filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_23214
#!/usr/bin/env python # encoding: utf8 # # Copyright © Burak Arslan <burak at arskom dot com dot tr>, # Arskom Ltd. http://www.arskom.com.tr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the owner nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ''' This example shows how to define and use complex structures in spyne. This example uses an extremely simple in-memory dictionary to store the User objects. ''' import logging from spyne.application import Application from spyne.decorator import srpc from spyne.interface.wsdl import Wsdl11 from spyne.protocol.soap import Soap11 from spyne.service import ServiceBase from spyne.model.complex import Array from spyne.model.complex import ComplexModel from spyne.model.primitive import Integer from spyne.model.primitive import String from spyne.server.wsgi import WsgiApplication from spyne.error import ResourceNotFoundError user_database = {} userid_seq = 1 class Permission(ComplexModel): __namespace__ = "permission" app = String(values=['library', 'delivery', 'accounting']) perms = String(min_occurs=1, max_occurs=2, values=['read','write']) class User(ComplexModel): __namespace__ = "user" userid = Integer username = String firstname = String lastname = String permissions = Array(Permission) # add superuser to the 'database' user_database[0] = User( userid=0, username='root', firstname='Super', lastname='User', permissions=[ Permission(app='library', perms=['read', 'write']), Permission(app='delivery', perms=['read', 'write']), Permission(app='accounting', perms=['read', 'write']), ] ) class UserManager(ServiceBase): @srpc(User, _returns=Integer) def add_user(user): global user_database global userid_seq user.userid = userid_seq userid_seq = userid_seq + 1 user_database[user.userid] = user return user.userid @srpc(_returns=User) def super_user(): return user_database[0] @srpc(Integer, _returns=User) def get_user(userid): global user_database # If rely on dict lookup raising KeyError here, you'll return an # internal error to the client, which tells the client that there's # something wrong in the server. However in this case, KeyError means # invalid request, so it's best to return a client error. # For the HttpRpc case, internal error is 500 whereas # ResourceNotFoundError is 404. if not (userid in user_database): raise ResourceNotFoundError(userid) return user_database[userid] @srpc(User) def modify_user(user): global user_database if not (user.userid in user_database): raise ResourceNotFoundError(user.userid) user_database[user.userid] = user @srpc(Integer) def delete_user(userid): global user_database if not (userid in user_database): raise ResourceNotFoundError(userid) del user_database[userid] @srpc(_returns=Array(User)) def list_users(): global user_database return user_database.values() if __name__=='__main__': from wsgiref.simple_server import make_server logging.basicConfig(level=logging.DEBUG) logging.getLogger('spyne.protocol.xml').setLevel(logging.DEBUG) application = Application([UserManager], 'spyne.examples.complex', interface=Wsdl11(), in_protocol=Soap11(), out_protocol=Soap11()) server = make_server('127.0.0.1', 7789, WsgiApplication(application)) logging.info("listening to http://127.0.0.1:7789") logging.info("wsdl is at: http://localhost:7789/?wsdl") server.serve_forever()
the-stack_106_23216
from django.conf.urls import url from django.urls import path, include, re_path from posts.views import post_create,post_detail,post_list,post_update,post_delete urlpatterns = [ re_path(r'^$',post_list,name='list'), re_path(r'^create/$',post_create), re_path(r'^(?P<slug>[\w-]+)/$',post_detail,name='detail'), re_path(r'^(?P<slug>[\w-]+)/edit/$',post_update,name='update'), re_path(r'^(?P<slug>[\w-]+)/delete/$',post_delete), ]
the-stack_106_23217
#Make a shot map and a pass map using Statsbomb data #Set match id in match_id_required. #Function to draw the pitch import matplotlib.pyplot as plt import numpy as np #Size of the pitch in yards (!!!) pitchLengthX=120 pitchWidthY=80 #ID for England vs Sweden Womens World Cup match_id_required = 69301 home_team_required ="England Women's" away_team_required ="Sweden Women's" # Load in the data # I took this from https://znstrider.github.io/2018-11-11-Getting-Started-with-StatsBomb-Data/ file_name=str(match_id_required)+'.json' #Load in all match events import json with open('Statsbomb/data/events/'+file_name) as data_file: #print (mypath+'events/'+file) data = json.load(data_file) #get the nested structure into a dataframe #store the dataframe in a dictionary with the match id as key (remove '.json' from string) from pandas.io.json import json_normalize df = json_normalize(data, sep = "_").assign(match_id = file_name[:-5]) #A dataframe of shots shots = df.loc[df['type_name'] == 'Shot'].set_index('id') #Draw the pitch from FCPython import createPitch (fig,ax) = createPitch(pitchLengthX,pitchWidthY,'yards','gray') #Plot the shots for i,shot in shots.iterrows(): x=shot['location'][0] y=shot['location'][1] goal=shot['shot_outcome_name']=='Goal' team_name=shot['team_name'] circleSize=2 #circleSize=np.sqrt(shot['shot_statsbomb_xg']*15) if (team_name==home_team_required): if goal: shotCircle=plt.Circle((x,pitchWidthY-y),circleSize,color="red") plt.text((x+1),pitchWidthY-y+1,shot['player_name']) else: shotCircle=plt.Circle((x,pitchWidthY-y),circleSize,color="red") shotCircle.set_alpha(.2) elif (team_name==away_team_required): if goal: shotCircle=plt.Circle((pitchLengthX-x,y),circleSize,color="blue") plt.text((pitchLengthX-x+1),y+1,shot['player_name']) else: shotCircle=plt.Circle((pitchLengthX-x,y),circleSize,color="blue") shotCircle.set_alpha(.2) ax.add_patch(shotCircle) plt.text(5,75,away_team_required + ' shots') plt.text(80,75,home_team_required + ' shots') fig.set_size_inches(10, 7) fig.savefig('Output/shots.pdf', dpi=100) plt.show() #Exercise: #1, Create a dataframe of passes which contains all the passes in the match #2, Plot the start point of every Sweden pass. Attacking left to right. #3, Plot only passes made by Caroline Seger (she is Sara Caroline Seger in the database) #4, Plot arrows to show where the passes we
the-stack_106_23218
# -*- coding: utf-8 -*- from datetime import datetime, time import warnings import numpy as np from pytz import utc from pandas._libs import lib, tslib from pandas._libs.tslib import Timestamp, NaT, iNaT from pandas._libs.tslibs import ( normalize_date, conversion, fields, timezones, resolution as libresolution) from pandas.util._decorators import cache_readonly, Appender from pandas.errors import PerformanceWarning from pandas import compat from pandas.core.dtypes.common import ( _NS_DTYPE, is_object_dtype, is_int64_dtype, is_datetime64tz_dtype, is_datetime64_dtype) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import isna from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries import pandas.core.common as com from pandas.core.algorithms import checked_add_with_arr from pandas.core import ops from pandas.tseries.frequencies import to_offset, get_period_alias from pandas.tseries.offsets import Tick, generate_range from pandas.core.arrays import datetimelike as dtl _midnight = time(0, 0) def _to_m8(key, tz=None): """ Timestamp-like => dt64 """ if not isinstance(key, Timestamp): # this also converts strings key = Timestamp(key, tz=tz) return np.int64(conversion.pydt_to_i8(key)).view(_NS_DTYPE) def _field_accessor(name, field, docstring=None): def f(self): values = self.asi8 if self.tz is not None: if self.tz is not utc: values = self._local_timestamps() if field in self._bool_ops: if field.endswith(('start', 'end')): freq = self.freq month_kw = 12 if freq: kwds = freq.kwds month_kw = kwds.get('startingMonth', kwds.get('month', 12)) result = fields.get_start_end_field(values, field, self.freqstr, month_kw) else: result = fields.get_date_field(values, field) # these return a boolean by-definition return result if field in self._object_ops: result = fields.get_date_name_field(values, field) result = self._maybe_mask_results(result, fill_value=None) else: result = fields.get_date_field(values, field) result = self._maybe_mask_results(result, fill_value=None, convert='float64') return result f.__name__ = name f.__doc__ = docstring return property(f) def _dt_array_cmp(cls, op): """ Wrap comparison operations to convert datetime-like to datetime64 """ opname = '__{name}__'.format(name=op.__name__) nat_result = True if opname == '__ne__' else False def wrapper(self, other): meth = getattr(dtl.DatetimeLikeArrayMixin, opname) if isinstance(other, (datetime, np.datetime64, compat.string_types)): if isinstance(other, (datetime, np.datetime64)): # GH#18435 strings get a pass from tzawareness compat self._assert_tzawareness_compat(other) try: other = _to_m8(other, tz=self.tz) except ValueError: # string that cannot be parsed to Timestamp return ops.invalid_comparison(self, other, op) result = meth(self, other) if isna(other): result.fill(nat_result) elif lib.is_scalar(other): return ops.invalid_comparison(self, other, op) else: if isinstance(other, list): try: other = type(self)(other) except ValueError: other = np.array(other, dtype=np.object_) elif not isinstance(other, (np.ndarray, ABCIndexClass, ABCSeries, DatetimeArrayMixin)): # Following Timestamp convention, __eq__ is all-False # and __ne__ is all True, others raise TypeError. return ops.invalid_comparison(self, other, op) if is_object_dtype(other): result = op(self.astype('O'), np.array(other)) o_mask = isna(other) elif not (is_datetime64_dtype(other) or is_datetime64tz_dtype(other)): # e.g. is_timedelta64_dtype(other) return ops.invalid_comparison(self, other, op) else: self._assert_tzawareness_compat(other) if not hasattr(other, 'asi8'): # ndarray, Series other = type(self)(other) result = meth(self, other) o_mask = other._isnan result = com.values_from_object(result) # Make sure to pass an array to result[...]; indexing with # Series breaks with older version of numpy o_mask = np.array(o_mask) if o_mask.any(): result[o_mask] = nat_result if self.hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls) class DatetimeArrayMixin(dtl.DatetimeLikeArrayMixin): """ Assumes that subclass __new__/__init__ defines: tz _freq _data """ _typ = "datetimearray" _bool_ops = ['is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'is_leap_year'] _object_ops = ['weekday_name', 'freq', 'tz'] # dummy attribute so that datetime.__eq__(DatetimeArray) defers # by returning NotImplemented timetuple = None # ensure that operations with numpy arrays defer to our implementation __array_priority__ = 1000 # ----------------------------------------------------------------- # Constructors _attributes = ["freq", "tz"] _tz = None _freq = None @classmethod def _simple_new(cls, values, freq=None, tz=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor """ assert isinstance(values, np.ndarray), type(values) if values.dtype == 'i8': # for compat with datetime/timedelta/period shared methods, # we can sometimes get here with int64 values. These represent # nanosecond UTC (or tz-naive) unix timestamps values = values.view('M8[ns]') assert values.dtype == 'M8[ns]', values.dtype result = object.__new__(cls) result._data = values result._freq = freq tz = timezones.maybe_get_tz(tz) result._tz = timezones.tz_standardize(tz) return result def __new__(cls, values, freq=None, tz=None, dtype=None): if tz is None and hasattr(values, 'tz'): # e.g. DatetimeIndex tz = values.tz if freq is None and hasattr(values, "freq"): # i.e. DatetimeArray, DatetimeIndex freq = values.freq freq, freq_infer = dtl.maybe_infer_freq(freq) # if dtype has an embedded tz, capture it tz = dtl.validate_tz_from_dtype(dtype, tz) if isinstance(values, DatetimeArrayMixin): # extract nanosecond unix timestamps values = values.asi8 if values.dtype == 'i8': values = values.view('M8[ns]') assert isinstance(values, np.ndarray), type(values) assert is_datetime64_dtype(values) # not yet assured nanosecond values = conversion.ensure_datetime64ns(values, copy=False) result = cls._simple_new(values, freq=freq, tz=tz) if freq_infer: result.freq = to_offset(result.inferred_freq) # NB: Among other things not yet ported from the DatetimeIndex # constructor, this does not call _deepcopy_if_needed return result @classmethod def _generate_range(cls, start, end, periods, freq, tz=None, normalize=False, ambiguous='raise', closed=None): periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError('Must provide freq argument if no data is ' 'supplied') if com.count_not_none(start, end, periods, freq) != 3: raise ValueError('Of the four parameters: start, end, periods, ' 'and freq, exactly three must be specified') freq = to_offset(freq) if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if start is None and end is None: if closed is not None: raise ValueError("Closed has to be None if not both of start" "and end are defined") left_closed, right_closed = dtl.validate_endpoints(closed) start, end, _normalized = _maybe_normalize_endpoints(start, end, normalize) tz, _ = _infer_tz_from_endpoints(start, end, tz) if tz is not None: # Localize the start and end arguments start = _maybe_localize_point( start, getattr(start, 'tz', None), start, freq, tz ) end = _maybe_localize_point( end, getattr(end, 'tz', None), end, freq, tz ) if start and end: # Make sure start and end have the same tz start = _maybe_localize_point( start, start.tz, end.tz, freq, tz ) end = _maybe_localize_point( end, end.tz, start.tz, freq, tz ) if freq is not None: # TODO: consider re-implementing _cached_range; GH#17914 index = _generate_regular_range(cls, start, end, periods, freq) if tz is not None and index.tz is None: arr = conversion.tz_localize_to_utc( index.asi8, tz, ambiguous=ambiguous) index = cls(arr) # index is localized datetime64 array -> have to convert # start/end as well to compare if start is not None: start = start.tz_localize(tz).asm8 if end is not None: end = end.tz_localize(tz).asm8 else: # Create a linearly spaced date_range in local time arr = np.linspace(start.value, end.value, periods) index = cls._simple_new( arr.astype('M8[ns]', copy=False), freq=None, tz=tz ) if not left_closed and len(index) and index[0] == start: index = index[1:] if not right_closed and len(index) and index[-1] == end: index = index[:-1] return cls._simple_new(index.asi8, freq=freq, tz=tz) # ----------------------------------------------------------------- # Descriptive Properties @property def _box_func(self): return lambda x: Timestamp(x, freq=self.freq, tz=self.tz) @cache_readonly def dtype(self): if self.tz is None: return _NS_DTYPE return DatetimeTZDtype('ns', self.tz) @property def tz(self): # GH 18595 return self._tz @tz.setter def tz(self, value): # GH 3746: Prevent localizing or converting the index by setting tz raise AttributeError("Cannot directly set timezone. Use tz_localize() " "or tz_convert() as appropriate") @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @property # NB: override with cache_readonly in immutable subclasses def _timezone(self): """ Comparable timezone both for pytz / dateutil""" return timezones.get_timezone(self.tzinfo) @property def offset(self): """get/set the frequency of the instance""" msg = ('{cls}.offset has been deprecated and will be removed ' 'in a future version; use {cls}.freq instead.' .format(cls=type(self).__name__)) warnings.warn(msg, FutureWarning, stacklevel=2) return self.freq @offset.setter def offset(self, value): """get/set the frequency of the instance""" msg = ('{cls}.offset has been deprecated and will be removed ' 'in a future version; use {cls}.freq instead.' .format(cls=type(self).__name__)) warnings.warn(msg, FutureWarning, stacklevel=2) self.freq = value @property # NB: override with cache_readonly in immutable subclasses def is_normalized(self): """ Returns True if all of the dates are at midnight ("no time") """ return conversion.is_date_array_normalized(self.asi8, self.tz) @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return libresolution.resolution(self.asi8, self.tz) # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def __array__(self, dtype=None): if is_object_dtype(dtype): return np.array(list(self), dtype=object) elif is_int64_dtype(dtype): return self.asi8 # TODO: warn that conversion may be lossy? return self._data.view(np.ndarray) # follow Index.__array__ def __iter__(self): """ Return an iterator over the boxed values Yields ------- tstamp : Timestamp """ # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = int(length / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = tslib.ints_to_pydatetime(data[start_i:end_i], tz=self.tz, freq=self.freq, box="timestamp") for v in converted: yield v # ---------------------------------------------------------------- # ExtensionArray Interface @property def _ndarray_values(self): return self._data @Appender(dtl.DatetimeLikeArrayMixin._validate_fill_value.__doc__) def _validate_fill_value(self, fill_value): if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, (datetime, np.datetime64)): self._assert_tzawareness_compat(fill_value) fill_value = Timestamp(fill_value).value else: raise ValueError("'fill_value' should be a Timestamp. " "Got '{got}'.".format(got=fill_value)) return fill_value # ----------------------------------------------------------------- # Comparison Methods _create_comparison_method = classmethod(_dt_array_cmp) def _has_same_tz(self, other): zzone = self._timezone # vzone sholdn't be None if value is non-datetime like if isinstance(other, np.datetime64): # convert to Timestamp as np.datetime64 doesn't have tz attr other = Timestamp(other) vzone = timezones.get_timezone(getattr(other, 'tzinfo', '__no_tz__')) return zzone == vzone def _assert_tzawareness_compat(self, other): # adapted from _Timestamp._assert_tzawareness_compat other_tz = getattr(other, 'tzinfo', None) if is_datetime64tz_dtype(other): # Get tzinfo from Series dtype other_tz = other.dtype.tz if other is NaT: # pd.NaT quacks both aware and naive pass elif self.tz is None: if other_tz is not None: raise TypeError('Cannot compare tz-naive and tz-aware ' 'datetime-like objects.') elif other_tz is None: raise TypeError('Cannot compare tz-naive and tz-aware ' 'datetime-like objects') # ----------------------------------------------------------------- # Arithmetic Methods def _sub_datetime_arraylike(self, other): """subtract DatetimeArray/Index or ndarray[datetime64]""" if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): assert is_datetime64_dtype(other) other = type(self)(other) if not self._has_same_tz(other): # require tz compat raise TypeError("{cls} subtraction must have the same " "timezones or no timezones" .format(cls=type(self).__name__)) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr(self_i8, -other_i8, arr_mask=self._isnan) if self.hasnans or other.hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view('timedelta64[ns]') def _add_offset(self, offset): assert not isinstance(offset, Tick) try: if self.tz is not None: values = self.tz_localize(None) else: values = self result = offset.apply_index(values) if self.tz is not None: result = result.tz_localize(self.tz) except NotImplementedError: warnings.warn("Non-vectorized DateOffset being applied to Series " "or DatetimeIndex", PerformanceWarning) result = self.astype('O') + offset return type(self)(result, freq='infer') def _sub_datetimelike_scalar(self, other): # subtract a datetime from myself, yielding a ndarray[timedelta64[ns]] assert isinstance(other, (datetime, np.datetime64)) assert other is not NaT other = Timestamp(other) if other is NaT: return self - NaT if not self._has_same_tz(other): # require tz compat raise TypeError("Timestamp subtraction must have the same " "timezones or no timezones") i8 = self.asi8 result = checked_add_with_arr(i8, -other.value, arr_mask=self._isnan) result = self._maybe_mask_results(result) return result.view('timedelta64[ns]') def _add_delta(self, delta): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new DatetimeArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : DatetimeArray """ new_values = dtl.DatetimeLikeArrayMixin._add_delta(self, delta) return type(self)(new_values, tz=self.tz, freq='infer') # ----------------------------------------------------------------- # Timezone Conversion and Localization Methods def _local_timestamps(self): """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ return conversion.tz_convert(self.asi8, utc, self.tz) def tz_convert(self, tz): """ Convert tz-aware Datetime Array/Index from one time zone to another. Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A `tz` of None will convert to UTC and remove the timezone information. Returns ------- normalized : same type as self Raises ------ TypeError If Datetime Array/Index is tz-naive. See Also -------- DatetimeIndex.tz : A timezone that has a variable offset from UTC. DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex. Examples -------- With the `tz` parameter, we can change the DatetimeIndex to other time zones: >>> dti = pd.DatetimeIndex(start='2014-08-01 09:00', ... freq='H', periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='H') With the ``tz=None``, we can remove the timezone (after converting to UTC if necessary): >>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',freq='H', ... periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='H') """ tz = timezones.maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError('Cannot convert tz-naive timestamps, use ' 'tz_localize to localize') # No conversion since timestamps are all UTC to begin with return self._simple_new(self.asi8, tz=tz, freq=self.freq) def tz_localize(self, tz, ambiguous='raise', nonexistent='raise', errors=None): """ Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone unaware objects. Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : 'infer', 'NaT', bool array, default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times nonexistent : 'shift', 'NaT' default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift' will shift the nonexistent times forward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - 'raise' will raise an NonExistentTimeError if there are nonexistent times .. versionadded:: 0.24.0 errors : {'raise', 'coerce'}, default None - 'raise' will raise a NonExistentTimeError if a timestamp is not valid in the specified time zone (e.g. due to a transition from or to DST time). Use ``nonexistent='raise'`` instead. - 'coerce' will return NaT if the timestamp can not be converted to the specified time zone. Use ``nonexistent='NaT'`` instead. .. deprecated:: 0.24.0 Returns ------- result : same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D') With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.to_datetime(pd.Series([ ... '2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.dt.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.to_datetime(pd.Series([ ... '2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False])) 0 2018-10-28 01:20:00+02:00 1 2018-10-28 02:36:00+02:00 2 2018-10-28 03:46:00+01:00 dtype: datetime64[ns, CET] """ if errors is not None: warnings.warn("The errors argument is deprecated and will be " "removed in a future release. Use " "nonexistent='NaT' or nonexistent='raise' " "instead.", FutureWarning) if errors == 'coerce': nonexistent = 'NaT' elif errors == 'raise': nonexistent = 'raise' else: raise ValueError("The errors argument must be either 'coerce' " "or 'raise'.") if nonexistent not in ('raise', 'NaT', 'shift'): raise ValueError("The nonexistent argument must be one of 'raise'," " 'NaT' or 'shift'") if self.tz is not None: if tz is None: new_dates = conversion.tz_convert(self.asi8, 'UTC', self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) # Convert to UTC new_dates = conversion.tz_localize_to_utc( self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent, ) new_dates = new_dates.view(_NS_DTYPE) return self._simple_new(new_dates, tz=tz, freq=self.freq) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timestamp methods def to_pydatetime(self): """ Return Datetime Array/Index as object ndarray of datetime.datetime objects Returns ------- datetimes : ndarray """ return tslib.ints_to_pydatetime(self.asi8, tz=self.tz) def normalize(self): """ Convert times to midnight. The time component of the date-time is converted to midnight i.e. 00:00:00. This is useful in cases, when the time does not matter. Length is unaltered. The timezones are unaffected. This method is available on Series with datetime values under the ``.dt`` accessor, and directly on Datetime Array/Index. Returns ------- DatetimeArray, DatetimeIndex or Series The same type as the original data. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- floor : Floor the datetimes to the specified freq. ceil : Ceil the datetimes to the specified freq. round : Round the datetimes to the specified freq. Examples -------- >>> idx = pd.DatetimeIndex(start='2014-08-01 10:00', freq='H', ... periods=3, tz='Asia/Calcutta') >>> idx DatetimeIndex(['2014-08-01 10:00:00+05:30', '2014-08-01 11:00:00+05:30', '2014-08-01 12:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq='H') >>> idx.normalize() DatetimeIndex(['2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30', '2014-08-01 00:00:00+05:30'], dtype='datetime64[ns, Asia/Calcutta]', freq=None) """ new_values = conversion.normalize_i8_timestamps(self.asi8, self.tz) return type(self)(new_values, freq='infer').tz_localize(self.tz) def to_period(self, freq=None): """ Cast to PeriodArray/Index at a particular frequency. Converts DatetimeArray/Index to PeriodArray/Index. Parameters ---------- freq : string or Offset, optional One of pandas' :ref:`offset strings <timeseries.offset_aliases>` or an Offset object. Will be inferred by default. Returns ------- PeriodArray/Index Raises ------ ValueError When converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred. Examples -------- >>> df = pd.DataFrame({"y": [1,2,3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]', freq='M') Infer the daily frequency >>> idx = pd.date_range("2017-01-01", periods=2) >>> idx.to_period() PeriodIndex(['2017-01-01', '2017-01-02'], dtype='period[D]', freq='D') See Also -------- pandas.PeriodIndex: Immutable ndarray holding ordinal values. pandas.DatetimeIndex.to_pydatetime: Return DatetimeIndex as object. """ from pandas.core.arrays import PeriodArray if self.tz is not None: warnings.warn("Converting to PeriodArray/Index representation " "will drop timezone information.", UserWarning) if freq is None: freq = self.freqstr or self.inferred_freq if freq is None: raise ValueError("You must pass a freq argument as " "current index has none.") freq = get_period_alias(freq) return PeriodArray._from_datetime64(self._data, freq, tz=self.tz) def to_perioddelta(self, freq): """ Calculate TimedeltaArray of difference between index values and index converted to PeriodArray at specified freq. Used for vectorized offsets Parameters ---------- freq: Period frequency Returns ------- TimedeltaArray/Index """ # TODO: consider privatizing (discussion in GH#23113) from pandas.core.arrays.timedeltas import TimedeltaArrayMixin i8delta = self.asi8 - self.to_period(freq).to_timestamp().asi8 m8delta = i8delta.view('m8[ns]') return TimedeltaArrayMixin(m8delta) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. .. versionadded:: 0.23.0 Parameters ---------- locale : str, optional Locale determining the language in which to return the month name. Default is English locale. Returns ------- Index Index of month names. Examples -------- >>> idx = pd.DatetimeIndex(start='2018-01', freq='M', periods=3) >>> idx DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'], dtype='datetime64[ns]', freq='M') >>> idx.month_name() Index(['January', 'February', 'March'], dtype='object') """ if self.tz is not None and self.tz is not utc: values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'month_name', locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result def day_name(self, locale=None): """ Return the day names of the DateTimeIndex with specified locale. .. versionadded:: 0.23.0 Parameters ---------- locale : str, optional Locale determining the language in which to return the day name. Default is English locale. Returns ------- Index Index of day names. Examples -------- >>> idx = pd.DatetimeIndex(start='2018-01-01', freq='D', periods=3) >>> idx DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', freq='D') >>> idx.day_name() Index(['Monday', 'Tuesday', 'Wednesday'], dtype='object') """ if self.tz is not None and self.tz is not utc: values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'day_name', locale=locale) result = self._maybe_mask_results(result, fill_value=None) return result @property def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and self.tz is not utc: timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="time") @property def timetz(self): """ Returns numpy array of datetime.time also containing timezone information. The time part of the Timestamps. """ return tslib.ints_to_pydatetime(self.asi8, self.tz, box="time") @property def date(self): """ Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and self.tz is not utc: timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="date") year = _field_accessor('year', 'Y', "The year of the datetime") month = _field_accessor('month', 'M', "The month as January=1, December=12") day = _field_accessor('day', 'D', "The days of the datetime") hour = _field_accessor('hour', 'h', "The hours of the datetime") minute = _field_accessor('minute', 'm', "The minutes of the datetime") second = _field_accessor('second', 's', "The seconds of the datetime") microsecond = _field_accessor('microsecond', 'us', "The microseconds of the datetime") nanosecond = _field_accessor('nanosecond', 'ns', "The nanoseconds of the datetime") weekofyear = _field_accessor('weekofyear', 'woy', "The week ordinal of the year") week = weekofyear _dayofweek_doc = """ The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the `dt` accessor) or DatetimeIndex. See Also -------- Series.dt.dayofweek : Alias. Series.dt.weekday : Alias. Series.dt.day_name : Returns the name of the day of the week. Returns ------- Series or Index Containing integers indicating the day number. Examples -------- >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64 """ dayofweek = _field_accessor('dayofweek', 'dow', _dayofweek_doc) weekday = dayofweek weekday_name = _field_accessor( 'weekday_name', 'weekday_name', "The name of day in a week (ex: Friday)\n\n.. deprecated:: 0.23.0") dayofyear = _field_accessor('dayofyear', 'doy', "The ordinal day of the year") quarter = _field_accessor('quarter', 'q', "The quarter of the date") days_in_month = _field_accessor( 'days_in_month', 'dim', "The number of days in the month") daysinmonth = days_in_month _is_month_doc = """ Indicates whether the date is the {first_or_last} day of the month. Returns ------- Series or array For Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. See Also -------- is_month_start : Return a boolean indicating whether the date is the first day of the month. is_month_end : Return a boolean indicating whether the date is the last day of the month. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> s = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> s 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> s.dt.is_month_start 0 False 1 False 2 True dtype: bool >>> s.dt.is_month_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2018-02-27", periods=3) >>> idx.is_month_start array([False, False, True]) >>> idx.is_month_end array([False, True, False]) """ is_month_start = _field_accessor( 'is_month_start', 'is_month_start', _is_month_doc.format(first_or_last='first')) is_month_end = _field_accessor( 'is_month_end', 'is_month_end', _is_month_doc.format(first_or_last='last')) is_quarter_start = _field_accessor( 'is_quarter_start', 'is_quarter_start', """ Indicator for whether the date is the first day of a quarter. Returns ------- is_quarter_start : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_end : Similar property for indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False]) """) is_quarter_end = _field_accessor( 'is_quarter_end', 'is_quarter_end', """ Indicator for whether the date is the last day of a quarter. Returns ------- is_quarter_end : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_start : Similar property indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_end array([False, True, False, False]) """) is_year_start = _field_accessor( 'is_year_start', 'is_year_start', """ Indicate whether the date is the first day of a year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_end : Similar property indicating the last day of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_start array([False, False, True]) """) is_year_end = _field_accessor( 'is_year_end', 'is_year_end', """ Indicate whether the date is the last day of the year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_start : Similar property indicating the start of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_end array([False, True, False]) """) is_leap_year = _field_accessor( 'is_leap_year', 'is_leap_year', """ Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns ------- Series or ndarray Booleans indicating if dates belong to a leap year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False], dtype=bool) >>> dates = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool """) def to_julian_date(self): """ Convert Datetime Array to float64 ndarray of Julian Dates. 0 Julian date is noon January 1, 4713 BC. http://en.wikipedia.org/wiki/Julian_day """ # http://mysite.verizon.net/aesir_research/date/jdalg2.htm year = np.asarray(self.year) month = np.asarray(self.month) day = np.asarray(self.day) testarr = month < 3 year[testarr] -= 1 month[testarr] += 12 return (day + np.fix((153 * month - 457) / 5) + 365 * year + np.floor(year / 4) - np.floor(year / 100) + np.floor(year / 400) + 1721118.5 + (self.hour + self.minute / 60.0 + self.second / 3600.0 + self.microsecond / 3600.0 / 1e+6 + self.nanosecond / 3600.0 / 1e+9 ) / 24.0) DatetimeArrayMixin._add_comparison_ops() DatetimeArrayMixin._add_datetimelike_methods() def _generate_regular_range(cls, start, end, periods, freq): """ Generate a range of dates with the spans between dates described by the given `freq` DateOffset. Parameters ---------- cls : class start : Timestamp or None first point of produced date range end : Timestamp or None last point of produced date range periods : int number of periods in produced date range freq : DateOffset describes space between dates in produced date range Returns ------- ndarray[np.int64] representing nanosecond unix timestamps """ if isinstance(freq, Tick): stride = freq.nanos if periods is None: b = Timestamp(start).value # cannot just use e = Timestamp(end) + 1 because arange breaks when # stride is too large, see GH10887 e = (b + (Timestamp(end).value - b) // stride * stride + stride // 2 + 1) # end.tz == start.tz by this point due to _generate implementation tz = start.tz elif start is not None: b = Timestamp(start).value e = _generate_range_overflow_safe(b, periods, stride, side='start') tz = start.tz elif end is not None: e = Timestamp(end).value + stride b = _generate_range_overflow_safe(e, periods, stride, side='end') tz = end.tz else: raise ValueError("at least 'start' or 'end' should be specified " "if a 'period' is given.") values = np.arange(b, e, stride, dtype=np.int64) else: tz = None # start and end should have the same timezone by this point if start is not None: tz = start.tz elif end is not None: tz = end.tz xdr = generate_range(start=start, end=end, periods=periods, offset=freq) values = np.array([x.value for x in xdr], dtype=np.int64) data = cls._simple_new(values, freq=freq, tz=tz) return data def _generate_range_overflow_safe(endpoint, periods, stride, side='start'): """ Calculate the second endpoint for passing to np.arange, checking to avoid an integer overflow. Catch OverflowError and re-raise as OutOfBoundsDatetime. Parameters ---------- endpoint : int periods : int stride : int side : {'start', 'end'} Returns ------- other_end : int Raises ------ OutOfBoundsDatetime """ # GH#14187 raise instead of incorrectly wrapping around assert side in ['start', 'end'] if side == 'end': stride *= -1 try: other_end = checked_add_with_arr(np.int64(endpoint), np.int64(periods) * stride) except OverflowError: raise tslib.OutOfBoundsDatetime('Cannot generate range with ' '{side}={endpoint} and ' 'periods={periods}' .format(side=side, endpoint=endpoint, periods=periods)) return other_end def _infer_tz_from_endpoints(start, end, tz): """ If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints. If more than one of these inputs provides a timezone, require that they all agree. Parameters ---------- start : Timestamp end : Timestamp tz : tzinfo or None Returns ------- tz : tzinfo or None inferred_tz : tzinfo or None Raises ------ TypeError : if start and end timezones do not agree """ try: inferred_tz = timezones.infer_tzinfo(start, end) except Exception: raise TypeError('Start and end cannot both be tz-aware with ' 'different timezones') inferred_tz = timezones.maybe_get_tz(inferred_tz) tz = timezones.maybe_get_tz(tz) if tz is not None and inferred_tz is not None: if not timezones.tz_compare(inferred_tz, tz): raise AssertionError("Inferred time zone not equal to passed " "time zone") elif inferred_tz is not None: tz = inferred_tz return tz, inferred_tz def _maybe_normalize_endpoints(start, end, normalize): _normalized = True if start is not None: if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight return start, end, _normalized def _maybe_localize_point(ts, is_none, is_not_none, freq, tz): """ Localize a start or end Timestamp to the timezone of the corresponding start or end Timestamp Parameters ---------- ts : start or end Timestamp to potentially localize is_none : argument that should be None is_not_none : argument that should not be None freq : Tick, DateOffset, or None tz : str, timezone object or None Returns ------- ts : Timestamp """ # Make sure start and end are timezone localized if: # 1) freq = a Timedelta-like frequency (Tick) # 2) freq = None i.e. generating a linspaced range if isinstance(freq, Tick) or freq is None: localize_args = {'tz': tz, 'ambiguous': False} else: localize_args = {'tz': None} if is_none is None and is_not_none is not None: ts = ts.tz_localize(**localize_args) return ts
the-stack_106_23219
from adafruit_circuitplayground.express import cpx # Set to check for single-taps. cpx.detect_taps = 1 tap_count = 0 # We're looking for 2 single-taps before moving on. while tap_count < 2: if cpx.tapped: print("Single-tap!") tap_count += 1 print("Reached 2 single-taps!") # Now switch to checking for double-taps. tap_count = 0 cpx.detect_taps = 2 # We're looking for 2 double-taps before moving on. while tap_count < 2: if cpx.tapped: print("Double-tap!") tap_count += 1 print("Reached 2 double-taps!") cpx.red_led = True print("Done.")
the-stack_106_23220
import re def assign(service,arg): if service == 'cmseasy': return True,arg def audit(arg): url = arg + '/celive/live/header.php' payload = ("xajax=LiveMessage&xajaxargs[0]=<xjxobj><q><e><k>name</k><v>%27," "(UpdateXML(1,CONCAT(0x5b,mid((SELECT/**/GROUP_CONCAT(md5(1))),1,32),0x5d),1)),NULL,NULL,NULL,NULL,NULL,NULL)--%20</v></e></q></xjxobj>") code,head,body,errcode,fina_url=curl.curl('-d "%s" %s'%(payload,url)) if code == 200 and 'c4ca4238a0b923820dcc509a6f75849' in body: security_hole(url) if __name__ == '__main__': from dummy import * audit(assign('cmseasy','http://www.mldclub.com.cn/')[1])
the-stack_106_23224
# model settings model = dict( type='FastRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
the-stack_106_23225
import csv import os voter = 0 khan = 0 correy = 0 li = 0 OTooley = 0 # read csv file with open('Resources/election_data.csv', newline='', encoding="utf-8") as FreeBritney: # Create variable to store contents of budget_data.csv Free = csv.reader(FreeBritney, delimiter = ',') # Start the second row by skipping the first row Britney = next(FreeBritney) # Iterate through the rows in the stored file contents for row in Free: # Total votes voter +=1 # IF statement to count number of vote casted for each candidate if row[2] == "Khan": khan +=1 elif row[2] == "Correy": correy +=1 elif row[2] == "Li": li +=1 elif row[2] == "O'Tooley": OTooley +=1 # create a dictionary dedicate the list of candidates and number of votes for each candidate candidates = ["Khan", "Correy", "Li","O'Tooley"] votes = [khan, correy, li, OTooley] # We zip them together in a list # Return the winner using a max function of the dictionary to get the highest percentage of the vote OopsIDidItAgain = dict(zip(candidates,votes)) Lucky = max(OopsIDidItAgain, key=OopsIDidItAgain.get) # Print a the summary of the analysis khan_percent = (khan/voter) *100 correy_percent = (correy/voter) * 100 li_percent = (li/voter) * 100 otooley_percent = (OTooley/voter) * 100 print('Election Results') print("----------------------------") print(f"The total number of votes cast is: {voter}") print("----------------------------") print(f"Khan: {khan_percent:.3f} % ({khan})") print(f"Correy: {correy_percent:.3f} % ({correy})") print(f"Li: {li_percent:.3f} % ({li})") print(f"O'Tooley: {otooley_percent:.3f} % ({OTooley})") print("----------------------------") print(f"The Winner is: {Lucky}") print(f"----------------------------") # export a text file with the results. from pathlib import Path output = Path("Resources", "Eletion Results.txt") with open(output,"w") as analysis: # Print results to txt file analysis.write("Election Results") analysis.write("\n") analysis.write("----------------------------") analysis.write("\n") analysis.write(f"The total number of votes cast is: {voter}") analysis.write("\n") analysis.write("----------------------------") analysis.write("\n") analysis.write(f"Khan: {khan_percent:.3f} % ({khan})") analysis.write("\n") analysis.write(f"Correy: {correy_percent:.3f} % ({correy})") analysis.write("\n") analysis.write(f"Li: {li_percent:.3f} % ({li})") analysis.write("\n") analysis.write(f"O'Tooley: {otooley_percent:.3f} % ({OTooley})") analysis.write("\n") analysis.write("----------------------------") analysis.write("\n") analysis.write(f"The Winner is: ({Lucky})") analysis.write("\n") analysis.write("----------------------------")
the-stack_106_23227
#!/usr/bin/python """ The goal of Artificial Intelligence is to create a rational agent (Artificial Intelligence 1.1.4). An agent gets input from the environment through sensors and acts on the environment with actuators. In this challenge, you will program a simple bot to perform the correct actions based on environmental input. Meet the bot MarkZoid. It's a cleaning bot whose sensor is a head mounted camera and whose actuators are the wheels beneath it. It's used to clean the floor. The bot here is positioned at the top left corner of a 5*5 grid. Your task is to move the bot to clean all the dirty cells. Input Format The first line contains two space separated integers which indicate the current position of the bot. The board is indexed using Matrix Convention 5 lines follow representing the grid. Each cell in the grid is represented by any of the following 3 characters: 'b' (ascii value 98) indicates the bot's current position, 'd' (ascii value 100) indicates a dirty cell and '-' (ascii value 45) indicates a clean cell in the grid. Note If the bot is on a dirty cell, the cell will still have 'd' on it. Output Format The output is the action that is taken by the bot in the current step, and it can be either one of the movements in 4 directions or cleaning up the cell in which it is currently located. The valid output strings are LEFT, RIGHT, UP and DOWN or CLEAN. If the bot ever reaches a dirty cell, output CLEAN to clean the dirty cell. Repeat this process until all the cells on the grid are cleaned. Sample Input #00 0 0 b---d -d--d --dd- --d-- ----d Sample Output #00 RIGHT Resultant state -b--d -d--d --dd- --d-- ----d Sample Input #01 0 1 -b--d -d--d --dd- --d-- ----d Sample Output #01 DOWN Resultant state ----d -d--d --dd- --d-- ----d Task Complete the function next_move that takes in 3 parameters posr, posc being the co-ordinates of the bot's current position and board which indicates the board state to print the bot's next move. The codechecker will keep calling the function next_move till the game is over or you make an invalid move. Scoring Your score is (200 - number of moves the bot makes)/40. CLEAN is considered a move as well. Once you submit, your bot will be played on four grids with three of the grid configurations unknown to you. The final score will be the sum of the scores obtained in each of the four grids. Education Links Introduction to AI by Stuart Russell and Peter Norvig Motor cognition Solved score: 17.82pts Submissions: 20640 Max Score: 17 Difficulty: Easy Rate This Challenge: More https://www.hackerrank.com/challenges/botclean/problem """ # Head ends here import math def next_move(posr, posc, board): dps = [] p = [0,0] b = [posr,posc] if board[posr][posc] == 'd': print("CLEAN") return for row in range(len(board)): for col in range(len(board)): if board[row][col] == 'd': dps.append([row, col]) sorted(dps, key = lambda dpos: math.sqrt( ((dpos[1]-b[0])**2) + ((dpos[1]-b[0])**2))) p = dps[0] # print(p, b) # going to the same row if p[0] > b[0]: print("DOWN") return elif p[0] < b [0]: print("UP") return # going to the same column if p[1] > b[1]: print("RIGHT") return elif p[1] < b [1]: print("LEFT") return # Tail starts here if __name__ == "__main__": pos = [int(i) for i in input().strip().split()] board = [[j for j in input().strip()] for i in range(5)] next_move(pos[0], pos[1], board)
the-stack_106_23230
def notas(*notas, sit=False): """ -> Função para analisar notas e situações de vários alunos. :param *notas: uma ou mais notas dos alunos :param sit: valor opcional, indicando se deve ou não adicionar a situação :return: dicionário com várias informações sobre a situação da turma """ d = {'total': len(notas), 'maior': max(notas), 'menor': min(notas), 'média': sum(notas) / len(notas)} if sit == True: if d['média'] < 5: d['situação'] = 'ruim' elif d['média'] < 7: d['situação'] = 'aceitável' elif d['média'] < 9: d['situação'] = 'boa' else: d['situação'] = 'excelente' return d resp = notas(5.5, 9.5, 10, 6.5, sit=True) print(f'\n{resp}\n')
the-stack_106_23231
from __future__ import print_function, absolute_import from collections import defaultdict from six.moves import range from six import iteritems from h5Nastran.defaults import Defaults from h5Nastran.h5nastrannode import H5NastranNode from .input_table import InputTable, TableDef class Dynamic(H5NastranNode): def __init__(self, h5n, input): self._h5n = h5n self._input = input self.eigr = EIGR(self._h5n, self) self.eigrl = EIGRL(self._h5n, self) self.freq = FREQ(self._h5n, self) self.freq1 = FREQ1(self._h5n, self) self.randps = RANDPS(self._h5n, self) def path(self): return self._input.path() + ['DYNAMIC'] def to_bdf(self, bdf): for key, item in iteritems(self.__dict__): if key.startswith('_'): continue try: item.to_bdf(bdf) except NotImplementedError: pass ######################################################################################################################## class EIGR(InputTable): table_def = TableDef.create('/NASTRAN/INPUT/DYNAMIC/EIGR') def to_bdf(self, bdf): add_card = bdf.add_eigr identity = self.identity sid = identity['SID'] method = identity['METHOD'] f1 = identity['F1'] f2 = identity['F2'] ne = identity['NE'] nd = identity['ND'] norm = identity['NORM'] g = identity['G'] c = identity['C'] to_value_int = self._h5n.defaults.to_value_int for i in range(sid.size): _g = to_value_int(g[i]) _c = to_value_int(c[i]) add_card(sid[i], method[i].decode(), f1[i], f2[i], ne[i], nd[i], norm[i].decode(), _g, _c) def from_bdf(self, cards): card_ids = sorted(cards.keys()) result = {'IDENTITY': {'SID': [], 'METHOD': [], 'F1': [], 'F2': [], 'NE': [], 'ND': [], 'NORM': [], 'G': [], 'C': [], 'DOMAIN_ID': []}} identity = result['IDENTITY'] sid = identity['SID'] method = identity['METHOD'] f1 = identity['F1'] f2 = identity['F2'] ne = identity['NE'] nd = identity['ND'] norm = identity['NORM'] g = identity['G'] c = identity['C'] get_value_int = self._h5n.defaults.get_value_int for card_id in card_ids: card = cards[card_id] sid.append(card.sid) method.append(card.method) f1.append(card.f1) f2.append(card.f2) ne.append(get_value_int(card.ne)) nd.append(get_value_int(card.nd)) norm.append(card.norm) g.append(get_value_int(card.G)) c.append(get_value_int(card.C)) return result ######################################################################################################################## class EIGRL(InputTable): table_def = TableDef.create('/NASTRAN/INPUT/DYNAMIC/EIGRL/IDENTITY') def from_bdf(self, cards): card_ids = sorted(cards.keys()) freqs = {'IDENTITY': {'FI': []}} result = {'IDENTITY': {'SID': [], 'V1': [], 'V2': [], 'ND': [], 'MSGLVL': [], 'MAXSET': [], 'SHFSCL': [], 'FLAG1': [], 'FLAG2': [], 'NORM': [], 'ALPH': [], 'FREQS_POS': [], 'FREQS_LEN': [], 'DOMAIN_ID': []}, 'FREQS': freqs, '_subtables': ['FREQS']} fi = freqs['IDENTITY']['FI'] identity = result['IDENTITY'] sid = identity['SID'] v1 = identity['V1'] v2 = identity['V2'] nd = identity['ND'] msglvl = identity['MSGLVL'] maxset = identity['MAXSET'] shfscl = identity['SHFSCL'] flag1 = identity['FLAG1'] flag2 = identity['FLAG2'] norm = identity['NORM'] alph = identity['ALPH'] freqs_pos = identity['FREQS_POS'] freqs_len = identity['FREQS_LEN'] def _get_option(val, option, option_data, default): if val in ('', None): val = option_data.get(option, None) if val is None: val = default return val _pos = 0 for card_id in card_ids: card = cards[card_id] option_data = defaultdict(list) for i in range(len(card.options)): option_data[card.options[i]].append(card.values[i]) _v1 = _get_option(card.v1, 'V1', option_data, Defaults.default_double) _v2 = _get_option(card.v2, 'V2', option_data, Defaults.default_double) _nd = _get_option(card.nd, 'ND', option_data, Defaults.default_int) _msglvl = _get_option(card.msglvl, 'MSGLVL', option_data, Defaults.default_int) _maxset = _get_option(card.maxset, 'MAXSET', option_data, Defaults.default_int) _shfscl = _get_option(card.shfscl, 'SHFSCL', option_data, Defaults.default_double) _norm = _get_option(card.norm, 'NORM', option_data, Defaults.default_str) _alph = _get_option(None, 'ALPH', option_data, Defaults.default_double) # TODO: EIGRL how is nums used?, what is flag1 and flag2? # _nums = _get_option(None, 'NUMS', option_data, 1) _fi = _get_option(None, 'Fi', option_data, []) sid.append(card.sid) v1.append(_v1) v2.append(_v2) nd.append(_nd) msglvl.append(_msglvl) maxset.append(_maxset) shfscl.append(_shfscl) norm.append(_norm) alph.append(_alph) flag1.append(Defaults.unknown_int) flag2.append(Defaults.unknown_int) freqs_pos.append(_pos) _len = len(_fi) _pos += _len freqs_len.append(_len) fi += _fi return result ######################################################################################################################## class FREQ(InputTable): table_def = TableDef.create('/NASTRAN/INPUT/DYNAMIC/FREQ/IDENTITY') def from_bdf(self, cards): card_ids = sorted(cards.keys()) freqs = {'IDENTITY': {'F': []}} result = {'IDENTITY': {'SID': [], 'FREQS_POS': [], 'FREQS_LEN': [], 'DOMAIN_ID': []}, 'FREQS': freqs, '_subtables': ['FREQS']} f = freqs['IDENTITY']['F'] identity = result['IDENTITY'] sid = identity['SID'] freqs_pos = identity['FREQS_POS'] freqs_len = identity['FREQS_LEN'] pos = 0 for card_id in card_ids: card_list = cards[card_id] for card in card_list: sid.append(card.sid) freqs_pos.append(pos) _len = len(card.freqs) freqs_len.append(_len) pos += _len f.extend(card.freqs) return result ######################################################################################################################## class FREQ1(InputTable): table_def = TableDef.create('/NASTRAN/INPUT/DYNAMIC/FREQ1') def from_bdf(self, cards): card_ids = sorted(cards.keys()) result = {'IDENTITY': {'SID': [], 'F1': [], 'DF': [], 'NDF': [], 'DOMAIN_ID': []}} identity = result['IDENTITY'] sid = identity['SID'] f1 = identity['F1'] df = identity['DF'] ndf = identity['NDF'] for card_id in card_ids: card_list = cards[card_id] for card in card_list: sid.append(card.sid) f1.append(card.f1) df.append(card.df) ndf.append(card.ndf) return result ######################################################################################################################## class RANDPS(InputTable): table_def = TableDef.create('/NASTRAN/INPUT/DYNAMIC/RANDPS') def from_bdf(self, cards): card_ids = sorted(cards.keys()) result = { 'IDENTITY': {'SID': [], 'J': [], 'K': [], 'X': [], 'Y': [], 'TID': [], 'DOMAIN_ID': []} } i = result['IDENTITY'] sid = i['SID'] j = i['J'] k = i['K'] x = i['X'] y = i['Y'] tid = i['TID'] for card_id in card_ids: card_list = cards[card_id] for card in card_list: sid.append(card.sid) j.append(card.j) k.append(card.k) x.append(card.x) y.append(card.y) tid.append(card.tid) return result
the-stack_106_23232
#!/usr/local/env python3 __author__ = 'duceppemo' __version__ = '0.1' """ https://www.biostars.org/p/97409/ """ from ete3 import Tree from argparse import ArgumentParser class TreeCollapser(object): def __init__(self, args): # Arguments self.input_tree = args.input self.output_tree = args.output self.dist = args.distance # Run self.run() def run(self): # Parse tree file (Newick format) t = Tree(self.input_tree) # Now collapse nodes with distance smaller than TreeCollapser.collapse(t, self.dist) # Collapsed nodes are labeled, so you locate them and prune them for node in t.search_nodes(collapsed=True): for child in node.get_children(): child.detach() # Write new collapsed tree to file t.write(format=1, outfile=self.output_tree) @staticmethod def mean(array): return sum(array)/float(len(array)) @staticmethod def cache_distances(tree): """ precalculate distances of all nodes to the root """ node2rootdist = {tree: 0} for node in tree.iter_descendants('preorder'): node2rootdist[node] = node.dist + node2rootdist[node.up] return node2rootdist @staticmethod def collapse(tree, min_dist): # cache the tip content of each node to reduce the number of times the tree is traversed node2tips = tree.get_cached_content() root_distance = TreeCollapser.cache_distances(tree) for node in tree.get_descendants('preorder'): if not node.is_leaf(): avg_distance_to_tips = TreeCollapser.mean([root_distance[tip]-root_distance[node] for tip in node2tips[node]]) if avg_distance_to_tips < min_dist: # do whatever, ete support node annotation, deletion, labeling, etc. # rename # node.name += ' COLLAPSED avg_d:%g {%s}' %(avg_distance_to_tips, # ','.join([tip.name for tip in node2tips[node]])) node.name += '%s {%s}' % ([tip.name for tip in node2tips[node]][0], ','.join([tip.name for tip in node2tips[node]][1:])) # label node.add_features(collapsed=True) # set drawing attribute so they look collapsed when displayed with tree.show() node.img_style['draw_descendants'] = False if __name__ == '__main__': parser = ArgumentParser(description='Filter a blast xml file to keep the hits with a minimum % similarity' 'Much quicker to do than rerun the whole blast') parser.add_argument('-i', '--input', metavar='sample.tree', required=True, help='Newick input tree') parser.add_argument('-o', '--output', metavar='sample_collapsed.tree', required=True, help='Newick output tree') parser.add_argument('-d', '--distance', metavar='0.01', type=float, required=True, help='Distance threshold. Nodes with distance smaller than this value will be collapsed.') # Get the arguments into an object arguments = parser.parse_args() TreeCollapser(arguments)
the-stack_106_23233
import random from flask import Flask from flask_restful import Api, Resource from flask_rest_paginate import Pagination from marshmallow import Schema, fields """ Initialize the app """ app = Flask(__name__) api = Api(app) # Possible configurations for Paginate # app.config['PAGINATE_PAGE_SIZE'] = 20 # app.config['PAGINATE_PAGE_PARAM'] = "pagenumber" # app.config['PAGINATE_SIZE_PARAM'] = "pagesize" # app.config['PAGINATE_RESOURCE_LINKS_ENABLED'] = False pagination = Pagination(app) class CalculationSchema(Schema): calculation_time = fields.Str() value = fields.Str() """ Controllers """ class CalculationList(Resource): def get(self): """ Simulates a computation that needs to be performed by a backend service. :return: """ import time def largest_prime_factor(n): """ Returns the largest prime factor of a number :param n: :return: The largest prime factor of a number """ i = 2 while i * i <= n: if n % i: i += 1 else: n //= i return n result_list = [] for i in range(100): start = time.time() # prime = largest_prime_factor(random.randint(100000, 200000)) result_list.append({"calculation_time": time.time() - start, "value": i}) tmp = pagination.paginate(result_list, CalculationSchema(many=True), marshmallow=True) return tmp """ Register the resources """ api.add_resource(CalculationList, '/calculation') """ Run the app """ if __name__ == '__main__': app.run(debug=True)
the-stack_106_23234
# -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab # pylint: disable=invalid-name """ csv2ofx.mappings.stripe ~~~~~~~~~~~~~~~~~~~~~~~~ Provides a mapping for transactions obtained via Stripe card processing Note that Stripe provides a Default set of columns or you can download All columns. (as well as custom). The Default set does not include card information, so provides no appropriate value for the PAYEE field for an anonymous transaction (missing a customer). It's suggested the All Columns format be used if not all transactions identify a customer. This mapping sets PAYEE to Customer Name if it exists, otherwise Card Name (if provided) """ from operator import itemgetter mapping = { "has_header": True, "account": "Stripe", "id": itemgetter("id"), "date": itemgetter("created"), "amount": itemgetter("amount"), "currency": itemgetter("currency"), "payee": lambda tr: tr.get("customer_description") if len(tr.get("customer_description")) > 0 else tr.get("card_name", ""), "desc": itemgetter("description"), }
the-stack_106_23235
import pandas as pd def _filter_variant_motif_res( motif_res, variant_start, variant_end, motif_length, seq, ): """ Remove MOODS motif hits that don't overlap the variant of interest. Parameters ---------- motif_res : list Result from MOODS search like [(21, 3.947748787969809), (-38, 3.979759977155675)]. variant_start : int Relative start position of the allele string in seq (not genomic coordinates). In other words, seq[variant_start:variant_end] should give the allele. variant_end : int Relative end position of the allele string in seq (not genomic coordinates). In other words, seq[variant_start:variant_end] should give the allele. motif_length : int Length of the motif. seq : str Sequence searched for motifs for this allele. Returns ------- motif_res : list List in the same format as motif_res input but with entries that don't overlap the variant removed. """ import MOODS remove = [] for r in motif_res: motif_start = r[0] motif_end = r[0] + motif_length if r[0] < 0: motif_start += len(seq) motif_end += len(seq) if motif_end <= variant_start or motif_start >= variant_end: remove.append(r) motif_res = list(set(motif_res) - set(remove)) return motif_res def find_motif_disruptions( position, ref, alt, genome_fasta, matrices, ): """ Determine whether there is a difference between the ref and alt alleles for TF binding. Requires samtools in your path. Parameters ---------- position : str Zero based genomic coordinates of the reference allele of the form chrom:start-end (chr5:100-101 for a SNV for instance). The value end - start should equal the length of the ref allele. ref : str Reference allele. This should match the reference sequence at "position" in genome_fasta. alt : str Alternate allele. genome_fasta : str Path to genome fasta file. This file should be indexed. matrices : dict Dict whose keys are motif names and whose values are pandas data frames or numpy arrays containing PWMs with columns ACGT. Returns ------- out : pandas.DataFrame Pandas data frame with motifs whose best matches that overlapped the variant differed between the reference and alternate sequences. A score of zero and a strand of '' indicates that there was not a match for the motif on the given allele. """ import subprocess import MOODS # import pybedtools as pbt max_motif_length = max([x.shape[0] for x in matrices.values()]) chrom, coords = position.split(':') start,end = [int(x) for x in coords.split('-')] s = '{}:{}-{}'.format(chrom, start - max_motif_length + 1, end + max_motif_length - 1) c = 'samtools faidx {} {}'.format(genome_fasta, s) seq_lines = subprocess.check_output(c, shell=True).strip().split() ref_seq = seq_lines[1] alt_seq = ref_seq[0:max_motif_length - 1] + alt + ref_seq[max_motif_length + len(ref) - 1:] ref_variant_start = max_motif_length - 1 ref_variant_end = max_motif_length - 1 + len(ref) alt_variant_start = max_motif_length - 1 alt_variant_end = max_motif_length - 1 + len(alt) ms = [matrices[x].T.values.tolist() for x in matrices.keys()] ref_res = MOODS.search(ref_seq, ms, 0.001, both_strands=True, bg=[0.25, 0.25, 0.25, 0.25]) ref_res = dict(zip(matrices.keys(), ref_res)) alt_res = MOODS.search(alt_seq, ms, 0.001, both_strands=True, bg=[0.25, 0.25, 0.25, 0.25]) alt_res = dict(zip(matrices.keys(), alt_res)) # First we'll remove any motif matches that don't overlap the variant of interest (and thus # can't be affected by the variant and will be the same for ref and alt). Then we'll get the # best match for each motif for ref and alt. rows = [] for motif in ref_res.keys(): ref_res[motif] = _filter_variant_motif_res(ref_res[motif], ref_variant_start, ref_variant_end, matrices[motif].shape[0], ref_seq) alt_res[motif] = _filter_variant_motif_res(alt_res[motif], alt_variant_start, alt_variant_end, matrices[motif].shape[0], alt_seq) if len(ref_res[motif]) > 0: ref_pos, ref_score = sorted(ref_res[motif], key=lambda x: x[1], reverse=True)[0] ref_strand = {True:'+', False:'-'}[ref_pos > 0] else: ref_score = 0 ref_strand = '' if len(alt_res[motif]) > 0: alt_pos, alt_score = sorted(alt_res[motif], key=lambda x: x[1], reverse=True)[0] alt_strand = {True:'+', False:'-'}[alt_pos > 0] else: alt_score = 0 alt_strand = '' if ref_score > 0 or alt_score > 0: diff = ref_score - alt_score rows.append([motif, ref_score, ref_strand, alt_score, alt_strand, diff]) out = pd.DataFrame(rows, columns=['motif', 'ref_score', 'ref_strand', 'alt_score', 'alt_strand', 'score_diff']) out.index = out.motif out = out.drop('motif', axis=1) out = out[out.score_diff != 0] return out
the-stack_106_23236
import time import asyncio import contextlib from appyter.ext.asyncio import helpers from appyter.ext.itertools import alist import logging logger = logging.getLogger(__name__) import pytest from appyter.ext.pytest import assert_eq, assert_exc from appyter.ext.asyncio.event_loop import with_event_loop @pytest.fixture(scope="session", autouse=True) def event_loop_fixture(): with with_event_loop(): yield @contextlib.asynccontextmanager async def asyncctx(a, *, b=1): await asyncio.sleep(0.1) yield a+b async def asyncgenfun(a, *, b=1): yield a await asyncio.sleep(0.1) yield a+b async def asyncfun(a, *, b=1): await asyncio.sleep(0.1) return a+b @contextlib.contextmanager def syncctx(a, *, b=1): time.sleep(0.1) yield a+b def syncgenfun(a, *, b=1): yield a time.sleep(0.1) yield a+b def syncfun(a, *, b=1): time.sleep(0.1) return a+b async def async_mixedfun(a, *, b=1): return await helpers.ensure_async(syncfun(a, b=b)) def sync_exc(): logger.info("Sync: Raising Runtime Error") raise RuntimeError() async def async_exc(): logger.info("Async: Raising Runtime Error") raise RuntimeError() def test_ensure_sync_async_ctx(): with helpers.ensure_sync(asyncctx(1)) as ctx: assert_eq(ctx, 2) with helpers.ensure_sync(asyncctx)(0,b=2) as ctx: assert_eq(ctx, 2) def test_ensure_sync_async_gen(): assert_eq(list(helpers.ensure_sync(asyncgenfun)(1)), [1,2]) assert_eq(list(helpers.ensure_sync(asyncgenfun(0,b=2))), [0,2]) def test_ensure_sync_async_fun(): assert_eq(helpers.ensure_sync(asyncfun)(1), 2) assert_eq(helpers.ensure_sync(asyncfun(0,b=2)), 2) def test_ensure_sync_async_exc(): with assert_exc(RuntimeError): helpers.ensure_sync(async_exc)() def test_ensure_sync_sync_ctx(): i = 0 with helpers.ensure_sync(syncctx(1)) as ctx: assert_eq(ctx, 2) i += 1 with helpers.ensure_sync(syncctx)(0,b=2) as ctx: assert_eq(ctx, 2) i += 1 assert_eq(i, 2) def test_ensure_sync_sync_gen(): assert_eq(list(helpers.ensure_sync(syncgenfun)(1)), [1,2]) assert_eq(list(helpers.ensure_sync(syncgenfun(0,b=2))), [0,2]) def test_ensure_sync_sync_fun(): assert_eq(helpers.ensure_sync(syncfun)(1), 2) assert_eq(helpers.ensure_sync(syncfun(0,b=2)), 2) def test_ensure_sync_sync_exc(): with assert_exc(RuntimeError): helpers.ensure_sync(sync_exc)() def test_ensure_sync_mixed_fun(): assert_eq(helpers.ensure_sync(async_mixedfun(0,b=2)), 2) async def _test_ensure_async_async_ctx(): i = 0 async with helpers.ensure_async(asyncctx(1)) as ctx: i += 1 assert_eq(ctx, 2) # Not supported # async with helpers.ensure_async(asyncctx)(0,b=2) as ctx: assert_eq(ctx, 2) assert_eq(i, 1) def test_ensure_async_async_ctx(): helpers.ensure_sync(_test_ensure_async_async_ctx)() async def _test_ensure_async_async_gen(): assert_eq(await alist(helpers.ensure_async(asyncgenfun)(1)), [1,2]) assert_eq(await alist(helpers.ensure_async(asyncgenfun(0,b=2))), [0,2]) def test_ensure_async_async_gen(): helpers.ensure_sync(_test_ensure_async_async_gen)() async def _test_ensure_async_async_fun(): assert_eq(await helpers.ensure_async(asyncfun)(1), 2) assert_eq(await helpers.ensure_async(asyncfun(0,b=2)), 2) def test_ensure_async_async_fun(): helpers.ensure_sync(_test_ensure_async_async_fun)() async def _test_ensure_async_async_exc(): with assert_exc(RuntimeError): await helpers.ensure_async(async_exc)() def test_ensure_async_async_exc(): helpers.ensure_sync(_test_ensure_async_async_exc)() async def _test_ensure_async_sync_ctx(): i = 0 async with helpers.ensure_async(syncctx(1)) as ctx: i += 1 assert_eq(ctx, 2) # Not supported # async with helpers.ensure_async(syncctx)(0,b=2) as ctx: assert_eq(ctx, 2) assert_eq(i, 1) def test_ensure_async_sync_ctx(): helpers.ensure_sync(_test_ensure_async_sync_ctx)() async def _test_ensure_async_sync_gen(): assert_eq(await alist(helpers.ensure_async(syncgenfun)(1)), [1,2]) assert_eq(await alist(helpers.ensure_async(syncgenfun(0,b=2))), [0,2]) def test_ensure_async_sync_gen(): helpers.ensure_sync(_test_ensure_async_sync_gen)() async def _test_ensure_async_sync_fun(): assert_eq(await helpers.ensure_async(syncfun)(1), 2) assert_eq(await helpers.ensure_async(syncfun(0,b=2)), 2) def test_ensure_async_sync_fun(): helpers.ensure_sync(_test_ensure_async_sync_fun)() async def _test_ensure_async_sync_exc(): with assert_exc(RuntimeError): await helpers.ensure_async(sync_exc)() def test_ensure_async_sync_exc(): helpers.ensure_sync(_test_ensure_async_sync_exc)() async def _test_ensure_async_mixed_fun(): assert_eq(await helpers.ensure_async(async_mixedfun(0,b=2)), 2) def test_ensure_async_mixed_fun(): helpers.ensure_sync(_test_ensure_async_mixed_fun)() async def _test_async_sync_bottom_up_exc(): try: await helpers.ensure_async(sync_exc)() except RuntimeError as e: assert isinstance(e, RuntimeError) logger.info(f"Async: Received {repr(e)}, Re-raising") raise def test_async_sync_bottom_up_exc(): with assert_exc(RuntimeError): logger.info("Starting async_sync_exc") helpers.ensure_sync(_test_async_sync_bottom_up_exc)() logger.info("Done.") @contextlib.asynccontextmanager async def _test_async_sync_top_down_exc(): try: yield except KeyboardInterrupt as e: assert isinstance(e, KeyboardInterrupt) logger.info(f"Async: Received {repr(e)}, Re-raising") raise def test_async_sync_top_down_exc(): with assert_exc(KeyboardInterrupt): with helpers.ensure_sync(_test_async_sync_top_down_exc()): time.sleep(0.5) raise KeyboardInterrupt def test_async_sync_async_ctx(): class MyAsynCls: def __init__(self): logger.debug("MyAsynCls()") async def __aenter__(self): logger.debug("MyAsynCls.__aenter__") await asyncio.sleep(0.1) return self async def __aexit__(self, *args): logger.debug("MyAsynCls.__aexit__") await asyncio.sleep(0.1) class MySynCls: def __init__(self): logger.debug("MySynCls()") self.asyn = MyAsynCls() def __enter__(self): logger.debug("MySynCls.__enter__") helpers.ensure_sync(self.asyn.__aenter__()) time.sleep(0.1) def __exit__(self, *args): helpers.ensure_sync(self.asyn.__aexit__(*args)) time.sleep(0.1) logger.debug("MySynCls.__exit__") async def _test(): syn = MySynCls() logger.debug("with MySynCls") # with syn: # NOTE: this would cause a hang async with helpers.ensure_async(syn): logger.debug("entered") await asyncio.sleep(0.1) logger.debug("exited") helpers.ensure_sync(_test())
the-stack_106_23237
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci ''' test case for s8 * s8 ''' @skip_check_grad_ci( reason= "mul_mkldnn_op does not implement grad operator, check_grad is not required." ) class TestMKLDNNMulOpS8S8(OpTest): def setUp(self): self.op_type = "mul" self.init_kernel_type() self.init_data_type() self.init_data() self.attrs = { "use_mkldnn": self.use_mkldnn, "scale_x": self.scale_x, "scale_y": self.scale_y, "scale_out": self.scale_out, "force_fp32_output": self.force_fp32, } def init_kernel_type(self): self.use_mkldnn = True self.force_fp32 = True def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 def init_data(self): self.scale_x = 0.6 self.scale_y = [0.8] self.scale_out = 1.0 # limit random range inside |-127, 127| to avoid overflow on SKL if self.srctype == np.int8: A_data = np.random.randint(-127, 127, (20, 5)).astype(np.int8) else: A_data = np.random.randint(0, 127, (20, 5)).astype(np.uint8) B_data = np.random.uniform(-127, 127, (5, 20)).astype(np.float32) quant_B = np.round(B_data * self.scale_y[0]).astype(np.int_) output = np.dot(A_data, quant_B) scale_output_shift = (self.scale_out) / \ (self.scale_x * self.scale_y[0]) if (self.force_fp32): output = (output * scale_output_shift).astype(self.dsttype) else: output = np.round(output * scale_output_shift).astype(self.dsttype) self.inputs = {'X': A_data, 'Y': B_data} self.outputs = {'Out': output} def test_check_output(self): # TODO(wangzhongpu): support mkldnn op in dygraph mode self.check_output_with_place(core.CPUPlace(), atol=0, check_dygraph=False) ''' test case for s8 * u8 ''' class TestMKLDNNMulOpS8U8(TestMKLDNNMulOpS8S8): def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 ''' test case for s8 * s8 ''' class TestMKLDNNMulOpS8S8WithFlatten(TestMKLDNNMulOpS8S8): def setUp(self): self.op_type = "mul" self.init_kernel_type() self.init_data_type() self.init_data() self.attrs = { "use_mkldnn": self.use_mkldnn, "scale_x": self.scale_x, "scale_y": self.scale_y, "scale_out": self.scale_out, "force_fp32_output": self.force_fp32, "x_num_col_dims": 2, "y_num_col_dims": 2, } def init_data(self): self.scale_x = 0.6 self.scale_y = [0.8] self.scale_out = 1.0 # limit random range inside |-127, 127| to avoid overflow on SKL if self.srctype == np.int8: A_data = np.random.randint(-127, 127, (3, 4, 4, 3)).astype(np.int8) else: A_data = np.random.randint(0, 127, (3, 4, 4, 3)).astype(np.uint8) B_data = np.random.uniform(-127, 127, (2, 6, 1, 2, 3)).astype(np.float32) A_data_reshape = A_data.reshape(3 * 4, 4 * 3) B_data_reshape = B_data.reshape(2 * 6, 1 * 2 * 3) quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int_) output = np.dot(A_data_reshape, quant_B) scale_output_shift = (self.scale_out) / \ (self.scale_x * self.scale_y[0]) if (self.force_fp32): output = (output * scale_output_shift).astype(self.dsttype) else: output = np.round(output * scale_output_shift).astype(self.dsttype) output = output.reshape(3, 4, 1, 2, 3) self.inputs = {'X': A_data, 'Y': B_data} self.outputs = {'Out': output} ''' test case for s8 * u8 ''' class TestMKLDNNMulOpS8U8WithFlatten(TestMKLDNNMulOpS8S8WithFlatten): def init_data_type(self): self.srctype = np.uint8 self.dsttype = np.float32 if self.force_fp32 else np.int8 if __name__ == '__main__': paddle.enable_static() unittest.main()
the-stack_106_23239
import numpy as np import matplotlib.pylab as plt import cv2 from skimage.metrics import structural_similarity as ssim from skimage.metrics import peak_signal_noise_ratio as psnr import os from os.path import join as opj from os.path import dirname as opd from tqdm import tqdm def plot(img,title="",savename="",savedir=None): plt.figure() plt.title(title) plt.imshow(img,vmax=img.max(),vmin=0) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close() def plot12(img1,img2,title1="",title2="",title="",savename="",savedir=None): fig = plt.figure() fig.suptitle(title) plt.subplot(121) plt.title(title1) plt.imshow(img1,vmax=img1.max(),vmin=0) plt.subplot(122) plt.title(title2) plt.imshow(img2,vmax=img2.max(),vmin=0) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close() def plot_hist(array,bins=None,title='',savename="",savedir=None): plt.figure() plt.title(title) if bins!=None: plt.hist(array,bins=bins) else: plt.hist(array) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close() def plot_matrix(matrix,cmap='viridis_r',vmin=None,vmax=None,text=False,title='',savename="",savedir=None): plt.figure(figsize=(20,20)) plt.title(title) if vmin!=None and vmax!=None: plt.imshow(matrix,cmap=cmap,vmin=vmin,vmax=vmax) else: plt.imshow(matrix,cmap=cmap) plt.colorbar(shrink=0.8) if text: for i in range(matrix.shape[0]): for j in range(matrix.shape[1]): plt.text(j, i, "{:.2f}".format(matrix[i, j]), ha="center", va="center", color="w",size=8) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close() def plot_boxplot(array,showfliers=True,whis=1.5,flierprops=None,title='',savename="",savedir=None): plt.figure() plt.title(title) plt.boxplot(array,showfliers=showfliers,whis=whis,flierprops=flierprops) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close() def plot12_boxplot(array1,array2,showfliers=True,whis=1.5,flierprops=None, title1="",title2="",title="",savename="",savedir=None): fig = plt.figure() fig.suptitle(title) plt.subplot(121) plt.title(title1) plt.boxplot(array1,showfliers=showfliers,whis=whis,flierprops=flierprops) plt.subplot(122) plt.title(title2) plt.boxplot(array2,showfliers=showfliers,whis=whis,flierprops=flierprops) if savedir!=None: plt.savefig(opj(savedir,savename+'.png'),dpi=200) else: plt.show() plt.close()
