filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_19648
import yaml, logging, datetime, time from . import DataModel from .data import * from .endpoints import Endpoint from ..helpers.helpers import ConsulTemplate class Fqdns(DataCasting, object): def __init__(self): super().__init__('fqdn') self.fqdns = [] for f in self.list(): self.fqdns.append(Fqdn(f)) @property def key(self): return self.cast @property def value(self): return self.fqdns def __repr__(self): return str(list(self.list())) def __iter__(self): self.iter = 0 return self def __next__(self): if self.iter < len(self.fqdns): self.iter = self.iter + 1 return str(self.fqdns[self.iter - 1]) raise StopIteration() def add(self, fqdn, value=None): if value is None: value = {} value.update({'fqdn': fqdn}) result = Fqdn.create(value) if result: return result return False # noinspection PyBroadException def load_yaml(self, file): try: with open(file, 'r') as f: fqdn_list = yaml.load(f, Loader=yaml.SafeLoader) f.close() except Exception: fqdn_list = {} logging.info(" load file content {}".format(str(fqdn_list))) for fqdn in fqdn_list: value = fqdn_list[fqdn] value['backend'] = '\n'.join(value['backend']) if self.exists(fqdn): Fqdn(fqdn).update(value) else: self.add(fqdn, value) return fqdn_list def json(self, owner=None): results = [] for fqdn in super().list(): if Fqdn(fqdn).owner == owner or owner is None: results.append(Fqdn(fqdn).json()) return results def publish(self, owner=None): results = [] for fqdn in super().list(): if Fqdn(fqdn).owner == owner or owner is None: if Fqdn(fqdn).publish(): results.append(Fqdn(fqdn).json()) logging.info(str(results)) return results def unpublish(self, owner=None): results = [] for fqdn in super().list(): if Fqdn(fqdn).owner == owner or owner is None: if Fqdn(fqdn).unpublish(): results.append(Fqdn(fqdn).json()) logging.info(str(results)) return results class Fqdn(DataCasting, object): def __init__(self, fqdn=None): super().__init__('fqdn') self.fqdn = fqdn self.props = list(DataModel['haproxy']['casting']['fqdns']['fqdn']) self.props.remove('fqdn') if fqdn is not None: self.load() @property def key(self): return self.fqdn @property def value(self): return self.dict() @property def backend_name(self): return self.fqdn + '-' + self.owner @property def front_type(self): if self.extended == "true": return "frontex" else: return "front" @property def frontend_content(self): if self.extended == "true": self.frontex = "" if self.mode == "tcp": self.frontex = "use_backend {backend}-tcp if {{ req_ssl_sni -i {subdom} {fqdn} }}" if self.mode == "http": self.frontex = "acl {backend} hdr_end(host) -i {subdom} {fqdn}\n" self.frontex += "use_backend {backend}-http if {backend}" if self.buggyclient == "true": if self.mode == "tcp": self.frontex += "\nuse_backend {backend}-tcp if {{ req_ssl_sni -i {subdom} {fqdn}:443 }}" if self.mode == "http": self.frontex += "\nacl {backend}-buggyclient hdr_end(host) -i {subdom} {fqdn}:443\n" self.frontex += "use_backend {backend}-http if {backend}-buggyclient" subdomainoption = "" if self.subdomains == "true": subdomainoption = "-m end" return self.frontex.format(subdom=subdomainoption, backend=self.backend_name, fqdn=self.fqdn) else: return self.backend_name def exists(self, key=""): """ check if an fqdn of any mode exists """ mode = self.mode self.mode = 'tcp' if super().exists(): self.mode = mode return True self.mode = 'http' if super().exists(): self.mode = mode return True return False @classmethod def create(cls, payload): result = cls(payload['fqdn']) if 'subdomains' in payload and payload['subdomains'] == "true": result.extended = "true" if 'buggyclient' in payload and payload['buggyclient'] == "true": result.extended = "true" result.update(payload) result.save() return result def update(self, value): super().update(value) self.save() if self.is_publish(): self.publish() return self @staticmethod def timestamp(): return datetime.datetime.now().timestamp() # noinspection PyBroadException @staticmethod def timeout(timepoint, delta=10): if datetime.datetime.now().timestamp() > (timepoint + delta): return True return False def spiidgen(self): maxwaittime = 10 maxstucktime = 5 * 60 now = self.timestamp() # while something is tested if not Endpoint('test', '', '', '').is_empty() and not self.timeout(now, maxwaittime): logging.warning(" hoho, it's not empty. Waiting concurrency to terminate.") while not Endpoint('test', '', '', '').is_empty() and not self.timeout(now, maxwaittime): time.sleep(0.3) # some entries are stuck ! so clean it if not Endpoint('test', '', '', '').is_empty(): logging.warning(" hoho, it wasn't empty") for test in Endpoint('test', '', '', '').list(): if now - float(test.split('-')[-1]) > maxstucktime: logging.warning(" hoho, something is stuck :{}".format(test)) Endpoint('test', test, '', '').delete(recurse=True) self.spiid = "{}-{}".format(self.backend_name, str(self.timestamp())) return self.spiid def safe(self): self.message = "" if self.state not in self.states: logging.info(' bad state {} for {}'.format(self.state, self.key)) self.message = "state: {} unknown; cleaned to 'unpublish'.\n".format(self.state) self.state = "unpublish" self.save() if self.mode not in ['http', 'tcp']: logging.info(' bad mode {} for {}'.format(self.mode, self.key)) self.message = self.message + "mode: {} unknown; cleaned to 'http'.\n".format(self.mode) self.mode = "http" self.save() return self def __repr__(self): return self.fqdn def getPath(self): return super().getPath() + self.fqdn def json(self): result = self.dict() logging.info(' self.dict : {}'.format(str(result))) result['fqdn'] = result.pop('key') result['backend'] = result['backend'].split('\n') if result['message'] == "": result['message'] = [] else: result['message'] = result['message'].split('\n') return result def destroy(self): f = self if not self.is_unpublish(): self.unpublish() if self.delete(): f.state = "deleted" return f f.state = "not_deleted" return f def is_publish(self): return self.states[self.state] == 'publish' def is_publish_fail(self): return self.state == 'publish_failed' def is_unpublish(self): return self.states[self.state] == 'unpublish' def unpublish(self): if self.is_unpublish(): return self if (not Endpoint('publ', self.front_type, self.mode, self.fqdn).exists() and not Endpoint('publ', 'back', self.mode, self.backend_name).exists()): self.state = 'unpublish' return self Endpoint('publ', self.front_type, self.mode, self.fqdn).delete() Endpoint('publ', 'back', self.mode, self.backend_name).delete() if not Endpoint('publ', self.front_type, self.mode, self.fqdn).exists(): self.state = 'unpublish' self.save() return self @property def testpoint_backend(self): return Endpoint('test', 'back', self.mode, self.backend_name, spiid=self.spiid) @property def testpoint_frontend(self): return Endpoint('test', self.front_type, self.mode, self.fqdn, spiid=self.spiid) @property def failpoint_backend(self): return Endpoint('fail', 'back', self.mode, self.backend_name, spiid=self.spiid) @property def failpoint_frontend(self): return Endpoint('fail', self.front_type, self.mode, self.fqdn, spiid=self.spiid) @property def publpoint_backend(self): return Endpoint('publ', 'back', self.mode, self.backend_name) @property def publpoint_frontend(self): return Endpoint('publ', self.front_type, self.mode, self.fqdn) def publish(self): logging.info(' fqdn publish start') # made @ update method # if self.is_publish(): # self.unpublish() self.spiidgen() logging.info(str(self.dict())) # push backend first # cleanup failing if self.failpoint_backend.exists(): self.failpoint_backend.delete(recurse=True) logging.info(' haprestio publish : delete logfail backend {}'.format(self.backend_name)) logging.info(' haprestio publish : test push backend {}'.format(self.backend_name)) self.testpoint_backend.update(self.backend) validate = ConsulTemplate(self.spiid) if not validate.evaluation(): self.testpoint_backend.delete() self.message = validate.returnerr self.failpoint_backend.update(validate.returnerr) logging.info(" fail publish backend {} : {}".format(self.backend_name, self.message)) self.state = "publish_failed" self.save() return self # push then frontend # cleanup failing if self.failpoint_frontend.exists(): self.failpoint_frontend.delete(recurse=True) logging.info(' haprestio publish : delete logfail frontend {}'.format(self.backend_name)) logging.info(' haprestio publish : test push frontend {}'.format(self.backend_name)) self.testpoint_frontend.update(self.frontend_content) validate = ConsulTemplate(self.spiid) if not validate.evaluation(): self.testpoint_frontend.delete() self.message = validate.returnerr self.failpoint_frontend.update(validate.returnerr) logging.info(" fail publish backend {} : {}".format(self.backend_name, self.message)) self.state = "publish_failed" self.save() return self self.testpoint_backend.delete() self.testpoint_frontend.delete() self.publpoint_backend.update(self.backend) self.publpoint_frontend.update(self.frontend_content) self.message = "" self.state = "published" self.save() return self
the-stack_106_19649
#!/usr/bin/env python from __future__ import print_function import sys import subprocess import socket try: import urllib.parse url_parser = urllib.parse.urlparse except: try: import urlparse url_parser = urlparse.urlparse except: print('urllib or urlparse is needed') sys.exit(1) import framework.rpc import framework.daemon import framework.wallet USAGE = 'usage: python -i console.py [[[scheme]<host>:]<port> [[[scheme]<host>:]<port>...]]' daemons = [] wallets = [] rpcs = [] for n in range(1, len(sys.argv)): scheme='http' host='127.0.0.1' port=None try: try: port = int(sys.argv[n]) except: t = url_parser(sys.argv[n], allow_fragments = False) scheme = t.scheme or scheme host = t.hostname or host port = t.port or port if scheme != 'http' and scheme != 'https': raise Exception(USAGE) if port <= 0 or port > 65535: raise Exception(USAGE) except Exception as e: print('Error: ' + str(e)) raise Exception(USAGE) # check for open port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(1) if s.connect_ex((host, port)) != 0: raise Exception('No wallet or daemon RPC on port ' + str(port)) s.close() # both wallet and daemon have a get_version JSON RPC rpc = framework.rpc.JSONRPC('{protocol}://{host}:{port}'.format(protocol=scheme, host=host, port=port)) get_version = { 'method': 'get_version', 'jsonrpc': '2.0', 'id': '0' } try: res = rpc.send_json_rpc_request(get_version) except Exception as e: raise Exception('Failed to call version RPC: ' + str(e)) if 'version' not in res: raise Exception('Server is not a MKEcoin process') if 'status' in res: daemons.append(framework.daemon.Daemon(port=port)) rpcs.append(daemons[-1]) else: wallets.append(framework.wallet.Wallet(port=port)) rpcs.append(wallets[-1]) # add tab completion if we can: https://stackoverflow.com/questions/246725 try: import readline except: pass else: import rlcompleter readline.parse_and_bind('tab: complete') if len(daemons) == 1: daemon = daemons[0] if len(wallets) == 1: wallet = wallets[0] didx = 0 widx = 0 for rpc in rpcs: if type(rpc) == framework.daemon.Daemon: var = "daemon" if len(daemons) == 1 else "daemons[" + str(didx) + "]" didx += 1 else: var = "wallet" if len(wallets) == 1 else "wallets[" + str(widx) + "]" widx += 1 print('Variable \'%s\' connected to %s RPC on %s:%u' % (var, 'daemon' if type(rpc) == framework.daemon.Daemon else 'wallet', rpc.host ,rpc.port))
the-stack_106_19650
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: DO NOT SUBMIT without one-line documentation for dataset. """ import os import numpy as np from typing import List from dataclasses import dataclass @dataclass class MaskingCurve: masking_frequency: float masking_level: int probe_level: int probe_frequencies: List[float] decibel_masking: List[float] probe_frequencies_bark: List[float] bel_masking: List[float] class MaskingDataset(object): def __init__(self): self._curves = {} self.critical_bands = [ 20, 100, 200, 300, 400, 505, 630, 770, 915, 1080, 1265, 1475, 1720, 1990, 2310, 2690, 3125, 3675, 4350, 5250, 6350, 7650, 9400, 11750, 15250, 20000 ] def add_curve(self, curve: MaskingCurve): if curve.masking_frequency not in self._curves: self._curves[curve.masking_frequency] = {} if curve.probe_level not in self._curves[curve.masking_frequency]: self._curves[curve.masking_frequency][curve.probe_level] = {} self._curves[curve.masking_frequency][curve.probe_level][ curve.masking_level] = curve @staticmethod def binary_search(arr, item): """Finds closest index to the left of an item in arr.""" low = 0 high = len(arr) - 1 mid = 0 while low <= high: mid = (high + low) // 2 # Check if item is present at mid if arr[mid] < item: low = mid # If item is greater, ignore left half elif arr[mid] > item: high = mid # If item is smaller, ignore right half else: return mid if arr[high] <= item: return high if arr[low] <= item < arr[low + 1]: return low return mid def frequency_to_cb(self, frequency: float) -> int: return self.binary_search(self.critical_bands, frequency) def read_data(self, directory: str, input_file: str): metadata = input_file.strip(".txt").split("_") masking_frequency = metadata[1] probe_level = metadata[3] with open(os.path.join(directory, input_file), "r") as infile: for line in infile: split_line = line.split(":") masking_level = split_line[0].split()[1] data_points = split_line[1].split(";") probe_frequencies = [] probe_frequencies_bark = [] decibel_masking = [] bel_masking = [] for point in data_points: split_point = point.split(",") probe_frequency = float(split_point[0]) probe_cb = self.frequency_to_cb(probe_frequency) probe_frequencies.append(probe_frequency) decibel_masking.append(float(split_point[1])) probe_frequencies_bark.append(probe_cb) bel_masking.append(float(split_point[1]) / 10) masking_curve = MaskingCurve(float(masking_frequency), int(masking_level), int(probe_level), probe_frequencies, decibel_masking, probe_frequencies_bark, bel_masking) self.add_curve(masking_curve) return def get_curve_data(self, masking_frequency: float, probe_level: int, masking_level: int): if masking_frequency not in self._curves: raise ValueError( "No curve for masking frequency {}".format(masking_frequency)) if probe_level not in self._curves[masking_frequency]: raise ValueError("No curve for probe level {}".format(probe_level)) if masking_level not in self._curves[masking_frequency][probe_level]: raise ValueError("No curve for masking level {}".format(masking_level)) curve = self._curves[masking_frequency][probe_level][masking_level] data = list(zip(curve.probe_frequencies_bark, curve.bel_masking)) return data def get_all_data(self): for masking_frequency, probe_masker_curves in self._curves.items(): for probe_level, masker_curves in probe_masker_curves.items(): for masker_level, curve_data in masker_curves.items(): for (probe_frequency_bark, bel_masking, probe_frequency) in zip(curve_data.probe_frequencies_bark, curve_data.bel_masking, curve_data.probe_frequencies): yield {"masker_frequency": masking_frequency, "probe_level": probe_level, "probe_frequency": probe_frequency, "masker_level": masker_level, "probe_frequency_bark": probe_frequency_bark, "target_bel_masking": bel_masking}
the-stack_106_19651
# Copyright (C) 2016-Present Pivotal Software, Inc. All rights reserved. # # This program and the accompanying materials are made available under # the terms of the under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from setuptools import setup from setuptools.command.test import test as TestCommand import io import os import sys import ephemerol here = os.path.abspath(os.path.dirname(__file__)) def read(*filenames, **kwargs): encoding = kwargs.get('encoding', 'utf-8') sep = kwargs.get('sep', '\n') buf = [] for filename in filenames: with io.open(filename) as f: buf.append(f.read()) return sep.join(buf) class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errcode = pytest.main(self.test_args) sys.exit(errcode) setup( name='ephemerol', version=ephemerol.__version__, url='https://github.com/Pivotal-Field-Engineering/ephemerol', license='None', author='Chris DeLashmutt', tests_require=['pytest', 'mock'], install_requires=['terminaltables'], cmdclass={'test': PyTest}, author_email='[email protected]', description='A Cloud Native readiness scanner', packages=['ephemerol'], include_package_data=True, platforms='any', extras_require={ 'testing': ['pytest'], } )
the-stack_106_19654
lr_mult = 4 optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=2500, warmup_ratio=0.001, step=[55*lr_mult, 68*lr_mult]) total_epochs = 80*lr_mult checkpoint_config = dict(interval=total_epochs) log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')]) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] dataset_type = 'RetinaFaceDataset' data_root = 'data/crowdhuman/' train_root = 'data/crowdhuman/train/' val_root = 'data/crowdhuman/val/' img_norm_cfg = dict( mean=[127.5, 127.5, 127.5], std=[128.0, 128.0, 128.0], to_rgb=True) data = dict( samples_per_gpu=64, workers_per_gpu=8, train=dict( type='RetinaFaceDataset', ann_file='data/crowdhuman/train/label_fullbody.txt', img_prefix='data/crowdhuman/train/images/', pipeline=[ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_keypoints=True), dict( type='RandomSquareCrop', crop_choice=[ 0.3, 0.45, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 ], bbox_clip_border=False), dict( type='Resize', img_scale=(640, 640), keep_ratio=False, bbox_clip_border=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Normalize', mean=[127.5, 127.5, 127.5], std=[128.0, 128.0, 128.0], to_rgb=True), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=[ 'img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore', 'gt_keypointss' ]) ]), val=dict( type='RetinaFaceDataset', ann_file='data/crowdhuman/val/label_fullbody.txt', img_prefix='data/crowdhuman/val/images/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), #dict(type='RandomFlip', flip_ratio=0.0), dict( type='Normalize', mean=[127.5, 127.5, 127.5], std=[128.0, 128.0, 128.0], to_rgb=True), dict(type='Pad', size=(640, 640), pad_val=0), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='RetinaFaceDataset', ann_file='data/crowdhuman/val/label_fullbody.txt', img_prefix='data/crowdhuman/val/images/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), #dict(type='RandomFlip', flip_ratio=0.0), dict( type='Normalize', mean=[127.5, 127.5, 127.5], std=[128.0, 128.0, 128.0], to_rgb=True), dict(type='Pad', size=(640, 640), pad_val=0), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ])) model = dict( type='SCRFD', backbone=dict( type='ResNetV1e', depth=0, block_cfg=dict( block='BasicBlock', stage_blocks=(3, 5, 3, 2), stage_planes=[24, 48, 48, 80]), base_channels=24, num_stages=4, out_indices=(0, 1, 2, 3), norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, style='pytorch'), neck=dict( type='PAFPN', in_channels=[24, 48, 48, 80], out_channels=24, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict( type='SCRFDHead', num_classes=1, in_channels=24, stacked_convs=2, feat_channels=64, norm_cfg=dict(type='BN', requires_grad=True), #norm_cfg=dict(type='GN', num_groups=16, requires_grad=True), cls_reg_share=True, strides_share=False, scale_mode=2, #anchor_generator=dict( # type='AnchorGenerator', # ratios=[1.0], # scales = [1,2], # base_sizes = [16, 64, 256], # strides=[8, 16, 32]), anchor_generator=dict( type='AnchorGenerator', ratios=[2.0], scales = [3], base_sizes = [8, 16, 32, 64, 128], strides=[8, 16, 32, 64, 128]), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_dfl=False, reg_max=8, loss_bbox=dict(type='DIoULoss', loss_weight=2.0), use_kps=True, loss_kps=dict( type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=0.1), train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=-1, min_bbox_size=0, score_thr=0.02, nms=dict(type='nms', iou_threshold=0.45), max_per_img=-1))) train_cfg = dict( assigner=dict(type='ATSSAssigner', topk=9, mode=0), allowed_border=-1, pos_weight=-1, debug=False) test_cfg = dict( nms_pre=-1, min_bbox_size=0, score_thr=0.02, nms=dict(type='nms', iou_threshold=0.45), max_per_img=-1) evaluation = dict(interval=40, metric='mAP')
the-stack_106_19658
# Copyright 2018 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 import logging from azure.mgmt.resource.resources.models import GenericResource, ResourceGroupPatchable from c7n_azure.utils import is_resource_group class TagHelper: log = logging.getLogger('custodian.azure.utils.TagHelper') @staticmethod def update_resource_tags(tag_action, resource, tags): client = tag_action.session.client('azure.mgmt.resource.ResourceManagementClient') # resource group type if is_resource_group(resource): params_patch = ResourceGroupPatchable( tags=tags ) client.resource_groups.update( resource['name'], params_patch, ) # other Azure resources else: # deserialize the original object az_resource = GenericResource.deserialize(resource) if not tag_action.manager.tag_operation_enabled(az_resource.type): raise NotImplementedError('Cannot tag resource with type {0}' .format(az_resource.type)) api_version = tag_action.session.resource_api_version(resource['id']) # create a PATCH object with only updates to tags tags_patch = GenericResource(tags=tags) client.resources.update_by_id(resource['id'], api_version, tags_patch) @staticmethod def remove_tags(tag_action, resource, tags_to_delete): # get existing tags tags = resource.get('tags', {}) # only determine if any tags_to_delete exist on the resource tags_exist = False for tag in tags_to_delete: if tag in tags: tags_exist = True break # only call the resource update if there are tags to delete tags if tags_exist: resource_tags = {key: tags[key] for key in tags if key not in tags_to_delete} TagHelper.update_resource_tags(tag_action, resource, resource_tags) @staticmethod def add_tags(tag_action, resource, tags_to_add): new_or_updated_tags = False # get existing tags tags = resource.get('tags', {}) # add or update tags for key in tags_to_add: # nothing to do if the tag and value already exists on the resource if key in tags: if tags[key] != tags_to_add[key]: new_or_updated_tags = True else: # the tag doesn't exist or the value was updated new_or_updated_tags = True tags[key] = tags_to_add[key] # call the arm resource update method if there are new or updated tags if new_or_updated_tags: TagHelper.update_resource_tags(tag_action, resource, tags) @staticmethod def get_tag_value(resource, tag, utf_8=False): """Get the resource's tag value.""" tags = {k.lower(): v for k, v in resource.get('tags', {}).items()} value = tags.get(tag, False) if value is not False: if utf_8: value = value.encode('utf8').decode('utf8') return value
the-stack_106_19659
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.base.payload import Payload from pants.build_graph.target import Target from pants.contrib.go.targets.go_local_source import GoLocalSource from pants.contrib.go.targets.go_target import GoTarget class GoThriftLibrary(Target): """A Go library generated from Thrift IDL files.""" def __init__(self, address=None, payload=None, sources=None, **kwargs): """ :param sources: thrift source files :type sources: :class:`pants.source.wrapped_globs.FilesetWithSpec` or list of strings. Paths are relative to the BUILD file's directory. :param import_path: Deprecated: unused. """ payload = payload or Payload() payload.add_field('sources', self.create_sources_field(sources, address.spec_path, key_arg='sources')) super().__init__(payload=payload, address=address, **kwargs) @classmethod def alias(cls): return "go_thrift_library" class GoThriftGenLibrary(GoTarget): def __init__(self, sources=None, address=None, payload=None, **kwargs): payload = payload or Payload() payload.add_fields({ 'sources': self.create_sources_field(sources=sources, sources_rel_path=address.spec_path, key_arg='sources'), }) super().__init__(address=address, payload=payload, **kwargs) @property def import_path(self): """The import path as used in import statements in `.go` source files.""" return GoLocalSource.local_import_path(self.target_base, self.address)
the-stack_106_19660
# -*- coding: utf-8 -*- # # multimeter_file.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' Multimeter to file example -------------------------- This file demonstrates recording from an `iaf_cond_alpha` neuron using a multimeter and writing data to file. ''' ''' First, the necessary modules for simulation and plotting are imported. The simulation kernel is put back to its initial state using `ResetKernel`. ''' import nest import numpy import pylab nest.ResetKernel() ''' With `SetKernelStatus`, global properties of the simulation kernel can be specified. The following properties are related to writing to file: * `overwrite_files` is set to True to permit overwriting of an existing file. * `data_path` is the path to which all data is written. It is given relative to the current working directory. * 'data_prefix' allows to specify a common prefix for all data files. ''' nest.SetKernelStatus({"overwrite_files": True, "data_path": "", "data_prefix": ""}) ''' For illustration, the recordables of the `iaf_cond_alpha` neuron model are displayed. This model is an implementation of a spiking neuron using integrate-and-fire dynamics with conductance-based synapses. Incoming spike events induce a post-synaptic change of conductance modelled by an alpha function. ''' print("iaf_cond_alpha recordables: {0}".format( nest.GetDefaults("iaf_cond_alpha")["recordables"])) ''' A neuron, a multimeter as recording device and two spike generators for excitatory and inhibitory stimulation are instantiated. The command `Create` expects a model type and, optionally, the desired number of nodes and a dictionary of parameters to overwrite the default values of the model. * For the neuron, the rise time of the excitatory synaptic alpha function in ms `tau_syn_ex` and the reset potential of the membrane in mV `V_reset` are specified. * For the multimeter, the time interval for recording in ms `interval` and a selection of measures to record (the membrane voltage in mV `V_m` and the excitatory `g_ex` and inhibitoy `g_in` synaptic conductances in nS) are set. In addition, more parameters can be modified for writing to file: - `withgid` is set to True to record the global id of the observed node(s). (default: False). - `to_file` indicates whether to write the recordings to file and is set to True. - `label` specifies an arbitrary label for the device. It is used instead of the name of the model in the output file name. * For the spike generators, the spike times in ms `spike_times` are given explicitly. ''' n = nest.Create("iaf_cond_alpha", params={"tau_syn_ex": 1.0, "V_reset": -70.0}) m = nest.Create("multimeter", params={"interval": 0.1, "record_from": ["V_m", "g_ex", "g_in"], "withgid": True, "to_file": True, "label": "my_multimeter"}) s_ex = nest.Create("spike_generator", params={"spike_times": numpy.array([10.0, 20.0, 50.0])}) s_in = nest.Create("spike_generator", params={"spike_times": numpy.array([15.0, 25.0, 55.0])}) ''' Next, the spike generators are connected to the neuron with `Connect`. Synapse specifications can be provided in a dictionary. In this example of a conductance-based neuron, the synaptic weight `weight` is given in nS. Note that it is positive for excitatory and negative for inhibitory connections. ''' nest.Connect(s_ex, n, syn_spec={"weight": 40.0}) nest.Connect(s_in, n, syn_spec={"weight": -20.0}) nest.Connect(m, n) ''' A network simulation with a duration of 100 ms is started with `Simulate`. ''' nest.Simulate(100.) ''' After the simulation, the recordings are obtained from the multimeter via the key `events` of the status dictionary accessed by `GetStatus`. `times` indicates the recording times stored for each data point. They are recorded if the parameter `withtime` of the multimeter is set to True which is the default case. ''' events = nest.GetStatus(m)[0]["events"] t = events["times"] ''' Finally, the time courses of the membrane voltage and the synaptic conductance are displayed. ''' pylab.clf() pylab.subplot(211) pylab.plot(t, events["V_m"]) pylab.axis([0, 100, -75, -53]) pylab.ylabel("membrane potential (mV)") pylab.subplot(212) pylab.plot(t, events["g_ex"], t, events["g_in"]) pylab.axis([0, 100, 0, 45]) pylab.xlabel("time (ms)") pylab.ylabel("synaptic conductance (nS)") pylab.legend(("g_exc", "g_inh"))
the-stack_106_19661
# -*- coding: utf-8 -*- # Copyright (c) 2019-2021 Ramon van der Winkel. # All rights reserved. # Licensed under BSD-3-Clause-Clear. See LICENSE file for details. from django.http import Http404 from django.urls import reverse from django.views.generic import TemplateView from django.contrib.auth.mixins import UserPassesTestMixin from Functie.rol import Rollen, rol_get_huidige, rol_get_huidige_functie from Plein.menu import menu_dynamics from Competitie.models import (LAAG_RK, DeelCompetitie, DeelcompetitieKlasseLimiet, KampioenschapSchutterBoog) TEMPLATE_VERENIGING_LIJST_RK = 'vereniging/lijst-rk-selectie.dtl' class VerenigingLijstRkSelectieView(UserPassesTestMixin, TemplateView): """ Deze view laat de kandidaat-schutters van en RK zien van de vereniging van de HWL, met mogelijkheid voor de HWL om deze te bevestigen. """ # class variables shared by all instances template_name = TEMPLATE_VERENIGING_LIJST_RK raise_exception = True # genereer PermissionDenied als test_func False terug geeft toon_alles = False def test_func(self): """ called by the UserPassesTestMixin to verify the user has permissions to use this view """ rol_nu = rol_get_huidige(self.request) return rol_nu in (Rollen.ROL_HWL, Rollen.ROL_WL) def get_context_data(self, **kwargs): """ called by the template system to get the context data for the template """ context = super().get_context_data(**kwargs) # er zijn 2 situaties: # 1) regiocompetities zijn nog niet afgesloten --> verwijst naar pagina tussenstand rayon # 2) deelnemers voor RK zijn vastgesteld --> toon lijst try: rk_deelcomp_pk = int(kwargs['rk_deelcomp_pk'][:6]) # afkappen geeft beveiliging rk_deelcomp_rk = (DeelCompetitie .objects .select_related('competitie', 'nhb_rayon') .get(pk=rk_deelcomp_pk, laag=LAAG_RK)) except (ValueError, DeelCompetitie.DoesNotExist): raise Http404('Geen valide competitie') if not rk_deelcomp_rk.heeft_deelnemerslijst: raise Http404('Geen deelnemerslijst beschikbaar') context['deelcomp_rk'] = rk_deelcomp_rk rol_nu, functie_nu = rol_get_huidige_functie(self.request) deelnemers = (KampioenschapSchutterBoog .objects .select_related('deelcompetitie', 'klasse__indiv', 'sporterboog__sporter', 'bij_vereniging') .filter(deelcompetitie=rk_deelcomp_rk, volgorde__lte=48) # max 48 schutters per klasse tonen .order_by('klasse__indiv__volgorde', # groepeer per klasse 'volgorde', # oplopend op volgorde (dubbelen mogelijk) '-gemiddelde')) # aflopend op gemiddelde if not self.toon_alles: deelnemers = deelnemers.filter(bij_vereniging=functie_nu.nhb_ver) wkl2limiet = dict() # [pk] = aantal for limiet in (DeelcompetitieKlasseLimiet .objects .select_related('klasse') .filter(deelcompetitie=rk_deelcomp_rk)): wkl2limiet[limiet.klasse.pk] = limiet.limiet # for context['kan_wijzigen'] = kan_wijzigen = (rol_nu == Rollen.ROL_HWL) aantal_klassen = 0 keep = list() groepje = list() behoud_groepje = False klasse = -1 for deelnemer in deelnemers: deelnemer.break_klasse = (klasse != deelnemer.klasse.indiv.volgorde) if deelnemer.break_klasse: if len(groepje) and behoud_groepje: aantal_klassen += 1 keep.extend(groepje) groepje = list() behoud_groepje = False deelnemer.klasse_str = deelnemer.klasse.indiv.beschrijving klasse = deelnemer.klasse.indiv.volgorde try: limiet = wkl2limiet[deelnemer.klasse.pk] except KeyError: limiet = 24 sporter = deelnemer.sporterboog.sporter deelnemer.naam_str = "[%s] %s" % (sporter.lid_nr, sporter.volledige_naam()) if deelnemer.bij_vereniging == functie_nu.nhb_ver: behoud_groepje = True deelnemer.mijn_vereniging = True if kan_wijzigen: deelnemer.url_wijzig = reverse('Competitie:wijzig-status-rk-deelnemer', kwargs={'deelnemer_pk': deelnemer.pk}) if deelnemer.rank > limiet: deelnemer.is_reserve = True groepje.append(deelnemer) # for if len(groepje) and behoud_groepje: aantal_klassen += 1 keep.extend(groepje) context['deelnemers'] = keep context['aantal_klassen'] = aantal_klassen if self.toon_alles: context['url_filtered'] = reverse('Vereniging:lijst-rk', kwargs={'rk_deelcomp_pk': rk_deelcomp_rk.pk}) else: context['url_alles'] = reverse('Vereniging:lijst-rk-alles', kwargs={'rk_deelcomp_pk': rk_deelcomp_rk.pk}) menu_dynamics(self.request, context, actief='vereniging') return context class VerenigingLijstRkSelectieAllesView(VerenigingLijstRkSelectieView): """ Deze view laat alle kandidaat-schutters van en RK zien, met mogelijkheid voor de HWL om deze te bevestigen. """ toon_alles = True # end of file
the-stack_106_19664
from django.urls import path from django_filters.views import FilterView from autobuyfast.cars.views import ( # CarLikeFunc, AllSearchView, CarCreateView, CarDeleteView, CarSold, CarUpdateView, CompareCreateView, CompareView, car_detail_view, cars_list_view, filter_car_search_view, filter_home_car_search_view, save_search, unsave_search, unwatch_car, watch_car, ) app_name = "cars" urlpatterns = [ path("", view=cars_list_view, name="list"), path("create/", view=CarCreateView.as_view(), name="create"), path("compare-cars/<slug>/update", view=CompareCreateView.as_view(), name="compare"), path("compare-cars/<slug>/", view=CompareView.as_view(), name="compare_detail"), path("detail/<slug>/update", view=CarUpdateView.as_view(), name="update"), path("detail/<slug>/delete", view=CarDeleteView, name="delete"), path("detail/<slug>/sold", view=CarSold, name="sold"), path("detail/<slug>/", view=car_detail_view, name="detail"), path("search/", view=filter_car_search_view, name="search"), path("search/alt/", view=filter_home_car_search_view, name="home_search"), path("watch/<slug>/", view=watch_car, name="watch_add"), path("unwatch/<slug>/", view=unwatch_car, name="watch_remove"), path("save/search/", view=save_search, name="save_search"), path("save/search/<int:pk>/", view=unsave_search, name="unsave_search"), path("search/list/", view=AllSearchView.as_view(), name="search_list"), ]
the-stack_106_19665
# Copyright 2016 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import falcon from monasca_common.rest import utils as rest_utils from monasca_log_api.app.base.validation import validate_authorization from monasca_log_api.app.controller.api import healthcheck_api from monasca_log_api.healthcheck import kafka_check class HealthChecks(healthcheck_api.HealthChecksApi): # response configuration CACHE_CONTROL = ['must-revalidate', 'no-cache', 'no-store'] # response codes HEALTHY_CODE_GET = falcon.HTTP_OK HEALTHY_CODE_HEAD = falcon.HTTP_NO_CONTENT NOT_HEALTHY_CODE = falcon.HTTP_SERVICE_UNAVAILABLE def __init__(self): self._kafka_check = kafka_check.KafkaHealthCheck() super(HealthChecks, self).__init__() def on_head(self, req, res): validate_authorization(req, ['log_api:healthcheck:head']) res.status = self.HEALTHY_CODE_HEAD res.cache_control = self.CACHE_CONTROL def on_get(self, req, res): # at this point we know API is alive, so # keep up good work and verify kafka status validate_authorization(req, ['log_api:healthcheck:get']) kafka_result = self._kafka_check.healthcheck() # in case it'd be unhealthy, # message will contain error string status_data = { 'kafka': kafka_result.message } # Really simple approach, ideally that should be # part of monasca-common with some sort of registration of # healthchecks concept res.status = (self.HEALTHY_CODE_GET if kafka_result.healthy else self.NOT_HEALTHY_CODE) res.cache_control = self.CACHE_CONTROL res.body = rest_utils.as_json(status_data)
the-stack_106_19667
import numpy as np import pandas as pd import math from copy import deepcopy from abc import abstractmethod, ABCMeta from scipy.interpolate import interp1d from bids.utils import listify from itertools import chain from six import add_metaclass from bids.utils import matches_entities @add_metaclass(ABCMeta) class BIDSVariable(object): ''' Base representation of a column in a BIDS project. ''' # Columns that define special properties (e.g., onset, duration). These # will be stored separately from the main data object, and are accessible # as properties on the BIDSVariable instance. _property_columns = set() def __init__(self, name, values, source): self.name = name self.values = values self.source = source self._index_entities() def clone(self, data=None, **kwargs): ''' Clone (deep copy) the current column, optionally replacing its data and/or any other attributes. Args: data (DataFrame, ndarray): Optional new data to substitute into the cloned column. Must have same dimensionality as the original. kwargs (dict): Optional keyword arguments containing new attribute values to set in the copy. E.g., passing `name='my_name'` would set the `.name` attribute on the cloned instance to the passed value. ''' result = deepcopy(self) if data is not None: if data.shape != self.values.shape: raise ValueError("Replacement data has shape %s; must have " "same shape as existing data %s." % (data.shape, self.values.shape)) result.values = pd.DataFrame(data) if kwargs: for k, v in kwargs.items(): setattr(result, k, v) # Need to update name on Series as well # result.values.name = kwargs.get('name', self.name) return result def filter(self, filters=None, query=None, strict=False, inplace=False): ''' Returns a copy of the current Variable with only rows that match the filters retained. Args: filters (dict): Dictionary of filters to apply. Keys can be either 'amplitude' or any named entity. Values must be single values or lists. query (str): Optional query string to pass to df.query(). Will not be validated in any way, so must have valid column names. Takes precedence over filters in the event that both are passed. strict (bool): By default, keys in 'filters' that cannot be found in the Variable will be silently ignored. If strict=True, None will be returned in such cases. inplace (bool): If True, filtering is performed in place. If False, a filtered copy of the Variable is returned. Returns: A BIDSVariable, or None if no rows are left after filtering. ''' if filters is None and query is None: raise ValueError("Either the 'filters' or the 'query' argument " "must be provided!") if filters is not None and query is None: query = [] for name, val in filters.items(): if name != 'amplitude' and name not in self.index.columns: if strict: return None continue oper = 'in' if isinstance(val, (list, tuple)) else '==' q = '{name} {oper} {val}'.format(name=name, oper=oper, val=repr(val)) query.append(q) query = ' and '.join(query) var = self if inplace else self.clone() if query: inds = self.to_df().query(query).index var.values = var.values.loc[inds] var.index = var.index.loc[inds] if hasattr(self, '_build_entity_index'): var._build_entity_index() if not inplace: return var @classmethod def merge(cls, variables, name=None, **kwargs): ''' Merge/concatenate a list of variables along the row axis. Args: variables (list): A list of Variables to merge. name (str): Optional name to assign to the output Variable. By default, uses the same name as the input variables. kwargs: Optional keyword arguments to pass onto the class-specific merge() call. See merge_variables docstring for details. Returns: A single BIDSVariable of the same class as the input variables. Notes: see merge_variables docstring for additional details. ''' variables = listify(variables) if len(variables) == 1: return variables[0] var_names = set([v.name for v in variables]) if len(var_names) > 1: raise ValueError("Columns with different names cannot be merged. " "Column names provided: %s" % var_names) if name is None: name = variables[0].name return cls._merge(variables, name, **kwargs) @classmethod @abstractmethod def _merge(cls, variables, name, **kwargs): pass def get_grouper(self, groupby='run'): ''' Return a pandas Grouper object suitable for use in groupby calls. Args: groupby (str, list): Name(s) of column(s) defining the grouper object. Anything that would be valid inside a .groupby() call on a pandas structure. Returns: A pandas Grouper object constructed from the specified columns of the current index. ''' return pd.core.groupby._get_grouper(self.index, groupby)[0] def apply(self, func, groupby='run', *args, **kwargs): ''' Applies the passed function to the groups defined by the groupby argument. Works identically to the standard pandas df.groupby() call. Args: func (callable): The function to apply to each group. groupby (str, list): Name(s) of column(s) defining the grouping. args, kwargs: Optional positional and keyword arguments to pass onto the function call. ''' grouper = self.get_grouper(groupby) return self.values.groupby(grouper).apply(func, *args, **kwargs) def to_df(self, condition=True, entities=True, **kwargs): ''' Convert to a DataFrame, with columns for name and entities. Args: condition (bool): If True, adds a column for condition name, and names the amplitude column 'amplitude'. If False, returns just onset, duration, and amplitude, and gives the amplitude column the current column name. entities (bool): If True, adds extra columns for all entities. ''' amp = 'amplitude' if condition else self.name data = pd.DataFrame({amp: self.values.values.ravel()}) for sc in self._property_columns: data[sc] = getattr(self, sc) if condition: data['condition'] = self.name if entities: ent_data = self.index.reset_index(drop=True) data = pd.concat([data, ent_data], axis=1) return data.reset_index(drop=True) def matches_entities(self, entities, strict=False): ''' Checks whether current Variable's entities match the input. ''' return matches_entities(self, entities, strict) def _index_entities(self): ''' Returns a dict of entities for the current Variable. Note: Only entity key/value pairs common to all rows in the Variable are returned. E.g., if a Variable contains events extracted from runs 1, 2 and 3 from subject '01', the returned dict will be {'subject': '01'}; the runs will be excluded as they vary across the Variable contents. ''' constant = self.index.apply(lambda x: x.nunique() == 1) if constant.empty: self.entities = {} else: keep = self.index.columns[constant] self.entities = {k: self.index[k].iloc[0] for k in keep} class SimpleVariable(BIDSVariable): ''' Represents a simple design matrix column that has no timing information. Args: name (str): Name of the column. data (DataFrame): A pandas DataFrame minimally containing a column named 'amplitude' as well as any identifying entities. source (str): The type of BIDS variable file the data were extracted from. Must be one of: 'events', 'physio', 'stim', 'confounds', 'scans', 'sessions', 'participants', or 'beh'. kwargs: Optional keyword arguments passed onto superclass. ''' _entity_columns = {'condition', 'amplitude'} def __init__(self, name, data, source, **kwargs): ent_cols = list(set(data.columns) - self._entity_columns) self.index = data.loc[:, ent_cols] values = data['amplitude'].reset_index(drop=True) values.name = name super(SimpleVariable, self).__init__(name, values, source) def split(self, grouper): ''' Split the current SparseRunVariable into multiple columns. Args: grouper (iterable): list to groupby, where each unique value will be taken as the name of the resulting column. Returns: A list of SparseRunVariables, one per unique value in the grouper. ''' data = self.to_df(condition=True, entities=True) data = data.drop('condition', axis=1) subsets = [] for i, (name, g) in enumerate(data.groupby(grouper)): name = '%s.%s' % (self.name, name) args = [name, g, self.source] if hasattr(self, 'run_info'): args.append(self.run_info) col = self.__class__(*args) subsets.append(col) return subsets @classmethod def _merge(cls, variables, name, **kwargs): dfs = [v.to_df() for v in variables] data = pd.concat(dfs, axis=0).reset_index(drop=True) data = data.rename(columns={name: 'amplitude'}) return cls(name, data, source=variables[0].source, **kwargs) class SparseRunVariable(SimpleVariable): ''' A sparse representation of a single column of events. Args: name (str): Name of the column. data (DataFrame): A pandas DataFrame minimally containing the columns 'onset', 'duration', and 'amplitude'. run_info (list): A list of RunInfo objects carrying information about all runs represented in the Variable. source (str): The type of BIDS variable file the data were extracted from. Must be one of: 'events', 'physio', 'stim', 'confounds', 'scans', 'sessions', 'participants', or 'beh'. kwargs: Optional keyword arguments passed onto superclass. ''' _property_columns = {'onset', 'duration'} def __init__(self, name, data, run_info, source, **kwargs): if hasattr(run_info, 'duration'): run_info = [run_info] self.run_info = run_info for sc in self._property_columns: setattr(self, sc, data.pop(sc).values) super(SparseRunVariable, self).__init__(name, data, source, **kwargs) def get_duration(self): ''' Return the total duration of the Variable's run(s). ''' return sum([r.duration for r in self.run_info]) def to_dense(self, sampling_rate): ''' Convert the current sparse column to a dense representation. Returns: A DenseRunVariable. Args: sampling_rate (int, str): Sampling rate (in Hz) to use when constructing the DenseRunVariable. Returns: A DenseRunVariable. ''' duration = int(math.ceil(sampling_rate * self.get_duration())) ts = np.zeros(duration, dtype=self.values.dtype) onsets = np.round(self.onset * sampling_rate).astype(int) durations = np.round(self.duration * sampling_rate).astype(int) run_i, start, last_ind = 0, 0, 0 for i, val in enumerate(self.values.values): if onsets[i] < last_ind: start += self.run_info[run_i].duration * sampling_rate run_i += 1 _onset = start + onsets[i] _offset = _onset + durations[i] ts[_onset:_offset] = val last_ind = onsets[i] run_info = list(self.run_info) return DenseRunVariable(self.name, ts, run_info, self.source, sampling_rate) @classmethod def _merge(cls, variables, name, **kwargs): run_info = list(chain(*[v.run_info for v in variables])) return super(SparseRunVariable, cls)._merge(variables, name, run_info=run_info, **kwargs) class DenseRunVariable(BIDSVariable): ''' A dense representation of a single column. Args: name (str): The name of the column. values (NDArray): The values/amplitudes to store. run_info (list): A list of RunInfo objects carrying information about all runs represented in the Variable. source (str): The type of BIDS variable file the data were extracted from. Must be one of: 'events', 'physio', 'stim', 'confounds', 'scans', 'sessions', 'participants', or 'beh'. sampling_rate (float): Optional sampling rate (in Hz) to use. Must match the sampling rate used to generate the values. If None, the collection's sampling rate will be used. ''' def __init__(self, name, values, run_info, source, sampling_rate): values = pd.DataFrame(values) if hasattr(run_info, 'duration'): run_info = [run_info] self.run_info = run_info self.sampling_rate = sampling_rate self.index = self._build_entity_index(run_info, sampling_rate) super(DenseRunVariable, self).__init__(name, values, source) def split(self, grouper): ''' Split the current DenseRunVariable into multiple columns. Args: grouper (DataFrame): binary DF specifying the design matrix to use for splitting. Number of rows must match current DenseRunVariable; a new DenseRunVariable will be generated for each column in the grouper. Returns: A list of DenseRunVariables, one per unique value in the grouper. ''' values = grouper.values * self.values.values df = pd.DataFrame(values, columns=grouper.columns) return [DenseRunVariable('%s.%s' % (self.name, name), df[name].values, self.run_info, self.source, self.sampling_rate) for i, name in enumerate(df.columns)] def _build_entity_index(self, run_info, sampling_rate): ''' Build the entity index from run information. ''' index = [] sr = int(round(1000. / sampling_rate)) _timestamps = [] for run in run_info: reps = int(math.ceil(run.duration * sampling_rate)) ent_vals = list(run.entities.values()) data = np.broadcast_to(ent_vals, (reps, len(ent_vals))) df = pd.DataFrame(data, columns=list(run.entities.keys())) ts = pd.date_range(0, periods=len(df), freq='%sms' % sr) _timestamps.append(ts.to_series()) index.append(df) self.timestamps = pd.concat(_timestamps, axis=0) return pd.concat(index, axis=0).reset_index(drop=True) def resample(self, sampling_rate, inplace=False, kind='linear'): ''' Resample the Variable to the specified sampling rate. Args: sampling_rate (int, float): Target sampling rate (in Hz) inplace (bool): If True, performs resampling in-place. If False, returns a resampled copy of the current Variable. kind (str): Argument to pass to scipy's interp1d; indicates the kind of interpolation approach to use. See interp1d docs for valid values. ''' if not inplace: var = self.clone() var.resample(sampling_rate, True, kind) return var if sampling_rate == self.sampling_rate: return old_sr = self.sampling_rate n = len(self.index) self.index = self._build_entity_index(self.run_info, sampling_rate) x = np.arange(n) num = int(np.ceil(n * sampling_rate / old_sr)) f = interp1d(x, self.values.values.ravel(), kind=kind) x_new = np.linspace(0, n - 1, num=num) self.values = pd.DataFrame(f(x_new)) self.sampling_rate = sampling_rate def to_df(self, condition=True, entities=True, timing=True): ''' Convert to a DataFrame, with columns for name and entities. Args: condition (bool): If True, adds a column for condition name, and names the amplitude column 'amplitude'. If False, returns just onset, duration, and amplitude, and gives the amplitude column the current column name. entities (bool): If True, adds extra columns for all entities. timing (bool): If True, includes onset and duration columns (even though events are sampled uniformly). If False, omits them. ''' df = super(DenseRunVariable, self).to_df(condition, entities) if timing: df['onset'] = self.timestamps.values.astype(float) / 1e+9 df['duration'] = 1. / self.sampling_rate return df @classmethod def _merge(cls, variables, name, sampling_rate=None, **kwargs): if not isinstance(sampling_rate, int): rates = set([v.sampling_rate for v in variables]) if len(rates) == 1: sampling_rate = list(rates)[0] else: if sampling_rate is 'auto': sampling_rate = max(rates) else: msg = ("Cannot merge DenseRunVariables (%s) with different" " sampling rates (%s). Either specify an integer " "sampling rate to use for all variables, or set " "sampling_rate='auto' to use the highest sampling " "rate found." % (name, rates)) raise ValueError(msg) variables = [v.resample(sampling_rate) for v in variables] values = pd.concat([v.values for v in variables], axis=0) run_info = list(chain(*[v.run_info for v in variables])) source = variables[0].source return DenseRunVariable(name, values, run_info, source, sampling_rate) def merge_variables(variables, name=None, **kwargs): ''' Merge/concatenate a list of variables along the row axis. Args: variables (list): A list of Variables to merge. name (str): Optional name to assign to the output Variable. By default, uses the same name as the input variables. kwargs: Optional keyword arguments to pass onto the class-specific merge() call. Possible args: - sampling_rate (int, str): The sampling rate to use if resampling of DenseRunVariables is necessary for harmonization. If 'auto', the highest sampling rate found will be used. This argument is only used when passing DenseRunVariables in the variables list. Returns: A single BIDSVariable of the same class as the input variables. Notes: * Currently, this function only support homogenously-typed lists. In future, it may be extended to support implicit conversion. * Variables in the list must all share the same name (i.e., it is not possible to merge two different variables into a single variable.) ''' classes = set([v.__class__ for v in variables]) if len(classes) > 1: raise ValueError("Variables of different classes cannot be merged. " "Variables passed are of classes: %s" % classes) sources = set([v.source for v in variables]) if len(sources) > 1: raise ValueError("Variables extracted from different types of files " "cannot be merged. Sources found: %s" % sources) return list(classes)[0].merge(variables, **kwargs)
the-stack_106_19668
#*************************************************************************************************** # # File Name: gen_support.py # Application Version: v0.1 # Application Developer: Anastasiia Butko (LBNL) # # Software: Task assIGnment mappER (TIGER) # Author: Anastasiia Butko (LBNL) # Website: https://github.com/lbnlcomputerarch/tiger # # The copyright information of this software can be found in the file COPYRIGHT. # #************************************************************************************************* from qubo_gen import * from qmasm_gen import * from sol_gen import * from gen_support import * import random import math import os import sys import ast import re import networkx as nx import numpy as np import collections from random import randint from itertools import izip_longest, ifilter def longest_path_length(G, src, dst): paths = nx.all_simple_paths(G, src, dst) check = list(nx.all_simple_paths(G, src, dst)) if check: return len(max(paths, key = len))-1 else: return 0 def level_groups(G, root, size): levels = collections.OrderedDict() levels.update({0: root}) for taskID in G: if taskID not in root: levelID = 0 for rootIdx in root: level = longest_path_length(G, rootIdx, taskID) levelID = level if level > levelID else levelID if (levelID in levels): levels[levelID].append(taskID) else: levels.update({levelID: [taskID]}) return levels def adjust_levels(G, levels, procNum): levelShift = 0 adjustedLevels = collections.OrderedDict() print("\nAdjusting levels ...") for il, lvl in enumerate(levels): if len(levels[lvl]) > procNum: subLevelsNum = len(levels[lvl])/procNum remainderTasks = len(levels[lvl])%procNum print("Num of sublevels: " + str(subLevelsNum) + " RemainderTasks: " + str(remainderTasks)) for idx in range(0, subLevelsNum): adjustedLevels.update({(lvl+levelShift): levels[lvl][(idx*procNum):(idx*procNum + procNum)]}) levelShift += 1 # if remainderTasks > 0: # adjustedLevels.update({(lvl+levelShift): levels[lvl][(subLevelsNum*procNum):(subLevelsNum*procNum + procNum)]}) if remainderTasks > 0: if (il < len(levels)-1): if len(levels[lvl+1]) < procNum: bufA = [] bufB = [] freeSpace = procNum - len(levels[lvl+1]) for subTask in range(0, remainderTasks): depFlag = 0 for nextLevelTask in range(0, len(levels[lvl+1])): if (G.has_edge(levels[lvl][subLevelsNum*procNum+subTask], levels[lvl+1][nextLevelTask])): depFlag = 1 break if((depFlag != 1) and (len(bufA) < freeSpace)): bufA.append(levels[lvl][subLevelsNum*procNum+subTask]) else: bufB.append(levels[lvl][subLevelsNum*procNum+subTask]) for taskID in bufA: levels[lvl+1].append(taskID) if bufB: adjustedLevels.update({(lvl+levelShift): bufB}) else: levelShift -= 1 else: adjustedLevels.update({(lvl+levelShift): levels[lvl][(subLevelsNum*procNum):(subLevelsNum*procNum + procNum)]}) else: adjustedLevels.update({(lvl+levelShift): levels[lvl][(subLevelsNum*procNum):(subLevelsNum*procNum + procNum)]}) else: levelShift -= 1 else: adjustedLevels.update({(lvl+levelShift): levels[lvl]}) print("\n") return adjustedLevels def vertical_couplings(taskID, penalty, file, ProcNum): number = 0 for i in range(0, ProcNum): for j in range(i, ProcNum): if i!=j: A = taskID*ProcNum + i B = taskID*ProcNum + j file.write(str(A) + " " + str(B) + " " + str(penalty) + "\n") number += 1 return number def horizontal_couplings(taskID_0, taskID_1, penalty, file, ProcNum): number = 0 for p in range(0, ProcNum): A = taskID_0 + p B = taskID_1 + p file.write(str(A) + " " + str(B) + " " + str(penalty) + "\n") number += 1 return number def task_to_qubit(SG, ProcNum): TaskQubitDict = collections.OrderedDict() for i, task in enumerate(sorted(SG.nodes())): TaskQubitDict.update({task: (i*ProcNum)}) return TaskQubitDict def devide_graph(TCG, LpSG, adjustedLevels): SG = [] SL = [] chunks = [adjustedLevels.iteritems()]*LpSG g = (dict(ifilter(None, v)) for v in izip_longest(*chunks)) SL = list(g) for sub_level in SL: SGlevels = [] for key, value in sub_level.iteritems(): SGlevels.extend(value) SG.append(TCG.subgraph(SGlevels)) return SG, SL
