_shape_v for nnz in nnzs: t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape, dtype, device, coalesced) res = torch.zeros_like(t) self.assertEqual(tuple(res.size()), tuple(template_shape)) self.assertTrue(res._indices().numel() == res._values().numel() == 0) self.assertEqual(res._nnz(), 0) self.assertEqual(res.sparse_dim(), len(template_shape_i)) self.assertEqual(res.dense_dim(), len(template_shape_v)) def test_shape(i_shapes, v_shapes, nnzs): for i_dim in range(1, len(i_shapes) + 1): for v_dim in range(len(v_shapes) + 1): _test_zeros_like(nnzs, i_shapes[:i_dim], v_shapes[:v_dim]) test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) test_shape([2, 3, 4], [3, 4, 5, 6], [9, 12]) test_shape([0, 3, 4], [3, 4, 5, 6], [0]) test_shape([2, 3, 4], [0, 4, 5, 6], [9, 12]) sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] for x, mem_format in zip(data, mem_formats): with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): result = torch.zeros_like(x, memory_format=mem_format) result = torch.zeros_like(x, layout=torch.strided, memory_format=mem_format) self.assertTrue(result.layout == torch.strided) dense_tensor = sparse_tensor.to_dense() result = torch.zeros_like(dense_tensor, layout=torch.sparse_coo) self.assertEqual(dense_tensor.shape, result.shape) self.assertEqual(result.layout, torch.sparse_coo) sparse_zeros = torch.zeros(dense_tensor.shape, layout=torch.sparse_coo) self.assertEqual(result._indices().shape, sparse_zeros._indices().shape) self.assertEqual(result._values().shape, sparse_zeros._values().shape) def _assert_sparse_invars(self, t): # SparseTensor has the following invariants: # - sparse_dim + dense_dim = len(SparseTensor.shape) # - SparseTensor._indices().shape = (sparse_dim, nnz) # - SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) self.assertEqual(t.sparse_dim() + t.dense_dim(), len(t.shape)) self.assertEqual(tuple(t._indices().shape), (t.sparse_dim(), t._nnz())) self.assertEqual(tuple(t._values().shape), (t._nnz(), ) + t.shape[t.sparse_dim():]) def _test_empty_like(self, sparse_tensor, dtype, device, coalesced): result = torch.empty_like(sparse_tensor) self.assertTrue(result.is_sparse) self._assert_sparse_invars(result) self.assertEqual(result.shape, sparse_tensor.shape) self.assertEqual(result.dtype, sparse_tensor.dtype) self.assertEqual(result.device, sparse_tensor.device) self.assertEqual(result.sparse_dim(), sparse_tensor.sparse_dim()) self.assertEqual(result.dense_dim(), sparse_tensor.dense_dim()) sparse_tensor, _, _ = self._gen_sparse(len([2, 3]), 9, [2, 3] + [5, 6], dtype, device, coalesced) data = (sparse_tensor, sparse_tensor, sparse_tensor, sparse_tensor.unsqueeze(0)) mem_formats = [torch.channels_last, torch.contiguous_format, torch.preserve_format, torch.channels_last_3d] for x, mem_format in zip(data, mem_formats): with self.assertRaisesRegex(RuntimeError, "memory format option is only supported by strided tensors"): result = torch.empty_like(x, memory_format=mem_format) result = torch.empty_like(x, layout=torch.strided, memory_format=mem_format) self.assertTrue(result.layout == torch.strided) with self.assertRaisesRegex( RuntimeError, r"Could not run 'aten::empty_strided' with arguments from the 'Sparse(CPU|CUDA)' backend" ): dense_tensor = sparse_tensor.to_dense() result = torch.empty_like(dense_tensor, layout=torch.sparse_coo) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_empty_like(self, device, dtype, coalesced): # tests https://github.com/pytorch/pytorch/issues/43699 if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2]]), values=torch.tensor([3.0, -4.0, 5.0]), size=[3, ], dtype=dtype, device=device ).coalesce() self._test_empty_like(input_coalesced, dtype, device, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_empty_like(input_coalesced, dtype, device, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), size=[3, ], dtype=dtype, device=device ) self._test_empty_like(input_uncoalesced, dtype, device, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) self._test_empty_like(input_uncoalesced, dtype, device, coalesced) def _test_narrow(self, input, narrow_args): expected = input.to_dense().narrow(*narrow_args) self.assertEqual(expected, input.narrow_copy(*narrow_args).to_dense()) def _all_narrow_combs(self, shape): for dim, dim_sz in enumerate(shape): for start in range(dim_sz): for length in range(dim_sz - start): yield [dim, start, length] @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_narrow(self, device, dtype, coalesced): shape = [3, 3, 4, 2] input, _, _ = self._gen_sparse(4, 19, shape, dtype, device, coalesced) for narrow_args in self._all_narrow_combs(shape): self._test_narrow(input, narrow_args) self.assertRaises(RuntimeError, lambda: input.narrow_copy(-1, 0, 3)) # dim < 0 self.assertRaises(RuntimeError, lambda: input.narrow_copy(10, 0, 3)) # dim > input.dim() self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, shape[0] + 1, 3)) # start > size of dim self.assertRaises(RuntimeError, lambda: input.narrow_copy(0, 2, shape[0])) # start+length > size of dim with_dense, _, _ = self._gen_sparse(2, 7, shape, dtype, device, coalesced) for narrow_args in self._all_narrow_combs(shape): self._test_narrow(with_dense, narrow_args) self.assertRaises(RuntimeError, lambda: with_dense.narrow_copy(10, 0, 3)) # dim > sparseDim + denseDim def _test_log1p_tensor(self, sparse_tensor, coalesced): def is_integral(dtype): return dtype in get_all_int_dtypes() dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.log1p() is_integral_dtype = is_integral(sparse_tensor.dtype) self.assertEqual(expected_output, sparse_tensor.log1p().to_dense()) if is_integral_dtype: with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): sparse_tensor.coalesce().log1p_() else: self.assertEqual(expected_output, sparse_tensor.coalesce().log1p_().to_dense()) if not coalesced: # test in-place op on uncoalesced input with self.assertRaisesRegex(RuntimeError, "log1p_ requires coalesced input"): sparse_tensor.log1p_() if not is_integral_dtype: sparse_tensor.requires_grad_() self.assertTrue(sparse_tensor.requires_grad) # test autograd x = sparse_tensor.clone() y = sparse_tensor.log1p() with self.assertRaisesRegex(RuntimeError, "log1p of a sparse tensor is made to be non-differentiable"): y.backward(x) else: with self.assertRaisesRegex(RuntimeError, "only Tensors of floating point dtype can require gradients"): sparse_tensor.requires_grad_() @coalescedonoff @dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_bfloat16=False, include_complex=False)) def test_log1p(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2]]).transpose(1, 0), values=torch.tensor([3.0, 4.0, 5.0]), size=[3, ], device=device, dtype=dtype ).coalesce() self._test_log1p_tensor(input_coalesced, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[1.0, 3.0], [5.0, 7.0]]), size=[4, 5, 2], device=device, dtype=dtype ).coalesce() self._test_log1p_tensor(input_coalesced, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, 3.0, 4.0, 1.0, 1.0, 1.0]), size=[3, ], device=device, dtype=dtype ) self._test_log1p_tensor(input_uncoalesced, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], device=device, dtype=dtype ) self._test_log1p_tensor(input_uncoalesced, coalesced) def _test_neg_negative(self, sparse_tensor): dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.neg() ops = ( torch.neg, torch.Tensor.neg, torch.Tensor.neg_, torch.negative, torch.Tensor.negative, torch.Tensor.negative_, operator.neg ) for op in ops: sparse_tensor_copy = sparse_tensor.clone() self.assertEqual(expected_output, op(sparse_tensor_copy).to_dense()) if op in (torch.neg, torch.negative): sparse_tensor_out = torch.zeros_like(sparse_tensor) op(sparse_tensor, out=sparse_tensor_out) self.assertEqual(expected_output, sparse_tensor_out.to_dense()) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_neg_negative(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2]]), values=torch.tensor([3.0, -4.0, 5.0]), size=[3, ], dtype=dtype, device=device ).coalesce() self._test_neg_negative(input_coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-1.0, 3.0], [-5.0, 7.0]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_neg_negative(input_coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([2.0, -3.0, -4.0, 1.0, -1.0, 1.5]), size=[3, ], dtype=dtype, device=device ) self._test_neg_negative(input_uncoalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) self._test_neg_negative(input_uncoalesced) def _test_asin_arcsin(self, sparse_tensor, coalesced): def is_integral(dtype): return dtype in get_all_int_dtypes() is_integral_dtype = is_integral(sparse_tensor.dtype) dense_tensor = sparse_tensor.to_dense() expected_output = dense_tensor.asin() ops = ( torch.asin, torch.Tensor.asin, torch.arcsin, torch.Tensor.arcsin, ) for op in ops: self.assertEqual(expected_output, op(sparse_tensor).to_dense()) if op in (torch.asin, torch.arcsin): sparse_tensor_out = torch.zeros_like(sparse_tensor) if not is_integral_dtype: op(sparse_tensor, out=sparse_tensor_out) self.assertEqual(expected_output, sparse_tensor_out.to_dense()) else: with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op(sparse_tensor, out=sparse_tensor_out) for op in (torch.Tensor.asin_, torch.Tensor.arcsin_): if is_integral_dtype: # test coalesce on integral dtype tensor with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op(sparse_tensor.clone().coalesce()).to_dense() else: self.assertEqual(expected_output, op(sparse_tensor.clone().coalesce()).to_dense()) if not coalesced: # test in-place op on uncoalesced input with self.assertRaisesRegex(RuntimeError, "asin_ requires coalesced input"): op(sparse_tensor) @coalescedonoff @dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_bfloat16=False, include_complex=False)) def test_asin_arcsin(self, device, dtype, coalesced): if coalesced: input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0, 1, 2, 3]]), values=torch.tensor([0.5, -0.5, 0.7, -0.7]), size=[4, ], dtype=dtype, device=device ).coalesce() self._test_asin_arcsin(input_coalesced, coalesced) # hybrid sparse input input_coalesced = torch.sparse_coo_tensor( indices=torch.tensor([[1, 3], [2, 4]]), values=torch.tensor([[-0.1, 0.24], [-0.44, 0.1]]), size=[4, 5, 2], dtype=dtype, device=device ).coalesce() self._test_asin_arcsin(input_coalesced, coalesced) if not coalesced: # test uncoalesced input input_uncoalesced = torch.sparse_coo_tensor( indices=torch.tensor([[0], [1], [2], [0], [1], [2]]).transpose(1, 0), values=torch.tensor([0.3, -0.3, -0.4, 0.3, -0.5, 0.15]), size=[3, ], dtype=dtype, device=device ) self._test_asin_arcsin(input_uncoalesced, coalesced) # test on empty sparse tensor input_uncoalesced = torch.sparse_coo_tensor( indices=torch.zeros([2, 0]), values=torch.zeros([0, 5, 5, 5, 5, 5, 5, 0]), size=[0, 0, 5, 5, 5, 5, 5, 5, 