the-stack_106_23241
# Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class OptLoss(torch.jit.ScriptModule): """ Implements the loss as the sum of the followings: 1. Confidence Loss: All labels, with hard negative mining 2. Localization Loss: Only on positive labels Suppose input dboxes has the shape 8732x4 """ __constants__ = ['scale_xy', 'scale_wh', 'dboxes_xy', 'dboxes_wh'] def __init__(self, dboxes): super(OptLoss, self).__init__() self.scale_xy = 1.0/dboxes.scale_xy self.scale_wh = 1.0/dboxes.scale_wh self.sl1_loss = torch.nn.SmoothL1Loss(reduce=False) self.dboxes = torch.nn.Parameter(dboxes(order="xywh").transpose(0, 1).unsqueeze(dim = 0), requires_grad=False) self.register_buffer('dboxes_xy', self.dboxes[:, :2, :]) self.register_buffer('dboxes_wh', self.dboxes[:, 2:, :]) self.dboxes_xy.requires_grad = False self.dboxes_wh.requires_grad = False # Two factor are from following links # http://jany.st/post/2017-11-05-single-shot-detector-ssd-from-scratch-in-tensorflow.html self.con_loss = torch.nn.CrossEntropyLoss(reduce=False) @torch.jit.script_method def _loc_vec(self, loc): """ Generate Location Vectors """ # loc_wh, loc_xy = loc[:, :2, :], loc[:, 2:, :] gxy = self.scale_xy*(loc[:, :2, :] - self.dboxes_xy) / self.dboxes_wh # gxy = self.scale_xy*(loc[:, :2, :] - self.dboxes[:, :2, :])/self.dboxes[:, 2:, ] gwh = self.scale_wh*(loc[:, 2:, :] / self.dboxes_wh).log() # gwh = self.scale_wh*(loc[:, 2:, :]/self.dboxes[:, 2:, :]).log() #print(gxy.sum(), gwh.sum()) return torch.cat((gxy, gwh), dim=1).contiguous() @torch.jit.script_method def forward(self, ploc, plabel, gloc, glabel): """ ploc, plabel: Nx4x8732, Nxlabel_numx8732 predicted location and labels gloc, glabel: Nx4x8732, Nx8732 ground truth location and labels """ mask = glabel > 0 pos_num = mask.sum(dim=1) vec_gd = self._loc_vec(gloc) # sum on four coordinates, and mask sl1 = self.sl1_loss(ploc, vec_gd).sum(dim=1) sl1 = (mask.type_as(sl1) * sl1).sum(dim=1) # hard negative mining con = self.con_loss(plabel, glabel) # postive mask will never selected con_neg = con.clone() # con_neg[mask] = 0 con_neg.masked_fill_(mask, 0) # con_neg[con_neg!=con_neg] = 0 con_neg.masked_fill_(con_neg!=con_neg, 0) con_s, con_idx = con_neg.sort(dim=1, descending=True) r = torch.arange(0, con_neg.size(1), dtype=torch.long, device='cuda').expand(con_neg.size(0), -1) con_rank = r.scatter(1, con_idx, r) # number of negative three times positive neg_num = torch.clamp(3*pos_num, max=mask.size(1)).unsqueeze(-1) neg_mask = con_rank < neg_num closs = (con*(mask.type_as(con_s) + neg_mask.type_as(con_s))).sum(dim=1) # avoid no object detected total_loss = sl1 + closs num_mask = (pos_num > 0).type_as(closs) pos_num = pos_num.type_as(closs).clamp(min=1e-6) ret = (total_loss * num_mask / pos_num).mean(dim=0) return ret
the-stack_106_23243
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Shared functionality and helpers for the unit tests.""" from enum import Enum import inspect import logging import os import unittest from qiskit_aqua_chemistry import __path__ as qiskit_aqua_chemistry_path TRAVIS_FORK_PULL_REQUEST = False if os.getenv('TRAVIS_PULL_REQUEST_SLUG'): if os.getenv('TRAVIS_REPO_SLUG') != os.getenv('TRAVIS_PULL_REQUEST_SLUG'): TRAVIS_FORK_PULL_REQUEST = True class Path(Enum): """Helper with paths commonly used during the tests.""" # Main SDK path: qiskit_aqua_chemistry/ SDK = qiskit_aqua_chemistry_path[0] # test.python path: test/ TEST = os.path.dirname(__file__) class QiskitAquaChemistryTestCase(unittest.TestCase): """Helper class that contains common functionality.""" SLOW_TEST = int(os.getenv('SLOW_TEST','0')) @classmethod def setUpClass(cls): cls.moduleName = os.path.splitext(inspect.getfile(cls))[0] cls.log = logging.getLogger(cls.__name__) # Set logging to file and stdout if the LOG_LEVEL environment variable # is set. if os.getenv('LOG_LEVEL'): # Set up formatter. log_fmt = ('{}.%(funcName)s:%(levelname)s:%(asctime)s:' ' %(message)s'.format(cls.__name__)) formatter = logging.Formatter(log_fmt) # Set up the file handler. log_file_name = '%s.log' % cls.moduleName file_handler = logging.FileHandler(log_file_name) file_handler.setFormatter(formatter) cls.log.addHandler(file_handler) # Set the logging level from the environment variable, defaulting # to INFO if it is not a valid level. level = logging._nameToLevel.get(os.getenv('LOG_LEVEL'), logging.INFO) cls.log.setLevel(level) @staticmethod def _get_resource_path(filename, path=Path.TEST): """ Get the absolute path to a resource. Args: filename (string): filename or relative path to the resource. path (Path): path used as relative to the filename. Returns: str: the absolute path to the resource. """ return os.path.normpath(os.path.join(path.value, filename)) def assertNoLogs(self, logger=None, level=None): """The opposite to assertLogs. """ # pylint: disable=invalid-name return _AssertNoLogsContext(self, logger, level) class _AssertNoLogsContext(unittest.case._AssertLogsContext): """A context manager used to implement TestCase.assertNoLogs().""" LOGGING_FORMAT = "%(levelname)s:%(name)s:%(message)s" # pylint: disable=inconsistent-return-statements def __exit__(self, exc_type, exc_value, tb): """ This is a modified version of unittest.case._AssertLogsContext.__exit__(...) """ self.logger.handlers = self.old_handlers self.logger.propagate = self.old_propagate self.logger.setLevel(self.old_level) if exc_type is not None: # let unexpected exceptions pass through return False for record in self.watcher.records: self._raiseFailure( "Something was logged in the logger %s by %s:%i" % (record.name, record.pathname, record.lineno))
the-stack_106_23244
#cpu time 0.03s all_times = [] while True: i = input() if i == '0': # let's end with the final output for hour, minute, ampm in all_times[:-1]: # for every time in all times, except the last hour = hour[0].replace('0', '12') if len(hour) == 1 else hour print('{}:{} {}'.format(hour, minute, ampm) if hour else '') hour, minute, ampm = all_times[-1] hour = hour[0].replace('0', '12') if len(hour) == 1 else hour print('{}:{} {}'.format(hour, minute, ampm), end="") break current_times = [] if all_times: # empty line in our print all_times.append(['', '', '']) for _ in range(int(i)): # for our current input range add times to times list time = input() time = time[:2].replace('12', '0') + time[2:] # try to replace the 12 with 0 time = time.split() current_times += [time[0].split(':') + [time[1]]] # append the current time to current_times current_times.sort(key=lambda x: (x[2], int(x[0]), int(x[1]))) # sort all_times by am/pm, hours, minutes all_times += current_times
the-stack_106_23245
from django.urls import path from . import views urlpatterns = [ path('', views.index, name='index'), path('add/', views.add, name='add'), path('update/', views.update, name='update'), path('delete/', views.delete, name='delete'), ]
the-stack_106_23246
# Only used for PyTorch open source BUCK build CXX = "Default" ANDROID = "Android" APPLE = "Apple" FBCODE = "Fbcode" WINDOWS = "Windows" UNIFIED = "Unified" # Apple SDK Definitions IOS = "ios" WATCHOS = "watchos" MACOSX = "macosx" APPLETVOS = "appletvos" xplat_platforms = struct( ANDROID = ANDROID, APPLE = APPLE, CXX = CXX, FBCODE = FBCODE, WINDOWS = WINDOWS, UNIFIED = UNIFIED, ) apple_sdks = struct( IOS = IOS, WATCHOS = WATCHOS, MACOSX = MACOSX, APPLETVOS = APPLETVOS, )
the-stack_106_23248
import sys sys.path.append('../../configs') sys.path.append('../../utils') sys.path.append('../../tfops') # ../../configs from info import ACTIVATE_K_SET_IMGNET # ../../utils from datasetmanager import DATASETMANAGER_DICT from format_op import params2id, listformat from shutil_op import remove_file, remove_dir, copy_file, copy_dir from writer import create_muldir, write_pkl from csv_op import CsvWriter2 from reader import read_pkl # ./ from local_config import K_SET, RESULT_DIR,\ DATASET, GPU_ID, BATCH_SIZE, EPOCH, NSCLASS,\ CONV_NAME, EMBED_M,\ LOSS_TYPE, MARGIN_ALPHA, LAMBDA,\ DECAY_TYPE, DECAY_PARAM_TYPE from deepmetric import DeepMetric import numpy as np import itertools import shutil import glob import os import argparse parser = argparse.ArgumentParser() parser.add_argument("--gpu", default = GPU_ID, help="Utilize which gpu", type = int) parser.add_argument("--dataset", default = DATASET, help="dataset to be used", type = str) parser.add_argument("--nbatch", default = BATCH_SIZE, help="batch size", type = int) parser.add_argument("--nsclass", default = NSCLASS, help="number of selected class in a batch", type = int) parser.add_argument("--epoch", default = EPOCH, help="epoch to be ran", type = int) parser.add_argument("--conv", default = CONV_NAME, help="conv network", type = str) parser.add_argument("--ltype", default = LOSS_TYPE, help="loss type", type = str) parser.add_argument("--m", default = EMBED_M, help="embedding m", type = int) parser.add_argument("--lamb", default = LAMBDA, help="lambda", type = float) parser.add_argument("--ma", default = MARGIN_ALPHA, help="margin alpha", type = float) parser.add_argument("--dtype", default = DECAY_TYPE, help="decay type", type = str) parser.add_argument("--dptype", default = DECAY_PARAM_TYPE, help="decay parameter type", type = str) args = parser.parse_args() nk = len(K_SET) if __name__ == '__main__': FILE_ID = params2id(args.dataset, args.conv, args.ltype, args.m) QUERY_FILE_ID = params2id(args.dataset, '*', '*', args.conv, args.ltype, '*', args.m, '*', '*') print("file id : {}".format(FILE_ID)) print("query file id : {}".format(QUERY_FILE_ID)) CSV_DIR = RESULT_DIR+'metric/csv/' PKL_DIR = RESULT_DIR+'metric/pkl/' LOG_DIR = RESULT_DIR+'metric/log/' SAVE_DIR = RESULT_DIR+'metric/save/%s/'%FILE_ID create_muldir(PKL_DIR, CSV_DIR, LOG_DIR) copy_dst_csv = CSV_DIR+FILE_ID+'.csv' copy_dst_pkl = PKL_DIR+FILE_ID+'.pkl' if os.path.exists(SAVE_DIR): remove_dir(SAVE_DIR) if os.path.exists(copy_dst_csv): remove_file(copy_dst_csv) if os.path.exists(copy_dst_pkl): remove_file(copy_dst_pkl) pkl_files = glob.glob(PKL_DIR+QUERY_FILE_ID+'.pkl') print(pkl_files) if len(pkl_files)==0: print("No such pkl files") sys.exit() best_file_id = os.path.basename(pkl_files[0])[:-4] # -.pkl' best_performance = np.sum(read_pkl(pkl_files[0])['te_te_precision_at_k']) for pkl_idx in range(len(pkl_files)): file_id = os.path.basename(pkl_files[pkl_idx])[:-4] # -.pkl' performance = np.sum(read_pkl(pkl_files[pkl_idx])['te_te_precision_at_k']) print("performance : {} from {}".format(performance, file_id)) if performance > best_performance: best_performance = performance best_file_id = file_id print("best performance : {} from {}".format(best_performance, best_file_id)) copy_file(CSV_DIR+best_file_id+'.csv', copy_dst_csv) copy_file(PKL_DIR+best_file_id+'.pkl', copy_dst_pkl) copy_dir(RESULT_DIR+'metric/save/'+best_file_id, SAVE_DIR) # load data datasetmanager = DATASETMANAGER_DICT[args.dataset] dm_train, dm_val, dm_test = datasetmanager(args.ltype, nsclass=args.nsclass) for v in [dm_train, dm_val, dm_test]: v.print_shape() model = DeepMetric(dm_train, dm_val, dm_test, LOG_DIR+FILE_ID+'.log', args) model.build() model.set_up_train() model.restore(save_dir=SAVE_DIR) model.prepare_test() for activate_k in ACTIVATE_K_SET_IMGNET: performance_th = model.test_th(activate_k, K_SET) performance_vq = model.test_vq(activate_k, K_SET) write_pkl({'th' : performance_th, 'vq' : performance_vq}, path=PKL_DIR + FILE_ID+'_{}.pkl'.format(activate_k)) cwrite = CsvWriter2(2) key_set = [ 'test_nmi', 'te_te_suf', 'te_te_precision_at_k', 'te_te_recall_at_k' ] for key in key_set: cwrite.add_header(0, str(key)+"_th") cwrite.add_header(1, str(key)+"_vq") content = '' if 'suf' in str(key): content = listformat(performance_th[key]) elif 'at_k' in str(key): content = listformat(performance_th[key]) else: content = performance_th[key] cwrite.add_content(0, content) content = '' if 'suf' in str(key): content = listformat(performance_vq[key]) elif 'at_k' in str(key): content = listformat(performance_vq[key]) else: content = performance_vq[key] cwrite.add_content(1, content) cwrite.write(CSV_DIR+FILE_ID+'_{}.csv'.format(activate_k)) model.delete()
the-stack_106_23249
import time from PyQt4.QtGui import * from PyQt4.QtCore import * from electrum_twist_gui.qt.util import * from electrum_twist_gui.qt.amountedit import AmountEdit from electrum_twist.twist import COIN from electrum_twist.i18n import _ from decimal import Decimal from functools import partial from electrum_twist.plugins import hook from exchange_rate import FxPlugin from electrum_twist.util import timestamp_to_datetime class Plugin(FxPlugin, QObject): def __init__(self, parent, config, name): FxPlugin.__init__(self, parent, config, name) QObject.__init__(self) def connect_fields(self, window, btc_e, fiat_e, fee_e): def edit_changed(edit): if edit.follows: return edit.setStyleSheet(BLACK_FG) fiat_e.is_last_edited = (edit == fiat_e) amount = edit.get_amount() rate = self.exchange_rate() if rate is None or amount is None: if edit is fiat_e: btc_e.setText("") if fee_e: fee_e.setText("") else: fiat_e.setText("") else: if edit is fiat_e: btc_e.follows = True btc_e.setAmount(int(amount / Decimal(rate) * COIN)) btc_e.setStyleSheet(BLUE_FG) btc_e.follows = False if fee_e: window.update_fee() else: fiat_e.follows = True fiat_e.setText(self.ccy_amount_str( amount * Decimal(rate) / COIN, False)) fiat_e.setStyleSheet(BLUE_FG) fiat_e.follows = False btc_e.follows = False fiat_e.follows = False fiat_e.textChanged.connect(partial(edit_changed, fiat_e)) btc_e.textChanged.connect(partial(edit_changed, btc_e)) fiat_e.is_last_edited = False @hook def init_qt(self, gui): for window in gui.windows: self.on_new_window(window) @hook def do_clear(self, window): window.fiat_send_e.setText('') def on_close(self): self.emit(SIGNAL('close_fx_plugin')) def restore_window(self, window): window.update_status() window.history_list.refresh_headers() window.fiat_send_e.hide() window.fiat_receive_e.hide() def on_quotes(self): self.emit(SIGNAL('new_fx_quotes')) def on_history(self): self.emit(SIGNAL('new_fx_history')) def on_fx_history(self, window): '''Called when historical fx quotes are updated''' window.history_list.update() def on_fx_quotes(self, window): '''Called when fresh spot fx quotes come in''' window.update_status() self.populate_ccy_combo() # Refresh edits with the new rate edit = window.fiat_send_e if window.fiat_send_e.is_last_edited else window.amount_e edit.textEdited.emit(edit.text()) edit = window.fiat_receive_e if window.fiat_receive_e.is_last_edited else window.receive_amount_e edit.textEdited.emit(edit.text()) # History tab needs updating if it used spot if self.history_used_spot: self.on_fx_history(window) def on_ccy_combo_change(self): '''Called when the chosen currency changes''' ccy = str(self.ccy_combo.currentText()) if ccy and ccy != self.ccy: self.set_currency(ccy) self.hist_checkbox_update() def hist_checkbox_update(self): if self.hist_checkbox: self.hist_checkbox.setEnabled(self.ccy in self.exchange.history_ccys()) self.hist_checkbox.setChecked(self.config_history()) def populate_ccy_combo(self): # There should be at most one instance of the settings dialog combo = self.ccy_combo # NOTE: bool(combo) is False if it is empty. Nuts. if combo is not None: combo.blockSignals(True) combo.clear() combo.addItems(sorted(self.exchange.quotes.keys())) combo.blockSignals(False) combo.setCurrentIndex(combo.findText(self.ccy)) @hook def on_new_window(self, window): # Additional send and receive edit boxes if not hasattr(window, 'fiat_send_e'): send_e = AmountEdit(self.get_currency) window.send_grid.addWidget(send_e, 4, 2, Qt.AlignLeft) window.amount_e.frozen.connect( lambda: send_e.setFrozen(window.amount_e.isReadOnly())) receive_e = AmountEdit(self.get_currency) window.receive_grid.addWidget(receive_e, 2, 2, Qt.AlignLeft) window.fiat_send_e = send_e window.fiat_receive_e = receive_e self.connect_fields(window, window.amount_e, send_e, window.fee_e) self.connect_fields(window, window.receive_amount_e, receive_e, None) else: window.fiat_send_e.show() window.fiat_receive_e.show() window.history_list.refresh_headers() window.update_status() window.connect(self, SIGNAL('new_fx_quotes'), lambda: self.on_fx_quotes(window)) window.connect(self, SIGNAL('new_fx_history'), lambda: self.on_fx_history(window)) window.connect(self, SIGNAL('close_fx_plugin'), lambda: self.restore_window(window)) window.connect(self, SIGNAL('refresh_headers'), window.history_list.refresh_headers) def settings_widget(self, window): return EnterButton(_('Settings'), partial(self.settings_dialog, window)) def settings_dialog(self, window): d = WindowModalDialog(window, _("Exchange Rate Settings")) layout = QGridLayout(d) layout.addWidget(QLabel(_('Exchange rate API: ')), 0, 0) layout.addWidget(QLabel(_('Currency: ')), 1, 0) layout.addWidget(QLabel(_('History Rates: ')), 2, 0) # Currency list self.ccy_combo = QComboBox() self.ccy_combo.currentIndexChanged.connect(self.on_ccy_combo_change) self.populate_ccy_combo() def on_change_ex(idx): exchange = str(combo_ex.currentText()) if exchange != self.exchange.name(): self.set_exchange(exchange) self.hist_checkbox_update() def on_change_hist(checked): if checked: self.config.set_key('history_rates', 'checked') self.get_historical_rates() else: self.config.set_key('history_rates', 'unchecked') self.emit(SIGNAL('refresh_headers')) def ok_clicked(): self.timeout = 0 self.ccy_combo = None d.accept() combo_ex = QComboBox() combo_ex.addItems(sorted(self.exchanges.keys())) combo_ex.setCurrentIndex(combo_ex.findText(self.config_exchange())) combo_ex.currentIndexChanged.connect(on_change_ex) self.hist_checkbox = QCheckBox() self.hist_checkbox.stateChanged.connect(on_change_hist) self.hist_checkbox_update() ok_button = QPushButton(_("OK")) ok_button.clicked.connect(lambda: ok_clicked()) layout.addWidget(self.ccy_combo,1,1) layout.addWidget(combo_ex,0,1) layout.addWidget(self.hist_checkbox,2,1) layout.addWidget(ok_button,3,1) return d.exec_() def config_history(self): return self.config.get('history_rates', 'unchecked') != 'unchecked' def show_history(self): return self.config_history() and self.ccy in self.exchange.history_ccys() @hook def history_tab_headers(self, headers): if self.show_history(): headers.extend(['%s '%self.ccy + _('Amount'), '%s '%self.ccy + _('Balance')]) @hook def history_tab_update_begin(self): self.history_used_spot = False @hook def history_tab_update(self, tx, entry): if not self.show_history(): return tx_hash, height, conf, timestamp, value, balance = tx if conf <= 0: date = timestamp_to_datetime(time.time()) else: date = timestamp_to_datetime(timestamp) for amount in [value, balance]: text = self.historical_value_str(amount, date) entry.append(text)
the-stack_106_23250
from dataclasses import dataclass, field from kikit.sexpr import Atom, parseSexprF from itertools import islice import os from typing import Optional @dataclass class Symbol: uuid: Optional[str] = None path: Optional[str] = None unit: Optional[int] = None lib_id: Optional[str] = None in_bom: Optional[bool] = None on_board: Optional[bool] = None properties: dict = field(default_factory=dict) @dataclass class SymbolInstance: path: Optional[str] = None reference: Optional[str] = None unit: Optional[int] = None value: Optional[str] = None footprint: Optional[str] = None def getProperty(sexpr, field): for x in islice(sexpr, 1, None): if len(x) > 0 and \ isinstance(x[0], Atom) and x[0].value == "property" and \ isinstance(x[1], Atom) and x[1].value == field: return x[2].value return None def isSymbol(sexpr): if isinstance(sexpr, Atom) or len(sexpr) == 0: return False item = sexpr[0] return isinstance(item, Atom) and item.value == "symbol" def isSymbolInstances(sexpr): if isinstance(sexpr, Atom) or len(sexpr) == 0: return False item = sexpr[0] return isinstance(item, Atom) and item.value == "symbol_instances" def isSheet(sexpr): if isinstance(sexpr, Atom) or len(sexpr) == 0: return False item = sexpr[0] return isinstance(item, Atom) and item.value == "sheet" def isPath(sexpr): if isinstance(sexpr, Atom) or len(sexpr) == 0: return False item = sexpr[0] return isinstance(item, Atom) and item.value == "path" def getUuid(sexpr): for x in islice(sexpr, 1, None): if x and x[0] == "uuid": return x[1].value return None def extractSymbol(sexpr, path): s = Symbol() for x in islice(sexpr, 1, None): if not x: continue key = x[0] if not isinstance(key, Atom): continue key = key.value if key == "lib_id": s.lib_id = x[1].value elif key == "lib_id": s.unit = int(x[1].value) elif key == "uuid": s.uuid = x[1].value s.path = path + "/" + s.uuid elif key == "in_bom": s.in_bom = x[1].value == "yes" elif key == "on_board": s.on_board = x[1].value == "yes" elif key == "property": s.properties[x[1].value] = x[2].value return s def extractSymbolInstance(sexpr): s = SymbolInstance() s.path = sexpr[1].value for x in islice(sexpr, 2, None): if not len(x) > 1: continue key = x[0] if not isinstance(key, Atom): continue key = key.value if key == "reference": s.reference = x[1].value elif key == "unit": s.unit = int(x[1].value) elif key == "value": s.value = x[1].value elif key == "footprint": s.footprint = x[1].value return s def collectSymbols(filename, path=""): """ Crawl given sheet and return two lists - one with symbols, one with symbol instances """ with open(filename) as f: sheetSExpr = parseSexprF(f) symbols, instances = [], [] for item in sheetSExpr.items: if isSymbol(item): symbols.append(extractSymbol(item, path)) continue if isSheet(item): f = getProperty(item, "Sheet file") uuid = getUuid(item) dirname = os.path.dirname(filename) if len(dirname) > 0: f = dirname + "/" + f s, i = collectSymbols(f, path + "/" + uuid) symbols += s instances += i continue if isSymbolInstances(item): for p in item.items: if isPath(p): instances.append(extractSymbolInstance(p)) continue return symbols, instances def getField(component, field): return component.properties.get(field, None) def getUnit(component): return component.unit def getReference(component): return component.properties["Reference"] def extractComponents(filename): symbols, instances = collectSymbols(filename) symbolsDict = {x.path: x for x in symbols} assert len(symbols) == len(instances) components = [] for inst in instances: s = symbolsDict[inst.path] # Note that s should be unique, so we can safely modify it s.properties["Reference"] = inst.reference s.properties["Value"] = inst.value s.properties["Footprint"] = inst.footprint s.unit = inst.unit components.append(s) return components
the-stack_106_23253
""" Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order. Example 1: Input: nums = [2,7,11,15], target = 9 Output: [0,1] Output: Because nums[0] + nums[1] == 9, we return [0, 1]. Example 2: Input: nums = [3,2,4], target = 6 Output: [1,2] Example 3: Input: nums = [3,3], target = 6 Output: [0,1] Constraints: 2 <= nums.length <= 10^3 -10^9 <= nums[i] <= 10^9 -10^9 <= target <= 10^9 Only one valid answer exists. """ from typing import List class Solution1: def twoSum(self, nums: List[int], target: int) -> List[int]: hash_map = {} for i, n in enumerate(nums): if target - n in hash_map: return [hash_map[target - n], i] hash_map[n] = i raise ValueError
the-stack_106_23254
""" Creating prime sieve (optimized version). .. module:: sieve_of_eratosthenes_optimized :platform: Unix, Windows :synopis: creating prime sieve .. moduleauthor:: Thomas Lehmann <[email protected]> ======= License ======= Copyright (c) 2015 Thomas Lehmann Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math class sieve_of_eratosthenes_optimized(object): """Prime sieve.""" def __init__(self, max_n): """Initialize sieve.""" self.max_n = max_n self.sieve = [True] * (self.max_n // 2 + 1) self.sieve[0] = False self.sieve[1] = True def calculate(self): """Strike out all multiples of a prime as none prime.""" limit = int(math.sqrt(self.max_n)) value_i = 3 while value_i <= limit: if self.sieve[value_i // 2]: value_j = value_i ** 2 offset = 2 * value_i while value_j <= self.max_n: self.sieve[value_j // 2] = False value_j += offset value_i += 2 def get_primes(self): """ Get all primes. :returns: list of primes """ return [2] + [n for n in range(3, self.max_n + 1, 2) if self.sieve[n // 2]] def is_prime(self, value): """ Checking sieve for value. It's expected that given value is a odd value since the sieve does ignore even values. :param value: value to be checked to be a prime. :returns: True when given number is a prime. """ return self.sieve[value // 2]
the-stack_106_23255
# coding=utf8 """ meetbot.py - Willie meeting logger module Copyright © 2012, Elad Alfassa, <[email protected]> Licensed under the Eiffel Forum License 2. This module is an attempt to implement at least some of the functionallity of Debian's meetbot """ from __future__ import unicode_literals import time import os from willie.web import quote from willie.modules.url import find_title from willie.module import example, commands, rule, priority from willie.tools import Ddict, Identifier import codecs def configure(config): """ | [meetbot] | example | purpose | | --------- | ------- | ------- | | meeting_log_path | /home/willie/www/meetings | Path to meeting logs storage directory (should be an absolute path, accessible on a webserver) | | meeting_log_baseurl | http://example.com/~willie/meetings | Base URL for the meeting logs directory | """ if config.option('Configure meetbot', False): config.interactive_add('meetbot', 'meeting_log_path', "Path to meeting logs storage directory (should be an absolute path, accessible on a webserver)") config.interactive_add('meetbot', 'meeting_log_baseurl', "Base URL for the meeting logs directory (eg. http://example.com/logs)") meetings_dict = Ddict(dict) # Saves metadata about currently running meetings """ meetings_dict is a 2D dict. Each meeting should have: channel time of start head (can stop the meeting, plus all abilities of chairs) chairs (can add infolines to the logs) title current subject comments (what people who aren't voiced want to add) Using channel as the meeting ID as there can't be more than one meeting in a channel at the same time. """ meeting_log_path = '' # To be defined on meeting start as part of sanity checks, used by logging functions so we don't have to pass them bot meeting_log_baseurl = '' # To be defined on meeting start as part of sanity checks, used by logging functions so we don't have to pass them bot meeting_actions = {} # A dict of channels to the actions that have been created in them. This way we can have .listactions spit them back out later on. #Get the logfile name for the meeting in the requested channel #Used by all logging functions def figure_logfile_name(channel): if meetings_dict[channel]['title'] is 'Untitled meeting': name = 'untitled' else: name = meetings_dict[channel]['title'] # Real simple sluggifying. This bunch of characters isn't exhaustive, but # whatever. It's close enough for most situations, I think. for c in ' ./\\:*?"<>|&*`': name = name.replace(c, '-') timestring = time.strftime('%Y-%m-%d-%H:%M', time.gmtime(meetings_dict[channel]['start'])) filename = timestring + '_' + name return filename #Start HTML log def logHTML_start(channel): logfile = codecs.open(meeting_log_path + channel + '/' + figure_logfile_name(channel) + '.html', 'a', encoding='utf-8') timestring = time.strftime('%Y-%m-%d %H:%M', time.gmtime(meetings_dict[channel]['start'])) title = '%s at %s, %s' % (meetings_dict[channel]['title'], channel, timestring) logfile.write('<!doctype html>\n<html>\n<head>\n<meta charset="utf-8">\n<title>%TITLE%</title>\n</head>\n<body>\n<h1>%TITLE%</h1>\n'.replace('%TITLE%', title)) logfile.write('<h4>Meeting started by %s</h4><ul>\n' % meetings_dict[channel]['head']) logfile.close() #Write a list item in the HTML log def logHTML_listitem(item, channel): logfile = codecs.open(meeting_log_path + channel + '/' + figure_logfile_name(channel) + '.html', 'a', encoding='utf-8') logfile.write('<li>' + item + '</li>\n') logfile.close() #End the HTML log def logHTML_end(channel): logfile = codecs.open(meeting_log_path + channel + '/' + figure_logfile_name(channel) + '.html', 'a', encoding='utf-8') current_time = time.strftime('%H:%M:%S', time.gmtime()) logfile.write('</ul>\n<h4>Meeting ended at %s UTC</h4>\n' % current_time) plainlog_url = meeting_log_baseurl + quote(channel + '/' + figure_logfile_name(channel) + '.log') logfile.write('<a href="%s">Full log</a>' % plainlog_url) logfile.write('\n</body>\n</html>') logfile.close() #Write a string to the plain text log def logplain(item, channel): current_time = time.strftime('%H:%M:%S', time.gmtime()) logfile = codecs.open(meeting_log_path + channel + '/' + figure_logfile_name(channel) + '.log', 'a', encoding='utf-8') logfile.write('[' + current_time + '] ' + item + '\r\n') logfile.close() #Check if a meeting is currently running def ismeetingrunning(channel): try: if meetings_dict[channel]['running']: return True else: return False except: return False #Check if nick is a chair or head of the meeting def ischair(nick, channel): try: if nick.lower() == meetings_dict[channel]['head'] or nick.lower() in meetings_dict[channel]['chairs']: return True else: return False except: return False #Start meeting (also preforms all required sanity checks) @commands('startmeeting') @example('.startmeeting title or .startmeeting') def startmeeting(bot, trigger): """ Start a meeting. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if ismeetingrunning(trigger.sender): bot.say('Can\'t do that, there is already a meeting in progress here!') return if trigger.is_privmsg: bot.say('Can only start meetings in channels') return if not bot.config.has_section('meetbot'): bot.say('Meetbot not configured, make sure meeting_log_path and meeting_log_baseurl are defined') return #Start the meeting meetings_dict[trigger.sender]['start'] = time.time() if not trigger.group(2): meetings_dict[trigger.sender]['title'] = 'Untitled meeting' else: meetings_dict[trigger.sender]['title'] = trigger.group(2) meetings_dict[trigger.sender]['head'] = trigger.nick.lower() meetings_dict[trigger.sender]['running'] = True meetings_dict[trigger.sender]['comments'] = [] global meeting_log_path meeting_log_path = bot.config.meetbot.meeting_log_path if not meeting_log_path.endswith('/'): meeting_log_path = meeting_log_path + '/' global meeting_log_baseurl meeting_log_baseurl = bot.config.meetbot.meeting_log_baseurl if not meeting_log_baseurl.endswith('/'): meeting_log_baseurl = meeting_log_baseurl + '/' if not os.path.isdir(meeting_log_path + trigger.sender): try: os.makedirs(meeting_log_path + trigger.sender) except Exception as e: bot.say("Can't create log directory for this channel, meeting not started!") meetings_dict[trigger.sender] = Ddict(dict) raise return #Okay, meeting started! logplain('Meeting started by ' + trigger.nick.lower(), trigger.sender) logHTML_start(trigger.sender) meeting_actions[trigger.sender] = [] bot.say('Meeting started! use .action, .agreed, .info, .chairs, .subject and .comments to control the meeting. to end the meeting, type .endmeeting') bot.say('Users without speaking permission can use .comment ' + trigger.sender + ' followed by their comment in a PM with me to ' 'vocalize themselves.') #Change the current subject (will appear as <h3> in the HTML log) @commands('subject') @example('.subject roll call') def meetingsubject(bot, trigger): """ Change the meeting subject. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('what is the subject?') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return meetings_dict[trigger.sender]['current_subject'] = trigger.group(2) logfile = codecs.open(meeting_log_path + trigger.sender + '/' + figure_logfile_name(trigger.sender) + '.html', 'a', encoding='utf-8') logfile.write('</ul><h3>' + trigger.group(2) + '</h3><ul>') logfile.close() logplain('Current subject: ' + trigger.group(2) + ', (set by ' + trigger.nick + ')', trigger.sender) bot.say('Current subject: ' + trigger.group(2)) #End the meeting @commands('endmeeting') @example('.endmeeting') def endmeeting(bot, trigger): """ End a meeting. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return meeting_length = time.time() - meetings_dict[trigger.sender]['start'] #TODO: Humanize time output bot.say("Meeting ended! total meeting length %d seconds" % meeting_length) logHTML_end(trigger.sender) htmllog_url = meeting_log_baseurl + quote(trigger.sender + '/' + figure_logfile_name(trigger.sender) + '.html') logplain('Meeting ended by %s, total meeting length %d seconds' % (trigger.nick, meeting_length), trigger.sender) bot.say('Meeting minutes: ' + htmllog_url) meetings_dict[trigger.sender] = Ddict(dict) del meeting_actions[trigger.sender] #Set meeting chairs (people who can control the meeting) @commands('chairs') @example('.chairs Tyrope Jason elad') def chairs(bot, trigger): """ Set the meeting chairs. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('Who are the chairs?') return if trigger.nick.lower() == meetings_dict[trigger.sender]['head']: meetings_dict[trigger.sender]['chairs'] = trigger.group(2).lower().split(' ') chairs_readable = trigger.group(2).lower().replace(' ', ', ') logplain('Meeting chairs are: ' + chairs_readable, trigger.sender) logHTML_listitem('<span style="font-weight: bold">Meeting chairs are: </span>' + chairs_readable, trigger.sender) bot.say('Meeting chairs are: ' + chairs_readable) else: bot.say("Only meeting head can set chairs") #Log action item in the HTML log @commands('action') @example('.action elad will develop a meetbot') def meetingaction(bot, trigger): """ Log an action in the meeting log https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('try .action someone will do something') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return logplain('ACTION: ' + trigger.group(2), trigger.sender) logHTML_listitem('<span style="font-weight: bold">Action: </span>' + trigger.group(2), trigger.sender) meeting_actions[trigger.sender].append(trigger.group(2)) bot.say('ACTION: ' + trigger.group(2)) @commands('listactions') @example('.listactions') def listactions(bot, trigger): if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return for action in meeting_actions[trigger.sender]: bot.say('ACTION: ' + action) #Log agreed item in the HTML log @commands('agreed') @example('.agreed Bowties are cool') def meetingagreed(bot, trigger): """ Log an agreement in the meeting log. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('try .action someone will do something') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return logplain('AGREED: ' + trigger.group(2), trigger.sender) logHTML_listitem('<span style="font-weight: bold">Agreed: </span>' + trigger.group(2), trigger.sender) bot.say('AGREED: ' + trigger.group(2)) #Log link item in the HTML log @commands('link') @example('.link http://example.com') def meetinglink(bot, trigger): """ Log a link in the meeing log. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('try .action someone will do something') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return link = trigger.group(2) if not link.startswith("http"): link = "http://" + link try: title = find_title(link) except: title = '' logplain('LINK: %s [%s]' % (link, title), trigger.sender) logHTML_listitem('<a href="%s">%s</a>' % (link, title), trigger.sender) bot.say('LINK: ' + link) #Log informational item in the HTML log @commands('info') @example('.info all board members present') def meetinginfo(bot, trigger): """ Log an informational item in the meeting log https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): bot.say('Can\'t do that, start meeting first') return if not trigger.group(2): bot.say('try .info some informative thing') return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return logplain('INFO: ' + trigger.group(2), trigger.sender) logHTML_listitem(trigger.group(2), trigger.sender) bot.say('INFO: ' + trigger.group(2)) #called for every single message #Will log to plain text only @rule('(.*)') @priority('low') def log_meeting(bot, trigger): if not ismeetingrunning(trigger.sender): return if trigger.startswith('.endmeeting') or trigger.startswith('.chairs') or trigger.startswith('.action') or trigger.startswith('.info') or trigger.startswith('.startmeeting') or trigger.startswith('.agreed') or trigger.startswith('.link') or trigger.startswith('.subject'): return logplain('<' + trigger.nick + '> ' + trigger, trigger.sender) @commands('comment') def take_comment(bot, trigger): """ Log a comment, to be shown with other comments when a chair uses .comments. Intended to allow commentary from those outside the primary group of people in the meeting. Used in private message only, as `.comment <#channel> <comment to add>` https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not trigger.sender.is_nick(): return if not trigger.group(4): # <2 arguements were given bot.say('Usage: .comment <#channel> <comment to add>') return target, message = trigger.group(2).split(None, 1) target = Identifier(target) if not ismeetingrunning(target): bot.say("There's not currently a meeting in that channel.") else: meetings_dict[trigger.group(3)]['comments'].append((trigger.nick, message)) bot.say("Your comment has been recorded. It will be shown when the" " chairs tell me to show the comments.") bot.msg(meetings_dict[trigger.group(3)]['head'], "A new comment has been recorded.") @commands('comments') def show_comments(bot, trigger): """ Show the comments that have been logged for this meeting with .comment. https://github.com/embolalia/willie/wiki/Using-the-meetbot-module """ if not ismeetingrunning(trigger.sender): return if not ischair(trigger.nick, trigger.sender): bot.say('Only meeting head or chairs can do that') return comments = meetings_dict[trigger.sender]['comments'] if comments: msg = 'The following comments were made:' bot.say(msg) logplain('<%s> %s' % (bot.nick, msg), trigger.sender) for comment in comments: msg = '<%s> %s' % comment bot.say(msg) logplain('<%s> %s' % (bot.nick, msg), trigger.sender) meetings_dict[trigger.sender]['comments'] = [] else: bot.say('No comments have been logged.')
the-stack_106_23256
import datetime import shutil from dataclasses import dataclass from pathlib import Path from subprocess import check_output from typing import Callable, Tuple import pytest from cryptography import x509 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives.asymmetric.rsa import RSAPrivateKeyWithSerialization from cryptography.hazmat.primitives.serialization import ( Encoding, NoEncryption, PrivateFormat, ) from cryptography.x509 import Certificate, NameOID from lxml.etree import Element from minisignxml.config import SigningConfig from minisignxml.internal import utils from minisignxml.internal.constants import * from minisignxml.internal.namespaces import ds @pytest.fixture def xmlsec1(): path = shutil.which("xmlsec1") or shutil.which("xmlsec1.exe") if not path: raise pytest.skip("xmlsec1 not found") def execute(*args): return check_output((path,) + args) return execute @dataclass(frozen=True) class KeyAndCert: tmp_path: Path private_key: RSAPrivateKeyWithSerialization certificate: Certificate def files(self) -> Tuple[str, str]: pk_pem_path = self.tmp_path / "pk.pem" cert_pem_path = self.tmp_path / "cert.pem" with pk_pem_path.open("wb") as fobj: fobj.write( self.private_key.private_bytes( Encoding.PEM, PrivateFormat.PKCS8, NoEncryption() ) ) with cert_pem_path.open("wb") as fobj: fobj.write(self.certificate.public_bytes(Encoding.PEM)) return str(pk_pem_path), str(cert_pem_path) @pytest.fixture def key_factory() -> Callable[[], Tuple[RSAPrivateKeyWithSerialization, Certificate]]: def factory(): backend = default_backend() key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=backend ) cert = ( x509.CertificateBuilder() .subject_name(x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "test")])) .issuer_name(x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "test")])) .public_key(key.public_key()) .serial_number(x509.random_serial_number()) .not_valid_before(datetime.datetime.utcnow()) .not_valid_after(datetime.datetime.utcnow() + datetime.timedelta(days=1)) .sign(key, hashes.SHA256(), backend) ) return key, cert return factory @pytest.fixture def key_and_cert(tmp_path, key_factory) -> KeyAndCert: key, cert = key_factory() return KeyAndCert(tmp_path, key, cert) @pytest.fixture def signature_template() -> Callable[[SigningConfig], Element]: def builder( *, config: SigningConfig, certificate: Certificate, element_id: str ) -> Element: return ds.Signature( ds.SignedInfo( ds.CanonicalizationMethod(Algorithm=XML_EXC_C14N), ds.SignatureMethod( Algorithm=utils.signature_method_algorithm(config.signature_method) ), ds.Reference( ds.Transforms( ds.Transform(Algorithm=XMLDSIG_ENVELOPED_SIGNATURE), ds.Transform(Algorithm=XML_EXC_C14N), ), ds.DigestMethod( Algorithm=utils.digest_method_algorithm(config.digest_method) ), ds.DigestValue(), URI="#" + element_id, ), ), ds.SignatureValue(), ds.KeyInfo( ds.X509Data(utils.ascii_b64(certificate.public_bytes(Encoding.DER))) ), ) return builder
the-stack_106_23257
import re, math class Int(int): # def __repr__(self): # return hex(self) def __str__(self): return hex(self) def __add__(self, other): return Int(super().__add__(other)) def __sub__(self, other): return Int(super().__sub__(other)) def __lshift__(self, other): return Int(super().__lshift__(other)) def __rshift__(self, other): return Int(super().__rshift__(other)) def __xor__(self, other): return Int(super().__xor__(other)) def __or__(self, other): return Int(super().__or__(other)) def __and__(self, other): return Int(super().__and__(other)) class Mem(object): MEM_Q_MODE = "x" MEM_X_MODE = "x" MEM_W_MODE = "w" MEM_B_MODE = "b" MEM_DEFAULT_MODE = MEM_X_MODE MEM_BIG_LATIN = 0 MEM_LITTLE_LATIN = 1 MEM_DEFAULT_LATIN = MEM_LITTLE_LATIN MEM_MODE_MAPPING = { MEM_Q_MODE: 16, MEM_X_MODE: 8, MEM_W_MODE: 4, MEM_B_MODE: 1 } MEM_MODE_MASK_MAPPING = { MEM_Q_MODE: 0xFFFFFFFF_FFFFFFFF_FFFFFFFF_FFFFFFFF, MEM_X_MODE: 0xFFFFFFFF_FFFFFFFF, MEM_W_MODE: 0xFFFFFFFF, MEM_B_MODE: 0xFF } def __init__(self, index:int, stack:list, mode=None, latin=None): self.index = index self.stack = stack self.latin = latin if self.latin is None: self.latin = self.MEM_DEFAULT_LATIN def read(self, item, mode=None): if mode is None: mode = Mem.MEM_DEFAULT_MODE byte_size = Mem.MEM_MODE_MAPPING[mode] return Mem.mem_read(self.stack[self.index + item:], 1, byte_size, self.latin) def write(self, value, mode, latin): if isinstance(value, Stack): value = value.to_value() assert isinstance(value, int), "required int value" value = value & self.MEM_MODE_MASK_MAPPING[mode] int_values = Mem.int_to_arr(value, mode) if latin == 1: int_values.reverse() self[0] = Stack(0, int_values, mode, latin) return self @property def x(self): return Stack(self.index, self.stack, self.MEM_X_MODE, self.latin) @x.setter def x(self, value): self.write(value, self.MEM_X_MODE, self.latin) @property def w(self): return Stack(self.index, self.stack, self.MEM_W_MODE, self.latin) @w.setter def w(self, value): self.write(value, self.MEM_W_MODE, self.latin) @property def b(self): return Stack(self.index, self.stack, self.MEM_B_MODE, self.latin) @b.setter def b(self, value): self.write(value, self.MEM_B_MODE, self.latin) @property def ldp(self): # 只支持x,如果w和其他模式,需人工换方法 return Mem.mem_read(self, 2, byte_size=8, mode=1) @ldp.setter def stp(self, value): # 只支持x self.x = value[0] (self + 0x8).x = value[1] def __getitem__(self, item): if isinstance(item, slice): s, e = item.start, item.stop s = s + self.index if s else self.index e = e + self.index if e else None assert not e or len(self.stack) > e - s return self.stack[slice(s, e, item.step)] return self.stack[self.index + item] def __setitem__(self, key, value): # 功能:1:可以超长赋值. 2:自动根据value修正覆盖范围 if isinstance(value, int): self.stack[self.index + key:self.index + key + 1] = [value & 0xFF] return elif isinstance(value, Mem): value = value.to_list() assert isinstance(value, list) if isinstance(key, slice): s, e = key.start, key.stop s = s + self.index if s else self.index e = e + self.index if e else None self.stack[slice(s, e, key.step)] = value else: self.stack[self.index + key:self.index + key + len(value)] = value def __add__(self, other): assert isinstance(other, int) and other < len(self) return Mem(self.index + other, self.stack) def __sub__(self, other): assert isinstance(other, int) and self.index >= other return Mem(self.index - other, self.stack) def __xor__(self, other): _a = self.to_list() if isinstance(other, int): return Mem(0, [_ ^ other for _ in _a]) if isinstance(other, Mem): other = other.to_list() assert isinstance(other, list) _len = min(len(self), len(other)) return Mem(0, [_a[_] ^ other[_] for _ in range(_len)]) def __and__(self, other): _a = self.to_list() if isinstance(other, int): return Mem(0, [_ & other for _ in _a]) if isinstance(other, Mem): other = other.to_list() assert isinstance(other, list) _len = min(len(self), len(other)) return Mem(0, [_a[_] & other[_] for _ in range(_len)]) def __or__(self, other): _a = self.to_list() if isinstance(other, int): return Mem(0, [_ | other for _ in _a]) if isinstance(other, Mem): other = other.to_list() assert isinstance(other, list) _len = min(len(self), len(other)) return Mem(0, [_a[_] | other[_] for _ in range(_len)]) def __repr__(self): if self.stack: return Mem.hex(self.stack[self.index:self.index+32]) + "..." return "Mem is None..." def __len__(self): return len(self.stack) - self.index @staticmethod def create(size, mode="b"): assert isinstance(size, int) return Mem(0, [0 for i in range(size)], mode) def to_list(self): return self.stack[self.index:] def to_hex_list(self): return [hex(_) for _ in self.stack[self.index:]] @staticmethod def mem_read(x0, return_size=1, byte_size=4, mode=1): # mode = 1 小头, mode = 0 大头 return_list = [] for i in range(return_size): a = x0[i*byte_size:i*byte_size+byte_size] if mode == 1: a.reverse() return_list.append(Mem.merge_arr_to_int(a)) if return_size == 1: return return_list[0] return return_list @staticmethod def merge_arr_to_int(arr): # 如有字节序,则数组必须是处理好的 int_value = 0 arr.reverse() for i, a in enumerate(arr): int_value += a << i * 8 return Int(int_value) @staticmethod def int_to_arr(int_value, mode=None): if mode is None: mode = Mem.MEM_DEFAULT_MODE byte_size = Mem.MEM_MODE_MAPPING[mode] bstr = bin(int_value).replace("0b", "") while len(bstr) % 8 != 0: bstr = "0" + bstr assert len(bstr) // 8 <= byte_size barr = re.findall("[01]{8}", bstr) barr = [Int("0b" + i, 2) for i in barr] tmp_arr = [0 for _ in range(byte_size - len(barr))] return tmp_arr + barr @staticmethod def read_file(file_path): with open(file_path) as f: text = f.read() return Mem.read_text(text) @staticmethod def read_text(text): results = re.findall("(0x[a-zA-Z0-9]+): (.+?)\\s\\s", text + " ") stack = [] for result in results: addr, value = result values = [Int("0x" + v, 16) for v in value.split(" ")] stack += values return Mem(0, stack) @staticmethod def hex(value): if isinstance(value, Mem): mem_size = 16 int_list = value.to_list() loop_time = math.ceil(len(int_list) / mem_size) text = "" for i in range(loop_time): text += Mem.hex(int_list[i*mem_size:(i+1) * mem_size]) + "\n" return text elif isinstance(value, list): int_value = [] for v in value: if v <= 0xF: v = "0" + hex(v).replace("0x", "") else: v = hex(v) int_value.append(v.replace("0x", "")) return " ".join(int_value) else: return hex(value) class Stack(Mem): def __init__(self, index, stack:list, mode=None, latin=None): self.mode = mode or Mem.MEM_DEFAULT_MODE super().__init__(index, stack, latin) def __getitem__(self, item): result = super().__getitem__(slice(item, item + self.MEM_MODE_MAPPING[self.mode], None)) if self.latin: result.reverse() return Mem.merge_arr_to_int(result) def to_value(self): result = super().__getitem__(slice(0, 0 + self.MEM_MODE_MAPPING[self.mode], None)) if self.latin: result.reverse() return Mem.merge_arr_to_int(result) def __setitem__(self, key, value): # 例子:x0[:]=value;x0[0]=value # x0可以是Mem或Stack. value是Int, int, Stack assert isinstance(value, int) if isinstance(value, int): arr = Mem.int_to_arr(value, self.mode) if self.latin == 1: arr.reverse() super().__setitem__(key, value)
the-stack_106_23259
from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform import os, sys import numpy as np from sklearn.utils import class_weight import tensorflow as tf from keras.backend.tensorflow_backend import set_session from keras.utils import to_categorical from keras import Input, models, layers, regularizers, callbacks, optimizers from keras.utils import to_categorical def data(): random_seed = 10 # data = np.load('/public/home/sry/mCNN/dataset/S2648/feature/mCNN/wild/npz/center_CA_PCA_False_neighbor_30.npz') data = np.load('/dl/sry/mCNN/dataset/S2648/feature/mCNN/mutant/npz/center_CA_PCA_False_neighbor_100.npz') # data = np.load('E:/projects/mCNN/yanglab/mCNN-master/dataset/S2648/mCNN/wild/center_CA_PCA_False_neighbor_30.npz') x = data['x'] y = data['y'] ddg = data['ddg'].reshape(-1) train_num = x.shape[0] indices = [i for i in range(train_num)] np.random.seed(random_seed) np.random.shuffle(indices) x = x[indices] y = y[indices] positive_indices, negative_indices = ddg >= 0, ddg < 0 x_positive, x_negative = x[positive_indices], x[negative_indices] y_positive, y_negative = y[positive_indices], y[negative_indices] left_positive, left_negative = round(0.8 * x_positive.shape[0]), round(0.8 * x_negative.shape[0]) x_train, x_test = np.vstack((x_positive[:left_positive], x_negative[:left_negative])), np.vstack( (x_positive[left_positive:], x_negative[left_negative:])) y_train, y_test = np.vstack((y_positive[:left_positive], y_negative[:left_negative])), np.vstack( (y_positive[left_positive:], y_negative[left_negative:])) # sort row default is chain # reshape and one-hot y_train = to_categorical(y_train) y_test = to_categorical(y_test) # normalization train_shape = x_train.shape test_shape = x_test.shape col_train = train_shape[-1] col_test = test_shape[-1] x_train = x_train.reshape((-1, col_train)) x_test = x_test.reshape((-1, col_test)) mean = x_train.mean(axis=0) std = x_train.std(axis=0) std[np.argwhere(std == 0)] = 0.01 x_train -= mean x_train /= std x_test -= mean x_test /= std x_train = x_train.reshape(train_shape) x_test = x_test.reshape(test_shape) # reshape x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.reshape(x_test.shape + (1,)) return x_train, y_train, x_test, y_test def Conv2DClassifierIn1(x_train,y_train,x_test,y_test): summary = True verbose = 1 # setHyperParams------------------------------------------------------------------------------------------------ batch_size = {{choice([32,64,128,256,512])}} epoch = {{choice([25,50,75,100,125,150,175,200])}} conv_block={{choice(['two', 'three', 'four'])}} conv1_num={{choice([8, 16, 32, 64])}} conv2_num={{choice([16,32,64,128])}} conv3_num={{choice([32,64,128])}} conv4_num={{choice([32, 64, 128, 256])}} dense1_num={{choice([128, 256, 512])}} dense2_num={{choice([64, 128, 256])}} l1_regular_rate = {{uniform(0.00001, 1)}} l2_regular_rate = {{uniform(0.000001, 1)}} drop1_num={{uniform(0.1, 1)}} drop2_num={{uniform(0.0001, 1)}} activator={{choice(['elu','relu','tanh'])}} optimizer={{choice(['adam','rmsprop','SGD'])}} #--------------------------------------------------------------------------------------------------------------- kernel_size = (3, 3) pool_size = (2, 2) initializer = 'random_uniform' padding_style = 'same' loss_type='binary_crossentropy' metrics=['accuracy'] my_callback = None # early_stopping = EarlyStopping(monitor='val_loss', patience=4) # checkpointer = ModelCheckpoint(filepath='keras_weights.hdf5', # verbose=1, # save_best_only=True) # my_callback = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, # patience=5, min_lr=0.0001) # build -------------------------------------------------------------------------------------------------------- input_layer = Input(shape=x_train.shape[1:]) conv = layers.Conv2D(conv1_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(input_layer) conv = layers.Conv2D(conv1_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(conv) if conv_block == 'two': conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) elif conv_block == 'three': conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) elif conv_block == 'four': conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) conv = layers.Conv2D(conv4_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool) conv = layers.Conv2D(conv4_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv) BatchNorm = layers.BatchNormalization(axis=-1)(conv) pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm) flat = layers.Flatten()(pool) drop = layers.Dropout(drop1_num)(flat) dense = layers.Dense(dense1_num, activation=activator, kernel_regularizer=regularizers.l1_l2(l1=l1_regular_rate,l2=l2_regular_rate))(drop) BatchNorm = layers.BatchNormalization(axis=-1)(dense) drop = layers.Dropout(drop2_num)(BatchNorm) dense = layers.Dense(dense2_num, activation=activator, kernel_regularizer=regularizers.l1_l2(l1=l1_regular_rate,l2=l2_regular_rate))(drop) output_layer = layers.Dense(len(np.unique(y_train)),activation='softmax')(dense) model = models.Model(inputs=input_layer, outputs=output_layer) if summary: model.summary() # train(self): class_weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train.reshape(-1)) class_weights_dict = dict(enumerate(class_weights)) model.compile(optimizer=optimizer, loss=loss_type, metrics=metrics # accuracy ) result = model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epoch, verbose=verbose, callbacks=my_callback, validation_data=(x_test, y_test), shuffle=True, class_weight=class_weights_dict ) validation_acc = np.amax(result.history['val_acc']) print('Best validation acc of epoch:', validation_acc) return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model} if __name__ == '__main__': # config TF----------------------------------------------------------------------------------------------------- CUDA, max_eval = sys.argv[1:] os.environ['CUDA_VISIBLE_DEVICES'] = CUDA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' config = tf.ConfigProto() config.gpu_options.allow_growth = True set_session(tf.Session(config=config)) # x_train, y_train, x_test, y_test = data() # Conv2DClassifierIn1(x_train, y_train, x_test, y_test) best_run, best_model = optim.minimize(model=Conv2DClassifierIn1, data=data, algo=tpe.suggest, max_evals=int(max_eval), keep_temp=False, trials=Trials()) for trial in Trials(): print(trial) X_train, Y_train, X_test, Y_test = data() print("Evalutation of best performing model:") print(best_model.evaluate(X_test, Y_test)) print("Best performing model chosen hyper-parameters:") print(best_run)
the-stack_106_23261
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Helper tool to check file types that are allowed to checkin.""" import os import sys import subprocess # List of file types we allow ALLOW_EXTENSION = { # source code "cc", "c", "h", "s", "rs", "m", "mm", "g4", "gradle", "js", "tcl", "scala", "java", "go", "sh", "py", "pyi", "pxi", "pyd", "pyx", "cu", # relay text format "rly", # configurations "mk", "in", "cmake", "xml", "toml", "yml", "yaml", "json", # docs "txt", "md", "rst", # sgx "edl", "lds", # ios "pbxproj", "plist", "xcworkspacedata", "storyboard", # hw/chisel "sbt", "properties", "v", "sdc", # generated parser "interp", "tokens", # interface definition "idl", } # List of file names allowed ALLOW_FILE_NAME = { ".gitignore", ".gitattributes", "README", "Makefile", "Doxyfile", "pylintrc", "rat-excludes", "log4j.properties", ".clang-format", ".gitmodules", "CODEOWNERS", ".scalafmt.conf", "Cargo.lock", "with_the_same_user", } # List of specific files allowed in relpath to <proj_root> ALLOW_SPECIFIC_FILE = { "LICENSE", "NOTICE", "KEYS", "DISCLAIMER", "Jenkinsfile", # cargo config "rust/runtime/tests/test_wasm32/.cargo/config", "apps/sgx/.cargo/config", # html for demo purposes "tests/webgl/test_static_webgl_library.html", "web/example_rpc.html", # images are normally not allowed # discuss with committers before add more images "apps/android_rpc/app/src/main/res/mipmap-hdpi/ic_launcher.png", "apps/android_rpc/app/src/main/res/mipmap-mdpi/ic_launcher.png", # documentation related files "docs/_static/css/tvm_theme.css", "docs/_static/img/tvm-logo-small.png", "docs/_static/img/tvm-logo-square.png", } def filename_allowed(name): """Check if name is allowed by the current policy. Paramaters ---------- name : str Input name Returns ------- allowed : bool Whether the filename is allowed. """ arr = name.rsplit(".", 1) if arr[-1] in ALLOW_EXTENSION: return True if os.path.basename(name) in ALLOW_FILE_NAME: return True if os.path.basename(name).startswith("Dockerfile"): return True if name.startswith("3rdparty"): return True if name in ALLOW_SPECIFIC_FILE: return True return False def copyright_line(line): # Following two items are intentionally break apart # so that the copyright detector won't detect the file itself. if line.find("Copyright " + "(c)") != -1: return True if (line.find("Copyright") != -1 and line.find(" by") != -1): return True return False def check_asf_copyright(fname): if fname.endswith(".png"): return True if not os.path.isfile(fname): return True has_asf_header = False has_copyright = False try: for line in open(fname): if line.find("Licensed to the Apache Software Foundation") != -1: has_asf_header = True if copyright_line(line): has_copyright = True if has_asf_header and has_copyright: return False except UnicodeDecodeError: pass return True def main(): cmd = ["git", "ls-files"] proc = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() assert proc.returncode == 0 res = out.decode("utf-8") flist = res.split() error_list = [] for fname in flist: if not filename_allowed(fname): error_list.append(fname) if error_list: report = "------File type check report----\n" report += "\n".join(error_list) report += "\nFound %d files that are now allowed\n" % len(error_list) report += ("We do not check in binary files into the repo.\n" "If necessary, please discuss with committers and" "modify tests/lint/check_file_type.py to enable the file you need.\n") sys.stderr.write(report) sys.stderr.flush() sys.exit(-1) asf_copyright_list = [] for fname in res.split(): if not check_asf_copyright(fname): asf_copyright_list.append(fname) if asf_copyright_list: report = "------File type check report----\n" report += "\n".join(asf_copyright_list) + "\n" report += "------Found %d files that has ASF header with copyright message----\n" % len(asf_copyright_list) report += "--- Files with ASF header do not need Copyright lines.\n" report += "--- Contributors retain copyright to their contribution by default.\n" report += "--- If a file comes with a different license, consider put it under the 3rdparty folder instead.\n" report += "---\n" report += "--- You can use the following steps to remove the copyright lines\n" report += "--- Create file_list.txt in your text editor\n" report += "--- Copy paste the above content in file-list into file_list.txt\n" report += "--- python3 tests/lint/add_asf_header.py file_list.txt\n" sys.stderr.write(report) sys.stderr.flush() sys.exit(-1) print("check_file_type.py: all checks passed..") if __name__ == "__main__": main()
the-stack_106_23266
from point import Point import socket import json class Connection: """A simple TCP wrapper class that acts a client OR server with similar methods regardless of which it is connected as """ def __init__(self, port, host=None): """Creates a connection, basically a simple TCP client/server wrapper Args: port: the port to connect through host: if set then will connect to that host as a client, otherwise acts a server on host "0.0.0.0" """ self._tcp_socket = socket.socket() self.curve = None if not host: # then we are the server that connects to client(s) host = "0.0.0.0" # before connecting, reuse the port if needed self._tcp_socket.setsockopt( socket.SOL_SOCKET, socket.SO_REUSEADDR, 1 ) # and connect to the port as a server listening for clients self._tcp_socket.bind((host, port)) self._tcp_socket.listen(1) print("Connection listing on {}:{}\n".format(host, port)) self.connection, address = self._tcp_socket.accept() else: # we are a client connecting to a server self._tcp_socket.connect((host, port)) self.connection = self._tcp_socket print("Connection attempting to connect to {}:{}\n".format( host, port )) def send(self, obj): """Sends some object as json over the connection Args: obj: an object safe for json serialization Note: Points can be serialized """ # ensure points safe for serialization if isinstance(obj, Point): obj = {'x': obj.x, 'y': obj.y} string = json.dumps(obj) self.connection.send(string.encode()) def read(self): """Read (blocking) from the connection until something is sent and parsed Returns: parsed json output from the connection """ buffer = "" while True: data = self.connection.recv(1024).decode() if not data: continue data = str(data) if data: buffer += data if len(data) == 1024: continue # we need to read more data else: break parsed = self._clean(json.loads(buffer)) return parsed def close(self): """Closes this network connection(s) """ self.connection.close() if self.connection != self._tcp_socket: self._tcp_socket.close() def _clean(self, parsed): """Cleans a parsed json object to Points if need be Args: parsed: valid json object already parsed such as a dict or string Returns: if parsed looks like a Point but is a dict, it will become a Point """ if (self.curve and isinstance(parsed, dict) and 'x' in parsed and 'y' in parsed): parsed = Point(parsed['x'], parsed['y'], self.curve) return parsed
the-stack_106_23268
""" picasso.simulate-gui ~~~~~~~~~~~~~~~~ GUI for Simulate : Simulate single molcule fluorescence data :author: Maximilian Thomas Strauss, 2016 :copyright: Copyright (c) 2016 Jungmann Lab, MPI of Biochemistry """ import csv import glob as _glob import os import sys import time import yaml import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as _np from matplotlib.backends.backend_qt4agg import ( FigureCanvasQTAgg as FigureCanvas, ) from matplotlib.backends.backend_qt4agg import ( NavigationToolbar2QT as NavigationToolbar, ) from PyQt5 import QtCore, QtGui, QtWidgets from scipy.optimize import curve_fit from scipy.stats import norm import os.path as _ospath from .. import io as _io from .. import lib, simulate def fitFuncBg(x, a, b): return (a + b * x[0]) * x[1] * x[2] def fitFuncStd(x, a, b, c): return a * x[0] * x[1] + b * x[2] + c plt.style.use("ggplot") "DEFAULT PARAMETERS" CURRENTROUND = 0 ADVANCEDMODE = 0 # 1 is with calibration of noise model # CAMERA IMAGESIZE_DEFAULT = 32 ITIME_DEFAULT = 300 FRAMES_DEFAULT = 7500 PIXELSIZE_DEFAULT = 160 # PAINT KON_DEFAULT = 1600000 IMAGERCONCENTRATION_DEFAULT = 5 MEANBRIGHT_DEFAULT = 500 # IMAGER LASERPOWER_DEFAULT = 1.5 # POWER DENSITY POWERDENSITY_CONVERSION = 20 STDFACTOR = 1.82 if ADVANCEDMODE: LASERPOWER_DEFAULT = 30 PSF_DEFAULT = 0.82 PHOTONRATE_DEFAULT = 53 PHOTONRATESTD_DEFAULT = 29 PHOTONBUDGET_DEFAULT = 1500000 PHOTONSLOPE_DEFAULT = 35 PHOTONSLOPESTD_DEFAULT = 19 if ADVANCEDMODE: PHOTONSLOPE_DEFAULT = 1.77 PHOTONSLOPESTD_DEFAULT = 0.97 # NOISE MODEL LASERC_DEFAULT = 0.012063 IMAGERC_DEFAULT = 0.003195 EQA_DEFAULT = -0.002866 EQB_DEFAULT = 0.259038 EQC_DEFAULT = 13.085473 BGOFFSET_DEFAULT = 0 BGSTDOFFSET_DEFAULT = 0 # STRUCTURE STRUCTURE1_DEFAULT = 3 STRUCTURE2_DEFAULT = 4 STRUCTURE3_DEFAULT = "20,20" STRUCTUREYY_DEFAULT = "0,20,40,60,0,20,40,60,0,20,40,60" STRUCTUREXX_DEFAULT = "0,20,40,0,20,40,0,20,40,0,20,40" STRUCTUREEX_DEFAULT = "1,1,1,1,1,1,1,1,1,1,1,1" STRUCTURE3D_DEFAULT = "0,0,0,0,0,0,0,0,0,0,0,0" STRUCTURENO_DEFAULT = 9 STRUCTUREFRAME_DEFAULT = 6 INCORPORATION_DEFAULT = 85 # Default 3D calibration CX_DEFAULT = [ 3.1638306844743706e-17, -2.2103661248660896e-14, -9.775815406044296e-12, 8.2178622893072e-09, 4.91181990105529e-06, -0.0028759382006135654, 1.1756537760039398, ] CY_DEFAULT = [ 1.710907877866197e-17, -2.4986657766862576e-15, -8.405284979510355e-12, 1.1548322314075128e-11, 5.4270591055277476e-06, 0.0018155881468011011, 1.011468185618154, ] class Window(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Picasso: Simulate") self.setSizePolicy( QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding ) this_directory = os.path.dirname(os.path.realpath(__file__)) icon_path = os.path.join(this_directory, "icons", "simulate.ico") icon = QtGui.QIcon(icon_path) self.setWindowIcon(icon) self.initUI() def initUI(self): self.currentround = CURRENTROUND self.structureMode = True self.grid = QtWidgets.QGridLayout() self.grid.setSpacing(5) # CAMERA PARAMETERS camera_groupbox = QtWidgets.QGroupBox("Camera parameters") cgrid = QtWidgets.QGridLayout(camera_groupbox) camerasize = QtWidgets.QLabel("Image size") integrationtime = QtWidgets.QLabel("Integration time") totaltime = QtWidgets.QLabel("Total acquisition time") frames = QtWidgets.QLabel("Frames") pixelsize = QtWidgets.QLabel("Pixelsize") self.camerasizeEdit = QtWidgets.QSpinBox() self.camerasizeEdit.setRange(1, 512) self.integrationtimeEdit = QtWidgets.QSpinBox() self.integrationtimeEdit.setRange(1, 10000) # 1-10.000ms self.framesEdit = QtWidgets.QSpinBox() self.framesEdit.setRange(10, 100000000) # 10-100.000.000 frames self.framesEdit.setSingleStep(1000) self.pixelsizeEdit = QtWidgets.QSpinBox() self.pixelsizeEdit.setRange(1, 1000) # 1 to 1000 nm frame size self.totaltimeEdit = QtWidgets.QLabel() # Deactivate keyboard tracking self.camerasizeEdit.setKeyboardTracking(False) self.pixelsizeEdit.setKeyboardTracking(False) self.camerasizeEdit.setValue(IMAGESIZE_DEFAULT) self.integrationtimeEdit.setValue(ITIME_DEFAULT) self.framesEdit.setValue(FRAMES_DEFAULT) self.pixelsizeEdit.setValue(PIXELSIZE_DEFAULT) self.integrationtimeEdit.valueChanged.connect(self.changeTime) self.framesEdit.valueChanged.connect(self.changeTime) self.camerasizeEdit.valueChanged.connect(self.generatePositions) self.pixelsizeEdit.valueChanged.connect(self.changeStructDefinition) cgrid.addWidget(camerasize, 1, 0) cgrid.addWidget(self.camerasizeEdit, 1, 1) cgrid.addWidget(QtWidgets.QLabel("Px"), 1, 2) cgrid.addWidget(integrationtime, 2, 0) cgrid.addWidget(self.integrationtimeEdit, 2, 1) cgrid.addWidget(QtWidgets.QLabel("ms"), 2, 2) cgrid.addWidget(frames, 3, 0) cgrid.addWidget(self.framesEdit, 3, 1) cgrid.addWidget(totaltime, 4, 0) cgrid.addWidget(self.totaltimeEdit, 4, 1) cgrid.addWidget(QtWidgets.QLabel("min"), 4, 2) cgrid.addWidget(pixelsize, 5, 0) cgrid.addWidget(self.pixelsizeEdit, 5, 1) cgrid.addWidget(QtWidgets.QLabel("nm"), 5, 2) cgrid.addItem( QtWidgets.QSpacerItem( 1, 1, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding ) ) # PAINT PARAMETERS paint_groupbox = QtWidgets.QGroupBox("PAINT parameters") pgrid = QtWidgets.QGridLayout(paint_groupbox) kon = QtWidgets.QLabel("k<sub>On</sub>") imagerconcentration = QtWidgets.QLabel("Imager concentration") taud = QtWidgets.QLabel("Dark time") taub = QtWidgets.QLabel("Bright time") self.konEdit = QtWidgets.QDoubleSpinBox() self.konEdit.setRange(1, 10000000000) self.konEdit.setDecimals(0) self.konEdit.setSingleStep(100000) self.imagerconcentrationEdit = QtWidgets.QDoubleSpinBox() self.imagerconcentrationEdit.setRange(0.01, 1000) self.taudEdit = QtWidgets.QLabel() self.taubEdit = QtWidgets.QDoubleSpinBox() self.taubEdit.setRange(1, 10000) self.taubEdit.setDecimals(0) self.taubEdit.setSingleStep(10) self.konEdit.setValue(KON_DEFAULT) self.imagerconcentrationEdit.setValue(IMAGERCONCENTRATION_DEFAULT) self.taubEdit.setValue(MEANBRIGHT_DEFAULT) self.imagerconcentrationEdit.valueChanged.connect(self.changePaint) self.konEdit.valueChanged.connect(self.changePaint) pgrid.addWidget(kon, 1, 0) pgrid.addWidget(self.konEdit, 1, 1) pgrid.addWidget(QtWidgets.QLabel("M<sup>−1</sup>s<sup>−1</sup>"), 1, 2) pgrid.addWidget(imagerconcentration, 2, 0) pgrid.addWidget(self.imagerconcentrationEdit, 2, 1) pgrid.addWidget(QtWidgets.QLabel("nM"), 2, 2) pgrid.addWidget(taud, 3, 0) pgrid.addWidget(self.taudEdit, 3, 1) pgrid.addWidget(QtWidgets.QLabel("ms"), 3, 2) pgrid.addWidget(taub, 4, 0) pgrid.addWidget(self.taubEdit, 4, 1) pgrid.addWidget(QtWidgets.QLabel("ms"), 4, 2) pgrid.addItem( QtWidgets.QSpacerItem( 1, 1, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding ) ) # IMAGER Parameters imager_groupbox = QtWidgets.QGroupBox("Imager parameters") igrid = QtWidgets.QGridLayout(imager_groupbox) laserpower = QtWidgets.QLabel("Power density") if ADVANCEDMODE: laserpower = QtWidgets.QLabel("Laserpower") psf = QtWidgets.QLabel("PSF") psf_fwhm = QtWidgets.QLabel("PSF(FWHM)") photonrate = QtWidgets.QLabel("Photonrate") photonsframe = QtWidgets.QLabel("Photons (frame)") photonratestd = QtWidgets.QLabel("Photonrate Std") photonstdframe = QtWidgets.QLabel("Photons Std (frame)") photonbudget = QtWidgets.QLabel("Photonbudget") photonslope = QtWidgets.QLabel("Photon detection rate") photonslopeStd = QtWidgets.QLabel("Photonrate Std ") self.laserpowerEdit = QtWidgets.QDoubleSpinBox() self.laserpowerEdit.setRange(0, 10) self.laserpowerEdit.setSingleStep(0.1) self.psfEdit = QtWidgets.QDoubleSpinBox() self.psfEdit.setRange(0, 3) self.psfEdit.setSingleStep(0.01) self.psf_fwhmEdit = QtWidgets.QLabel() self.photonrateEdit = QtWidgets.QDoubleSpinBox() self.photonrateEdit.setRange(0, 1000) self.photonrateEdit.setDecimals(0) self.photonsframeEdit = QtWidgets.QLabel() self.photonratestdEdit = QtWidgets.QDoubleSpinBox() self.photonratestdEdit.setRange(0, 1000) self.photonratestdEdit.setDecimals(0) self.photonstdframeEdit = QtWidgets.QLabel() self.photonbudgetEdit = QtWidgets.QDoubleSpinBox() self.photonbudgetEdit.setRange(0, 100000000) self.photonbudgetEdit.setSingleStep(100000) self.photonbudgetEdit.setDecimals(0) self.photonslopeEdit = QtWidgets.QSpinBox() self.photonslopeStdEdit = QtWidgets.QDoubleSpinBox() self.laserpowerEdit.setValue(LASERPOWER_DEFAULT) self.psfEdit.setValue(PSF_DEFAULT) self.photonrateEdit.setValue(PHOTONRATE_DEFAULT) self.photonratestdEdit.setValue(PHOTONRATESTD_DEFAULT) self.photonbudgetEdit.setValue(PHOTONBUDGET_DEFAULT) self.photonslopeEdit.setValue(PHOTONSLOPE_DEFAULT) self.photonslopeStdEdit.setValue(PHOTONSLOPESTD_DEFAULT) self.psfEdit.valueChanged.connect(self.changePSF) self.photonrateEdit.valueChanged.connect(self.changeImager) self.photonratestdEdit.valueChanged.connect(self.changeImager) self.laserpowerEdit.valueChanged.connect(self.changeImager) self.photonslopeEdit.valueChanged.connect(self.changeImager) self.photonslopeStdEdit.valueChanged.connect(self.changeImager) self.cx = CX_DEFAULT self.cy = CY_DEFAULT self.photonslopemodeEdit = QtWidgets.QCheckBox() igrid.addWidget(psf, 0, 0) igrid.addWidget(self.psfEdit, 0, 1) igrid.addWidget(QtWidgets.QLabel("Px"), 0, 2) igrid.addWidget(psf_fwhm, 1, 0) igrid.addWidget(self.psf_fwhmEdit, 1, 1) igrid.addWidget(QtWidgets.QLabel("nm"), 1, 2) igrid.addWidget(laserpower, 2, 0) igrid.addWidget(self.laserpowerEdit, 2, 1) igrid.addWidget(QtWidgets.QLabel("kW cm<sup>-2<sup>"), 2, 2) if ADVANCEDMODE: igrid.addWidget(QtWidgets.QLabel("mW"), 2, 2) igridindex = 1 if ADVANCEDMODE: igrid.addWidget(photonrate, 3, 0) igrid.addWidget(self.photonrateEdit, 3, 1) igrid.addWidget(QtWidgets.QLabel("Photons ms<sup>-1<sup>"), 3, 2) igridindex = 0 igrid.addWidget(photonsframe, 4 - igridindex, 0) igrid.addWidget(self.photonsframeEdit, 4 - igridindex, 1) igrid.addWidget(QtWidgets.QLabel("Photons"), 4 - igridindex, 2) igridindex = 2 if ADVANCEDMODE: igrid.addWidget(photonratestd, 5, 0) igrid.addWidget(self.photonratestdEdit, 5, 1) igrid.addWidget(QtWidgets.QLabel("Photons ms<sup>-1<sup"), 5, 2) igridindex = 0 igrid.addWidget(photonstdframe, 6 - igridindex, 0) igrid.addWidget(self.photonstdframeEdit, 6 - igridindex, 1) igrid.addWidget(QtWidgets.QLabel("Photons"), 6 - igridindex, 2) igrid.addWidget(photonbudget, 7 - igridindex, 0) igrid.addWidget(self.photonbudgetEdit, 7 - igridindex, 1) igrid.addWidget(QtWidgets.QLabel("Photons"), 7 - igridindex, 2) igrid.addWidget(photonslope, 8 - igridindex, 0) igrid.addWidget(self.photonslopeEdit, 8 - igridindex, 1) photonslopeUnit = QtWidgets.QLabel( "Photons ms<sup>-1</sup> kW<sup>-1</sup> cm<sup>2</sup>" ) photonslopeUnit.setWordWrap(True) igrid.addWidget(photonslopeUnit, 8 - igridindex, 2) igrid.addWidget(self.photonslopemodeEdit, 9 - igridindex, 1) igrid.addWidget( QtWidgets.QLabel("Constant detection rate"), 9 - igridindex, 0 ) if ADVANCEDMODE: igrid.addWidget(photonslopeStd, 10 - igridindex, 0) igrid.addWidget(self.photonslopeStdEdit, 10 - igridindex, 1) igrid.addWidget( QtWidgets.QLabel( "Photons ms<sup>-1</sup> kW<sup>-1</sup> cm<sup>2</sup>" ), 10 - igridindex, 2, ) if not ADVANCEDMODE: backgroundframesimple = QtWidgets.QLabel("Background (Frame)") self.backgroundframesimpleEdit = QtWidgets.QLabel() igrid.addWidget(backgroundframesimple, 12 - igridindex, 0) igrid.addWidget(self.backgroundframesimpleEdit, 12 - igridindex, 1) # Make a