the-stack_106_19670
# -*- coding: utf-8 -*- # MySQL Connector/Python - MySQL driver written in Python. # Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. # MySQL Connector/Python is licensed under the terms of the GPLv2 # <http://www.gnu.org/licenses/old-licenses/gpl-2.0.html>, like most # MySQL Connectors. There are special exceptions to the terms and # conditions of the GPLv2 as it is applied to this software, see the # FOSS License Exception # <http://www.mysql.com/about/legal/licensing/foss-exception.html>. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Incur., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """Testing connection.CMySQLConnection class using the C Extension """ import tests from mysql.connector import errors from mysql.connector.constants import ClientFlag, flag_is_set from mysql.connector.connection import MySQLConnection from mysql.connector.connection_cext import CMySQLConnection class CMySQLConnectionTests(tests.MySQLConnectorTests): def setUp(self): config = tests.get_mysql_config() self.cnx = CMySQLConnection(**config) self.pcnx = MySQLConnection(**config) def test__info_query(self): query = "SELECT 1, 'a', 2, 'b'" exp = (1, 'a', 2, 'b') self.assertEqual(exp, self.cnx.info_query(query)) self.assertRaises(errors.InterfaceError, self.cnx.info_query, "SHOW VARIABLES LIKE '%char%'") def test_client_flags(self): defaults = ClientFlag.default set_flags = self.cnx._cmysql.st_client_flag() for flag in defaults: self.assertTrue(flag_is_set(flag, set_flags)) def test_get_rows(self): self.assertRaises(errors.InternalError, self.cnx.get_rows) query = "SHOW STATUS LIKE 'Aborted_c%'" self.cnx.cmd_query(query) self.assertRaises(AttributeError, self.cnx.get_rows, 0) self.assertRaises(AttributeError, self.cnx.get_rows, -10) self.assertEqual(2, len(self.cnx.get_rows())) self.cnx.free_result() self.cnx.cmd_query(query) self.assertEqual(1, len(self.cnx.get_rows(count=1))) self.assertEqual(1, len(self.cnx.get_rows(count=1))) self.assertEqual([], self.cnx.get_rows(count=1)) self.cnx.free_result() def test_cmd_init_db(self): query = "SELECT DATABASE()" self.cnx.cmd_init_db('mysql') self.assertEqual('mysql', self.cnx.info_query(query)[0]) self.cnx.cmd_init_db('myconnpy') self.assertEqual('myconnpy', self.cnx.info_query(query)[0]) def test_cmd_query(self): query = "SHOW STATUS LIKE 'Aborted_c%'" info = self.cnx.cmd_query(query) exp = { 'eof': {'status_flag': 32, 'warning_count': 0}, 'columns': [ ('Variable_name', 253, None, None, None, None, 0, 1), ('Value', 253, None, None, None, None, 1, 0)] } self.assertEqual(exp, info) rows = self.cnx.get_rows() vars = [ row[0] for row in rows ] self.assertEqual(2, len(rows)) vars.sort() exp = ['Aborted_clients', 'Aborted_connects'] self.assertEqual(exp, vars) exp = ['Value', 'Variable_name'] fields = [fld[0] for fld in info['columns']] fields.sort() self.assertEqual(exp, fields) self.cnx.free_result() info = self.cnx.cmd_query("SET @a = 1") exp = { 'warning_count': 0, 'insert_id': 0, 'affected_rows': 0, 'server_status': 0, 'field_count': 0 } self.assertEqual(exp, info)
the-stack_106_19672
import os, sys import autograd.numpy as np from autograd import value_and_grad from scipy.optimize import minimize from util import get_median_inter_mnist, Kernel, load_data, ROOT_PATH, jitchol, _sqdist, \ remove_outliers, nystrom_decomp, chol_inv, bundle_az_aw, visualise_ATEs from joblib import Parallel, delayed import time import matplotlib.pyplot as plt from datetime import date Nfeval = 1 seed = 527 np.random.seed(seed) JITTER = 1e-7 nystr_M = 300 EYE_nystr = np.eye(nystr_M) opt_params = None prev_norm = None opt_test_err = None def experiment(sname, seed, datasize, nystr=False): def LMO_err(params, M=10): al, bl = np.exp(params) L = bl * bl * np.exp(-L0 / al / al / 2) + 1e-6 * EYEN if nystr: tmp_mat = L @ eig_vec_K C = L - tmp_mat @ np.linalg.inv(eig_vec_K.T @ tmp_mat / N2 + inv_eig_val_K) @ tmp_mat.T / N2 c = C @ W_nystr_Y * N2 else: LWL_inv = chol_inv(L @ W @ L + L / N2 + JITTER * EYEN) C = L @ LWL_inv @ L / N2 c = C @ W @ Y * N2 c_y = c - Y lmo_err = 0 N = 0 for ii in range(1): permutation = np.random.permutation(X.shape[0]) for i in range(0, X.shape[0], M): indices = permutation[i:i + M] K_i = W[np.ix_(indices, indices)] * N2 C_i = C[np.ix_(indices, indices)] c_y_i = c_y[indices] b_y = np.linalg.inv(np.eye(M) - C_i @ K_i) @ c_y_i lmo_err += b_y.T @ K_i @ b_y N += 1 return lmo_err[0, 0] / N / M ** 2 def callback0(params, timer=None): global Nfeval, prev_norm, opt_params, opt_test_err if Nfeval % 1 == 0: al, bl = params L = bl * bl * np.exp(-L0 / al / al / 2) + 1e-6 * EYEN if nystr: alpha = EYEN - eig_vec_K @ np.linalg.inv( eig_vec_K.T @ L @ eig_vec_K / N2 + np.diag(1 / eig_val_K / N2)) @ eig_vec_K.T @ L / N2 alpha = alpha @ W_nystr @ Y * N2 else: LWL_inv = chol_inv(L @ W @ L + L / N2 + JITTER * EYEN) alpha = LWL_inv @ L @ W @ Y # L_W_inv = chol_inv(W*N2+L_inv) test_L = bl * bl * np.exp(-test_L0 / al / al / 2) pred_mean = test_L @ alpha if timer: return test_err = ((pred_mean - test_Y) ** 2).mean() # ((pred_mean-test_Y)**2/np.diag(pred_cov)).mean()+(np.log(np.diag(pred_cov))).mean() norm = alpha.T @ L @ alpha Nfeval += 1 if prev_norm is not None: if norm[0, 0] / prev_norm >= 3: if opt_params is None: opt_test_err = test_err opt_params = params print(True, opt_params, opt_test_err, prev_norm) raise Exception if prev_norm is None or norm[0, 0] <= prev_norm: prev_norm = norm[0, 0] opt_test_err = test_err opt_params = params print('params,test_err, norm: ', opt_params, opt_test_err, prev_norm) def get_causal_effect(params, do_A, w): "to be called within experiment function." al, bl = params L = bl * bl * np.exp(-L0 / al / al / 2) + 1e-6 * EYEN if nystr: alpha = EYEN - eig_vec_K @ np.linalg.inv( eig_vec_K.T @ L @ eig_vec_K / N2 + np.diag(1 / eig_val_K / N2)) @ eig_vec_K.T @ L / N2 alpha = alpha @ W_nystr @ Y * N2 else: LWL_inv = chol_inv(L @ W @ L + L / N2 + JITTER * EYEN) alpha = LWL_inv @ L @ W @ Y # L_W_inv = chol_inv(W*N2+L_inv) EYhat_do_A = [] for a in do_A: a = np.repeat(a, [w.shape[0]]).reshape(-1, 1) w = w.reshape(-1, 1) aw = np.concatenate([a, w], axis=-1) ate_L0 = _sqdist(aw, X) ate_L = bl * bl * np.exp(-ate_L0 / al / al / 2) h_out = ate_L @ alpha mean_h = np.mean(h_out).reshape(-1, 1) EYhat_do_A.append(mean_h) print('a = {}, beta_a = {}'.format(np.mean(a), mean_h)) return np.concatenate(EYhat_do_A) # train,dev,test = load_data(ROOT_PATH+'/data/zoo/{}_{}.npz'.format(sname,datasize)) # X = np.vstack((train.x,dev.x)) # Y = np.vstack((train.y,dev.y)) # Z = np.vstack((train.z,dev.z)) # test_X = test.x # test_Y = test.g train, dev, test = load_data(ROOT_PATH + "/data/zoo/" + sname + '/main_orig.npz') Y = np.concatenate((train.y, dev.y), axis=0).reshape(-1, 1) # test_Y = test.y AZ_train, AW_train = bundle_az_aw(train.a, train.z, train.w) AZ_test, AW_test = bundle_az_aw(test.a, test.z, test.w) AZ_dev, AW_dev = bundle_az_aw(dev.a, dev.z, test.w) X, Z = np.concatenate((AW_train, AW_dev), axis=0), np.concatenate((AZ_train, AZ_dev), axis=0) test_X, test_Y = AW_test, test.y.reshape(-1, 1) # TODO: is test.g just test.y? t0 = time.time() EYEN = np.eye(X.shape[0]) ak0, ak1 = get_median_inter_mnist(Z[:, 0:1]), get_median_inter_mnist(Z[:, 1:2]) N2 = X.shape[0] ** 2 W0 = _sqdist(Z, None) W = (np.exp(-W0 / ak0 / ak0 / 2) + np.exp(-W0 / ak0 / ak0 / 200) + np.exp( -W0 / ak0 / ak0 * 50)) / 3 / N2 # TODO: recompute W for my case del W0 L0, test_L0 = _sqdist(X, None), _sqdist(test_X, X) # measure time # callback0(np.random.randn(2)/10,True) # np.save(ROOT_PATH + "/MMR_IVs/results/zoo/" + sname + '/LMO_errs_{}_nystr_{}_time.npy'.format(seed,train.x.shape[0]),time.time()-t0) # return params0 = np.random.randn(2) / 10 bounds = None # [[0.01,10],[0.01,5]] if nystr: for _ in range(seed + 1): random_indices = np.sort(np.random.choice(range(W.shape[0]), nystr_M, replace=False)) eig_val_K, eig_vec_K = nystrom_decomp(W * N2, random_indices) inv_eig_val_K = np.diag(1 / eig_val_K / N2) W_nystr = eig_vec_K @ np.diag(eig_val_K) @ eig_vec_K.T / N2 W_nystr_Y = W_nystr @ Y obj_grad = value_and_grad(lambda params: LMO_err(params)) # try: res = minimize(obj_grad, x0=params0, bounds=bounds, method='L-BFGS-B', jac=True, options={'maxiter': 5000}, callback=callback0) # res stands for results (not residuals!). # except Exception as e: # print(e) PATH = ROOT_PATH + "/MMR_IVs/results/zoo/" + sname + "/" assert opt_params is not None params = opt_params do_A = np.load(ROOT_PATH + "/data/zoo/" + sname + '/do_A_orig.npz')['do_A'] EY_do_A_gt = np.load(ROOT_PATH + "/data/zoo/" + sname + '/do_A_orig.npz')['gt_EY_do_A'] w_sample = train.w EYhat_do_A = get_causal_effect(params=params, do_A=do_A, w=w_sample) plt.figure() plt.plot([i + 1 for i in range(20)], EYhat_do_A) plt.xlabel('A') plt.ylabel('EYdoA-est') plt.savefig( os.path.join(PATH, str(date.today()), 'causal_effect_estimates_nystr_prodkern_{}'.format(AW_train.shape[0]) + '.png')) plt.close() print('ground truth ate: ', EY_do_A_gt) visualise_ATEs(EY_do_A_gt, EYhat_do_A, x_name='E[Y|do(A)] - gt', y_name='beta_A', save_loc=os.path.join(PATH, str(date.today())) + '/', save_name='ate_{}_nystr_prodkern.png'.format(AW_train.shape[0])) causal_effect_mean_abs_err = np.mean(np.abs(EY_do_A_gt - EYhat_do_A)) causal_effect_mae_file = open(os.path.join(PATH, str(date.today()), "ate_mae_{}_nystrom_prodkern.txt".format(AW_train.shape[0])), "a") causal_effect_mae_file.write("mae_: {}\n".format(causal_effect_mean_abs_err)) causal_effect_mae_file.close() os.makedirs(PATH, exist_ok=True) np.save(os.path.join(PATH, str(date.today()), 'LMO_errs_{}_nystr_prodkern_{}.npy'.format(seed, AW_train.shape[0])), [opt_params, prev_norm, opt_test_err]) # TODO: where is alpha? and how is it making a prediction? alpha is defined in the callback function. how is it reached? def summarize_res(sname, datasize): print(sname) res = [] times = [] for i in range(100): PATH = ROOT_PATH + "/MMR_IVs/results/zoo/" + sname + "/" filename = os.path.join(PATH, str(date.today()), 'LMO_errs_{}_nystr_prodkern_{}.npy'.format(i, datasize)) if os.path.exists(filename): tmp_res = np.load(filename, allow_pickle=True) if tmp_res[-1] is not None: res += [tmp_res[-1]] time_path = os.path.join(PATH, str(date.today()), '/LMO_errs_{}_nystr_prodkern_{}_time.npy'.format(i, datasize)) if os.path.exists(time_path): t = np.load(time_path) times += [t] res = np.array(res) times = np.array(times) res = remove_outliers(res) times = np.sort(times)[:80] print(times) print('mean, std: ', np.mean(res), np.std(res)) print('time: ', np.mean(times), np.std(times)) if __name__ == '__main__': # snames = ['step','sin','abs','linear'] snames = ["sim_1d_no_x"] for datasize in [5000]: for sname in snames: for seed in range(100): experiment(sname, seed, datasize, False if datasize < 1000 else True) summarize_res(sname, datasize)
the-stack_106_19673
# coding: utf-8 """ CLOUD API An enterprise-grade Infrastructure is provided as a Service (IaaS) solution that can be managed through a browser-based \"Data Center Designer\" (DCD) tool or via an easy to use API. The API allows you to perform a variety of management tasks such as spinning up additional servers, adding volumes, adjusting networking, and so forth. It is designed to allow users to leverage the same power and flexibility found within the DCD visual tool. Both tools are consistent with their concepts and lend well to making the experience smooth and intuitive. # noqa: E501 The version of the OpenAPI document: 5.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ionoscloud.configuration import Configuration class KubernetesClusterPropertiesForPost(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'name': 'str', 'k8s_version': 'str', 'maintenance_window': 'KubernetesMaintenanceWindow', 'api_subnet_allow_list': 'list[str]', 's3_buckets': 'list[S3Bucket]', } attribute_map = { 'name': 'name', 'k8s_version': 'k8sVersion', 'maintenance_window': 'maintenanceWindow', 'api_subnet_allow_list': 'apiSubnetAllowList', 's3_buckets': 's3Buckets', } def __init__(self, name=None, k8s_version=None, maintenance_window=None, api_subnet_allow_list=None, s3_buckets=None, local_vars_configuration=None): # noqa: E501 """KubernetesClusterPropertiesForPost - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._k8s_version = None self._maintenance_window = None self._api_subnet_allow_list = None self._s3_buckets = None self.discriminator = None self.name = name if k8s_version is not None: self.k8s_version = k8s_version if maintenance_window is not None: self.maintenance_window = maintenance_window if api_subnet_allow_list is not None: self.api_subnet_allow_list = api_subnet_allow_list if s3_buckets is not None: self.s3_buckets = s3_buckets @property def name(self): """Gets the name of this KubernetesClusterPropertiesForPost. # noqa: E501 A Kubernetes Cluster Name. Valid Kubernetes Cluster name must be 63 characters or less and must be empty or begin and end with an alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between. # noqa: E501 :return: The name of this KubernetesClusterPropertiesForPost. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this KubernetesClusterPropertiesForPost. A Kubernetes Cluster Name. Valid Kubernetes Cluster name must be 63 characters or less and must be empty or begin and end with an alphanumeric character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between. # noqa: E501 :param name: The name of this KubernetesClusterPropertiesForPost. # noqa: E501 :type name: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def k8s_version(self): """Gets the k8s_version of this KubernetesClusterPropertiesForPost. # noqa: E501 The kubernetes version in which a cluster is running. This imposes restrictions on what kubernetes versions can be run in a cluster's nodepools. Additionally, not all kubernetes versions are viable upgrade targets for all prior versions. # noqa: E501 :return: The k8s_version of this KubernetesClusterPropertiesForPost. # noqa: E501 :rtype: str """ return self._k8s_version @k8s_version.setter def k8s_version(self, k8s_version): """Sets the k8s_version of this KubernetesClusterPropertiesForPost. The kubernetes version in which a cluster is running. This imposes restrictions on what kubernetes versions can be run in a cluster's nodepools. Additionally, not all kubernetes versions are viable upgrade targets for all prior versions. # noqa: E501 :param k8s_version: The k8s_version of this KubernetesClusterPropertiesForPost. # noqa: E501 :type k8s_version: str """ self._k8s_version = k8s_version @property def maintenance_window(self): """Gets the maintenance_window of this KubernetesClusterPropertiesForPost. # noqa: E501 :return: The maintenance_window of this KubernetesClusterPropertiesForPost. # noqa: E501 :rtype: KubernetesMaintenanceWindow """ return self._maintenance_window @maintenance_window.setter def maintenance_window(self, maintenance_window): """Sets the maintenance_window of this KubernetesClusterPropertiesForPost. :param maintenance_window: The maintenance_window of this KubernetesClusterPropertiesForPost. # noqa: E501 :type maintenance_window: KubernetesMaintenanceWindow """ self._maintenance_window = maintenance_window @property def api_subnet_allow_list(self): """Gets the api_subnet_allow_list of this KubernetesClusterPropertiesForPost. # noqa: E501 Access to the K8s API server is restricted to these CIDRs. Cluster-internal traffic is not affected by this restriction. If no allowlist is specified, access is not restricted. If an IP without subnet mask is provided, the default value will be used: 32 for IPv4 and 128 for IPv6. # noqa: E501 :return: The api_subnet_allow_list of this KubernetesClusterPropertiesForPost. # noqa: E501 :rtype: list[str] """ return self._api_subnet_allow_list @api_subnet_allow_list.setter def api_subnet_allow_list(self, api_subnet_allow_list): """Sets the api_subnet_allow_list of this KubernetesClusterPropertiesForPost. Access to the K8s API server is restricted to these CIDRs. Cluster-internal traffic is not affected by this restriction. If no allowlist is specified, access is not restricted. If an IP without subnet mask is provided, the default value will be used: 32 for IPv4 and 128 for IPv6. # noqa: E501 :param api_subnet_allow_list: The api_subnet_allow_list of this KubernetesClusterPropertiesForPost. # noqa: E501 :type api_subnet_allow_list: list[str] """ self._api_subnet_allow_list = api_subnet_allow_list @property def s3_buckets(self): """Gets the s3_buckets of this KubernetesClusterPropertiesForPost. # noqa: E501 List of S3 bucket configured for K8s usage. For now it contains only one S3 bucket used to store K8s API audit logs # noqa: E501 :return: The s3_buckets of this KubernetesClusterPropertiesForPost. # noqa: E501 :rtype: list[S3Bucket] """ return self._s3_buckets @s3_buckets.setter def s3_buckets(self, s3_buckets): """Sets the s3_buckets of this KubernetesClusterPropertiesForPost. List of S3 bucket configured for K8s usage. For now it contains only one S3 bucket used to store K8s API audit logs # noqa: E501 :param s3_buckets: The s3_buckets of this KubernetesClusterPropertiesForPost. # noqa: E501 :type s3_buckets: list[S3Bucket] """ self._s3_buckets = s3_buckets def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, KubernetesClusterPropertiesForPost): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, KubernetesClusterPropertiesForPost): return True return self.to_dict() != other.to_dict()
the-stack_106_19674
# -*- coding: UTF-8 -*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import time import tensorflow as tf import tensorflow_text as tf_text import paddle import paddlenlp from paddlenlp.transformers import BertTokenizer from paddlenlp.experimental import FasterTokenizer from paddlenlp.experimental import to_tensor from transformers import AutoTokenizer parser = argparse.ArgumentParser() # yapf: disable parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization.") parser.add_argument("--batch_size", default=32, type=int, help="Batch size for tokenization.") parser.add_argument("--epochs", default=10, type=int, help="Total number of tokenization epochs to perform.") parser.add_argument("--num_samples", default=100, type=int, help="The number of samples to be tokenized") # yapf: enable args = parser.parse_args() max_seq_length = args.max_seq_length batch_size = args.batch_size epochs = args.epochs num_samples = args.num_samples total_tokens = epochs * num_samples * max_seq_length text = '在世界几大古代文明中,中华文明源远流长、从未中断,至今仍充满蓬勃生机与旺盛生命力,这在人类历史上是了不起的奇迹。' \ '本固根深、一脉相承的历史文化是铸就这一奇迹的重要基础。先秦时期是中华文化的创生期,奠定了此后几千年中华文化发展的' \ '基础。考古发现证实,早期中华文明的形成经历了从“满天星斗”到“月明星稀”再到“多元一体”的过程。在这个过程中,不同地域、' \ '不同人群的文化交流交融,中华民族最早的大家庭逐渐成形,国家由此诞生,“大同”社会理想和“天下为公,选贤与能,讲信修睦”' \ '的价值追求逐渐深入人心。在早期国家形成过程中,我们的先人积累了初步的国家治理经验,包括经济、政治、军事、法律、文化' \ '等各个方面,最终以典章、思想的形式进行总结和传承。流传至今的夏商西周国家治理经验、春秋战国诸子百家思想,是先秦时期' \ '历史文化的集中反映。秦汉至宋元时期是中华文化的发展期,中华传统文化在这个时期走向成熟并迈向新的高峰。中央集权制度的' \ '形成、郡县制度的推广、官僚制度的健全,推动中国传统社会形成国家治理的基本形态,为中国传统社会的长期延续和发展提供了' \ '坚实的制度和文化支撑,贯穿其中的价值主线是对“大一统”的坚定追求。与此同时,民为邦本的民本思想、以文化人的文治主张、' \ '协和万邦的天下观等,也在实践中得到丰富和完善。在追求“大一统”的历史中,民族精神世代相传,民族英雄史不绝书。' data = [text[:max_seq_length]] * num_samples # BERT Tokenizer using PaddleNLP FasterTokenizer pp_tokenizer = FasterTokenizer.from_pretrained("bert-base-chinese") batches = [ to_tensor(data[idx:idx + batch_size]) for idx in range(0, len(data), batch_size) ] for batch_data in batches: input_ids, token_type_ids = pp_tokenizer( text=batch_data, max_seq_len=max_seq_length) start = time.time() for _ in range(epochs): for batch_data in batches: input_ids, token_type_ids = pp_tokenizer( batch_data, max_seq_len=max_seq_length) end = time.time() print("The throughput of paddle FasterTokenizer: {:,.2f} tokens/s".format(( total_tokens / (end - start)))) hf_tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese", use_fast=True) batches = [ data[idx:idx + batch_size] for idx in range(0, len(data), batch_size) ] for batch_data in batches: encoded_inputs = hf_tokenizer(batch_data) # BERT Tokenizer using HuggingFace AutoTokenizer start = time.time() for _ in range(epochs): for batch_data in batches: encoded_inputs = hf_tokenizer( batch_data) #, padding=True, truncation=True) end = time.time() print("The throughput of huggingface FasterTokenizer: {:,.2f} tokens/s".format(( total_tokens / (end - start)))) # BERT Tokenizer using PaddleNLP BertTokenizer py_tokenizer = BertTokenizer.from_pretrained("bert-base-chinese") for batch_data in batches: encoded_inputs = py_tokenizer(batch_data) start = time.time() for _ in range(epochs): for batch_data in batches: encoded_inputs = py_tokenizer(batch_data) end = time.time() print("The throughput of paddle BertTokenizer: {:,.2f} tokens/s".format(( total_tokens / (end - start)))) # BERT Tokenizer using HuggingFace AutoTokenizer hf_tokenizer = AutoTokenizer.from_pretrained( "bert-base-chinese", use_fast=False) for batch_data in batches: encoded_inputs = hf_tokenizer(batch_data) start = time.time() for _ in range(epochs): for batch_data in batches: encoded_inputs = hf_tokenizer( batch_data) #, padding=True, truncation=True) end = time.time() print("The throughput of huggingface python tokenizer: {:,.2f} tokens/s".format( (total_tokens / (end - start)))) # BERT Tokenizer using TensorFlow Text vocab_list = list(py_tokenizer.vocab.token_to_idx.keys()) lookup_table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer( keys=vocab_list, key_dtype=tf.string, values=tf.range( tf.size( vocab_list, out_type=tf.int64), dtype=tf.int64), value_dtype=tf.int64), num_oov_buckets=1) tf_tokenizer = tf_text.BertTokenizer(lookup_table) for batch_data in batches: input_ids = tf_tokenizer.tokenize(batch_data) start = time.time() for _ in range(epochs): for batch_data in batches: input_ids = tf_tokenizer.tokenize(batch_data) end = time.time() print("The throughput of TensorFlow Text BertTokenizer: {:,.2f} tokens/s". format((total_tokens / (end - start))))
the-stack_106_19675
"""Module with abstract interface for sparsifiers.""" from abc import ABC, abstractmethod import copy import numpy as np import torch import torch.nn as nn from torch.distributions.multinomial import Multinomial class BaseSparsifier(ABC, nn.Module): """The basic interface for a sparsifier. A sparsifier sparsifies the weights incoming to neurons in a given layer. """ def __init__(self, pruner): """Initialize the sparsifier from the pruner of the same layer.""" super().__init__() # Cache tensor and sensitivity of each parameter of tensor self._tensor = pruner.tensor self._probability = pruner.probability self._probability_div = pruner.probability_div @abstractmethod def sparsify(self, num_samples): """Sparsify the edges of the associated neurons with num_samples.""" raise NotImplementedError def forward(self, x): """It's a nn.Module, so strictly speaking it needs a forward func.""" class SimpleSparsifier(BaseSparsifier): """The interface for a simple sparsifier without sensitivity.""" @property @abstractmethod def _do_reweighing(self): raise NotImplementedError @abstractmethod def _reweigh(self, counts, num_samples, probs_div): raise NotImplementedError( "The base class does not implement this " "method." ) class RandSparsifier(SimpleSparsifier): """The partial implementation for the random sparsification.""" @property def _do_reweighing(self): return True def _reweigh(self, counts, num_samples, probs_div): gammas = counts.float() / num_samples.float() / probs_div return gammas def _generate_counts(self, num_samples, probs): distribution = Multinomial(num_samples.item(), probs.view(-1)) counts = distribution.sample() return counts.view(probs.shape) class DetSparsifier(SimpleSparsifier): """The partial implementation for the deterministic sparsification.""" @property def _do_reweighing(self): return False def _reweigh(self, counts, num_samples, probs_div): sens_sum = max(0, 1 - torch.sum(probs_div[counts]).item()) kappa = 0 if sens_sum < 1: kappa = sens_sum / (1 - sens_sum) # Under the i.i.d. assumption this works, otherwise no. gammas = (1 + kappa) * counts.float() return gammas def _generate_counts(self, num_samples, probs): mask = torch.zeros_like(probs, dtype=torch.bool) numel = probs.numel() num_samples = int(np.clip(1, int(num_samples), numel)) idx_top = np.argpartition(probs.view(-1).cpu().numpy(), -num_samples)[ -num_samples: ] mask.view(-1)[idx_top] = True return mask class FeatureSparsifier(SimpleSparsifier): """The partial implementation for the feature-wise sparsifier.""" def __init__(self, pruner): """Initialize the sparsifier from the pruner of the same layer.""" super().__init__(pruner) @abstractmethod def _generate_counts(self, num_samples_f, probs_f): raise NotImplementedError( "The base class does not implement this " "method." ) def sparsify(self, num_samples): """Sparsify the edges of the associated feature with num_samples.""" # short notation weight_original = self._tensor probs = self._probability # pre-allocate gammas gammas = torch.ones_like(probs) idx = (num_samples).nonzero() gammas[(num_samples < 1).nonzero(), :] = 0.0 # loop through all filters from which we should sample from for idx_f in idx: # generate counts for this filter counts = self._generate_counts(num_samples[idx_f], probs[idx_f]) # only use approximation when it effectively reduces size less = ( counts.nonzero().shape[0] < self._tensor[idx_f].nonzero().shape[0] ) if less: # if it does, reweigh appropriately if self._do_reweighing: gammas[idx_f] = self._reweigh( counts, num_samples[idx_f], self._probability_div[idx_f], ) else: gammas[idx_f] = (counts > 0).float() # return approximation return gammas * weight_original class RandFeatureSparsifier(RandSparsifier, FeatureSparsifier): """A sparsifier for random weight sparsification per feature.""" class DetFeatureSparsifier(DetSparsifier, FeatureSparsifier): """The sparsifier for deterministic weight sparsification per feature.""" class FilterSparsifier(SimpleSparsifier): """The implementation for the fake sparsifier for filter pruning.""" @property def _do_reweighing(self): return False def _reweigh(self, counts, num_samples, probs_div): gammas = counts.float() / num_samples.float() / probs_div return gammas def __init__(self, pruner, out_mode): """Initialize the sparsifier from the pruner of the same layer.""" super().__init__(pruner) self._out_mode = out_mode def sparsify(self, num_samples): """Fake-sparsify the edges (we don't do sparsification for filters).""" # short notation weight_original = self._tensor # pre-allocate gammas gammas = copy.deepcopy(num_samples).float() # check for reweighing if self._do_reweighing and num_samples.sum() > 0: gammas = self._reweigh( gammas, num_samples.sum(), self._probability_div ) else: gammas = (gammas > 0).float() # make gammas compatible with Woriginal gammas = gammas.unsqueeze(int(self._out_mode)).unsqueeze(-1) # make Woriginal compatible with gammas and return weight_hat = ( gammas * weight_original.view( weight_original.shape[0], weight_original.shape[1], -1 ) ).view_as(weight_original) return weight_hat
the-stack_106_19676
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright © 2017 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import os import sys from setuptools import setup, find_packages, Extension from setuptools.dist import Distribution from setuptools.command.install import install PACKAGE_NAME = "turicreate" VERSION = "6.4.1" # {{VERSION_STRING}} # pkgs not needed for minimal pkg NON_MINIMAL_LIST = [ "coremltools", "pandas", "resampy", "scipy", "tensorflow", ] # Prevent distutils from thinking we are a pure python package class BinaryDistribution(Distribution): def is_pure(self): return False class InstallEngine(install): """Helper class to hook the python setup.py install path to download client libraries and engine """ user_options = install.user_options + [ ("minimal", None, "control minimal installation"), # a 'flag' option ] def initialize_options(self): install.initialize_options(self) self.minimal = None def run(self): if self.minimal is not None: def do_not_install(require): require = require.strip() for name in NON_MINIMAL_LIST: if require.startswith(name): return False return True install_requires_minimal = list( filter(do_not_install, self.distribution.install_requires) ) orig_install_requires = self.distribution.install_requires self.distribution.install_requires = install_requires_minimal print(" minimal install: ", install_requires_minimal) print("original install: ", orig_install_requires) import platform # start by running base class implementation of run install.run(self) # Check correct version of architecture (64-bit only) arch = platform.architecture()[0] if arch != "64bit": msg = ( "Turi Create currently supports only 64-bit operating systems, and only recent Linux/OSX " + "architectures. Please install using a supported version. Your architecture is currently: %s" % arch ) sys.stderr.write(msg) sys.exit(1) # if OSX, verify >= 10.8 from distutils.util import get_platform from pkg_resources import parse_version cur_platform = get_platform() if cur_platform.startswith("macosx"): mac_ver = platform.mac_ver()[0] if parse_version(mac_ver) < parse_version("10.8.0"): msg = ( "Turi Create currently does not support versions of OSX prior to 10.8. Please upgrade your Mac OSX " "installation to a supported version. Your current OSX version is: %s" % mac_ver ) sys.stderr.write(msg) sys.exit(1) elif cur_platform.startswith("linux"): pass elif cur_platform.startswith("win"): win_ver = platform.version() # Verify this is Vista or above if parse_version(win_ver) < parse_version("6.0"): msg = ( "Turi Create currently does not support versions of Windows" " prior to Vista, or versions of Windows Server prior to 2008." "Your current version of Windows is: %s" % platform.release() ) sys.stderr.write(msg) sys.exit(1) else: msg = ( "Unsupported Platform: '%s'. Turi Create is only supported on Windows, Mac OSX, and Linux." % cur_platform ) sys.stderr.write(msg) sys.exit(1) if __name__ == "__main__": from distutils.util import get_platform classifiers = [ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Financial and Insurance Industry", "Intended Audience :: Information Technology", "Intended Audience :: Other Audience", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Natural Language :: English", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Information Analysis", ] cur_platform = get_platform() if cur_platform.startswith("macosx"): classifiers.append("Operating System :: MacOS :: MacOS X") elif cur_platform.startswith("linux"): classifiers += [ "Operating System :: POSIX :: Linux", "Operating System :: POSIX :: BSD", "Operating System :: Unix", ] elif cur_platform.startswith("win"): classifiers += ["Operating System :: Microsoft :: Windows"] else: msg = ( "Unsupported Platform: '%s'. Turi Create is only supported on Windows, Mac OSX, and Linux." % cur_platform ) sys.stderr.write(msg) sys.exit(1) with open(os.path.join(os.path.dirname(__file__), "README.rst"), "rb") as f: long_description = f.read().decode("utf-8") install_requires = [ "decorator >= 4.0.9", "numpy", "pandas >= 0.23.2", "pillow >= 5.2.0", "prettytable == 0.7.2", "resampy == 0.2.1", "requests >= 2.9.1", "scipy >= 1.1.0", "six >= 1.10.0", "coremltools==4.0b4", ] if sys.version_info[0] == 2 or ( sys.version_info[0] == 3 and sys.version_info[1] == 5 ): install_requires.append("llvmlite == 0.31.0") if sys.platform == "darwin": install_requires.append("tensorflow >= 2.0.0") else: # ST, OD, AC and DC segfault on Linux with TensorFlow 2.1.0 and 2.1.1 # See: https://github.com/apple/turicreate/issues/3003 # SC errors out on Linux with TensorFlow 2.2 and 2.3 # See: https://github.com/apple/turicreate/issues/3303 if sys.version_info[0] != 3 or sys.version_info[1] != 8: install_requires.append("tensorflow >= 2.0.0,<2.1.0") else: # Only TensorFlow >= 2.2 supports Python 3.8 install_requires.append("tensorflow >= 2.0.0") # numba 0.51 started using "manylinux2014" rather than "manylinux2010". # This breaks a lot of Linux installs. install_requires.append("numba < 0.51.0") setup( name="turicreate", version=VERSION, # This distribution contains platform-specific C++ libraries, but they are not # built with distutils. So we must create a dummy Extension object so when we # create a binary file it knows to make it platform-specific. ext_modules=[Extension("turicreate.__dummy", sources=["dummy.c"])], author="Apple Inc.", author_email="[email protected]", cmdclass=dict(install=InstallEngine), distclass=BinaryDistribution, package_data={ "turicreate": [ "_cython/*.so", "_cython/*.pyd", "*.so", "*.dylib", "toolkits/*.so", # macOS visualization "Turi Create Visualization.app/Contents/*", "Turi Create Visualization.app/Contents/_CodeSignature/*", "Turi Create Visualization.app/Contents/MacOS/*", "Turi Create Visualization.app/Contents/Resources/*", "Turi Create Visualization.app/Contents/Resources/Base.lproj/*", "Turi Create Visualization.app/Contents/Resources/Base.lproj/Main.storyboardc/*", "Turi Create Visualization.app/Contents/Resources/build/*", "Turi Create Visualization.app/Contents/Resources/build/static/*", "Turi Create Visualization.app/Contents/Resources/build/static/css/*", "Turi Create Visualization.app/Contents/Resources/build/static/js/*", "Turi Create Visualization.app/Contents/Resources/build/static/media/*", "Turi Create Visualization.app/Contents/Frameworks/*", # Linux visualization "Turi Create Visualization/*.*", "Turi Create Visualization/visualization_client", "Turi Create Visualization/swiftshader/*", "Turi Create Visualization/locales/*", "Turi Create Visualization/html/*.*", "Turi Create Visualization/html/static/js/*", "Turi Create Visualization/html/static/css/*", # Plot.save dependencies "visualization/vega_3.2.1.js", "visualization/vg2png", "visualization/vg2svg", ] }, packages=find_packages(exclude=["test"]), url="https://github.com/apple/turicreate", license="LICENSE.txt", description="Turi Create simplifies the development of custom machine learning models.", long_description=long_description, classifiers=classifiers, install_requires=install_requires, )
the-stack_106_19677
import logging; _L = logging.getLogger('openaddr.ci.collect') from argparse import ArgumentParser from urllib.parse import urlparse from datetime import date from time import sleep from os import environ from .objects import read_latest_set, read_completed_runs_to_date from . import db_connect, db_cursor, setup_logger, render_index_maps, log_function_errors, dashboard_stats from .. import S3, util parser = ArgumentParser(description='Run some source files.') parser.add_argument('-o', '--owner', default='openaddresses', help='Github repository owner. Defaults to "openaddresses".') parser.add_argument('-r', '--repository', default='openaddresses', help='Github repository name. Defaults to "openaddresses".') parser.add_argument('-b', '--bucket', default=environ.get('AWS_S3_BUCKET', None), help='S3 bucket name. Defaults to value of AWS_S3_BUCKET environment variable.') parser.add_argument('-d', '--database-url', default=environ.get('DATABASE_URL', None), help='Optional connection string for database. Defaults to value of DATABASE_URL environment variable.') parser.add_argument('--sns-arn', default=environ.get('AWS_SNS_ARN', None), help='Optional AWS Simple Notification Service (SNS) resource. Defaults to value of AWS_SNS_ARN environment variable.') parser.add_argument('--hourly', default=False, action='store_true', help='Run hourly forever instead of just once.') parser.add_argument('-v', '--verbose', help='Turn on verbose logging', action='store_const', dest='loglevel', const=logging.DEBUG, default=logging.INFO) parser.add_argument('-q', '--quiet', help='Turn off most logging', action='store_const', dest='loglevel', const=logging.WARNING, default=logging.INFO) @log_function_errors def main(): ''' Single threaded worker to serve the job queue. ''' args = parser.parse_args() setup_logger(args.sns_arn, None, log_level=args.loglevel) s3 = S3(None, None, args.bucket) db_args = util.prepare_db_kwargs(args.database_url) while True: with db_connect(**db_args) as conn: with db_cursor(conn) as db: set = read_latest_set(db, args.owner, args.repository) runs = read_completed_runs_to_date(db, set.id) stats = dashboard_stats.make_stats(db) render_index_maps(s3, runs) dashboard_stats.upload_stats(s3, stats) if args.hourly: _L.info('Sleeping for one hour') sleep(3600) else: return if __name__ == '__main__': exit(main())
the-stack_106_19679
from bitarray import bitarray def show(a): _ptr, size, _endian, _unused, alloc = a.buffer_info() print('%d %d' % (size, alloc)) a = bitarray() prev = -1 while len(a) < 2000: alloc = a.buffer_info()[4] if prev != alloc: show(a) prev = alloc a.append(1) for i in 800_000, 400_000, 399_992, 0, 0, 80_000: if len(a) < i: a.extend(bitarray(i - len(a))) else: del a[i:] assert len(a) == i show(a)
the-stack_106_19681
#!/usr/bin/env python import asyncio import logging from typing import ( Optional ) from hummingbot.core.data_type.user_stream_tracker_data_source import UserStreamTrackerDataSource from hummingbot.logger import HummingbotLogger from hummingbot.core.data_type.user_stream_tracker import UserStreamTracker from hummingbot.core.utils.async_utils import ( safe_ensure_future, safe_gather, ) from hummingbot.connector.derivative.leverj_perpetual.leverj_perpetual_api_order_book_data_source import LeverjPerpetualAPIOrderBookDataSource from hummingbot.connector.derivative.leverj_perpetual.leverj_perpetual_user_stream_data_source import LeverjPerpetualUserStreamDataSource from hummingbot.connector.derivative.leverj_perpetual.leverj_perpetual_auth import LeverjPerpetualAuth class LeverjPerpetualUserStreamTracker(UserStreamTracker): _krust_logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._krust_logger is None: cls._krust_logger = logging.getLogger(__name__) return cls._krust_logger def __init__(self, orderbook_tracker_data_source: LeverjPerpetualAPIOrderBookDataSource, leverj_auth: LeverjPerpetualAuth, domain: str = "kovan"): super().__init__() self._ev_loop: asyncio.events.AbstractEventLoop = asyncio.get_event_loop() self._data_source: Optional[UserStreamTrackerDataSource] = None self._user_stream_tracking_task: Optional[asyncio.Task] = None self._orderbook_tracker_data_source = orderbook_tracker_data_source self._leverj_auth: LeverjPerpetualAuth = leverj_auth self._domain = domain @property def data_source(self) -> UserStreamTrackerDataSource: if not self._data_source: self._data_source = LeverjPerpetualUserStreamDataSource(orderbook_tracker_data_source=self._orderbook_tracker_data_source, leverj_auth=self._leverj_auth, domain=self._domain) return self._data_source @property def exchange_name(self) -> str: return "leverj_perpetual" async def start(self): self._user_stream_tracking_task = safe_ensure_future( self.data_source.listen_for_user_stream(self._ev_loop, self._user_stream) ) await safe_gather(self._user_stream_tracking_task)
the-stack_106_19682
#!/usr/bin/env python3 import argparse, requests, json, pickle, os, sys, subprocess, time, random, http.client, httplib2, datetime from moviepy.editor import VideoFileClip, concatenate_videoclips from google_auth_oauthlib.flow import Flow, InstalledAppFlow from googleapiclient.discovery import build from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload from googleapiclient.errors import HttpError from google.auth.transport.requests import Request TWITCH_CS_FILENAME = 'twitch_client_secret.json' YOUTUBE_CS_FILENAME = 'yt_client_secret.json' GAME_IDS_FILENAME = 'game_ids.json' def run(args=None): game = args.game days_ago = args.days_ago num_clips = args.num_clips oauth = get_twitch_oauth() game_id = get_game_id(game, oauth) clips = [] slugs = [] if(num_clips is None): clips, slugs = manual_get_clips(game_id, oauth, days_ago) else: clips, slugs = auto_get_clips(game_id, oauth, num_clips, days_ago) videos = download_clips(clips) timestamps = concatenate_clips(videos) upload_video(game_id, timestamps, slugs) delete_mp4s(videos) def get_twitch_oauth(): global TWITCH_CS TWITCH_CS = read_json(TWITCH_CS_FILENAME) response = requests.post('https://id.twitch.tv/oauth2/token?', TWITCH_CS).text print("Twitch OAuth received.") return json.loads(response)["access_token"] def read_json(filename): try: with open(filename, "r") as f: return json.loads(f.read()) except json.decoder.JSONDecodeError: write_json({}, filename) return read_json(filename) def write_json(json_dict, filename): with open(filename, "wt") as f: json.dump(json_dict, f) def open_video(filename): if sys.platform == "win32": os.startfile(filename) else: opener = "open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, filename]) def get_game_id(game, oauth): game_ids = read_json(GAME_IDS_FILENAME) if game.lower() in game_ids: print("Game ID retrieved.") return game_ids[game.lower()] url = 'https://api.twitch.tv/helix/games?name=' + game.title() headers = {"Authorization":"Bearer " + oauth, "Client-Id":TWITCH_CS["client_id"]} response = json.loads(requests.get(url, headers=headers).text) if response["data"] == []: official_name = input("Could not find "+game+". What is the official game name on Twitch? ") id = get_game_id(official_name, oauth) game_ids = read_json(GAME_IDS_FILENAME) game_ids[game.lower()] = id write_json(game_ids, GAME_IDS_FILENAME) else: id = response["data"][0]["id"] game_ids[game.lower()] = id write_json(game_ids, GAME_IDS_FILENAME) print("Game ID retrieved.") return game_ids[game.lower()] def manual_get_clips(game_id, oauth, days_ago, cursor=None): # Get date and time from days_ago days ago today = datetime.date.today() week_ago = (today - datetime.timedelta(days=days_ago)).strftime("%Y-%m-%d") start_date = week_ago + "T00:00:00.00Z" # Request clips from Twitch print("Requesting clips...") url = 'https://api.twitch.tv/helix/clips?' # Request double the desired num_clips to account for approximated max exclude rate of 50% params = {"game_id":game_id, "first":"3", "started_at":start_date, "after":cursor} headers = {"Authorization":"Bearer " + oauth, "Client-Id":TWITCH_CS["client_id"]} response = json.loads(requests.get(url, params, headers=headers).text) clips = [] slugs = [] temp_clips = [] vid_length = 0 for data in response["data"]: # get download links url = data["thumbnail_url"] splice_index = url.index("-preview") url = url[:splice_index] + ".mp4" temp_clips.append(url) video = download_clips(temp_clips) open_video("0.mp4") vfc = VideoFileClip("0.mp4") clip_duration = vfc.duration vfc.close() print("Current length of video: "+str(datetime.timedelta(seconds=vid_length))+"; length of video with current clip included: "+str(datetime.timedelta(seconds=(vid_length+clip_duration)))) choice = input("Include this clip in the video? (y, yf, n, nf): ").lower() while(choice != 'y' and choice != 'n' and choice != 'yf' and choice != 'nf'): print("Invalid reponse") choice = input("Include this clip in the video? (y, yf, n, nf): ").lower() if('y' in choice): vid_length += clip_duration clips.append(url) # get public clip links (i.e., slugs) slug = data["url"] slugs.append(slug) if('f' in choice): delete_mp4s(video) print("Clips chosen.") return clips, slugs delete_mp4s(video) temp_clips = [] # If we haven't finished ('f' in choice), make another request cursor = response['pagination']['cursor'] new_clips, new_slugs = manual_get_clips(game_id, oauth, days_ago, cursor) clips.extend(new_clips) slugs.extend(new_slugs) return clips, slugs def auto_get_clips(game_id, oauth, num_clips, days_ago, cursor=None): # Get date and time from days_ago days ago today = datetime.date.today() week_ago = (today - datetime.timedelta(days=days_ago)).strftime("%Y-%m-%d") start_date = week_ago + "T00:00:00.00Z" # Request clips from Twitch print("Requesting clips...") url = 'https://api.twitch.tv/helix/clips?' params = {"game_id":game_id, "first":num_clips, "started_at":start_date, "after":cursor} headers = {"Authorization":"Bearer " + oauth, "Client-Id":TWITCH_CS["client_id"]} response = json.loads(requests.get(url, params, headers=headers).text) clips = [] slugs = [] for data in response["data"]: # get download links url = data["thumbnail_url"] splice_index = url.index("-preview") clips.append(url[:splice_index] + ".mp4") # get public clip links (i.e., slugs) url = data["url"] slugs.append(url) # If response does not include all clips, request until all clips are returned if len(clips) < int(num_clips): cursor = response['pagination']['cursor'] new_clips, new_slugs = auto_get_clips(game_id, oauth, str(int(num_clips)-len(clips)), days_ago, cursor) clips.extend(new_clips) slugs.extend(new_slugs) print("Clips and slugs received.") return clips, slugs def download_clips(clips): print("Downloading clips...") videos = [] for i in range(len(clips)): r = requests.get(clips[i], stream=True) name = str(i) + ".mp4" with open(name, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) videos.append(name) print("Clips downloaded.") return videos def delete_mp4s(videos): for video in videos: os.remove(video) if os.path.exists('final.mp4'): os.remove('final.mp4') print("Videos deleted.") def concatenate_clips(videos): vfcs = [] timestamps = [0] for video in videos: vfc = VideoFileClip(video, target_resolution=(1080, 1920)) vfcs.append(vfc) # No need for last clip's duration if video is not videos[-1]: # Add most recent timestamp to current clip's duration for next timestamp timestamps.append(timestamps[-1] + vfc.duration) final_clip = concatenate_videoclips(vfcs) final_clip.write_videofile("final.mp4", temp_audiofile="temp-audio.m4a", remove_temp=True, audio_codec="aac") print("Final video created.") # Apparently these need to be closed like a file for vfc in vfcs: vfc.close() return timestamps def create_service(client_secret_file, api_name, api_version, *scopes): CLIENT_SECRET_FILE = client_secret_file API_SERVICE_NAME = api_name API_VERSION = api_version SCOPES = [scope for scope in scopes[0]] cred = None pickle_file = f'token_{API_SERVICE_NAME}_{API_VERSION}.pickle' if os.path.exists(pickle_file): with open(pickle_file, 'rb') as token: cred = pickle.load(token) if not cred or not cred.valid: if cred and cred.expired and cred.refresh_token: cred.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file(CLIENT_SECRET_FILE, SCOPES) cred = flow.run_local_server() with open(pickle_file, 'wb') as token: pickle.dump(cred, token) try: service = build(API_SERVICE_NAME, API_VERSION, credentials=cred) print(API_SERVICE_NAME.title(), 'service created successfully') return service except Exception as e: print('Unable to connect.') print(e) return None def generate_title(playlist_title, video_count): return playlist_title + " #" + str(video_count+1) + " - Funny Moments, Fails, and Highlights" def generate_description(timestamps, slugs): description = "Join our Discord to submit clips! https://discord.gg/Th55ADV \n\n" for i in range(len(timestamps)): timestamp = str(datetime.timedelta(seconds=timestamps[i])) description += timestamp + " - " + slugs[i] + "\n" return description def generate_tags(game_id): tags = read_json("tags.json") return tags[game_id] def upload_video(game_id, timestamps, slugs): API_NAME = 'youtube' API_VERSION = 'v3' SCOPES = ['https://www.googleapis.com/auth/youtube'] service = create_service(YOUTUBE_CS_FILENAME, API_NAME, API_VERSION, SCOPES) # Get playlist ID, title, and video count playlist_id, playlist_title, video_count = get_playlist(game_id, service) upload_request_body = { 'snippet': { 'categoryId': 20, 'title': generate_title(playlist_title, video_count), 'description': generate_description(timestamps, slugs), 'tags': generate_tags(game_id) }, 'status': { 'privacyStatus': 'private', 'selfDeclaredMadeForKids': False } } mediaFile = MediaFileUpload('final.mp4', chunksize=-1, resumable=True) video_insert_request = service.videos().insert( part="snippet,status", body=upload_request_body, media_body=mediaFile ) # Explicitly tell the underlying HTTP transport library not to retry, since # we are handling retry logic ourselves. httplib2.RETRIES = 1 # Maximum number of times to retry before giving up. MAX_RETRIES = 10 # Always retry when these exceptions are raised. RETRIABLE_EXCEPTIONS = (httplib2.HttpLib2Error, IOError, http.client.NotConnected, http.client.IncompleteRead, http.client.ImproperConnectionState, http.client.CannotSendRequest, http.client.CannotSendHeader, http.client.ResponseNotReady, http.client.BadStatusLine) # Always retry when an apiclient.errors.HttpError with one of these status # codes is raised. RETRIABLE_STATUS_CODES = [500, 502, 503, 504] # Upload the video... finally. response = None error = None retry = 0 video_id = '' while response is None: try: print("Uploading video...") status, response = video_insert_request.next_chunk() if response is not None: if 'id' in response: video_id = response['id'] print("Video id '%s' was successfully uploaded." % response['id']) else: exit("The upload failed with an unexpected response: %s" % response) except HttpError as e: if e.resp.status in RETRIABLE_STATUS_CODES: error = "A retriable HTTP error %d occurred:\n%s" % (e.resp.status,e.content) else: raise except RETRIABLE_EXCEPTIONS as e: error = "A retriable error occurred: %s" % e if error is not None: print(error) retry += 1 if retry > MAX_RETRIES: exit("No longer attempting to retry.") max_sleep = 2 ** retry sleep_seconds = random.random() * max_sleep print("Sleeping %f seconds and then retrying..." % sleep_seconds) time.sleep(sleep_seconds) # Wait for YouTube to process the upload time.sleep(60) # Insert video into playlist and update local playlist info insert_to_playlist(service, game_id, playlist_id, video_id) def get_playlist(game_id, service, pToken=None, playlist=None): # Check if playlist_id exists for game_id playlist_ids = read_json("playlist_ids.json") if game_id in playlist_ids: return playlist_ids[game_id] # If not, get list of playlists on channel playlist_list_request = service.playlists().list( part="snippet,id,contentDetails", mine=True, pageToken=pToken ) playlist_list_response = playlist_list_request.execute() # Ask user for name of playlist if playlist is None: playlist = input("Game not yet attributed to a playlist. What is the full name of the playlist? ") # Find the playlist that our video belongs in playlist_id = '0' video_count = 0 if playlist_list_response is None: exit("The playlist request failed with an unexpected response: %s" % response) for item in playlist_list_response['items']: playlist_title = item['snippet']['title'] if playlist.lower() in playlist_title.lower(): playlist_id = item['id'] count = item['contentDetails']['itemCount'] playlist_ids[game_id] = playlist_id, playlist_title, video_count write_json(playlist_ids, "playlist_ids.json") return playlist_id, playlist_title, video_count if playlist_id == '0': if 'nextPageToken' in playlist_list_response: nextPageToken = playlist_list_response['nextPageToken'] return get_playlist(game_id, service, nextPageToken, playlist) else: exit("No playlist for the name given exists.") def insert_to_playlist(service, game_id, playlist_id, video_id): # Insert video into playlist playlist_insert_request = service.playlistItems().insert( part="snippet", body={ "snippet": { "playlistId": playlist_id, "resourceId": { "kind": "youtube#video", "videoId": video_id } } } ) try: playlist_insert_response = playlist_insert_request.execute() except HttpError: print("Video added to playlist.") pass # Increment local playlist video count playlist_ids = read_json("playlist_ids.json") playlist_ids[game_id][2] += 1 write_json(playlist_ids, "playlist_ids.json") def main(): parser=argparse.ArgumentParser(description="Download, concatenate, and upload Twitch clips") parser.add_argument("-g",help="Game name",dest="game",type=str,required=True) parser.add_argument("-n",help="Number of clips to download",dest="num_clips",type=str,default=None) parser.add_argument("-d",help="Number of days ago that clips started",dest="days_ago",type=int,default=7) parser.set_defaults(func=run) args=parser.parse_args() args.func(args) if __name__ == '__main__': main()
the-stack_106_19684