0], dtype=dtype, device=device ) self._test_asin_arcsin(input_uncoalesced, coalesced) @coalescedonoff @dtypes(torch.double) def test_mv(self, device, dtype, coalesced): def test_shape(di, dj, dk, nnz): x, _, _ = self._gen_sparse(2, nnz, [di, dj], dtype, device, coalesced) t = torch.randn(dk, dtype=dtype, device=device) res = x.matmul(t) expected = self.safeToDense(x).matmul(t) self.assertEqual(res, expected) test_shape(10, 100, 100, 20) test_shape(100, 1000, 1000, 20) test_shape(64, 10000, 10000, 20) test_shape(0, 100, 100, 0) test_shape(10, 0, 0, 0) test_shape(10, 100, 100, 0) test_shape(10, 100, 100, 20) with self.assertRaisesRegex(RuntimeError, r"mv: expected self\.size\(-1\) == vec\.size\(-1\)"): test_shape(10, 100, 10, 20) with self.assertRaisesRegex(RuntimeError, "mv: two tensor dim should be 2 and 1"): x, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) y, _, _ = self._gen_sparse(2, 20, [10, 100], dtype, device, coalesced) res = x.mv(y) @dtypes(*floating_and_complex_types()) def test_sparse_add_coalesce(self, device, dtype): i = self.index_tensor([[1, 2, 1]], device=device) v = torch.tensor([3, 4, 5], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3])) y = self.sparse_tensor(i, v, torch.Size([3])) z = x + y self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) i = self.index_tensor([[1, 2, 1]], device=device) v = torch.empty([3, 0], dtype=dtype, device=device) x = self.sparse_tensor(i, v, torch.Size([3, 0])) y = self.sparse_tensor(i, v, torch.Size([3, 0])) z = x + y self.assertFalse(z._indices().numel() != 2 and z.is_coalesced()) @onlyCUDA def test_storage_not_null(self): x = torch.cuda.sparse.FloatTensor(2) self.assertNotEqual(x.get_device(), -1) x = torch.cuda.sparse.FloatTensor(2, 0) self.assertNotEqual(x.get_device(), -1) @onlyCUDA @deviceCountAtLeast(2) def test_same_gpu(self, devices): def check_device(x, device_id): self.assertEqual(x.get_device(), device_id) self.assertEqual(x._values().get_device(), device_id) self.assertEqual(x._indices().get_device(), device_id) dev1, dev2 = devices[0], devices[1] i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev2) x = self.sparse_tensor(i, v, torch.Size([3]), device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev2) x = self.sparse_tensor(i, v, torch.Size([3, 0]), device=1) check_device(x, 1) x = self.sparse_empty(3, device=1) check_device(x, 1) x = self.sparse_empty(3, 0, device=1) check_device(x, 1) i = self.index_tensor([[2]], device=dev2) v = torch.tensor([5], device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3]))) i = self.index_tensor([[2]], device=dev2) v = torch.empty(1, 0, device=dev1) # NB: non-legacy constructor allows this and moves indices self.assertRaises(RuntimeError, lambda: self.legacy_sparse_tensor(i, v, torch.Size([3, 0]))) def _test_new_device(self, size, device=torch.cuda): with torch.cuda.device(device): x = torch.cuda.sparse.DoubleTensor(*size) self.assertEqual(x.get_device(), device) x1 = x.new() x2 = x.new(2, 3) self.assertEqual(x1.get_device(), device) self.assertEqual(x2.get_device(), device) @onlyCUDA def test_new_device_single_gpu(self): self._test_new_device((), 0) self._test_new_device((30, 20), 0) self._test_new_device((30, 20, 10), 0) self._test_new_device((30, 20, 10, 0), 0) @onlyCUDA @unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected") def test_new_device_multi_gpu(self): self._test_new_device((), 1) self._test_new_device((30, 20), 1) self._test_new_device((30, 20, 10), 1) self._test_new_device((30, 20, 10, 0), 1) @coalescedonoff @dtypes(torch.double, torch.cdouble) def test_new(self, device, dtype, coalesced): def test_shape(sparse_dims, nnz, with_size): x, indices, values = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) if not x.is_cuda: # CUDA sparse tensors currently requires the size to be # specified if nDimV > 0 out = x.new(indices, values).coalesce() x_c = x.coalesce() self.assertEqual((out.indices(), out.values()), (x_c.indices(), x_c.values())) self.assertEqual(x.new(indices, values, x.size()), x) test_shape(3, 10, 100) test_shape(3, 0, [100, 100, 0]) @onlyCPU # not really, but we only really want to run this once @dtypes(torch.float64, torch.float32, torch.float16, torch.cfloat, torch.cdouble) def test_factory(self, device, dtype): for test_empty_tensor in [True, False]: if test_empty_tensor: default_size = torch.Size([1, 3, 0]) size = torch.Size([3, 3, 0]) else: default_size = torch.Size([1, 3]) size = torch.Size([3, 3]) for include_size in [True, False]: for use_tensor_idx in [True, False]: for use_tensor_val in [True, False]: for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]): # have to include size with cuda sparse tensors include_size = include_size or use_cuda long_dtype = torch.int64 device = torch.device('cpu') if not use_cuda else \ torch.device(torch.cuda.device_count() - 1) indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2]) if test_empty_tensor: values = torch.empty(1, 0).to(dtype) else: if use_tensor_val: values = torch.tensor([1.], dtype=dtype) else: values = 1. if include_size: sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype, device=device, requires_grad=True) else: sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype, device=device, requires_grad=True) self.assertEqual(indices, sparse_tensor._indices()) self.assertEqual(values, sparse_tensor._values()) self.assertEqual(size if include_size else default_size, sparse_tensor.size()) self.assertEqual(dtype, sparse_tensor.dtype) if use_cuda: self.assertEqual(device, sparse_tensor._values().device) self.assertEqual(True, sparse_tensor.requires_grad) @dtypes(torch.double, torch.cdouble) def test_factory_size_check(self, device, dtype): indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([.5, .5], dtype=dtype, device=device) sizes = torch.Size([2, 3]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices.fill_(-1) with self.assertRaisesRegex(RuntimeError, "found negative index"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 1, 0], dtype=dtype, device=device) sizes = torch.Size([2, 3, 1, 0]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 2, 2], dtype=dtype, device=device) sizes = torch.Size([0, 0, 2, 2]) with self.assertRaisesRegex(RuntimeError, "size is inconsistent with indices"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=dtype, device=device) sizes = torch.Size([3, 3, 2]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[1, 2], [0, 2]], device=device) values = torch.empty([2, 1, 0], dtype=dtype, device=device) sizes = torch.Size([3, 3, 2, 0]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) def test_factory_default(self, device): tensor = self.legacy_sparse_tensor() expected_indices = self.index_tensor([[]], device=device) expected_size = torch.Size([0]) self.assertEqual(tensor._indices(), expected_indices) self.assertEqual(tensor.shape, expected_size) def test_factory_empty_indices(self, device): tensor = self.legacy_sparse_tensor() expected_indices = torch.empty((1, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 0]), device=device) expected_indices = torch.empty((2, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0]), device=device) expected_indices = torch.empty((3, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) tensor = torch.sparse_coo_tensor(torch.Size([2, 2, 0, 0]), device=device) expected_indices = torch.empty((4, 0), dtype=torch.long, device=device) self.assertEqual(tensor._indices(), expected_indices) @dtypes(torch.double, torch.cdouble) def test_factory_nnz(self, device, dtype): indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) values = torch.tensor([[1, 1], [1, 1]], dtype=dtype, device=device) # (nnz, ...): (2, 2) sizes = torch.Size([2, 2]) with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) indices = self.index_tensor([[0]], device=device) # (sparse_dim, nnz): (1, 1) values = torch.empty([2, 0], dtype=dtype, device=device) # (nnz, ...): (2, 0) sizes = torch.Size([2, 0]) with self.assertRaisesRegex(RuntimeError, "indices and values must have same nnz"): torch.sparse_coo_tensor(indices, values, sizes, dtype=dtype, device=device) @dtypes(torch.double, torch.cdouble) def test_factory_nnz_zero(self, device, dtype): def test_shape(i_shape, v_shape, size, expected_size): if size: t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), torch.Size(size), dtype=dtype, device=device) else: t = torch.sparse_coo_tensor(torch.empty(i_shape), torch.empty(v_shape), dtype=dtype, device=device) expected_indices = torch.empty(i_shape, device=device, dtype=torch.int64) expected_values = torch.empty(v_shape, device=device, dtype=dtype) expected_size = torch.Size(expected_size) self.assertEqual(t._indices(), expected_indices) self.assertEqual(t._values(), expected_values) self.assertEqual(t.size(), expected_size) test_shape([1, 0], [0, 2, 4, 0], None, [0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], None, [0, 0, 0, 2, 4, 0]) test_shape([1, 0], [0, 2, 4, 0], [0, 2, 4, 0], [0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], [0, 0, 0, 2, 4, 0], [0, 0, 0, 2, 4, 0]) test_shape([3, 0], [0, 2, 4, 0], [1, 2, 3, 2, 4, 0], [1, 2, 3, 2, 4, 0]) @dtypes(torch.double, torch.cdouble) def test_factory_dense_dim(self, device, dtype): indices = self.index_tensor([[0]], device=device) values = torch.tensor([[[1, 1, 1], [1, 1, 1]]], dtype=dtype, device=device) sizes = torch.Size([1, 3, 4]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes) indices = self.index_tensor([[0]], device=device) values = torch.empty([1, 2, 3, 0], dtype=dtype, device=device) sizes = torch.Size([1, 3, 4, 0]) with self.assertRaisesRegex(RuntimeError, "values has incorrect size"): torch.sparse_coo_tensor(indices, values, sizes) @onlyCPU @dtypes(torch.float16, torch.float32, torch.float64, torch.cfloat, torch.cdouble, torch.int64) def test_factory_type_inference(self, device, dtype): t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=dtype)) self.assertEqual(dtype, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1])) self.assertEqual(torch.int64, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.HalfTensor(1, 0)) self.assertEqual(torch.float16, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.FloatTensor(1, 0)) self.assertEqual(torch.float32, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.DoubleTensor(1, 0)) self.assertEqual(torch.float64, t.dtype) t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.LongTensor(1, 0)) self.assertEqual(torch.int64, t.dtype) @onlyCUDA def test_factory_device_type_inference(self, device): # both indices/values are CUDA cpu_cuda = ('cpu', 'cuda') cpu_cuda_none = cpu_cuda + (None,) for indices_device, values_device, device in itertools.product(cpu_cuda, cpu_cuda, cpu_cuda_none): indices = torch.tensor(([0], [2]), device=indices_device) values = torch.tensor([1.], device=values_device) empty_values = torch.empty(1, 0).to(values_device) shape = (1, 3) empty_shape = (1, 3, 0) if device is None and indices_device != values_device: with self.assertRaises(RuntimeError): torch.sparse_coo_tensor(indices, values, shape, device=device) with self.assertRaises(RuntimeError): torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) else: t = torch.sparse_coo_tensor(indices, values, shape, device=device) t_empty = torch.sparse_coo_tensor(indices, empty_values, empty_shape, device=device) should_be_cuda = (device == 'cuda' or (device is None and values_device == 'cuda')) self.assertEqual(should_be_cuda, t.is_cuda) self.assertEqual(t.is_cuda, t_empty.is_cuda) @onlyCPU def test_factory_copy(self, device): def test_tensor(indices, values, indices_equal, values_equal): sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64, device=device) if indices_equal: self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) else: self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr()) if values_equal: self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) else: self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr()) # both correct indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float64) test_tensor(indices, values, True, True) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.DoubleTensor(1, 0) test_tensor(indices, values, True, True) # only indices correct indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float32) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.tensor([1.], dtype=torch.float16) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int64) values = torch.FloatTensor(1, 0) test_tensor(indices, values, True, True) # An empty tensor's data_ptr is always equal to 0 # only values correct indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.tensor([1.], dtype=torch.float64) test_tensor(indices, values, False, True) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.DoubleTensor(1, 0) test_tensor(indices, values, False, True) # neither correct indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.tensor([1.], dtype=torch.float32) test_tensor(indices, values, False, False) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = torch.FloatTensor(1, 0) test_tensor(indices, values, False, True) # An empty tensor's data_ptr is always equal to 0 # complex support indices = torch.tensor(([0], [2]), dtype=torch.int64) values = make_tensor([1, ], dtype=torch.cdouble, device=device) test_tensor(indices, values, True, False) indices = torch.tensor(([0], [2]), dtype=torch.int32) values = make_tensor([1, 1], dtype=torch.cdouble, device=device) test_tensor(indices, values, False, False) @onlyCPU # just run once, we test both cpu and cuda def test_constructor_device_legacy(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: torch.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cuda')) x = torch.sparse_coo_tensor(i, v, size, device='cpu') self.assertRaises(RuntimeError, lambda: x.new(device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cuda')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda')) if torch.cuda.is_available(): self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: torch.cuda.sparse.FloatTensor(torch.Size([2, 3, 4]), device='cpu')) x = torch.sparse_coo_tensor(i, v, size, device='cuda') self.assertRaises(RuntimeError, lambda: x.new(device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(i, v, size, device='cpu')) self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu')) def test_legacy_constructor(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v.storage())) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor(v)) self.assertEqual(torch.sparse_coo, torch.sparse.FloatTensor(torch.Size([2, 3])).layout) self.assertRaises(TypeError, lambda: torch.sparse.FloatTensor([6])) def test_legacy_new(self, device): i = torch.tensor([[0, 1, 1], [2, 0, 2]]) v = torch.tensor([3., 4., 5.]) size = torch.Size([2, 3]) s = torch.sparse_coo_tensor(i, v, size) self.assertEqual(torch.sparse_coo, s.new(device='cpu').layout) self.assertRaises(TypeError, lambda: s.new(v.storage())) self.assertRaises(TypeError, lambda: s.new(v)) self.assertEqual(torch.sparse_coo, s.new(torch.Size([2, 3])).layout) self.assertRaises(TypeError, lambda: s.new([6])) @onlyCPU # not really, but we only really want to run this once def test_dtypes(self, device): all_sparse_dtypes = get_all_dtypes(include_complex=True) do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.is_available(): do_test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0')) @onlyCPU # not really, but we only really want to run this once def test_empty_full(self, device): all_sparse_dtypes = get_all_dtypes(include_complex=True) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu')) if torch.cuda.device_count() > 0: do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, None) do_test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0')) def test_is_sparse(self, device): x = torch.randn(3, 3) self.assertFalse(x.is_sparse) x = torch.randn(3, 3, 0) self.assertFalse(x.is_sparse) x = self.legacy_sparse_tensor() self.assertTrue(x.is_sparse) x = self.sparse_empty(1, 0, device=device) self.assertTrue(x.is_sparse) def test_resize_as(self, device): def do_test(t): y = t.new().resize_as_(t).zero_() self.assertEqual(y.shape, t.shape) # Check that y can be added to t. Currently, this requires that # sparse_dim and dense_dim match. self.assertEqual(t, t + y) do_test(self.legacy_sparse_tensor()) do_test(self.sparse_empty([3, 0], device=device)) do_test(self.sparse_empty([3, 3], device=device)) def _test_resize_shape(self, x_i, x_v, x_size, y_i, y_v, y_size, dtype, device): x_v_numel = torch.zeros(x_v).numel() y_v_numel = torch.zeros(y_v).numel() x = torch.sparse_coo_tensor(torch.zeros(x_i), torch.arange(x_v_numel).resize_(x_v).to(torch.float), torch.Size(x_size), dtype=dtype, device=device) x_dense = x.to_dense() y = torch.sparse_coo_tensor(torch.zeros(y_i), torch.ones(y_v).to(torch.float), torch.Size(y_size), dtype=dtype, device=device) y_dense = y.to_dense() x.resize_as_(y) x_dense.resize_as_(y_dense) self.assertEqual(x.shape, y.shape) self.assertEqual(x.sparse_dim(), y.sparse_dim()) self.assertEqual(x.dense_dim(), y.dense_dim()) self.assertEqual(x.shape, x_dense.shape) self.assertEqual(y.shape, y_dense.shape) # Here we make sure that the original data are preserved after resizing self.assertEqual(x.to_dense().view(-1)[0:x_v_numel].view(x_v), x_dense.view(-1)[0:x_v_numel].view(x_v)) @dtypes(torch.double, torch.cdouble) def test_resize(self, device, dtype): # 1. Expand the size of some dense dimensions [Supported] self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 4], [2, 2, 4], dtype=dtype, device=device) self._test_resize_shape([1, 1], [1, 2, 0], [2, 2, 0], [1, 1], [1, 2, 4], [2, 2, 4], dtype=dtype, device=device) # 2. Expand the size of some sparse dimensions [Supported] self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3], [4, 2, 3], dtype=dtype, device=device) # 3. Change the shapes of both sparse and dense dimensions when nnz is zero [Supported] self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], [2, 0], [0, 2, 4, 5], [1, 1, 2, 4, 5], dtype=dtype, device=device) self._test_resize_shape([1, 0], [0, 2, 3], [2, 2, 3], [2, 0], [0, 2, 4, 0], [1, 1, 2, 4, 0], dtype=dtype, device=device) # 4. Add dims to dense dimensions [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3, 4], [2, 2, 3, 4], dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3, 0], [2, 2, 3, 0], dtype=dtype, device=device) # 5. Remove dims from dense dimensions [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2], [2, 2], dtype=dtype, device=device) # 6. Change the number of sparse dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "changing the number of sparse dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [2, 1], [1, 2, 3], [1, 2, 2, 3], dtype=dtype, device=device) # 7. Shrink the size of some sparse dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "shrinking the size of sparse dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 3], [1, 2, 3], dtype=dtype, device=device) # 8. Shrink the size of some dense dimensions on a non-empty sparse tensor [Not Supported] with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 2], [2, 2, 2], dtype=dtype, device=device) with self.assertRaisesRegex(RuntimeError, "shrinking the size of dense dimensions"): self._test_resize_shape([1, 1], [1, 2, 3], [2, 2, 3], [1, 1], [1, 2, 0], [2, 2, 0], dtype=dtype, device=device) def test_is_nonzero(self, device): self.assertTrue(torch.sparse_coo_tensor(([0],), 1., (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0., (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0], [0]), 0., (1, 1), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (0., 0.), (1,), device=device).is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0, 0],), (-1., 1.), (1,), device=device).is_nonzero()) # scalar sparse tensor self.assertTrue(torch.sparse_coo_tensor(torch.zeros(0, 1), 12.3, [], device=device).is_nonzero()) with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"): torch.sparse_coo_tensor(([0, 1],), torch.empty(2, 0), (4, 0), device=device).is_nonzero() self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cfloat, device=device) .is_nonzero()) self.assertTrue(torch.sparse_coo_tensor(([0],), 2.3 - 4.5j, (1,), dtype=torch.cdouble, device=device) .is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cfloat, device=device) .is_nonzero()) self.assertFalse(torch.sparse_coo_tensor(([0],), 0. + 0j, (1,), dtype=torch.cdouble, device=device) .is_nonzero()) def test_allow_tensor_metadata_change(self, device): def do_test(t): with self.assertRaisesRegex( RuntimeError, "raw_resize_ is not allowed on a Tensor created from .data or .detach()"): t.transpose_(0, 1) with self.assertRaisesRegex( RuntimeError, "resize_ is not allowed on a Tensor created from .data or .detach()"): t.resize_as_(self.sparse_empty(3, 3)) with self.assertRaisesRegex( RuntimeError, "resize_and_clear_ is not allowed on a Tensor created from .data or .detach()"): t.mul_(t) with self.assertRaisesRegex( RuntimeError, "set_coalesced is not allowed on a Tensor created from .data or .detach()"): t._coalesced_(True) with self.assertRaisesRegex( RuntimeError, "set_indices_and_values_unsafe is not allowed on a Tensor created from .data or .detach()"): a = self.sparse_tensor(torch.tensor([[0, 1, 1], [2, 0, 2]]), torch.tensor([3., 4., 5.])).data a.add_(a) with self.assertRaisesRegex( RuntimeError, "resize_and_clear_ is not allowed on a Tensor created from .data or .detach()"): a.zero_() with self.assertRaisesRegex( RuntimeError, "resize_ is not allowed on a Tensor created from .data or .detach()"): a.copy_(self.sparse_empty(3, 3)) do_test(self.sparse_empty([3, 