filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_23755
from decimal import Decimal from unittest.mock import Mock, patch import pytest from ...checkout.calculations import checkout_total from .. import ChargeStatus, GatewayError, PaymentError, TransactionKind, gateway from ..error_codes import PaymentErrorCode from ..interface import GatewayResponse, PaymentMethodInfo from ..models import Payment from ..utils import ( ALLOWED_GATEWAY_KINDS, clean_authorize, clean_capture, create_payment, create_payment_information, create_transaction, is_currency_supported, validate_gateway_response, ) NOT_ACTIVE_PAYMENT_ERROR = "This payment is no longer active." EXAMPLE_ERROR = "Example dummy error" @pytest.fixture def payment_method_details(): return PaymentMethodInfo( last_4="1234", exp_year=2020, exp_month=8, brand="visa", name="Joe Doe" ) @pytest.fixture def gateway_response(settings, payment_method_details): return GatewayResponse( is_success=True, action_required=False, transaction_id="transaction-token", amount=Decimal(14.50), currency="USD", kind=TransactionKind.CAPTURE, error=None, raw_response={ "credit_card_four": "1234", "transaction-id": "transaction-token", }, payment_method_info=payment_method_details, ) @pytest.fixture def transaction_data(payment_dummy, gateway_response): return { "payment": payment_dummy, "payment_information": create_payment_information( payment_dummy, "payment-token" ), "kind": TransactionKind.CAPTURE, "gateway_response": gateway_response, } @pytest.fixture def transaction_token(): return "transaction-token" @pytest.fixture def dummy_response(payment_dummy, transaction_token, payment_method_details): return GatewayResponse( is_success=True, action_required=False, transaction_id=transaction_token, error=EXAMPLE_ERROR, amount=payment_dummy.total, currency=payment_dummy.currency, kind=TransactionKind.AUTH, raw_response=None, payment_method_info=payment_method_details, ) def test_create_payment(checkout_with_item, address): checkout_with_item.billing_address = address checkout_with_item.save() data = { "gateway": "Dummy", "payment_token": "token", "total": checkout_total( checkout=checkout_with_item, lines=list(checkout_with_item) ).gross.amount, "currency": checkout_with_item.currency, "email": "[email protected]", "customer_ip_address": "127.0.0.1", "checkout": checkout_with_item, } payment = create_payment(**data) assert payment.gateway == "Dummy" same_payment = create_payment(**data) assert payment == same_payment def test_create_payment_requires_order_or_checkout(settings): data = { "gateway": "Dummy", "payment_token": "token", "total": 10, "currency": "USD", "email": "[email protected]", } with pytest.raises(TypeError) as e: create_payment(**data) assert e.value.args[0] == "Must provide checkout or order to create a payment." def test_create_payment_from_checkout_requires_billing_address(checkout_with_item): checkout_with_item.billing_address = None checkout_with_item.save() data = { "gateway": "Dummy", "payment_token": "token", "total": checkout_total( checkout=checkout_with_item, lines=list(checkout_with_item) ), "currency": checkout_with_item.currency, "email": "[email protected]", "checkout": checkout_with_item, } with pytest.raises(PaymentError) as e: create_payment(**data) assert e.value.code == PaymentErrorCode.BILLING_ADDRESS_NOT_SET.value def test_create_payment_from_order_requires_billing_address(draft_order): draft_order.billing_address = None draft_order.save() data = { "gateway": "Dummy", "payment_token": "token", "total": draft_order.total.gross.amount, "currency": draft_order.currency, "email": "[email protected]", "order": draft_order, } with pytest.raises(PaymentError) as e: create_payment(**data) assert e.value.code == PaymentErrorCode.BILLING_ADDRESS_NOT_SET.value def test_create_payment_information_for_checkout_payment(address, checkout_with_item): checkout_with_item.billing_address = address checkout_with_item.shipping_address = address checkout_with_item.save() data = { "gateway": "Dummy", "payment_token": "token", "total": checkout_total( checkout=checkout_with_item, lines=list(checkout_with_item) ).gross.amount, "currency": checkout_with_item.currency, "email": "[email protected]", "customer_ip_address": "127.0.0.1", "checkout": checkout_with_item, } payment = create_payment(**data) payment_data = create_payment_information(payment, "token", payment.total) billing = payment_data.billing shipping = payment_data.shipping assert billing assert billing.first_name == address.first_name assert billing.last_name == address.last_name assert billing.street_address_1 == address.street_address_1 assert billing.city == address.city assert shipping == billing def test_create_payment_information_for_draft_order(draft_order): data = { "gateway": "Dummy", "payment_token": "token", "total": draft_order.total.gross.amount, "currency": draft_order.currency, "email": "[email protected]", "customer_ip_address": "127.0.0.1", "order": draft_order, } payment = create_payment(**data) payment_data = create_payment_information(payment, "token", payment.total) billing = payment_data.billing shipping = payment_data.shipping assert billing assert billing.first_name == draft_order.billing_address.first_name assert billing.last_name == draft_order.billing_address.last_name assert billing.street_address_1 == draft_order.billing_address.street_address_1 assert billing.city == draft_order.billing_address.city assert shipping == billing def test_create_transaction(transaction_data): txn = create_transaction(**transaction_data) assert txn.payment == transaction_data["payment"] gateway_response = transaction_data["gateway_response"] assert txn.kind == gateway_response.kind assert txn.amount == gateway_response.amount assert txn.currency == gateway_response.currency assert txn.token == gateway_response.transaction_id assert txn.is_success == gateway_response.is_success assert txn.gateway_response == gateway_response.raw_response def test_create_transaction_no_gateway_response(transaction_data): transaction_data.pop("gateway_response") txn = create_transaction(**transaction_data) assert txn.gateway_response == {} @pytest.mark.parametrize( "func", [gateway.authorize, gateway.capture, gateway.confirm, gateway.refund, gateway.void], ) def test_payment_needs_to_be_active_for_any_action(func, payment_dummy): payment_dummy.is_active = False with pytest.raises(PaymentError) as exc: func(payment_dummy, "token") assert exc.value.message == NOT_ACTIVE_PAYMENT_ERROR @patch("saleor.order.actions.handle_fully_paid_order") def test_gateway_charge_failed( mock_handle_fully_paid_order, mock_get_manager, payment_txn_preauth, dummy_response ): txn = payment_txn_preauth.transactions.first() txn.is_success = False payment = payment_txn_preauth amount = payment.total dummy_response.is_success = False dummy_response.kind = TransactionKind.CAPTURE mock_get_manager.capture_payment.return_value = dummy_response with pytest.raises(PaymentError): gateway.capture(payment, amount) mock_get_manager.capture_payment.assert_called_once() payment.refresh_from_db() assert payment.charge_status == ChargeStatus.NOT_CHARGED assert not payment.captured_amount assert not mock_handle_fully_paid_order.called def test_gateway_charge_errors(payment_dummy, transaction_token, settings): payment = payment_dummy gateway.authorize(payment, transaction_token) with pytest.raises(PaymentError) as exc: gateway.capture(payment, Decimal("0")) assert exc.value.message == "Amount should be a positive number." payment.charge_status = ChargeStatus.FULLY_REFUNDED payment.save() with pytest.raises(PaymentError) as exc: gateway.capture(payment, Decimal("10")) assert exc.value.message == "This payment cannot be captured." payment.charge_status = ChargeStatus.NOT_CHARGED payment.save() with pytest.raises(PaymentError) as exc: gateway.capture(payment, Decimal("1000000")) assert exc.value.message == ("Unable to charge more than un-captured amount.") def test_gateway_refund_errors(payment_txn_captured): payment = payment_txn_captured with pytest.raises(PaymentError) as exc: gateway.refund(payment, Decimal("1000000")) assert exc.value.message == "Cannot refund more than captured." with pytest.raises(PaymentError) as exc: gateway.refund(payment, Decimal("0")) assert exc.value.message == "Amount should be a positive number." payment.charge_status = ChargeStatus.NOT_CHARGED payment.save() with pytest.raises(PaymentError) as exc: gateway.refund(payment, Decimal("1")) assert exc.value.message == "This payment cannot be refunded." def test_clean_authorize(): payment = Mock(can_authorize=Mock(return_value=True)) clean_authorize(payment) payment = Mock(can_authorize=Mock(return_value=False)) with pytest.raises(PaymentError): clean_authorize(payment) def test_clean_capture(): # Amount should be a positive number payment = Mock() amount = Decimal("0.00") with pytest.raises(PaymentError): clean_capture(payment, amount) # Payment cannot be captured payment = Mock(can_capture=Mock(return_value=False)) amount = Decimal("1.00") with pytest.raises(PaymentError): clean_capture(payment, amount) # Amount is larger than payment's total payment = Mock( can_capture=Mock(return_value=True), total=Decimal("1.00"), captured_amount=Decimal("0.00"), ) amount = Decimal("2.00") with pytest.raises(PaymentError): clean_capture(payment, amount) amount = Decimal("2.00") payment = Mock( can_capture=Mock(return_value=True), total=amount, captured_amount=Decimal("0.00"), ) clean_capture(payment, amount) def test_can_authorize(payment_dummy: Payment): assert payment_dummy.charge_status == ChargeStatus.NOT_CHARGED payment_dummy.is_active = False assert not payment_dummy.can_authorize() payment_dummy.is_active = True assert payment_dummy.can_authorize() payment_dummy.charge_status = ChargeStatus.PARTIALLY_CHARGED assert not payment_dummy.can_authorize() payment_dummy.charge_status = ChargeStatus.FULLY_CHARGED assert not payment_dummy.can_authorize() def test_can_capture(payment_txn_preauth: Payment): assert payment_txn_preauth.charge_status == ChargeStatus.NOT_CHARGED payment_txn_preauth.is_active = False assert not payment_txn_preauth.can_capture() payment_txn_preauth.is_active = True assert payment_txn_preauth.can_capture() payment_txn_preauth.charge_status = ChargeStatus.PARTIALLY_CHARGED assert not payment_txn_preauth.can_capture() payment_txn_preauth.charge_status = ChargeStatus.FULLY_CHARGED assert not payment_txn_preauth.can_capture() payment_txn_preauth.captured_amount = 0 payment_txn_preauth.transactions.all().delete() assert not payment_txn_preauth.can_capture() def test_can_void(payment_txn_preauth: Payment): assert payment_txn_preauth.charge_status == ChargeStatus.NOT_CHARGED payment_txn_preauth.is_active = False assert not payment_txn_preauth.can_void() payment_txn_preauth.is_active = True assert payment_txn_preauth.can_void() payment_txn_preauth.charge_status = ChargeStatus.PARTIALLY_CHARGED assert not payment_txn_preauth.can_void() payment_txn_preauth.charge_status = ChargeStatus.FULLY_CHARGED assert not payment_txn_preauth.can_void() payment_txn_preauth.charge_status = ChargeStatus.NOT_CHARGED payment_txn_preauth.transactions.all().delete() assert not payment_txn_preauth.can_void() def test_can_refund(payment_dummy: Payment): assert payment_dummy.charge_status == ChargeStatus.NOT_CHARGED payment_dummy.is_active = False assert not payment_dummy.can_refund() payment_dummy.is_active = True assert not payment_dummy.can_refund() payment_dummy.charge_status = ChargeStatus.PARTIALLY_CHARGED assert payment_dummy.can_refund() payment_dummy.charge_status = ChargeStatus.FULLY_CHARGED assert payment_dummy.can_refund() def test_payment_get_authorized_amount(payment_txn_preauth): payment = payment_txn_preauth authorized_amount = payment.transactions.first().amount assert payment.get_authorized_amount().amount == authorized_amount assert payment.order.total_authorized.amount == authorized_amount payment.transactions.create( amount=payment.total, kind=TransactionKind.CAPTURE, gateway_response={}, is_success=True, ) assert payment.get_authorized_amount().amount == Decimal(0) payment.transactions.all().delete() assert payment.get_authorized_amount().amount == Decimal(0) def test_validate_gateway_response(gateway_response): validate_gateway_response(gateway_response) def test_validate_gateway_response_incorrect_transaction_kind(gateway_response): gateway_response.kind = "incorrect-kind" with pytest.raises(GatewayError) as e: validate_gateway_response(gateway_response) assert str(e.value) == ( "Gateway response kind must be one of {}".format(sorted(ALLOWED_GATEWAY_KINDS)) ) def test_validate_gateway_response_not_json_serializable(gateway_response): class CustomClass(object): pass gateway_response.raw_response = CustomClass() with pytest.raises(GatewayError) as e: validate_gateway_response(gateway_response) assert str(e.value) == "Gateway response needs to be json serializable" @pytest.mark.parametrize( "currency, exp_response", [("EUR", True), ("USD", True), ("PLN", False)], ) def test_is_currency_supported( currency, exp_response, dummy_gateway_config, monkeypatch ): # given dummy_gateway_config.supported_currencies = "USD, EUR" monkeypatch.setattr( "saleor.payment.gateways.dummy.plugin.DummyGatewayPlugin._get_gateway_config", lambda _: dummy_gateway_config, ) # when response = is_currency_supported(currency, "mirumee.payments.dummy") # then assert response == exp_response
the-stack_106_23756
from gensim.models import KeyedVectors import numpy as np import sys import tqdm import copy import argparse if __name__ == '__main__': ''' ''' parser = argparse.ArgumentParser(description='Embedding similarity order generation') parser.add_argument("--w2v_emb_path", type=str, default="") parser.add_argument("--d2gpo_order_txt", type=str, default="") parser.add_argument("--d2gpo_order_idx", type=str, default="") args = parser.parse_args() model = KeyedVectors.load_word2vec_format(args.w2v_emb_path) if args.d2gpo_order_txt != "": fout1 = open(args.d2gpo_order_txt, 'w', encoding='utf-8') with open(args.d2gpo_order_idx, 'w', encoding='utf-8') as fout2: for idx in tqdm.tqdm(range(len(model.vocab))): word = model.index2word[idx] most_similar = model.most_similar(word, topn=None) most_similar_index = np.argsort(-most_similar) most_similar_words = [model.index2word[widx] for widx in list(most_similar_index)] most_similar_index = list(most_similar_index) if args.d2gpo_order_txt != "": fout1.write(' '.join(most_similar_words)+'\n') fout2.write(' '.join([str(item) for item in most_similar_index])+'\n') if args.d2gpo_order_txt != "": fout1.close()
the-stack_106_23759
from pathlib import Path import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data import torchvision import torchvision.models as models from tqdm.notebook import tqdm import math def find_lr( model, train_loader, optimizer="adam", loss_fn="crossentropy", device_type="CPU", init_value=1e-8, final_value=1e1, ): # https://stackoverflow.com/questions/14313510/how-to-calculate-rolling-moving-average-using-numpy-scipy def moving_average(x, w): return np.convolve(x, np.ones(w), "valid") / w batch_number = len(train_loader) - 1 update_step = (final_value / init_value) ** (1 / batch_number) lr = init_value # ---------------------- if (device_type == "GPU") & (torch.cuda.is_available()): device = torch.device("cuda") print(f"Training on GPU...\n") elif device_type == "CPU": device = torch.device("cpu") print(f"Training on CPU...\n") elif (device_type == "GPU") & (not torch.cuda.is_available()): raise Exception("""GPU not found""") else: raise Exception("""Please choose between 'CPU' and 'GPU' for device type""") model = model.to(device) loss_fns = { "crossentropy": torch.nn.CrossEntropyLoss, "multimargin": torch.nn.MultiMarginLoss, "softmargin": torch.nn.SoftMarginLoss, "nnl": torch.nn.NLLLoss, } optimizers = { "adamw": optim.AdamW, "adam": optim.Adam, "adagrad": optim.Adagrad, "adadelta": optim.Adadelta, "adamax": optim.Adamax, "asgd": optim.ASGD, "rmsprop": optim.RMSprop, "sgd": optim.SGD, "rprop": optim.Rprop, } # Instantiate loss function and optimizer # TODO: error catching for not implemented loss_fn, optimizer = ( loss_fns[loss_fn](), optimizers[optimizer](model.parameters()), ) # ---------------------- optimizer.param_groups[0]["lr"] = lr best_loss = 0.0 batch_num = 0 losses = [] log_lrs = [] for data in tqdm(train_loader, desc="Training Batch"): batch_num += 1 inputs, labels = data inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = loss_fn(outputs, labels) if batch_num > 1 and loss > 4e1 * best_loss: losses.append(loss) log_lrs.append(lr) if len(log_lrs) > 20: return log_lrs[10:], losses[10:] else: return log_lrs, losses # record the best loss if loss < best_loss or batch_num == 1: best_loss = loss losses.append(loss) # log_lrs.append(math.log10(lr)) log_lrs.append(lr) loss.backward() optimizer.step() lr *= update_step optimizer.param_groups[0]["lr"] = lr losses = moving_average(losses, 5) if len(log_lrs) > 20: return log_lrs[10:], losses[10:] else: return log_lrs, losses def train( model: nn.Module, train_loader, val_loader, optimizer="adam", loss_fn="crossentropy", epochs: int = 20, learning_rate=3e-4, device_type: str = "cpu", ) -> pd.DataFrame: """ Train pytorch model :param model: Pytorch model :returns: Metrics dataframe """ if (device_type == "GPU") & (torch.cuda.is_available()): device = torch.device("cuda") torch.cuda.empty_cache() # clear data print(f"Training on GPU...\n") elif device_type == "CPU": device = torch.device("cpu") print(f"Training on CPU...\n") elif (device_type == "GPU") & (not torch.cuda.is_available()): raise Exception("""GPU not found""") else: raise Exception("""Please choose between 'CPU' and 'GPU' for device type""") model = model.to(device) loss_fns = { "crossentropy": torch.nn.CrossEntropyLoss, "multimargin": torch.nn.MultiMarginLoss, "softmargin": torch.nn.SoftMarginLoss, "nnl": torch.nn.NLLLoss, } optimizers = { "adamw": optim.AdamW, "adam": optim.Adam, "adagrad": optim.Adagrad, "adadelta": optim.Adadelta, "adamax": optim.Adamax, "asgd": optim.ASGD, "rmsprop": optim.RMSprop, "sgd": optim.SGD, "rprop": optim.Rprop, } # Instantiate loss function and optimizer # TODO: error catching for not implemented loss_fn, optimizer = ( loss_fns[loss_fn](), optimizers[optimizer](model.parameters(), lr=learning_rate), ) metrics_dict = { "Epoch": [], "Training Loss": [], "Validation Loss": [], "Training Accuracy": [], "Validation Accuracy": [], } for epoch in tqdm(range(1, epochs + 1), desc="Epoch"): #### TRAINING LOOP #### training_loss = 0.0 model.train() num_correct = 0 num_training_examples = 0 for batch in tqdm( train_loader, desc="Training Batch", leave=bool(epoch == epochs) ): # optimizer.zero_grad() # zeroize gradients inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) output = model(inputs) # forward pass loss = loss_fn(output, targets) # calculate loss loss.backward() # calculate gradients optimizer.step() # adjust/step weights + biases training_loss += loss.data.item() * inputs.size()[0] correct = torch.eq( torch.max(output.softmax(dim=1), dim=-1)[1], targets.squeeze() ).sum() num_correct += correct.data.item() num_training_examples += inputs.shape[0] training_accuracy = num_correct / num_training_examples training_loss /= len( train_loader.dataset ) # weighted average training loss for epoch #### TRAINING LOOP #### #### VALIDATION/EVALUATION LOOP #### valid_loss = 0.0 num_correct = 0 num_validation_examples = 0 model.eval() for batch in tqdm( val_loader, desc="Validation Batch", leave=bool(epoch == epochs) ): inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) output = model(inputs) loss = loss_fn(output, targets) # calculate loss valid_loss += loss.data.item() * inputs.size()[0] correct = torch.eq( torch.max(output.softmax(dim=1), dim=-1)[1], targets.squeeze() ).sum() num_correct += correct.data.item() num_validation_examples += inputs.shape[0] valid_loss /= len(val_loader.dataset) validation_accuracy = num_correct / num_validation_examples #### VALIDATION/EVALUATION LOOP #### #### PRINT PERFORMANCE METRICS ##### metrics_dict["Epoch"].append(epoch) metrics_dict["Training Loss"].append(training_loss) metrics_dict["Validation Loss"].append(valid_loss) metrics_dict["Training Accuracy"].append(training_accuracy) metrics_dict["Validation Accuracy"].append(validation_accuracy) #### PRINT PERFORMANCE METRICS ##### metrics_dict = pd.DataFrame(metrics_dict) return model, metrics_dict
the-stack_106_23760
#!/usr/bin/env python # -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Package the game for distribution - make sure to configure project.json # Usage : Build.py <absolute-output-dir> # # Gwennaël Arbona 2021 #------------------------------------------------------------------------------- import re import os import sys import json import shutil import subprocess #------------------------------------------------------------------------------- # Read config files for data #------------------------------------------------------------------------------- projectConfigFile = open('../Config/Build.json') projectConfig = json.load(projectConfigFile) # Get mandatory project settings projectName = str(projectConfig['name']) projectPlatforms = projectConfig['platforms'] projectBuildConfiguration = projectConfig['configuration'] projectKeepPdbs = projectConfig['pdb'] # Get optional build settings outputDir = os.path.abspath(str(projectConfig.get('outputDir'))) engineDir = str(projectConfig.get('engineDir')) sourceEngine = projectConfig.get('sourceEngine') projectConfigFile.close() # Get version tag gitCommand = ['git', 'describe', '--tags'] try: buildVersion = subprocess.check_output(gitCommand).decode('utf-8') buildVersion = buildVersion.replace('\n', ''); except: sys.exit('Git describe failed') #------------------------------------------------------------------------------- # Process arguments for sanity #------------------------------------------------------------------------------- # Get output directory if outputDir == 'None': if len(sys.argv) == 2: outputDir = sys.argv[1] else: sys.exit('Output directory was neither set in project.json nor passed as command line') # Get engine directory if engineDir != 'None': if not os.path.exists(engineDir): sys.exit('Engine directory provided in project.json does not exist') if 'UE_ROOT' in os.environ: engineDir = os.environ['UE_ROOT'] if not os.path.exists(engineDir): sys.exit('Engine directory provided in %UE_ROOT% does not exist') else: sys.exit('Engine directory was set neither in project.json nor UE_ROOT environment variable') # Installed vs built engine if sourceEngine: installedOption = '' cleanOption = '' else: installedOption = '-installed' cleanOption = '' # Generate paths projectFile = os.path.join(os.getcwd(), '..', projectName + '.uproject') engineBuildTool = os.path.join(engineDir, 'Engine', 'Build', 'BatchFiles', 'RunUAT.bat') # Clean up output path releaseOutputDir = os.path.join(os.getcwd(), '..', 'Releases', buildVersion) if os.path.exists(releaseOutputDir): shutil.rmtree(releaseOutputDir) #------------------------------------------------------------------------------- # Build project #------------------------------------------------------------------------------- # Execute build command for each platform for platform in projectPlatforms: cleanPlatformNames = { 'Win64' : 'Windows', 'Linux' : 'Linux' } # Clean up output path buildOutputDir = os.path.join(outputDir, cleanPlatformNames[platform]) if os.path.exists(buildOutputDir): shutil.rmtree(buildOutputDir) # Build project subprocess.check_call([ engineBuildTool, # SDK '-ScriptsForProject="' + projectFile + '"', 'Turnkey', '-command=VerifySdk', '-platform=' + platform, '-UpdateIfNeeded', # Executable 'BuildCookRun', '-unrealexe=UnrealEditor-Cmd.exe', # Project '-project="' + projectFile + '"', '-utf8output', '-nop4', # Build '-nocompile', '-clientconfig=' + projectBuildConfiguration, '-build', '-targetplatform=' + platform, cleanOption, installedOption, # Cook '-cook', '-skipcookingeditorcontent', '-createreleaseversion=' + buildVersion, # Package '-stage', '-package', '-pak', '-compressed', '-distribution', '-archive', '-archivedirectory="' + outputDir + '"' ]) # Remove individual files that are not wanted in release for root, directories, filenames in os.walk(buildOutputDir): for filename in filenames: absoluteFilename = str(os.path.join(root, filename)) baseChunkName = projectName + '-' + cleanPlatformNames[platform] + '-' # Wipe generated files that aren't needed if re.match('.*\.((pdb)|(debug))', filename): if 'ThirdParty' in root or not projectKeepPdbs: shutil.move(absoluteFilename, releaseOutputDir) elif re.match('Manifest.*\.txt', filename): os.remove(absoluteFilename) # Rename optional chunks chunkMatch = re.search('pakchunk([0-9]+)optional.*\.pak', filename) if chunkMatch: absoluteChunkFilename = str(os.path.join(root, baseChunkName + chunkMatch.group(1) + 'b.pak')) shutil.move(absoluteFilename, absoluteChunkFilename) # Rename normal chunks else: chunkMatch = re.search('pakchunk([0-9]+).*\.pak', filename) if chunkMatch: absoluteChunkFilename = str(os.path.join(root, baseChunkName + chunkMatch.group(1) + '.pak')) shutil.move(absoluteFilename, absoluteChunkFilename) # Remove unwanted config directories, engine debug content, unused libraries shutil.rmtree(os.path.join(buildOutputDir, projectName, 'Config'), ignore_errors=True) shutil.rmtree(os.path.join(buildOutputDir, 'Engine', 'Content'), ignore_errors=True) shutil.rmtree(os.path.join(buildOutputDir, 'Engine', 'Binaries', 'ThirdParty', 'NVIDIA'), ignore_errors=True) shutil.rmtree(os.path.join(buildOutputDir, 'Engine', 'Binaries', 'ThirdParty', 'PhysX3'), ignore_errors=True) # Copy Steam appId file buildExecutableDir = os.path.join(buildOutputDir, projectName, 'Binaries', platform) shutil.copyfile(os.path.join('..', 'steam_appid.txt'), os.path.join(buildExecutableDir, 'steam_appid.txt')) # Copy the crash reporter crashReportExecutableDir = os.path.join(buildOutputDir, 'Engine', 'Binaries', platform) crashReportExecutable = os.path.join('..', 'Mayday') os.mkdir(crashReportExecutableDir) if platform == 'Linux': if os.path.exists(crashReportExecutable): shutil.copyfile(crashReportExecutable, os.path.join(crashReportExecutableDir, 'CrashReportClient')) else: crashReportExecutable = crashReportExecutable + '.exe' if os.path.exists(crashReportExecutable): shutil.copyfile(crashReportExecutable, os.path.join(crashReportExecutableDir, 'CrashReportClient.exe'))
the-stack_106_23761
''' ArpSpoofer.py by Amitai Farber 1/2021 This script prforming an arp spoofing on the local newtwork. It doing so by constantly sending 'is at' responses to the attacked computer with our mac and the desired IP, so that the attacked computer thinks that we are the ip we sent him. ''' from time import sleep import argparse import netifaces from scapy.all import * from getmac import get_mac_address as gma import sys import defaults def main(args): iface = args.iface src = args.src delay = args.delay gw = args.gw target = args.target got_src = True if not iface: iface = defaults.iface if not src: got_src = False src = get_gw_ip(iface) if not delay: delay = defauts.delay if not gw: gw = defaults.gw gw_ip = get_gw_ip(iface) target_mac = get_mac_by_ip(target) gw_mac = get_mac_by_ip(gw_ip) my_mac = gma() while True: send_ARP_response(iface, src, target, gw, gw_ip, target_mac, my_mac, gw_mac, got_src) sleep(delay) def send_ARP_response(iface, src, target, gw, gw_ip, dst_mac, my_mac, gw_mac, got_src): send_is_at(iface, target, dst_mac, my_mac, src) if gw: if got_src: send_is_at(iface, gw_ip, gw_mac, my_mac, src) else: send_is_at(iface, gw_ip, gw_mac, my_mac, target) def get_gw_ip(iface): gateways = netifaces.gateways() return gateways['default'][netifaces.AF_INET][0] def send_is_at(iface, target, dst_mac, my_mac, ip): msg = f'sending \'is_at\' to {target} (mac: {dst_mac})' msg += f'that will convince him that the mac of {ip} is our mac ({my_mac})' print(msg) packet = Ether(dst=dst_mac, src=my_mac) / ARP(op=2, hwsrc=my_mac, psrc=ip, hwdst=dst_mac, pdst=target) sendp(packet, iface=iface) def get_mac_by_ip(dst_ip): my_ip = get_if_addr(conf.iface) response = sr(ARP(op=1, psrc=my_ip, pdst=dst_ip), timeout=5) return response[0][ARP][0][1].hwsrc if __name__ == "__main__": filename = sys.argv[0].split('\\')[-1].split('/')[-1] example_text = f'''Example: for making 10.0.0.12 think we are the gateway: python {filename} -t 10.0.0.12 for making 10.0.0.12 think we are the gateway, and the the gateway think we are 10.0.0.12: python {filename} -t 10.0.0.12 -gw ''' parser = argparse.ArgumentParser(description='Spoof ARP tables', epilog=example_text, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('-i', '--iface', type=str, help='Interface you wish to use') parser.add_argument('-s', '--src', type=str, help='The address you want for the attacker') parser.add_argument('-d', '--delay', type=int, help='Delay (in seconds) between messages') parser.add_argument('-gw', help='should GW be attacked as well?', action='store_true') parser.add_argument('-t', '--target', type=str, help='IP of target', required=True) args = parser.parse_args() main(args)
the-stack_106_23763
# encoding: utf-8 from __future__ import unicode_literals from django import forms from django.utils.translation import ugettext_lazy as _ from userena.forms import SignupForm class SignupFormExtra(SignupForm): """ A form to demonstrate how to add extra fields to the signup form, in this case adding the first and last name. """ first_name = forms.CharField(label=_('First name'), max_length=30, required=False) last_name = forms.CharField(label=_('Last name'), max_length=30, required=False) def __init__(self, *args, **kw): """ A bit of hackery to get the first name and last name at the top of the form instead at the end. """ super(SignupFormExtra, self).__init__(*args, **kw) # Put the first and last name at the top new_order = self.fields.keyOrder[:-2] new_order.insert(0, 'first_name') new_order.insert(1, 'last_name') self.fields.keyOrder = new_order def save(self): """ Override the save method to save the first and last name to the user field. """ # First save the parent form and get the user. new_user = super(SignupFormExtra, self).save() new_user.first_name = self.cleaned_data['first_name'] new_user.last_name = self.cleaned_data['last_name'] new_user.save() # Userena expects to get the new user from this form, so return the new # user. return new_user
the-stack_106_23767
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Stancecoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Utilities for manipulating blocks and transactions.""" from .address import ( key_to_p2sh_p2wpkh, key_to_p2wpkh, script_to_p2sh_p2wsh, script_to_p2wsh, ) from .messages import ( CBlock, COIN, COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, FromHex, ToHex, bytes_to_hex_str, hash256, hex_str_to_bytes, ser_string, ser_uint256, sha256, uint256_from_str, ) from .script import ( CScript, OP_0, OP_1, OP_CHECKMULTISIG, OP_CHECKSIG, OP_RETURN, OP_TRUE, hash160, ) from .util import assert_equal from io import BytesIO # From BIP141 WITNESS_COMMITMENT_HEADER = b"\xaa\x21\xa9\xed" def create_block(hashprev, coinbase, ntime=None): """Create a block (with regtest difficulty).""" block = CBlock() if ntime is None: import time block.nTime = int(time.time() + 600) else: block.nTime = ntime block.hashPrevBlock = hashprev block.nBits = 0x207fffff # difficulty retargeting is disabled in REGTEST chainparams block.vtx.append(coinbase) block.hashMerkleRoot = block.calc_merkle_root() block.calc_sha256() return block def get_witness_script(witness_root, witness_nonce): witness_commitment = uint256_from_str(hash256(ser_uint256(witness_root) + ser_uint256(witness_nonce))) output_data = WITNESS_COMMITMENT_HEADER + ser_uint256(witness_commitment) return CScript([OP_RETURN, output_data]) def add_witness_commitment(block, nonce=0): """Add a witness commitment to the block's coinbase transaction. According to BIP141, blocks with witness rules active must commit to the hash of all in-block transactions including witness.""" # First calculate the merkle root of the block's # transactions, with witnesses. witness_nonce = nonce witness_root = block.calc_witness_merkle_root() # witness_nonce should go to coinbase witness. block.vtx[0].wit.vtxinwit = [CTxInWitness()] block.vtx[0].wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(witness_nonce)] # witness commitment is the last OP_RETURN output in coinbase block.vtx[0].vout.append(CTxOut(0, get_witness_script(witness_root, witness_nonce))) block.vtx[0].rehash() block.hashMerkleRoot = block.calc_merkle_root() block.rehash() def serialize_script_num(value): r = bytearray(0) if value == 0: return r neg = value < 0 absvalue = -value if neg else value while (absvalue): r.append(int(absvalue & 0xff)) absvalue >>= 8 if r[-1] & 0x80: r.append(0x80 if neg else 0) elif neg: r[-1] |= 0x80 return r def create_coinbase(height, pubkey=None): """Create a coinbase transaction, assuming no miner fees. If pubkey is passed in, the coinbase output will be a P2PK output; otherwise an anyone-can-spend output.""" coinbase = CTransaction() coinbase.vin.append(CTxIn(COutPoint(0, 0xffffffff), ser_string(serialize_script_num(height)), 0xffffffff)) coinbaseoutput = CTxOut() coinbaseoutput.nValue = 50 * COIN halvings = int(height / 150) # regtest coinbaseoutput.nValue >>= halvings if (pubkey is not None): coinbaseoutput.scriptPubKey = CScript([pubkey, OP_CHECKSIG]) else: coinbaseoutput.scriptPubKey = CScript([OP_TRUE]) coinbase.vout = [coinbaseoutput] coinbase.calc_sha256() return coinbase def create_tx_with_script(prevtx, n, script_sig=b"", *, amount, script_pub_key=CScript()): """Return one-input, one-output transaction object spending the prevtx's n-th output with the given amount. Can optionally pass scriptPubKey and scriptSig, default is anyone-can-spend ouput. """ tx = CTransaction() assert(n < len(prevtx.vout)) tx.vin.append(CTxIn(COutPoint(prevtx.sha256, n), script_sig, 0xffffffff)) tx.vout.append(CTxOut(amount, script_pub_key)) tx.calc_sha256() return tx def create_transaction(node, txid, to_address, *, amount): """ Return signed transaction spending the first output of the input txid. Note that the node must be able to sign for the output that is being spent, and the node must not be running multiple wallets. """ raw_tx = create_raw_transaction(node, txid, to_address, amount=amount) tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx))) return tx def create_raw_transaction(node, txid, to_address, *, amount): """ Return raw signed transaction spending the first output of the input txid. Note that the node must be able to sign for the output that is being spent, and the node must not be running multiple wallets. """ rawtx = node.createrawtransaction(inputs=[{"txid": txid, "vout": 0}], outputs={to_address: amount}) signresult = node.signrawtransactionwithwallet(rawtx) assert_equal(signresult["complete"], True) return signresult['hex'] def get_legacy_sigopcount_block(block, accurate=True): count = 0 for tx in block.vtx: count += get_legacy_sigopcount_tx(tx, accurate) return count def get_legacy_sigopcount_tx(tx, accurate=True): count = 0 for i in tx.vout: count += i.scriptPubKey.GetSigOpCount(accurate) for j in tx.vin: # scriptSig might be of type bytes, so convert to CScript for the moment count += CScript(j.scriptSig).GetSigOpCount(accurate) return count def witness_script(use_p2wsh, pubkey): """Create a scriptPubKey for a pay-to-wtiness TxOut. This is either a P2WPKH output for the given pubkey, or a P2WSH output of a 1-of-1 multisig for the given pubkey. Returns the hex encoding of the scriptPubKey.""" if not use_p2wsh: # P2WPKH instead pubkeyhash = hash160(hex_str_to_bytes(pubkey)) pkscript = CScript([OP_0, pubkeyhash]) else: # 1-of-1 multisig witness_program = CScript([OP_1, hex_str_to_bytes(pubkey), OP_1, OP_CHECKMULTISIG]) scripthash = sha256(witness_program) pkscript = CScript([OP_0, scripthash]) return bytes_to_hex_str(pkscript) def create_witness_tx(node, use_p2wsh, utxo, pubkey, encode_p2sh, amount): """Return a transaction (in hex) that spends the given utxo to a segwit output. Optionally wrap the segwit output using P2SH.""" if use_p2wsh: program = CScript([OP_1, hex_str_to_bytes(pubkey), OP_1, OP_CHECKMULTISIG]) addr = script_to_p2sh_p2wsh(program) if encode_p2sh else script_to_p2wsh(program) else: addr = key_to_p2sh_p2wpkh(pubkey) if encode_p2sh else key_to_p2wpkh(pubkey) if not encode_p2sh: assert_equal(node.getaddressinfo(addr)['scriptPubKey'], witness_script(use_p2wsh, pubkey)) return node.createrawtransaction([utxo], {addr: amount}) def send_to_witness(use_p2wsh, node, utxo, pubkey, encode_p2sh, amount, sign=True, insert_redeem_script=""): """Create a transaction spending a given utxo to a segwit output. The output corresponds to the given pubkey: use_p2wsh determines whether to use P2WPKH or P2WSH; encode_p2sh determines whether to wrap in P2SH. sign=True will have the given node sign the transaction. insert_redeem_script will be added to the scriptSig, if given.""" tx_to_witness = create_witness_tx(node, use_p2wsh, utxo, pubkey, encode_p2sh, amount) if (sign): signed = node.signrawtransactionwithwallet(tx_to_witness) assert("errors" not in signed or len(["errors"]) == 0) return node.sendrawtransaction(signed["hex"]) else: if (insert_redeem_script): tx = FromHex(CTransaction(), tx_to_witness) tx.vin[0].scriptSig += CScript([hex_str_to_bytes(insert_redeem_script)]) tx_to_witness = ToHex(tx) return node.sendrawtransaction(tx_to_witness)
the-stack_106_23768
import multiprocessing as mp import os import time import traceback from datetime import datetime, timedelta from rlbot.botmanager.agent_metadata import AgentMetadata from rlbot.utils import rate_limiter from rlbot.utils.logging_utils import get_logger from rlbot.utils.structures.game_interface import GameInterface from rlbot.utils.structures.quick_chats import register_for_quick_chat, send_quick_chat_flat GAME_TICK_PACKET_REFRESHES_PER_SECOND = 120 # 2*60. https://en.wikipedia.org/wiki/Nyquist_rate MAX_CHAT_RATE = 2.0 MAX_CHAT_COUNT = 5 MAX_AGENT_CALL_PERIOD = timedelta(seconds=1.0 / 30) # Minimum call rate when paused. REFRESH_IN_PROGRESS = 1 REFRESH_NOT_IN_PROGRESS = 0 MAX_CARS = 10 class BotManager: def __init__(self, terminate_request_event, termination_complete_event, reload_request_event, bot_configuration, name, team, index, agent_class_wrapper, agent_metadata_queue, quick_chat_queue_holder): """ :param terminate_request_event: an Event (multiprocessing) which will be set from the outside when the program is trying to terminate :param termination_complete_event: an Event (multiprocessing) which should be set from inside this class when termination has completed successfully :param reload_request_event: an Event (multiprocessing) which will be set from the outside to force a reload of the agent :param reload_complete_event: an Event (multiprocessing) which should be set from inside this class when reloading has completed successfully :param bot_configuration: parameters which will be passed to the bot's constructor :param name: name which will be passed to the bot's constructor. Will probably be displayed in-game. :param team: 0 for blue team or 1 for orange team. Will be passed to the bot's constructor. :param index: The player index, i.e. "this is player number <index>". Will be passed to the bot's constructor. Can be used to pull the correct data corresponding to the bot's car out of the game tick packet. :param agent_class_wrapper: The ExternalClassWrapper object that can be used to load and reload the bot :param agent_metadata_queue: a Queue (multiprocessing) which expects to receive certain metadata about the agent once available. :param quick_chat_queue_holder: A data structure which helps the bot send and receive quickchat """ self.terminate_request_event = terminate_request_event self.termination_complete_event = termination_complete_event self.reload_request_event = reload_request_event self.bot_configuration = bot_configuration self.name = name self.team = team self.index = index self.agent_class_wrapper = agent_class_wrapper self.agent_metadata_queue = agent_metadata_queue self.logger = get_logger('bot' + str(self.index)) self.game_interface = GameInterface(self.logger) self.quick_chat_queue_holder = quick_chat_queue_holder self.last_chat_time = time.time() self.chat_counter = 0 self.reset_chat_time = True self.game_tick_packet = None self.bot_input = None def send_quick_chat_from_agent(self, team_only, quick_chat): """ Passes the agents quick chats to the other bots. This does perform limiting. You are limited to 5 quick chats in a 2 second period starting from the first chat. This means you can spread your chats out to be even within that 2 second period. You could spam them in the first little bit but then will be throttled. """ time_since_last_chat = time.time() - self.last_chat_time if not self.reset_chat_time and time_since_last_chat >= MAX_CHAT_RATE: self.reset_chat_time = True if self.reset_chat_time: self.last_chat_time = time.time() self.chat_counter = 0 self.reset_chat_time = False if self.chat_counter < MAX_CHAT_COUNT: send_quick_chat_flat(self.game_interface, self.index, self.team, team_only, quick_chat) #send_quick_chat(self.quick_chat_queue_holder, self.index, self.team, team_only, quick_chat) self.chat_counter += 1 else: self.logger.debug('quick chat disabled for %s', MAX_CHAT_RATE - time_since_last_chat) def load_agent(self): """ Loads and initializes an agent using instance variables, registers for quick chat and sets render functions. :return: An instance of an agent, and the agent class file. """ agent_class = self.agent_class_wrapper.get_loaded_class() agent = agent_class(self.name, self.team, self.index) agent.logger = self.logger agent.load_config(self.bot_configuration.get_header("Bot Parameters")) self.update_metadata_queue(agent) self.set_render_manager(agent) agent_class_file = self.agent_class_wrapper.python_file agent._register_quick_chat(self.send_quick_chat_from_agent) agent._register_field_info(self.get_field_info) agent._register_set_game_state(self.set_game_state) agent._register_ball_prediction(self.get_ball_prediction) register_for_quick_chat(self.quick_chat_queue_holder, agent.handle_quick_chat, self.terminate_request_event) # Once all engine setup is done, do the agent-specific initialization, if any: agent.initialize_agent() return agent, agent_class_file def set_render_manager(self, agent): """ Sets the render manager for the agent. :param agent: An instance of an agent. """ rendering_manager = self.game_interface.renderer.get_rendering_manager(self.index, self.team) agent._set_renderer(rendering_manager) def update_metadata_queue(self, agent): """ Adds a new instance of AgentMetadata into the `agent_metadata_queue` using `agent` data. :param agent: An instance of an agent. """ pids = {os.getpid(), *agent.get_extra_pids()} helper_process_request = agent.get_helper_process_request() self.agent_metadata_queue.put(AgentMetadata(self.index, self.name, self.team, pids, helper_process_request)) def reload_agent(self, agent, agent_class_file): """ Reloads the agent. Can throw exceptions. External classes should use reload_event.set() instead. :param agent: An instance of an agent. :param agent_class_file: The agent's class file. :return: The reloaded instance of the agent, and the agent class file. """ self.logger.info('Reloading Agent: ' + agent_class_file) self.agent_class_wrapper.reload() old_agent = agent agent, agent_class_file = self.load_agent() # Retire after the replacement initialized properly. if hasattr(old_agent, 'retire'): old_agent.retire() return agent, agent_class_file def run(self): """ Loads interface for RLBot, prepares environment and agent, and calls the update for the agent. """ self.logger.debug('initializing agent') self.game_interface.load_interface() self.prepare_for_run() # Create Ratelimiter rate_limit = rate_limiter.RateLimiter(GAME_TICK_PACKET_REFRESHES_PER_SECOND) last_tick_game_time = None # What the tick time of the last observed tick was last_call_real_time = datetime.now() # When we last called the Agent # Get bot module agent, agent_class_file = self.load_agent() last_module_modification_time = os.stat(agent_class_file).st_mtime # Run until main process tells to stop while not self.terminate_request_event.is_set(): before = datetime.now() self.pull_data_from_game() # game_tick_packet = self.game_interface.get # Read from game data shared memory # Run the Agent only if the game_info has updated. tick_game_time = self.get_game_time() should_call_while_paused = datetime.now() - last_call_real_time >= MAX_AGENT_CALL_PERIOD if tick_game_time != last_tick_game_time or should_call_while_paused: last_tick_game_time = tick_game_time last_call_real_time = datetime.now() # Reload the Agent if it has been modified or if reload is requested from outside. try: new_module_modification_time = os.stat(agent_class_file).st_mtime if new_module_modification_time != last_module_modification_time or self.reload_request_event.is_set(): self.reload_request_event.clear() last_module_modification_time = new_module_modification_time agent, agent_class_file = self.reload_agent(agent, agent_class_file) except FileNotFoundError: self.logger.error("Agent file {} was not found. Will try again.".format(agent_class_file)) time.sleep(0.5) except Exception: self.logger.error("Reloading the agent failed:\n" + traceback.format_exc()) time.sleep(0.5) # Avoid burning CPU / logs if this starts happening constantly # Call agent try: self.call_agent(agent, self.agent_class_wrapper.get_loaded_class()) except Exception as e: self.logger.error("Call to agent failed:\n" + traceback.format_exc()) # Ratelimit here after = datetime.now() rate_limit.acquire(after - before) if hasattr(agent, 'retire'): agent.retire() # If terminated, send callback self.termination_complete_event.set() def get_field_info(self): return self.game_interface.get_field_info() def set_game_state(self, game_state): return self.game_interface.set_game_state(game_state) def get_ball_prediction(self): return self.game_interface.get_ball_prediction() def prepare_for_run(self): raise NotImplementedError def call_agent(self, agent, agent_class): raise NotImplementedError def get_game_time(self): raise NotImplementedError def pull_data_from_game(self): raise NotImplementedError
the-stack_106_23769
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd" file="Link.py"> # Copyright (c) 2003-2021 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class Link(object): """ Provides information for the object link This is supposed to be an atom:link, therefore it should have all attributes specified here http://tools.ietf.org/html/rfc4287#section-4.2.7 """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'href': 'str', 'rel': 'str', 'type': 'str', 'title': 'str' } attribute_map = { 'href': 'Href', 'rel': 'Rel', 'type': 'Type', 'title': 'Title' } def __init__(self, href=None, rel=None, type=None, title=None, **kwargs): # noqa: E501 """Initializes new instance of Link""" # noqa: E501 self._href = None self._rel = None self._type = None self._title = None if href is not None: self.href = href if rel is not None: self.rel = rel if type is not None: self.type = type if title is not None: self.title = title @property def href(self): """ Gets the href. # noqa: E501 The \"href\" attribute contains the link's IRI. atom:link elements MUST have an href attribute, whose value MUST be a IRI reference # noqa: E501 :return: The href. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """ Sets the href. The \"href\" attribute contains the link's IRI. atom:link elements MUST have an href attribute, whose value MUST be a IRI reference # noqa: E501 :param href: The href. # noqa: E501 :type: str """ self._href = href @property def rel(self): """ Gets the rel. # noqa: E501 atom:link elements MAY have a \"rel\" attribute that indicates the link relation type. If the \"rel\" attribute is not present, the link element MUST be interpreted as if the link relation type is \"alternate\" # noqa: E501 :return: The rel. # noqa: E501 :rtype: str """ return self._rel @rel.setter def rel(self, rel): """ Sets the rel. atom:link elements MAY have a \"rel\" attribute that indicates the link relation type. If the \"rel\" attribute is not present, the link element MUST be interpreted as if the link relation type is \"alternate\" # noqa: E501 :param rel: The rel. # noqa: E501 :type: str """ self._rel = rel @property def type(self): """ Gets the type. # noqa: E501 On the link element, the \"type\" attribute's value is an advisory media type: it is a hint about the type of the representation that is expected to be returned when the value of the href attribute is dereferenced. Note that the type attribute does not override the actual media type returned with the representation # noqa: E501 :return: The type. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type. On the link element, the \"type\" attribute's value is an advisory media type: it is a hint about the type of the representation that is expected to be returned when the value of the href attribute is dereferenced. Note that the type attribute does not override the actual media type returned with the representation # noqa: E501 :param type: The type. # noqa: E501 :type: str """ self._type = type @property def title(self): """ Gets the title. # noqa: E501 The \"title\" attribute conveys human-readable information about the link. The content of the \"title\" attribute is Language-Sensitive # noqa: E501 :return: The title. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """ Sets the title. The \"title\" attribute conveys human-readable information about the link. The content of the \"title\" attribute is Language-Sensitive # noqa: E501 :param title: The title. # noqa: E501 :type: str """ self._title = title def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Link): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_23770
class ConnectGame: def __init__(self, board): self.board = [row.replace(" ", "") for row in board.splitlines()] def get_winner(self): if self.is_winner("O"): return "O" elif self.is_winner("X"): return "X" else: return "" def is_winner(self, player): board = self.board if player == "O" else [ [self.board[r][c] for r in range(len(self.board))] for c in range(len(self.board[0]))] positions = [(0, c) for c, s in enumerate(board[0]) if s == player] checked = set(positions) while positions != []: r, c = positions.pop() if r == len(board) - 1: return True for i, j in [(-1, 1), (-1, 0), (0, -1), (0, 1), (1, -1), (1, 0)]: r_ = r + i c_ = c + j if 0 <= r_ < len(board) and 0 <= c_ < len(board[0]) \ and board[r_][c_] == player and (r_, c_) not in checked: positions.append((r_, c_)) checked.add((r_, c_)) return False
the-stack_106_23772
import torch from torch.nn import Sequential as Seq, Linear as Lin, ReLU from torch_geometric.nn import PPFConv def test_point_conv(): in_channels, out_channels = (16, 32) edge_index = torch.tensor([[0, 0, 0, 1, 2, 3], [1, 2, 3, 0, 0, 0]]) num_nodes = edge_index.max().item() + 1 x = torch.randn((num_nodes, in_channels)) pos = torch.rand((num_nodes, 3)) norm = torch.nn.functional.normalize(torch.rand((num_nodes, 3)), dim=1) local_nn = Seq(Lin(in_channels + 4, 32), ReLU(), Lin(32, out_channels)) global_nn = Seq(Lin(out_channels, out_channels)) conv = PPFConv(local_nn, global_nn) assert conv.__repr__() == ( 'PPFConv(local_nn=Sequential(\n' ' (0): Linear(in_features=20, out_features=32, bias=True)\n' ' (1): ReLU()\n' ' (2): Linear(in_features=32, out_features=32, bias=True)\n' '), global_nn=Sequential(\n' ' (0): Linear(in_features=32, out_features=32, bias=True)\n' '))') out = conv(x, pos, norm, edge_index) assert out.size() == (num_nodes, out_channels) jit_conv = conv.jittable(x=x, pos=pos, norm=norm, edge_index=edge_index) jit_conv = torch.jit.script(jit_conv) assert jit_conv(x, pos, norm, edge_index).tolist() == out.tolist()
the-stack_106_23774
import numpy as np import matplotlib.pyplot as plt # Compute the x and y coordinates for points on sine and cosine curves x = np.arange(0, 3 * np.pi, 0.1) y_sin = np.sin(x) y_cos = np.cos(x) # Set up a subplot grid that has height 2 and width 1, # and set the first such subplot as active. plt.subplot(3,1,1) # Make the first plot plt.plot(x, y_sin) plt.title('Sine') # Set the second subplot as active, and make the second plot. plt.subplot(312) plt.plot(x, y_cos) plt.title('Cosine') plt.subplot(313) plt.plot(x, y_cos) plt.title('Cosine2') # Show the figure. plt.show()
the-stack_106_23775
"""Autoupdate older conda dependencies in the requirements section.""" from __future__ import absolute_import import collections import re import xml.etree.ElementTree as ET from galaxy.tool_util.deps import conda_util import planemo.conda from planemo.io import error, info def find_macros(xml_tree): """ Get macros from the XML tree """ macros = [] for macro_import in xml_tree.iter("import"): macros.append(macro_import.text) return macros def get_requirements(xml_tree): """ Get requirements from the XML tree """ requirements = {} main_req = None for requirement in xml_tree.iter("requirement"): if requirement.attrib.get('version') == '@TOOL_VERSION@': main_req = requirement.text else: requirements[requirement.text] = {'tag': ET.tostring(requirement, encoding="unicode").strip(), 'text': requirement.attrib.get('version')} return requirements, main_req def get_tokens(xml_tree): """ Get tokens from the XML tree """ tokens = {} for token in xml_tree.iter("token"): tokens[token.attrib['name']] = {'tag': ET.tostring(token, encoding="unicode").strip(), 'text': token.text} return tokens def check_conda(tool_name, ctx, **kwds): """ Get the most up-to-date conda version for a tool requirement """ conda_context = planemo.conda.build_conda_context(ctx, **kwds) if not conda_context.is_conda_installed(): error("Conda is not installed! Try running planemo conda_init.") target = planemo.conda.conda_util.CondaTarget(tool_name) search_results = conda_util.best_search_result(target, conda_context=conda_context) return search_results[0]['version'] def update_xml(tool_path, xml_tree, tags_to_update, wrapper_version_token, is_macro=False): """ Write modified XML to tool_path """ def update_token(xml_text, tag, token_value): new_tag = '>{}<'.format(token_value).join(re.split('>.*<', tag)) return re.sub(tag, new_tag, xml_text) def update_requirement(xml_text, tag, requirement_value): new_tag = 'version="{}"'.format(requirement_value).join(re.split('version=".*"', tag)) return re.sub(tag, new_tag, xml_text) with open(tool_path, 'r+', newline='') as f: xml_text = f.read() for tag_to_update in tags_to_update: if tag_to_update['type'] == 'token': xml_text = update_token(xml_text, tag_to_update['tag'], tag_to_update['value']) if tag_to_update['type'] == 'requirement': xml_text = update_requirement(xml_text, tag_to_update['tag'], tag_to_update['value']) if wrapper_version_token == 0 and not is_macro: # i.e. @VERSION_SUFFIX@ not specified so update the version directly in the tool tag tool_tag = re.sub('version="@TOOL_VERSION@.*?"', 'version="@TOOL_VERSION@+galaxy0"', re.findall('<tool .*version="@TOOL_VERSION@.*">', xml_text)[0]) xml_text = re.sub('<tool .*version="@TOOL_VERSION@.*">', tool_tag, xml_text) f.seek(0) f.truncate() f.write(xml_text) def create_requirement_dict(xml_files, skip_reqs): """ Create dict with requirements and find main requirement """ requirements = {} main_req = None for k, v in xml_files.items(): file_reqs, file_main_req = get_requirements(v) requirements[k] = {k: v for k, v in file_reqs.items() if k not in skip_reqs} if file_main_req: if main_req: error('Multiple requirements use the token @TOOL_VERSION@!') main_req = (file_main_req, k) if not main_req: error('No requirement uses the token @TOOL_VERSION@!') return requirements, main_req def create_token_dict(ctx, xml_files, main_req, **kwds): """ Create dict with relevant tokens and check conda requirements for main """ tokens = {} current_main_req, updated_main_req = None, None xml_to_update = collections.defaultdict(list) for k, v in xml_files.items(): tokens[k] = get_tokens(v) # check if it is @TOOL_VERSION@ and if so do check_conda if '@TOOL_VERSION@' in tokens[k]: current_main_req = tokens[k]['@TOOL_VERSION@']['text'] updated_main_req = check_conda(main_req[0], ctx, **kwds) if current_main_req: xml_to_update[k].append({'type': 'token', 'tag': tokens[k]['@TOOL_VERSION@']['tag'], 'value': updated_main_req}) return tokens, xml_to_update, current_main_req, updated_main_req def perform_required_update(ctx, xml_files, tool_path, requirements, tokens, xml_to_update, wrapper_version_token, **kwds): """ Carry out the update, if requirements are out-of-date """ # check all requirements for k, v in requirements.items(): for req in v: req_check = check_conda(req, ctx, **kwds) # print(req_check, v[req]['text']) if req_check != v[req]['text']: xml_to_update[k].append({'type': 'requirement', 'tag': v[req]['tag'], 'value': req_check}) # check all tokens, if wrapper_version_token exists if wrapper_version_token: for k, v in tokens.items(): if wrapper_version_token in v: xml_to_update[k].append({'type': 'token', 'tag': v[wrapper_version_token]['tag'], 'value': 0}) # finally, update each file separately for k, v in xml_files.items(): update_xml(k, v, xml_to_update[k], wrapper_version_token, is_macro=(k != tool_path)) info("Tool {} updated.".format(tool_path)) return set(xml_files) def autoupdate_tool(ctx, tool_path, modified_files=set(), **kwds): """ Autoupdate an XML file """ # create a dict of all files that need editing - wrapper plus macros xml_files = {tool_path: ET.parse(tool_path)} # get name of token which defines the wrapper version; if just an integer, None versions = xml_files[tool_path].getroot().attrib.get('version') if versions: versions = versions.split('+galaxy') if versions[0] != '@TOOL_VERSION@': error('Tool version does not contain @TOOL_VERSION@ as required by autoupdate.') return elif len(versions) == 1: wrapper_version_token = None else: if versions[1][0] == versions[1][-1] == '@': wrapper_version_token = versions[1] else: wrapper_version_token = 0 # assume an int else: wrapper_version_token = None # add macros to xml_files for macro in find_macros(xml_files[tool_path]): macro_path = '/'.join(tool_path.split('/')[:-1] + [macro]) xml_files[macro_path] = ET.parse(macro_path) requirements, main_req = create_requirement_dict(xml_files, kwds.get('skip_requirements', '').split(',')) tokens, xml_to_update, current_main_req, updated_main_req = create_token_dict(ctx, xml_files, main_req, **kwds) if current_main_req == updated_main_req and not (modified_files & set(xml_files)): info("No updates required or made to {}.".format(tool_path)) return # end here if no update needed if kwds.get('dry_run'): error("Update required to {}! Tool main requirement has version {}, newest conda version is {}".format( tool_path, current_main_req, updated_main_req)) return else: return perform_required_update(ctx, xml_files, tool_path, requirements, tokens, xml_to_update, wrapper_version_token, **kwds) def _update_wf(config, workflow_id): """ Recursively update a workflow, including subworkflows """ wf = config.user_gi.workflows.show_workflow(workflow_id) for step in wf['steps'].values(): if step['type'] == 'subworkflow': # update subworkflows before the main workflow _update_wf(config, step['workflow_id']) config.user_gi.workflows.refactor_workflow(workflow_id, actions=[{"action_type": "upgrade_all_steps"}]) def autoupdate_wf(ctx, config, wf): workflow_id = config.workflow_id_for_runnable(wf) _update_wf(config, workflow_id) return config.user_gi.workflows.export_workflow_dict(workflow_id)
the-stack_106_23776
import os #from sys_config import BASE_DIR import matplotlib.pyplot as plt import seaborn as sns BASE_DIR = '../data/' # LIWC Lexicon http://lit.eecs.umich.edu/~geoliwc/LIWC_Dictionary.htm def load_liwc_lexicon(file): # returns LIWC in the form of a dictionary # keys: words, values: feature vector (list) _data = {} lines = open(file, "r", encoding="utf-8").readlines() for line_id, line in enumerate(lines): _row = line.rstrip().split(" ") _word = _row[0] _features = _row[1:] _data[_word] = _features return _data def load_features(file): dim2num = {} # [dimension name]: corresponding number in lexicon list num2dim = {} # the exact opposite lines = open(file, "r", encoding="utf-8").readlines() for line_id, line in enumerate(lines): _row = line.rstrip().split(" ") _dim = _row[1] dim2num[_dim] = line_id num2dim[line_id] = _dim return dim2num, num2dim #################################################### # Load LIWC Lexicon #################################################### def liwc_lex(): # get the liwc lexicon in the form of a dictionary # where keys are the unique words # and values a list with all the dimensions (73 in total) lex = load_liwc_lexicon( os.path.join(BASE_DIR, 'PsycholinguisticLexicon.txt')) total_words = len(lex) # get the two dictionaries that relate every dimension name # with its corresponding number (value) in the lexicon dimension list dim2num, num2dim = load_features( os.path.join(BASE_DIR, 'PsycholinguisticDimensions.txt')) #################################################### # Plot statistics of LIWC Lexicon #################################################### # The lexiconss has 18504 words and for each word a feature vector of size 71. # Each dimension represents a category (for example affect, posemo, negemo etc) # The vector contains '1' when this word is includied in the particular category. # Otherwise '0'. # Using a bar plot we can decide which dimensions of this feature vector are useful for our work. # initialization of count dictionary dimensions = list(dim2num.keys()) dim_counts = {dim: 0 for dim in dimensions} for word in lex: ones = [i for i, x in enumerate(lex[word]) if x == '1'] for index in ones: dim_counts[num2dim[index]] += 1 sorted_tuples = sorted(dim_counts.items(), key=lambda kv: kv[1]) x = [k[1] for k in sorted_tuples if k[1] > 500] y = [k[0] for k in sorted_tuples if k[1] > 500] plt.figure() sns.barplot(x=x, y=y) plt.title('Number of words for each dimension of the LIWC lexicon') # plt.show() plt.savefig('liwc_dims_statistics.png') # plt.close() print(len(lex)) def load_liwc_lex(): return load_liwc_lexicon( os.path.join(BASE_DIR, 'PsycholinguisticLexicon.txt')) # liwc_lex()
the-stack_106_23779
""" Google Text to Speech Available Commands: .tts LanguageCode as reply to a message .tts LangaugeCode | text to speak""" import asyncio import os import subprocess from datetime import datetime from gtts import gTTS from uniborg.util import admin_cmd @borg.on(admin_cmd("tts (.*)")) async def _(event): if event.fwd_from: return input_str = event.pattern_match.group(1) start = datetime.now() if event.reply_to_msg_id: previous_message = await event.get_reply_message() text = previous_message.message lan = input_str elif "|" in input_str: lan, text = input_str.split("|") else: await event.edit("Invalid Syntax. Module stopping.") return text = text.strip() lan = lan.strip() if not os.path.isdir(Config.TMP_DOWNLOAD_DIRECTORY): os.makedirs(Config.TMP_DOWNLOAD_DIRECTORY) required_file_name = Config.TMP_DOWNLOAD_DIRECTORY + "voice.ogg" try: #https://github.com/SpEcHiDe/UniBorg/commit/17f8682d5d2df7f3921f50271b5b6722c80f4106 tts = gTTS(text, lang=lan) tts.save(required_file_name) command_to_execute = [ "ffmpeg", "-i", required_file_name, "-map", "0:a", "-codec:a", "libopus", "-b:a", "100k", "-vbr", "on", required_file_name + ".opus" ] try: t_response = subprocess.check_output(command_to_execute, stderr=subprocess.STDOUT) except (subprocess.CalledProcessError, NameError, FileNotFoundError) as exc: await event.edit(str(exc)) # continue sending required_file_name else: os.remove(required_file_name) required_file_name = required_file_name + ".opus" end = datetime.now() ms = (end - start).seconds await borg.send_file( event.chat_id, required_file_name, # caption="Processed {} ({}) in {} seconds!".format(text[0:97], lan, ms), reply_to=event.message.reply_to_msg_id, allow_cache=False, voice_note=True ) os.remove(required_file_name) await event.edit("Processed {} ({}) in {} seconds!".format(text[0:97], lan, ms)) await asyncio.sleep(5) await event.delete() except Exception as e: await event.edit(str(e))
the-stack_106_23782
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json from typing import Optional from unittest import mock from superset.extensions import async_query_manager from tests.base_tests import SupersetTestCase from tests.test_app import app class TestAsyncEventApi(SupersetTestCase): UUID = "943c920-32a5-412a-977d-b8e47d36f5a4" def fetch_events(self, last_id: Optional[str] = None): base_uri = "api/v1/async_event/" uri = f"{base_uri}?last_id={last_id}" if last_id else base_uri return self.client.get(uri) @mock.patch("uuid.uuid4", return_value=UUID) def test_events(self, mock_uuid4): async_query_manager.init_app(app) self.login(username="admin") with mock.patch.object(async_query_manager._redis, "xrange") as mock_xrange: rv = self.fetch_events() response = json.loads(rv.data.decode("utf-8")) assert rv.status_code == 200 channel_id = app.config["GLOBAL_ASYNC_QUERIES_REDIS_STREAM_PREFIX"] + self.UUID mock_xrange.assert_called_with(channel_id, "-", "+", 100) self.assertEqual(response, {"result": []}) @mock.patch("uuid.uuid4", return_value=UUID) def test_events_last_id(self, mock_uuid4): async_query_manager.init_app(app) self.login(username="admin") with mock.patch.object(async_query_manager._redis, "xrange") as mock_xrange: rv = self.fetch_events("1607471525180-0") response = json.loads(rv.data.decode("utf-8")) assert rv.status_code == 200 channel_id = app.config["GLOBAL_ASYNC_QUERIES_REDIS_STREAM_PREFIX"] + self.UUID mock_xrange.assert_called_with(channel_id, "1607471525180-1", "+", 100) self.assertEqual(response, {"result": []}) @mock.patch("uuid.uuid4", return_value=UUID) def test_events_results(self, mock_uuid4): async_query_manager.init_app(app) self.login(username="admin") with mock.patch.object(async_query_manager._redis, "xrange") as mock_xrange: mock_xrange.return_value = [ ( "1607477697866-0", { "data": '{"channel_id": "1095c1c9-b6b1-444d-aa83-8e323b32831f", "job_id": "10a0bd9a-03c8-4737-9345-f4234ba86512", "user_id": "1", "status": "done", "errors": [], "result_url": "/api/v1/chart/data/qc-ecd766dd461f294e1bcdaa321e0e8463"}' }, ), ( "1607477697993-0", { "data": '{"channel_id": "1095c1c9-b6b1-444d-aa83-8e323b32831f", "job_id": "027cbe49-26ce-4813-bb5a-0b95a626b84c", "user_id": "1", "status": "done", "errors": [], "result_url": "/api/v1/chart/data/qc-1bbc3a240e7039ba4791aefb3a7ee80d"}' }, ), ] rv = self.fetch_events() response = json.loads(rv.data.decode("utf-8")) assert rv.status_code == 200 channel_id = app.config["GLOBAL_ASYNC_QUERIES_REDIS_STREAM_PREFIX"] + self.UUID mock_xrange.assert_called_with(channel_id, "-", "+", 100) expected = { "result": [ { "channel_id": "1095c1c9-b6b1-444d-aa83-8e323b32831f", "errors": [], "id": "1607477697866-0", "job_id": "10a0bd9a-03c8-4737-9345-f4234ba86512", "result_url": "/api/v1/chart/data/qc-ecd766dd461f294e1bcdaa321e0e8463", "status": "done", "user_id": "1", }, { "channel_id": "1095c1c9-b6b1-444d-aa83-8e323b32831f", "errors": [], "id": "1607477697993-0", "job_id": "027cbe49-26ce-4813-bb5a-0b95a626b84c", "result_url": "/api/v1/chart/data/qc-1bbc3a240e7039ba4791aefb3a7ee80d", "status": "done", "user_id": "1", }, ] } self.assertEqual(response, expected) def test_events_no_login(self): async_query_manager.init_app(app) rv = self.fetch_events() assert rv.status_code == 401 def test_events_no_token(self): self.login(username="admin") self.client.set_cookie( "localhost", app.config["GLOBAL_ASYNC_QUERIES_JWT_COOKIE_NAME"], "" ) rv = self.fetch_events() assert rv.status_code == 401
the-stack_106_23783
""" Specification of IBM Q Rome """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** qubits = ['Q' + str(x) for x in range(5)] two_qubit_gate = 'Gcnot' edgelist = [ ('Q0', 'Q1'), ('Q1', 'Q0'), ('Q1', 'Q2'), ('Q2', 'Q1'), ('Q2', 'Q3'), ('Q3', 'Q2'), ('Q3', 'Q4'), ('Q4', 'Q3'), ] spec_format = 'ibmq_v2019'
the-stack_106_23788
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import mxnet as mx from .inference_alg import SamplingAlgorithm from ..common.config import get_default_dtype, get_default_device class PILCOAlgorithm(SamplingAlgorithm): """ Sampling-based inference algorithm that returns the expectation of each variable in the model. :param model: the definition of the probabilistic model :type model: Model :param observed: A list of observed variables :type observed: [Variable] :param num_samples: the number of samples used in estimating the variational lower bound :type num_samples: int :param target_variables: (optional) the target variables to sample :type target_variables: [UUID] :param extra_graphs: a list of extra FactorGraph used in the inference algorithm. :type extra_graphs: [FactorGraph] """ def __init__(self, model, observed, cost_function, policy, n_time_steps, initial_state_generator, extra_graphs=None, num_samples=3, ctx=None, dtype=None): """ :param model: The model to use to generate the next state from a state/action pair. :param observed: Observed variables for the model. :param cost_function: The cost function to evaluate state/action pairs on. :param policy: The policy function to determine what action to take next from a particular state. :param n_time_steps: How many time steps to roll forward using the model+policy to generate a trajectory. :param initial_state_generator: Function that generates initial states for the model to begin at. :param num_samples: How many sample trajectories to compute at once """ super(PILCOAlgorithm, self).__init__(model, observed, extra_graphs=extra_graphs) self.cost_function = cost_function self.policy = policy self.initial_state_generator = initial_state_generator self.n_time_steps = n_time_steps self.num_samples = num_samples self.dtype = dtype if dtype is not None else get_default_dtype() self.mxnet_context = ctx if ctx is not None else get_default_device() def compute(self, F, variables): """ Compute the PILCO algorithm's policy computation loop. 1. Generates a number of initial state + action pairs 2. For each state+action pair: 1. Predict the new state (s_t_plus_1) given the current state and action pair 2. Compute the cost of being in that state 3. Use the policy to compute the next action (a_t_plus_1) to take from s_t_plus_1 4. Repeat n_time_steps into the future, using the previous round's state/action pairs to roll forward. 3. Return the total cost of all sample trajectories over time. :param F: the execution context (mxnet.ndarray or mxnet.symbol) :type F: Python module :param variables: the set of MXNet arrays that holds the values of variables at runtime. :type variables: {str(UUID): MXNet NDArray or MXNet Symbol} :returns: the outcome of the inference algorithm :rtype: mxnet.NDArray or mxnet.Symbol """ s_0 = self.initial_state_generator(self.num_samples) a_0 = self.policy(s_0) a_t_plus_1 = a_0 x_t = F.expand_dims(F.concat(s_0, a_0, dim=1), axis=1) cost = 0 for t in range(self.n_time_steps): variables[self.model.X] = x_t res = self.model.Y.factor.predict(F, variables, targets=[self.model.Y], num_samples=self.num_samples)[0] s_t_plus_1 = res[0] cost = cost + self.cost_function(s_t_plus_1, a_t_plus_1) a_t_plus_1 = mx.nd.expand_dims(self.policy(s_t_plus_1), axis=2) x_t = mx.nd.concat(s_t_plus_1, a_t_plus_1, dim=2) total_cost = F.sum(cost) return total_cost, total_cost