#!/usr/bin/env python3 ##################################################################### # This script presents how to read and use the sound buffer. # This script stores a "basic_sounds.wav" file of recorded audio. # Note: This requires scipy library ##################################################################### import vizdoom as vzd from random import choice import numpy as np from scipy.io import wavfile from time import sleep if __name__ == "__main__": game = vzd.DoomGame() # Load config of the basic scenario game.load_config('../../scenarios/basic.cfg') # Turns on the audio buffer. (turned off by default) # If this is switched on, the audio will stop playing on device, even with game.set_sound_enabled(True) # Setting game.set_sound_enabled(True) is not required for audio buffer to work. AUDIO_BUFFER_ENABLED = True game.set_audio_buffer_enabled(AUDIO_BUFFER_ENABLED) # Set the sampling rate used in the observation window. Has to be one from: # - vzd.SamplingRate.SR_44100 (default) # - vzd.SamplingRate.SR_22050 # - vzd.SamplingRate.SR_11025 # Remember to also set audio saving code at the bottom to use same sampling rate! game.set_audio_sampling_rate(vzd.SamplingRate.SR_22050) # When using frameskip (`tics` parameter of the `make_actions` function), # we would only get the latest "frame" of audio (1/35 seconds). # With this function you can set how many last "frames" of audio will be stored in audio buffer. # Note that if you use larger frameskip than size of audio buffer you will lost some information about the audio. # If you use frameskip smaller than size of audio buffer, some audio information will overlap. frameskip = 4 game.set_audio_buffer_size(frameskip) # This could fix "no audio in buffer" bug on Ubuntu 20.04. #game.add_game_args("+snd_efx 0") # Initialize the game. Further configuration won't take any effect from now on. try: game.init() except Exception as e: print( "[ERROR] Could not launch ViZDoom. If you see an error above about BiquadFilter and gain,\n" " try setting game.add_game_args('+snd_efx 0'). If that fails, see\n" " https://github.com/mwydmuch/ViZDoom/pull/486" ) exit(1) actions = [[True, False, False], [False, True, False], [False, False, True]] sleep_time = 1.0 / vzd.DEFAULT_TICRATE # = 0.028 episodes = 3 audio_slices = [] for i in range(episodes): print("Episode #" + str(i + 1)) game.new_episode() while not game.is_episode_finished(): # Gets the state state = game.get_state() audio_buffer = state.audio_buffer audio_slices.append(audio_buffer) # Makes a random action and get remember reward. r = game.make_action(choice(actions), frameskip) if not AUDIO_BUFFER_ENABLED: sleep(sleep_time * frameskip) game.close() if AUDIO_BUFFER_ENABLED: # Check that we have audio (having no audio is a common bug, see # https://github.com/mwydmuch/ViZDoom/pull/486 audio_data = np.concatenate(audio_slices, axis=0) if audio_data.max() == 0: print( "[WARNING] Audio buffers were full of silence. This is a common bug on e.g. Ubuntu 20.04\n" " See https://github.com/mwydmuch/ViZDoom/pull/486\n" " Two possible fixes:\n" " 1) Try setting game.add_game_args('+snd_efx 0'). This my disable some audio effects\n" " 2) Try installing a newer version of OpenAL Soft library, see https://github.com/mwydmuch/ViZDoom/pull/486#issuecomment-889389185" ) # Save audio file wavfile.write("basic_sounds.wav", 22050, np.concatenate(audio_slices, axis=0))
the-stack_106_19685
def kafkaSendFiles( directories, files, basicmetadata, df_metadata, kafkaProducer, kafkaTopic ): import hashlib from PIL import Image import os from kafka import KafkaProducer import requests import json blobstorage_dir = directories["blobstorage_dir"] thumbnail_dir = directories["thumbnail_dir"] ingest_dir = directories["ingest_dir"] metadataYoloServer=directories["METADATA_YOLO"] metadataClipServer=directories["METADATA_CLIP"] j = -1 for filename in files: j = j + 1 filenameOS = filename.replace("\\", "/") with open(filenameOS, "rb") as f: file_hash = hashlib.md5() chunk = f.read(2 ** 13) while chunk: file_hash.update(chunk) chunk = f.read(2 ** 13) filenameHash = file_hash.hexdigest() f.close() files={'file': open(filenameOS, 'rb')} yolo_response = requests.post(metadataYoloServer, files=files).json() files={'file': open(filenameOS, 'rb')} clip_response = requests.post(metadataClipServer, files=files).json() image = Image.open(filenameOS).convert("RGB") width, height = image.size max_w = 400 factor = max_w / width newsize = (int(width * factor), int(height * factor)) # Write to Blob Storage print("Save image into Blob Storage:" + filenameHash) image.save(blobstorage_dir + "/" + filenameHash + ".png") imageThumb = image.resize(newsize) imageThumb.save(thumbnail_dir + "/" + filenameHash + ".jpg") relPath = os.path.relpath(filenameOS, ingest_dir) relPath = relPath.replace("\\", "/") (basedir, name) = os.path.split(relPath) newEntry = { "yolov5": json.loads(yolo_response), "clip": json.loads( json.dumps(clip_response), parse_float=lambda x: round(float(x), 4) ), "datasetprovider": basicmetadata["datasetprovider"], "datasetproviderURL": basicmetadata["datasetproviderURL"], "datasetname": basicmetadata["datasetname"], "datasetcontainer": basicmetadata["datasetcontainer"], "imageFilename": name, "imageRelativePath": relPath, "imageHeight": height, "imageWidth": width, "filenameHash": filenameHash, } if "lat" in df_metadata: newEntry["lat"] = df_metadata["lat"][j] if "lon" in df_metadata: newEntry["lon"] = df_metadata["lon"][j] if "alt" in df_metadata: newEntry["alt"] = df_metadata["alt"][j] if "vf" in df_metadata: newEntry["velocity_lon"] = df_metadata["vf"][j] if "vl" in df_metadata: newEntry["velocity_lat"] = df_metadata["vl"][j] if "vu" in df_metadata: newEntry["velocity_alt"] = df_metadata["vu"][j] if "ax" in df_metadata: newEntry["acceleration_lon"] = df_metadata["ax"][j] if "ay" in df_metadata: newEntry["acceleration_lat"] = df_metadata["ay"][j] if "az" in df_metadata: newEntry["acceleration_alt"] = df_metadata["az"][j] if "ts" in df_metadata: newEntry["timestamp"] = df_metadata["ts"][j] print("Sending ", relPath) # kafkaTopic='topic_test' kafkaProducer.send(kafkaTopic, value=newEntry)
the-stack_106_19686
from functools import partial from crispy_forms.helper import FormHelper from django import forms from .models import ( Distribution, Individual, Household, ) from workflow.models import ( Office, Program, SiteProfile, ) class DatePicker(forms.DateInput): """ Use in form to create a Jquery datepicker element """ template_name = 'datepicker.html' DateInput = partial(forms.DateInput, {'class': 'datepicker'}) class DistributionForm(forms.ModelForm): start_date = forms.DateField(widget=DatePicker.DateInput(), required=False) end_date = forms.DateField(widget=DatePicker.DateInput(), required=False) form_filled_date = forms.DateField(widget=DatePicker.DateInput(), required=False) form_verified_date = forms.DateField(widget=DatePicker.DateInput(), required=False) class Meta: model = Distribution exclude = ['create_date', 'edit_date'] def __init__(self, *args, **kwargs): self.helper = FormHelper() self.request = kwargs.pop('request') self.organization = kwargs.pop('organization') self.helper.form_error_title = 'Form Errors' self.helper.error_text_inline = True self.helper.help_text_inline = True self.helper.html5_required = True super(DistributionForm, self).__init__(*args, **kwargs) self.fields['program'].queryset = Program.objects.filter( organization=self.request.user.activity_user.organization) self.fields['office'].queryset = Office.objects.filter( organization=self.request.user.activity_user.organization) self.fields['name'].label = '{} name'.format(self.organization.distribution_label) self.fields['implementer'].label = '{} implementer'.format(self.organization.distribution_label) class IndividualForm(forms.ModelForm): class Meta: model = Individual exclude = ('created_by', 'modified_by', 'label') date_of_birth = forms.DateTimeField(widget=DatePicker.DateInput(), required=True) def __init__(self, *args, **kwargs): self.request = kwargs.pop('request') self.organization = kwargs.pop('organization') self.helper = FormHelper() self.helper.form_method = 'post' self.helper.form_error_title = 'Form Errors' self.helper.error_text_inline = True self.helper.help_text_inline = True self.helper.html5_required = True self.helper.form_tag = True super(IndividualForm, self).__init__(*args, **kwargs) organization = self.request.user.activity_user.organization self.fields['program'].queryset = Program.objects.filter( organization=organization) self.fields['site'].queryset = SiteProfile.objects.filter( organizations__id__contains=self.request.user.activity_user.organization.id) class HouseholdForm(forms.ModelForm): class Meta: model = Household fields = '__all__' exclude = ['create_date', 'edit_date', 'created_by', 'label', 'organization', 'modified_by'] def __init__(self, *args, **kwargs): self.helper = FormHelper() self.organization = kwargs.pop('organization') self.request = kwargs.pop('request') self.helper.form_method = 'post' self.helper.form_error_title = 'Form Errors' self.helper.error_text_inline = True self.helper.help_text_inline = True self.helper.html5_required = True super(HouseholdForm, self).__init__(*args, **kwargs) organization = self.request.user.activity_user.organization self.fields['program'].queryset = Program.objects.filter( organization=organization) self.fields['name'].label = '{} name'.format(self.organization.household_label)
the-stack_106_19687
#!c:\users\yogeshwar\anaconda3\python.exe from http.server import HTTPServer, BaseHTTPRequestHandler import cgi import logging import pandas as pd import json from src.csv_to_db_package.csv_to_db import csv_to_db_func from src.csv_to_db_package.crud_operations_db import view_db_data, delete_db_row, insert_db_row,\ update_db_row, select_db_row, upload_to_s3 from mysql.connector import connect, errors import boto3 # from src.csv_to_db_package.csv_to_db import csv_to_db_func api_endpoint = "https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data" logging.basicConfig(filename='server_info.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s') s3 = boto3.client('s3') def put_object_to_s3(filename): with open(filename, 'rb') as file: result = s3.put_object(Bucket='yogesh-lambda-bucket', Key=filename, Body=file.read()) class RequestHandler(BaseHTTPRequestHandler): def do_GET(self): try: if self.path.endswith('/uploadCSV'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<h1>Welcome to csv upload!!</h1>' output += '<h3><a href="/uploadCSV/new">Add new file</a></h3>' output += '</body></html>' self.wfile.write(output.encode()) if self.path.endswith('/new'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<h2>Add new file</h2>' output += '<form method="POST" enctype="multipart/form-data" action="/uploadCSV/new">' output += '<input name="task" type="file" placeholder="Add new file">' output += '<input type="submit" value="Upload">' output += '</form>' output += '</body></html>' self.wfile.write(output.encode()) if self.path.endswith('/viewtable'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<h2>File uploaded Successfully</h2>' output += '<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>' output += """<script> function my_button_click_handler() { var rowId = event.target.parentNode.parentNode.id; var data = document.getElementById(rowId).querySelectorAll(".row-data"); var objectID = data[0].innerHTML; alert('Button Clicked with row_id =' + rowId + ' objectID =as' + objectID); $.ajax( { type:'POST', contentType:'application/json;charset-utf-08', dataType:'json', url:'http://localhost:8000/delete_data?value='+objectID, } ); } function my_update_data() { var rowId = event.target.parentNode.parentNode.id; var data = document.getElementById(rowId).querySelectorAll(".row-data"); var objectID = data[0].innerHTML; alert('Button Clicked with row_id =' + rowId + ' objectID =as' + objectID); window.location.href="/update_data/objectID="+objectID } </script>""" output += """<script> function redirect_to_create() { window.location.href="/add" } </script>""" output += """<script> function redirect_to_S3() { window.location.href="/to_S3" } </script>""" output += view_db_data("https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data") output += '</body></html>' self.wfile.write(output.encode()) if self.path.endswith('/to_S3'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<form method="POST" enctype="multipart/form-data" action="/to_S3">' output += '<h2>Click to store data in S3</h2>' output += '<input type="submit" value="Upload to S3">' output += '</form>' output += '</body></html>' self.wfile.write(output.encode()) if self.path.endswith('/add'): self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<form method="POST" enctype="multipart/form-data" action="/add">' output += 'objectID: <input name="objectID" type="text"><br><br>' output += 'isHighlight: <input name="isHighlight" type="text"><br><br>' output += 'accessionNumber: <input name="accessionNumber" type="text"><br><br>' output += 'accessionYear: <input name="accessionYear" type="text"><br><br>' output += 'isPublicDomain: <input name="isPublicDomain" type="text"><br><br>' output += 'primaryImage: <input name="primaryImage" type="text"><br><br>' output += 'primaryImageSmall: <input name="primaryImageSmall" type="text"><br><br>' output += 'additionalImages: <input name="additionalImages" type="text"><br><br>' output += 'department: <input name="department" type="text"><br><br>' output += 'objectName: <input name="objectName" type="text"><br><br>' output += 'title: <input name="title" type="text"><br><br>' output += 'culture: <input name="culture" type="text"><br><br>' output += 'period: <input name="period" type="text"><br><br>' output += 'dynasty: <input name="dynasty" type="text"><br><br>' output += 'reign: <input name="reign" type="text"><br><br>' output += 'portfolio: <input name="portfolio" type="text"><br><br>' output += 'artistRole: <input name="artistRole" type="text"><br><br>' output += 'artistPrefix: <input name="artistPrefix" type="text"><br><br>' output += 'artistDisplayName: <input name="artistDisplayName" type="text"><br><br>' output += 'artistDisplayBio: <input name="artistDisplayBio" type="text"><br><br>' output += 'artistSuffix: <input name="artistSuffix" type="text"><br><br>' output += 'artistAlphaSort: <input name="artistAlphaSort" type="text"><br><br>' output += 'artistNationality: <input name="artistNationality" type="text"><br><br>' output += 'artistBeginDate: <input name="artistBeginDate" type="text"><br><br>' output += 'artistEndDate: <input name="artistEndDate" type="text"><br><br>' output += 'artistGender: <input name="artistGender" type="text"><br><br>' output += 'artistWikidata_URL: <input name="artistWikidata_URL" type="text"><br><br>' output += 'artistULAN_URL: <input name="artistULAN_URL" type="text"><br><br>' output += 'objectDate: <input name="objectDate" type="text"><br><br>' output += 'objectBeginDate: <input name="objectBeginDate" type="text"><br><br>' output += 'objectEndDate: <input name="objectEndDate" type="text"><br><br>' output += 'medium: <input name="medium" type="text"><br><br>' output += 'dimensions: <input name="dimensions" type="text"><br><br>' output += 'measurements: <input name="measurements" type="text"><br><br>' output += 'creditLine: <input name="creditLine" type="text"><br><br>' output += 'geographyType: <input name="geographyType" type="text"><br><br>' output += 'city: <input name="city" type="text"><br><br>' output += 'state: <input name="state" type="text"><br><br>' output += 'county: <input name="county" type="text"><br><br>' output += 'country: <input name="country" type="text"><br><br>' output += 'region: <input name="region" type="text"><br><br>' output += 'subregion: <input name="subregion" type="text"><br><br>' output += 'locale: <input name="locale" type="text"><br><br>' output += 'locus: <input name="locus" type="text"><br><br>' output += 'excavation: <input name="excavation" type="text"><br><br>' output += 'river: <input name="river" type="text"><br><br>' output += 'classification: <input name="classification" type="text"><br><br>' output += 'rightsAndReproduction: <input name="rightsAndReproduction" type="text"><br><br>' output += 'linkResource: <input name="linkResource" type="text"><br><br>' output += 'metadataDate: <input name="metadataDate" type="text"><br><br>' output += 'repository: <input name="repository" type="text"><br><br>' output += 'objectURL: <input name="objectURL" type="text"><br><br>' output += 'tags: <input name="tags" type="text"><br><br>' output += 'objectWikidata_URL: <input name="objectWikidata_URL" type="text"><br><br>' output += 'isTimelineWork: <input name="isTimelineWork" type="text"><br><br>' output += 'GalleryNumber: <input name="GalleryNumber" type="text"><br><br>' output += 'constituentID: <input name="constituentID" type="text"><br><br>' output += 'role: <input name="role" type="text"><br><br>' output += 'name: <input name="name" type="text"><br><br>' output += 'constituentULAN_URL: <input name="constituentULAN_URL" type="text"><br><br>' output += 'constituentWikidata_URL: <input name="constituentWikidata_URL" type="text"><br><br>' output += 'gender: <input name="gender" type="text"><br><br>' output += '<input type="submit" value="Add">' output += '</form>' output += '</body></html>' self.wfile.write(output.encode()) if self.path.startswith('/update_data'): value = str(self.path[22:])[3:] self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><body>' output += '<form method="POST" enctype="multipart/form-data" action="/update_data">' output += select_db_row("https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data", int(value)) output += """<script> function redirect_to_viewtable() { window.location.href="/viewtable" } </script>""" output += '</form>' output += '</body></html>' self.wfile.write(output.encode()) except PermissionError as per_err: logging.error('%s: %s', per_err.__class__.__name__, per_err) except TypeError as type_err: logging.error('%s: %s', type_err.__class__.__name__, type_err) except Exception as err: logging.error('%s: %s', err.__class__.__name__, err) def do_POST(self): try: if self.path.endswith('/new'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") content_len = int(self.headers.get('Content-length')) pdict['CONTENT-LENGTH'] = content_len if ctype == 'multipart/form-data': fields = cgi.parse_multipart(self.rfile, pdict) file = fields.get('task')[0] file = file.decode("cp1252") with open('file.csv', mode='w', encoding='utf-8') as f: for data in file.split('\r\r'): f.write(data) df = pd.read_csv('file.csv') df.to_json('jsondata.json', orient='records') put_object_to_s3('jsondata.json') # csv_to_db_func('file.csv') # upload_to_s3('file.csv') self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() self.wfile.write(file.encode()) if self.path.startswith('/delete_data'): value_id = self.path[22:] delete_db_row("https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data", value_id) # with open("jsondata.json", "r") as jsonFile: # data = json.load(jsonFile) # data = [i for i in data if not (i['objectID'] == int(value_id))] # with open("jsondata.json", "w") as jsonFile: # json.dump(data, jsonFile) # put_object_to_s3('jsondata.json') self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() if self.path.startswith('/to_S3'): upload_to_s3() self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() if self.path.endswith('/add'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") saviour = pdict['boundary'] content_len = int(self.headers.get('Content-length')) pdict['CONTENT-LENGTH'] = content_len if ctype == 'multipart/form-data': guess = self.rfile fields = cgi.parse_multipart(self.rfile, pdict) i=0 for key in fields: if fields[key][0] == '': i = i+1 if i != 0: self.send_response(200) self.send_header('content-type', 'text/html') self.end_headers() output = '' output += '<html><head><meta charset="utf-8"></head><body>' output += '<h2>All fields must be filled</h2>' output += '<h3><a href="/viewtable">Back to viewtable</a></h3>' output += '</body></html>' self.wfile.write(output.encode()) else: for key in fields: fields[key] = fields[key][0] print(fields) insert_db_row("https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data", fields) # with open('jsondata.json') as json_file: # obj_list = json.load(json_file) # obj_list.append(fields) # with open('jsondata.json', 'w') as json_file: # json.dump(obj_list, json_file, # indent=4, # separators=(',', ': ')) # put_object_to_s3('jsondata.json') self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() if self.path.startswith('/update_data'): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) pdict['boundary'] = bytes(pdict['boundary'], "utf-8") content_len = int(self.headers.get('Content-length')) pdict['CONTENT-LENGTH'] = content_len if ctype == 'multipart/form-data': fields = cgi.parse_multipart(self.rfile, pdict) # conn = connect(host='localhost', # database="csvfile_upload", # user='root', # password='yogesh1304') # # if conn.is_connected(): # cursor = conn.cursor() # query = "SELECT objectId From csvfile_upload.csvfile_data" # cursor.execute(query) # primary_keys = cursor.fetchall() # primary_key = fields['objectId'] # list1 = [] # for i in range(len(primary_keys)): # list1.append(i) # list2 = [] # for i in range(len(list1)): # list2.append(str(primary_keys[i][0])) # if primary_key[0] in list2: for key in fields: fields[key] = fields[key][0] update_db_row("https://w101gqjv56.execute-api.ap-south-1.amazonaws.com/test/s3-json-data", fields, int(fields['objectID'])) # with open("jsondata.json", "r") as jsonFile: # data = json.load(jsonFile) # for i in data: # if int(fields['objectId']) == i['objectID']: # i.update(fields) # with open("jsondata.json", "w") as jsonFile: # json.dump(data, jsonFile) # put_object_to_s3('jsondata.json') # else: # self.send_response(200) # self.send_header('content-type', 'text/html') # self.end_headers() # # output = '' # output += '<html><head><meta charset="utf-8"></head><body>' # output += '<h2>You cannot update primary key</h2>' # output += '<h3><a href="/viewtable">Back to viewtable</a></h3>' # output += '</body></html>' # # self.wfile.write(output.encode()) self.send_response(301) self.send_header('content-type', 'text/html') self.send_header('Location', '/viewtable') self.end_headers() except PermissionError as per_err: logging.error('%s: %s', per_err.__class__.__name__, per_err) except TypeError as type_err: logging.error('%s: %s', type_err.__class__.__name__, type_err) except Exception as err: logging.error('%s: %s', err.__class__.__name__, err) def main(): port = 8000 server = HTTPServer(('', port), RequestHandler) print("Server started on localhost: ", port) server.serve_forever() if __name__ == "__main__": main()
the-stack_106_19688
import json import os from typing import List, Mapping, Tuple, Union import numpy as np from skimage.io import imread from slicedimage import ImageFormat from starfish.experiment.builder import FetchedTile, TileFetcher, write_experiment_json from starfish.types import Axes, Coordinates, Features, Number from starfish.util import click class ImagingMassCytometryTile(FetchedTile): def __init__(self, file_path: str) -> None: """Initialize a TileFetcher for Imaging Mass Cytometry Data""" self.file_path = file_path self._tile_data = imread(self.file_path) @property def shape(self) -> Mapping[Axes, int]: return {Axes.Y: self._tile_data.shape[0], Axes.X: self._tile_data.shape[1]} @property def coordinates(self) -> Mapping[Union[str, Coordinates], Union[Number, Tuple[Number, Number]]]: # TODO ambrosejcarr: ask about what these coordinates should correspond to. return { Coordinates.X: (0.0, 0.0001), Coordinates.Y: (0.0, 0.0001), Coordinates.Z: (0.0, 0.0001), } def tile_data(self) -> np.ndarray: return self._tile_data class ImagingMassCytometryTileFetcher(TileFetcher): def __init__(self, input_dir: str) -> None: """Implement a TileFetcher for an Imaging Mass Cytometry Experiment. This Tile Fetcher constructs spaceTx format from IMC experiments with a specific directory structure: input_dir └── <Fov_name>    └── <Fov_name> ├── <target_name1>.tiff ├── ...    └── <target_nameN>.tiff Notes ----- - In Imaging Mass Cytometry, each channel specifies a unique target, so channel == target - Imaging Mass Cytometry experiments have only one imaging round, round is hard coded as 1 - The spatial organization of the fields of view are not known to the starfish developers, so they are filled by dummy coordinates """ self.input_dir = input_dir @property def _ch_dict(self) -> Mapping[int, str]: channels = [ "CD44(Gd160Di)", "CD68(Nd146Di)", "CarbonicAnhydraseIX(Er166Di)", "Creb(La139Di)", "Cytokeratin7(Dy164Di)", "Cytokeratin8-18(Yb174Di)", "E-cadherin(Er167Di)", "EpCAM(Dy161Di)", "Fibronectin(Dy163Di)", "GATA3(Pr141Di)", "Her2(Eu151Di)", "HistoneH3(Yb176Di)", "Ki-67(Er168Di)", "PRAB(Gd158Di)", "S6(Er170Di)", "SMA(Nd148Di)", "Twist(Nd145Di)", "Vimentin(Dy162Di)", "b-catenin(Ho165Di)", ] mapping = dict(enumerate(channels)) return mapping def ch_dict(self, ch: int) -> str: return self._ch_dict[ch] @property def _fov_map(self) -> Mapping[int, str]: fov_names: List[str] = [ d for d in os.listdir(self.input_dir) if os.path.isdir(os.path.join(self.input_dir, d)) ] mapping = dict(enumerate(fov_names)) return mapping def fov_map(self, fov: int) -> str: return self._fov_map[fov] def get_tile(self, fov: int, r: int, ch: int, z: int) -> FetchedTile: fov_name = self.fov_map(fov) basename = f'{self.ch_dict(ch)}.tiff' file_path = os.path.join(self.input_dir, fov_name, fov_name, basename) return ImagingMassCytometryTile(file_path) def generate_codebook(self) -> Mapping: mappings = [] for idx, target in self._ch_dict.items(): mappings.append({ Features.CODEWORD: [{ Axes.ROUND.value: 0, Axes.CH.value: idx, Features.CODE_VALUE: 1 }], Features.TARGET: target }) return { "version": "0.0.0", "mappings": mappings } @click.command() @click.option("--input_dir", type=str, help="input directory containing images") @click.option("--output_dir", type=str, help="output directory for formatted data") def cli(input_dir, output_dir): """CLI entrypoint for spaceTx format construction for Imaging Mass Cytometry Raw data (input for this tool) for this experiment can be found at: s3://spacetx.starfish.data.public/browse/raw/20181015/imaging_cytof/\ BodenmillerBreastCancerSamples/ Processed data (output of this tool) can be found at: s3://spacetx.starfish.data.public/browse/formatted/20181023/imaging_cytof/\ BodenmillerBreastCancerSamples/ """ os.makedirs(output_dir, exist_ok=True) primary_tile_fetcher = ImagingMassCytometryTileFetcher(os.path.expanduser(input_dir)) primary_image_dimensions = { Axes.ROUND: 1, Axes.CH: len(primary_tile_fetcher._ch_dict), Axes.ZPLANE: 1 } def postprocess_func(experiment_json_doc): experiment_json_doc["codebook"] = "codebook.json" return experiment_json_doc with open(os.path.join(output_dir, "codebook.json"), 'w') as f: codebook = primary_tile_fetcher.generate_codebook() json.dump(codebook, f) write_experiment_json( path=output_dir, fov_count=len(primary_tile_fetcher._fov_map), tile_format=ImageFormat.TIFF, primary_image_dimensions=primary_image_dimensions, aux_name_to_dimensions={}, primary_tile_fetcher=primary_tile_fetcher, postprocess_func=postprocess_func, ) if __name__ == "__main__": cli()
the-stack_106_19690
from datetime import datetime import mock from farmos_ext import Farm from farmos_ext.farmobj import FarmObj @mock.patch("farmos_ext.Farm") def test_farmobj_empty(mock_farm): obj = FarmObj(mock_farm, {}) assert not obj.name assert obj.farm == mock_farm @mock.patch("farmos_ext.Farm") def test_farmobj_not_empty(mock_farm): obj = FarmObj(mock_farm, { "name": "test", }) assert obj.name == 'test' assert obj.farm == mock_farm
the-stack_106_19693
# # Copyright (c) 2014 Juniper Networks, Inc. All rights reserved. # """ This file contains implementation of dependency tracker for contrail config daemons """ from collections import OrderedDict # This class tracks dependencies among different objects based on a reaction map. # Objects could be derived from DBBase. Each object has an object_type and the # mapping from object_type to the class is specified using object_class_map class DependencyTracker(object): def __init__(self, object_class_map, reaction_map): self._reaction_map = reaction_map self._object_class_map = object_class_map self.resources = OrderedDict() # end __init__ def _add_resource(self, obj_type, obj_key): if obj_type in self.resources: if obj_key in self.resources[obj_type]: # already visited return False self.resources[obj_type].append(obj_key) else: self.resources[obj_type] = [obj_key] return True # end _add_resource def evaluate(self, obj_type, obj, from_type='self'): if obj_type not in self._reaction_map: return if not self._add_resource(obj_type, obj.get_key()): return for ref_type in self._reaction_map[obj_type][from_type]: ref = getattr(obj, ref_type, None) if ref is None: refs = getattr(obj, ref_type+'s', []) else: refs = [ref] ref_class = self._object_class_map[ref_type] for ref in refs: ref_obj = ref_class.get(ref) if ref_obj is None: return self.evaluate(ref_type, ref_obj, obj_type) # end evaluate # end DependencyTracker
the-stack_106_19696
def visualize_el_preds(data_and_predictions, output_fp='visualization.html'): f = open(output_fp, 'w+') for data in data_and_predictions: inst_type = data['type'] ctx_left = data['context_left'] mention = data['mention'] ctx_right = data['context_right'] # Input f.write(f'<span style="color:red">[{inst_type}]</span> {ctx_left} <b>{mention}</b> {ctx_right}</br></br>\n') # Predictions for p in data['top_entities']: eid, e_title, e_url, e_text = p['id'], p['title'], p['url'], p['text'] f.write(f'[<a href="{e_url}">{eid}</a> <i>{e_title}</i>] ') f.write(f'{e_text[:200]} ...') f.write('</br></br>\n') # Separators f.write('</br><hr>\n') f.close() print(f'Generated a visualization file {output_fp}')
the-stack_106_19698
import inspect import os from unittest.mock import Mock import pytest from _pytest.monkeypatch import MonkeyPatch import hypercorn.__main__ from hypercorn.config import Config def test_load_config_none() -> None: assert isinstance(hypercorn.__main__._load_config(None), Config) def test_load_config_pyfile(monkeypatch: MonkeyPatch) -> None: mock_config = Mock() monkeypatch.setattr(hypercorn.__main__, "Config", mock_config) hypercorn.__main__._load_config("file:assets/config.py") mock_config.from_pyfile.assert_called() def test_load_config_pymodule(monkeypatch: MonkeyPatch) -> None: mock_config = Mock() monkeypatch.setattr(hypercorn.__main__, "Config", mock_config) hypercorn.__main__._load_config("python:assets.config") mock_config.from_object.assert_called() def test_load_config(monkeypatch: MonkeyPatch) -> None: mock_config = Mock() monkeypatch.setattr(hypercorn.__main__, "Config", mock_config) hypercorn.__main__._load_config("assets/config") mock_config.from_toml.assert_called() @pytest.mark.parametrize( "flag, set_value, config_key", [ ("--access-logformat", "jeff", "access_log_format"), ("--backlog", 5, "backlog"), ("--ca-certs", "/path", "ca_certs"), ("--certfile", "/path", "certfile"), ("--ciphers", "DHE-RSA-AES128-SHA", "ciphers"), ("--worker-class", "trio", "worker_class"), ("--keep-alive", 20, "keep_alive_timeout"), ("--keyfile", "/path", "keyfile"), ("--pid", "/path", "pid_path"), ("--root-path", "/path", "root_path"), ("--workers", 2, "workers"), ], ) def test_main_cli_override( flag: str, set_value: str, config_key: str, monkeypatch: MonkeyPatch ) -> None: run_multiple = Mock() monkeypatch.setattr(hypercorn.__main__, "run", run_multiple) path = os.path.join(os.path.dirname(__file__), "assets/config_ssl.py") raw_config = Config.from_pyfile(path) hypercorn.__main__.main(["--config", f"file:{path}", flag, str(set_value), "asgi:App"]) run_multiple.assert_called() config = run_multiple.call_args_list[0][0][0] for name, value in inspect.getmembers(raw_config): if ( not inspect.ismethod(value) and not name.startswith("_") and name not in {"log", config_key} ): assert getattr(raw_config, name) == getattr(config, name) assert getattr(config, config_key) == set_value def test_verify_mode_conversion(monkeypatch: MonkeyPatch) -> None: run_multiple = Mock() monkeypatch.setattr(hypercorn.__main__, "run", run_multiple) with pytest.raises(SystemExit): hypercorn.__main__.main(["--verify-mode", "CERT_UNKNOWN", "asgi:App"]) hypercorn.__main__.main(["--verify-mode", "CERT_REQUIRED", "asgi:App"]) run_multiple.assert_called()
the-stack_106_19699
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SavedModel integration tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import parameterized import tensorflow.compat.v2 as tf from tensorflow.examples.saved_model.integration_tests import distribution_strategy_utils as ds_utils from tensorflow.examples.saved_model.integration_tests import integration_scripts as scripts from tensorflow.python.distribute import combinations class SavedModelTest(scripts.TestCase, parameterized.TestCase): def __init__(self, method_name="runTest", has_extra_deps=False): super(SavedModelTest, self).__init__(method_name) self.has_extra_deps = has_extra_deps def skipIfMissingExtraDeps(self): """Skip test if it requires extra dependencies. b/132234211: The extra dependencies are not available in all environments that run the tests, e.g. "tensorflow_hub" is not available from tests within "tensorflow" alone. Those tests are instead run by another internal test target. """ if not self.has_extra_deps: self.skipTest("Missing extra dependencies") def test_text_rnn(self): export_dir = self.get_temp_dir() self.assertCommandSucceeded("export_text_rnn_model", export_dir=export_dir) self.assertCommandSucceeded("use_text_rnn_model", model_dir=export_dir) def test_rnn_cell(self): export_dir = self.get_temp_dir() self.assertCommandSucceeded("export_rnn_cell", export_dir=export_dir) self.assertCommandSucceeded("use_rnn_cell", model_dir=export_dir) def test_text_embedding_in_sequential_keras(self): self.skipIfMissingExtraDeps() export_dir = self.get_temp_dir() self.assertCommandSucceeded( "export_simple_text_embedding", export_dir=export_dir) self.assertCommandSucceeded( "use_model_in_sequential_keras", model_dir=export_dir) def test_text_embedding_in_dataset(self): if tf.test.is_gpu_available(): self.skipTest("b/132156097 - fails if there is a gpu available") export_dir = self.get_temp_dir() self.assertCommandSucceeded( "export_simple_text_embedding", export_dir=export_dir) self.assertCommandSucceeded( "use_text_embedding_in_dataset", model_dir=export_dir) @combinations.generate( combinations.combine( named_strategy=list(ds_utils.named_strategies.values()), retrain_flag_value=["true", "false"], regularization_loss_multiplier=[0, 2]), test_combinations=[combinations.NamedGPUCombination()]) def test_mnist_cnn(self, named_strategy, retrain_flag_value, regularization_loss_multiplier): self.skipIfMissingExtraDeps() fast_test_mode = True temp_dir = self.get_temp_dir() feature_extrator_dir = os.path.join(temp_dir, "mnist_feature_extractor") # TODO(b/135043074): remove this if-else. if named_strategy is None: full_model_dir = os.path.join(temp_dir, "full_model") else: full_model_dir = None self.assertCommandSucceeded( "export_mnist_cnn", fast_test_mode=fast_test_mode, export_dir=feature_extrator_dir) self.assertCommandSucceeded( "use_mnist_cnn", fast_test_mode=fast_test_mode, input_saved_model_dir=feature_extrator_dir, output_saved_model_dir=full_model_dir, strategy=str(named_strategy), retrain=retrain_flag_value, regularization_loss_multiplier=regularization_loss_multiplier) if full_model_dir is not None: self.assertCommandSucceeded( "deploy_mnist_cnn", fast_test_mode=fast_test_mode, saved_model_dir=full_model_dir) if __name__ == "__main__": scripts.MaybeRunScriptInstead() tf.test.main()
the-stack_106_19702
from flask import Blueprint, current_app from flask import request, send_file, render_template, flash, redirect, url_for from io import BytesIO from wlan_api.activation import insert_vouchers_into_database from wlan_api.generate import generate_vouchers from wlan_api.pdf import VoucherPrint from wlan_api.pdf.pdfjam import merge_final_pdf vpg = Blueprint('vpg', __name__, static_folder='static', template_folder='templates') @vpg.route('/', methods=['GET']) def home(): return render_template('home.html') @vpg.route('/pdf/step', methods=['POST']) def pdf_step(): roll = int(request.form['roll']) count = int(request.form['count']) return render_template('pdf/step.html', roll=roll, count=count) def create_pdf_buffer(vouchers): voucher_buffer = BytesIO() report = VoucherPrint(voucher_buffer, vouchers) report.print_vouchers() voucher_buffer.seek(0) return voucher_buffer, len(vouchers) @vpg.route('/pdf/generate', methods=['POST']) def pdf_generate(): roll = int(request.form['roll']) count = int(request.form['count']) ads_file = request.files['ads_pdf'] if ads_file.filename == '': flash("Error: Please provide an Ads file!") return redirect(url_for('vpg.home')) voucher_config = current_app.config['VOUCHER'] vouchers = generate_vouchers(roll, count, voucher_config['key'], voucher_config['alphabet'], voucher_config['length']) voucher_buffer, voucher_count = create_pdf_buffer(vouchers) if voucher_buffer is None: flash("Error: Failed to generate pdf!") return redirect(url_for('home')) final_pdf = merge_final_pdf(voucher_buffer, voucher_count, ads_file) if final_pdf is None: flash("Error: Failed to shuffle ads!") return redirect(url_for('home')) return send_file(BytesIO(final_pdf), mimetype='application/pdf', as_attachment=True, attachment_filename="vouchers_tatdf_roll%s.csv.pdf" % roll) @vpg.route('/activation/step', methods=['POST']) def activate_step(): roll = int(request.form['roll']) count = int(request.form['count']) voucher_config = current_app.config['VOUCHER'] vouchers = generate_vouchers(roll, count, voucher_config['key'], voucher_config['alphabet'], voucher_config['length']) flash(insert_vouchers_into_database(vouchers, current_app.config['MYSQL'])) return render_template('activation/step.html')
the-stack_106_19703
"""Top-level package for FastCCD Support IOC.""" __author__ = """Ronald J Pandolfi""" __email__ = '[email protected]' __version__ = '0.1.0' from . import utils from caproto.server import PVGroup, get_pv_pair_wrapper from caproto.server.autosave import autosaved, AutosaveHelper pvproperty_with_rbv = get_pv_pair_wrapper(setpoint_suffix='', readback_suffix='_RBV') class FastAutosaveHelper(AutosaveHelper): period = 1 def wrap_autosave(pvgroup: PVGroup): pvgroup.readback = autosaved(pvgroup.readback) pvgroup.setpoint = autosaved(pvgroup.setpoint) return pvgroup
the-stack_106_19704
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 """Main entry-point to run timetests tests. Default run: $ pytest test_timetest.py Options[*]: --test_conf Path to test config --exe Path to timetest binary to execute --niter Number of times to run executable [*] For more information see conftest.py """ from pathlib import Path import logging import os import shutil from scripts.run_timetest import run_timetest from test_runner.utils import expand_env_vars REFS_FACTOR = 1.2 # 120% def test_timetest(instance, executable, niter, cl_cache_dir, model_cache_dir, test_info, temp_dir, validate_test_case, prepare_db_info): """Parameterized test. :param instance: test instance. Should not be changed during test run :param executable: timetest executable to run :param niter: number of times to run executable :param cl_cache_dir: directory to store OpenCL cache :param model_cache_dir: directory to store IE model cache :param test_info: custom `test_info` field of built-in `request` pytest fixture :param temp_dir: path to a temporary directory. Will be cleaned up after test run :param validate_test_case: custom pytest fixture. Should be declared as test argument to be enabled :param prepare_db_info: custom pytest fixture. Should be declared as test argument to be enabled """ # Prepare model to get model_path model_path = instance["model"].get("path") assert model_path, "Model path is empty" model_path = Path(expand_env_vars(model_path)) # Copy model to a local temporary directory model_dir = temp_dir / "model" shutil.copytree(model_path.parent, model_dir) model_path = model_dir / model_path.name # Run executable exe_args = { "executable": Path(executable), "model": Path(model_path), "device": instance["device"]["name"], "niter": niter } logging.info("Run timetest once to generate any cache") retcode, msg, _, _ = run_timetest({**exe_args, "niter": 1}, log=logging) assert retcode == 0, f"Run of executable for warm up failed: {msg}" if cl_cache_dir: assert os.listdir(cl_cache_dir), "cl_cache isn't generated" if model_cache_dir: assert os.listdir(model_cache_dir), "model_cache isn't generated" retcode, msg, aggr_stats, raw_stats = run_timetest(exe_args, log=logging) assert retcode == 0, f"Run of executable failed: {msg}" # Add timetest results to submit to database and save in new test conf as references test_info["results"] = aggr_stats test_info["raw_results"] = raw_stats
the-stack_106_19705
#!/usr/bin/env python from re import sub from sys import argv,exit from os import path,getenv from glob import glob import argparse parser = argparse.ArgumentParser(description='make forest') parser.add_argument('--region',metavar='region',type=str,default=None) toProcess = parser.parse_args().region argv=[] import ROOT as root from PandaCore.Tools.Misc import * from PandaCore.Tools.Load import * import PandaCore.Tools.Functions # kinematics import PandaAnalysis.Monotop.CombinedSelection as sel Load('PandaAnalysisFlat','LimitTreeBuilder') baseDir = getenv('PANDA_FLATDIR') lumi = 36560 factory = root.LimitTreeBuilder() if toProcess: factory.SetOutFile(baseDir+'/limits/limitForest_%s.root'%toProcess) else: factory.SetOutFile(baseDir+'/limits/limitForest_all.root') def dataCut(basecut,trigger): return tAND(trigger,basecut) treelist = [] def getTree(fpath): global treelist fIn = root.TFile(baseDir+fpath+'.root') tIn = fIn.Get('events') treelist.append(tIn) return tIn,fIn def enable(regionName): if toProcess: return (toProcess==regionName) else: return True def shiftBtags(label,tree,varmap,cut,baseweight): ps = [] for shift in ['BUp','BDown','MUp','MDown']: for cent in ['sf_btag','sf_sjbtag']: shiftedlabel = '_' if 'sj' in cent: shiftedlabel += 'sj' if 'B' in shift: shiftedlabel += 'btag' else: shiftedlabel += 'mistag' if 'Up' in shift: shiftedlabel += 'Up' else: shiftedlabel += 'Down' weight = sel.weights[baseweight+'_'+cent+shift]%lumi shiftedProcess = root.Process(label,tree,varmap,cut,weight) shiftedProcess.syst = shiftedlabel ps.append(shiftedProcess) return ps # input tZll,fZll = getTree('ZJets') tZvv,fZvv = getTree('ZtoNuNu') tWlv,fWlv = getTree('WJets') tPho,fPho = getTree('GJets') tTTbar,fTT = getTree('TTbar') tVV,fVV = getTree('Diboson') tQCD,fQCD = getTree('QCD') tST,fST = getTree('SingleTop') tMET,fMET = getTree('MET') tSingleEle,fSEle = getTree('SingleElectron') tSinglePho,fSPho = getTree('SinglePhoton') #tSig,fSig = getTree('monotop-nr-v3-1700-100_med-1700_dm-100') # this is just a sample point tAllSig = {}; fAllSig = {} if enable('signal'): signalFiles = glob(baseDir+'/Vector*root') for f in signalFiles: fname = f.split('/')[-1].replace('.root','') signame = fname replacements = { 'Vector_MonoTop_NLO_Mphi-':'', '_gSM-0p25_gDM-1p0_13TeV-madgraph':'', '_Mchi-':'_', } for k,v in replacements.iteritems(): signame = signame.replace(k,v) tAllSig[signame],fAllSig[signame] = getTree(fname) factory.cd() regions = {} processes = {} vms = {} for region_type,met_type,phi_type in [('signal','pfmet','pfmetphi'), ('w','pfUWmag','pfUWphi'), ('z','pfUZmag','pfUZphi'), ('a','pfUAmag','pfUAphi')]: vms[region_type] = root.VariableMap() vms[region_type].AddVar('met',met_type) # vms[region_type].AddVar('metphi',phi_type) vms[region_type].AddVar('genBosonPt','genBosonPt') # vms[region_type].AddVar('genBosonPhi','genBosonPhi') for x in ['fj1Tau32','top_ecf_bdt']: vms[region_type].AddVar(x,x) # test region if enable('test'): regions['test'] = root.Region('test') cut = sel.cuts['signal'] weight = sel.weights['signal']%lumi processes['test'] = [ root.Process('Data',tMET,vms['signal'],dataCut(cut,sel.triggers['met']),'1'), root.Process('Diboson',tVV,vms['signal'],cut,weight), ] btag_shifts = [] for p in processes['test']: if p.name=='Data': continue btag_shifts += shiftCSV(p.name,p.GetInput(),vms['signal'],cut,'signal') processes['test'] += btag_shifts for p in processes['test']: regions['test'].AddProcess(p) factory.AddRegion(regions['test']) # signal region if enable('signal'): regions['signal'] = root.Region('signal') cut = sel.cuts['signal'] weight = sel.weights['signal']%lumi vm = vms['signal'] processes['signal'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), # root.Process('signal',tSig,vm,cut,weight), ] for signame,tsig in tAllSig.iteritems(): processes['signal'].append( root.Process(signame,tsig,vm,cut,weight) ) btag_shifts = [] for p in processes['signal']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'signal') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'signal') processes['signal'] += btag_shifts for p in processes['signal']: regions['signal'].AddProcess(p) factory.AddRegion(regions['signal']) #singlemuonw if enable('singlemuonw'): regions['singlemuonw'] = root.Region('singlemuonw') cut = sel.cuts['singlemuonw'] weight = sel.weights['singlemuonw']%lumi vm = vms['w'] processes['singlemuonw'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singlemuonw']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singlemuonw') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singlemuonw') processes['singlemuonw'] += btag_shifts for p in processes['singlemuonw']: regions['singlemuonw'].AddProcess(p) factory.AddRegion(regions['singlemuonw']) #singleelectronw if enable('singleelectronw'): regions['singleelectronw'] = root.Region('singleelectronw') cut = sel.cuts['singleelectronw'] weight = sel.weights['singleelectronw']%lumi vm = vms['w'] processes['singleelectronw'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singleelectronw']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singleelectronw') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singleelectronw') processes['singleelectronw'] += btag_shifts for p in processes['singleelectronw']: regions['singleelectronw'].AddProcess(p) factory.AddRegion(regions['singleelectronw']) #singlemuontop if enable('singlemuontop'): regions['singlemuontop'] = root.Region('singlemuontop') cut = sel.cuts['singlemuontop'] weight = sel.weights['singlemuontop']%lumi vm = vms['w'] processes['singlemuontop'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singlemuontop']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singlemuontop') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singlemuontop') processes['singlemuontop'] += btag_shifts for p in processes['singlemuontop']: regions['singlemuontop'].AddProcess(p) factory.AddRegion(regions['singlemuontop']) #singleelectrontop if enable('singleelectrontop'): regions['singleelectrontop'] = root.Region('singleelectrontop') cut = sel.cuts['singleelectrontop'] weight = sel.weights['singleelectrontop']%lumi vm = vms['w'] processes['singleelectrontop'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] btag_shifts = [] for p in processes['singleelectrontop']: if p.name=='Data': continue btag_shifts += shiftBtags(p.name,p.GetInput(),vm,cut,'singleelectrontop') #btag_shifts += shiftCSV(p.name,p.GetInput(),vm,cut,'singleelectrontop') processes['singleelectrontop'] += btag_shifts for p in processes['singleelectrontop']: regions['singleelectrontop'].AddProcess(p) factory.AddRegion(regions['singleelectrontop']) #dimuon if enable('dimuon'): regions['dimuon'] = root.Region('dimuon') cut = sel.cuts['dimuon'] weight = sel.weights['dimuon']%lumi vm = vms['z'] processes['dimuon'] = [ root.Process('Data',tMET,vm,dataCut(cut,sel.triggers['met']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] for p in processes['dimuon']: regions['dimuon'].AddProcess(p) factory.AddRegion(regions['dimuon']) #dielectron if enable('dielectron'): regions['dielectron'] = root.Region('dielectron') cut = sel.cuts['dielectron'] weight = sel.weights['dielectron']%lumi vm = vms['z'] processes['dielectron'] = [ root.Process('Data',tSingleEle,vm,dataCut(cut,sel.triggers['ele']),'1'), root.Process('Zvv',tZvv,vm,cut,weight), root.Process('Zll',tZll,vm,cut,weight), root.Process('Wlv',tWlv,vm,cut,weight), root.Process('ttbar',tTTbar,vm,cut,weight), root.Process('ST',tST,vm,cut,weight), root.Process('Diboson',tVV,vm,cut,weight), root.Process('QCD',tQCD,vm,cut,weight), ] for p in processes['dielectron']: regions['dielectron'].AddProcess(p) factory.AddRegion(regions['dielectron']) #photon if enable('photon'): regions['photon'] = root.Region('photon') cut = sel.cuts['photon'] weight = sel.weights['photon']%lumi vm = vms['a'] processes['photon'] = [ root.Process('Data',tSinglePho,vm,dataCut(cut,sel.triggers['pho']),'1'), root.Process('Pho',tPho,vm,cut,weight), root.Process('QCD',tSinglePho,vm,dataCut(cut,sel.triggers['pho']),'sf_phoPurity'), ] for p in processes['photon']: regions['photon'].AddProcess(p) factory.AddRegion(regions['photon']) PInfo('makeLimitForest','Starting '+str(toProcess)) factory.Run() PInfo('makeLimitForest','Finishing '+str(toProcess)) factory.Output() PInfo('makeLimitForest','Outputted '+str(toProcess))
the-stack_106_19706