0], device=device).data) do_test(self.sparse_empty([3, 0], device=device).detach()) @dtypes(torch.double, torch.cdouble) def test_change_tensor_metadata(self, device, dtype): i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3]), dtype=dtype, device=device) i.resize_(2, 3) v.resize_(4, 5) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.resize_as_(self.index_tensor([0, 1], device=device)) v.resize_as_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.as_strided_((2, 1), (1, 1)) v.as_strided_((1, 3), (1, 1)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.set_(self.index_tensor([0, 1], device=device)) v.set_(torch.tensor([3, 4, 5], dtype=dtype, device=device)) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) i = self.index_tensor([[0], [1]], device=device) v = torch.tensor([[3, 4, 5]], dtype=dtype, device=device) t = torch.sparse_coo_tensor(i, v, torch.Size([1, 2, 3])) i.transpose_(0, 1) v.transpose_(0, 1) self.assertEqual(list(t.coalesce().indices().size()), [2, 1]) self.assertEqual(list(t.coalesce().values().size()), [1, 3]) @skipIfRocm @coalescedonoff @dtypes(torch.double) def test_pickle(self, device, dtype, coalesced): import pickle shape_sparse_dim_nnz = [ ((), 0, 2), ((0,), 0, 10), ((2,), 0, 3), ((100, 3), 1, 3), ((100, 20, 3), 2, 0), ((10, 0, 3), 0, 3), ((10, 0, 3), 0, 0), ] for shape, sparse_dim, nnz in shape_sparse_dim_nnz: indices_shape = torch.Size((sparse_dim, nnz)) values_shape = torch.Size((nnz,) + shape[sparse_dim:]) indices = torch.arange(indices_shape.numel(), dtype=self.index_tensor(0).dtype, device=device).view(indices_shape) for d in range(sparse_dim): indices[d].clamp_(max=(shape[d] - 1)) # make it valid index if not coalesced and indices.numel() > 0: indices[:, -1] = indices[:, 0] # make it uncoalesced values_numel = values_shape.numel() values = torch.arange(values_numel, dtype=dtype, device=device).view(values_shape).div_(values_numel / 2.) sp_tensor = self.sparse_tensor(indices, values, shape) serialized = pickle.dumps(sp_tensor) sp_tensor_loaded = pickle.loads(serialized) self.assertEqual(sp_tensor, sp_tensor_loaded) def test_any(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]), device=device) t_any = torch.tensor(False) self.assertEqual(torch.any(t), t_any) t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([True, False]), device=device) t_any = torch.tensor(True) self.assertEqual(torch.any(t), t_any) def test_isnan(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4]), device=device) t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, False]), device=device) self.assertEqual(torch.isnan(t).int(), t_nan.int()) t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, float("nan")]), device=device) t_nan = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([False, True]), device=device) self.assertEqual(torch.isnan(t).int(), t_nan.int()) @coalescedonoff @dtypes(torch.float32, torch.float64) def test_div_rounding_mode(self, device, dtype, coalesced): sparse, _, _ = self._gen_sparse(2, 10, (10, 10), dtype, device, coalesced) dense = self.safeToDense(sparse) for mode in (None, 'floor', 'trunc'): actual = sparse.div(-2, rounding_mode=mode) expect = dense.div(-2, rounding_mode=mode) self.assertEqual(self.safeToDense(actual), expect) # Test inplace actual = sparse.clone().div_(-2, rounding_mode=mode) self.assertEqual(self.safeToDense(actual), expect) # Test out argument actual.zero_() torch.div(sparse, -2, rounding_mode=mode, out=actual) self.assertEqual(self.safeToDense(actual), expect) def test_div_by_sparse_error(self, device): self.assertRaisesRegex(RuntimeError, 'Sparse division requires', lambda: torch.tensor(1., device=device).to_sparse() / torch.tensor(1., device=device).to_sparse()) def test_floor_divide_by_sparse_error(self, device): self.assertRaisesRegex(RuntimeError, 'Sparse division requires', lambda: torch.tensor(1., device=device).to_sparse() // torch.tensor(1., device=device).to_sparse()) @unittest.skipIf(not TEST_NUMPY, "Numpy not found") @onlyCPU def test_sparse_to_numpy(self, device): t = torch.sparse_coo_tensor(torch.tensor(([0, 0], [2, 0])), torch.tensor([1, 4])) self.assertRaises(TypeError, lambda: t.numpy()) @coalescedonoff @dtypes(torch.double) def test_softmax(self, device, dtype, coalesced): import torch.nn.functional as F def to_dense(sparse, fill_value=None): """ Return dense tensor from a sparse tensor using given fill value. """ if fill_value is None or fill_value == 0: return sparse.to_dense() sparse = sparse.coalesce() dense = torch.full(sparse.shape, fill_value, dtype=sparse.dtype, device=sparse.device) for idx, value in zip(sparse._indices().t(), sparse._values()): dense[tuple(idx)] = value return dense def softmax_to_dense(sparse, dim): """Dense softmax of a sparse tensor. Useful only for testing softmax correctness. When computing softmax of a sparse tensor, the value of unspecified items is negative infinity rather than zero so that softmax(sparse.to_dense(fill_value=-inf), dim) == softmax(sparse, dim).to_dense() holds for non-empty lines. One empty lines, the softmax values are defined as 0 in order to preserve the sparsity of result. Note that in PyTorch, ``to_dense`` method does not implement the ``fill_value`` keyword argument. """ dtype = sparse.dtype device = sparse.device dense = to_dense(sparse, fill_value=-float('inf')) r = F.softmax(dense, dim) # softmax on empty lines results nan, replace with zeros to match the definition r[r != r] = 0 return r def sparse_softmax(sparse, dim): """Pure Python softmax of a sparse tensor. Assuming -inf for unspecified sparse tensor data. This is a prototype of sparse softmax algorithm in Python. """ dtype = sparse.dtype device = sparse.device # softmax is non-linear operation, so sparse tensors must # be coalesced. sparse = sparse.coalesce() inf = float('inf') indices = sparse._indices() values = sparse._values() if dim < sparse.sparse_dim(): nnz = sparse._nnz() # compute pool indices size = sparse.size() strides = torch.ones((sparse.sparse_dim(), 1), dtype=indices.dtype, device=indices.device) for i in reversed(range(sparse.sparse_dim() - 1)): strides[i, 0] = strides[i + 1, 0] * size[i + 1] strides[dim, 0] = 0 pool = (indices * strides).sum(dim=0) i2p = {} for i in range(nnz): c = int(pool[i]) if c not in i2p: i2p[c] = len(i2p) pool[i] = i2p[c] # compute max dense_size = tuple(size[sparse.sparse_dim():]) mx = torch.empty((pool.max() + 1,) + dense_size, dtype=dtype, device=device) mx[:] = -inf for n in range(nnz): p = pool[n] mx[p] = torch.max(mx[p], values[n]) # apply exp to (v - mx) and sum the results exp_values = torch.empty_like(values) exp_sums = torch.zeros_like(mx) for n in range(nnz): p = pool[n] v = exp_values[n] = (values[n] - mx[p]).exp() exp_sums[p] = exp_sums[p] + v # normalize with the sum of exponents for n in range(nnz): p = pool[n] exp_values[n] = exp_values[n] / exp_sums[p] return torch.sparse_coo_tensor(indices, exp_values, sparse.size(), dtype=dtype, device=device) elif dim < sparse.sparse_dim() + sparse.dense_dim(): return torch.sparse_coo_tensor(indices, F.softmax(values, dim - sparse.sparse_dim() + 1), sparse.size(), dtype=dtype, device=device) else: raise ValueError( '`dim(=%s)` must be smaller than `sparse_dim(=%s) + dense_dim(=%s)`' % (dim, sparse.sparse_dim(), sparse.dense_dim())) def softmax_jacobian_analytic(x, dim): """Return Jacobian of softmax using analytic formula D_jS_i = S_i * (1[i==j] - S_j). where S = softmax(x, dim), x is dense tensor, i,j in range(x.shape[dim]). """ y = F.softmax(x, dim) y[y != y] = 0 # replace nan-s with zeros J = torch.zeros((x.shape[dim],) + tuple(x.shape), dtype=x.dtype, device=x.device) si = [slice(None)] * len(y.shape) sj = [slice(None)] * len(y.shape) s = [slice(None)] * len(J.shape) for i in range(y.shape[dim]): si[dim] = i s[dim + 1] = i yi = y[tuple(si)] for j in range(y.shape[dim]): sj[dim] = j s[0] = j if i == j: J[tuple(s)] = yi * (1 - yi) else: yj = y[tuple(sj)] J[tuple(s)] = - yi * yj sj[dim] = slice(None) si[dim] = slice(None) s[dim + 1] = slice(None) return J def softmax_jacobian_autograd(x, dim, log=False): """Return Jacobian of softmax using PyTorch autograd feature. x can be dense or sparse tensor. """ import itertools if x.is_sparse: x = x.coalesce() dtype = x.dtype device = x.device shape = tuple(x.shape) J = torch.zeros((shape[dim],) + shape, dtype=dtype, device=device) for i in range(shape[dim]): if x.is_sparse: sparse_dim = x.sparse_dim() dense_dim = x.dense_dim() if dim < sparse_dim: ranges = [] for j, sz in enumerate(shape[:sparse_dim]): if dim == j: ranges.append([i]) else: ranges.append(list(range(sz))) indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() values = torch.ones((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) else: ranges = [] for j, sz in enumerate(shape[:sparse_dim]): ranges.append(list(range(sz))) indices = torch.tensor(list(itertools.product(*ranges)), dtype=torch.long, device=device).t() values = torch.zeros((indices.shape[1],) + shape[sparse_dim:], dtype=dtype, device=device) sv = [slice(None)] * (dense_dim + 1) sv[dim - sparse_dim + 1] = i values[tuple(sv)] = 1 v = torch.sparse_coo_tensor(indices, values, shape, dtype=dtype, device=device) else: v = torch.zeros_like(x) sv = [slice(None)] * len(v.shape) sv[dim] = i v[tuple(sv)] = 1 x_ = x.clone() x_.requires_grad_(True) if log: if x_.is_sparse: y = torch.sparse.log_softmax(x_, dim) else: y = F.log_softmax(x_, dim) else: if x_.is_sparse: y = torch.sparse.softmax(x_, dim) else: y = F.softmax(x_, dim) # replace nan-s with zeros y.data[y != y] = 0 y.backward(v) g = x_.grad if not g.is_sparse: # replace nan-s with zeros g.data[g != g] = 0 J[i] = g.to_dense() if g.is_sparse else g return J def test_op(sparse_dims, nnz, with_size, coalesced): if isinstance(with_size, Number): with_size = [with_size] * sparse_dims x, i, v = self._gen_sparse(sparse_dims, nnz, with_size, dtype, device, coalesced) def sparse_log(x): return torch.sparse_coo_tensor(x._indices(), x._values().log(), x.size(), dtype=x.dtype, device=x.device) for dim in range(x.sparse_dim() + x.dense_dim()): # Check sparse softmax definition # check Python sparse softmax y = sparse_softmax(x, dim) r1 = softmax_to_dense(x, dim) r2 = y.to_dense() self.assertEqual(r1, r2) # check C++ sparse softmax y1 = torch.sparse.softmax(x, dim) self.assertEqual(y, y1) # check C++ sparse log_softmax ly1 = torch.sparse.log_softmax(x, dim) self.assertEqual(ly1, sparse_log(y1)) # Check autograd support on sparse softmax # check softmax Jacobian definition for dense input x1 = to_dense(x, fill_value=float('-inf')) J = softmax_jacobian_analytic(x1, dim) assert J.shape[0] == x.shape[dim] assert J.shape[dim + 1] == x.shape[dim] # check softmax Jacobian from autograd, dense input J2 = softmax_jacobian_autograd(x1, dim) self.assertEqual(J, J2) # check softmax