the-stack_106_23789
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """T2TModel Base Class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import copy import functools import math import time import six from tensor2tensor.data_generators import multi_problem from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators.problem import problem_hparams_to_features from tensor2tensor.layers import common_layers from tensor2tensor.utils import beam_search from tensor2tensor.utils import decoding from tensor2tensor.utils import expert_utils as eu from tensor2tensor.utils import learning_rate from tensor2tensor.utils import metrics from tensor2tensor.utils import modality from tensor2tensor.utils import optimize from tensor2tensor.utils import quantization from tensor2tensor.utils import registry import tensorflow as tf from tensorflow.python.layers import base from tensorflow.python.ops import inplace_ops from tensorflow.python.ops import variable_scope _no_problem_err_str = ( "The default implementation of %s requires that the " "model be used with a Problem. If using a Problem, augment the " "hparams object with trainer_lib.add_problem_hparams. If not, " "override %s.") _no_problem_err = ( lambda method_name: _no_problem_err_str % (method_name, method_name)) class T2TModel(base.Layer): """Abstract base class for models. `T2TModel` has three typical usages: 1. Estimator: The method `make_estimator_model_fn` builds a `model_fn` for the tf.Estimator workflow of training, evaluation, and prediction. It performs the method `call`, which performs the core computation, followed by `estimator_spec_train`, `estimator_spec_eval`, or `estimator_spec_predict` depending on the tf.Estimator mode. 2. Layer: The method `call` enables `T2TModel` to be used a callable by itself. It calls the following methods: * `bottom`, which transforms features according to `problem_hparams`' input and target `Modality`s; * `body`, which takes features and performs the core model computation to return output and any auxiliary loss terms; * `top`, which takes features and the body output, and transforms them according to `problem_hparams`' input and target `Modality`s to return the final logits; * `loss`, which takes the logits, forms any missing training loss, and sums all loss terms. 3. Inference: The method `infer` enables `T2TModel` to make sequence predictions by itself. Subclasses generally only need to override `body`. """ REGISTERED_NAME = None # Updated on registration. def __init__(self, hparams, mode=tf.estimator.ModeKeys.TRAIN, problem_hparams=None, data_parallelism=None, decode_hparams=None, **kwargs): """Creates a T2TModel. Args: hparams: tf.contrib.training.HParams, model hyperparameters. mode: tf.estimator.ModeKeys, the execution mode. problem_hparams: tf.contrib.training.HParams, hyperparameters for the Problem. If provided here or in hparams.problem_hparams, the model will automatically determine bottom, top, and loss methods. If not provided, calling the model will only invoke body. data_parallelism: a expert_utils.Parallelism object, specifies devices for data parallelism. decode_hparams: a hyperparameter object with decoding parameters. See decoding.decode_hparams. **kwargs: arguments to pass to base.Layer constructor. """ # Determine name first: use registered name if possible, class name else. default_name = registry.default_name(type(self)) name = self.REGISTERED_NAME or default_name super(T2TModel, self).__init__( trainable=mode == tf.estimator.ModeKeys.TRAIN, name=name, **kwargs) if not problem_hparams and hasattr(hparams, "problem_hparams"): problem_hparams = hparams.problem_hparams self._problem_hparams = problem_hparams # Setup hparams hparams = copy.copy(hparams) if self._problem_hparams and hparams.shared_embedding_and_softmax_weights: # If vocabularies differ, unset shared_embedding_and_softmax_weights. input_modality = self._problem_hparams.modality.get("inputs") target_modality = self._problem_hparams.modality.get("targets") if (isinstance(input_modality, modality.Modality) and isinstance(target_modality, modality.Modality) and input_modality.top_dimensionality != target_modality.top_dimensionality): log_info("Unsetting shared_embedding_and_softmax_weights.") hparams.shared_embedding_and_softmax_weights = 0 self._original_hparams = hparams self.set_mode(mode) self._decode_hparams = copy.copy(decode_hparams or decoding.decode_hparams()) self._data_parallelism = data_parallelism or eu.Parallelism([""]) self._num_datashards = self._data_parallelism.n self._ps_devices = self._data_parallelism.ps_devices self._eager_var_store = create_eager_var_store() if not common_layers.is_xla_compiled(): self.summarize_hparams() self._variable_scopes = {} def _add_variable_scope(self, key, vs): if key not in self._variable_scopes: self._variable_scopes[key] = vs def summarize_hparams(self): def create_hparams_summary(hparams, name): hparams_strs = [tf.convert_to_tensor([k, str(v)]) for k, v in hparams.values().items()] tf.summary.text(name, tf.stack(hparams_strs)) create_hparams_summary(self._hparams, "%s_hparams" % self.name) if self._problem_hparams: create_hparams_summary(self._problem_hparams, "%s_problem_hparams" % self.name) # Replace the two methods below in order to add custom SessionRunHooks to # the training procedure. @staticmethod def train_hooks(hook_context): return [] @staticmethod def eval_hooks(hook_context): return [] @property def hparams(self): return self._hparams @property def is_training(self): return self._hparams.mode == tf.estimator.ModeKeys.TRAIN @property def is_predicting(self): return self._hparams.mode == tf.estimator.ModeKeys.PREDICT @property def has_input(self): if self._problem_hparams: return "inputs" in self._problem_hparams.modality else: return True @property def _custom_getter(self): if self.hparams.weight_dtype == "bfloat16": if self.hparams.optimizer != "Adafactor": raise NotImplementedError( "weight_dtype=bfloat16 only implemented with Adafactor optimizer") return quantization.EighthPowerEncoding().custom_getter( activation_dtype=tf.bfloat16 if self.hparams.activation_dtype == "bfloat16" else tf.float32) elif self.hparams.activation_dtype == "bfloat16": return quantization.bfloat16_activations_var_getter else: return None @property def _target_modality_is_real(self): """Whether the target modality is real-valued.""" target_modality = self._problem_hparams.modality["targets"] return target_modality.name.startswith("real_") def call(self, inputs, **kwargs): del kwargs features = inputs set_custom_getter_compose(self._custom_getter) tf.get_variable_scope().set_initializer( optimize.get_variable_initializer(self.hparams)) with self._eager_var_store.as_default(): self._fill_problem_hparams_features(features) summarize_features(features, num_shards=self._num_datashards) sharded_features = self._shard_features(features) sharded_logits, losses = self.model_fn_sharded(sharded_features) if isinstance(sharded_logits, dict): concat_logits = {} for k, v in six.iteritems(sharded_logits): concat_logits[k] = tf.concat(v, 0) return concat_logits, losses else: return tf.concat(sharded_logits, 0), losses @staticmethod def has_symmetric_shards(model_name): # model_fn is sharded symmetrically unless the model overrides body_sharded # method to manually control the sharding. model_cls = registry.model(model_name) return not model_cls.use_body_sharded() @staticmethod def use_body_sharded(): return False def body_sharded(self, sharded_features): raise NotImplementedError("Models that wish to manually control sharding, " "e.g. MoE models, should override body_sharded " "and set use_body_sharded to True.") def model_fn_sharded(self, sharded_features): dp = self._data_parallelism datashard_to_features = self._to_features_per_datashard(sharded_features) if self.use_body_sharded(): # MoE models override body_sharded transformed_features = dp(self.bottom, datashard_to_features) body_out = self.body_sharded( self._to_single_features_dict(transformed_features)) body_out, losses = self._normalize_body_output(body_out) if "training" in losses: log_info("Skipping T2TModel top and loss because training loss " "returned from body") sharded_logits = body_out else: if isinstance(body_out, dict): sharded_logits = collections.OrderedDict() sharded_losses = collections.OrderedDict() for k, v in sorted(six.iteritems(body_out)): sharded_logits[k] = dp(self.top, v, datashard_to_features) sharded_losses[k] = dp(self.loss, sharded_logits[k], datashard_to_features) training_loss_dict = average_sharded_losses([{ "training": l } for l in loss for loss in sharded_losses.values()]) losses.update(training_loss_dict) else: sharded_logits = dp(self.top, body_out, datashard_to_features) sharded_losses = dp(self.loss, sharded_logits, datashard_to_features) if isinstance(sharded_losses, tuple): nums, dens = sharded_losses sharded_losses = zip(nums, dens) training_loss_dict = average_sharded_losses([{ "training": loss } for loss in sharded_losses]) losses.update(training_loss_dict) else: sharded_logits, sharded_losses = dp(self.model_fn, datashard_to_features) if isinstance(sharded_logits[0], dict): temp_dict = {k: [] for k, _ in six.iteritems(sharded_logits[0])} for k, _ in six.iteritems(sharded_logits[0]): for l in sharded_logits: temp_dict[k].append(l[k]) sharded_logits = temp_dict losses = average_sharded_losses(sharded_losses) # TODO(rsepassi): Reenable scheduled sampling # Disabled because of model_fn_sharded refactor # # do_scheduled_sampling = ( # Only do it if training and set for it. # self.hparams.scheduled_sampling_prob > 0.0 and # self.hparams.mode == tf.estimator.ModeKeys.TRAIN) # if do_scheduled_sampling: # sharded_logits, losses = scheduled_sampling( # self.hparams, self._problem_hparams, dp, # sharded_logits, losses, sharded_features, # transformed_features, self) return sharded_logits, losses def model_fn(self, features): with tf.variable_scope(tf.get_variable_scope(), use_resource=True) as vs: self._add_variable_scope("model_fn", vs) transformed_features = self.bottom(features) if self.hparams.activation_dtype == "bfloat16": for k, v in sorted(six.iteritems(transformed_features)): if v.dtype == tf.float32: transformed_features[k] = tf.cast(v, tf.bfloat16) with tf.variable_scope("body") as body_vs: self._add_variable_scope("body", body_vs) log_info("Building model body") body_out = self.body(transformed_features) output, losses = self._normalize_body_output(body_out) if "training" in losses: log_info("Skipping T2TModel top and loss because training loss " "returned from body") logits = output else: logits = self.top(output, features) losses["training"] = 0.0 if (self._hparams.mode != tf.estimator.ModeKeys.PREDICT and self._hparams.mode != "attack"): losses["training"] = self.loss(logits, features) return logits, losses def bottom(self, features): """Transforms features to feed into body. Args: features: dict of str to Tensor. Typically it is the preprocessed data batch after Problem's preprocess_example(). Returns: transformed_features: dict of same key-value pairs as features. The value Tensors are newly transformed. """ if not self._problem_hparams: log_warn("Without a Problem, T2TModel.bottom is a passthrough.") return features transformed_features = collections.OrderedDict() all_previous_modalities = [] target_modality = _create_target_modality(self._problem_hparams.modality) # Transform features via its corresponding modality. for feature_name, modality_obj in sorted( six.iteritems(self._problem_hparams.modality)): if feature_name not in features: tf.logging.warning("Missing feature %s - ignoring." % feature_name) continue # Use if-else clauses to preserve behavior of previous changes: namely, # the variable scope name for the targets feature if there is only one # target modality; and to reuse variable scopes for only input modalities. if feature_name in target_modality: if len(target_modality) > 1: variable_scope_name = "%s/%s" % (modality_obj.name, feature_name) else: variable_scope_name = modality_obj.name # TODO(aidangomez): share variables? with tf.variable_scope(variable_scope_name) as vs: self._add_variable_scope(variable_scope_name, vs) log_info("Transforming feature '%s' with %s.targets_bottom", feature_name, modality_obj.name) transformed_features[feature_name] = modality_obj.targets_bottom( features[feature_name]) else: do_reuse = modality_obj.name in all_previous_modalities with tf.variable_scope(modality_obj.name, reuse=do_reuse) as vs: self._add_variable_scope(modality_obj.name, vs) log_info("Transforming feature '%s' with %s.bottom", feature_name, modality_obj.name) transformed_features[feature_name] = modality_obj.bottom( features[feature_name]) all_previous_modalities.append(modality_obj.name) for key in features: if key not in transformed_features: # For features without a modality, we pass them along as is transformed_features[key] = features[key] else: # Other features get passed along with the "raw" suffix transformed_features[key + "_raw"] = features[key] return transformed_features def body(self, features): """Computes the targets' pre-logit activations given transformed inputs. Most `T2TModel` subclasses will override this method. Args: features: dict of str to Tensor, where each Tensor has shape [batch_size, ..., hidden_size]. It typically contains keys `inputs` and `targets`. Returns: output: Tensor of pre-logit activations with shape [batch_size, ..., hidden_size]. losses: Either single loss as a scalar, a list, a Tensor (to be averaged), or a dictionary of losses. If losses is a dictionary with the key "training", losses["training"] is considered the final training loss and output is considered logits; self.top and self.loss will be skipped. """ raise NotImplementedError("Abstract Method") def _top_single(self, body_output, target_modality, features): if not target_modality: log_warn("Without a Problem, T2TModel.top is a passthrough.") return body_output with tf.variable_scope(target_modality.name) as tm_vs: self._add_variable_scope(tm_vs.name, tm_vs) log_info("Transforming body output with %s.top", target_modality.name) last_only = ( target_modality.top_is_pointwise and self.hparams.mode == tf.estimator.ModeKeys.PREDICT and not self.hparams.force_full_predict) if not last_only: logits = target_modality.top(body_output, features.get("targets")) else: # Take body outputs for the last position only, and targets too. if "decode_loop_step" not in features: last_position_body_output = tf.expand_dims( body_output[:, -1, :, :], axis=[1]) last_position_targets = tf.expand_dims( features["targets"][:, -1, :, :], axis=[1]) else: body_output_shape = body_output.shape.as_list() last_position_body_output = tf.slice( body_output, [0, features["decode_loop_step"][0], 0, 0], [ body_output_shape[0], 1, body_output_shape[2], body_output_shape[3] ]) target_shape = features["targets"].shape.as_list() last_position_targets = tf.slice( features["targets"], [0, features["decode_loop_step"][0], 0, 0], [target_shape[0], 1, target_shape[2], target_shape[3]]) logits = target_modality.top(last_position_body_output, last_position_targets) return logits def top(self, body_output, features): """Computes logits given body output and features. Args: body_output: dict of str to Tensor, comprising one key-value pair for each target. Each value denotes the target's pre-logit activations. Alternatively, it may be a single Tensor denoting the pre-logits for that target. features: dict of str to Tensor. Typically it is the preprocessed data batch after Problem's preprocess_example(). Returns: logits: dict of str to Tensor, denoting each logits for each target; or a single Tensor denoting the logits for that target. """ if isinstance(body_output, dict): if self._problem_hparams: target_modality = _create_target_modality( self._problem_hparams.modality) else: target_modality = {k: None for k in body_output.keys()} for k in body_output.keys(): assert k in target_modality.keys(), ( "The key %s of model_body's returned logits dict must be in " "problem_hparams.modality's dict." % k) logits = {} for k, v in six.iteritems(body_output): # TODO(aidangomez): share variables here? with tf.variable_scope(k) as top_vs: self._add_variable_scope("top_%s" % k, top_vs) logits[k] = self._top_single(v, target_modality[k], features) return logits else: if self._problem_hparams: target_modality = _create_target_modality( self._problem_hparams.modality) else: target_modality = None if isinstance(target_modality, dict): assert "targets" in target_modality, ( "model_body returned single logits so 'targets' must be a key " "since problem_hparams.modality is a dict.") target_modality = target_modality["targets"] return self._top_single(body_output, target_modality, features) def _loss_single(self, logits, target_modality, feature): # The current bfloat16 version still uses float32 for most parts of backward # propagation to keep model quality, so cast back before computing the loss # value. if not target_modality: log_warn(_no_problem_err("loss")) return (tf.constant(0., dtype=tf.float32), tf.constant(1., dtype=tf.float32)) loss_num, loss_den = target_modality.loss(logits, feature) loss_num *= self._problem_hparams.loss_multiplier if hasattr(self.hparams, "problem") and hasattr( self.hparams.problem, "task_list"): loss_num, loss_den, summaries = multi_problem.aggregate_task_losses( self.hparams, self._problem_hparams, logits, target_modality, feature ) for key, val in summaries: tf.summary.scalar(key, val) return loss_num, loss_den def loss(self, logits, features): if isinstance(logits, dict): if self._problem_hparams: target_modality = _create_target_modality( self._problem_hparams.modality) else: target_modality = {k: None for k in logits.keys()} for k in logits.keys(): assert k in target_modality.keys(), ( "The key %s of model_body's returned logits dict must be in " "problem_hparams.modality's dict." % k) losses = {} for k, v in six.iteritems(logits): losses[k] = self._loss_single(v, target_modality[k], features[k]) n, d = losses[k] if common_layers.should_generate_summaries(): tf.summary.scalar(k + "_loss", n / d) tf.summary.scalar(k + "_loss_num", n) tf.summary.scalar(k + "_loss_den", d) if getattr(self.hparams, "visualize_logits_histogram", False): hist = tf.summary.histogram hist(k + "_predict", tf.argmax(tf.squeeze(v), axis=-1)) hist(k + "_targets", features[k]) return tf.add_n([n / d for n, d in losses.values()]) else: if self._problem_hparams: target_modality = _create_target_modality( self._problem_hparams.modality) else: target_modality = None if isinstance(target_modality, dict): assert "targets" in target_modality, ( "model_body returned single logits so 'targets' must be a key " "since problem_hparams.modality is a dict.") target_modality = target_modality["targets"] return self._loss_single(logits, target_modality, features["targets"]) def optimize(self, loss, num_async_replicas=1, use_tpu=False): """Return a training op minimizing loss.""" lr = learning_rate.learning_rate_schedule(self.hparams) if num_async_replicas > 1: log_info("Dividing learning rate by num_async_replicas: %d", num_async_replicas) lr /= math.sqrt(float(num_async_replicas)) train_op = optimize.optimize(loss, lr, self.hparams, use_tpu=use_tpu) return train_op def set_mode(self, mode): """Set hparams with the given mode.""" log_info("Setting T2TModel mode to '%s'", mode) hparams = copy.copy(self._original_hparams) hparams.add_hparam("mode", mode) # When not in training mode, set all forms of dropout to zero. if mode != tf.estimator.ModeKeys.TRAIN: for key in hparams.values(): if key.endswith("dropout") or key == "label_smoothing": log_info("Setting hparams.%s to 0.0", key) setattr(hparams, key, 0.0) self._hparams = hparams if self._problem_hparams: # Set model hparams in problem_hparams' modalities, which also store them. for modality_obj in six.itervalues(self._problem_hparams.modality): if modality_obj is not None: modality_obj._model_hparams = self._hparams # pylint: disable=protected-access def prepare_features_for_infer(self, features): """Called before inference to allow adding infer-specific features.""" pass def eval_autoregressive(self, features=None, decode_length=50): """Autoregressive eval. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. Returns: logits: `Tensor` losses: a dictionary: {loss-name (string): floating point `Scalar`}. Contains a single key "training". """ results = self._slow_greedy_infer(features, decode_length=decode_length) return results["logits"], results["losses"] def _fill_problem_hparams_features(self, features): if features is not None: for k, v in sorted( six.iteritems(problem_hparams_to_features(self._problem_hparams))): if k not in features: features[k] = tf.constant(v, name=k) def infer(self, features=None, decode_length=50, beam_size=1, top_beams=1, alpha=0.0, use_tpu=False): """A inference method. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. use_tpu: bool, whether to build the inference graph for TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } if slow greedy decoding is used then the dict will also contain { "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar` } """ set_custom_getter_compose(self._custom_getter) with self._eager_var_store.as_default(): # TODO(rsepassi): Make decoding work with real-valued model outputs # (i.e. if the target modality is RealModality). self.prepare_features_for_infer(features) if not self.has_input and beam_size > 1: log_warn("Beam searching for a model with no inputs.") if not self.has_input and self.hparams.sampling_method != "random": log_warn("Non-random sampling for a model with no inputs.") self._fill_problem_hparams_features(features) if self._problem_hparams: target_modality = self._problem_hparams.modality["targets"] if target_modality.is_class_modality: beam_size = 1 # No use to run beam-search for a single class. if beam_size == 1: log_info("Greedy Decoding") results = self._greedy_infer(features, decode_length, use_tpu) else: log_info("Beam Decoding with beam size %d" % beam_size) results = self._beam_decode(features, decode_length, beam_size, top_beams, alpha, use_tpu) return results def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha, use_tpu=False): """Beam search decoding. Models should ideally implement a more efficient version of this function. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. use_tpu: A bool, whether to do beam decode on TPU. Returns: samples: an integer `Tensor`. Top samples from the beam search """ return self._beam_decode_slow(features, decode_length, beam_size, top_beams, alpha, use_tpu) def _beam_decode_slow(self, features, decode_length, beam_size, top_beams, alpha, use_tpu=False): """Slow version of Beam search decoding. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. use_tpu: A bool, whether to do slow beam decode on TPU. Returns: samples: an integer `Tensor`. Top samples from the beam search. Raises: NotImplementedError: If use_tpu is set to true. """ if use_tpu: raise NotImplementedError( "Slow beam search inference on TPU is not supported") batch_size = common_layers.shape_list(features["inputs"])[0] def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) ids = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0], [0, 0]]) if "partial_targets" in features: pt = features["partial_targets"] pt_length = common_layers.shape_list(pt)[1] pt = tf.tile(pt, [1, beam_size]) pt = tf.reshape(pt, [batch_size * beam_size, pt_length, 1, 1]) ids = tf.concat([pt, ids], axis=1) features["targets"] = ids self._coverage = None logits, _ = self(features) # pylint: disable=not-callable # now self._coverage is a coverage tensor for the first datashard. # it has shape [batch_size] and contains floats between 0 and # source_length. if self._problem_hparams: if self._problem_hparams.modality["targets"].top_is_pointwise: return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :, :] return tf.squeeze(logits, axis=[1, 2]) initial_ids = tf.zeros([batch_size], dtype=tf.int32) if self.has_input: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 1) if len(features["inputs"].shape) < 5: features["inputs"] = tf.expand_dims(features["inputs"], 4) # Expand the inputs in to the beam size. features["inputs"] = tf.tile(features["inputs"], [1, beam_size, 1, 1, 1]) s = common_layers.shape_list(features["inputs"]) features["inputs"] = tf.reshape(features["inputs"], [s[0] * s[1], s[2], s[3], s[4]]) target_modality = self._problem_hparams.modality["targets"] vocab_size = target_modality.top_dimensionality # Setting decode length to input length + decode_length decode_length = tf.constant(decode_length) if "partial_targets" not in features: inputs = features["inputs"] decode_length = (common_layers.shape_list(inputs)[1] + features.get("decode_length", decode_length)) ids, scores = beam_search.beam_search( symbols_to_logits_fn, initial_ids, beam_size, decode_length, vocab_size, alpha, stop_early=(top_beams == 1)) # Set inputs back to the unexpanded inputs to not to confuse the Estimator! if self.has_input: features["inputs"] = inputs_old # Return `top_beams` decodings (also remove initial id from the beam search) # TODO(lukaszkaiser): make it work multi-problem. if top_beams == 1: samples = ids[:, 0, 1:] else: samples = ids[:, :top_beams, 1:] return {"outputs": samples, "scores": scores} def _greedy_infer(self, features, decode_length, use_tpu=False): """A greedy inference method. Models should ideally implement a more efficient version of this function. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. use_tpu: A bool, whether to build the inference graph for TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ return (self._slow_greedy_infer_tpu(features, decode_length) if use_tpu else self._slow_greedy_infer(features, decode_length)) def _slow_greedy_infer_tpu(self, features, decode_length): """A slow greedy inference method on TPU. Quadratic time in decode_length. Args: features: An map of string to `Tensor`. decode_length: An integer, how many additional timesteps to decode. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ if not features: features = {} inputs_old = None if "inputs" in features and len(features["inputs"].shape) < 4: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 2) if not self.has_input: # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] features["partial_targets"] = tf.to_int64(partial_targets) # Save the targets in a var and reassign it after the tf.while loop to avoid # having targets being in a 'while' frame. This ensures targets when used # in metric functions stays in the same frame as other vars. targets_old = features.get("targets", None) target_modality = self._problem_hparams.modality["targets"] def infer_step(i, recent_output, recent_logits, unused_loss): """Inference step.""" if not tf.contrib.eager.in_eager_mode(): recent_output.set_shape([None, None, None, 1]) padded = tf.pad(recent_output, [[0, 0], [0, 1], [0, 0], [0, 0]]) features["targets"] = padded # This is inefficient in that it generates samples at all timesteps, # not just the last one, except if target_modality is pointwise. features["decode_loop_step"] = i samples, logits, losses = self.sample(features) # Concatenate the already-generated recent_output with last timestep # of the newly-generated samples. if target_modality.top_is_pointwise: cur_sample = samples[:, -1, :, :] else: cur_sample = samples[:, i, :, :] samples = tf.transpose(recent_output, perm=[1, 0, 2, 3]) samples = inplace_ops.alias_inplace_update(samples, i, tf.to_int64(cur_sample)) samples = tf.transpose(samples, perm=[1, 0, 2, 3]) if not tf.contrib.eager.in_eager_mode(): samples.set_shape([None, None, None, 1]) # Assuming we have one shard for logits. recent_logits = tf.transpose(recent_logits, perm=[1, 0, 2, 3, 4]) recent_logits = inplace_ops.alias_inplace_update( recent_logits, i, tf.squeeze(logits[:, -1:], axis=1)) logits = tf.transpose(recent_logits, perm=[1, 0, 2, 3, 4]) loss = sum([l for l in losses.values() if l is not None]) return i + 1, samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64) # Hack: foldl complains when the output shape is less specified than the # input shape, so we confuse it about the input shape. initial_output = tf.slice(initial_output, [0, 0, 0, 0], common_layers.shape_list(initial_output)) target_modality = self._problem_hparams.modality["targets"] if target_modality.is_class_modality: decode_length = 1 else: if "partial_targets" in features: prefix_length = common_layers.shape_list(features["partial_targets"])[1] else: prefix_length = common_layers.shape_list(features["inputs"])[1] decode_length = prefix_length + decode_length # Initial values of result, logits and loss. result = tf.concat( [initial_output, tf.zeros([batch_size, decode_length, 1, 1], tf.int64)], axis=1) # tensor padded to [batch_size, decode_length, 1, 1, vocab_size] logits = tf.zeros((batch_size, decode_length, 1, 1, target_modality.top_dimensionality)) if not tf.contrib.eager.in_eager_mode(): logits.set_shape([None, None, None, None, None]) loss = 0.0 def while_exit_cond(i, result, logits, loss): # pylint: disable=unused-argument """Exit the loop either if reach decode_length or EOS.""" not_overflow = i < decode_length if self._problem_hparams.stop_at_eos: def fn_not_eos(): # Check if the last predicted element is a EOS return tf.reduce_any( tf.not_equal( tf.squeeze(result[:, -1, :, :]), text_encoder.EOS_ID)) not_eos = tf.cond( # We only check for early stopping if there is at least 1 element ( # otherwise not_eos will crash). tf.not_equal(i, 0), fn_not_eos, lambda: True, ) return tf.cond( tf.equal(batch_size, 1), # If batch_size == 1, we check EOS for early stopping. lambda: tf.logical_and(not_overflow, not_eos), # Else, just wait for max length lambda: not_overflow) return not_overflow _, result, logits, loss = tf.while_loop( while_exit_cond, infer_step, [tf.constant(0), result, logits, loss], shape_invariants=[ tf.TensorShape([]), tf.TensorShape([batch_size, decode_length, 1, 1]), tf.TensorShape([ batch_size, decode_length, 1, 1, target_modality.top_dimensionality ]), tf.TensorShape([]), ], back_prop=False, parallel_iterations=1) if inputs_old is not None: # Restore to not confuse Estimator. features["inputs"] = inputs_old # Reassign targets back to the previous value. if targets_old is not None: features["targets"] = targets_old losses = {"training": loss} if "partial_targets" in features: partial_target_length = common_layers.shape_list( features["partial_targets"])[1] result = tf.slice(result, [0, partial_target_length, 0, 0], [-1, -1, -1, -1]) return { "outputs": result, "scores": None, "logits": logits, "losses": losses, } def _slow_greedy_infer(self, features, decode_length): """A slow greedy inference method. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ if not features: features = {} inputs_old = None if "inputs" in features and len(features["inputs"].shape) < 4: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 2) if not self.has_input: # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] features["partial_targets"] = tf.to_int64(partial_targets) # Save the targets in a var and reassign it after the tf.while loop to avoid # having targets being in a 'while' frame. This ensures targets when used # in metric functions stays in the same frame as other vars. targets_old = features.get("targets", None) target_modality = self._problem_hparams.modality["targets"] def infer_step(recent_output, recent_logits, unused_loss): """Inference step.""" if not tf.contrib.eager.in_eager_mode(): if self._target_modality_is_real: dim = self._problem_hparams.modality["targets"].top_dimensionality recent_output.set_shape([None, None, None, dim]) else: recent_output.set_shape([None, None, None, 1]) padded = tf.pad(recent_output, [[0, 0], [0, 1], [0, 0], [0, 0]]) features["targets"] = padded # This is inefficient in that it generates samples at all timesteps, # not just the last one, except if target_modality is pointwise. samples, logits, losses = self.sample(features) # Concatenate the already-generated recent_output with last timestep # of the newly-generated samples. if target_modality.top_is_pointwise: cur_sample = samples[:, -1, :, :] else: cur_sample = samples[:, common_layers.shape_list(recent_output)[1], :, :] if self._target_modality_is_real: cur_sample = tf.expand_dims(cur_sample, axis=1) samples = tf.concat([recent_output, cur_sample], axis=1) else: cur_sample = tf.to_int64(tf.expand_dims(cur_sample, axis=1)) samples = tf.concat([recent_output, cur_sample], axis=1) if not tf.contrib.eager.in_eager_mode(): samples.set_shape([None, None, None, 1]) # Assuming we have one shard for logits. logits = tf.concat([recent_logits, logits[:, -1:]], 1) loss = sum([l for l in losses.values() if l is not None]) return samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] if self._target_modality_is_real: dim = self._problem_hparams.modality["targets"].top_dimensionality initial_output = tf.zeros((batch_size, 0, 1, dim), dtype=tf.float32) else: initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64) # Hack: foldl complains when the output shape is less specified than the # input shape, so we confuse it about the input shape. initial_output = tf.slice(initial_output, [0, 0, 0, 0], common_layers.shape_list(initial_output)) target_modality = self._problem_hparams.modality["targets"] if target_modality.is_class_modality: decode_length = 1 else: if "partial_targets" in features: prefix_length = common_layers.shape_list(features["partial_targets"])[1] else: prefix_length = common_layers.shape_list(features["inputs"])[1] decode_length = prefix_length + decode_length # Initial values of result, logits and loss. result = initial_output if self._target_modality_is_real: logits = tf.zeros((batch_size, 0, 1, target_modality.top_dimensionality)) logits_shape_inv = [None, None, None, None] else: # tensor of shape [batch_size, time, 1, 1, vocab_size] logits = tf.zeros((batch_size, 0, 1, 1, target_modality.top_dimensionality)) logits_shape_inv = [None, None, None, None, None] if not tf.contrib.eager.in_eager_mode(): logits.set_shape(logits_shape_inv) loss = 0.0 def while_exit_cond(result, logits, loss): # pylint: disable=unused-argument """Exit the loop either if reach decode_length or EOS.""" length = common_layers.shape_list(result)[1] not_overflow = length < decode_length if self._problem_hparams.stop_at_eos: def fn_not_eos(): return tf.not_equal( # Check if the last predicted element is a EOS tf.squeeze(result[:, -1, :, :]), text_encoder.EOS_ID) not_eos = tf.cond( # We only check for early stopping if there is at least 1 element ( # otherwise not_eos will crash). tf.not_equal(length, 0), fn_not_eos, lambda: True, ) return tf.cond( tf.equal(batch_size, 1), # If batch_size == 1, we check EOS for early stopping. lambda: tf.logical_and(not_overflow, not_eos), # Else, just wait for max length lambda: not_overflow) return not_overflow result, logits, loss = tf.while_loop( while_exit_cond, infer_step, [result, logits, loss], shape_invariants=[ tf.TensorShape([None, None, None, None]), tf.TensorShape(logits_shape_inv), tf.TensorShape([]), ], back_prop=False, parallel_iterations=1) if inputs_old is not None: # Restore to not confuse Estimator. features["inputs"] = inputs_old # Reassign targets back to the previous value. if targets_old is not None: features["targets"] = targets_old losses = {"training": loss} if "partial_targets" in features: partial_target_length = common_layers.shape_list( features["partial_targets"])[1] result = tf.slice(result, [0, partial_target_length, 0, 0], [-1, -1, -1, -1]) return { "outputs": result, "scores": None, "logits": logits, "losses": losses, } def sample(self, features): """Run the model and extract samples. Args: features: an map of string to `Tensor`. Returns: samples: an integer `Tensor`. logits: a list of `Tensor`s, one per datashard. losses: a dictionary: {loss-name (string): floating point `Scalar`}. """ logits, losses = self(features) # pylint: disable=not-callable if self._target_modality_is_real: return logits, logits, losses # Raw numbers returned from real modality. if self.hparams.sampling_method == "argmax": samples = tf.argmax(logits, axis=-1) else: assert self.hparams.sampling_method == "random" def multinomial_squeeze(logits, temperature=1.0): logits_shape = common_layers.shape_list(logits) reshaped_logits = ( tf.reshape(logits, [-1, logits_shape[-1]]) / temperature) choices = tf.multinomial(reshaped_logits, 1) choices = tf.reshape(choices, logits_shape[:-1]) return choices samples = multinomial_squeeze(logits, self.hparams.sampling_temp) return samples, logits, losses def _shard_features(self, features): # pylint: disable=missing-docstring sharded_features = dict() for k, v in sorted(six.iteritems(features)): v = tf.convert_to_tensor(v) v_shape = common_layers.shape_list(v) if not v_shape: v = tf.expand_dims(v, axis=-1) v_shape = [1] if v_shape == [1]: v = tf.tile(v, tf.to_int32([self._num_datashards])) sharded_features[k] = self._data_parallelism( tf.identity, tf.split(v, self._num_datashards, 0)) return sharded_features def _to_features_per_datashard(self, features): datashard_features = [] assert len(features[list(features.keys())[0]]) == self._num_datashards for d in range(self._num_datashards): f = {k: v[d] for k, v in six.iteritems(features)} datashard_features.append(f) return datashard_features def _to_single_features_dict(self, datashard_features): assert len(datashard_features) == self._num_datashards features = collections.defaultdict(list) for feats in datashard_features: for k, v in six.iteritems(feats): features[k].append(v) return features @staticmethod def get_train_hooks(model_name, hook_context): model_cls = registry.model(model_name) return model_cls.train_hooks(hook_context) @staticmethod def get_eval_hooks(model_name, hook_context): model_cls = registry.model(model_name) return model_cls.eval_hooks(hook_context) @staticmethod def make_estimator_model_fn(model_name, hparams, decode_hparams=None, use_tpu=False): model_cls = registry.model(model_name) def wrapping_model_fn(features, labels, mode, params=None, config=None): return model_cls.estimator_model_fn( hparams, features, labels, mode, config=config, params=params, decode_hparams=decode_hparams, use_tpu=use_tpu) return wrapping_model_fn @classmethod def estimator_model_fn(cls, hparams, features, labels, mode, config=None, params=None, decode_hparams=None, use_tpu=False): """Model fn for Estimator. Args: hparams: HParams, model hyperparameters features: dict<str name, Tensor feature> labels: Tensor mode: tf.estimator.ModeKeys config: RunConfig, possibly with data_parallelism attribute params: dict, may include batch_size, use_tpu decode_hparams: HParams, used when mode == PREDICT. use_tpu: A bool, whether to build the inference graph for TPU. Returns: TPUEstimatorSpec if use tpu else EstimatorSpec """ if mode == tf.estimator.ModeKeys.TRAIN: _create_dummy_vars() hparams = copy.deepcopy(hparams) # Instantiate model data_parallelism = None if not use_tpu and config: data_parallelism = config.data_parallelism reuse = tf.get_variable_scope().reuse model = cls( hparams, mode, data_parallelism=data_parallelism, decode_hparams=decode_hparams, _reuse=reuse) # PREDICT mode if mode == tf.estimator.ModeKeys.PREDICT: if use_tpu: inputs = features["inputs"] shape = inputs.get_shape().as_list() if shape[0] is None: shape[0] = decode_hparams.batch_size or hparams.batch_size if shape[1] is None: shape[1] = hparams.max_input_seq_length or hparams.max_length inputs.set_shape(shape) return model.estimator_spec_predict(features, use_tpu=use_tpu) # TRAIN and EVAL modes if hparams.eval_run_autoregressive and mode == tf.estimator.ModeKeys.EVAL: logits, losses_dict = model.eval_autoregressive(features) else: logits, losses_dict = model(features) # pylint: disable=not-callable # Set known shapes if common_layers.is_xla_compiled(): if isinstance(logits, dict): for k, v in sorted(six.iteritems(logits)): if "scalar/" in k: continue shape = v.get_shape().as_list() if shape[0] is None: shape[0] = params["batch_size"] if shape[1] is None: shape[1] = hparams.max_length v.set_shape(shape) else: shape = logits.get_shape().as_list() if shape[0] is None: shape[0] = params["batch_size"] if shape[1] is None: shape[1] = hparams.max_length logits.set_shape(shape) assert "training" in losses_dict # Attack mode if mode == "attack": return logits # Summarize losses model._summarize_losses(losses_dict) # pylint: disable=protected-access # Accumulate losses loss = sum(losses_dict[key] for key in sorted(losses_dict.keys())) # EVAL mode if mode == tf.estimator.ModeKeys.EVAL: return model.estimator_spec_eval(features, logits, labels, loss, losses_dict) # TRAIN mode assert mode == tf.estimator.ModeKeys.TRAIN num_async_replicas = (1 if (use_tpu or not config) else config.t2t_device_info["num_async_replicas"]) return model.estimator_spec_train( loss, num_async_replicas=num_async_replicas, use_tpu=use_tpu) def initialize_from_ckpt(self, ckpt_dir): model_dir = self._hparams.get("model_dir", None) already_has_ckpt = ( model_dir and tf.train.latest_checkpoint(model_dir) is not None) if already_has_ckpt: return # TODO(mitchellstern): Add support for partitioned variables? reader = tf.contrib.framework.load_checkpoint(ckpt_dir) variable_map = {} for var in tf.contrib.framework.get_trainable_variables(): var_name = var.name.split(":")[0] if reader.has_tensor(var_name): log_info("Loading variable from checkpoint: %s", var_name) variable_map[var_name] = var else: log_info( "Cannot find variable in checkpoint, skipping: %s", var_name) tf.train.init_from_checkpoint(ckpt_dir, variable_map) def estimator_spec_train(self, loss, num_async_replicas=1, use_tpu=False): """Constructs `tf.estimator.EstimatorSpec` for TRAIN (training) mode.""" train_op = self.optimize(loss, num_async_replicas=num_async_replicas, use_tpu=use_tpu) if use_tpu: if self._hparams.warm_start_from: def scaffold_fn(): self.initialize_from_ckpt(self._hparams.warm_start_from) return tf.train.Scaffold() else: scaffold_fn = None # Note: important to call this before remove_summaries() if self.hparams.tpu_enable_host_call: host_call = create_host_call(self.hparams.model_dir) else: host_call = None remove_summaries() return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=train_op, host_call=host_call, scaffold_fn=scaffold_fn) else: if self._hparams.warm_start_from: self.initialize_from_ckpt(self._hparams.warm_start_from) return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=train_op) def estimator_spec_eval(self, features, logits, labels, loss, losses_dict): """Constructs `tf.estimator.EstimatorSpec` for EVAL (evaluation) mode.""" del losses_dict hparams = self.hparams if not hasattr(hparams, "problem"): raise NotImplementedError(_no_problem_err("estimator_spec_eval")) problem = hparams.problem if common_layers.is_xla_compiled(): remove_summaries() if isinstance(logits, dict): eval_metrics_fn = create_tpu_eval_metrics_fn(problem, hparams) # For TPU, logits dict will be passed as keyword arguments to # eval_metrics_fn. Here we add the labels to those arguments. logits.update({"labels": labels}) return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, logits), loss=loss) else: eval_metrics_fn = create_tpu_eval_metrics_fn(problem, hparams) return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, [logits, labels]), loss=loss) else: task_list = [problem] if hasattr(problem, "task_list"): task_list = problem.task_list eval_metrics_fns = metrics.create_evaluation_metrics(task_list, hparams) eval_metrics = {} for metric_name, metric_fn in six.iteritems(eval_metrics_fns): if isinstance(logits, dict): # the key is located in the center of metric_name: "metrics-%s/%s/%s" k = metric_name.split("/")[1] if k in logits: eval_metrics[metric_name] = metric_fn(logits[k], features, features[k]) else: # We do not make it an error because we sometimes run models that # predict only parts of the targets defined by the Problem class. # For example, an autoencoder or pure-video model can run on a gym # problem even if another model is also predicting other things, # like actions or rewards. tf.logging.warning("No key %s in logits for evaluation." % k) else: eval_metrics[metric_name] = metric_fn(logits, features, features["targets"]) if isinstance(logits, dict): predictions = logits else: predictions = {"predictions": logits} return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.EVAL, predictions=predictions, eval_metric_ops=eval_metrics, loss=loss) def estimator_spec_predict(self, features, use_tpu=False): """Constructs `tf.estimator.EstimatorSpec` for PREDICT (inference) mode.""" decode_hparams = self._decode_hparams infer_out = self.infer( features, beam_size=decode_hparams.beam_size, top_beams=(decode_hparams.beam_size if decode_hparams.return_beams else 1), alpha=decode_hparams.alpha, decode_length=decode_hparams.extra_length, use_tpu=use_tpu) if isinstance(infer_out, dict): outputs = infer_out["outputs"] scores = infer_out["scores"] else: outputs = infer_out scores = None inputs = features.get("inputs") if inputs is None: inputs = features["targets"] predictions = { "outputs": outputs, "scores": scores, "inputs": inputs, "targets": features.get("infer_targets"), } # Pass through remaining features for name, feature in features.items(): if name not in list(predictions.keys()) + ["infer_targets"]: if not feature.shape.as_list(): # All features must have a batch dimension batch_size = common_layers.shape_list(outputs)[0] feature = tf.tile(tf.expand_dims(feature, 0), [batch_size]) predictions[name] = feature _del_dict_non_tensors(predictions) export_out = {"outputs": predictions["outputs"]} if "scores" in predictions: export_out["scores"] = predictions["scores"] # Necessary to rejoin examples in the correct order with the Cloud ML Engine # batch prediction API. if "batch_prediction_key" in predictions: export_out["batch_prediction_key"] = predictions["batch_prediction_key"] remove_summaries() export_outputs = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(export_out) } if use_tpu: return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.PREDICT, predictions=predictions, export_outputs=export_outputs) else: return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.PREDICT, predictions=predictions, export_outputs=export_outputs) def _normalize_body_output(self, body_out): if isinstance(body_out, tuple): output, losses = body_out if not isinstance(losses, dict): losses = {"extra": tf.reduce_mean(losses)} else: output = body_out losses = {"extra": 0.0} return output, losses def _summarize_losses(self, losses_dict): """Adds `tf.summary`s to all terms in the losses dictionary.""" if common_layers.should_generate_summaries(): with tf.name_scope("losses"): for loss_name, loss_val in sorted(losses_dict.items()): tf.summary.scalar(loss_name, loss_val) def _with_timing(fn, msg, silent=False): def fn_with_timing(*args, **kwargs): start_time = time.time() res = fn(*args, **kwargs) if not silent: log_info("Doing %s took %.3f sec." % (msg, time.time() - start_time)) return res return fn_with_timing def _create_dummy_vars(): """Dummy vars for restore to work when not using TPU codepath.""" var_names = set([v.name for v in tf.global_variables()]) if "losses_avg/problem_0/total_loss:0" in var_names: return with tf.variable_scope("losses_avg"): with tf.variable_scope("problem_0"): for var_name in ["total", "extra", "training"]: tf.get_variable( "%s_loss" % var_name, initializer=100.0, trainable=False) with tf.variable_scope("train_stats"): tf.get_variable("problem_0_steps", initializer=0, trainable=False) # These metrics are implemented with py_funcs and therefore do no work with TPU TPU_METRIC_BLACKLIST = set([ metrics.Metrics.APPROX_BLEU, metrics.Metrics.ROUGE_2_F, metrics.Metrics.ROUGE_L_F, metrics.Metrics.IMAGE_SUMMARY, ]) def create_tpu_eval_metrics_fn(problem, model_hparams): """Create the metrics_fn that TPUEstimatorSpec expects.""" metric_fns = [] eval_metrics = problem.eval_metrics() tm = _create_target_modality(problem.get_hparams(model_hparams).modality) if isinstance(tm, dict): for k, v in six.iteritems(tm): weights_fn = v.targets_weights_fn def make_metric_fn(metric_fn): def wrapped_metric_fn(logits, labels, weights_fn=weights_fn): num, den = metric_fn(logits, labels, weights_fn=weights_fn) return tf.metrics.mean(num, den) return wrapped_metric_fn for metric in eval_metrics: if metric in TPU_METRIC_BLACKLIST: log_warn("Skipping eval metric %s in TPU_METRIC_BLACKLIST", metric) continue name = "%s/metrics-%s/%s" % (k, problem.name, metric) metric_fns.append((name, make_metric_fn(metrics.METRICS_FNS[metric]))) else: weights_fn = tm.targets_weights_fn def make_metric_fn(metric_fn): def wrapped_metric_fn(logits, labels): num, den = metric_fn(logits, labels, weights_fn=weights_fn) return tf.metrics.mean(num, den) return wrapped_metric_fn for metric in eval_metrics: if metric in TPU_METRIC_BLACKLIST: log_warn("Skipping eval metric %s in TPU_METRIC_BLACKLIST", metric) continue name = "metrics-%s/%s" % (problem.name, metric) metric_fns.append((name, make_metric_fn(metrics.METRICS_FNS[metric]))) def all_metrics_fn(logits=None, labels=None, **kwargs): """Construct metrics dictionary.""" metrics_dict = {} if logits is None: logits = kwargs for name, fn in metric_fns: if isinstance(logits, dict) and isinstance(labels, dict): for k, v in six.iteritems(logits): metrics_dict["%s/%s" % (k, name)] = fn(v, labels[k]) elif isinstance(logits, dict): tf.logging.warning("Logits is a dict, but labels is not; only " "evaluating logits['targets'] against labels.") metrics_dict["%s/%s" % ("targets", name)] = fn(logits["targets"], labels) else: metrics_dict[name] = fn(logits, labels) return metrics_dict return all_metrics_fn def remove_summaries(): """Remove summaries from the default graph.""" g = tf.get_default_graph() key = tf.GraphKeys.SUMMARIES log_debug("Remove summaries %s" % str(g.get_collection(key))) del g.get_collection_ref(key)[:] assert not g.get_collection(key) def create_host_call(model_dir): """Construct a host_call writing scalar summaries. Args: model_dir: String containing path to train Returns: (fn, args) Pair to be called by TPUEstimator as the host_call. """ graph = tf.get_default_graph() summaries = graph.get_collection(tf.GraphKeys.SUMMARIES) gs_t = tf.reshape(tf.to_int32(tf.train.get_global_step()), [1]) summary_kwargs = collections.OrderedDict() for t in summaries: # TODO(aidangomez): enable ImageSummary support when we have a faster method # see @shibow's comment in cl/202344570 if t.op.type not in ["ScalarSummary"]: tf.logging.warn("Ignoring unsupported tf.Summary type %s" % t.op.type) continue name = t.op.name tensor = t.op.inputs[1] if t.op.type == "ScalarSummary": assert tensor.shape.is_compatible_with([]) if tensor.dtype == tf.int64: tensor = tf.to_int32(tensor) summary_kwargs["ScalarSummary" + name] = tf.reshape(tensor, [1]) elif t.op.type == "ImageSummary": # TODO(aidangomez): as we move to support more types, update # common_layers.tpu_safe_image_summary if tensor.dtype != tf.float32: tf.logging.warn( "Currently T2T on TPU only supports ImageSummary of " "tf.float32-type Tensors. Skipping Tensor " "%s with dtype %s..." % (tensor.name, tensor.dtype)) continue # tensor = tf.to_float(tensor) summary_kwargs["ImageSummary" + name] = tensor # When no supported summaries are found, don't create host_call. Otherwise, # TPU outfeed queue would enqueue global_step while host_call doesn't dequeue # it, eventually causing hang. if not summary_kwargs: return None summary_kwargs["global_step"] = gs_t log_info("summary_kwargs %s" % str(summary_kwargs)) def host_call_fn(**kwargs): """Training host call. Creates summaries for training metrics. Args: **kwargs: Dict of {str: Tensor} , with `Tensor` of shape `[batch]`. Must contain key "global_step" with value of current global_step Tensor. Returns: List of summary ops to run on the CPU host. """ gs = tf.to_int64(kwargs.pop("global_step")[0]) with tf.contrib.summary.create_file_writer(model_dir).as_default(): with tf.contrib.summary.always_record_summaries(): # We need to use tf.contrib.summary in order to feed the `step`. for name, value in sorted(six.iteritems(kwargs)): if name.startswith("ScalarSummary"): name = name[len("ScalarSummary"):] tf.contrib.summary.scalar( name, tf.reduce_mean(tf.to_float(value)), step=gs) elif name.startswith("ImageSummary"): name = name[len("ImageSummary"):] tf.contrib.summary.image(name, value, step=gs) return tf.contrib.summary.all_summary_ops() return (host_call_fn, summary_kwargs) def _del_dict_non_tensors(d): for k in list(d.keys()): if not isinstance(d[k], tf.Tensor): del d[k] class DummyVariableStore(object): @contextlib.contextmanager def as_default(self): yield def create_eager_var_store(): if tf.contrib.eager.in_eager_mode(): return variable_scope.EagerVariableStore() else: return DummyVariableStore() def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses, sharded_features, transformed_features, model): """Scheduled sampling.""" target_modality = problem_hparams.modality["targets"] def sample(x): """Multinomial sampling from a n-dimensional tensor.""" vocab_size = target_modality.top_dimensionality samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]), 1) reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1]) return tf.to_int32(reshaped_samples) def mix_gold_sampled(gold_targets, sampled_targets): return tf.where( tf.less( tf.random_uniform(common_layers.shape_list(sampled_targets)), hparams.scheduled_sampling_gold_mixin_prob), gold_targets, sampled_targets) def sampled_results(): """Generate scheduled sampling results.""" sampled_targets = dp(sample, sharded_logits) new_targets = dp(mix_gold_sampled, sharded_features["targets"], sampled_targets) new_features = transformed_features with tf.variable_scope(tf.get_variable_scope(), reuse=True): with tf.variable_scope(target_modality.name): new_features["targets"] = target_modality.targets_bottom_sharded( new_targets, dp) with tf.variable_scope("body"): body_outputs, losses = model.model_fn_sharded(new_features) if not isinstance(losses, dict): # If it's a single extra loss. losses = {"extra": losses} with tf.variable_scope(target_modality.name): new_sharded_logits = target_modality.top_sharded( body_outputs, sharded_features["targets"], dp) if "training" not in losses: training_loss = target_modality.loss_sharded( sharded_logits, sharded_features["targets"], dp) training_loss *= problem_hparams.loss_multiplier losses["training"] = training_loss return new_sharded_logits, losses # Run the above conditionally. prob = hparams.scheduled_sampling_prob prob *= common_layers.inverse_exp_decay( hparams.scheduled_sampling_warmup_steps, min_value=0.001) sharded_logits, losses = tf.cond( tf.less(tf.random_uniform([]), prob), sampled_results, lambda: (sharded_logits, losses)) return sharded_logits, losses def average_sharded_losses(sharded_losses): """Average losses across datashards. Args: sharded_losses: list<dict<str loss_name, Tensor loss>>. The loss can be a single Tensor or a 2-tuple (numerator and denominator). Returns: losses: dict<str loss_name, Tensor avg_loss> """ losses = {} for loss_name in sorted(sharded_losses[0]): all_shards = [shard_losses[loss_name] for shard_losses in sharded_losses] if isinstance(all_shards[0], tuple): sharded_num, sharded_den = zip(*all_shards) mean_loss = ( tf.add_n(sharded_num) / tf.maximum( tf.cast(1.0, sharded_den[0].dtype), tf.add_n(sharded_den))) else: mean_loss = tf.reduce_mean(all_shards) losses[loss_name] = mean_loss return losses def summarize_features(features, num_shards=1): """Generate summaries for features.""" if not common_layers.should_generate_summaries(): return with tf.name_scope("input_stats"): for (k, v) in sorted(six.iteritems(features)): if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1: tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards) tf.summary.scalar("%s_length" % k, tf.shape(v)[1]) nonpadding = tf.to_float(tf.not_equal(v, 0)) nonpadding_tokens = tf.reduce_sum(nonpadding) tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens) tf.summary.scalar("%s_nonpadding_fraction" % k, tf.reduce_mean(nonpadding)) _already_logged = set() def _eager_log(level, *args): if tf.contrib.eager.in_eager_mode() and args in _already_logged: return _already_logged.add(args) getattr(tf.logging, level)(*args) def log_debug(*args): _eager_log("debug", *args) def log_info(*args): _eager_log("info", *args) def log_warn(*args): _eager_log("warn", *args) def _compose_custom_getters(getter_a, getter_b): """Compose two custom getters. Example use: tf.get_variable_scope().set_custom_getter( compose_custom_getters(tf.get_variable_scope().custom_getter, new_getter)) This composes getters in the same way as creating a new variable scope with the new_getter, but it does not actually create a new variable scope. Args: getter_a: a custom getter - generally from the existing variable scope. getter_b: a custom getter Returns: a custom getter """ if not getter_a: return getter_b if not getter_b: return getter_a def getter_fn(getter, *args, **kwargs): return getter_b(functools.partial(getter_a, getter), *args, **kwargs) return getter_fn def set_custom_getter_compose(custom_getter): """Set a custom getter in the current variable scope. Do not overwrite the existing custom getter - rather compose with it. Args: custom_getter: a custom getter. """ tf.get_variable_scope().set_custom_getter( _compose_custom_getters(tf.get_variable_scope().custom_getter, custom_getter)) def _create_target_modality(modality_dict): # TODO(trandustin): We require this in order to apply methods utilized # differently for modalities which are "targets" # (e.g., modality.target_bottom). In the future, remove need for this # behavior. return {k: v for k, v in six.iteritems(modality_dict) if "target" in k}
the-stack_106_23791
# A modification version from chainercv repository. # (See https://github.com/chainer/chainercv/blob/master/chainercv/evaluations/eval_detection_voc.py) from __future__ import division import os import torch import logging import numpy as np from tqdm import tqdm import pycocotools.mask as mask_util from maskrcnn_benchmark.data.datasets.evaluation.kitti.kittieval import KITTIeval from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.data.datasets.evaluation.coco.coco_eval import COCOResults, check_expected_results def do_kitti_evaluation( dataset, predictions, box_only, output_folder, iou_types, expected_results, expected_results_sigma_tol, ): logger = logging.getLogger("maskrcnn_benchmark.inference") pred_boxlists = [] gt_boxlists = [] for image_id, prediction in enumerate(predictions): img_info = dataset.get_img_info if len(prediction) == 0: continue image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) pred_boxlists.append(prediction) gt_boxlist = dataset.get_groundtruth(image_id) gt_boxlists.append(gt_boxlist) if box_only: logger.info("Evaluating bbox proposals") areas = {"all": "", "small": "s", "medium": "m", "large": "l"} res = COCOResults("box_proposal") for limit in [100, 1000]: for area, suffix in areas.items(): stats = evaluate_box_proposals(pred_boxlists, gt_boxlists, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res.results["box_proposal"][key] = stats["ar"].item() logger.info(res) check_expected_results(res, expected_results, expected_results_sigma_tol) if output_folder: torch.save(res, os.path.join(output_folder, "box_proposals.pth")) return kitti_results = {} kitti_gts = {} if "bbox" in iou_types: logger.info("Preparing bbox results") kitti_results["bbox"] = prepare_for_kitti_detection(pred_boxlists) kitti_gts["bbox"] = prepare_for_kitti_detection(pred_boxlists) if "segm" in iou_types: logger.info("Preparing segm results") kitti_results["segm"] = prepare_for_kitti_segmentation(pred_boxlists) kitti_gts["segm"] = prepare_for_kitti_segmentation(pred_boxlists) #results = COCOResults(*iou_types) logger.info("Evaluating predictions") for iou_type in iou_types: res = evaluate_predictions_on_kitti(kitti_gts, kitti_results, iou_type) # results.update(res) # logger.info(results) #check_expected_results(results, expected_results, expected_results_sigma_tol) # #return results return res def evaluate_box_proposals(predictions, gt_boxlists, thresholds=None, area="all", limit=None): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for image_id, prediction in enumerate(predictions): gt_boxes = gt_boxlists[image_id] gt_areas = torch.as_tensor(gt_boxes.area()) valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if len(prediction) == 0: continue if limit is not None and len(prediction) > limit: prediction = prediction[:limit] prediction = prediction.resize(gt_boxes.size) overlaps = boxlist_iou(prediction, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(prediction), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = torch.cat(gt_overlaps, dim=0) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def prepare_for_kitti_detection(pred_boxlists): kitti_results = [] for image_id, prediction in enumerate(pred_boxlists): if len(prediction) == 0: continue boxes = prediction.bbox.tolist() areas = [(b[3]-b[1])*(b[2]-b[0]) for b in boxes] scores = prediction.get_field("scores").tolist() labels = prediction.get_field("labels").tolist() kitti_results.extend( [ { "image_id": image_id, "category_id": labels[k], "bbox": box, "score": scores[k], 'area': areas[k], 'id': k + 1, } for k, box in enumerate(boxes) ] ) return kitti_results def prepare_for_kitti_segmentation(pred_boxlists): masker = Masker(threshold=0.5, padding=1) coco_results = [] for image_id, prediction in tqdm(enumerate(pred_boxlists)): if len(prediction) == 0: continue masks = prediction.get_field("mask") areas = masks.sum(-1).sum(-1) masks = masker(masks.expand(1, -1, -1, -1, -1), prediction) masks = masks[0] scores = prediction.get_field("scores").tolist() labels = prediction.get_field("labels").tolist() rles = [mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": image_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], 'area': areas[k], 'id': k+1, } for k, rle in enumerate(rles) ] ) return coco_results def evaluate_predictions_on_kitti(kitti_gts, kitti_results, iou_type="bbox"): kitti_eval = KITTIeval(kitti_gts, kitti_results, iou_type) kitti_eval.evaluate() kitti_eval.accumulate() kitti_eval.summarize() return kitti_eval
the-stack_106_23792
import os import numpy as np from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.manifold import TSNE import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import pandas as pd import json def plot_3d(vector_array, save_plot_dir): """ Plot 3D vector features distribution from vector array :param vector_array: (N x 3) vector array, where N is the number of images :param save_plot_dir: (string) directory to save plot :return: save 3D distribution feature to disk """ principal_df = pd.DataFrame(data=vector_array, columns=['pc1', 'pc2', 'pc3']) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') xs = principal_df['pc1'] ys = principal_df['pc2'] zs = principal_df['pc3'] ax.scatter(xs, ys, zs, s=50, alpha=0.6, edgecolors='w') ax.set_xlabel('pc1') ax.set_ylabel('pc2') ax.set_zlabel('pc3') plt.savefig(save_plot_dir + '/3D_scatter.png') plt.close() def plot_2d(vector_array, save_plot_dir): """ Plot 2D vector features distribution from vector array :param vector_array: (N x 2) vector array, where N is the number of images :param save_plot_dir: (string) directory to save plot :return: save 2D distribution feature to disk """ principal_df = pd.DataFrame(data = vector_array, columns = ['pc1', 'pc2']) fig = plt.figure() ax = fig.add_subplot(111) xs = principal_df['pc1'] ys = principal_df['pc2'] ax.scatter(xs, ys, s=50, alpha=0.6, edgecolors='w') ax.set_xlabel('pc1') ax.set_ylabel('pc2') plt.savefig(save_plot_dir + '/2D_scatter.png') plt.close() def read_vector(img_dir): """ Read vector in a directory to array (N x D): N is number of vectors, D is vector's dimension :param img_dir: (string) directory where feature vectors are :return: (array) N X D array """ vector_files = [f for f in os.listdir(img_dir) if f.endswith(".npz")] vector_array = [] for img in vector_files: vector = np.loadtxt(os.path.join(img_dir, img)) vector_array.append(vector) vector_array = np.asarray(vector_array) return vector_array, vector_files def find_best_k(vector_array, save_plot_dir, max_k=100): """ Find best number of cluster :param vector_array: (array) N x D dimension feature vector array :param save_plot_dir: (string) path to save cost figure :param max_k: (int) maximum number of cluster to analyze :return: plot the elbow curve to figure out the best number of cluster """ cost = [] dim = vector_array.shape[1] for i in range(1, max_k): kmeans = KMeans(n_clusters=i, random_state=0) kmeans.fit(vector_array) cost.append(kmeans.inertia_) # plot the cost against K values plt.plot(range(1, max_k), cost, color='g', linewidth='3') plt.xlabel("Value of K") plt.ylabel("Squared Error (Cost)") plt.savefig(save_plot_dir + '/cost_' + str(dim) + 'D.png') plt.close() def k_mean(vector_array, k): """ Apply k-mean clustering approach to assign each feature image in vector array to suitable subsets :param vector_array: (array) N x D dimension feature vector array :param k: (int) number of cluster :return: (array) (N x 1) label array """ kmeans = KMeans(n_clusters=k, random_state=0) kmeans.fit(vector_array) labels = kmeans.labels_ return labels def reduce_dim_combine(vector_array, dim=2): """ Applying dimension reduction to vector_array :param vector_array: (array) N x D dimension feature vector array :param dim: (int) desired dimension after reduction :return: (array) N x dim dimension feature vector array """ # Standardizing the features vector_array = StandardScaler().fit_transform(vector_array) # Apply PCA first to reduce dim to 50 pca = PCA(n_components=50) vector_array = pca.fit_transform(vector_array) # Apply tSNE to reduce dim to #dim model = TSNE(n_components=dim, random_state=0) vector_array = model.fit_transform(vector_array) return vector_array if __name__ == "__main__": # Mode: investiagate to find the best k, inference to cluster # MODE = "investigate" MODE = "inference" # Image vectors root dir img_dir = "results/image_vectors/" # Final dimension dim = 2 for object_name in os.listdir(img_dir): print("Process %s" % object_name) # object_name = img_dir.split("/")[-1] vector_array, img_files = read_vector(os.path.join(img_dir, object_name)) # k_mean(vector_array) if vector_array.shape[0] >= 450: # Apply dimensional reducing approach vector_array = reduce_dim_combine(vector_array, dim) if MODE == "investigate": # Plot data distribution after reducing dimension if dim == 2: plot_2d(vector_array) save_plot_dir = "visualization/2D/" elif dim == 3: plot_3d(vector_array) save_plot_dir = "visualization/3D/" else: raise ValueError("Not support dimension") # Plot cost chart to find best value of k find_best_k(vector_array, object_name, save_plot_dir) continue # Find label for each image labels = k_mean(vector_array, k=40).tolist() assert len(labels) == len(img_files), "Not equal length" label_dict = [{"img_file": img_files[i].replace(".npz", "").replace(object_name + '_', ""), "label": str(labels[i]), "prob": "1.0"} for i in range(len(labels))] # Save to disk label_dir = "results/img_cluster/" label_outpath = os.path.join(label_dir, object_name + ".json") # os.makedirs(label_outpath, exist_ok=True) with open(label_outpath, 'w') as fp: json.dump({"data": label_dict}, fp)
the-stack_106_23796
# Copyright 2018 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf from tensorforce import util from tensorforce.core import parameter_modules from tensorforce.core.optimizers import Optimizer from tensorforce.core.optimizers.solvers import solver_modules class NaturalGradient(Optimizer): """ Natural gradient optimizer. """ def __init__( self, name, learning_rate, cg_max_iterations=20, cg_damping=1e-3, cg_unroll_loop=False, summary_labels=None ): """ Creates a new natural gradient optimizer instance. Args: learning_rate: Learning rate, i.e. KL-divergence of distributions between optimization steps. cg_max_iterations: Conjugate gradient solver max iterations. cg_damping: Conjugate gradient solver damping factor. cg_unroll_loop: Unroll conjugate gradient loop if true. """ super().__init__(name=name, summary_labels=summary_labels) self.learning_rate = self.add_module( name='learning-rate', module=learning_rate, modules=parameter_modules ) self.solver = self.add_module( name='conjugate-gradient', module='conjugate_gradient', modules=solver_modules, max_iterations=cg_max_iterations, damping=cg_damping, unroll_loop=cg_unroll_loop ) def tf_step( self, variables, arguments, fn_loss, fn_kl_divergence, return_estimated_improvement=False, **kwargs ): """ Creates the TensorFlow operations for performing an optimization step. Args: variables: List of variables to optimize. arguments: Dict of arguments for callables, like fn_loss. fn_loss: A callable returning the loss of the current model. fn_kl_divergence: A callable returning the KL-divergence relative to the current model. return_estimated_improvement: Returns the estimated improvement resulting from the natural gradient calculation if true. **kwargs: Additional arguments, not used. Returns: List of delta tensors corresponding to the updates for each optimized variable. """ # Optimize: argmin(w) loss(w + delta) such that kldiv(P(w) || P(w + delta)) = learning_rate # For more details, see our blogpost: # https://reinforce.io/blog/end-to-end-computation-graphs-for-reinforcement-learning/ arguments = util.fmap(function=tf.stop_gradient, xs=arguments) # Calculates the product x * F of a given vector x with the fisher matrix F. # Incorporating the product prevents having to calculate the entire matrix explicitly. def fisher_matrix_product(deltas): # Gradient is not propagated through solver. deltas = [tf.stop_gradient(input=delta) for delta in deltas] # kldiv kldiv = fn_kl_divergence(**arguments) # grad(kldiv) kldiv_gradients = [ tf.convert_to_tensor(value=grad) for grad in tf.gradients(ys=kldiv, xs=variables) ] # delta' * grad(kldiv) delta_kldiv_gradients = tf.add_n(inputs=[ tf.reduce_sum(input_tensor=(delta * grad)) for delta, grad in zip(deltas, kldiv_gradients) ]) # [delta' * F] = grad(delta' * grad(kldiv)) return [ tf.convert_to_tensor(value=grad) for grad in tf.gradients(ys=delta_kldiv_gradients, xs=variables) ] # loss loss = fn_loss(**arguments) # grad(loss) loss_gradients = tf.gradients(ys=loss, xs=variables) # Solve the following system for delta' via the conjugate gradient solver. # [delta' * F] * delta' = -grad(loss) # --> delta' (= lambda * delta) deltas = self.solver.solve( fn_x=fisher_matrix_product, x_init=None, b=[-grad for grad in loss_gradients] ) # delta' * F delta_fisher_matrix_product = fisher_matrix_product(deltas=deltas) # c' = 0.5 * delta' * F * delta' (= lambda * c) # TODO: Why constant and hence KL-divergence sometimes negative? half = tf.constant(value=0.5, dtype=util.tf_dtype(dtype='float')) constant = half * tf.add_n(inputs=[ tf.reduce_sum(input_tensor=(delta_F * delta)) for delta_F, delta in zip(delta_fisher_matrix_product, deltas) ]) learning_rate = self.learning_rate.value() # Zero step if constant <= 0 def no_step(): zero_deltas = [tf.zeros_like(tensor=delta) for delta in deltas] if return_estimated_improvement: return zero_deltas, tf.constant(value=0.0, dtype=util.tf_dtype(dtype='float')) else: return zero_deltas # Natural gradient step if constant > 0 def apply_step(): # lambda = sqrt(c' / c) lagrange_multiplier = tf.sqrt(x=(constant / learning_rate)) # delta = delta' / lambda estimated_deltas = [delta / lagrange_multiplier for delta in deltas] # improvement = grad(loss) * delta (= loss_new - loss_old) estimated_improvement = tf.add_n(inputs=[ tf.reduce_sum(input_tensor=(grad * delta)) for grad, delta in zip(loss_gradients, estimated_deltas) ]) # Apply natural gradient improvement. applied = self.apply_step(variables=variables, deltas=estimated_deltas) with tf.control_dependencies(control_inputs=(applied,)): # Trivial operation to enforce control dependency estimated_delta = [ util.identity_operation(x=estimated_delta) for estimated_delta in estimated_deltas ] if return_estimated_improvement: return estimated_delta, estimated_improvement else: return estimated_delta # Natural gradient step only works if constant > 0 skip_step = constant > tf.constant(value=0.0, dtype=util.tf_dtype(dtype='float')) return self.cond(pred=skip_step, true_fn=no_step, false_fn=apply_step)
the-stack_106_23797