# A handler to manage the data which needs to end up in the ISPyB xml out # file. import os import time from xia2.Handlers.Files import FileHandler from xia2.Handlers.Phil import PhilIndex def sanitize(path): """Replace double path separators with single ones.""" double = os.sep * 2 return path.replace(double, os.sep) class ISPyBXmlHandler: def __init__(self, project): self._crystals = {} self._per_crystal_data = {} self._project = project self._name_map = { "High resolution limit": "resolutionLimitHigh", "Low resolution limit": "resolutionLimitLow", "Completeness": "completeness", "Multiplicity": "multiplicity", "CC half": "ccHalf", "Anomalous completeness": "anomalousCompleteness", "Anomalous correlation": "ccAnomalous", "Anomalous multiplicity": "anomalousMultiplicity", "Total observations": "nTotalObservations", "Total unique": "nTotalUniqueObservations", "Rmerge(I+/-)": "rMerge", "Rmeas(I)": "rMeasAllIPlusIMinus", "Rmeas(I+/-)": "rMeasWithinIPlusIMinus", "Rpim(I)": "rPimAllIPlusIMinus", "Rpim(I+/-)": "rPimWithinIPlusIMinus", "Partial Bias": "fractionalPartialBias", "I/sigma": "meanIOverSigI", } def add_xcrystal(self, xcrystal): if not xcrystal.get_name() in self._crystals: self._crystals[xcrystal.get_name()] = xcrystal # should ideally drill down and get the refined cell constants for # each sweep and the scaling statistics for low resolution, high # resolution and overall... @staticmethod def write_date(fout): """Write the current date and time out as XML.""" fout.write( "<recordTimeStamp>%s</recordTimeStamp>\n" % time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) @staticmethod def write_cell(fout, cell): """Write out a UNIT CELL as XML...""" fout.write("<cell_a>%f</cell_a>" % cell[0]) fout.write("<cell_b>%f</cell_b>" % cell[1]) fout.write("<cell_c>%f</cell_c>" % cell[2]) fout.write("<cell_alpha>%f</cell_alpha>" % cell[3]) fout.write("<cell_beta>%f</cell_beta>" % cell[4]) fout.write("<cell_gamma>%f</cell_gamma>" % cell[5]) @staticmethod def write_refined_cell(fout, cell): """Write out a REFINED UNIT CELL as XML...""" fout.write("<refinedCell_a>%f</refinedCell_a>" % cell[0]) fout.write("<refinedCell_b>%f</refinedCell_b>" % cell[1]) fout.write("<refinedCell_c>%f</refinedCell_c>" % cell[2]) fout.write("<refinedCell_alpha>%f</refinedCell_alpha>" % cell[3]) fout.write("<refinedCell_beta>%f</refinedCell_beta>" % cell[4]) fout.write("<refinedCell_gamma>%f</refinedCell_gamma>" % cell[5]) def write_scaling_statistics(self, fout, scaling_stats_type, stats_dict): """Write out the SCALING STATISTICS block...""" fout.write("<AutoProcScalingStatistics>\n") fout.write( "<scalingStatisticsType>%s</scalingStatisticsType>\n" % scaling_stats_type ) for name in stats_dict: if name not in self._name_map: continue out_name = self._name_map[name] if out_name in ["nTotalObservations", "nTotalUniqueObservations"]: fout.write("<%s>%d</%s>" % (out_name, int(stats_dict[name]), out_name)) else: fout.write("<%s>%s</%s>" % (out_name, stats_dict[name], out_name)) fout.write("</AutoProcScalingStatistics>\n") def write_xml(self, file, command_line="", working_phil=None): if working_phil is not None: PhilIndex.merge_phil(working_phil) params = PhilIndex.get_python_object() fout = open(file, "w") fout.write('<?xml version="1.0"?>') fout.write("<AutoProcContainer>\n") for crystal in sorted(self._crystals): xcrystal = self._crystals[crystal] cell = xcrystal.get_cell() spacegroup = xcrystal.get_likely_spacegroups()[0] fout.write("<AutoProc><spaceGroup>%s</spaceGroup>" % spacegroup) self.write_refined_cell(fout, cell) fout.write("</AutoProc>") fout.write("<AutoProcScalingContainer>") fout.write("<AutoProcScaling>") self.write_date(fout) fout.write("</AutoProcScaling>") statistics_all = xcrystal.get_statistics() reflection_files = xcrystal.get_scaled_merged_reflections() for key in statistics_all: pname, xname, dname = key # FIXME should assert that the dname is a # valid wavelength name keys = [ "High resolution limit", "Low resolution limit", "Completeness", "Multiplicity", "I/sigma", "Rmerge(I+/-)", "CC half", "Anomalous completeness", "Anomalous correlation", "Anomalous multiplicity", "Total observations", "Total unique", "Rmeas(I)", "Rmeas(I+/-)", "Rpim(I)", "Rpim(I+/-)", "Partial Bias", ] stats = [k for k in keys if k in statistics_all[key]] xwavelength = xcrystal.get_xwavelength(dname) sweeps = xwavelength.get_sweeps() for j, name in enumerate(["overall", "innerShell", "outerShell"]): statistics_cache = {} for s in stats: if isinstance(statistics_all[key][s], type([])): statistics_cache[s] = statistics_all[key][s][j] elif isinstance(statistics_all[key][s], type(())): statistics_cache[s] = statistics_all[key][s][j] # send these to be written out self.write_scaling_statistics(fout, name, statistics_cache) for sweep in sweeps: fout.write("<AutoProcIntegrationContainer>\n") if "#" in sweep.get_template(): image_name = sweep.get_image_name(0) else: image_name = os.path.join( sweep.get_directory(), sweep.get_template() ) fout.write( "<Image><fileName>%s</fileName>" % os.path.split(image_name)[-1] ) fout.write( "<fileLocation>%s</fileLocation></Image>" % sanitize(os.path.split(image_name)[0]) ) fout.write("<AutoProcIntegration>\n") cell = sweep.get_integrater_cell() self.write_cell(fout, cell) # FIXME this is naughty intgr = sweep._get_integrater() start, end = intgr.get_integrater_wedge() fout.write("<startImageNumber>%d</startImageNumber>" % start) fout.write("<endImageNumber>%d</endImageNumber>" % end) # FIXME this is naughty indxr = sweep._get_indexer() fout.write( "<refinedDetectorDistance>%f</refinedDetectorDistance>" % indxr.get_indexer_distance() ) beam = indxr.get_indexer_beam_centre_raw_image() fout.write("<refinedXBeam>%f</refinedXBeam>" % beam[0]) fout.write("<refinedYBeam>%f</refinedYBeam>" % beam[1]) fout.write("</AutoProcIntegration>\n") fout.write("</AutoProcIntegrationContainer>\n") fout.write("</AutoProcScalingContainer>") # file unpacking nonsense if not command_line: from xia2.Handlers.CommandLine import CommandLine command_line = CommandLine.get_command_line() pipeline = params.xia2.settings.pipeline fout.write("<AutoProcProgramContainer><AutoProcProgram>") fout.write( "<processingCommandLine>%s</processingCommandLine>" % sanitize(command_line) ) fout.write("<processingPrograms>xia2 %s</processingPrograms>" % pipeline) fout.write("</AutoProcProgram>") data_directory = self._project.path / "DataFiles" log_directory = self._project.path / "LogFiles" for k in reflection_files: reflection_file = reflection_files[k] if not isinstance(reflection_file, type("")): continue reflection_file = FileHandler.get_data_file( self._project.path, reflection_file ) basename = os.path.basename(reflection_file) if data_directory.joinpath(basename).exists(): # Use file in DataFiles directory in preference (if it exists) reflection_file = str(data_directory.joinpath(basename)) fout.write("<AutoProcProgramAttachment><fileType>Result") fout.write( "</fileType><fileName>%s</fileName>" % os.path.split(reflection_file)[-1] ) fout.write( "<filePath>%s</filePath>" % sanitize(os.path.split(reflection_file)[0]) ) fout.write("</AutoProcProgramAttachment>\n") g = log_directory.glob("*merging-statistics.json") for merging_stats_json in g: fout.write("<AutoProcProgramAttachment><fileType>Graph") fout.write( "</fileType><fileName>%s</fileName>" % os.path.split(str(merging_stats_json))[-1] ) fout.write("<filePath>%s</filePath>" % sanitize(str(log_directory))) fout.write("</AutoProcProgramAttachment>\n") # add the xia2.txt file... fout.write("<AutoProcProgramAttachment><fileType>Log") fout.write("</fileType><fileName>xia2.txt</fileName>") fout.write("<filePath>%s</filePath>" % sanitize(os.getcwd())) fout.write("</AutoProcProgramAttachment>\n") fout.write("</AutoProcProgramContainer>") fout.write("</AutoProcContainer>\n") fout.close() def json_object(self, command_line=""): result = {} for crystal in sorted(self._crystals): xcrystal = self._crystals[crystal] cell = xcrystal.get_cell() spacegroup = xcrystal.get_likely_spacegroups()[0] result["AutoProc"] = {} tmp = result["AutoProc"] tmp["spaceGroup"] = spacegroup for name, value in zip(["a", "b", "c", "alpha", "beta", "gamma"], cell): tmp["refinedCell_%s" % name] = value result["AutoProcScalingContainer"] = {} tmp = result["AutoProcScalingContainer"] tmp["AutoProcScaling"] = { "recordTimeStamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) } statistics_all = xcrystal.get_statistics() reflection_files = xcrystal.get_scaled_merged_reflections() for key in list(statistics_all.keys()): pname, xname, dname = key # FIXME should assert that the dname is a # valid wavelength name keys = [ "High resolution limit", "Low resolution limit", "Completeness", "Multiplicity", "I/sigma", "Rmerge(I+/-)", "CC half", "Anomalous completeness", "Anomalous correlation", "Anomalous multiplicity", "Total observations", "Total unique", "Rmeas(I)", "Rmeas(I+/-)", "Rpim(I)", "Rpim(I+/-)", "Partial Bias", ] stats = [k for k in keys if k in statistics_all[key]] xwavelength = xcrystal.get_xwavelength(dname) sweeps = xwavelength.get_sweeps() tmp["AutoProcScalingStatistics"] = [] tmp2 = tmp["AutoProcScalingStatistics"] for j, name in enumerate(["overall", "innerShell", "outerShell"]): statistics_cache = {"scalingStatisticsType": name} for s in stats: if s in self._name_map: n = self._name_map[s] else: continue if isinstance(statistics_all[key][s], type([])): statistics_cache[n] = statistics_all[key][s][j] elif isinstance(statistics_all[key][s], type(())): statistics_cache[n] = statistics_all[key][s][j] tmp2.append(statistics_cache) tmp["AutoProcIntegrationContainer"] = [] tmp2 = tmp["AutoProcIntegrationContainer"] for sweep in sweeps: if "#" in sweep.get_template(): image_name = sweep.get_image_name(0) else: image_name = os.path.join( sweep.get_directory(), sweep.get_template() ) cell = sweep.get_integrater_cell() intgr_tmp = {} for name, value in zip( ["a", "b", "c", "alpha", "beta", "gamma"], cell ): intgr_tmp["cell_%s" % name] = value # FIXME this is naughty indxr = sweep._get_indexer() intgr = sweep._get_integrater() start, end = intgr.get_integrater_wedge() intgr_tmp["startImageNumber"] = start intgr_tmp["endImageNumber"] = end intgr_tmp["refinedDetectorDistance"] = indxr.get_indexer_distance() beam = indxr.get_indexer_beam_centre_raw_image() intgr_tmp["refinedXBeam"] = beam[0] intgr_tmp["refinedYBeam"] = beam[1] tmp2.append( { "Image": { "fileName": os.path.split(image_name)[-1], "fileLocation": sanitize(os.path.split(image_name)[0]), }, "AutoProcIntegration": intgr_tmp, } ) # file unpacking nonsense result["AutoProcProgramContainer"] = {} tmp = result["AutoProcProgramContainer"] tmp2 = {} if not command_line: from xia2.Handlers.CommandLine import CommandLine command_line = CommandLine.get_command_line() tmp2["processingCommandLine"] = sanitize(command_line) tmp2["processingProgram"] = "xia2" tmp["AutoProcProgram"] = tmp2 tmp["AutoProcProgramAttachment"] = [] tmp2 = tmp["AutoProcProgramAttachment"] data_directory = self._project.path / "DataFiles" for k in reflection_files: reflection_file = reflection_files[k] if not isinstance(reflection_file, type("")): continue reflection_file = FileHandler.get_data_file( self._project.path, reflection_file ) basename = os.path.basename(reflection_file) if data_directory.joinpath(basename).exists(): # Use file in DataFiles directory in preference (if it exists) reflection_file = str(data_directory.joinpath(basename)) tmp2.append( { "fileType": "Result", "fileName": os.path.split(reflection_file)[-1], "filePath": sanitize(os.path.split(reflection_file)[0]), } ) tmp2.append( { "fileType": "Log", "fileName": "xia2.txt", "filePath": sanitize(os.getcwd()), } ) return result
the-stack_106_19707
#!/usr/bin/env python # -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for chef_validator.engine.validate """ from mock import mock import docker.errors from chef_validator.engine.validate import ValidateEngine from chef_validator.tests.unit.base import ValidatorTestCase class ValidateEngineTestCase(ValidatorTestCase): """Tests for class ValidateEngine """ def setUp(self): """Create a ValidateEngine instance """ super(ValidateEngineTestCase, self).setUp() self.validate = ValidateEngine() def test_validate_cookbook(self): """Tests for method validate_cookbook """ self.validate.d.cookbook_deployment_test = mock.MagicMock( return_value="OK") test_input = "MyInput" cookbook = recipe = image = request = test_input expected = "OK" observed = self.validate.validate_cookbook( cookbook, recipe, image, request) self.assertEqual(observed, expected) def tearDown(self): """Cleanup the ValidateEngine instance """ super(ValidateEngineTestCase, self).tearDown() self.m.UnsetStubs() self.m.ResetAll()
the-stack_106_19708
#!/usr/bin/env python # Copyright 2021 Roboception GmbH # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of the {copyright_holder} nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import import rospy from tf2_msgs.msg import TFMessage from geometry_msgs.msg import TransformStamped from rc_reason_msgs.srv import SetLoadCarrier, GetLoadCarriers, DeleteLoadCarriers from rc_reason_msgs.srv import DetectLoadCarriers, DetectFillingLevel from rc_reason_msgs.srv import GetRegionsOfInterest3D, SetRegionOfInterest3D, DeleteRegionsOfInterest3D from rc_reason_msgs.srv import GetRegionsOfInterest2D, SetRegionOfInterest2D, DeleteRegionsOfInterest2D from visualization_msgs.msg import Marker, MarkerArray from std_msgs.msg import ColorRGBA from .rest_client import RestClient from .transform_helpers import lc_to_marker, load_carrier_to_tf class LoadCarrierClient(RestClient): def __init__(self): super(LoadCarrierClient, self).__init__('rc_load_carrier') # client only parameters self.publish_tf = rospy.get_param("~publish_tf", True) self.publish_markers = rospy.get_param("~publish_markers", True) self.pub_tf = rospy.Publisher('/tf', TFMessage, queue_size=10) self.pub_markers = rospy.Publisher('visualization_marker_array', MarkerArray, queue_size=10) self.lc_markers = [] self.add_rest_service(DetectLoadCarriers, 'detect_load_carriers', self.lc_cb) self.add_rest_service(DetectFillingLevel, 'detect_filling_level', self.lc_cb) self.add_rest_service(SetLoadCarrier, 'set_load_carrier', self.generic_cb) self.add_rest_service(GetLoadCarriers, 'get_load_carriers', self.generic_cb) self.add_rest_service(DeleteLoadCarriers, 'delete_load_carriers', self.generic_cb) self.add_rest_service(SetRegionOfInterest3D, 'set_region_of_interest', self.generic_cb) self.add_rest_service(GetRegionsOfInterest3D, 'get_regions_of_interest', self.generic_cb) self.add_rest_service(DeleteRegionsOfInterest3D, 'delete_regions_of_interest', self.generic_cb) self.add_rest_service(GetRegionsOfInterest2D, 'get_regions_of_interest_2d', self.generic_cb) self.add_rest_service(SetRegionOfInterest2D, 'set_region_of_interest_2d', self.generic_cb) self.add_rest_service(DeleteRegionsOfInterest2D, 'delete_regions_of_interest_2d', self.generic_cb) def generic_cb(self, srv_name, srv_type, request): response = self.call_rest_service(srv_name, srv_type, request) return response def lc_cb(self, srv_name, srv_type, request): response = self.call_rest_service(srv_name, srv_type, request) self.publish_lcs(response.load_carriers) return response def publish_lcs(self, lcs): if lcs and self.publish_tf: transforms = [load_carrier_to_tf(lc, i) for i, lc in enumerate(lcs)] self.pub_tf.publish(TFMessage(transforms=transforms)) if self.publish_markers: self.publish_lc_markers(lcs) def publish_lc_markers(self, lcs): new_markers = [] for i, lc in enumerate(lcs): m = lc_to_marker(lc, i, self.rest_name + "_lcs") if i < len(self.lc_markers): self.lc_markers[i] = m else: self.lc_markers.append(m) new_markers.append(m) for i in range(len(lcs), len(self.lc_markers)): # delete old markers self.lc_markers[i].action = Marker.DELETE self.pub_markers.publish(MarkerArray(markers=self.lc_markers)) self.lc_markers = new_markers def main(): client = LoadCarrierClient() try: rospy.spin() except KeyboardInterrupt: pass if __name__ == '__main__': main()
the-stack_106_19709
# Copyright 2021 Adobe. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import logging from typing import List from adobe.pdfservices.operation.pdfops.options.extractpdf.extract_element_type import ExtractElementType from adobe.pdfservices.operation.pdfops.options.extractpdf.extract_renditions_element_type import \ ExtractRenditionsElementType from adobe.pdfservices.operation.pdfops.options.extractpdf.table_structure_type import TableStructureType class ExtractPDFOptions(): """ An Options Class that defines the options for ExtractPDFOperation. .. code-block:: python extract_pdf_options: ExtractPDFOptions = ExtractPDFOptions.builder() \\ .with_elements_to_extract([ExtractElementType.TEXT, ExtractElementType.TABLES]) \\ .with_get_char_info(True) \\ .with_table_structure_format(TableStructureType.CSV) \\ .with_elements_to_extract_renditions([ExtractRenditionsElementType.FIGURES, ExtractRenditionsElementType.TABLES]) \\ .with_include_styling_info(True) \\ .build() """ def __init__(self, elements_to_extract, elements_to_extract_renditions, get_char_info, table_output_format, include_styling_info=None): self._elements_to_extract = elements_to_extract self._elements_to_extract_renditions = elements_to_extract_renditions self._get_char_info = get_char_info self._table_output_format = table_output_format self._include_styling_info = include_styling_info self._logger = logging.getLogger(__name__) @property def elements_to_extract(self): """ List of pdf element types to be extracted in a structured format from input file""" return self._elements_to_extract @property def elements_to_extract_renditions(self): """ List of pdf element types whose renditions needs to be extracted from input file""" return self._elements_to_extract_renditions @property def get_char_info(self): """ Boolean specifying whether to add character level bounding boxes to output json """ return self._get_char_info @property def table_output_format(self): """ export table in specified format - currently csv supported """ return self._table_output_format @property def include_styling_info(self): """ Boolean specifying whether to add PDF Elements Styling Info to output json """ return self._include_styling_info @staticmethod def builder(): """Returns a Builder for :class:`ExtractPDFOptions` :return: The builder class for ExtractPDFOptions :rtype: ExtractPDFOptions.Builder """ return ExtractPDFOptions.Builder() class Builder: """ The builder for :class:`ExtractPDFOptions`. """ def __init__(self): self._elements_to_extract = None self._elements_to_extract_renditions = None self._table_output_format = None self._get_char_info = None self._include_styling_info = None def _init_elements_to_extract(self): if not self._elements_to_extract: self._elements_to_extract = [] def _init_elements_to_extract_renditions(self): if not self._elements_to_extract_renditions: self._elements_to_extract_renditions = [] def with_element_to_extract(self, element_to_extract: ExtractElementType): """ adds a pdf element type for extracting structured information. :param element_to_extract: ExtractElementType to be extracted :type element_to_extract: ExtractElementType :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder :raises ValueError: if element_to_extract is None. """ if element_to_extract and element_to_extract in ExtractElementType: self._init_elements_to_extract() self._elements_to_extract.append(element_to_extract) else: raise ValueError("Only ExtractElementType enum is accepted for element_to_extract") return self def with_elements_to_extract(self, elements_to_extract: List[ExtractElementType]): """ adds a list of pdf element types for extracting structured information. :param elements_to_extract: List of ExtractElementType to be extracted :type elements_to_extract: List[ExtractElementType] :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder :raises ValueError: if elements_to_extract is None or empty list. """ if elements_to_extract and all(element in ExtractElementType for element in elements_to_extract): self._init_elements_to_extract() self._elements_to_extract.extend(elements_to_extract) else: raise ValueError("Only ExtractElementType enum List is accepted for elements_to_extract") return self def with_element_to_extract_renditions(self, element_to_extract_renditions: ExtractRenditionsElementType): """ adds a pdf element type for extracting rendition. :param element_to_extract_renditions: ExtractRenditionsElementType whose renditions have to be extracted :type element_to_extract_renditions: ExtractRenditionsElementType :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder :raises ValueError: if element_to_extract_renditions is None. """ if element_to_extract_renditions and element_to_extract_renditions in ExtractRenditionsElementType: self._init_elements_to_extract_renditions() self._elements_to_extract_renditions.append(element_to_extract_renditions) else: raise ValueError("Only ExtractRenditionsElementType enum is accepted for element_to_extract_renditions") return self def with_elements_to_extract_renditions(self, elements_to_extract_renditions: List[ExtractRenditionsElementType]): """ adds a list of pdf element types for extracting rendition. :param elements_to_extract_renditions: List of ExtractRenditionsElementType whose renditions have to be extracted :type elements_to_extract_renditions: List[ExtractRenditionsElementType] :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder :raises ValueError: if elements_to_extract is None or empty list. """ if elements_to_extract_renditions and all( element in ExtractRenditionsElementType for element in elements_to_extract_renditions): self._init_elements_to_extract_renditions() self._elements_to_extract_renditions.extend(elements_to_extract_renditions) else: raise ValueError("Only ExtractRenditionsElementType enum List is accepted for elements_to_extract_renditions") return self def with_table_structure_format(self, table_structure: TableStructureType): """ adds the table structure format (currently csv only) for extracting structured information. :param table_structure: TableStructureType to be extracted :type table_structure: TableStructureType :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder :raises ValueError: if table_structure is None. """ if table_structure and table_structure in TableStructureType: self._table_output_format = table_structure else: raise ValueError("Only TableStructureType enum is accepted for table_structure_format") return self def with_get_char_info(self, get_char_info: bool): """ sets the Boolean specifying whether to add character level bounding boxes to output json :param get_char_info: Set True to extract character level bounding boxes information :type get_char_info: bool :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder """ self._get_char_info = get_char_info return self def with_include_styling_info(self, include_styling_info: bool): """ sets the Boolean specifying whether to add PDF Elements Styling Info to output json :param include_styling_info: Set True to extract PDF Elements Styling Info :type include_styling_info: bool :return: This Builder instance to add any additional parameters. :rtype: ExtractPDFOptions.Builder """ self._include_styling_info = include_styling_info return self def build(self): return ExtractPDFOptions(self._elements_to_extract, self._elements_to_extract_renditions, self._get_char_info, self._table_output_format, self._include_styling_info)
the-stack_106_19710
""" Support for deCONZ devices. For more details about this component, please refer to the documentation at https://home-assistant.io/components/deconz/ """ import logging import voluptuous as vol from homeassistant import config_entries, data_entry_flow from homeassistant.components.discovery import SERVICE_DECONZ from homeassistant.const import ( CONF_API_KEY, CONF_HOST, CONF_PORT, EVENT_HOMEASSISTANT_STOP) from homeassistant.core import callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers import discovery, aiohttp_client from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.util.json import load_json, save_json REQUIREMENTS = ['pydeconz==35'] _LOGGER = logging.getLogger(__name__) DOMAIN = 'deconz' DATA_DECONZ_ID = 'deconz_entities' CONFIG_FILE = 'deconz.conf' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_API_KEY): cv.string, vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=80): cv.port, }) }, extra=vol.ALLOW_EXTRA) SERVICE_FIELD = 'field' SERVICE_ENTITY = 'entity' SERVICE_DATA = 'data' SERVICE_SCHEMA = vol.Schema({ vol.Exclusive(SERVICE_FIELD, 'deconz_id'): cv.string, vol.Exclusive(SERVICE_ENTITY, 'deconz_id'): cv.entity_id, vol.Required(SERVICE_DATA): dict, }) CONFIG_INSTRUCTIONS = """ Unlock your deCONZ gateway to register with Home Assistant. 1. [Go to deCONZ system settings](http://{}:{}/edit_system.html) 2. Press "Unlock Gateway" button [deCONZ platform documentation](https://home-assistant.io/components/deconz/) """ async def async_setup(hass, config): """Set up services and configuration for deCONZ component.""" result = False config_file = await hass.async_add_job( load_json, hass.config.path(CONFIG_FILE)) async def async_deconz_discovered(service, discovery_info): """Call when deCONZ gateway has been found.""" deconz_config = {} deconz_config[CONF_HOST] = discovery_info.get(CONF_HOST) deconz_config[CONF_PORT] = discovery_info.get(CONF_PORT) await async_request_configuration(hass, config, deconz_config) if config_file: result = await async_setup_deconz(hass, config, config_file) if not result and DOMAIN in config and CONF_HOST in config[DOMAIN]: deconz_config = config[DOMAIN] if CONF_API_KEY in deconz_config: result = await async_setup_deconz(hass, config, deconz_config) else: await async_request_configuration(hass, config, deconz_config) return True if not result: discovery.async_listen(hass, SERVICE_DECONZ, async_deconz_discovered) return True async def async_setup_deconz(hass, config, deconz_config): """Set up a deCONZ session. Load config, group, light and sensor data for server information. Start websocket for push notification of state changes from deCONZ. """ _LOGGER.debug("deCONZ config %s", deconz_config) from pydeconz import DeconzSession websession = async_get_clientsession(hass) deconz = DeconzSession(hass.loop, websession, **deconz_config) result = await deconz.async_load_parameters() if result is False: _LOGGER.error("Failed to communicate with deCONZ") return False hass.data[DOMAIN] = deconz hass.data[DATA_DECONZ_ID] = {} for component in ['binary_sensor', 'light', 'scene', 'sensor']: hass.async_add_job(discovery.async_load_platform( hass, component, DOMAIN, {}, config)) deconz.start() async def async_configure(call): """Set attribute of device in deCONZ. Field is a string representing a specific device in deCONZ e.g. field='/lights/1/state'. Entity_id can be used to retrieve the proper field. Data is a json object with what data you want to alter e.g. data={'on': true}. { "field": "/lights/1/state", "data": {"on": true} } See Dresden Elektroniks REST API documentation for details: http://dresden-elektronik.github.io/deconz-rest-doc/rest/ """ field = call.data.get(SERVICE_FIELD) entity_id = call.data.get(SERVICE_ENTITY) data = call.data.get(SERVICE_DATA) deconz = hass.data[DOMAIN] if entity_id: entities = hass.data.get(DATA_DECONZ_ID) if entities: field = entities.get(entity_id) if field is None: _LOGGER.error('Could not find the entity %s', entity_id) return await deconz.async_put_state(field, data) hass.services.async_register( DOMAIN, 'configure', async_configure, schema=SERVICE_SCHEMA) @callback def deconz_shutdown(event): """ Wrap the call to deconz.close. Used as an argument to EventBus.async_listen_once - EventBus calls this method with the event as the first argument, which should not be passed on to deconz.close. """ deconz.close() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, deconz_shutdown) return True async def async_request_configuration(hass, config, deconz_config): """Request configuration steps from the user.""" configurator = hass.components.configurator async def async_configuration_callback(data): """Set up actions to do when our configuration callback is called.""" from pydeconz.utils import async_get_api_key websession = async_get_clientsession(hass) api_key = await async_get_api_key(websession, **deconz_config) if api_key: deconz_config[CONF_API_KEY] = api_key result = await async_setup_deconz(hass, config, deconz_config) if result: await hass.async_add_job( save_json, hass.config.path(CONFIG_FILE), deconz_config) configurator.async_request_done(request_id) return else: configurator.async_notify_errors( request_id, "Couldn't load configuration.") else: configurator.async_notify_errors( request_id, "Couldn't get an API key.") return instructions = CONFIG_INSTRUCTIONS.format( deconz_config[CONF_HOST], deconz_config[CONF_PORT]) request_id = configurator.async_request_config( "deCONZ", async_configuration_callback, description=instructions, entity_picture="/static/images/logo_deconz.jpeg", submit_caption="I have unlocked the gateway", ) @config_entries.HANDLERS.register(DOMAIN) class DeconzFlowHandler(data_entry_flow.FlowHandler): """Handle a deCONZ config flow.""" VERSION = 1 def __init__(self): """Initialize the deCONZ flow.""" self.bridges = [] self.deconz_config = {} async def async_step_init(self, user_input=None): """Handle a flow start.""" from pydeconz.utils import async_discovery if DOMAIN in self.hass.data: return self.async_abort( reason='one_instance_only' ) if user_input is not None: for bridge in self.bridges: if bridge[CONF_HOST] == user_input[CONF_HOST]: self.deconz_config = bridge return await self.async_step_link() session = aiohttp_client.async_get_clientsession(self.hass) self.bridges = await async_discovery(session) if len(self.bridges) == 1: self.deconz_config = self.bridges[0] return await self.async_step_link() elif len(self.bridges) > 1: hosts = [] for bridge in self.bridges: hosts.append(bridge[CONF_HOST]) return self.async_show_form( step_id='init', data_schema=vol.Schema({ vol.Required(CONF_HOST): vol.In(hosts) }) ) return self.async_abort( reason='no_bridges' ) async def async_step_link(self, user_input=None): """Attempt to link with the deCONZ bridge.""" from pydeconz.utils import async_get_api_key errors = {} if user_input is not None: session = aiohttp_client.async_get_clientsession(self.hass) api_key = await async_get_api_key(session, **self.deconz_config) if api_key: self.deconz_config[CONF_API_KEY] = api_key return self.async_create_entry( title='deCONZ', data=self.deconz_config ) else: errors['base'] = 'no_key' return self.async_show_form( step_id='link', errors=errors, ) async def async_setup_entry(hass, entry): """Set up a bridge for a config entry.""" if DOMAIN in hass.data: _LOGGER.error( "Config entry failed since one deCONZ instance already exists") return False result = await async_setup_deconz(hass, None, entry.data) if result: return True return False
the-stack_106_19715
# -*- coding: utf-8 -*- """The dynamic output module CLI arguments helper.""" from plaso.lib import errors from plaso.cli.helpers import interface from plaso.cli.helpers import manager from plaso.output import dynamic class DynamicOutputArgumentsHelper(interface.ArgumentsHelper): """Dynamic output module CLI arguments helper.""" NAME = 'dynamic' CATEGORY = 'output' DESCRIPTION = 'Argument helper for the dynamic output module.' _DEFAULT_FIELDS = [ 'datetime', 'timestamp_desc', 'source', 'source_long', 'message', 'parser', 'display_name', 'tag'] @classmethod def AddArguments(cls, argument_group): """Adds command line arguments the helper supports to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group. """ default_fields = ','.join(cls._DEFAULT_FIELDS) argument_group.add_argument( '--fields', dest='fields', type=str, action='store', default=default_fields, help=( 'Defines which fields should be included in the output.')) default_fields = ', '.join(cls._DEFAULT_FIELDS) argument_group.add_argument( '--additional_fields', '--additional-fields', dest='additional_fields', type=str, action='store', default='', help=( 'Defines extra fields to be included in the output, in addition to ' 'the default fields, which are {0:s}.'.format(default_fields))) @classmethod def ParseOptions(cls, options, output_module): # pylint: disable=arguments-renamed """Parses and validates options. Args: options (argparse.Namespace): parser options. output_module (OutputModule): output module to configure. Raises: BadConfigObject: when the output module object is of the wrong type. BadConfigOption: when the output filename was not provided. """ if not isinstance(output_module, dynamic.DynamicOutputModule): raise errors.BadConfigObject( 'Output module is not an instance of DynamicOutputModule') default_fields = ','.join(cls._DEFAULT_FIELDS) fields = cls._ParseStringOption( options, 'fields', default_value=default_fields) additional_fields = cls._ParseStringOption(options, 'additional_fields') if additional_fields: fields = ','.join([fields, additional_fields]) output_module.SetFields([ field_name.strip() for field_name in fields.split(',')]) manager.ArgumentHelperManager.RegisterHelper(DynamicOutputArgumentsHelper)
the-stack_106_19716
#!/usr/bin/env python import glob import os import os.path import sys if sys.version_info < (3, 6, 0): sys.stderr.write("ERROR: You need Python 3.6 or later to use mypy.\n") exit(1) # we'll import stuff from the source tree, let's ensure is on the sys path sys.path.insert(0, os.path.dirname(os.path.realpath(__file__))) # This requires setuptools when building; setuptools is not needed # when installing from a wheel file (though it is still needed for # alternative forms of installing, as suggested by README.md). from setuptools import setup, find_packages from setuptools.command.build_py import build_py from mypy.version import __version__ as version description = 'Optional static typing for Python' long_description = ''' Mypy -- Optional Static Typing for Python ========================================= Add type annotations to your Python programs, and use mypy to type check them. Mypy is essentially a Python linter on steroids, and it can catch many programming errors by analyzing your program, without actually having to run it. Mypy has a powerful type system with features such as type inference, gradual typing, generics and union types. '''.lstrip() def find_package_data(base, globs, root='mypy'): """Find all interesting data files, for setup(package_data=) Arguments: root: The directory to search in. globs: A list of glob patterns to accept files. """ rv_dirs = [root for root, dirs, files in os.walk(base)] rv = [] for rv_dir in rv_dirs: files = [] for pat in globs: files += glob.glob(os.path.join(rv_dir, pat)) if not files: continue rv.extend([os.path.relpath(f, root) for f in files]) return rv class CustomPythonBuild(build_py): def pin_version(self): path = os.path.join(self.build_lib, 'mypy') self.mkpath(path) with open(os.path.join(path, 'version.py'), 'w') as stream: stream.write('__version__ = "{}"\n'.format(version)) def run(self): self.execute(self.pin_version, ()) build_py.run(self) cmdclass = {'build_py': CustomPythonBuild} package_data = ['py.typed'] package_data += find_package_data(os.path.join('mypy', 'typeshed'), ['*.py', '*.pyi']) package_data += [os.path.join('mypy', 'typeshed', 'stdlib', 'VERSIONS')] package_data += find_package_data(os.path.join('mypy', 'xml'), ['*.xsd', '*.xslt', '*.css']) USE_MYPYC = False # To compile with mypyc, a mypyc checkout must be present on the PYTHONPATH if len(sys.argv) > 1 and sys.argv[1] == '--use-mypyc': sys.argv.pop(1) USE_MYPYC = True if os.getenv('MYPY_USE_MYPYC', None) == '1': USE_MYPYC = True if USE_MYPYC: MYPYC_BLACKLIST = tuple(os.path.join('mypy', x) for x in ( # Need to be runnable as scripts '__main__.py', 'pyinfo.py', os.path.join('dmypy', '__main__.py'), # Uses __getattr__/__setattr__ 'split_namespace.py', # Lies to mypy about code reachability 'bogus_type.py', # We don't populate __file__ properly at the top level or something? # Also I think there would be problems with how we generate version.py. 'version.py', # Skip these to reduce the size of the build 'stubtest.py', 'stubgenc.py', 'stubdoc.py', 'stubutil.py', )) + ( # Don't want to grab this accidentally os.path.join('mypyc', 'lib-rt', 'setup.py'), ) everything = ( [os.path.join('mypy', x) for x in find_package_data('mypy', ['*.py'])] + [os.path.join('mypyc', x) for x in find_package_data('mypyc', ['*.py'], root='mypyc')]) # Start with all the .py files all_real_pys = [x for x in everything if not x.startswith(os.path.join('mypy', 'typeshed') + os.sep)] # Strip out anything in our blacklist mypyc_targets = [x for x in all_real_pys if x not in MYPYC_BLACKLIST] # Strip out any test code mypyc_targets = [x for x in mypyc_targets if not x.startswith((os.path.join('mypy', 'test') + os.sep, os.path.join('mypyc', 'test') + os.sep, os.path.join('mypyc', 'doc') + os.sep, os.path.join('mypyc', 'test-data') + os.sep, ))] # ... and add back in the one test module we need mypyc_targets.append(os.path.join('mypy', 'test', 'visitors.py')) # The targets come out of file system apis in an unspecified # order. Sort them so that the mypyc output is deterministic. mypyc_targets.sort() use_other_mypyc = os.getenv('ALTERNATE_MYPYC_PATH', None) if use_other_mypyc: # This bit is super unfortunate: we want to use a different # mypy/mypyc version, but we've already imported parts, so we # remove the modules that we've imported already, which will # let the right versions be imported by mypyc. del sys.modules['mypy'] del sys.modules['mypy.version'] del sys.modules['mypy.git'] sys.path.insert(0, use_other_mypyc) from mypyc.build import mypycify opt_level = os.getenv('MYPYC_OPT_LEVEL', '3') force_multifile = os.getenv('MYPYC_MULTI_FILE', '') == '1' ext_modules = mypycify( mypyc_targets + ['--config-file=mypy_bootstrap.ini'], opt_level=opt_level, # Use multi-file compilation mode on windows because without it # our Appveyor builds run out of memory sometimes. multi_file=sys.platform == 'win32' or force_multifile, ) else: ext_modules = [] classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Software Development', ] setup(name='mypy', version=version, description=description, long_description=long_description, author='Jukka Lehtosalo', author_email='[email protected]', url='http://www.mypy-lang.org/', license='MIT License', py_modules=[], ext_modules=ext_modules, packages=find_packages(), package_data={'mypy': package_data}, scripts=['scripts/mypyc'], entry_points={'console_scripts': ['mypy=mypy.__main__:console_entry', 'stubgen=mypy.stubgen:main', 'stubtest=mypy.stubtest:main', 'dmypy=mypy.dmypy.client:console_entry', ]}, classifiers=classifiers, cmdclass=cmdclass, # When changing this, also update mypy-requirements.txt. install_requires=["typed_ast >= 1.4.0, < 1.5.0; python_version<'3.8'", 'typing_extensions>=3.7.4', 'mypy_extensions >= 0.4.3, < 0.5.0', 'tomli>=1.1.0,<1.2.0', ], # Same here. extras_require={'dmypy': 'psutil >= 4.0', 'python2': 'typed_ast >= 1.4.0, < 1.5.0'}, python_requires=">=3.6", include_package_data=True, project_urls={ 'News': 'http://mypy-lang.org/news.html', 'Documentation': 'https://mypy.readthedocs.io/en/stable/introduction.html', 'Repository': 'https://github.com/python/mypy', }, )
the-stack_106_19717
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import glob import os import re from typing import List from shrike.compliant_logging.exceptions import ( PublicValueError, print_prefixed_stack_trace_and_raise, ) class StackTraceExtractor: """ A class to perform extraction of stack traces, exception types and optionally exception messages from files that might contain other sensitive data. Attributes ---------- show_exception_message : bool True to extract exception messages. False to skip them. prefix : bool Prefix to prepend extracted lines with. Defaults to "SystemLog". Methods ------- extract(path): Extracts traces and exceptions from file to stdout. """ def __init__( self, show_exception_message: bool = False, prefix: str = "SystemLog", ): self.in_python_traceback = False self.show_exception_message = show_exception_message self.prefix = prefix def _parse_trace_python(self, string: str): r = re.compile(r"Traceback \(most recent call last\):") m = r.search(string) if m: self.in_python_traceback = True return None r = re.compile(r"File (?P<file>.*), line (?P<line>\d*), in (?P<method>.*)") m = r.search(string) if m: return m r = re.compile(r"(?P<type>.*Error): (?P<message>.*)") m = r.search(string) if m and self.in_python_traceback: self.in_python_traceback = False return m return None @staticmethod def _parse_trace_csharp(string: str): r = re.compile( r"at (?P<namespace>.*)\.(?P<class>.*)\.(?P<method>.*) in (?P<file>.*):line (?P<line>\d*)" # noqa:501 ) m = r.search(string) if m: return m r = re.compile(r"Unhandled exception. (?P<type>.*): (?P<message>.*)") m = r.search(string) if m: return m return None def _parse_file(self, file: str) -> None: print(f"{self.prefix}: Parsing file {os.path.abspath(file)}") with open(file, "r") as f: for line in f: m = StackTraceExtractor._parse_trace_csharp(line) if m and m.groupdict().get("type"): print(f"{self.prefix}: type: {m.groupdict()['type']}") if self.show_exception_message: print(f"{self.prefix}: message: {m.groupdict()['message']}") continue elif m and m.groupdict().get("namespace"): print(f"{self.prefix}: namespace: {m.groupdict()['namespace']}") print(f"{self.prefix}: class: {m.groupdict()['class']}") print(f"{self.prefix}: method: {m.groupdict()['method']}") print(f"{self.prefix}: file: {m.groupdict()['file']}") print(f"{self.prefix}: line: {m.groupdict()['line']}") print() continue m = self._parse_trace_python(line) if m and m.groupdict().get("type"): print(f"{self.prefix}: type: {m.groupdict()['type']}") if self.show_exception_message: print(f"{self.prefix}: message: {m.groupdict()['message']}") print() elif m and m.groupdict().get("file"): print(f"{self.prefix}: file: {m.groupdict()['file']}") print(f"{self.prefix}: line: {m.groupdict()['line']}") print(f"{self.prefix}: method: {m.groupdict()['method']}") def _get_files(self, path) -> List[str]: if os.path.isfile(path): print(f"{self.prefix}: Input is a file") return [path] if os.path.isdir(path): print(f"{self.prefix}: Input is a directory") files = glob.glob(path + "/*.err") return files else: raise PublicValueError("Provided path is neither a file nor a directory") def extract(self, path: str) -> None: """ Run extraction on the given resources. Extracted traces and exceptions will be printed to stdout. Args: path (str): file or path. If path, extraction will be performed on all files with '.err' extension within that directory (not recursive). Hidden files will be ignored. """ try: for file in self._get_files(path): self._parse_file(file) assert False except BaseException as e: print(f"{self.prefix}: There is a problem with the exceptionExtractor.") print_prefixed_stack_trace_and_raise(err=e, keep_message=True)
the-stack_106_19718
""" Run by the evaluator, tries to make a GET request to a given server """ import argparse import logging import os import random import socket import sys import time import traceback import urllib.request import requests socket.setdefaulttimeout(1) import external_sites import actions.utils from plugins.plugin_client import ClientPlugin BASEPATH = os.path.dirname(os.path.abspath(__file__)) class HTTPClient(ClientPlugin): """ Defines the HTTP client. """ name = "http" def __init__(self, args): """ Initializes the HTTP client. """ ClientPlugin.__init__(self) self.args = args @staticmethod def get_args(command): """ Defines required args for this plugin """ super_args = ClientPlugin.get_args(command) parser = argparse.ArgumentParser(description='HTTP Client', prog="http/client.py") parser.add_argument('--host-header', action='store', default="", help='specifies host header for HTTP request') parser.add_argument('--injected-http-contains', action='store', default="", help='checks if injected http response contains string') args, _ = parser.parse_known_args(command) args = vars(args) super_args.update(args) return super_args def run(self, args, logger, engine=None): """ Try to make a forbidden GET request to the server. """ fitness = 0 url = args.get("server", "") assert url, "Cannot launch HTTP test with no server" if not url.startswith("http://"): url = "http://" + url headers = {} if args.get('host_header'): headers["Host"] = args.get('host_header') # If we've been given a non-standard port, append that to the URL port = args.get("port", 80) if port != 80: url += ":%s" % str(port) if args.get("bad_word"): url += "?q=%s" % args.get("bad_word") injected_http = args.get("injected_http_contains") try: res = requests.get(url, allow_redirects=False, timeout=3, headers=headers) logger.debug(res.text) # If we need to monitor for an injected response, check that here if injected_http and injected_http in res.text: fitness -= 90 else: fitness += 100 except requests.exceptions.ConnectTimeout as exc: logger.exception("Socket timeout.") fitness -= 100 except (requests.exceptions.ConnectionError, ConnectionResetError) as exc: logger.exception("Connection RST.") fitness -= 90 except urllib.error.URLError as exc: logger.debug(exc) fitness += -101 # Timeouts generally mean the strategy killed the TCP stream. # HTTPError usually mean the request was destroyed. # Punish this more harshly than getting caught by the censor. except (requests.exceptions.Timeout, requests.exceptions.HTTPError) as exc: logger.debug(exc) fitness += -120 except Exception: logger.exception("Exception caught in HTTP test to site %s.", url) fitness += -100 return fitness * 4
the-stack_106_19721
# Copyright 2021 The Commplax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Install commplax""" from setuptools import setup, find_packages _dct = {} with open('commplax/version.py') as f: exec(f.read(), _dct) __version__ = _dct['__version__'] setup(name='commplax', version=__version__, description='differentiable DSP library for optical communication', author='Commplax team', author_email='[email protected]', url='https://github.com/remifan/commplax', packages=find_packages(), install_requires=[ 'jax>=0.2.13', 'jaxlib>=0.1.66', 'flax>=0.3.4', 'seaborn', 'quantumrandom' ], extras_require={ 'dev': [ 'attr', 'mock', 'pytest', 'parameterized', 'ipykernel', 'ipympl', ], 'fs': [ 'zarr', 's3fs', 'fsspec' ], 'all': [ 'zarr[jupyter]==2.9.5', 's3fs', 'fsspec', 'plotly', 'tqdm' ] }, license='Apache-2.0', )
the-stack_106_19722
# System configs GLOBAL_HOST = '0.0.0.0' LOCAL_HOST = '127.0.0.1' # Slave configs MIN_HEARTBEAT_SPAN = 0.2 DEFAULT_HEARTBEAT_SPAN = 3.0 DEFAULT_HEARTBEAT_TOLERANCE = 15.0 DEFAULT_SLAVE_PORT = 7236 # Master configs MIN_HEARTBEAT_CHECK_SPAN = 0.1 DEFAULT_HEARTBEAT_CHECK_SPAN = 1.0 DEFAULT_MASTER_PORT = 7235 # Two-side configs DEFAULT_CHANNEL = 0
the-stack_106_19723
# -*- coding: utf-8-*- import random import re import jasperpath import pygame import time #mark1 new_word = "KISS" WORDS = ("%s" %new_word) PRIORITY = 4 image = 'kiss.png' size = width, height = 320, 320 red = (255,0,0) white = (255,255,255) black = 0, 0, 0 x=0 y=0 def handle(self, text, mic, profile): self.blitimg(image, size, black, x, y) time.sleep(3) def isValid(text): """ Returns True if the input is related to the meaning of life. Arguments: text -- user-input, typically transcribed speech """ return bool(re.search(r'\b%s\b' %new_word, text, re.IGNORECASE))
the-stack_106_19724
import csv import glob import os import xml.etree.ElementTree as ET import igibson from igibson.objects.articulated_object import URDFObject from igibson.utils.assets_utils import download_assets download_assets() def get_categories(): dir = os.path.join(igibson.ig_dataset_path, "objects") return [cat for cat in os.listdir(dir) if os.path.isdir(get_category_directory(cat))] def get_category_directory(category): return os.path.join(igibson.ig_dataset_path, "objects", category) def get_urdf(objdir): return os.path.join(objdir, os.path.basename(objdir) + ".urdf") def get_obj(objdir): return URDFObject(get_urdf(objdir), name="obj", model_path=objdir) def get_metadata_filename(objdir): return os.path.join(objdir, "misc", "metadata.json") def main(): # Collect the relevant categories. categories = get_categories() # Now collect the actual objects. objects = [] for cat in categories: cd = get_category_directory(cat) for obj in os.listdir(cd): objects.append((cat, obj)) scene_files = list(glob.glob(os.path.join(igibson.ig_dataset_path, "scenes", "**", "*task*.urdf"), recursive=True)) by_scene = {} by_object = {x: [] for x in objects} for sf in scene_files: tree = ET.parse(sf) sn = os.path.splitext(os.path.basename(sf))[0] scene_objs = [] for pair in objects: nodes = tree.findall(".//link[@category='%s'][@model='%s']" % pair) if nodes: scene_objs.append(pair) by_object[pair].append(sn) by_scene[sn] = scene_objs print("%d objects in %s" % (len(scene_objs), sn)) with open("by_object.csv", "w") as f: w = csv.writer(f) w.writerows(["%s/%s" % pair] + scenes for pair, scenes in sorted(by_object.items())) with open("by_scene.csv", "w") as f: w = csv.writer(f) w.writerows([scene] + ["%s/%s" % pair for pair in objects] for scene, objects in sorted(by_scene.items())) if __name__ == "__main__": main()
the-stack_106_19726
''' 들어간 차 목록 큐 enter 나온 차 목록 큐 leave enter 맨 앞의 차가 이미 나왔으면 enter 맨 앞의 차 제거 enter 맨 앞의 차 = leave 맨 앞의 차면 추월 아님 아니면 추월한거임 ''' from collections import deque import sys input = sys.stdin.readline # input N = int(input()) enter = deque([input().rstrip() for _ in range(N)]) leave = deque([input().rstrip() for _ in range(N)]) # process sol = 0 left_car_names = set() while leave: while enter and enter[0] in left_car_names: enter.popleft() if enter[0] == leave[0]: enter.popleft() left_car_names.add(leave.popleft()) else: sol += 1 left_car_names.add(leave.popleft()) # output print(sol)
the-stack_106_19727
import argparse import torch.nn as nn from util.misc import * from util.graph_def import * from models.nets import ARCHITECTURES from data.loaders import load_data, DATASETS from util.schedules import linear_interpolation from util.hessian import hessian_spectral_norm_approx parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) # Experiment params parser.add_argument('--dataset', default=None, choices=DATASETS, help='dataset to train on') # Architecture and init parser.add_argument('--nn', default=None, choices=ARCHITECTURES, help='neural network architecture') parser.add_argument('--hidden_size', default=128, type=int, help='number of hidden units for MLP') parser.add_argument('--num_layers', default=2, type=int, help='number of hidden layers for MLP/CNN') parser.add_argument('--num_blocks', default=2, type=int, help='number of residual blocks for ResNet') parser.add_argument('--wrn_n', default=6, type=int, help='N for WRN (number of blocks per stage, with num_layers=6N+4)') parser.add_argument('--wrn_k', default=2, type=int, help='k for WRN (widening factor)') parser.add_argument('--wrn_reduced_memory', default=False, action='store_true', help='Use stride=2 in WRN\'s conv1 to reduce memory footprint in very deep nets') parser.add_argument('--init', default='orthogonal_proposed', choices=['he', 'orthogonal', 'he_datadep', 'orthogonal_datadep', 'he_proposed', 'orthogonal_proposed'], help='Initialization scheme.\n' 'he/orthogonal: pytorch default WN init with He/orthogonal init for weights\n' '{he/orthogonal}_datadep: data-dependent WN init with He/orthogonal init for weights\n' '{he/orthogonal}_proposed: proposed WN init with He/orthogonal init for weights') parser.add_argument('--init_extra_param', default=None, choices=[None, 'hanin'], help='extra param for WRN init; used for baselines in the 10k layer experiments mostly') parser.add_argument('--weight_norm', default=False, action='store_true', help='whether to use Weight Normalization') parser.add_argument('--batch_norm', default=False, action='store_true', help='whether to use Batch Normalization') # Hyperparameters parser.add_argument('--seed', default=1, type=int, help='random seed') parser.add_argument('--num_epochs', default=200, type=int, help='number of optimization epochs') parser.add_argument('--optimizer', default='sgd', choices=['sgd'], help='optimizer type') parser.add_argument('--batch_size', default=128, type=int, help='batch size') parser.add_argument('--mini_batch_size', default=None, type=int, help='for very large models, the batch size will be split into several batches of this size') parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate') parser.add_argument('--lr_annealing_type', default=0, type=int, choices=list(range(MAX_LR_SCHEDULE + 1)), help='lr annealing type') parser.add_argument('--momentum', default=0, type=float, help='momentum for SGD') parser.add_argument('--weight_decay', default=0, type=float, help='weight decay rate') parser.add_argument('--cutout', default=False, action='store_true', help='whether to use cutout') parser.add_argument('--warmup_epochs', default=0, type=float, help='duration of lr warmup period in epochs') parser.add_argument('--warmup_lr', default=0, type=float, help='initial lr for warmup') # Validation set parser.add_argument('--val_fraction', default=0.1, type=float, help='fraction of withheld validation data') # Logging parser.add_argument('--save_interval', default=1, type=int, help='number of epochs between checkpoints') parser.add_argument('--model', default=None, help='model name (will log to log/model_prefix/model_name)') parser.add_argument('--model_prefix', default=None, help='prefix for the model name (will log to log/model_prefix/model_name)') parser.add_argument("--tb", action="store_true", default=False, help="log into Tensorboard") # Other parser.add_argument('--cudnn_deterministic', default=False, action='store_true', help='disable stochastic cuDNN operations (enable them for faster execution)') parser.add_argument('--log_every_iter', default=False, action='store_true', help='whether to log train loss after every SGD update') parser.add_argument('--hessian', default=False, action='store_true', help='whether to compute spectral norm instead of training') args = parser.parse_args() # Make sure that we chose a valid init scheme if 'proposed' in args.init or 'datadep' in args.init: assert args.weight_norm, "'{}' init will only work with Weight Normalized networks".format(args.init) if args.mini_batch_size is None: args.mini_batch_size = args.batch_size assert args.batch_size % args.mini_batch_size == 0 # Set random seed set_seed(args.seed) if args.cudnn_deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Set up directories model_name = get_model_name(args) save_dir = get_model_dir(model_name) # Load training status try: status = load_status(save_dir) except OSError: status = {"num_epochs": 0, "sgd_steps": 0, "best_val_acc": -1., "test_acc": -1., "best_model_epoch": -1} # Save config and status files save_config(args, save_dir) save_status(status, save_dir) # Set up loggers logger = get_loggers(save_dir) logger.info("\nLogging to %s\n" % os.path.abspath(save_dir)) # Create data loaders trainloader, validloader, testloader, num_classes = load_data(args) input_size = get_input_size(args) # Create model sample_batch, _ = iter(trainloader).__next__() model = create_model(args, input_size, num_classes, sample_batch=sample_batch) logger.info(model) # Create optimizer optimizer = create_optimizer(model, args) try: load_model(model, save_dir, 'model') load_model(optimizer, save_dir, 'optimizer') loaded_model = True except: loaded_model = False if torch.cuda.is_available(): model.cuda() # Ugly fix to a bug in PyTorch with optimizer loading when CUDA is available # https://github.com/pytorch/pytorch/issues/2830 if loaded_model: optimizer = create_optimizer(model, args) load_model(optimizer, save_dir, 'optimizer') for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() # CSV logger csv_file, csv_writer = get_csv_writer(save_dir) csv_header = ["epoch", "train_loss", "val_loss", "train_acc", "val_acc", "lr"] if not loaded_model: # avoid writing a header in the middle of the file csv_writer.writerow(csv_header) csv_file.flush() # Tensorboard if args.tb: from tensorboardX import SummaryWriter tb_writer = SummaryWriter(save_dir) num_epochs = status["num_epochs"] sgd_steps = status["sgd_steps"] best_val_acc = status["best_val_acc"] logger.info("Parameter count: %s" % pretty_number(sum(p.numel() for p in model.parameters() if p.requires_grad))) if loaded_model: logger.info("Model loaded successfully\n") else: logger.info("Training from scratch\n") # Train try: batches_per_update = args.batch_size // args.mini_batch_size lr_scheduler = create_lr_schedule(args) criterion = nn.CrossEntropyLoss() if args.hessian: spectral_norm = hessian_spectral_norm_approx(model, trainloader, criterion, M=40, seed=args.seed, logger=logger) exit(0) while num_epochs < args.num_epochs: # Update learning rate lr = lr_scheduler.value(num_epochs) for param_group in optimizer.param_groups: param_group['lr'] = lr * model.get_lr_multiplier(param_group) if num_epochs < args.warmup_epochs: num_batches = len(trainloader) offset = int(args.warmup_lr == 0) alphas = [(num_epochs + i / num_batches) / args.warmup_epochs for i in range(offset, num_batches+offset)] lr_list = [linear_interpolation(args.warmup_lr, lr, alpha ** 2) for alpha in alphas] else: lr_list = None train_loss, train_acc = train_epoch(model, optimizer, trainloader, criterion, batches_per_update=batches_per_update, log_fn=logger.info if args.log_every_iter else None, lr_list=lr_list) val_loss, val_acc = evaluate_model(model, validloader, criterion) # Log to file and stdout logger.info('[Epoch %d] train_loss = %.5f val_loss = %.5f train_acc = %.5f val_acc = %.5f' % (num_epochs, train_loss, val_loss, train_acc, val_acc)) # Log to CSV file csv_data = [num_epochs, train_loss, val_loss, train_acc, val_acc, lr] csv_writer.writerow(csv_data) csv_file.flush() # Log to TensorBoard if args.tb: for field, value in zip(csv_header, csv_data): tb_writer.add_scalar(field, value, csv_data[0]) # csv_data[0] = num_epochs # Save best model if val_acc > best_val_acc: best_val_acc = val_acc status["best_model_epoch"] = num_epochs save_model(model, save_dir, 'model_best') # Save last model save_model(model, save_dir, 'model') save_model(model, save_dir, 'optimizer') # Update and save status num_epochs += 1 sgd_steps += len(trainloader) status["num_epochs"] = num_epochs status["sgd_steps"] = sgd_steps status["best_val_acc"] = best_val_acc save_status(status, save_dir) logger.info("Finished training!") except KeyboardInterrupt: logger.info("\nCTRL+C received. Stopping training...") except Exception as e: logger.info("Something went wrong:") logger.info(e) logger.info("Stopping training...") finally: if model_exists(save_dir, 'model_best'): if testloader is not None: logger.info("Evaluating best model (epoch %d)..." % status["best_model_epoch"]) load_model(model, save_dir, 'model_best') _, test_acc = evaluate_model(model, testloader) status["test_acc"] = test_acc logger.info("Test accuracy: %.5f" % test_acc) save_status(status, save_dir) else: logger.info('No test data was provided. Skipping evaluation...') status["test_acc"] = status["best_val_acc"] save_status(status, save_dir) logger.info("Validation accuracy: %.5f" % status["best_val_acc"]) else: logger.info('No checkpoints found. Skipping evaluation...')