spinbox for adjusting the background level backgroundlevel = QtWidgets.QLabel("Background level") self.backgroundlevelEdit = QtWidgets.QSpinBox() self.backgroundlevelEdit.setRange(1, 100) igrid.addWidget(backgroundlevel, 11 - igridindex, 0) igrid.addWidget(self.backgroundlevelEdit, 11 - igridindex, 1) self.backgroundlevelEdit.valueChanged.connect(self.changeNoise) # NOISE MODEL noise_groupbox = QtWidgets.QGroupBox("Noise Model") ngrid = QtWidgets.QGridLayout(noise_groupbox) laserc = QtWidgets.QLabel("Lasercoefficient") imagerc = QtWidgets.QLabel("Imagercoefficient") EquationA = QtWidgets.QLabel("Equation A") EquationB = QtWidgets.QLabel("Equation B") EquationC = QtWidgets.QLabel("Equation C") Bgoffset = QtWidgets.QLabel("Background Offset") BgStdoffset = QtWidgets.QLabel("Background Std Offset") backgroundframe = QtWidgets.QLabel("Background (Frame)") noiseLabel = QtWidgets.QLabel("Noise (Frame)") self.lasercEdit = QtWidgets.QDoubleSpinBox() self.lasercEdit.setRange(0, 100000) self.lasercEdit.setDecimals(6) self.imagercEdit = QtWidgets.QDoubleSpinBox() self.imagercEdit.setRange(0, 100000) self.imagercEdit.setDecimals(6) self.EquationBEdit = QtWidgets.QDoubleSpinBox() self.EquationBEdit.setRange(-100000, 100000) self.EquationBEdit.setDecimals(6) self.EquationAEdit = QtWidgets.QDoubleSpinBox() self.EquationAEdit.setRange(-100000, 100000) self.EquationAEdit.setDecimals(6) self.EquationCEdit = QtWidgets.QDoubleSpinBox() self.EquationCEdit.setRange(-100000, 100000) self.EquationCEdit.setDecimals(6) self.lasercEdit.setValue(LASERC_DEFAULT) self.imagercEdit.setValue(IMAGERC_DEFAULT) self.EquationAEdit.setValue(EQA_DEFAULT) self.EquationBEdit.setValue(EQB_DEFAULT) self.EquationCEdit.setValue(EQC_DEFAULT) self.BgoffsetEdit = QtWidgets.QDoubleSpinBox() self.BgoffsetEdit.setRange(-100000, 100000) self.BgoffsetEdit.setDecimals(6) self.BgStdoffsetEdit = QtWidgets.QDoubleSpinBox() self.BgStdoffsetEdit.setRange(-100000, 100000) self.BgStdoffsetEdit.setDecimals(6) for button in [ self.lasercEdit, self.imagercEdit, self.EquationAEdit, self.EquationBEdit, self.EquationCEdit, ]: button.valueChanged.connect(self.changeNoise) backgroundframe = QtWidgets.QLabel("Background (Frame)") noiseLabel = QtWidgets.QLabel("Noise (Frame)") self.backgroundframeEdit = QtWidgets.QLabel() self.noiseEdit = QtWidgets.QLabel() tags = [ laserc, imagerc, EquationA, EquationB, EquationC, Bgoffset, BgStdoffset, backgroundframe, noiseLabel, ] buttons = [ self.lasercEdit, self.imagercEdit, self.EquationAEdit, self.EquationBEdit, self.EquationCEdit, self.BgoffsetEdit, self.BgStdoffsetEdit, self.backgroundframeEdit, self.noiseEdit, ] for i, tag in enumerate(tags): ngrid.addWidget(tag, i, 0) ngrid.addWidget(buttons[i], i, 1) calibrateNoiseButton = QtWidgets.QPushButton("Calibrate Noise Model") calibrateNoiseButton.clicked.connect(self.calibrateNoise) importButton = QtWidgets.QPushButton("Import from Experiment (hdf5)") importButton.clicked.connect(self.importhdf5) ngrid.addWidget(calibrateNoiseButton, 10, 0, 1, 3) ngrid.addWidget(importButton, 11, 0, 1, 3) # HANDLE DEFINTIIONS structureIncorporation = QtWidgets.QLabel("Incorporation") self.structureIncorporationEdit = QtWidgets.QDoubleSpinBox() self.structureIncorporationEdit.setKeyboardTracking(False) self.structureIncorporationEdit.setRange(1, 100) self.structureIncorporationEdit.setDecimals(0) self.structureIncorporationEdit.setValue(INCORPORATION_DEFAULT) handles_groupbox = QtWidgets.QGroupBox("Handles") hgrid = QtWidgets.QGridLayout(handles_groupbox) hgrid.addWidget(structureIncorporation, 0, 0) hgrid.addWidget(self.structureIncorporationEdit, 0, 1) hgrid.addWidget(QtWidgets.QLabel("%"), 0, 2) importHandlesButton = QtWidgets.QPushButton("Import handles") importHandlesButton.clicked.connect(self.importHandles) hgrid.addWidget(importHandlesButton, 1, 0, 1, 3) # 3D Settings self.mode3DEdit = QtWidgets.QCheckBox() threed_groupbox = QtWidgets.QGroupBox("3D") tgrid = QtWidgets.QGridLayout(threed_groupbox) tgrid.addWidget(self.mode3DEdit, 0, 0) tgrid.addWidget(QtWidgets.QLabel("3D"), 0, 1) load3dCalibrationButton = QtWidgets.QPushButton("Load 3D Calibration") load3dCalibrationButton.clicked.connect(self.load3dCalibration) tgrid.addWidget(load3dCalibrationButton, 0, 2) # STRUCTURE DEFINITIONS structure_groupbox = QtWidgets.QGroupBox("Structure") sgrid = QtWidgets.QGridLayout(structure_groupbox) structureno = QtWidgets.QLabel("Number of structures") structureframe = QtWidgets.QLabel("Frame") self.structure1 = QtWidgets.QLabel("Columns") self.structure2 = QtWidgets.QLabel("Rows") self.structure3 = QtWidgets.QLabel("Spacing X,Y") self.structure3Label = QtWidgets.QLabel("nm") structurexx = QtWidgets.QLabel("Stucture X") structureyy = QtWidgets.QLabel("Structure Y") structure3d = QtWidgets.QLabel("Structure 3D") structureex = QtWidgets.QLabel("Exchange labels") structurecomboLabel = QtWidgets.QLabel("Type") self.structurenoEdit = QtWidgets.QSpinBox() self.structurenoEdit.setRange(1, 1000) self.structureframeEdit = QtWidgets.QSpinBox() self.structureframeEdit.setRange(4, 16) self.structurexxEdit = QtWidgets.QLineEdit(STRUCTUREXX_DEFAULT) self.structureyyEdit = QtWidgets.QLineEdit(STRUCTUREYY_DEFAULT) self.structureexEdit = QtWidgets.QLineEdit(STRUCTUREEX_DEFAULT) self.structure3DEdit = QtWidgets.QLineEdit(STRUCTURE3D_DEFAULT) self.structurecombo = QtWidgets.QComboBox() for entry in ["Grid", "Circle", "Custom"]: self.structurecombo.addItem(entry) self.structure1Edit = QtWidgets.QSpinBox() self.structure1Edit.setKeyboardTracking(False) self.structure1Edit.setRange(1, 1000) self.structure1Edit.setValue(STRUCTURE1_DEFAULT) self.structure2Edit = QtWidgets.QSpinBox() self.structure2Edit.setKeyboardTracking(False) self.structure2Edit.setRange(1, 1000) self.structure2Edit.setValue(STRUCTURE2_DEFAULT) self.structure3Edit = QtWidgets.QLineEdit(STRUCTURE3_DEFAULT) self.structure1Edit.valueChanged.connect(self.changeStructDefinition) self.structure2Edit.valueChanged.connect(self.changeStructDefinition) self.structure3Edit.returnPressed.connect(self.changeStructDefinition) self.structurenoEdit.setValue(STRUCTURENO_DEFAULT) self.structureframeEdit.setValue(STRUCTUREFRAME_DEFAULT) self.structurenoEdit.setKeyboardTracking(False) self.structureframeEdit.setKeyboardTracking(False) self.structurexxEdit.returnPressed.connect(self.generatePositions) self.structureyyEdit.returnPressed.connect(self.generatePositions) self.structureexEdit.returnPressed.connect(self.generatePositions) self.structure3DEdit.returnPressed.connect(self.generatePositions) self.structurenoEdit.valueChanged.connect(self.generatePositions) self.structureframeEdit.valueChanged.connect(self.generatePositions) self.structurerandomOrientationEdit = QtWidgets.QCheckBox() self.structurerandomEdit = QtWidgets.QCheckBox() structurerandom = QtWidgets.QLabel("Random arrangement") structurerandomOrientation = QtWidgets.QLabel("Random orientation") self.structurerandomEdit.stateChanged.connect(self.generatePositions) self.structurerandomOrientationEdit.stateChanged.connect( self.generatePositions ) self.structureIncorporationEdit.valueChanged.connect( self.generatePositions ) self.structurecombo.currentIndexChanged.connect( self.changeStructureType ) sgrid.addWidget(structureno, 1, 0) sgrid.addWidget(self.structurenoEdit, 1, 1) sgrid.addWidget(structureframe, 2, 0) sgrid.addWidget(self.structureframeEdit, 2, 1) sgrid.addWidget(QtWidgets.QLabel("Px"), 2, 2) sgrid.addWidget(structurecomboLabel) sgrid.addWidget(self.structurecombo, 3, 1) sgrid.addWidget(self.structure1, 4, 0) sgrid.addWidget(self.structure1Edit, 4, 1) sgrid.addWidget(self.structure2, 5, 0) sgrid.addWidget(self.structure2Edit, 5, 1) sgrid.addWidget(self.structure3, 6, 0) sgrid.addWidget(self.structure3Edit, 6, 1) sgrid.addWidget(self.structure3Label, 6, 2) sgrid.addWidget(structurexx, 7, 0) sgrid.addWidget(self.structurexxEdit, 7, 1) sgrid.addWidget(QtWidgets.QLabel("nm"), 7, 2) sgrid.addWidget(structureyy, 8, 0) sgrid.addWidget(self.structureyyEdit, 8, 1) sgrid.addWidget(QtWidgets.QLabel("nm"), 8, 2) sindex = 0 sgrid.addWidget(structure3d, 9, 0) sgrid.addWidget(self.structure3DEdit, 9, 1) sindex = 1 sgrid.addWidget(structureex, 9 + sindex, 0) sgrid.addWidget(self.structureexEdit, 9 + sindex, 1) sindex += -1 sgrid.addWidget(structurerandom, 11 + sindex, 1) sgrid.addWidget(self.structurerandomEdit, 11 + sindex, 0) sgrid.addWidget(structurerandomOrientation, 12 + sindex, 1) sgrid.addWidget(self.structurerandomOrientationEdit, 12 + sindex, 0) sindex += -2 importDesignButton = QtWidgets.QPushButton("Import structure from design") importDesignButton.clicked.connect(self.importDesign) sgrid.addWidget(importDesignButton, 15 + sindex, 0, 1, 3) generateButton = QtWidgets.QPushButton("Generate positions") generateButton.clicked.connect(self.generatePositions) sgrid.addWidget(generateButton, 17 + sindex, 0, 1, 3) cgrid.addItem( QtWidgets.QSpacerItem( 1, 1, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding ) ) simulateButton = QtWidgets.QPushButton("Simulate data") self.exchangeroundsEdit = QtWidgets.QLineEdit("1") self.conroundsEdit = QtWidgets.QSpinBox() self.conroundsEdit.setRange(1, 1000) quitButton = QtWidgets.QPushButton("Quit", self) quitButton.clicked.connect(QtCore.QCoreApplication.instance().quit) quitButton.resize(quitButton.sizeHint()) loadButton = QtWidgets.QPushButton( "Load settings from previous simulation" ) btngridR = QtWidgets.QGridLayout() self.concatExchangeEdit = QtWidgets.QCheckBox() self.exportkinetics = QtWidgets.QCheckBox() btngridR.addWidget(loadButton, 0, 0, 1, 2) btngridR.addWidget( QtWidgets.QLabel("Exchange rounds to be simulated:"), 1, 0 ) btngridR.addWidget(self.exchangeroundsEdit, 1, 1) btngridR.addWidget(QtWidgets.QLabel("Concatenate several rounds:"), 2, 0) btngridR.addWidget(self.conroundsEdit, 2, 1) btngridR.addWidget(QtWidgets.QLabel("Concatenate Exchange")) btngridR.addWidget(self.concatExchangeEdit, 3, 1) btngridR.addWidget(QtWidgets.QLabel("Export kinetic data")) btngridR.addWidget(self.exportkinetics, 4, 1) btngridR.addWidget(simulateButton, 5, 0, 1, 2) btngridR.addWidget(quitButton, 6, 0, 1, 2) simulateButton.clicked.connect(self.simulate) loadButton.clicked.connect(self.loadSettings) self.show() self.changeTime() self.changePSF() self.changeNoise() self.changePaint() pos_groupbox = QtWidgets.QGroupBox("Positions [Px]") str_groupbox = QtWidgets.QGroupBox("Structure [nm]") posgrid = QtWidgets.QGridLayout(pos_groupbox) strgrid = QtWidgets.QGridLayout(str_groupbox) self.figure1 = plt.figure() self.figure2 = plt.figure() self.canvas1 = FigureCanvas(self.figure1) csize = 180 self.canvas1.setMinimumSize(csize, csize) self.canvas2 = FigureCanvas(self.figure2) self.canvas2.setMinimumSize(csize, csize) posgrid.addWidget(self.canvas1) strgrid.addWidget(self.canvas2) self.mainpbar = QtWidgets.QProgressBar(self) # Arrange Buttons if ADVANCEDMODE: self.grid.addWidget(pos_groupbox, 1, 0) self.grid.addWidget(str_groupbox, 1, 1) self.grid.addWidget(structure_groupbox, 2, 0, 2, 1) self.grid.addWidget(camera_groupbox, 1, 2) self.grid.addWidget(paint_groupbox, 3, 1) self.grid.addWidget(imager_groupbox, 2, 1) self.grid.addWidget(noise_groupbox, 2, 2) self.grid.addLayout(btngridR, 3, 2) self.grid.addWidget(self.mainpbar, 5, 0, 1, 4) self.grid.addWidget(threed_groupbox, 4, 0) self.grid.addWidget(handles_groupbox, 4, 1) else: # Left side self.grid.addWidget(pos_groupbox, 1, 0) self.grid.addWidget(str_groupbox, 1, 1) self.grid.addWidget(structure_groupbox, 2, 0) self.grid.addWidget(paint_groupbox, 3, 0) self.grid.addWidget(handles_groupbox, 4, 0) self.grid.addWidget(threed_groupbox, 5, 0) # Right side self.grid.addWidget(imager_groupbox, 2, 1) self.grid.addWidget(camera_groupbox, 3, 1) self.grid.addLayout(btngridR, 4, 1, 2, 1) self.grid.addWidget(self.mainpbar, 8, 0, 1, 4) mainWidget = QtWidgets.QWidget() mainWidget.setLayout(self.grid) self.setCentralWidget(mainWidget) self.setGeometry(300, 300, 300, 150) # CALL FUNCTIONS self.generatePositions() self.mainpbar.setValue(0) self.statusBar().showMessage("Simulate ready.") def load3dCalibration(self): # if hasattr(self.window, 'movie_path'): # dir = os.path.dirname(self.window.movie_path) # else: dir = None path, ext = QtWidgets.QFileDialog.getOpenFileName( self, "Load 3d calibration", directory=dir, filter="*.yaml" ) if path: with open(path, "r") as f: z_calibration = yaml.load(f) self.cx = _np.array(z_calibration["X Coefficients"]) self.cy = _np.array(z_calibration["Y Coefficients"]) self.statusBar().showMessage("Caliration loaded from: " + path) def changeTime(self): laserpower = self.laserpowerEdit.value() itime = self.integrationtimeEdit.value() frames = self.framesEdit.value() totaltime = itime * frames / 1000 / 60 totaltime = round(totaltime * 100) / 100 self.totaltimeEdit.setText(str(totaltime)) photonslope = self.photonslopeEdit.value() photonslopestd = photonslope / STDFACTOR if ADVANCEDMODE: photonslopestd = self.photonslopeStdEdit.value() photonrate = photonslope * laserpower photonratestd = photonslopestd * laserpower photonsframe = round(photonrate * itime) photonsframestd = round(photonratestd * itime) self.photonsframeEdit.setText(str(photonsframe)) self.photonstdframeEdit.setText(str(photonsframestd)) self.changeNoise() def changePaint(self): kon = self.konEdit.value() imagerconcentration = self.imagerconcentrationEdit.value() taud = round(1 / (kon * imagerconcentration * 1 / 10 ** 9) * 1000) self.taudEdit.setText(str(taud)) self.changeNoise() def changePSF(self): psf = self.psfEdit.value() pixelsize = self.pixelsizeEdit.value() psf_fwhm = round(psf * pixelsize * 2.355) self.psf_fwhmEdit.setText(str(psf_fwhm)) def changeImager(self): laserpower = self.laserpowerEdit.value() itime = self.integrationtimeEdit.value() photonslope = self.photonslopeEdit.value() photonslopestd = photonslope / STDFACTOR if ADVANCEDMODE: photonslopestd = self.photonslopeStdEdit.value() photonrate = photonslope * laserpower photonratestd = photonslopestd * laserpower photonsframe = round(photonrate * itime) photonsframestd = round(photonratestd * itime) self.photonsframeEdit.setText(str(photonsframe)) self.photonstdframeEdit.setText(str(photonsframestd)) self.photonrateEdit.setValue((photonrate)) self.photonratestdEdit.setValue((photonratestd)) self.changeNoise() def changeNoise(self): itime = self.integrationtimeEdit.value() imagerconcentration = self.imagerconcentrationEdit.value() laserpower = self.laserpowerEdit.value() * POWERDENSITY_CONVERSION bglevel = self.backgroundlevelEdit.value() if ADVANCEDMODE: # NEW NOISE MODEL laserc = self.lasercEdit.value() imagerc = self.imagercEdit.value() bgoffset = self.BgoffsetEdit.value() bgmodel = ( laserc + imagerc * imagerconcentration ) * laserpower * itime + bgoffset equationA = self.EquationAEdit.value() equationB = self.EquationBEdit.value() equationC = self.EquationCEdit.value() bgstdoffset = self.BgStdoffsetEdit.value() bgmodelstd = ( equationA * laserpower * itime + equationB * bgmodel + equationC + bgstdoffset * bglevel ) self.backgroundframeEdit.setText(str(int(bgmodel))) self.noiseEdit.setText(str(int(bgmodelstd))) else: bgmodel = ( (LASERC_DEFAULT + IMAGERC_DEFAULT * imagerconcentration) * laserpower * itime * bglevel ) self.backgroundframesimpleEdit.setText(str(int(bgmodel))) def changeStructureType(self): typeindex = self.structurecombo.currentIndex() # TYPEINDEX: 0 = GRID, 1 = CIRCLE, 2 = CUSTOM, 3 = Handles if typeindex == 0: self.structure1.show() self.structure2.show() self.structure3.show() self.structure1Edit.show() self.structure2Edit.show() self.structure3Edit.show() self.structure3Label.show() self.structure1.setText("Columns") self.structure2.setText("Rows") self.structure3.setText("Spacing X,Y") self.structure1Edit.setValue(3) self.structure2Edit.setValue(4) self.structure3Edit.setText("20,20") elif typeindex == 1: self.structure1.show() self.structure2.show() self.structure3.show() self.structure1Edit.show() self.structure2Edit.show() self.structure3Edit.show() self.structure3Label.show() self.structure1.hide() self.structure2.setText("Number of Labels") self.structure3.setText("Diameter") self.structure1Edit.hide() self.structure2Edit.setValue(12) self.structure3Edit.setText("100") elif typeindex == 2: self.structure1.hide() self.structure2.hide() self.structure3.hide() self.structure1Edit.hide() self.structure2Edit.hide() self.structure3Edit.hide() self.structure3Label.hide() elif typeindex == 3: self.structure1.hide() self.structure2.hide() self.structure3.hide() self.structure1Edit.hide() self.structure2Edit.hide() self.structure3Edit.hide() self.structure3Label.hide() self.structure3Label.hide() self.changeStructDefinition() def changeStructDefinition(self): typeindex = self.structurecombo.currentIndex() if typeindex == 0: # grid rows = self.structure1Edit.value() cols = self.structure2Edit.value() spacingtxt = _np.asarray((self.structure3Edit.text()).split(",")) try: spacingx = float(spacingtxt[0]) except ValueError: spacingx = 1 if spacingtxt.size > 1: try: spacingy = float(spacingtxt[1]) except ValueError: spacingy = 1 else: spacingy = 1 structurexx = "" structureyy = "" structureex = "" structure3d = "" for i in range(0, rows): for j in range(0, cols): structurexx = structurexx + str(i * spacingx) + "," structureyy = structureyy + str(j * spacingy) + "," structureex = structureex + "1," structure3d = structure3d + "0," structurexx = structurexx[:-1] structureyy = structureyy[:-1] structureex = structureex[:-1] self.structurexxEdit.setText(structurexx) self.structureyyEdit.setText(structureyy) self.structureexEdit.setText(structureex) self.structure3DEdit.setText(structure3d) self.generatePositions() elif typeindex == 1: # CIRCLE labels = self.structure2Edit.value() diametertxt = _np.asarray((self.structure3Edit.text()).split(",")) try: diameter = float(diametertxt[0]) except ValueError: diameter = 100 twopi = 2 * 3.1415926535 circdata = _np.arange(0, twopi, twopi / labels) xxval = _np.round(_np.cos(circdata) * diameter / 2 * 100) / 100 yyval = _np.round(_np.sin(circdata) * diameter / 2 * 100) / 100 structurexx = "" structureyy = "" structureex = "" structure3d = "" for i in range(0, xxval.size): structurexx = structurexx + str(xxval[i]) + "," structureyy = structureyy + str(yyval[i]) + "," structureex = structureex + "1," structure3d = structure3d + "0," structurexx = structurexx[:-1] structureyy = structureyy[:-1] structureex = structureex[:-1] self.structurexxEdit.setText(structurexx) self.structureyyEdit.setText(structureyy) self.structureexEdit.setText(structureex) self.structure3DEdit.setText(structure3d) self.generatePositions() elif typeindex == 2: # Custom self.generatePositions() elif typeindex == 3: # Handles print("Handles will be displayed..") def keyPressEvent(self, e): if e.key() == QtCore.Qt.Key_Escape: self.close() def vectorToString(self, x): x_arrstr = _np.char.mod("%f", x) x_str = ",".join(x_arrstr) return x_str def simulate(self): exchangeroundstoSim = _np.asarray( (self.exchangeroundsEdit.text()).split(",") ) exchangeroundstoSim = exchangeroundstoSim.astype(_np.int) noexchangecolors = len(set(exchangeroundstoSim)) exchangecolors = list(set(exchangeroundstoSim)) if self.concatExchangeEdit.checkState(): conrounds = noexchangecolors else: conrounds = self.conroundsEdit.value() self.currentround += 1 if self.currentround == 1: fileNameOld, exe = QtWidgets.QFileDialog.getSaveFileName( self, "Save movie to..", filter="*.raw" ) if fileNameOld: self.fileName = fileNameOld else: self.currentround -= 1 else: fileNameOld = self.fileName if fileNameOld: self.statusBar().showMessage( "Set round " + str(self.currentround) + " of " + str(conrounds) ) # READ IN PARAMETERS # STRUCTURE structureNo = self.structurenoEdit.value() structureFrame = self.structureframeEdit.value() structureIncorporation = self.structureIncorporationEdit.value() structureArrangement = int(self.structurerandomEdit.checkState()) structureOrientation = int( self.structurerandomOrientationEdit.checkState() ) structurex = self.structurexxEdit.text() structurey = self.structureyyEdit.text() structureextxt = self.structureexEdit.text() structure3dtxt = self.structure3DEdit.text() # PAINT kon = self.konEdit.value() imagerconcentration = self.imagerconcentrationEdit.value() taub = self.taubEdit.value() taud = int(self.taudEdit.text()) # IMAGER PARAMETERS psf = self.psfEdit.value() photonrate = self.photonrateEdit.value() photonratestd = self.photonratestdEdit.value() photonbudget = self.photonbudgetEdit.value() laserpower = self.laserpowerEdit.value() photonslope = self.photonslopeEdit.value() photonslopeStd = photonslope / STDFACTOR if ADVANCEDMODE: photonslopeStd = self.photonslopeStdEdit.value() if self.photonslopemodeEdit.checkState(): photonratestd = 0 # CAMERA PARAMETERS imagesize = self.camerasizeEdit.value() itime = self.integrationtimeEdit.value() frames = self.framesEdit.value() pixelsize = self.pixelsizeEdit.value() # NOISE MODEL if ADVANCEDMODE: background = int(self.backgroundframeEdit.text()) noise = int(self.noiseEdit.text()) laserc = self.lasercEdit.value() imagerc = self.imagercEdit.value() bgoffset = self.BgoffsetEdit.value() equationA = self.EquationAEdit.value() equationB = self.EquationBEdit.value() equationC = self.EquationCEdit.value() bgstdoffset = self.BgStdoffsetEdit.value() else: background = int(self.backgroundframesimpleEdit.text()) noise = _np.sqrt(background) laserc = LASERC_DEFAULT imagerc = IMAGERC_DEFAULT bgoffset = BGOFFSET_DEFAULT equationA = EQA_DEFAULT equationB = EQB_DEFAULT equationC = EQC_DEFAULT bgstdoffset = BGSTDOFFSET_DEFAULT structurexx, structureyy, structureex, structure3d = ( self.readStructure() ) self.statusBar().showMessage("Simulation started") struct = self.newstruct handlex = self.vectorToString(struct[0, :]) handley = self.vectorToString(struct[1, :]) handleex = self.vectorToString(struct[2, :]) handless = self.vectorToString(struct[3, :]) handle3d = self.vectorToString(struct[4, :]) mode3Dstate = int(self.mode3DEdit.checkState()) t0 = time.time() if self.concatExchangeEdit.checkState(): noexchangecolors = ( 1 ) # Overwrite the number to not trigger the for loop for i in range(0, noexchangecolors): if noexchangecolors > 1: fileName = _io.multiple_filenames(fileNameOld, i) partstruct = struct[:, struct[2, :] == exchangecolors[i]] elif self.concatExchangeEdit.checkState(): fileName = fileNameOld partstruct = struct[ :, struct[2, :] == exchangecolors[self.currentround - 1], ] else: fileName = fileNameOld partstruct = struct[:, struct[2, :] == exchangecolors[0]] self.statusBar().showMessage("Distributing photons ...") bindingsitesx = partstruct[0, :] nosites = len( bindingsitesx ) # number of binding sites in image photondist = _np.zeros((nosites, frames), dtype=_np.int) spotkinetics = _np.zeros((nosites, 4), dtype=_np.float) timetrace = {} for i in range(0, nosites): p_temp, t_temp, k_temp = simulate.distphotons( partstruct, itime, frames, taud, taub, photonrate, photonratestd, photonbudget, ) photondist[i, :] = p_temp spotkinetics[i, :] = k_temp timetrace[i] = self.vectorToString(t_temp) outputmsg = ( "Distributing photons ... " + str(_np.round(i / nosites * 1000) / 10) + " %" ) self.statusBar().showMessage(outputmsg) self.mainpbar.setValue(_np.round(i / nosites * 1000) / 10) self.statusBar().showMessage("Converting to image ... ") onevents = self.vectorToString(spotkinetics[:, 0]) localizations = self.vectorToString(spotkinetics[:, 1]) meandarksim = self.vectorToString(spotkinetics[:, 2]) meanbrightsim = self.vectorToString(spotkinetics[:, 3]) movie = _np.zeros(shape=(frames, imagesize, imagesize)) info = { "Generated by": "Picasso simulate", "Byte Order": "<", "Camera": "Simulation", "Data Type": "uint16", "Frames": frames, "Structure.Frame": structureFrame, "Structure.Number": structureNo, "Structure.StructureX": structurex, "Structure.StructureY": structurey, "Structure.StructureEx": structureextxt, "Structure.Structure3D": structure3dtxt, "Structure.HandleX": handlex, "Structure.HandleY": handley, "Structure.HandleEx": handleex, "Structure.Handle3d": handle3d, "Structure.HandleStruct": handless, "Structure.Incorporation": structureIncorporation, "Structure.Arrangement": structureArrangement, "Structure.Orientation": structureOrientation, "Structure.3D": mode3Dstate, "Structure.CX": self.cx, "Structure.CY": self.cy, "PAINT.k_on": kon, "PAINT.imager": imagerconcentration, "PAINT.taub": taub, "Imager.PSF": psf, "Imager.Photonrate": photonrate, "Imager.Photonrate Std": photonratestd, "Imager.Constant Photonrate Std": int( self.photonslopemodeEdit.checkState() ), "Imager.Photonbudget": photonbudget, "Imager.Laserpower": laserpower, "Imager.Photonslope": photonslope, "Imager.PhotonslopeStd": photonslopeStd, "Imager.BackgroundLevel": self.backgroundlevelEdit.value(), "Camera.Image Size": imagesize, "Camera.Integration Time": itime, "Camera.Frames": frames, "Camera.Pixelsize": pixelsize, "Noise.Lasercoefficient": laserc, "Noise.Imagercoefficient": imagerc, "Noise.EquationA": equationA, "Noise.EquationB": equationB, "Noise.EquationC": equationC, "Noise.BackgroundOff": bgoffset, "Noise.BackgroundStdOff": bgstdoffset, "Spotkinetics.ON_Events": onevents, "Spotkinetics.Localizations": localizations, "Spotkinetics.MEAN_DARK": meandarksim, "Spotkinetics.MEAN_BRIGHT": meanbrightsim, "Height": imagesize, "Width": imagesize, } if conrounds is not 1: app = QtCore.QCoreApplication.instance() for runner in range(0, frames): movie[runner, :, :] = simulate.convertMovie( runner, photondist, partstruct, imagesize, frames, psf, photonrate, background, noise, mode3Dstate, self.cx, self.cy, ) outputmsg = ( "Converting to Image ... " + str(_np.round(runner / frames * 1000) / 10) + " %" ) self.statusBar().showMessage(outputmsg) self.mainpbar.setValue( _np.round(runner / frames * 1000) / 10 ) app.processEvents() if self.currentround == 1: self.movie = movie else: movie = movie + self.movie self.movie = movie self.statusBar().showMessage( "Converting to image ... complete. Current round: " + str(self.currentround) + " of " + str(conrounds) + ". Please set and start next round." ) if self.currentround == conrounds: self.statusBar().showMessage( "Adding noise to movie ..." ) movie = simulate.noisy_p(movie, background) movie = simulate.check_type(movie) self.statusBar().showMessage("Saving movie ...") simulate.saveMovie(fileName, movie, info) self.statusBar().showMessage( "Movie saved to: " + fileName ) dt = time.time() - t0 self.statusBar().showMessage( "All computations finished. Last file saved to: " + fileName + ". Time elapsed: {:.2f} Seconds.".format(dt) ) self.currentround = 0 else: # just save info file # self.statusBar().showMessage('Saving yaml ...') info_path = ( _ospath.splitext(fileName)[0] + "_" + str(self.currentround) + ".yaml" ) _io.save_info(info_path, [info]) if self.exportkinetics.isChecked(): # Export the kinetic data if this is checked kinfo_path = ( _ospath.splitext(fileName)[0] + "_" + str(self.currentround) + "_kinetics.yaml" ) _io.save_info(kinfo_path, [timetrace]) self.statusBar().showMessage( "Movie saved to: " + fileName ) else: app = QtCore.QCoreApplication.instance() for runner in range(0, frames): movie[runner, :, :] = simulate.convertMovie( runner, photondist, partstruct, imagesize, frames, psf, photonrate, background, noise, mode3Dstate, self.cx, self.cy, ) outputmsg = ( "Converting to Image ... " + str(_np.round(runner / frames * 1000) / 10) + " %" ) self.statusBar().showMessage(outputmsg) self.mainpbar.setValue( _np.round(runner / frames * 1000) / 10 ) app.processEvents() movie = simulate.noisy_p(movie, background) movie = simulate.check_type(movie) self.mainpbar.setValue(100) self.statusBar().showMessage( "Converting to image ... complete." ) self.statusBar().showMessage("Saving movie ...") simulate.saveMovie(fileName, movie, info) if self.exportkinetics.isChecked(): # Export the kinetic data if this is checked kinfo_path = ( _ospath.splitext(fileName)[0] + "_kinetics.yaml" ) _io.save_info(kinfo_path, [timetrace]) self.statusBar().showMessage("Movie saved to: " + fileName) dt = time.time() - t0 self.statusBar().showMessage( "All computations finished. Last file saved to: " + fileName + ". Time elapsed: {:.2f} Seconds.".format(dt) ) self.currentround = 0 def loadSettings(self): # TODO: re-write exceptions, check key path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open yaml", filter="*.yaml" ) if path: info = _io.load_info(path) self.framesEdit.setValue(info[0]["Frames"]) self.structureframeEdit.setValue(info[0]["Structure.Frame"]) self.structurenoEdit.setValue(info[0]["Structure.Number"]) self.structurexxEdit.setText(info[0]["Structure.StructureX"]) self.structureyyEdit.setText(info[0]["Structure.StructureY"]) self.structureexEdit.setText(info[0]["Structure.StructureEx"]) try: self.structure3DEdit.setText(info[0]["Structure.Structure3D"]) self.mode3DEdit.setCheckState(info[0]["Structure.3D"]) self.cx(info[0]["Structure.CX"]) self.cy(info[0]["Structure.CY"]) except Exception as e: print(e) pass try: self.photonslopemodeEdit.setCheckState( info[0]["Imager.Constant Photonrate Std"] ) except Exception as e: print(e) pass try: self.backgroundlevelEdit.setValue( info[0]["Imager.BackgroundLevel"] ) except Exception as e: print(e) pass self.structureIncorporationEdit.setValue( info[0]["Structure.Incorporation"] ) self.structurerandomEdit.setCheckState( info[0]["Structure.Arrangement"] ) self.structurerandomOrientationEdit.setCheckState( info[0]["Structure.Orientation"] ) self.konEdit.setValue(info[0]["PAINT.k_on"]) self.imagerconcentrationEdit.setValue(info[0]["PAINT.imager"]) self.taubEdit.setValue(info[0]["PAINT.taub"]) self.psfEdit.setValue(info[0]["Imager.PSF"]) self.photonrateEdit.setValue(info[0]["Imager.Photonrate"]) self.photonratestdEdit.setValue(info[0]["Imager.Photonrate Std"]) self.photonbudgetEdit.setValue(info[0]["Imager.Photonbudget"]) self.laserpowerEdit.setValue(info[0]["Imager.Laserpower"]) self.photonslopeEdit.setValue(info[0]["Imager.Photonslope"]) self.photonslopeStdEdit.setValue(info[0]["Imager.PhotonslopeStd"]) self.camerasizeEdit.setValue(info[0]["Camera.Image Size"]) self.integrationtimeEdit.setValue( info[0]["Camera.Integration Time"] ) self.framesEdit.setValue(info[0]["Camera.Frames"]) self.pixelsizeEdit.setValue(info[0]["Camera.Pixelsize"]) if ADVANCEDMODE: self.lasercEdit.setValue(info[0]["Noise.Lasercoefficient"]) self.imagercEdit.setValue(info[0]["Noise.Imagercoefficient"]) self.BgoffsetEdit.setValue(info[0]["Noise.BackgroundOff"]) self.EquationAEdit.setValue(info[0]["Noise.EquationA"]) self.EquationBEdit.setValue(info[0]["Noise.EquationB"]) self.EquationCEdit.setValue(info[0]["Noise.EquationC"]) self.BgStdoffsetEdit.setValue( info[0]["Noise.BackgroundStdOff"] ) # SET POSITIONS handlexx = _np.asarray((info[0]["Structure.HandleX"]).split(",")) handleyy = _np.asarray((info[0]["Structure.HandleY"]).split(",")) handleex = _np.asarray((info[0]["Structure.HandleEx"]).split(",")) handless = _np.asarray( (info[0]["Structure.HandleStruct"]).split(",") ) handlexx = handlexx.astype(_np.float) handleyy = handleyy.astype(_np.float) handleex = handleex.astype(_np.float) handless = handless.astype(_np.float) handleex = handleex.astype(_np.int) handless = handless.astype(_np.int) handle3d = _np.asarray((info[0]["Structure.Handle3d"]).split(",")) handle3d = handle3d.astype(_np.float) structure = _np.array( [handlexx, handleyy, handleex, handless, handle3d] ) self.structurecombo.setCurrentIndex(2) self.newstruct = structure self.plotPositions() self.statusBar().showMessage("Settings loaded from: " + path) def importDesign(self): path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open yaml", filter="*.yaml" ) if path: info = _io.load_info(path) self.structurexxEdit.setText(info[0]["Structure.StructureX"]) self.structureyyEdit.setText(info[0]["Structure.StructureY"]) self.structureexEdit.setText(info[0]["Structure.StructureEx"]) structure3d = "" for i in range(0, len(self.structurexxEdit.text())): structure3d = structure3d + "0," self.structure3DEdit.setText(structure3d) self.structurecombo.setCurrentIndex(2) def readLine(self, linetxt, type="float", textmode=True): if textmode: line = _np.asarray((linetxt.text()).split(",")) else: line = _np.asarray((linetxt.split(","))) values = [] for element in line: try: if type == "int": values.append(int(element)) elif type == "float": values.append(float(element)) except ValueError: pass return values def importHandles(self): # Import structure <> self.handles = {} path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open yaml", filter="*.yaml *.hdf5" ) if path: splitpath = _ospath.splitext(path) if splitpath[-1] == ".yaml": info = _io.load_info(path) x = self.readLine( info[0]["Structure.StructureX"], textmode=False ) y = self.readLine( info[0]["Structure.StructureY"], textmode=False ) try: ex = self.readLine( info[0]["Structure.StructureEx"], type="int", textmode=False, ) except Exception as e: print(e) ex = _np.ones_like(x) try: z = self.readLine(info[0]["Structure.Structure3D"]) except Exception as e: print(e) z = _np.zeros_like(x) minlen = min(len(x), len(y), len(ex), len(z)) x = x[0:minlen] y = y[0:minlen] ex = ex[0:minlen] z = z[0:minlen] else: clusters = _io.load_clusters(path) pixelsize = self.pixelsizeEdit.value() imagesize = self.camerasizeEdit.value() x = clusters["com_x"] y = clusters["com_y"] # Align in the center of window: x = x - _np.mean(x) + imagesize / 2 y = -(y - _np.mean(y)) + imagesize / 2 x = x * pixelsize y = y * pixelsize try: z = clusters["com_z"] except Exception as e: print(e) z = _np.zeros_like(x) ex = _np.ones_like(x) minlen = len(x) self.handles["x"] = x self.handles["y"] = y self.handles["z"] = z self.handles["ex"] = ex # TODO: Check axis orientation exchangecolors = list(set(self.handles["ex"])) exchangecolorsList = ",".join(map(str, exchangecolors)) # UPDATE THE EXCHANGE COLORS IN BUTTON TO BE simulated self.exchangeroundsEdit.setText(str(exchangecolorsList)) self.structurenoEdit.setValue(1) self.structureMode = False self.generatePositions() self.statusBar().showMessage( "A total of {} points loaded.".format(minlen) ) def readStructure(self): structurexx = self.readLine(self.structurexxEdit) structureyy = self.readLine(self.structureyyEdit) structureex = self.readLine(self.structureexEdit, "int") structure3d = self.readLine(self.structure3DEdit) minlen = min( len(structureex), len(structurexx), len(structureyy), len(structure3d), ) structurexx = structurexx[0:minlen] structureyy = structureyy[0:minlen] structureex = structureex[0:minlen] structure3d = structure3d[0:minlen] return structurexx, structureyy, structureex, structure3d def plotStructure(self): structurexx, structureyy, structureex, structure3d = ( self.readStructure() ) noexchangecolors = len(set(structureex)) exchangecolors = list(set(structureex)) # self.figure2.suptitle('Structure [nm]') ax1 = self.figure2.add_subplot(111) ax1.cla() #ax1.hold(True) ax1.axis("equal") for i in range(0, noexchangecolors): plotxx = [] plotyy = [] for j in range(0, len(structureex)): if structureex[j] == exchangecolors[i]: plotxx.append(structurexx[j]) plotyy.append(structureyy[j]) ax1.plot(plotxx, plotyy, "o") distx = round(1 / 10 * (max(structurexx) - min(structurexx))) disty = round(1 / 10 * (max(structureyy) - min(structureyy))) ax1.axes.set_xlim((min(structurexx) - distx, max(structurexx) + distx)) ax1.axes.set_ylim((min(structureyy) - disty, max(structureyy) + disty)) self.canvas2.draw() exchangecolorsList = ",".join(map(str, exchangecolors)) # UPDATE THE EXCHANGE COLORS IN BUTTON TO BE simulated self.exchangeroundsEdit.setText(str(exchangecolorsList)) def generatePositions(self): self.plotStructure() pixelsize = self.pixelsizeEdit.value() if self.structureMode: structurexx, structureyy, structureex, structure3d = ( self.readStructure() ) structure = simulate.defineStructure( structurexx, structureyy, structureex, structure3d, pixelsize ) else: structurexx = self.handles["x"] structureyy = self.handles["y"] structureex = self.handles["ex"] structure3d = self.handles["z"] structure = simulate.defineStructure( structurexx, structureyy, structureex, structure3d, pixelsize, mean=False, ) number = self.structurenoEdit.value() imageSize = self.camerasizeEdit.value() frame = self.structureframeEdit.value() arrangement = int(self.structurerandomEdit.checkState()) gridpos = simulate.generatePositions( number, imageSize, frame, arrangement ) orientation = int(self.structurerandomOrientationEdit.checkState()) incorporation = self.structureIncorporationEdit.value() / 100 exchange = 0 if self.structureMode: self.newstruct = simulate.prepareStructures( structure, gridpos, orientation, number, incorporation, exchange, ) else: self.newstruct = simulate.prepareStructures( structure, _np.array([[0, 0]]), orientation, number, incorporation, exchange, ) in_x = _np.logical_and( self.newstruct[0, :] < (imageSize - frame), self.newstruct[0, :] > frame, ) in_y = _np.logical_and( self.newstruct[1, :] < (imageSize - frame), self.newstruct[1, :] > frame, ) in_frame = _np.logical_and(in_x, in_y) self.newstruct = self.newstruct[:, in_frame] # self.figure1.suptitle('Positions [Px]') ax1 = self.figure1.add_subplot(111) ax1.cla() #ax1.hold(True) ax1.axis("equal") ax1.plot(self.newstruct[0, :], self.newstruct[1, :], "+") # PLOT FRAME ax1.add_patch( patches.Rectangle( (frame, frame), imageSize - 2 * frame, imageSize - 2 * frame, linestyle="dashed", edgecolor="#000000", fill=False, # remove background ) ) ax1.axes.set_xlim(0, imageSize) ax1.axes.set_ylim(0, imageSize) self.canvas1.draw() # PLOT first structure struct1 = self.newstruct[:, self.newstruct[3, :] == 0] noexchangecolors = len(set(struct1[2, :])) exchangecolors = list(set(struct1[2, :])) self.noexchangecolors = exchangecolors # self.figure2.suptitle('Structure [nm]') ax1 = self.figure2.add_subplot(111) ax1.cla() #ax1.hold(True) ax1.axis("equal") structurexx = struct1[0, :] structureyy = struct1[1, :] structureex = struct1[2, :] structurexx_nm = _np.multiply( structurexx - min(structurexx), pixelsize ) structureyy_nm = _np.multiply( structureyy - min(structureyy), pixelsize ) for i in range(0, noexchangecolors): plotxx = [] plotyy = [] for j in range(0, len(structureex)): if structureex[j] == exchangecolors[i]: plotxx.append(structurexx_nm[j]) plotyy.append(structureyy_nm[j]) ax1.plot(plotxx, plotyy, "o") distx = round(1 / 10 * (max(structurexx_nm) - min(structurexx_nm))) disty = round(1 / 10 * (max(structureyy_nm) - min(structureyy_nm))) ax1.axes.set_xlim( (min(structurexx_nm) - distx, max(structurexx_nm) + distx) ) ax1.axes.set_ylim( (min(structureyy_nm) - disty, max(structureyy_nm) + disty) ) self.canvas2.draw() def plotPositions(self): structurexx, structureyy, structureex, structure3d = ( self.readStructure() ) pixelsize = self.pixelsizeEdit.value() structure = simulate.defineStructure( structurexx, structureyy, structureex, structure3d, pixelsize ) number = self.structurenoEdit.value() imageSize = self.camerasizeEdit.value() frame = self.structureframeEdit.value() arrangement = int(self.structurerandomEdit.checkState()) gridpos = simulate.generatePositions( number, imageSize, frame, arrangement ) orientation = int(self.structurerandomOrientationEdit.checkState()) incorporation = self.structureIncorporationEdit.value() / 100 exchange = 0 # self.figure1.suptitle('Positions [Px]') ax1 = self.figure1.add_subplot(111) ax1.cla() #ax1.hold(True) ax1.axis("equal") ax1.plot(self.newstruct[0, :], self.newstruct[1, :], "+") # PLOT FRAME ax1.add_patch( patches.Rectangle( (frame, frame), imageSize - 2 * frame, imageSize - 2 * frame, linestyle="dashed", edgecolor="#000000", fill=False, # remove background ) ) ax1.axes.set_xlim(0, imageSize) ax1.axes.set_ylim(0, imageSize) self.canvas1.draw() # PLOT first structure struct1 = self.newstruct[:, self.newstruct[3, :] == 0] noexchangecolors = len(set(struct1[2, :])) exchangecolors = list(set(struct1[2, :])) self.noexchangecolors = exchangecolors # self.figure2.suptitle('Structure [nm]') ax1 = self.figure2.add_subplot(111) ax1.cla() #ax1.hold(True) structurexx = struct1[0, :] structureyy = struct1[1, :] structureex = struct1[2, :] structurexx_nm = _np.multiply( structurexx - min(structurexx), pixelsize ) structureyy_nm = _np.multiply( structureyy - min(structureyy), pixelsize ) for i in range(0, noexchangecolors): plotxx = [] plotyy = [] for j in range(0, len(structureex)): if structureex[j] == exchangecolors[i]: plotxx.append(structurexx_nm[j]) plotyy.append(structureyy_nm[j]) ax1.plot(plotxx, plotyy, "o") distx = round(1 / 10 * (max(structurexx_nm) - min(structurexx_nm))) disty = round(1 / 10 * (max(structureyy_nm) - min(structureyy_nm))) ax1.axes.set_xlim( (min(structurexx_nm) - distx, max(structurexx_nm) + distx) ) ax1.axes.set_ylim( (min(structureyy_nm) - disty, max(structureyy_nm) + disty) ) self.canvas2.draw() def openDialog(self): path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open design", filter="*.yaml" ) if path: self.mainscene.loadCanvas(path) self.statusBar().showMessage("File loaded from: " + path) def importhdf5(self): path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open localizations", filter="*.hdf5" ) if path: self.readhdf5(path) def calibrateNoise(self): bg, bgstd, las, time, conc, ok = CalibrationDialog.setExt() _np.asarray(bg) _np.asarray(bgstd) _np.asarray(las) _np.asarray(time) _np.asarray(conc) x_3d = _np.array([conc, las, time]) p0 = [1, 1] fitParamsBg, fitCovariances = curve_fit(fitFuncBg, x_3d, bg, p0) print(" fit coefficients :\n", fitParamsBg) # SET VALUES TO PARAMETER self.lasercEdit.setValue(fitParamsBg[0]) self.imagercEdit.setValue(fitParamsBg[1]) x_3dStd = _np.array([las, time, bg]) p0S = [1, 1, 1] fitParamsStd, fitCovariances = curve_fit( fitFuncStd, x_3dStd, bgstd, p0S ) print(" fit coefficients2:\n", fitParamsStd) self.EquationAEdit.setValue(fitParamsStd[0]) self.EquationBEdit.setValue(fitParamsStd[1]) self.EquationCEdit.setValue(fitParamsStd[2]) # Noise model working point figure4 = plt.figure() # Background bgmodel = fitFuncBg(x_3d, fitParamsBg[0], fitParamsBg[1]) ax1 = figure4.add_subplot(121) ax1.cla() ax1.plot(bg, bgmodel, "o") x = _np.linspace(*ax1.get_xlim()) ax1.plot(x, x) title = "Background Model:" ax1.set_title(title) # Std bgmodelstd = fitFuncStd( x_3dStd, fitParamsStd[0], fitParamsStd[1], fitParamsStd[2] ) ax2 = figure4.add_subplot(122) ax2.cla() ax2.plot(bgstd, bgmodelstd, "o") x = _np.linspace(*ax2.get_xlim()) ax2.plot(x, x) title = "Background Model Std:" ax2.set_title(title) figure4.show() def sigmafilter(self, data, sigmas): # Filter data to be withing +- sigma sigma = _np.std(data) mean = _np.mean(data) datanew = data[data < (mean + sigmas * sigma)] datanew = datanew[datanew > (mean - sigmas * sigma)] return datanew def readhdf5(self, path): try: locs, self.info = _io.load_locs(path, qt_parent=self) except _io.NoMetadataFileError: return integrationtime, ok1 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter integration time in ms:" ) integrationtime = int(integrationtime) if ok1: imagerconcentration, ok2 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter imager concentration in nM:" ) imagerconcentration = float(imagerconcentration) if ok2: laserpower, ok3 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter Laserpower in mW:" ) laserpower = float(laserpower) if ok3: cbaseline, ok4 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter camera baseline" ) cbaseline = float(cbaseline) # self.le.setText(str(text)) photons = locs["photons"] sigmax = locs["sx"] sigmay = locs["sy"] bg = locs["bg"] bg = bg - cbaseline nosigmas = 3 photons = self.sigmafilter(photons, nosigmas) sigmax = self.sigmafilter(sigmax, nosigmas) sigmay = self.sigmafilter(sigmay, nosigmas) bg = self.sigmafilter(bg, nosigmas) figure3 = plt.figure() # Photons photonsmu, photonsstd = norm.fit(photons) ax1 = figure3.add_subplot(131) ax1.cla() #ax1.hold(True) # TODO: Investigate again what this causes ax1.hist(photons, bins=25, normed=True, alpha=0.6) xmin, xmax = plt.xlim() x = _np.linspace(xmin, xmax, 100) p = norm.pdf(x, photonsmu, photonsstd) ax1.plot(x, p) title = "Photons:\n mu = %.2f\n std = %.2f" % ( photonsmu, photonsstd, ) ax1.set_title(title) # Sigma X & Sigma Y sigma = _np.concatenate((sigmax, sigmay), axis=0) sigmamu, sigmastd = norm.fit(sigma) ax2 = figure3.add_subplot(132) ax2.cla() #ax2.hold(True) ax2.hist(sigma, bins=25, normed=True, alpha=0.6) xmin, xmax = plt.xlim() x = _np.linspace(xmin, xmax, 100) p = norm.pdf(x, sigmamu, sigmastd) ax2.plot(x, p) title = "PSF:\n mu = %.2f\n std = %.2f" % ( sigmamu, sigmastd, ) ax2.set_title(title) # Background bgmu, bgstd = norm.fit(bg) ax3 = figure3.add_subplot(133) ax3.cla() #ax3.hold(True) # Plot the histogram. ax3.hist(bg, bins=25, normed=True, alpha=0.6) xmin, xmax = plt.xlim() x = _np.linspace(xmin, xmax, 100) p = norm.pdf(x, bgmu, bgstd) ax3.plot(x, p) title = "Background:\n mu = %.2f\n std = %.2f" % ( bgmu, bgstd, ) ax3.set_title(title) figure3.tight_layout() figure3.show() # Calculate Rates # Photonrate, Photonrate Std, PSF photonrate = int(photonsmu / integrationtime) photonratestd = int(photonsstd / integrationtime) psf = int(sigmamu * 100) / 100 photonrate = int(photonsmu / integrationtime) # CALCULATE BG AND BG_STD FROM MODEL AND ADJUST OFFSET laserc = self.lasercEdit.value() imagerc = self.imagercEdit.value() bgmodel = ( (laserc + imagerc * imagerconcentration) * laserpower * integrationtime ) equationA = self.EquationAEdit.value() equationB = self.EquationBEdit.value() equationC = self.EquationCEdit.value() bgmodelstd = ( equationA * laserpower * integrationtime + equationB * bgmu + equationC ) # SET VALUES TO FIELDS AND CALL DEPENDENCIES self.psfEdit.setValue(psf) self.integrationtimeEdit.setValue(integrationtime) self.photonrateEdit.setValue(photonrate) self.photonratestdEdit.setValue(photonratestd) self.photonslopeEdit.setValue(photonrate / laserpower) self.photonslopeStdEdit.setValue( photonratestd / laserpower ) # SET NOISE AND FRAME self.BgoffsetEdit.setValue(bgmu - bgmodel) self.BgStdoffsetEdit.setValue(bgstd - bgmodelstd) self.imagerconcentrationEdit.setValue(imagerconcentration) self.laserpowerEdit.setValue(laserpower) class CalibrationDialog(QtWidgets.QDialog): def __init__(self, parent=None): super(CalibrationDialog, self).__init__(parent) layout = QtWidgets.QVBoxLayout(self) self.table = QtWidgets.QTableWidget() self.table.setWindowTitle("Noise Model Calibration") self.setWindowTitle("Noise Model Calibration") # self.resize(800, 400) layout.addWidget(self.table) # ADD BUTTONS: self.loadTifButton = QtWidgets.QPushButton("Load Tifs") layout.addWidget(self.loadTifButton) self.evalTifButton = QtWidgets.QPushButton("Evaluate Tifs") layout.addWidget(self.evalTifButton) self.pbar = QtWidgets.QProgressBar(self) layout.addWidget(self.pbar) self.loadTifButton.clicked.connect(self.loadTif) self.evalTifButton.clicked.connect(self.evalTif) self.buttons = QDialogButtonBox( QDialogButtonBox.ActionRole | QDialogButtonBox.Ok | QDialogButtonBox.Cancel, Qt.Horizontal, self, ) layout.addWidget(self.buttons) self.buttons.accepted.connect(self.accept) self.buttons.rejected.connect(self.reject) def exportTable(self): table = dict() tablecontent = [] tablecontent.append( [ "FileName", "Imager concentration[nM]", "Integration time [ms]", "Laserpower", "Mean [Photons]", "Std [Photons]", ] ) for row in range(self.table.rowCount()): rowdata = [] for column in range(self.table.columnCount()): item = self.table.item(row, column) if item is not None: rowdata.append(item.text()) else: rowdata.append("") tablecontent.append(rowdata) table[0] = tablecontent path, ext = QtWidgets.QFileDialog.getSaveFileName( self, "Export calibration table to.", filter="*.csv" ) if path: self.savePlate(path, table) def savePlate(self, filename, data): with open(filename, "w", newline="") as csvfile: Writer = csv.writer( csvfile, delimiter=",", quotechar="|", quoting=csv.QUOTE_MINIMAL, ) for j in range(0, len(data)): exportdata = data[j] for i in range(0, len(exportdata)): Writer.writerow(exportdata[i]) def evalTif(self): baseline, ok1 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter Camera Baseline:" ) if ok1: baseline = int(baseline) else: baseline = 200 # default sensitvity, ok2 = QtWidgets.QInputDialog.getText( self, "Input Dialog", "Enter Camera Sensitivity:" ) if ok2: sensitvity = float(sensitvity) else: sensitvity = 1.47 counter = 0 for element in self.tifFiles: counter = counter + 1 self.pbar.setValue((counter - 1) / self.tifCounter * 100) print( "Current Dataset: " + str(counter) + " of " + str(self.tifCounter) ) QtWidgets.qApp.processEvents() movie, info = _io.load_movie(element) movie = movie[0:100, :, :] movie = (movie - baseline) * sensitvity self.table.setItem( counter - 1, 4, QtWidgets.QTableWidgetItem(str((_np.mean(movie)))) ) self.table.setItem( counter - 1, 5, QtWidgets.QTableWidgetItem(str((_np.std(movie)))) ) self.table.setItem( counter - 1, 1, QtWidgets.QTableWidgetItem(str((self.ValueFind(element, "nM_")))), ) self.table.setItem( counter - 1, 2, QtWidgets.QTableWidgetItem(str((self.ValueFind(element, "ms_")))), ) self.table.setItem( counter - 1, 3, QtWidgets.QTableWidgetItem(str((self.ValueFind(element, "mW_")))), ) self.pbar.setValue(100) def ValueFind(self, filename, unit): index = filename.index(unit) value = 0 for i in range(4): try: value += int(filename[index - 1 - i]) * (10 ** i) except ValueError: pass return value def loadTif(self): self.path = QtWidgets.QFileDialog.getExistingDirectory( self, "Select Directory" ) if self.path: self.tifCounter = len(_glob.glob1(self.path, "*.tif")) self.tifFiles = _glob.glob(os.path.join(self.path, "*.tif")) self.table.setRowCount(int(self.tifCounter)) self.table.setColumnCount(6) self.table.setHorizontalHeaderLabels( [ "FileName", "Imager concentration[nM]", "Integration time [ms]", "Laserpower", "Mean [Photons]", "Std [Photons]", ] ) for i in range(0, self.tifCounter): self.table.setItem( i, 0, QtWidgets.QTableWidgetItem(self.tifFiles[i]) ) def changeComb(self, indexval): sender = self.sender() comboval = sender.currentIndex() if comboval == 0: self.table.setItem(indexval, 2, QtWidgets.QTableWidgetItem("")) self.table.setItem(indexval, 3, QtWidgets.QTableWidgetItem("")) else: self.table.setItem( indexval, 2, QtWidgets.QTableWidgetItem(self.ImagersShort[comboval]), ) self.table.setItem( indexval, 3, QtWidgets.QTableWidgetItem(self.ImagersLong[comboval]) ) def readoutTable(self): tableshort = dict() tablelong = dict() maxcolor = 15 for i in range(0, maxcolor - 1): try: tableshort[i] = self.table.item(i, 2).text() if tableshort[i] == "": tableshort[i] = "None" except AttributeError: tableshort[i] = "None" try: tablelong[i] = self.table.item(i, 3).text() if tablelong[i] == "": tablelong[i] = "None" except AttributeError: tablelong[i] = "None" return tablelong, tableshort # get current date and time from the dialog def evalTable(self): conc = [] time = [] las = [] bg = [] bgstd = [] for i in range(0, self.tifCounter): conc.append(float(self.table.item(i, 1).text())) time.append(float(self.table.item(i, 2).text())) las.append(float(self.table.item(i, 3).text())) bg.append(float(self.table.item(i, 4).text())) bgstd.append(float(self.table.item(i, 5).text())) # self.exportTable() return bg, bgstd, las, time, conc # static method to create the dialog and return (date, time, accepted) @staticmethod def setExt(parent=None): dialog = CalibrationDialog(parent) result = dialog.exec_() bg, bgstd, las, time, conc = dialog.evalTable() return (bg, bgstd, las, time, conc, result == QDialog.Accepted) def main(): app = QtWidgets.QApplication(sys.argv) window = Window() window.show() sys.exit(app.exec_()) def excepthook(type, value, tback): lib.cancel_dialogs() message = "".join(traceback.format_exception(type, value, tback)) errorbox = QtWidgets.QMessageBox.critical( window, "An error occured", message ) errorbox.exec_() sys.__excepthook__(type, value, tback) sys.excepthook = excepthook if __name__ == "__main__": main()
the-stack_106_23269
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.api.volume import base from tempest.lib import decorators class VolumeHostsAdminTestsJSON(base.BaseVolumeAdminTest): @decorators.idempotent_id('d5f3efa2-6684-4190-9ced-1c2f526352ad') def test_list_hosts(self): hosts = self.admin_hosts_client.list_hosts()['hosts'] self.assertGreaterEqual(len(hosts), 2, "No. of hosts are < 2," "response of list hosts is: % s" % hosts)
the-stack_106_23270
from collections import deque import logging import time import socket import hashlib import requests import pdpyras import yaml LOG = logging.getLogger(__name__) hostname = socket.getfqdn() class Check(object): def __init__(self, url, pd_api_key, **kwargs): self.url = url self.pd_api_key = pd_api_key self.previous_checks = deque(maxlen=10) sha = hashlib.sha256() sha.update(url.encode("ascii")) self.dup_key = sha.hexdigest() def run(self): status = 0 resp_text = "" exc_text = "" try: resp = requests.get(self.url) resp_text = resp.text resp.raise_for_status() except Exception as ex: status = 1 exc_text = str(ex) LOG.info("Check results: status=%r body=%r exc=%r" % (status, resp_text, exc_text)) self.previous_checks.append(status) self._report({"body": resp_text, "exception": exc_text}) def _report(self, data): pd = pdpyras.EventsAPISession(self.pd_api_key) if len(list(filter(lambda x: x != 0, list(self.previous_checks)[-2:]))) >= 2: # last two are consecutive failures LOG.info("Reporting as triggered") pd.trigger( "Service at %s is DOWN" % self.url, source=hostname, severity="critical", custom_details=data, dedup_key=self.dup_key ) else: LOG.info("Reporting as resolved") pd.resolve(self.dup_key) def main(): with open("./watchman.yaml") as watchfile: watch_data = yaml.safe_load(watchfile) checks = [] for check in watch_data.get("checks", []): checks.append(Check(**check)) while True: try: for check in checks: check.run() except Exception as ex: LOG.exception("error in main loop: %s" % ex) time.sleep(60) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
the-stack_106_23273
# Copyright 2019 The TensorFlow Authors, Pavel Yakubovskiy. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import functools import cv2 import numpy as np _KERAS_BACKEND = None _KERAS_LAYERS = None _KERAS_MODELS = None _KERAS_UTILS = None def get_submodules_from_kwargs(kwargs): backend = kwargs.get('backend', _KERAS_BACKEND) layers = kwargs.get('layers', _KERAS_LAYERS) models = kwargs.get('models', _KERAS_MODELS) utils = kwargs.get('utils', _KERAS_UTILS) for key in kwargs.keys(): if key not in ['backend', 'layers', 'models', 'utils']: raise TypeError('Invalid keyword argument: %s', key) return backend, layers, models, utils def inject_keras_modules(func): import keras @functools.wraps(func) def wrapper(*args, **kwargs): kwargs['backend'] = keras.backend kwargs['layers'] = keras.layers kwargs['models'] = keras.models kwargs['utils'] = keras.utils return func(*args, **kwargs) return wrapper def inject_tfkeras_modules(func): import tensorflow.keras as tfkeras @functools.wraps(func) def wrapper(*args, **kwargs): kwargs['backend'] = tfkeras.backend kwargs['layers'] = tfkeras.layers kwargs['models'] = tfkeras.models kwargs['utils'] = tfkeras.utils return func(*args, **kwargs) return wrapper def init_keras_custom_objects(): import keras import efficientnet as model custom_objects = { 'swish': inject_keras_modules(model.get_swish)(), 'FixedDropout': inject_keras_modules(model.get_dropout)() } keras.utils.generic_utils.get_custom_objects().update(custom_objects) def init_tfkeras_custom_objects(): import tensorflow.keras as tfkeras import efficientnet as model custom_objects = { 'swish': inject_tfkeras_modules(model.get_swish)(), 'FixedDropout': inject_tfkeras_modules(model.get_dropout)() } tfkeras.utils.get_custom_objects().update(custom_objects) def normalize_image(image): """ Normalize image by subtracting and dividing by the pre-computed mean and std. dev. Operates on image in-place """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] image[..., 0] -= mean[0] image[..., 1] -= mean[1] image[..., 2] -= mean[2] image[..., 0] /= std[0] image[..., 1] /= std[1] image[..., 2] /= std[2] def resize_image(image, image_size): """Resize images to image_size.""" image_height, image_width = image.shape[:2] # check if image needs to be resized if image_height == image_width == image_size: return image, 0, 0, 0 # scale the image dimensions to fit into the new size without distortion if image_height > image_width: scale = image_size / image_height resized_height = image_size resized_width = int(image_width * scale) else: scale = image_size / image_width resized_height = int(image_height * scale) resized_width = image_size # Resize the input image to fit image = cv2.resize(image, (resized_width, resized_height)) offset_h = (image_size - resized_height) // 2 offset_w = (image_size - resized_width) // 2 # Paste the input image into the center of a grey image of target size new_image = 128 * np.ones((image_size, image_size, 3), dtype=image.dtype) new_image[offset_h:offset_h + resized_height, offset_w:offset_w + resized_width] = image return new_image, scale, offset_h, offset_w def preprocess_image(image, image_size): resized_image, scale, offset_h, offset_w = resize_image(image, image_size) return resized_image, scale, offset_h, offset_w
the-stack_106_23274
# Copyright 2021 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import multiprocessing as mp import os import random import time import uuid from datetime import datetime, timedelta import testutils.api.deviceauth as deviceauth import testutils.api.useradm as useradm import testutils.api.inventory as inventory import testutils.api.inventory_v2 as inventory_v2 import testutils.api.deployments as deployments import testutils.api.deployments_v2 as deployments_v2 from testutils.api.client import ApiClient from testutils.common import ( create_org, create_user, clean_mongo, mongo_cleanup, mongo, get_mender_artifact, make_accepted_device, make_accepted_devices, ) from testutils.infra.container_manager.kubernetes_manager import isK8S WAITING_MULTIPLIER = 8 if isK8S() else 1 def upload_image(filename, auth_token, description="abc"): api_client = ApiClient(deployments.URL_MGMT) api_client.headers = {} r = api_client.with_auth(auth_token).call( "POST", deployments.URL_DEPLOYMENTS_ARTIFACTS, files=( ("description", (None, description)), ("size", (None, str(os.path.getsize(filename)))), ("artifact", (filename, open(filename, "rb"), "application/octet-stream")), ), ) assert r.status_code == 201 def create_tenant_test_setup( user_name, tenant_name, nr_deployments=3, nr_devices=100, plan="os" ): """ Creates a tenant, and a user belonging to the tenant with 'nr_deployments', and 'nr_devices' """ api_mgmt_deploy = ApiClient(deployments.URL_MGMT) tenant = create_org(tenant_name, user_name, "correcthorse", plan=plan) user = tenant.users[0] r = ApiClient(useradm.URL_MGMT).call( "POST", useradm.URL_LOGIN, auth=(user.name, user.pwd) ) assert r.status_code == 200 user.utoken = r.text tenant.users = [user] upload_image("/tests/test-artifact.mender", user.utoken) # Create three deployments for the user for i in range(nr_deployments): request_body = { "name": str(i) + "st-dummy-deployment", "artifact_name": "deployments-phase-testing", "devices": ["uuid not needed" + str(i) for i in range(nr_devices)], } resp = api_mgmt_deploy.with_auth(user.utoken).call( "POST", "/deployments", body=request_body ) assert resp.status_code == 201 # Verify that the 'nr_deployments' expected deployments have been created resp = api_mgmt_deploy.with_auth(user.utoken).call("GET", "/deployments") assert resp.status_code == 200 assert len(resp.json()) == nr_deployments return tenant @pytest.fixture(scope="function") def setup_deployments_enterprise_test( clean_mongo, existing_deployments=3, nr_devices=100, plan="enterprise" ): """ Creates two tenants, with one user each, where each user has three deployments, and a hundred devices each. """ uuidv4 = str(uuid.uuid4()) tenant1 = create_tenant_test_setup( "some.user+" + uuidv4 + "@example.com", "test.mender.io-" + uuidv4, plan=plan ) # Add a second tenant to make sure that the functionality does not interfere with other tenants uuidv4 = str(uuid.uuid4()) tenant2 = create_tenant_test_setup( "some.user+" + uuidv4 + "@example.com", "test.mender.io-" + uuidv4, plan=plan ) # Create 'existing_deployments' predefined deployments to act as noise for the server to handle # for both users return tenant1, tenant2 class TestDeploymentsEndpointEnterprise(object): # # The test_cases array consists of test tuples of the form: # (request, expected_response) # test_cases = [ # One phase: # + start_time # + batch_size ( { "name": "One phase, with start time, and full batch size", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 100, } ], }, { "name": "One phase, with start time, and full batch size", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [{"batch_size": 100}], }, ), # One phase: # + start_time # - batch_size ( { "name": "One phase, with start time", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z" } ], }, { "name": "One phase, with start time", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, }, ), # One phase: # - start_time # + batch_size ( { "name": "One phase, with no start time, and full batch size", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [{"batch_size": 100}], }, { "name": "One phase, with no start time, and full batch size", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [{"batch_size": 100}], }, ), # Two phases: # first: # + start_time # + batch_size # last: # + start_time # + batch_size ( { "name": "Two phases, with start time and batch, last with start time and batch size", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 10, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 90, }, ], }, { "name": "Two phases, with start time and batch, last with start time and batch size", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [{"batch_size": 10}, {"batch_size": 90}], }, ), # Two phases: # first: # - start_time # + batch_size # last: # + start_time # + batch_size ( { "name": "Two phases, with no start time and batch, last with start time and batch size", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ {"batch_size": 10}, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 90, }, ], }, { "name": "Two phases, with no start time and batch, last with start time and batch size", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [{"batch_size": 10}, {"batch_size": 90}], }, ), # Two phases: # first: # - start_time # + batch_size # last: # + start_time # - batch_size ( { "name": "Two phases, with no start time and batch, last with start time", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ {"batch_size": 10}, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z" }, ], }, { "name": "Two phases, with no start time and batch, last with start time", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [{"batch_size": 10}, {"batch_size": 90}], }, ), # Three phases: # first phase: # + start_time # + batch_size # last phase: # + start_time # + batch_size ( { "name": "Three phases, first start and batch, last start and batch", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ { "start_time": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 10, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 45, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=2)).isoformat("T") ) + "Z", "batch_size": 45, }, ], }, { "name": "Three phases, first start and batch, last start and batch", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [ { "batch_size": 10, # The nr of devices that asked for an update within the phase, in this case 0 "device_count": 0, }, {"batch_size": 45, "device_count": 0}, {"batch_size": 45, "device_count": 0}, ], }, ), # Three phases: # first phase: # - start_time # + batch_size # last phase: # + start_time # + batch_size ( { "name": "Three phases, first batch, last start and batch", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ {"batch_size": 10}, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 45, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=2)).isoformat("T") ) + "Z", "batch_size": 45, }, ], }, { "name": "Three phases, first batch, last start and batch", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [ {"batch_size": 10, "device_count": 0}, {"batch_size": 45, "device_count": 0}, {"batch_size": 45, "device_count": 0}, ], }, ), # Three phases: # first phase: # - start_time # + batch_size # last phase: # + start_time # - batch_size ( { "name": "Three phases, first batch, last start", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ {"batch_size": 10}, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 45, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=2)).isoformat("T") ) + "Z", # Batch size is optional in the last stage (ie, it is the remaining devices) }, ], }, { "name": "Three phases, first batch, last start", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [ { "batch_size": 10, # The nr of devices that asked for an update within the phase, in this case 0 "device_count": 0, }, {"batch_size": 45, "device_count": 0}, {"batch_size": 45, "device_count": 0}, ], }, ), # Phase, Five batches, just make sure it works. Should behave like all other > 1 cases ( { "name": "Five phases, first no start time, last start time, no batch size", "artifact_name": "deployments-phase-testing", "devices": ["dummyuuid" + str(i) for i in range(100)], "phases": [ { # Start time is optional in the first stage (default to now) "batch_size": 10 }, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 10, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 10, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=1)).isoformat("T") ) + "Z", "batch_size": 10, }, { "start_ts": str( (datetime.utcnow() + timedelta(days=2)).isoformat("T") ) + "Z", # Batch size is optional in the last stage (ie, it is the remaining devices) }, ], }, { "name": "Five phases, first no start time, last start time, no batch size", "artifact_name": "deployments-phase-testing", "device_count": 0, "max_devices": 100, "phases": [ {"batch_size": 10, "device_count": 0}, {"batch_size": 10, "device_count": 0}, {"batch_size": 10, "device_count": 0}, {"batch_size": 10, "device_count": 0}, {"batch_size": 60, "device_count": 0}, ], }, ), ] @pytest.mark.parametrize("test_case", test_cases) def test_phased_deployments_success( self, test_case, setup_deployments_enterprise_test ): deploymentclient = ApiClient(deployments.URL_MGMT) tenant1, tenant2 = setup_deployments_enterprise_test resp = deploymentclient.with_auth(tenant2.users[0].utoken).call( "GET", "/deployments" ) assert resp.status_code == 200 # Store the second tenants user deployments, to verify that # it remains unchanged after the tests have run backup_tenant_user_deployments = resp.json() request_body, expected_response = test_case resp = deploymentclient.with_auth(tenant1.users[0].utoken).call( "POST", "/deployments", body=request_body ) assert resp.status_code == 201 deployment_id = os.path.basename(resp.headers["Location"]) resp = deploymentclient.with_auth(tenant1.users[0].utoken).call( "GET", "/deployments" ) assert resp.status_code == 200 assert len(resp.json()) == 4 # Get the test deployment from the list reg_response_body_dict = None for deployment in resp.json(): if deployment["name"] == expected_response["name"]: reg_response_body_dict = deployment resp = deploymentclient.with_auth(tenant1.users[0].utoken).call( "GET", "/deployments/" + deployment_id ) assert resp.status_code == 200 id_response_body_dict = resp.json() assert reg_response_body_dict == id_response_body_dict TestDeploymentsEndpointEnterprise.compare_response_json( expected_response, id_response_body_dict ) # Verify that the second tenant's deployemnts remain untouched resp = deploymentclient.with_auth(tenant2.users[0].utoken).call( "GET", "/deployments" ) assert resp.status_code == 200 assert backup_tenant_user_deployments == resp.json() def compare_response_json(expected_response, response_body_json): """Compare the keys that are present in the expected json dict with the matching response keys. Ignore those response keys which are not present in the expected dictionary""" for key in expected_response.keys() & response_body_json.keys(): if key == "phases": TestDeploymentsEndpointEnterprise.compare_phases_json( expected_response["phases"], response_body_json["phases"] ) else: assert expected_response[key] == response_body_json[key] def compare_phases_json(expected, response): """phases is a list of phases json objects. Compare them""" assert len(expected) == len(response) # The phases are a list of phase objects. Compare them on matching keys for exp, rsp in zip(expected, response): for k in exp.keys() & rsp.keys(): assert exp[k] == rsp[k] def setup_devices_and_management_st(nr_devices=100, deploy_to_group=None): """ Sets up user creates authorized devices. """ user = create_user("[email protected]", "correcthorse") useradmm = ApiClient(useradm.URL_MGMT) devauthd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) invm = ApiClient(inventory.URL_MGMT) # log in user r = useradmm.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text # Upload a dummy artifact to the server upload_image("/tests/test-artifact.mender", utoken) # prepare accepted devices devs = make_accepted_devices(devauthd, devauthm, utoken, "", nr_devices) # wait for devices to be provisioned time.sleep(3) if deploy_to_group: for device in devs[:-1]: r = invm.with_auth(utoken).call( "PUT", inventory.URL_DEVICE_GROUP.format(id=device.id), body={"group": deploy_to_group}, ) assert r.status_code == 204 # Check that the number of devices were created r = invm.with_auth(utoken).call( "GET", inventory.URL_DEVICES, qs_params={"per_page": nr_devices} ) assert r.status_code == 200 api_devs = r.json() assert len(api_devs) == nr_devices return user, utoken, devs def setup_devices_and_management_mt(nr_devices=100, deploy_to_group=None): """ Sets up user and tenant and creates authorized devices. """ uuidv4 = str(uuid.uuid4()) tenant = create_org( "test.mender.io-" + uuidv4, "some.user+" + uuidv4 + "@example.com", "correcthorse", plan="enterprise", ) user = tenant.users[0] useradmm = ApiClient(useradm.URL_MGMT) devauthd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) invm = ApiClient(inventory.URL_MGMT) # log in user r = useradmm.