import re from urlparse import parse_qs, urlparse from pyquery import PyQuery as pq from django.conf import settings from django.core import mail from django.test import TransactionTestCase from frontend.models import EmailMessage from frontend.models import OrgBookmark from frontend.models import SearchBookmark from allauth.account.models import EmailAddress class TestAlertViews(TransactionTestCase): fixtures = ['chemicals', 'sections', 'ccgs', 'practices', 'prescriptions', 'measures'] def _post_org_signup(self, entity_id, email='[email protected]'): form_data = {'email': email} if len(entity_id) == 3: url = "/ccg/%s/" % entity_id form_data['pct'] = entity_id else: url = "/practice/%s/" % entity_id form_data['practice'] = entity_id return self.client.post( url, form_data, follow=True) def _post_search_signup(self, url, name, email='[email protected]'): form_data = {'email': email} form_data['url'] = url form_data['name'] = name return self.client.post( '/analyse/', form_data, follow=True) def _create_user_and_login(self, email, is_superuser=False): from allauth.utils import get_user_model user = get_user_model().objects.create( username=email, email=email, is_active=True) user.set_unusable_password() if is_superuser: user.is_superuser = True user.save() EmailAddress.objects.create(user=user, email=email, primary=True, verified=True) self.client.force_login( user, 'django.contrib.auth.backends.ModelBackend') return user def test_search_email_invalid(self): response = self._post_search_signup('stuff', 'mysearch', email='boo') self.assertContains( response, "Please enter a valid email address") def test_search_email_sent(self): response = self._post_search_signup('stuff', 'mysearch') self.assertContains( response, "Check your email and click the confirmation link") self.assertEqual(len(mail.outbox), 1) self.assertIn("about mysearch", mail.outbox[0].body) def test_search_email_copy_kept(self): self._post_search_signup('stuff', 'mysearch') msg = EmailMessage.objects.first() self.assertIn("about mysearch", msg.message.body) self.assertIn("[email protected]", msg.to) def test_search_bookmark_created(self): self.assertEqual(SearchBookmark.objects.count(), 0) self._post_search_signup('stuff', '%7Emysearch') self.assertEqual(SearchBookmark.objects.count(), 1) bookmark = SearchBookmark.objects.last() self.assertEqual(bookmark.url, 'stuff') # Check the name is URL-decoded self.assertEqual(bookmark.name, '~mysearch') # But it's not approved (until they log in) self.assertFalse(bookmark.approved) def test_search_follow_email_link(self): self._post_search_signup('stuff', 'mysearch') confirm_url = re.match(r".*http://.*(/accounts/confirm-email/.*?)\s", mail.outbox[0].body, re.DOTALL).groups()[0] response = self.client.get(confirm_url, follow=True) self.assertTemplateUsed(response, 'analyse.html') self.assertContains( response, "subscribed to monthly alerts about <em>mysearch</em>") self.assertTrue(response.context['user'].is_active) # The act of logging in approves bookmarks bookmark = SearchBookmark.objects.last() self.assertTrue(bookmark.approved) def test_ccg_email_invalid(self): response = self._post_org_signup('03V', email='boo') self.assertContains( response, "Please enter a valid email address") def test_ccg_email_sent(self): email = '[email protected]' response = self._post_org_signup('03V', email=email) self.assertTrue(response.context['user'].is_anonymous()) self.assertContains( response, "Check your email and click the confirmation link") self.assertEqual(len(mail.outbox), 1) self.assertIn(email, mail.outbox[0].to) self.assertIn("about prescribing in NHS Corby", mail.outbox[0].body) def test_ccg_bookmark_added_when_already_logged_in(self): email = '[email protected]' self._create_user_and_login(email) response = self._post_org_signup('03V', email=email) self.assertEqual(response.context['user'].email, email) self.assertTemplateUsed(response, 'measures_for_one_ccg.html') self.assertContains(response, "Thanks, you're now subscribed") self.assertEqual(len(mail.outbox), 0) self.assertEqual(OrgBookmark.objects.count(), 1) self.assertTrue(OrgBookmark.objects.last().approved) def test_bookmark_added_by_other_user_is_unapproved(self): # Create user A user_a = self._create_user_and_login('[email protected]') # Create user B self._create_user_and_login('[email protected]') # Now user B should not be able to sign up user A to anything self._post_org_signup('03V', email='[email protected]') created_bookmark = OrgBookmark.objects.last() # Note that user A has had a bookmark created (there's nothing # to stop anyone signing anyone else up....) self.assertTrue(created_bookmark.user.email, '[email protected]') # And they should have an email self.assertIn('[email protected]', mail.outbox[0].to) # ...but it's an unapproved bookmark... self.assertFalse(created_bookmark.approved) # ...and user A must reconfirm their identity self.assertFalse(user_a.emailaddress_set.first().verified) def test_ccg_bookmark_added_for_new_user_when_already_logged_in(self): self._create_user_and_login('[email protected]') response = self._post_org_signup('03V', email='[email protected]') self.assertTrue(response.context['user'].is_anonymous()) confirm_url = re.match(r".*http://.*(/accounts/confirm-email/.*?)\s", mail.outbox[0].body, re.DOTALL).groups()[0] response = self.client.get(confirm_url, follow=True) self.assertEqual(response.context['user'].email, '[email protected]') def test_ccg_bookmark_created(self): self.assertEqual(OrgBookmark.objects.count(), 0) self._post_org_signup('03V') self.assertEqual(OrgBookmark.objects.count(), 1) bookmark = OrgBookmark.objects.last() self.assertEqual(bookmark.pct.code, '03V') def test_ccg_follow_email_link(self): self._post_org_signup('03V', '[email protected]') confirm_url = re.match(r".*http://.*(/accounts/confirm-email/.*?)\s", mail.outbox[0].body, re.DOTALL).groups()[0] response = self.client.get(confirm_url, follow=True) self.assertEqual(response.context['user'].email, '[email protected]') self.assertContains( response, "subscribed to monthly alerts about " "<em>prescribing in NHS Corby") self.assertTrue(response.context['user'].is_active) def test_practice_email_invalid(self): response = self._post_org_signup('P87629', email='boo') self.assertContains( response, "Please enter a valid email address") def test_practice_email_sent(self): response = self._post_org_signup('P87629') self.assertContains( response, "Check your email and click the confirmation link") self.assertEqual(len(mail.outbox), 1) self.assertIn("about prescribing in 1/ST Andrews", mail.outbox[0].body) def test_practice_bookmark_created(self): self.assertEqual(OrgBookmark.objects.count(), 0) self._post_org_signup('P87629') self.assertEqual(OrgBookmark.objects.count(), 1) bookmark = OrgBookmark.objects.last() self.assertEqual(bookmark.practice.code, 'P87629') def test_practice_follow_email_link(self): self._post_org_signup('P87629') confirm_url = re.match(r".*http://.*(/accounts/confirm-email/.*?)\s", mail.outbox[0].body, re.DOTALL).groups()[0] response = self.client.get(confirm_url, follow=True) self.assertContains( response, "subscribed to monthly alerts about " "<em>prescribing in 1/ST Andrews") self.assertTrue(response.context['user'].is_active) class TestFrontendViews(TransactionTestCase): fixtures = ['chemicals', 'sections', 'ccgs', 'practices', 'prescriptions', 'measures', 'importlog'] def test_call_view_homepage(self): response = self.client.get('') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'index.html') def test_javascript_inclusion(self): with self.settings(DEBUG=False): response = self.client.get('') doc = pq(response.content) mainjs = doc('script')[-2].attrib['src'] self.assertIn('openprescribing.min.js', mainjs) with self.settings(DEBUG=True, INTERNAL_IPS=('127.0.0.1',)): response = self.client.get('') doc = pq(response.content) mainjs = doc('script')[-2].attrib['src'] self.assertIn('openprescribing.js', mainjs) def test_call_view_analyse(self): response = self.client.get('/analyse/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'analyse.html') self.assertNotContains(response, "Preview alert email") def test_call_view_bnf_all(self): response = self.client.get('/bnf/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'all_bnf.html') self.assertContains(response, '<h1>All BNF sections</h1>') doc = pq(response.content) sections = doc('#all-results li') self.assertEqual(len(sections), 5) first_section = doc('#all-results li:first') self.assertEqual(first_section.text(), '2: Cardiovascular System') def test_call_view_bnf_chapter(self): response = self.client.get('/bnf/02/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'bnf_section.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), '2: Cardiovascular System') subsections = doc('a.subsection') self.assertEqual(len(subsections), 2) def test_call_view_bnf_section(self): response = self.client.get('/bnf/0202/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'bnf_section.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), '2.2: Diuretics') lead = doc('.lead') self.assertEqual( lead.text(), 'Part of chapter 2 Cardiovascular System') subsections = doc('a.subsection') self.assertEqual(len(subsections), 1) def test_call_view_bnf_para(self): response = self.client.get('/bnf/020201/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'bnf_section.html') doc = pq(response.content) title = doc('h1') self.assertEqual( title.text(), '2.2.1: Thiazides And Related Diuretics') lead = doc('.lead') self.assertEqual( lead.text(), 'Part of chapter 2 Cardiovascular System , section 2.2 Diuretics') subsections = doc('a.subsection') self.assertEqual(len(subsections), 0) def test_call_view_chemical_all(self): response = self.client.get('/chemical/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'all_chemicals.html') self.assertContains(response, '<h1>All chemicals</h1>') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'All chemicals') sections = doc('#all-results li') self.assertEqual(len(sections), 4) first_section = doc('#all-results li:first') self.assertEqual(first_section.text(), 'Bendroflumethiazide (0202010B0)') def test_call_view_chemical_section(self): response = self.client.get('/chemical/0202010D0/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'chemical.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'Chlorothiazide (0202010D0)') lead = doc('.lead') self.assertEqual( lead.text(), ('Part of chapter 2 Cardiovascular System , section 2.2 ' 'Diuretics , paragraph 2.2.1 Thiazides And Related Diuretics') ) def test_call_view_ccg_all(self): response = self.client.get('/ccg/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'all_ccgs.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'All CCGs') ccgs = doc('a.ccg') self.assertEqual(len(ccgs), 2) def test_call_view_ccg_section(self): response = self.client.get('/ccg/03V/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measures_for_one_ccg.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'CCG: NHS Corby') practices = doc('#practices li') self.assertEqual(len(practices), 1) def test_call_single_measure_for_ccg(self): response = self.client.get('/measure/cerazette/ccg/03V/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measure_for_one_ccg.html') def test_call_view_practice_all(self): response = self.client.get('/practice/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'all_practices.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'Find a practice') practices = doc('#all-results a.practice') self.assertEqual(len(practices), 0) def test_call_view_practice_section(self): response = self.client.get('/practice/P87629/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measures_for_one_practice.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), '1/ST ANDREWS MEDICAL PRACTICE') lead = doc('#intro p:first') self.assertEqual( lead.text(), ('Address: ST.ANDREWS MEDICAL CENTRE, 30 RUSSELL STREET ' 'ECCLES, MANCHESTER, M30 0NU')) lead = doc('.lead:last') def test_call_single_measure_for_practice(self): response = self.client.get('/measure/cerazette/practice/P87629/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measure_for_one_practice.html') def test_call_view_measure_ccg(self): response = self.client.get('/ccg/03V/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measures_for_one_ccg.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), 'CCG: NHS Corby') practices = doc('#practices li') self.assertEqual(len(practices), 1) def test_call_view_measure_practice(self): response = self.client.get('/practice/P87629/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measures_for_one_practice.html') doc = pq(response.content) title = doc('h1') self.assertEqual(title.text(), '1/ST ANDREWS MEDICAL PRACTICE') def test_call_view_measure_practices_in_ccg(self): response = self.client.get('/ccg/03V/cerazette/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'measure_for_practices_in_ccg.html') doc = pq(response.content) title = doc('h1') t = ('Cerazette vs. Desogestrel by GP practices ' 'in NHS Corby') self.assertEqual(title.text(), t) def test_call_view_practice_redirect(self): response = self.client.get('/practice/P87629/measures/') self.assertEqual(response.status_code, 301) def test_call_view_ccg_redirect(self): response = self.client.get('/ccg/03V/measures/') self.assertEqual(response.status_code, 301) def test_all_measures(self): response = self.client.get('/measure/') self.assertContains(response, 'Cerazette') def test_all_measures_with_tag_filter(self): response = self.client.get('/measure/?tags=frob') self.assertNotContains(response, 'Cerazette') self.assertContains(response, 'This list is filtered') def test_gdoc_inclusion(self): for doc_id in settings.GDOC_DOCS.keys(): response = self.client.get("/docs/%s/" % doc_id) self.assertEqual(response.status_code, 200) def test_tariff(self): response = self.client.get('/tariff/ABCD/') self.assertContains(response, 'Tariff') self.assertContains(response, 'bnfCodes = "ABCD"') class TestPPUViews(TransactionTestCase): fixtures = ['ccgs', 'importlog', 'dmdproducts', 'practices', 'prescriptions', 'presentations'] def test_practice_price_per_unit(self): response = self.client.get('/practice/P87629/price_per_unit/') self.assertEqual(response.status_code, 200) self.assertEqual(response.context['entity'].code, 'P87629') def test_ccg_price_per_unit(self): response = self.client.get('/ccg/03V/price_per_unit/') self.assertEqual(response.status_code, 200) self.assertEqual(response.context['entity'].code, '03V') self.assertEqual(response.context['date'].strftime('%Y-%m-%d'), '2014-11-01') def test_price_per_unit_histogram_with_ccg(self): response = self.client.get('/ccg/03V/0202010F0AAAAAA/price_per_unit/') self.assertEqual(response.status_code, 200) self.assertEqual(response.context['highlight_name'], 'NHS Corby') self.assertEqual(response.context['date'].strftime('%Y-%m-%d'), '2014-11-01') def test_price_per_unit_histogram_with_practice(self): response = self.client.get( '/practice/P87629/0202010F0AAAAAA/price_per_unit/') self.assertEqual(response.status_code, 200) self.assertEqual(response.context['highlight_name'], '1/ST Andrews Medical Practice') self.assertEqual(response.context['date'].strftime('%Y-%m-%d'), '2014-11-01') bubble_data_url = response.context['bubble_data_url'] parsed_url = urlparse(bubble_data_url) q = parse_qs(parsed_url.query) self.assertEqual(q, { 'format': ['json'], 'bnf_code': ['0202010F0AAAAAA'], 'highlight': ['P87629'], 'date': ['2014-11-01'], })
the-stack_106_23800
""" Repeats the last word of the last message in the conversation, and use it in an annoying “C’est toi le” sentence. Installation ------------ You only have to load the plugin: .. code-block:: none /load stoi .. glossary:: /stoi **Usage:** ``/stoi`` """ from poezio.plugin import BasePlugin from poezio import tabs import string from poezio import xhtml import random char_we_dont_want = string.punctuation + ' ’„“”…«»' class Plugin(BasePlugin): def init(self): for tab_type in (tabs.MucTab, tabs.PrivateTab, tabs.ConversationTab): self.api.add_tab_command( tab_type, 'stoi', handler=self.stoi, help="Repeats the last word of the last " "message in the conversation, and " "use it in an annoying “C’est toi " "le” sentence.", short='C’est toi le stoi.') def stoi(self, args): messages = self.api.get_conversation_messages() if not messages: # Do nothing if the conversation doesn’t contain any message return last_message = messages[-1] txt = xhtml.clean_text(last_message.txt) for char in char_we_dont_want: txt = txt.replace(char, ' ') if txt.strip(): last_word = txt.split()[-1] else: last_word = "vide" intro = "C'est toi " if random.getrandbits(1) else "Stoi " if last_word[0] in 'aeiouAEIOUÀàÉéÈè': msg = intro + ('l’%s' % last_word) else: msg = intro + ('le %s' % last_word) self.api.send_message(msg)
the-stack_106_23802
# warning: minified from struct import pack as F from functools import reduce G=lambda m,v:reduce(lambda i,j:i^j,[j*(v>>i&1) for i,j in enumerate(m)]) def make_zip(f,num_files,compressed_size): A,H,B,I,a,o=(1<<32)-1,num_files,compressed_size,[1<<A for A in range(33)],range(8),[0]*8 for n in a: for b in a:o[n]=o[n]>>1^3988292384*((1<<n>>b^o[n])&1) C,D=B*1032-14447,o+I[:24]+[A+1];K=C while C: if C&1:I=[G(I,A)for A in D] D=[G(D,A)for A in D];C>>=1 L=~G(I,2*A+1)&A;J=f.write(F('<QLHLLLLQLH',85966670672,8,0,L,B,K,1,36536642864,1409003712,25695)+b'\x0b'+b'\0'*(B-15)+b'`');M=J for E in range(H):N=str(E).encode();J+=f.write(F('<QQLLLHQQ',5629585467198288,524288,L,B,K,len(N),0,0)+N) f.write(F('<QHHLLH',101010256,H,H,J-M,M,0))
the-stack_106_23803
import numpy as np import pandas as pd from typing import List from anndata import AnnData import logging logger = logging.getLogger("pegasus") def search_genes( data: AnnData, gene_list: List[str], rec_key: str = "de_res", measure: str = "percentage", ) -> pd.DataFrame: """Extract and display gene expressions for each cluster from an `anndata` object. This function helps to see marker expressions in clusters via the interactive python environment. Parameters ---------- data: ``anndata.AnnData`` Annotated data matrix containing the expression matrix and differential expression results. gene_list: ``List[str]`` A list of gene symbols. rec_key: ``str``, optional, default: ``"de_res"`` Keyword of DE analysis result stored in ``data.varm``. measure : ``str``, optional, default: ``"percentage"`` Can be either ``"percentage"`` or ``"mean_logExpr"``: * ``percentage`` shows the percentage of cells expressed the genes; * ``mean_logExpr`` shows the mean log expression. Returns ------- ``pandas.DataFrame`` A data frame containing marker expressions in each cluster. Examples -------- >>> results = pg.search_genes(adata, ['CD3E', 'CD4', 'CD8']) """ columns = [x for x in data.varm[rec_key].dtype.names if x.endswith(f":{measure}")] df = pd.DataFrame(data=data.varm[rec_key][columns], index=data.var_names) return df.reindex(index=gene_list) def search_de_genes( data: AnnData, gene_list: List[str], rec_key: str = "de_res", de_test: str = "fisher", de_alpha: float = 0.05, thre: float = 1.5, ) -> pd.DataFrame: """Extract and display differential expression analysis results of markers for each cluster. This function helps to see if markers are up or down regulated in each cluster via the interactive python environment: * ``++`` indicates up-regulated and fold change >= threshold; * ``+`` indicates up-regulated but fold change < threshold; * ``--`` indicates down-regulated and fold change <= 1 / threshold; * ``-`` indicates down-regulated but fold change > 1 / threshold; * ``?`` indicates not differentially expressed. Parameters ---------- data: ``anndata.Anndata`` Annotated data matrix containing the expression matrix and differential expression results. gene_list: ``List[str]`` A list of gene symbols. rec_key: ``str``, optional, default: ``"de_res"`` Keyword of DE analysis result stored in ``data.varm``. de_test : ``str``, optional, default: ``"fisher"`` Differential expression test to look at, could be either ``t``, ``fisher`` or ``mwu``. de_alpha : ``float``, optional, default: ``0.05`` False discovery rate. thre : ``float``, optional, default: ``1.5`` Fold change threshold to determine if the marker is a strong DE (``++`` or ``--``) or weak DE (``+`` or ``-``). Returns ------- ``pandas.DataFrame`` A data frame containing marker differential expression results for each cluster. Examples -------- >>> df = pegasus.misc.search_de_genes(adata, ['CD3E', 'CD4', 'CD8'], thre = 2.0) """ columns = [ x for x in data.varm[rec_key].dtype.names if x.endswith(f":{de_test}_qval") ] df_de = pd.DataFrame(data.varm[rec_key][columns], index=data.var_names) df_de = df_de.reindex(index=gene_list) columns = [ x for x in data.varm[rec_key].dtype.names if ( x.endswith(":percentage_fold_change") if de_test == "fisher" else x.endswith(":log2FC") ) ] df_fc = pd.DataFrame(data.varm[rec_key][columns], index=data.var_names) df_fc = df_fc.reindex(index=gene_list) if de_test != "fisher": df_fc = np.exp(df_fc) results = np.zeros((len(gene_list), len(columns)), dtype=np.dtype("U4")) results[:] = "?" results[np.isnan(df_de)] = "NaN" results[(df_de <= de_alpha).values & (df_fc > 1.0).values] = "+" results[(df_de <= de_alpha).values & (df_fc >= thre).values] = "++" results[(df_de <= de_alpha).values & (df_fc < 1.0).values] = "-" results[(df_de <= de_alpha).values & (df_fc <= 1.0 / thre).values] = "--" clusts = [x.rpartition(":")[2] for x in columns] df = pd.DataFrame(data=results, index=gene_list, columns=clusts) return df def show_attributes( input_file: str, show_attributes: bool, show_gene_attributes: bool, show_values_for_attributes: str, ) -> None: """ Show data attributes. For command line use. """ # data = read_input(input_file, mode="r") # if show_attributes: # print( # "Available sample attributes in input dataset: {0}".format( # ", ".join(data.obs.columns.values) # ) # ) # if show_gene_attributes: # print( # "Available gene attributes in input dataset: {0}".format( # ", ".join(data.var.columns.values) # ) # ) # if not show_values_for_attributes is None: # for attr in show_values_for_attributes.split(","): # print( # "Available values for attribute {0}: {1}.".format( # attr, ", ".join(np.unique(data.obs[attr])) # ) # ) def perform_oneway_anova( data: AnnData, glist: List[str], restriction_vec: List[str], group_str: str, fdr_alpha: float = 0.05, res_key: str = None, ) -> pd.DataFrame: """Perform one way ANOVA on a subset of cells (restricted by restriction_vec) grouped by group_str and control FDR at fdr_alpha. Parameters ---------- data : `anndata` object An `anndata` object containing the expression matrix. glist : `list[str]` A list of gene symbols. restriction_vec : `list[str]` A vector of restrictions for selecting cells. Each restriction takes the format of attr:value,value,value group_str : `str` How to group selected cells for ANOVA analysis. If group_str is for pseudotime, it has two formats. 1) 'pseudotime:time:n', which divides cells by equal pseudotime invertal; 2) 'pseudotime:size:n' divides cells by equal number of cells. fdr_alpha : `float`, optional (default: 0.05) False discovery rate. res_key : `str`, optional (default: None) Store results into data using res_key, the grouping information is stored in obs and the results is stored in uns. Returns ------- `pandas.DataFrame` Results for genes that pass FDR control. Examples -------- >>> results = misc.perform_oneway_anova(data, ['CD3E', 'CD4', 'CD8'], [], 'pseudotime:size:10') """ from scipy.stats import f_oneway from statsmodels.stats.multitest import fdrcorrection as fdr selected = np.ones(data.shape[0], dtype=bool) for rest_str in restriction_vec: attr, value_str = rest_str.split(":") values = value_str.split(",") selected = selected & np.isin(data.obs[attr], values) gene_list = np.array(glist) gene_list = gene_list[np.isin(gene_list, data.var_names)] ngene = gene_list.size newdat = data[selected, :][:, gene_list].copy() newdat.X = newdat.X.toarray() group_values = group_str.split(":") group_names = [] col_names = [] ngr = 0 group_idx = None if group_values[0] == "pseudotime": assert len(group_values) == 3 div_by = group_values[1] ngr = int(group_values[2]) group_idx = np.zeros((ngr, newdat.shape[0]), dtype=bool) pseudotimes = newdat.obs["pseudotime"].values min_t = pseudotimes.min() max_t = pseudotimes.max() if div_by == "time": interval = (max_t - min_t) / ngr left = min_t - 1e-5 for i in range(ngr): right = min_t + interval * (i + 1) name = "({:.2f}, {:.2f}]".format(left if left >= 0 else 0.0, right) group_names.append(name) group_idx[i] = (pseudotimes > left) & (pseudotimes <= right) left = right else: assert div_by == "size" ords = np.argsort(pseudotimes) quotient = ords.size // ngr residule = ords.size % ngr fr = 0 for i in range(ngr): to = fr + quotient + (i < residule) name = "[{:.2f}, {:.2f}]".format( pseudotimes[ords[fr]], pseudotimes[ords[to - 1]] ) group_names.append(name) group_idx[i][ords[fr:to]] = True fr = to else: assert len(group_values) == 2 group_attr = group_values[0] tmp_str = group_values[1] groups_str = tmp_str.split(";") ngr = len(groups_str) group_idx = np.zeros((ngr, newdat.shape[0]), dtype=bool) for i, gstr in enumerate(groups_str): name, values = gstr.split("~") group_names.append(name) group_idx[i] = np.isin(newdat.obs[group_attr], values.split(",")) for i in range(ngr): print("Group {} has {} cells.".format(group_names[i], group_idx[i].sum())) np.warnings.filterwarnings("ignore") stats = np.zeros((ngene, 3 + ngr * 2)) for i in range(ngene): arr_list = [] for j in range(ngr): arr = newdat.X[group_idx[j], i] stats[i, 3 + j * 2] = arr.mean() stats[i, 3 + j * 2 + 1] = (arr > 0).sum() * 100.0 / arr.size arr_list.append(arr) stats[i, 0], stats[i, 1] = f_oneway(*arr_list) if np.isnan(stats[i, 0]): stats[i, 0] = 0.0 stats[i, 1] = 1.0 passed, stats[:, 2] = fdr(stats[:, 1]) cols = ["fstat", "pval", "qval"] for i in range(ngr): cols.extend([group_names[i] + "_mean", group_names[i] + "_percent"]) raw_results = pd.DataFrame(stats, columns=cols, index=gene_list) results = raw_results[raw_results["qval"] <= fdr_alpha] results = results.sort_values("qval") if res_key is not None: data.uns[res_key] = raw_results data.obs[res_key] = "background" for i in range(ngr): idx = np.zeros(data.shape[0], dtype=bool) idx[selected] = group_idx[i] data.obs.loc[idx, res_key] = group_names[i] return results
the-stack_106_23804
# -*- coding: utf-8 -*- """Parser for Systemd journal files.""" from __future__ import unicode_literals import lzma from lz4 import block as lz4_block from dfdatetime import posix_time as dfdatetime_posix_time from plaso.containers import events from plaso.containers import time_events from plaso.lib import definitions from plaso.lib import errors from plaso.lib import specification from plaso.parsers import dtfabric_parser from plaso.parsers import manager class SystemdJournalEventData(events.EventData): """Systemd journal event data. Attributes: body (str): message body. hostname (str): hostname. pid (int): process identifier (PID). reporter (str): reporter. """ DATA_TYPE = 'systemd:journal' def __init__(self): """Initializes event data.""" super(SystemdJournalEventData, self).__init__(data_type=self.DATA_TYPE) self.body = None self.hostname = None self.pid = None self.reporter = None class SystemdJournalParser(dtfabric_parser.DtFabricBaseParser): """Parses Systemd Journal files.""" NAME = 'systemd_journal' DESCRIPTION = 'Parser for Systemd Journal files.' _DEFINITION_FILE = 'systemd_journal.yaml' _OBJECT_COMPRESSED_FLAG_XZ = 1 _OBJECT_COMPRESSED_FLAG_LZ4 = 2 _OBJECT_TYPE_UNUSED = 0 _OBJECT_TYPE_DATA = 1 _OBJECT_TYPE_FIELD = 2 _OBJECT_TYPE_ENTRY = 3 _OBJECT_TYPE_DATA_HASH_TABLE = 4 _OBJECT_TYPE_FIELD_HASH_TABLE = 5 _OBJECT_TYPE_ENTRY_ARRAY = 6 _OBJECT_TYPE_TAG = 7 _SUPPORTED_FILE_HEADER_SIZES = frozenset([208, 224, 240]) def __init__(self): """Initializes a parser object.""" super(SystemdJournalParser, self).__init__() self._maximum_journal_file_offset = 0 def _ParseDataObject(self, file_object, file_offset): """Parses a data object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the data object relative to the start of the file-like object. Returns: bytes: data. Raises: ParseError: if the data object cannot be parsed. """ data_object_map = self._GetDataTypeMap('systemd_journal_data_object') try: data_object, _ = self._ReadStructureFromFileObject( file_object, file_offset, data_object_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse data object at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) if data_object.object_type != self._OBJECT_TYPE_DATA: raise errors.ParseError('Unsupported object type: {0:d}.'.format( data_object.object_type)) if data_object.object_flags not in ( 0, self._OBJECT_COMPRESSED_FLAG_XZ, self._OBJECT_COMPRESSED_FLAG_LZ4): raise errors.ParseError('Unsupported object flags: 0x{0:02x}.'.format( data_object.object_flags)) # The data is read separately for performance reasons. data_size = data_object.data_size - 64 data = file_object.read(data_size) if data_object.object_flags & self._OBJECT_COMPRESSED_FLAG_XZ: data = lzma.decompress(data) elif data_object.object_flags & self._OBJECT_COMPRESSED_FLAG_LZ4: uncompressed_size_map = self._GetDataTypeMap('uint32le') try: uncompressed_size = self._ReadStructureFromByteStream( data, file_offset + 64, uncompressed_size_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse LZ4 uncompressed size at offset: 0x{0:08x} with ' 'error: {1!s}').format(file_offset + 64, exception)) data = lz4_block.decompress(data[8:], uncompressed_size=uncompressed_size) return data def _ParseEntryArrayObject(self, file_object, file_offset): """Parses an entry array object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the entry array object relative to the start of the file-like object. Returns: systemd_journal_entry_array_object: entry array object. Raises: ParseError: if the entry array object cannot be parsed. """ entry_array_object_map = self._GetDataTypeMap( 'systemd_journal_entry_array_object') try: entry_array_object, _ = self._ReadStructureFromFileObject( file_object, file_offset, entry_array_object_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse entry array object at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) if entry_array_object.object_type != self._OBJECT_TYPE_ENTRY_ARRAY: raise errors.ParseError('Unsupported object type: {0:d}.'.format( entry_array_object.object_type)) if entry_array_object.object_flags != 0: raise errors.ParseError('Unsupported object flags: 0x{0:02x}.'.format( entry_array_object.object_flags)) return entry_array_object def _ParseEntryObject(self, file_object, file_offset): """Parses an entry object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the entry object relative to the start of the file-like object. Returns: systemd_journal_entry_object: entry object. Raises: ParseError: if the entry object cannot be parsed. """ entry_object_map = self._GetDataTypeMap('systemd_journal_entry_object') try: entry_object, _ = self._ReadStructureFromFileObject( file_object, file_offset, entry_object_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse entry object at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) if entry_object.object_type != self._OBJECT_TYPE_ENTRY: raise errors.ParseError('Unsupported object type: {0:d}.'.format( entry_object.object_type)) if entry_object.object_flags != 0: raise errors.ParseError('Unsupported object flags: 0x{0:02x}.'.format( entry_object.object_flags)) return entry_object def _ParseEntryObjectOffsets(self, file_object, file_offset): """Parses entry array objects for the offset of the entry objects. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the first entry array object relative to the start of the file-like object. Returns: list[int]: offsets of the entry objects. """ entry_array_object = self._ParseEntryArrayObject(file_object, file_offset) entry_object_offsets = list(entry_array_object.entry_object_offsets) while entry_array_object.next_entry_array_offset != 0: entry_array_object = self._ParseEntryArrayObject( file_object, entry_array_object.next_entry_array_offset) entry_object_offsets.extend(entry_array_object.entry_object_offsets) return entry_object_offsets def _ParseJournalEntry(self, file_object, file_offset): """Parses a journal entry. This method will generate an event per ENTRY object. Args: file_object (dfvfs.FileIO): a file-like object. file_offset (int): offset of the entry object relative to the start of the file-like object. Returns: dict[str, objects]: entry items per key. Raises: ParseError: when an object offset is out of bounds. """ entry_object = self._ParseEntryObject(file_object, file_offset) # The data is read separately for performance reasons. entry_item_map = self._GetDataTypeMap('systemd_journal_entry_item') file_offset += 64 data_end_offset = file_offset + entry_object.data_size - 64 fields = {'real_time': entry_object.real_time} while file_offset < data_end_offset: try: entry_item, entry_item_data_size = self._ReadStructureFromFileObject( file_object, file_offset, entry_item_map) except (ValueError, errors.ParseError) as exception: raise errors.ParseError(( 'Unable to parse entry item at offset: 0x{0:08x} with error: ' '{1!s}').format(file_offset, exception)) file_offset += entry_item_data_size if entry_item.object_offset < self._maximum_journal_file_offset: raise errors.ParseError( 'object offset should be after hash tables ({0:d} < {1:d})'.format( entry_item.object_offset, self._maximum_journal_file_offset)) event_data = self._ParseDataObject(file_object, entry_item.object_offset) event_string = event_data.decode('utf-8') key, value = event_string.split('=', 1) fields[key] = value return fields @classmethod def GetFormatSpecification(cls): """Retrieves the format specification. Returns: FormatSpecification: format specification. """ format_specification = specification.FormatSpecification(cls.NAME) format_specification.AddNewSignature(b'LPKSHHRH', offset=0) return format_specification def ParseFileObject(self, parser_mediator, file_object): """Parses a Systemd journal file-like object. Args: parser_mediator (ParserMediator): parser mediator. file_object (dfvfs.FileIO): a file-like object. Raises: UnableToParseFile: when the header cannot be parsed. """ file_header_map = self._GetDataTypeMap('systemd_journal_file_header') try: file_header, _ = self._ReadStructureFromFileObject( file_object, 0, file_header_map) except (ValueError, errors.ParseError) as exception: raise errors.UnableToParseFile( 'Unable to parse file header with error: {0!s}'.format( exception)) if file_header.header_size not in self._SUPPORTED_FILE_HEADER_SIZES: raise errors.UnableToParseFile( 'Unsupported file header size: {0:d}.'.format( file_header.header_size)) data_hash_table_end_offset = ( file_header.data_hash_table_offset + file_header.data_hash_table_size) field_hash_table_end_offset = ( file_header.field_hash_table_offset + file_header.field_hash_table_size) self._maximum_journal_file_offset = max( data_hash_table_end_offset, field_hash_table_end_offset) entry_object_offsets = self._ParseEntryObjectOffsets( file_object, file_header.entry_array_offset) for entry_object_offset in entry_object_offsets: if entry_object_offset == 0: continue try: fields = self._ParseJournalEntry(file_object, entry_object_offset) except errors.ParseError as exception: parser_mediator.ProduceExtractionWarning(( 'Unable to parse journal entry at offset: 0x{0:08x} with ' 'error: {1!s}').format(entry_object_offset, exception)) return event_data = SystemdJournalEventData() event_data.body = fields.get('MESSAGE', None) event_data.hostname = fields.get('_HOSTNAME', None) event_data.reporter = fields.get('SYSLOG_IDENTIFIER', None) if event_data.reporter and event_data.reporter != 'kernel': event_data.pid = fields.get('_PID', fields.get('SYSLOG_PID', None)) date_time = dfdatetime_posix_time.PosixTimeInMicroseconds( timestamp=fields['real_time']) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data) manager.ParsersManager.RegisterParser(SystemdJournalParser)
the-stack_106_23807
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class X(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "volume.slices" _path_str = "volume.slices.x" _valid_props = {"fill", "locations", "locationssrc", "show"} # fill # ---- @property def fill(self): """ Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. The 'fill' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["fill"] @fill.setter def fill(self, val): self["fill"] = val # locations # --------- @property def locations(self): """ Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis x except start and end. The 'locations' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["locations"] @locations.setter def locations(self, val): self["locations"] = val # locationssrc # ------------ @property def locationssrc(self): """ Sets the source reference on Chart Studio Cloud for `locations`. The 'locationssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["locationssrc"] @locationssrc.setter def locationssrc(self, val): self["locationssrc"] = val # show # ---- @property def show(self): """ Determines whether or not slice planes about the x dimension are drawn. The 'show' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["show"] @show.setter def show(self, val): self["show"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ fill Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. locations Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis x except start and end. locationssrc Sets the source reference on Chart Studio Cloud for `locations`. show Determines whether or not slice planes about the x dimension are drawn. """ def __init__( self, arg=None, fill=None, locations=None, locationssrc=None, show=None, **kwargs, ): """ Construct a new X object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.volume.slices.X` fill Sets the fill ratio of the `slices`. The default fill value of the `slices` is 1 meaning that they are entirely shaded. On the other hand Applying a `fill` ratio less than one would allow the creation of openings parallel to the edges. locations Specifies the location(s) of slices on the axis. When not specified slices would be created for all points of the axis x except start and end. locationssrc Sets the source reference on Chart Studio Cloud for `locations`. show Determines whether or not slice planes about the x dimension are drawn. Returns ------- X """ super(X, self).__init__("x") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.volume.slices.X constructor must be a dict or an instance of :class:`plotly.graph_objs.volume.slices.X`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("fill", None) _v = fill if fill is not None else _v if _v is not None: self["fill"] = _v _v = arg.pop("locations", None) _v = locations if locations is not None else _v if _v is not None: self["locations"] = _v _v = arg.pop("locationssrc", None) _v = locationssrc if locationssrc is not None else _v if _v is not None: self["locationssrc"] = _v _v = arg.pop("show", None) _v = show if show is not None else _v if _v is not None: self["show"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
the-stack_106_23811
from django.core.management.base import BaseCommand from django.contrib.auth.management import create_permissions as _create_permissions from django_extensions.management.utils import signalcommand try: from django.apps import apps as django_apps get_models = lambda: None get_app = django_apps.get_app_config get_all_apps = django_apps.get_app_configs def create_permissions(app, models, verbosity): _create_permissions(app, verbosity) except ImportError: from django.db.models import get_models, get_app django_apps = None def get_all_apps(): apps = set() for model in get_models(): apps.add(get_app(model._meta.app_label)) return apps create_permissions = _create_permissions class Command(BaseCommand): args = '<app app ...>' help = 'reloads permissions for specified apps, or all apps if no args are specified' @signalcommand def handle(self, *args, **options): apps = set() if not args: apps = get_all_apps() else: for arg in args: apps.add(get_app(arg)) for app in apps: create_permissions(app, get_models(), int(options.get('verbosity', 3)))
the-stack_106_23812
import time import numpy as np import torch import torch.nn as nn import open3d as o3d import h5py import math import sklearn import copy from sklearn.neighbors import KDTree from PIL import Image import matplotlib.pyplot as plt def show_point_cloud(src_, src_corr_, ref_, ref_corr_): src = src_.copy() src_corr = src_corr_.copy() ref = ref_.copy() ref_corr = ref_corr_.copy() ref[:,1] = ref[:,1] + 2.5 ref_corr[:,1] = ref_corr[:,1] + 2.5 src_pcd = o3d.geometry.PointCloud() src_corr_pcd = o3d.geometry.PointCloud() ref_pcd = o3d.geometry.PointCloud() ref_corr_pcd = o3d.geometry.PointCloud() src_pcd.points = o3d.utility.Vector3dVector(src) ref_pcd.points = o3d.utility.Vector3dVector(ref) src_corr_pcd.points = o3d.utility.Vector3dVector(src_corr) ref_corr_pcd.points = o3d.utility.Vector3dVector(ref_corr ) ref_pcd.paint_uniform_color([1, 0, 0.651]) # 蓝色 # src_corr_pcd.paint_uniform_color([1, 0.706, 0]) # 黄色 src_pcd.paint_uniform_color([0, 0.651, 0.929]) # 红色 line_size = src_corr.shape[0] line_src = np.arange(0, 2 * line_size, 2) # 这个代表所有偶数 rand_idxs = np.random.choice(line_size, math.ceil(line_size / 3), replace=False) # print('line_src',line_src) line_src = line_src[rand_idxs].reshape(rand_idxs.shape[0], 1) # print('line_src',line_src) line_ref = line_src + 1 # print('line_ref',line_ref) lines = np.concatenate([line_ref, line_src], -1).reshape(-1, 2) # print('lines',lines) colors = [[1, 0, 0]] # triangle_points=np.concatenate([data['points_ref'][1, :, :3].detach().cpu().numpy()+1,data['points_src'][1, :, :3].detach().cpu().numpy()],-1) triangle_points = np.concatenate([src_corr, ref_corr ], -1) triangle_points = triangle_points.reshape(-1, 3) # print('triangle_points',triangle_points.shape) line_pcd = o3d.geometry.LineSet() line_pcd.lines = o3d.utility.Vector2iVector(lines) line_pcd.colors = o3d.utility.Vector3dVector(colors) # line_pcd.paint_uniform_color([1, 0.706, 0]) line_pcd.points = o3d.utility.Vector3dVector(triangle_points) o3d.visualization.draw_geometries([line_pcd, src_pcd, ref_pcd], window_name='line_pcd src_pcd src_corr_pcd') # o3d.visualization.draw_geometries([src_corr_pcd, ref_pcd], window_name='src_corr_pcd ref_pcd') # src_pcd.transform(transform) # src_corr_pcd.points = o3d.utility.Vector3dVector(weighted_ref) # o3d.visualization.draw_geometries([src_corr_pcd, src_pcd], window_name='src_corr_pcd src_pcd.transform(T)') # # ref_pcd.points = o3d.utility.Vector3dVector(ref) # o3d.visualization.draw_geometries([src_pcd, ref_pcd], window_name='src_pcd.transform(T) ref_pcd') def draw_registration_result(source, target, src_color, tgt_color): src_pcd = o3d.geometry.PointCloud() ref_pcd = o3d.geometry.PointCloud() src_pcd.points = o3d.utility.Vector3dVector(source) ref_pcd.points = o3d.utility.Vector3dVector(target) src_pcd.colors = o3d.utility.Vector3dVector(src_color) ref_pcd.colors = o3d.utility.Vector3dVector(tgt_color) # src_pcd.paint_uniform_color([1, 0.706, 0]) # ref_pcd.paint_uniform_color([0, 0.651, 0.929]) o3d.visualization.draw_geometries([src_pcd, ref_pcd]) def draw_registration_result_no_blocking(source, target,vis): vis.update_geometry(source) vis.poll_events() vis.update_renderer() def get_npy_data(filename, index): all_data = np.load(filename, allow_pickle=True) # print(len(all_data)) # xyz_src = torch.from_numpy(all_data[index * 3]) # feat_src = torch.from_numpy(all_data[index * 3 + 2]) # xyz_ref = torch.from_numpy(all_data[index * 3 + 3]) # feat_ref = torch.from_numpy(all_data[index * 3 + 5]) xyz = all_data[index * 4] normal = all_data[index * 4 + 1] feat = all_data[index * 4 + 2] color = all_data[index * 4 + 3] return xyz, normal, feat, color def calGrad(point,normal,feature,kdTree): # n * 3; n * 3 ; n * d N = point.shape[0] d = feature.shape[1] grads = np.zeros([N,3,d]) for i in range(N): pt = point[i,:].reshape(1,-1) nt = normal[i,:].reshape(1,-1) ft = feature[i,:].reshape(1,-1) _, idx = kdTree.query(pt, k=20, return_distance=True) # idx_ = np.reshape(idx,(-1,1)) # neighbor_ = point[idx_, :] # neighbor = np.reshape(neighbor_, (N,-1, 3)) neighbor_pt = point[idx, :].reshape(-1,3) neighbor_ft = feature[idx,:].reshape(-1,d) proj_pt = neighbor_pt - (neighbor_pt - pt) @ nt.T * nt A = proj_pt - pt b = neighbor_ft - ft A = np.concatenate((A,nt),axis=0) b = np.concatenate((b,np.zeros(d).reshape(1,d))) x = np.linalg.inv(A.T@A)@A.T@b grads[i,:,:] = x return grads def pt2plTrans(source,target,corr, weights): ps = source.point[corr[:, 0], :] pt = target.point[corr[:, 1], :] nt = target.normal[corr[:, 1], :] geo_A = np.concatenate((np.cross(ps, nt), nt), axis=1) * weights geo_b = np.sum((ps-pt)*nt, axis=1,keepdims=True) * weights Ja = geo_A res = geo_b vecTrans = -np.linalg.inv(Ja.T@Ja)@Ja.T@res vecTrans = np.squeeze(vecTrans) cx = np.cos(vecTrans[0]) cy = np.cos(vecTrans[1]) cz = np.cos(vecTrans[2]) sx = np.sin(vecTrans[0]) sy = np.sin(vecTrans[1]) sz = np.sin(vecTrans[2]) R = np.array([[cy*cz, sx*sy*cz-cx*sz, cx*sy*cz+sx*sz], [cy*sz, cx*cz+sx*sy*sz, cx*sy*sz-sx*cz], [-sy, sx*cy, cx*cy]]) t = vecTrans[3:] transform = np.identity(4) transform[0:3, 0:3] = R transform[0:3, 3] = t t = t.reshape(3, 1) return R, t, transform class PointCloud: def __init__(self,point,normal,feature): self.point = point self.normal = normal self.feature = feature def file2matrix(filename): fr = open(filename) numberOfLines = len(fr.readlines()) #get the number of lines in the file trans = np.eye(4) #prepare matrix to return truth = [] #prepare labels return fr = open(filename) index = 0 for line in fr.readlines(): line = line.strip() # listFromLine = line.split('\t') listFromLine = line.split() listFromLine = [float(x) for x in listFromLine] if(index % 5 ==0): index = 0 elif(index % 5 ==1): trans[0, :] = np.array(listFromLine) elif(index % 5 ==2): trans[1,:] = np.array(listFromLine) elif(index % 5 ==3): trans[2,:] = np.array(listFromLine) elif(index % 5 ==4): trans[3,:] = np.array(listFromLine) truth.append(trans.copy())#这里不用copy的话,,,每个元素都是一样的 index += 1 return truth if __name__ == '__main__': root_path = '/Bill/DataSet/RedWood/' dataset_names = ['loft', 'lobby', 'apartment','bedroom','boardroom'] root_save_path = '/sin_ours/src2ref' dataset_numbers = [252,199,319,219,243] for i in range(len(dataset_names)): # for i in range(1): file_path = root_path + dataset_names[i] end = dataset_numbers[i] save_path = dataset_names[i] + root_save_path print(file_path) groud_truth = file2matrix(file_path + '/reg_output.log') voxel_size = 0.05 # means 5cm for this dataset err_R = [] err_T = [] trans_all = [] fail_list = [] start = 0 for j in range(start, end): print( 'j',j ) # index_src = j + 1 # index_ref = j index_src = j index_ref = j + 1 source_show = o3d.io.read_point_cloud(file_path + "/mesh_%s.ply"%(index_src)) target_show = o3d.io.read_point_cloud(file_path + "/mesh_%s.ply"%(index_ref)) filename = file_path + '/xyz_nor_feat_color.npy' xyz_src, normal_src, feat_src, color_src = get_npy_data(filename, index_src) xyz_ref, normal_ref, feat_ref, color_ref = get_npy_data(filename, index_ref) # draw_registration_result(xyz_src, xyz_ref, color_src, color_ref) # print('feat_src', feat_src.shape, feat_ref.shape) total_trans = np.eye(4) # lambda_hybrid = 0.8 lambda_color_ge = 0 fail_flag = 0 for m in range(35): lambda_hybrid = (np.sin(0.67 * 0.9 ** (m) * 1.68)) ** 2 src_hybrid_feature = np.concatenate(((lambda_hybrid) * feat_src, ((1 - lambda_hybrid) * lambda_color_ge) * color_src, ((1 - lambda_hybrid) * (1 - lambda_color_ge)) * xyz_src), 1) ref_hybrid_feature = np.concatenate(((lambda_hybrid) * feat_ref, ((1 - lambda_hybrid) * lambda_color_ge) * color_ref, ((1 - lambda_hybrid) * (1 - lambda_color_ge)) * xyz_ref), 1) # src_hybrid_feature = np.concatenate((np.sqrt(lambda_hybrid) * feat_src, np.sqrt((1-lambda_hybrid) * lambda_color_ge) * color_src, np.sqrt((1-lambda_hybrid) * (1-lambda_color_ge)) * xyz_src), 1) # ref_hybrid_feature = np.concatenate((np.sqrt(lambda_hybrid) * feat_ref, np.sqrt((1-lambda_hybrid) * lambda_color_ge) * color_ref, np.sqrt((1-lambda_hybrid) * (1-lambda_color_ge)) * xyz_ref), 1) feat_ref_tree = KDTree(ref_hybrid_feature) dist_feat, corr = feat_ref_tree.query(src_hybrid_feature, k = 1, return_distance = True)#src 找 tgt里边最近的点,得到的是tgt里面的索引 # print('dist_feat',dist_feat.shape) corr_xyz_ref = xyz_ref[corr].reshape(-1,3) corr_xyz_src = xyz_src distance_threshold = np.sqrt(lambda_hybrid ** 2 * 0.4 + ((1-lambda_hybrid) * lambda_color_ge) ** 2 * 0.3 + ((1 - lambda_hybrid) * (1-lambda_color_ge)) ** 2 * 0.3 ) ref_correct_corr = corr[dist_feat < distance_threshold]#满足距离要求的位置为1,然后再给对应关系,就得到ref中计算的点 ref_correct_xyz = xyz_ref[ref_correct_corr] ref_correct_normal = normal_ref[ref_correct_corr] ref_correct_color = color_ref[ref_correct_corr] if ref_correct_xyz.shape[0] == 0: fail_flag = 1 continue src_correct_corr = np.where((np.array(dist_feat < distance_threshold) > 0 ).reshape(-1, 1))[0]#因为src就是从0到n的索引,大于0是取了那些满足要求的位置,所以只需要知道dist_feat的哪个位置满足要求即可 src_correct_xyz = xyz_src[src_correct_corr] src_correct_normal = normal_src[src_correct_corr] src_correct_color = color_src[src_correct_corr] source = PointCloud(src_correct_xyz, src_correct_normal, src_correct_color) target = PointCloud(ref_correct_xyz, ref_correct_normal, ref_correct_color) useful_dis = dist_feat[src_correct_corr]#这个距离向量是src和ref的距离,所以取src,假设你src第4个点满足要求,肯定是对应dist_feat中的第四个值嘛 # show_point_cloud(corr_xyz_src, src_correct_xyz, xyz_ref, ref_correct_xyz) # weights = np.ones(src_correct_xyz.shape[0]).reshape(-1,1)#这里得到的就是满足要求的索引np.sum(np.power((src_correct_color - ref_correct_color), 2), 1).reshape(-1,1) * weights = np.exp(-useful_dis/0.1).reshape(-1,1)#这里得到的就是满足要求的索引 weights = weights/np.sum(weights) # print('corr_xyz_ref',i , distance_threshold, ref_correct_corr.shape, xyz_src.shape, xyz_ref.shape, weights.shape,src_correct_corr.shape) N = src_correct_xyz.shape[0] corr_src = np.array(range(N)).reshape(N, 1) corr = np.concatenate((corr_src, corr_src), axis=1)#因为把有效的点都合在一起了 R, t, transform = pt2plTrans(source, target, corr, weights)# 1 - 0.002 * i xyz_src = (R @ xyz_src.T + t).T source_show.transform(transform) lambda_hybrid = 0.9 * lambda_hybrid total_trans = transform @ total_trans if fail_flag == 1: total_trans = np.eye(4) fail_list.append(j) print('fail', j) R = total_trans[:3,:3].reshape(3,3) t = total_trans[:3,3].reshape(-1,1) if index_src > index_ref: err_R.append(np.arccos((np.trace(R.T @ groud_truth[j][:3,:3]) - 1) / 2) * 180 / np.pi ) err_T.append(np.linalg.norm(t - groud_truth[j][:3,3].reshape(-1,1), ord=2,axis=0)) trans_all.append((total_trans)) else: err_R.append( np.arccos( (np.trace(R @ groud_truth[j][:3,:3] ) - 1) / 2) * 180 / np.pi ) err_T.append(np.linalg.norm(-R.T @ t - groud_truth[j][:3,3].reshape(-1,1), ord=2,axis=0)) trans_all.append((total_trans)) # print(total_trans[:3,:3] @ groud_truth[j][:3,:3], np.trace(total_trans[:3,:3] @ groud_truth[j][:3,:3] - np.eye(3))) # print(total_trans, groud_truth[j]) print('err_R err_T', err_R[j - start], err_T[j - start],total_trans) if index_src > index_ref: # # location = str(start) + '_' + str(end) err_all = [err_R, err_T] plt.figure("ERR_R ref2src") # 图像窗口名称 plt.plot(err_R) plt.savefig(save_path + '/%s_%s_err_All_ref2src.jpg'%(start, end)) # plt.show() plt.close() plt.figure("ERR_T ref2src") # 图像窗口名称 plt.plot(err_T) plt.savefig(save_path + '/%s_%s_trans_all_ref2src.jpg' % (start, end)) # plt.show() plt.close() np.savetxt(save_path + '/%s_%s_fail_list_ref2src.txt'%(start, end), fail_list) np.save(save_path + '/%s_%s_err_All_ref2src.npy'%(start, end), err_all) np.savetxt(save_path + '/%s_%s_err_All_ref2src.txt' % (start, end), err_all) np.save(save_path + '/%s_%s_trans_all_ref2src.npy'%(start, end), trans_all) np.savetxt(save_path + '/%s_%s_trans_all_ref2src.txt'%(start, end), np.array(trans_all).reshape(-1,4),fmt='%0.8f') else: err_all = [err_R, err_T] plt.figure("ERR_R src2ref") # 图像窗口名称 plt.plot(err_R) plt.savefig(save_path + '/%s_%serr_All_src2ref.jpg'%(start, end)) # plt.show() plt.close() plt.figure("ERR_T src2ref") # 图像窗口名称 plt.plot(err_T) plt.savefig(save_path + '/%s_%strans_all_src2ref.jpg' % (start, end)) # plt.show() plt.close() np.savetxt(save_path + '/%s_%s_fail_list_src2ref.txt'%(start, end), fail_list) np.savetxt(save_path + '/%s_%serr_All_src2ref.txt' % (start, end), err_all) np.save(save_path + '/%s_%serr_All_src2ref.npy'%(start, end), err_all) np.save(save_path + '/%s_%strans_all_src2ref.npy'%(start, end), trans_all) np.savetxt(save_path + '/%s_%strans_all_src2ref.txt'%(start, end), np.array(trans_all).reshape(-1,4),fmt='%0.8f')
the-stack_106_23815
import asyncio import pytest from peas.rpc.wallet_rpc_api import WalletRpcApi from peas.simulator.simulator_protocol import FarmNewBlockProtocol from peas.types.blockchain_format.coin import Coin from peas.types.blockchain_format.sized_bytes import bytes32 from peas.types.mempool_inclusion_status import MempoolInclusionStatus from peas.types.peer_info import PeerInfo from peas.util.bech32m import encode_puzzle_hash from peas.util.ints import uint16 from peas.wallet.util.wallet_types import WalletType from tests.setup_nodes import self_hostname, setup_simulators_and_wallets from tests.time_out_assert import time_out_assert from tests.wallet.sync.test_wallet_sync import wallet_height_at_least @pytest.fixture(scope="module") def event_loop(): loop = asyncio.get_event_loop() yield loop async def is_transaction_in_mempool(user_wallet_id, api, tx_id: bytes32) -> bool: try: val = await api.get_transaction({"wallet_id": user_wallet_id, "transaction_id": tx_id.hex()}) except ValueError: return False for _, mis, _ in val["transaction"].sent_to: if ( MempoolInclusionStatus(mis) == MempoolInclusionStatus.SUCCESS or MempoolInclusionStatus(mis) == MempoolInclusionStatus.PENDING ): return True return False async def is_transaction_confirmed(user_wallet_id, api, tx_id: bytes32) -> bool: try: val = await api.get_transaction({"wallet_id": user_wallet_id, "transaction_id": tx_id.hex()}) except ValueError: return False return val["transaction"].confirmed async def check_balance(api, wallet_id): balance_response = await api.get_wallet_balance({"wallet_id": wallet_id}) balance = balance_response["wallet_balance"]["confirmed_wallet_balance"] return balance class TestRLWallet: @pytest.fixture(scope="function") async def three_wallet_nodes(self): async for _ in setup_simulators_and_wallets(1, 3, {}): yield _ @pytest.mark.asyncio async def test_create_rl_coin(self, three_wallet_nodes): num_blocks = 4 full_nodes, wallets = three_wallet_nodes full_node_api = full_nodes[0] full_node_server = full_node_api.server wallet_node, server_2 = wallets[0] wallet_node_1, wallet_server_1 = wallets[1] wallet_node_2, wallet_server_2 = wallets[2] wallet = wallet_node.wallet_state_manager.main_wallet ph = await wallet.get_new_puzzlehash() await server_2.start_client(PeerInfo(self_hostname, uint16(full_node_server._port)), None) await wallet_server_1.start_client(PeerInfo(self_hostname, uint16(full_node_server._port)), None) await wallet_server_2.start_client(PeerInfo(self_hostname, uint16(full_node_server._port)), None) await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(ph)) for i in range(0, num_blocks + 1): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 6) fund_owners_initial_balance = await wallet.get_confirmed_balance() api_user = WalletRpcApi(wallet_node_1) val = await api_user.create_new_wallet( {"wallet_type": "rl_wallet", "rl_type": "user", "host": f"{self_hostname}:5000"} ) assert isinstance(val, dict) if "success" in val: assert val["success"] assert val["id"] assert val["type"] == WalletType.RATE_LIMITED.value user_wallet_id = val["id"] pubkey = val["pubkey"] api_admin = WalletRpcApi(wallet_node) val = await api_admin.create_new_wallet( { "wallet_type": "rl_wallet", "rl_type": "admin", "interval": 2, "limit": 10, "pubkey": pubkey, "amount": 100, "fee": 1, "host": f"{self_hostname}:5000", } ) assert isinstance(val, dict) if "success" in val: assert val["success"] assert val["id"] assert val["type"] == WalletType.RATE_LIMITED.value assert val["origin"] assert val["pubkey"] admin_wallet_id = val["id"] admin_pubkey = val["pubkey"] origin: Coin = val["origin"] await api_user.rl_set_user_info( { "wallet_id": user_wallet_id, "interval": 2, "limit": 10, "origin": { "parent_coin_info": origin.parent_coin_info.hex(), "puzzle_hash": origin.puzzle_hash.hex(), "amount": origin.amount, }, "admin_pubkey": admin_pubkey, } ) assert (await api_user.get_wallet_balance({"wallet_id": user_wallet_id}))["wallet_balance"][ "confirmed_wallet_balance" ] == 0 for i in range(0, 2 * num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 14) assert await wallet.get_confirmed_balance() == fund_owners_initial_balance - 101 assert await check_balance(api_user, user_wallet_id) == 100 receiving_wallet = wallet_node_2.wallet_state_manager.main_wallet address = encode_puzzle_hash(await receiving_wallet.get_new_puzzlehash(), "pea") assert await receiving_wallet.get_spendable_balance() == 0 val = await api_user.send_transaction({"wallet_id": user_wallet_id, "amount": 3, "fee": 2, "address": address}) assert "transaction_id" in val await time_out_assert(15, is_transaction_in_mempool, True, user_wallet_id, api_user, val["transaction_id"]) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 18) assert await is_transaction_confirmed(user_wallet_id, api_user, val["transaction_id"]) assert await check_balance(api_user, user_wallet_id) == 95 assert await receiving_wallet.get_spendable_balance() == 3 val = await api_admin.add_rate_limited_funds({"wallet_id": admin_wallet_id, "amount": 100, "fee": 7}) assert val["status"] == "SUCCESS" for i in range(0, 50): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 68) assert await check_balance(api_user, user_wallet_id) == 195 # test spending puzzle_hash = encode_puzzle_hash(await receiving_wallet.get_new_puzzlehash(), "pea") val = await api_user.send_transaction( {"wallet_id": user_wallet_id, "amount": 105, "fee": 0, "address": puzzle_hash} ) await time_out_assert(15, is_transaction_in_mempool, True, user_wallet_id, api_user, val["transaction_id"]) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 72) assert await is_transaction_confirmed(user_wallet_id, api_user, val["transaction_id"]) assert await check_balance(api_user, user_wallet_id) == 90 assert await receiving_wallet.get_spendable_balance() == 108 val = await api_admin.send_clawback_transaction({"wallet_id": admin_wallet_id, "fee": 11}) await time_out_assert(15, is_transaction_in_mempool, True, user_wallet_id, api_admin, val["transaction_id"]) for i in range(0, num_blocks): await full_node_api.farm_new_transaction_block(FarmNewBlockProtocol(32 * b"\0")) await time_out_assert(15, wallet_height_at_least, True, wallet_node, 76) assert await is_transaction_confirmed(user_wallet_id, api_admin, val["transaction_id"]) assert await check_balance(api_user, user_wallet_id) == 0 final_balance = await wallet.get_confirmed_balance() assert final_balance == fund_owners_initial_balance - 129
the-stack_106_23816
from __future__ import with_statement import json import logging import os import sys import textwrap from os.path import join, normpath from tempfile import mkdtemp import pretend import pytest from pip._internal.req.constructors import install_req_from_line from pip._internal.utils.misc import rmtree from tests.lib import ( assert_all_changes, create_test_package_with_setup, need_svn, ) from tests.lib.local_repos import local_checkout, local_repo @pytest.mark.network def test_basic_uninstall(script): """ Test basic install and uninstall. """ result = script.pip('install', 'INITools==0.2') assert join(script.site_packages, 'initools') in result.files_created, ( sorted(result.files_created.keys()) ) # the import forces the generation of __pycache__ if the version of python # supports it script.run('python', '-c', "import initools") result2 = script.pip('uninstall', 'INITools', '-y') assert_all_changes(result, result2, [script.venv / 'build', 'cache']) def test_basic_uninstall_distutils(script): """ Test basic install and uninstall. """ script.scratch_path.joinpath("distutils_install").mkdir() pkg_path = script.scratch_path / 'distutils_install' pkg_path.joinpath("setup.py").write_text(textwrap.dedent(""" from distutils.core import setup setup( name='distutils-install', version='0.1', ) """)) result = script.run('python', pkg_path / 'setup.py', 'install') result = script.pip('list', '--format=json') assert {"name": "distutils-install", "version": "0.1"} \ in json.loads(result.stdout) result = script.pip('uninstall', 'distutils_install', '-y', expect_stderr=True, expect_error=True) assert ( "Cannot uninstall 'distutils-install'. It is a distutils installed " "project and thus we cannot accurately determine which files belong " "to it which would lead to only a partial uninstall." ) in result.stderr @pytest.mark.network def test_basic_uninstall_with_scripts(script): """ Uninstall an easy_installed package with scripts. """ result = script.easy_install('PyLogo', expect_stderr=True) easy_install_pth = script.site_packages / 'easy-install.pth' pylogo = sys.platform == 'win32' and 'pylogo' or 'PyLogo' assert(pylogo in result.files_updated[easy_install_pth].bytes) result2 = script.pip('uninstall', 'pylogo', '-y') assert_all_changes( result, result2, [script.venv / 'build', 'cache', easy_install_pth], ) @pytest.mark.network def test_uninstall_easy_install_after_import(script): """ Uninstall an easy_installed package after it's been imported """ result = script.easy_install('--always-unzip', 'INITools==0.2', expect_stderr=True) # the import forces the generation of __pycache__ if the version of python # supports it script.run('python', '-c', "import initools") result2 = script.pip('uninstall', 'INITools', '-y') assert_all_changes( result, result2, [ script.venv / 'build', 'cache', script.site_packages / 'easy-install.pth', ] ) @pytest.mark.network def test_uninstall_trailing_newline(script): """ Uninstall behaves appropriately if easy-install.pth lacks a trailing newline """ script.easy_install('INITools==0.2', expect_stderr=True) script.easy_install('PyLogo', expect_stderr=True) easy_install_pth = script.site_packages_path / 'easy-install.pth' # trim trailing newline from easy-install.pth with open(easy_install_pth) as f: pth_before = f.read() with open(easy_install_pth, 'w') as f: f.write(pth_before.rstrip()) # uninstall initools script.pip('uninstall', 'INITools', '-y') with open(easy_install_pth) as f: pth_after = f.read() # verify that only initools is removed before_without_initools = [ line for line in pth_before.splitlines() if 'initools' not in line.lower() ] lines_after = pth_after.splitlines() assert lines_after == before_without_initools @pytest.mark.network def test_basic_uninstall_namespace_package(script): """ Uninstall a distribution with a namespace package without clobbering the namespace and everything in it. """ result = script.pip('install', 'pd.requires==0.0.3') assert join(script.site_packages, 'pd') in result.files_created, ( sorted(result.files_created.keys()) ) result2 = script.pip('uninstall', 'pd.find', '-y') assert join(script.site_packages, 'pd') not in result2.files_deleted, ( sorted(result2.files_deleted.keys()) ) assert join(script.site_packages, 'pd', 'find') in result2.files_deleted, ( sorted(result2.files_deleted.keys()) ) def test_uninstall_overlapping_package(script, data): """ Uninstalling a distribution that adds modules to a pre-existing package should only remove those added modules, not the rest of the existing package. See: GitHub issue #355 (pip uninstall removes things it didn't install) """ parent_pkg = data.packages.joinpath("parent-0.1.tar.gz") child_pkg = data.packages.joinpath("child-0.1.tar.gz") result1 = script.pip('install', parent_pkg) assert join(script.site_packages, 'parent') in result1.files_created, ( sorted(result1.files_created.keys()) ) result2 = script.pip('install', child_pkg) assert join(script.site_packages, 'child') in result2.files_created, ( sorted(result2.files_created.keys()) ) assert normpath( join(script.site_packages, 'parent/plugins/child_plugin.py') ) in result2.files_created, sorted(result2.files_created.keys()) # The import forces the generation of __pycache__ if the version of python # supports it script.run('python', '-c', "import parent.plugins.child_plugin, child") result3 = script.pip('uninstall', '-y', 'child') assert join(script.site_packages, 'child') in result3.files_deleted, ( sorted(result3.files_created.keys()) ) assert normpath( join(script.site_packages, 'parent/plugins/child_plugin.py') ) in result3.files_deleted, sorted(result3.files_deleted.keys()) assert join(script.site_packages, 'parent') not in result3.files_deleted, ( sorted(result3.files_deleted.keys()) ) # Additional check: uninstalling 'child' should return things to the # previous state, without unintended side effects. assert_all_changes(result2, result3, []) @pytest.mark.parametrize("console_scripts", ["test_ = distutils_install", "test_:test_ = distutils_install"]) def test_uninstall_entry_point_colon_in_name(script, console_scripts): """ Test uninstall package with two or more entry points in the same section, whose name contain a colon. """ pkg_name = 'ep_install' pkg_path = create_test_package_with_setup( script, name=pkg_name, version='0.1', entry_points={"console_scripts": [console_scripts, ], "pip_test.ep": ["ep:name1 = distutils_install", "ep:name2 = distutils_install"] } ) script_name = script.bin_path.joinpath( console_scripts.split('=')[0].strip() ) if sys.platform == 'win32': script_name += '.exe' result = script.pip('install', pkg_path) assert script_name.exists() result = script.pip('list', '--format=json') assert {"name": "ep-install", "version": "0.1"} \ in json.loads(result.stdout) script.pip('uninstall', 'ep_install', '-y') assert not script_name.exists() result2 = script.pip('list', '--format=json') assert {"name": "ep-install", "version": "0.1"} \ not in json.loads(result2.stdout) def test_uninstall_gui_scripts(script): """ Make sure that uninstall removes gui scripts """ pkg_name = "gui_pkg" pkg_path = create_test_package_with_setup( script, name=pkg_name, version='0.1', entry_points={"gui_scripts": ["test_ = distutils_install", ], } ) script_name = script.bin_path.joinpath('test_') if sys.platform == 'win32': script_name += '.exe' script.pip('install', pkg_path) assert script_name.exists() script.pip('uninstall', pkg_name, '-y') assert not script_name.exists() def test_uninstall_console_scripts(script): """ Test uninstalling a package with more files (console_script entry points, extra directories). """ pkg_path = create_test_package_with_setup( script, name='discover', version='0.1', entry_points={'console_scripts': ['discover = discover:main']}, ) result = script.pip('install', pkg_path) assert script.bin / 'discover' + script.exe in result.files_created, ( sorted(result.files_created.keys()) ) result2 = script.pip('uninstall', 'discover', '-y') assert_all_changes(result, result2, [script.venv / 'build', 'cache']) def test_uninstall_console_scripts_uppercase_name(script): """ Test uninstalling console script with uppercase character. """ pkg_path = create_test_package_with_setup( script, name='ep_install', version='0.1', entry_points={ "console_scripts": [ "Test = distutils_install", ], }, ) script_name = script.bin_path.joinpath('Test' + script.exe) script.pip('install', pkg_path) assert script_name.exists() script.pip('uninstall', 'ep_install', '-y') assert not script_name.exists() @pytest.mark.network def test_uninstall_easy_installed_console_scripts(script): """ Test uninstalling package with console_scripts that is easy_installed. """ # setuptools >= 42.0.0 deprecates easy_install and prints a warning when # used result = script.easy_install('discover', allow_stderr_warning=True) assert script.bin / 'discover' + script.exe in result.files_created, ( sorted(result.files_created.keys()) ) result2 = script.pip('uninstall', 'discover', '-y') assert_all_changes( result, result2, [ script.venv / 'build', 'cache', script.site_packages / 'easy-install.pth', ] ) @pytest.mark.network @need_svn def test_uninstall_editable_from_svn(script, tmpdir): """ Test uninstalling an editable installation from svn. """ result = script.pip( 'install', '-e', '{checkout}#egg=initools'.format( checkout=local_checkout( 'svn+http://svn.colorstudy.com/INITools', tmpdir) ), ) result.assert_installed('INITools') result2 = script.pip('uninstall', '-y', 'initools') assert (script.venv / 'src' / 'initools' in result2.files_after) assert_all_changes( result, result2, [ script.venv / 'src', script.venv / 'build', script.site_packages / 'easy-install.pth' ], ) @pytest.mark.network def test_uninstall_editable_with_source_outside_venv(script, tmpdir): """ Test uninstalling editable install from existing source outside the venv. """ try: temp = mkdtemp() temp_pkg_dir = join(temp, 'pip-test-package') _test_uninstall_editable_with_source_outside_venv( script, tmpdir, temp_pkg_dir, ) finally: rmtree(temp) def _test_uninstall_editable_with_source_outside_venv( script, tmpdir, temp_pkg_dir, ): result = script.run( 'git', 'clone', local_repo('git+git://github.com/pypa/pip-test-package', tmpdir), temp_pkg_dir, expect_stderr=True, ) result2 = script.pip('install', '-e', temp_pkg_dir) assert join( script.site_packages, 'pip-test-package.egg-link' ) in result2.files_created, list(result2.files_created.keys()) result3 = script.pip('uninstall', '-y', 'pip-test-package') assert_all_changes( result, result3, [script.venv / 'build', script.site_packages / 'easy-install.pth'], ) @pytest.mark.network @need_svn def test_uninstall_from_reqs_file(script, tmpdir): """ Test uninstall from a requirements file. """ local_svn_url = local_checkout( 'svn+http://svn.colorstudy.com/INITools', tmpdir, ) script.scratch_path.joinpath("test-req.txt").write_text( textwrap.dedent(""" -e {url}#egg=initools # and something else to test out: PyLogo<0.4 """).format(url=local_svn_url) ) result = script.pip('install', '-r', 'test-req.txt') script.scratch_path.joinpath("test-req.txt").write_text( textwrap.dedent(""" # -f, -i, and --extra-index-url should all be ignored by uninstall -f http://www.example.com -i http://www.example.com --extra-index-url http://www.example.com -e {url}#egg=initools # and something else to test out: PyLogo<0.4 """).format(url=local_svn_url) ) result2 = script.pip('uninstall', '-r', 'test-req.txt', '-y') assert_all_changes( result, result2, [ script.venv / 'build', script.venv / 'src', script.scratch / 'test-req.txt', script.site_packages / 'easy-install.pth', ], ) def test_uninstallpathset_no_paths(caplog): """ Test UninstallPathSet logs notification when there are no paths to uninstall """ from pip._internal.req.req_uninstall import UninstallPathSet from pkg_resources import get_distribution caplog.set_level(logging.INFO) test_dist = get_distribution('pip') uninstall_set = UninstallPathSet(test_dist) uninstall_set.remove() # with no files added to set assert ( "Can't uninstall 'pip'. No files were found to uninstall." in caplog.text ) def test_uninstall_non_local_distutils(caplog, monkeypatch, tmpdir): einfo = tmpdir.joinpath("thing-1.0.egg-info") with open(einfo, "wb"): pass dist = pretend.stub( key="thing", project_name="thing", egg_info=einfo, location=einfo, _provider=pretend.stub(), ) get_dist = pretend.call_recorder(lambda x: dist) monkeypatch.setattr("pip._vendor.pkg_resources.get_distribution", get_dist) req = install_req_from_line("thing") req.uninstall() assert os.path.exists(einfo) def test_uninstall_wheel(script, data): """ Test uninstalling a wheel """ package = data.packages.joinpath("simple.dist-0.1-py2.py3-none-any.whl") result = script.pip('install', package, '--no-index') dist_info_folder = script.site_packages / 'simple.dist-0.1.dist-info' assert dist_info_folder in result.files_created result2 = script.pip('uninstall', 'simple.dist', '-y') assert_all_changes(result, result2, []) @pytest.mark.skipif("sys.platform == 'win32'") def test_uninstall_with_symlink(script, data, tmpdir): """ Test uninstalling a wheel, with an additional symlink https://github.com/pypa/pip/issues/6892 """ package = data.packages.joinpath("simple.dist-0.1-py2.py3-none-any.whl") script.pip('install', package, '--no-index') symlink_target = tmpdir / "target" symlink_target.mkdir() symlink_source = script.site_packages / "symlink" (script.base_path / symlink_source).symlink_to(symlink_target) st_mode = symlink_target.stat().st_mode distinfo_path = script.site_packages_path / 'simple.dist-0.1.dist-info' record_path = distinfo_path / 'RECORD' with open(record_path, "a") as f: f.write("symlink,,\n") uninstall_result = script.pip('uninstall', 'simple.dist', '-y') assert symlink_source in uninstall_result.files_deleted assert symlink_target.stat().st_mode == st_mode def test_uninstall_setuptools_develop_install(script, data): """Try uninstall after setup.py develop followed of setup.py install""" pkg_path = data.packages.joinpath("FSPkg") script.run('python', 'setup.py', 'develop', expect_stderr=True, cwd=pkg_path) script.run('python', 'setup.py', 'install', expect_stderr=True, cwd=pkg_path) list_result = script.pip('list', '--format=json') assert {"name": os.path.normcase("FSPkg"), "version": "0.1.dev0"} \ in json.loads(list_result.stdout), str(list_result) # Uninstall both develop and install uninstall = script.pip('uninstall', 'FSPkg', '-y') assert any(filename.endswith('.egg') for filename in uninstall.files_deleted.keys()) uninstall2 = script.pip('uninstall', 'FSPkg', '-y') assert join( script.site_packages, 'FSPkg.egg-link' ) in uninstall2.files_deleted, list(uninstall2.files_deleted.keys()) list_result2 = script.pip('list', '--format=json') assert "FSPkg" not in {p["name"] for p in json.loads(list_result2.stdout)} def test_uninstall_editable_and_pip_install(script, data): """Try uninstall after pip install -e after pip install""" # SETUPTOOLS_SYS_PATH_TECHNIQUE=raw removes the assumption that `-e` # installs are always higher priority than regular installs. # This becomes the default behavior in setuptools 25. script.environ['SETUPTOOLS_SYS_PATH_TECHNIQUE'] = 'raw' pkg_path = data.packages.joinpath("FSPkg") script.pip('install', '-e', '.', expect_stderr=True, cwd=pkg_path) # ensure both are installed with --ignore-installed: script.pip('install', '--ignore-installed', '.', expect_stderr=True, cwd=pkg_path) list_result = script.pip('list', '--format=json') assert {"name": "FSPkg", "version": "0.1.dev0"} \ in json.loads(list_result.stdout) # Uninstall both develop and install uninstall = script.pip('uninstall', 'FSPkg', '-y') assert not any(filename.endswith('.egg-link') for filename in uninstall.files_deleted.keys()) uninstall2 = script.pip('uninstall', 'FSPkg', '-y') assert join( script.site_packages, 'FSPkg.egg-link' ) in uninstall2.files_deleted, list(uninstall2.files_deleted.keys()) list_result2 = script.pip('list', '--format=json') assert "FSPkg" not in {p["name"] for p in json.loads(list_result2.stdout)} def test_uninstall_ignores_missing_packages(script, data): """Uninstall of a non existent package prints a warning and exits cleanly """ result = script.pip( 'uninstall', '-y', 'non-existent-pkg', expect_stderr=True, ) assert "Skipping non-existent-pkg as it is not installed." in result.stderr assert result.returncode == 0, "Expected clean exit" def test_uninstall_ignores_missing_packages_and_uninstalls_rest(script, data): script.pip_install_local('simple') result = script.pip( 'uninstall', '-y', 'non-existent-pkg', 'simple', expect_stderr=True, ) assert "Skipping non-existent-pkg as it is not installed." in result.stderr assert "Successfully uninstalled simple" in result.stdout assert result.returncode == 0, "Expected clean exit"