the-stack_106_19728
# -*- coding: utf-8 -*- import numpy as np import torch from torch import nn from kbcr.models import ComplEx, Multi from kbcr.models.reasoning import SimpleHoppy from kbcr.reformulators import LinearReformulator, AttentiveReformulator import pytest @pytest.mark.light def test_multi(): nb_entities = 10 nb_predicates = 5 embedding_size = 10 init_size = 1.0 rs = np.random.RandomState(0) for _ in range(16): for nb_hops in range(1, 6): for use_attention in [True, False]: for pt in {'max', 'min', 'sum', 'mixture'}: with torch.no_grad(): entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) entity_embeddings.weight.data *= init_size predicate_embeddings.weight.data *= init_size base = ComplEx(entity_embeddings) models = [] for i in range(nb_hops): if use_attention: reformulator = AttentiveReformulator(i, predicate_embeddings) else: reformulator = LinearReformulator(i, embedding_size * 2) h_model = SimpleHoppy(base, entity_embeddings, hops=reformulator) models += [h_model] model = Multi(models=models, pooling_type=pt, embedding_size=embedding_size * 2) xs = torch.from_numpy(rs.randint(nb_entities, size=32)) xp = torch.from_numpy(rs.randint(nb_predicates, size=32)) xo = torch.from_numpy(rs.randint(nb_entities, size=32)) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) scores = model.forward(xp_emb, xs_emb, xo_emb) inf = model.score(xp_emb, xs_emb, xo_emb) scores_sp, scores_po = scores inf = inf.cpu().numpy() scores_sp = scores_sp.cpu().numpy() scores_po = scores_po.cpu().numpy() for i in range(xs.shape[0]): np.testing.assert_allclose(inf[i], scores_sp[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf[i], scores_po[i, xs[i]], rtol=1e-5, atol=1e-5) if __name__ == '__main__': pytest.main([__file__])
the-stack_106_19730
#!/usr/bin/env python """ SETUP.py - Setup utility for TAMOC: Texas A&M Oilspill Calculator This script manages the installation of the TAMOC package into a standard Python distribution. For more information on TAMOC, see README.txt, LICENSE.txt, and CHANGES.txt. Notes ----- To install, use: > python setup.py build > python setup.py install To uninstall, use: > pip uninstall TAMOC To create a source distribution, use: > python setup.py sdist --formats=gztar,zip Author ------ S. Socolofsky, January 2012, Texas A&M University <[email protected]>. """ import os import setuptools from numpy.distutils.core import Extension # Describe some attributes of the software classifiers = """\ Development Status :: beta Environment :: Console Intended Audience :: Science/Research Intended Audience :: Developers License :: MIT Operating System :: OS Independent Programming Language :: Python Topic :: Scientific/Engineering Topic :: Software Development :: Libraries :: Python Modules """ # Define the sample programs to include bin_files = ['./bin/dbm/air_eos.py', './bin/dbm/co2_eos.py', './bin/dbm/dead_oil.py', './bin/dbm/droplet_rise.py', './bin/dbm/equilibrium.py', './bin/dbm/gas_bubbles.py', './bin/dbm/hydrocarbon_drops.py', './bin/ambient/profile_extending.py', './bin/ambient/profile_append.py', './bin/ambient/profile_from_ctd.py', './bin/ambient/profile_from_lab.py', './bin/ambient/profile_from_roms.py', './bin/ambient/profile_from_txt.py', './bin/sbm/bubble.py', './bin/sbm/drop_biodeg.py', './bin/sbm/drop.py', './bin/sbm/sbm_file_io.py', './bin/sbm/particle.py', './bin/sbm/seep_bubble.py', './bin/spm/spm_blowout_sim.py', './bin/spm/lake_bub.py', './bin/spm/lake_part.py', './bin/spm/spm_file_io.py', './bin/sintef/particle_size_distribution.py', './bin/psm/blowout_jet.py', './bin/psm/oil_jet.py', './bin/params/scales.py', './bin/bpm/bpm_blowout_sim.py', './bin/bpm/crossflow_plume.py', './bin/bpm/blowout_obj.py'] # Define the external Fortran sources ext_dbm_f = Extension(name = 'dbm_f', sources = ['tamoc/src/dbm_eos.f95', 'tamoc/src/dbm_phys.f95', 'tamoc/src/math_funcs.f95']) def get_version(pkg_name): """ Reads the version string from the package __init__ and returns it """ with open(os.path.join(pkg_name, "__init__.py")) as init_file: for line in init_file: parts = line.strip().partition("=") if parts[0].strip() == "__version__": return parts[2].strip().strip("'").strip('"') return None # Provide the setup utility if __name__ == '__main__': from numpy.distutils.core import setup setup( name='TAMOC', version=get_version("tamoc"), description='Texas A&M Oilspill Calculator', long_description=open('README.rst').read(), license='LICENSE.txt', author='Scott A. Socolofsky', author_email='[email protected]', url="https://ceprofs.civil.tamu.edu/ssocolofsky/", scripts=bin_files, packages=['tamoc'], package_data={'tamoc': ['data/*.csv', 'data/*.cnv', 'data/*.dat']}, platforms=['any'], ext_package='tamoc', ext_modules=[ext_dbm_f], classifiers=filter(None, classifiers.split("\n")), )
the-stack_106_19731
from collections import defaultdict from insights.core import filters from insights.parsers.ps import PsAux, PsAuxcww from insights.specs import Specs from insights.specs.default import DefaultSpecs import pytest def setup_function(func): if func is test_get_filter: filters.add_filter(Specs.ps_aux, "COMMAND") if func is test_get_filter_registry_point: filters.add_filter(Specs.ps_aux, "COMMAND") filters.add_filter(DefaultSpecs.ps_aux, "MEM") if func is test_filter_dumps_loads: filters.add_filter(Specs.ps_aux, "COMMAND") def teardown_function(func): if func is test_get_filter: del filters.FILTERS[Specs.ps_aux] if func is test_get_filter_registry_point: del filters.FILTERS[Specs.ps_aux] del filters.FILTERS[DefaultSpecs.ps_aux] if func is test_filter_dumps_loads: del filters.FILTERS[Specs.ps_aux] if func is test_add_filter_to_parser: del filters.FILTERS[Specs.ps_aux] if func is test_add_filter_to_parser_patterns_list: del filters.FILTERS[Specs.ps_aux] def test_filter_dumps_loads(): r = filters.dumps() assert r is not None filters.FILTERS = defaultdict(set) filters.loads(r) assert Specs.ps_aux in filters.FILTERS assert filters.FILTERS[Specs.ps_aux] == set(["COMMAND"]) def test_get_filter(): f = filters.get_filters(Specs.ps_aux) assert "COMMAND" in f f = filters.get_filters(DefaultSpecs.ps_aux) assert "COMMAND" in f def test_get_filter_registry_point(): s = set(["COMMAND", "MEM"]) f = filters.get_filters(DefaultSpecs.ps_aux) assert f & s == s f = filters.get_filters(Specs.ps_aux) assert "COMMAND" in f assert "MEM" not in f def test_add_filter_to_parser(): filter_string = "bash" filters.add_filter(PsAux, filter_string) spec_filters = filters.get_filters(Specs.ps_aux) assert filter_string in spec_filters parser_filters = filters.get_filters(PsAux) assert not parser_filters def test_add_filter_to_parser_patterns_list(): filters_list = ["bash", "systemd", "Network"] filters.add_filter(PsAux, filters_list) spec_filters = filters.get_filters(Specs.ps_aux) assert all(f in spec_filters for f in filters_list) parser_filters = filters.get_filters(PsAux) assert not parser_filters def test_add_filter_to_parser_non_filterable(): filter_string = "bash" filters.add_filter(PsAuxcww, filter_string) spec_filters = filters.get_filters(Specs.ps_auxcww) assert not spec_filters parser_filters = filters.get_filters(PsAuxcww) assert not parser_filters def test_add_filter_exception_not_filterable(): with pytest.raises(Exception): filters.add_filter(Specs.ps_auxcww, "bash") def test_add_filter_exception_raw(): with pytest.raises(Exception): filters.add_filter(Specs.metadata_json, "[]") def test_add_filter_exception_empty(): with pytest.raises(Exception): filters.add_filter(Specs.ps_aux, "")
the-stack_106_19733
import os import mock import jukebox.scanner @mock.patch('mutagen.File') @mock.patch('os.walk') def test_dir_scanner_scan(walk, File): walk.return_value = [ ('base', [], ['file_name']), ] File.return_value = { 'title': ['fun1', 'fun2'], 'album': [], 'artist': ['bob'], } storage = mock.Mock(name='storage') scanner = jukebox.scanner.DirScanner(storage, 'path') scanner.scan() walk.assert_called_with('path') File.assert_called_with(os.path.join('base', 'file_name'), easy=True) song = storage.add_song.call_args[0][0] assert 'fun1' == song.title assert None == song.album assert 'bob' == song.artist
the-stack_106_19734
# ---------------------------------------------------------------------- # Alcatel.OS62xx.get_vlans # ---------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from noc.core.script.base import BaseScript from noc.sa.interfaces.igetvlans import IGetVlans from noc.core.text import parse_table class Script(BaseScript): name = "Alcatel.OS62xx.get_vlans" interface = IGetVlans def execute(self): vlans = self.cli("show vlan") r = [] for v in parse_table(vlans, allow_wrap=True): r += [{"vlan_id": int(v[0]), "name": v[1]}] return r
the-stack_106_19735
# Python file with all essential functions used during CiliateAnnotation program execution import subprocess import sys import datetime import time import os.path import errno import math import regex as re from datetime import datetime from settings import * from functools import reduce #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # Define log comment function for the ease of use def logComment(comment): logComment.logFile.write(datetime.now().strftime("%I:%M%p %B %d %Y") + ' - ' + comment + '\n') logComment.logFile.flush() # Log file logComment.logFile = None #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # Define create directory function def safeCreateDirectory(dir): try: os.makedirs(dir) logComment('Directory ' + dir + ' created') except OSError as exception: if exception.errno != errno.EEXIST: raise #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function creates all necessary output folders and files def createOutputDirectories(Output_dir): # Create BLAST database directory safeCreateDirectory(Output_dir + '/blast') # Create hsp, hsp/rough, hsp/fine directtories safeCreateDirectory(Output_dir + '/hsp_mac') safeCreateDirectory(Output_dir + '/hsp_mac/rough') safeCreateDirectory(Output_dir + '/hsp_mac/fine') # Create output directory for MAC mds safeCreateDirectory(Output_dir + '/Annotated_MDS') # Create output directory for MIC annotation safeCreateDirectory(Output_dir + '/MIC_Annotation') # Create output directory for masked contig seqeunces safeCreateDirectory(Output_dir + '/Masked_Contigs') # Create database input directory and database load files if Options['DatabaseUpdate']: safeCreateDirectory(Output_dir + '/Database_Input') temp = open(Output_dir + '/Database_Input/hsp.tsv', 'w') temp.close() temp = open(Output_dir + '/Database_Input/mds.tsv', 'w') temp.close() temp = open(Output_dir + '/Database_Input/tel.tsv', 'w') temp.close() temp = open(Output_dir + '/Database_Input/arr.tsv', 'w') temp.close() # Create output gff3 directory and files safeCreateDirectory(Output_dir + '/GFF') gffFile = open(Output_dir + "/GFF/mac_annotation.gff3", "w") gffFile.write("##gff-version 3\n") gffFile.close() gffFile = open(Output_dir + "/GFF/mic_annotation.gff3", "w") gffFile.write("##gff-version 3\n") gffFile.close() # Create output directory and files for MIC scrambling patterns safeCreateDirectory(Output_dir + "/Scrambling") temp = open(Output_dir + "/Scrambling/all.tsv", "w") temp.close() temp = open(Output_dir + "/Scrambling/good_maps.tsv", "w") temp.close() # Create Output directory for MIC annotation safeCreateDirectory(Output_dir + "/MDS_IES_MIC") #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function runs rough BLAST and returns the hsp result list def run_Rough_BLAST(Output_dir, contig): # Set up parameters param = ("blastn -task " + Options['RoughBlastTask'] + " -word_size " + str(Options['RoughBlastWordSize']) + " -max_hsps 10000 -max_target_seqs 10000 -dust").split(" ") if Options['RoughBlastDust']: param.append("yes") else: param.append("no") if Options['RoughBlastUngapped']: param.append("-ungapped") if Options['BlastMaskLowercase']: param.append("-lcase_masking") param.append("-query") param.append(Output_dir + "/Masked_Contigs/" + str(contig) + ".fa") param.append("-db") param.append(Output_dir + "/blast/mic") param.append("-num_threads") param.append(str(Options['ThreadCount'])) param.append("-outfmt") param.append("10 qseqid sseqid pident length mismatch qstart qend sstart send evalue bitscore qcovs") # Run BLAST command rough_out = subprocess.check_output(param) # Filter empty rows roughVal = [x.rstrip() for x in rough_out.decode(sys.stdout.encoding).split('\n') if x != "" and float(x.rstrip().split(",")[11]) >= Options['MIC_Coverage_Threshold']] # Check if there are any hsps if not roughVal: return "" # Save rough results to file rough_file = open(Output_dir + '/hsp_mac/rough/' + contig + '.csv', 'w') for x in roughVal[:-1]: rough_file.write(x + '\n') rough_file.write(roughVal[-1]) rough_file.close() # Filter duplicates out and parse result res = [x.split(',') for x in list(set(roughVal))] return res #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function runs fine BLAST and returns hsp result list def run_Fine_BLAST(Output_dir, contig): param = ("blastn -task " + Options['FineBlastTask'] + " -word_size " + str(Options['FineBlastWordSize']) + " -max_hsps 10000 -max_target_seqs 10000 -dust").split(" ") if Options['FineBlastDust']: param.append("yes") else: param.append("no") if Options['FineBlastUngapped']: param.append("-ungapped") if Options['BlastMaskLowercase']: param.append("-lcase_masking") param.append("-query") param.append(Output_dir + "/Masked_Contigs/" + str(contig) + ".fa") param.append("-db") param.append(Output_dir + "/blast/mic") param.append("-num_threads") param.append(str(Options['ThreadCount'])) param.append("-outfmt") param.append("10 qseqid sseqid pident length mismatch qstart qend sstart send evalue bitscore qcovs") fine_out = subprocess.check_output(param) # Filter empty rows fineVal = [x.rstrip() for x in fine_out.decode(sys.stdout.encoding).split('\n') if x != "" and float(x.rstrip().split(",")[11]) >= Options['MIC_Coverage_Threshold']] # Check if there are any hsps if not fineVal: return "" # Save fine results to file fine_file = open(Output_dir + '/hsp_mac/fine/' + str(contig) + '.csv', 'w') for x in fineVal[:-1]: fine_file.write(x + "\n") fine_file.write(fineVal[-1]) fine_file.close() # Filter duplicates out and parse result res = [x.split(',') for x in list(set(fineVal))] return res #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function goes through the list of hight scoring pairs and updates corresponding MIC hsp for later use def update_MIC_hsp(MIC_maps, Output_dir): # Sort hsp according to MIC name MIC_maps.sort(key=lambda x: x[1]) # Get the first MIC and open corresponding file current = MIC_maps[0][1] out_file = open(Output_dir + "/hsp_mic/" + current + ".csv", "a") # For each hsp, store it into the file for hsp in MIC_maps: # if we have a different mic, open a new file if current != hsp[1]: current = hsp[1] out_file.close() out_file = open(Output_dir + "/hsp_mic/" + current + ".csv", "a") # Flip coordinates, to indicate inversion start = hsp[7] if int(hsp[7]) < int(hsp[8]) else hsp[8] end = hsp[8] if start == hsp[7] else hsp[7] # Store hsp value with query and search values flipped out_file.write(hsp[1] + "," + hsp[0] + "," + hsp[2] + "," + hsp[3] + "," + hsp[4] + "," + start + "," + end + "," + hsp[5] + "," + hsp[6] + "," + hsp[9] + "," + hsp[10] + "," + hsp[11] + "\n") out_file.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function reads hsp file that was generated by run_Rough_BLAST or run_Fine_BLAST functions previously def readBLAST_file(Filename): # Initialize list to read input res = list() # Read file line by line for line in open(Filename, "r"): if line == "": continue # Parse and append line into the res list parsed = line.rstrip().split(",") if float(parsed[11]) >= Options['MIC_Coverage_Threshold']: res.append(parsed) # Return list if it not empty and empty string otherwise if res: return res else: return "" #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function goes through the list of high scoring pairs that are associated with the MIC and constructs MDSs for the MAC def getMDS_Annotation(MDS_List, HSP_List, MAC_start, MAC_end): # Get Gaps List Gaps = getGapsList(MDS_List, MAC_start, MAC_end) # Build list of MDSs for hsp in HSP_List: mds_toAdd = [int(hsp[5]), int(hsp[6]),0] # If current MDS does not overlap with any gap, then skip it if not [x for x in Gaps if x[1] > mds_toAdd[0] and x[0] < mds_toAdd[1]]: continue # Go through MDSs that overlap with current MDS and see if any can be merged or removed for x in sorted([mds for mds in MDS_List if mds[1] > mds_toAdd[0] and mds[0] < mds_toAdd[1]]): # If x is a subset of mds_toAdd, then remove x if x[0] >= mds_toAdd[0] and x[1] <= mds_toAdd[1]: MDS_List.remove(x) # Check if two MDSs can be merged elif int((mds_toAdd[0] + mds_toAdd[1])/2) in range(x[0], x[1]) or int((x[0] + x[1])/2) in range(mds_toAdd[0], mds_toAdd[1]): mds_toAdd[0] = min(mds_toAdd[0], x[0]) mds_toAdd[1] = max(mds_toAdd[1], x[1]) MDS_List.remove(x) # Add MDS to the MDS list, update gaps list, check if we are done MDS_List.append(mds_toAdd) Gaps = getGapsList(MDS_List, MAC_start, MAC_end) if not Gaps: break # Sort the MDS List MDS_List.sort(key=lambda x: x[0]) #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function takes a list of MDSs (sorted by the MDS begining coordinate) and returns the intervals of the MAC covering def getCovering_Intervals(MDS_List): # Construct intervals by using MDS List and checking for gaps between consecutive MDSs MAC_Interval = list() for mds in sorted(MDS_List, key = lambda x: x[0]): if not MAC_Interval: MAC_Interval.append([mds[0], mds[1]]) else: if MAC_Interval[-1][1] >= mds[0] - 1: MAC_Interval[-1][1] = max(mds[1], MAC_Interval[-1][1]) else: MAC_Interval.append([mds[0], mds[1]]) return MAC_Interval #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function checks whether there are any gaps in the MAC annotation def addGaps(MDS_List, MAC_start, MAC_end): # If MDS List is empty, then return the whole MAC interval as a gap if not MDS_List: MDS_List.append([MAC_start, MAC_end, 1]) return # Get the list of covered MAC Interval(s) MAC_Interval = getCovering_Intervals(MDS_List) # If we have more than one interval, then there are gaps we need to add to the annotation if len(MAC_Interval) > 1: prev = MAC_Interval[0] for interv in MAC_Interval[1:]: MDS_List.append([prev[1]+1, interv[0]-1,1]) prev = interv # Check for gaps at the begining of MAC and at the end of MAC if MAC_Interval[0][0] - MAC_start > 0: MDS_List.append([MAC_start, MAC_Interval[0][0] - 1, 1]) if MAC_end - MAC_Interval[-1][1] > 0: MDS_List.append([MAC_Interval[-1][1] + 1, MAC_end, 1]) #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function assigns MDS number to hsps that correspond to some MDS in MAC def mapHSP_to_MDS(MIC_maps, MDS_List): # Go through the list of hsps and assign MDS number, or -1 to each hsp for hsp in MIC_maps: # Set hsp to no MDS for now hsp.append(-1) # Get list of MDSs that were mapped from current hsp overlap = [x for x in MDS_List if (x[2] != 1) and (int(hsp[5]) < x[1] and int(hsp[6]) > x[0])] if not overlap: continue # Define reduce function to decide what MDS the hsp is going to match the best (has biggest overlap) match = lambda a, b: a if min(a[1], int(hsp[6])) - max(a[0], int(hsp[5])) > min(b[1], int(hsp[6])) - max(b[0], int(hsp[5])) else b matched_MDS = reduce(match, overlap) # Assign hsp to MDS hsp[-1] = matched_MDS[-1] #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function calculates the list of gaps in the MAC annotation def getGapsList(MDS_List, MAC_start, MAC_end): # If no MDS, return the whole contig interval if not MDS_List: return [[MAC_start, MAC_end]] # Sort MDS list MDS_List.sort(key=lambda x: x[0]) # Add gap at the begining, if needed Gaps = list() if MDS_List[0][0] - MAC_start > 0: Gaps.append([MAC_start, MDS_List[0][0]-1]) # If there are more than one MDS, then add gaps in between MDSs if len(MDS_List) > 1: prev = MDS_List[0] for x in MDS_List[1:]: if x[0] - prev[1] > 0: Gaps.append([prev[1], x[0]]) prev = x # Check if there is a gap at the end if MAC_end - MDS_List[-1][1] > 0: Gaps.append([MDS_List[-1][1]+1, MAC_end]) return Gaps #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function outputs annotation results into the database load file def updateDatabaseInput(MDS_List, MIC_maps, MIC_to_HSP, left_Tel, right_Tel, mac_length, Output_dir, contig): # If MIC_maps are not empty, then update hsp file if MIC_maps: # Open hsp file to append hspFile = open(Output_dir + '/Database_Input/hsp.tsv', 'a') # Output hsps to file for hsp in MIC_maps: # Get MIC start, end, and orientation, and telomeres micStart = hsp[7] micEnd = hsp[8] micOrient = "+" if int(hsp[7]) > int(hsp[8]): micStart = hsp[8] micEnd = hsp[7] micOrient = "-" tels = 1 if left_Tel != None and right_Tel != None else 0 # Print hsp hspFile.write("\\N\t\\N\t" + hsp[0] + "\t\\N\t" + str(tels) + "\t" + str(hsp[-1]) + "\t" + hsp[5] + "\t" + hsp[6] + "\t\\N\t" + hsp[1] + "\t\\N\t" + micStart + "\t" + micEnd + "\t" + micOrient + "\t" + hsp[3] + "\t" + hsp[2] + "\t" + hsp[4] + "\t" + hsp[9] + "\t" + hsp[10] + "\t" + hsp[11] + "\n") # close hsp file hspFile.close() # If MDS list is not empty, then update mds file if MDS_List: # Open mds file to append mdsFile = open(Output_dir + '/Database_Input/mds.tsv', 'a') # Output mdss to file for mds in MDS_List: #Print mds mdsFile.write("\\N\t\\N\t" + contig + "\t" + str(mds[-1]) + "\t" + str(mds[0]) + "\t" + str(mds[1]) + "\t" + str(mds[1] - mds[0] + 1) + "\t" + str(mds[2]) + "\n") # Close mds file mdsFile.close() # Update telomeres file telFile = open(Output_dir + '/Database_Input/tel.tsv', 'a') # Get number of telomeres tel_num = 0 if left_Tel: tel_num += 1 if right_Tel: tel_num += 1 # Output to file telFile.write("\\N\t\\N\t\\N\t" + contig + "\t" + str(mac_length) + "\t" + str(tel_num) + "\t") # Info about left telomere if left_Tel: telFile.write(str(left_Tel[0]) + "\t" + str(left_Tel[1]) + "\t" + str(left_Tel[1] - left_Tel[0] + 1) + "\t") else: telFile.write("\\N\t\\N\t0\t") # infor about right telomere if right_Tel: telFile.write(str(right_Tel[0]) + "\t" + str(right_Tel[1]) + "\t" + str(right_Tel[1] - right_Tel[0] + 1) + "\n") else: telFile.write("\\N\t\\N\t0\n") telFile.close() # Update arrange table file arrFile = open(Output_dir + '/Database_Input/arr.tsv', 'a') # For each mic to mac map, output database entry for mic in MIC_to_HSP: # Get hsp list and declare variables hsp_list = sorted(MIC_to_HSP[mic], key=lambda x: int(x[7]) if int(x[7]) < int(x[8]) else int(x[8])) Arrangement = [] nuc_shared = 0 mismatch = 0 dist_mds = set() # Iterate through hsp_list and get all needed information for hsp in hsp_list: Arrangement.append(-hsp[-1] if int(hsp[7]) > int(hsp[8]) else hsp[-1]) nuc_shared += (int(hsp[3]) - int(hsp[4])) mismatch += int(hsp[4]) dist_mds.add(hsp[-1]) """"# Put Arrangement into the least inversion form Arrangement_I = [] for i in range(len(Arrangement) - 1, -1, -1): m = Arrangement[i] Arrangement_I.append(-1 * m) if getNumber_Inv_MDS(Arrangement_I) < getNumber_Inv_MDS(Arrangement): Arrangement = Arrangement_I #Arrangement = toCanonicalForm(Arrangement, len(MDS_List)) """ # Build arrangement string arrangement = "" for m in Arrangement[:-1]: if m > 0: arrangement += str(m) + ":0|" else: arrangement += str(-m) + ":1|" if Arrangement[-1] > 0: arrangement += str(Arrangement[-1]) + ":0" else: arrangement += str(-Arrangement[-1]) + ":1" # Output arrangement table entry arrFile.write("\\N\t\\N\t" + contig + "\t\\N\t" + str(mac_length) + "\t" + hsp_list[0][11] + "\t\\N\t" + mic + "\t\\N\t\\N\t\\N\t" + str(nuc_shared) + "\t" + str(len(dist_mds)) + "\t" + str(mismatch) + "\t" + ("1" if len(MDS_List) == len(dist_mds) else "0") + "\t" + ("1" if is_Scrambled(hsp_list, len(MDS_List), len(MDS_List)==len(dist_mds)) else "0") + "\t" + arrangement + "\n") arrFile.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function sorts hsp list def sortHSP_List(MIC_maps): # Define sort function that will sort by: # 1) Higher Coverage, 2) Higher Length, 3) Higher Persent identity match, 4) Lower Bitscore, 5) MIC, 6) the hsp start position in the MAC sort_func = key=lambda x: (float(x[11]), int(x[3]), float(x[2]), -float(x[10]), x[1], -int(x[5])) # Run sort MIC_maps.sort(key = sort_func, reverse=True) #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function runs telomeric regular expression, identifies telomere (if any) and stores telomeric sequences in the list # Note: side = 5 is for 5' telomere and side = 3 is for 3' telomere def identifyTelomere(reg_exp, seq, tel_seq, side): # Telomere to return tel_toReturn = None # Get the list of telomeric sequences telomeres = reg_exp.finditer(seq) tel_positions = sorted([(m.span()[0] + 1, m.span()[1] + 1) for m in telomeres]) # If this is a 5' telomeres if side == 5: # Go through each telomeric seq and build a telomere ind = 0 for coord in tel_positions: if coord[1] - coord[0] >= Options['TelomereLength'] and coord[0] <= Options['TelomereEndLimit']: tel_toReturn = [coord[0], coord[1]] ind += 1 break if coord[0] > Options['TelomereEndLimit']: break ind += 1 # check if left (5') telomeres can be extended if tel_toReturn and tel_positions: for tel in tel_positions[ind:]: # If two telomeric sequences are within tolerance error, merge them if tel[0] - tel_toReturn[1] > Options["TelomericErrorTolerance"]: break tel_toReturn[1] = tel[1] # If this is a 3' telomeres elif side == 3: # Go through each telomeric seq and build a telomere ind = 0 for coord in reversed(tel_positions): if coord[1] - coord[0] >= Options['TelomereLength'] and len(seq) - coord[1] <= Options['TelomereEndLimit']: tel_toReturn = [coord[0], coord[1]] ind += 1 break if len(seq) - coord[1] > Options['TelomereEndLimit']: break ind += 1 # check if right (3') telomeres can be extended if tel_toReturn and tel_positions: for i in range(len(tel_positions) - ind - 1, -1, -1): tel = tel_positions[i] # If two telomeric sequences are within tolerance error, merge them if tel_toReturn[0] - tel[1] > Options["TelomericErrorTolerance"]: break tel_toReturn[0] = tel[0] # We have an error else: print("Error in identifyTelomere function, side = ", side, " while allowed values are 3 and 5") sys.exit() # Remove too short, non-telomeric sequences if tel_toReturn: tel_positions = [x for x in tel_positions if (x[1] - x[0] + 1) >= Options['TelomereLength'] or (tel_toReturn[0] <= x[0] and tel_toReturn[1] >= x[1])] else: tel_positions = [x for x in tel_positions if (x[1] - x[0] + 1) >= Options['TelomereLength']] # Append telomeric positions to tel_seq list tel_seq += tel_positions return tel_toReturn #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function updates gff files, option distinguishes between 1 - mac and 2 - mic annotation files def updateGFF(contig, MDS_List, Output_dir, option): # Output gff annotation for MAC if option == 1: # Open gff file gff = open(Output_dir + "/GFF/mac_annotation.gff3", "a") # Output every mds for mds in MDS_List: gff.write(contig + "\tMI-ASS\tmds\t" + str(mds[0]) + "\t" + str(mds[1]) + "\t" + ".\t.\t.\tName=mds_" + str(mds[-1]) + ";Target=" + contig + "\n") gff.close() # Output gff annotation for MIC else: # Open gff file gff = open(Output_dir + "/GFF/mic_annotation.gff3", "a") # Output every mds for mds in MDS_List: gff.write(contig + "\tMI-ASS\t" + ("mds" if mds[2] == 0 else "ies") + "\t" + str(mds[0]) + "\t" + str(mds[1]) + "\t" + ".\t.\t.\tName=" + ("mds_" if mds[2] == 0 else "ies_") + str(mds[-1]) + ";Target=" + contig + "\n") gff.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function identifies best MIC contigs from which MAC was mapped and identifies scrambling def identify_MIC_patterns(MIC_maps, MDS_List, MIC_to_HSP, Output_dir): if not MIC_maps: return # Variables for updating statistics on scrambled and complete stat_Scrambled = False stat_Complete = False stat_CompletScrambled = False # map MIC contigs to number of distinct mdss it has cont_to_mds = {} for mic in MIC_to_HSP: mdsNUM = len(set([x[-1] for x in MIC_to_HSP[mic]])) cont_to_mds[mic] = mdsNUM MICs = list(MIC_to_HSP.keys()) # Sort by: # 1) The biggest number of distinct MDSs MIC has and 2) The highest MIC coverage MICs.sort(key=lambda x: (cont_to_mds[x], float(MIC_to_HSP[x][0][11])), reverse=True) # Output all arrangements out = open(Output_dir + "/Scrambling/all.tsv", "a") for mic in MICs: # Also, build MIC arrangement Arrangement = [] next = sorted(MIC_to_HSP[mic], key=lambda x: int(x[7]) if int(x[7]) < int(x[8]) else int(x[8])) out.write(MIC_maps[0][0] + "\t" + mic + "\t" + "{") for hsp in next[:-1]: out.write(("-" if int(hsp[7]) > int(hsp[8]) else "") + str(hsp[-1]) + ",") Arrangement.append(-hsp[-1] if int(hsp[7]) > int(hsp[8]) else hsp[-1]) out.write(("-" if int(next[-1][7]) > int(next[-1][8]) else "") + str(next[-1][-1]) + "}\t") Arrangement.append(-next[-1][-1] if int(next[-1][7]) > int(next[-1][8]) else next[-1][-1]) # Check if this is a complete mapping if cont_to_mds[mic] == len(MDS_List): stat_Complete = True out.write("Complete\t") else: out.write("Incomplete\t") # check if it is a scrambled contig if(is_Scrambled(next, len(MDS_List), cont_to_mds[mic] == len(MDS_List))): stat_Scrambled = True out.write("Scrambled\t") # Update stats for complete and scrambled if cont_to_mds[mic] == len(MDS_List): stat_CompletScrambled = True else: out.write("Non-Scrambled\t") # Get reduced arrangement and put it into canonical form relabelMDS(Arrangement) Arrangement_1 = [] removeRepeatingLetters(Arrangement, Arrangement_1) mdsNumber = reduceArrangement(Arrangement_1, Arrangement) Arrangement = toCanonicalForm(Arrangement, mdsNumber) # Print to file out.write("{" + arrangementToString(Arrangement) + "}\n") # Select the best MIC to MAC maps taken from the sorting procedure best_mic = MICs[0] hsp_list = sorted(MIC_to_HSP[best_mic], key=lambda x: int(x[7]) if int(x[7]) < int(x[8]) else int(x[8])) # Process this contig and its hsp process_MIC_MAC_map(hsp_list, cont_to_mds[best_mic] == len(MDS_List), len(MDS_List), Output_dir) # If this is a complete map, then check if there are any other good mic maps and process them if cont_to_mds[best_mic] == len(MDS_List): for mic in MICs[1:]: if cont_to_mds[mic] != len(MDS_List): break next = sorted(MIC_to_HSP[mic], key=lambda x: int(x[7]) if int(x[7]) < int(x[8]) else int(x[8])) process_MIC_MAC_map(next, cont_to_mds[mic] == len(MDS_List), len(MDS_List), Output_dir) # Else, check for other MICs that have similar MDS number and MAC coverage else: rest_mic = [x for x in MICs if cont_to_mds[x] == cont_to_mds[best_mic] and float(MIC_to_HSP[x][0][11]) == float(MIC_to_HSP[best_mic][0][11])] rest_mic.remove(best_mic) for mic in rest_mic: next = sorted(MIC_to_HSP[mic], key=lambda x: int(x[7]) if int(x[7]) < int(x[8]) else int(x[8])) process_MIC_MAC_map(next, cont_to_mds[mic] == len(MDS_List), len(MDS_List), Output_dir) # Update stats if stat_Complete: identify_MIC_patterns.scrambled += 1 if stat_Scrambled: identify_MIC_patterns.complete += 1 if stat_CompletScrambled: identify_MIC_patterns.complete_scrambled += 1 out.close() identify_MIC_patterns.scrambled = 0 identify_MIC_patterns.complete = 0 identify_MIC_patterns.complete_scrambled = 0 #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function checks whether a given arrangement given by hsp list is scrambled # Note: is_complete can be set to False when it is not known if a map is complete def is_Scrambled(MIC, mdsNum, is_complete): # Get string of MIC pattern s = "" if is_complete: # Build string directly for hsp in MIC[:-1]: s += ("-" if int(hsp[7]) > int(hsp[8]) else "") + str(hsp[-1]) + "," s += ("-" if int(MIC[-1][7]) > int(MIC[-1][8]) else "") + str(MIC[-1][-1]) else: # Get set of MDSs and turn it into sorted list present_mdss = sorted(list({int(x[-1]) for x in MIC})) # Get MDS index map ind = 1 MDS_map = dict() for mds in present_mdss: MDS_map[mds] = ind ind += 1 # Update mdsNum mdsNum = ind - 1 # Build string for hsp in MIC[:-1]: s += ("-" if int(hsp[7]) > int(hsp[8]) else "") + str(MDS_map[hsp[-1]]) + "," s += ("-" if int(MIC[-1][7]) > int(MIC[-1][8]) else "") + str(MDS_map[MIC[-1][-1]]) # Get regular expressions for non-scrambled patterns r1 = "" for i in range(1, mdsNum): r1 += str(i) + ",(-?[0-9]*,)*" r1 += str(mdsNum) r2 = "" for i in range(mdsNum, 1, -1): r2 += "-" + str(i) + ",(-?[0-9]*,)*" r2 += "-1" #print("Reg exp 1: ", r1) #print("Reg exp 2: ", r2) # Check for non-scrambled pattern 1 r1_comp = re.compile(r1) if r1_comp.search(s): return False # Check for non-scrambled pattern 2 r2_comp = re.compile(r2) if r2_comp.search(s): return False # If program have not returned, then it is a scrambled pattern return True #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function saves current hsp as best MIC to MAC map, brings MIC arrangement into the standard form and reduces it def process_MIC_MAC_map(hsp_list, is_complete, mdsNum, Output_dir): # First, get MIC arrangement Arrangement_0 = [] if is_complete: # Build arrangement directly for hsp in hsp_list: Arrangement_0.append(-hsp[-1] if int(hsp[7]) > int(hsp[8]) else hsp[-1]) else: # Get set of MDSs and turn it into sorted list present_mdss = sorted(list({int(x[-1]) for x in hsp_list})) # Get MDS index map ind = 1 MDS_map = dict() for mds in present_mdss: MDS_map[mds] = ind ind += 1 # Update mdsNum mdsNum = ind - 1 # Build arrangement for hsp in hsp_list: Arrangement_0.append(-MDS_map[hsp[-1]] if int(hsp[7]) > int(hsp[8]) else MDS_map[hsp[-1]]) # Remove consecutive repeating letters (ex: 1, 2, 3, 3, 4, 5, 5, 5 - > 1, 2, 3, 4, 5) Arrangement = [] removeRepeatingLetters(Arrangement_0, Arrangement) # Get arrangement in the canonical form Arrangement = toCanonicalForm(Arrangement, mdsNum) # Get reduced arrangement Reduced = [] mdsNum = reduceArrangement(Arrangement, Reduced) # Put reduced arrangement into the canonical form Reduced = toCanonicalForm(Reduced, mdsNum) # Output result out = open(Output_dir + "/Scrambling/good_maps.tsv", "a") out.write(hsp_list[0][0] + "\t" + hsp_list[0][1] + "\t" + "{" + arrangementToString(Arrangement) + "}\t{" + arrangementToString(Reduced) + "}\n") out.close() #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function takes Arrangement, relabels all mdss to start from MDS 1, and return mds number def relabelMDS(Arrangement): # Get set of MDSs and turn it into sorted list present_mdss = sorted(list({abs(x) for x in Arrangement})) # Get MDS index map ind = 1 MDS_map = dict() for mds in present_mdss: MDS_map[mds] = ind ind += 1 mdsNumber = ind-1 # Relabel arrangement for i in range(0, len(Arrangement)): Arrangement[i] = (-MDS_map[abs(Arrangement[i])] if Arrangement[i] < 0 else MDS_map[abs(Arrangement[i])]) return mdsNumber #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function takes Arrangement_init, removes repeating letters and stores result in Arrangement_fin def removeRepeatingLetters(Arrangement_init, Arrangement_fin): Arrangement_fin[:] = [Arrangement_init[0]] if len(Arrangement_init) > 1: prev = Arrangement_init[0] for m in Arrangement_init[1:]: if m != prev: Arrangement_fin.append(m) prev = m #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function takes Arrangement, reduces it by merging consecutive mdss, relabels mdss, stores result into the Arrangment_red list, and returns # number of mdss def reduceArrangement(Arrangement, Arrangement_red): reduced = [Arrangement[0]] if len(Arrangement) > 1: prev = Arrangement[0] for m in Arrangement[1:]: # If both positive and increasing, continue if m > 0 and prev > 0 and m == prev + 1: prev = m continue # If both negative and decreasing, continue elif m < 0 and prev < 0 and m == prev + 1: prev = m continue # Else, append it to the reduced list reduced.append(m) prev = m # Get index map ind = 1 Ind_map = dict() for mds in sorted(list({abs(x) for x in reduced})): Ind_map[mds] = ind ind += 1 # Get mds number mdsNum = ind-1 # Map mdss to for reduced arrangement Arrangement_red[:] = [] for mds in reduced: Arrangement_red.append(-Ind_map[abs(mds)] if mds < 0 else Ind_map[abs(mds)]) # Return number of mdss return mdsNum #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function counts number of inverted MDSs in the arrangement def getNumber_Inv_MDS(Arrangement): count = 0 for m in Arrangement: if m < 0: count += 1 return count #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function puts arrangement to string def arrangementToString(Arrangement): s = "" for m in Arrangement[:-1]: s += str(m) + ", " s += str(Arrangement[-1]) return s #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function returns the position of the first inversion in the arrangement def firstInv(Arrangement): for i in range(0, len(Arrangement)): if Arrangement[i] < 0: return i+1 # No inversions return 0 #------------------------------------------------------------------------------------------------------------------------------------------------------------------ # This function takes MIC arrangement return the canonical form of it def toCanonicalForm(Arrangement, mdsNum): # Put arrangement in the right order: # 1) minimal number of inversions, 2) lowest lexicographical order, 3) delay first inversion # Get the other 3 arrangements first Arrangement_I = [] for i in range(len(Arrangement) - 1, -1, -1): m = Arrangement[i] Arrangement_I.append(-1 * m) Arrangement_A = [] for m in Arrangement: if m > 0: Arrangement_A.append(-1 * (mdsNum + 1 - m)) else: Arrangement_A.append(mdsNum + 1 - abs(m)) Arrangement_AI = [] for i in range(len(Arrangement_A) - 1, -1, -1): m = Arrangement_A[i] Arrangement_AI.append(-1 * m) # Put all arrangements in the list and sort it by above criterias Arrangement_List = [Arrangement, Arrangement_I, Arrangement_A, Arrangement_AI] Arrangement_List.sort(key=lambda x: (getNumber_Inv_MDS(x), arrangementToString(x), -firstInv(x))) return Arrangement_List[0] #------------------------------------------------------------------------------------------------------------------------------------------------------------------
the-stack_106_19736
''' Common parameters: - variant_genotypes <numpy float array of shape (n_variants, n_samples, n_alleles [3])>: For every variant and in the gene (indexed by the first dimension) and every sample (indexed by the second dimension), what are the three probabilities of it being either: i) homozygous allele-1, ii) heterozygous, iii) homozygous allele-2. The three probabilities must be non-negative summing up to 1. - effect_scores: <numpy float array of shape (n_variants,)>: The effect score (in the range 0 to 1) of every relevant variant in the gene. - allele1_refs: <numpy bool array of shape (n_variants,)>: Whether allele-1 is the reference variant (True) or allele-2 (False) for every relevant variant in the gene. ''' import numpy as np def calc_gene_dominant_effect_scores(variant_genotypes, effect_scores, allele1_refs, u, p, dtype = np.float32): x = calc_xy(variant_genotypes, effect_scores, allele1_refs, u, also_y = False, dtype = dtype) return calc_D(x, p) def calc_gene_recessive_effect_scores(variant_genotypes, effect_scores, allele1_refs, u, p, q, dtype = np.float32): x, y = calc_xy(variant_genotypes, effect_scores, allele1_refs, u, dtype = dtype) return calc_R(x, y, p, q) def calc_xy(variant_genotypes, effect_scores, allele1_refs, u, also_y = True, dtype = np.float32): ''' The shape of x, y: (n_variants, n_samples) ''' variant_genotypes = variant_genotypes.astype(dtype) effect_scores = effect_scores.astype(dtype) p = np.where(allele1_refs.reshape(-1, 1, 1), variant_genotypes, variant_genotypes[:, :, ::-1]) s = effect_scores.reshape(-1, 1) p0 = p[:, :, 0] p1 = p[:, :, 1] p2 = p[:, :, 2] x = p0 + p1 * s + p2 * (u * s + (1 - u) * np.square(s)) if also_y: y = p1 * (1 - s) + p2 * ((1 - u) * 2 * s * (1 - s)) return x, y else: return x def calc_D(x, p): minus_log_x = -np.log(x) lp_minus_log_x = np.linalg.norm(minus_log_x, p, axis = 0) return np.exp(-lp_minus_log_x) def calc_R(x, y, p, q): x_zero_mask = (x == 0) num_zero_x = x_zero_mask.sum(axis = 0) no_zero_x_mask = (num_zero_x == 0) one_zero_x_mask = (num_zero_x == 1) R = np.zeros_like(num_zero_x, dtype = x.dtype) if one_zero_x_mask.any(): R[one_zero_x_mask] = calc_R_with_one_zero_x(x[:, one_zero_x_mask], y[:, one_zero_x_mask], \ x_zero_mask[:, one_zero_x_mask], p) if no_zero_x_mask.any(): R[no_zero_x_mask] = calc_R_with_no_zero_x(x[:, no_zero_x_mask], y[:, no_zero_x_mask], p, q) return R def calc_R_with_one_zero_x(x, y, x_zero_mask, p): if p == 1: return y[np.where(x_zero_mask)] else: return np.where(x_zero_mask, y, x).prod(axis = 0) def calc_R_with_no_zero_x(x, y, p, q): zeta = np.linalg.norm(y / x, q, axis = 0) D = calc_D(x, p) return (zeta + 1) * D
the-stack_106_19738
""" Util functions for csgo package """ import json import numpy as np import re import subprocess class AutoVivification(dict): """Implementation of perl's autovivification feature. Stolen from https://stackoverflow.com/questions/651794/whats-the-best-way-to-initialize-a-dict-of-dicts-in-python""" def __getitem__(self, item): try: return dict.__getitem__(self, item) except KeyError: value = self[item] = type(self)() return value def check_go_version(): """Function to check the Golang version of the current machine, returns True if greater than 1.14.0""" try: proc = subprocess.Popen(["go", "version"], stdout=subprocess.PIPE) parsed_resp = proc.stdout.read().splitlines() if len(parsed_resp) != 1: raise ValueError("Error finding Go version") else: go_version_text = parsed_resp[0].decode("utf-8") go_version = re.findall(r"\d\.\d+", go_version_text) if int(go_version[0].replace(".", "")) >= 114: return True else: return False except Exception as e: print(e) return False def is_in_range(value, min, max): if value >= min and value <= max: return True else: return False def transform_csv_to_json(sampleCsv): """From Adi.""" finalDic = {} for curMap in sampleCsv["mapName"].unique(): mapDic = {} for i in sampleCsv[sampleCsv["mapName"] == curMap].index: curTile = sampleCsv.iloc[i] curDic = {} for curFeature in sampleCsv.columns: if curFeature not in ["mapName", "areaId"]: curDic[curFeature] = curTile[curFeature] mapDic[curTile["areaId"]] = curDic finalDic[curMap] = mapDic return finalDic
the-stack_106_19739
import math, random import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import torch.nn.functional as F from common.replay_buffer import ReplayBuffer import matplotlib.pyplot as plt env_id = "LunarLander-v2" env = gym.make(env_id) class NoisyLinear(nn.Module): def __init__(self, in_features, out_features, std_init=0.4): super(NoisyLinear, self).__init__() self.in_features = in_features self.out_features = out_features self.std_init = std_init self.weight_mu = nn.Parameter(torch.FloatTensor(out_features, in_features)) self.weight_sigma = nn.Parameter(torch.FloatTensor(out_features, in_features)) self.register_buffer('weight_epsilon', torch.FloatTensor(out_features, in_features)) self.bias_mu = nn.Parameter(torch.FloatTensor(out_features)) self.bias_sigma = nn.Parameter(torch.FloatTensor(out_features)) self.register_buffer('bias_epsilon', torch.FloatTensor(out_features)) self.reset_parameters() self.reset_noise() def forward(self, x): if self.training: weight = self.weight_mu + self.weight_sigma.mul(autograd.Variable(self.weight_epsilon)) bias = self.bias_mu + self.bias_sigma.mul(autograd.Variable(self.bias_epsilon)) else: weight = self.weight_mu bias = self.bias_mu return F.linear(x, weight, bias) def reset_parameters(self): mu_range = 1 / math.sqrt(self.weight_mu.size(1)) self.weight_mu.data.uniform_(-mu_range, mu_range) self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.weight_sigma.size(1))) self.bias_mu.data.uniform_(-mu_range, mu_range) self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.bias_sigma.size(0))) def reset_noise(self): epsilon_in = self._scale_noise(self.in_features) epsilon_out = self._scale_noise(self.out_features) self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in)) self.bias_epsilon.copy_(self._scale_noise(self.out_features)) def _scale_noise(self, size): x = torch.randn(size) x = x.sign().mul(x.abs().sqrt()) return x class CategoricalDQN(nn.Module): def __init__(self, num_inputs, num_actions, num_atoms, Vmin, Vmax): super(CategoricalDQN, self).__init__() self.num_inputs = num_inputs self.num_actions = num_actions self.num_atoms = num_atoms self.Vmin = Vmin self.Vmax = Vmax self.linear1 = nn.Linear(num_inputs, 128) self.linear2 = nn.Linear(128, 128) self.noisy1 = NoisyLinear(128, 512) self.noisy2 = NoisyLinear(512, self.num_actions * self.num_atoms) def forward(self, x): x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = F.relu(self.noisy1(x)) x = self.noisy2(x) x = F.softmax(x.view(-1, self.num_atoms)).view(-1, self.num_actions, self.num_atoms) return x def reset_noise(self): self.noisy1.reset_noise() self.noisy2.reset_noise() def act(self, state): state = autograd.Variable(torch.FloatTensor(state).unsqueeze(0), volatile=True) dist = self.forward(state).data.cpu() dist = dist * torch.linspace(Vmin, Vmax, num_atoms) action = dist.sum(2).max(1)[1].numpy()[0] return action def projection_distribution(next_state, rewards, dones): batch_size = next_state.size(0) delta_z = float(Vmax - Vmin) / (num_atoms - 1) support = torch.linspace(Vmin, Vmax, num_atoms) next_dist = target_model(next_state).data.cpu() * support next_action = next_dist.sum(2).max(1)[1] next_action = next_action.unsqueeze(1).unsqueeze(1).expand(next_dist.size(0), 1, next_dist.size(2)) next_dist = next_dist.gather(1, next_action).squeeze(1) rewards = rewards.unsqueeze(1).expand_as(next_dist) dones = dones.unsqueeze(1).expand_as(next_dist) support = support.unsqueeze(0).expand_as(next_dist) Tz = rewards + (1 - dones) * 0.99 * support Tz = Tz.clamp(min=Vmin, max=Vmax) b = (Tz - Vmin) / delta_z l = b.floor().long() u = b.ceil().long() offset = torch.linspace(0, (batch_size - 1) * num_atoms, batch_size).long()\ .unsqueeze(1).expand(batch_size, num_atoms) proj_dist = torch.zeros(next_dist.size()) proj_dist.view(-1).index_add_(0, (l + offset).view(-1), (next_dist * (u.float() - b)).view(-1)) proj_dist.view(-1).index_add_(0, (u + offset).view(-1), (next_dist * (b - l.float())).view(-1)) return proj_dist num_atoms = 51 Vmin = -10 Vmax = 10 current_model = CategoricalDQN(env.observation_space.shape[0], env.action_space.n, num_atoms, Vmin, Vmax) target_model = CategoricalDQN(env.observation_space.shape[0], env.action_space.n, num_atoms, Vmin, Vmax) optimizer = optim.Adam(current_model.parameters()) replay_buffer = ReplayBuffer(10000) def update_target(current_model, target_model): target_model.load_state_dict(current_model.state_dict()) update_target(current_model, target_model) def compute_td_loss(batch_size): state, action, reward, next_state, done = replay_buffer.sample(batch_size) state = autograd.Variable(torch.FloatTensor(np.float32(state))) next_state = autograd.Variable(torch.FloatTensor(np.float32(next_state)), volatile=True) action = autograd.Variable(torch.LongTensor(action)) reward = torch.FloatTensor(reward) done = torch.FloatTensor(np.float32(done)) proj_dist = projection_distribution(next_state, reward, done) dist = current_model(state) action = action.unsqueeze(1).unsqueeze(1).expand(batch_size, 1, num_atoms) dist = dist.gather(1, action).squeeze(1) dist.data.clamp_(0.01, 0.99) loss = - (autograd.Variable(proj_dist) * dist.log()).sum(1).mean() optimizer.zero_grad() loss.backward() optimizer.step() current_model.reset_noise() target_model.reset_noise() return loss def plot(frame_idx, rewards, losses): plt.figure(figsize=(20,5)) plt.subplot(131) plt.title('frame %s. reward: %s' % (frame_idx, np.mean(rewards[-10:]))) plt.plot(rewards) plt.subplot(132) plt.title('loss') plt.plot(losses) plt.show() num_frames = 100000 batch_size = 32 gamma = 0.99 losses = [] all_rewards = [] episode_reward = 0 state = env.reset() for frame_idx in range(1, num_frames + 1): action = current_model.act(state) next_state, reward, done, _ = env.step(action) replay_buffer.push(state, action, reward, next_state, done) state = next_state episode_reward += reward if done: state = env.reset() all_rewards.append(episode_reward) episode_reward = 0 if len(replay_buffer) > batch_size: loss = compute_td_loss(batch_size) losses.append(loss.item()) if frame_idx % 2000 == 0: plot(frame_idx, all_rewards, losses) if frame_idx % 100 == 0: update_target(current_model, target_model)
the-stack_106_19740
import click import cv2 import numpy as np import shutil from tqdm import tqdm from pathlib import Path @click.command() @click.option("--input-dir", "-i", default="./annotations") @click.option("--output-dir", "-o", default="./masks") @click.option("--background-label", "-b", default=0) @click.option("--removal-target-label", "-r", default=2) def main(input_dir, output_dir, background_label, removal_target_label): input_dir_pathlib = Path(input_dir) output_dir_pathlib = Path(output_dir) if output_dir_pathlib.exists(): shutil.rmtree(output_dir) output_dir_pathlib.mkdir() seg_path_list = [path for path in input_dir_pathlib.glob("*") if path.suffix in [".jpg", ".png"]] for seg_path in tqdm(seg_path_list): seg_mask = cv2.imread(str(seg_path), cv2.IMREAD_ANYDEPTH) mask_name = seg_path.name binary_mask = np.ones_like(seg_mask) * 255 binary_mask[seg_mask == removal_target_label] = 0 binary_mask = binary_mask.astype(np.uint8) output_mask_pathstr = str(output_dir_pathlib.joinpath(mask_name)) cv2.imwrite(output_mask_pathstr, binary_mask) cv2.waitKey(10) if __name__ == "__main__": main()
the-stack_106_19741
import argparse import os import torch import torch.nn as nn import torch.utils.data as data class Configs(object): @staticmethod def base_config(): parser = argparse.ArgumentParser() parser.add_argument("--classifier", type=str, default="vdpwi", choices=["vdpwi", "resnet"]) parser.add_argument("--clip_norm", type=float, default=50) parser.add_argument("--cpu", action="store_true", default=False) parser.add_argument("--dataset", type=str, default="sick", choices=["sick"]) parser.add_argument("--decay", type=float, default=0.95) parser.add_argument("--input_file", type=str, default="local_saves/model.pt") parser.add_argument("--lr", type=float, default=5E-4) parser.add_argument("--mbatch_size", type=int, default=16) parser.add_argument("--mode", type=str, default="train", choices=["train", "test"]) parser.add_argument("--momentum", type=float, default=0.1) parser.add_argument("--n_epochs", type=int, default=35) parser.add_argument("--n_labels", type=int, default=5) parser.add_argument("--optimizer", type=str, default="rmsprop", choices=["adam", "sgd", "rmsprop"]) parser.add_argument("--output_file", type=str, default="local_saves/model.pt") parser.add_argument("--res_fmaps", type=int, default=32) parser.add_argument("--res_layers", type=int, default=16) parser.add_argument("--restore", action="store_true", default=False) parser.add_argument("--rnn_hidden_dim", type=int, default=250) parser.add_argument("--weight_decay", type=float, default=1E-5) parser.add_argument("--wordvecs_file", type=str, default="local_data/glove/glove.840B.300d.txt") return parser.parse_known_args()[0] @staticmethod def sick_config(): parser = argparse.ArgumentParser() parser.add_argument("--n_labels", type=int, default=5) parser.add_argument("--sick_cache", type=str, default="local_data/sick/.vec-cache") parser.add_argument("--sick_data", type=str, default="local_data/sick") return parser.parse_known_args()[0] class LabeledEmbeddedDataset(data.Dataset): def __init__(self, sentence_indices1, sentence_indices2, labels, compare_labels=None): assert len(sentence_indices1) == len(labels) == len(sentence_indices2) self.sentence_indices1 = sentence_indices1 self.sentence_indices2 = sentence_indices2 self.labels = labels self.compare_labels = compare_labels def __getitem__(self, idx): cmp_lbl = None if self.compare_labels is None else self.compare_labels[idx] return self.sentence_indices1[idx], self.sentence_indices2[idx], self.labels[idx], cmp_lbl def __len__(self): return len(self.labels) def load_sick(): config = Configs.sick_config() def fetch_indices(name): sentence_indices = [] filename = os.path.join(config.sick_data, dataset, name) with open(filename) as f: for line in f: indices = [embed_ids.get(word, -1) for word in line.strip().split()] indices = list(filter(lambda x: x >= 0, indices)) sentence_indices.append(indices) return sentence_indices def read_labels(filename): labels = [] with open(filename) as f: for line in f: labels.append([float(val) for val in line.split()]) return labels sets = [] embeddings = [] embed_ids = {} with open(os.path.join(config.sick_cache)) as f: for i, line in enumerate(f): word, vec = line.split(" ", 1) vec = list(map(float, vec.strip().split())) embed_ids[word] = i embeddings.append(vec) padding_idx = len(embeddings) embeddings.append([0.0] * 300) for dataset in ("train", "dev", "test"): sparse_filename = os.path.join(config.sick_data, dataset, "sim_sparse.txt") truth_filename = os.path.join(config.sick_data, dataset, "sim.txt") sparse_labels = read_labels(sparse_filename) cmp_labels = read_labels(truth_filename) indices1 = fetch_indices("a.toks") indices2 = fetch_indices("b.toks") sets.append(LabeledEmbeddedDataset(indices1, indices2, sparse_labels, cmp_labels)) embedding = nn.Embedding(len(embeddings), 300) embedding.weight.data.copy_(torch.Tensor(embeddings)) embedding.weight.requires_grad = False return embedding, sets def load_dataset(dataset): return _loaders[dataset]() _loaders = dict(sick=load_sick)
the-stack_106_19745
"""fyle_qbo URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.urls import path from .views import VendorView, AccountView, ClassView, DepartmentView, BillView, BillScheduleView, CustomerView urlpatterns = [ path('vendors/', VendorView.as_view({'get': 'get_vendors'})), path('accounts/', AccountView.as_view({'get': 'get_accounts'})), path('classes/', ClassView.as_view({'get': 'get_classes'})), path('departments/', DepartmentView.as_view({'get': 'get_departments'})), path('customers/', CustomerView.as_view({'get': 'get_customers'})), path('bills/', BillView.as_view()), path('bills/trigger/', BillScheduleView.as_view()) ]