Jacobian from autograd, sparse input J3 = softmax_jacobian_autograd(x, dim) self.assertEqual(J, J3) ''' y = softmax(x, dim) z = log(y) = log_softmax(x, dim) Dy/Dx = J Dz/Dx = Dz/Dy Dy/Dx = 1/y * J => J = J_log * y ''' # log_softmax Jacobian from autograd, dense input J2_log = softmax_jacobian_autograd(x1, dim, log=True) # log_softmax Jacobian from autograd, sparse input J3_log = softmax_jacobian_autograd(x, dim, log=True) J = J.transpose(0, dim + 1) J2_log = J2_log.transpose(0, dim + 1) J3_log = J3_log.transpose(0, dim + 1) self.assertEqual(J, J2_log * r1) self.assertEqual(J, J3_log * r1) if dim == 0: # check dtype argument other_dtype = torch.float32 y2 = torch.sparse.softmax(x, dim, dtype=other_dtype) self.assertEqual(y2.dtype, other_dtype) self.assertEqual(y2, y1.type(other_dtype)) ly2 = torch.sparse.log_softmax(x, dim, dtype=other_dtype) self.assertEqual(ly2.dtype, other_dtype) self.assertEqual(ly2, ly1.type(other_dtype)) test_op(1, 10, [3], coalesced) test_op(1, 10, [2, 3], coalesced) test_op(1, 10, [3, 2], coalesced) test_op(2, 10, [2, 3, 4], coalesced) test_op(2, 10, [3, 4], coalesced) test_op(2, 5, [5, 4], coalesced) test_op(2, 10, [3, 4, 2], coalesced) test_op(3, 10, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2], coalesced) test_op(3, 100, [3, 4, 2, 3], coalesced) test_op(3, 100, [3, 4, 2, 3, 5, 2], coalesced) test_op(4, 100, [3, 4, 2, 3, 5, 2], coalesced) # TODO: Check after why ROCm's cusparseXcsrgemm2Nnz function doesn't return the same nnz value as CUDA @skipIfRocm @coalescedonoff @dtypes(*get_all_complex_dtypes(), *get_all_fp_dtypes(include_half=False, include_bfloat16=False)) @dtypesIfCUDA(*((torch.complex64,) if CUDA11OrLater else ()), *((torch.complex128,) if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else ()), *get_all_fp_dtypes( include_half=(CUDA11OrLater and SM53OrLater), include_bfloat16=(CUDA11OrLater and SM80OrLater))) @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2, torch.complex64: 1e-2, torch.float32: 1e-2}) def test_sparse_matmul(self, device, dtype, coalesced): """ This function test `torch.sparse.mm` when both the mat1 and mat2 are sparse tensors. """ def ref_sparse_mm(a, b): return a.to_dense() @ b.to_dense() def grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b): def test_grad_dense(a_s, b_s, g_s): a = a_s.to_dense().detach() b = b_s.to_dense().detach() g = g_s.to_dense().detach() a.requires_grad_(True) b.requires_grad_(True) c = a @ b c.backward(g) return a.grad.sparse_mask(a_s.coalesce()), b.grad.sparse_mask(b_s.coalesce()) a, _, _ = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, _, _ = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) a.requires_grad_(True) b.requires_grad_(True) c = torch.sparse.mm(a, b) c2 = c.to_dense().detach() c2 = torch.rand_like(c2) g = c2.sparse_mask(c.coalesce()) c.backward(g) a_grad, b_grad = test_grad_dense(a, b, g) self.assertEqual(a.grad, a_grad) self.assertEqual(b.grad, b_grad) def test_sparse_matmul(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) # dense implementation r1 = ref_sparse_mm(a, b) # cpp implementation r2 = torch.sparse.mm(a, b) self.assertEqual(r1, r2.to_dense()) if dtype in [torch.double, torch.cdouble]: a.requires_grad_(True) b.requires_grad_(True) # check autograd support on sparse matmul def fn(D1, D2): return torch.sparse.mm(D1, D2).to_dense() if a.is_cuda: # For cuda, `nondet_tol` is set with `1e-5` # This is because cuSparse sometimes returns approximate zero values like `~e-323` # TODO: Check this cuSparse issue. # This happens when you do chain multiplication `torch.sparse.mm` operations gradcheck(fn, (a, b), check_sparse_nnz=True, nondet_tol=1e-5) else: gradcheck(fn, (a, b), check_sparse_nnz=True) grad_with_custom_sparsity_pattern_test_helper(sparse_dims, nnz, shape_a, shape_b) def test_error_cases(): def fn(sparse_dims, nnz, shape_a, shape_b): a, i_a, v_a = self._gen_sparse(sparse_dims, nnz, shape_a, dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(sparse_dims, nnz, shape_b, dtype, device, coalesced) r2 = torch.sparse.mm(a, b) # This is not a matrix self.assertRaises(RuntimeError, lambda: fn(3, 4, [2, 2, 2], [2, 2, 2])) # Shapes does not self.assertRaisesRegex(RuntimeError, r"mat1 and mat2 shapes cannot be multiplied \(2x3 and 4x2\)", lambda: fn(2, 10, [2, 3], [4, 2])) def different_dtypes(): a, i_a, v_a = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) b, i_b, v_b = self._gen_sparse(2, 10, [2, 2], dtype, device, coalesced) r2 = torch.sparse.mm(a.to(torch.float64), a.to(torch.float32)) self.assertRaisesRegex(RuntimeError, 'mat1 dtype Double does not match mat2 dtype Float', different_dtypes) for n in range(2, 5): for m in range(2, 8): for p in range(2, 8): test_sparse_matmul(2, 10, [n, m], [m, p]) test_sparse_matmul(2, 0, [0, 0], [0, 0]) test_sparse_matmul(2, 0, [0, 10], [10, 0]) test_error_cases() @coalescedonoff @dtypes(torch.double) def test_assign(self, device, dtype, coalesced): def assign_to(): a, i_a, v_a = self._gen_sparse(2, 5, [2, 3], dtype, device, coalesced) a[0] = 100 self.assertRaises(TypeError, assign_to) def test_cpu_sparse_dense_mul(self, device): # general multiplication is not supported, but 0dim multiplication is supported s = torch.sparse_coo_tensor([[0], [1]], [5.0], (2, 3), device=device) t23 = s.to_dense() t0 = torch.tensor(2.0, device=device) r = s * 2.0 self.assertEqual(r, 2.0 * s) self.assertEqual(r, t0 * s) self.assertEqual(r, s * t0) if device == 'cpu': with self.assertRaisesRegex(RuntimeError, r"mul\(sparse, dense\) is not supported"): s * t23 with self.assertRaisesRegex(RuntimeError, r"mul\(dense, sparse\) is not supported"): t23 * s elif device == 'cuda': with self.assertRaisesRegex(NotImplementedError, "CUDA"): s * t23 with self.assertRaisesRegex(NotImplementedError, "CUDA"): t23 * s class TestSparseOneOff(TestCase): @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_cuda_from_cpu(self): with self.assertRaisesRegex( RuntimeError, "backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"): torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4), [3, 4, 4]) with self.assertRaisesRegex( RuntimeError, "backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"): torch.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0), [3, 4, 4, 0]) with self.assertRaisesRegex( RuntimeError, "backend of indices \\(CUDA\\) must match backend of values \\(CPU\\)"): torch.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(), torch.randn(0, 4, 4, 0), [0, 4, 4, 0]) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_cuda_sparse_cpu_dense_add(self): x = torch.zeros(3, 4, 4) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4).cuda(), [3, 4, 4]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(3, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.zeros(1, 4).long().cuda(), torch.randn(4, 4, 4, 0).cuda(), [3, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y x = torch.zeros(0, 4, 4, 0) sparse_y = torch.cuda.sparse.FloatTensor(torch.LongTensor(1, 0).cuda(), torch.randn(0, 4, 4, 0).cuda(), [0, 4, 4, 0]) with self.assertRaisesRegex(RuntimeError, "add: expected 'self' to be a CUDA tensor, but got a CPU tensor"): x + sparse_y def _sparse_to_dense(tensor): if tensor.dtype != torch.bool: return tensor.to_dense() # to_dense uses coalesce which isn't implemented for bool return tensor.to(torch.int8).to_dense().to(torch.bool) _sparse_unary_ops = ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=all_types_and_complex()) class TestSparseUnaryUfuncs(TestCase): exact_dtype = True @_sparse_unary_ops def test_sparse_consistency(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if len(samples) == 0: self.skipTest("Skipped! No sample inputs!") sample = samples[0] assert isinstance(sample.input, torch.Tensor) expected = op(sample.input, *sample.args, **sample.kwargs) assert torch.is_tensor(expected) output = op(sample.input.to_sparse(), *sample.args, **sample.kwargs) assert torch.is_tensor(output) self.assertEqual(_sparse_to_dense(output), expected) @_sparse_unary_ops def test_out(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if len(samples) == 0: self.skipTest("Skipped! No sample inputs!") if not op.supports_out: self.skipTest("Skipped! Out not supported") sample = samples[0] sample.input = sample.input.to_sparse() expect = op(sample.input, *sample.args, **sample.kwargs) out = torch.zeros(sample.input.shape, device=device, dtype=expect.dtype, layout=torch.sparse_coo) op(sample.input, *sample.args, **sample.kwargs, out=out) self.assertEqual(out, expect) @_sparse_unary_ops def test_inplace(self, device, dtype, op): samples = op.sample_inputs(device, dtype) if len(samples) == 0: self.skipTest("Skipped! No sample inputs!") if op.inplace_variant is None: self.skipTest("Skipped! Out not supported") sample = samples[0] sample.input = sample.input.to_sparse().coalesce() expect = op(sample.input, *sample.args, **sample.kwargs) if not torch.can_cast(expect.dtype, dtype): with self.assertRaisesRegex(RuntimeError, "result type .* can't be cast to"): op.inplace_variant(sample.input, *sample.args, **sample.kwargs) return actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs) self.assertIs(actual, sample.input) self.assertEqual(actual, expect) @_sparse_unary_ops def test_sparse_zero_dims(self, device, dtype, op): # test 0x0 sparse_coo_tensor indices = torch.empty(2, 0, dtype=torch.int64) values = torch.empty(0, dtype=dtype) sparse_0x0 = torch.sparse_coo_tensor(indices, values, (0, 0)) expected = torch.sparse_coo_tensor(indices, op(values), (0, 0)) actual = op(sparse_0x0) self.assertEqual(expected, actual) @_sparse_unary_ops def test_sparse_zeros(self, device, dtype, op): samples = op.sample_inputs(device, dtype) zero_input = torch.zeros((), device=device, dtype=dtype) sparse_input = torch.zeros((), dtype=dtype, device=device, layout=torch.sparse_coo) expect = op(zero_input) actual = op(sparse_input) self.assertEqual(expect, _sparse_to_dense(actual)) @ops(sparse_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble]) def test_sparse_fn_grad(self, device, dtype, op): if not op.supports_autograd: self.skipTest("Skipped! Op doesn't support autograd") for sample in op.sample_inputs(device, dtype): sparse_input = sample.input.to_sparse().detach().requires_grad_(True) def fn(x): return _sparse_to_dense( op(x, *sample.args, **sample.kwargs)) self.assertTrue(gradcheck( fn, (sparse_input,), check_batched_grad=False, check_grad_dtypes=True, check_sparse_nnz=True, nondet_tol=op.gradcheck_nondet_tol, fast_mode=op.gradcheck_fast_mode)) # e.g., TestSparseUnaryUfuncsCPU and TestSparseUnaryUfuncsCUDA instantiate_device_type_tests(TestSparseUnaryUfuncs, globals(), except_for='meta') # e.g., TestSparseCPU and TestSparseCUDA instantiate_device_type_tests(TestSparse, globals(), except_for='meta') if __name__ == '__main__': run_tests()