the-stack_106_23818
import numpy as np import torch.utils.data as Data import torch from sklearn.decomposition import PCA import numpy as np import torch.utils.data as Data from scipy.special import comb # 排列组合中的组合公式 def f_k(dataSet, Labels, d, q): """ :param dataSet: 某一个样本的特征集 :param Labels: 某一个样本的标签集 :param d: 样本的维度,即一个样本含有的特征数 :param q: 标签的维度,即标签集中标签的个数 :return: 返回的是fk(x,y) """ F_k = [] for l in range(d): for j in range(q): if Labels[j] == 1: try: F_k.append(float(dataSet[l])) except: # print(dataSet) # print(l, dataSet) raise IndexError else: F_k.append(0.0) for j1 in range(q - 1): for j2 in range(j1 + 1, q): y_j1 = Labels[j1] y_j2 = Labels[j2] if y_j1 == 1 and y_j2 == 1: F_k.append(1.0) else: F_k.append(0.0) if y_j1 == 1 and y_j2 == 0: F_k.append(1.0) else: F_k.append(0.0) if y_j1 == 0 and y_j2 == 1: F_k.append(1.0) else: F_k.append(0.0) if y_j1 == 0 and y_j2 == 0: F_k.append(1.0) else: F_k.append(0.0) # print(len(F_k)) return torch.tensor(F_k, requires_grad=True) def basic_rand_labels(len): """ 变成辅助函数 #关于这个函数的for循环的嵌套次数,Y标签集中,有几个标签就嵌套几层。(y1,y2,...,yq) :return: 返回的是q维的标签集的所有组合情况 """ """ randLabels=[] for i in range(2): randLabels.append([i]) return randLabels """ randLabels = [] for i in range(2 ** len): randLabel = np.zeros(shape=len) for j in range(len): randLabel[len - j - 1] = i % 2 i = i // 2 if i == 0: break print(randLabel) randLabels.append(randLabel) np.save("./basic_rand_Labels.npy", np.array(randLabels)) def supported_rand_labels(train_label): """ 这是个辅助函数,用来生成support_rand_Labels """ """ randLabels=[] for i in range(2): randLabels.append([i]) return randLabels """ # for _, y in train_iter: labels = train_label.tolist() label_set = [] for label in labels: if label in label_set: continue else: label_set.append(label) randLables = np.array(label_set) print(label_set) np.save("./supported_rand_labels.npy", randLables) print("finish") def generate_rand_Labels(mode): if mode == "supported": randLabels = np.load("./data/rand_labels/supported_rand_labels.npy") randLabels = randLabels.tolist() return randLabels elif mode == "basic": randLabels = np.load("./data/rand_labels/basic_rand_Labels.npy") randLabels = randLabels.tolist() return randLabels def Z(dataSet, d, q, Lambda, randLabels): # 对于某一个样本的Z """ :param dataSet: 某一个样本的特征集 :param d: 样本的维度,即特征的个数 :param q: 标签集的个数 :param Lambda: Lambda是一个1*K维向量 :return: 归一化范数,以及所有标签集组合的对应f_k """ Z = 0 for i in range(len(randLabels)): fk = f_k(dataSet, randLabels[i], d, q) temp_sum = torch.exp((Lambda * fk).sum()) Z = Z + temp_sum return Z def load_data(train_data_path, train_label_path, test_data_path, test_label_path, batch_size): # 训练集的处理 train_data = np.load(train_data_path) train_data = train_data[:, :] train_label = np.load(train_label_path) train_label = train_label[:, :] test_data = np.load(test_data_path) test_data = test_data[:, :] test_label = np.load(test_label_path) test_target = test_label[:, :] train_target = torch.tensor(train_label, dtype=torch.float, requires_grad=True) test_target = torch.tensor(test_label, dtype=torch.float, requires_grad=True) # 主成分降维 pca = PCA(n_components=5) # 保留5个主成分 train_data = torch.tensor(pca.fit_transform(train_data), requires_grad=True) test_data = torch.tensor((pca.fit_transform(test_data)), requires_grad=True) d = len(train_data[0]) q = len(train_target[0]) K = int(d * q + 4 * comb(q, 2)) thegma = 2 ** (1) # 参数寻优,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 # 训练数据集 dataset = Data.TensorDataset(train_data, train_target) # 测试集的处理 test_data = Data.TensorDataset(test_data, test_target) # test_data = Data.TensorDataset(torch.tensor(test_data, requires_grad=True)) # 随机读取小批量 train_iter = Data.DataLoader(dataset, batch_size, shuffle=True) test_iter = Data.DataLoader(test_data, batch_size, shuffle=False) return train_iter, test_iter, K, thegma, d, q
the-stack_106_23820
# ======================================================================= # # Copyright (C) 2018, Hisilicon Technologies Co., Ltd. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1 Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2 Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3 Neither the names of the copyright holders nor the names of the # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ======================================================================= # """presenter channel manager module""" import logging import threading # max support 10 channels MAX_CHANNEL_NUM = 10 # when a channel have receive data, # the active status will last 3 seconds ACTIVE_LAST_TIME = 3 class ChannelResource(): """every channel has a ChannelResource object, contains a ChannelHandler object and a socket fileno. it corresponding to the ChannelFd one by one """ def __init__(self, handler, socket=None): self.handler = handler self.socket = socket class ChannelFd(): """every channel has a ChannelFd object, contains a ChannelHandler object and channel name. It corresponds to the ChannelResource one by one """ def __init__(self, channel_name, handler): self.channel_name = channel_name self.handler = handler class Channel(): """record user register channels self.image: if channel type is image, save the image here """ def __init__(self, channel_name): self.channel_name = channel_name self.image = None self.rectangle_list = None class ChannelManager(): """manage all the api about channel __instance: ensure it is a single instance _channel_resources: a dict key: channel name value: a ChannelResource() object. _channel_fds: a dict key: socket fileno value: a ChannelFd() object. _channel_list: a list, member is a Channel() object.""" __instance = None channel_resources = {} channel_fds = {} channel_list = [] channel_resource_lock = threading.Lock() channel_fds_lock = threading.Lock() channel_lock = threading.Lock() err_code_ok = 0 err_code_too_many_channel = 1 err_code_repeat_channel = 2 def __init__(self, channel_list=None): """init func""" def __new__(cls, channel_list=None): """ensure only a single instance created. """ if cls.__instance is None: cls.__instance = object.__new__(cls) # default create 2 channels: image and video # if channel_list is not None and isinstance(channel_list, list): # for i in channel_list: # cls.channel_list.append(Channel(channel_name=i)) # logging.info("register channel %s", i) return cls.__instance def _register_channel_fd(self, sock_fileno, channel_name): """Internal func, create a ChannelFd object""" if self.channel_fds.get(sock_fileno): del self.channel_fds[sock_fileno] handler = self.channel_resources[channel_name].handler self.channel_fds[sock_fileno] = ChannelFd(channel_name, handler) def create_channel_resource(self, channel_name, channel_fd, media_type, handler): """create a ChannelResource object which contains all the resources binding a channel. channel_name: channel name. channel_fd: socket fileno binding the channel. media_type: support image or video. handler: an channel handler process image data. """ with self.channel_resource_lock: log_info = "create channel resource," log_info += " channel_name:%s, channel_fd:%u, media_type:%s" logging.info(log_info, channel_name, channel_fd, media_type) self.channel_resources[channel_name] = \ ChannelResource(handler=handler, socket=channel_fd) self._register_channel_fd(channel_fd, channel_name) def _clean_channel_resource(self, channel_name): """Internal func, clean channel resource by channel name""" if self.channel_resources.get(channel_name): self.channel_resources[channel_name].handler.close_thread() self.channel_resources[channel_name].handler.web_event.set() self.channel_resources[channel_name].handler.image_event.set() del self.channel_resources[channel_name] logging.info("clean channel: %s's resource", channel_name) def clean_channel_resource_by_fd(self, sock_fileno): """ clean channel resource by socket fileno sock_fileno: socket fileno which binding to an channel """ with self.channel_fds_lock: with self.channel_resource_lock: if self.channel_fds.get(sock_fileno): self._clean_channel_resource( self.channel_fds[sock_fileno].channel_name) del self.channel_fds[sock_fileno] def clean_channel_resource_by_name(self, channel_name): """clean channel resource by channel_name channel_name: channel name""" if self.channel_resources.get(channel_name): self.clean_channel_resource_by_fd( self.channel_resources[channel_name].socket) def get_channel_handler_by_fd(self, sock_fileno): """get channel handler by socket fileno""" with self.channel_fds_lock: if self.channel_fds.get(sock_fileno): return self.channel_fds[sock_fileno].handler return None def is_channel_busy(self, channel_name): """check if channel is busy """ with self.channel_resource_lock: if self.channel_resources.get(channel_name): return True return False def close_all_thread(self): """if a channel process video type, it will create a thread. this func can close the thread. """ with self.channel_resource_lock: for channel_name in self.channel_resources: self.channel_resources[channel_name].handler.close_thread() def get_channel_handler_by_name(self, channel_name): """ get the channel handlerby channel name """ with self.channel_resource_lock: if self.channel_resources.get(channel_name): return self.channel_resources[channel_name].handler return None def list_channels(self): """ return all the channel name and the status status is indicating active state or not """ with self.channel_lock: return [{'status': self.is_channel_busy(i.channel_name), 'name': i.channel_name} for i in self.channel_list] def register_one_channel(self, channel_name): """ register a channel path, user create a channel via browser """ with self.channel_lock: if len(self.channel_list) >= MAX_CHANNEL_NUM: logging.info("register channel: %s fail, \ exceed max number 10.", channel_name) return self.err_code_too_many_channel for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: logging.info("register channel: %s fail, \ already exist.", channel_name) return self.err_code_repeat_channel self.channel_list.append(Channel(channel_name=channel_name)) logging.info("register channel: %s", channel_name) return self.err_code_ok def unregister_one_channel(self, channel_name): """ unregister a channel path, user delete a channel via browser """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: self.clean_channel_resource_by_name(channel_name) logging.info("unregister channel: %s", channel_name) del self.channel_list[i] break def is_channel_exist(self, channel_name): """ Check if a channel is exist True: exist False: not exist """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: return True return False def save_channel_image(self, channel_name, image_data, rectangle_list): """ when a channel bounding to image type, server will permanent hold an image for it. this func save a image in memory """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: self.channel_list[i].image = image_data self.channel_list[i].rectangle_list = rectangle_list break def get_channel_image(self, channel_name): """ when a channel bounding to image type, server will permanent hold an image for it. this func get the image """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: return self.channel_list[i].image # channel not exist return None def get_channel_image_with_rectangle(self, channel_name): """ A new method for display server, return the image and rectangle list """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: return (self.channel_list[i].image, self.channel_list[i].rectangle_list) return (None, None) def clean_channel_image(self, channel_name): """ when a channel bounding to image type, server will permanent hold an image for it. this func clean the image """ with self.channel_lock: for i in range(len(self.channel_list)): if self.channel_list[i].channel_name == channel_name: self.channel_list[i].image = None break
the-stack_106_23822
import json import logging from pathlib import Path from flow_py_sdk.cadence import Address from flow_py_sdk.signer import InMemorySigner, HashAlgo, SignAlgo log = logging.getLogger(__name__) class Config(object): def __init__(self, config_location: Path) -> None: super().__init__() self.access_node_host: str = "localhost" self.access_node_port: int = 3569 self.service_account_key_id: int = 0 # noinspection PyBroadException try: with open(config_location) as json_file: data = json.load(json_file) self.service_account_address = Address.from_hex( data["accounts"]["emulator-account"]["address"] ) self.service_account_signer = InMemorySigner( hash_algo=HashAlgo.from_string( data["accounts"]["emulator-account"]["hashAlgorithm"] ), sign_algo=SignAlgo.from_string( data["accounts"]["emulator-account"]["sigAlgorithm"] ), private_key_hex=data["accounts"]["emulator-account"]["keys"], ) except Exception: log.warning( f"Cannot open {config_location}, using default settings", exc_info=True, stack_info=True, )
the-stack_106_23823
import torch as th from torch.autograd import Function def batch2tensor(batch_adj, batch_feat, node_per_pool_graph): """ transform a batched graph to batched adjacency tensor and node feature tensor """ batch_size = int(batch_adj.size()[0] / node_per_pool_graph) adj_list = [] feat_list = [] for i in range(batch_size): start = i * node_per_pool_graph end = (i + 1) * node_per_pool_graph adj_list.append(batch_adj[start:end, start:end]) feat_list.append(batch_feat[start:end, :]) adj_list = list(map(lambda x: th.unsqueeze(x, 0), adj_list)) feat_list = list(map(lambda x: th.unsqueeze(x, 0), feat_list)) adj = th.cat(adj_list, dim=0) feat = th.cat(feat_list, dim=0) return feat, adj def masked_softmax(matrix, mask, dim=-1, memory_efficient=True, mask_fill_value=-1e32): ''' masked_softmax for dgl batch graph code snippet contributed by AllenNLP (https://github.com/allenai/allennlp) ''' if mask is None: result = th.nn.functional.softmax(matrix, dim=dim) else: mask = mask.float() while mask.dim() < matrix.dim(): mask = mask.unsqueeze(1) if not memory_efficient: result = th.nn.functional.softmax(matrix * mask, dim=dim) result = result * mask result = result / (result.sum(dim=dim, keepdim=True) + 1e-13) else: masked_matrix = matrix.masked_fill((1 - mask).byte(), mask_fill_value) result = th.nn.functional.softmax(masked_matrix, dim=dim) return result
the-stack_106_23824
""" " " Author: Maximilien Servajean - mservajean " Mail: [email protected] " Date: 04/01/2019 " " Description: The code to extract environmental tensors and environmental vectors given some environmental rasters. " """ import numpy as np import rasterio import re import warnings import matplotlib.pyplot as plt # metadata used to setup some rasters raster_metadata = { 'bdticm': {'min_val': 0, 'max_val': 112467, 'nan': -2147483647, 'new_nan': -1, 'mu': 2579, 'sigma': 3058}, 'bldfie': {'min_val': 93, 'max_val': 1828, 'nan': -32768, 'new_nan': 92, 'mu': 1372, 'sigma': 137}, 'cecsol': {'min_val': 0, 'max_val': 385, 'nan': -32768, 'new_nan': -1, 'mu': 20, 'sigma': 8}, 'clyppt': {'min_val': 0, 'max_val': 81, 'nan': -32768, 'new_nan': -1, 'mu': 22, 'sigma': 8}, 'orcdrc': {'min_val': 0, 'max_val': 524, 'nan': -32768, 'new_nan': -1, 'mu': 24, 'sigma': 21}, 'phihox': {'min_val': 32, 'max_val': 98, 'nan': -32768, 'new_nan': 31, 'mu': 64, 'sigma': 11}, 'sltppt': {'min_val': 0, 'max_val': 86, 'nan': -32768, 'new_nan': -1, 'mu': 37, 'sigma': 11}, 'sndppt': {'min_val': 0, 'max_val': 99, 'nan': -32768, 'new_nan': -1, 'mu': 42, 'sigma': 14}, 'bio_1': {'min_val': -116, 'max_val': 259, 'nan': -2147483647, 'new_nan': -117, 'mu': 101, 'sigma': 58}, 'bio_2': {'min_val': -53, 'max_val': 361, 'nan': -2147483647, 'new_nan': -54, 'mu': 131, 'sigma': 28}, 'bio_3': {'min_val': 19, 'max_val': 69, 'nan': -2147483647, 'new_nan': 18, 'mu': 36, 'sigma': 8}, 'bio_4': {'min_val': 1624, 'max_val': 13302, 'nan': -2147483647, 'new_nan': 1623, 'mu': 8267, 'sigma': 2152}, 'bio_5': {'min_val': -25, 'max_val': 457, 'nan': -2147483647, 'new_nan': -26, 'mu': 289, 'sigma': 48}, 'bio_6': {'min_val': -276, 'max_val': 183, 'nan': -2147483647, 'new_nan': -277, 'mu': -78, 'sigma': 83}, 'bio_7': {'min_val': 117, 'max_val': 515, 'nan': -2147483647, 'new_nan': 116, 'mu': 367, 'sigma': 72}, 'bio_8': {'min_val': -169, 'max_val': 332, 'nan': -2147483647, 'new_nan': -170, 'mu': 149, 'sigma': 82}, 'bio_9': {'min_val': -181, 'max_val': 331, 'nan': -2147483647, 'new_nan': -182, 'mu': 54, 'sigma': 114}, 'bio_10': {'min_val': -53, 'max_val': 361, 'nan': -2147483647, 'new_nan': -54, 'mu': 205, 'sigma': 47}, 'bio_11': {'min_val': -186, 'max_val': 220, 'nan': -2147483647, 'new_nan': -187, 'mu': -7, 'sigma': 80}, 'bio_12': {'min_val': -35, 'max_val': 3385, 'nan': -2147483647, 'new_nan': -36, 'mu': 746, 'sigma': 383}, 'bio_13': {'min_val': 7, 'max_val': 570, 'nan': -2147483647, 'new_nan': 6, 'mu': 98, 'sigma': 47}, 'bio_14': {'min_val': 0, 'max_val': 184, 'nan': -2147483647, 'new_nan': -1, 'mu': 34, 'sigma': 26}, 'bio_15': {'min_val': 5, 'max_val': 140, 'nan': -2147483647, 'new_nan': 4, 'mu': 38, 'sigma': 23}, 'bio_16': {'min_val': 19, 'max_val': 1546, 'nan': -2147483647, 'new_nan': 18, 'mu': 265, 'sigma': 132}, 'bio_17': {'min_val': 0, 'max_val': 612, 'nan': -2147483647, 'new_nan': -1, 'mu': 117, 'sigma': 84}, 'bio_18': {'min_val': 1, 'max_val': 777, 'nan': -2147483647, 'new_nan': 0, 'mu': 213, 'sigma': 107}, 'bio_19': {'min_val': 5, 'max_val': 1485, 'nan': -2147483647, 'new_nan': 4, 'mu': 163, 'sigma': 137}, } class Raster(object): """ Raster is dedicated to a single raster management... """ def __init__(self, path, country='FR', normalized=False, transform=None, size=256, nan=None, new_nan=None, mu=0, sigma=1, **kw): """ Loads a tiff file describing an environmental raster into a numpy array and... :type new_nan: :param path: the path of the raster (the directory) :param nan: the value to use when NaN number are present. If False, then default values will be used :param normalized: if True the raster will be normalized (minus the mean and divided by std) :param transform: if a function is given, it will be applied on each patch. :param size: the size of a patch (size x size) """ self.path = path self.no_data = new_nan self.normalized = normalized self.transform = transform self.size = size path = re.sub(r'/\/+/', '/', path) self.name = path.split('/')[-1] if path[-1] != '/' else path.split('/')[-2] print(path + '/' + self.name + '_' + country + '.tif') # src.meta # to avoid the annoying corresponding warning, temporary warning disabling... warnings.filterwarnings("ignore") src = rasterio.open(path + '/' + self.name + '_' + country + '.tif', nodata=nan) warnings.filterwarnings("default") if src.meta['crs'] is None: with open(path + '/' + 'GeoMetaData.csv') as f: metadata = f.read() m_split = metadata.split('\n')[1].split(';') # loading file data self.x_min = float(m_split[1]) self.y_min = float(m_split[2]) self.x_resolution = float(m_split[5]) self.y_resolution = float(m_split[6]) self.n_rows = int(m_split[3]) self.n_cols = int(m_split[4]) else: self.x_min = src.bounds.left self.y_min = src.bounds.bottom self.x_resolution = src.res[0] self.y_resolution = src.res[1] self.n_rows = src.height self.n_cols = src.width print(self.x_min, self.y_min, self.x_resolution, self.y_resolution, self.n_rows, self.n_cols) # some tiff do not contain geo data (stored in the file GeoMetaData) # loading the raster self.raster = np.squeeze(src.read()) src.close() # value bellow min_value are considered incorrect and therefore no_data self.raster[self.raster == nan] = new_nan self.raster[np.isnan(self.raster)] = new_nan if normalized: # normalizing the whole raster given available data (therefore avoiding no_data)... selected_cell = self.raster != nan self.raster[selected_cell] = (self.raster[selected_cell] - mu) / sigma # setting the shape of the raster self.shape = self.raster.shape def _get_patch(self, item): """ Avoid using this method directly :param item: the GPS position (latitude, longitude) :return: a patch """ row_num = int(self.n_rows - (item[0] - self.y_min) / self.y_resolution) col_num = int((item[1] - self.x_min) / self.x_resolution) # environmental vector if self.size == 1: patch = self.raster[row_num, col_num].astype(np.float) else: half_size = int(self.size/2) patch = self.raster[ row_num-half_size:row_num+half_size, col_num - half_size:col_num+half_size ].astype(np.float) patch = patch[np.newaxis] return patch def __len__(self): """ :return: the depth of the tensor/vector... """ return 1 def __getitem__(self, item): """ The method to use to retrieve a patch. :param item: GPS position (latitude, longitude) :return: the extracted patch with eventually some transformations """ # item is a tuple of (latitude, longitude) patch = self._get_patch(item) if self.transform: patch = self.transform(patch) return patch class PatchExtractor(object): """ PatchExtractor enables the extraction of an environmental tensor from multiple rasters given a GPS position. """ def __init__(self, root_path, size=256, verbose=False, resolution=1.): self.root_path = root_path self.size = size self.verbose = verbose self.resolution = resolution self.rasters_fr = [] self.rasters_us = [] def add_all(self, normalized=False, transform=None): """ Add all variables (rasters) available at root_path :param normalized: if True, each raster will be normalized :param transform: a function to apply on each patch """ for key in sorted(raster_metadata.keys()): if 'ignore' not in raster_metadata[key]: self.append(key, normalized=normalized, transform=transform) def append(self, raster_name, **kwargs): """ This method append a new raster given its name :param raster_name: :param kwargs: nan, normalized, transform """ # you may want to add rasters one by one if specific configuration are required on a per raster # basis print('Adding: ' + raster_name) params = {**raster_metadata[raster_name]} for k in kwargs.keys(): if kwargs[k] != 'default': params[k] = kwargs[k] r_us = Raster(self.root_path + '/' + raster_name, 'USA', size=self.size, **params) r_fr = Raster(self.root_path + '/' + raster_name, 'FR', size=self.size, **params) self.rasters_us.append(r_us) self.rasters_fr.append(r_fr) def clean(self): """ Remove all rasters from the extractor. """ print('Removing all rasters...') self.rasters_fr = [] self.rasters_us = [] def __repr__(self): return self.__str__() def __str__(self): str_ = '' def raster_str(r): result = '' result += '-' * 50 + '\n' result += 'title: ' + r.name + '\n' result += '\t x_min: ' + str(r.x_min) + '\n' result += '\t y_min: ' + str(r.y_min) + '\n' result += '\t x_resolution: ' + str(r.x_resolution) + '\n' result += '\t y_resolution: ' + str(r.y_resolution) + '\n' result += '\t n_rows: ' + str(r.n_rows) + '\n' result += '\t n_cols: ' + str(r.n_cols) + '\n' return result for r in self.rasters_fr: str_ += raster_str(r) for r in self.rasters_us: str_ += raster_str(r) return str_ def __getitem__(self, item): """ :param item: the GPS location (latitude, longitude) :return: return the environmental tensor or vector (size>1 or size=1) """ rasters = self._raster(item) if len(rasters) > 1: return np.concatenate([r.__getitem__(item) for r in rasters]) else: return np.array([rasters[0].__getitem__(item)]) def __len__(self): """ :return: the number of variables (not the size of the tensor when some variables have a one hot encoding representation) """ return len(self.rasters_fr) def _raster(self, item): return self.rasters_fr if item[1] > -10. else self.rasters_us def plot(self, item, return_fig=False, style='fivethirtyeight', nb_cols=5, alpha=1.): """ Plot an environmental tensor (size > 1)... :param alpha: :param nb_cols: :param item: the GPS location (latitude, longitude) :param return_fig: if True, the matplotlib fig will be returned, if False, it will be displayed :param style: style of the chart """ if self.size > 1: rasters = self._raster(item) with plt.style.context(style): metadata = [ (r.name, [ item[1] - self.size // 2 * r.x_resolution, item[1] + self.size // 2 * r.x_resolution, item[0] - self.size // 2 * r.y_resolution, item[0] + self.size // 2 * r.y_resolution] ) for r in rasters ] # metadata are the name of the variable and the bounding box in latitude-longitude coordinates # retrieve the patch... Eventually disabling the one hot encoding variables patch = self.__getitem__(item) # computing number of rows and columns... nb_rows = (patch.shape[0] + (nb_cols-1)) // nb_cols fig = plt.figure(figsize=(nb_cols * 6.4 * self.resolution, nb_rows * 4.8 * self.resolution)) for k, i in zip(metadata, range(patch.shape[0])): plt.subplot(nb_rows, nb_cols, i + 1) plt.title(k[0], fontsize=20) p = np.squeeze(patch[i]) plt.imshow(p, extent=k[1], aspect='auto') plt.colorbar() fig.tight_layout() fig.patch.set_alpha(alpha) if return_fig: return fig else: fig.show() plt.close(fig) else: raise ValueError('Plot works only for tensors: size must be > 1...')
the-stack_106_23825
import pytest from keybind import KeyBinder, configure_logging def test_basic(xlib_mock): configure_logging() xlib_mock.register_events([ (1, 'K'), (1, 'J'), (1, 'pass'), # captured, no handler (0, 'pass'), # non captured ]) pressed = [] with pytest.raises(IndexError): KeyBinder.activate({ 'Ctrl-K': lambda: pressed.append('Ctrl-K'), 'J': lambda: pressed.append('J'), 10: lambda: pressed.append('10'), }) # Try bogus grab key. xlib_mock.register_error('errr', 'ev') with pytest.raises(IndexError): KeyBinder.activate({ 'bogus': lambda: None, }) # Try sniffing. with pytest.raises(IndexError): KeyBinder.activate() def test_thread(xlib_mock): KeyBinder.activate({ 'J': lambda: None, }, run_thread=True) @pytest.mark.parametrize("key_input, expected_result", [ ("J", ([], "J")), ("Ctrl-J", (["Ctrl"], "J")), ("Ctrl-Alt-J", (["Ctrl", "Alt"], "J")), ("", ([], "")), ] ) def test_parse_key_valid_input(key_input, expected_result, xlib_mock): # GIVEN valid input describing a key or key combination # WHEN the input is parsed binder = KeyBinder() # THEN the expected result is returned assert binder._parse_key(key_input) == expected_result def test_parse_key_invalid_input(xlib_mock): # GIVEN a list of valid input types and input that is not one of those valid_input_types = [str, int] invalid_input = ["Ctrl", "J"] assert type(invalid_input) not in valid_input_types # WHEN the input gets parsed binder = KeyBinder() # THEN a TypeError is raised with pytest.raises(TypeError): binder._parse_key(invalid_input)
the-stack_106_23826
from sys import argv, stderr from pickle import dump from copy import copy if len(argv) != 4: stderr.write('USAGE: %s infobox_categories redirects ofile\n' % argv[0]) exit(1) info_categories = {w:c for w,c in [l.split('\t') for l in open(argv[1]).read().split('\n') if l != '']} redirects = {w:r for w,r in [l.split('\t') for l in open(argv[2]).read().split('\n') if l != '']} ofile = open(argv[3],'wb') for w, r in redirects.items(): if not w in info_categories: if r in info_categories: info_categories[w] = info_categories[r] gazetteer = {} for w,c in info_categories.items(): k = w if w[-1] == ')' and w.count(' (') == 1: ind = w.find(' (') k = w[:ind] if not k in gazetteer: gazetteer[k] = set() gazetteer[k].add(c) gazetteer_lc = copy(gazetteer) for w,c in gazetteer.items(): if not w.lower() in gazetteer: gazetteer_lc[w.lower()] = c dump(gazetteer_lc,ofile)
the-stack_106_23830
# # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import numpy as np from arch.api.session import init from federatedml.ftl.encryption import encryption from federatedml.ftl.test.mock_models import MockAutoencoder from federatedml.ftl.test.whitebox_plain_gradients_test import run_one_party_msg_exchange from federatedml.secureprotol.encrypt import PaillierEncrypt class TestEncryptedGradients(unittest.TestCase): def setUp(self): paillierEncrypt = PaillierEncrypt() paillierEncrypt.generate_key() self.public_key = paillierEncrypt.get_public_key() self.private_key = paillierEncrypt.get_privacy_key() def test_party_b_gradient_checking_test(self): U_A = np.array([[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]) U_B = np.array([[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]) y = np.array([[1], [-1], [1], [-1]]) overlap_indexes = [1, 2] non_overlap_indexes = [0, 3] Wh = np.ones((4, U_A.shape[1])) bh = np.zeros(U_A.shape[1]) autoencoderA = MockAutoencoder(0) autoencoderA.build(U_A.shape[1], Wh, bh) autoencoderB = MockAutoencoder(1) autoencoderB.build(U_B.shape[1], Wh, bh) partyA, partyB = run_one_party_msg_exchange(autoencoderA, autoencoderB, U_A, U_B, y, overlap_indexes, non_overlap_indexes, self.public_key, self.private_key, True) loss_grads_B_1 = partyB.get_loss_grads() loss1 = partyA.send_loss() U_B_prime = np.array([[4, 2, 3, 1, 2], [6, 5, 1.001, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]) partyA, partyB = run_one_party_msg_exchange(autoencoderA, autoencoderB, U_A, U_B_prime, y, overlap_indexes, non_overlap_indexes, self.public_key, self.private_key, True) loss_grads_B_2 = partyB.get_loss_grads() loss2 = partyA.send_loss() loss_grads_B_1 = np.array(encryption.decrypt_matrix(self.private_key, loss_grads_B_1)) loss_grads_B_2 = np.array(encryption.decrypt_matrix(self.private_key, loss_grads_B_2)) loss1 = encryption.decrypt(self.private_key, loss1) loss2 = encryption.decrypt(self.private_key, loss2) grad_approx = (loss2 - loss1) / 0.001 grad_real = loss_grads_B_1[0, 2] grad_diff = np.abs(grad_approx - grad_real) assert grad_diff < 0.001 def test_party_a_gradient_checking_test(self): U_A = np.array([[1, 2, 3, 4, 5], [4, 5, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]) U_B = np.array([[4, 2, 3, 1, 2], [6, 5, 1, 4, 5], [7, 4, 1, 9, 10], [6, 5, 1, 4, 5]]) y = np.array([[1], [-1], [1], [-1]]) overlap_indexes = [1, 2] non_overlap_indexes = [0, 3] Wh = np.ones((4, U_A.shape[1])) bh = np.zeros(U_A.shape[1]) autoencoderA = MockAutoencoder(0) autoencoderA.build(U_A.shape[1], Wh, bh) autoencoderB = MockAutoencoder(1) autoencoderB.build(U_B.shape[1], Wh, bh) partyA, _ = run_one_party_msg_exchange(autoencoderA, autoencoderB, U_A, U_B, y, overlap_indexes, non_overlap_indexes, self.public_key, self.private_key, True) loss_grads_A_1 = partyA.get_loss_grads() loss1 = partyA.send_loss() U_A_prime = np.array([[1, 2, 3, 4, 5], [4, 5.001, 6, 7, 8], [7, 8, 9, 10, 11], [4, 5, 6, 7, 8]]) partyA, _ = run_one_party_msg_exchange(autoencoderA, autoencoderB, U_A_prime, U_B, y, overlap_indexes, non_overlap_indexes, self.public_key, self.private_key, True) loss_grads_A_2 = partyA.get_loss_grads() loss2 = partyA.send_loss() loss_grads_A_1 = np.array(encryption.decrypt_matrix(self.private_key, loss_grads_A_1)) loss_grads_A_2 = np.array(encryption.decrypt_matrix(self.private_key, loss_grads_A_2)) loss1 = encryption.decrypt(self.private_key, loss1) loss2 = encryption.decrypt(self.private_key, loss2) grad_approx = (loss2 - loss1) / 0.001 grad_real = loss_grads_A_1[1, 1] grad_diff = np.abs(grad_approx - grad_real) assert grad_diff < 0.001 if __name__ == '__main__': init() unittest.main()
the-stack_106_23831
import tensorflow as tf from .configuration import get_defaults from .tfrecords_utils import read_tfrecords from . import utils def load_image(im_id, image_size, image_folder, image_format): """Resolve the correct image path from the given arguments. Args: im_id: image id saved in the tfrecords image_size: integer specifying the square size to resize the image to image_folder: image folder path image_format: Used to resolve the correct image path and format Returns: The loaded image as a 3D Tensor """ if image_format == 'vedai': # VEDAI filename = image_folder + '/' + tf.as_string(im_id, fill='0', width=8) + '_co.png' img_type = 'png' elif image_format == 'sdd': # STANFORD DRONE DATASET filename = image_folder + '/' + tf.as_string(im_id, fill='0', width=8) + '.jpeg' img_type = 'jpg' else: raise NotImplementedError("Unrecognized image format `%s`" % image_format) # Parse image image = tf.read_file(filename) if img_type == 'jpg': image = tf.image.decode_jpeg(image, channels=3) elif img_type == 'png': image = tf.image.decode_png(image, channels=3) else: raise NotImplementedError('unknown image type %s' % img_type) image = tf.image.convert_image_dtype(image, tf.float32) # Resize image image = tf.image.resize_images(image, (image_size, image_size)) return image def parse_basic_feature(parsed_features, image_folder, image_format, image_size=448): """"Parse TFRecords features. Args: parsed_features: Parsed TFRecords features. num_classes: Number of classes in the dataset. Used to infer the dataset. image_folder: Image directory. image_format: Used to resolve the correct image path and format. image_size: Resize to the given image size. Defaults to 448. Returns: image_id, an integer (exact format depends on the dataset) image, Tensor with values in [0, 1], shape (image_size, image_size, 3) num_boxes, Number of valid boxes for this image bounding_boxes, Bounding boxes for this image, shape (max_num_bbs, 4) """ im_id = tf.cast(parsed_features['im_id'], tf.int32) image = load_image(im_id, image_size, image_folder, image_format) num_boxes = tf.cast(parsed_features['num_boxes'], tf.int32) bounding_boxes = parsed_features["bounding_boxes"] return {'im_id': im_id, 'image': image, 'num_boxes': num_boxes, 'bounding_boxes': bounding_boxes} def apply_data_augmentation(in_, data_augmentation_threshold): """ Perform data augmentation (left/right flip). Args: in_: A batch from the dataset (output of iterator.get_next()) data_augmentation_threshold: threshold in [0, 1] Returns: Dataset with left/right data augmentation applied """ condition_shape = tf.shape(in_['image'])[:1] condition = (tf.random_uniform(condition_shape) >= data_augmentation_threshold) # Flip image in_['image'] = tf.where(condition, in_['image'], tf.reverse(in_['image'], [2])) # Set is_flipped flag in_['is_flipped'] = tf.where(condition, in_['is_flipped'], 1. - in_['is_flipped']) # Flip bounding boxes coordinates, (batch, num_bbs, 4) in_['bounding_boxes'] = tf.where(condition, in_['bounding_boxes'], tf.abs([1., 0., 1., 0.] - tf.gather(in_['bounding_boxes'], [2, 1, 0, 3], axis=-1))) # Flip active/empty cell mask, (batch, num_cells_x, num_cells_y, 1, num_bbs) in_['obj_i_mask_bbs'] = tf.where(condition, in_['obj_i_mask_bbs'], tf.reverse(in_['obj_i_mask_bbs'], [2])) # Flip groups bounding boxes coordinates, (batch, num_cells, num_cells, 1, 4) if 'group_bounding_boxes_per_cell' in in_: in_['group_bounding_boxes_per_cell'] = tf.where( condition, in_['group_bounding_boxes_per_cell'], tf.abs([1., 0., 1., 0.] - tf.gather( tf.reverse(in_['group_bounding_boxes_per_cell'], [2]), [2, 1, 0, 3], axis=-1))) # Flip groups ground-truth flags, (batch, num_cells, num_cells, 1, 1) if 'group_flags' in in_: in_['group_flags'] = tf.where(condition, in_['group_flags'], tf.reverse(in_['group_flags'], [2])) # Flip groups classes, (batch, num_cells, num_cells, 1, num_classes) if 'group_class_labels' in in_: in_['group_class_labels'] = tf.where(condition, in_['group_class_labels'], tf.reverse(in_['group_class_labels'], [2])) # Return return in_ def get_tf_dataset(tfrecords_file, record_keys, image_format, max_num_bbs, with_groups=True, grouping_method='intersect', grid_offsets=None, with_classes=False, num_classes=None, batch_size=1, drop_remainder=False, num_epochs=1, image_size=1024, image_folder='', data_augmentation_threshold=0.5, num_devices=1, num_threads=4, shuffle_buffer=1, prefetch_capacity=1, make_initializable_iterator=False, verbose=1): """Parse and load inputs from the given TFRecords as a tf.data.Dataset. Args: tfrecords_file: Path to the TFRecords file containing the data. record_keys: Feature keys present in the TFrecords. Loaded from the metadata file max_num_bbs: Maximum number of bounding boxes in the dataset. Used for reshaping the `bounding_boxes` records. num_classes: Number of classes in the dataset. Only used if with_classes is True with_classes: wheter to use class information with_groups: whether to pre-compute grouped instances ground-truth grid_offsets: Precomputed grid offsets batch_size: Batch size. num_epochs: Number of epochs to repeat. image_size: The square size which to resize images to. image_folder: path to the directory containing the images in the dataset. data_augmentation_threshold: Data augmentation probabilitiy (in [0, 1]) num_devices: Number of devices num_threads: Number of readers for the batch queue. shuffle_buffer: Size of the shuffling buffer. prefetch_capacity: Buffer size for prefetching. make_initializable_iterator: if True, make an initializable and add its initializer to the collection `iterator_init` verbose: Verbosity level Returns: A tf.Data.dataset iterator (and its initializer if initializable_iterator) """ assert grouping_method in ['intersect', 'intersect_with_density', 'unique_intersect'] assert not (with_classes and num_classes is None) assert len(record_keys) assert batch_size > 0 assert image_size > 0 assert 0. <= data_augmentation_threshold <= 1. if grid_offsets is not None: num_cells = grid_offsets.shape[:2] assert num_devices > 0 assert num_threads > 0 assert shuffle_buffer > 0 if verbose == 2: print(' \033[31m> load_inputs\033[0m') elif verbose == 1: print(' > load_inputs') # Normalize grid cells offsets if grid_offsets is not None: grid_offsets_mins = grid_offsets / num_cells grid_offsets_maxs = (grid_offsets + 1.) / num_cells # Create TFRecords feature features = read_tfrecords(record_keys, max_num_bbs=max_num_bbs) def parsing_function(example_proto): # Basic features parsed_features = tf.parse_single_example(example_proto, features) output = parse_basic_feature(parsed_features, image_folder, image_format, image_size=image_size) bounding_boxes = output['bounding_boxes'] # Empty/active cells mask # obj_i_mask_bbs: (num_cells, num_cells, 1, num_bbs) mins, maxs = tf.split(bounding_boxes, 2, axis=-1) # (num_bbs, 2) inters = tf.maximum(0., tf.minimum(maxs, grid_offsets_maxs) - tf.maximum(mins, grid_offsets_mins)) inters = tf.reduce_prod(inters, axis=-1) obj_i_mask = tf.expand_dims(tf.to_float(inters > 0.) , axis=-2) output["obj_i_mask_bbs"] = obj_i_mask # Grouped instances # group_bounding_boxes_per_cell: (num_cells, num_cells, 1, 4), cell bounding box after grouping # group_flags: (num_cells, num_cells, 1, 1), whether a cell contains a group or not # num_group_boxes: (), number of bounding boxes after grouping if with_groups: ## Define group_mask: (num_cells, num_cells, num_bbs, 1) ## Maps each gt bounding box to a grid cell to be merged into a group if grouping_method == 'intersect_with_density': obj_i_mask = tf.expand_dims(tf.to_float(inters > 0.) , axis=-2) obj_i_mask *= tf.expand_dims(tf.to_float(inters < 1. / (num_cells[0] * num_cells[1])) , axis=-2) group_mask = tf.transpose(obj_i_mask, (0, 1, 3, 2)) # (num_cells, num_cells, num_bbs, 1) elif grouping_method == 'unique_intersect': # weight 1: Intersection between gt boxes and cells # Upper bounded by 1 # (num_cells, num_cells, num_bbs) w1 = inters * num_cells[0] * num_cells[1] # weight 2: Opposite of How many objects coocurs in each cells # Upper bounded by 1 # (num_cells, num_cells, 1) w2 = 1. - tf.reduce_sum(obj_i_mask, axis=-1) / tf.to_float(output['num_boxes']) # Assign each ground-truth to one unique group group_mask = w1 * w2 group_mask = tf.to_float(group_mask > 0.) * tf.to_float(group_mask >= tf.reduce_max(group_mask, axis=(0, 1), keep_dims=True)) group_mask = tf.expand_dims(group_mask, axis=-1) elif grouping_method == 'intersect': group_mask = tf.transpose(obj_i_mask, (0, 1, 3, 2)) # (num_cells, num_cells, num_bbs, 1) ## Merge bbs coocurring in the same cell to form groups mins = mins + 1. - group_mask mins = tf.reduce_min(mins, axis=2, keep_dims=True) # (num_cells, num_cells, 1, 2) maxs = maxs * group_mask maxs = tf.reduce_max(maxs, axis=2, keep_dims=True) group_bounding_boxes_per_cell = tf.concat([mins, maxs], axis=-1) group_bounding_boxes_per_cell = tf.clip_by_value(group_bounding_boxes_per_cell, 0., 1.) output["group_bounding_boxes_per_cell"] = group_bounding_boxes_per_cell num_bbs_per_cell = tf.reduce_sum(group_mask, axis=2, keep_dims=True) num_group_boxes = tf.reduce_sum(tf.to_int32(num_bbs_per_cell > 0)) output["num_group_boxes"] = num_group_boxes group_flags = tf.maximum(tf.minimum(num_bbs_per_cell, 2.) - 1., 0.) output["group_flags"] = group_flags # is_flipped flag: (), indicates whether the image has been flipped during data augmentation output["is_flipped"] = tf.constant(0.) # Optional : add classes if with_classes: class_labels = tf.one_hot(parsed_features['classes'], num_classes, axis=-1, on_value=1, off_value=0, dtype=tf.int32) output['class_labels'] = class_labels # Group classes (majority vote) # (num_cells, num_cells, 1, num_classes) if with_groups: percell_class_labels = tf.expand_dims(tf.expand_dims(class_labels, axis=0), axis=0) percell_class_labels = group_mask * tf.to_float(percell_class_labels) percell_class_labels = tf.reduce_sum(percell_class_labels, axis=2, keep_dims=True) group_class_labels = tf.argmax(percell_class_labels, axis=-1) group_class_labels = tf.one_hot(group_class_labels, num_classes, axis=-1, on_value=1, off_value=0, dtype=tf.int32) group_class_labels = tf.to_int32(percell_class_labels * tf.to_float(group_class_labels)) output["group_class_labels"] = group_class_labels return output ## Create the dataset with tf.name_scope('load_dataset'): # Parse data dataset = tf.data.TFRecordDataset(tfrecords_file) # Map dataset = dataset.shuffle(buffer_size=shuffle_buffer) dataset = dataset.map(parsing_function, num_parallel_calls=num_threads) # Repeat if num_epochs > 1: dataset = dataset.repeat(num_epochs) # Batch if tf.__version__ == '1.4.0': dataset = dataset.batch(batch_size * num_devices) else: dataset = dataset.batch(batch_size * num_devices, drop_remainder=drop_remainder) # Prefetch if prefetch_capacity > 0: dataset = dataset.prefetch(prefetch_capacity) # Iterator if make_initializable_iterator: iterator = dataset.make_initializable_iterator() iterator_init = iterator.initializer tf.add_to_collection('iterator_init', iterator_init) else: iterator = dataset.make_one_shot_iterator() iterator_init = None batch = iterator.get_next() ## Apply data augmentation with tf.name_scope('data_augmentation'): if data_augmentation_threshold > 0.: batch = apply_data_augmentation(batch, data_augmentation_threshold) ## Split across device slice_dims = [0] * num_devices unpadded_batch = tf.to_int32(tf.shape(batch['im_id'])[0]) for i in range(num_devices): slice_dims[i] = tf.maximum(0, tf.minimum(batch_size, unpadded_batch)) unpadded_batch -= batch_size inputs = [{} for _ in range(num_devices)] for key, value in batch.items(): for i, split_value in enumerate(tf.split(value, slice_dims, axis=0)): inputs[i][key] = split_value ## Verbose log if verbose == 2: print('\n'.join(" \033[32m%s\033[0m: shape=%s, dtype=%s" % (key, value.get_shape().as_list(), value.dtype) for key, value in inputs[0].items())) elif verbose == 1: print('\n'.join(" *%s*: shape=%s, dtype=%s" % (key, value.get_shape().as_list(), value.dtype) for key, value in inputs[0].items())) return inputs, iterator_init def filter_individuals(predicted_boxes, predicted_scores, predicted_group_flags, strong_confidence_threshold=1.0): """Filter out individuals predictions with confidence higher than the given threhsold""" # should_be_refined: (batch, num_boxes, 1) : groups and not strongly confident individuals if predicted_group_flags is not None: is_not_strongly_confident = tf.to_float(predicted_scores <= strong_confidence_threshold) # is_group: (batch, num_boxes, 1) is_group = tf.to_float(tf.nn.sigmoid(predicted_group_flags) > 0.5) is_group = utils.flatten_percell_output(is_group) should_be_refined = tf.minimum(1., is_group + is_not_strongly_confident) else: should_be_refined = tf.to_float(predicted_scores <= strong_confidence_threshold) # Filter them out from potential crops predicted_scores *= should_be_refined predicted_boxes *= should_be_refined # Return filtered boxes and filter return predicted_boxes, predicted_scores, tf.squeeze(1. - should_be_refined, axis=-1) def filter_threshold(predicted_boxes, predicted_scores, confidence_threshold=-1.): """Filter out boxes with confidence below the given threshold""" filtered = tf.to_float(predicted_scores > confidence_threshold) predicted_scores *= filtered predicted_boxes *= filtered return predicted_boxes, predicted_scores def extract_groups(predicted_boxes, predicted_scores, predicted_group_flags=None, predicted_offsets=None, mode='train', verbose=False, epsilon=1e-8, **kwargs): """ Extract crops from the outputs of intermediate stage. Args: predicted_boxes: A (batch_size, num_cells, num_cells, num_boxes, 4) array predicted_scores: A (batch_size, num_cells, num_cells, num_boxes, 1) array predicted_group_flags: A (batch_size, num_cells, num_cells, num_boxes, 1) array predicted_offsets: A (batch_size, num_cells, num_cells, num_boxes, 2) array mode: If test, the boxes are only passed to the next stage if they are worth being refined (ie groups or unprecise individual) Kwargs: {train, test}_patch_confidence_threshold: Minimum confidence threshold to qualify for refinement patch_nms_threshold: NMS threshold {train, test}_num_crops: Number of crops to extract test_patch_strong_confidence_threshold: high confidence threshold previous_batch_size: Batch size of the previous stage (for which `predicted boxes` where output). Needs to be statistically known for the NMS loop. #Returns: Extracted crops and their confidence scores """ if mode == 'train': # train time (confidence_threshold, nms_threshold, num_outputs) = get_defaults( kwargs, ['train_patch_confidence_threshold', 'train_patch_nms_threshold', 'train_num_crops'], verbose=verbose) elif mode in ['val', 'test']: # inference (confidence_threshold, nms_threshold, num_outputs) = get_defaults( kwargs, ['test_patch_confidence_threshold', 'test_patch_nms_threshold', 'test_num_crops'], verbose=verbose) else: raise ValueError('Unknown mode', mode) if verbose: print(' extracting %d crops' % num_outputs) ## Flatten # predicted_score: (batch, num_boxes, 1) # predicted_boxes: (batch, num_boxes, 4) with tf.name_scope('flat_output'): predicted_boxes = utils.flatten_percell_output(predicted_boxes) predicted_scores = utils.flatten_percell_output(predicted_scores) ## Filter kept_out_filter = tf.zeros(tf.shape(predicted_scores)) # default with tf.name_scope('filter_groups'): # At test time, we keep out individual confidences with high confidence # we save these `shortcut` boxes in the `kept_out_filter` Tensor if mode in ['test', 'val']: strong_confidence_threshold = get_defaults( kwargs, ['test_patch_strong_confidence_threshold'], verbose=verbose)[0] if isinstance(strong_confidence_threshold, tf.Tensor) or strong_confidence_threshold < 1.0: predicted_boxes, predicted_scores, kept_out_filter = filter_individuals( predicted_boxes, predicted_scores, predicted_group_flags, strong_confidence_threshold) # Additionally, we filter out boxes with confidence below the threshold if isinstance(confidence_threshold, tf.Tensor) or confidence_threshold > 0.: with tf.name_scope('filter_confidence'): predicted_boxes, predicted_scores = filter_threshold( predicted_boxes, predicted_scores, confidence_threshold) ## Rescale remaining boxes with the learned offsets with tf.name_scope('offsets_rescale_boxes'): if predicted_offsets is not None: predicted_boxes = utils.rescale_with_offsets( predicted_boxes, utils.flatten_percell_output(predicted_offsets), epsilon) ## Extract n best patches # crop_boxes: (batch, num_crops, 4) # crop_boxes_confidences: (batch, num_crops) predicted_scores = tf.squeeze(predicted_scores, axis=-1) if isinstance(num_outputs, tf.Tensor) or num_outputs > 0: # Non-Maximum Suppression: outputs the top `num_outputs` boxes after NMS if (isinstance(nms_threshold, tf.Tensor) or nms_threshold < 1.0) or (isinstance(num_outputs, tf.Tensor)): batch_size = get_defaults(kwargs, ['previous_batch_size'], verbose=verbose)[0] current_batch = tf.shape(predicted_boxes)[0] with tf.name_scope('nms'): nms_boxes = [] nms_boxes_confidences = [] for i in range(batch_size): boxes, scores = tf.cond( i < current_batch, # last batch can be smaller true_fn=lambda: utils.nms_with_pad(predicted_boxes[i, :, :], predicted_scores[i, :], num_outputs, iou_threshold=nms_threshold), false_fn=lambda: (tf.zeros((num_outputs, 4)), tf.zeros((num_outputs,))) ) nms_boxes.append(boxes) nms_boxes_confidences.append(scores) # Reshape nms boxes output predicted_boxes = tf.stack(nms_boxes, axis=0) predicted_boxes = tf.slice(predicted_boxes, (0, 0, 0), (current_batch, -1, -1)) predicted_boxes = tf.reshape(predicted_boxes, (-1, num_outputs, 4)) # Reshape nms scores output predicted_scores = tf.stack(nms_boxes_confidences, axis=0) predicted_scores = tf.slice(predicted_scores, (0, 0), (current_batch, -1)) predicted_scores = tf.reshape(predicted_scores, (-1, num_outputs)) # No NMS: Outputs `num_outputs` boxes with the best confidence scores # num_outputs need to be defined for tf.nn.top_k else: predicted_scores, top_indices = tf.nn.top_k(predicted_scores, k=num_outputs) batch_indices = tf.range(tf.shape(predicted_boxes)[0]) batch_indices = tf.tile(tf.expand_dims(batch_indices, axis=-1), (1, num_outputs)) gather_indices = tf.stack([batch_indices, top_indices], axis=-1) predicted_boxes = tf.gather_nd(predicted_boxes, gather_indices) # No filtering return predicted_boxes, predicted_scores, kept_out_filter def tile_and_reshape(t, num_crops): """ Given an initial Tensor `t` of shape (batch_size, s1...sn), tile and reshape it to size (batch_size * `num_crops`, s1..sn) to be forwarded to the next stage input. Note that s1...sn should be a *fully defined* shape. """ new_shape = t.get_shape().as_list() new_shape[0] = -1 t = tf.expand_dims(t, axis=1) tile_pattern = [1] * len(t.get_shape()) tile_pattern[1] = num_crops tile_pattern = tf.stack(tile_pattern, axis=0) t = tf.tile(t, tile_pattern) assert not None in new_shape t = tf.reshape(t, new_shape) return t def get_next_stage_inputs(inputs, crop_boxes, batch_size=None, image_size=256, previous_batch_size=None, full_image_size=1024, image_folder=None, image_format=None, grid_offsets=None, intersection_ratio_threshold=0.25, epsilon=1e-8, use_queue=False, shuffle_buffer=1, num_threads=1, capacity=5000, verbose=False): """ Create input queue for the second - and final - stage. Args: inputs, a dictionnary of inputs crop_boxes, a (batch_size, num_crops, 4) tensor of crops image_folder: Image directory, used for reloading the full resolution images if needed batch_size: Batch size for the output of this pipeline image_size: Size of the images patches in the new dataset full_image_size: Size of the images to load before applying the croppings grid_offsets: A (num_cells, num_cells) array use_queue: Whether to use a queue or directly output the new inputs dictionary shuffle_buffer: shuffle buffer of the output queue num_threads: number of readers in the output queue capacity: Output queue capacity verbose: verbosity """ assert 0. <= intersection_ratio_threshold < 1. num_crops = tf.shape(crop_boxes)[1] new_inputs = {} # new_im_id: (batch_size * num_crops,) if 'im_id' in inputs: with tf.name_scope('im_ids'): new_inputs['im_id'] = tile_and_reshape(inputs['im_id'], num_crops) # classes: (batch_size * num_crops, num_classes) if 'class_labels' in inputs: with tf.name_scope('class_labels'): new_inputs['class_labels'] = tile_and_reshape(inputs['class_labels'], num_crops) # new_image: (num_patches, image_size, image_size, 3) with tf.name_scope('extract_image_patches'): # Extract patches and resize # crop_boxes_indices: (batch_size * num_crops,) # crop_boxes_flat: (batch_size * num_crops, 4) crop_boxes_indices = tf.ones(tf.shape(crop_boxes)[:2], dtype=tf.int32) crop_boxes_indices = tf.cumsum(crop_boxes_indices, axis=0, exclusive=True) crop_boxes_indices = tf.reshape(crop_boxes_indices, (-1,)) crop_boxes_flat = tf.gather(tf.reshape(crop_boxes, (-1, 4)), [1, 0, 3, 2], axis=-1) new_inputs['image'] = tf.image.crop_and_resize( inputs['image'], crop_boxes_flat, crop_boxes_indices, (image_size, image_size), name='extract_groups') # new_bounding_boxes: (num_patches, max_num_bbs, 4) # rescale bounding boxes coordinates to the cropped image if 'bounding_boxes' in inputs: with tf.name_scope('shift_bbs'): # bounding_boxes: (batch, num_crops, max_num_bbs, 4) # crop_boxes: (batch, num_crops, 1, 4) bounding_boxes = inputs['bounding_boxes'] max_num_bbs = bounding_boxes.get_shape()[1].value bounding_boxes = tf.expand_dims(bounding_boxes, axis=1) bounding_boxes = tf.tile(bounding_boxes, (1, num_crops, 1, 1)) crop_boxes = tf.expand_dims(crop_boxes, axis=2) # Filter out cut bbs ratios = utils.get_intersection_ratio(tf.split(bounding_boxes, 4, axis=-1), tf.split(crop_boxes, 4, axis=-1)) condition = tf.tile(ratios > intersection_ratio_threshold, (1, 1, 1, 4)) bounding_boxes *= tf.to_float(condition) # Rescale coordinates to the cropped image crop_mins, crop_maxs = tf.split(crop_boxes, 2, axis=-1) bounding_boxes -= tf.tile(crop_mins, (1, 1, 1, 2)) bounding_boxes /= tf.maximum(epsilon, tf.tile(crop_maxs - crop_mins, (1, 1, 1, 2))) bounding_boxes = tf.clip_by_value(bounding_boxes, 0., 1.) bounding_boxes = tf.reshape(bounding_boxes, (-1, max_num_bbs, 4)) new_inputs['bounding_boxes'] = bounding_boxes # number of valid boxes: (num_patches,) if 'num_boxes' in inputs: with tf.name_scope('num_boxes'): valid_boxes = ((bounding_boxes[..., 2] > bounding_boxes[..., 0]) & (bounding_boxes[..., 3] > bounding_boxes[..., 1])) num_boxes = tf.to_float(valid_boxes) new_inputs['num_boxes'] = tf.to_int32(tf.reduce_sum(num_boxes, axis=-1) ) # Compute the box presence in cell mask # obj_i_mask_bbs: (num_patches, num_cells, num_cells, 1, num_gt) if 'obj_i_mask_bbs' in inputs: with tf.name_scope('grid_offsets'): if grid_offsets is not None: num_cells = grid_offsets.shape[:2] grid_offsets_mins = grid_offsets / num_cells grid_offsets_maxs = (grid_offsets + 1.) / num_cells bounding_boxes = tf.reshape(bounding_boxes, (-1, 1, 1, max_num_bbs, 4)) mins, maxs = tf.split(bounding_boxes, 2, axis=-1) inters = tf.maximum(0., tf.minimum(maxs, grid_offsets_maxs) - tf.maximum(mins, grid_offsets_mins)) inters = tf.reduce_prod(inters, axis=-1) obj_i_mask = tf.expand_dims(tf.to_float(inters > 0.) , axis=-2) new_inputs['obj_i_mask_bbs'] = obj_i_mask # During training: enqueue the inputs if use_queue: assert batch_size is not None filter_valid = tf.logical_and(crop_boxes[..., 2] > crop_boxes[..., 0], crop_boxes[..., 3] > crop_boxes[..., 1] ) filter_valid = tf.reshape(filter_valid, (-1,)) # TODO maybe_batch is deprecated out_ = tf.train.maybe_batch( new_inputs, filter_valid, batch_size, num_threads=num_threads, enqueue_many=True, capacity=capacity) # During inference: process crops deterministically else: out_ = new_inputs if verbose == 1: print('\n'.join(" \033[32m%s\033[0m: shape=%s, dtype=%s" % (key, value.get_shape().as_list(), value.dtype) for key, value in out_.items() if key != 'batch_size')) elif verbose > 1: print('\n'.join(" *%s*: shape=%s, dtype=%s" % (key, value.get_shape().as_list(), value.dtype) for key, value in out_.items() if key != 'batch_size')) return out_
the-stack_106_23832
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """Tests for the CPU topology emulation feature.""" import platform import re import pytest import framework.utils_cpuid as utils import host_tools.network as net_tools PLATFORM = platform.machine() def _check_cpuid_x86(test_microvm, expected_cpu_count, expected_htt): expected_cpu_features = { "cpu count": '{} ({})'.format(hex(expected_cpu_count), expected_cpu_count), "CLFLUSH line size": "0x8 (8)", "hypervisor guest status": "true", "hyper-threading / multi-core supported": expected_htt } utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', expected_cpu_features) def _check_cpu_features_arm(test_microvm): expected_cpu_features = { "Flags": "fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp " "asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs", } utils.check_guest_cpuid_output(test_microvm, "lscpu", None, ':', expected_cpu_features) @pytest.mark.skipif( PLATFORM != "x86_64", reason="CPUID is only supported on x86_64." ) @pytest.mark.parametrize( "num_vcpus", [1, 2, 16], ) @pytest.mark.parametrize( "htt", [True, False], ) def test_cpuid(test_microvm_with_ssh, network_config, num_vcpus, htt): """ Check the CPUID for a microvm with the specified config. @type: functional """ vm = test_microvm_with_ssh vm.spawn() vm.basic_config(vcpu_count=num_vcpus, ht_enabled=htt) _tap, _, _ = vm.ssh_network_config(network_config, '1') vm.start() _check_cpuid_x86(vm, num_vcpus, "true" if num_vcpus > 1 else "false") @pytest.mark.skipif( PLATFORM != "aarch64", reason="The CPU features on x86 are tested as part of the CPU templates." ) def test_cpu_features(test_microvm_with_ssh, network_config): """ Check the CPU features for a microvm with the specified config. @type: functional """ vm = test_microvm_with_ssh vm.spawn() vm.basic_config() _tap, _, _ = vm.ssh_network_config(network_config, '1') vm.start() _check_cpu_features_arm(vm) @pytest.mark.skipif( PLATFORM != "x86_64", reason="The CPU brand string is masked only on x86_64." ) def test_brand_string(test_microvm_with_ssh, network_config): """ Ensure good formatting for the guest brand string. * For Intel CPUs, the guest brand string should be: Intel(R) Xeon(R) Processor @ {host frequency} where {host frequency} is the frequency reported by the host CPUID (e.g. 4.01GHz) * For AMD CPUs, the guest brand string should be: AMD EPYC * For other CPUs, the guest brand string should be: "" @type: functional """ cif = open('/proc/cpuinfo', 'r') host_brand_string = None while True: line = cif.readline() if line == '': break mo = re.search("^model name\\s+:\\s+(.+)$", line) if mo: host_brand_string = mo.group(1) cif.close() assert host_brand_string is not None test_microvm = test_microvm_with_ssh test_microvm.spawn() test_microvm.basic_config(vcpu_count=1) _tap, _, _ = test_microvm.ssh_network_config(network_config, '1') test_microvm.start() ssh_connection = net_tools.SSHConnection(test_microvm.ssh_config) guest_cmd = "cat /proc/cpuinfo | grep 'model name' | head -1" _, stdout, stderr = ssh_connection.execute_command(guest_cmd) assert stderr.read() == '' line = stdout.readline().rstrip() mo = re.search("^model name\\s+:\\s+(.+)$", line) assert mo guest_brand_string = mo.group(1) assert guest_brand_string cpu_vendor = utils.get_cpu_vendor() expected_guest_brand_string = "" if cpu_vendor == utils.CpuVendor.AMD: expected_guest_brand_string += "AMD EPYC" elif cpu_vendor == utils.CpuVendor.INTEL: expected_guest_brand_string = "Intel(R) Xeon(R) Processor" mo = re.search("[.0-9]+[MG]Hz", host_brand_string) if mo: expected_guest_brand_string += " @ " + mo.group(0) assert guest_brand_string == expected_guest_brand_string @pytest.mark.skipif( PLATFORM != "x86_64", reason="CPU features are masked only on x86_64." ) @pytest.mark.parametrize("cpu_template", ["T2", "C3"]) def test_cpu_template(test_microvm_with_ssh, network_config, cpu_template): """ Test masked and enabled cpu features against the expected template. This test checks that all expected masked features are not present in the guest and that expected enabled features are present for each of the supported CPU templates. @type: functional """ test_microvm = test_microvm_with_ssh test_microvm.spawn() test_microvm.basic_config(vcpu_count=1) # Set template as specified in the `cpu_template` parameter. response = test_microvm.machine_cfg.put( vcpu_count=1, mem_size_mib=256, ht_enabled=False, cpu_template=cpu_template, ) assert test_microvm.api_session.is_status_no_content(response.status_code) _tap, _, _ = test_microvm.ssh_network_config(network_config, '1') response = test_microvm.actions.put(action_type='InstanceStart') if utils.get_cpu_vendor() != utils.CpuVendor.INTEL: # We shouldn't be able to apply Intel templates on AMD hosts assert test_microvm.api_session.is_status_bad_request( response.status_code) return assert test_microvm.api_session.is_status_no_content( response.status_code) check_masked_features(test_microvm, cpu_template) check_enabled_features(test_microvm, cpu_template) def check_masked_features(test_microvm, cpu_template): """Verify the masked features of the given template.""" common_masked_features_lscpu = ["dtes64", "monitor", "ds_cpl", "tm2", "cnxt-id", "sdbg", "xtpr", "pdcm", "osxsave", "psn", "ds", "acpi", "tm", "ss", "pbe", "fpdp", "rdt_m", "rdt_a", "mpx", "avx512f", "intel_pt", "avx512_vpopcntdq", "3dnowprefetch", "pdpe1gb"] common_masked_features_cpuid = {"SGX": "false", "HLE": "false", "RTM": "false", "RDSEED": "false", "ADX": "false", "AVX512IFMA": "false", "CLFLUSHOPT": "false", "CLWB": "false", "AVX512PF": "false", "AVX512ER": "false", "AVX512CD": "false", "SHA": "false", "AVX512BW": "false", "AVX512VL": "false", "AVX512VBMI": "false", "PKU": "false", "OSPKE": "false", "RDPID": "false", "SGX_LC": "false", "AVX512_4VNNIW": "false", "AVX512_4FMAPS": "false", "XSAVEC": "false", "XGETBV": "false", "XSAVES": "false"} # These are all discoverable by cpuid -1. c3_masked_features = {"FMA": "false", "MOVBE": "false", "BMI": "false", "AVX2": "false", "BMI2": "false", "INVPCID": "false"} # Check that all common features discoverable with lscpu # are properly masked. ssh_connection = net_tools.SSHConnection(test_microvm.ssh_config) guest_cmd = "cat /proc/cpuinfo | grep 'flags' | head -1" _, stdout, stderr = ssh_connection.execute_command(guest_cmd) assert stderr.read() == '' cpu_flags_output = stdout.readline().rstrip().split(' ') for feature in common_masked_features_lscpu: assert feature not in cpu_flags_output, feature # Check that all common features discoverable with cpuid # are properly masked. utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', common_masked_features_cpuid) if cpu_template == "C3": utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', c3_masked_features) # Check if XSAVE PKRU is masked for T3/C2. expected_cpu_features = { "XCR0 supported: PKRU state": "false" } utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', expected_cpu_features) def check_enabled_features(test_microvm, cpu_template): """Test for checking that all expected features are enabled in guest.""" enabled_list = { # feature_info_1_edx "x87 FPU on chip": "true", "CMPXCHG8B inst": "true", "virtual-8086 mode enhancement": "true", "SSE extensions": "true", "SSE2 extensions": "true", "debugging extensions": "true", "page size extensions": "true", "time stamp counter": "true", "RDMSR and WRMSR support": "true", "physical address extensions": "true", "machine check exception": "true", "APIC on chip": "true", "MMX Technology": "true", "SYSENTER and SYSEXIT": "true", "memory type range registers": "true", "PTE global bit": "true", "FXSAVE/FXRSTOR": "true", "machine check architecture": "true", "conditional move/compare instruction": "true", "page attribute table": "true", "page size extension": "true", "CLFLUSH instruction": "true", # feature_info_1_ecx "PNI/SSE3: Prescott New Instructions": "true", "PCLMULDQ instruction": "true", "SSSE3 extensions": "true", "AES instruction": "true", "CMPXCHG16B instruction": "true", "process context identifiers": "true", "SSE4.1 extensions": "true", "SSE4.2 extensions": "true", "extended xAPIC support": "true", "POPCNT instruction": "true", "time stamp counter deadline": "true", "XSAVE/XSTOR states": "true", "OS-enabled XSAVE/XSTOR": "true", "AVX: advanced vector extensions": "true", "F16C half-precision convert instruction": "true", "RDRAND instruction": "true", "hypervisor guest status": "true", # thermal_and_power_mgmt "ARAT always running APIC timer": "true", # extended_features "FSGSBASE instructions": "true", "IA32_TSC_ADJUST MSR supported": "true", "SMEP supervisor mode exec protection": "true", "enhanced REP MOVSB/STOSB": "true", "SMAP: supervisor mode access prevention": "true", # xsave_0xd_0 "XCR0 supported: x87 state": "true", "XCR0 supported: SSE state": "true", "XCR0 supported: AVX state": "true", # xsave_0xd_1 "XSAVEOPT instruction": "true", # extended_080000001_edx "SYSCALL and SYSRET instructions": "true", "64-bit extensions technology available": "true", "execution disable": "true", "RDTSCP": "true", # intel_080000001_ecx "LAHF/SAHF supported in 64-bit mode": "true", # adv_pwr_mgmt "TscInvariant": "true"} utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', enabled_list) if cpu_template == "T2": t2_enabled_features = {"FMA": "true", "BMI": "true", "BMI2": "true", "AVX2": "true", "MOVBE": "true", "INVPCID": "true"} utils.check_guest_cpuid_output(test_microvm, "cpuid -1", None, '=', t2_enabled_features)
the-stack_106_23833
# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Step APIs for RNN layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo import compat as tf from lingvo.core import base_layer from lingvo.core import py_utils from lingvo.core import rnn_cell from lingvo.core import step from six.moves import range class RnnStep(step.Step): """A step containing an RNNCell.""" @classmethod def Params(cls): p = super(RnnStep, cls).Params() p.Define('cell', rnn_cell.LSTMCellSimple.Params(), 'Params for the RNN cell.') return p @base_layer.initializer def __init__(self, params): super(RnnStep, self).__init__(params) p = params with tf.variable_scope(p.name): self.CreateChild('cell', p.cell) def PrepareExternalInputs(self, theta, external_inputs): """Does not modify the external_inputs parameter. This parameter, if provided, is assumed to be a vector that should be concatenated with the other vectors in step_inputs.inputs. Args: theta: unused. external_inputs: Either a tensor or None. Returns: external_inputs, unmodified. """ return external_inputs def ZeroState(self, theta, prepared_inputs, batch_size): """Returns the zero_state for the RNN cell. Args: theta: Variables used by the RNNCell. prepared_inputs: unused. batch_size: An int scalar representing the batch size of per-step inputs. Returns: The zero state of the RNNCell. """ return self.cell.zero_state(theta.cell, batch_size) def FProp(self, theta, prepared_inputs, step_inputs, padding, state0): """Performs one inference step on the RNN cell. If external_inputs is not None, it is added as another act input to the RNNCell. Args: theta: Variables used by the RNNCell. prepared_inputs: If not None, concatenated with step_inputs.input. A tensor of shape [batch_size, external_input_dim]. step_inputs: A NestedMap containing an 'input' list of [batch_size, dim] where the sum of dim (including external_inputs) is p.cell.num_input_nodes. padding: A 0/1 float tensor of shape [batch_size]; 1.0 means that this batch element is empty in this step. state0: A NestedMap of state, either produced by ZeroState or a previous invocation of FProp. Returns: (output, state1), where output is the cell output (GetOutput(state1)) of shape [batch_size, p.cell.num_output_nodes], and state1 is the cell's recurrent state. """ cell_inputs = py_utils.NestedMap(act=step_inputs.inputs) # An empty NestedMap can act as a None value here. if prepared_inputs is not None and not isinstance(prepared_inputs, py_utils.NestedMap): cell_inputs.act.append(prepared_inputs) cell_inputs.padding = padding state1, extra = self.cell.FProp(theta.cell, state0, cell_inputs) return py_utils.NestedMap( output=self.cell.GetOutput(state1), extra=extra, padding=padding), state1 class RnnStackStep(step.Step): """A stack of RnnSteps. Three types of inputs are supported: step_inputs.input: This is the standard input. It is expected to change on every step of the sequence, and it is fed only to the first layer. step_inputs.context: This input changes for each step of the sequence, but is fed to every layer. external_inputs: This input is fixed at the beginning of the sequence. It is fed to every layer. Residual connections are also supported. When residual_start >= 0, the output of layer i (i >= residual_start) is added to the output of layer i - residual_stride. """ @classmethod def Params(cls): """Constructs Params for an RnnStackStep.""" p = super(RnnStackStep, cls).Params() p.Define( 'rnn_cell_tpl', rnn_cell.LSTMCellSimple.Params(), 'RNNCell params template. ' 'Can be a single param or ' 'a list of rnn_layers params, one for each layer.') p.Define( 'external_input_dim', 0, 'Size of the external input. ' 'The external input is given at the start of the sequence ' 'and is given to every layer at every step.') p.Define( 'step_input_dim', 0, 'Size of the step input. ' 'This input is only given to the first layer and is expected to ' 'be different for each step.') p.Define( 'context_input_dim', 0, 'Size of the context input. ' 'This input is given to every layer and is expected to be ' 'different for each step.') p.Define( 'rnn_cell_dim', 0, 'Size of the rnn cells. ' 'This may be overridden by parameters set in rnn_cell_tpl.') p.Define( 'rnn_cell_hidden_dim', 0, 'internal size of the rnn cells. When ' 'set to > 0 it enables a projection layer at the output of the ' 'rnn cell. This may be overridden by parameters set in rnn_cell_tpl.') p.Define('rnn_layers', 1, 'Number of rnn layers.') p.Define( 'residual_start', -1, 'Start residual connections from this layer. For this and higher ' 'layers, the layer output is the sum of the RNN cell output and ' 'input; if the layer also normalizes its output, then the ' 'normalization is done over this sum. Set to -1 to disable ' 'residual connections.') p.Define('residual_stride', 1, 'Number of lstm layers to skip per residual connection.') return p @base_layer.initializer def __init__(self, params): super(RnnStackStep, self).__init__(params) p = params sub = [] # Users can either provide a single rnn_cell_tpl or one per layer. # If only one is provided, we replicate it for each layer. rnn_cell_tpls = p.rnn_cell_tpl if not isinstance(rnn_cell_tpls, list): rnn_cell_tpls = [p.rnn_cell_tpl] * p.rnn_layers # We may provide up to three tensors as input to the RnnStep: # the normal input, the context input (from step_inputs.context), # and the external input (from external_inputs). arity = 1 if p.context_input_dim: arity += 1 if p.external_input_dim: arity += 1 extra_dim = p.context_input_dim + p.external_input_dim # The first layer's input comes from step_inputs.input. Later layers # will get their inputs from the previous layer's output. input_nodes = p.step_input_dim for i in range(p.rnn_layers): step_i = RnnStep.Params() step_i.name = 'rnn_%d' % (i) step_i.cell = rnn_cell_tpls[i].Copy() step_i.cell.num_input_nodes = input_nodes + extra_dim step_i.cell.inputs_arity = arity # The dimensions of each cell may be specified in the cell template # but most users will specify them in the stack params. if step_i.cell.num_output_nodes == 0: step_i.cell.num_output_nodes = p.rnn_cell_dim if step_i.cell.num_hidden_nodes == 0: step_i.cell.num_hidden_nodes = p.rnn_cell_hidden_dim input_nodes = step_i.cell.num_output_nodes sub.append(step_i) stack_params = step.StackStep.Params() stack_params.name = p.name stack_params.sub = sub stack_params.residual_start = p.residual_start stack_params.residual_stride = p.residual_stride self.CreateChild('stack', stack_params) def PrepareExternalInputs(self, theta, external_inputs): """Delegates external inputs preparation to sub-layers. Args: theta: A `.NestedMap` object containing weight values of this layer and its children layers. external_inputs: A `.NestedMap` object. The structure of the internal fields is defined by the sub-steps. Returns: A `.NestedMap` containing a pre-processed version of the external_inputs, one per sub-step. """ return self.stack.PrepareExternalInputs(theta.stack, external_inputs) def ZeroState(self, theta, prepared_inputs, batch_size): """Computes a zero state for each sub-step. Args: theta: A `.NestedMap` object containing weight values of this layer and its children layers. prepared_inputs: An output from PrepareExternalInputs. batch_size: The number of items in the batch that FProp will process. Returns: A `.NestedMap` containing a state0 object for each sub-step. """ return self.stack.ZeroState(theta.stack, prepared_inputs, batch_size) def FProp(self, theta, prepared_inputs, step_inputs, padding, state0): """Performs inference on the stack of sub-steps. See the documentation for StackStep for the particulars of passing context information to layers. Args: theta: A `.NestedMap` object containing weight values of this layer and its children layers. prepared_inputs: An output from PrepareExternalInputs. step_inputs: A `.NestedMap` containing a list called 'inputs', an optionally a tensor called 'context'. padding: A 0/1 float tensor of shape [batch_size]; 1.0 means that this batch element is empty in this step. state0: The previous recurrent state. Returns: (output, state1): - output: A `.NestedMap` containing the output of the top-most step. - state1: The recurrent state to feed to next invocation of this graph. """ return self.stack.FProp(theta.stack, prepared_inputs, step_inputs, padding, state0)
the-stack_106_23834
# coding=utf-8 from pyecharts.chart import Chart class Map(Chart): """ <<< 地图 >>> 地图主要用于地理区域数据的可视化。 """ def __init__(self, title="", subtitle="", **kwargs): super(Map, self).__init__(title, subtitle, **kwargs) def add(self, *args, **kwargs): self.__add(*args, **kwargs) def __add( self, name, attr, value, maptype="china", is_roam=True, is_map_symbol_show=True, name_map=None, **kwargs ): """ :param name: 系列名称,用于 tooltip 的显示,legend 的图例筛选。 :param attr: 属性名称。 :param value: 属性所对应的值。 :param maptype: 地图类型。 从 v0.3.2+ 起,地图已经变为扩展包,支持全国省份,全国城市,全国区县, 全球国家等地图,具体请参考 [地图自定义篇](zh-cn/customize_map) :param is_roam: 是否开启鼠标缩放和平移漫游。默认为 True 如果只想要开启缩放或者平移,可以设置成'scale'或者'move'。设置成 True 为都开启。 :param is_map_symbol_show: 是否显示地图标记红点,默认为 True。 :param name_map: 用自定义的地图名称。默认为 None,也就是用地图自带地名。 :param kwargs: """ assert len(attr) == len(value) chart = self._get_all_options(**kwargs) _data = [] for data in zip(attr, value): _name, _value = data _data.append({"name": _name, "value": _value}) self._option.get("legend")[0].get("data").append(name) __option__ = { "type": "map", "name": name, "symbol": chart["symbol"], "label": chart["label"], "mapType": maptype, "data": _data, "roam": is_roam, "showLegendSymbol": is_map_symbol_show, } if name_map: __option__["nameMap"] = name_map self._option.get("series").append(__option__) self._add_chinese_map(maptype) self._config_components(**kwargs)
the-stack_106_23835
# coding: utf-8 """ Pure Storage FlashBlade REST 1.9 Python SDK Pure Storage FlashBlade REST 1.9 Python SDK, developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.9 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class PureArray(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ #BEGIN_CUSTOM # IR-51527: Prevent Pytest from attempting to collect this class based on name. __test__ = False #END_CUSTOM """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'name': 'str', 'id': 'str', 'ntp_servers': 'list[str]', 'os': 'str', 'revision': 'str', 'time_zone': 'str', 'version': 'str' } attribute_map = { 'name': 'name', 'id': 'id', 'ntp_servers': 'ntp_servers', 'os': 'os', 'revision': 'revision', 'time_zone': 'time_zone', 'version': 'version' } def __init__(self, name=None, id=None, ntp_servers=None, os=None, revision=None, time_zone=None, version=None): # noqa: E501 """PureArray - a model defined in Swagger""" # noqa: E501 self._name = None self._id = None self._ntp_servers = None self._os = None self._revision = None self._time_zone = None self._version = None self.discriminator = None if name is not None: self.name = name if id is not None: self.id = id if ntp_servers is not None: self.ntp_servers = ntp_servers if os is not None: self.os = os if revision is not None: self.revision = revision if time_zone is not None: self.time_zone = time_zone if version is not None: self.version = version @property def name(self): """Gets the name of this PureArray. # noqa: E501 The name of the object # noqa: E501 :return: The name of this PureArray. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this PureArray. The name of the object # noqa: E501 :param name: The name of this PureArray. # noqa: E501 :type: str """ self._name = name @property def id(self): """Gets the id of this PureArray. # noqa: E501 A globally unique ID chosen by the system. Cannot change. Cannot ever refer to another resource. # noqa: E501 :return: The id of this PureArray. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this PureArray. A globally unique ID chosen by the system. Cannot change. Cannot ever refer to another resource. # noqa: E501 :param id: The id of this PureArray. # noqa: E501 :type: str """ self._id = id @property def ntp_servers(self): """Gets the ntp_servers of this PureArray. # noqa: E501 :return: The ntp_servers of this PureArray. # noqa: E501 :rtype: list[str] """ return self._ntp_servers @ntp_servers.setter def ntp_servers(self, ntp_servers): """Sets the ntp_servers of this PureArray. :param ntp_servers: The ntp_servers of this PureArray. # noqa: E501 :type: list[str] """ self._ntp_servers = ntp_servers @property def os(self): """Gets the os of this PureArray. # noqa: E501 Possible values are Purity//FA and Purity//FB. # noqa: E501 :return: The os of this PureArray. # noqa: E501 :rtype: str """ return self._os @os.setter def os(self, os): """Sets the os of this PureArray. Possible values are Purity//FA and Purity//FB. # noqa: E501 :param os: The os of this PureArray. # noqa: E501 :type: str """ self._os = os @property def revision(self): """Gets the revision of this PureArray. # noqa: E501 :return: The revision of this PureArray. # noqa: E501 :rtype: str """ return self._revision @revision.setter def revision(self, revision): """Sets the revision of this PureArray. :param revision: The revision of this PureArray. # noqa: E501 :type: str """ self._revision = revision @property def time_zone(self): """Gets the time_zone of this PureArray. # noqa: E501 :return: The time_zone of this PureArray. # noqa: E501 :rtype: str """ return self._time_zone @time_zone.setter def time_zone(self, time_zone): """Sets the time_zone of this PureArray. :param time_zone: The time_zone of this PureArray. # noqa: E501 :type: str """ self._time_zone = time_zone @property def version(self): """Gets the version of this PureArray. # noqa: E501 :return: The version of this PureArray. # noqa: E501 :rtype: str """ return self._version @version.setter def version(self, version): """Sets the version of this PureArray. :param version: The version of this PureArray. # noqa: E501 :type: str """ self._version = version def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PureArray, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PureArray): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_23836
from data.input_set import InputSet from data.point import Point class Configuration(object): def __init__(self): """ path params """ self.PATH = "/home/alex/Documents/Project/data/FRAME_DATABASES" self.PATH_LABELS = "/home/alex/Documents/Project/LSTM_labels/tiles" self.DATA_SET_PATH = "../data" self.OUTPUT_PATH = '/media/alex/Локальный диск/UBUNTU/runs/' self.MAP_PATH = '' """ dataset params """ self.NORM_RANGE = (0, 1) class TileType(object): def __init__(self): self.A = 'A' self.B = 'B' self.C = 'C' self.D = 'D' self.E = 'E' pass self.TILE_TYPE = TileType() self.TILE_1_NUMBER_OF_EXAMPLES = 3618 self.TILE_1_A = InputSet(1, 465, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_1_B = InputSet(466, 1090, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_1_C = InputSet(1091, 2330, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_1_D = InputSet(2331, 2700, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_1_E = InputSet(2701, 3618, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_2_NUMBER_OF_EXAMPLES = 3579 self.TILE_2_A = InputSet(1, 510, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_2_B = InputSet(511, 1150, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_2_C = InputSet(1151, 2370, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_2_D = InputSet(2371, 2760, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_2_E = InputSet(2761, 3579, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_3_NUMBER_OF_EXAMPLES = 3380 self.TILE_3_A = InputSet(1, 430, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_3_B = InputSet(431, 960, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_3_C = InputSet(961, 2160, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_3_D = InputSet(2161, 2540, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_3_E = InputSet(2541, 3380, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_4_NUMBER_OF_EXAMPLES = 3223 self.TILE_4_A = InputSet(1, 410, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_4_B = InputSet(411, 910, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_4_C = InputSet(911, 2080, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_4_D = InputSet(2081, 2430, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_4_E = InputSet(2431, 3223, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_5_NUMBER_OF_EXAMPLES = 3068 self.TILE_5_A = InputSet(1, 400, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_5_B = InputSet(401, 910, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_5_C = InputSet(911, 1960, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_5_D = InputSet(1961, 2320, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_5_E = InputSet(2321, 3068, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_6_NUMBER_OF_EXAMPLES = 2973 self.TILE_6_A = InputSet(1, 410, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_6_B = InputSet(411, 910, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_6_C = InputSet(911, 1930, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_6_D = InputSet(1931, 2270, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_6_E = InputSet(2271, 2973, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change self.TILE_7_NUMBER_OF_EXAMPLES = 2930 self.TILE_7_A = InputSet(1, 370, Point(1.11, 5.68), Point(1.11, 7.69), self.TILE_TYPE.A) # y change self.TILE_7_B = InputSet(371, 830, Point(1.11, 7.69), Point(3.41, 7.69), self.TILE_TYPE.B) # x change self.TILE_7_C = InputSet(831, 1875, Point(3.41, 7.69), Point(3.41, 0.54), self.TILE_TYPE.C) # y change self.TILE_7_D = InputSet(1876, 2200, Point(3.41, 0.54), Point(1.11, 0.54), self.TILE_TYPE.D) # x change self.TILE_7_E = InputSet(2201, 2930, Point(1.11, 0.54), Point(1.11, 5.68), self.TILE_TYPE.E) # y change """ input images params """ class Size(object): def __init__(self, width, height, channels): self.WIDTH = width self.HEIGHT = height self.CHANNELS = channels pass self.IMAGE_SIZE = Size(268, 32, 3) """ modes params """ class Mode(object): def __init__(self): self.TRAINING = 'training' self.VALIDATION = 'validation' self.TESTING = 'testing' pass self.MODE = Mode() """ model params """ self.LEAKY_RELU_ALPHA = 0.1 self.LSTM_HIDDEN_UNITS = 512 self.LSTM_LAYERS = 2 """ training params """ self.BATCH_SIZE = 100 # SEQUENCE_LENGTH self.EPOCHS = 100000 self.LOG_PERIOD = 10 # steps self.SAVE_PERIOD = 1000 # steps self.MIN_FRACTION_OF_EXAMPLES_IN_QUEUE = 0.4 self.NUM_PREPROCESSING_THREADS = 16 self.NUM_EPOCHS_PER_DECAY = 1000 # Epochs after which learning rate decays. self.INITIAL_LEARNING_RATE = 0.001 self.LEARNING_RATE_DECAY_FACTOR = 0.1 self.TARGET_LOSS = 0.001 """ testing params """ self.TESTING_BATCH_SIZE = self.BATCH_SIZE # SEQUENCE_LENGTH self.TESTING_EPOCHS = 1 self.VALIDATION_PERC = 0.2 self.TESTING_PERC = 0.1 self.TRAINING_PERC = 1 - self.VALIDATION_PERC - self.TESTING_PERC pass
the-stack_106_23837
#!/usr/bin/env python """ @package mi.dataset.parser.test @file mi-dataset/mi/dataset/parser/test/test_fuelcell_eng_dcl.py @author Chris Goodrich @brief Test code for the fuelcell_eng_dcl parser Release notes: initial release """ __author__ = 'cgoodrich' from mi.logging import log import os from nose.plugins.attrib import attr from mi.core.exceptions import ConfigurationException from mi.dataset.test.test_parser import ParserUnitTestCase from mi.dataset.dataset_parser import DataSetDriverConfigKeys from mi.dataset.parser.fuelcell_eng_dcl import FuelCellEngDclParticleClassKey,\ FuelCellEngDclDataParticleRecovered,\ FuelCellEngDclDataParticleTelemetered from mi.dataset.parser.fuelcell_eng_dcl import FuelCellEngDclParser from mi.idk.config import Config RESOURCE_PATH = os.path.join(Config().base_dir(), 'mi', 'dataset', 'driver', 'fuelcell_eng', 'dcl', 'resource') @attr('UNIT', group='mi') class FuelCellEngDclParserUnitTestCase(ParserUnitTestCase): """ fuelcell_eng_dcl Parser unit test suite """ def setUp(self): ParserUnitTestCase.setUp(self) self._recovered_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.fuelcell_eng_dcl', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { FuelCellEngDclParticleClassKey.ENGINEERING_DATA_PARTICLE_CLASS: FuelCellEngDclDataParticleRecovered } } self._telemetered_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.fuelcell_eng_dcl', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: { FuelCellEngDclParticleClassKey.ENGINEERING_DATA_PARTICLE_CLASS: FuelCellEngDclDataParticleTelemetered } } self._incomplete_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.fuelcell_eng_dcl', DataSetDriverConfigKeys.PARTICLE_CLASS: None } self._bad_parser_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.fuelcell_eng_dcl', DataSetDriverConfigKeys.PARTICLE_CLASS: None, DataSetDriverConfigKeys.PARTICLE_CLASSES_DICT: {} } def test_simple(self): """ Read file and verify that all expected particles can be read. Verify that the contents of the particles are correct. This is the happy path. """ log.debug('===== START TEST SIMPLE =====') num_particles_to_request = 25 num_expected_particles = 20 # Test the recovered version log.debug('------ RECOVERED ------') with open(os.path.join(RESOURCE_PATH, '20141207s.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, 'recovered_20141207s.pwrsys.yml', RESOURCE_PATH) # Test the telemetered version log.debug('----- TELEMETERED -----') with open(os.path.join(RESOURCE_PATH, '20141207s.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._telemetered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) self.assert_particles(particles, 'telemetered_20141207s.pwrsys.yml', RESOURCE_PATH) log.debug('===== END TEST SIMPLE =====') def test_bigfile(self): """ Read file and verify that all expected particles can be read. Verify that the expected number of particles are produced. Only one test is run as the content of the input files is the same for recovered or telemetered. """ log.debug('===== START TEST BIGFILE =====') num_particles_to_request = num_expected_particles = 870 with open(os.path.join(RESOURCE_PATH, '20141207.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) log.debug('===== END TEST BIGFILE =====') def test_bad_checksum(self): """ Read file and verify that all expected particles can be read. There are two lines with bad checksums in the file. The checksum after the colon is incorrect on lines 10 and 23 of the input file. Only one test is run as the content of the input files is the same for recovered or telemetered. """ log.debug('===== START TEST BAD CHECKSUM =====') num_particles_to_request = num_expected_particles = 18 with open(os.path.join(RESOURCE_PATH, '20141207s_bcs.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) log.debug('===== END TEST BAD CHECKSUM =====') def test_badly_formed(self): """ Read file and verify that all expected particles can be read. Line 1 Improperly formatted - No particle generated Line 2 Improperly formatted - No particle generated Line 9 - Bad checksum - No particle generated No fuel cell data present on line 11 - No particle generated No fuel cell data present on line 12 - No particle generated No fuel cell data present on line 13 - No particle generated No fuel cell data present on line 14 - No particle generated No fuel cell data present on line 15 - No particle generated Line 20 - Bad checksum - No particle generated Line 24 Improperly formatted - No particle generated Line 26 Improperly formatted - No particle generated Line 27 Improperly formatted - No particle generated Line 28 Bad/Missing Timestamp - No particle generated Line 29 Bad/Missing Timestamp - No particle generated Line 30 No data found - No particle generated Line 31 No terminator found - No particle generated Line 32 Improper format - No particle generated Only one test is run as the content of the input files is the same for recovered or telemetered. """ log.debug('===== START TEST BADLY FORMED =====') num_particles_to_request = 33 num_expected_particles = 16 with open(os.path.join(RESOURCE_PATH, '20141207_badform.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) log.debug('===== END TEST BADLY FORMED =====') def test_bad_configuration(self): """ Attempt to build a parser with a bad configuration. """ log.debug('===== START TEST BAD CONFIGURATION =====') with open(os.path.join(RESOURCE_PATH, '20141207s.pwrsys.log'), 'rU') as file_handle: with self.assertRaises(ConfigurationException): parser = FuelCellEngDclParser(self._bad_parser_config, file_handle, self.exception_callback) log.debug('===== END TEST BAD CONFIGURATION =====') def test_partial_configuration(self): """ Attempt to build a parser with a bad configuration. """ log.debug('===== START TEST PARTIAL CONFIGURATION =====') with open(os.path.join(RESOURCE_PATH, '20141207s.pwrsys.log'), 'rU') as file_handle: with self.assertRaises(ConfigurationException): parser = FuelCellEngDclParser(self._incomplete_parser_config, file_handle, self.exception_callback) log.debug('===== END TEST PARTIAL CONFIGURATION =====') def test_blank_line(self): """ Read file and verify that all expected particles can be read. Verify that the contents of the particles are correct. There are blank lines interspersed in the file. This test verifies that these blank lines do not adversely affect the parser. Only one test is run as the content of the input files is the same for recovered or telemetered. """ log.debug('===== START TEST BLANK LINE =====') num_particles_to_request = 25 num_expected_particles = 20 with open(os.path.join(RESOURCE_PATH, '20141207sbl.pwrsys.log'), 'rU') as file_handle: parser = FuelCellEngDclParser(self._recovered_parser_config, file_handle, self.exception_callback) particles = parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) log.debug('===== END TEST BLANK LINE =====')
the-stack_106_23838
## https://leetcode.com/problems/counting-bits/ ## for every number between 0 and N, count up the ## number of 1-bits in that number. I briefly tried ## writing this up more intelligently by iterating ## a number in binary up to N, but it wasn't quite ## working and it turns out the simple way (using ## built in base conversion) is fast enoguh (25th ## percentile in runtime and 64rd in memory). class Solution: def add_one_to_binary(self, num): return f'{int(num, 2) + 1:b}' def countBits(self, num: int) -> List[int]: number = '0' output = [0] for ii in range(1, num+1): number = self.add_one_to_binary(number) output.append(number.count('1')) return output
the-stack_106_23840
import mock from pika import spec from pika import frame import time CHANNEL = mock.Mock('pika.channel.Channel') METHOD = spec.Basic.Deliver('ctag0', 1, False, 'exchange', 'routing_key') PROPERTIES = spec.BasicProperties(content_type='application/json', content_encoding='qux', headers={'foo': 'bar', 'baz': 1}, delivery_mode=2, priority=5, correlation_id='c123', reply_to='rtrk', expiration='32768', message_id='mid123', timestamp=time.time(), type='test', user_id='foo', app_id='bar') BODY = '{"qux": true, "foo": "bar", "baz": 1}' class MockConsumer(object): def __init__(self, configuration): """Creates a new instance of a Mock Consumer class. To perform initialization tasks, extend Consumer._initialize :param dict configuration: The configuration from rejected """ # Carry the configuration for use elsewhere self._configuration = configuration
the-stack_106_23841
# Copyright 2010-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # This file is licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import boto3 from botocore.exceptions import ClientError ec2 = boto3.client('ec2') try: ec2.reboot_instances(InstanceIds=['INSTANCE_ID'], DryRun=True) except ClientError as e: if 'DryRunOperation' not in str(e): print("You don't have permission to reboot instances.") raise try: response = ec2.reboot_instances(InstanceIds=['INSTANCE_ID'], DryRun=False) print('Success', response) except ClientError as e: print('Error', e) #snippet-sourcedescription:[rebooting.py demonstrates how to request a reboot of one or more Amazon EC2 instances.] #snippet-keyword:[Python] #snippet-keyword:[AWS SDK for Python (Boto3)] #snippet-keyword:[Code Sample] #snippet-keyword:[Amazon EC2] #snippet-service:[ec2] #snippet-sourcetype:[full-example] #snippet-sourcedate:[2018-06-25] #snippet-sourceauthor:[jschwarzwalder]
the-stack_106_23845
#!/usr/bin/env python3 def gen_uv(width, height, scale=1.0): w_inv = 1.0 / width h_inv = 1.0 / height uv = [] for h in range(height): for w in range(width): u = (w + 0.5) * w_inv * scale v = (h + 0.5) * h_inv * scale uv.append((u, v)) return uv if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("size", type=int, help="size of a texture. power of 2") args = parser.parse_args() uvs = gen_uv(args.size, args.size) for uv in uvs: print('{0[0]} {0[1]}'.format(uv))
the-stack_106_23846
""" This module is going to parse ICR in JSON format and convert to html web page """ import json import argparse import os.path import cgi import logging import pprint from LogManager import logger, initConsoleLogging from ICRSchema import ICR_FILE_KEYWORDS_LIST, SUBFILE_FIELDS from ICRSchema import isSubFile, isWordProcessingField from WebPageGenerator import getPackageHtmlFileName, getGlobalHtmlFileNameByName from WebPageGenerator import getRoutineHtmlFileName from DataTableHtml import outputDataTableHeader, outputDataTableFooter from DataTableHtml import writeTableListInfo, outputDataListTableHeader from DataTableHtml import outputLargeDataListTableHeader, outputDataRecordTableHeader from DataTableHtml import outputFileEntryTableList, safeElementId from InitCrossReferenceGenerator import createInitialCrossRefGenArgParser from InitCrossReferenceGenerator import parseCrossRefGeneratorWithArgs from FileManGlobalDataParser import generateSingleFileFieldToIenMappingBySchema dox_url = "http://code.osehra.org/dox/" pkgMap = { 'AUTOMATED INFO COLLECTION SYS': 'Automated Information Collection System', 'AUTOMATED MED INFO EXCHANGE': 'Automated Medical Information Exchange', 'BAR CODE MED ADMIN': 'Barcode Medication Administration', 'CLINICAL INFO RESOURCE NETWORK': 'Clinical Information Resource Network', # u'DEVICE HANDLER', # u'DISCHARGE SUMMARY', 'E CLAIMS MGMT ENGINE': 'E Claims Management Engine', # u'EDUCATION TRACKING', 'EMERGENCY DEPARTMENT': 'Emergency Department Integration Software', # u'EXTENSIBLE EDITOR', # u'EXTERNAL PEER REVIEW', 'FEE BASIS CLAIMS SYSTEM' : 'Fee Basis', 'GEN. MED. REC. - GENERATOR': 'General Medical Record - Generator', 'GEN. MED. REC. - I/O' : 'General Medical Record - IO', 'GEN. MED. REC. - VITALS' : 'General Medical Record - Vitals', # u'GRECC', # u'HEALTH MANAGEMENT PLATFORM', # u'INDIAN HEALTH SERVICE', # u'INSURANCE CAPTURE BUFFER', # u'IV PHARMACY', # u'MASTER PATIENT INDEX', 'MCCR BACKBILLING' : 'MCCR National Database - Field', # u'MINIMAL PATIENT DATASET', # u'MOBILE SCHEDULING APPLICATIONS SUITE', # u'Missing Patient Register', 'NATIONAL HEALTH INFO NETWORK' : 'National Health Information Network', # u'NEW PERSON', # u'PATIENT ASSESSMENT DOCUM', # u'PATIENT FILE', # u'PROGRESS NOTES', # u'QUALITY ASSURANCE', # u'QUALITY IMPROVEMENT CHECKLIST', # u'REAL TIME LOCATION SYSTEM', 'TEXT INTEGRATION UTILITIES' : 'Text Integration Utility', # u'UNIT DOSE PHARMACY', 'VA POINT OF SERVICE (KIOSKS)' : 'VA Point of Service', # u'VDEM', 'VISTA INTEGRATION ADAPTOR' : 'VistA Integration Adapter', 'VENDOR - DOCUMENT STORAGE SYS' : 'Vendor - Document Storage Systems' # u'VETERANS ADMINISTRATION', # u'VOLUNTARY SERVICE SYSTEM', # u'VPFS', # u'cds', # u'person.demographics', # u'person.lookup', # u'term', # u'term.access']) } # this is the mapping between CUSTODIAL PACKAGE and packages in Dox def normalizeName(name): return name.replace('/', ' ').replace('\'','').replace(',','').replace('.','').replace('&', 'and') def useAjaxDataTable(len): return len > 4000 # if has more than 4000 entries, use ajax approach pgkUpperCaseNameDict = dict() rpcNameToIenMapping = dict() RPC_FILE_NO = '8994' RPC_NAME_FIELD_NO = '.01' def addToPackageMap(icrEntry, pkgName): if 'CUSTODIAL PACKAGE' in icrEntry: icrPkg = icrEntry['CUSTODIAL PACKAGE'] if icrPkg not in pkgMap: pkgMap[icrPkg] = pkgName logger.debug('[%s] ==> [%s]', icrPkg, pkgName) elif pkgMap[icrPkg] != pkgName: logger.debug('[%s] mapped to [%s] and [%s]', icrPkg, pkgMap[icrPkg], pkgName) """ Util function to generate link for the fie """ def getICRIndividualHtmlFileLinkByIen(value, icrEntry, **kargs): ien = icrEntry['NUMBER'] return '<a href=\"%s\">%s</a>' % ('ICR-' + ien + '.html', value) def getPackageHRefLink(pkgName, icrEntry, **kargs): if pkgName in pkgMap: pkgLink = getPackageHtmlFileName(pkgMap[pkgName]) return '<a href=\"%s%s\">%s</a>' % (dox_url, pkgLink , pkgName) crossRef = None if 'crossRef' in kargs: crossRef = kargs['crossRef'] if crossRef: if len(pgkUpperCaseNameDict) == 0 : for name in crossRef.getAllPackages().iterkeys(): pgkUpperCaseNameDict[name.upper()] = name upperName = normalizeName(pkgName).upper() if upperName in pgkUpperCaseNameDict: addToPackageMap(icrEntry, pgkUpperCaseNameDict[upperName]) return '<a href=\"%s%s\">%s</a>' % (dox_url, getPackageHtmlFileName(pgkUpperCaseNameDict[upperName]) , pkgName) pkg = crossRef.getPackageByName(pkgName) if not pkg: pkgRename = normalizeName(pkgName).title() # logger.warn('[%s] renamed as [%s]', pkgName, pkgRename) pkg = crossRef.getPackageByName(pkgRename) if not pkg: pkgRename = normalizeName(pkgName) pkg = crossRef.getPackageByName(pkgRename) if pkg: addToPackageMap(icrEntry, pkg.getName()) pkgLink = getPackageHtmlFileName(pkg.getName()) return '<a href=\"%s%s\">%s</a>' % (dox_url, pkgLink , pkgName) else: logger.warn('Can not find mapping for package: [%s]', pkgName) return pkgName def getFileManFileHRefLink(fileNo, icrEntry, **kargs): crossRef = None if 'crossRef' in kargs: crossRef = kargs['crossRef'] if crossRef: fileInfo = crossRef.getGlobalByFileNo(fileNo) if fileInfo: linkName = getGlobalHtmlFileNameByName(fileInfo.getName()) logger.debug('link is [%s]', linkName) # addToPackageMap(icrEntry, fileInfo.getPackage().getName()) return '<a href=\"%s%s\">%s</a>' % (dox_url, linkName, fileNo) else: logger.debug('Can not find file: [%s]', fileNo) return fileNo def getRoutineHRefLink(rtnName, icrEntry, **kargs): crossRef = None if 'crossRef' in kargs: crossRef = kargs['crossRef'] if crossRef: routine = crossRef.getRoutineByName(rtnName) if routine: logger.debug('Routine Name is %s, package: %s', routine.getName(), routine.getPackage()) # addToPackageMap(icrEntry, routine.getPackage().getName()) return '<a href=\"%s%s\">%s</a>' % (dox_url, getRoutineHtmlFileName(routine.getName()), rtnName) else: logger.debug('Can not find routine [%s]', rtnName) logger.debug('After Categorization: routine: [%s], info: [%s]', rtnName, crossRef.categorizeRoutineByNamespace(rtnName)) return rtnName def getRPCHRefLink(rpcName, icrEntry, **kargs): if rpcName in rpcNameToIenMapping: rpcFilename = '%s-%s.html' % (RPC_FILE_NO, rpcNameToIenMapping[rpcName]) return '<a href=\"%s\">%s</a>' % (rpcFilename, rpcName) return rpcName """ A list of fields that are part of the summary page for each package or all """ summary_list_fields = [ ('IA #', 'NUMBER', None), ('Name', None, getICRIndividualHtmlFileLinkByIen), ('Type', None, None), ('Custodial Package', None, getPackageHRefLink), # ('Custodial ISC', None), ('Date Created', None, None), ('DBIC Approval Status', None, None), ('Status', None, None), ('Usage', None, None), ('File #', 'FILE NUMBER', getFileManFileHRefLink), # ('Global root', None, None), ('Remote Procedure', None, getRPCHRefLink), ('Routine', None, getRoutineHRefLink), ('Date Activated', None, None) ] field_convert_map = { 'FILE NUMBER': getFileManFileHRefLink, 'ROUTINE': getRoutineHRefLink, 'CUSTODIAL PACKAGE': getPackageHRefLink, 'SUBSCRIBING PACKAGE': getPackageHRefLink, 'REMOTE PROCEDURE': getRPCHRefLink } class ICRJsonToHtml(object): def __init__(self, crossRef, outDir): self._crossRef = crossRef self._outDir = outDir """ This is the entry point to convert JSON to html web pages It will generate a total ICR summary page as well individual pages for each package. It will also generate the pages for each individual ICR details """ def converJsonToHtml(self, inputJsonFile): with open(inputJsonFile, 'r') as inputFile: inputJson = json.load(inputFile) self._generateICRSummaryPage(inputJson) """ Utility function to convert icrEntry to summary info """ def _convertICREntryToSummaryInfo(self, icrEntry): summaryInfo = [""]*len(summary_list_fields) for idx, id in enumerate(summary_list_fields): if id[1] and id[1] in icrEntry: summaryInfo[idx] = icrEntry[id[1]] elif id[0].upper() in icrEntry: summaryInfo[idx] = icrEntry[id[0].upper()] if summaryInfo[idx] and id[2]: summaryInfo[idx] = id[2](summaryInfo[idx], icrEntry, crossRef=self._crossRef) return summaryInfo """ Summary page will contain summary information """ def _generateICRSummaryPage(self, inputJson): pkgJson = {} # group by package allpgkJson = [] for icrEntry in inputJson: self._generateICRIndividualPage(icrEntry) summaryInfo = self._convertICREntryToSummaryInfo(icrEntry) allpgkJson.append(summaryInfo) if 'CUSTODIAL PACKAGE' in icrEntry: pkgJson.setdefault(icrEntry['CUSTODIAL PACKAGE'],[]).append(summaryInfo) self._generateICRSummaryPageImpl(allpgkJson, 'ICR List', 'All', True) for pkgName, outJson in pkgJson.iteritems(): self._generateICRSummaryPageImpl(outJson, 'ICR List', pkgName) logger.warn('Total # entry in pkgMap is [%s]', len(pkgMap)) logger.warn('Total # entry in pkgJson is [%s]', len(pkgJson)) pprint.pprint(set(pkgJson.keys()) - set(pkgMap.keys())) pprint.pprint(set(pgkUpperCaseNameDict.values()) - set(pkgMap.values())) # pprint.pprint(pkgMap) self._generatePkgDepSummaryPage(inputJson) def _generatePkgDepSummaryPage(self, inputJson): outDep = {} for icrItem in inputJson: curIaNum = icrItem['IA #'] # ignore the non-active icrs if 'STATUS' not in icrItem or icrItem['STATUS'] != 'Active': continue if 'CUSTODIAL PACKAGE' in icrItem: curPkg = icrItem['CUSTODIAL PACKAGE'] outDep.setdefault(curPkg,{}) if 'SUBSCRIBING PACKAGE' in icrItem: for subPkg in icrItem['SUBSCRIBING PACKAGE']: if 'SUBSCRIBING PACKAGE' in subPkg: subPkgName = subPkg['SUBSCRIBING PACKAGE'] if isinstance(subPkgName,list): for subPkgNameEntry in subPkgName: subDep = outDep.setdefault(subPkgNameEntry, {}).setdefault('dependencies',{}) subDep.setdefault(curPkg, []).append(curIaNum) curDep = outDep.setdefault(curPkg, {}).setdefault('dependents', {}) curDep.setdefault(subPkgNameEntry, []).append(curIaNum) else: subDep = outDep.setdefault(subPkgName, {}).setdefault('dependencies',{}) subDep.setdefault(curPkg, []).append(curIaNum) curDep = outDep.setdefault(curPkg, {}).setdefault('dependents', {}) curDep.setdefault(subPkgName, []).append(curIaNum) """ Convert outDep to html page """ outDir = self._outDir outFilename = "%s/ICR-PackageDep.html" % outDir with open(outFilename, 'w+') as output: output.write("<html>\n") tName = safeElementId("%s-%s" % ('ICR', 'PackageDep')) outputDataListTableHeader(output, tName) output.write("<body id=\"dt_example\">") output.write("""<div id="container" style="width:80%">""") outputDataTableHeader(output, ['Package Name', 'Dependencies Information'], tName) """ table body """ output.write("<tbody>\n") """ Now convert the ICR Data to Table data """ for pkgName in sorted(outDep.iterkeys()): output.write("<tr>\n") output.write("<td>%s</td>\n" % getPackageHRefLink(pkgName, {'CUSTODIAL PACKAGE': pkgName}, crossRef=self._crossRef)) """ Convert the dependencies and dependent information """ output.write("<td>\n") output.write ("<ol>\n") for pkgDepType in sorted(outDep[pkgName].iterkeys()): output.write ("<li>\n") output.write ("<dt>%s:</dt>\n" % pkgDepType.upper()) depPkgInfo = outDep[pkgName][pkgDepType] for depPkgName in sorted(depPkgInfo.iterkeys()): outputInfo = getPackageHRefLink(depPkgName, {'CUSTODIAl PACKAGE': depPkgName}, crossRef=self._crossRef) outputInfo += ': &nbsp;&nbsp Total # of ICRs %s : [' % len(depPkgInfo[depPkgName]) for icrNo in depPkgInfo[depPkgName]: outputInfo += getICRIndividualHtmlFileLinkByIen(icrNo, {'NUMBER': icrNo}, crossRef=self._crossRef) + '&nbsp;&nbsp' outputInfo += ']' output.write ("<dt>%s:</dt>\n" % outputInfo) output.write ("</li>\n") output.write ("</ol>\n") output.write("</td>\n") output.write ("</tr>\n") output.write("</tbody>\n") output.write("</table>\n") output.write("</div>\n") output.write("</div>\n") output.write ("</body></html>\n") def _generateICRSummaryPageImpl(self, inputJson, listName, pkgName, isForAll=False): outDir = self._outDir listName = listName.strip() pkgName = pkgName.strip() pkgHtmlName = pkgName outFilename = "%s/%s-%s.html" % (outDir, pkgName, listName) if not isForAll: if pkgName in pkgMap: pkgName = pkgMap[pkgName] pkgHtmlName = pkgName + '-ICR.html' outFilename = "%s/%s" % (outDir, pkgHtmlName) with open(outFilename, 'w+') as output: output.write("<html>\n") tName = "%s-%s" % (listName.replace(' ', '_'), pkgName.replace(' ', '_')) useAjax = useAjaxDataTable(len(inputJson)) columnNames = [x[0] for x in summary_list_fields] searchColumns = ['IA #', 'Name', 'Custodial Package', 'Date Created', 'File #', 'Remote Procedure', 'Routine', 'Date Activated'] if useAjax: ajaxSrc = '%s_array.txt' % pkgName outputLargeDataListTableHeader(output, ajaxSrc, tName, columnNames, searchColumns) else: outputDataListTableHeader(output, tName, columnNames, searchColumns) output.write("<body id=\"dt_example\">") output.write("""<div id="container" style="width:80%">""") if isForAll: output.write("<h1>%s %s</h1>" % (pkgName, listName)) else: output.write("<h2 align=\"right\"><a href=\"./All-%s.html\">" "All %s</a></h2>" % (listName, listName)) output.write("<h1>Package: %s %s</h1>" % (pkgName, listName)) # pkgLinkName = getPackageHRefLink(pkgName) outputDataTableHeader(output, columnNames, tName) outputDataTableFooter(output, columnNames, tName) """ table body """ output.write("<tbody>\n") if not useAjax: """ Now convert the ICR Data to Table data """ for icrSummary in inputJson: output.write("<tr>\n") for item in icrSummary: #output.write("<td class=\"ellipsis\">%s</td>\n" % item) output.write("<td>%s</td>\n" % item) output.write("</tr>\n") else: logging.info("Ajax source file: %s" % ajaxSrc) """ Write out the data file in JSON format """ outJson = {"aaData": []} with open(os.path.join(outDir, ajaxSrc), 'w') as ajaxOut: outArray = outJson["aaData"] for icrSummary in inputJson: outArray.append(icrSummary) json.dump(outJson, ajaxOut) output.write("</tbody>\n") output.write("</table>\n") output.write("</div>\n") output.write("</div>\n") output.write ("</body></html>\n") """ This is to generate a web page for each individual ICR entry """ def _generateICRIndividualPage(self, icrJson): ien = icrJson['NUMBER'] outIcrFile = os.path.join(self._outDir, 'ICR-' + ien + '.html') tName = safeElementId("%s-%s" % ('ICR', ien)) with open(outIcrFile, 'w') as output: output.write ("<html>") outputDataRecordTableHeader(output, tName) output.write("<body id=\"dt_example\">") output.write("""<div id="container" style="width:80%">""") output.write ("<h1>%s (%s) &nbsp;&nbsp; %s (%s)</h1>\n" % (icrJson['NAME'], ien, 'ICR', ien)) outputFileEntryTableList(output, tName) """ table body """ self._icrDataEntryToHtml(output, icrJson) output.write("</tbody>\n") output.write("</table>\n") output.write("</div>\n") output.write("</div>\n") output.write ("</body></html>") def _icrDataEntryToHtml(self, output, icrJson): fieldList = ICR_FILE_KEYWORDS_LIST """ As we do not have a real schema to define the field order, we will have to guess the order here """ for field in fieldList: if field in icrJson: # we have this field value = icrJson[field] if isSubFile(field): output.write ("<tr>\n") output.write("<td>%s</td>\n" % field) output.write("<td>\n") output.write ("<ol>\n") self._icrSubFileToHtml(output, value, field) output.write ("</ol>\n") output.write("</td>\n") output.write ("</tr>\n") continue value = self._convertIndividualFieldValue(field, icrJson, value) output.write ("<tr>\n") output.write ("<td>%s</td>\n" % field) output.write ("<td>%s</td>\n" % value) output.write ("</tr>\n") def _icrSubFileToHtml(self, output, icrJson, subFile): logger.debug('subFile is %s', subFile) logger.debug('icrJson is %s', icrJson) fieldList = SUBFILE_FIELDS[subFile] if subFile not in fieldList: fieldList.append(subFile) for icrEntry in icrJson: output.write ("<li>\n") for field in fieldList: if field in icrEntry: # we have this field value = icrEntry[field] logger.debug('current field is %s', field) if isSubFile(field) and field != subFile: # avoid recursive subfile for now logger.debug('field is a subfile %s', field) output.write ("<dl><dt>%s:</dt>\n" % field) output.write ("<dd>\n") output.write ("<ol>\n") self._icrSubFileToHtml(output, value, field) output.write ("</ol>\n") output.write ("</dd></dl>\n") continue value = self._convertIndividualFieldValue(field, icrEntry, value) output.write ("<dt>%s: &nbsp;&nbsp;%s</dt>\n" % (field, value)) output.write ("</li>\n") def _convertIndividualFieldValue(self, field, icrEntry, value): if isWordProcessingField(field): if type(value) is list: value = "\n".join(value) value = '<pre>\n' + cgi.escape(value) + '\n</pre>\n' return value if field in field_convert_map: if type(value) is list: logger.warn('field: [%s], value:[%s], icrEntry: [%s]', field, value, icrEntry) return value value = field_convert_map[field](value, icrEntry, crossRef=self._crossRef) return value return value """ This function will read all entries in RPC file file# 8994 and return a mapping of RPC Name => IEN. """ def createArgParser(): initParser = createInitialCrossRefGenArgParser() parser = argparse.ArgumentParser(description='VistA ICR JSON to Html', parents=[initParser]) parser.add_argument('icrJsonFile', help='path to the VistA ICR JSON file') parser.add_argument('outDir', help='path to the output web page directory') return parser def createRemoteProcedureMapping(result, crossRef): return generateSingleFileFieldToIenMappingBySchema(result.MRepositDir, crossRef, RPC_FILE_NO, RPC_NAME_FIELD_NO) if __name__ == '__main__': parser = createArgParser() result = parser.parse_args() initConsoleLogging() crossRef = parseCrossRefGeneratorWithArgs(result) # pprint.pprint(set(crossRef.getAllPackages().keys())) # initConsoleLogging(logging.DEBUG) if result.icrJsonFile: rpcNameToIenMapping = createRemoteProcedureMapping(result, crossRef) icrJsonToHtml = ICRJsonToHtml(crossRef, result.outDir) icrJsonToHtml.converJsonToHtml(result.icrJsonFile)
the-stack_106_23848
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2013 VMware, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc from tacker.api import extensions from tacker.api.v1 import base from tacker import manager # Attribute Map RESOURCE_ATTRIBUTE_MAP = { 'ext_test_resources': { 'id': {'allow_post': False, 'allow_put': False, 'validate': {'type:uuid': None}, 'is_visible': True}, 'name': {'allow_post': True, 'allow_put': True, 'validate': {'type:string': None}, 'is_visible': True, 'default': ''}, 'tenant_id': {'allow_post': True, 'allow_put': False, 'required_by_policy': True, 'validate': {'type:string': None}, 'is_visible': True}, } } class Extensionattribute(extensions.ExtensionDescriptor): @classmethod def get_name(cls): return "Extension Test Resource" @classmethod def get_alias(cls): return "ext-obj-test" @classmethod def get_description(cls): return "Extension Test Resource" @classmethod def get_namespace(cls): return "" @classmethod def get_updated(cls): return "2013-02-05T10:00:00-00:00" def update_attributes_map(self, attributes): super(Extensionattribute, self).update_attributes_map( attributes, extension_attrs_map=RESOURCE_ATTRIBUTE_MAP) @classmethod def get_resources(cls): """Returns Ext Resources.""" exts = [] plugin = manager.TackerManager.get_plugin() resource_name = 'ext_test_resource' collection_name = resource_name + "s" params = RESOURCE_ATTRIBUTE_MAP.get(collection_name, dict()) controller = base.create_resource(collection_name, resource_name, plugin, params, member_actions={}) ex = extensions.ResourceExtension(collection_name, controller, member_actions={}) exts.append(ex) return exts def get_extended_resources(self, version): if version == "2.0": return RESOURCE_ATTRIBUTE_MAP else: return {} class ExtensionObjectTestPluginBase(object): @abc.abstractmethod def create_ext_test_resource(self, context, router): pass @abc.abstractmethod def get_ext_test_resource(self, context, id, fields=None): pass
the-stack_106_23849
# # @lc app=leetcode id=43 lang=python3 # # [43] Multiply Strings # # @lc code=start class Solution: def multiply(self, num1, num2): s = 0 for i in range(len(num1) - 1, -1, -1): p1 = 10 ** (len(num1) - 1 - i) for j in range(len(num2) - 1, -1, -1): p2 = 10 ** (len(num2) - 1 - j) up = int(num1[i]) * p1 down = int(num2[j]) * p2 s += up * down return str(s) # @lc code=end
the-stack_106_23851
#!/usr/bin/env python # ----------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- """Azure Developer Tools package that can be installed using setuptools""" from codecs import open import os import re from setuptools import setup, find_packages azdev_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(azdev_path, 'azdev', '__init__.py'), 'r') as version_file: __VERSION__ = re.search(r'^__VERSION__\s*=\s*[\'"]([^\'"]*)[\'"]', version_file.read(), re.MULTILINE).group(1) with open('README.rst', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='azdev', version=__VERSION__, description='Microsoft Azure CLI Developer Tools', long_description=README + '\n\n' + HISTORY, url='https://github.com/Azure/azure-cli-dev-tools', author='Microsoft Corporation', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9' ], keywords='azure', python_requires='>=3.6', packages=[ 'azdev', 'azdev.config', 'azdev.operations', 'azdev.mod_templates', 'azdev.operations.help', 'azdev.operations.help.refdoc', 'azdev.operations.linter', 'azdev.operations.linter.rules', 'azdev.operations.linter.pylint_checkers', 'azdev.operations.testtool', 'azdev.operations.extensions', 'azdev.utilities', ], install_requires=[ 'azure-multiapi-storage', 'docutils', 'flake8', 'gitpython', 'jinja2', 'knack', 'pylint==2.8.2', 'pytest-xdist', # depends on pytest-forked 'pytest>=5.0.0', 'pyyaml', 'requests', 'sphinx==1.6.7', 'tox', 'wheel==0.30.0' ], package_data={ 'azdev.config': ['*.*', 'cli_pylintrc', 'ext_pylintrc'], 'azdev.mod_templates': ['*.*'], 'azdev.operations.linter.rules': ['ci_exclusions.yml'] }, include_package_data=True, entry_points={ 'console_scripts': ['azdev=azdev.__main__:main'] } )
the-stack_106_23852
from __future__ import print_function import platform import socket import errno import os def get_input(): try: return raw_input() except NameError: return input() def set_bit(v, index, x): """ Set the index:th bit of v to x, and return the new value. Note that bit numbers (index) are from 0, with 0 being the least significant bit. """ mask = 1 << index v &= ~mask if x: v |= mask return v def encodeString(s): return bytearray(s.encode('utf-8')) def get_connected_local_socket(pathname="theroothelper"): o = platform.uname()[0].lower() if 'linux' in o: str1 = "\0" + pathname elif 'darwin' not in o and 'win' in o: raise OSError("Unsupported local sockets on Windows OS") else: # apple and bsd str1 = "/tmp/"+pathname sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(str1) return sock def toHex(s_): if isinstance(s_,str): # str/bytes in Python 2, unicode string in python 3 return ":".join("{:02x}".format(ord(c)) for c in s_) else: if isinstance(s_, bytes) or isinstance(s_, bytearray): s = s_ if isinstance(s_,bytearray) else bytearray(s_) return ':'.join(format(x, '02x') for x in s) else: # try with unicode type, python2 only return ":".join("{:02x}".format(ord(c)) for c in s_.encode('utf-8')) def intFromOctalString(s): if s[:2] == '0o': # python 3 syntax s = '0'+s[2:] # python 2 syntax return int(s, 8) def pathConcat(base_path, sub_path, sep=None, detectSep=False): if detectSep: if '/' in base_path: return os.path.join(base_path, sub_path).replace('\\', '/') elif '\\' in base_path: return os.path.join(base_path, sub_path).replace('/', '\\') joined_path = os.path.join(base_path, sub_path) if sep: joined_path = joined_path.replace('\\', sep).replace('/',sep) return joined_path
the-stack_106_23853
import numpy as np import pandas as pd import os.path as osp import statistics import torch from torch_geometric.datasets import TUDataset import torch_geometric.transforms as T import torch.nn.functional as F from torch_geometric.data import DataLoader, Dataset from optimal_R import option, all_possible_concatenation from graph_property import G_property, binning from model.GNN import Net, debug_MLP from utils import max_len_arr, tSNE_vis from f_f_TU import valid, test def train(i, j, dn, model, task, optimizer, train_loader, device, k = 6): total_loss = 0 model.train() total_num_nodes = 0 t= 0 graph_embed = 0 linear_embed = 0 for load in train_loader: name = r'/home/jiaqing/桌面/Fea2Fea/Result/TUdataset/' + dn + '/' + dn + '_property' + str(t) + task +'.txt' property_file = pd.read_csv(name, sep = '\t') propert_i = property_file.iloc[:,list(i)] if isinstance(i,tuple) else property_file.iloc[:,[i]] array = np.array(propert_i) load.x = torch.tensor(array).float() propert_j = property_file.iloc[:,[j]] array_2 = np.array(propert_j) number = len(array_2) load.y = binning(array_2, k = k, data_len = number) # --------- training loop ---------- # load = load.to(device) optimizer.zero_grad() out = model(load) loss = F.nll_loss(out,load.y) loss.backward() optimizer.step() total_loss += loss.item() * len(load.y) total_num_nodes+=len(load.y) if t == 0: graph_embed = model.graph_embed linear_embed = model.linear_embed t+=1 #print(loss) train_loss = total_loss / total_num_nodes return train_loss, graph_embed, linear_embed def train_tsne(i, j, dn, l_m, g_m, task, train_loader, device, k = 6): t = 0 for load in train_loader: name = r'/home/jiaqing/桌面/Fea2Fea/Result/TUdataset/' + dn + '/' + dn + '_property' + str(t) + task +'.txt' property_file = pd.read_csv(name, sep = '\t') propert_i = property_file.iloc[:,list(i)] if isinstance(i,tuple) else property_file.iloc[:,[i]] array = np.array(propert_i) load.x = torch.tensor(array).float() propert_j = property_file.iloc[:,[j]] array_2 = np.array(propert_j) number = len(array_2) load.y = binning(array_2, k = k, data_len = number) load = load.to(device) #out = model(load) tSNE_vis(l_m, load.y, 'mlp_embed', d_name, inp, outp, 6) #tSNE_vis(data.x, data.y, 'init_embed', d_name, inp, outp, 6) tSNE_vis(g_m, load.y, 'graph_embed', d_name, inp, outp, 6) break if __name__ == '__main__': paths = osp.join('/home/jiaqing/桌面/Fea2Fea/data/') test_case = [(1, 3)] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') dataset_name = ['ENZYMES', 'PROTEINS', 'NCI1'] for dataset in dataset_name: d_name = dataset data_set = TUDataset(paths + dataset, name = dataset, use_node_attr = False) path = r'/home/jiaqing/桌面/Fea2Fea/Result/TUdataset/' train_len, valid_len= int(0.8 * len(data_set)), int(0.1 * len(data_set)) test_len = len(data_set) - train_len - valid_len batchsize = 16 if dataset != 'NCI1' else 32 train_loader = DataLoader(data_set[0:train_len], batch_size = batchsize , shuffle=False) #### batch size 32 for NCI1 valid_loader = DataLoader(data_set[train_len:(train_len+valid_len)], batch_size = batchsize , shuffle = False) #### batch size 32 for NCI1 test_loader = DataLoader(data_set[(train_len+valid_len):len(data_set)], batch_size = batchsize , shuffle = False) #### batch size 32 for NCI1 embedding = 0 graph_embedding = 0 for (inp, outp) in test_case: best_epoch = 0 best_valid_acc = 0 best_test_acc = 0 op_iters = 0 #print(tmp_txt[1][2]) # take the optimal embedding method as graph embedding #print(tmp_txt[input][out]) tmp_txt = pd.read_csv(path + d_name + '_optimal_method.txt', sep = '\t', header = None) # array model = Net(embedding=tmp_txt[inp][outp]).to(device) if tmp_txt[inp][outp] != 'MLP' else debug_MLP().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.03, weight_decay=1e-4) best_linear_embed = 0 best_graph_embed = 0 for epoch in range(1, 300): if d_name == 'NCI1': if inp == 2 or outp == 2: break # for train t_loss, graph_embed, linear_embed = train(inp, outp, d_name, model, 'train', optimizer, train_loader, device) # for valid v_acc = valid(inp, outp, d_name, model, 'valid', optimizer, valid_loader, device) # for test t_acc = test(inp, outp, d_name, model, 'test', optimizer, test_loader, device) print('Epoch {:03d}, Train Loss: {:.4f}, Valid acc :{:.4f}, Test acc : {:.4f}'.format( epoch, t_loss, v_acc, t_acc )) if v_acc > best_valid_acc: best_valid_acc = v_acc best_test_acc = t_acc best_epoch = epoch best_linear_embed = linear_embed best_graph_embed = graph_embed # this is for loading model for predicting a batch of training set #model_path = '/home/jiaqing/桌面/Fea2Fea/src/model_pkl/' #torch.save(model, model_path + '/model_tsne_{}.pkl'.format(d_name)) op_iters=0 op_iters+=1 if op_iters > 20: break #model_path = '/home/jiaqing/桌面/Fea2Fea/src/model_pkl/' #model = torch.load(model_path + '/model_tsne_{}.pkl'.format(d_name)) #model.to(device) print("visualizing embeddings...") train_tsne(inp, outp, d_name, best_linear_embed, best_graph_embed, 'train', train_loader, device, k = 6)
the-stack_106_23854
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import os import sys import textwrap import mock import pytest import sh import dotenv from dotenv.compat import PY2, StringIO def test_set_key_no_file(tmp_path): nx_file = str(tmp_path / "nx") logger = logging.getLogger("dotenv.main") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.set_key(nx_file, "foo", "bar") assert result == (None, "foo", "bar") assert not os.path.exists(nx_file) mock_warning.assert_called_once_with( "Can't write to %s - it doesn't exist.", nx_file, ) @pytest.mark.parametrize( "before,key,value,expected,after", [ ("", "a", "", (True, "a", ""), 'a=""\n'), ("", "a", "b", (True, "a", "b"), 'a="b"\n'), ("", "a", "'b'", (True, "a", "b"), 'a="b"\n'), ("", "a", "\"b\"", (True, "a", "b"), 'a="b"\n'), ("", "a", "b'c", (True, "a", "b'c"), 'a="b\'c"\n'), ("", "a", "b\"c", (True, "a", "b\"c"), 'a="b\\\"c"\n'), ("a=b", "a", "c", (True, "a", "c"), 'a="c"\n'), ("a=b\n", "a", "c", (True, "a", "c"), 'a="c"\n'), ("a=b\n\n", "a", "c", (True, "a", "c"), 'a="c"\n\n'), ("a=b\nc=d", "a", "e", (True, "a", "e"), 'a="e"\nc=d'), ("a=b\nc=d\ne=f", "c", "g", (True, "c", "g"), 'a=b\nc="g"\ne=f'), ("a=b\n", "c", "d", (True, "c", "d"), 'a=b\nc="d"\n'), ], ) def test_set_key(dotenv_file, before, key, value, expected, after): logger = logging.getLogger("dotenv.main") with open(dotenv_file, "w") as f: f.write(before) with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.set_key(dotenv_file, key, value) assert result == expected assert open(dotenv_file, "r").read() == after mock_warning.assert_not_called() def test_set_key_permission_error(dotenv_file): os.chmod(dotenv_file, 0o000) with pytest.raises(Exception): dotenv.set_key(dotenv_file, "a", "b") os.chmod(dotenv_file, 0o600) with open(dotenv_file, "r") as fp: assert fp.read() == "" def test_get_key_no_file(tmp_path): nx_file = str(tmp_path / "nx") logger = logging.getLogger("dotenv.main") with mock.patch.object(logger, "info") as mock_info, \ mock.patch.object(logger, "warning") as mock_warning: result = dotenv.get_key(nx_file, "foo") assert result is None mock_info.assert_has_calls( calls=[ mock.call("Python-dotenv could not find configuration file %s.", nx_file) ], ) mock_warning.assert_has_calls( calls=[ mock.call("Key %s not found in %s.", "foo", nx_file) ], ) def test_get_key_not_found(dotenv_file): logger = logging.getLogger("dotenv.main") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.get_key(dotenv_file, "foo") assert result is None mock_warning.assert_called_once_with("Key %s not found in %s.", "foo", dotenv_file) def test_get_key_ok(dotenv_file): logger = logging.getLogger("dotenv.main") with open(dotenv_file, "w") as f: f.write("foo=bar") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.get_key(dotenv_file, "foo") assert result == "bar" mock_warning.assert_not_called() def test_get_key_none(dotenv_file): logger = logging.getLogger("dotenv.main") with open(dotenv_file, "w") as f: f.write("foo") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.get_key(dotenv_file, "foo") assert result is None mock_warning.assert_not_called() def test_unset_with_value(dotenv_file): logger = logging.getLogger("dotenv.main") with open(dotenv_file, "w") as f: f.write("a=b\nc=d") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.unset_key(dotenv_file, "a") assert result == (True, "a") with open(dotenv_file, "r") as f: assert f.read() == "c=d" mock_warning.assert_not_called() def test_unset_no_value(dotenv_file): logger = logging.getLogger("dotenv.main") with open(dotenv_file, "w") as f: f.write("foo") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.unset_key(dotenv_file, "foo") assert result == (True, "foo") with open(dotenv_file, "r") as f: assert f.read() == "" mock_warning.assert_not_called() def test_unset_non_existent_file(tmp_path): nx_file = str(tmp_path / "nx") logger = logging.getLogger("dotenv.main") with mock.patch.object(logger, "warning") as mock_warning: result = dotenv.unset_key(nx_file, "foo") assert result == (None, "foo") mock_warning.assert_called_once_with( "Can't delete from %s - it doesn't exist.", nx_file, ) def prepare_file_hierarchy(path): """ Create a temporary folder structure like the following: test_find_dotenv0/ └── child1 ├── child2 │   └── child3 │   └── child4 └── .env Then try to automatically `find_dotenv` starting in `child4` """ curr_dir = path dirs = [] for f in ['child1', 'child2', 'child3', 'child4']: curr_dir /= f dirs.append(curr_dir) curr_dir.mkdir() return (dirs[0], dirs[-1]) def test_find_dotenv_no_file_raise(tmp_path): (root, leaf) = prepare_file_hierarchy(tmp_path) os.chdir(str(leaf)) with pytest.raises(IOError): dotenv.find_dotenv(raise_error_if_not_found=True, usecwd=True) def test_find_dotenv_no_file_no_raise(tmp_path): (root, leaf) = prepare_file_hierarchy(tmp_path) os.chdir(str(leaf)) result = dotenv.find_dotenv(usecwd=True) assert result == "" def test_find_dotenv_found(tmp_path): (root, leaf) = prepare_file_hierarchy(tmp_path) os.chdir(str(leaf)) dotenv_file = root / ".env" dotenv_file.write_bytes(b"TEST=test\n") result = dotenv.find_dotenv(usecwd=True) assert result == str(dotenv_file) @mock.patch.dict(os.environ, {}, clear=True) def test_load_dotenv_existing_file(dotenv_file): with open(dotenv_file, "w") as f: f.write("a=b") result = dotenv.load_dotenv(dotenv_file) assert result is True assert os.environ == {"a": "b"} def test_load_dotenv_no_file_verbose(): logger = logging.getLogger("dotenv.main") with mock.patch.object(logger, "info") as mock_info: dotenv.load_dotenv('.does_not_exist', verbose=True) mock_info.assert_called_once_with("Python-dotenv could not find configuration file %s.", ".does_not_exist") @mock.patch.dict(os.environ, {"a": "c"}, clear=True) def test_load_dotenv_existing_variable_no_override(dotenv_file): with open(dotenv_file, "w") as f: f.write("a=b") result = dotenv.load_dotenv(dotenv_file, override=False) assert result is True assert os.environ == {"a": "c"} @mock.patch.dict(os.environ, {"a": "c"}, clear=True) def test_load_dotenv_existing_variable_override(dotenv_file): with open(dotenv_file, "w") as f: f.write("a=b") result = dotenv.load_dotenv(dotenv_file, override=True) assert result is True assert os.environ == {"a": "b"} @mock.patch.dict(os.environ, {}, clear=True) def test_load_dotenv_utf_8(): stream = StringIO("a=à") result = dotenv.load_dotenv(stream=stream) assert result is True if PY2: assert os.environ == {"a": "à".encode(sys.getfilesystemencoding())} else: assert os.environ == {"a": "à"} def test_load_dotenv_in_current_dir(tmp_path): dotenv_path = tmp_path / '.env' dotenv_path.write_bytes(b'a=b') code_path = tmp_path / 'code.py' code_path.write_text(textwrap.dedent(""" import dotenv import os dotenv.load_dotenv(verbose=True) print(os.environ['a']) """)) os.chdir(str(tmp_path)) result = sh.Command(sys.executable)(code_path) assert result == 'b\n' def test_dotenv_values_file(dotenv_file): with open(dotenv_file, "w") as f: f.write("a=b") result = dotenv.dotenv_values(dotenv_file) assert result == {"a": "b"} @pytest.mark.parametrize( "env,string,interpolate,expected", [ # Defined in environment, with and without interpolation ({"b": "c"}, "a=$b", False, {"a": "$b"}), ({"b": "c"}, "a=$b", True, {"a": "$b"}), ({"b": "c"}, "a=${b}", False, {"a": "${b}"}), ({"b": "c"}, "a=${b}", True, {"a": "c"}), ({"b": "c"}, "a=${b:-d}", False, {"a": "${b:-d}"}), ({"b": "c"}, "a=${b:-d}", True, {"a": "c"}), # Defined in file ({}, "b=c\na=${b}", True, {"a": "c", "b": "c"}), # Undefined ({}, "a=${b}", True, {"a": ""}), ({}, "a=${b:-d}", True, {"a": "d"}), # With quotes ({"b": "c"}, 'a="${b}"', True, {"a": "c"}), ({"b": "c"}, "a='${b}'", True, {"a": "c"}), # With surrounding text ({"b": "c"}, "a=x${b}y", True, {"a": "xcy"}), # Self-referential ({"a": "b"}, "a=${a}", True, {"a": "b"}), ({}, "a=${a}", True, {"a": ""}), ({"a": "b"}, "a=${a:-c}", True, {"a": "b"}), ({}, "a=${a:-c}", True, {"a": "c"}), # Reused ({"b": "c"}, "a=${b}${b}", True, {"a": "cc"}), ], ) def test_dotenv_values_stream(env, string, interpolate, expected): with mock.patch.dict(os.environ, env, clear=True): stream = StringIO(string) stream.seek(0) result = dotenv.dotenv_values(stream=stream, interpolate=interpolate) assert result == expected
the-stack_106_23855
#!/usr/bin/python2 # coding=utf8 import os import sys import json import requests import logging reload(sys) sys.setdefaultencoding('utf-8') logging.basicConfig(level=logging.INFO, format='%(asctime)s [%(levelname)s] %(message)s (%(filename)s:L%(lineno)d)', datefmt='%Y-%m-%d %H:%M:%S', filename='/tmp/post_syslink.log', filemode='a') logger = logging.getLogger(__name__) token = 'xxxxxx' server_ip = '192.168.100.150' server_name = 'alerts888.yhglobal.cn' headers = {"Host": server_name} url = "http://{}/monitor/received/syslink/info/".format(server_ip) url = "http://{}/monitor/received/syslink/data/".format(server_ip) def post_data(payload): try: logger.info("payload is: {}".format(payload)) r = requests.post(url, data=json.dumps(payload), headers=headers) logger.info("r.status_code is: {}".format(r.status_code)) if r.text: logger.info(r.text) print("{} {}".format(r.status_code, r.text)) else: logger.info("Server return http status code: {0}".format(r.status_code)) except Exception as msg: logger.info(msg) if __name__ == '__main__': try: para01 = sys.argv[1] if '-f' == para01: para02 = sys.argv[2] if not os.path.exists(para02): print("No such file: {}".format(para02)) exit(1) else: with open(para02, 'r') as f: para01 = f.read() try: data = json.loads(para01) except: exit(2) payload = { "token": token } if isinstance(data, list): payload["data"] = data else: payload.update(data) print(payload) post_data(payload) except Exception as e: print(str(e))
the-stack_106_23857
# Copyright 2018 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import batch_operation_sample def test_batch_operation_sample(capsys): batch_operation_sample.run_sample() out, _ = capsys.readouterr() expected = ( '.*Company generated:.*Company created:.*.*Job created:.*Job ' 'created:.*.*Job updated:.*Engineer in Mountain View.*Job ' 'updated:.*Engineer in Mountain View.*.*Job deleted.*Job ' 'deleted.*.*Company deleted.*') assert re.search(expected, out, re.DOTALL)
the-stack_106_23861
#encoding=utf-8 import numpy as np import tensorflow as tf class SequenceTable: def __init__(self, data): # A TensorArray is required as the sequences don't have the same # length. Alternatively a FIFOQueue can be used. # Because the data is read more than once by the queue, # clear_after_read is set to False (but I can't confirm an effect). # Because the items has diffrent sequence lengths the infer_shape # is set to False. The shape is then restored in the .read method. self.table = tf.TensorArray(size=len(data), dtype=data[0].dtype, dynamic_size=False, clear_after_read=False, infer_shape=False) # initialize table for i, datum in enumerate(data): self.table = self.table.write(i, datum) # setup infered element shape self.element_shape = tf.TensorShape((None,) + data[0].shape[1:]) def read(self, index): # read index from table and set infered shape read = self.table.read(index) read.set_shape(self.element_shape) return read def shuffle_bucket_batch(input_length, tensors, shuffle=True, **kwargs): # bucket_by_sequence_length requires the input_length and tensors # arguments to be queues. Use a range_input_producer queue to shuffle # an index for sliceing the input_length and tensors laters. # This strategy is idendical to the one used in slice_input_producer. table_index = tf.train.range_input_producer( int(input_length.get_shape()[0]), shuffle=shuffle ).dequeue() # the first argument is the sequence length specifed in the input_length # I did not find a ue for it. _, batch_tensors = tf.contrib.training.bucket_by_sequence_length( input_length=tf.gather(input_length, table_index), tensors=[tensor.read(table_index) for tensor in tensors], **kwargs ) return tuple(batch_tensors) def test_main(): # these values specify the length of the sequence and this controls how # the data is bucketed. The value is not required to be the acutal length, # which is also problematic when using pairs of sequences that have diffrent # length. In that case just specify a value that gives the best performance, # for example "the max length". length_table = tf.constant([2, 4, 3, 4, 3, 5], dtype=tf.int32) source_table = SequenceTable([ np.asarray([3, 4], dtype=np.int32), np.asarray([2, 3, 4], dtype=np.int32), np.asarray([1, 3, 4], dtype=np.int32), np.asarray([5, 3, 4], dtype=np.int32), np.asarray([6, 3, 4], dtype=np.int32), np.asarray([3, 3, 3, 3, 3, 3], dtype=np.int32) ]) target_table = SequenceTable([ np.asarray([9], dtype=np.int32), np.asarray([9, 3, 4, 5], dtype=np.int32), np.asarray([9, 3, 4], dtype=np.int32), np.asarray([9, 3, 4, 6], dtype=np.int32), np.asarray([9, 3], dtype=np.int32), np.asarray([9, 3, 3, 3, 3, 3, 2], dtype=np.int32) ]) source_batch, target_batch = shuffle_bucket_batch( length_table, [source_table, target_table], batch_size=2, # devices buckets into [len < 3, 3 <= len < 5, 5 <= len] bucket_boundaries=[1, 3, 5], # this will bad the source_batch and target_batch independently dynamic_pad=True, capacity=2 ) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess, coord) for i in range(6): source, target = sess.run((source_batch, target_batch)) print('source_output[{}]'.format(i)) print(source) print('target_output[{}]'.format(i)) print(target) print('') coord.request_stop() coord.join(threads) if __name__ == "__main__": test_main()
the-stack_106_23864
# a cursor is the object we use to interact with the database import pymysql.cursors # this class will give us an instance of a connection to our database class MySQLConnection: def __init__(self, db): # change the user and password as needed connection = pymysql.connect(host = 'localhost', user = 'root', password = 'root', db = db, charset = 'utf8mb4', cursorclass = pymysql.cursors.DictCursor, autocommit = True) # establish the connection to the database self.connection = connection # the method to query the database def query_db(self, query, data=None): with self.connection.cursor() as cursor: try: query = cursor.mogrify(query, data) print("Running Query:", query) cursor.execute(query) if query.lower().find("insert") >= 0: # INSERT queries will return the ID NUMBER of the row inserted self.connection.commit() return cursor.lastrowid elif query.lower().find("select") >= 0: # SELECT queries will return the data from the database as a LIST OF DICTIONARIES result = cursor.fetchall() return result else: # UPDATE and DELETE queries will return nothing self.connection.commit() except Exception as e: # if the query fails the method will return FALSE print("Something went wrong", e) return False finally: # close the connection self.connection.close() # connectToMySQL receives the database we're using and uses it to create an instance of MySQLConnection def connectToMySQL(db): return MySQLConnection(db)
the-stack_106_23866