the-stack_106_19746
import easyocr import sys sys.path.append("../../") sys.path.append(".") import argparse from common.utility import * from moviepy.video.io.ffmpeg_reader import FFMPEG_VideoReader from moviepy.editor import VideoFileClip def camera_time_pos(camNO): return load_time_pos_setting(config_folder, camNO) def getImgTime(frame, postion, verbose=True): t_tl_y, t_br_y, t_tl_x, t_br_x = postion frame_area = frame[t_tl_y:t_br_y, t_tl_x:t_br_x] # 裁剪时间 if verbose: # print(result) cv2.imshow('frame', frame) cv2.imshow('frame area', frame_area) cv2.waitKey(100) result = reader.readtext(frame_area.copy()) if DEBUG: print(f"recognize ocr result is {result}") if len(result) == 0: time_str = str(int(time.time())) if DEBUG: print(f"current frame can not be recognized by OCR") return time_str else: time_str = "" for ires in result: time_str += ires[1] + ' ' print(f"str format time_str is {time_str}") try: time_str = time_str.replace("Z", '2').replace("z", '2').\ replace("O", '0').replace("o", '0').replace("a",'0').\ replace("k", '4').replace("Q", '0').replace("S", '5').\ replace("12021", "2021").replace("B", "8") digital_time_str = re.findall('\d+', time_str) digital_str = "".join(digital_time_str) assert len(digital_str) == 14, 'orc result digital error!' time_str = "_".join(digital_time_str) assert len(time_str) == 19, 'orc result length is smaller than true label!' except: if DEBUG: print("extract date frome OCR failed") year = time_str[0:4] month = time_str[5:7] day = time_str[8:10] hh = time_str[11:13] mm = time_str[14:16] ss = time_str[17:19] time_str = f"{year}_{month}_{day}_{hh}_{mm}_{ss}" return time_str.strip() def isStartFrame(frame_time_str, start_time, current_unix_time): ''' :param frame_time_str: 某一帧的识别时间 :param start_time: 设计的开始时间 :param current_unix_time: 目前的Unix时间,可能会出现该帧识别时间跳回很久之前的情况, load video 的时候设置为-1 :return: ''' try: frame_time_date = time.strptime(frame_time_str, "%Y_%m_%d_%H_%M_%S") frame_unix_time = time.mktime(frame_time_date) start_time_date = time.strptime(start_time, "%Y_%m_%d_%H_%M_%S") start_unix_time = time.mktime(start_time_date) if frame_unix_time > current_unix_time: if current_unix_time == -1: current_unix_time = frame_unix_time print(f"current_unix_time: {current_unix_time}") else: # 需要判断识别日期是否在合理范围内,合理才更新current unix time print(f"frame_unix_time: {frame_unix_time}") print(f"current_unix_time: {current_unix_time}") assert frame_unix_time - start_unix_time < preloading_time, f"{frame_unix_time} is too larger than {current_unix_time}" current_unix_time = frame_unix_time if current_unix_time < start_unix_time: if DEBUG: print(f"current time is slower than start time with {start_unix_time - current_unix_time} s") return False, 0, start_unix_time - current_unix_time, current_unix_time elif current_unix_time == start_unix_time: if DEBUG: print("current frame == start time") return True, 0, 0, current_unix_time else: return False, max_try, -1, current_unix_time except: if DEBUG: print(f"OCR Result can not be formated by function time.strptime") return False, 1, -1, current_unix_time def getImgExp(frame, verbose=False): '''exp_info 存储的值: { 1_1: { 581, 93, 1020, 524 }, 2_CK: { 1050, 79, 1514, 535 } } :param frame: :param exp_info: :return: ''' # 获取当前实验区域最长的边:宽或者高,后续补全padding 到640*640需使用 # iarea = frame[0:h, int(3 * w / 16):int(3 * w / 4)] if frame.shape[0] == 1080: iarea = cv2.resize(frame, (720, 1280)) else: iarea = frame if verbose: cv2.imshow('frame area', iarea) cv2.waitKey(0) return iarea if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--exp_floder", default="E:\\data\\3D_pre\\D2_T1", type=str, help="video shear dirpath") parser.add_argument("--save_path", default="E:\\data\\3D_pre\\D2_T1\\cut_video", type=str, help="video save path") parser.add_argument("--video_name", # default="/home/data/HJZ/zef/0918-0919fish", default="ch13_20211012022645.mp4", type=str, help="video shear dirpath" ) parser.add_argument("--start_time", # default="/home/data/HJZ/zef/0918-0919fish", default="2021_10_12_02_36_00", # default="2020_08_15_07_27_00", type=str, help="vstart_timeideo start to be cut time" ) parser.add_argument("-spt", "--split_time", default="2", type=int, help="split time (s)" ) parser.add_argument("-gpuno", "--gpuno", default="0", type=int, help="gpu no" ) DEBUG = True args = parser.parse_args() exp_floder = args.exp_floder # 遍历路径 config_folder = args.exp_floder # 遍历路径 obj_path = args.save_path # 目标路径 if not os.path.exists(obj_path): os.mkdir(obj_path) video_name = args.video_name # 视频名称 time_str = video_name.split("_")[-1] year = time_str[0:4] month = time_str[4:6] day = time_str[6:8] hh = time_str[8:10] mm = time_str[10:12] ss = time_str[12:14] video_start_time_str = f"{year}_{month}_{day}_{hh}_{mm}_{ss}" start_time = args.start_time # 开始时间 spt = args.split_time # 切割间隔 reader = easyocr.Reader(['en'], gpu=True) # this needs to run only once to load the model into memory processed_list = [ files for files in os.listdir(obj_path) ] DayTank_setting_path = os.path.join(exp_floder, 'settings.ini') failed_time_list = load_Video_start_time(exp_floder, video_name, time_part="VideoStartTime_Failed") # camera_id_list = ['D01', 'D02', 'D04'] camera_id_list = load_Cam_list(config_folder) camNO, VideoTime = video_name.split('_') # 打开文件,准备数据 # cap = cv2.VideoCapture(os.path.join(exp_floder, video_name)) # using moviepy cap = FFMPEG_VideoReader(os.path.join(exp_floder, video_name), True) cap.initialize() # using moviepy # 如果当前帧时间距离设定开始时间过远,time_gap为秒,则需要跳转到 距离开始帧3秒内 _, _, time_gap, current_unix_time = isStartFrame( video_start_time_str, start_time, -1 ) # fps = int(cap.get(cv2.CAP_PROP_FPS)) fps = 25 preloading_time = 30 if time_gap > 11: frame_gap = (time_gap - preloading_time) * fps # cap.set(cv2.CAP_PROP_POS_FRAMES, int(frame_gap)) # cap.set(cv2.CAP_PROP_POS_MSEC, int(time_gap)*1000.0) print(f"jumping {time_gap}") # success, image = cap.read() # print(f"jumping {success}") # using moviepy image = cap.get_frame(time_gap - preloading_time) # using moviepy if DEBUG: cv2.imshow('jump frame area', image) cv2.waitKey(100) fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') # fourcc = cv2.VideoWriter_fourcc('X','2','6','4') # total_frame = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) cut_name = None # starting_flag 用来判断第一帧图像的时间是否小于预计要求的开始时间 start_time starting_flag = True init_videoWriter = False starting_flag_try_times = 0 max_try = preloading_time * fps time_flag = 0 while True: # success, frame = cap.read() # print(f"current frame no: {cap.get(cv2.CAP_PROP_POS_FRAMES)}") # frame = img_as_float(frame) # frame = img_as_ubyte(frame) # ====================== using moviepy ==========================# # cap.skip_frames(10) frame = cap.read_frame() # ====================== using moviepy ==========================# time_pos = camera_time_pos(camNO) frame_time_str = getImgTime(frame, time_pos) # cv2.imshow('frame area', frame) # cv2.waitKey(100) # if time_flag == 0: # cap.set(cv2.CAP_PROP_POS_FRAMES, 45000) # time_flag += 1 # continue # ================= 检查是否是初始帧 ===================== # if starting_flag: # isStartFrame # OCR识别失败,try_times=1, # 当前帧小于开始帧,try_times=-1, # 当前帧大于开始帧,try_times=max_try, isStartFrame_flag, try_times, time_gap, current_unix_time = isStartFrame(frame_time_str, start_time, current_unix_time) if DEBUG: print(f"time gap is {time_gap}") # 如果是开始帧,则之后的starting flag都置为False,不在检查帧时间 if isStartFrame_flag: starting_flag = False # 第一个视频 # ================= 正式开始截取视频 ===================== # old_time_str = start_time cut_name = start_time exp_frame = getImgExp(frame) # exp_frame: 2_CK: 截取的frame 画面 if DEBUG: print(f"first time to cutting new video {frame_time_str}-{camNO}") save_video_name = os.path.join( obj_path, f"{frame_time_str}_{camNO}.avi" ) videoWriter = cv2.VideoWriter( save_video_name, fourcc, fps, (exp_frame.shape[1], exp_frame.shape[0]), True ) init_videoWriter = True # 如果不是开始帧,则查看是否小于最大尝试次数,否则退出 else: if starting_flag_try_times < max_try: starting_flag_try_times += try_times if DEBUG: print( f"{frame_time_str} not starting frame {start_time} with {starting_flag_try_times}/{max_try}") continue else: time_local = time.localtime(current_unix_time) dt = time.strftime("%Y_%m_%d_%H_%M_%S", time_local) failed_time_list.append(dt) writeConfig(DayTank_setting_path, [('VideoStartTime_Failed', video_name, '\n'.join(failed_time_list))]) print(f"{start_time} finding starting frame in {video_name} failed") exit(987) # ================ 检查该帧是否已经处理过 ================ # if f"{frame_time_str}_{camNO}.avi" in processed_list: print(f"{frame_time_str}_{camNO} has been processed") continue if init_videoWriter: if time_flag < spt * fps: if DEBUG: print(f"progress: {time_flag}/{spt * fps}") time_flag += 1 exp_frame = getImgExp(frame) videoWriter.write(exp_frame) else: print(f"{frame_time_str}_{camNO} have finished, saved in {save_video_name}") break exit(987654)
the-stack_106_19747
import datetime from django.db import models from base.abstracts import AbstractBaseModel class GeoCoderLog(AbstractBaseModel): number_of_request = models.IntegerField(default=0) @classmethod def get_today_record(cls): record = cls.objects.filter( created_at__range=( datetime.datetime.combine( datetime.date.today(), datetime.time.min ), datetime.datetime.combine( datetime.date.today(), datetime.time.max ) ) ) if record: return record[0] record = cls.objects.create() return record @classmethod def update_today_number_of_request(cls): record = cls.get_today_record() record.number_of_request += 1 record.save() return record.number_of_request @classmethod def get_limit(cls): record = cls.get_today_record() return 2500 - record.number_of_request
the-stack_106_19749
#!/usr/bin/env python2.7 import sys from numpy import * from pylab import * from matplotlib import rc, rcParams dict=sys.argv[1].split("/")[2] trie = genfromtxt('../data/trie_search_found_' + dict + '.output') tst = genfromtxt('../data/tst_search_found_' + dict + '.output') radix = genfromtxt('../data/radix_search_found_' + dict + '.output') _map = genfromtxt('../data/map_search_found_' + dict + '.output') umap = genfromtxt('../data/umap_search_found_' + dict + '.output') data = [trie, tst, radix, _map, umap] fig, ax = subplots() index = arange(5) width = 0.5 ax.bar(index,data, width, align='center') xlabel('Data structures') ylabel('Time(ms)') title('Search found dictionary(' + dict + ')') xticks(index, ('Trie', 'TST', 'Radix', 'Map', 'Umap')) legend(loc='best') grid(True) savefig('../images/search_found/dict/search_found_' + dict + '_time_ALL.eps') data = [trie, tst, radix] fig, ax = subplots() index = arange(3) width = 0.5 ax.bar(index,data, width, align='center') xlabel('Data structures') ylabel('Time(ms)') title('Search found dictionary(' + dict + ')') xticks(index, ('Trie', 'TST', 'Radix')) legend(loc='best') grid(True) savefig('../images/search_found/dict/search_found_' + dict + '_time_TTR.eps')
the-stack_106_19754
#!/usr/bin/env python import re from django.core.management.base import BaseCommand from documents.models import Agency, Document, ProcessedDocument class Command(BaseCommand): help = """ Remove CSVs that got added as responsive documents in error. """ SKIP_AGENCIES = [ "Redmond Police Department", "Black Diamond Police Department", "West Richland Police Department", ] def yes_no(self, message, default=False): response = input(f"{message.strip()} ").strip().lower() if not response: return default return response.startswith("y") def handle(self, *args, **options): matches = [] for doc in Document.objects.filter(file__endswith=".csv"): # if we marked the agency complete, don't mess with it if doc.agency.completed: continue # skip redmond, we actually got CSVs if doc.agency.name in self.SKIP_AGENCIES: continue # false positive (delete it!) if ".precleaned" in doc.file.name: continue print("\n====================") print("Agency:", doc.agency.name) print("Responsive document:", doc.file.name) nocsv = re.sub(".csv", "", doc.file.name) basepath = "/".join(nocsv.split("/")[:-1]) filename = nocsv.split("/")[-1] # print("\t", "Raw filename:", filename) nosheet = "-".join(filename.split("-")[:-1]) or filename # print("\t", "Without sheet extension:", nosheet) start_pattern = f"{basepath}/{nosheet}" print("\t", f"Search pattern: `{start_pattern}`") possible_parents = Document.objects.filter( file__startswith=start_pattern ).exclude(pk=doc.pk) n_poss = possible_parents.count() print("----------") print(f"{n_poss} possible parent{'s' if n_poss != 1 else ''}:") for pp in possible_parents: print(" - ", pp.file.name) if n_poss == 1: print("It's recommended we delete this!") if self.yes_no("Delete doc? [Y/n]", default=True): doc.delete() print("Deleting.")
the-stack_106_19756
import os import json import numpy as np from naming_conventions import languages, languages_readable from uriel import Similarities import uriel import copy import pickle from collections import defaultdict import matplotlib.pyplot as plt from scipy import stats from matplotlib import colors import seaborn as sns """Hardcode All This""" train_lans = [0,5,6,11,13,16,17,19] low_lans = [1,2,4,7,15,23] tran_expen = np.array([34.55,40.20,45.16,0,19.19,59.97,84.64,58.28,50.65, #finnish 54.12, 68.30, 32.94, 52.72, 75.45, 12.92, 33.56, 33.67, 72.09, #norwe 44.34, 59.53, 76.02, 18.09, 54.47, 36.66, 23.46, 29.72 ]) / 100 tran_expmix = np.array([68.20,58.95,52.62,0,23.11,84.36,81.65,61.98,62.29, 59.54, 70.93, 85.66, 61.11, 89.44, 24.10, 44.56, 81.73, 85.11, 56.92, 81.91, 78.70, 32.78, 64.03, 49.74, 63.06, 29.71 ])/ 100 class ModelAnalysis(): def __init__(self, model_str, seed_list=[1,2,5,6,7]): spl = model_str.split('_') name = spl[0] params = spl[1] z = "" if 'finetune' not in name: params += '_' + spl[2] z = "_3" self.model_str = name + "24_seedX_" + params + "_True" + z + "VAL_averaging" self.model_str2 = name + "24_seedX_" + params + "_True" + z + "VAL" self.seed_list = seed_list self.files_highlr = {} self.files_lowlr = {} self.files_zeroshot = defaultdict(lambda:[]) self.las_highlr = {} self.las_lowlr = {} self.las_zeroshot = {} self.whole_dict = {} for l in languages: self._set_files_for_language(l) for l in languages: self._set_las_scores(l) print(name, [len(self.las_highlr[z]) for z in self.las_highlr], [len(self.las_lowlr[z]) for z in self.las_lowlr] ) def _set_files_for_language(self, lan): files_highlr = [] files_lowlr = [] for outerseed in self.seed_list: testingstr = "metatesting_0.001_True3_" + self.model_str.replace('X', str(outerseed)) testingstrlow = "metatesting_0.0001_True3_" + self.model_str.replace('X', str(outerseed)) zeroshotstr = "finalresults/zeroshot_" + self.model_str2.replace('X', str(outerseed)) + "/" + lan + "_performance.json" if os.path.exists(zeroshotstr): self.files_zeroshot[lan].append(zeroshotstr) #else: #print("File not found", zeroshotstr) #raise ValueError() for innerseed in range(0,5): f = "finalresults/" + testingstr + "/" + lan + "_performance" + str(innerseed) +".json" f2 = "finalresults/" + testingstrlow + "/" + lan + "_performance" + str(innerseed) +".json" if os.path.exists(f): files_highlr.append(f) if os.path.exists(f2): files_lowlr.append(f2) #else: # print("File not found", f2) self.files_highlr[lan] = files_highlr self.files_lowlr[lan] = files_lowlr def _set_las_scores(self, lan): scores = [] for f in self.files_highlr[lan]: with open(f,'r') as results: result = json.load(results) scores.append(result['LAS']['aligned_accuracy']) #print(scores) self.las_highlr[lan] = np.array(scores) scores = [] for f in self.files_lowlr[lan]: with open(f,'r') as results: result = json.load(results) scores.append(result['LAS']['aligned_accuracy']) self.las_lowlr[lan] = np.array(scores) scores = [] for f in self.files_zeroshot[lan]: with open(f,'r') as results: result = json.load(results) scores.append([result['LAS']['aligned_accuracy']]*5) self.las_zeroshot[lan] = np.array(scores) def get_mean_sd_high(self, lan, r=99): b = self.las_highlr[lan] return round(np.mean(b), r), round(np.std(b),r) def get_mean_sd_low(self, lan, r=99): b = self.las_lowlr[lan] return round(np.mean(b), r), round(np.std(b), r) def get_mean_sd_zero(self, lan, r=99): b = self.las_zeroshot[lan] return round(np.mean(b), r), round(np.std(b), r) class FileAnalysis(ModelAnalysis): def __init__(self, filenames, name, zero=False): self.name = name self.zero = zero self.las_lowlr = {} if zero: self.zero_init(filenames) else: self.files_highlr = defaultdict(lambda:[]) self.files_lowlr = defaultdict(lambda:[]) self.las_highlr = {} for filename in filenames: for lan in languages: for innerseed in range(0,5): f = "finalresults/metatesting_0.001_True3_" + filename + "/" + lan + "_performance" + str(innerseed) +".json" f2 = "finalresults/metatesting_0.0001_True3_" + filename + "/" + lan + "_performance" + str(innerseed) +".json" if os.path.exists(f): self.files_highlr[lan].append(f) if os.path.exists(f2): self.files_lowlr[lan].append(f2) #if innerseed == 0: # print("Using file", f2) for lan in languages: self._set_las_scores(lan) def zero_init(self, filenames): self.files_lowlr = defaultdict(lambda:[]) for filename in filenames: for lan in languages: f2 = "finalresults/zeroshot_" + filename + "/" + lan + "_performance.json" if os.path.exists(f2): r = 1 if len(filenames)==1: r = 3 for i in range(3): self.files_lowlr[lan].append(f2) def _set_las_scores(self, lan): if self.zero: scores = [] for f in self.files_lowlr[lan]: with open(f,'r') as results: result = json.load(results) scores.append(result['LAS']['aligned_accuracy']) self.las_lowlr[lan] = np.array(scores) else: scores = [] for f in self.files_highlr[lan]: with open(f,'r') as results: result = json.load(results) scores.append(result['LAS']['aligned_accuracy']) #print(scores) #self.las_highlr[lan] = np.array(scores) scores = [] for f in self.files_lowlr[lan]: with open(f,'r') as results: result = json.load(results) scores.append(result['LAS']['aligned_accuracy']) self.las_lowlr[lan] = np.array(scores) def print_all(self): for lan in languages: print('---') print(lan,'\t',self.get_mean_sd_high(lan, 3), self.get_mean_sd_low(lan, 3)) class MetaListAnalysis(): def __init__(self, filelist, nameslist): self.filelist = filelist self.names = nameslist self.accuracy_significance = {} self.correlation_significance = {} self.correlations = {} self.lookup = {name:i for i,name in enumerate(nameslist)} for f in filelist: for i,lan in enumerate(languages): self.accuracy_significance[lan] = {} for name1,model1 in zip(nameslist,filelist+[0,0]): self.accuracy_significance[lan][name1]= {} for name2,model2 in zip(nameslist,filelist+[0,0]): if name2 != name1: if 'tran-en' in name1: array1= [tran_expen[i]]*5 elif 'tran-mix' in name1: array1 = [tran_expmix[i]]*5 else: array1 = model1.las_lowlr[lan] if 'tran-en' in name2: array2= [tran_expen[i]]*5 elif 'tran-mix' in name2: array2 = [tran_expmix[i]]*5 else: array2 = model2.las_lowlr[lan] p_value = stats.ttest_ind(array1, array2 , equal_var=False).pvalue #print("setting", name1,name2,lan) self.accuracy_significance[lan][name1][name2] = p_value def print_latex(self, filename, train=False, print_sd =False): with open(filename,'w') as f: f.write(' &' + ' & '.join(self.names) + '\\\\\\hline\n') for i, lan in enumerate(languages): readable_lan = languages_readable[i] lijstje = np.array([m.get_mean_sd_low(lan,7)[0] for m in self.filelist[:-2]] + [tran_expen[i], tran_expmix[i]]) sds = np.array([m.get_mean_sd_low(lan,7)[1] for m in self.filelist[:-2]] + [0,0]) #print([m.name for m in self.filelist]) #print(lijstje) max_index = np.nanargmax(lijstje) notmax_lijstje = np.delete(lijstje, max_index) max_index2 = np.nanargmax(notmax_lijstje) names2 = np.delete(np.array(self.names), max_index) color = "\\rowcolor{LightRed}" if i in low_lans else '' #print(max_index2, max_index, readable_lan) significance = self.accuracy_significance[lan][self.names[max_index]][names2[max_index2]] #print("Is it significant?", readable_lan, self.names[max_index], names2[max_index2], significance) #print( '\t', significance ) lijstje = ['*{\\bf ' + str(round(l,3)) + '}' if (i == max_index and significance < 0.01 and max_index < (len(self.names)-2)) else ('{\\bf ' + str(round(l,3)) + '}' if (i==max_index) else str(round(l,3)) ) for i,l in enumerate(lijstje)] lijstje = [ l + ('\\tiny{$\\pm$ '+str(round(sd,3))+'}' if z< (len(self.names)-2) and print_sd else '') for z, (l, sd) in enumerate(zip(lijstje, sds))] if i not in train_lans and not train: # Write normal resource with open(filename,'a') as f: f.write(color), f.write(readable_lan + ' & ') f.write(' & '.join(lijstje)) f.write('\\\\\n') # Write low resources elif i in train_lans and train: with open(filename,'a') as f: f.write(readable_lan + ' & ') f.write(' & '.join(lijstje)) f.write('\\\\\n') def compare_two_columns(self, name1, name2): count = 0 for i, lan in enumerate(languages): if i not in train_lans and 'ulg' not in lan: significance = self.accuracy_significance[lan][name1][name2] print(lan, significance) if significance < 0.01: count += 1 print(count) return count def plot_diffs(self, experiment_list=["english","maml","x-ne"], comparator = "x-maml"): plt.rcParams["axes.grid"] = False diffs = np.zeros((17,len(experiment_list))) pvalues = np.zeros((17,len(experiment_list))) labels = np.empty((17,len(experiment_list)),dtype=object) enum = 0 real_lans = [] for i, lan in enumerate(languages): if i not in train_lans and 'ulg' not in lan: for j,setup in enumerate(experiment_list): lookup = self.filelist[self.lookup[setup]] mean_comp = self.filelist[self.lookup[comparator]].get_mean_sd_low(lan,7)[0]*100 if type(lookup) is str: if 'en' in lookup: mean_comp = tran_expen[i]*100 else: #print(lan, i, tran_expmix[i]*100,mean_comp) mean_setup = tran_expmix[i]*100 else: mean_setup = lookup.get_mean_sd_low(lan,7)[0]*100 diffs[enum,j] = mean_comp - mean_setup pvalue = self.accuracy_significance[lan][comparator][setup] pvalues[enum,j] = pvalue labels[enum, j] = str(round(diffs[enum,j],2)) + ('*' if pvalues[enum,j] < 0.01 else '') enum += 1 real_lans.append(languages_readable[i]) fig, ax = plt.subplots() print(labels) rdgn = sns.diverging_palette(h_neg=10, h_pos=250, s=99, l=55, sep=3, as_cmap=True) #labels = np.array([['A','B'],['C','D'],['E','F']]) g = sns.heatmap(diffs, annot=labels, ax=ax, fmt = '', cmap=rdgn, vmin=-3, center=0, vmax=30) # We want to show all ticks... ax.set_yticklabels(real_lans, rotation=1) ax.set_xticklabels(experiment_list, horizontalalignment='center') for low in [0,1,2,3,9,14]: ax.get_yticklabels()[low].set_color("red") ax.set_xlabel("Baseline") #g.set_axis_labels("Baseline", "Language") #ax.set_xticks(np.arange(5)) #ax.set_yticks(np.arange(len(real_lans))) # ... and label them with the respective list entries. #ax.set_xticklabels(setups) #ax.set_yticklabels(real_lans) #im, cbar = tools.heatmap(diffs, real_lans, setups, ax=ax, # cmap="RdYlGn", vmin=28, center=0, vmax=-5) # texts = tools.annotate_heatmap(im, pvalues, valfmt="{x:.1f}", fontsize=8) ax.set_title("X-MAML Improvement" + (" (Zero-Shot)" if "zero" in experiment_list[0] else " (Few-Shot) ")) fig.tight_layout() plt.show() def plot_diffs_pairwise(self): plt.rcParams["axes.grid"] = False diffs = np.zeros((9,4)) pvalues = np.zeros((9,4)) labels = np.empty((9,4),dtype=object) enum = 0 real_lans = [] zeros = ["zero-eng","zero-maml","zero-x-ne","zero-x-maml"] fews = ["english","maml","x-ne","x-maml"] for i, lan in enumerate(languages): if i in train_lans or 'ulg' in lan: print(lan) for j,setup in enumerate(zeros): #print(zeros[]) lookup = self.filelist[self.lookup[setup]] mean_comp = self.filelist[self.lookup[fews[j]]].get_mean_sd_low(lan,7)[0]*100 if type(lookup) is str: if 'en' in lookup: mean_comp = tran_expen[i]*100 else: #print(lan, i, tran_expmix[i]*100,mean_comp) mean_setup = tran_expmix[i]*100 else: mean_setup = lookup.get_mean_sd_low(lan,7)[0]*100 diffs[enum,j] = mean_comp - mean_setup pvalue = self.accuracy_significance[lan][fews[j]][setup] pvalues[enum,j] = pvalue labels[enum, j] = str(round(diffs[enum,j],2)) + ('*' if pvalues[enum,j] < 0.01 else '') enum += 1 real_lans.append(languages_readable[i]) fig, ax = plt.subplots() print(labels) rdgn = sns.diverging_palette(h_neg=10, h_pos=250, s=99, l=55, sep=3, as_cmap=True) #labels = np.array([['A','B'],['C','D'],['E','F']]) g = sns.heatmap(diffs, annot=labels, ax=ax, fmt = '', cmap=rdgn, vmin=-3, center=0, vmax=6) # We want to show all ticks... ax.set_yticklabels(real_lans, rotation=1) ax.set_xticklabels(fews, horizontalalignment='center') #for low in [0,1,2,3,9,14]: # ax.get_yticklabels()[low].set_color("red") ax.set_xlabel("Model") #g.set_axis_labels("Baseline", "Language") #ax.set_xticks(np.arange(5)) #ax.set_yticks(np.arange(len(real_lans))) # ... and label them with the respective list entries. #ax.set_xticklabels(setups) #ax.set_yticklabels(real_lans) #im, cbar = tools.heatmap(diffs, real_lans, setups, ax=ax, # cmap="RdYlGn", vmin=28, center=0, vmax=-5) # texts = tools.annotate_heatmap(im, pvalues, valfmt="{x:.1f}", fontsize=8) #ax.set_title("X-MAML Improvement" + (" (Zero-Shot)" if "zero" in experiment_list[0] else " (Few-Shot) ")) ax.set_title("Improvement of Few-Shot over Zero-Shot", fontsize=11) fig.tight_layout() plt.show() def get_results(self, which): model = self.filelist[which] print("Doing", model.name) l = len(model.las_lowlr['UD_Arabic-PADT']) self.correlations[model.name] = [] for index in range(l): filename = str(which) + str(index) + '.csv' with open(filename,'w') as f: f.write('language,' + model.name + '\n') for lan in languages: if 'Bulg' not in lan: with open(filename, 'a') as f: f.write(lan + ',') f.write(str(model.las_lowlr[lan][index])) f.write('\n') sim = Similarities(uriel.lang2iso, uriel.feature_names, uriel.expMix, filename) table = sim.create_table() self.correlations[model.name].append(table) return self.correlations[model.name] def compare_correlations(self): if not os.path.exists('correlations.pickle'): for i in range(len(self.filelist[:-2])): self.get_results(i) with open("correlations.pickle", "wb") as f: pickle.dump(self.correlations, f) else: with open('correlations.pickle', 'rb') as f: self.correlations = pickle.load(f) bigtable = np.zeros((8*5,8)) enum = -1 yticklabels = [] for lan in uriel.COMPARE_LANS: self.correlation_significance[lan] = {} for feature in ["syntax_knn"]: enum += 1 yticklabels.append(lan) #+"_"+feature) for j, name1 in enumerate(self.names[:-2]): self.correlation_significance[lan][name1] = {} bigtable[enum,j] = np.mean(np.array([d[name1][lan][feature] for d in self.correlations[name1]])) for name2 in self.names[:-2]: if name1 != name2: lang = uriel.iso2lang[lan] #print(type(name1)) #if name1 == 'eng': name1 = "english" #if name2 == 'eng': name2 = "english" #print(self.correlations[name1]) array1 = [d[name1][lan][feature] for d in self.correlations[name1]] array2 = [d[name2][lan][feature] for d in self.correlations[name2]] p_value = stats.ttest_ind(array1,array2 ,equal_var=False).pvalue self.correlation_significance[lan][name1][name2] = p_value #if p_value < 0.1: with open("hi222.txt", "a") as f: f.write(lang+' '+feature+' '+name1+' '+name2 + ' ') f.write(str(round(np.mean(np.array(array1)),4)) + ' ') f.write(str(round(np.mean(np.array(array2)),4)) + ' ') f.write(str(p_value)) f.write('\n') fig, ax = plt.subplots() rdgn = sns.diverging_palette(145, 280, s=85, l=25, n=7, as_cmap=True) #sns.diverging_palette(h_neg=10, h_pos=250, s=99, l=55, sep=3, as_cmap=True) #labels = np.array([['A','B'],['C','D'],['E','F']]) g = sns.heatmap(np.array(bigtable[:8])[3,1,0,2,4,5,6,7], annot=True, ax=ax, cmap=rdgn, vmin=-1, center=0, vmax=1) ax.set_yticks(np.arange(len(yticklabels))+0.5, ) ax.set_xticks(np.arange(len(self.filelist[:-2]))+0.5) ax.set_yticklabels(yticklabels, rotation=1, verticalalignment='center') ax.set_xticklabels([b.name for b in self.filelist[:-2]], rotation=30, horizontalalignment='center') ax.set_xlabel("Model") ax.set_ylabel("Language for syntax features") plt.show() f = FileAnalysis(["finetune24_MAML_0.0001_TrueVAL_averaging"], "bad") english = FileAnalysis(["ONLY_averaging"], "english") maml = FileAnalysis(["metalearn24_MAMLC_0.001_5e-05_True_3VAL_averaging", "metalearn24_MAMLC2_0.001_5e-05_True_3VAL_averaging" "metalearn24_MAML9C_0.001_5e-05_True_3VAL_averaging", "metalearn24_MAML10C_0.001_5e-05_True_3VAL_averaging"], "maml") ne = FileAnalysis([ "finetune24_seed1_0.0001_TrueVAL_averaging", "finetune24_seed6_0.0001_TrueVAL_averaging", "finetune24_seed7_0.0001_TrueVAL_averaging", # 7 "finetune24_seed8_0.0001_TrueVAL_averaging" ],"x-ne") xmaml = FileAnalysis([ "metalearn24_seed1_0.001_5e-05_True_3VAL_averaging", "metalearn24_seed2_0.001_5e-05_True_3VAL_averaging", "metalearn24_seed5_0.001_5e-05_True_3VAL_averaging", "metalearn24_seed6_0.001_5e-05_True_3VAL_averaging"],"x-maml") zerone = FileAnalysis(["finetune24_seed7_0.0001_TrueVAL", "finetune24_seed6_0.0001_TrueVAL", "finetune24_seed8_0.0001_TrueVAL" ], "zero-x-ne", zero=True) zeroen = FileAnalysis(["english"],"zero-eng", zero=True) zerox = FileAnalysis(["metalearn24_seed1_0.001_5e-05_True_3VAL", "metalearn24_seed2_0.001_5e-05_True_3VAL", "metalearn24_seed5_0.001_5e-05_True_3VAL", "metalearn24_seed6_0.001_5e-05_True_3VAL"], "zero-x-maml", zero=True) zeromaml = FileAnalysis(["metalearn24_MAMLC_0.001_5e-05_True_3VAL", "metalearn24_MAMLC2_0.001_5e-05_True_3VAL" "metalearn24_MAML9C_0.001_5e-05_True_3VAL", "metalearn24_MAML10C_0.001_5e-05_True_3VAL"], "zero-maml", zero=True) # Our Meta Analysis class meta = MetaListAnalysis( [english,maml,ne, xmaml, zeroen, zeromaml, zerone, zerox, "tran-en", "tran-mix"], ["english","maml","x-ne","x-maml","zero-eng", "zero-maml", "zero-x-ne", "zero-x-maml", "tran-en", "tran-mix"]) """Latex""" #meta.print_latex("all_lans.tex", print_sd=True) #meta.print_latex("train_lans.tex", True, print_sd=True) #meta.print_latex("test_lans_small.tex",) #meta.print_latex("train_lans_small.tex", True,) """Plotting""" #meta.plot_diffs() #meta.plot_diffs_pairwise() """Getting p-values for each two columns""" #meta.compare_two_columns("english","x-maml") #meta.compare_two_columns("maml","x-maml") #meta.compare_two_columns("x-ne","x-maml") #meta.compare_two_columns("zeroen","zerox") #meta.compare_two_columns("zerone","zerox") #meta.compare_two_columns("zerox","x-maml") """Doing correlation study""" #meta.compare_correlations()
the-stack_106_19757
from monsterfactory import MonsterFactory from character import NPC import random class Location: name = "" adjacentLocations = [] npcs = [] monsters = [] boss = None def getName(self): return self.name def getNPC(self): if len(self.npcs) > 0: return self.npcs[random.randint(0, len(self.npcs) - 1)] else: print("There are no NPCs in this location.") return None def getMonster(self): if len(self.monsters) > 0: return self.monsters.pop() elif self.boss is not None: print("With all other monsters dead, the area boss appeared!") boss = self.boss self.boss = None return boss else: print("There are no monsters in this location.") return None def addMonster(self, monster): self.monsters.append(monster) random.shuffle(self.monsters) def getAdjacentLocationNames(self): names = [] for location in self.adjacentLocations: names.append(location.getName()) return names def getAdjacentLocation(self, name): for location in self.adjacentLocations: if name == location.getName(): return location return None class TutorialIsland(Location): npcs = [] def __init__(self): self.name = "Tutorial Island" self.npcs = [NPC("Old Man", [ "Hello adventurer, welcome to Tutorial Island!", "This game is only a proof of concept, so there's not much content.", "Try changing location to Tutorial Dungeon and I'll tell you about fighting." ])] tutorialDungeon = RandomDungeon("Tutorial Dungeon", self, 1,[NPC("Old Man", [ "Hello again, welcome to the Tutorial Dungeon!", "Here there will be a few monsters for you to fight by selecting \"battle\".", "Once you've beaten all the regular monsters, a powerful boss monster will appear!", "Why don't you try it out?" ]) ]) self.adjacentLocations = [tutorialDungeon] class RandomDungeon(Location): monsters = [] npcs = [] boss = None def __init__(self, name, prevLocation, level, npcs = []): self.name = name self.adjacentLocations = [prevLocation] monstercount = random.randint(1, 5) monsterFactory = MonsterFactory() for loop in range(monstercount): self.monsters.append(monsterFactory.createMonster(level)) self.boss = monsterFactory.createBoss(level) self.npcs = npcs
the-stack_106_19761
import matplotlib.pyplot as plt import pandas as pd import numpy as np # import seaborn as sns import shutil import time import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers print(tf.__version__) root_path = os.path.dirname(os.path.abspath('__file__')) data_path = root_path + '/Xianyang/data/' model_path = root_path+'/Xianyang/projects/lstm/' if not os.path.exists(model_path): os.makedirs(model_path) import sys sys.path.append(root_path) from dump_data import dum_pred_results from plot_utils import plot_rela_pred,plot_history,plot_error_distribution,plot_convergence_,plot_evaluations_,plot_objective_ from variables import lags """NOTE:WILL DEPRICATED IN THE FUTURE PROJECTS""" RE_TRAIN = False WARM_UP = False EARLY_STOPING = True INITIAL_EPOCH = 6000 # For initialize weights and bias SEED=1 # set hyper-parameters EPS=5000 #epochs number #########--1--########### LR=0.007 #learnin rate 0.0001, 0.0003, 0.0007, 0.001, 0.003, 0.007,0.01, 0.03 0.1 #########--2--############ HU1 = 16 #hidden units for hidden layer 1 BS = 512 #batch size #########--3--########### HL = 1 #hidden layers HU2 = 16 #hidden units for hidden layer 2 DC=0.000 #decay rate of learning rate #########--4--########### DR1=0.0 #dropout rate for hidden layer 1 DR2=0.0 #dropout rate for hidden layer 2 # 1.Import the sampled normalized data set from disk train = pd.read_csv(data_path+'minmax_unsample_train.csv') dev = pd.read_csv(data_path+'minmax_unsample_dev.csv') test = pd.read_csv(data_path+'minmax_unsample_test.csv') # Split features from labels train_x = train train_y = train.pop('Y') train_y = train_y.as_matrix() dev_x = dev dev_y = dev.pop('Y') dev_y = dev_y.as_matrix() test_x = test test_y = test.pop('Y') test_y = test_y.as_matrix() # reshape the input features for LSTM train_x = (train_x.values).reshape(train_x.shape[0],1,train_x.shape[1]) dev_x = (dev_x.values).reshape(dev_x.shape[0],1,dev_x.shape[1]) test_x = (test_x.values).reshape(test_x.shape[0],1,test_x.shape[1]) # 2.Build LSTM model with keras # set the hyper-parameters LEARNING_RATE=LR EPOCHS = EPS BATCH_SIZE = BS if HL==2: HIDDEN_UNITS = [HU1,HU2] DROP_RATE = [DR1,DR2] else: HIDDEN_UNITS = [HU1] DROP_RATE = [DR1] DECAY_RATE = DC MODEL_NAME = 'LSTM-LR['+str(LEARNING_RATE)+\ ']-HU'+str(HIDDEN_UNITS)+\ '-EPS['+str(EPOCHS)+\ ']-BS['+str(BATCH_SIZE)+\ ']-DR'+str(DROP_RATE)+\ '-DC['+str(DECAY_RATE)+\ ']-SEED['+str(SEED)+']' # RESUME_TRAINING = True def build_model(): if HL==2: model = keras.Sequential( [ layers.LSTM(HIDDEN_UNITS[0],activation=tf.nn.relu,return_sequences=True,input_shape=(train_x.shape[1],train_x.shape[2])), layers.Dropout(DROP_RATE[0], noise_shape=None, seed=None), layers.LSTM(HIDDEN_UNITS[1],activation=tf.nn.relu,return_sequences=False), # first hidden layer if hasnext hidden layer layers.Dropout(DROP_RATE[1], noise_shape=None, seed=None), # layers.LSTM(20,activation=tf.nn.relu,return_sequence=True), layers.Dense(1) ] ) else: model = keras.Sequential( [ layers.LSTM(HIDDEN_UNITS[0],activation=tf.nn.relu,input_shape=(train_x.shape[1],train_x.shape[2])), layers.Dropout(DROP_RATE[0], noise_shape=None, seed=None), # layers.LSTM(HIDDEN_UNITS1,activation=tf.nn.relu,return_sequences=True,input_shape=(train_x.shape[1],train_x.shape[2])), # first hidden layer if hasnext hidden layer # layers.LSTM(20,activation=tf.nn.relu,return_sequence=True), layers.Dense(1) ] ) optimizer = keras.optimizers.Adam(LEARNING_RATE, decay=DECAY_RATE ) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=['mean_absolute_error','mean_squared_error']) return model # set model's parameters restore path cp_path = model_path+MODEL_NAME+'\\' if not os.path.exists(cp_path): os.makedirs(cp_path) checkpoint_path = model_path+MODEL_NAME+'\\cp.ckpt' #restore only the latest checkpoint after every update # checkpoint_path = model_path+'cp-{epoch:04d}.ckpt' #restore the checkpoint every period=x epoch checkpoint_dir = os.path.dirname(checkpoint_path) print('checkpoint dir:{}'.format(checkpoint_dir)) cp_callback = keras.callbacks.ModelCheckpoint(checkpoint_path,save_best_only=True,mode='min',save_weights_only=True,verbose=1) # cp_callback = keras.callbacks.ModelCheckpoint(checkpoint_path,save_weights_only=True,period=5,verbose=1) # if not RESUME_TRAINING: # print("Removing previous artifacts...") # shutil.rmtree(checkpoint_dir, ignore_errors=True) # else: # print("Resuming training...") # initialize a new model model = build_model() model.summary() #print a simple description for the model """ # Evaluate before training or load trained weights and biases loss, mae, mse = model.evaluate(test_x, test_y, verbose=1) # Try the model with initial weights and biases example_batch = train_x[:10] example_result = model.predict(example_batch) print(example_result) """ # 3.Train the model # Display training progress by printing a single dot for each completed epoch class PrintDot(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): if epoch % 100 == 0: print('') print('.', end='') files = os.listdir(checkpoint_dir) from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping # reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto') reduce_lr = ReduceLROnPlateau(monitor='val_loss',min_lr=0.00001,factor=0.2, verbose=1,patience=10, mode='min') early_stopping = EarlyStopping(monitor='val_loss', mode='min',verbose=1,patience=100,restore_best_weights=True) warm_dir = 'LSTM-LR['+str(LEARNING_RATE)+\ ']-HU'+str(HIDDEN_UNITS)+\ '-EPS['+str(INITIAL_EPOCH)+\ ']-BS['+str(BATCH_SIZE)+\ ']-DR'+str(DROP_RATE)+\ '-DC['+str(DECAY_RATE)+\ ']-SEED['+str(SEED)+']' print("WARM UP PATH:{}".format(os.path.exists(model_path+warm_dir))) # Training models if RE_TRAIN: # Retraining the LSTM model print('retrain the model') if EARLY_STOPING: start = time.process_time() history = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1, callbacks=[ cp_callback, early_stopping, ]) end = time.process_time() time_cost = end-start else: start = time.process_time() history = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[cp_callback]) end =time.process_time() time_cost = end-start # # Visualize the model's training progress using the stats stored in the history object hist = pd.DataFrame(history.history) hist.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv') hist['epoch']=history.epoch # print(hist.tail()) plot_history(history,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png') elif len(files)==0: # The current model has not been trained if os.path.exists(model_path+warm_dir) and WARM_UP: # Training the model using the trained weights and biases as initialized parameters print('WARM UP FROM EPOCH '+str(INITIAL_EPOCH)) # Warm up from the last epoch of the target model prev_time_cost = (pd.read_csv(model_path+warm_dir+'.csv')['time_cost'])[0] warm_path=model_path+warm_dir+'\\cp.ckpt' model.load_weights(warm_path) if EARLY_STOPING: start=time.process_time() history = model.fit(train_x,train_y,initial_epoch=INITIAL_EPOCH,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1, callbacks=[ cp_callback, early_stopping, ]) end = time.process_time() time_cost = end - start + prev_time_cost else: start = time.process_time() history = model.fit(train_x,train_y,initial_epoch=INITIAL_EPOCH,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1, callbacks=[ cp_callback, ]) end = time.process_time() time_cost = end - start + prev_time_cost hist = pd.DataFrame(history.history) hist.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv') hist['epoch']=history.epoch # print(hist.tail()) plot_history(history,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png') else: # Training entirely new model print('new train') if EARLY_STOPING: start = time.process_time() history = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1,callbacks=[ cp_callback, early_stopping, ]) end = time.process_time() time_cost = end -start else: start = time.process_time() history = model.fit(train_x,train_y,epochs=EPOCHS,batch_size=BATCH_SIZE ,validation_data=(dev_x,dev_y),verbose=1, callbacks=[ cp_callback, ]) end = time.process_time() time_cost = end - start hist = pd.DataFrame(history.history) hist.to_csv(model_path+MODEL_NAME+'-HISTORY-TRAIN-TEST.csv') hist['epoch']=history.epoch # print(hist.tail()) plot_history(history,model_path+MODEL_NAME+'-MAE-ERRORS-TRAINTEST.png',model_path+MODEL_NAME+'-MSE-ERRORS-TRAINTEST.png') else: print('#'*10+'Already Trained') time_cost = (pd.read_csv(model_path+MODEL_NAME+'.csv')['time_cost'])[0] model.load_weights(checkpoint_path) # loss, mae, mse = model.evaluate(test_x, test_y, verbose=1) """ # Evaluate after training or load trained weights and biases loss, mae, mse = model.evaluate(test_x, test_y, verbose=1) print("Testing set Mean Abs Error: {:5.2f} ".format(mae)) """ # 4. Predict the model # load the unsample data train_predictions = model.predict(train_x).flatten() dev_predictions = model.predict(dev_x).flatten() test_predictions = model.predict(test_x).flatten() # renormized the predictions and labels # load the normalized traindev indicators norm = pd.read_csv(data_path+'norm_unsample_id.csv') sMax = norm['series_max'][norm.shape[0]-1] sMin = norm['series_min'][norm.shape[0]-1] print('Series min:{}'.format(sMin)) print('Series max:{}'.format(sMax)) train_y = np.multiply(train_y + 1,sMax - sMin) / 2 + sMin train_predictions = np.multiply(train_predictions + 1,sMax - sMin) / 2 + sMin train_predictions[train_predictions<0.0]=0.0 dev_y = np.multiply(dev_y + 1,sMax - sMin) / 2 + sMin dev_predictions = np.multiply(dev_predictions + 1,sMax - sMin) / 2 + sMin dev_predictions[dev_predictions<0.0]=0.0 test_y = np.multiply(test_y + 1,sMax - sMin) / 2 + sMin test_predictions = np.multiply(test_predictions + 1,sMax - sMin) / 2 + sMin test_predictions[test_predictions<0.0]=0.0 dum_pred_results( path = model_path+MODEL_NAME+'.csv', train_y = train_y, train_predictions=train_predictions, dev_y = dev_y, dev_predictions = dev_predictions, test_y = test_y, test_predictions = test_predictions, time_cost=time_cost, ) plot_rela_pred(train_y,train_predictions,fig_savepath=model_path + MODEL_NAME + '-TRAIN-PRED.png') plot_rela_pred(dev_y,dev_predictions,fig_savepath=model_path + MODEL_NAME + "-DEV-PRED.png") plot_rela_pred(test_y,test_predictions,fig_savepath=model_path + MODEL_NAME + "-TEST-PRED.png") plot_error_distribution(test_predictions,test_y,model_path+MODEL_NAME+'-ERROR-DSTRI.png')
the-stack_106_19762
# -*- coding: utf-8 -*- """ emmett_mongorest.serializers ---------------------------- Provides REST serialization tools :copyright: 2019 Giovanni Barillari :license: BSD-3-Clause """ from emmett_rest.serializers import Serializer as _Serializer class Serializer(_Serializer): def __init__(self, model): self._model = model if not self.attributes: self.attributes = [] for fieldname in self._model.__fields__.keys(): self.attributes.append(fieldname) self.attributes += self.include for el in self.exclude: if el in self.attributes: self.attributes.remove(el) _attrs_override_ = [] for key in dir(self): if not key.startswith('_') and callable(getattr(self, key)): _attrs_override_.append(key) self._attrs_override_ = _attrs_override_ self._init() def id(self, obj): return str(obj['_id'])
the-stack_106_19763
# -*- coding: utf-8 -*- ''' Management of Linux logical volumes =================================== A state module to manage LVMs .. code-block:: yaml /dev/sda: lvm.pv_present my_vg: lvm.vg_present: - devices: /dev/sda lvroot: lvm.lv_present: - vgname: my_vg - size: 10G - stripes: 5 - stripesize: 8K ''' from __future__ import absolute_import, print_function, unicode_literals # Import python libs import os # Import salt libs import salt.utils.path from salt.ext import six def __virtual__(): ''' Only load the module if lvm is installed ''' if salt.utils.path.which('lvm'): return 'lvm' return False def pv_present(name, **kwargs): ''' Set a physical device to be used as an LVM physical volume name The device name to initialize. kwargs Any supported options to pvcreate. See :mod:`linux_lvm <salt.modules.linux_lvm>` for more details. ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if __salt__['lvm.pvdisplay'](name): ret['comment'] = 'Physical Volume {0} already present'.format(name) elif __opts__['test']: ret['comment'] = 'Physical Volume {0} is set to be created'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.pvcreate'](name, **kwargs) if __salt__['lvm.pvdisplay'](name): ret['comment'] = 'Created Physical Volume {0}'.format(name) ret['changes']['created'] = changes else: ret['comment'] = 'Failed to create Physical Volume {0}'.format(name) ret['result'] = False return ret def pv_absent(name): ''' Ensure that a Physical Device is not being used by lvm name The device name to initialize. ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if not __salt__['lvm.pvdisplay'](name): ret['comment'] = 'Physical Volume {0} does not exist'.format(name) elif __opts__['test']: ret['comment'] = 'Physical Volume {0} is set to be removed'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.pvremove'](name) if __salt__['lvm.pvdisplay'](name): ret['comment'] = 'Failed to remove Physical Volume {0}'.format(name) ret['result'] = False else: ret['comment'] = 'Removed Physical Volume {0}'.format(name) ret['changes']['removed'] = changes return ret def vg_present(name, devices=None, **kwargs): ''' Create an LVM volume group name The volume group name to create devices A list of devices that will be added to the volume group kwargs Any supported options to vgcreate. See :mod:`linux_lvm <salt.modules.linux_lvm>` for more details. ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if isinstance(devices, six.string_types): devices = devices.split(',') if __salt__['lvm.vgdisplay'](name): ret['comment'] = 'Volume Group {0} already present'.format(name) for device in devices: realdev = os.path.realpath(device) pvs = __salt__['lvm.pvdisplay'](realdev, real=True) if pvs and pvs.get(realdev, None): if pvs[realdev]['Volume Group Name'] == name: ret['comment'] = '{0}\n{1}'.format( ret['comment'], '{0} is part of Volume Group'.format(device)) elif pvs[realdev]['Volume Group Name'] in ['', '#orphans_lvm2']: __salt__['lvm.vgextend'](name, device) pvs = __salt__['lvm.pvdisplay'](realdev, real=True) if pvs[realdev]['Volume Group Name'] == name: ret['changes'].update( {device: 'added to {0}'.format(name)}) else: ret['comment'] = '{0}\n{1}'.format( ret['comment'], '{0} could not be added'.format(device)) ret['result'] = False else: ret['comment'] = '{0}\n{1}'.format( ret['comment'], '{0} is part of {1}'.format( device, pvs[realdev]['Volume Group Name'])) ret['result'] = False else: ret['comment'] = '{0}\n{1}'.format( ret['comment'], 'pv {0} is not present'.format(device)) ret['result'] = False elif __opts__['test']: ret['comment'] = 'Volume Group {0} is set to be created'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.vgcreate'](name, devices, **kwargs) if __salt__['lvm.vgdisplay'](name): ret['comment'] = 'Created Volume Group {0}'.format(name) ret['changes']['created'] = changes else: ret['comment'] = 'Failed to create Volume Group {0}'.format(name) ret['result'] = False return ret def vg_absent(name): ''' Remove an LVM volume group name The volume group to remove ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} if not __salt__['lvm.vgdisplay'](name): ret['comment'] = 'Volume Group {0} already absent'.format(name) elif __opts__['test']: ret['comment'] = 'Volume Group {0} is set to be removed'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.vgremove'](name) if not __salt__['lvm.vgdisplay'](name): ret['comment'] = 'Removed Volume Group {0}'.format(name) ret['changes']['removed'] = changes else: ret['comment'] = 'Failed to remove Volume Group {0}'.format(name) ret['result'] = False return ret def lv_present(name, vgname=None, size=None, extents=None, snapshot=None, pv='', thinvolume=False, thinpool=False, force=False, **kwargs): ''' Create a new logical volume name The name of the logical volume vgname The volume group name for this logical volume size The initial size of the logical volume extents The number of logical extents to allocate snapshot The name of the snapshot pv The physical volume to use kwargs Any supported options to lvcreate. See :mod:`linux_lvm <salt.modules.linux_lvm>` for more details. .. versionadded:: to_complete thinvolume Logical volume is thinly provisioned thinpool Logical volume is a thin pool .. versionadded:: 2018.3.0 force Assume yes to all prompts ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} _snapshot = None if snapshot: _snapshot = name name = snapshot if thinvolume: lvpath = '/dev/{0}/{1}'.format(vgname.split('/')[0], name) else: lvpath = '/dev/{0}/{1}'.format(vgname, name) if __salt__['lvm.lvdisplay'](lvpath, quiet=True): ret['comment'] = 'Logical Volume {0} already present'.format(name) elif __opts__['test']: ret['comment'] = 'Logical Volume {0} is set to be created'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.lvcreate'](name, vgname, size=size, extents=extents, snapshot=_snapshot, pv=pv, thinvolume=thinvolume, thinpool=thinpool, force=force, **kwargs) if __salt__['lvm.lvdisplay'](lvpath): ret['comment'] = 'Created Logical Volume {0}'.format(name) ret['changes']['created'] = changes else: ret['comment'] = 'Failed to create Logical Volume {0}. Error: {1}'.format(name, changes) ret['result'] = False return ret def lv_absent(name, vgname=None): ''' Remove a given existing logical volume from a named existing volume group name The logical volume to remove vgname The volume group name ''' ret = {'changes': {}, 'comment': '', 'name': name, 'result': True} lvpath = '/dev/{0}/{1}'.format(vgname, name) if not __salt__['lvm.lvdisplay'](lvpath): ret['comment'] = 'Logical Volume {0} already absent'.format(name) elif __opts__['test']: ret['comment'] = 'Logical Volume {0} is set to be removed'.format(name) ret['result'] = None return ret else: changes = __salt__['lvm.lvremove'](name, vgname) if not __salt__['lvm.lvdisplay'](lvpath): ret['comment'] = 'Removed Logical Volume {0}'.format(name) ret['changes']['removed'] = changes else: ret['comment'] = 'Failed to remove Logical Volume {0}'.format(name) ret['result'] = False return ret
the-stack_106_19764
# -*- test-case-name: twisted.conch.test.test_manhole -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Asynchronous local terminal input handling @author: Jp Calderone """ import os, tty, sys, termios from twisted.internet import reactor, stdio, protocol, defer from twisted.python import failure, reflect, log from twisted.conch.insults.insults import ServerProtocol from twisted.conch.manhole import ColoredManhole class UnexpectedOutputError(Exception): pass class TerminalProcessProtocol(protocol.ProcessProtocol): def __init__(self, proto): self.proto = proto self.onConnection = defer.Deferred() def connectionMade(self): self.proto.makeConnection(self) self.onConnection.callback(None) self.onConnection = None def write(self, data): """ Write to the terminal. @param data: Data to write. @type data: L{bytes} """ self.transport.write(data) def outReceived(self, data): """ Receive data from the terminal. @param data: Data received. @type data: L{bytes} """ self.proto.dataReceived(data) def errReceived(self, data): """ Report an error. @param data: Data to include in L{Failure}. @type data: L{bytes} """ self.transport.loseConnection() if self.proto is not None: self.proto.connectionLost(failure.Failure(UnexpectedOutputError(data))) self.proto = None def childConnectionLost(self, childFD): if self.proto is not None: self.proto.childConnectionLost(childFD) def processEnded(self, reason): if self.proto is not None: self.proto.connectionLost(reason) self.proto = None class ConsoleManhole(ColoredManhole): """ A manhole protocol specifically for use with L{stdio.StandardIO}. """ def connectionLost(self, reason): """ When the connection is lost, there is nothing more to do. Stop the reactor so that the process can exit. """ reactor.stop() def runWithProtocol(klass): fd = sys.__stdin__.fileno() oldSettings = termios.tcgetattr(fd) tty.setraw(fd) try: p = ServerProtocol(klass) stdio.StandardIO(p) reactor.run() finally: termios.tcsetattr(fd, termios.TCSANOW, oldSettings) os.write(fd, b"\r\x1bc\r") def main(argv=None): log.startLogging(open('child.log', 'w')) if argv is None: argv = sys.argv[1:] if argv: klass = reflect.namedClass(argv[0]) else: klass = ConsoleManhole runWithProtocol(klass) if __name__ == '__main__': main()
the-stack_106_19765