the-stack_106_23747
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for building the input features for the AlphaFold model.""" import os from typing import Mapping, Optional, Sequence, List, Dict from absl import logging from alphafold.common import residue_constants from alphafold.data import parsers from alphafold.data import templates from alphafold.data.tools import hhblits from alphafold.data.tools import hhsearch from alphafold.data.tools import jackhmmer #from alphafold.data.tools import mmseqs as mmseqs2 import numpy as np from dataclasses import dataclass from string import ascii_uppercase import pickle from pathlib import Path import random # Internal import (7716). FeatureDict = Mapping[str, np.ndarray] @dataclass class Mock_Template_Result(): features: FeatureDict def make_mock_template(query_sequence: str): # since alphafold's model requires a template input # we create a blank example w/ zero input, confidence -1 ln = len(query_sequence) output_templates_sequence = "-" * ln output_confidence_scores = np.full(ln, -1) templates_all_atom_positions = np.zeros( (ln, templates.residue_constants.atom_type_num, 3)) templates_all_atom_masks = np.zeros( (ln, templates.residue_constants.atom_type_num)) templates_aatype = templates.residue_constants.sequence_to_onehot( output_templates_sequence, templates.residue_constants.HHBLITS_AA_TO_ID) template_features = { 'template_all_atom_positions': templates_all_atom_positions[None], 'template_all_atom_masks': templates_all_atom_masks[None], 'template_sequence': np.array([f'none'.encode()]), 'template_aatype': np.array(templates_aatype)[None], 'template_confidence_scores': output_confidence_scores[None], 'template_domain_names': np.array([f'none'.encode()]), 'template_release_date': np.array([f'none'.encode()]) } return Mock_Template_Result(features=template_features) def _placeholder_template_feats(num_templates_, num_res_): return { 'template_aatype': np.zeros([num_templates_, num_res_, 22], np.float32), 'template_all_atom_masks': np.zeros([num_templates_, num_res_, 37, 3], np.float32), 'template_all_atom_positions': np.zeros([num_templates_, num_res_, 37], np.float32), 'template_domain_names': np.zeros([num_templates_], np.float32), 'template_sum_probs': np.zeros([num_templates_], np.float32), } def make_sequence_features(sequence: str, description: str, num_res: int, homooligomer: int = 1) -> FeatureDict: """Constructs a feature dict of sequence features.""" Ln: int = len(sequence) Ls: Sequence[int] = [Ln] * homooligomer num_res = num_res * homooligomer sequence = sequence * homooligomer features = {} features['aatype'] = residue_constants.sequence_to_onehot( sequence=sequence, mapping=residue_constants.restype_order_with_x, map_unknown_to_x=True) features['between_segment_residues'] = np.zeros((num_res, ), dtype=np.int32) features['domain_name'] = np.array([description.encode('utf-8')], dtype=np.object_) features['residue_index'] = np.array(range(num_res), dtype=np.int32) features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32) features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_) if homooligomer > 1: # add big enough number to residue index to indicate chain breaks between oligomers idx_res = features['residue_index'] L_prev = 0 # Ls: number of residues in each chain for L_i in Ls[:-1]: idx_res[L_prev + L_i:] += 200 L_prev += L_i chains = list("".join( [ascii_uppercase[n] * L for n, L in enumerate(Ls)])) features['residue_index'] = idx_res return features def make_msa_features(msas: Sequence[Sequence[str]], deletion_matrices: Sequence[parsers.DeletionMatrix], Ln: int, msa_size_gb: float, homooligomer: int = 1) -> FeatureDict: """Constructs a feature dict of MSA features.""" if not msas: raise ValueError('At least one MSA must be provided.') # Flatten and denormalize the MSA. The denormalized form has every # sequence from all the MSAs, times the number of homooligomers. denorm_msa = [] denorm_deletion_matrix = [] for msa_idx, (msa, deletion_matrix) in enumerate(zip(msas, deletion_matrices)): if not msa: raise ValueError( f'MSA {msa_idx} must contain at least one sequence.') for sequence, deletion_row in zip(msa, deletion_matrix): for olig_idx in range(homooligomer): L = Ln * olig_idx R = Ln * (homooligomer - (olig_idx + 1)) denorm_msa.append("-" * L + sequence + "-" * R) denorm_deletion_matrix.append([0] * L + deletion_row + [0] * R) # 1.99 GB Max size, size of row in msa array = Ln * 4 bytes (int32) max_msa_sequences = (msa_size_gb * 1024 * 1024 * 1024) // (Ln * homooligomer * 4) # Randomly select a subset of the flattened form and convert to ints. int_msa = [] deletion_matrix = [] seen_sequences = set() for index in random.sample(range(len(denorm_msa)), k=len(denorm_msa)): sequence = denorm_msa[index] deletion_row = denorm_deletion_matrix[index] # Don't add duplicate sequences to the MSA. if sequence in seen_sequences: continue seen_sequences.add(sequence) int_msa.append( [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]) deletion_matrix.append(deletion_row) if len(seen_sequences) >= max_msa_sequences: break num_res = len(denorm_msa[0]) num_alignments = len(int_msa) features = {} features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32) features['msa'] = np.array(int_msa, dtype=np.int32) features['num_alignments'] = np.array([num_alignments] * num_res, dtype=np.int32) return features def homooligomerize(msas, deletion_matrices, homooligomer=1): ''' From https://github.com/sokrypton/ColabFold/blob/main/beta/colabfold.py ''' if homooligomer == 1: return msas, deletion_matrices else: new_msas = [] new_mtxs = [] for o in range(homooligomer): for msa, mtx in zip(msas, deletion_matrices): num_res = len(msa[0]) L = num_res * o R = num_res * (homooligomer - (o + 1)) new_msas.append(["-" * L + s + "-" * R for s in msa]) new_mtxs.append([[0] * L + m + [0] * R for m in mtx]) return new_msas, new_mtxs def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers): ''' From https://github.com/sokrypton/ColabFold/blob/main/beta/colabfold.py ----- inputs ----- msas: list of msas deletion_matrices: list of deletion matrices lengths: list of lengths for each component in complex homooligomers: list of number of homooligomeric copies for each component ----- outputs ----- (msas, deletion_matrices) ''' if max(homooligomers) == 1: return msas, deletion_matrices elif len(homooligomers) == 1: return homooligomerize(msas, deletion_matrices, homooligomers[0]) else: frag_ij = [[0, lengths[0]]] for length in lengths[1:]: j = frag_ij[-1][-1] frag_ij.append([j, j + length]) # for every msa mod_msas, mod_mtxs = [], [] for msa, mtx in zip(msas, deletion_matrices): mod_msa, mod_mtx = [], [] # for every sequence for n, (s, m) in enumerate(zip(msa, mtx)): # split sequence _s, _m, _ok = [], [], [] for i, j in frag_ij: _s.append(s[i:j]) _m.append(m[i:j]) _ok.append(max([o != "-" for o in _s[-1]])) if n == 0: # if first query sequence mod_msa.append("".join( [x * h for x, h in zip(_s, homooligomers)])) mod_mtx.append( sum([x * h for x, h in zip(_m, homooligomers)], [])) elif sum(_ok) == 1: # elif one fragment: copy each fragment to every homooligomeric copy a = _ok.index(True) for h_a in range(homooligomers[a]): _blank_seq = [["-" * l] * h for l, h in zip(lengths, homooligomers)] _blank_mtx = [[[0] * l] * h for l, h in zip(lengths, homooligomers)] _blank_seq[a][h_a] = _s[a] _blank_mtx[a][h_a] = _m[a] mod_msa.append("".join( ["".join(x) for x in _blank_seq])) mod_mtx.append( sum([sum(x, []) for x in _blank_mtx], [])) else: # else: copy fragment pair to every homooligomeric copy pair for a in range(len(lengths) - 1): if _ok[a]: for b in range(a + 1, len(lengths)): if _ok[b]: for h_a in range(homooligomers[a]): for h_b in range(homooligomers[b]): _blank_seq = [ ["-" * l] * h for l, h in zip( lengths, homooligomers) ] _blank_mtx = [ [[0] * l] * h for l, h in zip( lengths, homooligomers) ] for c, h_c in zip([a, b], [h_a, h_b]): _blank_seq[c][h_c] = _s[c] _blank_mtx[c][h_c] = _m[c] mod_msa.append("".join([ "".join(x) for x in _blank_seq ])) mod_mtx.append( sum([ sum(x, []) for x in _blank_mtx ], [])) mod_msas.append(mod_msa) mod_mtxs.append(mod_mtx) return mod_msas, mod_mtxs def chain_break(idx_res, Ls, length=200): '''From https://github.com/sokrypton/ColabFold/blob/main/beta/colabfold.py''' # Minkyung's code # add big enough number to residue index to indicate chain breaks L_prev = 0 for L_i in Ls[:-1]: idx_res[L_prev + L_i:] += length L_prev += L_i return idx_res class DataPipeline: """Runs the alignment tools and assembles the input features.""" def __init__(self, jackhmmer_binary_path: str, hhblits_binary_path: str, hhsearch_binary_path: str, uniref90_database_path: str, mgnify_database_path: str, bfd_database_path: Optional[str], uniclust30_database_path: Optional[str], small_bfd_database_path: Optional[str], pdb70_database_path: str, template_featurizer: templates.TemplateHitFeaturizer, mmseqs_binary_path: str, mmseqs_uniref50_database_path: str, mmseqs_mgnify_database_path: str, mmseqs_small_bfd_database_path: str, mmseqs: bool, use_small_bfd: bool, tmp_dir: Path, mgnify_max_hits: int = 501, uniref_max_hits: int = 25000, bfd_max_hits: int = 25000): """Constructs a feature dict for a given FASTA file.""" self._use_small_bfd = use_small_bfd self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=uniref90_database_path, tmp_dir=tmp_dir, get_tblout=True) if use_small_bfd: self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=small_bfd_database_path, tmp_dir=tmp_dir, get_tblout=True) else: self.hhblits_bfd_uniclust_runner = hhblits.HHBlits( binary_path=hhblits_binary_path, databases=[bfd_database_path, uniclust30_database_path], tmp_dir=tmp_dir) self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=mgnify_database_path, tmp_dir=tmp_dir, get_tblout=True) self.hhsearch_pdb70_runner = hhsearch.HHSearch( binary_path=hhsearch_binary_path, databases=[pdb70_database_path], tmp_dir=tmp_dir) #self.mmseqs_runner = mmseqs2.MMSeqs( # binary_path=mmseqs_binary_path, # uniref50_database_path=mmseqs_uniref50_database_path, # mgnify_database_path=mmseqs_mgnify_database_path, # small_bfd_database_path=mmseqs_small_bfd_database_path) self.template_featurizer = template_featurizer self.mgnify_max_hits = mgnify_max_hits self.uniref_max_hits = uniref_max_hits self.bfd_max_hits = bfd_max_hits def process(self, input_fasta_path: str, msa_output_dir: str, msa_size_gb: float, homooligomer: str = '1') -> FeatureDict: """Runs alignment tools on the input sequence and creates features.""" with open(input_fasta_path) as f: input_fasta_str = f.read() input_seqs, input_descs = parsers.parse_fasta(input_fasta_str) if len(input_seqs) != 1: raise ValueError( f'More than one input sequence found in {input_fasta_path}.') assert len(homooligomer) == 1 homooligomer = int(homooligomer) input_sequence = input_seqs[0] input_description = input_descs[0] num_res = len(input_sequence) uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto') if not os.path.exists(uniref90_out_path): jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query( input_fasta_path)[0] with open(uniref90_out_path, 'w') as f: f.write(jackhmmer_uniref90_result['sto']) else: jackhmmer_uniref90_result = {} with open(uniref90_out_path, 'r') as f: jackhmmer_uniref90_result['sto'] = f.read() mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto') if not os.path.exists(mgnify_out_path): jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query( input_fasta_path)[0] with open(mgnify_out_path, 'w') as f: f.write(jackhmmer_mgnify_result['sto']) else: jackhmmer_mgnify_result = {} with open(uniref90_out_path, 'r') as f: jackhmmer_mgnify_result['sto'] = f.read() pdb70_out_path = os.path.join(msa_output_dir, 'pdb70_hits.hhr') if not os.path.exists(pdb70_out_path): uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m( jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits) hhsearch_result = self.hhsearch_pdb70_runner.query( uniref90_msa_as_a3m) with open(pdb70_out_path, 'w') as f: f.write(hhsearch_result) else: with open(pdb70_out_path, 'r') as f: hhsearch_result = f.read() uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm( jackhmmer_uniref90_result['sto']) mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm( jackhmmer_mgnify_result['sto']) hhsearch_hits = parsers.parse_hhr(hhsearch_result) #mgnify_msa = mgnify_msa[:self.mgnify_max_hits] #mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits] #uniref90_msa = uniref90_msa[:self.uniref_max_hits] #uniref90_deletion_matrix = uniref90_deletion_matrix[:self.uniref_max_hits] if self._use_small_bfd: bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m') if not os.path.exists(bfd_out_path): jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query( input_fasta_path)[0] with open(bfd_out_path, 'w') as f: f.write(jackhmmer_small_bfd_result['sto']) else: jackhmmer_small_bfd_result = {} with open(bfd_out_path, 'r') as f: jackhmmer_small_bfd_result['sto'] = f.read() bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm( jackhmmer_small_bfd_result['sto']) else: bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m') if not os.path.exists(bfd_out_path): hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query( input_fasta_path) with open(bfd_out_path, 'w') as f: f.write(hhblits_bfd_uniclust_result['a3m']) else: hhblits_bfd_uniclust_result = {} with open(bfd_out_path, 'r') as f: hhblits_bfd_uniclust_result['a3m'] = f.read() bfd_msa, bfd_deletion_matrix = parsers.parse_a3m( hhblits_bfd_uniclust_result['a3m']) #bfd_msa = bfd_msa[:self.bfd_max_hits] #bfd_deletion_matrix = bfd_deletion_matrix[:self.bfd_max_hits] if homooligomer > 1: templates_result = make_mock_template( query_sequence=input_sequence * homooligomer) else: templates_result = self.template_featurizer.get_templates( query_sequence=input_sequence, query_pdb_code=None, query_release_date=None, hits=hhsearch_hits) sequence_features = make_sequence_features( sequence=input_sequence, description=input_description, num_res=num_res, homooligomer=homooligomer) msa_features = make_msa_features( msas=(uniref90_msa, bfd_msa, mgnify_msa), deletion_matrices=(uniref90_deletion_matrix, bfd_deletion_matrix, mgnify_deletion_matrix), Ln=len(input_sequence), msa_size_gb=msa_size_gb, homooligomer=homooligomer) logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa)) logging.info('BFD MSA size: %d sequences.', len(bfd_msa)) logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa)) logging.info('Final (deduplicated) MSA size: %d sequences.', msa_features['num_alignments'][0]) logging.info( 'Total number of templates (NB: this can include bad ' 'templates and is later filtered to top 4): %d.', templates_result.features['template_domain_names'].shape[0]) return { **sequence_features, **msa_features, **templates_result.features } def create_msas(self, input_fasta_path: str, msa_output_dir: str) -> None: """Runs alignment tools on the input sequence.""" with open(input_fasta_path) as f: input_fasta_str = f.read() input_seqs, input_descs = parsers.parse_fasta(input_fasta_str) if len(input_seqs) != 1: raise ValueError( f'More than one input sequence found in {input_fasta_path}.') input_sequence = input_seqs[0] input_description = input_descs[0] num_res = len(input_sequence) prefix: str = input_description dbs = [] pickled_msa_path = os.path.join(msa_output_dir, f"{prefix}.pickle") logging.info(f'Pickled MSA Path: {pickled_msa_path}') if not os.path.exists(pickled_msa_path): logging.info( f'Pickled MSA Path does not exist yet: {pickled_msa_path}') uniref90_out_path = os.path.join(msa_output_dir, f'{prefix}_uniref90_hits.sto') if not os.path.exists(uniref90_out_path): jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query( input_fasta_path)[0] with open(uniref90_out_path, 'w') as f: f.write(jackhmmer_uniref90_result['sto']) else: jackhmmer_uniref90_result = {} with open(uniref90_out_path, 'r') as f: jackhmmer_uniref90_result['sto'] = f.read() mgnify_out_path = os.path.join(msa_output_dir, f'{prefix}_mgnify_hits.sto') if not os.path.exists(mgnify_out_path): jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query( input_fasta_path)[0] with open(mgnify_out_path, 'w') as f: f.write(jackhmmer_mgnify_result['sto']) else: jackhmmer_mgnify_result = {} with open(uniref90_out_path, 'r') as f: jackhmmer_mgnify_result['sto'] = f.read() if self._use_small_bfd: bfd_out_path = os.path.join(msa_output_dir, f'{prefix}_small_bfd_hits.a3m') if not os.path.exists(bfd_out_path): jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query( input_fasta_path)[0] with open(bfd_out_path, 'w') as f: f.write(jackhmmer_small_bfd_result['sto']) else: jackhmmer_small_bfd_result = {} with open(bfd_out_path, 'r') as f: jackhmmer_small_bfd_result['sto'] = f.read() dbs.append(('smallbfd', jackhmmer_small_bfd_result)) else: bfd_out_path = os.path.join(msa_output_dir, f'{prefix}_bfd_uniclust_hits.a3m') if not os.path.exists(bfd_out_path): hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query( input_fasta_path) with open(bfd_out_path, 'w') as f: f.write(hhblits_bfd_uniclust_result['a3m']) else: hhblits_bfd_uniclust_result = {} with open(bfd_out_path, 'r') as f: hhblits_bfd_uniclust_result['a3m'] = f.read() dbs.append(('bfd', hhblits_bfd_uniclust_result)) dbs.append(('uniref90', jackhmmer_uniref90_result)) dbs.append(('mgnify', jackhmmer_mgnify_result)) msas = [] deletion_matrices = [] names = [] for db_name, db_results in dbs: try: unsorted_results = [] for i, result in enumerate(db_results): if db_name == 'bfd': msa, deletion_matrix = parsers.parse_a3m( db_results['a3m']) else: msa, deletion_matrix, target_names = parsers.parse_stockholm( db_results['sto']) e_values_dict = parsers.parse_e_values_from_tblout( db_results['tbl']) e_values = [ e_values_dict[t.split('/')[0]] for t in target_names ] zipped_results = zip(msa, deletion_matrix, target_names, e_values) if i != 0: # Only take query from the first chunk zipped_results = [ x for x in zipped_results if x[2] != 'query' ] unsorted_results.extend(zipped_results) sorted_by_evalue = sorted(unsorted_results, key=lambda x: x[3]) db_msas, db_deletion_matrices, db_names, _ = zip( *sorted_by_evalue) if db_msas: msas.append(db_msas) deletion_matrices.append(db_deletion_matrices) names.append(db_names) msa_size = len(set(db_msas)) logging.info( f'{msa_size} Sequences Found in {db_name}') except: unsorted_results = [] msa, deletion_matrix, target_names = parsers.parse_stockholm( db_results['sto']) zipped_results = zip(msa, deletion_matrix, target_names) if db_name != 'smallbfd': zipped_results = [ x for x in zipped_results if x[2] != input_description ] unsorted_results.extend(zipped_results) if not len(unsorted_results): continue # if no hits found db_msas, db_deletion_matrices, db_names = zip( *unsorted_results) msas.append(db_msas) deletion_matrices.append(db_deletion_matrices) names.append(db_names) logging.info(f'Making msa pickle: {pickled_msa_path}') with open(pickled_msa_path, 'wb') as F: pickle.dump( { "msas": msas, "deletion_matrices": deletion_matrices, "names": names }, F) return None def combine_msas(self, input_fasta_path: str, msa_output_dir: str, homooligomer: str, turbo: bool = False) -> None: """Runs alignment tools on the input sequence. Note, input sequence should be ori_sequence""" with open(input_fasta_path) as f: input_fasta_str = f.read() input_seqs, input_descs = parsers.parse_fasta(input_fasta_str) if len(input_seqs) != 1: raise ValueError( f'More than one input sequence found in {input_fasta_path}.') input_sequence = input_seqs[0] input_description = input_descs[0] ori_sequence: str = input_sequence # ori_sequence = "MLASVAS:ASVASDV" sequence: str = ori_sequence.replace(':', '') # sequence = "MLASVASASVASDV" seqs: List[str] = ori_sequence.split( ':') # seqs = ["MLASVAS", "ASVASDV"] homooligomers: List[int] = [int(h) for h in homooligomer.split(':') ] # homooligomers = [2, 2] full_sequence: str = "".join([ s * h for s, h in zip(seqs, homooligomers) ]) # full_sequence = "MLASVASMLASVASASVASDVASVASDV" _blank_seq = ["-" * len(seq) for seq in seqs] _blank_mtx = [[0] * len(seq) for seq in seqs] def _pad(ns, vals, mode): if mode == "seq": _blank = _blank_seq.copy() if mode == "mtx": _blank = _blank_mtx.copy() if isinstance(ns, list): for n, val in zip(ns, vals): _blank[n] = val else: _blank[ns] = vals if mode == "seq": return "".join(_blank) if mode == "mtx": return sum(_blank, []) combined_msa_pickle = os.path.join(msa_output_dir, 'combined_msa.pickle') if not os.path.exists(combined_msa_pickle): msas = [] deletion_matrices = [] for n, seq in enumerate(seqs): prefix = str(n) pickled_msa_path = os.path.join(msa_output_dir, f"{prefix}.pickle") msas_dict = pickle.load(open(pickled_msa_path, "rb")) msas_, mtxs_, names_ = ( msas_dict[k] for k in ['msas', 'deletion_matrices', 'names']) # pad sequences for msa_, mtx_ in zip(msas_, mtxs_): msa, mtx = [sequence], [[0] * len(sequence)] for s, m in zip(msa_, mtx_): msa.append(_pad(n, s, "seq")) mtx.append(_pad(n, m, "mtx")) msas.append(msa) deletion_matrices.append(mtx) pickle.dump({ "msas": msas, "deletion_matrices": deletion_matrices }, open(combined_msa_pickle, "wb")) else: with open(combined_msa_pickle, 'rb') as F: combined_msa = pickle.load(F) msas = combined_msa['msas'] deletion_matrices = combined_msa['deletion_matrices'] full_msa = [] for msa in msas: full_msa += msa deduped_full_msa = list(dict.fromkeys(full_msa)) total_msa_size = len(deduped_full_msa) logging.info(f'{total_msa_size} Sequences Found in Total\n') lengths = [len(seq) for seq in seqs] msas_mod, deletion_matrices_mod = homooligomerize_heterooligomer( msas, deletion_matrices, lengths, homooligomers) num_res = len(full_sequence) feature_dict = {} feature_dict.update( make_sequence_features(full_sequence, 'test', num_res)) feature_dict.update( make_msa_features(msas_mod, deletion_matrices=deletion_matrices_mod, Ln=num_res)) if not turbo: feature_dict.update(_placeholder_template_feats(0, num_res)) logging.info(f'Sequences: {str(seqs)}') logging.info(f'Homooligomers: {str(homooligomers)}') Ls = [] for seq, h in zip(seqs, homooligomers): Ls += [len(seq)] * h logging.info( f'Original residue index: {str(feature_dict["residue_index"])}') logging.info(f'Sequence Lengths: {str(Ls)}') feature_dict['residue_index'] = chain_break( feature_dict['residue_index'], Ls) logging.info( f'Fixed residue index: {str(feature_dict["residue_index"])}') logging.info('Final (deduplicated) MSA size: %d sequences.', feature_dict['num_alignments'][0]) return feature_dict