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text # Upload a dummy artifact to the server upload_image("/tests/test-artifact.mender", utoken) # prepare accepted devices devs = make_accepted_devices( devauthd, devauthm, utoken, tenant.tenant_token, nr_devices ) # wait for devices to be provisioned time.sleep(3) if deploy_to_group: for device in devs[:-1]: r = invm.with_auth(utoken).call( "PUT", inventory.URL_DEVICE_GROUP.format(id=device.id), body={"group": deploy_to_group}, ) assert r.status_code == 204 # Check that the number of devices were created r = invm.with_auth(utoken).call( "GET", inventory.URL_DEVICES, qs_params={"per_page": nr_devices} ) assert r.status_code == 200 api_devs = r.json() assert len(api_devs) == nr_devices return user, tenant, utoken, devs def try_update( device, default_artifact_name="bugs-bunny", default_device_type="qemux86-64" ): """ Try to make an update with a device :param devices: list of devices :param expected_status_code: expected status code :param default_artifact_name: default artifact name of the artifact used in the request NOTE: You can override the device type and artifact name by creating a device_type/artifact_name member of the Device object. """ api_dev_deploy = ApiClient(deployments.URL_DEVICES) # Try to retrieve next update and assert expected status code resp = api_dev_deploy.with_auth(device.token).call( "GET", deployments.URL_NEXT, qs_params={ "artifact_name": getattr(device, "artifact_name", default_artifact_name), "device_type": getattr(device, "device_type", default_device_type), }, ) if resp.status_code == 200: # Update device status upon successful request api_dev_deploy.with_auth(device.token).call( "PUT", deployments.URL_STATUS.format(id=resp.json()["id"]), body={"status": "success"}, ) return resp.status_code class TestDeploymentsEnterprise(object): def test_regular_deployment(self, clean_mongo): user, tenant, utoken, devs = setup_devices_and_management_mt() api_mgmt_dep = ApiClient(deployments.URL_MGMT) # Make deployment request deployment_req = { "name": "phased-deployment", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], } api_mgmt_dep.with_auth(utoken).call( "POST", deployments.URL_DEPLOYMENTS, deployment_req ) for dev in devs: status_code = try_update(dev) assert status_code == 200 dev.artifact_name = deployment_req["artifact_name"] for dev in devs: # Deployment already finished status_code = try_update(dev) assert status_code == 204 deployment_req["name"] = "really-old-update" api_mgmt_dep.with_auth(utoken).call( "POST", deployments.URL_DEPLOYMENTS, deployment_req ) for dev in devs: # Already installed status_code = try_update(dev) assert status_code == 204 class TestPhasedRolloutDeploymentsEnterprise: def try_phased_updates( self, deployment, devices, user_token, expected_update_status=200 ): # Static helper function # Setup Deployment APIs api_mgmt_deploy = ApiClient(deployments.URL_MGMT) devices_updated = 0 num_phases = len(deployment["phases"]) batch_sizes = [ int((deployment["phases"][i]["batch_size"] / 100.0) * len(devices)) for i in range(num_phases - 1) ] # Final batch_size might not be specified batch_sizes.append(len(devices) - sum(batch_sizes)) # POST deployment resp = api_mgmt_deploy.with_auth(user_token).call( "POST", deployments.URL_DEPLOYMENTS, body=deployment ) assert resp.status_code == 201 # Store the location from the GET /deployments/{id} request deployment_id = os.path.basename(resp.headers["Location"]) for i in range(num_phases): if i == 0 and "start_ts" not in deployment["phases"][i]: # First phase don't need to specify `start_ts` pass elif "start_ts" in deployment["phases"][i]: # Sleep until next phase starts start_ts = datetime.strptime( deployment["phases"][i]["start_ts"], "%Y-%m-%dT%H:%M:%SZ" ) now = datetime.utcnow() # While phase in progress # NOTE: add a half a second buffer time, as a just-in-time # request will break the remainder of the test while now < ( start_ts - timedelta(milliseconds=500 * WAITING_MULTIPLIER) ): # Spam update requests from random non-updated devices dev = random.choice(devices) status_code = try_update(dev) assert status_code == 204 or status_code == 429 now = datetime.utcnow() # Sleep the last 500ms to let the next phase start time.sleep(0.5 * WAITING_MULTIPLIER) else: raise ValueError( "Invalid phased deployment request, " "missing `start_ts` for phase %d" % i ) # Test for all devices in the deployment if devices_updated > 0: # Allready updated for device in devices[:devices_updated]: status_code = try_update(device) assert status_code == 204 # Check phase count has not been incremented by the above requests resp = api_mgmt_deploy.with_auth(user_token).call( "GET", deployments.URL_DEPLOYMENTS_ID.format(id=deployment_id) ) phase = resp.json()["phases"][i] assert phase["device_count"] == 0 # Devices that should update for n, device in enumerate( devices[devices_updated : (devices_updated + batch_sizes[i])], 1 ): status_code = try_update(device) assert status_code == expected_update_status if expected_update_status == 200: # Make sure to override artifact_name property device.artifact_name = deployment["artifact_name"] # Check phase count is incremented correctly resp = api_mgmt_deploy.with_auth(user_token).call( "GET", os.path.join("/deployments", deployment_id) ) phase = resp.json()["phases"][i] assert phase["device_count"] == n if i < num_phases - 1: # Capacity exceeded for device in devices[(devices_updated + batch_sizes[i]) :]: status_code = try_update(device) assert status_code == 204 devices_updated += batch_sizes[i] # Check phase count equals batch size resp = api_mgmt_deploy.with_auth(user_token).call( "GET", os.path.join("/deployments", deployment_id) ) phases = resp.json()["phases"] for p in range(i + 1): assert phases[p]["device_count"] == batch_sizes[p] for p in range(i + 1, len(phases)): assert phases[p]["device_count"] == 0 # Finally confirm that deployment is finished assert resp.json()["status"] == "finished" def test_phased_regular_deployment(self, clean_mongo): """ Phased equivalent of a regular deployment. """ user, tenant, utoken, devs = setup_devices_and_management_mt() deployment_req = { "name": "phased-regular-deployment", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [{}], } self.try_phased_updates(deployment_req, devs, utoken) def test_delayed_deployment(self, clean_mongo): """ Uses a single phase with a delayed start-time. """ user, tenant, utoken, devs = setup_devices_and_management_mt() deployment_req = { "name": "phased-delayed-deployment", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [ { "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ") } ], } self.try_phased_updates(deployment_req, devs, utoken) def test_two_phases_full_spec(self, clean_mongo): """ Two phases, with batch_size and start_ts specified for both phases. """ user, tenant, utoken, devs = setup_devices_and_management_mt() deployment_req = { "name": "two-fully-spec-deployments", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [ { "batch_size": 10, "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), }, { "start_ts": ( datetime.utcnow() + timedelta(seconds=2 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), "batch_size": 90, }, ], } self.try_phased_updates(deployment_req, devs, utoken) def test_three_phased_deployments(self, clean_mongo): """ Three phases; with no start_ts in first and no batch_size in third. """ user, tenant, utoken, devs = setup_devices_and_management_mt(nr_devices=101) deployment_req = { "name": "three-phased-deployments", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [ {"batch_size": 13}, { "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), "batch_size": 17, }, { "batch_size": 29, "start_ts": ( datetime.utcnow() + timedelta(seconds=2 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), }, { "start_ts": ( datetime.utcnow() + timedelta(seconds=3 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ") }, ], } self.try_phased_updates(deployment_req, devs, utoken) def test_disallow_empty_phase(self, clean_mongo): """ Test that in the case a batch is empty due to rounding errors, the server returns 400, with an appropriate error message. """ user, tenant, utoken, devs = setup_devices_and_management_mt(nr_devices=101) deployment_req = { "name": "empty-batch-test", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs[:11]], "phases": [ {"batch_size": 10}, { "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), "batch_size": 20, }, { "batch_size": 5, "start_ts": ( datetime.utcnow() + timedelta(seconds=2 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), }, { "start_ts": ( datetime.utcnow() + timedelta(seconds=3 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ") }, ], } resp = ( ApiClient(deployments.URL_MGMT) .with_auth(utoken) .call("POST", deployments.URL_DEPLOYMENTS, body=deployment_req) ) assert resp.status_code == 400 assert "Attempt to create a batch with zero devices not allowed" in resp.text assert "Batch: (3) will be empty" in resp.text def test_no_artifact_for_devices(self, clean_mongo): """ Tests that phase counts and statistics are updated correctly when there are no applicable artifact for the devices. """ user, tenant, utoken, devs = setup_devices_and_management_mt(nr_devices=101) for dev in devs: dev.device_type = "pranked_exclamation-mark" deployment_req = { "name": "three-phased-deployments", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [ {"batch_size": 13}, { "batch_size": 29, "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), }, { "start_ts": ( datetime.utcnow() + timedelta(seconds=2 * 15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ") }, ], } self.try_phased_updates( deployment_req, devs, utoken, expected_update_status=204 ) def calculate_phase_sizes(deployment_request): batch_sizes = [] devices_in_phases = 0 device_count = len(deployment_request["devices"]) last_phase_idx = len(deployment_request["phases"]) - 1 for i, phase in enumerate(deployment_request["phases"]): if i != last_phase_idx: batch_sizes.append(int((phase["batch_size"] / 100.0) * device_count)) else: batch_sizes.append(device_count - devices_in_phases) devices_in_phases += batch_sizes[i] return batch_sizes class TestPhasedRolloutConcurrencyEnterprise: def try_concurrent_phased_updates( self, deployment, devices, user_token, expected_update_status=200 ): # Static helper function # Setup Deployment APIs api_mgmt_deploy = ApiClient(deployments.URL_MGMT) status_codes = [] num_phases = len(deployment["phases"]) batch_sizes = [ int((deployment["phases"][i]["batch_size"] / 100.0) * len(devices)) for i in range(num_phases - 1) ] # Final batch_size might not be specified batch_sizes.append(len(devices) - sum(batch_sizes)) # POST deployment resp = api_mgmt_deploy.with_auth(user_token).call( "POST", deployments.URL_DEPLOYMENTS, body=deployment ) assert resp.status_code == 201 # Store the location from the GET /deployments/{id} request deployment_id = os.path.basename(resp.headers["Location"]) for i in range(num_phases): if i == 0 and "start_ts" not in deployment["phases"][i]: # First phase don't need to specify `start_ts` pass elif "start_ts" in deployment["phases"][i]: # Sleep until next phase starts start_ts = datetime.strptime( deployment["phases"][i]["start_ts"], "%Y-%m-%dT%H:%M:%SZ" ) now = datetime.utcnow() # While phase in progress: # Spam update requests from random batches of devices # concurrently by creating a pool of minimum 4 processes # that send requests in parallel. with mp.Pool(max(4, mp.cpu_count())) as pool: while now <= ( start_ts - timedelta(milliseconds=500 * WAITING_MULTIPLIER) ): # NOTE: ^ add a half a second buffer time to # account for the delay in sending and # processing the request. # Give the devices array a stirr random.shuffle(devices) # Concurrently process a batch of requests device_batch = devices[: max(4, mp.cpu_count())] status_codes = pool.map(try_update, device_batch) # Create status code map for usefull debug # message if we receive a non-empty response status_code_map = {} for s in [200, 204, 400, 404, 429, 500]: status_code_map[s] = sum( (map(lambda sc: sc == s, status_codes)) ) # Check that all requests received an empty response assert (status_code_map[204] + status_code_map[429]) == len( status_codes ), ( "Expected empty response (204) during inactive " + "phase, but received the following status " + "code frequencies: %s" % status_code_map ) now = datetime.utcnow() # Sleep the last 500ms to let the next phase start time.sleep(0.5 * WAITING_MULTIPLIER) else: raise ValueError( "Invalid phased deployment request, " "missing `start_ts` for phase %d" % i ) # Make all devices attempt to update (in a concurrent manner) # and check that the number of successful responses equals # the number of devices in the batch. with mp.Pool(processes=max(4, mp.cpu_count())) as pool: status_codes = pool.map(try_update, devices) resp = api_mgmt_deploy.with_auth(user_token).call( "GET", deployments.URL_DEPLOYMENTS_ID.format(id=deployment_id) ) assert resp.status_code == 200 phases = resp.json()["phases"] assert sum(map(lambda s: s == 200, status_codes)) == batch_sizes[i] for j in range(len(devices)): if status_codes[j] == 200: devices[j].artifact_name = "deployments-phase-testing" # Check phase count equals batch size resp = api_mgmt_deploy.with_auth(user_token).call( "GET", deployments.URL_DEPLOYMENTS_ID.format(id=deployment_id) ) assert resp.status_code == 200 phases = resp.json()["phases"] for p in range(i + 1): assert phases[p]["device_count"] == batch_sizes[p] for p in range(i + 1, len(phases)): assert phases[p]["device_count"] == 0 # Finally confirm that deployment is finished assert resp.json()["status"] == "finished" def test_two_phases_concurrent_devices(self, clean_mongo): """ Two phases where devices perform requests in parallel to stress the backends capability of handling parallel requests. """ user, tenant, utoken, devs = setup_devices_and_management_mt() deployment_req = { "name": "two-fully-spec-deployments", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs], "phases": [ {"batch_size": 10}, { "start_ts": ( datetime.utcnow() + timedelta(seconds=15 * WAITING_MULTIPLIER) ).strftime("%Y-%m-%dT%H:%M:%SZ"), "batch_size": 90, }, ], } self.try_concurrent_phased_updates(deployment_req, devs, utoken) # test status update class StatusVerifier: def __init__(self, deploymentsm, deploymentsd): self.deploymentsm = deploymentsm self.deploymentsd = deploymentsd def status_update_and_verify( self, device_id, device_token, deployment_id, user_token, status_update, device_deployment_status, deployment_status, status_update_error_code=204, substate_update="", substate="", ): body = {"status": status_update} if substate_update != "": body = {"status": status_update, "substate": substate_update} # Update device status upon successful request resp = self.deploymentsd.with_auth(device_token).call( "PUT", deployments.URL_STATUS.format(id=deployment_id), body=body, ) assert resp.status_code == status_update_error_code self.status_verify( deployment_id=deployment_id, user_token=user_token, device_id=device_id, device_deployment_status=device_deployment_status, deployment_status=deployment_status, substate=substate, ) def status_verify( self, deployment_id, user_token, device_id="", device_deployment_status="", deployment_status="", substate="", ): if device_deployment_status != "": resp = self.deploymentsm.with_auth(user_token).call( "GET", deployments.URL_DEPLOYMENTS_DEVICES.format(id=deployment_id) ) resp.status_code == 200 devices = resp.json() for device in devices: if device["id"] == device_id: assert device["status"] == device_deployment_status if substate != "": assert device["substate"] == substate if deployment_status != "": resp = self.deploymentsm.with_auth(user_token).call( "GET", deployments.URL_DEPLOYMENTS.format(id=deployment_id) ) resp.status_code == 200 assert resp.json()[0]["status"] == deployment_status class TestDeploymentsStatusUpdateBase: def do_test_deployment_status_update( self, clean_mongo, user_token, devs, deploy_to_group=None ): """ deployment with four devices requires five devices (last one won't be part of the deployment """ deploymentsm = ApiClient(deployments.URL_MGMT) deploymentsd = ApiClient(deployments.URL_DEVICES) status_verifier = StatusVerifier(deploymentsm, deploymentsd) # Make deployment request deployment_req = { "name": "phased-deployment", "artifact_name": "deployments-phase-testing", "devices": [dev.id for dev in devs[:-1]], } if deploy_to_group: deployment_req = { "name": "phased-deployment", "artifact_name": "deployments-phase-testing", "devices": [], "group": deploy_to_group, "retries": 0, } resp = deploymentsm.with_auth(user_token).call( "POST", deployments.URL_DEPLOYMENTS, deployment_req ) if deploy_to_group: resp = deploymentsm.with_auth(user_token).call( "POST", deployments.URL_DEPLOYMENTS + "/group/" + deploy_to_group, deployment_req, ) assert resp.status_code == 201 # Store the location from the GET /deployments/{id} request deployment_id = os.path.basename(resp.headers["Location"]) # Verify that the deployment is in "pending" state status_verifier.status_verify( deployment_id=deployment_id, user_token=user_token, deployment_status="pending", ) default_artifact_name = "bugs-bunny" default_device_type = "qemux86-64" # Try to retrieve next update and assert expected status code resp = deploymentsd.with_auth(devs[0].token).call( "GET", deployments.URL_NEXT, qs_params={ "artifact_name": getattr( devs[0], "artifact_name", default_artifact_name ), "device_type": getattr(devs[0], "device_type", default_device_type), }, ) assert resp.status_code == 200 # Try to retrieve next update for the device that already has the artifact resp = deploymentsd.with_auth(devs[1].token).call( "GET", deployments.URL_NEXT, qs_params={ "artifact_name": "deployments-phase-testing", "device_type": getattr(devs[1], "device_type", default_device_type), }, ) assert resp.status_code == 204 status_verifier.status_verify( deployment_id=deployment_id, user_token=user_token, device_id=devs[1].id, device_deployment_status="already-installed", deployment_status="inprogress", ) # Try to retrieve next update for the device with incompatible device type resp = deploymentsd.with_auth(devs[2].token).call( "GET", deployments.URL_NEXT, qs_params={ "artifact_name": getattr( devs[2], "artifact_name", default_artifact_name ), "device_type": "foo", }, ) assert resp.status_code == 204 status_verifier.status_verify( deployment_id=deployment_id, user_token=user_token, device_id=devs[2].id, device_deployment_status="noartifact", deployment_status="inprogress", ) # device not part of the deployment status_verifier.status_update_and_verify( device_id=devs[4].id, device_token=devs[4].token, deployment_id=deployment_id, user_token=user_token, status_update="installing", device_deployment_status="does-not-matter", deployment_status="inprogress", status_update_error_code=500, ) # wrong status status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="foo", device_deployment_status="pending", deployment_status="inprogress", status_update_error_code=400, ) # device deployment: pending -> downloading status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="downloading", device_deployment_status="downloading", deployment_status="inprogress", ) # devs[0] deployment: downloading -> installing # substate: "" -> "foo" status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="installing", device_deployment_status="installing", deployment_status="inprogress", substate_update="foo", substate="foo", ) # devs[0] deployment: installing -> downloading """ note that until the device deployment is finished transition to any of valid statuses is correct """ status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="downloading", device_deployment_status="downloading", deployment_status="inprogress", substate="foo", ) # devs[0] deployment: downloading -> rebooting # substate: "foo" -> "bar" status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="rebooting", device_deployment_status="rebooting", deployment_status="inprogress", substate_update="bar", substate="bar", ) # devs[0] deployment: rebooting -> success status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="success", device_deployment_status="success", deployment_status="inprogress", substate="bar", ) # devs[0] deployment already finished status_verifier.status_update_and_verify( device_id=devs[0].id, device_token=devs[0].token, deployment_id=deployment_id, user_token=user_token, status_update="pending", device_deployment_status="success", deployment_status="inprogress", status_update_error_code=400, substate="bar", ) # Try to retrieve next update and assert expected status code resp = deploymentsd.with_auth(devs[3].token).call( "GET", deployments.URL_NEXT, qs_params={ "artifact_name": getattr( devs[3], "artifact_name", default_artifact_name ), "device_type": getattr(devs[3], "device_type", default_device_type), }, ) assert resp.status_code == 200 # device deployment: pending -> failure # deployment: inprogress -> finished status_verifier.status_update_and_verify( device_id=devs[3].id, device_token=devs[3].token, deployment_id=deployment_id, user_token=user_token, status_update="failure", device_deployment_status="failure", deployment_status="finished", ) class TestDeploymentsStatusUpdate(TestDeploymentsStatusUpdateBase): def test_deployment_status_update(self, clean_mongo): _user, user_token, devs = setup_devices_and_management_st(5) self.do_test_deployment_status_update(clean_mongo, user_token, devs) class TestDeploymentsStatusUpdateEnterprise(TestDeploymentsStatusUpdateBase): def test_deployment_status_update(self, clean_mongo): _user, _tenant, user_token, devs = setup_devices_and_management_mt(5) self.do_test_deployment_status_update(clean_mongo, user_token, devs) class TestDeploymentsToGroupStatusUpdate(TestDeploymentsStatusUpdateBase): def test_deployment_status_update(self, clean_mongo): _user, user_token, devs = setup_devices_and_management_st( 5, deploy_to_group="g0" ) self.do_test_deployment_status_update( clean_mongo, user_token, devs, deploy_to_group="g0" ) class TestDeploymentsToGroupStatusUpdateEnterprise(TestDeploymentsStatusUpdateBase): def test_deployment_status_update(self, clean_mongo): _user, _tenant, user_token, devs = setup_devices_and_management_mt( 5, deploy_to_group="g0" ) self.do_test_deployment_status_update( clean_mongo, user_token, devs, deploy_to_group="g0" ) def create_tenant(name, username, plan): tenant = create_org(name, username, "correcthorse", plan=plan) user = tenant.users[0] r = ApiClient(useradm.URL_MGMT).call( "POST", useradm.URL_LOGIN, auth=(user.name, user.pwd) ) assert r.status_code == 200 user.utoken = r.text return tenant @pytest.fixture(scope="function") def setup_tenant(clean_mongo): uuidv4 = str(uuid.uuid4()) tenant = create_tenant( "test.mender.io-" + uuidv4, "some.user+" + uuidv4 + "@example.com", "enterprise" ) # give workflows time to finish provisioning time.sleep(10) return tenant @pytest.fixture(scope="function") def clean_mongo_client(mongo): """Fixture setting up a clean (i.e. empty database). Yields common.MongoClient connected to the DB. Useful for tests with multiple testcases: - protects the whole test func as usual - but also allows calling MongoClient.cleanup() between cases """ mongo_cleanup(mongo) yield mongo mongo_cleanup(mongo) def predicate(attr, scope, t, val): return {"attribute": attr, "scope": scope, "type": t, "value": val} def create_filter(name, predicates, utoken): f = {"name": name, "terms": predicates} r = ( ApiClient(inventory_v2.URL_MGMT) .with_auth(utoken) .call("POST", inventory_v2.URL_FILTERS, f) ) assert r.status_code == 201 f["id"] = r.headers["Location"].split("/")[1] return f def create_dynamic_deployment( name, predicates, utoken, max_devices=None, phases=None, status_code=201 ): f = create_filter(name, predicates, utoken) api_dep_v2 = ApiClient(deployments_v2.URL_MGMT) depid = None with get_mender_artifact(name) as filename: upload_image(filename, utoken) deployment_req = { "name": name, "artifact_name": name, "filter_id": f["id"], } if max_devices is not None: deployment_req["max_devices"] = max_devices if phases is not None: deployment_req["phases"] = phases res = api_dep_v2.with_auth(utoken).call( "POST", deployments_v2.URL_DEPLOYMENTS, deployment_req ) assert res.status_code == status_code if status_code != 201: return None depid = res.headers["Location"].split("/")[5] newdep = get_deployment(depid, utoken) assert newdep["name"] == name assert newdep["filter"]["id"] == f["id"] assert newdep["filter"]["terms"] == predicates assert newdep["status"] == "pending" assert newdep["dynamic"] return newdep def get_deployment(depid, utoken): api_dep_v1 = ApiClient(deployments.URL_MGMT) res = api_dep_v1.with_auth(utoken).call( "GET", deployments.URL_DEPLOYMENTS_ID, path_params={"id": depid} ) assert res.status_code == 200 return res.json() def make_device_with_inventory(attributes, utoken, tenant_token): devauthm = ApiClient(deviceauth.URL_MGMT) devauthd = ApiClient(deviceauth.URL_DEVICES) invm = ApiClient(inventory.URL_MGMT) d = make_accepted_device(devauthd, devauthm, utoken, tenant_token) """ verify that the status of the device in inventory is "accepted" """ accepted = False timeout = 10 for i in range(timeout): r = invm.with_auth(utoken).call("GET", inventory.URL_DEVICE.format(id=d.id)) if r.status_code == 200: dj = r.json() for attr in dj["attributes"]: if attr["name"] == "status" and attr["value"] == "accepted": accepted = True break if accepted: break time.sleep(1) if not accepted: raise ValueError( "status for device %s has not been propagated within %d seconds" % (d.id, timeout) ) submit_inventory(attributes, d.token) d.attributes = attributes return d def submit_inventory(attrs, token): invd = ApiClient(inventory.URL_DEV) r = invd.with_auth(token).call("PATCH", inventory.URL_DEVICE_ATTRIBUTES, attrs) assert r.status_code == 200 def update_deployment_status(deployment_id, status, token): api_dev_deploy = ApiClient(deployments.URL_DEVICES) body = {"status": status} resp = api_dev_deploy.with_auth(token).call( "PUT", deployments.URL_STATUS.format(id=deployment_id), body=body, ) assert resp.status_code == 204 def assert_get_next(code, dtoken, artifact_name=None): api_dev_deploy = ApiClient(deployments.URL_DEVICES) resp = api_dev_deploy.with_auth(dtoken).call( "GET", deployments.URL_NEXT, qs_params={"artifact_name": "dontcare", "device_type": "arm1"}, ) assert resp.status_code == code if code == 200: assert resp.json()["artifact"]["artifact_name"] == artifact_name def set_status(depid, status, dtoken): api_dev_deploy = ApiClient(deployments.URL_DEVICES) res = api_dev_deploy.with_auth(dtoken).call( "PUT", deployments.URL_STATUS.format(id=depid), body={"status": status}, ) assert res.status_code == 204 def get_stats(depid, token): api_dev_deploy = ApiClient(deployments.URL_MGMT) res = api_dev_deploy.with_auth(token).call( "GET", deployments.URL_DEPLOYMENTS_STATISTICS.format(id=depid), ) assert res.status_code == 200 return res.json() def verify_stats(stats, expected): for k, v in stats.items(): if k in expected: assert stats[k] == expected[k] else: assert stats[k] == 0 class TestDynamicDeploymentsEnterprise: @pytest.mark.parametrize( "tc", [ # single predicate, $eq { "name": "single predicate, $eq", "predicates": [predicate("foo", "inventory", "$eq", "123")], "matches": [ [{"name": "foo", "value": "123"}], [{"name": "foo", "value": "123"}, {"name": "bar", "value": "1"}], [ {"name": "foo", "value": ["123", "qwerty"]}, {"name": "bar", "value": "1"}, ], ], "nonmatches": [ [{"name": "foo", "value": "1"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": 1}, {"name": "bar", "value": 123}], [{"name": "baz", "value": "baz"}], ], }, # single predicate, $ne { "name": "single predicate, $ne", "predicates": [predicate("foo", "inventory", "$ne", "123")], "matches": [ [{"name": "foo", "value": "1"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": 1}, {"name": "bar", "value": 123}], [{"name": "baz", "value": "baz"}], ], "nonmatches": [ [{"name": "foo", "value": "123"}], [{"name": "foo", "value": "123"}, {"name": "bar", "value": "1"}], [ {"name": "foo", "value": ["123", "qwerty"]}, {"name": "bar", "value": "1"}, ], ], }, # single predicate, $in { "name": "single predicate, $in", "predicates": [predicate("foo", "inventory", "$in", ["1", "2", "3"])], "matches": [ [{"name": "foo", "value": "1"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "2"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "3"}, {"name": "bar", "value": "123"}], ], "nonmatches": [ [{"name": "foo", "value": "4"}, {"name": "bar", "value": 123}], [{"name": "foo", "value": 1}, {"name": "bar", "value": 123}], [{"name": "bar", "value": "1"}], ], }, # single predicate, $gt { "name": "single predicate, $gt", "predicates": [predicate("foo", "inventory", "$gt", "abc")], "matches": [ [{"name": "foo", "value": "cde"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "def"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "fgh"}, {"name": "bar", "value": "123"}], ], "nonmatches": [ [{"name": "foo", "value": "aaa"}, {"name": "bar", "value": 123}], [{"name": "foo", "value": "aab"}, {"name": "bar", "value": 123}], [{"name": "bar", "value": "abb"}], ], }, # single predicate, $exists { "name": "single predicate, $exists", "predicates": [predicate("foo", "inventory", "$exists", True)], "matches": [ [{"name": "foo", "value": "cde"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "def"}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": "fgh"}, {"name": "bar", "value": "123"}], ], "nonmatches": [ [{"name": "bar", "value": 123}], [{"name": "bar", "value": 456}], ], }, # combined predicates on single attr { "name": "combined predicates on single attr", "predicates": [ predicate("foo", "inventory", "$gte", 100), predicate("foo", "inventory", "$lte", 200), ], "matches": [ [{"name": "foo", "value": 100}], [{"name": "foo", "value": 200}, {"name": "bar", "value": "1"}], [{"name": "foo", "value": 150}, {"name": "bar", "value": "1"}], ], "nonmatches": [ [{"name": "foo", "value": 99}, {"name": "bar", "value": "123"}], [{"name": "foo", "value": 201}, {"name": "bar", "value": 123}], ], }, # combined predicates on many attrs { "name": "combined predicates on many attrs", "predicates": [ predicate("foo", "inventory", "$eq", "foo"), predicate("bar", "inventory", "$in", ["bar1", "bar2", "bar3"]), ], "matches": [ [{"name": "foo", "value": "foo"}, {"name": "bar", "value": "bar1"}], [{"name": "foo", "value": "foo"}, {"name": "bar", "value": "bar2"}], [ {"name": "foo", "value": ["foo"]}, {"name": "bar", "value": "bar3"}, ], ], "nonmatches": [ [{"name": "foo", "value": "foo"}], [{"name": "foo", "value": "foo"}], [{"name": "foo", "value": "bar1"}], ], }, ], ) def test_assignment_based_on_filters(self, clean_mongo_client, tc): """ Test basic dynamic deployments characteristic: - deployments match on inventory attributes via various filter predicates """ uuidv4 = str(uuid.uuid4()) tenant = create_tenant( "test.mender.io-" + uuidv4, "some.user+" + uuidv4 + "@example.com", "enterprise", ) user = tenant.users[0] matching_devs = [ make_device_with_inventory(attrs, user.utoken, tenant.tenant_token) for attrs in tc["matches"] ] nonmatching_devs = [ make_device_with_inventory(attrs, user.utoken, tenant.tenant_token) for attrs in tc["nonmatches"] ] dep = create_dynamic_deployment("foo", tc["predicates"], user.utoken) assert dep["initial_device_count"] == len(matching_devs) for d in matching_devs: assert_get_next(200, d.token, "foo") for d in nonmatching_devs: assert_get_next(204, d.token) def test_unbounded_deployment_lifecycle(self, setup_tenant): """ Check how a dynamic deployment (no bounds) progresses through states based on device activity (status, statistics). """ user = setup_tenant.users[0] dep = create_dynamic_deployment( "foo", [predicate("foo", "inventory", "$eq", "foo")], user.utoken ) devs = [ make_device_with_inventory( [{"name": "foo", "value": "foo"}], user.utoken, setup_tenant.tenant_token, ) for i in range(10) ] for d in devs: assert_get_next(200, d.token, "foo") # just getting a 'next' deployment has no effect on overall status dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "pending" # when some devices start activity ('downloading', 'installing', 'rebooting'), # the deployment becomes 'inprogress' for d in devs: if devs.index(d) < 3: set_status(dep["id"], "downloading", d.token) elif devs.index(d) < 6: set_status(dep["id"], "installing", d.token) dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "inprogress" stats = get_stats(dep["id"], user.utoken) verify_stats(stats, {"downloading": 3, "installing": 3, "pending": 4}) # when all devices finish, the deployment goes back to 'pending' for d in devs: if devs.index(d) < 5: set_status(dep["id"], "success", d.token) else: set_status(dep["id"], "failure", d.token) dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "inprogress" stats = get_stats(dep["id"], user.utoken) verify_stats(stats, {"success": 5, "failure": 5}) def test_bounded_deployment_lifecycle(self, setup_tenant): """ Check how a dynamic deployment with max_devices progresses through states based on device activity (status, statistics). """ user = setup_tenant.users[0] dep = create_dynamic_deployment( "foo", [predicate("foo", "inventory", "$eq", "foo")], user.utoken, max_devices=10, ) devs = [ make_device_with_inventory( [{"name": "foo", "value": "foo"}], user.utoken, setup_tenant.tenant_token, ) for i in range(10) ] for d in devs: assert_get_next(200, d.token, "foo") # just getting a 'next' deployment has no effect on overall status dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "pending" # when devices start activity ('downloading', 'installing', 'rebooting'), # the deployment becomes 'inprogress' for d in devs: if devs.index(d) < 5: set_status(dep["id"], "downloading", d.token) else: set_status(dep["id"], "installing", d.token) dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "inprogress" stats = get_stats(dep["id"], user.utoken) verify_stats(stats, {"downloading": 5, "installing": 5}) # all devices finish - and the deployment actually becomes 'finished' for d in devs: set_status(dep["id"], "success", d.token) dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "finished" stats = get_stats(dep["id"], user.utoken) verify_stats(stats, {"success": 10}) # an extra dev won't get this deployment extra_dev = make_device_with_inventory( [{"name": "foo", "value": "foo"}], user.utoken, setup_tenant.tenant_token ) assert_get_next(204, extra_dev.token, "foo") dep = get_deployment(dep["id"], user.utoken) assert dep["status"] == "finished" stats = get_stats(dep["id"], user.utoken) verify_stats(stats, {"success": 10}) def test_deployment_ordering(self, setup_tenant): """ Check that devices only get dynamic deployments fresher than the latest one it finished. In other words, after updating its attributes the device won't accidentally fall into a deployment previous to what it tried already. """ user = setup_tenant.users[0] create_dynamic_deployment( "foo1", [predicate("foo", "inventory", "$eq", "foo")], user.utoken ) create_dynamic_deployment( "foo2", [predicate("foo", "inventory", "$eq", "foo")], user.utoken ) depbar = create_dynamic_deployment( "bar", [predicate("foo", "inventory", "$eq", "bar")], user.utoken ) # the device will ignore the 'foo' deployments, because of its inventory dev = make_device_with_inventory( [{"name": "foo", "value": "bar"}], user.utoken, setup_tenant.tenant_token ) assert_get_next(200, dev.token, "bar") # when running against staging, wait 5 seconds to avoid hitting # the rate limits for the devices (one inventory update / 5 seconds) isK8S() and time.sleep(5.0) # after finishing 'bar' - no other deployments qualify set_status(depbar["id"], "success", dev.token) assert_get_next(204, dev.token) # when running against staging, wait 5 seconds to avoid hitting # the rate limits for the devices (one inventory update / 5 seconds) isK8S() and time.sleep(5.0) # after updating inventory, the device would qualify for both 'foo' deployments, but # the ordering mechanism will prevent it submit_inventory([{"name": "foo", "value": "foo"}], dev.token) assert_get_next(204, dev.token) # when running against staging, wait 5 seconds to avoid hitting # the rate limits for the devices (one inventory update / 5 seconds) isK8S() and time.sleep(5.0) # it will however get a brand new 'foo3' deployment, because it's fresher than the finished 'bar' create_dynamic_deployment( "foo3", [predicate("foo", "inventory", "$eq", "foo")], user.utoken ) create_dynamic_deployment( "foo4", [predicate("foo", "inventory", "$eq", "foo")], user.utoken ) assert_get_next(200, dev.token, "foo3") @pytest.mark.parametrize( "tc", [ # without max_devices { "name": "without max_devices", "phases": [{"batch_size": 20}, {"start_ts": None}], "max_devices": None, }, # with max_devices { "name": "with max_devices", "phases": [{"batch_size": 20}, {"start_ts": None}], "max_devices": 10, }, ], ) def test_phased_rollout(self, clean_mongo_client, tc): """ Check phased rollouts with and without max_devices. """ uuidv4 = str(uuid.uuid4()) tenant = create_tenant( "test.mender.io-" + uuidv4, "some.user+" + uuidv4 + "@example.com", "enterprise", ) user = tenant.users[0] # adjust phase start ts for previous test case duration # format for api consumption for phase in tc["phases"]: if "start_ts" in phase: phase["start_ts"] = datetime.utcnow() + timedelta( seconds=15 * WAITING_MULTIPLIER ) phase["start_ts"] = phase["start_ts"].strftime("%Y-%m-%dT%H:%M:%SZ") # a phased dynamic deployment must have an initial matching devices count # fails without devices create_dynamic_deployment( "foo", [predicate("foo", "inventory", "$eq", "foo")], user.utoken, phases=tc["phases"], max_devices=tc["max_devices"], status_code=400, ) # a deployment with initial devs succeeds devs = [ make_device_with_inventory( [{"name": "bar", "value": "bar"}], user.utoken, tenant.tenant_token, ) for i in range(10) ] # adjust phase start ts for previous test case duration # format for api consumption for phase in tc["phases"]: if "start_ts" in phase: phase["start_ts"] = datetime.utcnow() + timedelta( seconds=15 * WAITING_MULTIPLIER ) phase["start_ts"] = phase["start_ts"].strftime("%Y-%m-%dT%H:%M:%SZ") dep = create_dynamic_deployment( "bar", [predicate("bar", "inventory", "$eq", "bar")], user.utoken, phases=tc["phases"], max_devices=tc["max_devices"], ) assert dep["initial_device_count"] == 10 assert len(dep["phases"]) == len(tc["phases"]) # first phase is immediately on for d in devs[:2]: assert_get_next(200, d.token, "bar") set_status(dep["id"], "success", d.token) for d in devs[2:]: assert_get_next(204, d.token) # rough wait for phase 2 time.sleep(15 * WAITING_MULTIPLIER + 1) for d in devs[2:]: assert_get_next(200, d.token, "bar") set_status(dep["id"], "success", d.token) dep = get_deployment(dep["id"], user.utoken) if tc["max_devices"] is None: # no max_devices = deployment remains in progress assert dep["status"] == "inprogress" extra_devs = [ make_device_with_inventory( [{"name": "bar", "value": "bar"}], user.utoken, tenant.tenant_token, ) for i in range(10) ] for extra in extra_devs: assert_get_next(200, extra.token, "bar") else: # max_devices reached, so deployment is finished assert dep["status"] == "finished"
the-stack_106_23277
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. import os import sys from distutils import dist from distutils.ccompiler import get_default_compiler from distutils.command.config import config from _cffi_src.utils import ( build_ffi_for_binding, compiler_type, extra_link_args, ) def _get_openssl_libraries(platform): if os.environ.get("CRYPTOGRAPHY_SUPPRESS_LINK_FLAGS", None): return [] # OpenSSL goes by a different library name on different operating systems. if platform == "win32" and compiler_type() == "msvc": return [ "libssl", "libcrypto", "advapi32", "crypt32", "gdi32", "user32", "ws2_32", ] else: # darwin, linux, mingw all use this path # In some circumstances, the order in which these libs are # specified on the linker command-line is significant; # libssl must come before libcrypto # (https://marc.info/?l=openssl-users&m=135361825921871) # -lpthread required due to usage of pthread an potential # existance of a static part containing e.g. pthread_atfork # (https://github.com/pyca/cryptography/issues/5084) if sys.platform == "zos": return ["ssl", "crypto"] else: return ["ssl", "crypto", "pthread"] def _extra_compile_args(platform): """ We set -Wconversion args here so that we only do Wconversion checks on the code we're compiling and not on cffi itself (as passing -Wconversion in CFLAGS would do). We set no error on sign conversion because some function signatures in LibreSSL differ from OpenSSL have changed on long vs. unsigned long in the past. Since that isn't a precision issue we don't care. """ # make sure the compiler used supports the flags to be added is_gcc = False if get_default_compiler() == "unix": d = dist.Distribution() cmd = config(d) cmd._check_compiler() is_gcc = ( "gcc" in cmd.compiler.compiler[0] or "clang" in cmd.compiler.compiler[0] ) if is_gcc or not ( platform in ["win32", "hp-ux11", "sunos5"] or platform.startswith("aix") ): return ["-Wconversion", "-Wno-error=sign-conversion"] else: return [] ffi = build_ffi_for_binding( module_name="_openssl", module_prefix="_cffi_src.openssl.", modules=[ # This goes first so we can define some cryptography-wide symbols. "cryptography", # Provider comes early as well so we define OSSL_LIB_CTX "provider", "aes", "asn1", "bignum", "bio", "cmac", "conf", "crypto", "dh", "dsa", "ec", "ecdh", "ecdsa", "engine", "err", "evp", "fips", "hmac", "nid", "objects", "ocsp", "opensslv", "osrandom_engine", "pem", "pkcs12", "rand", "rsa", "ssl", "x509", "x509name", "x509v3", "x509_vfy", "pkcs7", "callbacks", ], libraries=_get_openssl_libraries(sys.platform), extra_compile_args=_extra_compile_args(sys.platform), extra_link_args=extra_link_args(compiler_type()), )
the-stack_106_23278
# class to handle scorecard from turtle import Turtle class Scoreboard(Turtle): def __init__(self): super().__init__() self.score = 0 self.high_score = 0 self.get_high_score() self.color("white") self.penup() self.update_score() self.hideturtle() # get and store highest score def get_high_score(self): with open("high_score.txt", mode="r") as file_score: self.high_score = int(file_score.read()) def set_high_score(self): with open("high_score.txt", mode="w") as file_score: file_score.write(f"{self.score}") # increment score def incr_score(self): self.score += 1 self.update_score() def update_score(self): self.clear() self.goto(0, 270) self.write(f"Score: {self.score} High Score: {self.high_score}", align="center", font=("Arial", 18, "normal")) # reset score when game over def reset(self): if self.score > self.high_score: self.set_high_score() self.high_score = self.score self.score = 0 self.update_score()
the-stack_106_23279
from .base_options import BaseOptionsTest class TestOptions(BaseOptionsTest): def initialize(self, parser): parser = BaseOptionsTest.initialize(self, parser) parser.add_argument('--ntest', type=int, default=float("inf"), help='# of test examples.') parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') # Dropout and Batchnorm has different behavioir during training and test. parser.add_argument('--eval', action='store_true', help='use eval mode during test time.') parser.add_argument('--num_test', type=int, default=1, help='how many test images to run') parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.set_defaults(model='cycle_gan') # To avoid cropping, the loadSize should be the same as fineSize parser.set_defaults(loadSize=parser.get_default('fineSize')) self.isTrain = False return parser
the-stack_106_23280
"""Project views for authenticated users.""" import logging from allauth.socialaccount.models import SocialAccount from celery import chain from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.http import ( Http404, HttpResponseBadRequest, HttpResponseNotAllowed, HttpResponseRedirect, ) from django.middleware.csrf import get_token from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from django.views.generic import ListView, TemplateView, View from formtools.wizard.views import SessionWizardView from vanilla import CreateView, DeleteView, DetailView, GenericView, UpdateView from readthedocs.builds.forms import VersionForm from readthedocs.builds.models import Version from readthedocs.core.mixins import ListViewWithForm, LoginRequiredMixin from readthedocs.core.utils import broadcast, prepare_build, trigger_build from readthedocs.integrations.models import HttpExchange, Integration from readthedocs.oauth.services import registry from readthedocs.oauth.tasks import attach_webhook from readthedocs.oauth.utils import update_webhook from readthedocs.projects import tasks from readthedocs.projects.forms import ( DomainForm, EmailHookForm, EnvironmentVariableForm, IntegrationForm, ProjectAdvancedForm, ProjectAdvertisingForm, ProjectBasicsForm, ProjectExtraForm, ProjectRelationshipForm, RedirectForm, TranslationForm, UpdateProjectForm, UserForm, WebHookForm, build_versions_form, ) from readthedocs.projects.models import ( Domain, EmailHook, EnvironmentVariable, Project, ProjectRelationship, WebHook, ) from readthedocs.projects.notifications import EmailConfirmNotification from readthedocs.projects.signals import project_import from readthedocs.projects.views.base import ProjectAdminMixin, ProjectSpamMixin from ..tasks import retry_domain_verification log = logging.getLogger(__name__) class PrivateViewMixin(LoginRequiredMixin): pass class ProjectDashboard(PrivateViewMixin, ListView): """Project dashboard.""" model = Project template_name = 'projects/project_dashboard.html' def validate_primary_email(self, user): """ Sends a persistent error notification. Checks if the user has a primary email or if the primary email is verified or not. Sends a persistent error notification if either of the condition is False. """ email_qs = user.emailaddress_set.filter(primary=True) email = email_qs.first() if not email or not email.verified: notification = EmailConfirmNotification(user=user, success=False) notification.send() def get_queryset(self): return Project.objects.dashboard(self.request.user) def get(self, request, *args, **kwargs): self.validate_primary_email(request.user) return super(ProjectDashboard, self).get(self, request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) return context @login_required def project_manage(__, project_slug): """ Project management view. Where you will have links to edit the projects' configuration, edit the files associated with that project, etc. Now redirects to the normal /projects/<slug> view. """ return HttpResponseRedirect(reverse('projects_detail', args=[project_slug])) class ProjectUpdate(ProjectSpamMixin, PrivateViewMixin, UpdateView): form_class = UpdateProjectForm model = Project success_message = _('Project settings updated') template_name = 'projects/project_edit.html' lookup_url_kwarg = 'project_slug' lookup_field = 'slug' def get_queryset(self): return self.model.objects.for_admin_user(self.request.user) def get_success_url(self): return reverse('projects_detail', args=[self.object.slug]) class ProjectAdvancedUpdate(ProjectSpamMixin, PrivateViewMixin, UpdateView): form_class = ProjectAdvancedForm model = Project success_message = _('Project settings updated') template_name = 'projects/project_advanced.html' lookup_url_kwarg = 'project_slug' lookup_field = 'slug' def get_queryset(self): return self.model.objects.for_admin_user(self.request.user) def get_success_url(self): return reverse('projects_detail', args=[self.object.slug]) @login_required def project_versions(request, project_slug): """ Project versions view. Shows the available versions and lets the user choose which ones he would like to have built. """ project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) if not project.is_imported: raise Http404 form_class = build_versions_form(project) form = form_class(data=request.POST or None) if request.method == 'POST' and form.is_valid(): form.save() messages.success(request, _('Project versions updated')) project_dashboard = reverse('projects_detail', args=[project.slug]) return HttpResponseRedirect(project_dashboard) return render( request, 'projects/project_versions.html', {'form': form, 'project': project}, ) @login_required def project_version_detail(request, project_slug, version_slug): """Project version detail page.""" project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) version = get_object_or_404( Version.objects.public( user=request.user, project=project, only_active=False, ), slug=version_slug, ) form = VersionForm(request.POST or None, instance=version) if request.method == 'POST' and form.is_valid(): version = form.save() if form.has_changed(): if 'active' in form.changed_data and version.active is False: log.info('Removing files for version %s', version.slug) broadcast( type='app', task=tasks.remove_dirs, args=[version.get_artifact_paths()], ) version.built = False version.save() url = reverse('project_version_list', args=[project.slug]) return HttpResponseRedirect(url) return render( request, 'projects/project_version_detail.html', {'form': form, 'project': project, 'version': version}, ) @login_required def project_delete(request, project_slug): """ Project delete confirmation view. Make a project as deleted on POST, otherwise show a form asking for confirmation of delete. """ project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) if request.method == 'POST': broadcast( type='app', task=tasks.remove_dirs, args=[(project.doc_path,)], ) project.delete() messages.success(request, _('Project deleted')) project_dashboard = reverse('projects_dashboard') return HttpResponseRedirect(project_dashboard) return render(request, 'projects/project_delete.html', {'project': project}) class ImportWizardView(ProjectSpamMixin, PrivateViewMixin, SessionWizardView): """Project import wizard.""" form_list = [ ('basics', ProjectBasicsForm), ('extra', ProjectExtraForm), ] condition_dict = {'extra': lambda self: self.is_advanced()} def get_form_kwargs(self, step=None): """Get args to pass into form instantiation.""" kwargs = {} kwargs['user'] = self.request.user if step == 'basics': kwargs['show_advanced'] = True return kwargs def get_template_names(self): """Return template names based on step name.""" return 'projects/import_{}.html'.format(self.steps.current) def done(self, form_list, **kwargs): """ Save form data as object instance. Don't save form data directly, instead bypass documentation building and other side effects for now, by signalling a save without commit. Then, finish by added the members to the project and saving. """ form_data = self.get_all_cleaned_data() extra_fields = ProjectExtraForm.Meta.fields # expect the first form; manually wrap in a list in case it's a # View Object, as it is in Python 3. basics_form = list(form_list)[0] # Save the basics form to create the project instance, then alter # attributes directly from other forms project = basics_form.save() tags = form_data.pop('tags', []) for tag in tags: project.tags.add(tag) for field, value in list(form_data.items()): if field in extra_fields: setattr(project, field, value) project.save() # TODO: this signal could be removed, or used for sync task project_import.send(sender=project, request=self.request) self.trigger_initial_build(project) return HttpResponseRedirect( reverse('projects_detail', args=[project.slug]), ) def trigger_initial_build(self, project): """Trigger initial build.""" update_docs, build = prepare_build(project) if (update_docs, build) == (None, None): return None task_promise = chain( attach_webhook.si(project.pk, self.request.user.pk), update_docs, ) async_result = task_promise.apply_async() return async_result def is_advanced(self): """Determine if the user selected the `show advanced` field.""" data = self.get_cleaned_data_for_step('basics') or {} return data.get('advanced', True) class ImportDemoView(PrivateViewMixin, View): """View to pass request on to import form to import demo project.""" form_class = ProjectBasicsForm request = None args = None kwargs = None def get(self, request, *args, **kwargs): """Process link request as a form post to the project import form.""" self.request = request self.args = args self.kwargs = kwargs data = self.get_form_data() project = Project.objects.for_admin_user( request.user, ).filter(repo=data['repo']).first() if project is not None: messages.success( request, _('The demo project is already imported!'), ) else: kwargs = self.get_form_kwargs() form = self.form_class(data=data, **kwargs) if form.is_valid(): project = form.save() project.save() self.trigger_initial_build(project) messages.success( request, _('Your demo project is currently being imported'), ) else: messages.error( request, _('There was a problem adding the demo project'), ) return HttpResponseRedirect(reverse('projects_dashboard')) return HttpResponseRedirect( reverse('projects_detail', args=[project.slug]), ) def get_form_data(self): """Get form data to post to import form.""" return { 'name': '{}-demo'.format(self.request.user.username), 'repo_type': 'git', 'repo': 'https://github.com/readthedocs/template.git', } def get_form_kwargs(self): """Form kwargs passed in during instantiation.""" return {'user': self.request.user} def trigger_initial_build(self, project): """ Trigger initial build. Allow to override the behavior from outside. """ return trigger_build(project) class ImportView(PrivateViewMixin, TemplateView): """ On GET, show the source an import view, on POST, mock out a wizard. If we are accepting POST data, use the fields to seed the initial data in :py:class:`ImportWizardView`. The import templates will redirect the form to `/dashboard/import` """ template_name = 'projects/project_import.html' wizard_class = ImportWizardView def get(self, request, *args, **kwargs): """ Display list of repositories to import. Adds a warning to the listing if any of the accounts connected for the user are not supported accounts. """ deprecated_accounts = ( SocialAccount.objects .filter(user=self.request.user) .exclude( provider__in=[ service.adapter.provider_id for service in registry ], ) ) # yapf: disable for account in deprecated_accounts: provider_account = account.get_provider_account() messages.error( request, mark_safe(( _( 'There is a problem with your {service} account, ' 'try reconnecting your account on your ' '<a href="{url}">connected services page</a>.', ).format( service=provider_account.get_brand()['name'], url=reverse('socialaccount_connections'), ) )), # yapf: disable ) return super().get(request, *args, **kwargs) def post(self, request, *args, **kwargs): initial_data = {} initial_data['basics'] = {} for key in ['name', 'repo', 'repo_type', 'remote_repository']: initial_data['basics'][key] = request.POST.get(key) initial_data['extra'] = {} for key in ['description', 'project_url']: initial_data['extra'][key] = request.POST.get(key) request.method = 'GET' return self.wizard_class.as_view(initial_dict=initial_data)(request) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['view_csrf_token'] = get_token(self.request) context['has_connected_accounts'] = SocialAccount.objects.filter( user=self.request.user, ).exists() return context class ProjectRelationshipMixin(ProjectAdminMixin, PrivateViewMixin): model = ProjectRelationship form_class = ProjectRelationshipForm lookup_field = 'child__slug' lookup_url_kwarg = 'subproject_slug' def get_queryset(self): self.project = self.get_project() return self.model.objects.filter(parent=self.project) def get_form(self, data=None, files=None, **kwargs): kwargs['user'] = self.request.user return super().get_form(data, files, **kwargs) def form_valid(self, form): broadcast( type='app', task=tasks.symlink_subproject, args=[self.get_project().pk], ) return super().form_valid(form) def get_success_url(self): return reverse('projects_subprojects', args=[self.get_project().slug]) class ProjectRelationshipList(ProjectRelationshipMixin, ListView): def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx['superproject'] = self.project.superprojects.first() return ctx class ProjectRelationshipCreate(ProjectRelationshipMixin, CreateView): pass class ProjectRelationshipUpdate(ProjectRelationshipMixin, UpdateView): pass class ProjectRelationshipDelete(ProjectRelationshipMixin, DeleteView): def get(self, request, *args, **kwargs): return self.http_method_not_allowed(request, *args, **kwargs) @login_required def project_users(request, project_slug): """Project users view and form view.""" project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) form = UserForm(data=request.POST or None, project=project) if request.method == 'POST' and form.is_valid(): form.save() project_dashboard = reverse('projects_users', args=[project.slug]) return HttpResponseRedirect(project_dashboard) users = project.users.all() return render( request, 'projects/project_users.html', {'form': form, 'project': project, 'users': users}, ) @login_required def project_users_delete(request, project_slug): if request.method != 'POST': return HttpResponseNotAllowed('Only POST is allowed') project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) user = get_object_or_404( User.objects.all(), username=request.POST.get('username'), ) if user == request.user: raise Http404 project.users.remove(user) project_dashboard = reverse('projects_users', args=[project.slug]) return HttpResponseRedirect(project_dashboard) @login_required def project_notifications(request, project_slug): """Project notification view and form view.""" project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) email_form = EmailHookForm(data=None, project=project) webhook_form = WebHookForm(data=None, project=project) if request.method == 'POST': if 'email' in request.POST.keys(): email_form = EmailHookForm(data=request.POST, project=project) if email_form.is_valid(): email_form.save() elif 'url' in request.POST.keys(): webhook_form = WebHookForm(data=request.POST, project=project) if webhook_form.is_valid(): webhook_form.save() emails = project.emailhook_notifications.all() urls = project.webhook_notifications.all() return render( request, 'projects/project_notifications.html', { 'email_form': email_form, 'webhook_form': webhook_form, 'project': project, 'emails': emails, 'urls': urls, }, ) @login_required def project_notifications_delete(request, project_slug): """Project notifications delete confirmation view.""" if request.method != 'POST': return HttpResponseNotAllowed('Only POST is allowed') project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) try: project.emailhook_notifications.get( email=request.POST.get('email'), ).delete() except EmailHook.DoesNotExist: try: project.webhook_notifications.get( url=request.POST.get('email'), ).delete() except WebHook.DoesNotExist: raise Http404 project_dashboard = reverse('projects_notifications', args=[project.slug]) return HttpResponseRedirect(project_dashboard) @login_required def project_translations(request, project_slug): """Project translations view and form view.""" project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) form = TranslationForm( data=request.POST or None, parent=project, user=request.user, ) if request.method == 'POST' and form.is_valid(): form.save() project_dashboard = reverse( 'projects_translations', args=[project.slug], ) return HttpResponseRedirect(project_dashboard) lang_projects = project.translations.all() return render( request, 'projects/project_translations.html', { 'form': form, 'project': project, 'lang_projects': lang_projects, }, ) @login_required def project_translations_delete(request, project_slug, child_slug): project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) subproj = get_object_or_404( project.translations, slug=child_slug, ) project.translations.remove(subproj) project_dashboard = reverse('projects_translations', args=[project.slug]) return HttpResponseRedirect(project_dashboard) @login_required def project_redirects(request, project_slug): """Project redirects view and form view.""" project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) form = RedirectForm(data=request.POST or None, project=project) if request.method == 'POST' and form.is_valid(): form.save() project_dashboard = reverse('projects_redirects', args=[project.slug]) return HttpResponseRedirect(project_dashboard) redirects = project.redirects.all() return render( request, 'projects/project_redirects.html', {'form': form, 'project': project, 'redirects': redirects}, ) @login_required def project_redirects_delete(request, project_slug): """Project redirect delete view.""" if request.method != 'POST': return HttpResponseNotAllowed('Only POST is allowed') project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) redirect = get_object_or_404( project.redirects, pk=request.POST.get('id_pk'), ) if redirect.project == project: redirect.delete() else: raise Http404 return HttpResponseRedirect( reverse('projects_redirects', args=[project.slug]), ) @login_required def project_version_delete_html(request, project_slug, version_slug): """ Project version 'delete' HTML. This marks a version as not built """ project = get_object_or_404( Project.objects.for_admin_user(request.user), slug=project_slug, ) version = get_object_or_404( Version.objects.public( user=request.user, project=project, only_active=False, ), slug=version_slug, ) if not version.active: version.built = False version.save() broadcast( type='app', task=tasks.remove_dirs, args=[version.get_artifact_paths()], ) else: return HttpResponseBadRequest( "Can't delete HTML for an active version.", ) return HttpResponseRedirect( reverse('project_version_list', kwargs={'project_slug': project_slug}), ) class DomainMixin(ProjectAdminMixin, PrivateViewMixin): model = Domain form_class = DomainForm lookup_url_kwarg = 'domain_pk' def get_success_url(self): return reverse('projects_domains', args=[self.get_project().slug]) class DomainList(DomainMixin, ListViewWithForm): def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) # Retry validation on all domains if applicable for domain in ctx['domain_list']: retry_domain_verification.delay(domain_pk=domain.pk) return ctx class DomainCreate(DomainMixin, CreateView): pass class DomainUpdate(DomainMixin, UpdateView): pass class DomainDelete(DomainMixin, DeleteView): pass class IntegrationMixin(ProjectAdminMixin, PrivateViewMixin): """Project external service mixin for listing webhook objects.""" model = Integration integration_url_field = 'integration_pk' form_class = IntegrationForm def get_queryset(self): return self.get_integration_queryset() def get_object(self): return self.get_integration() def get_integration_queryset(self): self.project = self.get_project() return self.model.objects.filter(project=self.project) def get_integration(self): """Return project integration determined by url kwarg.""" if self.integration_url_field not in self.kwargs: return None return get_object_or_404( Integration, pk=self.kwargs[self.integration_url_field], project=self.get_project(), ) def get_success_url(self): return reverse('projects_integrations', args=[self.get_project().slug]) def get_template_names(self): if self.template_name: return self.template_name return 'projects/integration{}.html'.format(self.template_name_suffix) class IntegrationList(IntegrationMixin, ListView): pass class IntegrationCreate(IntegrationMixin, CreateView): def get_success_url(self): return reverse( 'projects_integrations_detail', kwargs={ 'project_slug': self.get_project().slug, 'integration_pk': self.object.id, }, ) class IntegrationDetail(IntegrationMixin, DetailView): # Some of the templates can be combined, we'll avoid duplicating templates SUFFIX_MAP = { Integration.GITHUB_WEBHOOK: 'webhook', Integration.GITLAB_WEBHOOK: 'webhook', Integration.BITBUCKET_WEBHOOK: 'webhook', Integration.API_WEBHOOK: 'generic_webhook', } def get_template_names(self): if self.template_name: return self.template_name integration_type = self.get_integration().integration_type suffix = self.SUFFIX_MAP.get(integration_type, integration_type) return ( 'projects/integration_{}{}.html' .format(suffix, self.template_name_suffix) ) class IntegrationDelete(IntegrationMixin, DeleteView): def get(self, request, *args, **kwargs): return self.http_method_not_allowed(request, *args, **kwargs) class IntegrationExchangeDetail(IntegrationMixin, DetailView): model = HttpExchange lookup_url_kwarg = 'exchange_pk' template_name = 'projects/integration_exchange_detail.html' def get_queryset(self): return self.model.objects.filter(integrations=self.get_integration()) def get_object(self): return DetailView.get_object(self) class IntegrationWebhookSync(IntegrationMixin, GenericView): """ Resync a project webhook. The signal will add a success/failure message on the request. """ def post(self, request, *args, **kwargs): # pylint: disable=unused-argument if 'integration_pk' in kwargs: integration = self.get_integration() update_webhook(self.get_project(), integration, request=request) else: # This is a brute force form of the webhook sync, if a project has a # webhook or a remote repository object, the user should be using # the per-integration sync instead. attach_webhook( project_pk=self.get_project().pk, user_pk=request.user.pk, ) return HttpResponseRedirect(self.get_success_url()) def get_success_url(self): return reverse('projects_integrations', args=[self.get_project().slug]) class ProjectAdvertisingUpdate(PrivateViewMixin, UpdateView): model = Project form_class = ProjectAdvertisingForm success_message = _('Project has been opted out from advertisement support') template_name = 'projects/project_advertising.html' lookup_url_kwarg = 'project_slug' lookup_field = 'slug' def get_queryset(self): return self.model.objects.for_admin_user(self.request.user) def get_success_url(self): return reverse('projects_advertising', args=[self.object.slug]) class EnvironmentVariableMixin(ProjectAdminMixin, PrivateViewMixin): """Environment Variables to be added when building the Project.""" model = EnvironmentVariable form_class = EnvironmentVariableForm lookup_url_kwarg = 'environmentvariable_pk' def get_success_url(self): return reverse( 'projects_environmentvariables', args=[self.get_project().slug], ) class EnvironmentVariableList(EnvironmentVariableMixin, ListView): pass class EnvironmentVariableCreate(EnvironmentVariableMixin, CreateView): pass class EnvironmentVariableDetail(EnvironmentVariableMixin, DetailView): pass class EnvironmentVariableDelete(EnvironmentVariableMixin, DeleteView): # This removes the delete confirmation def get(self, request, *args, **kwargs): return self.http_method_not_allowed(request, *args, **kwargs)
the-stack_106_23285
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. """ Contains PointNet++ SSG/MSG semantic segmentation models """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from paddle.fluid.initializer import Constant from .pointnet2_modules import * __all__ = ["PointNet2SemSegSSG", "PointNet2SemSegMSG"] class PointNet2SemSeg(object): def __init__(self, num_classes, num_points, use_xyz=True): self.num_classes = num_classes self.num_points = num_points self.use_xyz = use_xyz self.feed_vars = [] self.out_feature = None self.pyreader = None self.model_config() def model_config(self): self.SA_confs = [] self.FP_confs = [] def build_input(self): self.xyz = fluid.layers.data(name='xyz', shape=[self.num_points, 3], dtype='float32', lod_level=0) self.feature = fluid.layers.data(name='feature', shape=[self.num_points, 6], dtype='float32', lod_level=0) self.label = fluid.layers.data(name='label', shape=[self.num_points, 1], dtype='int64', lod_level=0) self.pyreader = fluid.io.PyReader( feed_list=[self.xyz, self.feature, self.label], capacity=64, use_double_buffer=True, iterable=False) self.feed_vars = [self.xyz, self.feature, self.label] def build_model(self, bn_momentum=0.99): self.build_input() xyzs, features = [self.xyz], [self.feature] xyzi, featurei = xyzs[-1], fluid.layers.transpose(self.feature, perm=[0, 2, 1]) for i, SA_conf in enumerate(self.SA_confs): xyzi, featurei = pointnet_sa_module( xyz=xyzi, feature=featurei, bn_momentum=bn_momentum, use_xyz=self.use_xyz, name="sa_{}".format(i), **SA_conf) xyzs.append(xyzi) features.append(fluid.layers.transpose(featurei, perm=[0, 2, 1])) for i in range(-1, -(len(self.FP_confs) + 1), -1): features[i - 1] = pointnet_fp_module( unknown=xyzs[i - 1], known=xyzs[i], unknown_feats=features[i - 1], known_feats=features[i], bn_momentum=bn_momentum, name="fp_{}".format(i+len(self.FP_confs)), **self.FP_confs[i]) out = fluid.layers.transpose(features[0], perm=[0, 2, 1]) out = fluid.layers.unsqueeze(out, axes=[-1]) out = conv_bn(out, out_channels=128, bn=True, bn_momentum=bn_momentum, name="output_1") out = fluid.layers.dropout(out, 0.5, dropout_implementation="upscale_in_train") out = conv_bn(out, out_channels=self.num_classes, bn=False, act=None, name="output_2") out = fluid.layers.squeeze(out, axes=[-1]) out = fluid.layers.transpose(out, perm=[0, 2, 1]) pred = fluid.layers.softmax(out) # calc loss self.loss = fluid.layers.cross_entropy(pred, self.label) self.loss = fluid.layers.reduce_mean(self.loss) # calc acc pred = fluid.layers.reshape(pred, shape=[-1, self.num_classes]) label = fluid.layers.reshape(self.label, shape=[-1, 1]) self.acc1 = fluid.layers.accuracy(pred, label, k=1) def get_feeds(self): return self.feed_vars def get_outputs(self): return {"loss": self.loss, "accuracy": self.acc1} def get_pyreader(self): return self.pyreader class PointNet2SemSegSSG(PointNet2SemSeg): def __init__(self, num_classes, use_xyz=True): super(PointNet2SemSegSSG, self).__init__(num_classes, use_xyz) def model_config(self): self.SA_confs = [ { "npoint": 1024, "radiuss": [0.1], "nsamples": [32], "mlps": [[32, 32, 64]], }, { "npoint": 256, "radiuss": [0.2], "nsamples": [32], "mlps": [[64, 64, 128]], }, { "npoint": 64, "radiuss": [0.4], "nsamples": [32], "mlps": [[128, 128, 256]], }, { "npoint": 16, "radiuss": [0.8], "nsamples": [32], "mlps": [[256, 256, 512]], }, ] self.FP_confs = [ {"mlp": [128, 128, 128]}, {"mlp": [256, 128]}, {"mlp": [256, 256]}, {"mlp": [256, 256]}, ] class PointNet2SemSegMSG(PointNet2SemSeg): def __init__(self, num_classes, use_xyz=True): super(PointNet2SemSegMSG, self).__init__(num_classes, use_xyz) def model_config(self): self.SA_confs = [ { "npoint": 1024, "radiuss": [0.05, 0.1], "nsamples": [16, 32], "mlps": [[16, 16, 32], [32, 32, 64]], }, { "npoint": 256, "radiuss": [0.1, 0.2], "nsamples": [16, 32], "mlps": [[64, 64, 128], [64, 96, 128]], }, { "npoint": 64, "radiuss": [0.2, 0.4], "nsamples": [16, 32], "mlps": [[128, 196, 256], [128, 196, 256]], }, { "npoint": 16, "radiuss": [0.4, 0.8], "nsamples": [16, 32], "mlps": [[256, 256, 512], [256, 384, 512]], }, ] self.FP_confs = [ {"mlp": [128, 128]}, {"mlp": [256, 256]}, {"mlp": [512, 512]}, {"mlp": [512, 512]}, ]
the-stack_106_23288
from threading import Thread, Event import os, datetime, uuid, time, math, ast from typing import List, Dict from alphaz.models.database.structure import AlphaDatabase from alphaz.models.main import AlphaClass, AlphaTransaction from ..libs import transactions_lib from core import core LOG = core.get_logger('requests') DB = core.db class TransactionsThread(Thread): # PowerCounter class def __init__(self, function, message_types:List[str] = [], database: AlphaDatabase = DB, interval: int = 2, timeout: int = 0, pool_size:int = 20, answer_lifetime = 3600, args = [], kwargs = {} ): Thread.__init__(self) self.function = function self.message_types:List[str] = message_types self.database: AlphaDatabase = database self.interval:str = interval self.timeout = timeout self.pool_size:int = pool_size self.answer_lifetime: int = answer_lifetime self.args:list = args self.kwargs:dict = kwargs self.started: Event = Event() self.running: Event= Event() self.finished: Event = Event() def ensure(self): if not self.started.is_set() and not self.running.is_set(): self.start() def run(self): self.started.set() count = 0 offset = 0 elapsed = 0 dts = datetime.datetime.now() while not self.finished.is_set() and (self.timeout <= 0 or elapsed < self.timeout): dt = datetime.datetime.now() if not self.running.is_set(): self.running.set() if count == 0: #secs = (math.ceil(dt) - dt).total_seconds() secs = 0 else: secs = self.interval - offset self.finished.wait(secs) if not self.finished.is_set(): t = time.time() self.process() offset = time.time() - t count += 1 elapsed = (dt - dts).total_seconds() if self.timeout > 0 and elapsed > self.timeout: LOG.info("Thread reachs its limit") else: LOG.info("Thread ended") def process(self): requests = transactions_lib.get_requests(self.database, message_types=self.message_types, limit=self.pool_size) if len(requests) == 0: return requests = [AlphaTransaction(x) for x in requests] LOG.info('Processing %s requests ...'%len(requests)) uuids = [] for request in requests: answer = '' try: uuid = request.uuid parameters = request.message uuids.append(uuid) LOG.debug('REQUEST: \n\n'+str(parameters)+'\n') if type(parameters) is not dict: LOG.error('Answer is of the wrong type') continue answer = self.function(request, *self.args, **self.kwargs) if answer is not None: answer = str(answer) LOG.debug('Sending answer: '+answer) except Exception as ex: LOG.error("Cannot send answser",ex=ex) finally: transactions_lib.send_answer(self.database, uuid, answer, message_type=str(request.message_type), answer_lifetime=self.answer_lifetime) transactions_lib.delete_requests(self.database, uuids) def cancel(self): self.finished.set() self.started.clear() self.running.clear()
the-stack_106_23290
class Solution: def isMatch(self, s: str, p: str) -> bool: dp = [[False for _ in range(len(s) + 1)] for _ in range(len(p) + 1)] dp[0][0] = True for i in range(1,len(p)+1): if p[i-1] == '*': dp[i][0] = dp[i-2][0] for i in range(1, len(p) + 1): for j in range(1, len(s) + 1): pChar = p[i-1] schar = s[j-1] pPrev = p[i-2] if i > 1 else '' if self.isCharMAtch(pChar, schar): dp[i][j] = dp[i-1][j-1] elif pChar == '*': if self.isCharMAtch(pPrev, schar): # using 1 of prev or multiple of prev dp[i][j] = dp[i-1][j] or dp[i][j-1] # using 0 of prev if dp[i-2][j]: dp[i][j] = True return dp[len(p)][len(s)] def isCharMAtch(self, pChar, sChar): return pChar == '.' or pChar == sChar ob = Solution() source = "aasdfasdfasdfasdfas" pattern = "aasdf.*asdf.*asdf.*asdf.*s" print(ob.isMatch(source, pattern))
the-stack_106_23292