#!/usr/bin/env python ## HiCPack ## Author(s): Mohsen Naghipourfar ## Contact: [email protected] or [email protected] ## This software is distributed without any guarantee under the terms of the GNU General ## MIT License """ Script to keep only valid pairs when no restriction enzyme are used (i.e. DNAse or Micro-HiC) """ import getopt import os import re import sys import pysam def usage(): """Usage function""" print("Usage : python mapped_2hic_dnase.py") print("-r/--mappedReadsFile <BAM/SAM file of mapped reads>") print("[-o/--outputDir] <Output directory. Default is current directory>") print("[-d/--minCisDist] <Minimum distance between intrachromosomal contact to consider>") print( "[-g/--gtag] <Genotype tag. If specified, this tag will be reported in the valid pairs output for allele specific classification>") print( "[-a/--all] <Write all additional output files, with information about the discarded reads (self-circle, dangling end, etc.)>") print("[-v/--verbose] <Verbose>") print("[-h/--help] <Help>") return def get_args(): """Get argument""" try: opts, args = getopt.getopt( sys.argv[1:], "r:o:d:g:avh", ["mappedReadsFile=", "outputDir=", "minDist=", "gatg", "all", "verbose", "help"]) except getopt.GetoptError: usage() sys.exit(-1) return opts def get_read_strand(read): """ Conversion of read position to naive strand representation Parameters ---------- read : list list of aligned reads """ strand = "+" if read.is_reverse: strand = "-" return strand def get_read_pos(read, st="start"): """ Return the read position (zero-based) used for the intersection with the restriction fragment The 5' end is not a good choice for the reverse reads (which contain part of the restriction site, and thus overlap the next restriction fragment) Using the left-most position (5' for forward, 3' for reverse) or the middle of the read should work but the middle of the reads might be more safe Parameters ----------- read : list list of aligned reads """ if st == "middle": pos = read.pos + int(read.alen / 2) elif st == "start": pos = get_read_start(read) elif st == "left": pos = read.pos return pos def get_read_start(read): """ Return the 5' end of the read """ if read.is_reverse: pos = read.pos + read.alen - 1 else: pos = read.pos return pos def get_ordered_reads(read1, read2): """ Reorient reads The sequencing is usually not oriented. Reorient the reads so that r1 is always before r2 read1 = [AlignedRead] read2 = [AlignedRead] """ if read1.tid == read2.tid: if get_read_pos(read1) < get_read_pos(read2): r1 = read1 r2 = read2 else: r1 = read2 r2 = read1 else: if read1.tid < read2.tid: r1 = read1 r2 = read2 else: r1 = read2 r2 = read1 return r1, r2 def isIntraChrom(read1, read2): """ Return true is the reads pair is intrachromosomal read1 : [AlignedRead] read2 : [AlignedRead] """ if read1.tid == read2.tid: return True else: return False def get_valid_orientation(read1, read2): """ Both reads are expected to be on the different restriction fragments Check the orientation of reads ->-> / <-<- / -><- / <--> read1 : [AlignedRead] read2 : [AlignedRead] """ # Get oriented reads r1, r2 = get_ordered_reads(read1, read2) direction = None if get_read_strand(r1) == "+" and get_read_strand(r2) == "+": direction = "FF" elif get_read_strand(r1) == "-" and get_read_strand(r2) == "-": direction = "RR" elif get_read_strand(r1) == "+" and get_read_strand(r2) == "-": direction = "FR" elif get_read_strand(r1) == "-" and get_read_strand(r2) == "+": direction = "RF" return direction def get_cis_dist(read1, read2): """ Calculte the size of the DNA fragment library read1 : [AlignedRead] read2 : [AlignedRead] """ # Get oriented reads ##r1, r2 = get_ordered_reads(read1, read2) dist = None if not r1.is_unmapped and not r2.is_unmapped: ## Contact distances can be calculated for intrachromosomal reads only if isIntraChrom(read1, read2): r1pos = get_read_pos(read1) r2pos = get_read_pos(read2) dist = abs(r1pos - r2pos) return dist def get_read_tag(read, tag): for t in read.tags: if t[0] == tag: return t[1] return None if __name__ == "__main__": # Read command line arguments opts = get_args() verbose = False allOutput = False minInsertSize = None maxInsertSize = None minDist = None outputDir = "." gtag = None if len(opts) == 0: usage() sys.exit() for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit() elif opt in ("-r", "--mappedReadsFile"): mappedReadsFile = arg elif opt in ("-o", "--outputDir"): outputDir = arg elif opt in ("-d", "--minCisDist"): minDist = arg elif opt in ("-g", "--gtag"): gtag = arg elif opt in ("-a", "--all"): allOutput = True elif opt in ("-v", "--verbose"): verbose = True else: assert False, "unhandled option" # Verbose mode if verbose: print("## overlapMapped2HiCFragments.py") print("## mappedReadsFile=", mappedReadsFile) print("## minCisDist=", minDist) print("## allOuput=", allOutput) print("## verbose=", verbose, "\n") # Initialize variables reads_counter = 0 valid_counter = 0 valid_counter_FF = 0 valid_counter_RR = 0 valid_counter_FR = 0 valid_counter_RF = 0 single_counter = 0 dump_counter = 0 filt_counter = 0 # AS counter G1G1_ascounter = 0 G2G2_ascounter = 0 G1U_ascounter = 0 UG1_ascounter = 0 G2U_ascounter = 0 UG2_ascounter = 0 G1G2_ascounter = 0 G2G1_ascounter = 0 UU_ascounter = 0 CF_ascounter = 0 baseReadsFile = os.path.basename(mappedReadsFile) baseReadsFile = re.sub(r'\.bam$|\.sam$', '', baseReadsFile) # Open handlers for output files handle_valid = open(outputDir + '/' + baseReadsFile + '.validPairs', 'w') if allOutput: handle_dump = open(outputDir + '/' + baseReadsFile + '.DumpPairs', 'w') handle_single = open(outputDir + '/' + baseReadsFile + '.SinglePairs', 'w') handle_filt = open(outputDir + '/' + baseReadsFile + '.FiltPairs', 'w') # Read the SAM/BAM file if verbose: print("## Opening SAM/BAM file '", mappedReadsFile, "'...") samfile = pysam.Samfile(mappedReadsFile, "rb") # Reads are 0-based too (for both SAM and BAM format) # Loop on all reads for read in samfile.fetch(until_eof=True): reads_counter += 1 cur_handler = None interactionType = None htag = "" # First mate if read.is_read1: r1 = read if not r1.is_unmapped: r1_chrom = samfile.getrname(r1.tid) else: r1_chrom = None # Second mate elif read.is_read2: r2 = read if not r2.is_unmapped: r2_chrom = samfile.getrname(r2.tid) else: r2_chrom = None if isIntraChrom(r1, r2): dist = get_cis_dist(r1, r2) else: dist = None # Check singleton if r1.is_unmapped or r2.is_unmapped: interactionType = "SI" single_counter += 1 cur_handler = handle_single if allOutput else None # Check Distance criteria - Filter if (minDist is not None and dist is not None and dist < int(minDist)): interactionType = "FILT" filt_counter += 1 cur_handler = handle_filt if allOutput else None # By default pair is valid if interactionType == None: interactionType = "VI" valid_counter += 1 cur_handler = handle_valid validType = get_valid_orientation(r1, r2) if validType == "RR": valid_counter_RR += 1 elif validType == "FF": valid_counter_FF += 1 elif validType == "FR": valid_counter_FR += 1 elif validType == "RF": valid_counter_RF += 1 else: interactionType = "DUMP" dump_counter += 1 cur_handler = handle_dump if allOutput else None # Split valid pairs based on XA tag if gtag is not None: r1as = get_read_tag(r1, gtag) r2as = get_read_tag(r2, gtag) if r1as == 1 and r2as == 1: G1G1_ascounter += 1 elif r1as == 2 and r2as == 2: G2G2_ascounter += 1 elif r1as == 1 and r2as == 0: G1U_ascounter += 1 elif r1as == 0 and r2as == 1: UG1_ascounter += 1 elif r1as == 2 and r2as == 0: G2U_ascounter += 1 elif r1as == 0 and r2as == 2: UG2_ascounter += 1 elif r1as == 1 and r2as == 2: G1G2_ascounter += 1 elif r1as == 2 and r2as == 1: G2G1_ascounter += 1 elif r1as == 3 or r2as == 3: CF_ascounter += 1 else: UU_ascounter += 1 if cur_handler is not None: if not r1.is_unmapped and not r2.is_unmapped: ##reorient reads to ease duplicates removal or1, or2 = get_ordered_reads(r1, r2) or1_chrom = samfile.getrname(or1.tid) or2_chrom = samfile.getrname(or2.tid) ##reset as tag now that the reads are oriented r1as = get_read_tag(or1, gtag) r2as = get_read_tag(or2, gtag) if gtag is not None: htag = str(r1as) + "-" + str(r2as) cur_handler.write( or1.qname + "\t" + or1_chrom + "\t" + str(get_read_pos(or1) + 1) + "\t" + str(get_read_strand(or1)) + "\t" + or2_chrom + "\t" + str(get_read_pos(or2) + 1) + "\t" + str(get_read_strand(or2)) + "\t" + "NA" + "\t" + ##dist "NA" + "\t" + ##resfrag1 "NA" + "\t" + ##resfrag2 str(or1.mapping_quality) + "\t" + str(or2.mapping_quality) + "\t" + str(htag) + "\n") elif r2.is_unmapped and not r1.is_unmapped: cur_handler.write( r1.qname + "\t" + r1_chrom + "\t" + str(get_read_pos(r1) + 1) + "\t" + str(get_read_strand(r1)) + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + str(r1.mapping_quality) + "\t" + "*" + "\n") elif r1.is_unmapped and not r2.is_unmapped: cur_handler.write( r2.qname + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + r2_chrom + "\t" + str(get_read_pos(r2) + 1) + "\t" + str(get_read_strand(r2)) + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + "*" + "\t" + str(r2.mapping_quality) + "\n") if (reads_counter % 100000 == 0 and verbose): print("##", reads_counter) # Close handler handle_valid.close() if allOutput: handle_dump.close() handle_single.close() handle_filt.close() # Write stats file handle_stat = open(outputDir + '/' + baseReadsFile + '.RSstat', 'w') handle_stat.write("## Hi-C processing - no restriction fragments\n") handle_stat.write("Valid_interaction_pairs\t" + str(valid_counter) + "\n") handle_stat.write( "Valid_interaction_pairs_FF\t" + str(valid_counter_FF) + "\n") handle_stat.write( "Valid_interaction_pairs_RR\t" + str(valid_counter_RR) + "\n") handle_stat.write( "Valid_interaction_pairs_RF\t" + str(valid_counter_RF) + "\n") handle_stat.write( "Valid_interaction_pairs_FR\t" + str(valid_counter_FR) + "\n") handle_stat.write("Single-end_pairs\t" + str(single_counter) + "\n") handle_stat.write("Filtered_pairs\t" + str(filt_counter) + "\n") handle_stat.write("Dumped_pairs\t" + str(dump_counter) + "\n") ## Write AS report if gtag is not None: handle_stat.write("## ======================================\n") handle_stat.write("## Allele specific information\n") handle_stat.write("Valid_pairs_from_ref_genome_(1-1)\t" + str(G1G1_ascounter) + "\n") handle_stat.write("Valid_pairs_from_ref_genome_with_one_unassigned_mate_(0-1/1-0)\t" + str( UG1_ascounter + G1U_ascounter) + "\n") handle_stat.write("Valid_pairs_from_alt_genome_(2-2)\t" + str(G2G2_ascounter) + "\n") handle_stat.write("Valid_pairs_from_alt_genome_with_one_unassigned_mate_(0-2/2-0)\t" + str( UG2_ascounter + G2U_ascounter) + "\n") handle_stat.write( "Valid_pairs_from_alt_and_ref_genome_(1-2/2-1)\t" + str(G1G2_ascounter + G2G1_ascounter) + "\n") handle_stat.write("Valid_pairs_with_both_unassigned_mated_(0-0)\t" + str(UU_ascounter) + "\n") handle_stat.write("Valid_pairs_with_at_least_one_conflicting_mate_(3-)\t" + str(CF_ascounter) + "\n") handle_stat.close()
the-stack_106_19766
from dama.reg.wrappers import XGB, SKLP import xgboost as xgb class Xgboost(XGB): def prepare_model(self, obj_fn=None, num_steps: int = 0, model_params=None, batch_size: int = None): data_train = self.ds[self.data_groups["data_train_group"]].to_ndarray() target_train = self.ds[self.data_groups["target_train_group"]].to_ndarray() data_val = self.ds[self.data_groups["data_validation_group"]].to_ndarray() target_val = self.ds[self.data_groups["target_validation_group"]].to_ndarray() d_train = xgb.DMatrix(data_train, target_train) d_valid = xgb.DMatrix(data_val, target_val) watchlist = [(d_train, 'train'), (d_valid, 'valid')] nrounds = num_steps xgb_model = xgb.train(model_params, d_train, nrounds, watchlist, early_stopping_rounds=int(nrounds/2), feval=obj_fn, maximize=True, verbose_eval=100) return self.ml_model(xgb, bst=xgb_model) def feature_importance(self): pass class XgboostSKL(SKLP): def prepare_model(self, obj_fn=None, num_steps: int = 0, model_params=None, batch_size: int = None): if model_params is None: model_params = dict(seed=3, n_estimators=25) model = xgb.XGBClassifier(**model_params) reg_model = model.fit(self.ds[self.data_groups["data_train_group"]].to_ndarray(), self.ds[self.data_groups["target_train_group"]].to_ndarray()) return self.ml_model(reg_model)
the-stack_106_19767
import decimal from typing import ( Tuple, ) abi_decimal_context = decimal.Context(prec=999) ZERO = decimal.Decimal(0) TEN = decimal.Decimal(10) def ceil32(x: int) -> int: return x if x % 32 == 0 else x + 32 - (x % 32) def compute_unsigned_integer_bounds(num_bits: int) -> Tuple[int, int]: return ( 0, 2 ** num_bits - 1, ) def compute_signed_integer_bounds(num_bits: int) -> Tuple[int, int]: return ( -1 * 2 ** (num_bits - 1), 2 ** (num_bits - 1) - 1, ) def compute_unsigned_fixed_bounds( num_bits: int, frac_places: int, ) -> Tuple[decimal.Decimal, decimal.Decimal]: int_upper = compute_unsigned_integer_bounds(num_bits)[1] with decimal.localcontext(abi_decimal_context): upper = decimal.Decimal(int_upper) * TEN ** -frac_places return ZERO, upper def compute_signed_fixed_bounds( num_bits: int, frac_places: int, ) -> Tuple[decimal.Decimal, decimal.Decimal]: int_lower, int_upper = compute_signed_integer_bounds(num_bits) with decimal.localcontext(abi_decimal_context): exp = TEN ** -frac_places lower = decimal.Decimal(int_lower) * exp upper = decimal.Decimal(int_upper) * exp return lower, upper
the-stack_106_19769
from django.conf.urls import url, include from django.conf.urls.static import static from django.contrib.auth import views as auth_views from django.conf import settings from authentication import views as views from vehicle import views as v_views from driver import views as d_views from accidents import views as a_views from gpsdevices import views as as_views urlpatterns = [ # url(r'^django_popup_view_field/', include('django_popup_view_field.urls', namespace="django_popup_view_field")), url(r'^$', auth_views.login, {'template_name': 'login.html'}, name='login'), url(r'^home$', views.index, name='index'), url(r'^location$', views.location, name='location'), url(r'^route$', views.route, name='routes'), url(r'^report$', views.report, name='reports'), url(r'^schedule$', views.schedule, name='schedules'), url(r'^vehicles_list/$', v_views.VehicleListView.as_view(), name='vehicles_list'), url(r'^add_vehicle/$', v_views.CreateVehicleView.as_view(), name='add_vehicle'), url(r'^edit_vehicle/(?P<pk>\d+)/$', v_views.UpdateVehicleView.as_view(), name='edit_vehicle'), url(r'^view_vehicle/(?P<pk>\d+)/$', v_views.VehicleView.as_view(), name='view_vehicle'), # url(r'^view_vehicle/(?P<pk>\d+)/$', v_views.view_vehicle, name='view_vehicle'), url(r'^delete_vehicle/(?P<pk>\d+)/$', v_views.DeleteVehicleView.as_view(), name='delete_vehicle'), # url(r'^records_list/$', v_views.MonthlyListView.as_view(), name='records_list'), # url(r'^add_record/$', v_views.CreateMonthlyView.as_view(), name='add_record'), # url(r'^edit_record/(?P<pk>\d+)/$', v_views.UpdateMonthlyView.as_view(), name='edit_record'), # url(r'^record/(?P<pk>\d+)/$', v_views.MonthlyView.as_view(), name='view_record'), url(r'^drivers_list/$', d_views.DriverListView.as_view(), name='drivers_list'), url(r'^add_driver/$',d_views.CreateDriverView.as_view(), name='add_driver'), url(r'^edit_driver/(?P<pk>\d+)/$', d_views.UpdateDriverView.as_view(), name='edit_driver'), url(r'^driver/(?P<pk>\d+)/$', d_views.DriverView.as_view(), name='view_driver'), url(r'^delete_driver/(?P<pk>\d+)/$', d_views.DeleteDriverView.as_view(), name='delete_driver'), url(r'^gpsdevices_list/$', as_views.GPSDeviceListView.as_view(), name='gpsdevices_list'), url(r'^add_gpsdevice/$', as_views.CreateGPSDeviceView.as_view(), name='add_gpsdevice'), url(r'^edit_gpsdevice/(?P<pk>\d+)/$', as_views.UpdateGPSDeviceView.as_view(), name='edit_gpsdevice'), url(r'^gpsdevice/(?P<pk>\d+)/$', as_views.GPSDeviceView.as_view(), name='gpsdevice'), url(r'^view_gpsdevice/(?P<pk>\d+)/$', as_views.view_gpsdevice, name='view_gpsdevice'), url(r'^accidents_list/$', a_views.AccidentsListView.as_view(), name='accidents_list'), url(r'^add_accident/$', a_views.CreateAccidentView.as_view(), name='add_accident'), url(r'^edit_accident/(?P<pk>\d+)/$', a_views.UpdateAccidentView.as_view(), name='edit_accident'), url(r'^delete_accident/(?P<pk>\d+)/$', a_views.DeleteAccidentView.as_view(), name='delete_accident'), url(r'^accident/(?P<pk>\d+)/$', a_views.AccidentView.as_view(), name='view_accident'), url(r'^accidents/(?P<pk>\d+)/$', a_views.accidentsView, name='accidents'), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATICFILES_DIRS) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
the-stack_106_19771
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DeleteSecurityGroupResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { } attribute_map = { } def __init__(self): """DeleteSecurityGroupResponse - a model defined in huaweicloud sdk""" super(DeleteSecurityGroupResponse, self).__init__() self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteSecurityGroupResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_19773
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for data input for speech commands.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf from tensorflow.contrib.framework.python.ops import audio_ops as contrib_audio from tensorflow.examples.speech_commands_custom import input_data from tensorflow.python.framework import test_util from tensorflow.python.platform import test class InputDataTest(test.TestCase): def _getWavData(self): with self.cached_session() as sess: sample_data = tf.zeros([1000, 2]) wav_encoder = contrib_audio.encode_wav(sample_data, 16000) wav_data = sess.evaluate(wav_encoder) return wav_data def _saveTestWavFile(self, filename, wav_data): with open(filename, "wb") as f: f.write(wav_data) def _saveWavFolders(self, root_dir, labels, how_many): wav_data = self._getWavData() for label in labels: dir_name = os.path.join(root_dir, label) os.mkdir(dir_name) for i in range(how_many): file_path = os.path.join(dir_name, "some_audio_%d.wav" % i) self._saveTestWavFile(file_path, wav_data) def _model_settings(self): return { "desired_samples": 160, "fingerprint_size": 40, "label_count": 4, "window_size_samples": 100, "window_stride_samples": 100, "dct_coefficient_count": 40, } def testPrepareWordsList(self): words_list = ["a", "b"] self.assertGreater( len(input_data.prepare_words_list(words_list), 10.0, 10.0), len(words_list)) def testWhichSet(self): self.assertEqual( input_data.which_set("foo.wav", 10, 10), input_data.which_set("foo.wav", 10, 10)) self.assertEqual( input_data.which_set("foo_nohash_0.wav", 10, 10), input_data.which_set("foo_nohash_1.wav", 10, 10)) @test_util.run_deprecated_v1 def testPrepareDataIndex(self): tmp_dir = self.get_temp_dir() self._saveWavFolders(tmp_dir, ["a", "b", "c"], 100) audio_processor = input_data.AudioProcessor("", tmp_dir, 10, 10, ["a", "b"], 10, 10, self._model_settings()) self.assertLess(0, audio_processor.set_size("training")) self.assertTrue("training" in audio_processor.data_index) self.assertTrue("validation" in audio_processor.data_index) self.assertTrue("testing" in audio_processor.data_index) self.assertEquals(input_data.UNKNOWN_WORD_INDEX, audio_processor.word_to_index["c"]) def testPrepareDataIndexEmpty(self): tmp_dir = self.get_temp_dir() self._saveWavFolders(tmp_dir, ["a", "b", "c"], 0) with self.assertRaises(Exception) as e: _ = input_data.AudioProcessor("", tmp_dir, 10, 10, ["a", "b"], 10, 10, self._model_settings()) self.assertTrue("No .wavs found" in str(e.exception)) def testPrepareDataIndexMissing(self): tmp_dir = self.get_temp_dir() self._saveWavFolders(tmp_dir, ["a", "b", "c"], 100) with self.assertRaises(Exception) as e: _ = input_data.AudioProcessor("", tmp_dir, 10, 10, ["a", "b", "d"], 10, 10, self._model_settings()) self.assertTrue("Expected to find" in str(e.exception)) @test_util.run_deprecated_v1 def testPrepareBackgroundData(self): tmp_dir = self.get_temp_dir() background_dir = os.path.join(tmp_dir, "_background_noise_") os.mkdir(background_dir) wav_data = self._getWavData() for i in range(10): file_path = os.path.join(background_dir, "background_audio_%d.wav" % i) self._saveTestWavFile(file_path, wav_data) self._saveWavFolders(tmp_dir, ["a", "b", "c"], 100) audio_processor = input_data.AudioProcessor("", tmp_dir, 10, 10, ["a", "b"], 10, 10, self._model_settings()) self.assertEqual(10, len(audio_processor.background_data)) def testLoadWavFile(self): tmp_dir = self.get_temp_dir() file_path = os.path.join(tmp_dir, "load_test.wav") wav_data = self._getWavData() self._saveTestWavFile(file_path, wav_data) sample_data = input_data.load_wav_file(file_path) self.assertIsNotNone(sample_data) def testSaveWavFile(self): tmp_dir = self.get_temp_dir() file_path = os.path.join(tmp_dir, "load_test.wav") save_data = np.zeros([16000, 1]) input_data.save_wav_file(file_path, save_data, 16000) loaded_data = input_data.load_wav_file(file_path) self.assertIsNotNone(loaded_data) self.assertEqual(16000, len(loaded_data)) @test_util.run_deprecated_v1 def testPrepareProcessingGraph(self): tmp_dir = self.get_temp_dir() wav_dir = os.path.join(tmp_dir, "wavs") os.mkdir(wav_dir) self._saveWavFolders(wav_dir, ["a", "b", "c"], 100) background_dir = os.path.join(wav_dir, "_background_noise_") os.mkdir(background_dir) wav_data = self._getWavData() for i in range(10): file_path = os.path.join(background_dir, "background_audio_%d.wav" % i) self._saveTestWavFile(file_path, wav_data) model_settings = { "desired_samples": 160, "fingerprint_size": 40, "label_count": 4, "window_size_samples": 100, "window_stride_samples": 100, "dct_coefficient_count": 40, } audio_processor = input_data.AudioProcessor("", wav_dir, 10, 10, ["a", "b"], 10, 10, model_settings) self.assertIsNotNone(audio_processor.wav_filename_placeholder_) self.assertIsNotNone(audio_processor.foreground_volume_placeholder_) self.assertIsNotNone(audio_processor.time_shift_padding_placeholder_) self.assertIsNotNone(audio_processor.time_shift_offset_placeholder_) self.assertIsNotNone(audio_processor.background_data_placeholder_) self.assertIsNotNone(audio_processor.background_volume_placeholder_) self.assertIsNotNone(audio_processor.mfcc_) @test_util.run_deprecated_v1 def testGetData(self): tmp_dir = self.get_temp_dir() wav_dir = os.path.join(tmp_dir, "wavs") os.mkdir(wav_dir) self._saveWavFolders(wav_dir, ["a", "b", "c"], 100) background_dir = os.path.join(wav_dir, "_background_noise_") os.mkdir(background_dir) wav_data = self._getWavData() for i in range(10): file_path = os.path.join(background_dir, "background_audio_%d.wav" % i) self._saveTestWavFile(file_path, wav_data) model_settings = { "desired_samples": 160, "fingerprint_size": 40, "label_count": 4, "window_size_samples": 100, "window_stride_samples": 100, "dct_coefficient_count": 40, } audio_processor = input_data.AudioProcessor("", wav_dir, 10, 10, ["a", "b"], 10, 10, model_settings) with self.cached_session() as sess: result_data, result_labels = audio_processor.get_data( 10, 0, model_settings, 0.3, 0.1, 100, "training", sess) self.assertEqual(10, len(result_data)) self.assertEqual(10, len(result_labels)) @test_util.run_deprecated_v1 def testGetUnprocessedData(self): tmp_dir = self.get_temp_dir() wav_dir = os.path.join(tmp_dir, "wavs") os.mkdir(wav_dir) self._saveWavFolders(wav_dir, ["a", "b", "c"], 100) model_settings = { "desired_samples": 160, "fingerprint_size": 40, "label_count": 4, "window_size_samples": 100, "window_stride_samples": 100, "dct_coefficient_count": 40, } audio_processor = input_data.AudioProcessor("", wav_dir, 10, 10, ["a", "b"], 10, 10, model_settings) result_data, result_labels = audio_processor.get_unprocessed_data( 10, model_settings, "training") self.assertEqual(10, len(result_data)) self.assertEqual(10, len(result_labels)) if __name__ == "__main__": test.main()
the-stack_106_19774
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.http import HttpResponseRedirect, HttpResponse from psms.models import Users #由于这个版本没有mixin类 class MiddlewareMixin(object): def __init__(self, get_response=None): self.get_response = get_response super(MiddlewareMixin, self).__init__() def __call__(self, request): response = None if hasattr(self, 'process_request'): response = self.process_request(request) if not response: response = self.get_response(request) if hasattr(self, 'process_response'): response = self.process_response(request, response) return response class CountAddstu(MiddlewareMixin): def process_request(self, request): # 统一验证登录 # return none 或者 不写return才会继续往下执行, 不需要执行 if request.path == '/psms/login/' or request.path == '/psms/regist/' or request.is_ajax(): return None ticket = request.COOKIES.get('ticket') if not ticket: return HttpResponseRedirect('/psms/login/') users = Users.objects.filter(u_ticket=ticket) if not users: return HttpResponseRedirect('/psms/login/') # 将user赋值在request请求的user上,以后可以直接判断user有没有存在 # 备注,django自带的有user值 request.user = users[0].u_name def process_exception(self,request,exception): #只要有异常报错,就会执行退出,然后提示服务器正在维护,然后给用户发短信,这里是模拟,只创建一个error列表。 response = HttpResponse('网络故障。。。') # 删除cookie response.delete_cookie('ticket') # 清除session try: del request.session['user'] except: pass return response
the-stack_106_19775
"""Base class for directed graphs.""" from copy import deepcopy import networkx as nx from networkx.classes.graph import Graph from networkx.classes.coreviews import AdjacencyView from networkx.classes.reportviews import ( OutEdgeView, InEdgeView, DiDegreeView, InDegreeView, OutDegreeView, ) from networkx.exception import NetworkXError import networkx.convert as convert class DiGraph(Graph): """ Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. By convention `None` is not used as a node. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be any format that is supported by the to_networkx_graph() function, currently including edge list, dict of dicts, dict of lists, NetworkX graph, NumPy matrix or 2d ndarray, SciPy sparse matrix, or PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- Graph MultiGraph MultiDiGraph OrderedDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.DiGraph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2, 3]) >>> G.add_nodes_from(range(100, 110)) >>> H = nx.path_graph(10) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1, 2), (1, 3)]) or a collection of edges, >>> G.add_edges_from(H.edges) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.nodes >>> G.add_node(1, time="5pm") >>> G.add_nodes_from([3], time="2pm") >>> G.nodes[1] {'time': '5pm'} >>> G.nodes[1]["room"] = 714 >>> del G.nodes[1]["room"] # remove attribute >>> list(G.nodes(data=True)) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edges. >>> G.add_edge(1, 2, weight=4.7) >>> G.add_edges_from([(3, 4), (4, 5)], color="red") >>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})]) >>> G[1][2]["weight"] = 4.7 >>> G.edges[1, 2]["weight"] = 4 Warning: we protect the graph data structure by making `G.edges[1, 2]` a read-only dict-like structure. However, you can assign to attributes in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change data attributes: `G.edges[1, 2]['weight'] = 4` (For multigraphs: `MG.edges[u, v, key][name] = value`). **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n < 3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 Often the best way to traverse all edges of a graph is via the neighbors. The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()` >>> for n, nbrsdict in G.adjacency(): ... for nbr, eattr in nbrsdict.items(): ... if "weight" in eattr: ... # Do something useful with the edges ... pass But the edges reporting object is often more convenient: >>> for u, v, weight in G.edges(data="weight"): ... if weight is not None: ... # Do something useful with the edges ... pass **Reporting:** Simple graph information is obtained using object-attributes and methods. Reporting usually provides views instead of containers to reduce memory usage. The views update as the graph is updated similarly to dict-views. The objects `nodes, `edges` and `adj` provide access to data attributes via lookup (e.g. `nodes[n], `edges[u, v]`, `adj[u][v]`) and iteration (e.g. `nodes.items()`, `nodes.data('color')`, `nodes.data('color', default='blue')` and similarly for `edges`) Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information keyed by node. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by neighbor. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced in a subclass by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, node_attr_dict_factory, adjlist_inner_dict_factory, adjlist_outer_dict_factory, edge_attr_dict_factory and graph_attr_dict_factory. node_dict_factory : function, (default: dict) Factory function to be used to create the dict containing node attributes, keyed by node id. It should require no arguments and return a dict-like object node_attr_dict_factory: function, (default: dict) Factory function to be used to create the node attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object adjlist_outer_dict_factory : function, (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency info keyed by node. It should require no arguments and return a dict-like object. adjlist_inner_dict_factory : function, optional (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory : function, optional (default: dict) Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. graph_attr_dict_factory : function, (default: dict) Factory function to be used to create the graph attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object. Typically, if your extension doesn't impact the data structure all methods will inherited without issue except: `to_directed/to_undirected`. By default these methods create a DiGraph/Graph class and you probably want them to create your extension of a DiGraph/Graph. To facilitate this we define two class variables that you can set in your subclass. to_directed_class : callable, (default: DiGraph or MultiDiGraph) Class to create a new graph structure in the `to_directed` method. If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used. to_undirected_class : callable, (default: Graph or MultiGraph) Class to create a new graph structure in the `to_undirected` method. If `None`, a NetworkX class (Graph or MultiGraph) is used. **Subclassing Example** Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. >>> class ThinGraph(nx.Graph): ... all_edge_dict = {"weight": 1} ... ... def single_edge_dict(self): ... return self.all_edge_dict ... ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2, 1) >>> G[2][1] {'weight': 1} >>> G.add_edge(2, 2) >>> G[2][1] is G[2][2] True Please see :mod:`~networkx.classes.ordered` for more examples of creating graph subclasses by overwriting the base class `dict` with a dictionary-like object. """ def __init__(self, incoming_graph_data=None, **attr): """Initialize a graph with edges, name, or graph attributes. Parameters ---------- incoming_graph_data : input graph (optional, default: None) Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name="my graph") >>> e = [(1, 2), (2, 3), (3, 4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G = nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.graph_attr_dict_factory = self.graph_attr_dict_factory self.node_dict_factory = self.node_dict_factory self.node_attr_dict_factory = self.node_attr_dict_factory self.adjlist_outer_dict_factory = self.adjlist_outer_dict_factory self.adjlist_inner_dict_factory = self.adjlist_inner_dict_factory self.edge_attr_dict_factory = self.edge_attr_dict_factory self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes self._node = self.node_dict_factory() # dictionary for node attr # We store two adjacency lists: # the predecessors of node n are stored in the dict self._pred # the successors of node n are stored in the dict self._succ=self._adj self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict self._pred = self.adjlist_outer_dict_factory() # predecessor self._succ = self._adj # successor # attempt to load graph with data if incoming_graph_data is not None: convert.to_networkx_graph(incoming_graph_data, create_using=self) # load graph attributes (must be after convert) self.graph.update(attr) @property def adj(self): """Graph adjacency object holding the neighbors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.adj behaves like a dict. Useful idioms include `for nbr, datadict in G.adj[n].items():`. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` holds outgoing (successor) info. """ return AdjacencyView(self._succ) @property def succ(self): """Graph adjacency object holding the successors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.succ[3][2]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.succ behaves like a dict. Useful idioms include `for nbr, datadict in G.succ[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.succ[node].data('foo'):` and a default can be set via a `default` argument to the `data` method. The neighbor information is also provided by subscripting the graph. So `for nbr, foovalue in G[node].data('foo', default=1):` works. For directed graphs, `G.adj` is identical to `G.succ`. """ return AdjacencyView(self._succ) @property def pred(self): """Graph adjacency object holding the predecessors of each node. This object is a read-only dict-like structure with node keys and neighbor-dict values. The neighbor-dict is keyed by neighbor to the edge-data-dict. So `G.pred[2][3]['color'] = 'blue'` sets the color of the edge `(3, 2)` to `"blue"`. Iterating over G.pred behaves like a dict. Useful idioms include `for nbr, datadict in G.pred[n].items():`. A data-view not provided by dicts also exists: `for nbr, foovalue in G.pred[node].data('foo'):` A default can be set via a `default` argument to the `data` method. """ return AdjacencyView(self._pred) def add_node(self, node_for_adding, **attr): """Add a single node `node_for_adding` and update node attributes. Parameters ---------- node_for_adding : node A node can be any hashable Python object except None. attr : keyword arguments, optional Set or change node attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1, size=10) >>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ if node_for_adding not in self._succ: self._succ[node_for_adding] = self.adjlist_inner_dict_factory() self._pred[node_for_adding] = self.adjlist_inner_dict_factory() attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory() attr_dict.update(attr) else: # update attr even if node already exists self._node[node_for_adding].update(attr) def add_nodes_from(self, nodes_for_adding, **attr): """Add multiple nodes. Parameters ---------- nodes_for_adding : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified via keyword arguments. See Also -------- add_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from("Hello") >>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(), key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1, 2], size=10) >>> G.add_nodes_from([3, 4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})]) >>> G.nodes[1]["size"] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.nodes[1]["size"] 11 """ for n in nodes_for_adding: try: newnode = n not in self._node newdict = attr except TypeError: n, ndict = n newnode = n not in self._node newdict = attr.copy() newdict.update(ndict) if newnode: self._succ[n] = self.adjlist_inner_dict_factory() self._pred[n] = self.adjlist_inner_dict_factory() self._node[n] = self.node_attr_dict_factory() self._node[n].update(newdict) def remove_node(self, n): """Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- remove_nodes_from Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> list(G.edges) [(0, 1), (1, 2)] >>> G.remove_node(1) >>> list(G.edges) [] """ try: nbrs = self._succ[n] del self._node[n] except KeyError as e: # NetworkXError if n not in self raise NetworkXError(f"The node {n} is not in the digraph.") from e for u in nbrs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # remove node from succ for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # remove node from pred def remove_nodes_from(self, nodes): """Remove multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. See Also -------- remove_node Examples -------- >>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = list(G.nodes) >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> list(G.nodes) [] """ for n in nodes: try: succs = self._succ[n] del self._node[n] for u in succs: del self._pred[u][n] # remove all edges n-u in digraph del self._succ[n] # now remove node for u in self._pred[n]: del self._succ[u][n] # remove all edges n-u in digraph del self._pred[n] # now remove node except KeyError: pass # silent failure on remove def add_edge(self, u_of_edge, v_of_edge, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by directly accessing the edge's attribute dictionary. See examples below. Parameters ---------- u_of_edge, v_of_edge : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default `weight`) to hold a numerical value. Examples -------- The following all add the edge e=(1, 2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1, 2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from([(1, 2)]) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) For non-string attribute keys, use subscript notation. >>> G.add_edge(1, 2) >>> G[1][2].update({0: 5}) >>> G.edges[1, 2].update({0: 5}) """ u, v = u_of_edge, v_of_edge # add nodes if u not in self._succ: self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() # add the edge datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) self._succ[u][v] = datadict self._pred[v][u] = datadict def add_edges_from(self, ebunch_to_add, **attr): """Add all the edges in ebunch_to_add. Parameters ---------- ebunch_to_add : container of edges Each edge given in the container will be added to the graph. The edges must be given as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in an ebunch take precedence over attributes specified via keyword arguments. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples >>> e = zip(range(0, 3), range(1, 4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1, 2), (2, 3)], weight=3) >>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898") """ for e in ebunch_to_add: ne = len(e) if ne == 3: u, v, dd = e elif ne == 2: u, v = e dd = {} else: raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.") if u not in self._succ: self._succ[u] = self.adjlist_inner_dict_factory() self._pred[u] = self.adjlist_inner_dict_factory() self._node[u] = self.node_attr_dict_factory() if v not in self._succ: self._succ[v] = self.adjlist_inner_dict_factory() self._pred[v] = self.adjlist_inner_dict_factory() self._node[v] = self.node_attr_dict_factory() datadict = self._adj[u].get(v, self.edge_attr_dict_factory()) datadict.update(attr) datadict.update(dd) self._succ[u][v] = datadict self._pred[v][u] = datadict def remove_edge(self, u, v): """Remove the edge between u and v. Parameters ---------- u, v : nodes Remove the edge between nodes u and v. Raises ------ NetworkXError If there is not an edge between u and v. See Also -------- remove_edges_from : remove a collection of edges Examples -------- >>> G = nx.Graph() # or DiGraph, etc >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.remove_edge(0, 1) >>> e = (1, 2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2, 3, {"weight": 7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple """ try: del self._succ[u][v] del self._pred[v][u] except KeyError as e: raise NetworkXError(f"The edge {u}-{v} not in graph.") from e def remove_edges_from(self, ebunch): """Remove all edges specified in ebunch. Parameters ---------- ebunch: list or container of edge tuples Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u, v) edge between u and v. - 3-tuples (u, v, k) where k is ignored. See Also -------- remove_edge : remove a single edge Notes ----- Will fail silently if an edge in ebunch is not in the graph. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> ebunch = [(1, 2), (2, 3)] >>> G.remove_edges_from(ebunch) """ for e in ebunch: u, v = e[:2] # ignore edge data if u in self._succ and v in self._succ[u]: del self._succ[u][v] del self._pred[v][u] def has_successor(self, u, v): """Returns True if node u has successor v. This is true if graph has the edge u->v. """ return u in self._succ and v in self._succ[u] def has_predecessor(self, u, v): """Returns True if node u has predecessor v. This is true if graph has the edge u<-v. """ return u in self._pred and v in self._pred[u] def successors(self, n): """Returns an iterator over successor nodes of n. A successor of n is a node m such that there exists a directed edge from n to m. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- predecessors Notes ----- neighbors() and successors() are the same. """ try: return iter(self._succ[n]) except KeyError as e: raise NetworkXError(f"The node {n} is not in the digraph.") from e # digraph definitions neighbors = successors def predecessors(self, n): """Returns an iterator over predecessor nodes of n. A predecessor of n is a node m such that there exists a directed edge from m to n. Parameters ---------- n : node A node in the graph Raises ------ NetworkXError If n is not in the graph. See Also -------- successors """ try: return iter(self._pred[n]) except KeyError as e: raise NetworkXError(f"The node {n} is not in the digraph.") from e @property def edges(self): """An OutEdgeView of the DiGraph as G.edges or G.edges(). edges(self, nbunch=None, data=False, default=None) The OutEdgeView provides set-like operations on the edge-tuples as well as edge attribute lookup. When called, it also provides an EdgeDataView object which allows control of access to edge attributes (but does not provide set-like operations). Hence, `G.edges[u, v]['color']` provides the value of the color attribute for edge `(u, v)` while `for (u, v, c) in G.edges.data('color', default='red'):` iterates through all the edges yielding the color attribute with default `'red'` if no color attribute exists. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- edges : OutEdgeView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. See Also -------- in_edges, out_edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> nx.add_path(G, [0, 1, 2]) >>> G.add_edge(2, 3, weight=5) >>> [e for e in G.edges] [(0, 1), (1, 2), (2, 3)] >>> G.edges.data() # default data is {} (empty dict) OutEdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]) >>> G.edges.data("weight", default=1) OutEdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)]) >>> G.edges([0, 2]) # only edges incident to these nodes OutEdgeDataView([(0, 1), (2, 3)]) >>> G.edges(0) # only edges incident to a single node (use G.adj[0]?) OutEdgeDataView([(0, 1)]) """ return OutEdgeView(self) # alias out_edges to edges out_edges = edges @property def in_edges(self): """An InEdgeView of the Graph as G.in_edges or G.in_edges(). in_edges(self, nbunch=None, data=False, default=None): Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u, v, ddict[data]). If True, return edge attribute dict in 3-tuple (u, v, ddict). If False, return 2-tuple (u, v). default : value, optional (default=None) Value used for edges that don't have the requested attribute. Only relevant if data is not True or False. Returns ------- in_edges : InEdgeView A view of edge attributes, usually it iterates over (u, v) or (u, v, d) tuples of edges, but can also be used for attribute lookup as `edges[u, v]['foo']`. See Also -------- edges """ return InEdgeView(self) @property def degree(self): """A DegreeView for the Graph as G.degree or G.degree(). The node degree is the number of edges adjacent to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator for (node, degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int Degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, degree). See Also -------- in_degree, out_degree Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.degree(0) # node 0 with degree 1 1 >>> list(G.degree([0, 1, 2])) [(0, 1), (1, 2), (2, 2)] """ return DiDegreeView(self) @property def in_degree(self): """An InDegreeView for (node, in_degree) or in_degree for single node. The node in_degree is the number of edges pointing to the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iteration over (node, in_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int In-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, in-degree). See Also -------- degree, out_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.in_degree(0) # node 0 with degree 0 0 >>> list(G.in_degree([0, 1, 2])) [(0, 0), (1, 1), (2, 1)] """ return InDegreeView(self) @property def out_degree(self): """An OutDegreeView for (node, out_degree) The node out_degree is the number of edges pointing out of the node. The weighted node degree is the sum of the edge weights for edges incident to that node. This object provides an iterator over (node, out_degree) as well as lookup for the degree for a single node. Parameters ---------- nbunch : single node, container, or all nodes (default= all nodes) The view will only report edges incident to these nodes. weight : string or None, optional (default=None) The name of an edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- If a single node is requested deg : int Out-degree of the node OR if multiple nodes are requested nd_iter : iterator The iterator returns two-tuples of (node, out-degree). See Also -------- degree, in_degree Examples -------- >>> G = nx.DiGraph() >>> nx.add_path(G, [0, 1, 2, 3]) >>> G.out_degree(0) # node 0 with degree 1 1 >>> list(G.out_degree([0, 1, 2])) [(0, 1), (1, 1), (2, 1)] """ return OutDegreeView(self) def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear() >>> list(G.nodes) [] >>> list(G.edges) [] """ self._succ.clear() self._pred.clear() self._node.clear() self.graph.clear() def clear_edges(self): """Remove all edges from the graph without altering nodes. Examples -------- >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.clear_edges() >>> list(G.nodes) [0, 1, 2, 3] >>> list(G.edges) [] """ for predecessor_dict in self._pred.values(): predecessor_dict.clear() for successor_dict in self._succ.values(): successor_dict.clear() def is_multigraph(self): """Returns True if graph is a multigraph, False otherwise.""" return False def is_directed(self): """Returns True if graph is directed, False otherwise.""" return True def to_undirected(self, reciprocal=False, as_view=False): """Returns an undirected representation of the digraph. Parameters ---------- reciprocal : bool (optional) If True only keep edges that appear in both directions in the original digraph. as_view : bool (optional, default=False) If True return an undirected view of the original directed graph. Returns ------- G : Graph An undirected graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or (v, u, data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. See Also -------- Graph, copy, add_edge, add_edges_from Notes ----- If edges in both directions (u, v) and (v, u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, https://docs.python.org/3/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. Examples -------- >>> G = nx.path_graph(2) # or MultiGraph, etc >>> H = G.to_directed() >>> list(H.edges) [(0, 1), (1, 0)] >>> G2 = H.to_undirected() >>> list(G2.edges) [(0, 1)] """ graph_class = self.to_undirected_class() if as_view is True: return nx.graphviews.generic_graph_view(self, Graph) # deepcopy when not a view G = Graph() G.graph.update(deepcopy(self.graph)) G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items()) if reciprocal is True: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() if v in self._pred[u] ) else: G.add_edges_from( (u, v, deepcopy(d)) for u, nbrs in self._adj.items() for v, d in nbrs.items() ) return G def reverse(self, copy=True): """Returns the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. Parameters ---------- copy : bool optional (default=True) If True, return a new DiGraph holding the reversed edges. If False, the reverse graph is created using a view of the original graph. """ if copy: H = self.__class__() H.graph.update(deepcopy(self.graph)) H.add_nodes_from((n, deepcopy(d)) for n, d in self.nodes.items()) H.add_edges_from((v, u, deepcopy(d)) for u, v, d in self.edges(data=True)) return H return nx.graphviews.reverse_view(self)
the-stack_106_19779
# Copyright 1997 - 2018 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys import os import ssl import datetime import time import json import logging import pkg_resources from requests import Session from io import BufferedReader from ixnetwork_restpy.errors import * from ixnetwork_restpy.files import Files try: basestring except NameError: basestring = str class Connection(object): """Http/Https transport""" X_API_KEY = 'X-Api-Key' TRACE_NONE = 'none' TRACE_REQUEST = 'request' TRACE_REQUEST_RESPONSE = 'request_response' def __init__(self, hostname, rest_port=443, platform='windows', log_file_name=None, ignore_env_proxy=False): """ Set the connection parameters to a rest server Args: hostname (str): hostname or ip address rest_port (int, optional, default=443): the rest port of the server platform (str): log_file_name (str): ignore_env_proxy (bool): """ if sys.version < '2.7.9': import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() else: import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) self._headers = { Connection.X_API_KEY: None } self._hostname = hostname self._rest_port = rest_port self._verify_cert = False self._scheme = 'https' if platform == 'windows': self._scheme = 'http' self._session = Session() if ignore_env_proxy is True: self._session.proxies.update({ 'http': None, 'https': None }) # setup logging to both console and file if requested self._trace = Connection.TRACE_NONE handlers = [logging.StreamHandler(sys.stdout)] if log_file_name is not None: handlers.append(logging.FileHandler(log_file_name, mode='w')) formatter = logging.Formatter(fmt='%(asctime)s [%(name)s] [%(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S') formatter.converter = time.gmtime for handler in handlers: handler.setFormatter(formatter) logging.getLogger(__name__).addHandler(handler) logging.getLogger(__name__).setLevel(logging.INFO) logging.getLogger(__name__).info('using python version %s' % sys.version) try: logging.getLogger(__name__).info('using ixnetwork-restpy version %s' % pkg_resources.get_distribution("ixnetwork-restpy").version) except Exception as e: logging.getLogger(__name__).warn("ixnetwork-restpy not installed using pip, unable to determine version") @property def trace(self): """str: Trace all requests and responses.""" return self._trace @trace.setter def trace(self, value): if value not in [Connection.TRACE_NONE, Connection.TRACE_REQUEST, Connection.TRACE_REQUEST_RESPONSE]: raise ValueError('the value %s is an incorrect Trace level' % value) self._trace = value if self._trace == Connection.TRACE_NONE: logging.getLogger(__name__).setLevel(logging.WARNING) if self._trace in [Connection.TRACE_REQUEST, Connection.TRACE_REQUEST_RESPONSE]: logging.getLogger(__name__).setLevel(logging.DEBUG) @property def x_api_key(self): """str: Get/Set the x-api-key header value.""" return self._headers[Connection.X_API_KEY] @x_api_key.setter def x_api_key(self, value): self._headers[Connection.X_API_KEY] = value def _read(self, url): return self._send_recv('GET', url) def _create(self, url, payload): return self._send_recv('POST', url, payload) def _update(self, url, payload): return self._send_recv('PATCH', url, payload) def _delete(self, url, payload=None): return self._send_recv('DELETE', url, payload) def _execute(self, url, payload): return self._send_recv('POST', url, payload) def _options(self, url): return self._send_recv('OPTIONS', url) def _print_request(self, method, url, payload=None): if self._trace in [Connection.TRACE_REQUEST, Connection.TRACE_REQUEST_RESPONSE]: logging.getLogger(__name__).debug('%s %s %s' % (method, url, payload)) def _print_response(self, response): if self._trace == Connection.TRACE_REQUEST_RESPONSE: logging.getLogger(__name__).debug('%s %s %s' % (response.status_code, response.reason, response.raw.data)) def _info(self, message): logging.getLogger(__name__).info(message) def _warn(self, message): logging.getLogger(__name__).warn(message) def _debug(self, message): logging.getLogger(__name__).debug(message) def _normalize_url(self, url): connection = '%s://%s:%s' % (self._scheme, self._hostname, self._rest_port) if url.startswith(self._scheme) == False: url = '%s/%s' % (connection, url.strip('/')) path_start = url.find('://') + 3 url = '%s%s' % (url[0:path_start], url[path_start:].replace('//', '/')) return (connection, url) def _get_file(self, url, remote_filename, remote_directory=None, local_filename=None, local_directory=None): headers = self._headers connection, url = self._normalize_url(url) url = '%s/files?filename=%s' % (url, remote_filename) if remote_directory is not None: url = '%s&absolute=%s' % (url, remote_directory) response = self._session.request('GET', url) if local_filename is None: local_filename = remote_filename if local_directory is not None: local_filename = os.path.join(local_directory, local_filename) local_filename = os.path.normpath(local_filename) with open(local_filename, 'wb') as fid: fid.write(response.content) return local_filename def _send_recv(self, method, url, payload=None): headers = self._headers headers['Content-Type'] = 'application/octet-stream' connection, url = self._normalize_url(url) data = payload if payload is not None: if isinstance(payload, dict) or isinstance(payload, list): headers['Content-Type'] = 'application/json' data = json.dumps(payload) elif isinstance(payload, Files): headers['Content-Type'] = 'application/octet-stream' if os.path.isfile(payload.file_path): with open(payload.file_path, 'rb') as fid: data = fid.read() else: response = self._session.request('GET', url.replace('filename=', 'filter='), headers=headers, verify=self._verify_cert, allow_redirects=False) if response.status_code == 200: return data = '' elif isinstance(payload, basestring): headers['Content-Type'] = 'application/json' data = payload self._print_request(method, url, None if isinstance(payload, Files) else data) response = self._session.request(method, url, data=data, headers=headers, verify=self._verify_cert, allow_redirects=False) self._print_response(response) if str(response.status_code).startswith('3'): url = response.headers['location'] if url.find('://') != -1: self._scheme = url[:url.find('://')] self._hostname = url[url.find('://')+3:url.find('/', url.find('://')+3)] if self._scheme == 'https': self._rest_port = 443 host_pieces = self._hostname.split(':') if len(host_pieces) > 1: self._hostname = host_pieces[0] self._rest_port = host_pieces[1] else: url = '%s://%s:%s%s' % (self._scheme, self._hostname, self._rest_port, url) self._print_request(method, url, data) response = self._session.request(method, url, data=data, headers=headers, verify=self._verify_cert, allow_redirects=False) self._print_response(response) if response.status_code == 202: while True: async_status = response.json() if 'state' not in async_status.keys(): break state = async_status['state'] if state == 'IN_PROGRESS': time.sleep(1) state_url = async_status['url'] if state_url.startswith(self._scheme) == False: state_url = '%s/%s' % (connection, state_url.strip('/')) self._print_request('GET', state_url) response = self._session.request('GET', state_url, headers=headers, verify=self._verify_cert) self._print_response(response) elif state == 'SUCCESS': if 'result' in async_status.keys(): return async_status['result'] else: return None elif async_status['message'] is not None and 'API CONTENTION' in async_status['message']: raise ResourceInUseError(response) else: raise ServerError(response) while(response.status_code == 409): time.sleep(6) response = self._session.request(method, url, data=data, headers=headers, verify=self._verify_cert) if response.status_code == 204: return None elif str(response.status_code).startswith('2') is True: if response.status_code == 201 and 'links' in response.json().keys(): href = response.json()['links'][0]['href'] return self._send_recv('GET', href) if response.headers.get('Content-Type'): if 'application/json' in response.headers['Content-Type']: return response.json() return None elif response.status_code == 400: raise BadRequestError(response) elif response.status_code == 401: raise UnauthorizedError(response) elif response.status_code == 404: raise NotFoundError(response) elif response.status_code == 409: raise ResourceInUseError(response) else: raise ServerError(response)
the-stack_106_19781