the-stack_106_23748
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Exempi(AutotoolsPackage): """exempi is a port of Adobe XMP SDK to work on UNIX and to be build with GNU automake. It includes XMPCore and XMPFiles, libexempi, a C-based API and exempi a command line tool. """ homepage = "https://libopenraw.freedesktop.org/wiki/Exempi" url = "https://libopenraw.freedesktop.org/download/exempi-2.5.2.tar.bz2" version('2.5.2', sha256='52f54314aefd45945d47a6ecf4bd21f362e6467fa5d0538b0d45a06bc6eaaed5') depends_on('zlib') depends_on('iconv') depends_on('[email protected]:') depends_on('pkgconfig') depends_on('expat') conflicts('%gcc@:4.5') def patch(self): # fix make check: Fix undefined reference to `boost::unit_test::unit_test_main`: # BOOST_TEST_DYN_LINK only works with shlib and when boost is linked after src: # https://bugs.launchpad.net/widelands/+bug/662908 # https://github.com/bincrafters/community/issues/127 filter_file('#define BOOST_TEST_DYN_LINK', '', 'exempi/tests/test-adobesdk.cpp') def configure_args(self): args = ['--with-boost={0}'.format(self.spec['boost'].prefix)] if self.spec.satisfies('platform=darwin'): args += ['--with-darwinports', '--with-fink'] return args
the-stack_106_23752
""" File: weather_master.py Name: Karen Wong ----------------------- This program should implement a console program that asks weather data from user to compute the average, highest, lowest, cold days among the inputs. Output format should match what is shown in the sample run in the Assignment 2 Handout. """ EXIT = -100 def main(): """ This program is used to calculate the highest, lowest, average temperature and the total cold day (temperature < 16 ) of the given sequences. """ print('stanCode "Weather Master 4.0"!') temp = int(input('Next Temperature(or ' + str(EXIT) + ' to quit)? ')) if temp == EXIT: print('No temperature were entered.') else: highest = temp lowest = temp average = temp if temp < 16: cold = 1 else: cold = 0 total_num = 1 while True: temp1 = int(input('Next Temperature(or ' + str(EXIT)+' to quit)? ')) if temp1 == EXIT: break else: total_num += 1 if temp1 > highest: highest = temp1 if temp1 < lowest: lowest = temp1 if temp1 <= 16: cold += 1 average = (temp1+average*(total_num-1))/total_num temp = temp1 print('Highest temperature = ' + str(highest)) print('Lowest temperature = ' + str(lowest)) print('Average temperature = ' + str(average)) print(str(cold)+' cold days!') if __name__ == "__main__": main()
the-stack_106_23753
import sys import os import numpy as np import pytest import keepa import datetime py2 = sys.version_info.major == 2 py37 = sys.version_info.major == 3 and sys.version_info.minor == 7 # reduce the request limit for testing keepa.interface.REQLIM = 2 try: path = os.path.dirname(os.path.realpath(__file__)) keyfile = os.path.join(path, 'key') weak_keyfile = os.path.join(path, 'weak_key') except: keyfile = '/home/alex/python/keepa/tests/key' weak_keyfile = '/home/alex/python/keepa/tests/weak_key' if os.path.isfile(keyfile): with open(keyfile) as f: TESTINGKEY = f.read() with open(weak_keyfile) as f: WEAKTESTINGKEY = f.read() else: # from travis-ci or appveyor TESTINGKEY = os.environ.get('KEEPAKEY') WEAKTESTINGKEY = os.environ.get('WEAKKEEPAKEY') # harry potter book ISBN PRODUCT_ASIN = '0439064872' # ASINs of a bunch of chairs # categories = API.search_for_categories('chairs') # asins = [] # for category in categories: # asins.extend(API.best_sellers_query(category)) # PRODUCT_ASINS = asins[:40] PRODUCT_ASINS = ['B00IAPNWG6', 'B01CUJMSB2', 'B01CUJMRLI', 'B00BMPT7CE', 'B00IAPNWE8', 'B0127O51FK', 'B01CUJMT3E', 'B01A5ZIXKI', 'B00KQPBF1W', 'B000J3UZ58', 'B00196LLDO', 'B002VWK2EE', 'B00E2I3BPM', 'B004FRSUO2', 'B00CM1TJ1G', 'B00VS4514C', 'B075G1B1PK', 'B00R9EAH8U', 'B004L2JKTU', 'B008SIDW2E', 'B078XL8CCW', 'B000VXII46', 'B07D1CJ8CK', 'B07B5HZ7D9', 'B002VWK2EO', 'B000VXII5A', 'B004N1AA5W', 'B002VWKP3W', 'B00CM9OM0G', 'B002VWKP4G', 'B004N18JDC', 'B07MDHF4CP', 'B002VWKP3C', 'B07FTVSNL2', 'B002VWKP5A', 'B002O0LBFW', 'B07BM1Q64Q', 'B004N18JM8', 'B004N1AA02', 'B002VWK2EY'] # open connection to keepa @pytest.fixture(scope='module') def api(): keepa_api = keepa.Keepa(TESTINGKEY) assert keepa_api.tokens_left assert keepa_api.time_to_refill >= 0 return keepa_api def test_deals(api): deal_parms = { "page": 0, "domainId": 1, "excludeCategories": [1064954, 11091801], "includeCategories": [16310101]} deals = api.deals(deal_parms) assert isinstance(deals, list) assert isinstance(deals[0], str) def test_invalidkey(): with pytest.raises(Exception): keepa.Api('thisisnotavalidkey') def test_deadkey(): with pytest.raises(Exception): # this key returns "payment required" deadkey = '8ueigrvvnsp5too0atlb5f11veinerkud47p686ekr7vgr9qtj1t1tle15fffkkm' keepa.Api(deadkey) def test_product_finder_categories(api): product_parms = {'categories_include': ['1055398']} products = api.product_finder(product_parms) assert products def test_product_finder_query(api): product_parms = {'author': 'jim butcher', 'page': 1, 'perPage': 50, 'categories_exclude': ['1055398']} asins = api.product_finder(product_parms) assert asins # @pytest.mark.skipif(not py37, reason="Too much throttling for travisCI") # def test_throttling(api): # api = keepa.Keepa(WEAKTESTINGKEY) # keepa.interface.REQLIM = 20 # # exaust tokens # while api.tokens_left > 0: # api.query(PRODUCT_ASINS[:5]) # # this must trigger a wait... # t_start = time.time() # products = api.query(PRODUCT_ASINS) # assert (time.time() - t_start) > 1 # keepa.interface.REQLIM = 2 def test_productquery_nohistory(api): pre_update_tokens = api.tokens_left request = api.query(PRODUCT_ASIN, history=False) assert api.tokens_left != pre_update_tokens product = request[0] assert product['csv'] is None assert product['asin'] == PRODUCT_ASIN def test_not_an_asin(api): with pytest.raises(Exception): asins = ['0000000000', '000000000x'] request = api.query(asins) def test_isbn13(api): isbn13 = '9780786222728' request = api.query(isbn13, product_code_is_asin=False, history=False) def test_productquery_update(api): request = api.query(PRODUCT_ASIN, update=0, stats=90, rating=True) product = request[0] # should be live data now = datetime.datetime.now() delta = now - product['data']['USED_time'][-1] assert delta.days <= 30 # check for empty arrays history = product['data'] for key in history: assert history[key].any() # should be a key pair if 'time' not in key: assert history[key].size == history[key + '_time'].size # check for stats assert 'stats' in product # no offers requested by default assert product['offers'] is None def test_productquery_offers(api): request = api.query(PRODUCT_ASIN, offers=20) product = request[0] offers = product['offers'] for offer in offers: assert offer['lastSeen'] assert not len(offer['offerCSV']) % 3 # also test offer conversion offer = offers[1] times, prices = keepa.convert_offer_history(offer['offerCSV']) assert times.dtype == datetime.datetime assert prices.dtype == np.double assert len(times) assert len(prices) def test_productquery_offers_invalid(api): with pytest.raises(ValueError): request = api.query(PRODUCT_ASIN, offers=2000) def test_productquery_offers_multiple(api): products = api.query(PRODUCT_ASINS) asins = np.unique([product['asin'] for product in products]) assert len(asins) == len(PRODUCT_ASINS) assert np.in1d(asins, PRODUCT_ASINS).all() def test_domain(api): request = api.query(PRODUCT_ASIN, history=False, domain='DE') product = request[0] assert product['asin'] == PRODUCT_ASIN def test_invalid_domain(api): with pytest.raises(ValueError): request = api.query(PRODUCT_ASIN, history=False, domain='XX') def test_bestsellers(api): categories = api.search_for_categories('chairs') category = list(categories.items())[0][0] asins = api.best_sellers_query(category) valid_asins = keepa.format_items(asins) assert len(asins) == valid_asins.size def test_categories(api): categories = api.search_for_categories('chairs') catids = list(categories.keys()) for catid in catids: assert 'chairs' in categories[catid]['name'].lower() def test_categorylookup(api): categories = api.category_lookup(0) for cat_id in categories: assert categories[cat_id]['name'] def test_invalid_category(api): with pytest.raises(Exception): api.category_lookup(-1) def test_stock(api): request = api.query(PRODUCT_ASIN, history=False, stock=True, offers=20) # all live offers must have stock product = request[0] assert product['offersSuccessful'] live = product['liveOffersOrder'] for offer in product['offers']: if offer['offerId'] in live: if 'stockCSV' in offer: assert offer['stockCSV'][-1] def test_keepatime(api): keepa_st_ordinal = datetime.datetime(2011, 1, 1) assert keepa_st_ordinal == keepa.keepa_minutes_to_time(0) assert keepa.keepa_minutes_to_time(0, to_datetime=False) @pytest.mark.skipif(py2, reason="Requires python 3.5+ for testing") def test_plotting(api): request = api.query(PRODUCT_ASIN, history=True) product = request[0] keepa.plot_product(product, show=False) @pytest.mark.skipif(py2, reason="Requires python 3.5+ for testing") def test_empty(api): import matplotlib.pyplot as plt plt.close('all') products = api.query(['B01I6KT07E', 'B01G5BJHVK', 'B017LJP1MO']) with pytest.raises(Exception): keepa.plot_product(products[0], show=False) def test_seller_query(api): seller_id = 'A2L77EE7U53NWQ' seller_info = api.seller_query(seller_id) assert len(seller_info) == 1 assert seller_id in seller_info def test_seller_query_list(api): seller_id = ['A2L77EE7U53NWQ', 'AMMEOJ0MXANX1'] seller_info = api.seller_query(seller_id) assert len(seller_info) == len(seller_id) assert set(seller_info).issubset(seller_id) def test_seller_query_long_list(api): seller_id = ['A2L77EE7U53NWQ']*200 with pytest.raises(RuntimeError): seller_info = api.seller_query(seller_id) def test_product_finder_query(api): product_parms = {'author': 'jim butcher'} asins = api.product_finder(product_parms) assert asins