import logging import numpy as np import torch from rdkit import Chem from rdkit import RDLogger from rdkit.Chem.Scaffolds import MurckoScaffold from federatedscope.core.splitters.utils import dirichlet_distribution_noniid_slice from federatedscope.core.splitters.graph.scaffold_splitter import generate_scaffold logger = logging.getLogger(__name__) RDLogger.DisableLog('rdApp.*') class GenFeatures: r"""Implementation of 'CanonicalAtomFeaturizer' and 'CanonicalBondFeaturizer' in DGL. Source: https://lifesci.dgl.ai/_modules/dgllife/utils/featurizers.html Arguments: data: PyG.data in PyG.dataset. Returns: data: PyG.data, data passing featurizer. """ def __init__(self): self.symbols = [ 'C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb', 'Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H', 'Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr', 'Cr', 'Pt', 'Hg', 'Pb', 'other' ] self.hybridizations = [ Chem.rdchem.HybridizationType.SP, Chem.rdchem.HybridizationType.SP2, Chem.rdchem.HybridizationType.SP3, Chem.rdchem.HybridizationType.SP3D, Chem.rdchem.HybridizationType.SP3D2, 'other', ] self.stereos = [ Chem.rdchem.BondStereo.STEREONONE, Chem.rdchem.BondStereo.STEREOANY, Chem.rdchem.BondStereo.STEREOZ, Chem.rdchem.BondStereo.STEREOE, Chem.rdchem.BondStereo.STEREOCIS, Chem.rdchem.BondStereo.STEREOTRANS, ] def __call__(self, data): mol = Chem.MolFromSmiles(data.smiles) xs = [] for atom in mol.GetAtoms(): symbol = [0.] * len(self.symbols) if atom.GetSymbol() in self.symbols: symbol[self.symbols.index(atom.GetSymbol())] = 1. else: symbol[self.symbols.index('other')] = 1. degree = [0.] * 10 degree[atom.GetDegree()] = 1. implicit = [0.] * 6 implicit[atom.GetImplicitValence()] = 1. formal_charge = atom.GetFormalCharge() radical_electrons = atom.GetNumRadicalElectrons() hybridization = [0.] * len(self.hybridizations) if atom.GetHybridization() in self.hybridizations: hybridization[self.hybridizations.index(atom.GetHybridization())] = 1. else: hybridization[self.hybridizations.index('other')] = 1. aromaticity = 1. if atom.GetIsAromatic() else 0. hydrogens = [0.] * 5 hydrogens[atom.GetTotalNumHs()] = 1. x = torch.tensor(symbol + degree + implicit + [formal_charge] + [radical_electrons] + hybridization + [aromaticity] + hydrogens) xs.append(x) data.x = torch.stack(xs, dim=0) edge_attrs = [] for bond in mol.GetBonds(): bond_type = bond.GetBondType() single = 1. if bond_type == Chem.rdchem.BondType.SINGLE else 0. double = 1. if bond_type == Chem.rdchem.BondType.DOUBLE else 0. triple = 1. if bond_type == Chem.rdchem.BondType.TRIPLE else 0. aromatic = 1. if bond_type == Chem.rdchem.BondType.AROMATIC else 0. conjugation = 1. if bond.GetIsConjugated() else 0. ring = 1. if bond.IsInRing() else 0. stereo = [0.] * 6 stereo[self.stereos.index(bond.GetStereo())] = 1. edge_attr = torch.tensor( [single, double, triple, aromatic, conjugation, ring] + stereo) edge_attrs += [edge_attr, edge_attr] if len(edge_attrs) == 0: data.edge_index = torch.zeros((2, 0), dtype=torch.long) data.edge_attr = torch.zeros((0, 10), dtype=torch.float) else: num_atoms = mol.GetNumAtoms() feats = torch.stack(edge_attrs, dim=0) feats = torch.cat([feats, torch.zeros(feats.shape[0], 1)], dim=1) self_loop_feats = torch.zeros(num_atoms, feats.shape[1]) self_loop_feats[:, -1] = 1 feats = torch.cat([feats, self_loop_feats], dim=0) data.edge_attr = feats return data def gen_scaffold_lda_split(dataset, client_num=5, alpha=0.1): r""" return dict{ID:[idxs]} """ logger.info('Scaffold split might take minutes, please wait...') scaffolds = {} for idx, data in enumerate(dataset): smiles = data.smiles mol = Chem.MolFromSmiles(smiles) scaffold = generate_scaffold(smiles) if scaffold not in scaffolds: scaffolds[scaffold] = [idx] else: scaffolds[scaffold].append(idx) # Sort from largest to smallest scaffold sets scaffolds = {key: sorted(value) for key, value in scaffolds.items()} scaffold_list = [ list(scaffold_set) for (scaffold, scaffold_set) in sorted(scaffolds.items(), key=lambda x: (len(x[1]), x[1][0]), reverse=True) ] label = np.zeros(len(dataset)) for i in range(len(scaffold_list)): label[scaffold_list[i]] = i+1 label = torch.LongTensor(label) # Split data to list idx_slice = dirichlet_distribution_noniid_slice(label, client_num, alpha) return idx_slice class ScaffoldLdaSplitter: r"""First adopt scaffold splitting and then assign the samples to clients according to Latent Dirichlet Allocation. Arguments: dataset (List or PyG.dataset): The molecular datasets. alpha (float): Partition hyperparameter in LDA, smaller alpha generates more extreme heterogeneous scenario. Returns: data_list (List(List(PyG.data))): Splited dataset via scaffold split. """ def __init__(self, client_num, alpha): self.client_num = client_num self.alpha = alpha def __call__(self, dataset): featurizer = GenFeatures() data = [] for ds in dataset: ds = featurizer(ds) data.append(ds) dataset = data idx_slice = gen_scaffold_lda_split(dataset, self.client_num, self.alpha) data_list = [[dataset[idx] for idx in idxs] for idxs in idx_slice] return data_list def __repr__(self): return f'{self.__class__.__name__}()'
the-stack_106_23293
""" Contains functions that handles command line parsing logic. """ import argparse def create_parser(): """ Creates a command line parser. There are four arguments allowed for this parser: (1) the dns server ip (required) (2) the domain name to be resolved (resolved) (3) a verbose option, to print tracing information (optional) (4) an ipv6 option, to return the ipv6 address for a domain name (optional) :return: the command line argument parser """ parser = argparse.ArgumentParser(description='Simple DNS Resolver.') parser.add_argument("dns_server_ip", type=str, nargs=1, help='Consumes the IP address (IPv4 only) of a DNS Server.') parser.add_argument("domain_name", type=str, nargs=1, help='Consumes any valid, registered domain name.') parser.add_argument("--verbose", type=bool, nargs=1, help='If enabled, prints a trace of the resolution. (Input any value to set to true.') parser.add_argument("--ipv6", type=bool, nargs=1, help='If enabled, retrieves the IPv6 of the domain name. (Input any value to set to true).') return parser
the-stack_106_23294
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX DataViewBinder component definition.""" from typing import Optional, Text from tfx import types from tfx.components.base import base_component from tfx.components.base import executor_spec from tfx.components.experimental.data_view import binder_executor from tfx.types import artifact_utils from tfx.types import channel_utils from tfx.types import standard_artifacts from tfx.types.component_spec import ChannelParameter from tfx.types.component_spec import ComponentSpec class _DataViewBinderComponentSpec(ComponentSpec): """ComponentSpec for Custom TFX Hello World Component.""" PARAMETERS = {} INPUTS = { 'input_examples': ChannelParameter(type=standard_artifacts.Examples), 'data_view': ChannelParameter(type=standard_artifacts.DataView), } OUTPUTS = { 'output_examples': ChannelParameter(type=standard_artifacts.Examples), } class DataViewBinder(base_component.BaseComponent): """A component that binds a DataView to ExamplesArtifact. It takes as inputs a channel of Examples and a channel of DataView, and binds the DataView (i.e. attaching information from the DataView as custom properties) to the Examples in the input channel, producing new Examples Artifacts that are identical to the input Examples (including the uris), except for the additional information attached. Example: ``` # We assume Examples are imported by ExampleGen example_gen = ... # First, create a dataview: data_view_provider = TfGraphDataViewProvider( module_file=module_file, create_decoder_func='create_decoder') # Then, bind the DataView to Examples: data_view_binder = DataViewBinder( input_examples=example_gen.outputs['examples'], data_view=data_view_provider.outputs['data_view'], ) # Downstream component can then consume the output of the DataViewBinder: stats_gen = StatisticsGen( examples=data_view_binder.outputs['output_examples'], ...) ``` """ SPEC_CLASS = _DataViewBinderComponentSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec( binder_executor.DataViewBinderExecutor) def __init__(self, input_examples: types.Channel, data_view: types.Channel, output_examples: Optional[types.Channel] = None, instance_name: Optional[Text] = None): if not output_examples: output_artifact = standard_artifacts.Examples() output_artifact.copy_from( artifact_utils.get_single_instance(list(input_examples.get()))) output_examples = channel_utils.as_channel([output_artifact]) spec = _DataViewBinderComponentSpec( input_examples=input_examples, data_view=data_view, output_examples=output_examples) super().__init__(spec=spec, instance_name=instance_name)
the-stack_106_23296
# Loss functions import torch import torch.nn as nn from ..utils.general import bbox_iou from ..utils.torch_utils import is_parallel def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 # return positive, negative label smoothing BCE targets return 1.0 - 0.5 * eps, 0.5 * eps class BCEBlurWithLogitsLoss(nn.Module): # BCEwithLogitLoss() with reduced missing label effects. def __init__(self, alpha=0.05): super(BCEBlurWithLogitsLoss, self).__init__() self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() self.alpha = alpha def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred = torch.sigmoid(pred) # prob from logits dx = pred - true # reduce only missing label effects # dx = (pred - true).abs() # reduce missing label and false label effects alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) loss *= alpha_factor return loss.mean() class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class QFocalLoss(nn.Module): # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(QFocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) pred_prob = torch.sigmoid(pred) # prob from logits alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = torch.abs(true - pred_prob) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss class ComputeLoss: # Compute losses def __init__(self, model, autobalance=False): super(ComputeLoss, self).__init__() device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance for k in 'na', 'nc', 'nl', 'anchors': setattr(self, k, getattr(det, k)) def __call__(self, p, targets): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = indices[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression pxy = ps[:, :2].sigmoid() * 2. - 0.5 pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) lbox += (1.0 - iou).mean() # iou loss # Objectness tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio # Classification if self.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets t[range(n), tcls[i]] = self.cp lcls += self.BCEcls(ps[:, 5:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] lbox *= self.hyp['box'] lobj *= self.hyp['obj'] lcls *= self.hyp['cls'] bs = tobj.shape[0] # batch size loss = lbox + lobj + lcls return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach() def build_targets(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets tcls, tbox, indices, anch = [], [], [], [] gain = torch.ones(7, device=targets.device) # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. < g) & (gxy > 1.)).T l, m = ((gxi % 1. < g) & (gxi > 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices tbox.append(torch.cat((gxy - gij, gwh), 1)) # box anch.append(anchors[a]) # anchors tcls.append(c) # class return tcls, tbox, indices, anch
the-stack_106_23298
# -*- coding: UTF-8 -*- import os import numpy as np from migrate_db import People, db, app uuid = '28DDU17531000102' embedding_basedir = '/home/actiontec/PycharmProjects/DeepLearning/FaceRecognition/facenet/src/faces/' \ 'ae64c98bdff9b674fb5dad4b/front/face_embedding' url = '' style = 'front' group_id = 'ae64c98bdff9b674fb5dad4b' def txt2embedding(file_path): with open(file_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() # print(bottleneck_string) bottleneck_values = [float(x) for x in bottleneck_string.split(',')] embedding = np.array(bottleneck_values, dtype='f') return embedding if __name__ == '__main__': with app.app_context(): for root, dirs, files in os.walk(embedding_basedir): for name in files: file_path = os.path.join(root, name) objid = root.split('_')[-1] embedding = txt2embedding(file_path) people = People(embed=embedding, uuid=uuid, group_id=group_id, objId=objid, aliyun_url=url, classId=objid, style=style) db.session.add(people) db.session.commit()
the-stack_106_23299
# Copyright (c) 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys from time import time import click from SCons.Script import ARGUMENTS # pylint: disable=import-error from SCons.Script import COMMAND_LINE_TARGETS # pylint: disable=import-error from SCons.Script import DEFAULT_TARGETS # pylint: disable=import-error from SCons.Script import AllowSubstExceptions # pylint: disable=import-error from SCons.Script import AlwaysBuild # pylint: disable=import-error from SCons.Script import Default # pylint: disable=import-error from SCons.Script import DefaultEnvironment # pylint: disable=import-error from SCons.Script import Import # pylint: disable=import-error from SCons.Script import Variables # pylint: disable=import-error from platformio import compat, fs from platformio.platform.base import PlatformBase from platformio.proc import get_pythonexe_path from platformio.project.helpers import get_project_dir AllowSubstExceptions(NameError) # append CLI arguments to build environment clivars = Variables(None) clivars.AddVariables( ("PLATFORM_MANIFEST",), ("BUILD_SCRIPT",), ("PROJECT_CONFIG",), ("PIOENV",), ("PIOTEST_RUNNING_NAME",), ("UPLOAD_PORT",), ) DEFAULT_ENV_OPTIONS = dict( tools=[ "ar", "as", "cc", "c++", "link", "platformio", "piotarget", "pioplatform", "pioproject", "piomaxlen", "piolib", "pioupload", "piomisc", "pioide", "piosize", ], toolpath=[os.path.join(fs.get_source_dir(), "builder", "tools")], variables=clivars, # Propagating External Environment ENV=os.environ, UNIX_TIME=int(time()), BUILD_DIR=os.path.join("$PROJECT_BUILD_DIR", "$PIOENV"), BUILD_SRC_DIR=os.path.join("$BUILD_DIR", "src"), BUILD_TEST_DIR=os.path.join("$BUILD_DIR", "test"), COMPILATIONDB_PATH=os.path.join("$BUILD_DIR", "compile_commands.json"), LIBPATH=["$BUILD_DIR"], PROGNAME="program", PROG_PATH=os.path.join("$BUILD_DIR", "$PROGNAME$PROGSUFFIX"), PYTHONEXE=get_pythonexe_path(), IDE_EXTRA_DATA={}, ) # Declare command verbose messages command_strings = dict( ARCOM="Archiving", LINKCOM="Linking", RANLIBCOM="Indexing", ASCOM="Compiling", ASPPCOM="Compiling", CCCOM="Compiling", CXXCOM="Compiling", ) if not int(ARGUMENTS.get("PIOVERBOSE", 0)): for name, value in command_strings.items(): DEFAULT_ENV_OPTIONS["%sSTR" % name] = "%s $TARGET" % (value) env = DefaultEnvironment(**DEFAULT_ENV_OPTIONS) # Load variables from CLI env.Replace( **{ key: PlatformBase.decode_scons_arg(env[key]) for key in list(clivars.keys()) if key in env } ) # Setup project optional directories config = env.GetProjectConfig() env.Replace( PROJECT_DIR=get_project_dir(), PROJECT_CORE_DIR=config.get_optional_dir("core"), PROJECT_PACKAGES_DIR=config.get_optional_dir("packages"), PROJECT_WORKSPACE_DIR=config.get_optional_dir("workspace"), PROJECT_LIBDEPS_DIR=config.get_optional_dir("libdeps"), PROJECT_INCLUDE_DIR=config.get_optional_dir("include"), PROJECT_SRC_DIR=config.get_optional_dir("src"), PROJECTSRC_DIR=config.get_optional_dir("src"), # legacy for dev/platform PROJECT_TEST_DIR=config.get_optional_dir("test"), PROJECT_DATA_DIR=config.get_optional_dir("data"), PROJECTDATA_DIR=config.get_optional_dir("data"), # legacy for dev/platform PROJECT_BUILD_DIR=config.get_optional_dir("build"), BUILD_CACHE_DIR=config.get_optional_dir("build_cache"), LIBSOURCE_DIRS=[ config.get_optional_dir("lib"), os.path.join("$PROJECT_LIBDEPS_DIR", "$PIOENV"), config.get_optional_dir("globallib"), ], ) if ( compat.IS_WINDOWS and sys.version_info >= (3, 8) and env["PROJECT_DIR"].startswith("\\\\") ): click.secho( "There is a known issue with Python 3.8+ and mapped network drives on " "Windows.\nSee a solution at:\n" "https://github.com/platformio/platformio-core/issues/3417", fg="yellow", ) if env.subst("$BUILD_CACHE_DIR"): if not os.path.isdir(env.subst("$BUILD_CACHE_DIR")): os.makedirs(env.subst("$BUILD_CACHE_DIR")) env.CacheDir("$BUILD_CACHE_DIR") if int(ARGUMENTS.get("ISATTY", 0)): # pylint: disable=protected-access click._compat.isatty = lambda stream: True if env.GetOption("clean"): env.PioClean(env.subst("$BUILD_DIR")) env.Exit(0) elif not int(ARGUMENTS.get("PIOVERBOSE", 0)): click.echo("Verbose mode can be enabled via `-v, --verbose` option") # Dynamically load dependent tools if "compiledb" in COMMAND_LINE_TARGETS: env.Tool("compilation_db") if not os.path.isdir(env.subst("$BUILD_DIR")): os.makedirs(env.subst("$BUILD_DIR")) env.LoadProjectOptions() env.LoadPioPlatform() env.SConscriptChdir(0) env.SConsignFile( os.path.join( "$BUILD_DIR", ".sconsign%d%d" % (sys.version_info[0], sys.version_info[1]) ) ) for item in env.GetExtraScripts("pre"): env.SConscript(item, exports="env") env.SConscript("$BUILD_SCRIPT") if "UPLOAD_FLAGS" in env: env.Prepend(UPLOADERFLAGS=["$UPLOAD_FLAGS"]) if env.GetProjectOption("upload_command"): env.Replace(UPLOADCMD=env.GetProjectOption("upload_command")) for item in env.GetExtraScripts("post"): env.SConscript(item, exports="env") ############################################################################## # Checking program size if env.get("SIZETOOL") and not ( set(["nobuild", "sizedata"]) & set(COMMAND_LINE_TARGETS) ): env.Depends(["upload", "program"], "checkprogsize") # Replace platform's "size" target with our _new_targets = [t for t in DEFAULT_TARGETS if str(t) != "size"] Default(None) Default(_new_targets) Default("checkprogsize") if "compiledb" in COMMAND_LINE_TARGETS: env.Alias("compiledb", env.CompilationDatabase("$COMPILATIONDB_PATH")) # Print configured protocols env.AddPreAction( ["upload", "program"], env.VerboseAction( lambda source, target, env: env.PrintUploadInfo(), "Configuring upload protocol...", ), ) AlwaysBuild(env.Alias("__debug", DEFAULT_TARGETS)) AlwaysBuild(env.Alias("__test", DEFAULT_TARGETS)) ############################################################################## if "envdump" in COMMAND_LINE_TARGETS: click.echo(env.Dump()) env.Exit(0) if set(["_idedata", "idedata"]) & set(COMMAND_LINE_TARGETS): try: Import("projenv") except: # pylint: disable=bare-except projenv = env data = projenv.DumpIDEData(env) # dump to file for the further reading by project.helpers.load_project_ide_data with open( projenv.subst(os.path.join("$BUILD_DIR", "idedata.json")), mode="w", encoding="utf8", ) as fp: json.dump(data, fp) click.echo("\n%s\n" % json.dumps(data)) # pylint: disable=undefined-variable env.Exit(0) if "sizedata" in COMMAND_LINE_TARGETS: AlwaysBuild( env.Alias( "sizedata", DEFAULT_TARGETS, env.VerboseAction(env.DumpSizeData, "Generating memory usage report..."), ) ) Default("sizedata")
the-stack_106_23303
""" @Version: 1.0 @Project: BeautyReport @Author: Raymond @Data: 2017/11/15 下午5:28 @File: __init__.py.py @License: MIT """ import os import sys from io import StringIO as StringIO import time import json import unittest import platform import base64 from distutils.sysconfig import get_python_lib import traceback from functools import wraps __all__ = ['BeautifulReport'] HTML_IMG_TEMPLATE = """ <a href="data:image/png;base64, {}"> <img src="data:image/png;base64, {}" width="800px" height="500px"/> </a> <br></br> """ class OutputRedirector(object): """ Wrapper to redirect stdout or stderr """ def __init__(self, fp): self.fp = fp def write(self, s): self.fp.write(s) def writelines(self, lines): self.fp.writelines(lines) def flush(self): self.fp.flush() stdout_redirector = OutputRedirector(sys.stdout) stderr_redirector = OutputRedirector(sys.stderr) SYSSTR = platform.system() SITE_PAKAGE_PATH = get_python_lib() FIELDS = { "testPass": 0, "testResult": [ ], "testName": "", "testAll": 0, "testFail": 0, "beginTime": "", "totalTime": "", "testSkip": 0 } class PATH: """ all file PATH meta """ config_tmp_path = SITE_PAKAGE_PATH + '/BeautifulReport/template/template' class MakeResultJson: """ make html table tags """ def __init__(self, datas: tuple): """ init self object :param datas: 拿到所有返回数据结构 """ self.datas = datas self.result_schema = {} def __setitem__(self, key, value): """ :param key: self[key] :param value: value :return: """ self[key] = value def __repr__(self) -> str: """ 返回对象的html结构体 :rtype: dict :return: self的repr对象, 返回一个构造完成的tr表单 """ keys = ( 'className', 'methodName', 'description', 'spendTime', 'status', 'log', ) for key, data in zip(keys, self.datas): self.result_schema.setdefault(key, data) return json.dumps(self.result_schema) class ReportTestResult(unittest.TestResult): """ override""" def __init__(self, suite, stream=sys.stdout): """ pass """ super(ReportTestResult, self).__init__() self.begin_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) self.start_time = 0 self.stream = stream self.end_time = 0 self.failure_count = 0 self.error_count = 0 self.success_count = 0 self.skipped = 0 self.verbosity = 1 self.success_case_info = [] self.skipped_case_info = [] self.failures_case_info = [] self.errors_case_info = [] self.all_case_counter = 0 self.suite = suite self.status = '' self.result_list = [] self.case_log = '' self.default_report_name = 'Automated test report' self.FIELDS = None self.sys_stdout = None self.sys_stderr = None self.outputBuffer = None @property def success_counter(self) -> int: """ set success counter """ return self.success_count @success_counter.setter def success_counter(self, value) -> None: """ success_counter函数的setter方法, 用于改变成功的case数量 :param value: 当前传递进来的成功次数的int数值 :return: """ self.success_count = value def startTest(self, test) -> None: """ 当测试用例测试即将运行时调用 :return: """ unittest.TestResult.startTest(self, test) self.outputBuffer = StringIO() stdout_redirector.fp = self.outputBuffer stderr_redirector.fp = self.outputBuffer self.sys_stdout = sys.stdout self.sys_stdout = sys.stderr sys.stdout = stdout_redirector sys.stderr = stderr_redirector self.start_time = time.time() def stopTest(self, test) -> None: """ 当测试用力执行完成后进行调用 :return: """ self.end_time = '{0:.3} s'.format((time.time() - self.start_time)) self.result_list.append(self.get_all_result_info_tuple(test)) self.complete_output() def complete_output(self): """ Disconnect output redirection and return buffer. Safe to call multiple times. """ if self.sys_stdout: sys.stdout = self.sys_stdout sys.stderr = self.sys_stdout self.sys_stdout = None self.sys_stdout = None return self.outputBuffer.getvalue() def stopTestRun(self, title=None) -> dict: """ 所有测试执行完成后, 执行该方法 :param title: :return: """ FIELDS['testPass'] = self.success_counter for item in self.result_list: item = json.loads(str(MakeResultJson(item))) FIELDS.get('testResult').append(item) FIELDS['testAll'] = len(self.result_list) FIELDS['testName'] = title if title else self.default_report_name FIELDS['testFail'] = self.failure_count FIELDS['beginTime'] = self.begin_time end_time = int(time.time()) start_time = int(time.mktime(time.strptime(self.begin_time, '%Y-%m-%d %H:%M:%S'))) FIELDS['totalTime'] = str(end_time - start_time) + 's' FIELDS['testError'] = self.error_count FIELDS['testSkip'] = self.skipped self.FIELDS = FIELDS return FIELDS def get_all_result_info_tuple(self, test) -> tuple: """ 接受test 相关信息, 并拼接成一个完成的tuple结构返回 :param test: :return: """ return tuple([*self.get_testcase_property(test), self.end_time, self.status, self.case_log]) @staticmethod def error_or_failure_text(err) -> str: """ 获取sys.exc_info()的参数并返回字符串类型的数据, 去掉t6 error :param err: :return: """ return traceback.format_exception(*err) def addSuccess(self, test) -> None: """ pass :param test: :return: """ logs = [] output = self.complete_output() logs.append(output) if self.verbosity > 1: sys.stderr.write('ok ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('.') self.success_counter += 1 self.status = 'Success' self.case_log = output.split('\n') self._mirrorOutput = True # print(class_name, method_name, method_doc) def addError(self, test, err): """ add Some Error Result and infos :param test: :param err: :return: """ logs = [] output = self.complete_output() logs.append(output) logs.extend(self.error_or_failure_text(err)) self.failure_count += 1 self.add_test_type('Fail', logs) if self.verbosity > 1: sys.stderr.write('F ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('F') self._mirrorOutput = True def addFailure(self, test, err): """ add Some Failures Result and infos :param test: :param err: :return: """ logs = [] output = self.complete_output() logs.append(output) logs.extend(self.error_or_failure_text(err)) self.failure_count += 1 self.add_test_type('Fail', logs) if self.verbosity > 1: sys.stderr.write('F ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('F') self._mirrorOutput = True def addSkip(self, test, reason) -> None: """ 获取全部的跳过的case信息 :param test: :param reason: :return: None """ logs = [reason] self.complete_output() self.skipped += 1 self.add_test_type('Skipped', logs) if self.verbosity > 1: sys.stderr.write('S ') sys.stderr.write(str(test)) sys.stderr.write('\n') else: sys.stderr.write('S') self._mirrorOutput = True def add_test_type(self, status: str, case_log: list) -> None: """ abstruct add test type and return tuple :param status: :param case_log: :return: """ self.status = status self.case_log = case_log @staticmethod def get_testcase_property(test) -> tuple: """ 接受一个test, 并返回一个test的class_name, method_name, method_doc属性 :param test: :return: (class_name, method_name, method_doc) -> tuple """ class_name = test.__class__.__qualname__ method_name = test.__dict__['_testMethodName'] method_doc = test.__dict__['_testMethodDoc'] return class_name, method_name, method_doc class BeautifulReport(ReportTestResult, PATH): img_path = 'img/' if platform.system() != 'Windows' else 'img\\' def __init__(self, suites): super(BeautifulReport, self).__init__(suites) self.suites = suites self.log_path = None self.title = 'Automated test report' self.filename = 'report.html' def report(self, description, filename: str = None, log_path='.'): """ 生成测试报告,并放在当前运行路径下 :param log_path: 生成report的文件存储路径 :param filename: 生成文件的filename :param description: 生成文件的注释 :return: """ if filename: self.filename = filename if filename.endswith('.html') else filename + '.html' if description: self.title = description self.log_path = os.path.abspath(log_path) self.suites.run(result=self) self.stopTestRun(self.title) self.output_report() text = '\nAll test ran, please check the report in {}'.format(self.log_path) print(text) def output_report(self): """ 生成测试报告到指定路径下 :return: """ template_path = self.config_tmp_path override_path = os.path.abspath(self.log_path) if \ os.path.abspath(self.log_path).endswith('/') else \ os.path.abspath(self.log_path) + '/' with open(template_path, 'rb') as file: body = file.readlines() with open(override_path + self.filename, 'wb') as write_file: for item in body: if item.strip().startswith(b'var resultData'): head = ' var resultData = ' item = item.decode().split(head) item[1] = head + json.dumps(self.FIELDS, ensure_ascii=False, indent=4) item = ''.join(item).encode() item = bytes(item) + b';\n' write_file.write(item) @staticmethod def img2base(img_path: str, file_name: str) -> str: """ 接受传递进函数的filename 并找到文件转换为base64格式 :param img_path: 通过文件名及默认路径找到的img绝对路径 :param file_name: 用户在装饰器中传递进来的问价匿名 :return: """ pattern = '/' if platform != 'Windows' else '\\' with open(img_path + pattern + file_name, 'rb') as file: data = file.read() return base64.b64encode(data).decode() def add_test_img(*pargs): """ 接受若干个图片元素, 并展示在测试报告中 :param pargs: :return: """ def _wrap(func): @wraps(func) def __wrap(*args, **kwargs): img_path = os.path.abspath('{}'.format(BeautifulReport.img_path)) try: result = func(*args, **kwargs) except Exception: if 'save_img' in dir(args[0]): save_img = getattr(args[0], 'save_img') save_img(func.__name__) data = BeautifulReport.img2base(img_path, pargs[0] + '.png') print(HTML_IMG_TEMPLATE.format(data, data)) sys.exit(0) print('<br></br>') if len(pargs) > 1: for parg in pargs: print(parg + ':') data = BeautifulReport.img2base(img_path, parg + '.png') print(HTML_IMG_TEMPLATE.format(data, data)) return result if not os.path.exists(img_path + pargs[0] + '.png'): return result data = BeautifulReport.img2base(img_path, pargs[0] + '.png') print(HTML_IMG_TEMPLATE.format(data, data)) return result return __wrap return _wrap
the-stack_106_23305
import os import threading import time import sys, getopt def client(i,results,loopTimes): print("client %d start" %i) command = "./single-cold_warm.sh -R -t " + str(loopTimes) r = os.popen(command) text = r.read() results[i] = text print("client %d finished" %i) def warmup(i,warmupTimes,actionName,params): for j in range(warmupTimes): r = os.popen("wsk -i action invoke %s %s --result --blocking" %(actionName,params)) text = r.read() print("client %d warmup finished" %i) def main(): argv = getargv() clientNum = argv[0] loopTimes = argv[1] warmupTimes = argv[2] threads = [] containerName = "hellonodejs" actionName = "hello-nodejs" params = "" r = os.popen("docker stop `docker ps | grep %s | awk {'print $1'}`" %containerName) r.read() # First: warm up for i in range(clientNum): t = threading.Thread(target=warmup,args=(i,warmupTimes,actionName,params)) threads.append(t) for i in range(clientNum): threads[i].start() for i in range(clientNum): threads[i].join() print("Warm up complete") # Second: invoke the actions # Initialize the results and the clients threads = [] results = [] for i in range(clientNum): results.append('') # Create the clients for i in range(clientNum): t = threading.Thread(target=client,args=(i,results,loopTimes)) threads.append(t) # start the clients for i in range(clientNum): threads[i].start() for i in range(clientNum): threads[i].join() outfile = open("result.csv","w") outfile.write("invokeTime,startTime,endTime\n") latencies = [] minInvokeTime = 0x7fffffffffffffff maxEndTime = 0 for i in range(clientNum): # get and parse the result of a client clientResult = parseResult(results[i]) # print the result of every loop of the client for j in range(len(clientResult)): outfile.write(clientResult[j][0] + ',' + clientResult[j][1] + \ ',' + clientResult[j][2] + '\n') # Collect the latency latency = int(clientResult[j][-1]) - int(clientResult[j][0]) latencies.append(latency) # Find the first invoked action and the last return one. if int(clientResult[j][0]) < minInvokeTime: minInvokeTime = int(clientResult[j][0]) if int(clientResult[j][-1]) > maxEndTime: maxEndTime = int(clientResult[j][-1]) formatResult(latencies,maxEndTime - minInvokeTime, clientNum, loopTimes, warmupTimes) def parseResult(result): lines = result.split('\n') parsedResults = [] for line in lines: if line.find("invokeTime") == -1: continue parsedTimes = ['','',''] i = 0 count = 0 while count < 3: while i < len(line): if line[i].isdigit(): parsedTimes[count] = line[i:i+13] i += 13 count += 1 continue i += 1 parsedResults.append(parsedTimes) return parsedResults def getargv(): if len(sys.argv) != 3 and len(sys.argv) != 4: print("Usage: python3 run.py <client number> <loop times> [<warm up times>]") exit(0) if not str.isdigit(sys.argv[1]) or not str.isdigit(sys.argv[2]) or int(sys.argv[1]) < 1 or int(sys.argv[2]) < 1: print("Usage: python3 run.py <client number> <loop times> [<warm up times>]") print("Client number and loop times must be an positive integer") exit(0) if len(sys.argv) == 4: if not str.isdigit(sys.argv[3]) or int(sys.argv[3]) < 1: print("Usage: python3 run.py <client number> <loop times> [<warm up times>]") print("Warm up times must be an positive integer") exit(0) else: return (int(sys.argv[1]),int(sys.argv[2]),1) return (int(sys.argv[1]),int(sys.argv[2]),int(sys.argv[3])) def formatResult(latencies,duration,client,loop,warmup): requestNum = len(latencies) latencies.sort() duration = float(duration) # calculate the average latency total = 0 for latency in latencies: total += latency print("\n") print("------------------ result ---------------------") averageLatency = float(total) / requestNum _50pcLatency = latencies[int(requestNum * 0.5) - 1] _75pcLatency = latencies[int(requestNum * 0.75) - 1] _90pcLatency = latencies[int(requestNum * 0.9) - 1] _95pcLatency = latencies[int(requestNum * 0.95) - 1] _99pcLatency = latencies[int(requestNum * 0.99) - 1] print("latency (ms):\navg\t50%\t75%\t90%\t95%\t99%") print("%.2f\t%d\t%d\t%d\t%d\t%d" %(averageLatency,_50pcLatency,_75pcLatency,_90pcLatency,_95pcLatency,_99pcLatency)) print("throughput (n/s):\n%.2f" %(requestNum / (duration/1000))) # output result to file resultfile = open("eval-result.log","a") resultfile.write("\n\n------------------ (concurrent)result ---------------------\n") resultfile.write("client: %d, loop_times: %d, warup_times: %d\n" % (client, loop, warmup)) resultfile.write("%d requests finished in %.2f seconds\n" %(requestNum, (duration/1000))) resultfile.write("latency (ms):\navg\t50%\t75%\t90%\t95%\t99%\n") resultfile.write("%.2f\t%d\t%d\t%d\t%d\t%d\n" %(averageLatency,_50pcLatency,_75pcLatency,_90pcLatency,_95pcLatency,_99pcLatency)) resultfile.write("throughput (n/s):\n%.2f\n" %(requestNum / (duration/1000))) main()
the-stack_106_23307
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 615801 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = { "" } import re import sys import dns.resolver import collections PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile(r"^(/GastroCoinCoin:2.2.(0|1|99)/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. if len(sline) > 11: agent = sline[11][1:] + sline[12][:-1] else: agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv4 by ASN result = [] asn_count = {} for ip in ips_ipv4: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid address. ips = [ip for ip in ips if ip is not None] # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(re.sub(' ', '-', ip['agent']))] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple bitcoin ports, these are likely abusive ips = filtermultiport(ips) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
the-stack_106_23309
# coding: utf-8 # General Modules # import os, shutil # import re, string import os import re import math import numpy as np import pandas as pd import datetime as dt import copy import scipy.constants as sc # natural constants def read_calibration_files( photopic_response_path, pd_responsivity_path, cie_reference_path, spectrometer_calibration_path, ): """ Function that wraps reading in the calibration files and returns them as dataframes """ photopic_response = pd.read_csv( # os.path.join( # os.path.dirname(os.path.dirname(__file__)), # "library", # "Photopic_response.txt", # ), photopic_response_path, sep="\t", names=["wavelength", "photopic_response"], ) pd_responsivity = pd.read_csv( # os.path.join( # os.path.dirname(os.path.dirname(__file__)), "library", "Responsivity_PD.txt" # ), pd_responsivity_path, sep="\t", names=["wavelength", "pd_responsivity"], ) cie_reference = pd.read_csv( # os.path.join( # os.path.dirname(os.path.dirname(__file__)), # "library", # "NormCurves_400-800.txt", # ), cie_reference_path, sep="\t", names=["wavelength", "none", "x_cie", "y_cie", "z_cie"], ) spectrometer_calibration = pd.read_csv( # os.path.join( # os.path.dirname(os.path.dirname(__file__)), "library", "CalibrationData.txt" # ), spectrometer_calibration_path, sep="\t", names=["wavelength", "sensitivity"], ) # Only take the part of the calibration files that is in the range of the # spectrometer calibration file. Otherwise all future interpolations will # interpolate on data that does not exist. I think it doesn't make a # difference because this kind of data is set to zero anyways by the # interpolate function but it is more logic to get rid of the unwanted data # here already photopic_response_range = photopic_response.loc[ np.logical_and( photopic_response["wavelength"] <= spectrometer_calibration["wavelength"].max(), photopic_response["wavelength"] >= spectrometer_calibration["wavelength"].min(), ) ] pd_responsivity_range = pd_responsivity.loc[ np.logical_and( pd_responsivity["wavelength"] <= spectrometer_calibration["wavelength"].max(), pd_responsivity["wavelength"] >= spectrometer_calibration["wavelength"].min(), ) ] cie_reference_range = cie_reference.loc[ np.logical_and( cie_reference["wavelength"] <= spectrometer_calibration["wavelength"].max(), cie_reference["wavelength"] >= spectrometer_calibration["wavelength"].min(), ) ] return ( photopic_response_range, pd_responsivity_range, cie_reference_range, spectrometer_calibration, ) def interpolate_spectrum(spectrum, photopic_response): """ Function that does the interpolation of a given pandas dataframe on the photopic response calibration wavelengths. This is later needed for the integrals. """ def interpolate(column): """ Helper function to do the numpy interpolate on an entire dataframe """ return np.interp( photopic_response["wavelength"].to_numpy(), spectrum["wavelength"].to_numpy(), column, ) # Now interpolate the entire dataframe on the wavelengths that are present in # the photopic_response file spectrum_interpolated_df = spectrum.apply(interpolate) return spectrum_interpolated_df def calibrate_spectrum(spectrum, calibration): """ Function that takes a pandas dataframe spectrum and corrects it according to the calibration files """ # interpolate spectrometer calibration factor onto correct axis (so that it # can be multiplied with the spectrum itself) interpolated_calibration = np.interp( spectrum["wavelength"].to_numpy(dtype=np.float), calibration["wavelength"].to_numpy(dtype=np.float), calibration["sensitivity"].to_numpy(dtype=np.float), ) # Now subtract background and multiply with calibration spectrum_corrected = ( spectrum.loc[:, ~np.isin(spectrum.columns, ["background", "wavelength"])] .subtract(spectrum["background"], axis=0) .multiply(interpolated_calibration, axis=0) ) spectrum_corrected["wavelength"] = spectrum["wavelength"] return spectrum_corrected # Now interpolate and correct the spectrum # spectrum_corrected = interpolate_and_correct_spectrum(spectrum) ####################################################################################### ######################## Only Angle Resolved Spectrum Related ######################### ####################################################################################### def calculate_ri(column): """ Function that calculates radiant intensity """ return float(sc.h * sc.c / 1e-9 * np.sum(column)) def calculate_li(column, photopic_response): """ Function that calculates the luminous intensity Emission in terms of photometric response, so taking into account the spectral shifts and sensitivity of the eye/photopic response """ return float( sc.physical_constants["luminous efficacy"][0] * sc.h * sc.c / 1e-9 * np.sum(column * photopic_response["photopic_response"].to_numpy()) ) # ri = spectrum_corrected.drop(["0_deg", "wavelength"], axis=1).apply( # calculate_ri, axis=0 # ) # li = spectrum_corrected.drop(["0_deg", "wavelength"], axis=1).apply( # calculate_li, axis=0 # ) def calculate_e_correction(df): """ Closure to calculate the e correction factor from a dataframe """ # Get angles from column names first try: angles = df.drop(["0_deg", "wavelength"], axis=1).columns.to_numpy(float) except: angles = df.drop(["wavelength"], axis=1).columns.to_numpy(float) def calculate_efactor(column): """ Function to calculate efactor, perp_intensity is just the intensity at 0° """ return sum(column * df["wavelength"]) / sum(df["0.0"] * df["wavelength"]) try: e_factor = df.drop(["0_deg", "wavelength"], axis=1).apply(calculate_efactor) except: e_factor = df.drop(["wavelength"], axis=1).apply(calculate_efactor) # It is now important to only integrate from 0 to 90° and not the entire spectrum # It is probably smarter to pull this at some point up but this works. relevant_e_factors = e_factor.loc[ np.logical_and( np.array(e_factor.index).astype(float) >= 0, np.array(e_factor.index).astype(float) <= 90, ) ] relevant_angles = np.array( e_factor.loc[ np.logical_and( np.array(e_factor.index).astype(float) >= 0, np.array(e_factor.index).astype(float) <= 90, ) ].index ).astype(float) return np.sum( relevant_e_factors * np.sin(np.deg2rad(relevant_angles)) * np.deg2rad(np.diff(relevant_angles)[0]) ) def calculate_v_correction(df, photopic_response): """ Closure to calculate the e correction factor from a dataframe """ # Get angles from column names first try: angles = df.drop(["0_deg", "wavelength"], axis=1).columns.to_numpy(float) except: angles = df.drop(["wavelength"], axis=1).columns.to_numpy(float) def calculate_vfactor(column): """ Function to calculate the vfactor """ return sum(column * photopic_response["photopic_response"].to_numpy()) / sum( df["0.0"] * photopic_response["photopic_response"].to_numpy() ) try: v_factor = df.drop(["0_deg", "wavelength"], axis=1).apply(calculate_vfactor) except: v_factor = df.drop(["wavelength"], axis=1).apply(calculate_vfactor) # It is now important to only integrate from 0 to 90° and not the entire spectrum # It is probably smarter to pull this at some point up but this works. relevant_v_factor = v_factor.loc[ np.logical_and( np.array(v_factor.index).astype(float) >= 0, np.array(v_factor.index).astype(float) <= 90, ) ] relevant_angles = np.array( v_factor.loc[ np.logical_and( np.array(v_factor.index).astype(float) >= 0, np.array(v_factor.index).astype(float) <= 90, ) ].index ).astype(float) return np.sum( relevant_v_factor * np.sin(np.deg2rad(relevant_angles)) * np.deg2rad(np.diff(relevant_angles)[0]) ) class JVLData: """ At this point I think it is easier to have a class that allows for easy calculation of the characteristics """ def __init__( self, jvl_data, perpendicular_spectrum, photopic_response, pd_responsivity, cie_reference, angle_resolved, pixel_area, pd_resistance, pd_radius, pd_distance, pd_cutoff, correction_factor=[], ): """ All data must be provided in SI units! The calculated quantities are, however, directly in their final (usual) units. - voltage: volts - current: mA - current density: mA/cm2 - absolute current density: mA/cm2 - luminance: cd/m2 - eqe: % - luminous_efficacy: lm/W - current_efficiency: cd/A - power density: mW/mm2 """ self.pd_resistance = pd_resistance self.pixel_area = pixel_area # Taking into account finite size of PD self.sqsinalpha = pd_radius ** 2 / (pd_distance ** 2 + pd_radius ** 2) self.voltage = np.array(jvl_data["voltage"]) self.pd_voltage = np.array(jvl_data["pd_voltage"]) # All pd voltages that are below cutoff are now cut off and set to zero. # This is done using a helper array to preserve the original data self.pd_voltage_cutoff = copy.copy(self.pd_voltage) self.pd_voltage_cutoff[self.pd_voltage_cutoff <= pd_cutoff] = 0 self.current = np.array(jvl_data["current"]) / 1000 # Current density directly in mA/cm^2 self.current_density = np.array(jvl_data["current"]) / (pixel_area * 1e4) self.absolute_current_density = np.array(abs(self.current_density)) self.cie_coordinates = self.calculate_cie_coordinates( perpendicular_spectrum, cie_reference, ) self.calculate_integrals( perpendicular_spectrum, photopic_response["photopic_response"], pd_responsivity["pd_responsivity"], ) if angle_resolved == True: # Non lambertian case e_coeff = self.calculate_non_lambertian_e_coeff() v_coeff = self.calculate_non_lambertian_v_coeff() self.eqe = self.calculate_non_lambertian_eqe(e_coeff, correction_factor[0]) self.luminance = self.calculate_non_lambertian_luminance(v_coeff) self.luminous_efficacy = self.calculate_non_lambertian_luminous_efficacy( v_coeff, correction_factor[1] ) self.power_density = self.calculate_non_lambertian_power_density( e_coeff, correction_factor[0] ) else: # Lambertian case e_coeff = self.calculate_lambertian_e_coeff() v_coeff = self.calculate_lambertian_v_coeff() self.eqe = self.calculate_lambertian_eqe(e_coeff) self.luminance = self.calculate_lambertian_luminance(v_coeff) self.luminous_efficacy = self.calculate_lambertian_luminous_efficacy( v_coeff ) self.power_density = self.calculate_lambertian_power_density(e_coeff) self.current_efficiency = self.calculate_current_efficiency() def calculate_integrals( self, perpendicular_spectrum, photopic_response, pd_responsivity ): """ Function that calculates the important integrals """ self.integral_1 = np.sum( perpendicular_spectrum["intensity"] * perpendicular_spectrum["wavelength"] ) # Integral2 = np.sum(perp_intensity) self.integral_2 = np.sum(perpendicular_spectrum["intensity"]) # Integral3 = np.sum(perp_intensity * photopic_response["photopic_response"].to_numpy()) self.integral_3 = np.sum( perpendicular_spectrum["intensity"].to_numpy() * photopic_response.to_numpy() ) # Integral4 = np.sum(perp_intensity * pd_responsivity["pd_responsivity"].to_numpy()) self.integral_4 = np.sum( perpendicular_spectrum["intensity"] * pd_responsivity.to_numpy() ) # Calculating CIE coordinates def calculate_cie_coordinates(self, perpendicular_spectrum, cie_reference): """ Calculates wavelength of maximum spectral intensity and the CIE color coordinates """ # max_intensity_wavelength = perpendicular_spectrum.loc[ # perpendicular_spectrum.intensity == perpendicular_spectrum.intensity.max(), # "wavelength", # ].to_list()[0] X = sum(perpendicular_spectrum.intensity * cie_reference.x_cie) Y = sum(perpendicular_spectrum.intensity * cie_reference.y_cie) Z = sum(perpendicular_spectrum.intensity * cie_reference.z_cie) CIE = np.array([X / (X + Y + Z), Y / (X + Y + Z)]) return CIE def calculate_non_lambertian_e_coeff(self): """ Calculate e_coeff """ return self.pd_voltage_cutoff / self.pd_resistance / self.sqsinalpha * 2 def calculate_non_lambertian_v_coeff(self): """ Calculate v_coeff """ return ( sc.physical_constants["luminous efficacy"][0] * self.pd_voltage_cutoff / self.pd_resistance / self.sqsinalpha * 2 ) def calculate_non_lambertian_eqe(self, e_coeff, e_correction_factor): """ Function to calculate the eqe """ # e_coeff = self.calculate_non_lambertian_e_coeff(jvl_data) return np.divide( 100 * sc.e * e_coeff * self.integral_1 * e_correction_factor, 1e9 * sc.h * sc.c * self.current * self.integral_4, out=np.zeros_like( 100 * sc.e * e_coeff * self.integral_1 * e_correction_factor ), where=1e9 * sc.h * sc.c * self.current * self.integral_4 != 0, ) # eqe = 100 * ( # sc.e # / 1e9 # / sc.h # / sc.c # / self.current # * e_coeff # * self.integral_1 # / self.integral_4 # * e_correction_factor # ) # return eqe def calculate_non_lambertian_luminance(self, v_coeff): """ Calculate luminance """ # v_coeff = self.calculate_non_lambertian_v_coeff(jvl_data) return ( 1 / np.pi / self.pixel_area * v_coeff / 2 * self.integral_3 / self.integral_4 ) def calculate_non_lambertian_luminous_efficacy(self, v_coeff, v_correction_factor): """ Calculate luminous efficiency """ # v_coeff = self.calculate_non_lambertian_v_coeff(jvl_data) return np.divide( v_coeff * self.integral_3 * v_correction_factor, self.voltage * self.current * self.integral_4, out=np.zeros_like(v_coeff * self.integral_3 * v_correction_factor), where=self.voltage * self.current * self.integral_4 != 0, ) def calculate_current_efficiency(self): """ Calculate current efficiency """ # In case of the current being zero, set a helper current to nan so # that the result of the division becomes nan instead of infinite return np.divide( self.pixel_area * self.luminance, self.current, out=np.zeros_like(self.pixel_area * self.luminance), where=self.current != 0, ) # b = self.pixel_area / self.current * self.luminance def calculate_non_lambertian_power_density(self, e_coeff, e_correction_factor): """ Calculate power density """ # e_coeff = self.calculate_non_lambertian_e_coeff(jvl_data) return ( 1 / (self.pixel_area * 1e6) * e_coeff * self.integral_2 / self.integral_4 * e_correction_factor * 1e3 ) def calculate_lambertian_e_coeff(self): """ Calculate e_coeff """ return self.pd_voltage_cutoff / self.pd_resistance / self.sqsinalpha def calculate_lambertian_v_coeff(self): """ Calculate v_coeff """ return ( sc.physical_constants["luminous efficacy"][0] * self.pd_voltage_cutoff / self.pd_resistance / self.sqsinalpha ) def calculate_lambertian_eqe(self, e_coeff): """ Function to calculate the eqe """ # e_coeff = calculate_lambertian_eqe(jvl_data) return np.divide( 100 * sc.e * e_coeff * self.integral_1, 1e9 * sc.h * sc.c * self.current * self.integral_4, out=np.zeros_like(100 * sc.e * e_coeff * self.integral_1), where=1e9 * sc.h * sc.c * self.current * self.integral_4 != 0, ) # return 100 * ( # sc.e # / 1e9 # / sc.h # / sc.c # / self.current # * e_coeff # * self.integral_1 # / self.integral_4 # ) def calculate_lambertian_luminance(self, v_coeff): """ Calculate luminance """ # v_coeff = calculate_lambertian_v_coeff(jvl_data) return np.divide( 1 * v_coeff * self.integral_3, np.pi * self.pixel_area * self.integral_4, out=np.zeros_like(1 * v_coeff * self.integral_3), where=np.pi * self.pixel_area * self.integral_4 != 0, ) # return 1 / np.pi / self.pixel_area * v_coeff * self.integral_3 / self.integral_4 def calculate_lambertian_luminous_efficacy(self, v_coeff): """ Calculate luminous efficiency """ # v_coeff = calculate_lambertian_v_coeff(self, jvl_data) return np.divide( 1 * v_coeff * self.integral_3, self.voltage * self.current * self.integral_4, out=np.zeros_like(1 * v_coeff * self.integral_3), where=self.voltage * self.current * self.integral_4 != 0, ) # return ( # 1 / self.voltage / self.current * v_coeff * self.integral_3 / self.integral_4 # ) def calculate_lambertian_power_density(self, e_coeff): """ Calculate power density """ # e_coeff = calculate_lambertian_e_coeff(jvl_data) return ( 1 / (self.pixel_area * 1e6) * e_coeff * self.integral_2 / self.integral_4 * 1e3 ) def to_series(self): """ return the variables of the class as dataframe """ df = pd.Series() df["voltage"] = self.voltage df["pd_voltage"] = self.pd_voltage df["current"] = self.current df["current_density"] = self.current_density df["absolute_current_density"] = self.absolute_current_density df["cie"] = self.cie_coordinates df["luminance"] = self.luminance df["eqe"] = self.eqe df["luminous_efficacy"] = self.luminous_efficacy df["current_efficiency"] = self.current_efficiency df["power_density"] = self.power_density return df
the-stack_106_23310
import argparse import sys from virtual_coach_db.dbschema.models import Users from virtual_coach_db.helper.helper import get_db_session from niceday_client import NicedayClient, TrackerStatus from niceday_client.definitions import Tracker def enable_custom_trackers(userid: int): """ Enable custom trackers for user. We enable: - 'tracker_smoking', trackerId=Tracker.SMOKING See https://github.com/senseobservationsystems/goalie-js/issues/840 on how to get a trackerId for a certain custom tracker. Args: userid: ID of the user you want to set tracker status for """ print('Enabling custom trackers') client = NicedayClient() client.set_user_tracker_statuses( userid, [TrackerStatus(trackerId=Tracker.SMOKING, isEnabled=True)]) def onboard_user(userid): client = NicedayClient() enable_custom_trackers(userid) print(f'Fetching niceday profile for user {userid}') profile = client.get_profile(userid) print('Profile:', profile) # Open session with db session = get_db_session() # Check if this user already exists in the table # (assumes niceday user id is unique and immutable) existing_users = (session.query(Users). filter(Users.nicedayuid == userid). count()) if existing_users != 0: sys.exit(f'User {userid} already exists in the database.') # Add new user to the Users table new_user = Users( nicedayuid=userid, firstname=profile['firstName'], lastname=profile['lastName'], location=profile['location'], gender=profile['gender'], dob=profile['birthDate'] ) session.add(new_user) session.commit() print(f'Added new user profile (niceday uid {userid}) to db') def main(): parser = argparse.ArgumentParser(description="Onboard the user with the given ID") parser.add_argument("userid", type=int, help="User ID on Sensehealth server") args = parser.parse_args() onboard_user(args.userid) if __name__ == "__main__": main()
the-stack_106_23311
# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick and Sean Bell # -------------------------------------------------------- # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import math import yaml from model.utils.config import cfg from .generate_anchors import generate_anchors, generate_anchors_all_pyramids from .bbox_transform import bbox_transform_inv, clip_boxes, clip_boxes_batch #from model.nms.nms_wrapper import nms from model.roi_layers import nms import pdb DEBUG = False class _ProposalLayer_FPN(nn.Module): """ Outputs object detection proposals by applying estimated bounding-box transformations to a set of regular boxes (called "anchors"). """ def __init__(self, feat_stride, scales, ratios): super(_ProposalLayer_FPN, self).__init__() self._anchor_ratios = ratios self._feat_stride = feat_stride self._fpn_scales = np.array(cfg.FPN_ANCHOR_SCALES) self._fpn_feature_strides = np.array(cfg.FPN_FEAT_STRIDES) self._fpn_anchor_stride = cfg.FPN_ANCHOR_STRIDE # self._anchors = torch.from_numpy(generate_anchors_all_pyramids(self._fpn_scales, ratios, self._fpn_feature_strides, fpn_anchor_stride)) # self._num_anchors = self._anchors.size(0) def forward(self, input): # Algorithm: # # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) # the first set of _num_anchors channels are bg probs # the second set are the fg probs scores = input[0][:, :, 1] # batch_size x num_rois x 1 bbox_deltas = input[1] # batch_size x num_rois x 4 im_info = input[2] cfg_key = input[3] feat_shapes = input[4] pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE batch_size = bbox_deltas.size(0) anchors = torch.from_numpy(generate_anchors_all_pyramids(self._fpn_scales, self._anchor_ratios, feat_shapes, self._fpn_feature_strides, self._fpn_anchor_stride)).type_as(scores) num_anchors = anchors.size(0) anchors = anchors.view(1, num_anchors, 4).expand(batch_size, num_anchors, 4) # Convert anchors into proposals via bbox transformations proposals = bbox_transform_inv(anchors, bbox_deltas, batch_size) # 2. clip predicted boxes to image proposals = clip_boxes(proposals, im_info, batch_size) # keep_idx = self._filter_boxes(proposals, min_size).squeeze().long().nonzero().squeeze() scores_keep = scores proposals_keep = proposals _, order = torch.sort(scores_keep, 1, True) output = scores.new(batch_size, post_nms_topN, 5).zero_() for i in range(batch_size): # # 3. remove predicted boxes with either height or width < threshold # # (NOTE: convert min_size to input image scale stored in im_info[2]) proposals_single = proposals_keep[i] scores_single = scores_keep[i] # # 4. sort all (proposal, score) pairs by score from highest to lowest # # 5. take top pre_nms_topN (e.g. 6000) order_single = order[i] if pre_nms_topN > 0 and pre_nms_topN < scores_keep.numel(): order_single = order_single[:pre_nms_topN] proposals_single = proposals_single[order_single, :] scores_single = scores_single[order_single].view(-1,1) # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) #keep_idx_i = nms(torch.cat((proposals_single, scores_single), 1), nms_thresh) keep_idx_i = nms(proposals_single, scores_single.squeeze(1), nms_thresh) keep_idx_i = keep_idx_i.long().view(-1) if post_nms_topN > 0: keep_idx_i = keep_idx_i[:post_nms_topN] proposals_single = proposals_single[keep_idx_i, :] scores_single = scores_single[keep_idx_i, :] # padding 0 at the end. num_proposal = proposals_single.size(0) output[i,:,0] = i output[i,:num_proposal,1:] = proposals_single return output def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass def _filter_boxes(self, boxes, min_size): """Remove all boxes with any side smaller than min_size.""" ws = boxes[:, :, 2] - boxes[:, :, 0] + 1 hs = boxes[:, :, 3] - boxes[:, :, 1] + 1 keep = ((ws >= min_size) & (hs >= min_size)) return keep
the-stack_106_23313
#!/usr/bin/env python3.8 # Copyright 2021 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import unittest import tempfile from depfile import DepFile class DepFileTests(unittest.TestCase): """Validate the depfile generation This validates the rebasing behavior using the following imaginary set of files:: /foo/ bar/ baz/ output things/ input_a input_b input_c Assume a CWD of /foo/bar """ expected = "baz/output: \\\n ../input_c \\\n things/input_a \\\n things/input_b\n" def test_specified_cwd(self): output = "/foo/bar/baz/output" input_a = "/foo/bar/things/input_a" input_b = "/foo/bar/things/input_b" input_c = "/foo/input_c" rebased_depfile = DepFile(output, rebase="/foo/bar") rebased_depfile.add_input(input_a) rebased_depfile.add_input(input_b) rebased_depfile.update([input_b, input_c]) self.assertEqual(str(rebased_depfile), DepFileTests.expected) def test_inferred_cwd(self): """Validate the standard behavior, with a mix of absolute and real paths.""" # make the output absolute (from a path relative to the cwd) output = os.path.abspath("baz/output") input_a = os.path.abspath("things/input_a") input_b = "things/input_b" input_c = os.path.abspath("../input_c") depfile = DepFile(output) depfile.update([input_a, input_b, input_c]) self.assertEqual(str(depfile), DepFileTests.expected) def test_depfile_writing(self): depfile = DepFile("/foo/bar/baz/output", rebase="/foo/bar") depfile.update( [ "/foo/bar/things/input_a", "/foo/bar/things/input_b", "/foo/input_c" ]) with tempfile.TemporaryFile('w+') as outfile: # Write out the depfile depfile.write_to(outfile) # Read the contents back in outfile.seek(0) contents = outfile.read() self.assertEqual(contents, DepFileTests.expected) if __name__ == '__main__': unittest.main()
the-stack_106_23314
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2012, Nachi Ueno, NTT MCL, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oslo.config import cfg from neutron.common import topics from neutron.openstack.common import importutils from neutron.openstack.common import log as logging LOG = logging.getLogger(__name__) SG_RPC_VERSION = "1.1" security_group_opts = [ cfg.StrOpt( 'firewall_driver', default='neutron.agent.firewall.NoopFirewallDriver', help=_('Driver for Security Groups Firewall')) ] cfg.CONF.register_opts(security_group_opts, 'SECURITYGROUP') def is_firewall_enabled(): return (cfg.CONF.SECURITYGROUP.firewall_driver != 'neutron.agent.firewall.NoopFirewallDriver') def disable_security_group_extension_if_noop_driver( supported_extension_aliases): if not is_firewall_enabled(): LOG.debug(_('Disabled security-group extension.')) supported_extension_aliases.remove('security-group') class SecurityGroupServerRpcApiMixin(object): """A mix-in that enable SecurityGroup support in plugin rpc.""" def security_group_rules_for_devices(self, context, devices): LOG.debug(_("Get security group rules " "for devices via rpc %r"), devices) return self.call(context, self.make_msg('security_group_rules_for_devices', devices=devices), version=SG_RPC_VERSION, topic=self.topic) class SecurityGroupAgentRpcCallbackMixin(object): """A mix-in that enable SecurityGroup agent support in agent implementations. """ #mix-in object should be have sg_agent sg_agent = None def security_groups_rule_updated(self, context, **kwargs): """Callback for security group rule update. :param security_groups: list of updated security_groups """ security_groups = kwargs.get('security_groups', []) LOG.debug( _("Security group rule updated on remote: %s"), security_groups) self.sg_agent.security_groups_rule_updated(security_groups) def security_groups_member_updated(self, context, **kwargs): """Callback for security group member update. :param security_groups: list of updated security_groups """ security_groups = kwargs.get('security_groups', []) LOG.debug( _("Security group member updated on remote: %s"), security_groups) self.sg_agent.security_groups_member_updated(security_groups) def security_groups_provider_updated(self, context, **kwargs): """Callback for security group provider update.""" LOG.debug(_("Provider rule updated")) self.sg_agent.security_groups_provider_updated() class SecurityGroupAgentRpcMixin(object): """A mix-in that enable SecurityGroup agent support in agent implementations. """ def init_firewall(self): firewall_driver = cfg.CONF.SECURITYGROUP.firewall_driver LOG.debug(_("Init firewall settings (driver=%s)"), firewall_driver) self.firewall = importutils.import_object(firewall_driver) def prepare_devices_filter(self, device_ids): if not device_ids: return LOG.info(_("Preparing filters for devices %s"), device_ids) devices = self.plugin_rpc.security_group_rules_for_devices( self.context, list(device_ids)) with self.firewall.defer_apply(): for device in devices.values(): self.firewall.prepare_port_filter(device) def security_groups_rule_updated(self, security_groups): LOG.info(_("Security group " "rule updated %r"), security_groups) self._security_group_updated( security_groups, 'security_groups') def security_groups_member_updated(self, security_groups): LOG.info(_("Security group " "member updated %r"), security_groups) self._security_group_updated( security_groups, 'security_group_source_groups') def _security_group_updated(self, security_groups, attribute): devices = [] sec_grp_set = set(security_groups) for device in self.firewall.ports.values(): if sec_grp_set & set(device.get(attribute, [])): devices.append(device) if devices: self.refresh_firewall(devices) def security_groups_provider_updated(self): LOG.info(_("Provider rule updated")) self.refresh_firewall() def remove_devices_filter(self, device_ids): if not device_ids: return LOG.info(_("Remove device filter for %r"), device_ids) with self.firewall.defer_apply(): for device_id in device_ids: device = self.firewall.ports.get(device_id) if not device: continue self.firewall.remove_port_filter(device) def refresh_firewall(self, devices=None): LOG.info(_("Refresh firewall rules")) if devices: device_ids = [d['device'] for d in devices] else: device_ids = self.firewall.ports.keys() if not device_ids: LOG.info(_("No ports here to refresh firewall")) return devices = self.plugin_rpc.security_group_rules_for_devices( self.context, device_ids) with self.firewall.defer_apply(): for device in devices.values(): LOG.debug(_("Update port filter for %s"), device['device']) self.firewall.update_port_filter(device) class SecurityGroupAgentRpcApiMixin(object): def _get_security_group_topic(self): return topics.get_topic_name(self.topic, topics.SECURITY_GROUP, topics.UPDATE) def security_groups_rule_updated(self, context, security_groups): """Notify rule updated security groups.""" if not security_groups: return self.fanout_cast(context, self.make_msg('security_groups_rule_updated', security_groups=security_groups), version=SG_RPC_VERSION, topic=self._get_security_group_topic()) def security_groups_member_updated(self, context, security_groups): """Notify member updated security groups.""" if not security_groups: return self.fanout_cast(context, self.make_msg('security_groups_member_updated', security_groups=security_groups), version=SG_RPC_VERSION, topic=self._get_security_group_topic()) def security_groups_provider_updated(self, context): """Notify provider updated security groups.""" self.fanout_cast(context, self.make_msg('security_groups_provider_updated'), version=SG_RPC_VERSION, topic=self._get_security_group_topic())
the-stack_106_23315
import matplotlib as mpl mpl.use('agg') import sys import glob import numpy as np import argparse from time import time import tensorflow as tf from os.path import isfile sys.path.insert(0,'../../unet/tf_unet') import pylab as plt from sklearn.metrics import matthews_corrcoef from mydataprovider import UnetDataProvider as DataProvider from tf_unet import unet from tf_unet import util #from IPython.display import clear_output from utils import * parser = argparse.ArgumentParser() parser.add_argument('--layers', required=False, help='number of layers', type=int, default=3) parser.add_argument('--feat', required=False, help='choose architecture', type=int, default=32) parser.add_argument('--ws', required=False, help='time window', type=int, default=400) parser.add_argument('--nqq', required=False, help='number of Q', type=int, default=1) #parser.add_argument('--train', action="store_true", default=False) parser.add_argument('--test', action="store_true", default=False) parser.add_argument('--ntry', required=True, help='choose architecture', type=str) args = parser.parse_args() layers = args.layers features_root = args.feat ws = args.ws nqq = args.nqq ntry = args.ntry files_list = sorted(glob.glob('../../data/hide/hide_sims_train/calib_1year/*.fits')) #test_files = sorted(glob.glob('../../data/hide/hide_sims_test/calib_1month/*.fits')) test_files = sorted(glob.glob('../../data/hide/hide_sims_valid/*.fits')) #dpt = DataProvider(nx=ws,a_min=0, a_max=200, files=files_list) if ntry=='1': nnn = 5 elif ntry=='2': nnn = 1 else: print('WTF!') exit() threshold = nnn*0.6996 dpt = DataProvider(nx=ws, files=files_list, threshold=threshold, sim='hide', r_freq=300, n_loaded=10, a_min=0, a_max=200, n_class=2) _,nx,ny,_ = dpt(1)[0].shape training_iters = 20 epochs = 5 name = str(layers)+'_'+str(features_root)+'_'+str(nx)+'x'+str(ny)+'_try'+ntry print(name) model_dir = './models/hide_unet_'+name pred_dir = 'predictions/hide_unet_'+name+'/' ch_mkdir(pred_dir) res_file = 'results/hide_unet_'+name ch_mkdir('results') qq0 = 0 if isfile(res_file+'_prop.npy'): qq0 = np.load(res_file+'_prop.npy') qq0 = int(qq0) qq0 = qq0+1 print('The learning will begin from {} q number.'.format(qq0)) nqq = qq0+1 for qq in range(qq0,nqq): print(qq) restore = qq!=0 tf.reset_default_graph() net = unet.Unet(channels=1, n_class=2, layers=layers, features_root=features_root, cost_kwargs=dict(regularizer=0.001)) if not restore: print('') n_variables = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]) print('Number of trainable variables: {:d}'.format(n_variables)) trainer = unet.Trainer(net, batch_size=10, optimizer="momentum", opt_kwargs=dict(momentum=0.2)) path = trainer.train(dpt, model_dir, training_iters=training_iters, epochs=epochs, dropout=0.5, display_step=1000000, restore=restore, prediction_path = 'prediction/'+name) prop = np.array(qq) np.save(res_file+'_prop',prop) if args.test: tf.reset_default_graph() net = unet.Unet(channels=1, n_class=2, layers=layers, features_root=features_root, cost_kwargs=dict(regularizer=0.001)) trainer = unet.Trainer(net, batch_size=10, optimizer="momentum", opt_kwargs=dict(momentum=0.2)) path = trainer.train(dpt, model_dir, training_iters=1, epochs=1, dropout=0.5, display_step=1000000, restore=True, prediction_path = 'prediction/'+name) pr_list = [] roc_list = [] auc_list = [] mcc_list = [] clrs = ['b','r','g','k'] trsh = np.linspace(1,0,100,endpoint=1) for fil in test_files: fname = fil.split('/')[-1] # dp = DataProvider(nx=0,a_min=0, a_max=200, files=[fil]) dp = DataProvider(nx=0, files=[fil], threshold=threshold, sim='hide', r_freq=5, n_loaded=1, a_min=0, a_max=200, n_class=2) data,mask = dp(1) pred,dt = net.predict(model_dir+'/model.cpkt', data,time_it=1) _,kk,jj,_, = pred.shape mask = util.crop_to_shape(mask, pred.shape)[:,:kk,:jj,:] fig, (ax1,ax2,ax3) = plt.subplots(3,1,figsize=(18,8)) ax1.imshow(data[0,:,:,0],aspect='auto') ax2.imshow(mask[0,:,:,1],aspect='auto') ax3.imshow(pred[0,:,:,1],aspect='auto') np.save(pred_dir+fname+'_mask',mask) np.save(pred_dir+fname+'_pred',pred) plt.subplots_adjust(left=0.04, right=0.99, top=0.99, bottom=0.04) plt.savefig(pred_dir+fname+'.jpg',dpi=30) plt.close() y_true = mask[0,:,:,1].reshape(-1).astype(int) y_score = pred[0,:,:,1].reshape(-1) y_score /= y_score.max() recall,precision = prc(y_true, y_score, trsh) pr_list.append(np.stack([recall,precision]).T) fpr,tpr = rocc(y_true, y_score, trsh) roc_list.append(np.stack([fpr,tpr]).T) auc_list.append(np.trapz(tpr, fpr)) mcc_list.append(matthews_corrcoef(y_true, y_score.round())) np.save(res_file+'_pr',np.array(pr_list)) np.save(res_file+'_roc',np.array(roc_list)) np.save(res_file+'_mcc',np.array(mcc_list)) print(np.mean(auc_list),np.mean(mcc_list))
the-stack_106_23316
"""Test Home Assistant logging util methods.""" import asyncio import logging import queue import pytest import homeassistant.util.logging as logging_util from tests.async_mock import patch def test_sensitive_data_filter(): """Test the logging sensitive data filter.""" log_filter = logging_util.HideSensitiveDataFilter("mock_sensitive") clean_record = logging.makeLogRecord({"msg": "clean log data"}) log_filter.filter(clean_record) assert clean_record.msg == "clean log data" sensitive_record = logging.makeLogRecord({"msg": "mock_sensitive log"}) log_filter.filter(sensitive_record) assert sensitive_record.msg == "******* log" async def test_logging_with_queue_handler(): """Test logging with HomeAssistantQueueHandler.""" simple_queue = queue.SimpleQueue() # type: ignore handler = logging_util.HomeAssistantQueueHandler(simple_queue) log_record = logging.makeLogRecord({"msg": "Test Log Record"}) handler.emit(log_record) with pytest.raises(asyncio.CancelledError), patch.object( handler, "enqueue", side_effect=asyncio.CancelledError ): handler.emit(log_record) with patch.object(handler, "emit") as emit_mock: handler.handle(log_record) emit_mock.assert_called_once() with patch.object(handler, "filter") as filter_mock, patch.object( handler, "emit" ) as emit_mock: filter_mock.return_value = False handler.handle(log_record) emit_mock.assert_not_called() with patch.object(handler, "enqueue", side_effect=OSError), patch.object( handler, "handleError" ) as mock_handle_error: handler.emit(log_record) mock_handle_error.assert_called_once() handler.close() assert simple_queue.get_nowait().msg == "Test Log Record" assert simple_queue.empty() async def test_migrate_log_handler(hass): """Test migrating log handlers.""" logging_util.async_activate_log_queue_handler(hass) assert len(logging.root.handlers) == 1 assert isinstance(logging.root.handlers[0], logging_util.HomeAssistantQueueHandler) @pytest.mark.no_fail_on_log_exception async def test_async_create_catching_coro(hass, caplog): """Test exception logging of wrapped coroutine.""" async def job(): raise Exception("This is a bad coroutine") hass.async_create_task(logging_util.async_create_catching_coro(job())) await hass.async_block_till_done() assert "This is a bad coroutine" in caplog.text assert "in test_async_create_catching_coro" in caplog.text
the-stack_106_23318