import os ALBUM_FIELD = "ALBUM: " ARTIST_FIELD = "ARTIST: " URL_FIELD = "URL: " SEPARATOR_FIELD = "SEPARATOR: " FORMAT_FIELD = "FORMAT: " TIME_TITLE_TYPE = "TIME->TITLE" TITLE_TIME_TYPE = "TITLE->TIME" class SongsInfoReader: track_list_file = "" def __init__(self, track_list_file: str): self.track_list_file = track_list_file self.youtube_link = "" self.artist = "" self.album = "" self.separator = "" self.is_format_time_title = True self.directory = "" self.song_info_list = [] def read(self): with open(self.track_list_file, "r") as file: try: self.youtube_link = file.readline().split(URL_FIELD)[1].strip("\n") self.artist = file.readline().split(ARTIST_FIELD)[1].strip("\n") self.album = file.readline().split(ALBUM_FIELD)[1].strip("\n") self.separator = file.readline().split(SEPARATOR_FIELD)[1].strip("\n").strip("\"") format_time_title = file.readline().split(FORMAT_FIELD)[1].strip("\n") if format_time_title != TIME_TITLE_TYPE and format_time_title != TITLE_TIME_TYPE: raise ValueError self.is_format_time_title = format_time_title == TIME_TITLE_TYPE except (ValueError, IndexError): raise ValueError("Invalid header input") self.directory = os.path.dirname(os.path.realpath(__file__)) + "/" + self.artist + " - " + self.album file.readline() lines = file.readlines() for item in lines: param1, param2 = item.strip("\n").split(self.separator) if self.is_format_time_title: time = param1 title = param2 else: time = param2 title = param1 self.song_info_list.append(SongInfo(title, time)) if len(self.song_info_list) == 0: raise ValueError("Invalid songs information input") for index, item in enumerate(self.song_info_list): if isinstance(item, list) and len(item) != 2: raise ValueError("Invalid songs information input for {} at index {}".format(item, index)) class SongInfo: def __init__(self, title: str, time: str): self.title = title self.time = time
the-stack_106_23867
# This advanced example can be used to compute a more precise reference_clock_speed. Use an # oscilloscope or logic analyzer to measure the signal frequency and type the results into the # prompts. At the end it'll give you a more precise value around 25 mhz for your reference clock # speed. import time from board import SCL, SDA import busio # Import the PCA9685 module. from adafruit_pca9685 import PCA9685 # Create the I2C bus interface. i2c_bus = busio.I2C(SCL, SDA) # Create a simple PCA9685 class instance. pca = PCA9685(i2c_bus) # Set the PWM frequency to 100hz. pca.frequency = 100 input("Press enter when ready to measure default frequency.") # Set the PWM duty cycle for channel zero to 50%. duty_cycle is 16 bits to match other PWM objects # but the PCA9685 will only actually give 12 bits of resolution. print("Running with default calibration") pca.channels[0].duty_cycle = 0x7FFF time.sleep(1) pca.channels[0].duty_cycle = 0 measured_frequency = float(input("Frequency measured: ")) print() pca.reference_clock_speed = pca.reference_clock_speed * ( measured_frequency / pca.frequency ) # Set frequency again so we can get closer. Reading it back will produce the real value. pca.frequency = 100 input("Press enter when ready to measure coarse calibration frequency.") pca.channels[0].duty_cycle = 0x7FFF time.sleep(1) pca.channels[0].duty_cycle = 0 measured_after_calibration = float(input("Frequency measured: ")) print() reference_clock_speed = measured_after_calibration * 4096 * pca.prescale_reg print("Real reference clock speed: {0:.0f}".format(reference_clock_speed))
the-stack_106_23868
import torch from torch import cuda from torch.nn import Module from torch.optim.optimizer import Optimizer from torch.utils.data.dataloader import DataLoader from . import BaseTrainer class StickModel(Module): def __init__( self, model: Module, loss_fn, optimizer: Optimizer, trainer: BaseTrainer, device: torch.device = torch.device("cuda" if cuda.is_available() else "cpu") ): super().__init__() self.model = model self.loss_fn = loss_fn self.optimizer = optimizer self.trainer = trainer self.device = device self.model.to(device) def forward(self, x): return self.model(x) def fit(self, epochs, data_loader, test_loader): self.trainer.fit(self, epochs, data_loader, test_loader) def evaluate(self, data_loader): self.trainer.evaluate(self, data_loader) def data_loader_factory( dataset, test_dataset, epochs=20, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None ): loader_config = {'batch_size': batch_size, 'shuffle': shuffle, 'sampler': sampler, 'batch_sampler': batch_sampler, 'num_workers': num_workers, 'collate_fn': collate_fn, 'pin_memory': pin_memory, 'drop_last': drop_last, 'timeout': timeout, 'worker_init_fn': worker_init_fn, 'multiprocessing_context': multiprocessing_context } data_loader = DataLoader(dataset=dataset, **loader_config) test_loader = DataLoader(dataset=test_dataset, **loader_config) return epochs, data_loader, test_loader
the-stack_106_23869
#!/usr/bin/env python u""" HDF5_cryosat_L1b.py (08/2020) Reads and Writes HDF5 files for CryoSat-2 Level-1b data products Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR OUTPUTS a formatted HDF5 file with: Location: Time and Orbit Group Data: Measurements Group Geometry: External Corrections Group Waveform_1Hz: Average Waveforms Group Waveform_20Hz: Waveforms Group (with SAR/SARIN Beam Behavior Parameters) METADATA: MPH, SPH and DSD Header data OPTIONS: BASELINE (HDF5_cryosat_L1b): CryoSat-2 baseline (A, B, C) FILENAME (HDF5_cryosat_L1b): output HDF5 file name TITLE (HDF5_cryosat_L1b): output file description HEADER (HDF5_cryosat_L1b): output CryoSat-2 file headers (MPH, SPH, DSD) 1: for single CryoSat-2 files 2: for merged CryoSat-2 files from convert_cryosat_L1b.py CLOBBER (HDF5_cryosat_L1b): overwrite existing HDF5 file VERBOSE: print HDF5 structure parameters to screen ATTRIBUTES (read_HDF5_cryosat_L1b): input variable attributes from HDF5 file PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python (https://numpy.org) h5py: Python interface for Hierarchal Data Format 5 (HDF5) (https://www.h5py.org/) UPDATE HISTORY: Updated 08/2020: flake8 updates for python3 Updated 02/2020: convert from hard to soft tabulation Updated 10/2019: changing Y/N flags to True/False Updated 09/2019: updates for Baseline D Updated 04/2019: print HDF5 keys from list for python3 compatibility Updated 06/2018: use items instead of iteritems for python3 compatibility Updated 05/2016: using __future__ print function Updated 04/2016: fixed read attributes for Beam Behavior Parameters Written 03/2016 """ from __future__ import print_function import os import re import h5py #-- PURPOSE: write CryoSat-2 HDF5 files def HDF5_cryosat_L1b(CS_l1b_mds, MODE, BASELINE, FILENAME='', TITLE='', HEADER=0, CLOBBER=True, VERBOSE=False): #-- setting HDF5 clobber attribute if CLOBBER: clobber = 'w' else: clobber = 'w-' #-- getting HDF5 dataset attributes for each variable CS_l1b_attrib = cryosat_L1b_attributes(MODE, BASELINE) #-- open output HDF5 file fileID = h5py.File(os.path.expanduser(FILENAME), clobber) #-- create sub-groups within HDF5 file fileID.create_group('Location') fileID.create_group('Data') fileID.create_group('Geometry') fileID.create_group('Waveform_1Hz') fileID.create_group('Waveform_20Hz') #-- for SAR and SARIN modes: add subgroup for Beam Behavior Parameters #-- within Waveform_20Hz group if MODE in ('SAR','SIN'): fileID['Waveform_20Hz'].create_group('Beam') #-- Dimensions of parameters n_records,n_blocks = CS_l1b_mds['Location']['Day'].shape n_1Hz_wfm = CS_l1b_mds['Waveform_1Hz']['Waveform'].shape[1] n_20Hz_wfm = CS_l1b_mds['Waveform_20Hz']['Waveform'].shape[2] #-- find keys to output (do not output empty Spares variables) Location_keys = [key for key in CS_l1b_mds['Location'].keys() if not re.search('Spare',key)] Data_keys = [key for key in CS_l1b_mds['Data'].keys() if not re.search('Spare',key)] Geometry_keys = [key for key in CS_l1b_mds['Geometry'].keys() if not re.search('Spare',key)] Wfm_1Hz_keys = [key for key in CS_l1b_mds['Waveform_1Hz'].keys() if not re.search('Spare',key)] Wfm_20Hz_keys = [key for key in CS_l1b_mds['Waveform_20Hz'].keys() if not re.search('Spare',key)] if MODE in ('SAR','SIN'): beam_keys = [key for key in CS_l1b_mds['Waveform_20Hz']['Beam'].keys() if not re.search('Spare',key)] #-- create HDF5 records h5 = {} h5['Location'] = {} h5['Data'] = {} h5['Geometry'] = {} h5['Waveform_1Hz'] = {} h5['Waveform_20Hz'] = {} #-- CryoSat-2 Time and Orbit Group for key in Location_keys: val = CS_l1b_mds['Location'][key] if key in ('Sat_velocity','Real_beam','Baseline'): #-- Defining the HDF5 dataset variables h5['Location'][key] = fileID.create_dataset('Location/{0}'.format(key), (n_records,n_blocks,3,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Location'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Location'][key].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' h5['Location'][key].dims[2].label='CS_L1b_MDS_VECTOR_SIZE' else: #-- Defining the HDF5 dataset variables h5['Location'][key] = fileID.create_dataset('Location/{0}'.format(key), (n_records,n_blocks,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Location'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Location'][key].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Location'][key].items(): h5['Location'][key].attrs[att_name] = att_val #-- CryoSat-2 Measurement Group #-- Derived from instrument measurement parameters for key in Data_keys: val = CS_l1b_mds['Data'][key] #-- Defining the HDF5 dataset variables h5['Data'][key] = fileID.create_dataset('Data/{0}'.format(key), (n_records,n_blocks,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Data'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Data'][key].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Data'][key].items(): h5['Data'][key].attrs[att_name] = att_val #-- CryoSat-2 External Corrections Group for key in Geometry_keys: val = CS_l1b_mds['Geometry'][key] #-- Defining the HDF5 dataset variables h5['Geometry'][key] = fileID.create_dataset('Geometry/{0}'.format(key), (n_records,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Geometry'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Geometry'][key].items(): h5['Geometry'][key].attrs[att_name] = att_val #-- CryoSat-2 Average Waveforms Group for key in Wfm_1Hz_keys: val = CS_l1b_mds['Waveform_1Hz'][key] if key in ('Waveform'): #-- Defining the HDF5 dataset variables h5['Waveform_1Hz'][key] = fileID.create_dataset('Waveform_1Hz/{0}'.format(key), (n_records,n_1Hz_wfm), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Waveform_1Hz'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Waveform_1Hz'][key].dims[1].label='CS_L1b_MDS_1Hz_WAVEFORM_SIZE' else: #-- Defining the HDF5 dataset variables h5['Waveform_1Hz'][key] = fileID.create_dataset('Waveform_1Hz/{0}'.format(key), (n_records,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Waveform_1Hz'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Waveform_1Hz'][key].items(): h5['Waveform_1Hz'][key].attrs[att_name] = att_val #-- CryoSat-2 Waveforms Group with Beam Behavior Parameters for key in Wfm_20Hz_keys: val = CS_l1b_mds['Waveform_20Hz'][key] if key in ('Waveform','Coherence','Phase_diff'): #-- Defining the HDF5 dataset variables h5['Waveform_20Hz'][key] = fileID.create_dataset('Waveform_20Hz/{0}'.format(key), (n_records,n_blocks,n_20Hz_wfm,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Waveform_20Hz'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Waveform_20Hz'][key].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' h5['Waveform_20Hz'][key].dims[2].label='CS_L1b_MDS_20Hz_WAVEFORM_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Waveform_20Hz'][key].items(): h5['Waveform_20Hz'][key].attrs[att_name] = att_val elif key in ('Beam'): h5['Waveform_20Hz'][key] = {} for ds_name in beam_keys: ds_val = val[ds_name] #-- Defining the HDF5 dataset variables h5['Waveform_20Hz'][key][ds_name] = fileID.create_dataset( 'Waveform_20Hz/{0}/{1}'.format(key,ds_name), (n_records,n_blocks,), data=ds_val, dtype=ds_val.dtype, compression='gzip') #-- attach dimensions h5['Waveform_20Hz'][key][ds_name].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Waveform_20Hz'][key][ds_name].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Waveform_20Hz'][key][ds_name].items(): h5['Waveform_20Hz'][key][ds_name].attrs[att_name] = att_val else: #-- Defining the HDF5 dataset variables h5['Waveform_20Hz'][key] = fileID.create_dataset('Waveform_20Hz/{0}'.format(key), (n_records,n_blocks,), data=val, dtype=val.dtype, compression='gzip') #-- attach dimensions h5['Waveform_20Hz'][key].dims[0].label='CS_L1b_MDS_REC_SIZE' h5['Waveform_20Hz'][key].dims[1].label='CS_L1b_MDS_BLOCK_SIZE' #-- add HDF5 variable attributes for att_name,att_val in CS_l1b_attrib['Waveform_20Hz'][key].items(): h5['Waveform_20Hz'][key].attrs[att_name] = att_val #-- output MPH/SPH/DSD headers as group attributes if (HEADER == 1): #-- HEADER 1 is for single CryoSat-2 files fileID.create_group('METADATA') fileID['METADATA'].create_group('MPH') fileID['METADATA'].create_group('SPH') fileID['METADATA'].create_group('DSD') #-- Main Product Header (MPH) are all strings for att_name,att_val in CS_l1b_mds['METADATA']['MPH'].items(): fileID['METADATA']['MPH'].attrs[att_name] = att_val #-- Specific Product Header (SPH) are both strings and dictionaries for att_name,att_val in CS_l1b_mds['METADATA']['SPH'].items(): if isinstance(att_val,dict): #-- if att_val is dictionary fileID['METADATA']['SPH'].create_group(att_name) for ds_name,ds_val in att_val.items(): fileID['METADATA']['SPH'][att_name].attrs[ds_name] = ds_val elif isinstance(att_val,str) and att_name: #-- if att_val is string fileID['METADATA']['SPH'].attrs[att_name] = att_val #-- Data Set Descriptors (DSD) are all strings for att_name,att_val in CS_l1b_mds['METADATA']['DSD'].items(): fileID['METADATA']['DSD'].attrs[att_name] = att_val elif (HEADER == 2): #-- HEADER 2 is for merged CryoSat-2 files from convert_cryosat_L1b.py fileID.create_group('METADATA') fileID['METADATA'].create_group('MPH') fileID['METADATA'].create_group('SPH') fileID['METADATA'].create_group('DSD') #-- Main Product Header (MPH) are all strings for fi in CS_l1b_mds['METADATA']['MPH'].keys(): fileID['METADATA']['MPH'].create_group(fi) for att_name,att_val in CS_l1b_mds['METADATA']['MPH'][fi].items(): fileID['METADATA']['MPH'][fi].attrs[att_name] = att_val #-- Specific Product Header (SPH) are both strings and dictionaries for fi in CS_l1b_mds['METADATA']['SPH'].keys(): fileID['METADATA']['SPH'].create_group(fi) for att_name,att_val in CS_l1b_mds['METADATA']['SPH'][fi].items(): if isinstance(att_val,dict): #-- if att_val is dictionary fileID['METADATA']['SPH'][fi].create_group(att_name) for dsn,dsv in att_val.items(): fileID['METADATA']['SPH'][fi][att_name].attrs[dsn] = dsv elif isinstance(att_val,str) and att_name: #-- if att_val is string fileID['METADATA']['SPH'][fi].attrs[att_name] = att_val #-- Data Set Descriptors (DSD) are all strings for fi in CS_l1b_mds['METADATA']['DSD'].keys(): fileID['METADATA']['DSD'].create_group(fi) for att_name,att_val in CS_l1b_mds['METADATA']['DSD'][fi].items(): fileID['METADATA']['DSD'][fi].attrs[att_name] = att_val #-- output file title fileID.attrs['description'] = TITLE #-- Output HDF5 structure information if VERBOSE: print(FILENAME) print(list(fileID.keys())) #-- Closing the HDF5 file fileID.close() #-- PURPOSE: read CryoSat-2 HDF5 files def read_HDF5_cryosat_L1b(FILENAME, ATTRIBUTES=True, VERBOSE=False): #-- Open the HDF5 file for reading fileID = h5py.File(os.path.expanduser(FILENAME), 'r') #-- Output HDF5 file information if VERBOSE: print(fileID.filename) print(list(fileID.keys())) #-- allocate python dictionaries for output CS_l1b_mds variables CS_l1b_mds = {} CS_l1b_mds['Location'] = {} CS_l1b_mds['Data'] = {} CS_l1b_mds['Geometry'] = {} CS_l1b_mds['Waveform_1Hz'] = {} CS_l1b_mds['Waveform_20Hz'] = {} #-- get each HDF5 variable #-- CryoSat-2 Location Group for key in fileID['Location'].keys(): if key in ('Sat_velocity','Real_beam','Baseline'): CS_l1b_mds['Location'][key] = fileID['Location'][key][:,:,:] else: CS_l1b_mds['Location'][key] = fileID['Location'][key][:,:] #-- CryoSat-2 Measurement Group for key in fileID['Data'].keys(): CS_l1b_mds['Data'][key] = fileID['Data'][key][:,:] #-- CryoSat-2 External Corrections Group for key in fileID['Geometry'].keys(): CS_l1b_mds['Geometry'][key] = fileID['Geometry'][key][:] #-- CryoSat-2 Average Waveform Group for key in fileID['Waveform_1Hz'].keys(): if key in ('Waveform'): CS_l1b_mds['Waveform_1Hz'][key] = fileID['Waveform_1Hz'][key][:,:] else: CS_l1b_mds['Waveform_1Hz'][key] = fileID['Waveform_1Hz'][key][:] #-- CryoSat-2 Waveform Group for key in fileID['Waveform_20Hz'].keys(): if key in ('Waveform','Coherence','Phase_diff'): CS_l1b_mds['Waveform_20Hz'][key] = fileID['Waveform_20Hz'][key][:,:,:] elif key in ('Beam'): CS_l1b_mds['Waveform_20Hz'][key] = {} for ds_name,ds_val in fileID['Waveform_20Hz'][key].items(): CS_l1b_mds['Waveform_20Hz'][key][ds_name] = ds_val[:,:] else: CS_l1b_mds['Waveform_20Hz'][key] = fileID['Waveform_20Hz'][key][:,:] #-- Getting attributes of included variables if ATTRIBUTES: #-- allocate python dictionaries for output CS_l1b_mds attributes CS_l1b_mds['Attributes'] = {} CS_l1b_mds['Attributes']['Location'] = {} CS_l1b_mds['Attributes']['Data'] = {} CS_l1b_mds['Attributes']['Geometry'] = {} CS_l1b_mds['Attributes']['Waveform_1Hz'] = {} CS_l1b_mds['Attributes']['Waveform_20Hz'] = {} #-- CryoSat-2 Location Group for key in fileID['Location'].keys(): CS_l1b_mds['Attributes']['Location'][key] = {} for att_name,att_val in fileID['Location'][key].attrs.items(): CS_l1b_mds['Attributes']['Location'][key][att_name] = att_val #-- CryoSat-2 Measurement Group for key in fileID['Data'].keys(): CS_l1b_mds['Attributes']['Data'][key] = {} for att_name,att_val in fileID['Data'][key].attrs.items(): CS_l1b_mds['Attributes']['Data'][key][att_name] = att_val #-- CryoSat-2 External Corrections Group for key in fileID['Geometry'].keys(): CS_l1b_mds['Attributes']['Geometry'][key] = {} for att_name,att_val in fileID['Geometry'][key].attrs.items(): CS_l1b_mds['Attributes']['Geometry'][key][att_name] = att_val #-- CryoSat-2 Average Waveform Group for key in fileID['Waveform_1Hz'].keys(): CS_l1b_mds['Attributes']['Waveform_1Hz'][key] = {} for att_name,att_val in fileID['Waveform_1Hz'][key].attrs.items(): CS_l1b_mds['Attributes']['Waveform_1Hz'][key][att_name] = att_val #-- CryoSat-2 Waveform Group for key in fileID['Waveform_20Hz'].keys(): if key in ('Beam'): CS_l1b_mds['Attributes']['Waveform_20Hz'][key] = {} for dsn in fileID['Waveform_20Hz'][key].keys(): CS_l1b_mds['Attributes']['Waveform_20Hz'][key][dsn] = {} for atn,atv in fileID['Waveform_20Hz'][key][dsn].attrs.items(): CS_l1b_mds['Attributes']['Waveform_20Hz'][key][dsn][atn] = atv else: CS_l1b_mds['Attributes']['Waveform_20Hz'][key] = {} for atn,atv in fileID['Waveform_20Hz'][key].attrs.items(): CS_l1b_mds['Attributes']['Waveform_20Hz'][key][atn] = atv #-- Global attribute description CS_l1b_mds['Attributes']['title'] = fileID.attrs['description'] #-- Closing the HDF5 file fileID.close() return CS_l1b_mds #-- PURPOSE: get the number of records and number of blocks in an HDF5 file def HDF5_cryosat_L1b_shape(FILENAME): #-- Open the HDF5 file for reading with h5py.File(os.path.expanduser(FILENAME), 'r') as fid: n_records,n_blocks = fid['Location']['Day'].shape n_1Hz_wfm = fid['Waveform_1Hz']['Waveform'].shape[1] n_20Hz_wfm = fid['Waveform_20Hz']['Waveform'].shape[2] return (n_records,n_blocks,n_1Hz_wfm,n_20Hz_wfm) #-- PURPOSE: get attribute names for baseline def cryosat_L1b_attributes(MODE, BASELINE): #-- CryoSat-2 Time and Orbit Group L1b_location_attributes = {} #-- Time: day part L1b_location_attributes['Day'] = {} L1b_location_attributes['Day']['long_name'] = 'MDSR time stamp days' L1b_location_attributes['Day']['units'] = 'days since 2000-01-01 00:00:00 TAI' L1b_location_attributes['Day']['hertz'] = 20 #-- Time: second part L1b_location_attributes['Second'] = {} L1b_location_attributes['Second']['long_name'] = 'MDSR time stamp seconds' L1b_location_attributes['Second']['units'] = 'seconds' L1b_location_attributes['Second']['hertz'] = 20 #-- Time: microsecond part L1b_location_attributes['Micsec'] = {} L1b_location_attributes['Micsec']['long_name'] = 'MDSR time stamp microseconds' L1b_location_attributes['Micsec']['units'] = 'microseconds' L1b_location_attributes['Micsec']['hertz'] = 20 #-- USO correction factor L1b_location_attributes['USO_Corr'] = {} L1b_location_attributes['USO_Corr']['long_name'] = ('DORIS Ultra Stable ' 'Oscillator drift correction factor') L1b_location_attributes['USO_Corr']['description'] = ('USO_Corr_Factor = ' 'USO_freq_nominal / (USO_freq_nominal + model_freq_deviation). ' 'USO_freq_nominal is the nominal frequency provided in the IPF database.' 'model_freq_deviation is the modelled frequency deviation provided by ' 'the DORIS USO drift file') L1b_location_attributes['USO_Corr']['units'] = '1e-15' L1b_location_attributes['USO_Corr']['hertz'] = 20 #-- Mode ID L1b_location_attributes['Mode_ID'] = {} L1b_location_attributes['Mode_ID']['long_name'] = 'Mode ID' L1b_location_attributes['Mode_ID']['description'] = ('Identifies the SIRAL ' 'instrument measurement mode. See table 2.3.3-2 of the "L1b Products ' 'Format Specification" document') L1b_location_attributes['Mode_ID']['units'] = '1e-15' L1b_location_attributes['Mode_ID']['flag_meanings'] = 'lrm sar sarin' L1b_location_attributes['Mode_ID']['hertz'] = 20 #-- Mode Flags L1b_location_attributes['Mode_flags'] = {} L1b_location_attributes['Mode_flags']['long_name'] = 'Mode flags' L1b_location_attributes['Mode_flags']['description'] = ('Flags related to ' 'sub-modes of SARIn mode from instrument configuration bits in L0. ' 'Identifies the sarin degraded case and the CAL4 flag') L1b_location_attributes['Mode_flags']['flag_meanings'] = ('sarin_degraded_case ' 'cal4_packet_detection') L1b_location_attributes['Mode_flags']['hertz'] = 20 #-- Platform attitude control mode L1b_location_attributes['Att_control'] = {} L1b_location_attributes['Att_control']['long_name'] = 'Platform Attitude Control' L1b_location_attributes['Att_control']['description'] = ('Platform attitude ' 'control mode from instrument configuration bits in L0.') L1b_location_attributes['Att_control']['flag_meanings'] = ('unknown ' 'local_normal_pointing yaw_steering') L1b_location_attributes['Att_control']['hertz'] = 20 #-- Source sequence counter L1b_location_attributes['SSC'] = {} L1b_location_attributes['SSC']['long_name'] = 'Source sequence counter' L1b_location_attributes['SSC']['description'] = ('Read from the L0 echo ' 'telemetry packet (of the master channel in the case of SARin).' 'This is a 16384 cyclic modulo counter, starting from 0, incrementing ' 'by 1. A separate counter is maintained for each instrument mode') L1b_location_attributes['SSC']['hertz'] = 20 #-- Instrument configuration L1b_location_attributes['Inst_config'] = {} L1b_location_attributes['Inst_config']['long_name'] = ('Instrument ' 'Configuration flag') L1b_location_attributes['Inst_config']['description'] = ('This is derived ' 'from flags in the L0 packets for tracking and the echo. See table ' '2.3.3-3 of the "L1b Products Format Specification" document.') L1b_location_attributes['Inst_config']['flag_meanings'] = ('siral_redundant ' 'external_cal open_loop loss_of_echo real_time_error echo_saturation ' 'rx_band_attenuated cycle_report_error') L1b_location_attributes['Inst_config']['hertz'] = 20 #-- acquisition band L1b_location_attributes['Inst_band'] = {} L1b_location_attributes['Inst_band']['long_name'] = 'Acquisition Band' L1b_location_attributes['Inst_band']['description'] = ('This flag ' 'contains the acquisition band of the SIRAL instrument.') L1b_location_attributes['Inst_band']['flag_meanings'] = ('unknown ' '320_mhz 40_mhz') L1b_location_attributes['Inst_band']['hertz'] = 20 #-- instrument channel L1b_location_attributes['Inst_channel'] = {} L1b_location_attributes['Inst_channel']['long_name'] = 'Rx Channel' L1b_location_attributes['Inst_channel']['description'] = ('This flag ' 'contains the SIRAL instrument channel in use.') L1b_location_attributes['Inst_channel']['flag_meanings'] = ('unknown ' 'rx1 rx2 both') L1b_location_attributes['Inst_channel']['hertz'] = 20 #-- tracking mode L1b_location_attributes['Tracking_mode'] = {} L1b_location_attributes['Tracking_mode']['long_name'] = 'Tracking Mode' L1b_location_attributes['Tracking_mode']['description'] = ('This flag ' 'indicates the tracking mode of the SIRAL instrument.') L1b_location_attributes['Tracking_mode']['flag_meanings'] = ('unknown ' 'lrm sar sarin') L1b_location_attributes['Tracking_mode']['hertz'] = 20 #-- Record Counter L1b_location_attributes['Rec_Count'] = {} L1b_location_attributes['Rec_Count']['long_name'] = ('Instrument ' 'Configuration flag') L1b_location_attributes['Rec_Count']['description'] = ('Progressive counter ' 'incremented by 1 for each data block. Hence the first full MDS record ' 'contains the numbers 1-20, the second 21-40, etc.') L1b_location_attributes['Rec_Count']['hertz'] = 20 #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) L1b_location_attributes['Lat'] = {} L1b_location_attributes['Lat']['long_name'] = 'Latitude of measurement' L1b_location_attributes['Lat']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_location_attributes['Lat']['units'] = '0.1 micro-degree' L1b_location_attributes['Lat']['valid_min'] = -9e8 L1b_location_attributes['Lat']['valid_max'] = 9e8 L1b_location_attributes['Lat']['hertz'] = 20 #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) L1b_location_attributes['Lon'] = {} L1b_location_attributes['Lon']['long_name'] = 'Longitude of measurement' L1b_location_attributes['Lon']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_location_attributes['Lon']['units'] = '0.1 micro-degree' L1b_location_attributes['Lon']['valid_min'] = -18e8 L1b_location_attributes['Lon']['valid_max'] = 18e8 L1b_location_attributes['Lon']['hertz'] = 20 #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid L1b_location_attributes['Alt'] = {} L1b_location_attributes['Alt']['long_name'] = 'Altitude' L1b_location_attributes['Alt']['description'] = ('Altitude of Satellite ' 'COG above reference ellipsoid corresponding to the MDSR Time Stamp') L1b_location_attributes['Alt']['units'] = 'millimeters' L1b_location_attributes['Alt']['hertz'] = 20 #-- Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) L1b_location_attributes['Alt_rate'] = {} L1b_location_attributes['Alt_rate']['long_name'] = 'Altitude Rate' L1b_location_attributes['Alt_rate']['description'] = ('Instantaneous ' 'altitude rate derived from orbit corresponding to the MDSR Time Stamp') L1b_location_attributes['Alt_rate']['units'] = 'millimeters/second' L1b_location_attributes['Alt_rate']['hertz'] = 20 #-- Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) #-- ITRF= International Terrestrial Reference Frame L1b_location_attributes['Sat_velocity'] = {} L1b_location_attributes['Sat_velocity']['long_name'] = ('Satellite velocity ' 'vector') L1b_location_attributes['Sat_velocity']['description'] = ('In the ' 'International Terrestrial Reference Frame (ITRF) in the International ' 'Earth Fixed System. From Orbit CFI call. This is not a unit vector as ' 'the velocity magnitude is also required.') L1b_location_attributes['Sat_velocity']['units'] = 'millimeters/second' L1b_location_attributes['Sat_velocity']['hertz'] = 20 #-- Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) #-- CRF= CryoSat Reference Frame. L1b_location_attributes['Real_beam'] = {} L1b_location_attributes['Real_beam']['long_name'] = ('Real beam direction ' 'vector') L1b_location_attributes['Real_beam']['description'] = ('In the ' 'CryoSat Reference Frame (CRF). This is a unit vector.') L1b_location_attributes['Real_beam']['units'] = 'micrometers' L1b_location_attributes['Real_beam']['hertz'] = 20 #-- Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) L1b_location_attributes['Baseline'] = {} L1b_location_attributes['Baseline']['long_name'] = ('Interferometric ' 'baseline vector') L1b_location_attributes['Baseline']['description'] = ('In the ' 'CryoSat Reference Frame (CRF). This is a unit vector.') L1b_location_attributes['Baseline']['units'] = 'micrometers' L1b_location_attributes['Baseline']['hertz'] = 20 #-- Star Tracker ID and Spacecraft mispointing for Baseline-C and D if BASELINE in ('C','D'): #-- Star Tracker ID L1b_location_attributes['ST_ID'] = {} L1b_location_attributes['ST_ID']['long_name'] = 'Star Tracker ID' L1b_location_attributes['ST_ID']['hertz'] = 20 #-- Antenna Bench Roll Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) L1b_location_attributes['Roll'] = {} L1b_location_attributes['Roll']['long_name'] = ('Antenna Bench Roll ' 'Angle derived from star trackers') L1b_location_attributes['Roll']['units'] = '0.1 micro-degree' L1b_location_attributes['Roll']['hertz'] = 20 #-- Antenna Bench Pitch Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) L1b_location_attributes['Pitch'] = {} L1b_location_attributes['Pitch']['long_name'] = ('Antenna Bench Pitch ' 'Angle derived from star trackers') L1b_location_attributes['Pitch']['units'] = '0.1 micro-degree' L1b_location_attributes['Pitch']['hertz'] = 20 #-- Antenna Bench Yaw Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) L1b_location_attributes['Yaw'] = {} L1b_location_attributes['Yaw']['long_name'] = ('Antenna Bench Yaw ' 'Angle derived from star trackers') L1b_location_attributes['Yaw']['units'] = '0.1 micro-degree' L1b_location_attributes['Yaw']['hertz'] = 20 #-- Measurement Confidence Data Flags L1b_location_attributes['MCD'] = {} L1b_location_attributes['MCD']['long_name'] = ('Measurement Confidence ' 'Data Flags') L1b_location_attributes['MCD']['description'] = ('Generally the MCD flags ' 'indicate problems when set. If MCD is 0 then no problems or non-nominal ' 'conditions were detected. Serious errors are indicated by setting bit 31') L1b_location_attributes['MCD']['flag_meanings'] = ('block_degraded ' 'blank_block datation_degraded orbit_prop_error orbit_file_change ' 'orbit_gap echo_saturated other_echo_error sarin_rx1_error ' 'sarin_rx2_error window_delay_error agc_error cal1_missing ' 'cal1_default doris_uso_missing ccal1_default trk_echo_error ' 'echo_rx1_error echo_rx2_error npm_error cal1_pwr_corr_type ' 'phase_pert_cor_missing cal2_missing cal2_default power_scale_error ' 'attitude_cor_missing phase_pert_cor_default') L1b_location_attributes['MCD']['hertz'] = 20 #-- CryoSat-2 Measurement Group L1b_measurement_attributes = {} #-- Window Delay reference (two-way) corrected for instrument delays L1b_measurement_attributes['TD'] = {} L1b_measurement_attributes['TD']['long_name'] = 'Window Delay' L1b_measurement_attributes['TD']['description'] = ('Window delay from the ' 'telemetry converted to physical units. This is a 2-way measurement: ' 'the time taken for the radar pulse to travel to the surface and back.' 'COM offset is applied and Calibration correction from CAL1 is applied') L1b_measurement_attributes['TD']['units'] = 'picoseconds' L1b_measurement_attributes['TD']['hertz'] = 20 #-- H0 Initial Height Word from telemetry L1b_measurement_attributes['H_0'] = {} L1b_measurement_attributes['H_0']['long_name'] = 'H0 Initial Height Word' L1b_measurement_attributes['H_0']['units'] = '48.8 ps' L1b_measurement_attributes['H_0']['hertz'] = 20 #-- COR2 Height Rate: on-board tracker height rate over the radar cycle L1b_measurement_attributes['COR2'] = {} L1b_measurement_attributes['COR2']['long_name'] = 'COR2 Height Rate' L1b_measurement_attributes['COR2']['description'] = ('On-board tracker ' 'height rate over the radar cycle') L1b_measurement_attributes['COR2']['units'] = '3.05 ps/rc' L1b_measurement_attributes['COR2']['hertz'] = 20 #-- Coarse Range Word (LAI) derived from telemetry L1b_measurement_attributes['LAI'] = {} L1b_measurement_attributes['LAI']['long_name'] = 'Coarse Range Word' L1b_measurement_attributes['LAI']['units'] = '12.5 ns' L1b_measurement_attributes['LAI']['hertz'] = 20 #-- Fine Range Word (FAI) derived from telemetry L1b_measurement_attributes['FAI'] = {} L1b_measurement_attributes['FAI']['long_name'] = 'Fine Range Word' L1b_measurement_attributes['FAI']['units'] = '12.5/256 ns' L1b_measurement_attributes['FAI']['hertz'] = 20 #-- Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. #-- Gain calibration corrections are applied (Sum of AGC stages 1 and 2 #-- plus the corresponding corrections) (dB/100) L1b_measurement_attributes['AGC_CH1'] = {} L1b_measurement_attributes['AGC_CH1']['long_name'] = ('Automatic Gain ' 'Control Channel 1') L1b_measurement_attributes['AGC_CH1']['description'] = ('AGC gain applied ' 'on Rx channel 1. Gain calibration corrections are applied (Sum of AGC ' 'stages 1 and 2 plus the corresponding corrections)') L1b_measurement_attributes['AGC_CH1']['units'] = 'dB/100' L1b_measurement_attributes['AGC_CH1']['hertz'] = 20 #-- Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. #-- Gain calibration corrections are applied (dB/100) L1b_measurement_attributes['AGC_CH2'] = {} L1b_measurement_attributes['AGC_CH2']['long_name'] = ('Automatic Gain ' 'Control Channel 2') L1b_measurement_attributes['AGC_CH2']['description'] = ('AGC gain applied ' 'on Rx channel 2.') L1b_measurement_attributes['AGC_CH2']['units'] = 'dB/100' L1b_measurement_attributes['AGC_CH2']['hertz'] = 20 #-- Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) L1b_measurement_attributes['TR_gain_CH1'] = {} L1b_measurement_attributes['TR_gain_CH1']['long_name'] = ('Total Fixed Gain ' 'On Channel 1') L1b_measurement_attributes['TR_gain_CH1']['description'] = ('Gain applied ' 'by the RF unit.') L1b_measurement_attributes['TR_gain_CH1']['units'] = 'dB/100' L1b_measurement_attributes['TR_gain_CH1']['hertz'] = 20 #-- Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) L1b_measurement_attributes['TR_gain_CH2'] = {} L1b_measurement_attributes['TR_gain_CH2']['long_name'] = ('Total Fixed Gain ' 'On Channel 2') L1b_measurement_attributes['TR_gain_CH2']['description'] = ('Gain applied ' 'by the RF unit.') L1b_measurement_attributes['TR_gain_CH2']['units'] = 'dB/100' L1b_measurement_attributes['TR_gain_CH2']['hertz'] = 20 #-- Transmit Power in microWatts L1b_measurement_attributes['TX_Power'] = {} L1b_measurement_attributes['TX_Power']['long_name'] = 'Transmit Power' L1b_measurement_attributes['TX_Power']['units'] = 'microWatts' L1b_measurement_attributes['TX_Power']['hertz'] = 20 #-- Doppler range correction: Radial component (mm) #-- computed for the component of satellite velocity in the nadir direction L1b_measurement_attributes['Doppler_range'] = {} L1b_measurement_attributes['Doppler_range']['long_name'] = ('Doppler range ' 'correction') L1b_measurement_attributes['Doppler_range']['description'] = ('Radial ' 'component computed for the component of satellite velocity in the ' 'nadir direction.') L1b_measurement_attributes['Doppler_range']['units'] = 'mm' L1b_measurement_attributes['Doppler_range']['hertz'] = 20 #-- Value of Doppler Angle for the first single look echo (1e-7 radians) L1b_measurement_attributes['Doppler_angle_start'] = {} L1b_measurement_attributes['Doppler_angle_start']['long_name'] = ('Doppler ' 'angle start') L1b_measurement_attributes['Doppler_angle_start']['description'] = ('Value ' 'of Doppler Angle for the first single look echo in the stack. It is ' 'the angle between: (a) direction perpendicular to the velocity ' 'vector, (b) direction from satellite to surface location. The Doppler ' 'angle depends on velocity vector and on geometry.') L1b_measurement_attributes['Doppler_angle_start']['units'] = '1e-7 radians' L1b_measurement_attributes['Doppler_angle_start']['hertz'] = 20 #-- Value of Doppler Angle for the last single look echo (1e-7 radians) L1b_measurement_attributes['Doppler_angle_stop'] = {} L1b_measurement_attributes['Doppler_angle_stop']['long_name'] = ('Doppler ' 'angle stop') L1b_measurement_attributes['Doppler_angle_stop']['description'] = ('Value ' 'of Doppler Angle for the last single look echo in the stack. It is ' 'the angle between: (a) direction perpendicular to the velocity ' 'vector, (b) direction from satellite to surface location. The Doppler ' 'angle depends on velocity vector and on geometry.') L1b_measurement_attributes['Doppler_angle_stop']['units'] = '1e-7 radians' L1b_measurement_attributes['Doppler_angle_stop']['hertz'] = 20 #-- Instrument Range Correction: transmit-receive antenna (mm) #-- Calibration correction to range on channel 1 computed from CAL1. L1b_measurement_attributes['TR_inst_range'] = {} L1b_measurement_attributes['TR_inst_range']['long_name'] = ('Instrument ' 'Range Correction: transmit-receive antenna') L1b_measurement_attributes['TR_inst_range']['description'] = ('Calibration ' 'correction to range on channel 1 computed from CAL1.') L1b_measurement_attributes['TR_inst_range']['units'] = 'mm' L1b_measurement_attributes['TR_inst_range']['hertz'] = 20 #-- Instrument Range Correction: receive-only antenna (mm) #-- Calibration correction to range on channel 2 computed from CAL1. L1b_measurement_attributes['R_inst_range'] = {} L1b_measurement_attributes['R_inst_range']['long_name'] = ('Instrument ' 'Range Correction: receive-only antenna') L1b_measurement_attributes['R_inst_range']['description'] = ('Calibration ' 'correction to range on channel 2 computed from CAL1.') L1b_measurement_attributes['R_inst_range']['units'] = 'mm' L1b_measurement_attributes['R_inst_range']['hertz'] = 20 #-- Instrument Gain Correction: transmit-receive antenna (dB/100) #-- Calibration correction to gain on channel 1 computed from CAL1 L1b_measurement_attributes['TR_inst_gain'] = {} L1b_measurement_attributes['TR_inst_gain']['long_name'] = ('Instrument ' 'Gain Correction: transmit-receive antenna') L1b_measurement_attributes['TR_inst_gain']['description'] = ('Calibration ' 'correction to gain on channel 1 computed from CAL1.') L1b_measurement_attributes['TR_inst_gain']['units'] = 'dB/100' L1b_measurement_attributes['TR_inst_gain']['hertz'] = 20 #-- Instrument Gain Correction: receive-only (dB/100) #-- Calibration correction to gain on channel 2 computed from CAL1 L1b_measurement_attributes['R_inst_gain'] = {} L1b_measurement_attributes['R_inst_gain']['long_name'] = ('Instrument ' 'Gain Correction: receive-only antenna') L1b_measurement_attributes['R_inst_gain']['description'] = ('Calibration ' 'correction to gain on channel 2 computed from CAL1.') L1b_measurement_attributes['R_inst_gain']['units'] = 'dB/100' L1b_measurement_attributes['R_inst_gain']['hertz'] = 20 #-- Internal Phase Correction (microradians) L1b_measurement_attributes['Internal_phase'] = {} L1b_measurement_attributes['Internal_phase']['long_name'] = ('Internal ' 'Phase Correction') L1b_measurement_attributes['Internal_phase']['description'] = ('Set to ' 'zero due to no availability of correction until specialized FBR-L1B ' 'processing.') L1b_measurement_attributes['Internal_phase']['units'] = 'microradians' L1b_measurement_attributes['Internal_phase']['hertz'] = 20 #-- External Phase Correction (microradians) L1b_measurement_attributes['External_phase'] = {} L1b_measurement_attributes['External_phase']['long_name'] = ('External ' 'Phase Correction') L1b_measurement_attributes['External_phase']['description'] = ('Taken from ' 'the IPFDB file (SARIN only) to be added to the internal phase ' 'correction term. The external phase correction is the temperature-' 'averaged component of external inter-channel phase difference derived ' 'from phase difference sensitive antenna subsystem, waveguides and ' 'instrument waveguide switches. The external phase correction does not ' 'contain internal instrument temperature dependent effects of ' 'calibration coupler and duplexer which are dealt with by the CAL-4 ' 'signal. These CAL-4 data are processed to compute the internal phase ' 'correction parameter.') L1b_measurement_attributes['External_phase']['units'] = 'microradians' L1b_measurement_attributes['External_phase']['hertz'] = 20 #-- Noise Power measurement (dB/100): converted from telemetry units to be #-- the noise floor of FBR measurement echoes. #-- Set to -9999.99 when the telemetry contains zero. L1b_measurement_attributes['Noise_power'] = {} L1b_measurement_attributes['Noise_power']['long_name'] = 'Noise power' L1b_measurement_attributes['Noise_power']['description'] = ('Noise power ' 'measurement converted from telemetry units to be the noise floor of ' 'FBR measurement echoes. This field is set to the default value equal ' 'to -9999.99 when the telemetry contains zero.') L1b_measurement_attributes['Noise_power']['units'] = 'dB/100' L1b_measurement_attributes['Noise_power']['_FillValue'] = -9999.99 L1b_measurement_attributes['Noise_power']['hertz'] = 20 #-- Phase slope correction (microradians) #-- Computed from the CAL-4 packets during the azimuth impulse response #-- amplitude (SARIN only). Set from the latest available CAL-4 packet. L1b_measurement_attributes['Phase_slope'] = {} L1b_measurement_attributes['Phase_slope']['long_name'] = ('Phase Slope ' 'Correction') L1b_measurement_attributes['Phase_slope']['description'] = ('Differential ' 'group delay phase difference slope correction (across the whole ' 'bandwidth): fixed and variable group delays introduce a phase ' 'difference slope across the instrument bandwidth. Fixed elements of ' 'differential group delay have been determined during ground testing ' 'and characterisation and cover the elements of antenna, calibration ' 'coupler, Louis waveguide. These fixed elements can be retrieved from ' 'the IPFDB. Variable elements cover differences between the CAL-1 and ' 'CAL-4 paths and can be computed by processing the CAL-1 and CAL-4 data. ' 'SIR_SAR_1B and SIR_LRM_1B products contain this parameter but is set ' 'to zero. Since the correction can only be made at the rate of the ' 'CAL-4 which is 1 Hz and the measurement group high rate blocks are ' 'provided at 20 Hz the product provides the closest in time to FBR ' 'value of slope correction.') L1b_measurement_attributes['Phase_slope']['units'] = 'microradians' L1b_measurement_attributes['Phase_slope']['hertz'] = 20 #-- CryoSat-2 External Corrections Group L1b_corr_attributes = {} #-- Dry Tropospheric Correction packed units (mm, 1e-3 m) L1b_corr_attributes['dryTrop'] = {} L1b_corr_attributes['dryTrop']['long_name'] = 'Dry Tropospheric Correction' L1b_corr_attributes['dryTrop']['description'] = ('Altimeter range correction' ' due to the dry-gas component of the Earths atmosphere') L1b_corr_attributes['dryTrop']['units'] = 'millimeters' L1b_corr_attributes['dryTrop']['hertz'] = 1 #-- Wet Tropospheric Correction packed units (mm, 1e-3 m) L1b_corr_attributes['wetTrop'] = {} L1b_corr_attributes['wetTrop']['long_name'] = 'Wet Tropospheric Correction' L1b_corr_attributes['wetTrop']['description'] = ('Altimeter range correction' ' due to the water component of the Earths atmosphere') L1b_corr_attributes['wetTrop']['units'] = 'millimeters' L1b_corr_attributes['wetTrop']['hertz'] = 1 #-- Inverse Barometric Correction packed units (mm, 1e-3 m) L1b_corr_attributes['InvBar'] = {} L1b_corr_attributes['InvBar']['long_name'] = 'Inverse Barometric Correction' L1b_corr_attributes['InvBar']['description'] = ('Altimeter range correction ' 'for the depression of the ocean surface caused by the local barometric ' 'pressure') L1b_corr_attributes['InvBar']['units'] = 'millimeters' L1b_corr_attributes['InvBar']['hertz'] = 1 #-- Dynamic Atmosphere Correction packed units (mm, 1e-3 m) L1b_corr_attributes['DAC'] = {} L1b_corr_attributes['DAC']['long_name'] = 'Dynamic Atmosphere Correction' L1b_corr_attributes['DAC']['description'] = ('Altimeter range correction ' 'for both the Inverse Barometric effect and the high-frequency dynamic ' 'component of the wind effect on the ocean. Only one of inverse ' 'barometric correction and DAC have to be used as they are alternatives') L1b_corr_attributes['DAC']['units'] = 'millimeters' L1b_corr_attributes['DAC']['hertz'] = 1 #-- GIM Ionospheric Correction packed units (mm, 1e-3 m) L1b_corr_attributes['Iono_GIM'] = {} L1b_corr_attributes['Iono_GIM']['long_name'] = 'Ionospheric Correction' L1b_corr_attributes['Iono_GIM']['description'] = ('Altimeter range correction ' 'for the delay of the radar pulse caused by free electrons in the ' 'ionosphere. Computed a GPS satellite-derived (GIM) map') L1b_corr_attributes['Iono_GIM']['units'] = 'millimeters' L1b_corr_attributes['Iono_GIM']['hertz'] = 1 #-- Model Ionospheric Correction packed units (mm, 1e-3 m) L1b_corr_attributes['Iono_model'] = {} L1b_corr_attributes['Iono_model']['long_name'] = 'Ionospheric Correction' L1b_corr_attributes['Iono_model']['description'] = ('Altimeter range ' 'correction for the delay of the radar pulse caused by free electrons ' 'in the ionosphere. Computed from a simple ionospheric model.') L1b_corr_attributes['Iono_model']['units'] = 'millimeters' L1b_corr_attributes['Iono_model']['hertz'] = 1 #-- Ocean tide Correction packed units (mm, 1e-3 m) L1b_corr_attributes['ocTideElv'] = {} L1b_corr_attributes['ocTideElv']['long_name'] = 'Elastic Ocean Tide' L1b_corr_attributes['ocTideElv']['description'] = ('Removes the effect of ' 'local tide and adjusts the measurement to the mean sea surface') L1b_corr_attributes['ocTideElv']['units'] = 'millimeters' L1b_corr_attributes['ocTideElv']['_FillValue'] = 32767 L1b_corr_attributes['ocTideElv']['hertz'] = 1 #-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) L1b_corr_attributes['lpeTideElv'] = {} L1b_corr_attributes['lpeTideElv']['long_name'] = ('Long-Period Equilibrium ' 'Ocean Tide') L1b_corr_attributes['lpeTideElv']['description'] = ('Removes the effect of ' 'the oceanic response to the single tidal forcing.') L1b_corr_attributes['lpeTideElv']['units'] = 'millimeters' L1b_corr_attributes['lpeTideElv']['_FillValue'] = 32767 L1b_corr_attributes['lpeTideElv']['hertz'] = 1 #-- Ocean loading tide Correction packed units (mm, 1e-3 m) L1b_corr_attributes['olTideElv'] = {} L1b_corr_attributes['olTideElv']['long_name'] = 'Ocean Loading Tide' L1b_corr_attributes['olTideElv']['description'] = ('Removes the effect of ' 'local tidal distortion of the Earth crust') L1b_corr_attributes['olTideElv']['units'] = 'millimeters' L1b_corr_attributes['olTideElv']['hertz'] = 1 #-- Solid Earth tide Correction packed units (mm, 1e-3 m) L1b_corr_attributes['seTideElv'] = {} L1b_corr_attributes['seTideElv']['long_name'] = 'Solid Earth Tide' L1b_corr_attributes['seTideElv']['description'] = ('Removes the effect of ' 'local tidal distortion in the Earth crust') L1b_corr_attributes['seTideElv']['units'] = 'millimeters' L1b_corr_attributes['seTideElv']['hertz'] = 1 #-- Geocentric Polar tide Correction packed units (mm, 1e-3 m) L1b_corr_attributes['gpTideElv'] = {} L1b_corr_attributes['gpTideElv']['long_name'] = 'Geocentric Polar Tide' L1b_corr_attributes['gpTideElv']['description'] = ('Removes a long-period ' 'distortion of the Earth crust caused by variations in the centrifugal ' 'force as the Earth rotational axis moves its geographic location') L1b_corr_attributes['gpTideElv']['units'] = 'millimeters' L1b_corr_attributes['gpTideElv']['hertz'] = 1 #-- Surface Type: enumerated key to classify surface at nadir #-- 0 = Open Ocean #-- 1 = Closed Sea #-- 2 = Continental Ice #-- 3 = Land L1b_corr_attributes['Surf_type'] = {} L1b_corr_attributes['Surf_type']['long_name'] = 'Surface Type Flag' L1b_corr_attributes['Surf_type']['description'] = ('Enumerated key to ' 'classify surface at nadir provided by a model: (0=Open Ocean, ' '1=Closed Sea, 2=Continental Ice, 3=Land, 4-7=currently unused)') L1b_corr_attributes['Surf_type']['hertz'] = 1 #-- Corrections Status Flag L1b_corr_attributes['Corr_status'] = {} L1b_corr_attributes['Corr_status']['long_name'] = 'Corrections Status Flag' L1b_corr_attributes['Corr_status']['description'] = ('Shows correction ' 'algorithms called in processing. See table 2.3.3-5 of the "L1b ' 'Products Format Specification" document') L1b_corr_attributes['Corr_status']['hertz'] = 1 #-- Correction Error Flag L1b_corr_attributes['Corr_error'] = {} L1b_corr_attributes['Corr_error']['long_name'] = 'Correction Error Flag' L1b_corr_attributes['Corr_error']['description'] = ('Shows if a correction ' 'algorithm returned an error when called. See table 2.3.3-6 of the ' '"L1b Products Format Specification" document') L1b_corr_attributes['Corr_error']['hertz'] = 1 #-- CryoSat-2 Average Waveforms Groups #-- Low-Resolution Mode (LRM) L1b_1Hz_LRM_wfm_attributes = {} #-- Data Record Time (MDSR Time Stamp) L1b_1Hz_LRM_wfm_attributes['Day'] = {} L1b_1Hz_LRM_wfm_attributes['Day']['long_name'] = 'MDSR time stamp days' L1b_1Hz_LRM_wfm_attributes['Day']['units'] = 'days since 2000-01-01 00:00:00 TAI' L1b_1Hz_LRM_wfm_attributes['Day']['description'] = ('Corresponding to ' 'the middle of group of pulses') L1b_1Hz_LRM_wfm_attributes['Day']['hertz'] = 1 #-- Time: second part L1b_1Hz_LRM_wfm_attributes['Second'] = {} L1b_1Hz_LRM_wfm_attributes['Second']['long_name'] = 'MDSR time stamp seconds' L1b_1Hz_LRM_wfm_attributes['Second']['units'] = 'seconds' L1b_1Hz_LRM_wfm_attributes['Second']['description'] = ('Corresponding to ' 'the middle of group of pulses') L1b_1Hz_LRM_wfm_attributes['Second']['hertz'] = 1 #-- Time: microsecond part L1b_1Hz_LRM_wfm_attributes['Micsec'] = {} L1b_1Hz_LRM_wfm_attributes['Micsec']['long_name'] = 'MDSR time stamp microseconds' L1b_1Hz_LRM_wfm_attributes['Micsec']['units'] = 'microseconds' L1b_1Hz_LRM_wfm_attributes['Micsec']['description'] = ('Corresponding ' 'to the middle of group of pulses') L1b_1Hz_LRM_wfm_attributes['Micsec']['hertz'] = 1 #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_LRM_wfm_attributes['Lat'] = {} L1b_1Hz_LRM_wfm_attributes['Lat']['long_name'] = 'Latitude of measurement' L1b_1Hz_LRM_wfm_attributes['Lat']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_LRM_wfm_attributes['Lat']['units'] = '0.1 micro-degree' L1b_1Hz_LRM_wfm_attributes['Lat']['valid_min'] = -9e8 L1b_1Hz_LRM_wfm_attributes['Lat']['valid_max'] = 9e8 L1b_1Hz_LRM_wfm_attributes['Lat']['hertz'] = 1 #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_LRM_wfm_attributes['Lon'] = {} L1b_1Hz_LRM_wfm_attributes['Lon']['long_name'] = 'Longitude of measurement' L1b_1Hz_LRM_wfm_attributes['Lon']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_LRM_wfm_attributes['Lon']['units'] = '0.1 micro-degree' L1b_1Hz_LRM_wfm_attributes['Lon']['valid_min'] = -18e8 L1b_1Hz_LRM_wfm_attributes['Lon']['valid_max'] = 18e8 L1b_1Hz_LRM_wfm_attributes['Lon']['hertz'] = 1 #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid L1b_1Hz_LRM_wfm_attributes['Alt'] = {} L1b_1Hz_LRM_wfm_attributes['Alt']['long_name'] = 'Altitude' L1b_1Hz_LRM_wfm_attributes['Alt']['description'] = ('Altitude of Satellite ' 'COG above reference ellipsoid corresponding to the MDSR Time Stamp') L1b_1Hz_LRM_wfm_attributes['Alt']['units'] = 'millimeters' L1b_1Hz_LRM_wfm_attributes['Alt']['hertz'] = 1 #-- Window Delay (two-way) corrected for instrument delays L1b_1Hz_LRM_wfm_attributes['TD'] = {} L1b_1Hz_LRM_wfm_attributes['TD']['long_name'] = 'Altitude' L1b_1Hz_LRM_wfm_attributes['TD']['description'] = ('Window Delay ' '(two-way) from the telemetry corrected for instrument delays') L1b_1Hz_LRM_wfm_attributes['TD']['units'] = 'picoseconds' L1b_1Hz_LRM_wfm_attributes['TD']['hertz'] = 1 #-- 1 Hz Averaged Power Echo Waveform L1b_1Hz_LRM_wfm_attributes['Waveform'] = {} L1b_1Hz_LRM_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_1Hz_LRM_wfm_attributes['Waveform']['description'] = ('Array of 128 bins. ' 'Averaged from all individual L0 echoes in approx 1 second (20 for LRM). ' 'Converted to Watts by using the scaling parameters. Power in Watts = ' 'counts*(A*1e-9)*2^B') L1b_1Hz_LRM_wfm_attributes['Waveform']['valid_min'] = 0 L1b_1Hz_LRM_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_1Hz_LRM_wfm_attributes['Waveform']['hertz'] = 1 #-- Echo Scale Factor (to scale echo to watts) L1b_1Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_1Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_1Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 1 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_1Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_1Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_1Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 1 #-- Number of echoes averaged L1b_1Hz_LRM_wfm_attributes['N_avg_echoes'] = {} L1b_1Hz_LRM_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_1Hz_LRM_wfm_attributes['N_avg_echoes']['description'] = ('Normally ' '1820 for LRM (= 91 averaged on-board *20))') L1b_1Hz_LRM_wfm_attributes['N_avg_echoes']['hertz'] = 1 #-- Flags L1b_1Hz_LRM_wfm_attributes['Flags'] = {} L1b_1Hz_LRM_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_1Hz_LRM_wfm_attributes['Flags']['description'] = ('For errors or ' 'information about echoes. See table 2.3.4-3a of the "L1b Products ' 'Format Specification" document') L1b_1Hz_LRM_wfm_attributes['Flags']['flag_meanings'] = \ '1_hz_echo_error_not_computed mispointing_bad_angles' L1b_1Hz_LRM_wfm_attributes['Flags']['hertz'] = 1 #-- SAR Mode L1b_1Hz_SAR_wfm_attributes = {} #-- Data Record Time (MDSR Time Stamp) L1b_1Hz_SAR_wfm_attributes['Day'] = {} L1b_1Hz_SAR_wfm_attributes['Day']['long_name'] = 'MDSR time stamp days' L1b_1Hz_SAR_wfm_attributes['Day']['units'] = 'days since 2000-01-01 00:00:00 TAI' L1b_1Hz_SAR_wfm_attributes['Day']['description'] = ('Corresponding to ' 'ground bounce time of the individual pulse') L1b_1Hz_SAR_wfm_attributes['Day']['hertz'] = 1 #-- Time: second part L1b_1Hz_SAR_wfm_attributes['Second'] = {} L1b_1Hz_SAR_wfm_attributes['Second']['long_name'] = 'MDSR time stamp seconds' L1b_1Hz_SAR_wfm_attributes['Second']['units'] = 'seconds' L1b_1Hz_SAR_wfm_attributes['Second']['description'] = ('Corresponding to ' 'ground bounce time of the individual pulse') L1b_1Hz_SAR_wfm_attributes['Second']['hertz'] = 1 #-- Time: microsecond part L1b_1Hz_SAR_wfm_attributes['Micsec'] = {} L1b_1Hz_SAR_wfm_attributes['Micsec']['long_name'] = 'MDSR time stamp microseconds' L1b_1Hz_SAR_wfm_attributes['Micsec']['units'] = 'microseconds' L1b_1Hz_SAR_wfm_attributes['Micsec']['description'] = ('Corresponding ' 'ground bounce time of the individual pulse') L1b_1Hz_SAR_wfm_attributes['Micsec']['hertz'] = 1 #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_SAR_wfm_attributes['Lat'] = {} L1b_1Hz_SAR_wfm_attributes['Lat']['long_name'] = 'Latitude of measurement' L1b_1Hz_SAR_wfm_attributes['Lat']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_SAR_wfm_attributes['Lat']['units'] = '0.1 micro-degree' L1b_1Hz_SAR_wfm_attributes['Lat']['valid_min'] = -9e8 L1b_1Hz_SAR_wfm_attributes['Lat']['valid_max'] = 9e8 L1b_1Hz_SAR_wfm_attributes['Lat']['hertz'] = 1 #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_SAR_wfm_attributes['Lon'] = {} L1b_1Hz_SAR_wfm_attributes['Lon']['long_name'] = 'Longitude of measurement' L1b_1Hz_SAR_wfm_attributes['Lon']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_SAR_wfm_attributes['Lon']['units'] = '0.1 micro-degree' L1b_1Hz_SAR_wfm_attributes['Lon']['valid_min'] = -18e8 L1b_1Hz_SAR_wfm_attributes['Lon']['valid_max'] = 18e8 L1b_1Hz_SAR_wfm_attributes['Lon']['hertz'] = 1 #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid L1b_1Hz_SAR_wfm_attributes['Alt'] = {} L1b_1Hz_SAR_wfm_attributes['Alt']['long_name'] = 'Altitude' L1b_1Hz_SAR_wfm_attributes['Alt']['description'] = ('Altitude of Satellite ' 'COG above reference ellipsoid corresponding to the MDSR Time Stamp') L1b_1Hz_SAR_wfm_attributes['Alt']['units'] = 'millimeters' L1b_1Hz_SAR_wfm_attributes['Alt']['hertz'] = 1 #-- Window Delay (two-way) corrected for instrument delays L1b_1Hz_SAR_wfm_attributes['TD'] = {} L1b_1Hz_SAR_wfm_attributes['TD']['long_name'] = 'Altitude' L1b_1Hz_SAR_wfm_attributes['TD']['description'] = ('Window Delay ' '(two-way) from the telemetry corrected for instrument delays') L1b_1Hz_SAR_wfm_attributes['TD']['units'] = 'picoseconds' L1b_1Hz_SAR_wfm_attributes['TD']['hertz'] = 1 #-- 1 Hz Averaged Power Echo Waveform L1b_1Hz_SAR_wfm_attributes['Waveform'] = {} L1b_1Hz_SAR_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_1Hz_SAR_wfm_attributes['Waveform']['description'] = ('Array of 128 bins. ' 'Averaged from all individual L0 echoes in approx 1 second (5120 for SAR). ' 'Converted to Watts by using the scaling parameters. Power in Watts = ' 'counts*(A*1e-9)*2^B. The last 1Hz average waveform of the product ' 'is meaningless in most of the cases because there are not enough FBR ' 'samples to be used in the averaging operation. When this happens the ' 'waveform is flagged as invalid') L1b_1Hz_SAR_wfm_attributes['Waveform']['valid_min'] = 0 L1b_1Hz_SAR_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_1Hz_SAR_wfm_attributes['Waveform']['hertz'] = 1 #-- Echo Scale Factor (to scale echo to watts) L1b_1Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_1Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_1Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 1 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_1Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_1Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_1Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 1 #-- Number of echoes averaged L1b_1Hz_SAR_wfm_attributes['N_avg_echoes'] = {} L1b_1Hz_SAR_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_1Hz_SAR_wfm_attributes['N_avg_echoes']['description'] = ('Normally 5120' ' for SAR. May be lower if individual echoes are missing or rejected') L1b_1Hz_SAR_wfm_attributes['N_avg_echoes']['hertz'] = 1 #-- Flags L1b_1Hz_SAR_wfm_attributes['Flags'] = {} L1b_1Hz_SAR_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_1Hz_SAR_wfm_attributes['Flags']['description'] = ('For errors or ' 'information about echoes. See table 2.3.4-3b of the "L1b Products ' 'Format Specification" document') L1b_1Hz_SAR_wfm_attributes['Flags']['flag_meanings'] = \ '1_hz_echo_error_not_computed mispointing_bad_angles' L1b_1Hz_SAR_wfm_attributes['Flags']['hertz'] = 1 #-- SARIN Mode #-- Same as the LRM/SAR groups but the waveform array is 512 bins instead of #-- 128 and the number of echoes averaged is different. L1b_1Hz_SARIN_wfm_attributes = {} #-- Data Record Time (MDSR Time Stamp) L1b_1Hz_SARIN_wfm_attributes['Day'] = {} L1b_1Hz_SARIN_wfm_attributes['Day']['long_name'] = 'MDSR time stamp days' L1b_1Hz_SARIN_wfm_attributes['Day']['units'] = 'days since 2000-01-01 00:00:00 TAI' L1b_1Hz_SARIN_wfm_attributes['Day']['description'] = ('Corresponding to ' 'ground bounce time of the individual pulse') L1b_1Hz_SARIN_wfm_attributes['Day']['hertz'] = 1 #-- Time: second part L1b_1Hz_SARIN_wfm_attributes['Second'] = {} L1b_1Hz_SARIN_wfm_attributes['Second']['long_name'] = 'MDSR time stamp seconds' L1b_1Hz_SARIN_wfm_attributes['Second']['units'] = 'seconds' L1b_1Hz_SARIN_wfm_attributes['Second']['description'] = ('Corresponding to ' 'ground bounce time of the individual pulse') L1b_1Hz_SARIN_wfm_attributes['Second']['hertz'] = 1 #-- Time: microsecond part L1b_1Hz_SARIN_wfm_attributes['Micsec'] = {} L1b_1Hz_SARIN_wfm_attributes['Micsec']['long_name'] = 'MDSR time stamp microseconds' L1b_1Hz_SARIN_wfm_attributes['Micsec']['units'] = 'microseconds' L1b_1Hz_SARIN_wfm_attributes['Micsec']['description'] = ('Corresponding ' 'ground bounce time of the individual pulse') L1b_1Hz_SARIN_wfm_attributes['Micsec']['hertz'] = 1 #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_SARIN_wfm_attributes['Lat'] = {} L1b_1Hz_SARIN_wfm_attributes['Lat']['long_name'] = 'Latitude of measurement' L1b_1Hz_SARIN_wfm_attributes['Lat']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_SARIN_wfm_attributes['Lat']['units'] = '0.1 micro-degree' L1b_1Hz_SARIN_wfm_attributes['Lat']['valid_min'] = -9e8 L1b_1Hz_SARIN_wfm_attributes['Lat']['valid_max'] = 9e8 L1b_1Hz_SARIN_wfm_attributes['Lat']['hertz'] = 1 #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) L1b_1Hz_SARIN_wfm_attributes['Lon'] = {} L1b_1Hz_SARIN_wfm_attributes['Lon']['long_name'] = 'Longitude of measurement' L1b_1Hz_SARIN_wfm_attributes['Lon']['description'] = ('Corresponding to the ' 'position at the MDSR Time Stamp') L1b_1Hz_SARIN_wfm_attributes['Lon']['units'] = '0.1 micro-degree' L1b_1Hz_SARIN_wfm_attributes['Lon']['valid_min'] = -18e8 L1b_1Hz_SARIN_wfm_attributes['Lon']['valid_max'] = 18e8 L1b_1Hz_SARIN_wfm_attributes['Lon']['hertz'] = 1 #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid L1b_1Hz_SARIN_wfm_attributes['Alt'] = {} L1b_1Hz_SARIN_wfm_attributes['Alt']['long_name'] = 'Altitude' L1b_1Hz_SARIN_wfm_attributes['Alt']['description'] = ('Altitude of Satellite ' 'COG above reference ellipsoid corresponding to the MDSR Time Stamp') L1b_1Hz_SARIN_wfm_attributes['Alt']['units'] = 'millimeters' L1b_1Hz_SARIN_wfm_attributes['Alt']['hertz'] = 1 #-- Window Delay (two-way) corrected for instrument delays L1b_1Hz_SARIN_wfm_attributes['TD'] = {} L1b_1Hz_SARIN_wfm_attributes['TD']['long_name'] = 'Altitude' L1b_1Hz_SARIN_wfm_attributes['TD']['description'] = ('Window Delay ' '(two-way) from the telemetry corrected for instrument delays') L1b_1Hz_SARIN_wfm_attributes['TD']['units'] = 'picoseconds' L1b_1Hz_SARIN_wfm_attributes['TD']['hertz'] = 1 #-- 1 Hz Averaged Power Echo Waveform L1b_1Hz_SARIN_wfm_attributes['Waveform'] = {} L1b_1Hz_SARIN_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_1Hz_SARIN_wfm_attributes['Waveform']['description'] = ('Array of 512 bins. ' 'Averaged from all individual 1280 L0 echoes in SARin mode. ' 'Converted to Watts by using the scaling parameters. Power in Watts = ' 'counts*(A*1e-9)*2^B. The last 1Hz average waveform of the product ' 'is meaningless in most of the cases because there are not enough FBR ' 'samples to be used in the averaging operation. When this happens the ' 'waveform is flagged as invalid') L1b_1Hz_SARIN_wfm_attributes['Waveform']['valid_min'] = 0 L1b_1Hz_SARIN_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_1Hz_SARIN_wfm_attributes['Waveform']['hertz'] = 1 #-- Echo Scale Factor (to scale echo to watts) L1b_1Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_1Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_1Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 1 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_1Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_1Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_1Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_1Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 1 #-- Number of echoes averaged L1b_1Hz_SARIN_wfm_attributes['N_avg_echoes'] = {} L1b_1Hz_SARIN_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_1Hz_SARIN_wfm_attributes['N_avg_echoes']['description'] = ('Normally 1280' ' for SARIN. May be lower if individual echoes are missing or rejected') L1b_1Hz_SARIN_wfm_attributes['N_avg_echoes']['hertz'] = 1 #-- Flags L1b_1Hz_SARIN_wfm_attributes['Flags'] = {} L1b_1Hz_SARIN_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_1Hz_SARIN_wfm_attributes['Flags']['description'] = ('For errors or ' 'information about echoes. See table 2.3.4-3b of the "L1b Products ' 'Format Specification" document') L1b_1Hz_SARIN_wfm_attributes['Flags']['flag_meanings'] = \ '1_hz_echo_error_not_computed mispointing_bad_angles' L1b_1Hz_SARIN_wfm_attributes['Flags']['hertz'] = 1 #-- CryoSat-2 Waveforms Groups #-- Beam Behavior Parameters L1b_BB_attributes = {} #-- Standard Deviation of Gaussian fit to range integrated stack power. L1b_BB_attributes['SD'] = {} L1b_BB_attributes['SD']['long_name'] = 'Standard Deviation' L1b_BB_attributes['SD']['description'] = ('Standard Deviation of Gaussian ' 'fit to range integrated stack power') L1b_BB_attributes['SD']['units'] = '1/100' L1b_BB_attributes['SD']['hertz'] = 20 #-- Stack Center: Mean of Gaussian fit to range integrated stack power. L1b_BB_attributes['Center'] = {} L1b_BB_attributes['Center']['long_name'] = 'Stack Center' L1b_BB_attributes['Center']['description'] = ('Mean of Gaussian fit to ' 'range integrated stack power') L1b_BB_attributes['Center']['units'] = '1/100' L1b_BB_attributes['Center']['hertz'] = 20 #-- Stack amplitude parameter scaled in dB/100. L1b_BB_attributes['Amplitude'] = {} L1b_BB_attributes['Amplitude']['long_name'] = 'Stack amplitude' L1b_BB_attributes['Amplitude']['description'] = 'Amplitude Parameter' L1b_BB_attributes['Amplitude']['units'] = 'dB/100' L1b_BB_attributes['Amplitude']['hertz'] = 20 #-- 3rd moment: providing the degree of asymmetry of the range integrated #-- stack power distribution. L1b_BB_attributes['Skewness'] = {} L1b_BB_attributes['Skewness']['long_name'] = 'Stack Skewness' L1b_BB_attributes['Skewness']['description'] = ('3rd moment: providing the ' 'degree of asymmetry of the range integrated stack power distribution') L1b_BB_attributes['Skewness']['units'] = '1/100' L1b_BB_attributes['Skewness']['_FillValue'] = -99900 L1b_BB_attributes['Skewness']['hertz'] = 20 #-- 4th moment: Measure of peakiness of range integrated stack power distribution. L1b_BB_attributes['Kurtosis'] = {} L1b_BB_attributes['Kurtosis']['long_name'] = 'Stack Kurtosis' L1b_BB_attributes['Kurtosis']['description'] = ('4th moment: measure of ' 'peakiness of range integrated stack power distribution') L1b_BB_attributes['Kurtosis']['units'] = '1/100' L1b_BB_attributes['Kurtosis']['_FillValue'] = -99900 L1b_BB_attributes['Kurtosis']['hertz'] = 20 #-- Stack peakiness computed from the range integrated power of the single look echoes L1b_BB_attributes['Peakiness'] = {} L1b_BB_attributes['Peakiness']['long_name'] = 'Stack Peakiness' L1b_BB_attributes['Peakiness']['description'] = ('Stack peakiness computed ' 'from the range integrated power of the single look echoes within a ' 'stack. Stack peakiness is defined as the inverse of the average of ' 'the range integrated power normalized for the power at zero look angle') L1b_BB_attributes['Peakiness']['units'] = '1/100' L1b_BB_attributes['Peakiness']['_FillValue'] = -99900 L1b_BB_attributes['Peakiness']['hertz'] = 20 #-- Stack residuals of Gaussian that fits the range integrated power of the single look echoes L1b_BB_attributes['RMS'] = {} L1b_BB_attributes['RMS']['long_name'] = 'Gaussian Power Fit Residuals' L1b_BB_attributes['RMS']['description'] = ('Residuals of Gaussian that ' 'fits the range integrated power of the single look echoes within a ' 'stack. It is the root mean squared error between the Gaussian fitting ' 'and the range integrated power of the single look echoes within a stack') L1b_BB_attributes['RMS']['units'] = 'dbW' L1b_BB_attributes['RMS']['_FillValue'] = -99900 L1b_BB_attributes['RMS']['hertz'] = 20 #-- Standard deviation as a function of boresight angle (microradians) L1b_BB_attributes['SD_boresight_angle'] = {} L1b_BB_attributes['SD_boresight_angle']['long_name'] = 'Standard Deviation' L1b_BB_attributes['SD_boresight_angle']['description'] = ('Standard ' 'deviation as a function of boresight angle') L1b_BB_attributes['SD_boresight_angle']['units'] = 'microradians' L1b_BB_attributes['SD_boresight_angle']['valid_min'] = 0 L1b_BB_attributes['SD_boresight_angle']['valid_max'] = 65525 L1b_BB_attributes['SD_boresight_angle']['hertz'] = 20 #-- Stack Center angle as a function of boresight angle (microradians) L1b_BB_attributes['Center_boresight_angle'] = {} L1b_BB_attributes['Center_boresight_angle']['long_name'] = 'Stack Centre Angle' L1b_BB_attributes['Center_boresight_angle']['description'] = ('Stack Centre ' 'angle as a function of boresight angle') L1b_BB_attributes['Center_boresight_angle']['units'] = 'microradians' L1b_BB_attributes['Center_boresight_angle']['valid_min'] = -32768 L1b_BB_attributes['Center_boresight_angle']['valid_max'] = 32768 L1b_BB_attributes['Center_boresight_angle']['hertz'] = 20 #-- Stack Center angle as a function of look angle (microradians) L1b_BB_attributes['Center_look_angle'] = {} L1b_BB_attributes['Center_look_angle']['long_name'] = 'Stack Centre Angle' L1b_BB_attributes['Center_look_angle']['description'] = ('Stack Centre ' 'angle as a function of look angle') L1b_BB_attributes['Center_look_angle']['units'] = 'microradians' L1b_BB_attributes['Center_look_angle']['valid_min'] = -32768 L1b_BB_attributes['Center_look_angle']['valid_max'] = 32768 L1b_BB_attributes['Center_look_angle']['hertz'] = 20 #-- Number of contributing beams in the stack before weighting L1b_BB_attributes['Number'] = {} L1b_BB_attributes['Number']['long_name'] = ('Number of contributing ' 'beams before weighting') L1b_BB_attributes['Number']['description'] = ('Number of contributing ' 'beams in the stack before weighting: number of single look echoes ' 'in the stack before the Surface Sample Stack weighting is applied') L1b_BB_attributes['Number']['units'] = 'count' L1b_BB_attributes['Number']['hertz'] = 20 #-- Number of contributing beams in the stack after weighting L1b_BB_attributes['Weighted_Number'] = {} L1b_BB_attributes['Weighted_Number']['long_name'] = ('Number of contributing ' 'beams after weighting') L1b_BB_attributes['Weighted_Number']['description'] = ('Number of contributing ' 'beams in the stack after weighting: number of single look echoes ' 'in the stack after the Surface Sample Stack weighting is applied') L1b_BB_attributes['Weighted_Number']['units'] = 'count' L1b_BB_attributes['Weighted_Number']['hertz'] = 20 #-- Low-Resolution Mode L1b_20Hz_LRM_wfm_attributes = {} #-- Averaged Power Echo Waveform L1b_20Hz_LRM_wfm_attributes['Waveform'] = {} L1b_20Hz_LRM_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_20Hz_LRM_wfm_attributes['Waveform']['description'] = ('Array of 128 bins. ' 'Averaged (on-board) from 91 individual in pulse limited mode (LRM). ' 'Converted to Watts by using the scaling parameters. Power in Watts = ' 'counts*(A*1e-9)*2^B') L1b_20Hz_LRM_wfm_attributes['Waveform']['valid_min'] = 0 L1b_20Hz_LRM_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_20Hz_LRM_wfm_attributes['Waveform']['hertz'] = 20 #-- Echo Scale Factor (to scale echo to watts) L1b_20Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_20Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_20Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_LRM_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 20 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_20Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_20Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_20Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_LRM_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 20 #-- Number of echoes averaged L1b_20Hz_LRM_wfm_attributes['N_avg_echoes'] = {} L1b_20Hz_LRM_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_20Hz_LRM_wfm_attributes['N_avg_echoes']['description'] = ('Normally ' '91 for LRM') L1b_20Hz_LRM_wfm_attributes['N_avg_echoes']['hertz'] = 20 #-- Flags L1b_20Hz_LRM_wfm_attributes['Flags'] = {} L1b_20Hz_LRM_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_20Hz_LRM_wfm_attributes['Flags']['description'] = ('TRK cycle report ' '(as extracted from the L0). See table 2.3.4-4a of the "L1b Products ' 'Format Specification" document') L1b_20Hz_LRM_wfm_attributes['Flags']['hertz'] = 20 #-- SAR Mode L1b_20Hz_SAR_wfm_attributes = {} #-- Averaged Power Echo Waveform L1b_20Hz_SAR_wfm_attributes['Waveform'] = {} L1b_20Hz_SAR_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_20Hz_SAR_wfm_attributes['Waveform']['description'] = ('Array of 256 bins. ' 'Averaged from a set of Doppler beam echoes formed at a common surface ' 'location. Converted to Watts by using the scaling parameters. ' 'Power in Watts = counts*(A*1e-9)*2^B.') L1b_20Hz_SAR_wfm_attributes['Waveform']['valid_min'] = 0 L1b_20Hz_SAR_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_20Hz_SAR_wfm_attributes['Waveform']['hertz'] = 20 #-- Echo Scale Factor (to scale echo to watts) L1b_20Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_20Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_20Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_SAR_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 20 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_20Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_20Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_20Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_SAR_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 20 #-- Number of echoes averaged L1b_20Hz_SAR_wfm_attributes['N_avg_echoes'] = {} L1b_20Hz_SAR_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_20Hz_SAR_wfm_attributes['N_avg_echoes']['description'] = ('Normally 280' ' for SAR') L1b_20Hz_SAR_wfm_attributes['N_avg_echoes']['hertz'] = 20 #-- Flags L1b_20Hz_SAR_wfm_attributes['Flags'] = {} L1b_20Hz_SAR_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_20Hz_SAR_wfm_attributes['Flags']['description'] = ('For errors or ' 'information about echoes. See table 2.3.4-4b of the "L1b Products ' 'Format Specification" document') L1b_20Hz_SAR_wfm_attributes['Flags']['hertz'] = 20 #-- Beam Behavior Parameters L1b_20Hz_SAR_wfm_attributes['Beam'] = L1b_BB_attributes #-- SARIN Mode L1b_20Hz_SARIN_wfm_attributes = {} #-- Averaged Power Echo Waveform L1b_20Hz_SARIN_wfm_attributes['Waveform'] = {} L1b_20Hz_SARIN_wfm_attributes['Waveform']['long_name'] = 'Averaged Power Echo' L1b_20Hz_SARIN_wfm_attributes['Waveform']['description'] = ('Array of 1024 bins. ' 'Averaged from 2 sets of Doppler beam echoes formed (on 2 receive ' 'channels) at a common surface location. Converted to Watts by using ' 'the scaling parameters. Power in Watts = counts*(A*1e-9)*2^B.') L1b_20Hz_SARIN_wfm_attributes['Waveform']['valid_min'] = 0 L1b_20Hz_SARIN_wfm_attributes['Waveform']['valid_max'] = 65535 L1b_20Hz_SARIN_wfm_attributes['Waveform']['hertz'] = 20 #-- Echo Scale Factor (to scale echo to watts) L1b_20Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier'] = {} L1b_20Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale factor "A"') L1b_20Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['description'] = ('"A" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_SARIN_wfm_attributes['Linear_Wfm_Multiplier']['hertz'] = 20 #-- Echo Scale Power (a power of 2 to scale echo to Watts) L1b_20Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier'] = {} L1b_20Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['long_name'] = ('Echo ' 'Scale power "B"') L1b_20Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['description'] = ('"B" ' 'Parameter to scale echo to Watts. Power in Watts = counts*(A*1e-9)*2^B') L1b_20Hz_SARIN_wfm_attributes['Power2_Wfm_Multiplier']['hertz'] = 20 #-- Number of echoes averaged L1b_20Hz_SARIN_wfm_attributes['N_avg_echoes'] = {} L1b_20Hz_SARIN_wfm_attributes['N_avg_echoes']['long_name'] = ('Number of' 'echoes averaged') L1b_20Hz_SARIN_wfm_attributes['N_avg_echoes']['description'] = ('Normally 70' ' for SARIN') L1b_20Hz_SARIN_wfm_attributes['N_avg_echoes']['hertz'] = 20 #-- Flags L1b_20Hz_SARIN_wfm_attributes['Flags'] = {} L1b_20Hz_SARIN_wfm_attributes['Flags']['long_name'] = 'Flags' L1b_20Hz_SARIN_wfm_attributes['Flags']['description'] = ('For errors or ' 'information about echoes. See table 2.3.4-4b of the "L1b Products ' 'Format Specification" document') L1b_20Hz_SARIN_wfm_attributes['Flags']['hertz'] = 20 #-- Coherence [1024]: packed units (1/1000) L1b_20Hz_SARIN_wfm_attributes['Coherence'] = {} L1b_20Hz_SARIN_wfm_attributes['Coherence']['long_name'] = 'Coherence' L1b_20Hz_SARIN_wfm_attributes['Coherence']['description'] = ('Array of ' '1024 bins. Computed from the complex echoes on the 2 Rx channels') L1b_20Hz_SARIN_wfm_attributes['Coherence']['units'] = '1/1000' L1b_20Hz_SARIN_wfm_attributes['Coherence']['hertz'] = 20 #-- Phase Difference [1024]: packed units (microradians) L1b_20Hz_SARIN_wfm_attributes['Phase_diff'] = {} L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['long_name'] = 'Phase Difference' L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['description'] = ('Array of ' '1024 bins. Computed from the complex echoes on the 2 Rx channels') L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['units'] = 'microradians' L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['valid_min'] = -3141593 L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['valid_max'] = 3141593 L1b_20Hz_SARIN_wfm_attributes['Phase_diff']['hertz'] = 20 #-- Beam Behavior Parameters L1b_20Hz_SARIN_wfm_attributes['Beam'] = L1b_BB_attributes #-- Bind all the l1b attributes together into single dictionary CS_l1b_attrib = {} CS_l1b_attrib['Location'] = L1b_location_attributes CS_l1b_attrib['Data'] = L1b_measurement_attributes CS_l1b_attrib['Geometry'] = L1b_corr_attributes if (MODE == 'LRM'): CS_l1b_attrib['Waveform_1Hz'] = L1b_1Hz_LRM_wfm_attributes CS_l1b_attrib['Waveform_20Hz'] = L1b_20Hz_LRM_wfm_attributes elif (MODE == 'SAR'): CS_l1b_attrib['Waveform_1Hz'] = L1b_1Hz_SAR_wfm_attributes CS_l1b_attrib['Waveform_20Hz'] = L1b_20Hz_SAR_wfm_attributes elif (MODE == 'SIN'): CS_l1b_attrib['Waveform_1Hz'] = L1b_1Hz_SARIN_wfm_attributes CS_l1b_attrib['Waveform_20Hz'] = L1b_20Hz_SARIN_wfm_attributes #-- return the output dictionary return CS_l1b_attrib