# -*- coding: utf-8 -*- import warnings from datetime import datetime import time import numpy as np import pandas as pd from numpy.linalg import LinAlgError from scipy.integrate import trapz from lifelines.fitters import BaseFitter from lifelines.utils import ( _get_index, inv_normal_cdf, epanechnikov_kernel, ridge_regression as lr, qth_survival_times, check_for_numeric_dtypes_or_raise, concordance_index, check_nans_or_infs, ConvergenceWarning, normalize, string_justify, _to_list, format_floats, format_p_value, format_exp_floats, survival_table_from_events, StatisticalWarning, CensoringType, ) from lifelines.plotting import set_kwargs_ax class AalenAdditiveFitter(BaseFitter): r""" This class fits the regression model: .. math:: h(t|x) = b_0(t) + b_1(t) x_1 + ... + b_N(t) x_N that is, the hazard rate is a linear function of the covariates with time-varying coefficients. This implementation assumes non-time-varying covariates, see ``TODO: name`` Note ----- This class was rewritten in lifelines 0.17.0 to focus solely on static datasets. There is no guarantee of backwards compatibility. Parameters ----------- fit_intercept: bool, optional (default: True) If False, do not attach an intercept (column of ones) to the covariate matrix. The intercept, :math:`b_0(t)` acts as a baseline hazard. alpha: float, optional (default=0.05) the level in the confidence intervals. coef_penalizer: float, optional (default: 0) Attach a L2 penalizer to the size of the coefficients during regression. This improves stability of the estimates and controls for high correlation between covariates. For example, this shrinks the absolute value of :math:`c_{i,t}`. smoothing_penalizer: float, optional (default: 0) Attach a L2 penalizer to difference between adjacent (over time) coefficients. For example, this shrinks the absolute value of :math:`c_{i,t} - c_{i,t+1}`. Attributes ---------- cumulative_hazards_ : DataFrame The estimated cumulative hazard hazards_ : DataFrame The estimated hazards confidence_intervals_ : DataFrame The lower and upper confidence intervals for the cumulative hazard durations: array The durations provided event_observed: array The event_observed variable provided weights: array The event_observed variable provided """ def __init__(self, fit_intercept=True, alpha=0.05, coef_penalizer=0.0, smoothing_penalizer=0.0): super(AalenAdditiveFitter, self).__init__(alpha=alpha) self.fit_intercept = fit_intercept self.alpha = alpha self.coef_penalizer = coef_penalizer self.smoothing_penalizer = smoothing_penalizer if not (0 < alpha <= 1.0): raise ValueError("alpha parameter must be between 0 and 1.") if coef_penalizer < 0 or smoothing_penalizer < 0: raise ValueError("penalizer parameters must be >= 0.") @CensoringType.right_censoring def fit(self, df, duration_col, event_col=None, weights_col=None, show_progress=False): """ Parameters ---------- Fit the Aalen Additive model to a dataset. Parameters ---------- df: DataFrame a Pandas DataFrame with necessary columns `duration_col` and `event_col` (see below), covariates columns, and special columns (weights). `duration_col` refers to the lifetimes of the subjects. `event_col` refers to whether the 'death' events was observed: 1 if observed, 0 else (censored). duration_col: string the name of the column in DataFrame that contains the subjects' lifetimes. event_col: string, optional the name of the column in DataFrame that contains the subjects' death observation. If left as None, assume all individuals are uncensored. weights_col: string, optional an optional column in the DataFrame, df, that denotes the weight per subject. This column is expelled and not used as a covariate, but as a weight in the final regression. Default weight is 1. This can be used for case-weights. For example, a weight of 2 means there were two subjects with identical observations. This can be used for sampling weights. show_progress: boolean, optional (default=False) Since the fitter is iterative, show iteration number. Returns ------- self: AalenAdditiveFitter self with additional new properties: ``cumulative_hazards_``, etc. Examples -------- >>> from lifelines import AalenAdditiveFitter >>> >>> df = pd.DataFrame({ >>> 'T': [5, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> 'E': [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0], >>> 'var': [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2], >>> 'age': [4, 3, 9, 8, 7, 4, 4, 3, 2, 5, 6, 7], >>> }) >>> >>> aaf = AalenAdditiveFitter() >>> aaf.fit(df, 'T', 'E') >>> aaf.predict_median(df) >>> aaf.print_summary() """ self._time_fit_was_called = datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + " UTC" df = df.copy() self.duration_col = duration_col self.event_col = event_col self.weights_col = weights_col self._n_examples = df.shape[0] X, T, E, weights = self._preprocess_dataframe(df) self.durations = T.copy() self.event_observed = E.copy() self.weights = weights.copy() self._norm_std = X.std(0) # if we included an intercept, we need to fix not divide by zero. if self.fit_intercept: self._norm_std["_intercept"] = 1.0 else: # a _intercept was provided self._norm_std[self._norm_std < 1e-8] = 1.0 self.hazards_, self.cumulative_hazards_, self.cumulative_variance_ = self._fit_model( normalize(X, 0, self._norm_std), T, E, weights, show_progress ) self.hazards_ /= self._norm_std self.cumulative_hazards_ /= self._norm_std self.cumulative_variance_ /= self._norm_std self.confidence_intervals_ = self._compute_confidence_intervals() self._index = self.hazards_.index self._predicted_hazards_ = self.predict_cumulative_hazard(X).iloc[-1].values.ravel() return self def _fit_model(self, X, T, E, weights, show_progress): columns = X.columns index = np.sort(np.unique(T[E])) hazards_, variance_hazards_, stop = self._fit_model_to_data_batch( X.values, T.values, E.values, weights.values, show_progress ) hazards = pd.DataFrame(hazards_, columns=columns, index=index).iloc[:stop] cumulative_hazards_ = hazards.cumsum() cumulative_variance_hazards_ = ( pd.DataFrame(variance_hazards_, columns=columns, index=index).iloc[:stop].cumsum() ) return hazards, cumulative_hazards_, cumulative_variance_hazards_ def _fit_model_to_data_batch(self, X, T, E, weights, show_progress): n, d = X.shape # we are mutating values of X, so copy it. X = X.copy() # iterate over all the unique death times unique_death_times = np.sort(np.unique(T[E])) n_deaths = unique_death_times.shape[0] total_observed_exits = 0 hazards_ = np.zeros((n_deaths, d)) variance_hazards_ = np.zeros((n_deaths, d)) v = np.zeros(d) start = time.time() W = np.sqrt(weights) X = W[:, None] * X for i, t in enumerate(unique_death_times): exits = T == t deaths = exits & E try: v, V = lr(X, W * deaths, c1=self.coef_penalizer, c2=self.smoothing_penalizer, offset=v, ix=deaths) except LinAlgError: warnings.warn( "Linear regression error at index=%d, time=%.3f. Try increasing the coef_penalizer value." % (i, t), ConvergenceWarning, ) v = np.zeros_like(v) V = np.zeros_like(V) hazards_[i, :] = v variance_hazards_[i, :] = (V ** 2).sum(1) X[exits, :] = 0 if show_progress and i % int((n_deaths / 10)) == 0: print("\rIteration %d/%d, seconds_since_start = %.2f" % (i + 1, n_deaths, time.time() - start), end="") last_iteration = i + 1 # terminate early when there are less than (3 * d) subjects left, where d does not include the intercept. # the value 3 if from R survival lib. if (3 * (d - 1)) >= n - total_observed_exits: if show_progress: print("Terminating early due to too few subjects remaining. This is expected behaviour.") break total_observed_exits += exits.sum() if show_progress: print("Convergence completed.") return hazards_, variance_hazards_, last_iteration def _preprocess_dataframe(self, df): n, _ = df.shape df = df.sort_values(by=self.duration_col) # Extract time and event T = df.pop(self.duration_col) E = df.pop(self.event_col) if (self.event_col is not None) else pd.Series(np.ones(n), index=df.index, name="E") W = ( df.pop(self.weights_col) if (self.weights_col is not None) else pd.Series(np.ones((n,)), index=df.index, name="weights") ) # check to make sure their weights are okay if self.weights_col: if (W.astype(int) != W).any(): warnings.warn( """It appears your weights are not integers, possibly propensity or sampling scores then? It's important to know that the naive variance estimates of the coefficients are biased." """, StatisticalWarning, ) if (W <= 0).any(): raise ValueError("values in weight column %s must be positive." % self.weights_col) X = df.astype(float) T = T.astype(float) check_nans_or_infs(E) E = E.astype(bool) self._check_values(df, T, E) if self.fit_intercept: assert ( "_intercept" not in df.columns ), "_intercept is an internal lifelines column, please rename your column first." X["_intercept"] = 1.0 return X, T, E, W def predict_cumulative_hazard(self, X): """ Returns the hazard rates for the individuals Parameters ---------- X: a (n,d) covariate numpy array or DataFrame. If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data. """ n = X.shape[0] X = X.astype(float) cols = _get_index(X) if isinstance(X, pd.DataFrame): order = self.cumulative_hazards_.columns order = order.drop("_intercept") if self.fit_intercept else order X_ = X[order].values elif isinstance(X, pd.Series): return self.predict_cumulative_hazard(X.to_frame().T) else: X_ = X X_ = X_ if not self.fit_intercept else np.c_[X_, np.ones((n, 1))] timeline = self._index individual_cumulative_hazards_ = pd.DataFrame( np.dot(self.cumulative_hazards_, X_.T), index=timeline, columns=cols ) return individual_cumulative_hazards_ def _check_values(self, X, T, E): check_for_numeric_dtypes_or_raise(X) check_nans_or_infs(T) check_nans_or_infs(X) def predict_survival_function(self, X, times=None): """ Returns the survival functions for the individuals Parameters ---------- X: a (n,d) covariate numpy array or DataFrame If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data. times: Not implemented yet """ return np.exp(-self.predict_cumulative_hazard(X)) def predict_percentile(self, X, p=0.5): """ Returns the median lifetimes for the individuals. http://stats.stackexchange.com/questions/102986/percentile-loss-functions Parameters ---------- X: a (n,d) covariate numpy array or DataFrame If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data. p: float default: 0.5 """ index = _get_index(X) return qth_survival_times(p, self.predict_survival_function(X)[index]).T def predict_median(self, X): """ Parameters ---------- X: a (n,d) covariate numpy array or DataFrame If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data. Returns the median lifetimes for the individuals """ return self.predict_percentile(X, 0.5) def predict_expectation(self, X): """ Compute the expected lifetime, E[T], using covariates X. Parameters ---------- X: a (n,d) covariate numpy array or DataFrame If a DataFrame, columns can be in any order. If a numpy array, columns must be in the same order as the training data. Returns the expected lifetimes for the individuals """ index = _get_index(X) t = self._index return pd.DataFrame(trapz(self.predict_survival_function(X)[index].values.T, t), index=index) def _compute_confidence_intervals(self): ci = 100 * (1 - self.alpha) z = inv_normal_cdf(1 - self.alpha / 2) std_error = np.sqrt(self.cumulative_variance_) return pd.concat( { "%g%% lower-bound" % ci: self.cumulative_hazards_ - z * std_error, "%g%% upper-bound" % ci: self.cumulative_hazards_ + z * std_error, } ) def plot(self, columns=None, loc=None, iloc=None, **kwargs): """" A wrapper around plotting. Matplotlib plot arguments can be passed in, plus: Parameters ----------- columns: string or list-like, optional If not empty, plot a subset of columns from the ``cumulative_hazards_``. Default all. loc: iloc: slice, optional specify a location-based subsection of the curves to plot, ex: ``.plot(iloc=slice(0,10))`` will plot the first 10 time points. """ from matplotlib import pyplot as plt assert loc is None or iloc is None, "Cannot set both loc and iloc in call to .plot" def shaded_plot(ax, x, y, y_upper, y_lower, **kwargs): base_line, = ax.plot(x, y, drawstyle="steps-post", **kwargs) ax.fill_between(x, y_lower, y2=y_upper, alpha=0.25, color=base_line.get_color(), linewidth=1.0, step="post") def create_df_slicer(loc, iloc): get_method = "loc" if loc is not None else "iloc" if iloc is None and loc is None: user_submitted_ix = slice(0, None) else: user_submitted_ix = loc if loc is not None else iloc return lambda df: getattr(df, get_method)[user_submitted_ix] subset_df = create_df_slicer(loc, iloc) if not columns: columns = self.cumulative_hazards_.columns else: columns = _to_list(columns) set_kwargs_ax(kwargs) ax = kwargs.pop("ax") x = subset_df(self.cumulative_hazards_).index.values.astype(float) for column in columns: ci = (1 - self.alpha) * 100 y = subset_df(self.cumulative_hazards_[column]).values index = subset_df(self.cumulative_hazards_[column]).index y_upper = subset_df(self.confidence_intervals_[column].loc["%g%% upper-bound" % ci]).values y_lower = subset_df(self.confidence_intervals_[column].loc["%g%% lower-bound" % ci]).values shaded_plot(ax, x, y, y_upper, y_lower, label=column, **kwargs) plt.hlines(0, index.min() - 1, index.max(), color="k", linestyles="--", alpha=0.5) ax.legend() return ax def smoothed_hazards_(self, bandwidth=1): """ Using the epanechnikov kernel to smooth the hazard function, with sigma/bandwidth """ timeline = self._index.values return pd.DataFrame( np.dot(epanechnikov_kernel(timeline[:, None], timeline, bandwidth), self.hazards_.values), columns=self.hazards_.columns, index=timeline, ) @property def score_(self): """ The concordance score (also known as the c-index) of the fit. The c-index is a generalization of the ROC AUC to survival data, including censorships. For this purpose, the ``score_`` is a measure of the predictive accuracy of the fitted model onto the training dataset. It's analogous to the R^2 in linear models. """ # pylint: disable=access-member-before-definition if hasattr(self, "_predicted_hazards_"): self._concordance_score_ = concordance_index(self.durations, -self._predicted_hazards_, self.event_observed) del self._predicted_hazards_ return self._concordance_score_ return self._concordance_score_ def _compute_slopes(self): def _univariate_linear_regression_without_intercept(X, Y, weights): # normally (weights * X).dot(Y) / X.dot(weights * X), but we have a slightly different form here. beta = X.dot(Y) / X.dot(weights * X) errors = Y.values - np.outer(X, beta) var = (errors ** 2).sum(0) / (Y.shape[0] - 2) / X.dot(weights * X) return beta, np.sqrt(var) weights = survival_table_from_events(self.durations, self.event_observed).loc[self._index, "at_risk"].values y = (weights[:, None] * self.hazards_).cumsum() X = self._index.values betas, se = _univariate_linear_regression_without_intercept(X, y, weights) return pd.Series(betas, index=y.columns), pd.Series(se, index=y.columns) @property def summary(self): """Summary statistics describing the fit. Returns ------- df : DataFrame """ df = pd.DataFrame(index=self.cumulative_hazards_.columns) betas, se = self._compute_slopes() df["slope(coef)"] = betas df["se(slope(coef))"] = se return df def print_summary(self, decimals=2, **kwargs): """ Print summary statistics describing the fit, the coefficients, and the error bounds. Parameters ----------- decimals: int, optional (default=2) specify the number of decimal places to show kwargs: print additional meta data in the output (useful to provide model names, dataset names, etc.) when comparing multiple outputs. """ # Print information about data first justify = string_justify(18) print(self) print("{} = '{}'".format(justify("duration col"), self.duration_col)) print("{} = '{}'".format(justify("event col"), self.event_col)) if self.weights_col: print("{} = '{}'".format(justify("weights col"), self.weights_col)) if self.coef_penalizer > 0: print("{} = '{}'".format(justify("coef penalizer"), self.coef_penalizer)) if self.smoothing_penalizer > 0: print("{} = '{}'".format(justify("smoothing penalizer"), self.smoothing_penalizer)) print("{} = {}".format(justify("number of subjects"), self._n_examples)) print("{} = {}".format(justify("number of events"), self.event_observed.sum())) print("{} = {}".format(justify("time fit was run"), self._time_fit_was_called)) for k, v in kwargs.items(): print("{} = {}\n".format(justify(k), v)) print(end="\n") print("---") df = self.summary print( df.to_string( float_format=format_floats(decimals), formatters={"p": format_p_value(decimals), "exp(coef)": format_exp_floats(decimals)}, ) ) # Significance code explanation print("---") print("Concordance = {:.{prec}f}".format(self.score_, prec=decimals))
the-stack_106_23319
#!/usr/bin/env python3 import copy import nose.tools as nose from cachesimulator.cache import Cache class TestSetBlock(object): """set_block should behave correctly in all cases""" def reset(self): self.cache = Cache({ '010': [ {'tag': '1000'}, {'tag': '1100'}, {'tag': '1101'}, {'tag': '1110'} ] }) self.recently_used_addrs = [ ('100', '1100'), ('010', '1101'), ('010', '1110') ] self.new_entry = {'tag': '1111'} def test_empty_set(self): """set_block should add new block if index set is empty""" self.reset() self.cache['010'][:] = [] self.cache.recently_used_addrs = [] self.cache.set_block( replacement_policy='lru', num_blocks_per_set=4, addr_index='010', new_entry=self.new_entry) nose.assert_equal(self.cache, { '010': [{'tag': '1111'}] }) def test_lru_replacement(self): """set_block should perform LRU replacement as needed""" self.reset() self.cache.recently_used_addrs = self.recently_used_addrs self.cache.set_block( replacement_policy='lru', num_blocks_per_set=4, addr_index='010', new_entry=self.new_entry) nose.assert_equal(self.cache, { '010': [ {'tag': '1000'}, {'tag': '1100'}, {'tag': '1111'}, {'tag': '1110'} ] }) def test_mru_replacement(self): """set_block should optionally perform MRU replacement as needed""" self.reset() self.cache.recently_used_addrs = self.recently_used_addrs self.cache.set_block( replacement_policy='mru', num_blocks_per_set=4, addr_index='010', new_entry=self.new_entry) nose.assert_equal(self.cache, { '010': [ {'tag': '1000'}, {'tag': '1100'}, {'tag': '1101'}, {'tag': '1111'} ] }) def test_no_replacement(self): """set_block should not perform replacement if there are no recents""" self.reset() original_cache = copy.deepcopy(self.cache) self.cache.recently_used_addrs = [] self.cache.set_block( replacement_policy='lru', num_blocks_per_set=4, addr_index='010', new_entry=self.new_entry) nose.assert_is_not(self.cache, original_cache) nose.assert_equal(self.cache, original_cache)
the-stack_106_23320
import torch import torch.nn as nn # OPS is a set of layers with same input/output channel. OPS = { 'none': lambda C, stride, affine: Zero(stride), 'avg_pool_3x3': lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False), 'max_pool_3x3': lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1), 'skip_connect': lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine), 'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine), 'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine), 'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine), 'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine), 'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine), 'conv_7x1_1x7': lambda C, stride, affine: nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C, C, (1, 7), stride=(1, stride), padding=(0, 3), bias=False), nn.Conv2d(C, C, (7, 1), stride=(stride, 1), padding=(3, 0), bias=False), nn.BatchNorm2d(C, affine=affine) ), } class ReLUConvBN(nn.Module): """ Stack of relu-conv-bn """ def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): """ :param C_in: :param C_out: :param kernel_size: :param stride: :param padding: :param affine: """ super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.op(x) class DilConv(nn.Module): """ relu-dilated conv-bn """ def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True): """ :param C_in: :param C_out: :param kernel_size: :param stride: :param padding: 2/4 :param dilation: 2 :param affine: """ super(DilConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x): return self.op(x) class SepConv(nn.Module): """ implemented separate convolution via pytorch groups parameters """ def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): """ :param C_in: :param C_out: :param kernel_size: :param stride: :param padding: 1/2 :param affine: """ super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_in, affine=affine), nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x): return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): """ zero by stride """ def __init__(self, stride): super(Zero, self).__init__() self.stride = stride def forward(self, x): if self.stride == 1: return x.mul(0.) return x[:, :, ::self.stride, ::self.stride].mul(0.) class FactorizedReduce(nn.Module): """ reduce feature maps height/width by half while keeping channel same """ def __init__(self, C_in, C_out, affine=True): """ :param C_in: :param C_out: :param affine: """ super(FactorizedReduce, self).__init__() assert C_out % 2 == 0 self.relu = nn.ReLU(inplace=False) # this conv layer operates on even pixels to produce half width, half channels self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) # this conv layer operates on odd pixels (because of code in forward()) to produce half width, half channels self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x): x = self.relu(x) # x: torch.Size([32, 32, 32, 32]) # conv1: [b, c_out//2, d//2, d//2] # conv2: [] # out: torch.Size([32, 32, 16, 16]) # concate two half channels to produce same number of channels as before but with output as only half the width out = torch.cat([self.conv_1(x), self.conv_2(x[:, :, 1:, 1:])], dim=1) out = self.bn(out) return out
the-stack_106_23322
""" cluster_toolkit is a module for computing galaxy cluster models. """ import cffi import glob import os import numpy as np __author__ = "Tom McClintock <[email protected]>" cluster_toolkit_dir = os.path.dirname(__file__) include_dir = os.path.join(cluster_toolkit_dir,'include') lib_file = os.path.join(cluster_toolkit_dir,'_cluster_toolkit.so') # Some installation (e.g. Travis with python 3.x) # name this e.g. _cluster_toolkit.cpython-34m.so, # so if the normal name doesn't exist, look for something else. # Note: we ignore this if we are building the docs on RTD on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not os.path.exists(lib_file) and not on_rtd: alt_files = glob.glob(os.path.join(os.path.dirname(__file__),'_cluster_toolkit*.so')) if len(alt_files) == 0: raise IOError("No file '_cluster_toolkit.so' found in %s"%cluster_toolkit_dir) if len(alt_files) > 1: raise IOError("Multiple files '_cluster_toolkit*.so' found in %s: %s"%(cluster_toolkit_dir,alt_files)) lib_file = alt_files[0] _ffi = cffi.FFI() for file_name in glob.glob(os.path.join(include_dir, '*.h')): _ffi.cdef(open(file_name).read()) _ffi.cdef('const char * gsl_strerror(const int gsl_errno);') _lib = _ffi.dlopen(lib_file) _lib.gsl_set_error_handler_off() def _handle_gsl_error(err, fn): if err != 0: msg = _ffi.string(_lib.gsl_strerror(err)) raise Exception('GSL error in function {}: {}'.format(fn.__name__, msg)) class _ArrayWrapper: def __init__(self, obj, name=None, allow_multidim=False): self.arr = np.require(obj, dtype=np.float64, requirements=['C_CONTIGUOUS']) self.scalar = self.arr.ndim == 0 self.ndim = self.arr.ndim self.shape = self.arr.shape if (self.ndim > 1) and not allow_multidim: if name is not None: raise ValueError('{} cannot be >1 dim'.format(name)) raise ValueError('array cannot be >1 dim') def cast(self): return _ffi.cast('double*', self.arr.ctypes.data) def finish(self): if self.scalar: return self.arr[()] return self.arr def __len__(self): if self.scalar: return 1 return self.arr.size @classmethod def zeros_like(cls, obj): if isinstance(obj, _ArrayWrapper): return cls(np.zeros_like(obj.arr)) return cls(np.zeros_like(obj)) @classmethod def zeros(cls, shape): return cls(np.zeros(shape, dtype=np.double)) @classmethod def ones_like(cls, obj): return cls(np.ones_like(obj)) @classmethod def ones(cls, shape): return cls(np.ones(shape, dtype=np.double)) from . import averaging, bias, boostfactors, concentration, deltasigma, density, exclusion, massfunction, miscentering, peak_height, profile_derivatives, sigma_reconstruction, xi
the-stack_106_23323
import re class Star: def __init__(self, x, y, dx, dy): # print(x, y, dx, dy) self.x = int(x) self.y = int(y) self.dx = int(dx) self.dy = int(dy) def step(self): self.x += self.dx self.y += self.dy def __repr__(self): return 'x={} y={}'.format(self.x, self.y) stars = [] def make_grid(grid_min, s): min_x = min(stars, key=lambda star: star.x).x max_x = max(stars, key=lambda star: star.x).x min_y = min(stars, key=lambda star: star.y).y max_y = max(stars, key=lambda star: star.y).y # print(min_x, max_x, min_y, max_y) if s == 10144: star_list = [['.' for y in range(max_y + 1)] for x in range(max_x + 1)] for star in stars: star_list[star.x][star.y] = '#' for row in range(len(star_list) - 1, 0, -1): print(star_list[row][100:]) print(min_x, max_x, min_y, max_y) temp_min = abs(min_x - max_x) * abs(min_y - max_y) # print(temp_min) if temp_min < grid_min[0]: grid_min[0] = temp_min grid_min[1] = s return grid_min with open('input.txt', 'r') as f: data = f.read().splitlines() for line in data: stars.append( Star(*re.match('position=<\s*(-?\d*),\s*(-?\d*)>\s*velocity=<\s*(-?\d*),\s*(-?\d*)>', line).groups())) grid_min = [10000000000, 0] for s in range(10200): grid_min = make_grid(grid_min, s) for star in stars: star.step() print(grid_min)
the-stack_106_23324
import numpy as np import tensorflow as tf from tensorflow.contrib import rnn import random import collections import time from tensorflow.python.ops import array_ops from tensorflow.contrib.rnn.python.ops import rnn_cell from tensorflow.python.ops import variable_scope from tensorflow.python.ops import init_ops from tensorflow.contrib.rnn import GRUCell from org.mk.training.dl.common import input_one_hot from org.mk.training.dl.util import get_rel_save_file import sys # data I/O train_file=sys.argv[1] data = open(train_file, 'r').read() # Parameters learning_rate = 0.001 #training_iters = 50000 training_iters = 200 display_step = 100 n_input = 3 # number of units in RNN cell n_hidden = 5 rnd=np.random.RandomState(42) def read_data(fname): with open(fname) as f: data = f.readlines() data = [x.strip() for x in data] data = [data[i].lower().split() for i in range(len(data))] data = np.array(data) data = np.reshape(data, [-1, ]) return data train_data = read_data(train_file) def build_dataset(words): count = collections.Counter(words).most_common() dictionary = dict() sortedwords=sorted(set(words)) for i,word in enumerate(sortedwords): dictionary[word] = i reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return dictionary, reverse_dictionary dictionary, reverse_dictionary = build_dataset(train_data) vocab_size = len(dictionary) # Place holder for Mini batch input output x = tf.placeholder("float", [None, n_input, vocab_size]) y = tf.placeholder("float", [None, vocab_size]) # RNN output node weights and biases weights = { 'out': tf.Variable([[-0.09588283, -2.2044923 , -0.74828255, 0.14180686, -0.32083616, -0.9444244 , 0.06826905, -0.9728962 , -0.18506959, 1.0618515 ], [ 1.156649 , 3.2738173 , -1.2556943 , -0.9079511 , -0.82127047, -1.1448543 , -0.60807484, -0.5885713 , 1.0378786 , -0.7088431 ], [ 1.006477 , 0.28033388, -0.1804534 , 0.8093307 , -0.36991575, 0.29115433, -0.01028167, -0.7357091 , 0.92254084, -0.10753923], [ 0.19266959, 0.6108299 , 2.2495654 , 1.5288974 , 1.0172302 , 1.1311738 , 0.2666629 , -0.30611828, -0.01412263, 0.44799015], [ 0.19266959, 0.6108299 , 2.2495654 , 1.5288974 , 1.0172302 , 1.1311738 , 0.2666629 , -0.30611828, -0.01412263, 0.44799015]] ) } biases = { 'out': tf.Variable([ 0.1458478 , -0.3660951 , -2.1647317 , -1.9633691 , -0.24532059, 0.14005205, -1.0961286 , -0.43737876, 0.7028531 , -1.8481724 ] ) } #works with 2 dimension hence easy but not optimal """ def RNN(x, weights, biases): with variable_scope.variable_scope( "other", initializer=init_ops.constant_initializer(0.1)) as vs: x = tf.unstack(x, n_input, 1) cell = rnn_cell.LayerNormBasicLSTMCell(n_hidden, layer_norm=False) outputs, states = rnn.static_rnn(cell, x, dtype=tf.float32) return tf.matmul(outputs[-1], weights['out']) + biases['out'],outputs,states,weights['out'],biases['out'] """ #Same as above #works with 3 dimensions. Line 112 takes care of extracting last (h*wy=by) in 2 dimensions def RNN(x, weights, biases): with variable_scope.variable_scope( "other", initializer=init_ops.constant_initializer(0.1)) as vs: cell = rnn_cell.LayerNormBasicLSTMCell(n_hidden, layer_norm=False) outputs, states = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32) return tf.expand_dims(tf.matmul(outputs[-1] , weights['out'])[-1],0) + biases['out'],outputs[-1],states,weights['out'],biases['out'] pred,output,state,weights_out,biases_out = RNN(x, weights, biases) # Loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) grads_and_vars_tf_style = optimizer.compute_gradients(cost) train_tf_style = optimizer.apply_gradients(grads_and_vars_tf_style) # Model evaluation correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) global_step = tf.Variable(0, name='global_step', trainable=False) # Initializing the variables init = tf.global_variables_initializer() projectdir="rnn_words" start_time = time.time() def elapsed(sec): if sec<60: return str(sec) + " sec" elif sec<(60*60): return str(sec/60) + " min" else: return str(sec/(60*60)) + " hr" # Launch the graph saver = tf.train.Saver(max_to_keep=200) with tf.Session() as session: session.run(init) step = 0 offset =2 end_offset = n_input + 1 acc_total = 0 loss_total = 0 print ("offset:",offset) summary_writer = tf.summary.FileWriter(get_rel_save_file(projectdir),graph=session.graph) while step < training_iters: if offset > (len(train_data)-end_offset): offset = rnd.randint(0, n_input+1) print("offset:", offset) symbols_in_keys = [ input_one_hot(dictionary[ str(train_data[i])],vocab_size) for i in range(offset, offset+n_input) ] symbols_in_keys = np.reshape(np.array(symbols_in_keys), [-1, n_input,vocab_size]) symbols_out_onehot=input_one_hot(dictionary[str(train_data[offset+n_input])],vocab_size) symbols_out_onehot = np.reshape(symbols_out_onehot,[1,-1]) tfgrads_and_vars_tf_style, _,acc, loss, onehot_pred,tfoutput,tfstate,tfout_weights,tfbiases_out = session.run([grads_and_vars_tf_style,train_tf_style, accuracy, cost, pred,output,state,weights_out,biases_out], \ feed_dict={x: symbols_in_keys, y: symbols_out_onehot}) loss_total += loss acc_total += acc print("tfoutput:",tfoutput," tfstate:",tfstate) print("onehot_pred:",onehot_pred) print("loss:",loss) print("tfgrads_and_vars_tf_style:",tfgrads_and_vars_tf_style) if (step+1) % display_step == 0: print("Iter= " + str(step+1) + ", Average Loss= " + \ "{:.6f}".format(loss_total/display_step) + ", Average Accuracy= " + \ "{:.2f}%".format(100*acc_total/display_step)) acc_total = 0 loss_total = 0 symbols_in = [train_data[i] for i in range(offset, offset + n_input)] symbols_out = train_data[offset + n_input] symbols_out_pred = reverse_dictionary[int(tf.argmax(onehot_pred, 1).eval())] saver.save(session, get_rel_save_file(projectdir)+ '%04d' % (step+1), global_step=global_step) print("%s - Actual word:[%s] vs Predicted word:[%s]" % (symbols_in,symbols_out,symbols_out_pred)) step += 1 offset += (n_input+1) print("Optimization Finished!") print("Elapsed time: ", elapsed(time.time() - start_time))
the-stack_106_23325
from typing import Optional, Tuple, Union from fibo.consensus.pot_iterations import calculate_ip_iters, calculate_iterations_quality, calculate_sp_iters from fibo.types.blockchain_format.reward_chain_block import RewardChainBlock, RewardChainBlockUnfinished from fibo.types.blockchain_format.sized_bytes import bytes32 from fibo.util.ints import uint64 def iters_from_block( constants, reward_chain_block: Union[RewardChainBlock, RewardChainBlockUnfinished], sub_slot_iters: uint64, difficulty: uint64, ) -> Tuple[uint64, uint64]: if reward_chain_block.challenge_chain_sp_vdf is None: assert reward_chain_block.signage_point_index == 0 cc_sp: bytes32 = reward_chain_block.pos_ss_cc_challenge_hash else: cc_sp = reward_chain_block.challenge_chain_sp_vdf.output.get_hash() quality_string: Optional[bytes32] = reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, reward_chain_block.pos_ss_cc_challenge_hash, cc_sp, ) assert quality_string is not None required_iters: uint64 = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, quality_string, reward_chain_block.proof_of_space.size, difficulty, cc_sp, ) return ( calculate_sp_iters(constants, sub_slot_iters, reward_chain_block.signage_point_index), calculate_ip_iters( constants, sub_slot_iters, reward_chain_block.signage_point_index, required_iters, ), )
the-stack_106_23326
from typing import Tuple, List class O_equationset: """ the equationset as given by equation (4) defined by different non-negative integers """ def __init__(self, l: int, W: int, a_i: List[int], b_i: List[int]): self.l = l self.W = W self.a_i = a_i self.b_i = b_i def __contains__(self, item): """ check whether the O_equationset contains item :param item: the item to check :return: bool """ if item < self.l: return False for a in self.a_i: if (item - a) % self.W == 0: return False for b in self.b_i: if item == b: return False return True class Un: """ the complete representation of Un required in the BoundedCoverWObstacles sub-routine """ def __init__(self, g, complement): """ Initialize U_0 by using it's complement, the complement is given as a set of closures :param g: the graph :param complement: the complement of U_n, i.e. a list of bounded chains """ self.O_i = set() # Where we add the trivial q-residue classes self.O_i2 = dict() # Where we add the non-trivial q-residue classes in a dict node -> dict(cycle-> O_i) # for cycle in cycles: # Loop over all cycles # W = cycle[1] # Get the weight of each cycle # for node in cycle[0][:-1]: # loop over each (unique) node in the cycle for node in g.nodes_in_cycles: W = node.optimal_cycle[1] if node not in self.O_i2: # initialise the node in the O_i2 dict if not yet done self.O_i2[node] = dict() # generate all values nescessary to generate the various values l = node.minimal_cyclable a_i = [] other_O_is = dict() for closure in complement[node]: # go over each bounded chain in the complement if closure.step == W: a_i.append(closure.minVal % W) other_O_is[closure.minVal % W] = max(closure.maxVal + W, 0 if other_O_is.get(closure.minVal % W) is None else other_O_is[closure.minVal % W]) O_i = O_equationset(l, W, a_i, []) self.O_i.add((node, O_i)) for closure in other_O_is: bc = list(a_i) bc.remove(closure) O_i = O_equationset(other_O_is[closure], W, bc, []) self.O_i2[node][closure] = O_i def add_residue_class(self, O: O_equationset) -> None: """ add a O_equationset to the O_s set :param O: the O_equationset :return: """ self.O_i.add(O) def __contains__(self, item: Tuple) -> bool: """ return True if item is in any if the O_equationsets :param item: the item (tuple of node, value) for which we check whether we contain it :return: bool True if contains False otherwhise """ for o in self.O_i: if item[0] != o[0]: continue if item[1] in o[1]: return True if item[0] not in self.O_i2: return False for attempt in self.O_i2[item[0]]: if item in self.O_i2[item[0]][attempt]: return True # if item[1] % attempt[1] in self.O_i2[item[0]][attempt]: # if item[1] in self.O_i2[item[0]][attempt][item[1] % attempt[1]]: # return True return False def list_O_i(self) -> list: """ :return: a list of all O_is in our U_n object """ return_val = list(self.O_i) for node in self.O_i2: for a_i in self.O_i2[node]: return_val.append((node, self.O_i2[node][a_i])) return return_val def edit_non_triv_q_residueclass(self, node, W, allowed_a_i, new_minval, all_chains): """ edit a non-trivial residue class (possibly allowing more values to be seen) :param node: the node for which the residue class needs to be edited :param W: the weight of the class :param allowed_a_i: the allowed a_i from the non-triv q-res classes for this specific chain :param new_minval: the new minimal value allowed :param all_chains: a list of all (currently) bounded chains :return:the newly edited q-residue class in form of an O_equationset """ if node.optimal_cycle[1] == W: if allowed_a_i in self.O_i2[node]: new_minval2 = min(new_minval, self.O_i2[node][allowed_a_i].l) new_bi = [] for chain in all_chains: if chain.step == W and chain.minVal >= new_minval2: new_bi += chain.get_index_list(0, chain.len()) new_oi = O_equationset(new_minval2, W, self.O_i2[node][allowed_a_i].a_i, new_bi) self.O_i2[node][allowed_a_i] = new_oi return new_oi
the-stack_106_23330
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import json import re from india.geo.districts import IndiaDistrictsMapper class WaterQualityBase(): """ Base class to import and preprocess data files, generate mcf and tmcf files for Ground Water and Surface Water quality datasets. Args: dataset_name (str): name of the dataset import util_names (str): name of the corresponding data csv and json file template_strings (dict): dictionary with mcf/tmcf node templates Attributes: dataset_name, util_names, module_dir, template_strings """ def __init__(self, dataset_name, util_names, template_strings): self.dataset_name = dataset_name self.util_names = util_names self.module_dir = os.path.dirname(__file__) self.solute_mcf = template_strings['solute_mcf'] assert self.solute_mcf != "" self.solute_tmcf = template_strings['solute_tmcf'] assert self.solute_tmcf != "" self.chemprop_mcf = template_strings['chemprop_mcf'] assert self.chemprop_mcf != "" self.chemprop_tmcf = template_strings['chemprop_tmcf'] assert self.chemprop_tmcf != "" self.site_dcid = template_strings['site_dcid'] assert self.site_dcid != "" self.unit_node = template_strings['unit_node'] assert self.unit_node != "" def _drop_all_empty_rows(self, df): """ Helper method to drop rows with all empty values. Some rows in df can have just place names and latlong without any water quality data. Those rows are dropped here. """ # Calculating maximum number of empty values in a row max_na = self.df.notnull().sum(axis=1).min() max_na += 2 # to account for empty lat and long columns return df.dropna(thresh=max_na) def _map_district_to_lgdcodes(self, mapper, state, district): try: return mapper.get_district_name_to_lgd_code_mapping(state, district) except Exception: return district def create_dcids_in_csv(self): """ Method to map the district names to LGD District Codes Mapped codes are used to create dcids for water quality stations Format of dcid for a station: 'india_wris/<lgd_code_of_district>_<name_of_station>' Example: 'india_wris/579_Velanganni' for Velanganni station in Nagercoil, Tamil Nadu, India """ self.df = pd.read_csv( os.path.join(self.module_dir, 'data/{}.csv'.format(self.util_names))) self.df = self._drop_all_empty_rows(self.df) # Mapping district names to LGD Codes mapper = IndiaDistrictsMapper() df_map = self.df[['StateName', 'DistrictName']].drop_duplicates().dropna() df_map['DistrictCode'] = df_map.apply( lambda x: self._map_district_to_lgdcodes(mapper, x['StateName'], x[ 'DistrictName']), axis=1) # Merging LGD codes with original df and creating dcids self.df = self.df.merge(df_map.drop('StateName', axis=1), on='DistrictName', how='left') self.df['dcid'] = self.df.apply(lambda x: ''.join([ 'india_wris/', str(x['DistrictCode']), '_', ''.join( re.split('\W+', x['Station Name'])) ]), axis=1) # Saving the df with codes and dcids in `csv_save_path` csv_save_path = os.path.join(self.module_dir, '{}'.format(self.dataset_name), "{}.csv".format(self.dataset_name)) self.df.to_csv(csv_save_path, index=None) def create_mcfs(self): """ Method to create MCF and TMCF files for the data Template strings are found inside preprocess.py files """ # Defining paths for files json_file_path = os.path.join(self.module_dir, "util/{}.json".format(self.util_names)) tmcf_file = os.path.join(self.module_dir, '{}'.format(self.dataset_name), "{}.tmcf".format(self.dataset_name)) mcf_file = os.path.join(self.module_dir, '{}'.format(self.dataset_name), "{}.mcf".format(self.dataset_name)) ## Importing water quality indices from util/ with open(json_file_path, 'r') as j: properties = json.loads(j.read()) pollutants, chem_props = properties idx = 2 # StatVarObs start from E2; E0 and E1 are location nodes ## Writing MCF and TMCF files with open(mcf_file, 'w') as mcf, open(tmcf_file, 'w') as tmcf: # Writing TMCF Location Nodes tmcf.write(self.site_dcid.format(dataset_name=self.dataset_name)) # Pollutant nodes are written first for pollutant in pollutants['Pollutant']: name = pollutant['name'] statvar = pollutant['statvar'] unit = pollutant['unit'] # Writing MCF Node mcf.write(self.solute_mcf.format(variable=statvar)) # Writing TMCF Property Node tmcf.write( self.solute_tmcf.format(dataset_name=self.dataset_name, index=idx, variable=statvar, name=name)) # If unit is available for a StatVar, unit is written in TMCF if unit: tmcf.write(self.unit_node.format(unit=unit)) # else, unit is omitted from the node else: tmcf.write('\n') idx += 1 # Chemical properties are written second for chem_prop in chem_props['ChemicalProperty']: name = chem_prop['name'] statvar = chem_prop['statvar'] unit = chem_prop['unit'] dcid = chem_prop['dcid'] mcf.write( self.chemprop_mcf.format(variable=statvar, dcid=dcid, statvar=statvar)) tmcf.write( self.chemprop_tmcf.format(dataset_name=self.dataset_name, index=idx, unit=unit, variable=statvar, dcid=dcid, name=name)) if unit: tmcf.write(self.unit_node.format(unit=unit)) else: tmcf.write('\n') idx += 1
the-stack_106_23333
from __future__ import absolute_import, division, print_function, unicode_literals import socket import matplotlib import numpy as np import os import collections import argparse machine = socket.gethostname() if machine == "bsccv03": matplotlib.use('wxagg') elif 'login' in machine: matplotlib.use('TkAgg') import matplotlib.pyplot as plt try: # This might fail for older versions of matplotlib (e.g in life cluster) plt.style.use("ggplot") except NameError: pass def printHelp(): """ Create command line interface :returns: str -- Output filename ( if specified ) """ desc = "Program that prints the number of clusters throughout an adaptive sampling simulation. "\ "It must be run in the root folder. " parser = argparse.ArgumentParser(description=desc) parser.add_argument("-f", "--filename", type=str, default="", help="Output filename") parser.add_argument("-o", "--output", type=str, default="", help="Output folder") args = parser.parse_args() return args.filename, args.output def getClusteringSummaryContent(summaryFile): """ Get the contents of clustering summary file :param summaryFile: Clustering summary file :type summaryFile: str :returns: list -- List with the contents of the clustering summary file """ if os.path.isfile(summaryFile): summaryContent = np.genfromtxt(summaryFile) if summaryContent.ndim > 1: return summaryContent elif summaryContent.ndim == 1: # file has only one line return np.array([summaryContent]) else: # file existed but was empty return [] else: return [] def getTotalNumberOfClustersPerEpoch(templetizedClusteringSummaryFile, folder): """ Get the number of clusters in each epoch :param templetizedClusteringSummaryFile: Template name of the clustering summary file :type templetizedClusteringSummaryFile: str :param folder: Folder where the simulation data is stored :type folder: str :returns: list -- List with the number of cluster in each simulation epoch """ allFolders = os.listdir(folder) numberOfEpochs = len([epoch for epoch in allFolders if epoch.isdigit() and os.path.isfile(templetizedClusteringSummaryFile % int(epoch))]) totalNumberOfClustersPerEpoch = [] for epoch in range(numberOfEpochs): clusteringSummary = getClusteringSummaryContent(templetizedClusteringSummaryFile % epoch) if clusteringSummary != []: totalNumberOfClustersPerEpoch.append(len(clusteringSummary)) return totalNumberOfClustersPerEpoch def findDifferentClustersInEpoch(column, summaryFile): """ Get the distribution of values of a certain column in the clustering summary :param column: Column of interest :type column: int :param summaryFile: Clustering summary file :type summaryFile: str :returns: dict -- Dictionary with the set of different elements in column and the number of elements in this epoch """ clusteringSummary = getClusteringSummaryContent(summaryFile) epochDictionary = {} if clusteringSummary != []: for line in clusteringSummary: value = line[column] if value not in epochDictionary: epochDictionary[value] = len(np.argwhere(clusteringSummary[:, column] == value)) return epochDictionary def findDifferentClustersForAllEpochs(column, templetizedClusteringSummaryFile, numberOfEpochs): """ Get the distribution of values of a certain column in the clustering summary for each epoch :param column: Column of interest :type column: int :param templetizedClusteringSummaryFile: Template name of the clustering summary file :type templetizedClusteringSummaryFile: str :param numberOfEpochs: Total number of epochs in the simulation :type numberOfEpochs: int :returns: list -- List with dictionaries for all epochs. The dictionary has the set of different values (according to column) and their number """ clustersPerEpoch = [] for epoch in range(numberOfEpochs): summaryFile = templetizedClusteringSummaryFile % epoch epochDictionary = findDifferentClustersInEpoch(column, summaryFile) clustersPerEpoch.append(epochDictionary) return clustersPerEpoch def getAllDifferentValues(clustersPerEpoch): """ Get all the different values ocurring during a simulation :param clustersPerEpoch: List with dictionaries for all epochs. The dictionary has the set of different values (according to column) and their number :type clustersPerEpoch: list :returns: set -- Set containing all values ocurring during a simulation """ allValues = set() for epochSummary in clustersPerEpoch: for value in epochSummary: allValues.update([value]) return allValues def buildClustersPerValue(clustersPerEpoch, numberOfEpochs): """ Get the number of clusters that have each value :param clustersPerEpoch: List with dictionaries for all epochs. The dictionary has the set of different values (according to column) and their number :type clustersPerEpoch: list :param numberOfEpochs: Total number of epochs in the simulation :type numberOfEpochs: int :returns: dict -- Dictionary with the number of clusters that have each value """ clustersPerValue = collections.defaultdict(list) allValues = getAllDifferentValues(clustersPerEpoch) for epochSummary in clustersPerEpoch: foundValues = set() for value, numClusters in epochSummary.items(): clustersPerValue[value].append(numClusters) foundValues.update([value]) for value in allValues - foundValues: clustersPerValue[value].append(0) return clustersPerValue def getNumberOfClustersPerEpochForGivenColumn(column, templetizedClusteringSummaryFile, folder): """ Get the number of clusters that have each value at each epoch :param column: Column of interest :type column: int :param templetizedClusteringSummaryFile: Template name of the clustering summary file :type templetizedClusteringSummaryFile: str :param folder: Folder where the simulation data is stored :type folder: str :returns: dict -- Dictionary with the number of clusters that have each value """ allFolders = os.listdir(folder) numberOfEpochs = len([epoch for epoch in allFolders if epoch.isdigit() and os.path.isfile(templetizedClusteringSummaryFile % int(epoch))]) clustersPerEpoch = findDifferentClustersForAllEpochs(column, templetizedClusteringSummaryFile, numberOfEpochs) return buildClustersPerValue(clustersPerEpoch, numberOfEpochs) def plotClustersPerValue(clustersPerValue): """ Plot the number of clusters that have a certain value :param clustersPerValue: Dictionary with the number of clusters that have each value :type clustersPerValue: dict """ values = list(clustersPerValue.keys()) sortedValues = np.sort(values) for value in sortedValues: plt.plot(clustersPerValue[value], label=str(value)) def plotContactsHistogram(folder, templetizedClusteringSummaryFile): """ Plot the histogram of the number of contacts :param folder: Folder where the simulation data is stored :type folder: str :param templetizedClusteringSummaryFile: Template name of the clustering summary file :type templetizedClusteringSummaryFile: str """ allFolders = os.listdir(folder) lastEpoch = len([epoch for epoch in allFolders if epoch.isdigit() and os.path.isfile(templetizedClusteringSummaryFile % int(epoch))]) - 1 lastSummary = templetizedClusteringSummaryFile % lastEpoch contactsColumn = 3 allContacts = np.loadtxt(lastSummary, usecols=(contactsColumn,), ndmin=1) plt.hist(allContacts) def main(filename, outputPath): """ Plot a summary of the clustering for a simulation: 1) Number of clusters for each threshold value at each epoch 2) Number of clusters for each density value at each epoch 3) Histogram of the number of contacts """ if filename: print("FILENAME", filename) outputPath = os.path.join(outputPath, "") if outputPath and not os.path.exists(outputPath): os.makedirs(outputPath) # Params clusteringFileDensityColumn = 5 clusteringFileThresholdColumn = 4 clusteringFolder = "clustering" summaryFile = "summary.txt" folder = "." # end params clusteringSummaryFile = os.path.join(clusteringFolder, summaryFile) templetizedClusteringSummaryFile = os.path.join("%d", clusteringSummaryFile) totalNumberOfClustersPerEpoch = getTotalNumberOfClustersPerEpoch(templetizedClusteringSummaryFile, folder) clustersPerDensityValue = getNumberOfClustersPerEpochForGivenColumn(clusteringFileDensityColumn, templetizedClusteringSummaryFile, folder) clustersPerThresholdValue = getNumberOfClustersPerEpochForGivenColumn(clusteringFileThresholdColumn, templetizedClusteringSummaryFile, folder) plt.figure(1) plt.plot(totalNumberOfClustersPerEpoch, label="All clusters") if filename != "": plt.savefig("%s%s_total.png" % (outputPath, filename)) plotClustersPerValue(clustersPerDensityValue) plt.title("Number of cluser per density value") plt.xlabel("Epoch") plt.ylabel("Number of clusters") plt.legend(loc=2) if filename != "": plt.savefig("%s%s_density.png" % (outputPath, filename)) plt.figure(2) plt.plot(totalNumberOfClustersPerEpoch, label="All clusters") plotClustersPerValue(clustersPerThresholdValue) plt.title("Number of cluser per threshold value") plt.xlabel("Epoch") plt.ylabel("Number of clusters") plt.legend(loc=2) if filename != "": plt.savefig("%s%s_threshold.png" % (outputPath, filename)) plt.figure(3) plotContactsHistogram(folder, templetizedClusteringSummaryFile) plt.title("Contact ratio distribution") plt.xlabel("Contact ratio") if filename != "": plt.savefig("%s%s_hist.png" % (outputPath, filename)) plt.show() if __name__ == "__main__": file_name, outputFolder = printHelp() main(file_name, outputFolder)
the-stack_106_23334
# -*- coding:utf-8 -*- import os import random import math import numpy as np import torch class GenDataIter(object): """ Toy data iter to load digits""" def __init__(self, data_file, batch_size): super(GenDataIter, self).__init__() self.batch_size = batch_size self.data_lis = self.read_file(data_file) # print ((len(self.data_lis[1]))) # exit() self.data_num = len(self.data_lis) self.indices = range(self.data_num) self.num_batches = int(math.ceil(float(self.data_num)/self.batch_size)) self.idx = 0 def __len__(self): return self.num_batches def __iter__(self): return self def __next__(self): return self.next() def reset(self): self.idx = 0 random.shuffle(self.data_lis) def next(self): if self.idx >= self.data_num: raise StopIteration index = self.indices[self.idx:self.idx+self.batch_size] d = [self.data_lis[i] for i in index] d = torch.LongTensor(np.asarray(d, dtype='int64')) data = torch.cat([torch.zeros(self.batch_size, 1).long(), d], dim=1) target = torch.cat([d, torch.zeros(self.batch_size, 1).long()], dim=1) self.idx += self.batch_size return data, target def read_file(self, data_file): with open(data_file, 'r') as f: lines = f.readlines() lis = [] for line in lines: l = line.strip().split(' ') l = [int(s) for s in l] lis.append(l) return lis class DisDataIter(object): """ Toy data iter to load digits""" def __init__(self, real_data_file, fake_data_file, batch_size): super(DisDataIter, self).__init__() self.batch_size = batch_size real_data_lis = self.read_file(real_data_file) fake_data_lis = self.read_file(fake_data_file) self.data = real_data_lis + fake_data_lis self.labels = [1 for _ in range(len(real_data_lis))] +\ [0 for _ in range(len(fake_data_lis))] self.pairs = list(zip(self.data, self.labels)) self.data_num = (len(self.pairs)) self.indices = range(self.data_num) self.num_batches = int(math.ceil(float(self.data_num)/self.batch_size)) self.idx = 0 def __len__(self): return self.num_batches def __iter__(self): return self def __next__(self): return self.next() def reset(self): self.idx = 0 random.shuffle(self.pairs) def next(self): if self.idx >= self.data_num: raise StopIteration index = self.indices[self.idx:self.idx+self.batch_size] pairs = [self.pairs[i] for i in index] data = [p[0] for p in pairs] label = [p[1] for p in pairs] data = torch.LongTensor(np.asarray(data, dtype='int64')) label = torch.LongTensor(np.asarray(label, dtype='int64')) self.idx += self.batch_size return data, label def read_file(self, data_file): with open(data_file, 'r') as f: lines = f.readlines() lis = [] for line in lines: l = line.strip().split(' ') l = [int(s) for s in l] lis.append(l) return lis
the-stack_106_23335
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class SkuInfos(Model): """Collection of SKU information. :param resource_type: Resource type that this SKU applies to. :type resource_type: str :param skus: List of SKUs the subscription is able to use. :type skus: list of :class:`GlobalCsmSkuDescription <azure.mgmt.web.models.GlobalCsmSkuDescription>` """ _attribute_map = { 'resource_type': {'key': 'resourceType', 'type': 'str'}, 'skus': {'key': 'skus', 'type': '[GlobalCsmSkuDescription]'}, } def __init__(self, resource_type=None, skus=None): self.resource_type = resource_type self.skus = skus
the-stack_106_23336
import pandas as pd import numpy as np # import matplotlib.pyplot as plt from collections import defaultdict from sklearn import preprocessing from scipy import sparse from operator import itemgetter # from scipy.spatial.distance import cosine import pickle # import seaborn from sklearn.neighbors import NearestNeighbors from sklearn.cluster import KMeans # import os def vectorizer(columnsValues): # location,service,certification,age_prefernce,gender,types,availability, # wage_preference,exprience,clients_attended,doorstep_service, # reference,liscenced,shopping_liscence vector = [] location = [0] * 44 occupatn = [0] * 23 cert = [0] * 2 age = [0] * 5 gender = [0] * 2 types = [0] * 2 availability = [0] * 4 minimumWage = [0] * 3 exp = [0] * 3 clients = [0] * 3 references = [0] * 2 liscenced = [0] * 2 shoppingliscence = [0] * 2 doorstepService = [0] * 2 location[int(columnsValues[2])] = 1 occupatn[int(columnsValues[3])] = 1 cert[int(columnsValues[4])] = 1 age[int(columnsValues[5])] = 1 gender[int(columnsValues[6])] = 1 types[int(columnsValues[7])] = 1 availability[int(columnsValues[8])] = 1 minimumWage[int(columnsValues[9])] = 1 exp[int(columnsValues[10])] = 1 clients[int(columnsValues[11])] = 1 doorstepService[int(columnsValues[12])] = 1 references[int(columnsValues[13])] = 1 liscenced[int(columnsValues[14])] = 1 shoppingliscence[int(columnsValues[15])] = 1 vector.extend(location) vector.extend(occupatn) vector.extend(cert) vector.extend(age) vector.extend(gender) vector.extend(types) vector.extend(availability) vector.extend(minimumWage) vector.extend(exp) vector.extend(clients) vector.extend(doorstepService) vector.extend(references) vector.extend(liscenced) vector.extend(shoppingliscence) return list(vector) class BuildAndTrain(): def __init__(self): self.df = self.dataUtility() self.classesOfColumns = defaultdict(list) self.occupations = defaultdict(list) self.kmeans = [] self.df = self.utilities(self.df) # self.kneighborsOfUserQuery, self.finalCluster = self.KmeanPredictor('1', sparse1[116]) self.classesOfColumns = self.unpickleLoader('clsofclos') self.occupations = self.unpickleLoader('occupations') #####################################DATA UTILITY ################################################### def dataUtility(self): df = pd.read_csv('final_data.csv') df = df.drop(['phoneNo', 'id', 'availabilityPreference', 'aadharCard'], axis=1) df.dropna(inplace=True) print('DataUtility Done') return df ####################################UTILITY FUNCTIONS IMPLEMENTED###################################### def classer(self, temp_df): # np.logical_and(df[:]['Location'] == 30, df[:]['Occupation'] ==2).nonzero()[0].tolist() temp_df.loc[temp_df['minimumWage']<5001, 'minimumWage'] = 0 temp_df.loc[np.logical_and(temp_df['minimumWage']>5000, temp_df['minimumWage']<8001),'minimumWage'] = 1 temp_df.loc[np.logical_and(temp_df['minimumWage']>8000, temp_df['minimumWage']<10001),'minimumWage'] = 2 temp_df.loc[(temp_df['experience']<3), 'experience'] = 0 temp_df.loc[np.logical_and(temp_df['experience']>2, temp_df['experience']<7),'experience'] = 1 temp_df.loc[np.logical_and(temp_df['experience']>6, temp_df['experience']<11),'experience'] = 2 temp_df.loc[temp_df['age']<21,'age'] = 0 temp_df.loc[np.logical_and(temp_df['age']>20, temp_df['age']<26),'age'] = 1 temp_df.loc[np.logical_and(temp_df['age']>25, temp_df['age']<30),'age'] = 2 temp_df.loc[np.logical_and(temp_df['age']>29, temp_df['age']<40),'age'] = 3 temp_df.loc[temp_df['clientsAttended']<40, 'clientsAttended'] = 0 temp_df.loc[np.logical_and(temp_df['clientsAttended']>10, temp_df['clientsAttended']<20),'clientsAttended'] = 1 temp_df.loc[np.logical_and(temp_df['clientsAttended']>20, temp_df['clientsAttended']<30),'clientsAttended'] = 2 temp_df.loc[np.logical_and(temp_df['clientsAttended']>30, temp_df['clientsAttended']<40),'clientsAttended'] = 3 temp_df.loc[temp_df['clientsAttended']>40, 'clientsAttended'] = 4 return temp_df def classes_maker(self,temp_df): temp = temp_df.columns.tolist() # temp.remove('age') for i in temp_df.columns: le = preprocessing.LabelEncoder() le.fit(temp_df[i]) self.classesOfColumns[i].append(le.classes_) temp_df[i] = le.transform(temp_df[i]) return temp_df def all_occupations_in_a_location(self, temp_df): # location: index and occupation where index is the position of row in # Dataframe # key: occupation lst: list of worker having occupation (index, location) for index, row in temp_df.iterrows(): self.occupations[row['occupation']].append(index) for key, values in self.occupations.items(): t_set = list(set(values)) self.occupations[key] = t_set def occs_splitter(self, df): for key in self.occupations.keys(): temp_df = df.iloc[self.occupations[key]] # temp_df.loc[:, ~df.columns.str.contains('^Unnamed')] temp_df.to_csv(str(key) + '.csv', index=False) def sparser(self): for i in range(len(self.occupations.keys())): sparse = [] temp_df = pd.read_csv(str(i) + '.csv') for index, row in temp_df.iterrows(): vector = [] location = [0] * np.unique(self.df['location']) occupatn = [0] * np.unique(self.df['occupation']) cert = [0] * np.unique(self.df['certification']) age = [0] * np.unique(self.df['age']) gender = [0] * np.unique(self.df['gender']) types = [0] * np.unique(self.df['type']) availability = [0] * np.unique(self.df['availability']) minimumWage = [0] * np.unique(self.df['minimumWage']) exp = [0] * np.unique(self.df['experience']) clients = [0] * np.unique(self.df['clientsAttended']) references = [0] * np.unique(self.df['references']) liscenced = [0] * np.unique(self.df['liscenced']) shoppingliscence = [0] * np.unique(self.df['shoppingliscence']) doorstepService = [0] * np.unique(self.df['doorstepService ']) location[row['location']] = 1 occupatn[row['occupation']] = 1 cert[row['certification']] = 1 age[row['age']] = 1 gender[row['gender']] = 1 types[row['type']] = 1 availability[row['availability']] = 1 minimumWage[row['minimumWage']] = 1 exp[row['experience']] = 1 clients[row['clientsAttended']] = 1 doorstepService[row['doorstepService ']] = 1 references[row['references']] = 1 liscenced[row['liscenced']] = 1 shoppingliscence[row['shoppingliscence']] = 1 vector.extend(location) vector.extend(occupatn) vector.extend(cert) vector.extend(age) vector.extend(gender) vector.extend(types) vector.extend(availability) vector.extend(minimumWage) vector.extend(exp) vector.extend(clients) vector.extend(doorstepService) vector.extend(references) vector.extend(liscenced) vector.extend(shoppingliscence) sparse.append(list(vector)) self.pickler(sparse, str(i)+'_sparse') def utilities(self, temp_df): temp_df = self.classer(temp_df) temp_df = self.classes_maker(temp_df) # self.all_occupations_in_a_location(temp_df) self.occs_splitter(temp_df) self.sparser() # self.pickler(self.classesOfColumns, 'clsofclos') # self.pickler(self.occupations, 'occupations') print("Utilites executed") return temp_df ################################GENERIC FUNCTIONS##################################### def pickler(self, toBeDumped, filename): with open(str(filename) + '.pkl', 'wb') as file: file.write(pickle.dumps(toBeDumped)) def unpickleLoader(self,filename): with open(filename + '.pkl', 'rb') as f: unpickled = pickle.loads(f.read()) return unpickled ##############MODELLING STUFF########################################## def modelling(self, service, userquery): # read the sparse matrix file of the particular job example temp_files = [] for i in range(len(self.occupations.keys())): temp_files.append(self.unpickleLoader(str(i)+'_sparse')) kmodel = KMeans(max_iter=4, n_clusters=10, n_init=10).fit(temp_files[i]) self.kmeans.append(kmodel) print('Modelling done') return self.KmeanPredictor(service, userquery) def KmeanPredictor(self,service, userquery): # modelNos same as service kmeanModel = self.unpickleLoader(str(service) + '_model') print('Predicting kmean cluster') return self.KMeanClusterIndexes(kmeanModel, kmeanModel.predict(np.array(userquery).reshape(1,-1)), userquery, service) def KMeanClusterIndexes(self, kMeanModel, userQueryClusterLabel, userquery, service): temp = kMeanModel.labels_.tolist() count = 0 li = [] for i in temp: if i == userQueryClusterLabel: li.append(count) count = count + 1 print('getting all points in the same cluster') return self.clusteredDataframe(li, service, userquery) def clusteredDataframe(self, clustEleIndex, service, userQuery): temp_sparse = self.unpickleLoader(str(service) + '_sparse') temp_df = pd.read_csv(str(service) + '.csv') KMclustered_dataframe = temp_df.loc[clustEleIndex] temp_sparse = [temp_sparse[x] for x in clustEleIndex] print('Temporary cluster formation') return self.NearestNeighborsAlgo(temp_sparse, userQuery,KMclustered_dataframe) def NearestNeighborsAlgo(self, clusteredSparse, userQuery, KMeanClusterIndexes): neigh = NearestNeighbors(n_neighbors=9) neigh.fit(clusteredSparse) print('Applying nearest neighbour') return neigh.kneighbors(np.array(userQuery).reshape(1,-1)), KMeanClusterIndexes kmeans = [] if __name__ == '__main__': bnt = BuildAndTrain() df = bnt.dataUtility() classesOfColumns = defaultdict(list) occupations = defaultdict(list) # pickler(classesOfColumns, 'clsofclos') # pickler(occupations, 'occupations') df = bnt.utilities(df) sparse1 = bnt.unpickleLoader('1_sparse') kneighborsOfUserQuery, finalCluster = bnt.modelling('1', sparse1[116]) print(kneighborsOfUserQuery, finalCluster)
the-stack_106_23339
"""Block-level tokenizer.""" import logging from typing import List, Optional, Tuple from .ruler import Ruler from .token import Token from .rules_block.state_block import StateBlock from . import rules_block LOGGER = logging.getLogger(__name__) _rules: List[Tuple] = [ # First 2 params - rule name & source. Secondary array - list of rules, # which can be terminated by this one. ("table", rules_block.table, ["paragraph", "reference"]), ("code", rules_block.code), ("fence", rules_block.fence, ["paragraph", "reference", "blockquote", "list"]), ( "blockquote", rules_block.blockquote, ["paragraph", "reference", "blockquote", "list"], ), ("hr", rules_block.hr, ["paragraph", "reference", "blockquote", "list"]), ("list", rules_block.list_block, ["paragraph", "reference", "blockquote"]), ("reference", rules_block.reference), ("heading", rules_block.heading, ["paragraph", "reference", "blockquote"]), ("lheading", rules_block.lheading), ("html_block", rules_block.html_block, ["paragraph", "reference", "blockquote"]), ("paragraph", rules_block.paragraph), ] class ParserBlock: """ ParserBlock#ruler -> Ruler [[Ruler]] instance. Keep configuration of block rules. """ def __init__(self): self.ruler = Ruler() for data in _rules: name = data[0] rule = data[1] self.ruler.push(name, rule, {"alt": data[2] if len(data) > 2 else []}) def tokenize( self, state: StateBlock, startLine: int, endLine: int, silent: bool = False ) -> None: """Generate tokens for input range.""" rules = self.ruler.getRules("") line = startLine maxNesting = state.md.options.maxNesting hasEmptyLines = False while line < endLine: state.line = line = state.skipEmptyLines(line) if line >= endLine: break if state.sCount[line] < state.blkIndent: # Termination condition for nested calls. # Nested calls currently used for blockquotes & lists break if state.level >= maxNesting: # If nesting level exceeded - skip tail to the end. # That's not ordinary situation and we should not care about content. state.line = endLine break # Try all possible rules. # On success, rule should: # - update `state.line` # - update `state.tokens` # - return True for rule in rules: if rule(state, line, endLine, False): break # set state.tight if we had an empty line before current tag # i.e. latest empty line should not count state.tight = not hasEmptyLines # paragraph might "eat" one newline after it in nested lists if state.isEmpty(state.line - 1): hasEmptyLines = True line = state.line if line < endLine and state.isEmpty(line): hasEmptyLines = True line += 1 state.line = line def parse( self, src: str, md, env, outTokens: List[Token], ords: Optional[Tuple[int, ...]] = None, ) -> Optional[List[Token]]: """Process input string and push block tokens into `outTokens`.""" if not src: return None state = StateBlock(src, md, env, outTokens, ords) self.tokenize(state, state.line, state.lineMax) return state.tokens
the-stack_106_23340
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import math import shutil import time import argparse import pprint import random as pyrandom import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.backends.cudnn as cudnn import torchvision import pickle BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(ROOT_DIR) from configs.config import cfg from configs.config import merge_cfg_from_file from configs.config import merge_cfg_from_list from configs.config import assert_and_infer_cfg from utils.training_states import TrainingStates from utils.utils import get_accuracy, AverageMeter, import_from_file, get_logger from datasets.dataset_info import DATASET_INFO def parse_args(): parser = argparse.ArgumentParser( description='Train a network with Detectron' ) parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str ) parser.add_argument( 'opts', help='See configs/config.py for all options', default=None, nargs=argparse.REMAINDER ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def set_random_seed(seed=3): pyrandom.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def set_module_bn_momentum(model, momentum=0.1): def set_bn_momentum(m): classname = m.__class__.__name__ if classname.find('BatchNorm') != -1: m.momentum = momentum model.apply(set_bn_momentum) def get_bn_decay(epoch): # 0.5 - 0.01 BN_INIT_DECAY = 0.1 BN_DECAY_RATE = 0.5 BN_DECAY_STEP = cfg.TRAIN.LR_STEPS BN_DECAY_CLIP = 0.01 bn_momentum = max(BN_INIT_DECAY * BN_DECAY_RATE ** (epoch // BN_DECAY_STEP), BN_DECAY_CLIP) return bn_momentum def train(data_loader, model, optimizer, lr_scheduler, epoch, logger=None): data_time_meter = AverageMeter() batch_time_meter = AverageMeter() model.train() MIN_LR = cfg.TRAIN.MIN_LR lr_scheduler.step(epoch) if MIN_LR > 0: if lr_scheduler.get_lr()[0] < MIN_LR: for param_group in optimizer.param_groups: param_group['lr'] = MIN_LR cur_lr = optimizer.param_groups[0]['lr'] # cur_mom = get_bn_decay(epoch) # set_module_bn_momentum(model, cur_mom) tic = time.time() loader_size = len(data_loader) training_states = TrainingStates() for i, (data_dicts) in enumerate(data_loader): data_time_meter.update(time.time() - tic) batch_size = data_dicts['point_cloud'].shape[0] data_dicts_var = {key: value.cuda() for key, value in data_dicts.items()} optimizer.zero_grad() losses, metrics = model(data_dicts_var) loss = losses['total_loss'] loss = loss.mean() loss.backward() optimizer.step() # mean for multi-gpu setting losses_reduce = {key: value.detach().mean().item() for key, value in losses.items()} metrics_reduce = {key: value.detach().mean().item() for key, value in metrics.items()} training_states.update_states(dict(**losses_reduce, **metrics_reduce), batch_size) batch_time_meter.update(time.time() - tic) tic = time.time() if (i + 1) % cfg.disp == 0 or (i + 1) == loader_size: states = training_states.get_states(avg=False) states_str = training_states.format_states(states) output_str = 'Train Epoch: {:03d} [{:04d}/{}] lr:{:.6f} Time:{:.3f}/{:.3f} ' \ .format(epoch + 1, i + 1, len(data_loader), cur_lr, data_time_meter.val, batch_time_meter.val) logging.info(output_str + states_str) if (i + 1) == loader_size: states = training_states.get_states(avg=True) states_str = training_states.format_states(states) output_str = 'Train Epoch(AVG): {:03d} [{:04d}/{}] lr:{:.6f} Time:{:.3f}/{:.3f} ' \ .format(epoch + 1, i + 1, len(data_loader), cur_lr, data_time_meter.val, batch_time_meter.val) logging.info(output_str + states_str) if logger is not None: states = training_states.get_states(avg=True) for tag, value in states.items(): logger.scalar_summary(tag, value, int(epoch)) def validate(data_loader, model, epoch, logger=None): data_time_meter = AverageMeter() batch_time_meter = AverageMeter() model.eval() tic = time.time() loader_size = len(data_loader) training_states = TrainingStates() for i, (data_dicts) in enumerate(data_loader): data_time_meter.update(time.time() - tic) batch_size = data_dicts['point_cloud'].shape[0] with torch.no_grad(): data_dicts_var = {key: value.cuda() for key, value in data_dicts.items()} losses, metrics = model(data_dicts_var) # mean for multi-gpu setting losses_reduce = {key: value.detach().mean().item() for key, value in losses.items()} metrics_reduce = {key: value.detach().mean().item() for key, value in metrics.items()} training_states.update_states(dict(**losses_reduce, **metrics_reduce), batch_size) batch_time_meter.update(time.time() - tic) tic = time.time() states = training_states.get_states(avg=True) states_str = training_states.format_states(states) output_str = 'Validation Epoch: {:03d} Time:{:.3f}/{:.3f} ' \ .format(epoch + 1, data_time_meter.val, batch_time_meter.val) logging.info(output_str + states_str) if logger is not None: for tag, value in states.items(): logger.scalar_summary(tag, value, int(epoch)) return states['IoU_' + str(cfg.IOU_THRESH)] def main(): # parse arguments args = parse_args() if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() if not os.path.exists(cfg.OUTPUT_DIR): os.makedirs(cfg.OUTPUT_DIR) # set logger cfg_name = os.path.basename(args.cfg_file).split('.')[0] log_file = '{}_{}_train.log'.format(cfg_name, time.strftime('%Y-%m-%d-%H-%M')) log_file = os.path.join(cfg.OUTPUT_DIR, log_file) logger = get_logger(log_file) logger.info(pprint.pformat(args)) logger.info('config:\n {}'.format(pprint.pformat(cfg))) # set visualize logger logger_train = None logger_val = None if cfg.USE_TFBOARD: from utils.logger import Logger logger_dir = os.path.join(cfg.OUTPUT_DIR, 'tb_logger', 'train') if not os.path.exists(logger_dir): os.makedirs(logger_dir) logger_train = Logger(logger_dir) logger_dir = os.path.join(cfg.OUTPUT_DIR, 'tb_logger', 'val') if not os.path.exists(logger_dir): os.makedirs(logger_dir) logger_val = Logger(logger_dir) # import dataset set_random_seed() logging.info(cfg.DATA.FILE) dataset_def = import_from_file(cfg.DATA.FILE) collate_fn = dataset_def.collate_fn dataset_def = dataset_def.ProviderDataset train_dataset = dataset_def( cfg.DATA.NUM_SAMPLES, split=cfg.TRAIN.DATASET, one_hot=True, random_flip=True, random_shift=True, extend_from_det=cfg.DATA.EXTEND_FROM_DET) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=cfg.NUM_WORKERS, pin_memory=True, drop_last=True, collate_fn=collate_fn) val_dataset = dataset_def( cfg.DATA.NUM_SAMPLES, split=cfg.TEST.DATASET, one_hot=True, random_flip=False, random_shift=False, extend_from_det=cfg.DATA.EXTEND_FROM_DET) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.NUM_WORKERS, pin_memory=True, drop_last=False, collate_fn=collate_fn) logging.info('training: sample {} / batch {} '.format(len(train_dataset), len(train_loader))) logging.info('validation: sample {} / batch {} '.format(len(val_dataset), len(val_loader))) logging.info(cfg.MODEL.FILE) model_def = import_from_file(cfg.MODEL.FILE) model_def = model_def.PointNetDet input_channels = 3 if not cfg.DATA.WITH_EXTRA_FEAT else cfg.DATA.EXTRA_FEAT_DIM # NUM_VEC = 0 if cfg.DATA.CAR_ONLY else 3 dataset_name = cfg.DATA.DATASET_NAME assert dataset_name in DATASET_INFO datset_category_info = DATASET_INFO[dataset_name] NUM_VEC = len(datset_category_info.CLASSES) # rgb category as extra feature vector NUM_CLASSES = cfg.MODEL.NUM_CLASSES model = model_def(input_channels, num_vec=NUM_VEC, num_classes=NUM_CLASSES) logging.info(pprint.pformat(model)) if cfg.NUM_GPUS > 1: model = torch.nn.DataParallel(model) model = model.cuda() parameters_size = 0 for p in model.parameters(): parameters_size += p.numel() logging.info('parameters: %d' % parameters_size) logging.info('using optimizer method {}'.format(cfg.TRAIN.OPTIMIZER)) if cfg.TRAIN.OPTIMIZER == 'adam': optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.BASE_LR, betas=(0.9, 0.999), weight_decay=cfg.TRAIN.WEIGHT_DECAY) elif cfg.TRAIN.OPTIMIZER == 'sgd': optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.BASE_LR, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.WEIGHT_DECAY) else: assert False, 'Not support now.' # miles = [math.ceil(num_epochs*3/8), math.ceil(num_epochs*6/8)] # assert isinstance(LR_SETP, list) LR_STEPS = cfg.TRAIN.LR_STEPS LR_DECAY = cfg.TRAIN.GAMMA if len(LR_STEPS) > 1: lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=LR_STEPS, gamma=LR_DECAY) else: lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=LR_STEPS[0], gamma=LR_DECAY) best_prec1 = 0 best_epoch = 0 start_epoch = 0 # optionally resume from a checkpoint if cfg.RESUME: if os.path.isfile(cfg.TRAIN.WEIGHTS): checkpoint = torch.load(cfg.TRAIN.WEIGHTS) start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] best_epoch = checkpoint['best_epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) logger.info("=> loaded checkpoint '{}' (epoch {})".format(cfg.TRAIN.WEIGHTS, checkpoint['epoch'])) else: logger.error("=> no checkpoint found at '{}'".format(cfg.TRAIN.WEIGHTS)) # resume from other pretrained model if start_epoch == cfg.TRAIN.MAX_EPOCH: start_epoch = 0 best_prec1 = 0 best_epoch = 0 if cfg.EVAL_MODE: validate(val_loader, model, start_epoch, logger_val) return MAX_EPOCH = cfg.TRAIN.MAX_EPOCH for n in range(start_epoch, MAX_EPOCH): train(train_loader, model, optimizer, lr_scheduler, n, logger_train) ious_gt = validate(val_loader, model, n, logger_val) prec1 = ious_gt is_best = False if prec1 > best_prec1: best_prec1 = prec1 best_epoch = n + 1 is_best = True logging.info('Best model {:04d}, Validation Accuracy {:.6f}'.format(best_epoch, best_prec1)) save_data = { 'epoch': n + 1, 'state_dict': model.state_dict() if cfg.NUM_GPUS == 1 else model.module.state_dict(), 'optimizer': optimizer.state_dict(), 'best_prec1': best_prec1, 'best_epoch': best_epoch } if (n + 1) % 5 == 0 or (n + 1) == MAX_EPOCH: torch.save(save_data, os.path.join(cfg.OUTPUT_DIR, 'model_%04d.pth' % (n + 1))) if is_best: torch.save(save_data, os.path.join(cfg.OUTPUT_DIR, 'model_best.pth')) if (n + 1) == MAX_EPOCH: torch.save(save_data, os.path.join(cfg.OUTPUT_DIR, 'model_final.pth')) logging.info('Best model {:04d}, Validation Accuracy {:.6f}'.format(best_epoch, best_prec1)) if __name__ == '__main__': main()
the-stack_106_23341
# Copyright 2021, 2022 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from typing import Dict import cpo.config from cpo.lib.cloud_pak_for_data.cpd_4_0_0.types.cloud_pak_for_data_service_license import CloudPakForDataServiceLicense from cpo.lib.cloud_pak_for_data.cpd_4_0_0.types.custom_resource_metadata import CustomResourceMetadata from cpo.lib.cloud_pak_for_data.cpd_4_0_0.types.subscription_metadata import ( SubscriptionMetadata, SubscriptionMetadataSpec, ) from cpo.lib.error import DataGateCLIException class CloudPakForDataServiceManager: """Manages IBM Cloud Pak for Data operator subscriptions and custom resources""" def __init__(self): self._custom_resources: Dict[str, CustomResourceMetadata] = {} self._subscriptions: Dict[str, SubscriptionMetadata] = {} def get_custom_resource_metadata(self, service_name: str) -> CustomResourceMetadata: """Returns custom resource metadata for the given service name Parameters ---------- service_name name of the service for which custom resource metadata shall be returned Returns ------- CustomResourceMetadata custom resource metadata object """ self._initialize_custom_resources_dict_if_required() if service_name not in self._custom_resources: raise DataGateCLIException("Unknown IBM Cloud Pak for Data service") return self._custom_resources[service_name] def get_custom_resource_metadata_dict(self) -> Dict[str, CustomResourceMetadata]: """Returns custom resource metadata for all services Returns ------- Dict[str, CustomResourceMetadata] dictionary mapping service names to custom resource metadata objects """ self._initialize_custom_resources_dict_if_required() return self._custom_resources def get_subscription_metadata(self, operator_name: str) -> SubscriptionMetadata: """Returns subscription metadata for the given operator name Parameters ---------- operator_name name of the operator for which subscription metadata shall be returned Returns ------- SubscriptionMetadata subscription metadata object """ self._initialize_subscriptions_dict_if_required() if operator_name not in self._subscriptions: raise DataGateCLIException("Unknown IBM Cloud Pak for Data service") return self._subscriptions[operator_name] def get_subscription_metadata_dict_for_cloud_pak_for_data_services(self) -> Dict[str, SubscriptionMetadata]: """Returns subscription metadata for all operators Returns ------- Dict[str, SubscriptionMetadata] dictionary mapping operator names to subscription metadata objects """ self._initialize_subscriptions_dict_if_required() return dict(filter(lambda element: element[1].service, self._subscriptions.items())) def is_cloud_pak_for_data_service(self, service_name: str): """Returns whether there is an IBM Cloud Pak for Data service with the given name Parameters ---------- service_name name of the service to be checked Returns ------- bool true, if there is an IBM Cloud Pak for Data service with the given name """ self._initialize_custom_resources_dict_if_required() return service_name in self._custom_resources def _initialize_custom_resources_dict_if_required(self): if len(self._custom_resources) == 0: with open( cpo.config.configuration_manager.get_deps_directory_path() / "config" / "cpd-custom-resources.json" ) as json_file: for key, value in json.load(json_file).items(): self._custom_resources[key] = CustomResourceMetadata( description=value["description"], group=value["group"], kind=value["kind"], licenses=list(map(lambda license: CloudPakForDataServiceLicense[license], value["licenses"])), name=value["name"], operator_name=value["operator_name"], spec=value["spec"], status_key_name=value["status_key_name"], storage_option_required=value["storage_option_required"], version=value["version"], ) def _initialize_subscriptions_dict_if_required(self): if len(self._subscriptions) == 0: with open( cpo.config.configuration_manager.get_deps_directory_path() / "config" / "cpd-subscriptions.json" ) as json_file: for key, value in json.load(json_file).items(): self._subscriptions[key] = SubscriptionMetadata( dependencies=value["dependencies"], labels=value["labels"], name=value["name"], operand_request_dependencies=value["operand_request_dependencies"], required_namespace=value["required_namespace"], service=value["service"], spec=SubscriptionMetadataSpec( channel=value["spec"]["channel"], name=value["spec"]["name"], ), )
the-stack_106_23343
#Faça um programa que leia 5 números e informe a soma e a média dos números. soma=0 media=0 contador=0 for i in range(5): n=float(input("digite o número: ")) soma=soma+n contador=contador+1 media=(soma)/contador print('A soma é:', soma) print("A média é:", media)
the-stack_106_23345
""" Support for Honeywell Round Connected and Honeywell Evohome thermostats. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/climate.honeywell/ """ import logging import socket import datetime import requests import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.climate import ( ClimateDevice, PLATFORM_SCHEMA, ATTR_FAN_MODE, ATTR_FAN_LIST, ATTR_OPERATION_MODE, ATTR_OPERATION_LIST, SUPPORT_TARGET_TEMPERATURE, SUPPORT_AWAY_MODE, SUPPORT_OPERATION_MODE) from homeassistant.const import ( CONF_PASSWORD, CONF_USERNAME, TEMP_CELSIUS, TEMP_FAHRENHEIT, ATTR_TEMPERATURE, CONF_REGION) REQUIREMENTS = ['evohomeclient==0.2.5', 'somecomfort==0.5.2'] _LOGGER = logging.getLogger(__name__) ATTR_FAN = 'fan' ATTR_SYSTEM_MODE = 'system_mode' ATTR_CURRENT_OPERATION = 'equipment_output_status' CONF_AWAY_TEMPERATURE = 'away_temperature' CONF_COOL_AWAY_TEMPERATURE = 'away_cool_temperature' CONF_HEAT_AWAY_TEMPERATURE = 'away_heat_temperature' DEFAULT_AWAY_TEMPERATURE = 16 DEFAULT_COOL_AWAY_TEMPERATURE = 30 DEFAULT_HEAT_AWAY_TEMPERATURE = 16 DEFAULT_REGION = 'eu' REGIONS = ['eu', 'us'] PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_AWAY_TEMPERATURE, default=DEFAULT_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_COOL_AWAY_TEMPERATURE, default=DEFAULT_COOL_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_HEAT_AWAY_TEMPERATURE, default=DEFAULT_HEAT_AWAY_TEMPERATURE): vol.Coerce(float), vol.Optional(CONF_REGION, default=DEFAULT_REGION): vol.In(REGIONS), }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Honeywell thermostat.""" username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) region = config.get(CONF_REGION) if region == 'us': return _setup_us(username, password, config, add_devices) return _setup_round(username, password, config, add_devices) def _setup_round(username, password, config, add_devices): """Set up the rounding function.""" from evohomeclient import EvohomeClient away_temp = config.get(CONF_AWAY_TEMPERATURE) evo_api = EvohomeClient(username, password) try: zones = evo_api.temperatures(force_refresh=True) for i, zone in enumerate(zones): add_devices( [RoundThermostat(evo_api, zone['id'], i == 0, away_temp)], True ) except socket.error: _LOGGER.error( "Connection error logging into the honeywell evohome web service") return False return True # config will be used later def _setup_us(username, password, config, add_devices): """Set up the user.""" import somecomfort try: client = somecomfort.SomeComfort(username, password) except somecomfort.AuthError: _LOGGER.error("Failed to login to honeywell account %s", username) return False except somecomfort.SomeComfortError as ex: _LOGGER.error("Failed to initialize honeywell client: %s", str(ex)) return False dev_id = config.get('thermostat') loc_id = config.get('location') cool_away_temp = config.get(CONF_COOL_AWAY_TEMPERATURE) heat_away_temp = config.get(CONF_HEAT_AWAY_TEMPERATURE) add_devices([HoneywellUSThermostat(client, device, cool_away_temp, heat_away_temp, username, password) for location in client.locations_by_id.values() for device in location.devices_by_id.values() if ((not loc_id or location.locationid == loc_id) and (not dev_id or device.deviceid == dev_id))]) return True class RoundThermostat(ClimateDevice): """Representation of a Honeywell Round Connected thermostat.""" def __init__(self, client, zone_id, master, away_temp): """Initialize the thermostat.""" self.client = client self._current_temperature = None self._target_temperature = None self._name = 'round connected' self._id = zone_id self._master = master self._is_dhw = False self._away_temp = away_temp self._away = False @property def supported_features(self): """Return the list of supported features.""" supported = (SUPPORT_TARGET_TEMPERATURE | SUPPORT_AWAY_MODE) if hasattr(self.client, ATTR_SYSTEM_MODE): supported |= SUPPORT_OPERATION_MODE return supported @property def name(self): """Return the name of the honeywell, if any.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" if self._is_dhw: return None return self._target_temperature def set_temperature(self, **kwargs): """Set new target temperature.""" temperature = kwargs.get(ATTR_TEMPERATURE) if temperature is None: return self.client.set_temperature(self._name, temperature) @property def current_operation(self) -> str: """Get the current operation of the system.""" return getattr(self.client, ATTR_SYSTEM_MODE, None) @property def is_away_mode_on(self): """Return true if away mode is on.""" return self._away def set_operation_mode(self, operation_mode: str) -> None: """Set the HVAC mode for the thermostat.""" if hasattr(self.client, ATTR_SYSTEM_MODE): self.client.system_mode = operation_mode def turn_away_mode_on(self): """Turn away on. Honeywell does have a proprietary away mode, but it doesn't really work the way it should. For example: If you set a temperature manually it doesn't get overwritten when away mode is switched on. """ self._away = True self.client.set_temperature(self._name, self._away_temp) def turn_away_mode_off(self): """Turn away off.""" self._away = False self.client.cancel_temp_override(self._name) def update(self): """Get the latest date.""" try: # Only refresh if this is the "master" device, # others will pick up the cache for val in self.client.temperatures(force_refresh=self._master): if val['id'] == self._id: data = val except KeyError: _LOGGER.error("Update failed from Honeywell server") self.client.user_data = None return except StopIteration: _LOGGER.error("Did not receive any temperature data from the " "evohomeclient API") return self._current_temperature = data['temp'] self._target_temperature = data['setpoint'] if data['thermostat'] == 'DOMESTIC_HOT_WATER': self._name = 'Hot Water' self._is_dhw = True else: self._name = data['name'] self._is_dhw = False # The underlying library doesn't expose the thermostat's mode # but we can pull it out of the big dictionary of information. device = self.client.devices[self._id] self.client.system_mode = device[ 'thermostat']['changeableValues']['mode'] class HoneywellUSThermostat(ClimateDevice): """Representation of a Honeywell US Thermostat.""" def __init__(self, client, device, cool_away_temp, heat_away_temp, username, password): """Initialize the thermostat.""" self._client = client self._device = device self._cool_away_temp = cool_away_temp self._heat_away_temp = heat_away_temp self._away = False self._username = username self._password = password @property def supported_features(self): """Return the list of supported features.""" supported = (SUPPORT_TARGET_TEMPERATURE | SUPPORT_AWAY_MODE) if hasattr(self._device, ATTR_SYSTEM_MODE): supported |= SUPPORT_OPERATION_MODE return supported @property def is_fan_on(self): """Return true if fan is on.""" return self._device.fan_running @property def name(self): """Return the name of the honeywell, if any.""" return self._device.name @property def temperature_unit(self): """Return the unit of measurement.""" return (TEMP_CELSIUS if self._device.temperature_unit == 'C' else TEMP_FAHRENHEIT) @property def current_temperature(self): """Return the current temperature.""" return self._device.current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" if self._device.system_mode == 'cool': return self._device.setpoint_cool return self._device.setpoint_heat @property def current_operation(self) -> str: """Return current operation ie. heat, cool, idle.""" oper = getattr(self._device, ATTR_CURRENT_OPERATION, None) if oper == "off": oper = "idle" return oper def set_temperature(self, **kwargs): """Set target temperature.""" temperature = kwargs.get(ATTR_TEMPERATURE) if temperature is None: return import somecomfort try: # Get current mode mode = self._device.system_mode # Set hold if this is not the case if getattr(self._device, "hold_{}".format(mode)) is False: # Get next period key next_period_key = '{}NextPeriod'.format(mode.capitalize()) # Get next period raw value next_period = self._device.raw_ui_data.get(next_period_key) # Get next period time hour, minute = divmod(next_period * 15, 60) # Set hold time setattr(self._device, "hold_{}".format(mode), datetime.time(hour, minute)) # Set temperature setattr(self._device, "setpoint_{}".format(mode), temperature) except somecomfort.SomeComfortError: _LOGGER.error("Temperature %.1f out of range", temperature) @property def device_state_attributes(self): """Return the device specific state attributes.""" import somecomfort data = { ATTR_FAN: (self.is_fan_on and 'running' or 'idle'), ATTR_FAN_MODE: self._device.fan_mode, ATTR_OPERATION_MODE: self._device.system_mode, } data[ATTR_FAN_LIST] = somecomfort.FAN_MODES data[ATTR_OPERATION_LIST] = somecomfort.SYSTEM_MODES return data @property def is_away_mode_on(self): """Return true if away mode is on.""" return self._away def turn_away_mode_on(self): """Turn away on. Somecomfort does have a proprietary away mode, but it doesn't really work the way it should. For example: If you set a temperature manually it doesn't get overwritten when away mode is switched on. """ self._away = True import somecomfort try: # Get current mode mode = self._device.system_mode except somecomfort.SomeComfortError: _LOGGER.error('Can not get system mode') return try: # Set permanent hold setattr(self._device, "hold_{}".format(mode), True) # Set temperature setattr(self._device, "setpoint_{}".format(mode), getattr(self, "_{}_away_temp".format(mode))) except somecomfort.SomeComfortError: _LOGGER.error('Temperature %.1f out of range', getattr(self, "_{}_away_temp".format(mode))) def turn_away_mode_off(self): """Turn away off.""" self._away = False import somecomfort try: # Disabling all hold modes self._device.hold_cool = False self._device.hold_heat = False except somecomfort.SomeComfortError: _LOGGER.error('Can not stop hold mode') def set_operation_mode(self, operation_mode: str) -> None: """Set the system mode (Cool, Heat, etc).""" if hasattr(self._device, ATTR_SYSTEM_MODE): self._device.system_mode = operation_mode def update(self): """Update the state.""" import somecomfort retries = 3 while retries > 0: try: self._device.refresh() break except (somecomfort.client.APIRateLimited, OSError, requests.exceptions.ReadTimeout) as exp: retries -= 1 if retries == 0: raise exp if not self._retry(): raise exp _LOGGER.error( "SomeComfort update failed, Retrying - Error: %s", exp) def _retry(self): """Recreate a new somecomfort client. When we got an error, the best way to be sure that the next query will succeed, is to recreate a new somecomfort client. """ import somecomfort try: self._client = somecomfort.SomeComfort( self._username, self._password) except somecomfort.AuthError: _LOGGER.error("Failed to login to honeywell account %s", self._username) return False except somecomfort.SomeComfortError as ex: _LOGGER.error("Failed to initialize honeywell client: %s", str(ex)) return False devices = [device for location in self._client.locations_by_id.values() for device in location.devices_by_id.values() if device.name == self._device.name] if len(devices) != 1: _LOGGER.error("Failed to find device %s", self._device.name) return False self._device = devices[0] return True
the-stack_106_23346
#!/bin/python3 """ Copyright kubeinit contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import re from jinja2 import Environment, FileSystemLoader from kubeinit_ci_utils import get_periodic_jobs_labels def main(): """Run the main method.""" labels = get_periodic_jobs_labels() jobs = [] for label in labels: if re.match(r"[a-z|0-9|\.]+-[a-z]+-\d+-\d+-\d+-[c|h]", label): print("'render_periodic_jobs_page.py' ==> Matching a periodic job label") params = label.split("-") distro = params[0] driver = params[1] masters = params[2] workers = params[3] hypervisors = params[4] launch_from = params[5] if distro == 'okd': distro = "Origin Distribution of K8s" elif distro == 'kid': distro = "KubeInit distro" elif distro == 'eks': distro = "Amazon EKS Distro" elif distro == 'rke': distro = "Rancher K8s Engine" elif distro == 'cdk': distro = "Canonical Distribution of K8s" elif distro == 'k8s': distro = "Vanilla K8s" elif '.' in distro: distro = distro.upper().replace('.', '/') if launch_from == 'h': launch_from = "Host" elif launch_from == 'c': launch_from = "Container" else: print("'render_periodic_jobs_page.py' ==> This label do not match") print(label) raise Exception("'render_periodic_jobs_page.py' ==> This label do not match: %s" % (label)) jobs.append({'distro': distro, 'driver': driver, 'masters': masters, 'workers': workers, 'hypervisors': hypervisors, 'launch_from': launch_from, 'url': "<a href='https://storage.googleapis.com/kubeinit-ci/jobs/" + label + "-periodic-pid-weekly-u/index.html'><img height='20px' src='https://storage.googleapis.com/kubeinit-ci/jobs/" + label + "-periodic-pid-weekly-u/badge_status.svg'/></a>"}) path = os.path.join(os.path.dirname(__file__)) file_loader = FileSystemLoader(searchpath=path) env = Environment(loader=file_loader) template_index = "periodic_jobs.md.j2" print("'render_periodic_jobs_page.py' ==> The path for the template is: " + path) template = env.get_template(template_index) output = template.render(jobs=jobs) with open("periodic_jobs.md", "w+") as text_file: text_file.write(output) if __name__ == "__main__": main()
the-stack_106_23347
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests specific to Feature Columns integration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.feature_column import feature_column_lib as fc from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import testing_utils from tensorflow.python.keras.utils import np_utils from tensorflow.python.platform import test class TestDNNModel(keras.models.Model): def __init__(self, feature_columns, units, name=None, **kwargs): super(TestDNNModel, self).__init__(name=name, **kwargs) self._input_layer = fc.DenseFeatures(feature_columns, name='input_layer') self._dense_layer = keras.layers.Dense(units, name='dense_layer') def call(self, features): net = self._input_layer(features) net = self._dense_layer(net) return net class FeatureColumnsIntegrationTest(keras_parameterized.TestCase): """Most Sequential model API tests are covered in `training_test.py`. """ @keras_parameterized.run_all_keras_modes def test_sequential_model(self): columns = [fc.numeric_column('a')] model = keras.models.Sequential([ fc.DenseFeatures(columns), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(20, activation='softmax') ]) model.compile( optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], run_eagerly=testing_utils.should_run_eagerly()) x = {'a': np.random.random((10, 1))} y = np.random.randint(20, size=(10, 1)) y = np_utils.to_categorical(y, num_classes=20) model.fit(x, y, epochs=1, batch_size=5) model.fit(x, y, epochs=1, batch_size=5) model.evaluate(x, y, batch_size=5) model.predict(x, batch_size=5) @keras_parameterized.run_all_keras_modes def test_sequential_model_with_ds_input(self): columns = [fc.numeric_column('a')] model = keras.models.Sequential([ fc.DenseFeatures(columns), keras.layers.Dense(64, activation='relu'), keras.layers.Dense(20, activation='softmax') ]) model.compile( optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], run_eagerly=testing_utils.should_run_eagerly()) y = np.random.randint(20, size=(100, 1)) y = np_utils.to_categorical(y, num_classes=20) x = {'a': np.random.random((100, 1))} ds1 = dataset_ops.Dataset.from_tensor_slices(x) ds2 = dataset_ops.Dataset.from_tensor_slices(y) ds = dataset_ops.Dataset.zip((ds1, ds2)).batch(5) model.fit(ds, steps_per_epoch=1) model.fit(ds, steps_per_epoch=1) model.evaluate(ds, steps=1) model.predict(ds, steps=1) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_sequential_model_with_crossed_column(self): feature_columns = [] age_buckets = fc.bucketized_column( fc.numeric_column('age'), boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) feature_columns.append(age_buckets) # indicator cols thal = fc.categorical_column_with_vocabulary_list( 'thal', ['fixed', 'normal', 'reversible']) crossed_feature = fc.crossed_column([age_buckets, thal], hash_bucket_size=1000) crossed_feature = fc.indicator_column(crossed_feature) feature_columns.append(crossed_feature) feature_layer = fc.DenseFeatures(feature_columns) model = keras.models.Sequential([ feature_layer, keras.layers.Dense(128, activation='relu'), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(1, activation='sigmoid') ]) age_data = np.random.randint(10, 100, size=100) thal_data = np.random.choice(['fixed', 'normal', 'reversible'], size=100) inp_x = {'age': age_data, 'thal': thal_data} inp_y = np.random.randint(0, 1, size=100) ds = dataset_ops.Dataset.from_tensor_slices((inp_x, inp_y)).batch(5) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'],) model.fit(ds, epochs=1) model.fit(ds, epochs=1) model.evaluate(ds) model.predict(ds) @keras_parameterized.run_all_keras_modes def test_subclassed_model_with_feature_columns(self): col_a = fc.numeric_column('a') col_b = fc.numeric_column('b') dnn_model = TestDNNModel([col_a, col_b], 20) dnn_model.compile( optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], run_eagerly=testing_utils.should_run_eagerly()) x = {'a': np.random.random((10, 1)), 'b': np.random.random((10, 1))} y = np.random.randint(20, size=(10, 1)) y = np_utils.to_categorical(y, num_classes=20) dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) dnn_model.evaluate(x=x, y=y, batch_size=5) dnn_model.predict(x=x, batch_size=5) @keras_parameterized.run_all_keras_modes def test_subclassed_model_with_feature_columns_with_ds_input(self): col_a = fc.numeric_column('a') col_b = fc.numeric_column('b') dnn_model = TestDNNModel([col_a, col_b], 20) dnn_model.compile( optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], run_eagerly=testing_utils.should_run_eagerly()) y = np.random.randint(20, size=(100, 1)) y = np_utils.to_categorical(y, num_classes=20) x = {'a': np.random.random((100, 1)), 'b': np.random.random((100, 1))} ds1 = dataset_ops.Dataset.from_tensor_slices(x) ds2 = dataset_ops.Dataset.from_tensor_slices(y) ds = dataset_ops.Dataset.zip((ds1, ds2)).batch(5) dnn_model.fit(ds, steps_per_epoch=1) dnn_model.fit(ds, steps_per_epoch=1) dnn_model.evaluate(ds, steps=1) dnn_model.predict(ds, steps=1) # TODO(kaftan) seems to throw an error when enabled. @keras_parameterized.run_all_keras_modes def DISABLED_test_function_model_feature_layer_input(self): col_a = fc.numeric_column('a') col_b = fc.numeric_column('b') feature_layer = fc.DenseFeatures([col_a, col_b], name='fc') dense = keras.layers.Dense(4) # This seems problematic.... We probably need something for DenseFeatures # the way Input is for InputLayer. output = dense(feature_layer) model = keras.models.Model([feature_layer], [output]) optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] model.compile( optimizer, loss, metrics=[metrics_module.CategoricalAccuracy(), 'mae'], loss_weights=loss_weights) data = ({'a': np.arange(10), 'b': np.arange(10)}, np.arange(10, 20)) model.fit(*data, epochs=1) # TODO(kaftan) seems to throw an error when enabled. @keras_parameterized.run_all_keras_modes def DISABLED_test_function_model_multiple_feature_layer_inputs(self): col_a = fc.numeric_column('a') col_b = fc.numeric_column('b') col_c = fc.numeric_column('c') fc1 = fc.DenseFeatures([col_a, col_b], name='fc1') fc2 = fc.DenseFeatures([col_b, col_c], name='fc2') dense = keras.layers.Dense(4) # This seems problematic.... We probably need something for DenseFeatures # the way Input is for InputLayer. output = dense(fc1) + dense(fc2) model = keras.models.Model([fc1, fc2], [output]) optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] model.compile( optimizer, loss, metrics=[metrics_module.CategoricalAccuracy(), 'mae'], loss_weights=loss_weights) data_list = ([{ 'a': np.arange(10), 'b': np.arange(10) }, { 'b': np.arange(10), 'c': np.arange(10) }], np.arange(10, 100)) model.fit(*data_list, epochs=1) data_bloated_list = ([{ 'a': np.arange(10), 'b': np.arange(10), 'c': np.arange(10) }, { 'a': np.arange(10), 'b': np.arange(10), 'c': np.arange(10) }], np.arange(10, 100)) model.fit(*data_bloated_list, epochs=1) data_dict = ({ 'fc1': { 'a': np.arange(10), 'b': np.arange(10) }, 'fc2': { 'b': np.arange(10), 'c': np.arange(10) } }, np.arange(10, 100)) model.fit(*data_dict, epochs=1) data_bloated_dict = ({ 'fc1': { 'a': np.arange(10), 'b': np.arange(10), 'c': np.arange(10) }, 'fc2': { 'a': np.arange(10), 'b': np.arange(10), 'c': np.arange(10) } }, np.arange(10, 100)) model.fit(*data_bloated_dict, epochs=1) @keras_parameterized.run_all_keras_modes def test_string_input(self): x = {'age': np.random.random((1024, 1)), 'cabin': np.array(['a'] * 1024)} y = np.random.randint(2, size=(1024, 1)) ds1 = dataset_ops.Dataset.from_tensor_slices(x) ds2 = dataset_ops.Dataset.from_tensor_slices(y) dataset = dataset_ops.Dataset.zip((ds1, ds2)).batch(4) categorical_cols = [fc.categorical_column_with_hash_bucket('cabin', 10)] feature_cols = ([fc.numeric_column('age')] + [fc.indicator_column(cc) for cc in categorical_cols]) layers = [fc.DenseFeatures(feature_cols), keras.layers.Dense(128), keras.layers.Dense(1)] model = keras.models.Sequential(layers) model.compile(optimizer='sgd', loss=keras.losses.BinaryCrossentropy()) model.fit(dataset) if __name__ == '__main__': test.main()
the-stack_106_23349
r""" Cavity solvation in different states of HCN4 ============================================ In selective sodium/potassium channels, the internal cavity of the pore is walled off from the solvent if the channel is closed. Upon activation, the internal gate opens and exchange of water molecules between the cavity and the bulk medium is possible. Therefore, one can track the exchange rate of water molecules between the cavity and bulk to evaluate if a pore is open, closed, or in a transition between the two. Here, we used the distance between water molecules and residues located in the central cavity to evaluate if persistant water exchange takes place in different structures of the HCN4 channel. The trajectories and template structure are not included in this example. However, the trajectories are based of publicly accessible structures of the open (PDB: 7NP3) and closed (PDB: 7NP4) state. .. image:: ../../scripts/structure/water_exchange.png """ # Code source: Daniel Bauer, Patrick Kunzmann # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np import biotite import biotite.structure.io.gro as gro import biotite.structure.io.xtc as xtc import biotite.structure as struct def water_in_prox(atoms, sele, cutoff): """ Get the atom indices of water oxygen atoms that are in vicinity of the selected atoms. """ cell_list = struct.CellList(atoms, cell_size=5, selection=atoms.atom_name == "OW") adjacent_atoms = cell_list.get_atoms(atoms[sele].coord, cutoff) adjacent_atoms = np.unique(adjacent_atoms.flatten()) adjacent_atoms = adjacent_atoms[adjacent_atoms > 0] return adjacent_atoms def cum_water_in_pore(traj, cutoff=6, key_residues=(507, 511)): """ Calculate the cumulative number of water molecules visiting the pore. """ protein_sele = np.isin(traj.res_id, key_residues) \ & ~np.isin(traj.atom_name, ["N", "O", "CA", "C"]) water_count = np.zeros(traj.shape[0]) prev_counted_indices = [] for idx, frame in enumerate(traj): indices = water_in_prox(frame, protein_sele, cutoff) count = (~np.isin(indices, prev_counted_indices)).sum() if idx != 0: count += water_count[idx-1] water_count[idx] = count prev_counted_indices = indices return water_count # Calculate the cumulative number water molecules visiting the pore # for the open and closed state counts = [] for name in ["apo", "holo"]: gro_file = gro.GROFile.read(f"{name}.gro") template = gro_file.get_structure(model=1) # Represent the water molecules by the oxygen atom filter_indices = np.where( struct.filter_amino_acids(template) | (template.atom_name == "OW") )[0] xtc_file = xtc.XTCFile.read(f"{name}.xtc", atom_i=filter_indices) traj = xtc_file.get_structure(template[filter_indices]) cum_count = cum_water_in_pore(traj) counts.append(cum_count) time = np.arange(len(counts[0])) * 40 / 1000 # Linear fitting from pylab import polyfit open_fit = polyfit(time, counts[0], 1) closed_fit = polyfit(time, counts[1], 1) fig, ax = plt.subplots(figsize=(8.0, 4.0)) ax.plot(time, counts[0], label="open pore", color=biotite.colors["dimgreen"]) ax.plot(time, open_fit[0]*time+open_fit[1], linestyle="--", color="black", zorder=-1) ax.plot(time, counts[1], label="closed pore", color=biotite.colors["lightorange"]) ax.plot(time, closed_fit[0]*time+closed_fit[1], linestyle="--", color="black", zorder=-1) ax.set( xlabel = "Time / ns", ylabel = "Count", title = "Cumulative count\nof individual water molecules visiting the pore" ) ax.legend() ax.annotate(f"{open_fit[0]:.1f} per ns", xy=(20, 20*open_fit[0]+open_fit[1]+100), xytext=(20-5, 20*open_fit[0]+open_fit[1]+1300), arrowprops=dict(facecolor=biotite.colors["darkgreen"]), va="center") ax.annotate(f"{closed_fit[0]:.1f} per ns", xy=(30, 20*closed_fit[0]+closed_fit[1]+100), xytext=(30+2, 20*closed_fit[0]+closed_fit[1]+1300), arrowprops=dict(facecolor=biotite.colors["orange"]), va="center") fig.savefig("water_exchange.png", bbox_inches="tight") plt.show()
the-stack_106_23350
"""Utility functions and classes used within the `yapapi.executor` package.""" import asyncio import logging from typing import Callable, Optional logger = logging.getLogger(__name__) class AsyncWrapper: """Wraps a given callable to provide asynchronous calls. Example usage: with AsyncWrapper(func) as wrapper: wrapper.async_call("Hello", world=True) wrapper.async_call("Bye!") The above code will make two asynchronous calls to `func`. The results of the calls, if any, are discarded, so this class is most useful for wrapping callables that return `None`. """ _wrapped: Callable _args_buffer: asyncio.Queue _task: Optional[asyncio.Task] def __init__(self, wrapped: Callable, event_loop: Optional[asyncio.AbstractEventLoop] = None): self._wrapped = wrapped # type: ignore # suppress mypy issue #708 self._args_buffer = asyncio.Queue() loop = event_loop or asyncio.get_event_loop() self._task = loop.create_task(self._worker()) async def _worker(self) -> None: while True: try: (args, kwargs) = await self._args_buffer.get() try: self._wrapped(*args, **kwargs) finally: self._args_buffer.task_done() except KeyboardInterrupt as ke: # Don't stop on KeyboardInterrupt, but pass it to the event loop logger.debug("Caught KeybordInterrupt in AsyncWrapper's worker task") def raise_interrupt(ke_): raise ke_ asyncio.get_event_loop().call_soon(raise_interrupt, ke) except asyncio.CancelledError: logger.debug("AsyncWrapper's worker task cancelled") break except Exception: logger.exception("Unhandled exception in wrapped callable") async def stop(self) -> None: """Stop the wrapper, process queued calls but do not accept any new ones.""" if self._task: # Set self._task to None so we don't accept any more calls in `async_call()` worker_task = self._task self._task = None await self._args_buffer.join() worker_task.cancel() await asyncio.gather(worker_task, return_exceptions=True) def async_call(self, *args, **kwargs) -> None: """Schedule an asynchronous call to the wrapped callable.""" if not self._task or self._task.done(): raise RuntimeError("AsyncWrapper is closed") self._args_buffer.put_nowait((args, kwargs))
the-stack_106_23354
"""Session object for building, serializing, sending, and receiving messages in IPython. The Session object supports serialization, HMAC signatures, and metadata on messages. Also defined here are utilities for working with Sessions: * A SessionFactory to be used as a base class for configurables that work with Sessions. * A Message object for convenience that allows attribute-access to the msg dict. Authors: * Min RK * Brian Granger * Fernando Perez """ #----------------------------------------------------------------------------- # Copyright (C) 2010-2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import hmac import logging import os import pprint import uuid from datetime import datetime try: import cPickle pickle = cPickle except: cPickle = None import pickle import zmq from zmq.utils import jsonapi from zmq.eventloop.ioloop import IOLoop from zmq.eventloop.zmqstream import ZMQStream from IPython.config.application import Application, boolean_flag from IPython.config.configurable import Configurable, LoggingConfigurable from IPython.utils.importstring import import_item from IPython.utils.jsonutil import extract_dates, squash_dates, date_default from IPython.utils.py3compat import str_to_bytes from IPython.utils.traitlets import (CBytes, Unicode, Bool, Any, Instance, Set, DottedObjectName, CUnicode) #----------------------------------------------------------------------------- # utility functions #----------------------------------------------------------------------------- def squash_unicode(obj): """coerce unicode back to bytestrings.""" if isinstance(obj,dict): for key in obj.keys(): obj[key] = squash_unicode(obj[key]) if isinstance(key, unicode): obj[squash_unicode(key)] = obj.pop(key) elif isinstance(obj, list): for i,v in enumerate(obj): obj[i] = squash_unicode(v) elif isinstance(obj, unicode): obj = obj.encode('utf8') return obj #----------------------------------------------------------------------------- # globals and defaults #----------------------------------------------------------------------------- # ISO8601-ify datetime objects json_packer = lambda obj: jsonapi.dumps(obj, default=date_default) json_unpacker = lambda s: extract_dates(jsonapi.loads(s)) pickle_packer = lambda o: pickle.dumps(o,-1) pickle_unpacker = pickle.loads default_packer = json_packer default_unpacker = json_unpacker DELIM=b"<IDS|MSG>" #----------------------------------------------------------------------------- # Mixin tools for apps that use Sessions #----------------------------------------------------------------------------- session_aliases = dict( ident = 'Session.session', user = 'Session.username', keyfile = 'Session.keyfile', ) session_flags = { 'secure' : ({'Session' : { 'key' : str_to_bytes(str(uuid.uuid4())), 'keyfile' : '' }}, """Use HMAC digests for authentication of messages. Setting this flag will generate a new UUID to use as the HMAC key. """), 'no-secure' : ({'Session' : { 'key' : b'', 'keyfile' : '' }}, """Don't authenticate messages."""), } def default_secure(cfg): """Set the default behavior for a config environment to be secure. If Session.key/keyfile have not been set, set Session.key to a new random UUID. """ if 'Session' in cfg: if 'key' in cfg.Session or 'keyfile' in cfg.Session: return # key/keyfile not specified, generate new UUID: cfg.Session.key = str_to_bytes(str(uuid.uuid4())) #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class SessionFactory(LoggingConfigurable): """The Base class for configurables that have a Session, Context, logger, and IOLoop. """ logname = Unicode('') def _logname_changed(self, name, old, new): self.log = logging.getLogger(new) # not configurable: context = Instance('zmq.Context') def _context_default(self): return zmq.Context.instance() session = Instance('IPython.zmq.session.Session') loop = Instance('zmq.eventloop.ioloop.IOLoop', allow_none=False) def _loop_default(self): return IOLoop.instance() def __init__(self, **kwargs): super(SessionFactory, self).__init__(**kwargs) if self.session is None: # construct the session self.session = Session(**kwargs) class Message(object): """A simple message object that maps dict keys to attributes. A Message can be created from a dict and a dict from a Message instance simply by calling dict(msg_obj).""" def __init__(self, msg_dict): dct = self.__dict__ for k, v in dict(msg_dict).iteritems(): if isinstance(v, dict): v = Message(v) dct[k] = v # Having this iterator lets dict(msg_obj) work out of the box. def __iter__(self): return iter(self.__dict__.iteritems()) def __repr__(self): return repr(self.__dict__) def __str__(self): return pprint.pformat(self.__dict__) def __contains__(self, k): return k in self.__dict__ def __getitem__(self, k): return self.__dict__[k] def msg_header(msg_id, msg_type, username, session): date = datetime.now() return locals() def extract_header(msg_or_header): """Given a message or header, return the header.""" if not msg_or_header: return {} try: # See if msg_or_header is the entire message. h = msg_or_header['header'] except KeyError: try: # See if msg_or_header is just the header h = msg_or_header['msg_id'] except KeyError: raise else: h = msg_or_header if not isinstance(h, dict): h = dict(h) return h class Session(Configurable): """Object for handling serialization and sending of messages. The Session object handles building messages and sending them with ZMQ sockets or ZMQStream objects. Objects can communicate with each other over the network via Session objects, and only need to work with the dict-based IPython message spec. The Session will handle serialization/deserialization, security, and metadata. Sessions support configurable serialiization via packer/unpacker traits, and signing with HMAC digests via the key/keyfile traits. Parameters ---------- debug : bool whether to trigger extra debugging statements packer/unpacker : str : 'json', 'pickle' or import_string importstrings for methods to serialize message parts. If just 'json' or 'pickle', predefined JSON and pickle packers will be used. Otherwise, the entire importstring must be used. The functions must accept at least valid JSON input, and output *bytes*. For example, to use msgpack: packer = 'msgpack.packb', unpacker='msgpack.unpackb' pack/unpack : callables You can also set the pack/unpack callables for serialization directly. session : bytes the ID of this Session object. The default is to generate a new UUID. username : unicode username added to message headers. The default is to ask the OS. key : bytes The key used to initialize an HMAC signature. If unset, messages will not be signed or checked. keyfile : filepath The file containing a key. If this is set, `key` will be initialized to the contents of the file. """ debug=Bool(False, config=True, help="""Debug output in the Session""") packer = DottedObjectName('json',config=True, help="""The name of the packer for serializing messages. Should be one of 'json', 'pickle', or an import name for a custom callable serializer.""") def _packer_changed(self, name, old, new): if new.lower() == 'json': self.pack = json_packer self.unpack = json_unpacker elif new.lower() == 'pickle': self.pack = pickle_packer self.unpack = pickle_unpacker else: self.pack = import_item(str(new)) unpacker = DottedObjectName('json', config=True, help="""The name of the unpacker for unserializing messages. Only used with custom functions for `packer`.""") def _unpacker_changed(self, name, old, new): if new.lower() == 'json': self.pack = json_packer self.unpack = json_unpacker elif new.lower() == 'pickle': self.pack = pickle_packer self.unpack = pickle_unpacker else: self.unpack = import_item(str(new)) session = CUnicode(u'', config=True, help="""The UUID identifying this session.""") def _session_default(self): u = unicode(uuid.uuid4()) self.bsession = u.encode('ascii') return u def _session_changed(self, name, old, new): self.bsession = self.session.encode('ascii') # bsession is the session as bytes bsession = CBytes(b'') username = Unicode(os.environ.get('USER',u'username'), config=True, help="""Username for the Session. Default is your system username.""") # message signature related traits: key = CBytes(b'', config=True, help="""execution key, for extra authentication.""") def _key_changed(self, name, old, new): if new: self.auth = hmac.HMAC(new) else: self.auth = None auth = Instance(hmac.HMAC) digest_history = Set() keyfile = Unicode('', config=True, help="""path to file containing execution key.""") def _keyfile_changed(self, name, old, new): with open(new, 'rb') as f: self.key = f.read().strip() # serialization traits: pack = Any(default_packer) # the actual packer function def _pack_changed(self, name, old, new): if not callable(new): raise TypeError("packer must be callable, not %s"%type(new)) unpack = Any(default_unpacker) # the actual packer function def _unpack_changed(self, name, old, new): # unpacker is not checked - it is assumed to be if not callable(new): raise TypeError("unpacker must be callable, not %s"%type(new)) def __init__(self, **kwargs): """create a Session object Parameters ---------- debug : bool whether to trigger extra debugging statements packer/unpacker : str : 'json', 'pickle' or import_string importstrings for methods to serialize message parts. If just 'json' or 'pickle', predefined JSON and pickle packers will be used. Otherwise, the entire importstring must be used. The functions must accept at least valid JSON input, and output *bytes*. For example, to use msgpack: packer = 'msgpack.packb', unpacker='msgpack.unpackb' pack/unpack : callables You can also set the pack/unpack callables for serialization directly. session : unicode (must be ascii) the ID of this Session object. The default is to generate a new UUID. bsession : bytes The session as bytes username : unicode username added to message headers. The default is to ask the OS. key : bytes The key used to initialize an HMAC signature. If unset, messages will not be signed or checked. keyfile : filepath The file containing a key. If this is set, `key` will be initialized to the contents of the file. """ super(Session, self).__init__(**kwargs) self._check_packers() self.none = self.pack({}) # ensure self._session_default() if necessary, so bsession is defined: self.session @property def msg_id(self): """always return new uuid""" return str(uuid.uuid4()) def _check_packers(self): """check packers for binary data and datetime support.""" pack = self.pack unpack = self.unpack # check simple serialization msg = dict(a=[1,'hi']) try: packed = pack(msg) except Exception: raise ValueError("packer could not serialize a simple message") # ensure packed message is bytes if not isinstance(packed, bytes): raise ValueError("message packed to %r, but bytes are required"%type(packed)) # check that unpack is pack's inverse try: unpacked = unpack(packed) except Exception: raise ValueError("unpacker could not handle the packer's output") # check datetime support msg = dict(t=datetime.now()) try: unpacked = unpack(pack(msg)) except Exception: self.pack = lambda o: pack(squash_dates(o)) self.unpack = lambda s: extract_dates(unpack(s)) def msg_header(self, msg_type): return msg_header(self.msg_id, msg_type, self.username, self.session) def msg(self, msg_type, content=None, parent=None, subheader=None, header=None): """Return the nested message dict. This format is different from what is sent over the wire. The serialize/unserialize methods converts this nested message dict to the wire format, which is a list of message parts. """ msg = {} header = self.msg_header(msg_type) if header is None else header msg['header'] = header msg['msg_id'] = header['msg_id'] msg['msg_type'] = header['msg_type'] msg['parent_header'] = {} if parent is None else extract_header(parent) msg['content'] = {} if content is None else content sub = {} if subheader is None else subheader msg['header'].update(sub) return msg def sign(self, msg_list): """Sign a message with HMAC digest. If no auth, return b''. Parameters ---------- msg_list : list The [p_header,p_parent,p_content] part of the message list. """ if self.auth is None: return b'' h = self.auth.copy() for m in msg_list: h.update(m) return str_to_bytes(h.hexdigest()) def serialize(self, msg, ident=None): """Serialize the message components to bytes. This is roughly the inverse of unserialize. The serialize/unserialize methods work with full message lists, whereas pack/unpack work with the individual message parts in the message list. Parameters ---------- msg : dict or Message The nexted message dict as returned by the self.msg method. Returns ------- msg_list : list The list of bytes objects to be sent with the format: [ident1,ident2,...,DELIM,HMAC,p_header,p_parent,p_content, buffer1,buffer2,...]. In this list, the p_* entities are the packed or serialized versions, so if JSON is used, these are utf8 encoded JSON strings. """ content = msg.get('content', {}) if content is None: content = self.none elif isinstance(content, dict): content = self.pack(content) elif isinstance(content, bytes): # content is already packed, as in a relayed message pass elif isinstance(content, unicode): # should be bytes, but JSON often spits out unicode content = content.encode('utf8') else: raise TypeError("Content incorrect type: %s"%type(content)) real_message = [self.pack(msg['header']), self.pack(msg['parent_header']), content ] to_send = [] if isinstance(ident, list): # accept list of idents to_send.extend(ident) elif ident is not None: to_send.append(ident) to_send.append(DELIM) signature = self.sign(real_message) to_send.append(signature) to_send.extend(real_message) return to_send def send(self, stream, msg_or_type, content=None, parent=None, ident=None, buffers=None, subheader=None, track=False, header=None): """Build and send a message via stream or socket. The message format used by this function internally is as follows: [ident1,ident2,...,DELIM,HMAC,p_header,p_parent,p_content, buffer1,buffer2,...] The serialize/unserialize methods convert the nested message dict into this format. Parameters ---------- stream : zmq.Socket or ZMQStream The socket-like object used to send the data. msg_or_type : str or Message/dict Normally, msg_or_type will be a msg_type unless a message is being sent more than once. If a header is supplied, this can be set to None and the msg_type will be pulled from the header. content : dict or None The content of the message (ignored if msg_or_type is a message). header : dict or None The header dict for the message (ignores if msg_to_type is a message). parent : Message or dict or None The parent or parent header describing the parent of this message (ignored if msg_or_type is a message). ident : bytes or list of bytes The zmq.IDENTITY routing path. subheader : dict or None Extra header keys for this message's header (ignored if msg_or_type is a message). buffers : list or None The already-serialized buffers to be appended to the message. track : bool Whether to track. Only for use with Sockets, because ZMQStream objects cannot track messages. Returns ------- msg : dict The constructed message. (msg,tracker) : (dict, MessageTracker) if track=True, then a 2-tuple will be returned, the first element being the constructed message, and the second being the MessageTracker """ if not isinstance(stream, (zmq.Socket, ZMQStream)): raise TypeError("stream must be Socket or ZMQStream, not %r"%type(stream)) elif track and isinstance(stream, ZMQStream): raise TypeError("ZMQStream cannot track messages") if isinstance(msg_or_type, (Message, dict)): # We got a Message or message dict, not a msg_type so don't # build a new Message. msg = msg_or_type else: msg = self.msg(msg_or_type, content=content, parent=parent, subheader=subheader, header=header) buffers = [] if buffers is None else buffers to_send = self.serialize(msg, ident) flag = 0 if buffers: flag = zmq.SNDMORE _track = False else: _track=track if track: tracker = stream.send_multipart(to_send, flag, copy=False, track=_track) else: tracker = stream.send_multipart(to_send, flag, copy=False) for b in buffers[:-1]: stream.send(b, flag, copy=False) if buffers: if track: tracker = stream.send(buffers[-1], copy=False, track=track) else: tracker = stream.send(buffers[-1], copy=False) # omsg = Message(msg) if self.debug: pprint.pprint(msg) pprint.pprint(to_send) pprint.pprint(buffers) msg['tracker'] = tracker return msg def send_raw(self, stream, msg_list, flags=0, copy=True, ident=None): """Send a raw message via ident path. This method is used to send a already serialized message. Parameters ---------- stream : ZMQStream or Socket The ZMQ stream or socket to use for sending the message. msg_list : list The serialized list of messages to send. This only includes the [p_header,p_parent,p_content,buffer1,buffer2,...] portion of the message. ident : ident or list A single ident or a list of idents to use in sending. """ to_send = [] if isinstance(ident, bytes): ident = [ident] if ident is not None: to_send.extend(ident) to_send.append(DELIM) to_send.append(self.sign(msg_list)) to_send.extend(msg_list) stream.send_multipart(msg_list, flags, copy=copy) def recv(self, socket, mode=zmq.NOBLOCK, content=True, copy=True): """Receive and unpack a message. Parameters ---------- socket : ZMQStream or Socket The socket or stream to use in receiving. Returns ------- [idents], msg [idents] is a list of idents and msg is a nested message dict of same format as self.msg returns. """ if isinstance(socket, ZMQStream): socket = socket.socket try: msg_list = socket.recv_multipart(mode, copy=copy) except zmq.ZMQError as e: if e.errno == zmq.EAGAIN: # We can convert EAGAIN to None as we know in this case # recv_multipart won't return None. return None,None else: raise # split multipart message into identity list and message dict # invalid large messages can cause very expensive string comparisons idents, msg_list = self.feed_identities(msg_list, copy) try: return idents, self.unserialize(msg_list, content=content, copy=copy) except Exception as e: # TODO: handle it raise e def feed_identities(self, msg_list, copy=True): """Split the identities from the rest of the message. Feed until DELIM is reached, then return the prefix as idents and remainder as msg_list. This is easily broken by setting an IDENT to DELIM, but that would be silly. Parameters ---------- msg_list : a list of Message or bytes objects The message to be split. copy : bool flag determining whether the arguments are bytes or Messages Returns ------- (idents, msg_list) : two lists idents will always be a list of bytes, each of which is a ZMQ identity. msg_list will be a list of bytes or zmq.Messages of the form [HMAC,p_header,p_parent,p_content,buffer1,buffer2,...] and should be unpackable/unserializable via self.unserialize at this point. """ if copy: idx = msg_list.index(DELIM) return msg_list[:idx], msg_list[idx+1:] else: failed = True for idx,m in enumerate(msg_list): if m.bytes == DELIM: failed = False break if failed: raise ValueError("DELIM not in msg_list") idents, msg_list = msg_list[:idx], msg_list[idx+1:] return [m.bytes for m in idents], msg_list def unserialize(self, msg_list, content=True, copy=True): """Unserialize a msg_list to a nested message dict. This is roughly the inverse of serialize. The serialize/unserialize methods work with full message lists, whereas pack/unpack work with the individual message parts in the message list. Parameters: ----------- msg_list : list of bytes or Message objects The list of message parts of the form [HMAC,p_header,p_parent, p_content,buffer1,buffer2,...]. content : bool (True) Whether to unpack the content dict (True), or leave it packed (False). copy : bool (True) Whether to return the bytes (True), or the non-copying Message object in each place (False). Returns ------- msg : dict The nested message dict with top-level keys [header, parent_header, content, buffers]. """ minlen = 4 message = {} if not copy: for i in range(minlen): msg_list[i] = msg_list[i].bytes if self.auth is not None: signature = msg_list[0] if not signature: raise ValueError("Unsigned Message") if signature in self.digest_history: raise ValueError("Duplicate Signature: %r"%signature) self.digest_history.add(signature) check = self.sign(msg_list[1:4]) if not signature == check: raise ValueError("Invalid Signature: %r"%signature) if not len(msg_list) >= minlen: raise TypeError("malformed message, must have at least %i elements"%minlen) header = self.unpack(msg_list[1]) message['header'] = header message['msg_id'] = header['msg_id'] message['msg_type'] = header['msg_type'] message['parent_header'] = self.unpack(msg_list[2]) if content: message['content'] = self.unpack(msg_list[3]) else: message['content'] = msg_list[3] message['buffers'] = msg_list[4:] return message def test_msg2obj(): am = dict(x=1) ao = Message(am) assert ao.x == am['x'] am['y'] = dict(z=1) ao = Message(am) assert ao.y.z == am['y']['z'] k1, k2 = 'y', 'z' assert ao[k1][k2] == am[k1][k2] am2 = dict(ao) assert am['x'] == am2['x'] assert am['y']['z'] == am2['y']['z']
the-stack_106_23355
# -*- coding: utf-8 -*- ### # (C) Copyright (2012-2019) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from pprint import pprint from config_loader import try_load_from_file from hpOneView.oneview_client import OneViewClient config = { "ip": "<oneview_ip>", "credentials": { "userName": "<user>", "password": "<password>" } } # Try load config from a file (if there is a config file) config = try_load_from_file(config) oneview_client = OneViewClient(config) os_deployment_plans = oneview_client.os_deployment_plans print("\nGet OS Deployment Plans by Filter:") plans = os_deployment_plans.get_by('deploymentType', 'I3S') pprint(plans) print("\nGet the OS Deployment Plan by Name:") os_deployment_plan = os_deployment_plans.get_by('name', 'Deployment Plan') pprint(os_deployment_plan) print("\nGet all OS Deployment Plans:") os_deployment_plans_all = os_deployment_plans.get_all() pprint(os_deployment_plans_all)
the-stack_106_23356
import sys import zlib if sys.version >= '2.7': from io import BytesIO as StringIO else: from cStringIO import StringIO try: from hashlib import md5 except ImportError: from md5 import md5 from nose.tools import eq_, ok_, assert_raises from webob import BaseRequest, Request, Response def simple_app(environ, start_response): start_response('200 OK', [ ('Content-Type', 'text/html; charset=utf8'), ]) return ['OK'] def test_response(): req = BaseRequest.blank('/') res = req.get_response(simple_app) assert res.status == '200 OK' assert res.status_int == 200 assert res.body == "OK" assert res.charset == 'utf8' assert res.content_type == 'text/html' res.status = 404 assert res.status == '404 Not Found' assert res.status_int == 404 res.body = 'Not OK' assert ''.join(res.app_iter) == 'Not OK' res.charset = 'iso8859-1' assert res.headers['content-type'] == 'text/html; charset=iso8859-1' res.content_type = 'text/xml' assert res.headers['content-type'] == 'text/xml; charset=iso8859-1' res.headers = {'content-type': 'text/html'} assert res.headers['content-type'] == 'text/html' assert res.headerlist == [('content-type', 'text/html')] res.set_cookie('x', 'y') assert res.headers['set-cookie'].strip(';') == 'x=y; Path=/' res = Response('a body', '200 OK', content_type='text/html') res.encode_content() assert res.content_encoding == 'gzip' eq_(res.body, '\x1f\x8b\x08\x00\x00\x00\x00\x00\x02\xffKTH\xcaO\xa9\x04\x00\xf6\x86GI\x06\x00\x00\x00') res.decode_content() assert res.content_encoding is None assert res.body == 'a body' res.set_cookie('x', u'foo') # test unicode value assert_raises(TypeError, Response, app_iter=iter(['a']), body="somebody") del req.environ eq_(Response(request=req)._environ, req) eq_(Response(request=req)._request, None) assert_raises(TypeError, Response, charset=None, body=u"unicode body") assert_raises(TypeError, Response, wrong_key='dummy') def test_content_type(): r = Response() # default ctype and charset eq_(r.content_type, 'text/html') eq_(r.charset, 'UTF-8') # setting to none, removes the header r.content_type = None eq_(r.content_type, None) eq_(r.charset, None) # can set missing ctype r.content_type = None eq_(r.content_type, None) def test_cookies(): res = Response() res.set_cookie('x', u'\N{BLACK SQUARE}') # test unicode value eq_(res.headers.getall('set-cookie'), ['x="\\342\\226\\240"; Path=/']) # uft8 encoded r2 = res.merge_cookies(simple_app) r2 = BaseRequest.blank('/').get_response(r2) eq_(r2.headerlist, [('Content-Type', 'text/html; charset=utf8'), ('Set-Cookie', 'x="\\342\\226\\240"; Path=/'), ] ) def test_http_only_cookie(): req = Request.blank('/') res = req.get_response(Response('blah')) res.set_cookie("foo", "foo", httponly=True) eq_(res.headers['set-cookie'], 'foo=foo; Path=/; HttpOnly') def test_headers(): r = Response() tval = 'application/x-test' r.headers.update({'content-type': tval}) eq_(r.headers.getall('content-type'), [tval]) def test_response_copy(): r = Response(app_iter=iter(['a'])) r2 = r.copy() eq_(r.body, 'a') eq_(r2.body, 'a') def test_response_copy_content_md5(): res = Response() res.md5_etag(set_content_md5=True) assert res.content_md5 res2 = res.copy() assert res.content_md5 assert res2.content_md5 eq_(res.content_md5, res2.content_md5) def test_HEAD_closes(): req = Request.blank('/') req.method = 'HEAD' app_iter = StringIO('foo') res = req.get_response(Response(app_iter=app_iter)) eq_(res.status_int, 200) eq_(res.body, '') ok_(app_iter.closed) def test_HEAD_conditional_response_returns_empty_response(): from webob.response import EmptyResponse req = Request.blank('/') req.method = 'HEAD' res = Response(request=req, conditional_response=True) class FakeRequest: method = 'HEAD' if_none_match = 'none' if_modified_since = False range = False def __init__(self, env): self.env = env def start_response(status, headerlist): pass res.RequestClass = FakeRequest result = res({}, start_response) ok_(isinstance(result, EmptyResponse)) def test_HEAD_conditional_response_range_empty_response(): from webob.response import EmptyResponse req = Request.blank('/') req.method = 'HEAD' res = Response(request=req, conditional_response=True) res.status_int = 200 res.body = 'Are we not men?' res.content_length = len(res.body) class FakeRequest: method = 'HEAD' if_none_match = 'none' if_modified_since = False def __init__(self, env): self.env = env self.range = self # simulate inner api self.if_range = self def content_range(self, length): """range attr""" class Range: start = 4 stop = 5 return Range def match_response(self, res): """if_range_match attr""" return True def start_response(status, headerlist): pass res.RequestClass = FakeRequest result = res({}, start_response) ok_(isinstance(result, EmptyResponse), result) def test_conditional_response_if_none_match_false(): req = Request.blank('/', if_none_match='foo') resp = Response(app_iter=['foo\n'], conditional_response=True, etag='foo') resp = req.get_response(resp) eq_(resp.status_int, 304) def test_conditional_response_if_none_match_true(): req = Request.blank('/', if_none_match='foo') resp = Response(app_iter=['foo\n'], conditional_response=True, etag='bar') resp = req.get_response(resp) eq_(resp.status_int, 200) def test_conditional_response_if_modified_since_false(): from datetime import datetime, timedelta req = Request.blank('/', if_modified_since=datetime(2011, 3, 17, 13, 0, 0)) resp = Response(app_iter=['foo\n'], conditional_response=True, last_modified=req.if_modified_since-timedelta(seconds=1)) resp = req.get_response(resp) eq_(resp.status_int, 304) def test_conditional_response_if_modified_since_true(): from datetime import datetime, timedelta req = Request.blank('/', if_modified_since=datetime(2011, 3, 17, 13, 0, 0)) resp = Response(app_iter=['foo\n'], conditional_response=True, last_modified=req.if_modified_since+timedelta(seconds=1)) resp = req.get_response(resp) eq_(resp.status_int, 200) def test_conditional_response_range_not_satisfiable_response(): req = Request.blank('/', range='bytes=100-200') resp = Response(app_iter=['foo\n'], content_length=4, conditional_response=True) resp = req.get_response(resp) eq_(resp.status_int, 416) eq_(resp.content_range.start, None) eq_(resp.content_range.stop, None) eq_(resp.content_range.length, 4) eq_(resp.body, 'Requested range not satisfiable: bytes=100-200') def test_HEAD_conditional_response_range_not_satisfiable_response(): req = Request.blank('/', method='HEAD', range='bytes=100-200') resp = Response(app_iter=['foo\n'], content_length=4, conditional_response=True) resp = req.get_response(resp) eq_(resp.status_int, 416) eq_(resp.content_range.start, None) eq_(resp.content_range.stop, None) eq_(resp.content_range.length, 4) eq_(resp.body, '') def test_del_environ(): res = Response() res.environ = {'yo': 'mama'} eq_(res.environ, {'yo': 'mama'}) del res.environ eq_(res.environ, None) eq_(res.request, None) def test_set_request_environ(): res = Response() class FakeRequest: environ = {'jo': 'mama'} res.request = FakeRequest eq_(res.environ, {'jo': 'mama'}) eq_(res.request, FakeRequest) res.environ = None eq_(res.environ, None) eq_(res.request, None) def test_del_request(): res = Response() class FakeRequest: environ = {} res.request = FakeRequest del res.request eq_(res.environ, None) eq_(res.request, None) def test_set_environ_via_request_subterfuge(): class FakeRequest: def __init__(self, env): self.environ = env res = Response() res.RequestClass = FakeRequest res.request = {'action': 'dwim'} eq_(res.environ, {'action': 'dwim'}) ok_(isinstance(res.request, FakeRequest)) eq_(res.request.environ, res.environ) def test_set_request(): res = Response() class FakeRequest: environ = {'foo': 'bar'} res.request = FakeRequest eq_(res.request, FakeRequest) eq_(res.environ, FakeRequest.environ) res.request = None eq_(res.environ, None) eq_(res.request, None) def test_md5_etag(): res = Response() res.body = """\ In A.D. 2101 War was beginning. Captain: What happen ? Mechanic: Somebody set up us the bomb. Operator: We get signal. Captain: What ! Operator: Main screen turn on. Captain: It's You !! Cats: How are you gentlemen !! Cats: All your base are belong to us. Cats: You are on the way to destruction. Captain: What you say !! Cats: You have no chance to survive make your time. Cats: HA HA HA HA .... Captain: Take off every 'zig' !! Captain: You know what you doing. Captain: Move 'zig'. Captain: For great justice.""" res.md5_etag() ok_(res.etag) ok_('\n' not in res.etag) eq_(res.etag, md5(res.body).digest().encode('base64').replace('\n', '').strip('=')) eq_(res.content_md5, None) def test_md5_etag_set_content_md5(): res = Response() b = 'The quick brown fox jumps over the lazy dog' res.md5_etag(b, set_content_md5=True) ok_(res.content_md5, md5(b).digest().encode('base64').replace('\n', '').strip('=')) def test_decode_content_defaults_to_identity(): res = Response() res.body = 'There be dragons' res.decode_content() eq_(res.body, 'There be dragons') def test_decode_content_with_deflate(): res = Response() b = 'Hey Hey Hey' # Simulate inflate by chopping the headers off # the gzip encoded data res.body = zlib.compress(b)[2:-4] res.content_encoding = 'deflate' res.decode_content() eq_(res.body, b) eq_(res.content_encoding, None) def test_content_length(): r0 = Response('x'*10, content_length=10) req_head = Request.blank('/', method='HEAD') r1 = req_head.get_response(r0) eq_(r1.status_int, 200) eq_(r1.body, '') eq_(r1.content_length, 10) req_get = Request.blank('/') r2 = req_get.get_response(r0) eq_(r2.status_int, 200) eq_(r2.body, 'x'*10) eq_(r2.content_length, 10) r3 = Response(app_iter=['x']*10) eq_(r3.content_length, None) eq_(r3.body, 'x'*10) eq_(r3.content_length, 10) r4 = Response(app_iter=['x']*10, content_length=20) # wrong content_length eq_(r4.content_length, 20) assert_raises(AssertionError, lambda: r4.body) req_range = Request.blank('/', range=(0,5)) r0.conditional_response = True r5 = req_range.get_response(r0) eq_(r5.status_int, 206) eq_(r5.body, 'xxxxx') eq_(r5.content_length, 5) def test_app_iter_range(): req = Request.blank('/', range=(2,5)) for app_iter in [ ['012345'], ['0', '12345'], ['0', '1234', '5'], ['01', '2345'], ['01', '234', '5'], ['012', '34', '5'], ['012', '3', '4', '5'], ['012', '3', '45'], ['0', '12', '34', '5'], ['0', '12', '345'], ]: r = Response( app_iter=app_iter, content_length=6, conditional_response=True, ) res = req.get_response(r) eq_(list(res.content_range), [2,5,6]) eq_(res.body, '234', 'body=%r; app_iter=%r' % (res.body, app_iter)) def test_app_iter_range_inner_method(): class FakeAppIter: def app_iter_range(self, start, stop): return 'you win', start, stop res = Response(app_iter=FakeAppIter()) eq_(res.app_iter_range(30, 40), ('you win', 30, 40)) def test_content_type_in_headerlist(): # Couldn't manage to clone Response in order to modify class # attributes safely. Shouldn't classes be fresh imported for every # test? default_content_type = Response.default_content_type Response.default_content_type = None try: res = Response(headerlist=[('Content-Type', 'text/html')], charset='utf8') ok_(res._headerlist) eq_(res.charset, 'utf8') finally: Response.default_content_type = default_content_type def test_from_file(): res = Response('test') equal_resp(res) res = Response(app_iter=iter(['test ', 'body']), content_type='text/plain') equal_resp(res) def equal_resp(res): input_ = StringIO(str(res)) res2 = Response.from_file(input_) eq_(res.body, res2.body) eq_(res.headers, res2.headers) def test_from_file_w_leading_space_in_header(): # Make sure the removal of code dealing with leading spaces is safe res1 = Response() file_w_space = StringIO('200 OK\n\tContent-Type: text/html; charset=UTF-8') res2 = Response.from_file(file_w_space) eq_(res1.headers, res2.headers) def test_file_bad_header(): file_w_bh = StringIO('200 OK\nBad Header') assert_raises(ValueError, Response.from_file, file_w_bh) def test_set_status(): res = Response() res.status = u"OK 200" eq_(res.status, "OK 200") assert_raises(TypeError, setattr, res, 'status', float(200)) def test_set_headerlist(): res = Response() # looks like a list res.headerlist = (('Content-Type', 'text/html; charset=UTF-8'),) eq_(res.headerlist, [('Content-Type', 'text/html; charset=UTF-8')]) # has items res.headerlist = {'Content-Type': 'text/html; charset=UTF-8'} eq_(res.headerlist, [('Content-Type', 'text/html; charset=UTF-8')]) del res.headerlist eq_(res.headerlist, []) def test_request_uri_no_script_name(): from webob.response import _request_uri environ = { 'wsgi.url_scheme': 'http', 'HTTP_HOST': 'test.com', 'SCRIPT_NAME': '/foobar', } eq_(_request_uri(environ), 'http://test.com/foobar') def test_request_uri_https(): from webob.response import _request_uri environ = { 'wsgi.url_scheme': 'https', 'SERVER_NAME': 'test.com', 'SERVER_PORT': '443', 'SCRIPT_NAME': '/foobar', } eq_(_request_uri(environ), 'https://test.com/foobar') def test_app_iter_range_starts_after_iter_end(): from webob.response import AppIterRange range = AppIterRange(iter([]), start=1, stop=1) eq_(list(range), []) def test_resp_write_app_iter_non_list(): res = Response(app_iter=('a','b')) eq_(res.content_length, None) res.write('c') eq_(res.body, 'abc') eq_(res.content_length, 3) def test_response_file_body_writelines(): from webob.response import ResponseBodyFile res = Response(app_iter=['foo']) rbo = ResponseBodyFile(res) rbo.writelines(['bar', 'baz']) eq_(res.app_iter, ['foo', 'bar', 'baz']) rbo.flush() # noop eq_(res.app_iter, ['foo', 'bar', 'baz']) def test_response_write_non_str(): res = Response() assert_raises(TypeError, res.write, object()) def test_response_file_body_write_empty_app_iter(): from webob.response import ResponseBodyFile res = Response('foo') res.write('baz') eq_(res.app_iter, ['foo', 'baz']) def test_response_file_body_write_empty_body(): res = Response('') res.write('baz') eq_(res.app_iter, ['', 'baz']) def test_response_file_body_close_not_implemented(): rbo = Response().body_file assert_raises(NotImplementedError, rbo.close) def test_response_file_body_repr(): rbo = Response().body_file rbo.response = 'yo' eq_(repr(rbo), "<body_file for 'yo'>") def test_body_get_is_none(): res = Response() res._app_iter = None assert_raises(TypeError, Response, app_iter=iter(['a']), body="somebody") assert_raises(AttributeError, res.__getattribute__, 'body') def test_body_get_is_unicode_notverylong(): res = Response(app_iter=(u'foo',)) assert_raises(TypeError, res.__getattribute__, 'body') def test_body_get_is_unicode(): res = Response(app_iter=(['x'] * 51 + [u'x'])) assert_raises(TypeError, res.__getattribute__, 'body') def test_body_set_not_unicode_or_str(): res = Response() assert_raises(TypeError, res.__setattr__, 'body', object()) def test_body_set_unicode(): res = Response() assert_raises(TypeError, res.__setattr__, 'body', u'abc') def test_body_set_under_body_doesnt_exist(): res = Response('abc') eq_(res.body, 'abc') eq_(res.content_length, 3) def test_body_del(): res = Response('123') del res.body eq_(res.body, '') eq_(res.content_length, 0) def test_text_get_no_charset(): res = Response(charset=None) assert_raises(AttributeError, res.__getattribute__, 'text') def test_unicode_body(): res = Response() res.charset = 'utf-8' bbody = 'La Pe\xc3\xb1a' # binary string ubody = unicode(bbody, 'utf-8') # unicode string res.body = bbody eq_(res.unicode_body, ubody) res.ubody = ubody eq_(res.body, bbody) del res.ubody eq_(res.body, '') def test_text_get_decode(): res = Response() res.charset = 'utf-8' res.body = 'La Pe\xc3\xb1a' eq_(res.text, unicode('La Pe\xc3\xb1a', 'utf-8')) def test_text_set_no_charset(): res = Response() res.charset = None assert_raises(AttributeError, res.__setattr__, 'text', 'abc') def test_text_set_not_unicode(): res = Response() res.charset = 'utf-8' assert_raises(TypeError, res.__setattr__, 'text', 'La Pe\xc3\xb1a') def test_text_del(): res = Response('123') del res.text eq_(res.body, '') eq_(res.content_length, 0) def test_body_file_del(): res = Response() res.body = '123' eq_(res.content_length, 3) eq_(res.app_iter, ['123']) del res.body_file eq_(res.body, '') eq_(res.content_length, 0) def test_write_unicode(): res = Response() res.text = unicode('La Pe\xc3\xb1a', 'utf-8') res.write(u'a') eq_(res.text, unicode('La Pe\xc3\xb1aa', 'utf-8')) def test_write_unicode_no_charset(): res = Response(charset=None) assert_raises(TypeError, res.write, u'a') def test_write_text(): res = Response() res.body = 'abc' res.write(u'a') eq_(res.text, 'abca') def test_app_iter_del(): res = Response( content_length=3, app_iter=['123'], ) del res.app_iter eq_(res.body, '') eq_(res.content_length, None) def test_charset_set_no_content_type_header(): res = Response() res.headers.pop('Content-Type', None) assert_raises(AttributeError, res.__setattr__, 'charset', 'utf-8') def test_charset_del_no_content_type_header(): res = Response() res.headers.pop('Content-Type', None) eq_(res._charset__del(), None) def test_content_type_params_get_no_semicolon_in_content_type_header(): res = Response() res.headers['Content-Type'] = 'foo' eq_(res.content_type_params, {}) def test_content_type_params_get_semicolon_in_content_type_header(): res = Response() res.headers['Content-Type'] = 'foo;encoding=utf-8' eq_(res.content_type_params, {'encoding':'utf-8'}) def test_content_type_params_set_value_dict_empty(): res = Response() res.headers['Content-Type'] = 'foo;bar' res.content_type_params = None eq_(res.headers['Content-Type'], 'foo') def test_content_type_params_set_ok_param_quoting(): res = Response() res.content_type_params = {'a':''} eq_(res.headers['Content-Type'], 'text/html; a=""') def test_set_cookie_overwrite(): res = Response() res.set_cookie('a', '1') res.set_cookie('a', '2', overwrite=True) eq_(res.headerlist[-1], ('Set-Cookie', 'a=2; Path=/')) def test_set_cookie_value_is_None(): res = Response() res.set_cookie('a', None) eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() eq_(val[0], 'Max-Age=0') eq_(val[1], 'Path=/') eq_(val[2], 'a=') assert val[3].startswith('expires') def test_set_cookie_expires_is_None_and_max_age_is_int(): res = Response() res.set_cookie('a', '1', max_age=100) eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() eq_(val[0], 'Max-Age=100') eq_(val[1], 'Path=/') eq_(val[2], 'a=1') assert val[3].startswith('expires') def test_set_cookie_expires_is_None_and_max_age_is_timedelta(): from datetime import timedelta res = Response() res.set_cookie('a', '1', max_age=timedelta(seconds=100)) eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() eq_(val[0], 'Max-Age=100') eq_(val[1], 'Path=/') eq_(val[2], 'a=1') assert val[3].startswith('expires') def test_set_cookie_expires_is_not_None_and_max_age_is_None(): import datetime res = Response() then = datetime.datetime.utcnow() + datetime.timedelta(days=1) res.set_cookie('a', '1', expires=then) eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() ok_(val[0] in ('Max-Age=86399', 'Max-Age=86400')) eq_(val[1], 'Path=/') eq_(val[2], 'a=1') assert val[3].startswith('expires') def test_set_cookie_value_is_unicode(): res = Response() val = unicode('La Pe\xc3\xb1a', 'utf-8') res.set_cookie('a', val) eq_(res.headerlist[-1], (r'Set-Cookie', 'a="La Pe\\303\\261a"; Path=/')) def test_delete_cookie(): res = Response() res.headers['Set-Cookie'] = 'a=2; Path=/' res.delete_cookie('a') eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() eq_(val[0], 'Max-Age=0') eq_(val[1], 'Path=/') eq_(val[2], 'a=') assert val[3].startswith('expires') def test_delete_cookie_with_path(): res = Response() res.headers['Set-Cookie'] = 'a=2; Path=/' res.delete_cookie('a', path='/abc') eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 4 val.sort() eq_(val[0], 'Max-Age=0') eq_(val[1], 'Path=/abc') eq_(val[2], 'a=') assert val[3].startswith('expires') def test_delete_cookie_with_domain(): res = Response() res.headers['Set-Cookie'] = 'a=2; Path=/' res.delete_cookie('a', path='/abc', domain='example.com') eq_(res.headerlist[-1][0], 'Set-Cookie') val = [ x.strip() for x in res.headerlist[-1][1].split(';')] assert len(val) == 5 val.sort() eq_(val[0], 'Domain=example.com') eq_(val[1], 'Max-Age=0') eq_(val[2], 'Path=/abc') eq_(val[3], 'a=') assert val[4].startswith('expires') def test_unset_cookie_not_existing_and_not_strict(): res = Response() result = res.unset_cookie('a', strict=False) assert result is None def test_unset_cookie_not_existing_and_strict(): res = Response() assert_raises(KeyError, res.unset_cookie, 'a') def test_unset_cookie_key_in_cookies(): res = Response() res.headers.add('Set-Cookie', 'a=2; Path=/') res.headers.add('Set-Cookie', 'b=3; Path=/') res.unset_cookie('a') eq_(res.headers.getall('Set-Cookie'), ['b=3; Path=/']) def test_merge_cookies_no_set_cookie(): res = Response() result = res.merge_cookies('abc') eq_(result, 'abc') def test_merge_cookies_resp_is_Response(): inner_res = Response() res = Response() res.set_cookie('a', '1') result = res.merge_cookies(inner_res) eq_(result.headers.getall('Set-Cookie'), ['a=1; Path=/']) def test_merge_cookies_resp_is_wsgi_callable(): L = [] def dummy_wsgi_callable(environ, start_response): L.append((environ, start_response)) return 'abc' res = Response() res.set_cookie('a', '1') wsgiapp = res.merge_cookies(dummy_wsgi_callable) environ = {} def dummy_start_response(status, headers, exc_info=None): eq_(headers, [('Set-Cookie', 'a=1; Path=/')]) result = wsgiapp(environ, dummy_start_response) assert result == 'abc' assert len(L) == 1 L[0][1]('200 OK', []) # invoke dummy_start_response assertion def test_body_get_body_is_None_len_app_iter_is_zero(): res = Response() res._app_iter = StringIO() res._body = None result = res.body eq_(result, '') def test_cache_control_get(): res = Response() eq_(repr(res.cache_control), "<CacheControl ''>") eq_(res.cache_control.max_age, None) def test_location(): # covers webob/response.py:934-938 res = Response() res.location = '/test.html' eq_(res.location, '/test.html') req = Request.blank('/') eq_(req.get_response(res).location, 'http://localhost/test.html') res.location = '/test2.html' eq_(req.get_response(res).location, 'http://localhost/test2.html') def test_request_uri_http(): # covers webob/response.py:1152 from webob.response import _request_uri environ = { 'wsgi.url_scheme': 'http', 'SERVER_NAME': 'test.com', 'SERVER_PORT': '80', 'SCRIPT_NAME': '/foobar', } eq_(_request_uri(environ), 'http://test.com/foobar') def test_request_uri_no_script_name2(): # covers webob/response.py:1160 # There is a test_request_uri_no_script_name in test_response.py, but it # sets SCRIPT_NAME. from webob.response import _request_uri environ = { 'wsgi.url_scheme': 'http', 'HTTP_HOST': 'test.com', 'PATH_INFO': '/foobar', } eq_(_request_uri(environ), 'http://test.com/foobar') def test_cache_control_object_max_age_ten(): res = Response() res.cache_control.max_age = 10 eq_(repr(res.cache_control), "<CacheControl 'max-age=10'>") eq_(res.headers['cache-control'], 'max-age=10') def test_cache_control_set_object_error(): res = Response() assert_raises(AttributeError, setattr, res.cache_control, 'max_stale', 10) def test_cache_expires_set(): res = Response() res.cache_expires = True eq_(repr(res.cache_control), "<CacheControl 'max-age=0, must-revalidate, no-cache, no-store'>") def test_status_int_set(): res = Response() res.status_int = 400 eq_(res._status, '400 Bad Request') def test_cache_control_set_dict(): res = Response() res.cache_control = {'a':'b'} eq_(repr(res.cache_control), "<CacheControl 'a=b'>") def test_cache_control_set_None(): res = Response() res.cache_control = None eq_(repr(res.cache_control), "<CacheControl ''>") def test_cache_control_set_unicode(): res = Response() res.cache_control = u'abc' eq_(repr(res.cache_control), "<CacheControl 'abc'>") def test_cache_control_set_control_obj_is_not_None(): class DummyCacheControl(object): def __init__(self): self.header_value = 1 self.properties = {'bleh':1} res = Response() res._cache_control_obj = DummyCacheControl() res.cache_control = {} eq_(res.cache_control.properties, {}) def test_cache_control_del(): res = Response() del res.cache_control eq_(repr(res.cache_control), "<CacheControl ''>") def test_body_file_get(): res = Response() result = res.body_file from webob.response import ResponseBodyFile eq_(result.__class__, ResponseBodyFile) def test_body_file_write_no_charset(): res = Response assert_raises(TypeError, res.write, u'foo') def test_body_file_write_unicode_encodes(): from webob.response import ResponseBodyFile s = unicode('La Pe\xc3\xb1a', 'utf-8') res = Response() res.write(s) eq_(res.app_iter, ['', 'La Pe\xc3\xb1a']) def test_repr(): res = Response() ok_(repr(res).endswith('200 OK>')) def test_cache_expires_set_timedelta(): res = Response() from datetime import timedelta delta = timedelta(seconds=60) res.cache_expires(seconds=delta) eq_(res.cache_control.max_age, 60) def test_cache_expires_set_int(): res = Response() res.cache_expires(seconds=60) eq_(res.cache_control.max_age, 60) def test_cache_expires_set_None(): res = Response() res.cache_expires(seconds=None, a=1) eq_(res.cache_control.a, 1) def test_cache_expires_set_zero(): res = Response() res.cache_expires(seconds=0) eq_(res.cache_control.no_store, True) eq_(res.cache_control.no_cache, '*') eq_(res.cache_control.must_revalidate, True) eq_(res.cache_control.max_age, 0) eq_(res.cache_control.post_check, 0) def test_encode_content_unknown(): res = Response() assert_raises(AssertionError, res.encode_content, 'badencoding') def test_encode_content_identity(): res = Response() result = res.encode_content('identity') eq_(result, None) def test_encode_content_gzip_already_gzipped(): res = Response() res.content_encoding = 'gzip' result = res.encode_content('gzip') eq_(result, None) def test_encode_content_gzip_notyet_gzipped(): res = Response() res.app_iter = StringIO('foo') result = res.encode_content('gzip') eq_(result, None) eq_(res.content_length, 23) eq_(res.app_iter, ['\x1f\x8b\x08\x00\x00\x00\x00\x00\x02\xff', '', 'K\xcb\xcf\x07\x00', '!es\x8c\x03\x00\x00\x00']) def test_encode_content_gzip_notyet_gzipped_lazy(): res = Response() res.app_iter = StringIO('foo') result = res.encode_content('gzip', lazy=True) eq_(result, None) eq_(res.content_length, None) eq_(list(res.app_iter), ['\x1f\x8b\x08\x00\x00\x00\x00\x00\x02\xff', '', 'K\xcb\xcf\x07\x00', '!es\x8c\x03\x00\x00\x00']) def test_decode_content_identity(): res = Response() res.content_encoding = 'identity' result = res.decode_content() eq_(result, None) def test_decode_content_weird(): res = Response() res.content_encoding = 'weird' assert_raises(ValueError, res.decode_content) def test_decode_content_gzip(): from gzip import GzipFile io = StringIO() gzip_f = GzipFile(filename='', mode='w', fileobj=io) gzip_f.write('abc') gzip_f.close() body = io.getvalue() res = Response() res.content_encoding = 'gzip' res.body = body res.decode_content() eq_(res.body, 'abc') def test__abs_headerlist_location_with_scheme(): res = Response() res.content_encoding = 'gzip' res.headerlist = [('Location', 'http:')] result = res._abs_headerlist({}) eq_(result, [('Location', 'http:')]) def test_response_set_body_file(): for data in ['abc', 'abcdef'*1024]: file = StringIO(data) r = Response(body_file=file) assert r.body == data