the-stack_106_23871
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RFlexclust(RPackage): """Flexible Cluster Algorithms. The main function kcca implements a general framework for k-centroids cluster analysis supporting arbitrary distance measures and centroid computation. Further cluster methods include hard competitive learning, neural gas, and QT clustering. There are numerous visualization methods for cluster results (neighborhood graphs, convex cluster hulls, barcharts of centroids, ...), and bootstrap methods for the analysis of cluster stability.""" cran = "flexclust" version('1.4-0', sha256='82fe445075a795c724644864c7ee803c5dd332a89ea9e6ccf7cd1ae2d1ecfc74') version('1.3-5', sha256='dbf49969c93a7b314d9dc3299a0764ed9a804ba7dcbdc08a1235f244f4b85059') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-lattice', type=('build', 'run')) depends_on('r-modeltools', type=('build', 'run')) depends_on('r-class', type=('build', 'run'))
the-stack_106_23872
#!/usr/bin/env python3 import unittest from collections import namedtuple from bunkai.algorithm.bunkai_sbd.annotator.emoji_annotator import EmojiAnnotator from bunkai.base.annotation import Annotations from .annotation_test_base import TestAnnotatorBase, TestInstance MorphResult = namedtuple("MorphResult", ("input_text", "seq_newline_position")) class TestMorphAnnotator(TestAnnotatorBase): def setUp(self) -> None: self.test_input = [ MorphResult("うーん🤔🤔🤔どうしよう", [6]), MorphResult("ビール🍺のみたい。️Frankfurtの🍺はKrombacher", []), MorphResult("これが文⬆️", [5]), MorphResult("1文目😄2文目😚3文目😙4文目😄😙おわり。", [4, 8, 12, 17]), ] def test_emoji_detector(self): emoji_annotator = EmojiAnnotator() for test_tuple in self.test_input: ann = Annotations() result = emoji_annotator.annotate(test_tuple.input_text, spans=ann) self.assertEqual(set([s.end_index for s in result.get_final_layer()]), set(test_tuple.seq_newline_position)) def test_annotate(self): test_input = [ TestInstance("うーん🤔🤔🤔どうしよう", n_sentence=2, expected_rules=[EmojiAnnotator.__name__]), TestInstance("ビール🍺のみたい。️Frankfurtの🍺はKrombacher", n_sentence=2, expected_rules=[]), TestInstance("これが文⬆️", n_sentence=1, expected_rules=[EmojiAnnotator.__name__]), TestInstance("1文目😄2文目😚3文目😙4文目😄😙おわり。", n_sentence=5, expected_rules=[EmojiAnnotator.__name__]), ] annotator = EmojiAnnotator() self.is_check_test_instance(annotator=annotator, test_cases=test_input) if __name__ == "__main__": unittest.main()
the-stack_106_23873
#!/usr/bin/env python import argparse import errno import hashlib import os import shutil import subprocess import sys import tempfile from io import StringIO from lib.config import PLATFORM, get_target_arch, get_env_var, s3_config, \ get_zip_name from lib.util import electron_gyp, execute, get_electron_version, \ parse_version, scoped_cwd, s3put from lib.github import GitHub ELECTRON_REPO = 'electron/electron' ELECTRON_VERSION = get_electron_version() PROJECT_NAME = electron_gyp()['project_name%'] PRODUCT_NAME = electron_gyp()['product_name%'] SOURCE_ROOT = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) OUT_DIR = os.path.join(SOURCE_ROOT, 'out', 'R') DIST_DIR = os.path.join(SOURCE_ROOT, 'dist') DIST_NAME = get_zip_name(PROJECT_NAME, ELECTRON_VERSION) SYMBOLS_NAME = get_zip_name(PROJECT_NAME, ELECTRON_VERSION, 'symbols') DSYM_NAME = get_zip_name(PROJECT_NAME, ELECTRON_VERSION, 'dsym') PDB_NAME = get_zip_name(PROJECT_NAME, ELECTRON_VERSION, 'pdb') def main(): args = parse_args() if not args.publish_release: if not dist_newer_than_head(): run_python_script('create-dist.py') build_version = get_electron_build_version() if not ELECTRON_VERSION.startswith(build_version): error = 'Tag name ({0}) should match build version ({1})\n'.format( ELECTRON_VERSION, build_version) sys.stderr.write(error) sys.stderr.flush() return 1 github = GitHub(auth_token()) releases = github.repos(ELECTRON_REPO).releases.get() tag_exists = False for release in releases: if not release['draft'] and release['tag_name'] == args.version: tag_exists = True break release = create_or_get_release_draft(github, releases, args.version, tag_exists) if args.publish_release: # Upload the Node SHASUMS*.txt. run_python_script('upload-node-checksums.py', '-v', ELECTRON_VERSION) # Upload the index.json. run_python_script('upload-index-json.py') # Create and upload the Electron SHASUMS*.txt release_electron_checksums(github, release) # Press the publish button. publish_release(github, release['id']) # TODO: run publish-to-npm script here # Do not upload other files when passed "-p". return # Upload Electron with GitHub Releases API. upload_electron(github, release, os.path.join(DIST_DIR, DIST_NAME)) upload_electron(github, release, os.path.join(DIST_DIR, SYMBOLS_NAME)) if PLATFORM == 'darwin': upload_electron(github, release, os.path.join(DIST_DIR, 'electron-api.json')) upload_electron(github, release, os.path.join(DIST_DIR, 'electron.d.ts')) upload_electron(github, release, os.path.join(DIST_DIR, DSYM_NAME)) elif PLATFORM == 'win32': upload_electron(github, release, os.path.join(DIST_DIR, PDB_NAME)) # Upload free version of ffmpeg. ffmpeg = get_zip_name('ffmpeg', ELECTRON_VERSION) upload_electron(github, release, os.path.join(DIST_DIR, ffmpeg)) # Upload chromedriver and mksnapshot for minor version update. if parse_version(args.version)[2] == '0': chromedriver = get_zip_name('chromedriver', ELECTRON_VERSION) upload_electron(github, release, os.path.join(DIST_DIR, chromedriver)) mksnapshot = get_zip_name('mksnapshot', ELECTRON_VERSION) upload_electron(github, release, os.path.join(DIST_DIR, mksnapshot)) if PLATFORM == 'win32' and not tag_exists: # Upload PDBs to Windows symbol server. run_python_script('upload-windows-pdb.py') # Upload node headers. run_python_script('create-node-headers.py', '-v', args.version) run_python_script('upload-node-headers.py', '-v', args.version) def parse_args(): parser = argparse.ArgumentParser(description='upload distribution file') parser.add_argument('-v', '--version', help='Specify the version', default=ELECTRON_VERSION) parser.add_argument('-p', '--publish-release', help='Publish the release', action='store_true') return parser.parse_args() def run_python_script(script, *args): script_path = os.path.join(SOURCE_ROOT, 'script', script) return execute([sys.executable, script_path] + list(args)) def get_electron_build_version(): if get_target_arch().startswith('arm') or os.environ.has_key('CI'): # In CI we just build as told. return ELECTRON_VERSION if PLATFORM == 'darwin': electron = os.path.join(SOURCE_ROOT, 'out', 'R', '{0}.app'.format(PRODUCT_NAME), 'Contents', 'MacOS', PRODUCT_NAME) elif PLATFORM == 'win32': electron = os.path.join(SOURCE_ROOT, 'out', 'R', '{0}.exe'.format(PROJECT_NAME)) else: electron = os.path.join(SOURCE_ROOT, 'out', 'R', PROJECT_NAME) return subprocess.check_output([electron, '--version']).strip() def dist_newer_than_head(): with scoped_cwd(SOURCE_ROOT): try: head_time = subprocess.check_output(['git', 'log', '--pretty=format:%at', '-n', '1']).strip() dist_time = os.path.getmtime(os.path.join(DIST_DIR, DIST_NAME)) except OSError as e: if e.errno != errno.ENOENT: raise return False return dist_time > int(head_time) def get_text_with_editor(name): editor = os.environ.get('EDITOR', 'nano') initial_message = '\n# Please enter the body of your release note for %s.' \ % name t = tempfile.NamedTemporaryFile(suffix='.tmp', delete=False) t.write(initial_message) t.close() subprocess.call([editor, t.name]) text = '' for line in open(t.name, 'r'): if len(line) == 0 or line[0] != '#': text += line os.unlink(t.name) return text def create_or_get_release_draft(github, releases, tag, tag_exists): # Search for existing draft. for release in releases: if release['draft']: return release if tag_exists: tag = 'do-not-publish-me' return create_release_draft(github, tag) def create_release_draft(github, tag): name = '{0} {1} beta'.format(PROJECT_NAME, tag) if os.environ.has_key('CI'): body = '(placeholder)' else: body = get_text_with_editor(name) if body == '': sys.stderr.write('Quit due to empty release note.\n') sys.exit(0) data = dict(tag_name=tag, name=name, body=body, draft=True, prerelease=True) r = github.repos(ELECTRON_REPO).releases.post(data=data) return r def release_electron_checksums(github, release): checksums = run_python_script('merge-electron-checksums.py', '-v', ELECTRON_VERSION) upload_io_to_github(github, release, 'SHASUMS256.txt', StringIO(checksums.decode('utf-8')), 'text/plain') def upload_electron(github, release, file_path): # Delete the original file before uploading in CI. filename = os.path.basename(file_path) if os.environ.has_key('CI'): try: for asset in release['assets']: if asset['name'] == filename: github.repos(ELECTRON_REPO).releases.assets(asset['id']).delete() except Exception: pass # Upload the file. with open(file_path, 'rb') as f: upload_io_to_github(github, release, filename, f, 'application/zip') # Upload the checksum file. upload_sha256_checksum(release['tag_name'], file_path) # Upload ARM assets without the v7l suffix for backwards compatibility # TODO Remove for 2.0 if 'armv7l' in filename: arm_filename = filename.replace('armv7l', 'arm') arm_file_path = os.path.join(os.path.dirname(file_path), arm_filename) shutil.copy2(file_path, arm_file_path) upload_electron(github, release, arm_file_path) def upload_io_to_github(github, release, name, io, content_type): params = {'name': name} headers = {'Content-Type': content_type} github.repos(ELECTRON_REPO).releases(release['id']).assets.post( params=params, headers=headers, data=io, verify=False) def upload_sha256_checksum(version, file_path): bucket, access_key, secret_key = s3_config() checksum_path = '{}.sha256sum'.format(file_path) sha256 = hashlib.sha256() with open(file_path, 'rb') as f: sha256.update(f.read()) filename = os.path.basename(file_path) with open(checksum_path, 'w') as checksum: checksum.write('{} *{}'.format(sha256.hexdigest(), filename)) s3put(bucket, access_key, secret_key, os.path.dirname(checksum_path), 'atom-shell/tmp/{0}'.format(version), [checksum_path]) def publish_release(github, release_id): data = dict(draft=False) github.repos(ELECTRON_REPO).releases(release_id).patch(data=data) def auth_token(): token = get_env_var('GITHUB_TOKEN') message = ('Error: Please set the $ELECTRON_GITHUB_TOKEN ' 'environment variable, which is your personal token') assert token, message return token if __name__ == '__main__': import sys sys.exit(main())
the-stack_106_23875
"""Support classes for dealing with text.""" from typing import Tuple, Union import gi from gaphas.canvas import instant_cairo_context from gaphas.freehand import FreeHandCairoContext from gaphas.geometry import Rectangle from gaphas.painter import CairoBoundingBoxContext from gaphor.core.styling import FontStyle, FontWeight, Style, TextAlign, TextDecoration # fmt: off gi.require_version('PangoCairo', '1.0') # noqa: isort:skip from gi.repository import GLib, Pango, PangoCairo # noqa: isort:skip # fmt: on class Layout: def __init__( self, text="", font=None, text_align=TextAlign.CENTER, default_size=(0, 0), ): self.layout = PangoCairo.create_layout(instant_cairo_context()) self.underline = False self.font_id = None self.text = "" self.width = -1 self.default_size = default_size if font: self.set_font(font) if text: self.set_text(text) self.set_alignment(text_align) def set(self, text=None, font=None, width=None, text_align=None): # Since text expressions can return False, we should also accomodate for that if text not in (None, False): self.set_text(text) if font: self.set_font(font) if width is not None: self.set_width(width) if text_align: self.set_alignment(text_align) def set_font(self, font: Style): font_family = font.get("font-family") font_size = font.get("font-size") font_weight = font.get("font-weight") font_style = font.get("font-style") assert font_family, "Font family should be set" assert font_size, "Font size should be set" font_id = (font_family, font_size, font_weight, font_style) if font_id == self.font_id: return self.font_id = font_id fd = Pango.FontDescription.new() fd.set_family(font_family) fd.set_absolute_size(font_size * Pango.SCALE) if font_weight: assert isinstance(font_weight, FontWeight) fd.set_weight(getattr(Pango.Weight, font_weight.name)) if font_style: assert isinstance(font_style, FontStyle) fd.set_style(getattr(Pango.Style, font_style.name)) self.layout.set_font_description(fd) underline = ( font.get("text-decoration", TextDecoration.NONE) == TextDecoration.UNDERLINE ) if self.underline != underline: self.underline = underline self.update_text() def set_text(self, text: str): if text != self.text: self.text = text self.update_text() def update_text(self): if self.underline: # TODO: can this be done via Pango attributes instead? self.layout.set_markup( f"<u>{GLib.markup_escape_text(self.text)}</u>", length=-1 ) else: self.layout.set_text(self.text, length=-1) def set_width(self, width: int): self.width = width if width == -1: self.layout.set_width(-1) else: self.layout.set_width(int(width * Pango.SCALE)) def set_alignment(self, text_align: TextAlign): self.layout.set_alignment(getattr(Pango.Alignment, text_align.name)) def size(self): if not self.text: return self.default_size self.set_width(self.width) return self.layout.get_pixel_size() def show_layout(self, cr, width=None, default_size=None): layout = self.layout if not self.text: return default_size or self.default_size if width is not None: layout.set_width(int(width * Pango.SCALE)) if isinstance(cr, FreeHandCairoContext): PangoCairo.show_layout(cr.cr, layout) elif isinstance(cr, CairoBoundingBoxContext): w, h = layout.get_pixel_size() cr.rel_line_to(w, h) cr.stroke() else: PangoCairo.show_layout(cr, layout) def focus_box_pos( bounding_box: Rectangle, text_size: Tuple[Union[float, int], Union[float, int]], text_align: TextAlign, ) -> Tuple[int, int]: """Calculate the focus box position based on alignment style.""" x, y, width, height = bounding_box w, h = text_size if text_align is TextAlign.CENTER: x += (width - w) / 2 elif text_align is TextAlign.RIGHT: x += width - w y += (height - h) / 2 return x, y def text_point_at_line(points, size, text_align): """Provide a position (x, y) to draw a text close to a line. Parameters: - points: the line points, a list of (x, y) points - size: size of the text, a (width, height) tuple - text_align: alignment to the line: left, beginning of the line, center, middle and right: end of the line """ if text_align == TextAlign.LEFT: p0 = points[0] p1 = points[1] x, y = _text_point_at_line_end(size, p0, p1) elif text_align == TextAlign.CENTER: p0, p1 = middle_segment(points) x, y = _text_point_at_line_center(size, p0, p1) elif text_align == TextAlign.RIGHT: p0 = points[-1] p1 = points[-2] x, y = _text_point_at_line_end(size, p0, p1) return x, y def middle_segment(points): """Get middle line segment.""" m = len(points) // 2 assert m >= 1 and m < len(points) return points[m - 1], points[m] def _text_point_at_line_end(size, p1, p2): """Calculate position of the text relative to a line defined by points p1 and p2. Parameters: - size: text size, a (width, height) tuple - p1: beginning of line segment - p2: end of line segment """ name_dx = 0.0 name_dy = 0.0 ofs = 5 dx = float(p2[0]) - float(p1[0]) dy = float(p2[1]) - float(p1[1]) name_w, name_h = size if dy == 0: rc = 1000.0 # quite a lot... else: rc = dx / dy abs_rc = abs(rc) h = dx > 0 # right side of the box v = dy > 0 # bottom side if abs_rc > 6: # horizontal line if h: name_dx = ofs name_dy = -ofs - name_h else: name_dx = -ofs - name_w name_dy = -ofs - name_h elif 0 <= abs_rc <= 0.2: # vertical line if v: name_dx = -ofs - name_w name_dy = ofs else: name_dx = -ofs - name_w name_dy = -ofs - name_h else: # Should both items be placed on the same side of the line? r = abs_rc < 1.0 # Find out alignment of text (depends on the direction of the line) align_left = h ^ r align_bottom = v ^ r if align_left: name_dx = ofs else: name_dx = -ofs - name_w if align_bottom: name_dy = -ofs - name_h else: name_dy = ofs return p1[0] + name_dx, p1[1] + name_dy # hint tuples to move text depending on quadrant WIDTH_HINT = (-1, -1, 0) PADDING_HINT = (1, 1, -1) EPSILON = 1e-6 def _text_point_at_line_center(size, p1, p2): """Calculate position of the text relative to a line defined by points p1 and p2. Parameters: - size: text size, a (width, height) tuple - p1: beginning of line - p2: end of line """ x0 = (p1[0] + p2[0]) / 2.0 y0 = (p1[1] + p2[1]) / 2.0 dx = p2[0] - p1[0] dy = p2[1] - p1[1] ofs = 3 if abs(dx) < EPSILON: d1 = -1.0 d2 = 1.0 elif abs(dy) < EPSILON: d1 = 0.0 d2 = 0.0 else: d1 = dy / dx d2 = abs(d1) width, height = size # move to center and move by delta depending on line angle if d2 < 0.5774: # <0, 30>, <150, 180>, <-180, -150>, <-30, 0> # horizontal mode w2 = width / 2.0 hint = w2 * d2 x = x0 - w2 y = y0 + hint + ofs else: # much better in case of vertical lines # determine quadrant, we are interested in 1 or 3 and 2 or 4 # see hint tuples below h2 = height / 2.0 q = (d1 > 0) - (d1 < 0) hint = 0 if abs(dx) < EPSILON else h2 / d2 x = x0 - hint + width * WIDTH_HINT[q] x = x0 - (ofs + hint) * PADDING_HINT[q] + width * WIDTH_HINT[q] y = y0 - h2 return x, y
the-stack_106_23877
__author__ = 'socuialmoneydev' from ConfigParser import SafeConfigParser import os.path import base64 class Connection(object): defaultApiKey = None defaultApiSecret = None defaultDomainName = None defaultProxyServer = None defaultProxyPort = None defaultConfigFilePath = os.path.join(os.path.dirname(__file__), '..', 'config.ini') @staticmethod def createFromConfig(configFilePath = None): c = Connection(configFilePath) c.apiKey = Connection.defaultApiKey c.apiSecret = Connection.defaultApiSecret c.domainName = Connection.defaultDomainName c.proxyServer = Connection.defaultProxyServer c.proxyPort = Connection.defaultProxyPort return c def __init__(self, configFilePath = None): configFile = configFilePath or Connection.defaultConfigFilePath if Connection.defaultApiKey == None and os.path.isfile(configFile): parser = SafeConfigParser() parser.read(configFile) Connection.defaultApiKey = parser.get('CorePro', 'CoreProApiKey') Connection.defaultApiSecret = parser.get('CorePro', 'CoreProApiSecret') Connection.defaultDomainName = parser.get('CorePro', 'CoreProDomainName') Connection.defaultProxyServer = parser.get('CorePro', 'CoreProProxyServer') Connection.defaultProxyPort = parser.get('CorePro', 'CoreProProxyPort') self.apiKey = Connection.defaultApiKey self.apiSecret = Connection.defaultApiSecret self.domainName = Connection.defaultDomainName self._headerValue = None self.proxyServer = Connection.defaultProxyServer self.proxyPort = Connection.defaultProxyPort @property def headerValue(self): if self._headerValue == None: b64 = base64.b64encode(unicode("{0}:{1}".format(self.apiKey, self.apiSecret))) self._headerValue = "Basic {0}".format(b64) return self._headerValue
the-stack_106_23878
"""Example how to reproject by interpolation. """ import numpy as np from astropy.io import fits from astropy.wcs import WCS from wcsaxes import datasets from reproject.interpolation import reproject_celestial_slices # Test 2d interpolation, different frame, different projection hdu = datasets.msx_hdu() hdu.data[100:200, 100:200] = np.inf wcs_in = WCS(hdu.header) wcs_out = wcs_in.deepcopy() wcs_out.wcs.ctype = ['RA---TAN', 'DEC--TAN'] wcs_out.wcs.crval = [266.44707, -28.937888] array_out = reproject_celestial_slices(hdu.data, wcs_in, wcs_out, hdu.data.shape) fits.writeto('test_2d.fits', array_out, header=wcs_out.to_header(), clobber=True) # Test 3d slice-by-slice interpolation, different frame, different projection hdu = datasets.l1448_co_hdu() wcs_in = WCS(hdu.header) wcs_in.wcs.equinox = 2000. wcs_out = wcs_in.deepcopy() wcs_out.wcs.ctype = ['GLON-SIN', 'GLAT-SIN', wcs_in.wcs.ctype[2]] wcs_out.wcs.crval = [158.0501, -21.530282, wcs_in.wcs.crval[2]] wcs_out.wcs.crpix = [50., 50., wcs_in.wcs.crpix[2]] array_out = reproject_celestial_slices(hdu.data, wcs_in, wcs_out, hdu.data.shape) fits.writeto('test_3d.fits', array_out, header=wcs_out.to_header(), clobber=True)
the-stack_106_23879
import time from beeline_navigator import explore from natsort import natsorted from os import listdir from os.path import isfile, join def get_valid_wad_paths(wad_dir): all_files = [f for f in listdir(wad_dir) if isfile(join(wad_dir, f))] wad_files = [f for f in all_files if f.endswith('wad')] wad_paths = [join(wad_dir, f) for f in wad_files] wad_paths = natsorted(wad_paths) return wad_paths default_cfg_path = './explorer.cfg' wad_dir = '../../data/maps/out' wad_paths = get_valid_wad_paths(wad_dir) num_explorations = 5 for idx, wad_path in enumerate(wad_paths): wad_id = wad_path.split('/')[-1].split('_')[1] start = time.time() for i in range(num_explorations): explore(default_cfg_path, wad_path, i, lmp_out_dir='../../data/exploration') end = time.time() elapsed_time = end - start print('Finished exploring map {} for {} times in {}s'.format( idx, num_explorations, elapsed_time ))
the-stack_106_23882
import typing from urllib.parse import urljoin import strawberry from django.conf import settings from django.utils.translation import gettext_lazy as _ from api.permissions import IsAuthenticated from conferences.models.conference import Conference from hotels.models import HotelRoom, HotelRoomReservation from pretix import CreateOrderHotelRoom, CreateOrderInput, Order, create_order from pretix.exceptions import PretixError @strawberry.type class CreateOrderResult: payment_url: str @strawberry.type class Error: message: str @strawberry.type class OrdersMutations: @strawberry.mutation(permission_classes=[IsAuthenticated]) def create_order( self, info, conference: str, input: CreateOrderInput ) -> typing.Union[CreateOrderResult, Error]: conference_obj = Conference.objects.get(code=conference) validation_error = validate_hotel_rooms( input.hotel_rooms, conference=conference_obj ) if validation_error: return validation_error try: pretix_order = create_order(conference_obj, input) except PretixError as e: return Error(message=e.message) if len(input.hotel_rooms) > 0: create_hotel_reservations( pretix_order, input.hotel_rooms, user_id=info.context.request.user.id ) return_url = urljoin( settings.FRONTEND_URL, f"/{input.locale}/orders/{pretix_order.code}/confirmation", ) if pretix_order.payment_url is None: return CreateOrderResult(payment_url=return_url) payment_url = pretix_order.payment_url payment_url += f"?return_url={return_url}" return CreateOrderResult(payment_url=payment_url) def validate_hotel_rooms(hotel_rooms: typing.List[CreateOrderHotelRoom], *, conference): count_rooms = {} conference_start = conference.start.date() conference_end = conference.end.date() for order_room in hotel_rooms: try: room = HotelRoom.objects.get(id=order_room.room_id, conference=conference) except HotelRoom.DoesNotExist: return Error( message=_("Room %(id)s not found") % {"id": order_room.room_id} ) if room.is_sold_out: return Error( message=_("Room %(id)s is sold out") % {"id": order_room.room_id} ) count = count_rooms.get(room.pk, 0) if count + 1 > room.capacity_left: return Error(message=_("Too many rooms") % {"id": order_room.room_id}) count_rooms[room.pk] = count + 1 if order_room.checkin < conference_start or order_room.checkin > conference_end: return Error(message=_("Invaild check-in date")) if ( order_room.checkout < conference_start or order_room.checkout > conference_end or order_room.checkin > order_room.checkout ): return Error(message=_("Invaild check-out date")) def create_hotel_reservations( pretix_order: Order, hotel_rooms: typing.List[CreateOrderHotelRoom], user_id: int ): for room in hotel_rooms: HotelRoomReservation.objects.create( room_id=room.room_id, order_code=pretix_order.code, checkin=room.checkin, checkout=room.checkout, user_id=user_id, )
the-stack_106_23883
class ClientMessage: HTTP_VERSION="HTTP/1.1" HTTP_HEADERS={ "Host": "cs5700sp17.ccs.neu.edu" } def __init__(self, method, URL, headers, body=""): """ Init the variables of the client message """ self.method=method self.URL=URL self.body=body self.version=ClientMessage.HTTP_VERSION self.headers=ClientMessage.HTTP_HEADERS.copy() self.headers.update(headers) try: self.headers["Content-length"]=len(body) except: raise ("No field called Content-length in client message") def __str__(self): """Transfer the message into string to send to server""" firstLine=""+str(self.method)+" "+str(self.URL)+" "+str(self.version) headers=[] for key in self.headers: new_header_line=""+str(key)+":"+str(self.headers[key]) headers.append(new_header_line) headersLines="\n".join(headers) result="\n".join([firstLine,headersLines,"",self.body]) result+="\n" return result
the-stack_106_23884
'''Manages the game mechanics.''' import random import pygame import pytmx import pyscroll import app from pygame.constants import K_1, K_2 from characters import NinjaPlayer, NinjaEnemy, ArcherPlayer, ArcherEnemy, BanditPlayer, BanditEnemy, keymap1, keymap2 from items import LifePotionSmall, Axe, Bow, Knife, Sword, Portal from collisions import get_collision_grid, get_positions_in_grid, get_objects_in_range def update(): '''Makes the game seems alive and responsive.''' global keys_pressed keys_pressed = pygame.key.get_pressed() # Needed to handling keyboard and mouse events # Processing inputs process_inputs() # Updating things in the game render_group.update() #Updating the relative position of the entities to the camera. update_collisions() update_objects() # If all players died, re-run last map if len(players)==0: load_map(last_map_loaded, reset_players=True) def update_objects(): for o in animated_objects: o.update() def process_inputs(): '''Input processing related to the game as a whole.''' global keys_pressed if keys_pressed[K_1]: renderer.zoom *= 1.05 if keys_pressed[K_2]: renderer.zoom /= 1.05 def update_collisions(): '''Updates collisions between sprites, in a completly unefficient way.''' global hitboxes, collisionable_sprites # Update collisions between characters grid = get_collision_grid(collisionable_sprites, map) for a in collisionable_sprites: for b in get_objects_in_range(a, grid, map): if a is b: continue a.bounce(b) b.bounce(a) # Update hitboxes for h in hitboxes: for o in get_objects_in_range(h, grid, map): if h.colliderect(o.feet_rect): o.hitted(h) # TODO: Restore this hitboxes = list() # Update collisions between characters and items for b in touchable_objects: b.set_animation('stand') grid = get_collision_grid(touchable_objects, map) for a in collisionable_sprites: for b in get_objects_in_range(a, grid, map): b.touched_by(a) def draw(): '''Draws all the entities and the background.''' app.screen.fill((0, 0, 0)) # center the map/screen on our Heroes if len(players)>1: center = ((players[0].rect.centerx + players[1].rect.centerx)*0.5, (players[0].rect.centery+players[1].rect.centery)*0.5) render_group.center(center) elif len(players)==1: render_group.center(players[0].rect.center) else: render_group.center((0,0)) # draw the map and all sprites render_group._spritelist.sort(key=lambda x: x.feet_rect.centery) #Sorting sprites by depth. render_group.draw(app.screen) # Draw information about players' life, stamina, etc. draw_players_info() # # TODO: CLEAN THIS CODE WHEN DEBUGGING CHARACTERS IS NO LONGER NEEDED # # Raw way of rendering things for debuging # camx = -player1.rect.centerx+app.screen_width*0.5 # camy = -player1.rect.centery+app.screen_height*0.5 # # for h in hitboxes: # rect = (h.rect[0]+camx, h.rect[1]+camy, h.rect[2], h.rect[3]) # pygame.draw.rect(app.screen, (255, 0, 0), rect) # hitboxes = list() # # for e in animated_objects: # rect = (e.feet_rect[0]+camx, e.feet_rect[1]+camy, e.feet_rect[2], e.feet_rect[3]) # pygame.draw.rect(app.screen, (0, 255, 0), rect) def draw_players_info(): render_group.center((0,0)) # Player 1 info if len(players)>0: pygame.draw.rect(app.screen, ( 0, 0, 0), (20, 20, 200, 20)) if players[0].life > 0: pygame.draw.rect(app.screen, (255, 0, 0), (23, 23, 194*max(0,players[0].life)/players[0].max_life, 14)) pygame.draw.rect(app.screen, ( 0, 0, 0), (20, 40, 200, 20)) pygame.draw.rect(app.screen, (255,255,255), (23, 43, 194*max(0,players[0].stamina)/players[0].max_stamina, 14)) # Player 2 info if len(players)>1: pygame.draw.rect(app.screen, ( 0, 0, 0), (app.screen_width-20-200, 20, 200, 20)) if players[1].life > 0: pygame.draw.rect(app.screen, (255, 0, 0), (app.screen_width-17-200, 23, 194*players[1].life/players[1].max_life, 14)) pygame.draw.rect(app.screen, ( 0, 0, 0), (app.screen_width-20-200, 40, 200, 20)) pygame.draw.rect(app.screen, (255,255,255), (app.screen_width-17-200, 43, 194*max(0, players[1].stamina)/players[1].max_stamina, 14)) # Loading main map def load_map(path, reset_players=False): global map, map_rect, renderer global render_group, animated_objects, collisionable_sprites, hitboxes, touchable_objects, collisionable_walls, players, grid_collisionable_walls global last_map_loaded last_map_loaded = path # Load the map map = pytmx.util_pygame.load_pygame(path) map_rect = (0, 0, map.width*map.tilewidth, map.height*map.tileheight) # Load music and start playing it if hasattr(map, 'music'): pygame.mixer.music.load('data/music/' + map.music) pygame.mixer.music.play(-1) else: pygame.mixer.music.stop() # Creating global containers renderer = pyscroll.BufferedRenderer(pyscroll.data.TiledMapData(map), app.screen.get_size()) # "Camera" of the game: it renders objects.''' renderer.zoom = 1.5 render_group = pyscroll.group.PyscrollGroup(map_layer=renderer, default_layer=2) # This defines the group of renderizable sprites. animated_objects = list() # Holds everything that needs to be updated by PygAnim. collisionable_sprites = list() # Sprites that can collide between them hitboxes = list() # Hitbox objects touchable_objects = list() # Creating objects of the map # Walls collisionable_walls = [pygame.Rect(o.x,o.y, o.width,o.height) for o in map.layernames['walls']] # This contains the walls of the map grid_collisionable_walls = get_collision_grid(collisionable_walls, map, size=10) #Used for optimization # Characters old_players = players if players is not None else [] players = [] for map_object in map.layernames['characters']: # Selecting keyboard key = keymap1 if len(players) == 0 else keymap2 # Creating the object if map_object.class_ninja == 'true': if map_object.is_player == 'true': new_character = NinjaPlayer(key) players.append(new_character) else: new_character = NinjaEnemy() elif map_object.class_archer == 'true': if map_object.is_player == 'true': new_character = ArcherPlayer(key) players.append(new_character) else: new_character = ArcherEnemy() elif map_object.class_bandit == 'true': if map_object.is_player == 'true': new_character = BanditPlayer(key) players.append(new_character) else: new_character = BanditEnemy() # Setting attributes # Position new_character.position = (map_object.x - 50, map_object.y - 45) # Weapons weapon_list = [] if map_object.weapon_unarmed == 'true': weapon_list.append('unarmed') if map_object.weapon_knife == 'true': weapon_list.append('knife') if map_object.weapon_sword == 'true': weapon_list.append('sword') if map_object.weapon_axe == 'true': weapon_list.append('axe') if map_object.weapon_bow == 'true': weapon_list.append('bow') if len(weapon_list)>0: new_character.weapon = random.choice(weapon_list) else: new_character.weapon = 'unarmed' # Things for NPCs: if map_object.is_player == 'false': # Wandering zones new_character.territory_radius = float(map_object.territory_radius) * map.tilewidth # Patroling zones (for NPCs): if hasattr(map_object, 'points'): new_character.path = list() for p in map_object.points: new_character.path.append((p[0], p[1])) new_character.position = (new_character.path[0][0]-50, new_character.path[0][1]-45) if not reset_players: for idx, player in enumerate(players): if idx < len(old_players): player.weapon = old_players[idx].weapon player.life = old_players[idx].life # Creating items for map_object in map.layernames['items']: # Creating the object item_classes = list() if map_object.class_life_small == 'true': item_classes.append(LifePotionSmall) if map_object.class_axe == 'true': item_classes.append(Axe) if map_object.class_bow == 'true': item_classes.append(Bow) if map_object.class_knife == 'true': item_classes.append(Knife) if map_object.class_sword == 'true': item_classes.append(Sword) if len(item_classes)>0: random.choice(item_classes)((map_object.x - 35, map_object.y - 25)) # Creating portals if 'portals' in map.layernames: for map_object in map.layernames['portals']: p = Portal((map_object.x - 35, map_object.y - 25)) p.to_map = map_object.to_map # Global objects keys_pressed = {} # The game mechanics is updating. active = False # The game graphics are visible. visible = True # Map related objects map = map_rect = renderer = render_group = animated_objects = collisionable_sprites = hitboxes = touchable_objects = \ collisionable_walls = grid_collisionable_walls = players = last_map_loaded = None
the-stack_106_23885
"""Import data from tensorflow format.""" # Copyright 2019 CSIRO (Data61) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from glob import glob from typing import Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple, Union import numpy as np import tensorflow as tf from landshark.metadata import FeatureSet, Target, Training from landshark.serialise import deserialise from landshark.util import points_per_batch log = logging.getLogger(__name__) def dataset_fn( records: List[str], batchsize: int, features: FeatureSet, targets: Optional[Target] = None, epochs: int = 1, take: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> Callable[[], tf.data.TFRecordDataset]: """Dataset feeder.""" def f() -> tf.data.TFRecordDataset: dataset = tf.data.TFRecordDataset(records, compression_type="ZLIB").repeat( count=epochs ) if shuffle: dataset = dataset.shuffle(buffer_size=shuffle_buffer, seed=random_seed) dataset = ( dataset.take(take) .batch(batchsize) .map(lambda x: deserialise(x, features, targets)) ) return dataset return f def get_training_meta(directory: str) -> Tuple[Training, List[str], List[str]]: """Read train/test metadata and record filenames from dir.""" test_dir = os.path.join(directory, "testing") training_records = glob(os.path.join(directory, "*.tfrecord")) testing_records = glob(os.path.join(test_dir, "*.tfrecord")) metadata = Training.load(directory) return metadata, training_records, testing_records def get_query_meta(query_dir: str) -> Tuple[FeatureSet, List[str], int, int]: """Read query metadata and record filenames from dir.""" strip_list = query_dir.rstrip("/").split("strip")[-1].split("of") assert len(strip_list) == 2 strip = int(strip_list[0]) nstrip = int(strip_list[1]) query_metadata = FeatureSet.load(query_dir) query_records = glob(os.path.join(query_dir, "*.tfrecord")) query_records.sort() return query_metadata, query_records, strip, nstrip def _make_mask( x: Dict[str, np.ndarray], xm: Dict[str, np.ndarray] ) -> Dict[str, np.ma.MaskedArray]: """Combine arrays and masks to MaskedArray's.""" assert x.keys() == xm.keys() d = {k: np.ma.MaskedArray(data=x[k], mask=xm[k]) for k in x.keys()} return d TData = Dict[str, Union[np.ndarray, Dict[str, np.ndarray]]] class XData(NamedTuple): """Container for covariate data X.""" x_con: Optional[Dict[str, np.ma.MaskedArray]] x_cat: Optional[Dict[str, np.ma.MaskedArray]] indices: np.ndarray coords: np.ndarray class XYData(NamedTuple): """Container for covariate X and target data Y.""" x_con: Optional[Dict[str, np.ma.MaskedArray]] x_cat: Optional[Dict[str, np.ma.MaskedArray]] indices: np.ndarray coords: np.ndarray y: Dict[str, np.ndarray] def _split(X: TData) -> XData: """Split dict into elements.""" Xcon = _make_mask(X["con"], X["con_mask"]) if "con" in X else None Xcat = _make_mask(X["cat"], X["cat_mask"]) if "cat" in X else None return XData(Xcon, Xcat, X["indices"], X["coords"]) def _concat_dict(xlist: List[TData]) -> TData: """Join dicts of arrays together.""" out_dict = {} for k, v in xlist[0].items(): if tf.is_tensor(v): out_dict[k] = np.concatenate([di[k] for di in xlist], axis=0) else: out_dict[k] = _concat_dict([di[k] for di in xlist]) return out_dict def extract_split_xy(dataset: tf.data.TFRecordDataset) -> XYData: """Extract (X, Y) data from tensor dataset and split.""" x_list, y_list = zip(*dataset) Y = np.concatenate(y_list, axis=0) X = _concat_dict(x_list) x_con, x_cat, indices, coords = _split(X) return XYData(x_con, x_cat, indices, coords, Y) def xy_record_data( records: List[str], metadata: Training, batchsize: int = 1000, npoints: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> XYData: """Read train/test record.""" train_dataset = dataset_fn( records=records, batchsize=batchsize, features=metadata.features, targets=metadata.targets, take=npoints, shuffle=shuffle, shuffle_buffer=shuffle_buffer, random_seed=random_seed, )() xy_data_tuple = extract_split_xy(train_dataset) return xy_data_tuple def query_data_it( records: List[str], features: FeatureSet, batchsize: int, npoints: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> Iterator[XData]: """Exctract query data from tfrecord in batches.""" dataset = dataset_fn( records=records, batchsize=batchsize, features=features, take=npoints, shuffle=shuffle, shuffle_buffer=shuffle_buffer, random_seed=random_seed, )() for X in dataset: yield _split(X) # # functions for inspecting tfrecord data directly # def read_train_record( directory: str, npoints: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> XYData: """Read train record.""" metadata, train_records, _ = get_training_meta(directory) train_data_tuple = xy_record_data( records=train_records, metadata=metadata, npoints=npoints, shuffle=shuffle, shuffle_buffer=shuffle_buffer, random_seed=random_seed, ) return train_data_tuple def read_test_record( directory: str, npoints: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> XYData: """Read test record.""" metadata, _, test_records = get_training_meta(directory) test_data_tuple = xy_record_data( records=test_records, metadata=metadata, npoints=npoints, shuffle=shuffle, shuffle_buffer=shuffle_buffer, random_seed=random_seed, ) return test_data_tuple def read_query_record( query_dir: str, batch_mb: float, npoints: int = -1, shuffle: bool = False, shuffle_buffer: int = 1000, random_seed: Optional[int] = None, ) -> Iterator[XData]: """Read query data in batches.""" features, records, strip, nstrip = get_query_meta(query_dir) batchsize = points_per_batch(features, batch_mb) yield from query_data_it( records=records, features=features, batchsize=batchsize, npoints=npoints, shuffle=shuffle, shuffle_buffer=shuffle_buffer, random_seed=random_seed, )
the-stack_106_23887
# Copyright 2019 Julian Niedermeier & Goncalo Mordido # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import time import matplotlib.pyplot as plt import numba import numpy as np import scipy.sparse import seaborn as sns from skimage.util.dtype import img_as_float64 from sklearn.metrics import pairwise_distances from misc import images, util from metrics.fuzzy_topology_impact import fuzzy_topology_impact sns.set(context="paper", style="white") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=util.HelpFormatter) parser.add_argument( "-train", type=str, default=None, required=True, help="Path to a .npy file with train dataset.", ) parser.add_argument( "-test", type=str, default=None, required=True, help="Path to a .npy file with test dataset.", ) parser.add_argument( "-savefile", type=str, default=None, required=True, help="Name of the output file.", ) # UMAP parser.add_argument( "-k", type=int, default=20, help="n_neighbor parameter for UMAP." ) parser.add_argument( "-metric", type=str, default="euclidean", help="metric parameter for UMAP." ) parser.add_argument( "-local_connectivity", type=float, default=0.0, help="local_connectivity parameter for UMAP.", ) # Noise parser.add_argument( "-noise_target", type=str, choices=["train", "test"], default=None, help="To which data the noise is applied.", ) parser.add_argument( "-noise", type=str, choices=["blur", "gaussian", "sap", "swirl"], default=None, help="Type of noise to apply to test images. 'sap' is Salt & Pepper.", ) parser.add_argument( "-image_shape", type=str, default=None, help="Required if noise is set. Specifies width,height,channel.", ) parser.add_argument( "-noise_amount", type=float, default=None, help="Standard deviation for blur, variance for noise, proportion of pixels " "for s&p, strength for swirl.", ) parser.add_argument( "-noise_radius", type=float, default=None, help="Radius of swirl." ) # Misc parser.add_argument( "-cache", type=str, default=None, help="Cache directory for train distance matrix. Does not cache, if not specified.", ) parser.add_argument( "-save_images", action="store_true", help="If set, will save test and train image originals and noised versions.", ) parser.add_argument( "-no_timestamp", action="store_true", help="If set, disables adding '.time[timestamp]' to -savefile", ) parser.add_argument( "-dont_use_noise_args", action="store_true", help="If set, will not use all the noise arguments to add noise to the input data but will save the argument values in the .npz archive.", ) # Labels parser.add_argument( "-train_labels", type=str, default=None, help="Path to a .npy file with labels for -train.", ) parser.add_argument( "-allowed_train_labels", nargs="+", type=int, default=None, help="List of label IDs to pick from -train_labels. Data in -train_labels " "not matching these labels will be discarded.", ) parser.add_argument( "-test_labels", type=str, default=None, help="Path to a .npy file with labels for -test.", ) parser.add_argument( "-allowed_test_labels", nargs="+", type=int, default=None, help="List of label IDs to pick from -test_labels. Data in -test_labels " "not matching these labels will be discarded.", ) parser.add_argument( "-sample_train", type=int, default=None, help="If set, will randomly pick that many samples from the train set.", ) parser.add_argument( "-sample_test", type=int, default=None, help="If set, will randomly pick that many samples from the test set.", ) parser.add_argument("-seed", type=int, default=None, help="A seed for numpy.") args = parser.parse_args() np.random.seed(args.seed) os.makedirs(os.path.dirname(args.savefile), exist_ok=True) print("Loading Data") print("- train:", args.train) print("- test:", args.test) train = np.load(args.train) test = np.load(args.test) if args.sample_train: train = train[ np.random.choice(train.shape[0], args.sample_train, replace=False) ] if args.sample_test: test = test[np.random.choice(test.shape[0], args.sample_test, replace=False)] original_train_dtype = train.dtype original_test_dtype = test.dtype assert train.dtype == test.dtype assert train.shape[1:] == test.shape[1:] if np.ndim(train) > 2: train = np.reshape(train, (train.shape[0], -1)) if np.ndim(test) > 2: test = np.reshape(test, (test.shape[0], -1)) if not args.no_timestamp: args.savefile = f"{args.savefile}.time[{time.time()}]" print("Save Path:", args.savefile) if args.train_labels: if args.allowed_train_labels is None: parser.error( "When -train_labels is set you have to also specify -allowed_train_labels" ) if args.cache: print( "WARNING: Using -cache and -train_labels might have unexpected effects!" ) train_labels = np.load(args.train_labels).astype(np.int64) unique_train_labels = np.unique(train_labels) if train_labels.shape[0] != train.shape[0]: raise ValueError("Shape[0] of -train_labels and -train do not match") allowed_train_labels = np.unique(args.allowed_train_labels) if not np.isin(allowed_train_labels, unique_train_labels).all(): raise ValueError("Not all -allowed_train_labels are in -train_labels") train_label_indices = np.where(np.isin(train_labels, allowed_train_labels)) original_train_shape = train.shape train = train[train_label_indices] print(f"Selected {train.shape[0]} elements from -train") if args.test_labels: if args.allowed_test_labels is None: parser.error( "When -test_labels is set you have to also specify -allowed_test_labels" ) test_labels = np.load(args.test_labels).astype(np.int64) unique_test_labels = np.unique(test_labels) if test_labels.shape[0] != test.shape[0]: raise ValueError("Shape[0] of -test_labels and -test do not match") allowed_test_labels = np.unique(args.allowed_test_labels) if not np.isin(allowed_test_labels, unique_test_labels).all(): raise ValueError("Not all -allowed_test_labels are in -test_labels") test_label_indices = np.where(np.isin(test_labels, allowed_test_labels)) original_test_shape = test.shape test = test[test_label_indices] print(f"Selected {test.shape[0]} elements from -test") if args.noise: if args.noise_amount is None: parser.error("When -noise is set you have to also set -noise_amount") if args.noise == "swirl" and args.noise_radius is None: parser.error("When -noise=swirl you have to also set -noise_radius.") if args.noise and not args.dont_use_noise_args: if args.noise_target == "train": target = train other_target = "test" other = test else: target = test other_target = "train" other = train if not (other.min() >= -1.0 and other.max() <= 1.0): if other.dtype == np.uint8: other = img_as_float64(other) else: other /= 255.0 if not (other.min() >= -1.0 and other.max() <= 1.0): raise ValueError( f"{other_target} data cannot be normalized to range [-1, 1]" ) if args.image_shape is None: parser.error("When -noise is set you have to also set -image_shape.") w, h, c = [int(n) for n in args.image_shape.split(",")] print(f"Distorting {args.noise_target} Images") distorted_images = np.empty(target.shape, dtype=np.float64) image_shape = (w, h) if c == 1 else (w, h, c) cmap = None if c > 1 else "gray" for i, image in enumerate(target): image = image.reshape(image_shape) if i == 0: if args.save_images: plt.imshow(image, cmap=cmap) plt.savefig(f"{args.savefile}.{args.noise_target}_original.png") plt.imshow(other[0].reshape(image_shape), cmap=cmap) plt.savefig(f"{args.savefile}.{other_target}_original.png") if args.noise == "blur": image = images.apply_gaussian_blur(image, args.noise_amount) elif args.noise == "gaussian": image = images.apply_gaussian_noise(image, args.noise_amount) elif args.noise == "sap": image = images.apply_salt_and_pepper(image, args.noise_amount) else: image = images.apply_swirl(image, args.noise_amount, args.noise_radius) if i == 0 and args.save_images: plt.imshow(image, cmap=cmap) plt.savefig(f"{args.savefile}.{args.noise_target}.png") distorted_images[i] = image.reshape(-1) if args.noise_target == "train": train = distorted_images test = other else: test = distorted_images train = other elif ( (train.min() >= 0 and train.max() <= 255) and (test.min() >= 0 and test.max() <= 255) and train.dtype == np.uint8 ): print("Data could be uint8 images. Converting to float64 in range [0,1]") train = img_as_float64(train) test = img_as_float64(test) elif train.dtype == np.float32 or test.dtype == np.float32: print("Detected train or test float32. Casting both to float64") train = train.astype(np.float64) test = test.astype(np.float64) print("Data Statistics:") print("----------------") print("Train") if args.train_labels: print("- Original Shape:", original_train_shape) print("- Shape:", train.shape) if original_train_dtype != train.dtype: print("- Original Dtype:", original_train_dtype) if args.allowed_train_labels is not None: print("- Allowed Labels:", args.allowed_train_labels) print("- Dtype:", train.dtype) print("- Min:", train.min()) print("- Max:", train.max()) print("- Noise:", "True" if args.noise_target == "train" else "False") print("- Labels:", "True" if args.train_labels else "False") print("Test") if args.test_labels: print("- Original Shape:", original_test_shape) print("- Shape:", test.shape) if original_test_dtype != test.dtype: print("- Original Dtype:", original_test_dtype) if args.allowed_test_labels is not None: print("- Allowed Labels:", args.allowed_test_labels) print("- Dtype:", test.dtype) print("- Min:", test.min()) print("- Max:", test.max()) print("- Noise:", "True" if args.noise_target == "test" else "False") print("- Labels:", "True" if args.test_labels else "False") if args.cache: train_dmat_cache_file = os.path.join( args.cache, f"{os.path.basename(args.train)}.train_dmat.npy" ) print("Cache:", train_dmat_cache_file) os.makedirs(args.cache, exist_ok=True) if not os.path.exists(train_dmat_cache_file): print("Computing TRAIN dmat") train_dmat = pairwise_distances(train, metric=args.metric) np.save(train_dmat_cache_file, train_dmat) else: print("Loading TRAIN dmat") train_dmat = np.load(train_dmat_cache_file) else: train_dmat = None print("Computing Fuzzy Topology Impact") s = time.time() impact, P_X, P_X_Xprime_minus_xprime, fs_set_X_size = fuzzy_topology_impact( train, test, args.k, args.metric, args.local_connectivity, train_dmat ) e = time.time() print(f"Computed impact {impact} for {test.shape[0]} samples in {e-s} seconds") additional_save_data = { "k": args.k, "metric": args.metric, "local_connectivity": args.local_connectivity, } if args.allowed_train_labels: additional_save_data["original_train_labels"] = unique_train_labels additional_save_data["allowed_train_labels"] = allowed_train_labels if args.allowed_test_labels: additional_save_data["original_test_labels"] = unique_test_labels additional_save_data["allowed_test_labels"] = allowed_test_labels if args.noise_target: additional_save_data[f"{args.noise_target}_noise"] = args.noise additional_save_data[f"{args.noise_target}_noise_amount"] = args.noise_amount if args.noise == "swirl": additional_save_data[ f"{args.noise_target}_noise_radius" ] = args.noise_radius if args.sample_train: additional_save_data["sample_train"] = args.sample_train if args.sample_test: additional_save_data["sample_test"] = args.sample_test np.savez_compressed( args.savefile, impact=impact, P_X=P_X, P_X_Xprime_minus_xprime=P_X_Xprime_minus_xprime, fs_set_X_size=fs_set_X_size, **additional_save_data, )
the-stack_106_23888
from nbconvert.preprocessors import ExecutePreprocessor, CellExecutionError from traitlets import Bool, List, Integer from textwrap import dedent from . import NbGraderPreprocessor from nbconvert.exporters.exporter import ResourcesDict from nbformat.notebooknode import NotebookNode from typing import Any, Optional, Tuple class UnresponsiveKernelError(Exception): pass class Execute(NbGraderPreprocessor, ExecutePreprocessor): interrupt_on_timeout = Bool(True) allow_errors = Bool(True) raise_on_iopub_timeout = Bool(True) extra_arguments = List([], help=dedent( """ A list of extra arguments to pass to the kernel. For python kernels, this defaults to ``--HistoryManager.hist_file=:memory:``. For other kernels this is just an empty list. """) ).tag(config=True) execute_retries = Integer(0, help=dedent( """ The number of times to try re-executing the notebook before throwing an error. Generally, this shouldn't need to be set, but might be useful for CI environments when tests are flaky. """) ).tag(config=True) def preprocess(self, nb: NotebookNode, resources: ResourcesDict, retries: Optional[Any] = None ) -> Tuple[NotebookNode, ResourcesDict]: # This gets added in by the parent execute preprocessor, so if it's already in our # extra arguments we need to delete it or traitlets will be unhappy. if '--HistoryManager.hist_file=:memory:' in self.extra_arguments: self.extra_arguments.remove('--HistoryManager.hist_file=:memory:') if retries is None: retries = self.execute_retries try: output = super(Execute, self).preprocess(nb, resources) except RuntimeError: if retries == 0: raise UnresponsiveKernelError() else: self.log.warning("Failed to execute notebook, trying again...") return self.preprocess(nb, resources, retries=retries - 1) return output def preprocess_cell(self, cell, resources, cell_index, store_history=True): """ Need to override preprocess_cell to check reply for errors """ # Copied from nbconvert ExecutePreprocessor if cell.cell_type != 'code' or not cell.source.strip(): return cell, resources reply, outputs = self.run_cell(cell, cell_index, store_history) # Backwards compatibility for processes that wrap run_cell cell.outputs = outputs cell_allows_errors = (self.allow_errors or "raises-exception" in cell.metadata.get("tags", [])) if self.force_raise_errors or not cell_allows_errors: if (reply is not None) and reply['content']['status'] == 'error': raise CellExecutionError.from_cell_and_msg(cell, reply['content']) # Ensure errors are recorded to prevent false positives when autograding if (reply is None) or reply['content']['status'] == 'error': error_recorded = False for output in cell.outputs: if output.output_type == 'error': error_recorded = True if not error_recorded: error_output = NotebookNode(output_type='error') if reply is None: # Occurs when # IPython.core.interactiveshell.InteractiveShell.showtraceback # = None error_output.ename = "CellTimeoutError" error_output.evalue = "" error_output.traceback = ["ERROR: No reply from kernel"] else: # Occurs when # IPython.core.interactiveshell.InteractiveShell.showtraceback # = lambda *args, **kwargs : None error_output.ename = reply['content']['ename'] error_output.evalue = reply['content']['evalue'] error_output.traceback = reply['content']['traceback'] if error_output.traceback == []: error_output.traceback = ["ERROR: An error occurred while" " showtraceback was disabled"] cell.outputs.append(error_output) return cell, resources
the-stack_106_23889
""" Example views for interactive testing of payment with netaxept. """ from django.http import HttpRequest from django.http import HttpResponse from django.shortcuts import redirect, get_object_or_404 from django.template.response import TemplateResponse from django.urls import path from django.views.decorators.http import require_GET from structlog import get_logger from payment import get_payment_gateway from payment.gateways.netaxept import actions from payment.gateways.netaxept import gateway_to_netaxept_config from payment.gateways.netaxept import netaxept_protocol from payment.models import Payment from payment.utils import gateway_authorize logger = get_logger() @require_GET def register_and_goto_terminal(request: HttpRequest, payment_id: int) -> HttpResponse: """ Register the payment with netaxept, and take the user to the terminal page for payment authorization. """ logger.info('netaxept-register-and-goto-terminal', payment_id=payment_id) payment = get_object_or_404(Payment, id=payment_id) transaction_id = actions.register_payment(payment) payment_gateway, gateway_config = get_payment_gateway(payment.gateway) netaxept_config = gateway_to_netaxept_config(gateway_config) return redirect(netaxept_protocol.get_payment_terminal_url(config=netaxept_config, transaction_id=transaction_id)) @require_GET def after_terminal(request): """ The browser gets redirected here when the user finishes interacting with the netaxept terminal pages. We expect query-string parameters: transactionId and responseCode. https://shop.nets.eu/web/partners/response-codes Note that it is very easy for a user to invoke this endpoint himself (by looking at the parameters of the netaxept terminal in order to pretend that he paid. This is why we verify the state of the payment by calling netaxept. Assumptions: We expect the terminal to have been opened with AuthAuth set to True. """ transaction_id = request.GET['transactionId'] response_code = request.GET['responseCode'] logger.info('netaxept-after-terminal', transaction_id=transaction_id, response_code=response_code) if response_code == 'Cancel': return HttpResponse('Payment cancelled') elif response_code == 'OK': payment = Payment.objects.get(token=transaction_id) try: # This will verify if the payment was indeed authorized. gateway_authorize(payment=payment, payment_token=payment.token) except Exception as exc: logger.error('netaxept-after-terminal-error', exc_info=exc) return HttpResponse('Error authorizing {}: {}'.format(payment.id, exc)) else: return redirect('view_payment', payment_id=payment.id) else: # The error case payment = Payment.objects.get(token=transaction_id) try: # This will query the state of the payment in netaxept, and create a transaction object with all details gateway_authorize(payment=payment, payment_token=payment.token) finally: return HttpResponse('Payment error {}'.format(response_code)) def query(request: HttpRequest, transaction_id: str) -> HttpResponse: """ Retries the status of the given transaction from netaxept. """ logger.info('netaxept-query', transaction_id=transaction_id) payment_gateway, gateway_config = get_payment_gateway('netaxept') netaxept_config = gateway_to_netaxept_config(gateway_config) query_response = netaxept_protocol.query(config=netaxept_config, transaction_id=transaction_id) return TemplateResponse(request, 'netaxept/query_result.html', {'query_response': query_response}) urls = [ path('register_and_goto_terminal/<payment_id>', register_and_goto_terminal, name='netaxept_register_and_goto_terminal'), path('after_terminal', after_terminal, name='netaxept_after_terminal'), path('query/<transaction_id>', query, name='netaxept_query'), ]
the-stack_106_23890
from .base import GnuRecipe class QemacsRecipe(GnuRecipe): def __init__(self, *args, **kwargs): super(QemacsRecipe, self).__init__(*args, **kwargs) self.sha256 = '2ffba66a44783849282199acfcc08707' \ 'debc7169394a8fd0902626222f27df94' self.name = 'qemacs' self.version = '0.3.3' self.version_regex = r'(?P<version>\d+\.\d+\.\d+)' self.version_url = 'https://bellard.org/qemacs/' self.url = 'https://bellard.org/qemacs/qemacs-$version.tar.gz' self.configure_args += ['--disable-xv'] self.compile_args = ['make', '-j1']
the-stack_106_23891
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 """ Interpreting hyperbole with RSA models of pragmatics. Taken from: https://gscontras.github.io/probLang/chapters/03-nonliteral.html """ import torch import collections import argparse import pyro import pyro.distributions as dist import pyro.poutine as poutine from search_inference import HashingMarginal, memoize, Search torch.set_default_dtype(torch.float64) # double precision for numerical stability def Marginal(fn): return memoize(lambda *args: HashingMarginal(Search(fn).run(*args))) ###################################### # models ###################################### # hashable state State = collections.namedtuple("State", ["price", "valence"]) def approx(x, b=None): if b is None: b = 10. div = float(x)/b rounded = int(div) + 1 if div - float(int(div)) >= 0.5 else int(div) return int(b) * rounded def price_prior(): values = [50, 51, 500, 501, 1000, 1001, 5000, 5001, 10000, 10001] probs = torch.tensor([0.4205, 0.3865, 0.0533, 0.0538, 0.0223, 0.0211, 0.0112, 0.0111, 0.0083, 0.0120]) ix = pyro.sample("price", dist.Categorical(probs=probs)) return values[ix] def valence_prior(price): probs = { 50: 0.3173, 51: 0.3173, 500: 0.7920, 501: 0.7920, 1000: 0.8933, 1001: 0.8933, 5000: 0.9524, 5001: 0.9524, 10000: 0.9864, 10001: 0.9864 } return pyro.sample("valence", dist.Bernoulli(probs=probs[price])).item() == 1 def meaning(utterance, price): return utterance == price qud_fns = { "price": lambda state: State(price=state.price, valence=None), "valence": lambda state: State(price=None, valence=state.valence), "priceValence": lambda state: State(price=state.price, valence=state.valence), "approxPrice": lambda state: State(price=approx(state.price), valence=None), "approxPriceValence": lambda state: State(price=approx(state.price), valence=state.valence), } def qud_prior(): values = ["price", "valence", "priceValence", "approxPrice", "approxPriceValence"] ix = pyro.sample("qud", dist.Categorical(probs=torch.ones(len(values)) / len(values))) return values[ix] def utterance_cost(numberUtt): preciseNumberCost = 1. return 0. if approx(numberUtt) == numberUtt else preciseNumberCost def utterance_prior(): utterances = [50, 51, 500, 501, 1000, 1001, 5000, 5001, 10000, 10001] utteranceLogits = -torch.tensor(list(map(utterance_cost, utterances)), dtype=torch.float64) ix = pyro.sample("utterance", dist.Categorical(logits=utteranceLogits)) return utterances[ix] @Marginal def literal_listener(utterance, qud): price = price_prior() state = State(price=price, valence=valence_prior(price)) pyro.factor("literal_meaning", 0. if meaning(utterance, price) else -999999.) return qud_fns[qud](state) @Marginal def speaker(qudValue, qud): alpha = 1. utterance = utterance_prior() literal_marginal = literal_listener(utterance, qud) with poutine.scale(scale=torch.tensor(alpha)): pyro.sample("listener", literal_marginal, obs=qudValue) return utterance @Marginal def pragmatic_listener(utterance): # priors price = price_prior() valence = valence_prior(price) qud = qud_prior() # model state = State(price=price, valence=valence) qudValue = qud_fns[qud](state) speaker_marginal = speaker(qudValue, qud) pyro.sample("speaker", speaker_marginal, obs=utterance) return state def test_truth(): true_vals = { "probs": torch.tensor([0.0018655171404222354,0.1512643329444101,0.0030440475496016296,0.23182161303428897,0.00003854830096338984,0.01502495595927897,0.00003889558295405101,0.015160315922876075,0.00016425635615857924,0.026788637869123822,0.00017359794987375924,0.028312162297699582,0.0008164336950199063,0.060558944822420434,0.0008088460212743665,0.05999612935009309,0.01925106279557206,0.17429720083660782,0.02094455861717477,0.18962994295418778]), # noqa: E231,E501 "support": list(map(lambda d: State(**d), [{"price":10001,"valence":False},{"price":10001,"valence":True},{"price":10000,"valence":False},{"price":10000,"valence":True},{"price":5001,"valence":False},{"price":5001,"valence":True},{"price":5000,"valence":False},{"price":5000,"valence":True},{"price":1001,"valence":False},{"price":1001,"valence":True},{"price":1000,"valence":False},{"price":1000,"valence":True},{"price":501,"valence":False},{"price":501,"valence":True},{"price":500,"valence":False},{"price":500,"valence":True},{"price":51,"valence":False},{"price":51,"valence":True},{"price":50,"valence":False},{"price":50,"valence":True}])) # noqa: E231,E501 } pragmatic_marginal = pragmatic_listener(10000) for i, elt in enumerate(true_vals["support"]): print("{}: true prob {} pyro prob {}".format( elt, true_vals["probs"][i].item(), pragmatic_marginal.log_prob(elt).exp().item())) def main(args): # test_truth() pragmatic_marginal = pragmatic_listener(args.price) pd, pv = pragmatic_marginal._dist_and_values() print([(s, pragmatic_marginal.log_prob(s).exp().item()) for s in pragmatic_marginal.enumerate_support()]) if __name__ == "__main__": assert pyro.__version__.startswith('1.5.1') parser = argparse.ArgumentParser(description="parse args") parser.add_argument('-n', '--num-samples', default=10, type=int) parser.add_argument('--price', default=10000, type=int) args = parser.parse_args() main(args)
the-stack_106_23892