the-stack_106_23357
# Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the Google Cloud Translate API.""" import httplib2 import six from gcloud._helpers import _to_bytes from gcloud.translate.connection import Connection ENGLISH_ISO_639 = 'en' """ISO 639-1 language code for English.""" class Client(object): """Client to bundle configuration needed for API requests. :type api_key: str :param api_key: The key used to send with requests as a query parameter. :type http: :class:`httplib2.Http` or class that defines ``request()``. :param http: (Optional) HTTP object to make requests. If not passed, an :class:`httplib.Http` object is created. :type target_language: str :param target_language: (Optional) The target language used for translations and language names. (Defaults to :data:`ENGLISH_ISO_639`.) """ def __init__(self, api_key, http=None, target_language=ENGLISH_ISO_639): self.api_key = api_key if http is None: http = httplib2.Http() self.connection = Connection(http=http) self.target_language = target_language def get_languages(self, target_language=None): """Get list of supported languages for translation. Response See: https://cloud.google.com/translate/v2/\ discovering-supported-languages-with-rest :type target_language: str :param target_language: (Optional) The language used to localize returned language names. Defaults to the target language on the current client. :rtype: list :returns: List of dictionaries. Each dictionary contains a supported ISO 639-1 language code (using the dictionary key ``language``). If ``target_language`` is passed, each dictionary will also contain the name of each supported language (localized to the target language). """ query_params = {'key': self.api_key} if target_language is None: target_language = self.target_language if target_language is not None: query_params['target'] = target_language response = self.connection.api_request( method='GET', path='/languages', query_params=query_params) return response.get('data', {}).get('languages', ()) def detect_language(self, values): """Detect the language of a string or list of strings. See: https://cloud.google.com/translate/v2/\ detecting-language-with-rest :type values: str or list :param values: String or list of strings that will have language detected. :rtype: str or list :returns: A list of dictionaries for each queried value. Each dictionary typically contains three keys * ``confidence``: The confidence in language detection, a float between 0 and 1. * ``input``: The corresponding input value. * ``language``: The detected language (as an ISO 639-1 language code). though the key ``confidence`` may not always be present. If only a single value is passed, then only a single dictionary will be returned. :raises: :class:`ValueError <exceptions.ValueError>` if the number of detections is not equal to the number of values. :class:`ValueError <exceptions.ValueError>` if a value produces a list of detections with 0 or multiple results in it. """ single_value = False if isinstance(values, six.string_types): single_value = True values = [values] query_params = [('key', self.api_key)] query_params.extend(('q', _to_bytes(value, 'utf-8')) for value in values) response = self.connection.api_request( method='GET', path='/detect', query_params=query_params) detections = response.get('data', {}).get('detections', ()) if len(values) != len(detections): raise ValueError('Expected same number of values and detections', values, detections) for index, value in enumerate(values): # Empirically, even clearly ambiguous text like "no" only returns # a single detection, so we replace the list of detections with # the single detection contained. if len(detections[index]) == 1: detections[index] = detections[index][0] else: message = ('Expected a single detection per value, API ' 'returned %d') % (len(detections[index]),) raise ValueError(message, value, detections[index]) detections[index]['input'] = value # The ``isReliable`` field is deprecated. detections[index].pop('isReliable', None) if single_value: return detections[0] else: return detections def translate(self, values, target_language=None, format_=None, source_language=None, customization_ids=()): """Translate a string or list of strings. See: https://cloud.google.com/translate/v2/\ translating-text-with-rest :type values: str or list :param values: String or list of strings to translate. :type target_language: str :param target_language: The language to translate results into. This is required by the API and defaults to the target language of the current instance. :type format_: str :param format_: (Optional) One of ``text`` or ``html``, to specify if the input text is plain text or HTML. :type source_language: str :param source_language: (Optional) The language of the text to be translated. :type customization_ids: str or list :param customization_ids: (Optional) ID or list of customization IDs for translation. Sets the ``cid`` parameter in the query. :rtype: str or list list :returns: A list of dictionaries for each queried value. Each dictionary typically contains three keys (though not all will be present in all cases) * ``detectedSourceLanguage``: The detected language (as an ISO 639-1 language code) of the text. * ``translatedText``: The translation of the text into the target language. * ``input``: The corresponding input value. If only a single value is passed, then only a single dictionary will be returned. :raises: :class:`ValueError <exceptions.ValueError>` if the number of values and translations differ. """ single_value = False if isinstance(values, six.string_types): single_value = True values = [values] if target_language is None: target_language = self.target_language if isinstance(customization_ids, six.string_types): customization_ids = [customization_ids] query_params = [('key', self.api_key), ('target', target_language)] query_params.extend(('q', _to_bytes(value, 'utf-8')) for value in values) query_params.extend(('cid', cid) for cid in customization_ids) if format_ is not None: query_params.append(('format', format_)) if source_language is not None: query_params.append(('source', source_language)) response = self.connection.api_request( method='GET', path='', query_params=query_params) translations = response.get('data', {}).get('translations', ()) if len(values) != len(translations): raise ValueError('Expected iterations to have same length', values, translations) for value, translation in six.moves.zip(values, translations): translation['input'] = value if single_value: return translations[0] else: return translations
the-stack_106_23361
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # General Impala query tests import copy import pytest import re from tests.common.impala_test_suite import ImpalaTestSuite from tests.common.test_dimensions import create_uncompressed_text_dimension from tests.common.test_vector import ImpalaTestVector class TestQueries(ImpalaTestSuite): @classmethod def add_test_dimensions(cls): super(TestQueries, cls).add_test_dimensions() if cls.exploration_strategy() == 'core': cls.ImpalaTestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format == 'parquet') # Manually adding a test dimension here to test the small query opt # in exhaustive. # TODO Cleanup required, allow adding values to dimensions without having to # manually explode them if cls.exploration_strategy() == 'exhaustive': dim = cls.ImpalaTestMatrix.dimensions["exec_option"] new_value = [] for v in dim: new_value.append(ImpalaTestVector.Value(v.name, copy.copy(v.value))) new_value[-1].value["exec_single_node_rows_threshold"] = 100 dim.extend(new_value) cls.ImpalaTestMatrix.add_dimension(dim) @classmethod def get_workload(cls): return 'functional-query' def test_analytic_fns(self, vector): # TODO: Enable some of these tests for Avro if possible # Don't attempt to evaluate timestamp expressions with Avro tables which don't # support a timestamp type table_format = vector.get_value('table_format') if table_format.file_format == 'avro': pytest.xfail("%s doesn't support TIMESTAMP" % (table_format.file_format)) if table_format.file_format == 'hbase': pytest.xfail("A lot of queries check for NULLs, which hbase does not recognize") self.run_test_case('QueryTest/analytic-fns', vector) def test_limit(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail("IMPALA-283 - select count(*) produces inconsistent results") if vector.get_value('table_format').file_format == 'kudu': pytest.xfail("Limit queries without order by clauses are non-deterministic") self.run_test_case('QueryTest/limit', vector) def test_top_n(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail(reason="IMPALA-283 - select count(*) produces inconsistent results") # QueryTest/top-n is also run in test_sort with disable_outermost_topn = 1 self.run_test_case('QueryTest/top-n', vector) def test_union(self, vector): self.run_test_case('QueryTest/union', vector) # IMPALA-3586: The passthrough and materialized children are interleaved. The batch # size is small to test the transition between materialized and passthrough children. query_string = ("select count(c) from ( " "select bigint_col + 1 as c from functional.alltypes limit 15 " "union all " "select bigint_col as c from functional.alltypes limit 15 " "union all " "select bigint_col + 1 as c from functional.alltypes limit 15 " "union all " "(select bigint_col as c from functional.alltypes limit 15)) t") vector.get_value('exec_option')['batch_size'] = 10 result = self.execute_query(query_string, vector.get_value('exec_option')) assert result.data[0] == '60' def test_sort(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail(reason="IMPALA-283 - select count(*) produces inconsistent results") vector.get_value('exec_option')['disable_outermost_topn'] = 1 self.run_test_case('QueryTest/sort', vector) # We can get the sort tests for free from the top-n file self.run_test_case('QueryTest/top-n', vector) def test_inline_view(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail("jointbl does not have columns with unique values, " "hbase collapses them") self.run_test_case('QueryTest/inline-view', vector) def test_inline_view_limit(self, vector): self.run_test_case('QueryTest/inline-view-limit', vector) def test_subquery(self, vector): self.run_test_case('QueryTest/subquery', vector) def test_empty(self, vector): self.run_test_case('QueryTest/empty', vector) def test_views(self, vector): if vector.get_value('table_format').file_format == "hbase": pytest.xfail("TODO: Enable views tests for hbase") self.run_test_case('QueryTest/views', vector) def test_with_clause(self, vector): if vector.get_value('table_format').file_format == "hbase": pytest.xfail("TODO: Enable with clause tests for hbase") self.run_test_case('QueryTest/with-clause', vector) def test_misc(self, vector): table_format = vector.get_value('table_format') if table_format.file_format in ['hbase', 'rc', 'parquet', 'kudu']: msg = ("Failing on rc/snap/block despite resolution of IMP-624,IMP-503. " "Failing on kudu and parquet because tables do not exist") pytest.xfail(msg) self.run_test_case('QueryTest/misc', vector) def test_null_data(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail("null data does not appear to work in hbase") self.run_test_case('QueryTest/null_data', vector) # Tests in this class are only run against text/none either because that's the only # format that is supported, or the tests don't exercise the file format. class TestQueriesTextTables(ImpalaTestSuite): @classmethod def add_test_dimensions(cls): super(TestQueriesTextTables, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_dimension( create_uncompressed_text_dimension(cls.get_workload())) @classmethod def get_workload(cls): return 'functional-query' def test_overflow(self, vector): self.run_test_case('QueryTest/overflow', vector) def test_strict_mode(self, vector): vector.get_value('exec_option')['strict_mode'] = 1 vector.get_value('exec_option')['abort_on_error'] = 0 self.run_test_case('QueryTest/strict-mode', vector) vector.get_value('exec_option')['abort_on_error'] = 1 self.run_test_case('QueryTest/strict-mode-abort', vector) def test_data_source_tables(self, vector): self.run_test_case('QueryTest/data-source-tables', vector) def test_distinct_estimate(self, vector): # These results will vary slightly depending on how the values get split up # so only run with 1 node and on text. vector.get_value('exec_option')['num_nodes'] = 1 self.run_test_case('QueryTest/distinct-estimate', vector) def test_mixed_format(self, vector): self.run_test_case('QueryTest/mixed-format', vector) def test_values(self, vector): self.run_test_case('QueryTest/values', vector) # Tests in this class are only run against Parquet because the tests don't exercise the # file format. class TestQueriesParquetTables(ImpalaTestSuite): @classmethod def add_test_dimensions(cls): super(TestQueriesParquetTables, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format == 'parquet') @classmethod def get_workload(cls): return 'functional-query' @pytest.mark.execute_serially def test_very_large_strings(self, vector): """Regression test for IMPALA-1619. Doesn't need to be run on all file formats. Executes serially to avoid large random spikes in mem usage.""" self.run_test_case('QueryTest/large_strings', vector) def test_single_node_large_sorts(self, vector): if self.exploration_strategy() != 'exhaustive': pytest.skip("only run large sorts on exhaustive") vector.get_value('exec_option')['disable_outermost_topn'] = 1 vector.get_value('exec_option')['num_nodes'] = 1 self.run_test_case('QueryTest/single-node-large-sorts', vector) # Tests for queries in HDFS-specific tables, e.g. AllTypesAggMultiFilesNoPart. # This is a subclass of TestQueries to get the extra test dimension for # exec_single_node_rows_threshold in exhaustive. class TestHdfsQueries(TestQueries): @classmethod def add_test_dimensions(cls): super(TestHdfsQueries, cls).add_test_dimensions() # Kudu doesn't support AllTypesAggMultiFilesNoPart (KUDU-1271, KUDU-1570). cls.ImpalaTestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format != 'kudu') def test_hdfs_scan_node(self, vector): self.run_test_case('QueryTest/hdfs-scan-node', vector) def test_file_partitions(self, vector): self.run_test_case('QueryTest/hdfs-partitions', vector) class TestTopNReclaimQuery(ImpalaTestSuite): """Test class to validate that TopN periodically reclaims tuple pool memory and runs with a lower memory footprint.""" QUERY = "select * from tpch.lineitem order by l_orderkey desc limit 10;" # Mem limit empirically selected so that the query fails if tuple pool reclamation # is not implemented for TopN MEM_LIMIT = "50m" @classmethod def get_workload(self): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestTopNReclaimQuery, cls).add_test_dimensions() # The tpch tests take a long time to execute so restrict the combinations they # execute over. cls.ImpalaTestMatrix.add_dimension( create_uncompressed_text_dimension(cls.get_workload())) def test_top_n_reclaim(self, vector): exec_options = vector.get_value('exec_option') exec_options['mem_limit'] = self.MEM_LIMIT result = self.execute_query(self.QUERY, exec_options) runtime_profile = str(result.runtime_profile) num_of_times_tuple_pool_reclaimed = re.findall( 'TuplePoolReclamations: ([0-9]*)', runtime_profile) # Confirm newly added counter is visible assert len(num_of_times_tuple_pool_reclaimed) > 0 # Tuple pool is expected to be reclaimed for this query for n in num_of_times_tuple_pool_reclaimed: assert int(n) > 0
the-stack_106_23364
import os, sublime, sublime_plugin, subprocess, json, re FILE_REGEX = '^(..[^:\n]*):([0-9]+):?([0-9]+)?:? (.*)' SYNTAX = 'Packages/Makefile/Make Output.sublime-syntax' WORKING_DIR = '${folder:${project_path:${file_path}}}' CANNED = { 'target': 'make_targets', 'file_regex': FILE_REGEX, 'working_dir': WORKING_DIR, 'selector': 'source.makefile', 'syntax': SYNTAX, 'keyfiles': ['Makefile', 'makefile'], 'cancel': {'kill': True}, 'variants': [], 'makefile': None } TARGET_REGEX = '(.+)\s*:\s{1}' def plugin_loaded(): build_file = 'MakeTargets.build-template' dest_file = '{}/User/MakeTargets.sublime-build'.format(sublime.packages_path()) if not os.path.isfile(dest_file): with open(dest_file, 'w') as f: json.dump(CANNED, f, indent=2) def plugin_unloaded(): settings = Settings() settings.clear_on_change('show_last_cmd_status_bar') settings.clear_on_change('ignored_target_prefixes') settings.clear_on_change('target_regex') settings.clear_on_change('regen_on_save') settings.clear_on_change('hide_dup_targets') settings.clear_on_change('phony_name') settings.clear_on_change('sort_targets') settings.clear_on_change('job_number') def Window(window=None): return window if window else sublime.active_window() def Variables(window=None): return Window(window).extract_variables() def Expand(variable, window=None): return sublime.expand_variables(variable, Variables(window)) def Settings(file='MakeTargets.sublime-settings'): return sublime.load_settings(file) def PanelArg(variant='', caption='MakeTargets'): return dict( args=dict( build_system='Packages/User/MakeTargets.sublime-build', choice_build_system=True, choice_variant=True, variant=variant ), caption=caption, command='build' ) class MakeTargetsCommand(sublime_plugin.WindowCommand): def __init__(self, edit): sublime_plugin.WindowCommand.__init__(self, edit) settings = Settings() settings.add_on_change('show_last_cmd_status_bar', self.on_show_last_change) settings.add_on_change('ignored_target_prefixes', self.on_ignore_prefixes_change) settings.add_on_change('target_regex', self.on_target_regex_change) settings.add_on_change('hide_dup_targets', self.on_hide_dup_targets_change) settings.add_on_change('phony_name', self.on_phony_name_change) settings.add_on_change('sort_targets', self.on_sort_targets_change) settings.add_on_change('job_number', self.on_job_number_change) self.build = Settings('MakeTargets.sublime-build') self._targets = None self.need_regen = True self.target_regex = re.compile(settings.get('target_regex', TARGET_REGEX)) self.hide_dups = settings.get('hide_dup_targets', False) self.phony = self.load_phony() self.sort_targets = settings.get('sort_targets', False) self.job_num = settings.get('job_number', None) def load_phony(self): phony = Settings().get('phony_name', None) if phony and not phony.startswith('.'): phony = '.' + phony return phony @property def makefile(self): return os.path.join(Expand('${project_path}', self.window), 'Makefile') @property def targets(self): if not self._targets: targets = [] if os.path.isfile(self.makefile): with open(self.makefile, 'r') as f: for line in f.readlines(): if self.phony: if line.startswith(self.phony): line = line.split(':', 1)[1].strip() targets = line.split(' ') break elif self.target_regex.search(line): line = line.strip() if line and not any([line.startswith(ignore) for ignore in Settings().get('ignored_target_prefixes', [])]): target = line.split(':')[0].strip() if not (self.hide_dups and target in targets): targets.append(target) if self.sort_targets: targets.sort() self._targets = targets return self._targets def build_now(self, target, args={}): self.window.run_command('exec', dict( update_phantoms_only=True )) cmd = 'make -j{} {}'.format(self.job_num if self.job_num else '', target).strip() self.window.run_command('exec', dict( cmd=cmd, file_regex=args.get('file_regex', FILE_REGEX), syntax=args.get('syntax', SYNTAX), working_dir=args.get('working_dir', Expand(WORKING_DIR, self.window)) )) settings = Settings() if settings.get('show_last_cmd_status_bar', False): value = settings.get('status_bar_format', '{command}') if '{command}' not in value: value += '{command}' self.window.active_view().set_status('mt_last_target', value.format(command=cmd)) def show_panel(self): panel_args = { 'items': [ PanelArg( variant=target.get('name', ''), caption='MakeTargets - {}'.format(target.get('make_target', '')) ) for target in self.build.get('variants') ] } panel_args['items'].insert(0, PanelArg()) self.window.run_command('quick_panel', panel_args) def regen_targets(self, makefile=None): self.need_regen = False self._targets = None self.build.set('makefile', makefile if makefile else self.makefile) self.build.set('variants', [dict(name=target, make_target=target) for target in self.targets]) sublime.save_settings('MakeTargets.sublime-build') def run(self, **args): if args.get('kill'): self.window.run_command('exec', dict( kill=True )) return if args.get('regen', False): self.regen_targets(args.get('makefile', None)) return if self.need_regen or (self.targets and not self.build.get('variants', None) or (self.makefile != self.build.get('makefile', None))): self.regen_targets() self.show_panel() return if args.get('palette', False): self.show_panel() return target = args.get('make_target', '') if target == '<<no target>>': target = '' self.build_now(target, args) # override def on_show_last_change(self): if not Settings().get('show_last_cmd_status_bar', False): self.window.active_view().erase_status('mt_last_target') # override def on_ignore_prefixes_change(self): self.need_regen = True # override def on_target_regex_change(self): self.target_regex = re.compile(Settings().get('target_regex', TARGET_REGEX)) # override def on_hide_dup_targets_change(self): self.hide_dups = Settings().get('hide_dup_targets', False) # override def on_phony_name_change(self): self.phony = self.load_phony() self.need_regen = True # override def on_sort_targets_change(self): self.sort_targets = Settings().get('sort_targets', False) self.need_regen = True # override def on_job_number_change(self): self.job_num = Settings().get('job_number', None) class MakeTargetsEventListener(sublime_plugin.EventListener): def __init__(self): sublime_plugin.EventListener.__init__(self) settings = Settings() settings.add_on_change('regen_on_save', self.on_regen_on_save_change) self.regen_on_save = settings.get('regen_on_save', False) # override def on_regen_on_save_change(self): self.regen_on_save = Settings().get('regen_on_save', False) def on_post_save_async(self, view): if self.regen_on_save and view.file_name().endswith('Makefile'): view.window().run_command('make_targets', {'regen': True, 'makefile': view.file_name()})
the-stack_106_23365
# Copyright 2020 QuantStack # Distributed under the terms of the Modified BSD License. from sqlalchemy.orm import Session, joinedload, aliased from .db_models import Profile, User, Channel, ChannelMember, Package, PackageMember, ApiKey, \ PackageVersion from quetz import rest_models import uuid class Dao: def __init__(self, db: Session): self.db = db def rollback(self): self.db.rollback() def get_profile(self, user_id): return self.db.query(Profile).filter(Profile.user_id == user_id).one() def get_user(self, user_id): return self.db.query(User).filter(User.id == user_id).one() def get_users(self, skip: int, limit: int, q: str): query = self.db.query(User) \ .filter(User.username.isnot(None)) if q: query = query.filter(User.username.ilike(f'%{q}%')) return query \ .options(joinedload(User.profile)) \ .offset(skip) \ .limit(limit) \ .all() def get_user_by_username(self, username: str): return self.db.query(User) \ .filter(User.username == username) \ .options(joinedload(User.profile)) \ .one_or_none() def get_channels(self, skip: int, limit: int, q: str): query = self.db.query(Channel) if q: query = query.filter(Channel.name.ilike(f'%{q}%')) return query \ .offset(skip) \ .limit(limit) \ .all() def create_channel(self, data: rest_models.Channel, user_id: bytes, role: str): channel = Channel( name=data.name, description=data.description) member = ChannelMember( channel=channel, user_id=user_id, role=role) self.db.add(channel) self.db.add(member) self.db.commit() def get_packages(self, channel_name: str, skip: int, limit: int, q: str): query = self.db.query(Package) \ .filter(Package.channel_name == channel_name) if q: query = query.filter(Package.name.like(f'%{q}%')) return query \ .offset(skip) \ .limit(limit) \ .all() def get_channel(self, channel_name: str): return self.db.query(Channel) \ .filter(Channel.name == channel_name).one_or_none() def get_package(self, channel_name: str, package_name: str): return self.db.query(Package).join(Channel) \ .filter(Channel.name == channel_name) \ .filter(Package.name == package_name) \ .one_or_none() def create_package(self, channel_name: str, new_package: rest_models.Package, user_id: bytes, role: str): package = Package( name=new_package.name, description=new_package.description) package.channel = self.db.query(Channel) \ .filter(Channel.name == channel_name) \ .one() member = PackageMember( channel=package.channel, package=package, user_id=user_id, role=role) self.db.add(package) self.db.add(member) self.db.commit() def get_channel_members(self, channel_name: str): return self.db.query(ChannelMember).join(User) \ .filter(ChannelMember.channel_name == channel_name) \ .all() def get_channel_member(self, channel_name, username): return self.db.query(ChannelMember).join(User) \ .filter(ChannelMember.channel_name == channel_name) \ .filter(User.username == username) \ .one_or_none() def create_channel_member(self, channel_name, new_member): user = self.get_user_by_username(new_member.username) member = ChannelMember( channel_name=channel_name, user_id=user.id, role=new_member.role) self.db.add(member) self.db.commit() def get_package_members(self, channel_name, package_name): return self.db.query(PackageMember).join(User) \ .filter(User.username.isnot(None)) \ .filter(PackageMember.channel_name == channel_name) \ .filter(PackageMember.package_name == package_name) \ .all() def get_package_member(self, channel_name, package_name, username): return self.db.query(PackageMember).join(User) \ .filter(PackageMember.channel_name == channel_name) \ .filter(PackageMember.package_name == package_name) \ .filter(User.username == username) \ .one_or_none() def create_package_member(self, channel_name, package_name, new_member): user = self.get_user_by_username(new_member.username) member = PackageMember( channel_name=channel_name, package_name=package_name, user_id=user.id, role=new_member.role) self.db.add(member) self.db.commit() def get_package_api_keys(self, user_id): return self.db.query(PackageMember, ApiKey) \ .join(User, PackageMember.user_id == User.id) \ .join(ApiKey, ApiKey.user_id == User.id) \ .filter(ApiKey.owner_id == user_id) \ .all() def get_channel_api_keys(self, user_id): return self.db.query(ChannelMember, ApiKey) \ .join(User, ChannelMember.user_id == User.id) \ .join(ApiKey, ApiKey.user_id == User.id) \ .filter(ApiKey.owner_id == user_id) \ .all() def create_api_key(self, user_id, api_key: rest_models.BaseApiKey, key): user = User(id=uuid.uuid4().bytes) owner = self.get_user(user_id) db_api_key = ApiKey( key=key, description=api_key.description, user=user, owner=owner ) self.db.add(db_api_key) for role in api_key.roles: if role.package: package_member = PackageMember( user=user, channel_name=role.channel, package_name=role.package, role=role.role) self.db.add(package_member) else: channel_member = ChannelMember( user=user, channel_name=role.channel, role=role.role) self.db.add(channel_member) self.db.commit() def create_version(self, channel_name, package_name, platform, version, build_number, build_string, filename, info, uploader_id): version = PackageVersion( id=uuid.uuid4().bytes, channel_name=channel_name, package_name=package_name, platform=platform, version=version, build_number=build_number, build_string=build_string, filename=filename, info=info, uploader_id=uploader_id ) self.db.add(version) self.db.commit() def get_package_versions(self, package): ApiKeyProfile = aliased(Profile) return self.db.query(PackageVersion, Profile, ApiKeyProfile) \ .outerjoin(Profile, Profile.user_id == PackageVersion.uploader_id) \ .outerjoin(ApiKey, ApiKey.user_id == PackageVersion.uploader_id) \ .outerjoin(ApiKeyProfile, ApiKey.owner_id == ApiKeyProfile.user_id) \ .filter(PackageVersion.channel_name == package.channel_name) \ .filter(PackageVersion.package_name == package.name) \ .all()
the-stack_106_23366
import numpy as np import logging class MyRand(object): ''' Class that provides the function random() which returns a 'random number' in the open(!) interval (0,1). The class has been created for TESTING and DEVELOPMENT purposes and PRODUCES THE SAME SEQUENCE of 'random numbers' for a given seed < 0 (as long as no multiple threads are running). This also works 'cross-language' with the Fortran implementation. ''' idum = -4242 iv = None iy = None def __init__(self, seed=None): self.logger = logging.getLogger(f'{__name__}.{__class__.__name__}') self.idum = self.__class__.idum if seed==None else seed self.iv = self.__class__.iv self.iy = self.__class__.iy self.logger.debug(f'Random number seed: {self.idum}') def ran1(self): ''' From Numerical Recipes in F77, 2nd. Edition, corresponds to ran1. Adapted to double precision (Python float). “Minimal” random number generator of Park and Miller with Bays-Durham shuffle and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). Call with self.idum a negative integer to initialize; thereafter, do not alter idum between successive deviates in a sequence. RNMX should approximate the largest floating value that is less than 1. Returns ------- float Next 'random number' in the sequence. ''' # INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV # REAL ran1,AM,EPS,RNMX # IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836 # NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS IA=16807 IM=2147483647 # AM=np.float32(1./IM) AM=1/IM IQ=127773 IR=2836 NTAB=32 NDIV=1+int((IM-1)/NTAB) # EPS=np.float32(1.2e-7) # RNMX=np.float32(1.-EPS) EPS=1.2e-7 RNMX=1.-EPS RNMX = 1-2.23e-16 # 2.23d-16 is approx. np.finfo(float).eps # INTEGER j,k,iv(NTAB),iy # SAVE iv,iy # DATA iv /NTAB*0/, iy /0/ if self.iv is None: self.iv = np.int_([0]*NTAB) if self.iy is None: self.iy = 0 if self.idum <= 0 or self.iy == 0: self.idum=max(-self.idum,1) # do 11 j=NTAB+8,1,-1 for j in range(NTAB+8,0,-1): # self.logger.debug(f'\t1 ran1.idum={ran1.idum}') k = self.idum // IQ self.idum = IA*(self.idum-k*IQ)-IR*k if self.idum < 0: self.idum += IM if j <= NTAB: self.iv[j-1] = self.idum self.iy = self.iv[0] # self.logger.debug(f'\t2 ran1.idum={ran1.idum}') k = self.idum // IQ self.idum = IA*(self.idum-k*IQ)-IR*k if self.idum < 0: self.idum += IM # self.logger.debug(f'\t3 ran1.iy={ran1.iy}') j = 1 + self.iy // NDIV self.iy = self.iv[j-1] self.iv[j-1] = self.idum return min(AM*self.iy,RNMX)
the-stack_106_23368
from prometheus_api_client import PrometheusConnect, MetricsList from prometheus_api_client.utils import parse_datetime import pandas as pd import os import time import logging from kubernetes import config, client from scipy.stats import norm import numpy as np import subprocess import copy from pynvml import * import math import ast MEM_UTIL = "DCGM_FI_DEV_MEM_COPY_UTIL" GPU_UTIL = "DCGM_FI_DEV_GPU_UTIL" DOMAIN = "ai.centaurus.io" def cyclic_pattern_detection(time_series): """input pandas series, detect cyclic pattern return True/False if True, return frequency, if false, frequency is -1 """ # calculate autocorrelation auto_corr = [time_series.autocorr(lag=i) for i in range(int(len(time_series)/2))] # assume auto_corr value is normal distribution, based on 95% confidence interval, calculate the line for signifence critical = norm.ppf(1-0.05/2, loc=np.mean(auto_corr), scale=np.std(auto_corr)) peak_lag = [] # select the peak of correlation coefficients for i, v in enumerate(auto_corr): if v > critical: # if auto corr value > critical value, consider the correlation is significant peak_lag.append(i) if len(peak_lag) > 2: # repetitive significant peaks as the rule for cyclic patterns lag_diff = pd.Series(peak_lag).diff() # to calculate period period = lag_diff.median() return True, period else: return False, -1 def add_pod_info_to_crd(api, crd_api, pod_name, namespace, ann, node_name): """1)get pod's owner by ownereference, 2)patch pod info to owner's annotation for persistent record, sinces pods often got deleted after *job is done assume owner is crd, not native k8s object for now, since different api group will be used save the max utilization only for now, only patch if current util is greater than the existing annotations """ # 1) get owner reference owner_kind, owner_name, owner_group, owner_version = "","","","" try: ret = api.list_namespaced_pod(namespace) for i in ret.items: if i.metadata.name == pod_name: ref = i.metadata.owner_references # get the first owner and print kind and name if ref is not None and len(ref) > 0: owner_kind = ref[0].kind.lower() owner_name = ref[0].name.lower() owner_group, owner_version = ref[0].api_version.lower().split("/") break except Exception as e: logging.error(e) return False if owner_name=="" or owner_kind=="" or owner_group=="" or owner_version=="": logging.warning("In {} namespace pod {}'s owner reference is not set, add no annotations to owner".format(namespace, pod_name)) return False # 2) get owner's current annonation, update if greater utilization is found try: res = crd_api.get_namespaced_custom_object(owner_group,owner_version,namespace, plural=owner_kind+'s',name=owner_name) except Exception as e: logging.error("Error: no kind: {} named {}".format(owner_kind, owner_name)) return False # ann example ai.centaurus.io/pod_name:{mem_max:XXX,cpu_max:XXX} key = DOMAIN + "/" + pod_name need_patch = True pod_ann = dict() if key in res['metadata']['annotations']: # iteration and compare, need_patch = False pod_ann = ast.literal_eval(res['metadata']['annotations'][key]) # convert string to dictionary for k, v in pod_ann.items(): domain_k = DOMAIN + "/" + k # the key in owner's annotation has no domain name if k == "node": # skip the node comparison continue if float(v) < ann[domain_k]: # detect greater utilization, update pod_ann[k] = ann[domain_k] need_patch = True else: # simply remove the domain name from new ann pod_ann = ann ann['node'] = node_name # patch the info if need_patch: crd_ann = dict() crd_ann[key] = str(pod_ann).replace(DOMAIN+"/","") body = {'metadata':{'annotations':crd_ann}} res = crd_api.patch_namespaced_custom_object(owner_group,owner_version,namespace, plural=owner_kind+'s',name=owner_name,body=body) logging.info("patch crd utilization done {}: {}".format(owner_name,res['metadata']['annotations'][key])) return True def patch_annotation(api, name, ann, namespace="", node_name="", crd_api=None): """check if object exists first""" ann2 = copy.deepcopy(ann) # copy and then make changes # reformat dictionary, in case it is nested, flatten to one level by cast nested dict to string for k, v in ann2.items(): if v is not None: # if v is None, it means delete the existing annotaion ann2[k]=str(v) body = {'metadata': {'annotations':ann2}} if namespace == "": # patch node api.patch_node(name, body) else: # patch pod, verify pod existence first pod_exist = False pods = api.list_namespaced_pod(namespace) for i in pods.items: if i.metadata.name == name: pod_exist = True break if pod_exist: api.patch_namespaced_pod(name, namespace, body) # patch pod info to owner custom resources, assume owner is CRD for now, dont handle native object like, job, statefulSet ... if crd_api is not None: add_pod_info_to_crd(api, crd_api, name, namespace, ann, node_name) return True def collect_gpu_usage_nvml(gpu_idx): cur_usage = dict() try: nvmlInit() handle = nvmlDeviceGetHandleByIndex(gpu_idx) except Exception as e: logging.error(e) return cur_usage cur_usage['mem_used'] =str(math.ceil(nvmlDeviceGetMemoryInfo(handle).used/pow(1024,3))) + 'GB' cur_usage['mem_free'] =str(math.ceil(nvmlDeviceGetMemoryInfo(handle).total/pow(1024,3)) - math.ceil(nvmlDeviceGetMemoryInfo(handle).used/pow(1024,3))) + 'GB' processes = nvmlDeviceGetComputeRunningProcesses(handle) cur_usage['process_cnt'] = len(processes) if len(processes) > 0: cur_usage['pid-mem'] = [(i.pid, str(math.ceil(i.usedGpuMemory/pow(1024,2)))+'MB') for i in processes] #cur_usage['pid-mem-gutil'] =[(i.pid, i.usedGpuMemory) for i in processes] return cur_usage def remove_annotation(api, node_name, pod_name="", ns=""): # 1) get pod name and namespace on the node, scan all the keys in annoations, if start with ai.centaurus.io, set to none field_selector = 'spec.nodeName='+node_name ret = api.list_pod_for_all_namespaces(watch=False, field_selector=field_selector) for i in ret.items: if pod_name != "" and (i.metadata.name != pod_name or i.metadata.namespace != ns): continue if i.metadata.annotations is not None: ann_rm = dict() for key in i.metadata.annotations: if key.startswith("ai.centaurus.io"): # add the removal dict ann_rm[key] = None if len(ann_rm) > 0: patch_annotation(api, i.metadata.name, ann_rm, i.metadata.namespace) logging.info("Init reset pod {}'s annotation, remove {}".format(i.metadata.name,ann_rm.keys())) def collect_pod_metrics(api, cur_usage, node_name, gpu_id, pods_ann): """ pods_ann: dict() key: dlt-job:default #podname:namespace value (annotations): {"ai.centaurusinfra.io/gpu-memused":[(0,137MB),(1,1125MB)]}, #tuple (gpu_id, memused) """ # 1) get pod name and namespace on the node field_selector = 'spec.nodeName='+node_name ret = api.list_pod_for_all_namespaces(watch=False, field_selector=field_selector) pod_ns = dict() for i in ret.items: pod_ns[i.metadata.name] = i.metadata.namespace # 2) get pod name by pid bashCmd = ["nsenter", "--target", "XXX", "--uts", "hostname"] for pid, mem_used in cur_usage['pid-mem']: mem_used_float = float(mem_used[:-2]) bashCmd[2]=str(pid) subp = subprocess.Popen(bashCmd, stdout=subprocess.PIPE) output, error = subp.communicate() if error is None: pod_name = output.decode("utf-8").rstrip() if pod_name in pod_ns: # 3) format results to dict, key: "podname:namespace:gpu_id", value:"{DOMAIN + "/gpu-memused":memused}" key = pod_name + ":" + pod_ns[pod_name] # list format for gpu mem usage #e.g. ai.centaurus.io/gpu-memused:[('0','12000MB'),('1','159MB')] if key in pods_ann: pods_ann[key][DOMAIN + "/" +node_name + "-gpu-" +str(gpu_id)+"_mem_mb"] = mem_used_float pods_ann[key][DOMAIN + "/" +node_name + "-gpu-" +str(gpu_id)+"_util"] = cur_usage['max_gpu_util'] else: value = {DOMAIN + "/" +node_name +"-gpu-" +str(gpu_id)+"_util":cur_usage['max_gpu_util'], DOMAIN + "/" +node_name +"-gpu-" +str(gpu_id)+"_mem_mb":mem_used_float } pods_ann[key] = value else: logging.error("pod name {} is not in listed all pods,{}".format(pod_name, pod_ns.keys)) # there was a podname key="" incident, not reproduced else: logging.error("nsenter failed to acquire pod name,{}".format(error)) return pods_ann def get_pod_resource_util(pod_name, ns, promi_connector, duration="30s"): """use query to get resource utilization""" cpu_usage_value, memory_usage_value, network_usage_value, io_usage_value = 0,0,0,0 cpu_usage = promi_connector.custom_query(query="sum(rate(container_cpu_usage_seconds_total{container_label_io_kubernetes_pod_name=\"" + pod_name + "\", container_label_io_kubernetes_pod_namespace=\"" + ns + "\"}[" + duration + "]))by(container_label_io_kubernetes_pod_name)") if len(cpu_usage) > 0: cpu_usage_value = cpu_usage[0]["value"][1] memory_usage = promi_connector.custom_query(query="sum(rate(container_memory_usage_bytes{container_label_io_kubernetes_pod_name=\"" + pod_name + "\", container_label_io_kubernetes_pod_namespace=\"" + ns + "\"}[" + duration + "]))by(container_label_io_kubernetes_pod_name)") if len(memory_usage) > 0: memory_usage_value = memory_usage[0]["value"][1] network_usage = promi_connector.custom_query(query="sum(rate(container_network_transmit_bytes_total{container_label_io_kubernetes_pod_name=\"" + pod_name + "\", container_label_io_kubernetes_pod_namespace=\"" + ns + "\"}[" + duration + "]))by(container_label_io_kubernetes_pod_name)") if len(network_usage) > 0: network_usage_value = network_usage[0]["value"][1] io_usage = promi_connector.custom_query(query="sum(rate(container_fs_write_seconds_total{container_label_io_kubernetes_pod_name=\"" + pod_name + "\", container_label_io_kubernetes_pod_namespace=\"" + ns + "\"}[" + duration + "]))by(container_label_io_kubernetes_pod_name)") if len(io_usage) > 0: io_usage_value = io_usage[0]["value"][1] return cpu_usage_value, memory_usage_value, network_usage_value, io_usage_value def profiling(api, url, pod_ip, node_name, ana_window='2m', metrics=MEM_UTIL): """if key exists, the value will be replaced, add dynamic status {ai.centaurus.io/gpu0:{cur_mem_used:4GB, max_gpu_util:60, max_mem_cpy_util:34, cyclic:True, process_cnt:1}, ai.centaurus.io/gpu1:{cur_mem_used:4GB, max_gpu_util:60, max_mem_cpy_util:34, cyclic:True, process_cnt:2, processes:[{pid:25678, cur_mem_used:3GB},{pid:67234, cur_mem_used:1GB}]} } """ node_dict = dict() pod_dict = dict() promi = PrometheusConnect(url=url, disable_ssl=True) # except connection error try: promi.check_prometheus_connection() except Exception as e: logging.error(e) return node_dict, pod_dict # if connectioin fails, return empty dict instance = pod_ip + ":9400" # tmp fixed start_time = parse_datetime(ana_window) end_time = parse_datetime("now") my_label_config = {"instance": instance} # select current host metrics metric_data = promi.get_metric_range_data(metric_name=metrics, label_config=my_label_config, start_time=start_time, end_time=end_time) # reorganize data to label_config and metric_values metric_object_list = MetricsList(metric_data) for item in metric_object_list: # iterate through all the gpus on the node if 'gpu' not in item.label_config: # handle metric config info exception continue id = item.label_config['gpu'] # predefined key from dcgm (gpu index) cur_usage = collect_gpu_usage_nvml(int(id)) # nvml access GPU usage # ip = item.label_config['instance'] key = DOMAIN + "/gpu-" + id # analyze mem util curve ts = item.metric_values.iloc[:, 1] # metrics_values are two row df, 1st is timestamp, 2nd is value cur_usage['cyclic_pattern'] = False if ts.max() > 0: cyclic, period = cyclic_pattern_detection(ts) if cyclic: cur_usage['cyclic_pattern'] = True cur_usage['period'] = str(period) cur_usage['max_mem_util'] = ts.max() # add gpu id to query condition, query again get the max_gpu_util my_label_config['gpu'] = id gpu_util_data = promi.get_metric_range_data(metric_name=GPU_UTIL, label_config=my_label_config, start_time=start_time, end_time=end_time) gpu_util_list = MetricsList(gpu_util_data) if len(gpu_util_list) != 1: logging.error("gpu util data read error, expect len {}, not equal to 1".format(len(gpu_util_list))) else: gpu_util_ts = gpu_util_list[0].metric_values.iloc[:, 1] cur_usage['max_gpu_util'] = gpu_util_ts.max() # Important: flatten nested dictionary to string, otherwise error "cannot unmarshal string into Go value of type map[string]interface {}"" #node_dict[key] = str(cur_usage) # move the string cast to patch_annotation function node_dict[key] = cur_usage if "process_cnt" in cur_usage and cur_usage['process_cnt'] > 0: collect_pod_metrics(api, cur_usage, node_name, id, pod_dict) # a pod may use multiple GPUs, so the dictionary value is appended # add cadvisor metrics to pod for k, v in pod_dict.items(): pod_name, ns = k.split(":") cpu, memory, network, io = get_pod_resource_util(pod_name,ns, promi) # the values are str type # v[DOMAIN + '/cpu_util'] = str(round(float(cpu)*100,2)) + '%' # v[DOMAIN + '/cpu_mem'] = str(round(float(memory)/1e6,2)) + 'MB' # v[DOMAIN + '/network'] = str(round(float(network)/1e3,2)) + 'KBps' # v[DOMAIN + '/disk_io'] = io v[DOMAIN + '/cpu_util'] = round(float(cpu)*100,2) # unit percentage v[DOMAIN + '/cpu_mem_mb'] = round(float(memory)/1e6,2) # unit MB v[DOMAIN + '/network_mbps'] = round(float(network)/1e6,2) # unit MBps v[DOMAIN + '/disk_io'] = round(float(io),2) return node_dict, pod_dict def load_env_var(): env_var = dict() if 'KUBERNETES_PORT' not in os.environ: logging.error("RUNNING cluster is not avaliable") return env_var, True if "PROMETHEUS_SERVICE_HOST" in os.environ and "PROMETHEUS_SERVICE_PORT" in os.environ: # use service name instead of IP, to avoid IP changes during service restart url = "http://prometheus:" + os.environ['PROMETHEUS_SERVICE_PORT'] env_var['url'] = url else: logging.error("PROMETHEUS_SERVICE_HOST cannot be found in environment variable, " "Please make sure service is launched before profiler deployment") return env_var, True if "MY_POD_IP" in os.environ: env_var['pod_ip'] = os.environ['MY_POD_IP'] else: logging.error("MY_POD_IP cannot be found in environment variables, " "Please check profiler deployment file to include it as env.") return env_var, True if "MY_HOST_IP" in os.environ: env_var['host_ip'] = os.environ['MY_HOST_IP'] else: logging.error("MY_HOST_IP cannot be found in environment variables, " "Please check profiler deployment file to include it as env.") return env_var, True if "MY_NODE_NAME" in os.environ: env_var['node_name'] = os.environ['MY_NODE_NAME'] else: logging.error("MY_HOST_NAME cannot be found in environment variables, " "Please check profiler deployment file to include it as env.") return env_var, True return env_var, False def collect_gpu_attributes(): """if key exists, the value will be replaced {ai.centaurus.io/gpu-static:{count:2, gpus:[{index:0, pcie_bus_id:0000:84:00.0, model:TITANX, mem_size: 12GB, pcie_gen_width:1X16}, {index:1, pcie_bus_id:0000:88:00.0, model:TITANX, mem_size: 12GB, pcie_gen_width:1X16} ] } } """ attributes = dict() try: nvmlInit() except Exception as e: logging.error(e) return attributes, True deviceCount = nvmlDeviceGetCount() attributes['count']=str(deviceCount) # only get gpu0's attributes, assume same GPU card on one server try: handle = nvmlDeviceGetHandleByIndex(0) except Exception as e: logging.error(e) return attributes, True attributes['model'] = nvmlDeviceGetName(handle).decode("utf-8") attributes['mem_size'] = str(math.ceil(nvmlDeviceGetMemoryInfo(handle).total/pow(1024,3))) + 'GB' attributes['pcie_gen_width'] = str(nvmlDeviceGetCurrPcieLinkGeneration(handle)) + 'x' + str(nvmlDeviceGetCurrPcieLinkWidth(handle)) key = DOMAIN + "/gpu-static" annotation = {key:attributes} return annotation, False def app_top(): env_var, err = load_env_var() if err: logging.error("Not all environment variables are avaliable in the profiler pod") exit(1) # 0) load kubernetes configure config.load_incluster_config() core_api = client.CoreV1Api() crd_api = client.CustomObjectsApi() # 1) init stage, get gpu static attribute, remove pod annotation from previous run gpu_attributes, err = collect_gpu_attributes() while err: logging.warning("NVML lib is not installed or No GPUs avaliable, or GPU lost, check back after 30 sec") time.sleep(30) gpu_attributes, err = collect_gpu_attributes() patch_annotation(core_api, env_var['node_name'], gpu_attributes) logging.info("Init add gpu static attributes \n{}".format(gpu_attributes)) # remove pod annotations from ai.centaurus.io, remove_annotation(core_api, env_var['node_name']) # 3) infinit loop to monitor resource utilization and annonates to node, pod, and crds # keep current annotatations, if no changes, no patch sent node_ann_cur = dict() pods_ann_cur = dict() while True: # profiling, add gpu dynamic status node_ann_new, pods_ann_new = profiling(core_api, env_var['url'], env_var['pod_ip'],env_var['node_name']) # update node annotation if changes detected if node_ann_new != node_ann_cur: patch_annotation(core_api, env_var['node_name'], node_ann_new) logging.info("Node change detected, update node's GPU utilization") node_ann_cur = node_ann_new # update pod annotation if pods_ann_new != pods_ann_cur: logging.info("Pod change deteacted, update pods GPU utilization") for name_ns, values in pods_ann_new.items(): # iterate all the pods needs to be annotated pod_name, namespace = name_ns.split(":") patch_annotation(core_api, pod_name, values, namespace, env_var['node_name'], crd_api) # patch pod and patch owner crd for name_ns, values in pods_ann_cur.items(): if name_ns not in pods_ann_new: # ended pods or processes pod_name, namespace = name_ns.split(":") logging.info("Remove pod {} annotation for finished process \n".format(pod_name)) remove_annotation(core_api,env_var['node_name'],pod_name, namespace) pods_ann_cur = pods_ann_new time.sleep(30) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s',level=logging.INFO) app_top()
the-stack_106_23369
#!/usr/bin/python ''' Extract _("...") strings for translation and convert to Qt4 stringdefs so that they can be picked up by Qt linguist. ''' from subprocess import Popen, PIPE import glob import operator import os import sys OUT_CPP="qt/moselbitstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *moselbit_strings[] = {\n') messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("moselbit-core", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
the-stack_106_23371
""" Datadog exporter """ from setuptools import find_packages, setup dependencies = ['boto3', 'click', 'pytz', 'durations', 'tzlocal', 'datadog', 'requests', 'python-dateutil'] from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='datadog-exporter', version="0.6.5", url='https://github.com/binxio/datadog-exporter', license='Apache2', author='Mark van Holsteijn', author_email='[email protected]', description='CLI for exporting datadog metrics', long_description=long_description, long_description_content_type='text/markdown', package_dir={'': 'src'}, packages=find_packages(where='src'), include_package_data=True, zip_safe=False, platforms='any', install_requires=dependencies, setup_requires=[], tests_require=dependencies + ['pytest', 'botostubs', 'pytest-runner', 'mypy', 'yapf', 'twine', 'pycodestyle' ], test_suite='tests', entry_points={ 'console_scripts': [ 'datadog-exporter = datadog_export.__main__:main' ], }, classifiers=[ # As from http://pypi.python.org/pypi?%3Aaction=list_classifiers # 'Development Status :: 1 - Planning', # 'Development Status :: 2 - Pre-Alpha', 'Development Status :: 3 - Alpha', # 'Development Status :: 4 - Beta', #'Development Status :: 5 - Production/Stable', # 'Development Status :: 6 - Mature', # 'Development Status :: 7 - Inactive', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Operating System :: Unix', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Topic :: Software Development :: Libraries :: Python Modules', ] )
the-stack_106_23372
#!/bin/env python import sys import boto3 from botocore.exceptions import ClientError # To get a list of the AWS regions we have access to: ec2 = boto3.client('ec2') aws_regions = ec2.describe_regions() print ('\nRegions we have access to:\n') for region in aws_regions['Regions']: region_name = region['RegionName'] print (' ', region_name) print ('')
the-stack_106_23373
import json import logging from django.conf import settings from django.core.exceptions import ValidationError from django.db import models from django.urls import reverse from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from mayan.apps.acls.models import AccessControlList from mayan.apps.documents.models import Document from ..managers import ValidWorkflowInstanceManager from ..permissions import permission_workflow_instance_transition from .workflow_models import Workflow from .workflow_transition_models import ( WorkflowTransition, WorkflowTransitionField ) __all__ = ('WorkflowInstance', 'WorkflowInstanceLogEntry') logger = logging.getLogger(name=__name__) class WorkflowInstance(models.Model): workflow = models.ForeignKey( on_delete=models.CASCADE, related_name='instances', to=Workflow, verbose_name=_('Workflow') ) document = models.ForeignKey( on_delete=models.CASCADE, related_name='workflows', to=Document, verbose_name=_('Document') ) context = models.TextField( blank=True, verbose_name=_('Context') ) objects = models.Manager() valid = ValidWorkflowInstanceManager() class Meta: ordering = ('workflow',) unique_together = ('document', 'workflow') verbose_name = _('Workflow instance') verbose_name_plural = _('Workflow instances') def __str__(self): return force_text(s=getattr(self, 'workflow', 'WI')) def do_transition( self, transition, comment=None, extra_data=None, user=None ): try: if transition in self.get_transition_choices(_user=user).all(): if extra_data: context = self.loads() context.update(extra_data) self.dumps(context=context) return self.log_entries.create( comment=comment or '', extra_data=json.dumps(obj=extra_data or {}), transition=transition, user=user ) except AttributeError: # No initial state has been set for this workflow. if settings.DEBUG: raise def dumps(self, context): """ Serialize the context data. """ self.context = json.dumps(obj=context) self.save() def get_absolute_url(self): return reverse( viewname='document_states:workflow_instance_detail', kwargs={ 'workflow_instance_id': self.pk } ) def get_context(self): # Keep the document instance in the workflow instance fresh when # there are cascade state actions, where a second state action is # triggered by the events generated by a first state action. self.document.refresh_from_db() context = { 'document': self.document, 'workflow': self.workflow, 'workflow_instance': self } context['workflow_instance_context'] = self.loads() return context def get_current_state(self): """ Actual State - The current state of the workflow. If there are multiple states available, for example: registered, approved, archived; this field will tell at the current state where the document is right now. """ try: return self.get_last_transition().destination_state except AttributeError: return self.workflow.get_initial_state() def get_last_log_entry(self): try: return self.log_entries.order_by('datetime').last() except AttributeError: return None def get_last_transition(self): """ Last Transition - The last transition used by the last user to put the document in the actual state. """ try: return self.get_last_log_entry().transition except AttributeError: return None def get_runtime_context(self): """ Alias of self.load() to get just the runtime context of the instance for ease of use in the condition template. """ return self.loads() def get_transition_choices(self, _user=None): current_state = self.get_current_state() if current_state: queryset = current_state.origin_transitions.all() if _user: queryset = AccessControlList.objects.restrict_queryset( permission=permission_workflow_instance_transition, queryset=queryset, user=_user ) # Remove the transitions with a false return value. for entry in queryset: if not entry.evaluate_condition(workflow_instance=self): queryset = queryset.exclude(id=entry.pk) return queryset else: """ This happens when a workflow has no initial state and a document whose document type has this workflow is created. We return an empty transition queryset. """ return WorkflowTransition.objects.none() def loads(self): """ Deserialize the context data. """ return json.loads(s=self.context or '{}') class WorkflowInstanceLogEntry(models.Model): """ Fields: * user - The user who last transitioned the document from a state to the Actual State. * datetime - Date Time - The date and time when the last user transitioned the document state to the Actual state. """ workflow_instance = models.ForeignKey( on_delete=models.CASCADE, related_name='log_entries', to=WorkflowInstance, verbose_name=_('Workflow instance') ) datetime = models.DateTimeField( auto_now_add=True, db_index=True, verbose_name=_('Datetime') ) transition = models.ForeignKey( on_delete=models.CASCADE, to='WorkflowTransition', verbose_name=_('Transition') ) user = models.ForeignKey( blank=True, null=True, on_delete=models.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name=_('User') ) comment = models.TextField(blank=True, verbose_name=_('Comment')) extra_data = models.TextField(blank=True, verbose_name=_('Extra data')) class Meta: ordering = ('datetime',) verbose_name = _('Workflow instance log entry') verbose_name_plural = _('Workflow instance log entries') def __str__(self): return force_text(s=self.transition) def clean(self): if self.transition not in self.workflow_instance.get_transition_choices(_user=self.user): raise ValidationError(_('Not a valid transition choice.')) def get_extra_data(self): result = {} for key, value in self.loads().items(): try: field = self.transition.fields.get(name=key) except WorkflowTransitionField.DoesNotExist: """ There is a reference for a field that does not exist or has been deleted. """ else: result[field.label] = value return result def loads(self): """ Deserialize the context data. """ return json.loads(s=self.extra_data or '{}') def save(self, *args, **kwargs): result = super().save(*args, **kwargs) context = self.workflow_instance.get_context() context.update( { 'entry_log': self } ) for action in self.transition.origin_state.exit_actions.filter(enabled=True): context.update( { 'action': action, } ) action.execute( context=context, workflow_instance=self.workflow_instance ) for action in self.transition.destination_state.entry_actions.filter(enabled=True): context.update( { 'action': action, } ) action.execute( context=context, workflow_instance=self.workflow_instance ) return result
the-stack_106_23375
class LogicB(object): def __init__(self, device_instance): self.di = device_instance def update_status(self): """ """ if not len(self.di._hourly_prices): # no hourly prices have been calculated return # update the charge on the device self.di.update_state_of_charge() # calculate the charge/discharge price thresholds (price_threshold_discharge, price_threshold_charge) = self.calculate_price_thresholds() # compare the current price to the calculated thresholds if self.di.is_discharging() and self.di._price < price_threshold_discharge: # stop discharging if price is below the threshold self.di.stop_discharging() elif not self.di.is_discharging() and self.di._price < price_threshold_discharge: self.di.enable_discharge() elif self.di.is_charging() and self.di._price > price_threshold_charge: self.di.stop_charging() def calculate_price_thresholds(self): if not len(self.di._hourly_prices): return avg_24 = sum(self.di._hourly_prices) / len(self.di._hourly_prices) min_24 = min(self.di._hourly_prices) max_24 = max(self.di._hourly_prices) # set the starting/ending threshold at 10% above/below the average price_threshold_discharge = avg_24 * 1.10 price_threshold_charge = avg_24 * 0.90 if self.di._current_soc >= 0.5: # charge at >= 50% if price_threshold_discharge >= self.di._discharge_price_threshold: price_threshold_discharge = self.di._discharge_price_threshold price_threshold_charge = self.di._charge_price_threshold else: soc_ratio = (self.di._current_soc - 0.5) / 0.5 price_adjustment = (max_24 - price_threshold_discharge) * soc_ratio price_threshold_discharge += price_adjustment price_threshold_charge += price_adjustment else: # charge at < 50% if price_threshold_charge <= self.di._charge_price_threshold: price_threshold_charge = self.di._charge_price_threshold price_threshold_discharge = self.di._discharge_price_threshold else: soc_ratio = self.di._current_soc / 0.5 price_adjustment = (self.di._charge_price_threshold - min_24) * soc_ratio price_threshold_discharge += price_adjustment price_threshold_charge += price_adjustment return (price_threshold_discharge, price_threshold_charge)
the-stack_106_23376
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains and Evaluates the MNIST network using a feed dictionary.""" # pylint: disable=missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import tensorflow as tf from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.examples.tutorials.mnist import input_data from tensorflow.examples.tutorials.mnist import mnist # Basic model parameters as external flags. flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.') flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.') flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.') flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.') flags.DEFINE_integer('batch_size', 100, 'Batch size. ' 'Must divide evenly into the dataset sizes.') flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.') flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data ' 'for unit testing.') def placeholder_inputs(batch_size): """Generate placeholder variables to represent the input tensors. These placeholders are used as inputs by the rest of the model building code and will be fed from the downloaded data in the .run() loop, below. Args: batch_size: The batch size will be baked into both placeholders. Returns: images_placeholder: Images placeholder. labels_placeholder: Labels placeholder. """ # Note that the shapes of the placeholders match the shapes of the full # image and label tensors, except the first dimension is now batch_size # rather than the full size of the train or test data sets. images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, mnist.IMAGE_PIXELS)) labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size)) return images_placeholder, labels_placeholder def fill_feed_dict(data_set, images_pl, labels_pl): """Fills the feed_dict for training the given step. A feed_dict takes the form of: feed_dict = { <placeholder>: <tensor of values to be passed for placeholder>, .... } Args: data_set: The set of images and labels, from input_data.read_data_sets() images_pl: The images placeholder, from placeholder_inputs(). labels_pl: The labels placeholder, from placeholder_inputs(). Returns: feed_dict: The feed dictionary mapping from placeholders to values. """ # Create the feed_dict for the placeholders filled with the next # `batch size ` examples. images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size, FLAGS.fake_data) feed_dict = { images_pl: images_feed, labels_pl: labels_feed, } return feed_dict def do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_set): """Runs one evaluation against the full epoch of data. Args: sess: The session in which the model has been trained. eval_correct: The Tensor that returns the number of correct predictions. images_placeholder: The images placeholder. labels_placeholder: The labels placeholder. data_set: The set of images and labels to evaluate, from input_data.read_data_sets(). """ # And run one epoch of eval. true_count = 0 # Counts the number of correct predictions. steps_per_epoch = data_set.num_examples // FLAGS.batch_size num_examples = steps_per_epoch * FLAGS.batch_size for step in xrange(steps_per_epoch): feed_dict = fill_feed_dict(data_set, images_placeholder, labels_placeholder) true_count += sess.run(eval_correct, feed_dict=feed_dict) precision = true_count / num_examples print(' Num examples: %d Num correct: %d Precision @ 1: %0.04f' % (num_examples, true_count, precision)) def run_training(): """Train MNIST for a number of steps.""" # Get the sets of images and labels for training, validation, and # test on MNIST. data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data) # Tell TensorFlow that the model will be built into the default Graph. with tf.Graph().as_default(): # Generate placeholders for the images and labels. images_placeholder, labels_placeholder = placeholder_inputs( FLAGS.batch_size) # Build a Graph that computes predictions from the inference model. logits = mnist.inference(images_placeholder, FLAGS.hidden1, FLAGS.hidden2) # Add to the Graph the Ops for loss calculation. loss = mnist.loss(logits, labels_placeholder) # Add to the Graph the Ops that calculate and apply gradients. train_op = mnist.training(loss, FLAGS.learning_rate) # Add the Op to compare the logits to the labels during evaluation. eval_correct = mnist.evaluation(logits, labels_placeholder) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Create a saver for writing training checkpoints. saver = tf.train.Saver() # Create a session for running Ops on the Graph. sess = tf.Session() # Run the Op to initialize the variables. init = tf.initialize_all_variables() sess.run(init) # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) # And then after everything is built, start the training loop. for step in xrange(FLAGS.max_steps): start_time = time.time() # Fill a feed dictionary with the actual set of images and labels # for this particular training step. feed_dict = fill_feed_dict(data_sets.train, images_placeholder, labels_placeholder) # Run one step of the model. The return values are the activations # from the `train_op` (which is discarded) and the `loss` Op. To # inspect the values of your Ops or variables, you may include them # in the list passed to sess.run() and the value tensors will be # returned in the tuple from the call. _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict) duration = time.time() - start_time # Write the summaries and print an overview fairly often. if step % 100 == 0: # Print status to stdout. print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)) # Update the events file. summary_str = sess.run(summary_op, feed_dict=feed_dict) summary_writer.add_summary(summary_str, step) summary_writer.flush() # Save a checkpoint and evaluate the model periodically. if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps: saver.save(sess, FLAGS.train_dir, global_step=step) # Evaluate against the training set. print('Training Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.train) # Evaluate against the validation set. print('Validation Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.validation) # Evaluate against the test set. print('Test Data Eval:') do_eval(sess, eval_correct, images_placeholder, labels_placeholder, data_sets.test) def main(_): run_training() if __name__ == '__main__': tf.app.run()
the-stack_106_23379
#!/usr/bin/python # (c) 2018, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: netapp_e_global short_description: NetApp E-Series manage global settings configuration description: - Allow the user to configure several of the global settings associated with an E-Series storage-system version_added: '2.7' author: Michael Price (@lmprice) extends_documentation_fragment: - netapp.eseries options: name: description: - Set the name of the E-Series storage-system - This label/name doesn't have to be unique. - May be up to 30 characters in length. aliases: - label log_path: description: - A local path to a file to be used for debug logging required: no notes: - Check mode is supported. - This module requires Web Services API v1.3 or newer. """ EXAMPLES = """ - name: Set the storage-system name netapp_e_global: name: myArrayName api_url: "10.1.1.1:8443" api_username: "admin" api_password: "myPass" """ RETURN = """ msg: description: Success message returned: on success type: str sample: The settings have been updated. name: description: - The current name/label of the storage-system. returned: on success sample: myArrayName type: str """ import json import logging from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.netapp import request, eseries_host_argument_spec from ansible.module_utils._text import to_native HEADERS = { "Content-Type": "application/json", "Accept": "application/json", } class GlobalSettings(object): def __init__(self): argument_spec = eseries_host_argument_spec() argument_spec.update(dict( name=dict(type='str', required=False, aliases=['label']), log_path=dict(type='str', required=False), )) self.module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True, ) args = self.module.params self.name = args['name'] self.ssid = args['ssid'] self.url = args['api_url'] self.creds = dict(url_password=args['api_password'], validate_certs=args['validate_certs'], url_username=args['api_username'], ) self.check_mode = self.module.check_mode log_path = args['log_path'] # logging setup self._logger = logging.getLogger(self.__class__.__name__) if log_path: logging.basicConfig( level=logging.DEBUG, filename=log_path, filemode='w', format='%(relativeCreated)dms %(levelname)s %(module)s.%(funcName)s:%(lineno)d\n %(message)s') if not self.url.endswith('/'): self.url += '/' if self.name and len(self.name) > 30: self.module.fail_json(msg="The provided name is invalid, it must be < 30 characters in length.") def get_name(self): try: (rc, result) = request(self.url + 'storage-systems/%s' % self.ssid, headers=HEADERS, **self.creds) if result['status'] in ['offline', 'neverContacted']: self.module.fail_json(msg="This storage-system is offline! Array Id [%s]." % (self.ssid)) return result['name'] except Exception as err: self.module.fail_json(msg="Connection failure! Array Id [%s]. Error [%s]." % (self.ssid, to_native(err))) def update_name(self): name = self.get_name() update = False if self.name != name: update = True body = dict(name=self.name) if update and not self.check_mode: try: (rc, result) = request(self.url + 'storage-systems/%s/configuration' % self.ssid, method='POST', data=json.dumps(body), headers=HEADERS, **self.creds) self._logger.info("Set name to %s.", result['name']) # This is going to catch cases like a connection failure except Exception as err: self.module.fail_json( msg="We failed to set the storage-system name! Array Id [%s]. Error [%s]." % (self.ssid, to_native(err))) return update def update(self): update = self.update_name() name = self.get_name() self.module.exit_json(msg="The requested settings have been updated.", changed=update, name=name) def __call__(self, *args, **kwargs): self.update() def main(): settings = GlobalSettings() settings() if __name__ == '__main__': main()