import re import os import numpy as np import itertools import collections from unidecode import unidecode from malaya.text.tatabahasa import ( stopword_tatabahasa, stopwords, stopwords_calon, laughing, ) from malaya.text.rules import normalized_chars from malaya.text.english.words import words as _english_words from malaya.text.bahasa.words import words as _malay_words from malaya import home import json STOPWORDS = set(stopwords + stopword_tatabahasa + stopwords_calon) STOPWORD_CALON = set(stopwords_calon) VOWELS = 'aeiou' PHONES = ['sh', 'ch', 'ph', 'sz', 'cz', 'sch', 'rz', 'dz'] ENGLISH_WORDS = _english_words MALAY_WORDS = _malay_words def _isWord(word): if word: consecutiveVowels = 0 consecutiveConsonents = 0 for idx, letter in enumerate(word.lower()): vowel = True if letter in VOWELS else False if idx: prev = word[idx - 1] prevVowel = True if prev in VOWELS else False if not vowel and letter == 'y' and not prevVowel: vowel = True if prevVowel != vowel: consecutiveVowels = 0 consecutiveConsonents = 0 if vowel: consecutiveVowels += 1 else: consecutiveConsonents += 1 if consecutiveVowels >= 3 or consecutiveConsonents > 3: return False if consecutiveConsonents == 3: subStr = word[idx - 2 : idx + 1] if any(phone in subStr for phone in PHONES): consecutiveConsonents -= 1 continue return False return True def make_cleaning(s, c_dict): s = s.translate(c_dict) return s def transformer_textcleaning(string): """ use by any transformer model before tokenization """ string = unidecode(string) string = ' '.join( [make_cleaning(w, normalized_chars) for w in string.split()] ) string = re.sub('\(dot\)', '.', string) string = ( re.sub(re.findall(r'\<a(.*?)\>', string)[0], '', string) if (len(re.findall(r'\<a (.*?)\>', string)) > 0) and ('href' in re.findall(r'\<a (.*?)\>', string)[0]) else string ) string = re.sub( r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', ' ', string ) string = re.sub(r'[ ]+', ' ', string).strip().split() string = [w for w in string if w[0] != '@'] string = [w.title() if w[0].isupper() else w for w in string] return ' '.join(string) def malaya_textcleaning(string): """ use by normalizer, spell remove links, hashtags, alias only accept A-Z, a-z remove any laugh remove any repeated char more than 2 times remove most of nonsense words """ string = re.sub( 'http\S+|www.\S+', '', ' '.join( [ word for word in string.split() if word.find('#') < 0 and word.find('@') < 0 ] ), ) string = unidecode(string).replace('.', '. ').replace(',', ' , ') string = re.sub('[^\'"A-Za-z\- ]+', ' ', string) string = re.sub(r'[ ]+', ' ', string.lower()).strip() string = [word for word in string.lower().split() if _isWord(word)] string = [ word for word in string if not any([laugh in word for laugh in laughing]) and word[: len(word) // 2] != word[len(word) // 2 :] ] string = ' '.join(string) string = ( ''.join(''.join(s)[:2] for _, s in itertools.groupby(string)) ).split() return ' '.join([word for word in string if word not in STOPWORDS]) def normalizer_textcleaning(string): """ use by normalizer, spell remove links, hashtags, alias only accept A-Z, a-z remove any laugh remove any repeated char more than 2 times """ string = re.sub( 'http\S+|www.\S+', '', ' '.join( [ word for word in string.split() if word.find('#') < 0 and word.find('@') < 0 ] ), ) string = re.sub('[^A-Za-z ]+', ' ', string) string = re.sub(r'[ ]+', ' ', string).strip() string = [ word.title() if word.isupper() else word for word in string.split() if len(word) ] string = [ word for word in string if not any([laugh in word for laugh in laughing]) ] string = ' '.join(string) return ''.join(''.join(s)[:2] for _, s in itertools.groupby(string)) def simple_textcleaning(string, lowering = True): """ use by topic modelling only accept A-Z, a-z """ string = unidecode(string) string = re.sub('[^A-Za-z ]+', ' ', string) return re.sub(r'[ ]+', ' ', string.lower() if lowering else string).strip() def entities_textcleaning(string, lowering = True): """ use by entities recognition, pos recognition and dependency parsing """ string = re.sub('[^A-Za-z0-9\-() ]+', ' ', string) string = re.sub(r'[ ]+', ' ', string).strip() original_string = string.split() if lowering: string = string.lower() string = [ (original_string[no], word.title() if word.isupper() else word) for no, word in enumerate(string.split()) if len(word) ] return [s[0] for s in string], [s[1] for s in string] def summary_textcleaning(string): original_string = string string = re.sub('[^A-Za-z0-9\-\/\'"\.\, ]+', ' ', unidecode(string)) return original_string, re.sub(r'[ ]+', ' ', string.lower()).strip() def get_hashtags(string): return [hash.lower() for hash in re.findall('#(\w+)', string)] def split_by_dot(string): string = re.sub( r'(?<!\d)\.(?!\d)', 'SPLITTT', string.replace('\n', '').replace('/', ' '), ) string = string.split('SPLITTT') return [re.sub(r'[ ]+', ' ', sentence).strip() for sentence in string] def language_detection_textcleaning(string): string = re.sub( 'http\S+|www.\S+', '', ' '.join( [i for i in string.split() if i.find('#') < 0 and i.find('@') < 0] ), ) chars = ',.()!:\'"/;=-' for c in chars: string = string.replace(c, f' {c} ') string = string.replace('\n', '').replace('\t', '') string = re.sub( '[0-9!@#$%^&*()_\-+{}|\~`\'";:?/.>,<]', ' ', string, flags = re.UNICODE ) string = re.sub(r'[ ]+', ' ', string).strip() return string.lower() def pos_entities_textcleaning(string): """ use by text entities and pos remove links, hashtags, alias """ string = re.sub( 'http\S+|www.\S+', '', ' '.join( [i for i in string.split() if i.find('#') < 0 and i.find('@') < 0] ), ) string = unidecode(string).replace('.', ' . ').replace(',', ' , ') string = re.sub('[^A-Za-z\- ]+', ' ', string) string = re.sub(r'[ ]+', ' ', string).strip() return ' '.join( [ word.title() if word.isupper() else word for word in string.split() if len(word) ] ) def classification_textcleaning(string, no_stopwords = False, lowering = True): """ stemmer, summarization, topic-modelling remove links, hashtags, alias """ string = re.sub( 'http\S+|www.\S+', '', ' '.join( [i for i in string.split() if i.find('#') < 0 and i.find('@') < 0] ), ) string = unidecode(string).replace('.', ' . ').replace(',', ' , ') string = re.sub('[^A-Za-z ]+', ' ', string) string = re.sub(r'[ ]+', ' ', string).strip() if no_stopwords: string = ' '.join( [ i for i in re.findall('[\\w\']+|[;:\-\(\)&.,!?"]', string) if len(i) ] ) else: string = ' '.join( [ i for i in re.findall('[\\w\']+|[;:\-\(\)&.,!?"]', string) if len(i) and i not in STOPWORDS ] ) if lowering: return string.lower() else: return ' '.join( [ word.title() if word.isupper() else word for word in string.split() if len(word) ] ) def separate_dataset(trainset): datastring = [] datatarget = [] for i in range(len(trainset.data)): data_ = trainset.data[i].split('\n') data_ = list(filter(None, data_)) datastring += data_ for n in range(len(data_)): datatarget.append(trainset.target[i]) return datastring, datatarget def print_topics_modelling( topics, feature_names, sorting, n_words = 20, return_df = True ): if return_df: try: import pandas as pd except: raise Exception( 'pandas not installed. Please install it and try again or set `return_df = False`' ) df = {} for i in range(topics): words = [] for k in range(n_words): words.append(feature_names[sorting[i, k]]) df['topic %d' % (i)] = words if return_df: return pd.DataFrame.from_dict(df) else: return df def str_idx(corpus, dic, maxlen, UNK = 0): X = np.zeros((len(corpus), maxlen)) for i in range(len(corpus)): for no, k in enumerate(corpus[i].split()[:maxlen][::-1]): X[i, -1 - no] = dic.get(k, UNK) return X def stemmer_str_idx(corpus, dic, UNK = 3): X = [] for i in corpus: ints = [] for k in i: ints.append(dic.get(k, UNK)) X.append(ints) return X def pad_sentence_batch(sentence_batch, pad_int): padded_seqs = [] seq_lens = [] max_sentence_len = max([len(sentence) for sentence in sentence_batch]) for sentence in sentence_batch: padded_seqs.append( sentence + [pad_int] * (max_sentence_len - len(sentence)) ) seq_lens.append(len(sentence)) return padded_seqs, seq_lens def char_str_idx(corpus, dic, UNK = 2): maxlen = max([len(i) for i in corpus]) X = np.zeros((len(corpus), maxlen)) for i in range(len(corpus)): for no, k in enumerate(corpus[i][:maxlen]): X[i, no] = dic.get(k, UNK) return X def generate_char_seq(batch, dic, UNK = 2): maxlen_c = max([len(k) for k in batch]) x = [[len(i) for i in k] for k in batch] maxlen = max([j for i in x for j in i]) temp = np.zeros((len(batch), maxlen_c, maxlen), dtype = np.int32) for i in range(len(batch)): for k in range(len(batch[i])): for no, c in enumerate(batch[i][k][::-1]): temp[i, k, -1 - no] = dic.get(c, UNK) return temp def build_dataset(words, n_words, included_prefix = True): count = ( [['GO', 0], ['PAD', 1], ['EOS', 2], ['UNK', 3]] if included_prefix else [] ) count.extend(collections.Counter(words).most_common(n_words)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() for word in words: index = dictionary.get(word, 3) data.append(index) reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary def multireplace(string, replacements): substrs = sorted(replacements, key = len, reverse = True) regexp = re.compile('|'.join(map(re.escape, substrs))) return regexp.sub(lambda match: replacements[match.group(0)], string) def case_of(text): return ( str.upper if text.isupper() else str.lower if text.islower() else str.title if text.istitle() else str ) alphabets = '([A-Za-z])' prefixes = ( '(Mr|St|Mrs|Ms|Dr|Prof|Capt|Cpt|Lt|Mt|Puan|puan|Tuan|tuan|sir|Sir)[.]' ) suffixes = '(Inc|Ltd|Jr|Sr|Co)' starters = '(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever|Dia|Mereka|Tetapi|Kita|Itu|Ini|Dan|Kami)' acronyms = '([A-Z][.][A-Z][.](?:[A-Z][.])?)' websites = '[.](com|net|org|io|gov|me|edu|my)' another_websites = '(www|http|https)[.]' digits = '([0-9])' def split_into_sentences(text): text = unidecode(text) text = ' ' + text + ' ' text = text.replace('\n', ' ') text = re.sub(prefixes, '\\1<prd>', text) text = re.sub(websites, '<prd>\\1', text) text = re.sub(another_websites, '\\1<prd>', text) if '...' in text: text = text.replace('...', '<prd><prd><prd>') if 'Ph.D' in text: text = text.replace('Ph.D.', 'Ph<prd>D<prd>') text = re.sub('\s' + alphabets + '[.] ', ' \\1<prd> ', text) text = re.sub(acronyms + ' ' + starters, '\\1<stop> \\2', text) text = re.sub( alphabets + '[.]' + alphabets + '[.]' + alphabets + '[.]', '\\1<prd>\\2<prd>\\3<prd>', text, ) text = re.sub( alphabets + '[.]' + alphabets + '[.]', '\\1<prd>\\2<prd>', text ) text = re.sub(' ' + suffixes + '[.] ' + starters, ' \\1<stop> \\2', text) text = re.sub(' ' + suffixes + '[.]', ' \\1<prd>', text) text = re.sub(' ' + alphabets + '[.]', ' \\1<prd>', text) text = re.sub(digits + '[.]' + digits, '\\1<prd>\\2', text) if '”' in text: text = text.replace('.”', '”.') if '"' in text: text = text.replace('."', '".') if '!' in text: text = text.replace('!"', '"!') if '?' in text: text = text.replace('?"', '"?') text = text.replace('.', '.<stop>') text = text.replace('?', '?<stop>') text = text.replace('!', '!<stop>') text = text.replace('<prd>', '.') sentences = text.split('<stop>') sentences = sentences[:-1] sentences = [s.strip() for s in sentences if len(s) > 10] return sentences def end_of_chunk(prev_tag, tag): if not len(prev_tag): return False if prev_tag != tag: return True def start_of_chunk(prev_tag, tag): if not len(prev_tag): return True if prev_tag != tag: return False def tag_chunk(seq): words = [i[0] for i in seq] seq = [i[1] for i in seq] prev_tag = '' begin_offset = 0 chunks = [] for i, chunk in enumerate(seq): if end_of_chunk(prev_tag, chunk): chunks.append((prev_tag, begin_offset, i - 1)) prev_tag = '' if start_of_chunk(prev_tag, chunk): begin_offset = i prev_tag = chunk res = {'words': words, 'tags': []} for chunk_type, chunk_start, chunk_end in chunks: tag = { 'text': ' '.join(words[chunk_start : chunk_end + 1]), 'type': chunk_type, 'score': 1.0, 'beginOffset': chunk_start, 'endOffset': chunk_end, } res['tags'].append(tag) return res
the-stack_106_23893
import grpc from .proto import ( ref_pb2, ref_pb2_grpc, commit_pb2, commit_pb2_grpc, blob_pb2_grpc, ) from .proto import shared_pb2 from ..errors import GitlabArtifactsError GITALY_ADDR = 'unix:/var/opt/gitlab/gitaly/gitaly.socket' REF_PREFIX = 'refs/heads/' def _gitaly_repo(project): return shared_pb2.Repository( storage_name=project.storage, relative_path=project.disk_path, gl_repository=project.gl_repository, ) class GitalyClient(): def __init__(self, addr=GITALY_ADDR): self.addr = addr self._channel = None self._refsvc = None self._commitsvc = None self._blobsvc = None def __enter__(self): self._channel = grpc.insecure_channel(self.addr) self._refsvc = ref_pb2_grpc.RefServiceStub(self._channel) self._commitsvc = commit_pb2_grpc.CommitServiceStub(self._channel) self._blobsvc = blob_pb2_grpc.BlobServiceStub(self._channel) return self def __exit__(self, *args): self._channel.close() @staticmethod def name_from_ref(ref): if ref.lower().startswith(REF_PREFIX): return ref[len(REF_PREFIX):] return ref def get_branches(self, project): repository = _gitaly_repo(project) request = ref_pb2.FindAllBranchesRequest( repository=repository ) branches = [] try: # Gitaly "chunks?" responses at 20 items # https://tinyurl.com/ycuazk7w for page in self._refsvc.FindAllBranches(request): for branch in page.branches: ref = ( GitalyClient.name_from_ref(branch.name.decode('utf-8')), branch.target.id, ) branches.append(ref) except grpc.RpcError as e: raise GitlabArtifactsError( 'RefSvc.FindAllBranches for {} failed with error {}:{}'.format( project.full_path, e.code(), e.details() ) ) # Safety check for failed requests if not branches: raise GitlabArtifactsError( 'Gitaly returned no branches for {}'.format( project.full_path ) ) return branches def get_tree_entry(self, ref, path): repository = _gitaly_repo(ref.project) request = commit_pb2.TreeEntryRequest( repository=repository, revision=ref.commit.encode('utf-8'), path=path.encode('utf-8'), limit=0, ) try: # This should raise RpcError - on notfound, but it doesn't? response = list(self._commitsvc.TreeEntry(request)) except grpc.RpcError as e: raise GitlabArtifactsError( 'CommitSvc.TreeEntry failed with error {}:{}'.format( e.code(), e.details() ) ) # We should always get a response - it may be empty if not response: raise GitlabArtifactsError( 'CommitSvc.TreeEntry did not return a response') first_entry = response[0] # Ensure the first entry is type=BLOB, failed requests return type=COMMIT if first_entry.type != 1: return (None,)*3 return ( first_entry.oid, first_entry.size, b''.join(entry.data for entry in response) )
the-stack_106_23894
#!/usr/bin/env python # coding: utf-8 import os import numpy as np import argparse from math import floor def main(args): # class foo(object): # pass # args = foo() # args.ref='raw/training2017/REFERENCE.csv' annot_lines = open(args.ref, 'r').read().splitlines() np.random.shuffle(annot_lines) annot_dict = {s: s.split(',')[1] for s in annot_lines} index_dict = {'N': [], 'A': [], 'O': [], '~': []} for idx, line in enumerate(annot_lines): index_dict[annot_dict[line]].append(idx) TRAIN = args.train / 100. VAL = args.val / 100. print('Sample in class/set:') print('\tTotal,\tTrain,\tValid,\tTest') for x in index_dict.items(): l = len(x[1]) hist = (x[0], l, floor(l * TRAIN), floor(l * VAL), l - floor((TRAIN + VAL) * l)) print('%s,\t%d,\t%d,\t%d\t%d' % hist) def fp(x): return os.path.normpath(os.path.dirname(args.ref) + '/' + x) train_reference = open(fp('TRAIN.csv'), 'w') validation_reference = open(fp('VALIDATION.csv'), 'w') test_reference = open(fp('TEST.csv'), 'w') for idxs in index_dict.values(): l = len(idxs) train_reference.writelines( '%s\n' % annot_lines[i] for i in idxs[:floor(l * TRAIN)]) validation_reference.writelines( '%s\n' % annot_lines[i] for i in idxs[floor(l * TRAIN):floor(l * (TRAIN + VAL))]) test_reference.writelines( '%s\n' % annot_lines[i] for i in idxs[floor(l * (TRAIN + VAL)):]) print('References written succesfully to:') print(train_reference.name, validation_reference.name, test_reference.name, sep='\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--ref', help='location of reference file', default='./raw/training2017/REFERENCE.csv') parser.add_argument( '--train', help='percents of files from `--ref` to keep in train set', type=int, default=80) parser.add_argument( '--val', help='percents of files from `--ref` to keep in val set', type=int, default=10) args = parser.parse_args() main(args)
the-stack_106_23896
import math import torch.nn as nn import torch.nn.functional as F from GDN import Gdn class EONSS(nn.Module): def __init__(self): super(EONSS, self).__init__() self.conv1 = nn.Conv2d(3, 8, 5, stride=2, padding=2) self.gdn1 = Gdn(8) self.conv2 = nn.Conv2d(8, 16, 5, stride=2, padding=2) self.gdn2 = Gdn(16) self.conv3 = nn.Conv2d(16, 32, 5, stride=2, padding=2) self.gdn3 = Gdn(32) self.conv4 = nn.Conv2d(32, 64, 3, stride=1, padding=0) self.gdn4 = Gdn(64) self.st2_fc1 = nn.Conv2d(64, 256, 1, stride=1, padding=0) self.st2_gdn1 = Gdn(256) self.st2_fc2 = nn.Conv2d(256, 1, 1, stride=1, padding=0) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, Gdn): m.gamma.data.fill_(1) m.beta.data.fill_(1e-2) def forward(self, x): batch_size = x.size()[0] x = F.max_pool2d(self.gdn1(self.conv1(x)), (2, 2)) x = F.max_pool2d(self.gdn2(self.conv2(x)), (2, 2)) x = F.max_pool2d(self.gdn3(self.conv3(x)), (2, 2)) x = F.max_pool2d(self.gdn4(self.conv4(x)), (2, 2)) y2 = self.st2_gdn1(self.st2_fc1(x)) s = self.st2_fc2(y2) s = s.view(batch_size, -1) return s
the-stack_106_23897
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This is an example dag that performs two refresh operations on a Tableau Workbook aka Extract. The first one waits until it succeeds. The second does not wait since this is an asynchronous operation and we don't know when the operation actually finishes. That's why we have another task that checks only that. """ from datetime import timedelta from airflow import DAG from airflow.providers.tableau.operators.tableau import TableauOperator from airflow.providers.tableau.sensors.tableau_job_status import TableauJobStatusSensor from airflow.utils.dates import days_ago DEFAULT_ARGS = { 'owner': 'airflow', 'depends_on_past': False, 'email': ['[email protected]'], 'email_on_failure': False, 'email_on_retry': False, } with DAG( dag_id='example_tableau', default_args=DEFAULT_ARGS, dagrun_timeout=timedelta(hours=2), schedule_interval=None, start_date=days_ago(2), tags=['example'], ) as dag: # Refreshes a workbook and waits until it succeeds. # [START howto_operator_tableau] task_refresh_workbook_blocking = TableauOperator( resource='workbooks', method='refresh', find='MyWorkbook', match_with='name', site_id='my_site', blocking_refresh=True, task_id='refresh_tableau_workbook_blocking', ) # [END howto_operator_tableau] # Refreshes a workbook and does not wait until it succeeds. task_refresh_workbook_non_blocking = TableauOperator( resource='workbooks', method='refresh', find='MyWorkbook', match_with='name', site_id='my_site', blocking_refresh=False, task_id='refresh_tableau_workbook_non_blocking', ) # The following task queries the status of the workbook refresh job until it succeeds. task_check_job_status = TableauJobStatusSensor( site_id='my_site', job_id="{{ ti.xcom_pull(task_ids='refresh_tableau_workbook_non_blocking') }}", task_id='check_tableau_job_status', ) task_refresh_workbook_non_blocking >> task_check_job_status
the-stack_106_23898
#!/usr/bin/env python """ Created by howie.hu at 2021-04-08. Description:从广告文本提取抽取标题作为训练样本 Changelog: all notable changes to this file will be documented """ import os import time import pandas as pd from newspaper import Article from src.config import Config def csv2txt(target_path: str = ""): """ 提取广告CSV中的标题作为广告样本 :param target_path: :return: """ target_path = target_path or os.path.join( Config.MODEL_DIR, f"cos/train.{int(time.time())}.txt" ) ads_path = "../.files/datasets/ads.csv" df = pd.read_csv(ads_path) all_title = df["title"].drop_duplicates().values.tolist() with open(target_path, "w") as fp: for title in all_title: fp.write(title + "\n") print(f"{target_path} 写入成功,共 {len(all_title)} 条记录") if __name__ == "__main__": csv2txt() # article = Article( # "https://mp.weixin.qq.com/s/D-las20I8POTmWNaXradhw", language="zh" # ) # article.download() # article.parse() # print(article.text) # article.nlp() # print(article.keywords) # print(article.summary)
the-stack_106_23899
# -*- coding: utf-8 -*- """ rstblog.programs ~~~~~~~~~~~~~~~~ Builtin build programs. :copyright: (c) 2010 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ from __future__ import with_statement import os import yaml import shutil from datetime import datetime from StringIO import StringIO from weakref import ref class Program(object): def __init__(self, context): self._context = ref(context) @property def context(self): rv = self._context() if rv is None: raise RuntimeError('context went away, program is invalid') return rv def get_desired_filename(self): folder, basename = os.path.split(self.context.source_filename) simple_name = os.path.splitext(basename)[0] if simple_name == 'index': suffix = 'index.html' else: suffix = os.path.join(simple_name, 'index.html') return os.path.join(folder, suffix) def prepare(self): pass def render_contents(self): return u'' def run(self): raise NotImplementedError() class CopyProgram(Program): """A program that copies a file over unchanged""" def run(self): self.context.make_destination_folder() shutil.copy(self.context.full_source_filename, self.context.full_destination_filename) def get_desired_filename(self): return self.context.source_filename class TemplatedProgram(Program): default_template = None def get_template_context(self): return {} def run(self): template_name = self.context.config.get('template') \ or self.default_template context = self.get_template_context() rv = self.context.render_template(template_name, context) with self.context.open_destination_file() as f: f.write(rv.encode('utf-8') + '\n') class RSTProgram(TemplatedProgram): """A program that renders an rst file into a template""" default_template = 'rst_display.html' _fragment_cache = None def prepare(self): headers = ['---'] with self.context.open_source_file() as f: for line in f: line = line.rstrip() if not line: break headers.append(line) title = self.parse_text_title(f) cfg = yaml.load(StringIO('\n'.join(headers)), Loader=yaml.FullLoader) if cfg: if not isinstance(cfg, dict): raise ValueError('expected dict config in file "%s", got: %.40r' \ % (self.context.source_filename, cfg)) self.context.config = self.context.config.add_from_dict(cfg) self.context.destination_filename = cfg.get( 'destination_filename', self.context.destination_filename) title_override = cfg.get('title') if title_override is not None: title = title_override pub_date_override = cfg.get('pub_date') if pub_date_override is not None: if not isinstance(pub_date_override, datetime): pub_date_override = datetime(pub_date_override.year, pub_date_override.month, pub_date_override.day) self.context.pub_date = pub_date_override summary_override = cfg.get('summary') if summary_override is not None: self.context.summary = summary_override if title is not None: self.context.title = title def parse_text_title(self, f): buffer = [] for line in f: line = line.rstrip() if not line: break buffer.append(line) return self.context.render_rst('\n'.join(buffer).decode('utf-8')).get('title') def get_fragments(self): if self._fragment_cache is not None: return self._fragment_cache with self.context.open_source_file() as f: while f.readline().strip(): pass rv = self.context.render_rst(f.read().decode('utf-8')) self._fragment_cache = rv return rv def render_contents(self): return self.get_fragments()['fragment'] def get_template_context(self): ctx = TemplatedProgram.get_template_context(self) ctx['rst'] = self.get_fragments() return ctx
the-stack_106_23901
#!/usr/bin/env python3 import argparse import pandas as pd import numpy as np import sys import matplotlib from matplotlib import use use('Agg') import matplotlib.pyplot as plt EOL=chr(10) def parseArguments(): if len(sys.argv)<=1: sys.argv="mafplot.py $input $output".split() parser=argparse.ArgumentParser() parser.add_argument("--phenos", type=str, metavar='phenotypes', required=True) parser.add_argument("--skip-zero", dest="skip_zero", action="store_true", default=False) parser.add_argument('input', type=str, metavar='input'), parser.add_argument('output', type=str, metavar='output'), args = parser.parse_args() return args transforms = [[1,np.log1p],[np.sqrt,np.cbrt]] transform_names = [["no transform","log transform"],["square root transform","cube root transform"]] def numfrm(x): xstr=str(x) if "." not in xstr: return xstr if x<0.1: xstr="%6.4E"%x else: xstr = str(x) xstr = xstr[:xstr.index(".")+3] return xstr def summary2LaTeX(summary,output,suf,pheno): phelab = pheno.replace("_",":") lat = EOL+EOL+\ r"\begin{table}[hb]"+EOL+\ r"\begin{center}"+EOL+r"\begin{tabular}{l r D{.}{.}{3} D{.}{.}{3} D{.}{.}{4} D{.}{.}{4}} \\"+EOL + \ r"Data & Count & \multicolumn{1}{c}{Min} & \multicolumn{1}{c}{Max} & \multicolumn{1}{c}{Ave} & \multicolumn{1}{c}{StdDev} \\\hline" +EOL for s in summary: lat = lat+" & ".join([s[0]]+list(map(numfrm,[s[1].count(),s[1].min(),s[1].max(),s[1].mean(),s[1].std()])))+ r"\\"+EOL lat = lat + r"\hline\end{tabular}"+EOL+r"\end{center}"+EOL+(r""" *-caption{Overview of phenotype *-protect*-url{%s} distribution} *-label{tab:overview:%s} *-end{table} """)%(pheno,phelab) lat = r""" A summary of the data for \url{%s} can be found in the Table~*-ref{tab:overview:%s}, transformed using different transforms. A histogram is found in Figure \ref{fig:%s}. """ + lat + r""" \ourfig{fig:%s}{Histogram of *-protect*-url{%s} values under different transforms}{%s.%s} """ return lat%(pheno,phelab,output,output,pheno,output,suf) def errorMessage10(phe): print(""" A problem has been detected in file <%s> column <%s>. There is some invalid data. I regret I can't tell you which row. Please check -- the data should be numeric only. If there is missing data, please use NA """%(args.input,phe)) def showPheno(pname,frm): if args.skip_zero: data = frm[frm[pname]>0][pname] else: data = frm[pname] fig,axs = plt.subplots(2,2) matplotlib.rcParams['xtick.labelsize']=13 matplotlib.rcParams['ytick.labelsize']=13 summary=[] for r in range(2): for c in range(2): axs[r][c].set_xlabel(transform_names[r][c],fontsize=12) axs[r][c].set_ylabel("Frequency",fontsize=12) fn = transforms[r][c] try: pdata = fn(data) if fn != 1 else data pdata = pdata[pdata.notnull()] summary.append((transform_names[r][c],pdata)) except: errorMessage10(pname) sys.exit(10) axs[r][c].hist(pdata,bins=100) plt.tight_layout() output = ("%s-%s"%(args.output,pname)).replace("_","-") plt.savefig("%s.pdf"%output) return summary2LaTeX(summary,output,"pdf",pname) args=parseArguments() frm = pd.read_csv(args.input,delim_whitespace=True) phenos = args.phenos.split(",") output_latex= "" for phen in phenos: dets = phen.split("/") pname = dets[0] output_latex = output_latex + showPheno(pname,frm) g = open("%s.tex"%args.output,"w") g.write(output_latex.replace("*-",chr(92)).replace("##",chr(36))) g.close()
the-stack_106_23902
from os import path from os.path import basename from typing import List, Optional, Tuple import dgl import torch from commode_utils.common import download_dataset from commode_utils.vocabulary import build_from_scratch from omegaconf import DictConfig from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader from embeddings_for_trees.data.jsonl_dataset import JsonlASTDataset, JsonlTypedASTDataset from embeddings_for_trees.data.vocabulary import Vocabulary, TypedVocabulary class JsonlASTDatamodule(LightningDataModule): _train = "train" _val = "val" _test = "test" def __init__(self, config: DictConfig, data_folder: str, is_pointer: bool = False): super().__init__() self._config = config self._data_folder = data_folder self._name = basename(self._data_folder) self._vocabulary = self.setup_vocabulary() self._is_pointer = is_pointer def prepare_data(self): if path.exists(self._data_folder): print(f"Dataset is already downloaded") return if "url" not in self._config: raise ValueError(f"Config doesn't contain url for, can't download it automatically") download_dataset(self._config.url, self._data_folder, self._name) def setup_vocabulary(self) -> Vocabulary: if not path.exists(path.join(self._data_folder, Vocabulary.vocab_filename)): print("Can't find vocabulary, collect it from train holdout") build_from_scratch(path.join(self._data_folder, f"{self._train}.jsonl"), Vocabulary) vocabulary_path = path.join(self._data_folder, Vocabulary.vocab_filename) return Vocabulary(vocabulary_path, self._config.labels_count, self._config.tokens_count) @staticmethod def _collate_batch(sample_list: List[Tuple[torch.Tensor, dgl.DGLGraph]]) -> Tuple[torch.Tensor, dgl.DGLGraph]: labels, graphs = zip(*filter(lambda sample: sample is not None, sample_list)) return torch.cat(labels, dim=1), dgl.batch(graphs) def _shared_dataloader(self, holdout: str, shuffle: bool) -> DataLoader: if self._vocabulary is None: raise RuntimeError(f"Setup vocabulary before creating data loaders") holdout_file = path.join(self._data_folder, f"{holdout}.jsonl") dataset = JsonlASTDataset( holdout_file, self._vocabulary, self._config, holdout == self._train, self._is_pointer ) batch_size = self._config.batch_size if holdout == self._train else self._config.test_batch_size return DataLoader( dataset, batch_size, shuffle=shuffle, num_workers=self._config.num_workers, collate_fn=self._collate_batch ) def train_dataloader(self, *args, **kwargs) -> DataLoader: return self._shared_dataloader(self._train, True) def val_dataloader(self, *args, **kwargs) -> DataLoader: return self._shared_dataloader(self._val, False) def test_dataloader(self, *args, **kwargs) -> DataLoader: return self._shared_dataloader(self._test, False) def transfer_batch_to_device( self, batch: Tuple[torch.Tensor, dgl.DGLGraph], device: torch.device, dataloader_idx: int ) -> Tuple[torch.Tensor, dgl.DGLGraph]: return batch[0].to(device), batch[1].to(device) @property def vocabulary(self) -> Vocabulary: if self._vocabulary is None: raise RuntimeError(f"Setup data module for initializing vocabulary") return self._vocabulary class JsonlTypedASTDatamodule(JsonlASTDatamodule): _vocabulary: TypedVocabulary @property def vocabulary(self) -> TypedVocabulary: if self._vocabulary is None: raise RuntimeError(f"Setup data module for initializing vocabulary") return self._vocabulary def setup_vocabulary(self) -> TypedVocabulary: if not path.exists(path.join(self._data_folder, Vocabulary.vocab_filename)): print("Can't find vocabulary, collect it from train holdout") build_from_scratch(path.join(self._data_folder, f"{self._train}.jsonl"), TypedVocabulary) vocabulary_path = path.join(self._data_folder, Vocabulary.vocab_filename) return TypedVocabulary( vocabulary_path, self._config.labels_count, self._config.tokens_count, self._config.types_count ) def _shared_dataloader(self, holdout: str, shuffle: bool) -> DataLoader: if self._vocabulary is None: raise RuntimeError(f"Setup vocabulary before creating data loaders") holdout_file = path.join(self._data_folder, f"{holdout}.jsonl") dataset = JsonlTypedASTDataset( holdout_file, self._vocabulary, self._config, holdout == self._train, self._is_pointer ) batch_size = self._config.batch_size if holdout == self._train else self._config.test_batch_size return DataLoader( dataset, batch_size, shuffle=shuffle, num_workers=self._config.num_workers, collate_fn=self._collate_batch )
the-stack_106_23904
# (C) 2019 Baris Ozmen <[email protected]> import pathlib import logging import os import datetime import sys from os.path import dirname, realpath file_path = realpath(__file__) dir_of_file = dirname(file_path) parent_dir_of_file = dirname(dir_of_file) sys.path.insert(0, dir_of_file) now = datetime.datetime.now() EXPERIMENT_NAME = ( f"wrn_28_10_{now.year}-{now.month:02}-{now.day:02}_{now.hour:02}-{now.minute:02}" ) EXPERIMENT_FOLDER_PATH = os.path.join( parent_dir_of_file, f"reports/experiments/{EXPERIMENT_NAME}" ) log_path = pathlib.Path(EXPERIMENT_FOLDER_PATH) log_path.mkdir(parents=True, exist_ok=True) logging.basicConfig(filename=(log_path / "info.log").absolute(), level=logging.DEBUG) from childcnn import ChildCNN from build_features import DataOp from lib.decorators import Reporter from image_generator import deepaugment_image_generator logger = Reporter.logger from keras.callbacks import CSVLogger import click from sklearn.model_selection import train_test_split import logging # @click.command() # @click.option("--dataset-name", type=click.STRING, default="cifar10") # @click.option("--num-classes", type=click.INT, default=10) # @click.option("--epochs", type=click.INT, default=15) # @click.option("--batch-size", type=click.INT, default=64) # @click.option("--policies-path", type=click.STRING, default="dont_augment") @logger(logfile_dir=EXPERIMENT_FOLDER_PATH) def run_full_model(images, labels, test_proportion=0.1, model="wrn_28_10", epochs=200, batch_size=64, policies_path="dont_augment"): data={} data["X_train"], data["X_val"], data["y_train"], data["y_val"] = train_test_split(images, labels, test_size=test_proportion, shuffle=True) data = DataOp.preprocess_normal(data) input_shape = data["X_train"][0].shape num_classes = data["y_train"].shape[1] cnn_config={ "model" : model, "weights" : "imagenet", "input_shape" : input_shape, "child_batch_size" : batch_size, "pre_augmentation_weights_path" : "initial_model_weights.h5", "logging" : logging } full_model = ChildCNN( input_shape=input_shape, num_classes=num_classes, config=cnn_config ) if policies_path == "dont_augment": policy_str = "non_augmented" else: policy_str = "augmented" csv_logger = CSVLogger( f"{EXPERIMENT_FOLDER_PATH}/wrn_28_10_training_on_{policy_str}.csv" ) if policies_path == "dont_augment": history = full_model.fit_normal(data, epochs=epochs, csv_logger=csv_logger) print(f"Reached validation accuracy is {history['val_acc'][-1]}") else: datagen = deepaugment_image_generator( data["X_train"], data["y_train"], policies_path, batch_size=batch_size, augment_chance=0.8, ) print("fitting the model") history = full_model.fit_with_generator( datagen, data["X_val"], data["y_val"], train_data_size=len(data["X_train"]), epochs=epochs, csv_logger=csv_logger, ) print(f"Reached validation accuracy is {history['val_acc'][-1]}") if __name__ == "__main__": run_full_model()
the-stack_106_23905
import types from unittest.mock import AsyncMock, MagicMock, PropertyMock import pytest from aio.core import directory from envoy.code import check async def test_glint_have_newlines(patches): patched = patches( "NewlineChecker", prefix="envoy.code.check.abstract.glint") path = MagicMock() paths = [MagicMock() for i in range(0, 3)] with patched as (m_newlines, ): assert ( check.AGlintCheck.have_newlines(path, *paths) == m_newlines.return_value.have_newlines.return_value) assert ( m_newlines.call_args == [(path, ), {}]) assert ( m_newlines.return_value.have_newlines.call_args == [(tuple(paths), ), {}]) def test_glint_constructor(): glint = check.AGlintCheck("DIRECTORY") assert glint.directory == "DIRECTORY" @pytest.mark.parametrize("files", [True, False]) async def test_glint_checker_files(patches, files): directory = MagicMock() glint = check.AGlintCheck(directory) patched = patches( "set", ("AGlintCheck.noglint_re", dict(new_callable=PropertyMock)), prefix="envoy.code.check.abstract.glint") files = AsyncMock(return_value=range(0, 20)) directory.files = files() with patched as (m_set, m_re): m_re.return_value.match.side_effect = lambda x: x % 2 assert ( await glint.checker_files == m_set.return_value) iterator = m_set.call_args[0][0] called = list(iterator) assert ( called == [x for x in range(0, 20) if not x % 2]) assert ( m_re.return_value.match.call_args_list == [[(x, ), {}] for x in range(0, 20)]) assert not ( hasattr( glint, check.AGlintCheck.checker_files.cache_name)) async def test_glint_files_with_mixed_tabs(patches): directory = MagicMock() glint = check.AGlintCheck(directory) patched = patches( ("AGlintCheck.files_with_preceeding_tabs", dict(new_callable=PropertyMock)), prefix="envoy.code.check.abstract.glint") directory.grep = AsyncMock() with patched as (m_tabs, ): tabs = AsyncMock() m_tabs.side_effect = tabs assert ( await glint.files_with_mixed_tabs == directory.grep.return_value) assert ( directory.grep.call_args == [(["-lP", r"^ "], ), dict(target=tabs.return_value)]) assert not ( hasattr( glint, check.AGlintCheck.files_with_mixed_tabs.cache_name)) async def test_glint_files_with_preceeding_tabs(patches): directory = MagicMock() glint = check.AGlintCheck(directory) patched = patches( ("AGlintCheck.files", dict(new_callable=PropertyMock)), prefix="envoy.code.check.abstract.glint") directory.grep = AsyncMock() with patched as (m_files, ): files = AsyncMock() m_files.side_effect = files assert ( await glint.files_with_preceeding_tabs == directory.grep.return_value) assert ( directory.grep.call_args == [(["-lP", r"^\t"], ), dict(target=files.return_value)]) assert not ( hasattr( glint, check.AGlintCheck.files_with_preceeding_tabs.cache_name)) async def test_glint_files_with_no_newline(patches): directory = MagicMock() glint = check.AGlintCheck(directory) patched = patches( "partial", ("AGlintCheck.files", dict(new_callable=PropertyMock)), "AGlintCheck.execute_in_batches", "AGlintCheck.have_newlines", prefix="envoy.code.check.abstract.glint") batched = [ set(x for x in range(0, 10)), set(x for x in range(1, 7)), set(x for x in range(5, 13))] expected = batched[0] | batched[1] | batched[2] async def batch_iter(x): for batch in batched: yield batch with patched as (m_partial, m_files, m_execute, m_newlines): m_files.side_effect = AsyncMock( [f"FILE{i}" for i in range(0, 5)]) m_execute.side_effect = batch_iter assert ( await glint.files_with_no_newline == expected) assert not ( hasattr( glint, check.AGlintCheck.files_with_no_newline.cache_name)) assert ( m_execute.call_args == [(m_partial.return_value, *m_files.return_value), {}]) assert ( m_partial.call_args == [(m_newlines, directory.path), {}]) async def test_glint__check_problems(patches): glint = check.AGlintCheck("DIRECTORY") patched = patches( "list", "AGlintCheck._check_path", prefix="envoy.code.check.abstract.glint") batched = [ set(x for x in range(0, 10)), set(x for x in range(1, 7)), set(x for x in range(5, 13))] expected = batched[0] | batched[1] | batched[2] with patched as (m_list, m_check): assert ( await glint._check_problems(batched) == {p: m_list.return_value for p in expected}) assert ( m_list.call_args_list == [[(m_check.return_value, ), {}] for p in expected]) assert ( m_check.call_args_list == [[(p, *batched), {}] for p in expected]) @pytest.mark.parametrize("files", [[], [f"F{i}" for i in range(0, 5)]]) async def test_glint_files_with_trailing_whitespace(patches, files): directory = MagicMock() glint = check.AGlintCheck(directory) patched = patches( ("AGlintCheck.files", dict(new_callable=PropertyMock)), prefix="envoy.code.check.abstract.glint") directory.grep = AsyncMock() with patched as (m_files, ): files = AsyncMock() m_files.side_effect = files assert ( await glint.files_with_trailing_whitespace == directory.grep.return_value) assert ( directory.grep.call_args == [(["-lE", r"[[:blank:]]$"], ), dict(target=files.return_value)]) assert not ( hasattr( glint, check.AGlintCheck.files_with_trailing_whitespace.cache_name)) def test_glint_noglint_re(patches): glint = check.AGlintCheck("DIRECTORY") patched = patches( "re", prefix="envoy.code.check.abstract.glint") with patched as (m_re, ): assert ( glint.noglint_re == m_re.compile.return_value) assert ( m_re.compile.call_args == [("|".join(check.abstract.glint.NOGLINT_RE), ), {}]) assert "noglint_re" in glint.__dict__ @pytest.mark.parametrize("files", [True, False]) async def test_glint_problem_files(patches, files): glint = check.AGlintCheck("DIRECTORY") patched = patches( "asyncio", ("AGlintCheck.files", dict(new_callable=PropertyMock)), ("AGlintCheck.files_with_no_newline", dict(new_callable=PropertyMock)), ("AGlintCheck.files_with_mixed_tabs", dict(new_callable=PropertyMock)), ("AGlintCheck.files_with_trailing_whitespace", dict(new_callable=PropertyMock)), "AGlintCheck._check_problems", prefix="envoy.code.check.abstract.glint") with patched as patchy: (m_asyncio, m_files, m_newline, m_tabs, m_ws, m_checks) = patchy m_files.side_effect = AsyncMock(return_value=files) gather = AsyncMock() m_asyncio.gather = gather assert ( await glint.problem_files == (m_checks.return_value if files else {}) == getattr( glint, check.AGlintCheck.problem_files.cache_name)[ "problem_files"]) if not files: assert not m_checks.called assert not gather.called assert not m_newline.called assert not m_tabs.called assert not m_ws.called return assert ( m_checks.call_args == [(gather.return_value, ), {}]) assert ( gather.call_args == [(m_newline.return_value, m_tabs.return_value, m_ws.return_value), {}]) @pytest.mark.parametrize( "newline", [[], ["PATH", "other"], ["PATH"], ["no", "path"]]) @pytest.mark.parametrize( "mixed_tabs", [[], ["PATH", "other"], ["PATH"], ["no", "path"]]) @pytest.mark.parametrize( "whitespace", [[], ["PATH", "other"], ["PATH"], ["no", "path"]]) def test_glint__check_path(patches, newline, mixed_tabs, whitespace): glint = check.AGlintCheck("DIRECTORY") expected = [] if "PATH" in newline: expected.append("Missing final newline: PATH") if "PATH" in mixed_tabs: expected.append("Mixed preceeding tabs and whitespace: PATH") if "PATH" in whitespace: expected.append("Trailing whitespace: PATH") assert ( list(glint._check_path("PATH", newline, mixed_tabs, whitespace)) == expected) def test_glint_newline_checker_constructor(): nl_checker = check.abstract.glint.NewlineChecker("PATH") assert isinstance(nl_checker, directory.IDirectoryContext) assert isinstance(nl_checker, directory.ADirectoryContext) @pytest.mark.parametrize("n", range(1, 5)) def test_glint_newline_checker_have_newlines(patches, n): nl_checker = check.abstract.glint.NewlineChecker("PATH") patched = patches( "set", ("NewlineChecker.in_directory", dict(new_callable=PropertyMock)), "utils", prefix="envoy.code.check.abstract.glint") paths = [MagicMock() for x in range(0, 5)] class Byter: counter = 0 def last_n_bytes_of(self, target): self.counter += 1 if self.counter % n: return b"\n" return "OTHER" byter = Byter() with patched as (m_set, m_dir_ctx, m_utils): m_utils.last_n_bytes_of.side_effect = byter.last_n_bytes_of assert ( nl_checker.have_newlines(paths) == m_set.return_value) pathgen = m_set.call_args[0][0] assert isinstance(pathgen, types.GeneratorType) assert ( list(pathgen) == [p for i, p in enumerate(paths) if not bool((i + 1) % n)]) assert m_dir_ctx.return_value.__enter__.called assert ( m_utils.last_n_bytes_of.call_args_list == [[(p, ), {}] for p in paths])
the-stack_106_23906
import sys, os myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + '/../') import torch from torch import nn from torch.optim import Adam from torch.nn.init import xavier_normal as xavier import matplotlib.pyplot as plt from data.loader import cryptoData from models.model import MLPRegressor DEVICE = torch.device("cpu") COIN1 = "eth" COIN2 = "btc" MODEL = "norm" class Residual(object): def __init__(self,dataloader_coin1,dataloader_coin2): self.dataloader_coin1 = dataloader_coin1 self.dataloader_coin2 = dataloader_coin2 def zScore(self,upperIndex,out_coin1,out_coin2): coin1_30 = self.dataloader_coin1.getDataFrame(upperIndex,20) coin2_30 = self.dataloader_coin2.getDataFrame(upperIndex,20) coin1_30 = torch.cat((coin1_30,out_coin1)) coin2_30 = torch.cat((coin2_30,out_coin2)) meanDiffernce30 = torch.mean(coin1_30-coin2_30) standardDev30 = torch.std(coin1_30-coin2_30) coin1_5 = self.dataloader_coin1.getDataFrame(upperIndex,5) coin2_5 = self.dataloader_coin2.getDataFrame(upperIndex,5) coin1_5 = torch.cat((coin1_5,out_coin1)) coin2_5 = torch.cat((coin2_5,out_coin2)) meanDiffernce5 = torch.mean(coin1_5-coin2_5) if standardDev30 > 0: return (meanDiffernce5 - meanDiffernce30)/standardDev30, self.riskModel(coin1_30,coin2_30) else: return 0, self.riskModel(coin1_30,coin2_30) def riskModel(self,coin1_30,coin2_30): c1 = coin1_30 - coin1_30.mean() c2 = coin2_30 - coin2_30.mean() corr = torch.sum(c1*c2) / (torch.sqrt(torch.sum(c1 ** 2)) * torch.sqrt(torch.sum(c2 ** 2))) if corr > 0.9: risk = False else: risk = True return risk def getGeneralTrends(dataloader,upperIndex): upper = dataloader.getDataFrame(upperIndex,10).mean() lower = dataloader.getDataFrame(upperIndex,30).mean() return upper/lower def main(COIN1,COIN2): model_coin1 = MLPRegressor(coin=COIN1,model= MODEL) model_coin1.to(DEVICE) model_coin2 = MLPRegressor(coin=COIN2,model= MODEL) model_coin2.to(DEVICE) dataloader_coin1 = cryptoData(COIN1,DEVICE=DEVICE,model=MODEL) DAYS_coin1 = len(dataloader_coin1) dataloader_coin2 = cryptoData(COIN2,DEVICE=DEVICE,model=MODEL) DAYS_coin2 = len(dataloader_coin2) model_coin1.eval(dataloader_coin1[0][0]) model_coin2.eval(dataloader_coin2[0][0]) residualModel = Residual(dataloader_coin1,dataloader_coin2) coin1_amt = 0 coin2_amt = 0 cash = 0 startDay = 34 trendThreshold = 1 shorts = longs = holds = 0 time = 0 for i in range(startDay,min(DAYS_coin1,DAYS_coin2)): time+=1 x_coin1,target_coin1 = dataloader_coin1[i] x_coin2,target_coin2 = dataloader_coin2[i] price_coin1 = dataloader_coin1.getDataFrame(i,1) price_coin2 = dataloader_coin2.getDataFrame(i,1) if i == startDay: coin1_amt = 5000/ price_coin1 coin2_amt = 5000/ price_coin2 out_coin1 = model_coin1(x_coin1) out_coin2 = model_coin2(x_coin2) zScore, risk = residualModel.zScore(i,out_coin1,out_coin2) trend_coin1 = getGeneralTrends(dataloader_coin1,i) trend_coin2 = getGeneralTrends(dataloader_coin2,i) if not risk: if zScore > 1: shorts+=1 if trend_coin2 > trendThreshold: temp = coin1_amt* price_coin1 coin1_amt = 0 coin2_amt += (temp / price_coin2) # print("\t",i,"Transaction: short at ",price_coin1.item(),price_coin2.item()) elif zScore < -1: longs+=1 if trend_coin1 > trendThreshold: temp = coin2_amt* price_coin2 coin2_amt = 0 coin1_amt += (temp / price_coin1) # print("\t",i,"Transaction: long at ",price_coin1.item(),price_coin2.item()) else: holds+=1 out_coin1 = out_coin1.item()*dataloader_coin1.pmax.item() out_coin2 = out_coin2.item()*dataloader_coin2.pmax.item() print(COIN1,COIN2,"\n\t",(coin1_amt * price_coin1) + (coin2_amt * price_coin2) + cash) print(time,'\n') if __name__ == "__main__": main("eth","btc") main("eth","ltc") main("ltc","btc")
the-stack_106_23909
import binascii import ctypes import json import logging import traceback from datetime import date, datetime, timedelta from pathlib import Path from channels.db import database_sync_to_async from channels.generic.websocket import WebsocketConsumer from django.core.exceptions import ObjectDoesNotExist from django.utils import timezone from notif.models import Notification from notif.models_serializers import NotificationSerializer from rest_framework.authtoken.models import Token logger = logging.getLogger("notif") class PushNotifConsumer(WebsocketConsumer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.token: str = None self.user = None def connect(self): try: self.accept() self.token = self.scope["url_route"]["kwargs"]["token"] db_tok = Token.objects.get(key=self.token) self.user = db_tok.user self.user.settings.push_channel = self.channel_name self.user.settings.save() logger.info("Accepted") except Exception as e: print(traceback.print_exc()) logging.error(traceback.format_exc()) def disconnect(self, close_code): try: self.user.settings.push_channel = None self.user.settings.save() except Exception as e: print(traceback.format_exc()) logging.error(traceback.format_exc()) def receive(self, text_data): event = json.loads(text_data) logger.info("{} >> {}".format(self.user, text_data)) event_handler = getattr(self, event["type"].lower().replace(".", "_"), None) if callable(event_handler): event_handler(event) def notify(self, data: dict): self.send(json.dumps(data)) def notification(self, data: dict): self.send(json.dumps(data)) def unread(self, event: dict): notifs = Notification.objects.filter(user=self.user, read__isnull=True) event["count"] = len(notifs) event["notifications"] = NotificationSerializer(notifs, many=True).data self.send(json.dumps(event)) def markread(self, event: dict): notifs = Notification.objects.filter(user=self.user, read__isnull=True) notifs.update(read=timezone.now()) event["success"] = True self.send(json.dumps(event))
the-stack_106_23910
import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F import math class Conv2dSubsampling(nn.Module): def __init__(self, input_dim, output_dim, dropout=0.0): """ :param input_dim: the log mel feature (normally 40) :param output_dim: network size (512) :param dropout: dropout rate """ super(Conv2dSubsampling, self).__init__() self.input_dim = input_dim self.output_dim = output_dim # first conv is nn.Conv2d(1, output_dim, 3, 2) # secnd conv is nn.Conv2d(output_dim, odin, 3, 2) self.in_conv_weight = nn.Parameter(torch.Tensor(output_dim, 1, 3, 3)) self.in_conv_bias = nn.Parameter(torch.Tensor(output_dim)) self.in_stride = 2 self.out_conv_weight = nn.Parameter(torch.Tensor(output_dim, output_dim, 3, 3)) self.out_conv_bias = nn.Parameter(torch.Tensor(output_dim)) self.out_stride = 2 cnn_feature_size = output_dim * (((input_dim - 1) // 2 - 1) // 2) self.out_weight = nn.Parameter(torch.Tensor(output_dim, cnn_feature_size)) self.out_bias = nn.Parameter(torch.Tensor(output_dim)) self.dropout = dropout self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.in_conv_weight, a=math.sqrt(5)) nn.init.kaiming_uniform_(self.out_conv_weight, a=math.sqrt(5)) fan_in, _ = init._calculate_fan_in_and_fan_out(self.in_conv_weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.in_conv_bias, -bound, bound) fan_in, _ = init._calculate_fan_in_and_fan_out(self.out_conv_weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.out_conv_bias, -bound, bound) std_ = math.sqrt(2.0 / (self.output_dim + self.output_dim)) nn.init.normal_(self.out_weight, 0.0, std_) nn.init.constant_(self.out_bias, 0.) return def forward(self, input, input_mask): """ :param input: [bsz x seq_len x input_size] :param input_mask: [bsz x seq_len] :return: """ input = input.unsqueeze(1) # [bsz x 1 x seq_len x input_size] # padding = 0, dilation = 1, groups = 1 input = F.conv2d(input, self.in_conv_weight, self.in_conv_bias, self.in_stride, 0, 1, 1) input = F.relu(input) input = F.conv2d(input, self.out_conv_weight, self.out_conv_bias, self.out_stride, 0, 1, 1) input = F.relu(input) b, c, t, f = input.size() input = input.transpose(1, 2).contiguous().view(b, t, c * f) input = F.linear(input, self.out_weight, self.out_bias) # input = F.dropout(input, p=self.dropout, training=self.training) mask = input_mask[:, :-2:2][:, :-2:2] return input, mask class ConformerConvBlock(nn.Module): def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True): super(ConformerConvBlock, self).__init__() assert (kernel_size - 1) % 2 == 0 self.pointwise_conv1 = nn.Conv1d(channels, 2*channels, kernel_size=1, stride=1, padding=0, bias=bias) self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias=bias) self.batch_norm = nn.BatchNorm1d(channels) self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1, stride=1, padding=0, bias=bias) self.activation = activation # self.in_pointwise_weight = nn.Conv1d(channels, 2*channels, kernel_size=1, stride=1, padding=0, bias=False) # self.in_pointwise_bias = nn.Parameter(torch.Tensor(2 * channels)) # # self.depthwise_weight = nn.Parameter(torch.Tensor(channels, channels // channels, kernel_size)) # self.depthwise_bias = nn.Parameter(torch.Tensor(channels)) # self.padding = (kernel_size - 1) // 2 # self.groups = channels # # self.norm = nn.BatchNorm1d(channels) # self.out_pointwise_weight = nn.Parameter(torch.Tensor(channels, channels, 1)) # self.out_pointwise_bias = nn.Parameter(torch.Tensor(channels)) # # self.activation = activation self.reset_parameters() def reset_parameters(self): nn.init.kaiming_normal_(self.pointwise_conv1.weight, nonlinearity='relu') nn.init.kaiming_normal_(self.depthwise_conv.weight, nonlinearity='relu') nn.init.kaiming_normal_(self.pointwise_conv2.weight, nonlinearity='relu') nn.init.constant_(self.pointwise_conv1.bias, 0) nn.init.constant_(self.pointwise_conv2.bias, 0) nn.init.constant_(self.depthwise_conv.bias, 0) # nn.init.kaiming_uniform_(self.in_pointwise_weight, a=math.sqrt(5)) # nn.init.kaiming_uniform_(self.depthwise_weight, a=math.sqrt(5)) # nn.init.kaiming_uniform_(self.out_pointwise_weight, a=math.sqrt(5)) # # fan_in, _ = init._calculate_fan_in_and_fan_out(self.in_pointwise_weight) # bound = 1 / math.sqrt(fan_in) # init.uniform_(self.in_pointwise_bias, -bound, bound) # # fan_in, _ = init._calculate_fan_in_and_fan_out(self.depthwise_weight) # bound = 1 / math.sqrt(fan_in) # init.uniform_(self.depthwise_bias, -bound, bound) # # fan_in, _ = init._calculate_fan_in_and_fan_out(self.out_pointwise_weight) # bound = 1 / math.sqrt(fan_in) # init.uniform_(self.out_pointwise_bias, -bound, bound) def forward(self, x, pad_mask=None): """ :param pad_mask: [seq_len x bsz] indicating which element is correct (this should be the same with the attention mask (pad=1, unpad=0) :param x: [seq_len x bsz x hidden_size] :return: """ x = x.transpose(0, 1).transpose(1, 2) # to [bsz x hidden_size x seq_len] # pointwise conv does not need to mask because its elementwise projection x = self.pointwise_conv1(x) x = F.glu(x, dim=1) # if pad_mask is not None: # pad_mask = pad_mask.transpose(0, 1).transpose(1, 2) # # print(x.size(), pad_mask.size()) # x = x.masked_fill_(pad_mask, 0) x = self.depthwise_conv(x) x = self.activation(self.batch_norm(x)) x = self.pointwise_conv2(x) # x = F.conv1d(x, self.in_pointwise_weight, self.in_pointwise_bias, 1, 0, 1, 1) # x = F.glu(x, dim=1) # # x = F.conv1d(x, self.depthwise_weight, self.depthwise_bias, 1, self.padding, 1, self.groups) # x = self.activation(x) # # x = F.conv1d(x, self.out_pointwise_weight, self.out_pointwise_bias, 1, 0, 1, 1) x = x.transpose(1, 2).transpose(0, 1) # back to [seq_len x bsz x hidden_size] return x if __name__ == "__main__": bsz = 160 seq_len = 1000 input_size = 48 output_size = 128 kernel = 31 subsampler = Conv2dSubsampling(input_size, output_size) subsampler = subsampler.cuda() conv = ConformerConvBlock(output_size, kernel) conv = conv.cuda() input = torch.randn(seq_len, bsz, input_size) mask = torch.randn(bsz, seq_len) input = input.cuda() mask = mask.cuda() input, mask = subsampler(input.transpose(0, 1), mask) print(input.size()) print(mask.size()) output = conv(input.transpose(0, 1)) print(output.size())
the-stack_106_23913
from arches.app.models.system_settings import settings from arches.app.utils.betterJSONSerializer import JSONSerializer from arches.app.search.components.base import BaseSearchFilter details = { "searchcomponentid": "", "name": "Saved", "icon": "fa fa-bookmark", "modulename": "saved_searches.py", "classname": "SavedSearches", "type": "popup", "componentpath": "views/components/search/saved-searches", "componentname": "saved-searches", "sortorder": "2", "enabled": True, } class SavedSearches(BaseSearchFilter): def view_data(self): ret = {} ret["saved_searches"] = settings.SAVED_SEARCHES return ret
the-stack_106_23914
import pytest from literature.crud.editor_crud import create, show, patch, destroy, show_changesets from sqlalchemy import create_engine from sqlalchemy import MetaData # from literature import models from literature.models import ( Base, EditorModel ) from literature.schemas import EditorSchemaPost from literature.database.config import SQLALCHEMY_DATABASE_URL from sqlalchemy.orm import sessionmaker from fastapi import HTTPException metadata = MetaData() engine = create_engine(SQLALCHEMY_DATABASE_URL, connect_args={"options": "-c timezone=utc"}) SessionLocal = sessionmaker(bind=engine, autoflush=True) db = SessionLocal() # Add tables/schema if not already there. Base.metadata.create_all(engine) # Exit if this is not a test database, Exit. if "literature-test" not in SQLALCHEMY_DATABASE_URL: exit(-1) def test_get_bad_editor(): with pytest.raises(HTTPException): show(db, 99999) def test_create_editor(): xml = { "order": 1, "first_name": "string", "last_name": "string", "name": "003_TCU", "orcid": "ORCID:2345-2345-2345-234X", "reference_curie": "AGR:AGR-Reference-0000000001" } res = create(db, xml) assert res # check db for editor editor = db.query(EditorModel).filter(EditorModel.name == "003_TCU").one() assert editor.first_name == "string" def test_create_editor_for_ref_later(): xml = { "order": 2, "first_name": "string2", "last_name": "string3", "name": "Name2", "orcid": "ORCID:3333-4444-5555-666X", "reference_curie": "AGR:AGR-Reference-0000000001" } res = create(db, xml) assert res # check db for editor editor = db.query(EditorModel).filter(EditorModel.name == "Name2").one() assert editor.first_name == "string2" def test_patch_editor(): xml = {'first_name': "003_TUA", 'orcid': "ORCID:5432-5432-5432-432X", 'reference_curie': 'AGR:AGR-Reference-0000000003'} editor = db.query(EditorModel).filter(EditorModel.name == "003_TCU").one() ed_schem = EditorSchemaPost(**xml) res = patch(db, editor.editor_id, ed_schem) assert res mod_editor = db.query(EditorModel).filter(EditorModel.first_name == "003_TUA").one() assert editor.editor_id == mod_editor.editor_id assert mod_editor.orcid == "ORCID:5432-5432-5432-432X" def test_show_editor(): editor = db.query(EditorModel).filter(EditorModel.first_name == "003_TUA").one() edi = show(db, editor.editor_id) assert edi['orcid'] == "ORCID:5432-5432-5432-432X" def test_changesets(): editor = db.query(EditorModel).filter(EditorModel.first_name == "003_TUA").one() res = show_changesets(db, editor.editor_id) # Orcid changed from None -> ORCID:2345-2345-2345-234X -> ORCID:5432-5432-5432-432X for transaction in res: if not transaction['changeset']['orcid'][0]: assert transaction['changeset']['orcid'][1] == 'ORCID:2345-2345-2345-234X' else: assert transaction['changeset']['orcid'][0] == 'ORCID:2345-2345-2345-234X' assert transaction['changeset']['orcid'][1] == 'ORCID:5432-5432-5432-432X' def test_destroy_editor(): editor = db.query(EditorModel).filter(EditorModel.first_name == "003_TUA").one() destroy(db, editor.editor_id) # It should now give an error on lookup. with pytest.raises(HTTPException): show(db, editor.editor_id) # Deleting it again should give an error as the lookup will fail. with pytest.raises(HTTPException): destroy(db, editor.editor_id)
the-stack_106_23915
import asyncio import hashlib import json import logging import sys import aiohttp import aiostream from . import cli_logger from .. import exceptions from .utils import handle_collection_not_found from .utils import handle_collection_was_removed from .utils import handle_storage_init_error from .utils import load_status from .utils import save_status from .utils import storage_class_from_config from .utils import storage_instance_from_config # Increase whenever upgrade potentially breaks discovery cache and collections # should be re-discovered DISCOVERY_CACHE_VERSION = 1 logger = logging.getLogger(__name__) def _get_collections_cache_key(pair): m = hashlib.sha256() j = json.dumps( [ DISCOVERY_CACHE_VERSION, pair.collections, pair.config_a, pair.config_b, ], sort_keys=True, ) m.update(j.encode("utf-8")) return m.hexdigest() async def collections_for_pair( status_path, pair, from_cache=True, list_collections=False, *, connector: aiohttp.TCPConnector, ): """Determine all configured collections for a given pair. Takes care of shortcut expansion and result caching. :param status_path: The path to the status directory. :param from_cache: Whether to load from cache (aborting on cache miss) or discover and save to cache. :returns: iterable of (collection, (a_args, b_args)) """ cache_key = _get_collections_cache_key(pair) if from_cache: rv = load_status(status_path, pair.name, data_type="collections") if rv and rv.get("cache_key", None) == cache_key: return list(_expand_collections_cache( rv['collections'], pair.config_a, pair.config_b )) if rv: raise exceptions.UserError("Detected change in config file, " "please run `vdirsyncer discover {}`." .format(pair.name)) raise exceptions.UserError("Please run `vdirsyncer discover {}` " " before synchronization." .format(pair.name)) logger.info("Discovering collections for pair {}".format(pair.name)) a_discovered = _DiscoverResult(pair.config_a, connector=connector) b_discovered = _DiscoverResult(pair.config_b, connector=connector) if list_collections: # TODO: We should gather data and THEN print, so it can be async. await _print_collections( pair.config_a["instance_name"], a_discovered.get_self, connector=connector, ) await _print_collections( pair.config_b["instance_name"], b_discovered.get_self, connector=connector, ) # We have to use a list here because the special None/null value would get # mangled to string (because JSON objects always have string keys). rv = await aiostream.stream.list( expand_collections( shortcuts=pair.collections, config_a=pair.config_a, config_b=pair.config_b, get_a_discovered=a_discovered.get_self, get_b_discovered=b_discovered.get_self, _handle_collection_not_found=handle_collection_not_found, ) ) if "from b" in (pair.collections or []): only_in_a = set((await a_discovered.get_self()).keys()) - set( (await b_discovered.get_self()).keys()) if only_in_a and "delete" in pair.config_a["implicit"]: for a in only_in_a: try: handle_collection_was_removed(pair.config_a, a) save_status(status_path, pair.name, a, data_type="metadata") save_status(status_path, pair.name, a, data_type="items") except NotImplementedError as e: cli_logger.error(e) if "from a" in (pair.collections or []): only_in_b = set((await b_discovered.get_self()).keys()) - set( (await a_discovered.get_self()).keys()) if only_in_b and "delete" in pair.config_b["implicit"]: for b in only_in_b: try: handle_collection_was_removed(pair.config_b, b) save_status(status_path, pair.name, b, data_type="metadata") save_status(status_path, pair.name, b, data_type="items") except NotImplementedError as e: cli_logger.error(e) await _sanity_check_collections(rv, connector=connector) save_status( status_path, pair.name, data_type="collections", data={ "collections": list( _compress_collections_cache(rv, pair.config_a, pair.config_b) ), "cache_key": cache_key, }, ) return rv async def _sanity_check_collections(collections, *, connector): tasks = [] for _, (a_args, b_args) in collections: tasks.append(storage_instance_from_config(a_args, connector=connector)) tasks.append(storage_instance_from_config(b_args, connector=connector)) await asyncio.gather(*tasks) def _compress_collections_cache(collections, config_a, config_b): def deduplicate(x, y): rv = {} for key, value in x.items(): if key not in y or y[key] != value: rv[key] = value return rv for name, (a, b) in collections: yield name, (deduplicate(a, config_a), deduplicate(b, config_b)) def _expand_collections_cache(collections, config_a, config_b): for name, (a_delta, b_delta) in collections: a = dict(config_a) a.update(a_delta) b = dict(config_b) b.update(b_delta) yield name, (a, b) class _DiscoverResult: def __init__(self, config, *, connector): self._cls, _ = storage_class_from_config(config) if self._cls.__name__ in [ "CardDAVStorage", "CalDAVStorage", "GoogleCalendarStorage", ]: assert connector is not None config["connector"] = connector self._config = config self._discovered = None async def get_self(self): if self._discovered is None: self._discovered = await self._discover() return self._discovered async def _discover(self): try: discovered = await aiostream.stream.list(self._cls.discover(**self._config)) except NotImplementedError: return {} except Exception: return handle_storage_init_error(self._cls, self._config) else: storage_type = self._config["type"] rv = {} for args in discovered: args["type"] = storage_type rv[args["collection"]] = args return rv async def expand_collections( shortcuts, config_a, config_b, get_a_discovered, get_b_discovered, _handle_collection_not_found, ): handled_collections = set() if shortcuts is None: shortcuts = [None] for shortcut in shortcuts: if shortcut == "from a": collections = await get_a_discovered() elif shortcut == "from b": collections = await get_b_discovered() else: collections = [shortcut] for collection in collections: if isinstance(collection, list): collection, collection_a, collection_b = collection else: collection_a = collection_b = collection if collection in handled_collections: continue handled_collections.add(collection) a_args = await _collection_from_discovered( get_a_discovered, collection_a, config_a, _handle_collection_not_found, ) b_args = await _collection_from_discovered( get_b_discovered, collection_b, config_b, _handle_collection_not_found, ) yield collection, (a_args, b_args) async def _collection_from_discovered( get_discovered, collection, config, _handle_collection_not_found ): if collection is None: args = dict(config) args["collection"] = None return args try: return (await get_discovered())[collection] except KeyError: return await _handle_collection_not_found(config, collection) async def _print_collections( instance_name: str, get_discovered, *, connector: aiohttp.TCPConnector, ): try: discovered = await get_discovered() except exceptions.UserError: raise except Exception: # Unless discovery failed due to a user-inflicted error (instanceof # UserError), we don't even know if the storage supports discovery # properly. So we can't abort. import traceback logger.debug("".join(traceback.format_tb(sys.exc_info()[2]))) logger.warning( "Failed to discover collections for {}, use `-vdebug` " "to see the full traceback.".format(instance_name) ) return logger.info(f"{instance_name}:") tasks = [] for args in discovered.values(): tasks.append(_print_single_collection(args, instance_name, connector)) await asyncio.gather(*tasks) async def _print_single_collection(args, instance_name, connector): collection = args["collection"] if collection is None: return args["instance_name"] = instance_name try: storage = await storage_instance_from_config( args, create=False, connector=connector, ) displayname = await storage.get_meta("displayname") except Exception: displayname = "" logger.info( " - {}{}".format( json.dumps(collection), f' ("{displayname}")' if displayname and displayname != collection else "", ) )
the-stack_106_23916
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Base API Library""" import simplejson as json from keystoneauth1 import exceptions as ks_exceptions from keystoneauth1 import session as ks_session from osc_lib import exceptions from openstackclient.i18n import _ class KeystoneSession(object): """Wrapper for the Keystone Session Restore some requests.session.Session compatibility; keystoneauth1.session.Session.request() has the method and url arguments swapped from the rest of the requests-using world. """ def __init__( self, session=None, endpoint=None, **kwargs ): """Base object that contains some common API objects and methods :param Session session: The default session to be used for making the HTTP API calls. :param string endpoint: The URL from the Service Catalog to be used as the base for API requests on this API. """ super(KeystoneSession, self).__init__() # a requests.Session-style interface self.session = session self.endpoint = endpoint def _request(self, method, url, session=None, **kwargs): """Perform call into session All API calls are funneled through this method to provide a common place to finalize the passed URL and other things. :param string method: The HTTP method name, i.e. ``GET``, ``PUT``, etc :param string url: The API-specific portion of the URL path :param Session session: HTTP client session :param kwargs: keyword arguments passed to requests.request(). :return: the requests.Response object """ if not session: session = self.session if not session: session = ks_session.Session() if self.endpoint: if url: url = '/'.join([self.endpoint.rstrip('/'), url.lstrip('/')]) else: url = self.endpoint.rstrip('/') # Why is ksc session backwards??? return session.request(url, method, **kwargs) class BaseAPI(KeystoneSession): """Base API""" def __init__( self, session=None, service_type=None, endpoint=None, **kwargs ): """Base object that contains some common API objects and methods :param Session session: The default session to be used for making the HTTP API calls. :param string service_type: API name, i.e. ``identity`` or ``compute`` :param string endpoint: The URL from the Service Catalog to be used as the base for API requests on this API. """ super(BaseAPI, self).__init__(session=session, endpoint=endpoint) self.service_type = service_type # The basic action methods all take a Session and return dict/lists def create( self, url, session=None, method=None, **params ): """Create a new resource :param string url: The API-specific portion of the URL path :param Session session: HTTP client session :param string method: HTTP method (default POST) """ if not method: method = 'POST' ret = self._request(method, url, session=session, **params) # Should this move into _requests()? try: return ret.json() except json.JSONDecodeError: return ret def delete( self, url, session=None, **params ): """Delete a resource :param string url: The API-specific portion of the URL path :param Session session: HTTP client session """ return self._request('DELETE', url, **params) def list( self, path, session=None, body=None, detailed=False, **params ): """Return a list of resources GET ${ENDPOINT}/${PATH}?${PARAMS} path is often the object's plural resource type :param string path: The API-specific portion of the URL path :param Session session: HTTP client session :param body: data that will be encoded as JSON and passed in POST request (GET will be sent by default) :param bool detailed: Adds '/details' to path for some APIs to return extended attributes :returns: JSON-decoded response, could be a list or a dict-wrapped-list """ if detailed: path = '/'.join([path.rstrip('/'), 'details']) if body: ret = self._request( 'POST', path, # service=self.service_type, json=body, params=params, ) else: ret = self._request( 'GET', path, # service=self.service_type, params=params, ) try: return ret.json() except json.JSONDecodeError: return ret # Layered actions built on top of the basic action methods do not # explicitly take a Session but one may still be passed in kwargs def find_attr( self, path, value=None, attr=None, resource=None, ): """Find a resource via attribute or ID Most APIs return a list wrapped by a dict with the resource name as key. Some APIs (Identity) return a dict when a query string is present and there is one return value. Take steps to unwrap these bodies and return a single dict without any resource wrappers. :param string path: The API-specific portion of the URL path :param string value: value to search for :param string attr: attribute to use for resource search :param string resource: plural of the object resource name; defaults to path For example: n = find(netclient, 'network', 'networks', 'matrix') """ # Default attr is 'name' if attr is None: attr = 'name' # Default resource is path - in many APIs they are the same if resource is None: resource = path def getlist(kw): """Do list call, unwrap resource dict if present""" ret = self.list(path, **kw) if isinstance(ret, dict) and resource in ret: ret = ret[resource] return ret # Search by attribute kwargs = {attr: value} data = getlist(kwargs) if isinstance(data, dict): return data if len(data) == 1: return data[0] if len(data) > 1: msg = _("Multiple %(resource)s exist with %(attr)s='%(value)s'") raise exceptions.CommandError( msg % {'resource': resource, 'attr': attr, 'value': value} ) # Search by id kwargs = {'id': value} data = getlist(kwargs) if len(data) == 1: return data[0] msg = _("No %(resource)s with a %(attr)s or ID of '%(value)s' found") raise exceptions.CommandError( msg % {'resource': resource, 'attr': attr, 'value': value} ) def find_bulk( self, path, **kwargs ): """Bulk load and filter locally :param string path: The API-specific portion of the URL path :param kwargs: A dict of AVPs to match - logical AND :returns: list of resource dicts """ items = self.list(path) if isinstance(items, dict): # strip off the enclosing dict key = list(items.keys())[0] items = items[key] ret = [] for o in items: try: if all(o[attr] == kwargs[attr] for attr in kwargs.keys()): ret.append(o) except KeyError: continue return ret def find_one( self, path, **kwargs ): """Find a resource by name or ID :param string path: The API-specific portion of the URL path :returns: resource dict """ bulk_list = self.find_bulk(path, **kwargs) num_bulk = len(bulk_list) if num_bulk == 0: msg = _("none found") raise exceptions.NotFound(msg) elif num_bulk > 1: msg = _("many found") raise RuntimeError(msg) return bulk_list[0] def find( self, path, value=None, attr=None, ): """Find a single resource by name or ID :param string path: The API-specific portion of the URL path :param string value: search expression :param string attr: name of attribute for secondary search """ try: ret = self._request('GET', "/%s/%s" % (path, value)).json() except ks_exceptions.NotFound: kwargs = {attr: value} try: ret = self.find_one("/%s/detail" % (path), **kwargs) except ks_exceptions.NotFound: msg = _("%s not found") % value raise exceptions.NotFound(msg) return ret