import collections import logging import firewall_translator.generic class Action(firewall_translator.generic.Action): def __init__(self, allow=False, reply=False, log=False): if log: raise NotImplementedError super(Action, self).__init__(allow, reply, log) def __repr__(self): pass def __str__(self): if self.allow: return 'ACCEPT' elif self.reply: return 'REJECT' return 'DROP' class Rule: match_params = None action = None action_params = None def __init__(self, match_params=None, action=None, action_params=None): self.match_params = match_params self.action = action self.action_params = action_params def __repr__(self): string = '<{}'.format(self.__class__.__name__) if self.match_params: string += ' Match: {!r}'.format(self.match_params) if self.action: string += ' Action: {}'.format(self.action) if self.action_params: string += ' {!r}'.format(self.action_params) string += '>' return string def __str__(self): string = [] if self.match_params: for k, v in self.match_params.items(): string.append(' '.join([k, v])) if self.action: string.append('-j {}'.format(self.action)) if self.action_params: for k, v in self.action_params.items(): string.append(' '.join([k, v])) return ' '.join(string) @staticmethod def from_cli(string): match_params, action = string.partition(' -j ')[::2] match_params = match_params.strip().split(' ') match_params_keys = match_params[::2] match_params_values = match_params[1::2] match_params = dict(zip(match_params_keys, match_params_values)) action_params = None if action: action = action.strip() if ' ' in action: info(action) action, action_params = action.split(' ', 1) if action_params: action_params = action_params.strip().split(' ') action_params_keys = action_params[::2] action_params_values = action_params[1::2] action_params = dict(zip(action_params_keys, action_params_values)) rule = Rule(match_params, action, action_params) info('Table: {}, Chain: {}, Action: {}, Params: {}, Matches: {}'.format(table, chain, action, action_params, match_params)) self.tables[table].chains[chain].append(rule) class Chain(collections.MutableSequence, collections.Iterable): name = None rules = None action = None def __delitem__(self, index): del(self.rules[index]) def __getitem__(self, index): return self.rules[index] def __init__(self, name, rules=None, action='-'): self.name = name self.action = action if rules is None: self.rules = [] else: self.rules = rules def __iter__(self): for rule in self.rules: yield rule def __len__(self): return len(self.rules) def __repr__(self): return '<{} {} {}>'.format(self.__class__.__name__, self.name, self.action) def __setitem__(self, index, value): self.rules[index] = value def __str__(self): string = [':{} {} [0:0]'.format(self.name, self.action)] for rule in self.rules: string.append('-A {} {}'.format(self.name, rule)) return '\n'.join(string) def append(self, rule): self.rules.append(rule) def insert(self, rule, position=0): self.rules.insert(position, rule) def delete(self, rule): self.rules.remove(rule) class Table(collections.MutableMapping): name = None chains = None def __delitem__(self, key): del(self.chains[key]) def __getitem__(self, key): return self.chains[key] def __init__(self, name, chains=None): self.name = name if chains is None: self.chains = {} else: self.chains = chains def __iter__(self): for chain in self.chains.values(): yield chain def __len__(self): return len(self.chains) def __repr__(self): return '<{} {} {}>'.format(self.__class__.__name__, self.name, list(self.chains)) def __setitem__(self, key, value): self.chains[key] = value def __str__(self): string = ['*{}'.format(self.name)] for chain in self.chains.values(): string.append(str(chain)) string.append('COMMIT') return '\n'.join(string) def new_chain(self, name, rules=None, action='-'): if name in self.chains: raise KeyError self.chains[name] = Chain(name, rules, action) def delete_chain(self, name): del(self.chains[name]) class RuleSet(collections.MutableMapping): tables = None def __delitem__(self, key): del(self.tables[key]) def __getitem__(self, key): return self.tables[key] def __init__(self, tables=None): if tables is None: self.tables = { 'filter': Table('filter', { 'FORWARD': Chain('FORWARD', action='ACCEPT'), 'INPUT': Chain('INPUT', action='ACCEPT'), 'OUTPUT': Chain('OUTPUT', action='ACCEPT'), }), 'mangle': Table('mangle', { 'FORWARD': Chain('FORWARD', action='ACCEPT'), 'INPUT': Chain('INPUT', action='ACCEPT'), 'OUTPUT': Chain('OUTPUT', action='ACCEPT'), 'POSTROUTING': Chain('POSTROUTING', action='ACCEPT'), 'PREROUTING': Chain('PREROUTING', action='ACCEPT'), }), 'nat': Table('nat', { 'INPUT': Chain('INPUT', action='ACCEPT'), 'OUTPUT': Chain('OUTPUT', action='ACCEPT'), 'POSTROUTING': Chain('POSTROUTING', action='ACCEPT'), 'PREROUTING': Chain('PREROUTING', action='ACCEPT'), }), } else: self.tables = tables def __iter__(self): for table in self.tables.values(): yield table def __len__(self): return len(self.tables) def __repr__(self): return '<{} {}>'.format(self.__class__.__name__, list(self.tables)) def __setitem__(self, key, value): self.tables[key] = value def __str__(self): string = [] for table in self.tables.values(): string.append(str(table)) return '\n'.join(string) def read(self, rule_def): table = None for line in rule_def.splitlines(): if not line: continue if line.strip().startswith('#'): debug('Found a comment: {}'.format(line)) continue elif line.strip().startswith('*'): debug('Found a table definition: {}'.format(line)) table = line[1:] info('Table: {}'.format(table)) if table not in self.tables.keys(): raise KeyError elif line.strip().startswith(':'): debug('Found a chain definition: {}'.format(line)) name, action, counters = line[1:].split(' ') info('Table: {}, Chain: {}'.format(table, name)) if name not in self.tables[table].chains.keys(): self.tables[table].new_chain(name, action=action) elif line.strip() == 'COMMIT': debug('Finished reading table {}'.format(table)) table = None else: debug('Found a rule definition: {}'.format(line)) operation, rule = line.split(' ', 1) if operation != '-A': raise RuntimeError chain, rule = rule.split(' ', 1) if '-j' in rule: match_params, action = rule.split('-j') else: match_params = rule action = None match_params = match_params.strip().split(' ') match_params_keys = match_params[::2] match_params_values = match_params[1::2] match_params = dict(zip(match_params_keys, match_params_values)) action_params = None if action: action = action.strip() if ' ' in action: info(action) action, action_params = action.split(' ', 1) if action_params: action_params = action_params.strip().split(' ') action_params_keys = action_params[::2] action_params_values = action_params[1::2] action_params = dict(zip(action_params_keys, action_params_values)) rule = Rule(match_params, action, action_params) info('Table: {}, Chain: {}, Action: {}, Params: {}, Matches: {}'.format(table, chain, action, action_params, match_params)) self.tables[table].chains[chain].append(rule) def read_from_file(self, file): with open(file) as r: self.read(r.read())
the-stack_106_19782
import numpy as np from sklearn.preprocessing import MinMaxScaler from genomic_neuralnet.config import MAX_EPOCHS, CONTINUE_EPOCHS, TRY_CONVERGENCE, USE_ARAC from genomic_neuralnet.common.in_temp_dir import in_temp_dir from fann2 import libfann LEARNING_RATE = 0.01 _ITERATIONS_BETWEEN_REPORTS = 1000 _DESIRED_ERROR = 0 # If 0, always train until max epochs. _TRAIN_FILE = './train.data' _NETWORK_FILE = './train.net' def _get_nn(inputs, hidden): """ Construct a neural network. """ ann = libfann.neural_net() ann.create_standard_array((inputs, hidden[0], 1)) ann.set_learning_rate(LEARNING_RATE) ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC) ann.set_activation_function_output(libfann.LINEAR_PIECE_SYMMETRIC) ann.set_training_algorithm(libfann.TRAIN_RPROP) ann.set_rprop_delta_zero(1e-6) return ann def _train_nn(neuralnet, train_data, train_truth, weight_decay): """ A stateful method that trains the network on a dataset. """ neuralnet.set_quickprop_decay(-1 * weight_decay) _write_training_file(train_data, train_truth) neuralnet.train_on_file(_TRAIN_FILE, MAX_EPOCHS, _ITERATIONS_BETWEEN_REPORTS, _DESIRED_ERROR) neuralnet.save(_NETWORK_FILE) return neuralnet def _write_training_file(train_data, train_truth): lines = [] # Write header lines.append('{} {} {}'.format(train_data.shape[0], train_data.shape[1], 1)) # Write data for idx in range(train_data.shape[0]): input = ' '.join(map(str, tuple(train_data[idx,:]))) output = str(train_truth[idx]) lines.append(input) lines.append(output) with open(_TRAIN_FILE, 'w') as f: f.write('\n'.join(lines)) def _convert_to_individual_alleles(array): """ Convert SNPs to individual copies so neuralnet can learn dominance relationships. [-1, 0, 1] => [(0, 0), (0, 1), (1, 1)] => [0, 0, 0, 1, 1, 1] """ array = array # We don't want a pandas series anymore. # Set non-integer values to 0 (het) array = np.trunc(array) incr = array + 1 # Now we have 0, 1, and 2 incr = incr[:,:,np.newaxis] # Add another dimension. pairs = np.pad(incr, ((0,0), (0,0), (0,1)), mode='constant') # Append one extra 0 value to final axis. twos = np.sum(pairs, axis=2) == 2 pairs[twos] = [1,1] x, y, z = pairs.shape pairs = pairs.reshape((x, y*z)) # Merge pairs to one axis. return pairs @in_temp_dir def get_fast_nn_dom_prediction(train_data, train_truth, test_data, test_truth, hidden=(5,), weight_decay=0.0): # Convert data to individual alleles to capture dominance. train_data, test_data = tuple(map(_convert_to_individual_alleles, [train_data, test_data])) scaler = MinMaxScaler(feature_range = (-1, 1)) train_truth = scaler.fit_transform(train_truth) test_truth = scaler.transform(test_truth) net = _get_nn(train_data.shape[1], hidden) _train_nn(net, train_data, train_truth, weight_decay) out = [] for i in range(test_data.shape[0]): sample = test_data[i,:] res = net.run(sample) out.append(res) predicted = scaler.inverse_transform(np.array(out)) return predicted.ravel()
the-stack_106_19784
import re import numpy as np import pytest import qcodes as qc from qcodes.dataset.descriptions.dependencies import InterDependencies_ from qcodes.dataset.descriptions.param_spec import ParamSpecBase from qcodes.dataset.measurements import DataSaver CALLBACK_COUNT = 0 CALLBACK_RUN_ID = None CALLBACK_SNAPSHOT = None def callback(result_list, data_set_len, state, run_id, snapshot): """ default_callback example function implemented in the Web UI. """ global CALLBACK_COUNT, CALLBACK_RUN_ID, CALLBACK_SNAPSHOT CALLBACK_COUNT += 1 CALLBACK_RUN_ID = run_id CALLBACK_SNAPSHOT = snapshot def reset_callback_globals(): global CALLBACK_COUNT, CALLBACK_RUN_ID, CALLBACK_SNAPSHOT CALLBACK_COUNT = 0 CALLBACK_RUN_ID = None CALLBACK_SNAPSHOT = None @pytest.mark.usefixtures("experiment") @pytest.mark.parametrize("bg_writing", [True, False]) def test_default_callback(bg_writing): """ The Web UI needs to know the results of an experiment with the metadata. So a default_callback class variable is set by the Web UI with a callback to introspect the data. """ test_set = None reset_callback_globals() try: DataSaver.default_callback = { 'run_tables_subscription_callback': callback, 'run_tables_subscription_min_wait': 1, 'run_tables_subscription_min_count': 2} test_set = qc.new_data_set("test-dataset") test_set.add_metadata('snapshot', 'reasonable_snapshot') DataSaver(dataset=test_set, write_period=0, interdeps=InterDependencies_) test_set.mark_started(start_bg_writer=bg_writing) test_set.mark_completed() assert CALLBACK_SNAPSHOT == 'reasonable_snapshot' assert CALLBACK_RUN_ID > 0 assert CALLBACK_COUNT > 0 finally: DataSaver.default_callback = None if test_set is not None: test_set.conn.close() @pytest.mark.usefixtures("experiment") @pytest.mark.parametrize("bg_writing", [True, False]) def test_numpy_types(bg_writing): """ Test that we can save numpy types in the data set """ p = ParamSpecBase(name="p", paramtype="numeric") test_set = qc.new_data_set("test-dataset") test_set.set_interdependencies(InterDependencies_(standalones=(p,))) test_set.mark_started(start_bg_writer=bg_writing) idps = InterDependencies_(standalones=(p,)) data_saver = DataSaver( dataset=test_set, write_period=0, interdeps=idps) dtypes = [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64] for dtype in dtypes: data_saver.add_result(("p", dtype(2))) data_saver.flush_data_to_database() test_set.mark_completed() data = test_set.get_parameter_data("p")["p"]["p"] expected_data = np.ones(len(dtypes)) expected_data[:] = 2 np.testing.assert_array_equal(data, expected_data) @pytest.mark.usefixtures("experiment") @pytest.mark.parametrize('numeric_type', [int, float, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]) @pytest.mark.parametrize("bg_writing", [True, False]) def test_saving_numeric_values_as_text(numeric_type, bg_writing): """ Test the saving numeric values into 'text' parameter raises an exception """ p = ParamSpecBase("p", "text") test_set = qc.new_data_set("test-dataset") test_set.set_interdependencies(InterDependencies_(standalones=(p,))) test_set.mark_started(start_bg_writer=bg_writing) idps = InterDependencies_(standalones=(p,)) data_saver = DataSaver( dataset=test_set, write_period=0, interdeps=idps) try: value = numeric_type(2) gottype = np.array(value).dtype msg = re.escape(f'Parameter {p.name} is of type ' f'"{p.type}", but got a result of ' f'type {gottype} ({value}).') with pytest.raises(ValueError, match=msg): data_saver.add_result((p.name, value)) finally: data_saver.dataset.mark_completed() data_saver.dataset.conn.close() @pytest.mark.usefixtures("experiment") def test_duplicated_parameter_raises(): """ Test that passing same parameter multiple times to ``add_result`` raises an exception """ p = ParamSpecBase("p", "text") test_set = qc.new_data_set("test-dataset") test_set.set_interdependencies(InterDependencies_(standalones=(p,))) test_set.mark_started() idps = InterDependencies_(standalones=(p,)) data_saver = DataSaver(dataset=test_set, write_period=0, interdeps=idps) try: msg = re.escape( "Not all parameter names are unique. Got multiple values for ['p']" ) with pytest.raises(ValueError, match=msg): data_saver.add_result((p.name, 1), (p.name, 1)) finally: data_saver.dataset.mark_completed() data_saver.dataset.conn.close()
the-stack_106_19788
#!/usr/bin/env python # Skeleton for python-based regression tests using # JSON-RPC # Add python-qbitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-qbitcoinrpc")) import json import shutil import subprocess import tempfile import traceback from qbitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def run_test(nodes): # Replace this as appropriate for node in nodes: assert_equal(node.getblockcount(), 200) assert_equal(node.getbalance(), 25*50) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave qbitcoinds and test.* datadir on exit or error") parser.add_option("--srcdir", dest="srcdir", default="../../src", help="Source directory containing qbitcoind/qbitcoin-cli (default: %default%)") parser.add_option("--tmpdir", dest="tmpdir", default=tempfile.mkdtemp(prefix="test"), help="Root directory for datadirs") (options, args) = parser.parse_args() os.environ['PATH'] = options.srcdir+":"+os.environ['PATH'] check_json_precision() success = False try: print("Initializing test directory "+options.tmpdir) if not os.path.isdir(options.tmpdir): os.makedirs(options.tmpdir) initialize_chain(options.tmpdir) nodes = start_nodes(2, options.tmpdir) connect_nodes(nodes[1], 0) sync_blocks(nodes) run_test(nodes) success = True except AssertionError as e: print("Assertion failed: "+e.message) except Exception as e: print("Unexpected exception caught during testing: "+str(e)) stack = traceback.extract_tb(sys.exc_info()[2]) print(stack[-1]) if not options.nocleanup: print("Cleaning up") stop_nodes() shutil.rmtree(options.tmpdir) if success: print("Tests successful") sys.exit(0) else: print("Failed") sys.exit(1) if __name__ == '__main__': main()
the-stack_106_19790
""" Author: Francis Chan Data Transformation for building classification models """ from sklearn.base import TransformerMixin, BaseEstimator import random import pandas as pd import numpy as np from collections import defaultdict from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.preprocessing import label_binarize from sklearn.impute import SimpleImputer from datetime import datetime import explore as ex import utility as ut # ---------------------------------------------------------------------------- # Imputer # ---------------------------------------------------------------------------- class DataFrameImputer(TransformerMixin): """ Impute missing values categorical: fill with most frequent numerical: fill with mean value """ def __init__(self, cateogrical_strategy = 'most_frequent', numerical_strategy= 'mean', numeric_const = 0, categorical_const = 'Unknown'): self.c_strategy = cateogrical_strategy self.n_strategy = numerical_strategy self.categorical_const = categorical_const self.numerical_const = numeric_const def fit(self, X, y=None): """Preparation steps for transformation Columns of categorical object are imputed with the most frequent value in column. Columns of numerical data are imputed with mean of column. Parameters ---------- X : pandas data frame """ # all of these return a single value for all missing def fill_most_frequent(x): "return the most freq value in this column" try: value = (x.value_counts().index[0]) except: value = self.categorical_const return value def fill_mean(x): "return the mean value in this column" return(x.mean()) def fill_median(x): "return the median value in this column" return(x.median()) def fill_categorical_const(x): "return the constant categorical value" return self.categorical_const def fill_numerical_const(x): "return the constant numerical value" return self.numerical_const if self.c_strategy == 'constant': self.c_func = fill_categorical_const else: self.c_func = fill_most_frequent if self.n_strategy == 'most_frequent': self.n_func = fill_most_frequent elif self.n_strategy == 'median': self.n_func = fill_median elif self.n_strategy == 'constant': self.n_func = fill_numerical_const else: self.n_func = fill_mean # X is data frame categorical_columns = ex.get_categorical_column(X) non_categorical_columns = ex.get_non_categorical_column(X) # find the values to impute for each column self.fill = pd.Series([self.c_func(X[c]) if c in categorical_columns else self.n_func(X[c]) for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.fill) # class Imputer(TransformerMixin): # def fit(self, X, y=None): # return self # def transform(self, X): # self.categoricalCols = [col for col in X.dtypes.index if X.dtypes.get(col) == 'object' ] # do_transform = lambda x: x.fillna('NA') \ # if x.name in self.categoricalCols else x.fillna(0) # result = X.copy() # result = result.apply(do_transform) # return result class ConstantImputer(TransformerMixin): """ Imputer Data Frame with contant values Parameters ---------- numerical_columns: name cols to be transformed categorical_columns: name cols to be transformed Returns ------- numerical columns are filled with 0 categorical columns are filled with 'missing_value" """ def __init__(self, numerical_columns=None, categorical_columns=None): self.num_cols = numerical_columns self.cat_cols = categorical_columns def fit(self, X, y=None): "X is a data frame" # self.type_dict = ex.get_type_dict(X) self.column_types = ex.get_column_type(X) if self.cat_cols is None: self.cat_cols = self.column_types['categorical'] + self.column_types['binary'] if self.num_cols is None: self.num_cols = self.column_types['numerical'] return self def transform(self, X,): num_imputer = SimpleImputer(strategy="constant", fill_value=0) cat_imputer = SimpleImputer(strategy="constant") df = X.copy() df[self.num_cols] = num_imputer.fit_transform(df[self.num_cols]) df[self.cat_cols] = cat_imputer.fit_transform(df[self.cat_cols]) return df # ---------------------------------------------------------------------------- # Extractor # ---------------------------------------------------------------------------- class DateExtractor(TransformerMixin): """ Extract Day, Month and Year of the given date columns Parameters ---------- datacolumns: list of date columns fmt : strptime date format, e.g. "%d-%m-%Y" Returns ------- _Date: day of month _Month: month _Year: year _Weekday: Monday is 1 """ def __init__(self, datecolumns, fmt): self.cols = datecolumns self.fmt = fmt def fit(self, X, y=None): return self def transform(self, X): "expand date columns into weekday, day, month, year" df = X.copy() to_day = lambda x: datetime.strptime(x, self.fmt).day to_month = lambda x: datetime.strptime(x, self.fmt).month to_year = lambda x: datetime.strptime(x, self.fmt).year to_weekday = lambda x: datetime.strptime(x, self.fmt).isoweekday() funcs = [to_day, to_month, to_year, to_weekday] date_val = ['_Day', '_Month', '_Year', "_Weekday"] for col in self.cols: names = [col + d for d in date_val] combo = zip(names, funcs) for (field, f) in combo: df[field] = df[col].apply(f) return df class ValueRemover(TransformerMixin): """ Remove rows for a given list of values Parameters ---------- cols: list of columns values: list of values Returns ------- dataframe filter by the values """ def __init__(self, cols, values): # both cols and values are lists self.cols = cols self.values = values def fit(self, X, y=None): self.X = X return self def transform(self, X): rmidx = self.X[self.cols].isin(self.values) return self.X[~rmidx.values] class ColumnRemover(TransformerMixin): """Remove the given list of columns""" def __init__(self, cols): # cols to drop self.cols = cols def fit(self, X, y=None): return self def transform(self, X): return X.drop(self.cols, axis=1) class CreateDataFrame(TransformerMixin): """ Create Data Frame from ndarray or list Parameters ---------- col : list of column names X : ndarry or list """ def __init__(self, col): self.col = col def fit(self, X, y=None): return self def transform(self, X): df = pd.DataFrame(X) df.columns = self.col return df # ---------------------------------------------------------------------------- # Encoder # ---------------------------------------------------------------------------- # Encode all categorical columns of data frame # class DataFrameLabelEncoder(TransformerMixin): # class DummyEncoder(BaseEstimator, TransformerMixin): # "One Hot Encoder" # def __init__(self): # self.encoder = OneHotEncoder(handle_unknown=='ignore') # def fit(self, X, y=None): # self.encoder.fit(X.ravel()) # return self # def transform(self, X): # shape = X.shape # result = self.encoder.transform(X.ravel()) # return result.reshape(shape) class DataFrameCategoricalEncoder(TransformerMixin): def __init__(self, cols=None, onehot=True, exclusion=[]): # cols: categorical column (if None, it is determined automatically) self.reset(cols) self.exclusion = exclusion def get_transformed_index(self, col, x): "Return the transformed index of the give value in the column" d = self.get_transform_map(col) return d[x] def single_transform(self, col, x): """ transform the given column col : column name in string x : pdf series or list to be transformed """ if col in self.fit_dict.keys(): rule = self.fit_dict[col] return (rule.fit_transform(x)) else: return None def get_transform_map(self, col): """Return the transformed dictionary of the given column""" if col in self.fit_dict.keys(): rule = self.fit_dict[col] return (dict(zip(rule.classes_, range(len(rule.classes_))))) else: return None def single_inverse_transform(self, col, x): """Inverse transformed column to original""" if col in self.fit_dict.keys(): rule = self.fit_dict[col] return (rule.inverse_transform(x)) else: return None def get_all_transform_map(self): """Return the transform map of all columns""" result = defaultdict(np.array) for col in self.fit_dict.keys(): rule = self.fit_dict[col] result[col] = dict(zip(rule.classes_, range(len(rule.classes_)))) return (dict(result)) def reset(self, cols=None): "reset the state" # label encoder (a default dict is used to assoicate an encoder for that column) # TODO: stacked encoder with oneHot # TODO: one hot encoding self.fit_dict = defaultdict(LabelEncoder) self.categorical_cols = cols def fit(self, X, y=None): "dummy fit" return self # TODO: inverse_transform def transform(self, X, y=None): ''' Call LabelEncoder() for each column in data frame X Parameters ---------- X : pandas data frame ''' # lambda function either transform or a columns or return the same column do_transform = lambda x: self.fit_dict[x.name].fit_transform(x) \ if x.name in self.categorical_cols else x result = X.copy() # get categorical variables if self.categorical_cols is None: self.categorical_cols = ex.get_categorical_column(X) # apply exclusions self.categorical_cols = list(set(self.categorical_cols) - set(self.exclusion)) # Encoding and return results result = result.apply(do_transform) return result # def fit_transform(self, X): # "fit and transformataion" # return (self.transform(X)) class Encoder(TransformerMixin): """ Apply Label Encoder to categorical columns Note: mixed type returns errors Parameters ---------- df: data frame X: list of column names to be encoded Returns ------- """ def __init__(self, todf=True): self.todf = todf def fit(self, X, y=None): return self def transform(self, X): self.categoricalCols = [col for col in X.dtypes.index if X.dtypes.get(col) == 'object' ] self.fit_dict = defaultdict(LabelEncoder) # lambda function either transform columns or return the same column do_transform = lambda x: self.fit_dict[x.name].fit_transform(x) \ if x.name in self.categoricalCols else x result = X.copy() # Encoding and return results result = result.apply(do_transform) if self.todf: return result else: return result.values # Deprecated: use label encoder # class CategoricalEncoder(BaseEstimator, TransformerMixin): # "Label encoder" # def __init__(self): # self.encoder = LabelEncoder() # def fit(self, X, y=None): # self.encoder.fit(X.ravel()) # return self # def transform(self, X): # shape = X.shape # result = self.encoder.transform(X.ravel()) # return result.reshape(shape) # class Factorizer(BaseEstimator, TransformerMixin): # "Label encoder" # def __init__(self): # pass # def fit(self, X, y=None): # return self # def transform(self, X): # codedX, categories = X.factorize() # return codedX # class DataFrameSelector(BaseEstimator, TransformerMixin): class TypeSelector(BaseEstimator, TransformerMixin): """ Select columns with specific types: Parameters ---------- X : data frame col_type: binary, categorical or numerical """ def __init__(self, column_type, todf=True): self.column_type = column_type self.todf = todf def fit(self, X, y=None): return self def transform(self, X): dftype = ex.get_column_type(X) attribute_names = dftype[self.column_type] # if self.column_type == "numerical": # self.attribute_names = # elif self.column_type == "categorical": # self.attribute_names = ex.get_numerical_column(X) # else: # self.attribute_names = ex.get_categorical_column(X) if self.todf: return X[attribute_names] else: return X[attribute_names].values class FunctionTransformer(TransformerMixin): """ Apply a function to the columns of df e.g. t = tr.FunctionTransformer(ex.get_distinct_value, 'Cl_Toilets', 'Cl_Scenic_View') Parameters ---------- X : dataframe fun: function object args: argument to the function """ def __init__(self, fun, *args): self.transformer = fun self.args = args def fit(self, X, y=None): return self def transform(self, X): result = self.transformer(X, self.args) return result class TransformDebugger(TransformerMixin): """ Transformer Wrapper Embed a transformer and print debug information Parameters ---------- transformer: any transformer debug_func : print function for debug (see utility lib) cols : columns to show when debug Returns ------- X_new : array-like, shape (n_samples, n_components) """ def __init__(self, transformer, debug_func, cols=None): self.transformer = transformer self.debug_func = debug_func self.cols = cols def set_col(self, cols): self.cols = cols def fit(self, X, y=None): return self def _debug_print(self, X): "print debug information" print(self.transformer.__class__.__name__) # select a random row of data idx = random.randrange(0, len(X)) # show only specific columns # fill in all columns if not specified if isinstance(X, pd.core.frame.DataFrame): if self.cols is None: cols = X.columns else: cols = self.cols XX = X[cols] elif isinstance(X, np.ndarray): if self.cols is None: self.cols = range(X.shape[1]) else: cols = self.cols XX = X[:, cols] else: raise ValueError("input is neither a data frame nor numpy array") # call the debug function self.debug_func(XX, idx, "Before") XX = self.transformer.transform(XX) self.debug_func(XX, idx, "After") def transform(self, X): "transform routine for pipeline" self._debug_print(X) return X # ---------------------------------------------------------------------------- # DEBUG # ---------------------------------------------------------------------------- # class DataFrameOneHotEncoder(TransformerMixin): # def __init__(self, cols=None, exclusion=[]): # self.reset(cols) # self.exclusion = exclusion # def reset(self, cols=None): # self.fit_dict = defaultdict(OneHotEncoder) # # self.encoder = defaultdict(OneHotEncoder) # self.categorical_cols = cols # self.shape_dict = None # self.index = None # self.column_name = None # def record_metadata(self, X): # self.shape_dict = X.shape # self.index = X.index # self.column_name = X.columns # def fit(self, X, y=None): # return self # def inverse_transform(self, X): # pass # def transform(self, X): # """ # X : a data frame # """ # # x is a series # do_transform = lambda x: self.fit_dict[x.name].fit_transform(x.values.reshape(-1, 1)) \ # if x.name in self.categorical_cols else x # self.record_metadata(X) # result = X.copy() # # get categorical variables # if self.categorical_cols is None: # self.categorical_cols = ex.get_categorical_column(X) # # apply exclusions # self.categorical_cols = list(set(self.categorical_cols) - set(self.exclusion)) # # Encoding and return results # result = result.apply(do_transform) # return result # class DummyEncoder(TransformerMixin): # ''' # Convert the columns to dummy variables # ''' # def __init__(self, excluded_cols=None, cols=None): # ''' # excluded_cols : columns to be excluded (higher priority) # cols : columns to transform # ''' # self.reset(excluded_cols, cols) # def fit(self, X, y=None): # """needed for pipeline""" # # must return self # return self # def set_col(self, cols): # self.cols = cols # def reset(self, excluded_cols, cols=None): # "reset the state" # # dictionary of label encoder # self.categorical_cols = cols # if isinstance(excluded_cols, list): # self.excluded_cols = excluded_cols # else: # self.excluded_cols = [excluded_cols] # def transform(self, X): # """ # X : pd data frame # """ # # get cols for transformation # if self.categorical_cols is None: # if self.excluded_cols is not None: # cols = list(set(X.columns) - set(self.excluded_cols)) # else: # cols = X.columns # else: # if self.excluded_cols is not None: # cols = list(set(self.categorical_cols) - set(self.excluded_cols)) # else: # cols = self.categorical_cols # dummy_df = pd.get_dummies(X[cols]) # # columns not for transformation # other_cols = list(set(X.columns) - set(cols)) # if other_cols is not None: # df = pd.concat([dummy_df, X[other_cols]], axis=1) # else: # df = dummy_df # return df
the-stack_106_19791
import numpy as np def _ensure_matrix(x): """ Ensures the vector/matrix `x` is in matrix format. Parameters ---------- x : array_like, shape (n,) Vector or matrix. Returns ------- x : array_like, shape (m, p) Matrix. """ x = np.array(x) if x.ndim == 1: x = np.reshape(x, (x.size, 1)) elif x.ndim > 2: raise ValueError('`x` must be of dimension 1 or 2.') return x
the-stack_106_19792
# -*- coding: utf-8 -*- # # geometric-smote documentation build configuration file, created by # sphinx-quickstart on Mon Jan 18 14:44:12 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import sphinx_rtd_theme # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', 'numpydoc', 'sphinx_gallery.gen_gallery', ] # this is needed for some reason... # see https://github.com/numpy/numpydoc/issues/69 numpydoc_show_class_members = False # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u'sports-betting' copyright = u'2019, Georgios Douzas' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. from sportsbet import __version__ version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build', '_templates'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Custom style html_style = 'css/sports-betting.css' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'sports-bettingdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'sports-betting.tex', u'sports-betting Documentation', u'Georgios Douzas', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'sports-betting.tex', u'sports-betting Documentation', [u'Georgios Douzas'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'sports-betting', u'sports-betting Documentation', u'Georgios Douzas', 'sports-betting', 'Sports betting toolbox.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. # intersphinx configuration intersphinx_mapping = { 'python': ('https://docs.python.org/{.major}'.format( sys.version_info), None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), 'matplotlib': ('https://matplotlib.org/', None), 'sklearn': ('http://scikit-learn.org/stable', None) } # sphinx-gallery configuration sphinx_gallery_conf = { 'doc_module': 'sportsbet', 'backreferences_dir': os.path.join('generated'), 'reference_url': { 'sportsbet': None}, 'filename_pattern': '/*' } def setup(app): # a copy button to copy snippet of code from the documentation app.add_javascript('js/copybutton.js')
the-stack_106_19793
from django.test import TestCase from django.contrib.auth.models import User from dwitter.models import Dweet from dwitter.models import Comment from django.utils import timezone from datetime import timedelta class DweetTestCase(TestCase): def setUp(self): user1 = User.objects.create(id=1, username="user1", password="") user2 = User.objects.create(id=2, username="user2", password="") now = timezone.now() dweet1 = Dweet.objects.create(id=1, code="dweet1 code", posted=now - timedelta(minutes=1), author=user1) dweet2 = Dweet.objects.create(id=2, code="dweet2 code", posted=now, reply_to=dweet1, author=user2) Comment.objects.create(id=1, text="comment1 text", posted=now - timedelta(minutes=1), reply_to=dweet2, author=user1) Comment.objects.create(id=2, text="comment2 text", posted=now, reply_to=dweet1, author=user2) def test_comment_renders_to_string_correctly(self): self.assertEqual(Comment.objects.get(id=1).__str__(), "c/1 (user1) to d/2 (user2)") self.assertEqual(Comment.objects.get(id=2).__str__(), "c/2 (user2) to d/1 (user1)") def test_comment_reply_to_do_nothing_on_soft_delete(self): Dweet.objects.get(id=2).delete() self.assertTrue(Comment.objects.get(id=1).reply_to.deleted) self.assertEqual(Comment.objects.get(id=2).reply_to, Dweet.objects.get(id=1)) def test_comment_author_cascade_on_delete(self): User.objects.get(username="user1").delete() with self.assertRaises(Comment.DoesNotExist): Comment.objects.get(id=1) self.assertEqual(Comment.objects.get(id=2).author, User.objects.get(id=2))
the-stack_106_19794
from torch import nn import torch import torch.nn.functional as F from torch.autograd import Variable from core import resnet, densenet, resnext, mobilenet import numpy as np from core.anchors import generate_default_anchor_maps, hard_nms from config import CAT_NUM, PROPOSAL_NUM class ProposalNet(nn.Module): def __init__(self, in_features=1280): super(ProposalNet, self).__init__() # self.down1 = nn.Conv2d(2048, 128, 3, 1, 1) self.down1 = nn.Conv2d(in_features, 128, 3, 1, 1) self.down2 = nn.Conv2d(128, 128, 3, 2, 1) self.down3 = nn.Conv2d(128, 128, 3, 2, 1) self.ReLU = nn.ReLU() self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0) def forward(self, x): batch_size = x.size(0) d1 = self.ReLU(self.down1(x)) d2 = self.ReLU(self.down2(d1)) d3 = self.ReLU(self.down3(d2)) t1 = self.tidy1(d1).view(batch_size, -1) t2 = self.tidy2(d2).view(batch_size, -1) t3 = self.tidy3(d3).view(batch_size, -1) return torch.cat((t1, t2, t3), dim=1) class attention_net(nn.Module): def __init__(self, topN=4, classNum=200): super(attention_net, self).__init__() # self.pretrained_model = resnet.resnet50(pretrained=True) # self.pretrained_model = resnet.resnet152(pretrained=True) # self.pretrained_model = resnet.resnet101(pretrained=True) # self.pretrained_model = densenet.densenet121(pretrained=False,num_classes=classNum) # self.pretrained_model = densenet.densenet169(pretrained=True,num_classes=classNum) # self.pretrained_model = densenet.densenet161(pretrained=True,num_classes=classNum) # self.pretrained_model = resnext.resnext101_32x8d(pretrained=True,num_classes=classNum) self.pretrained_model = mobilenet.mobilenet_v2(pretrained=True,num_classes=classNum) # self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(1) # print("classNum: ",classNum) # classNum: 20 Fish # num_ftrs = self.pretrained_model.fc.in_features # self.pretrained_model.fc = nn.Linear(num_ftrs, classNum) # self.pretrained_model.fc = nn.Linear(512 * 4, classNum) self.proposal_net = ProposalNet() self.topN = topN self.concat_net = nn.Linear(6400, classNum) self.partcls_net = nn.Linear(1280, classNum) _, edge_anchors, _ = generate_default_anchor_maps() self.pad_side = 224 self.edge_anchors = (edge_anchors + 224).astype(np.int) def forward(self, x): resnet_out, rpn_feature, feature = self.pretrained_model(x) # print("resnet_out {} rpn_feature {} feature {}".format(resnet_out.shape, rpn_feature.shape, feature.shape)) # resnet_out torch.Size([3, 1000]) # rpn_feature torch.Size([3, 1024, 14, 14]) feature torch.Size([3, 1024]) x_pad = F.pad(x, (self.pad_side, self.pad_side, self.pad_side, self.pad_side), mode='constant', value=0) batch = x.size(0) # we will reshape rpn to shape: batch * nb_anchor rpn_score = self.proposal_net(rpn_feature.detach()) all_cdds = [ np.concatenate((x.reshape(-1, 1), self.edge_anchors.copy(), np.arange(0, len(x)).reshape(-1, 1)), axis=1) for x in rpn_score.data.cpu().numpy()] top_n_cdds = [hard_nms(x, topn=self.topN, iou_thresh=0.25) for x in all_cdds] top_n_cdds = np.array(top_n_cdds) top_n_index = top_n_cdds[:, :, -1].astype(np.int) top_n_index = torch.from_numpy(top_n_index).cuda() top_n_prob = torch.gather(rpn_score, dim=1, index=top_n_index) part_imgs = torch.zeros([batch, self.topN, 3, 224, 224]).cuda() for i in range(batch): for j in range(self.topN): [y0, x0, y1, x1] = top_n_cdds[i][j, 1:5].astype(np.int) part_imgs[i:i + 1, j] = F.interpolate(x_pad[i:i + 1, :, y0:y1, x0:x1], size=(224, 224), mode='bilinear', align_corners=True) part_imgs = part_imgs.view(batch * self.topN, 3, 224, 224) _, _, part_features = self.pretrained_model(part_imgs.detach()) part_feature = part_features.view(batch, self.topN, -1) part_feature = part_feature[:, :CAT_NUM, ...].contiguous() part_feature = part_feature.view(batch, -1) # concat_logits have the shape: B*200 # print("part_feature {}".format(part_feature.shape)) concat_out = torch.cat([part_feature, feature], dim=1) concat_logits = self.concat_net(concat_out) raw_logits = resnet_out # part_logits have the shape: B*N*200 part_logits = self.partcls_net(part_features).view(batch, self.topN, -1) return [raw_logits, concat_logits, part_logits, top_n_index, top_n_prob] def list_loss(logits, targets): temp = F.log_softmax(logits, -1) loss = [-temp[i][targets[i].item()] for i in range(logits.size(0))] return torch.stack(loss) def ranking_loss(score, targets, proposal_num=PROPOSAL_NUM): loss = Variable(torch.zeros(1).cuda()) batch_size = score.size(0) for i in range(proposal_num): targets_p = (targets > targets[:, i].unsqueeze(1)).type(torch.cuda.FloatTensor) pivot = score[:, i].unsqueeze(1) loss_p = (1 - pivot + score) * targets_p loss_p = torch.sum(F.relu(loss_p)) loss += loss_p return loss / batch_size
the-stack_106_19795
""" Integration test for the Cornflow client Base, admin and service user get tested Integration between Airflow and cornflow through airflow client and cornflow client tested as well """ # Full imports import json import os import pulp as pl import time # Partial imports from unittest import TestCase # Internal imports from cornflow_client import CornFlow from cornflow_client.constants import STATUS_OPTIMAL, STATUS_NOT_SOLVED from cornflow_client.schema.tools import get_pulp_jsonschema from cornflow_client.tests.const import PUBLIC_DAGS, PULP_EXAMPLE # Constants path_to_tests_dir = os.path.dirname(os.path.abspath(__file__)) # Helper functions def _load_file(_file): with open(_file) as f: temp = json.load(f) return temp def _get_file(relative_path): return os.path.join(path_to_tests_dir, relative_path) # Testing suit classes class TestCornflowClientUser(TestCase): def setUp(self): self.client = CornFlow(url="http://127.0.0.1:5050/") login_result = self.client.login("user", "UserPassword1!") self.assertIn("id", login_result.keys()) self.assertIn("token", login_result.keys()) self.user_id = login_result["id"] def tearDown(self): pass def test_health_endpoint(self): response = self.client.is_alive() self.assertEqual(response["cornflow_status"], "healthy") self.assertEqual(response["airflow_status"], "healthy") def test_sign_up(self): response = self.client.sign_up( "test_username", "[email protected]", "TestPassword2!" ) self.assertIn("id", response.json().keys()) self.assertIn("token", response.json().keys()) self.assertEqual(201, response.status_code) def test_create_instance(self): data = _load_file(PULP_EXAMPLE) response = self.client.create_instance(data, "test_example", "test_description") items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "executions", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual("test_example", response["name"]) self.assertEqual("solve_model_dag", response["schema"]) self.assertEqual("test_description", response["description"]) return response def test_create_case(self): data = _load_file(PULP_EXAMPLE) response = self.client.create_case( name="test_case", schema="solve_model_dag", data=data, description="test_description", ) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "solution_hash", "path", "updated_at", "is_dir", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual("test_case", response["name"]) self.assertEqual("solve_model_dag", response["schema"]) self.assertEqual("test_description", response["description"]) return response def test_create_instance_file(self): response = self.client.create_instance_file( _get_file("../data/test_mps.mps"), name="test_filename", description="filename_description", ) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "executions", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual("test_filename", response["name"]) self.assertEqual("solve_model_dag", response["schema"]) self.assertEqual("filename_description", response["description"]) def test_create_execution(self): instance = self.test_create_instance() response = self.client.create_execution( instance_id=instance["id"], config={"solver": "PULP_CBC_CMD", "timeLimit": 60}, name="test_execution", description="execution_description", schema="solve_model_dag", ) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "config", "instance_id", "state", "message", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(instance["id"], response["instance_id"]) self.assertEqual("test_execution", response["name"]) self.assertEqual("execution_description", response["description"]) self.assertEqual( {"solver": "PULP_CBC_CMD", "timeLimit": 60}, response["config"] ) self.assertEqual(STATUS_NOT_SOLVED, response["state"]) return response def test_execution_results(self): execution = self.test_create_execution() time.sleep(10) response = self.client.get_results(execution["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "config", "instance_id", "state", "message", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(execution["id"], response["id"]) self.assertEqual(STATUS_OPTIMAL, response["state"]) def test_execution_status(self): execution = self.test_create_execution() response = self.client.get_status(execution["id"]) items = ["id", "state", "message", "data_hash"] for item in items: self.assertIn(item, response.keys()) self.assertEqual(STATUS_NOT_SOLVED, response["state"]) time.sleep(10) response = self.client.get_status(execution["id"]) for item in items: self.assertIn(item, response.keys()) self.assertEqual(STATUS_OPTIMAL, response["state"]) def test_stop_execution(self): execution = self.test_create_execution() response = self.client.stop_execution(execution["id"]) self.assertEqual(response["message"], "The execution has been stopped") def test_get_execution_log(self): execution = self.test_create_execution() response = self.client.get_log(execution["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "config", "instance_id", "state", "message", "log", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(execution["id"], response["id"]) def test_get_execution_solution(self): execution = self.test_create_execution() time.sleep(10) response = self.client.get_solution(execution["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "config", "instance_id", "state", "message", "data", "checks", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(execution["id"], response["id"]) self.assertEqual(STATUS_OPTIMAL, response["state"]) return response def test_create_case_execution(self): execution = self.test_get_execution_solution() response = self.client.create_case( name="case_from_solution", schema="solve_model_dag", description="case_from_solution_description", solution=execution["data"], ) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "solution_hash", "path", "updated_at", "is_dir", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual("case_from_solution", response["name"]) self.assertEqual("solve_model_dag", response["schema"]) self.assertEqual("case_from_solution_description", response["description"]) return response def test_get_all_instances(self): self.test_create_instance() self.test_create_instance() instances = self.client.get_all_instances() self.assertGreaterEqual(len(instances), 2) def test_get_all_executions(self): self.test_stop_execution() self.test_stop_execution() executions = self.client.get_all_executions() self.assertGreaterEqual(len(executions), 2) def test_get_all_cases(self): self.test_create_case() self.test_create_case() cases = self.client.get_all_cases() self.assertGreaterEqual(len(cases), 2) def test_get_one_user(self): response = self.client.get_one_user(self.user_id) self.assertEqual(response.status_code, 200) items = ["id", "first_name", "last_name", "username", "email"] for item in items: self.assertIn(item, response.json().keys()) self.assertEqual(self.user_id, response.json()["id"]) self.assertEqual("user", response.json()["username"]) self.assertEqual("[email protected]", response.json()["email"]) def test_get_one_instance(self): instance = self.test_create_instance() response = self.client.get_one_instance(instance["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "executions", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(instance[item], response[item]) def test_get_one_case(self): case = self.test_create_case() response = self.client.get_one_case(case["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "solution_hash", "path", "updated_at", "is_dir", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(case[item], response[item]) def test_get_one_case_execution(self): case = self.test_create_case_execution() response = self.client.get_one_case(case["id"]) items = [ "id", "name", "description", "created_at", "user_id", "data_hash", "schema", "solution_hash", "path", "updated_at", "is_dir", ] for item in items: self.assertIn(item, response.keys()) self.assertEqual(case[item], response[item]) def test_delete_one_case(self): case = self.test_create_case() response = self.client.delete_one_case(case["id"]) self.assertEqual("The object has been deleted", response["message"]) def test_put_one_case(self): case = self.test_create_case() response = self.client.put_one_case(case["id"], {"name": "new_case_name"}) self.assertEqual("Updated correctly", response["message"]) def test_patch_one_case(self): # TODO: Get example of data patch for the tests pass def test_delete_one_instance(self): instance = self.test_create_instance() response = self.client.delete_one_instance(instance["id"]) self.assertEqual(200, response.status_code) self.assertEqual("The object has been deleted", response.json()["message"]) def test_get_schema(self): response = self.client.get_schema("solve_model_dag") schema = { "config": get_pulp_jsonschema("solver_config.json"), "instance": get_pulp_jsonschema(), "solution": get_pulp_jsonschema(), } schema["config"]["properties"]["solver"]["enum"] = pl.listSolvers() schema["config"]["properties"]["solver"]["default"] = "PULP_CBC_CMD" for (key, value) in schema.items(): self.assertDictEqual(value, response[key]) def test_get_all_schemas(self): response = self.client.get_all_schemas() read_schemas = [dag for v in response for (_, dag) in v.items()] for schema in PUBLIC_DAGS: self.assertIn(schema, read_schemas) class TestCornflowClientAdmin(TestCase): def setUp(self): self.client = CornFlow(url="http://127.0.0.1:5050/") login_result = self.client.login("admin", "Adminpassword1!") self.assertIn("id", login_result.keys()) self.assertIn("token", login_result.keys()) self.base_user_id = CornFlow(url="http://127.0.0.1:5050/").login( "user", "UserPassword1!" )["id"] def tearDown(self): pass def test_get_all_users(self): response = self.client.get_all_users() self.assertGreaterEqual(len(response), 3) def test_get_one_user(self): response = self.client.get_one_user(self.base_user_id) items = ["id", "first_name", "last_name", "username", "email"] for item in items: self.assertIn(item, response.json().keys()) self.assertEqual(self.base_user_id, response.json()["id"]) self.assertEqual("user", response.json()["username"]) self.assertEqual("[email protected]", response.json()["email"]) class TestCornflowClientService(TestCase): def setUp(self): self.client = CornFlow(url="http://127.0.0.1:5050/") login_result = self.client.login("airflow", "Airflow_test_password1") self.assertIn("id", login_result.keys()) self.assertIn("token", login_result.keys()) def tearDown(self): pass def test_get_execution_data(self): client = CornFlow(url="http://127.0.0.1:5050/") _ = client.login("user", "UserPassword1!") data = _load_file(PULP_EXAMPLE) instance = client.create_instance(data, "test_example", "test_description") execution = client.create_execution( instance_id=instance["id"], config={"solver": "PULP_CBC_CMD", "timeLimit": 60}, name="test_execution", description="execution_description", schema="solve_model_dag", ) response = self.client.get_data(execution["id"]) items = ["id", "data", "config"] for item in items: self.assertIn(item, response.keys()) self.assertEqual(instance["id"], response["id"]) self.assertEqual(data, response["data"]) self.assertEqual(execution["config"], response["config"]) def test_write_execution_solution(self): client = CornFlow(url="http://127.0.0.1:5050/") _ = client.login("user", "UserPassword1!") data = _load_file(PULP_EXAMPLE) instance = client.create_instance(data, "test_example", "test_description") execution = client.create_execution( instance_id=instance["id"], config={"solver": "PULP_CBC_CMD", "timeLimit": 60}, name="test_execution", description="execution_description", schema="solve_model_dag", ) time.sleep(15) solution = client.get_solution(execution["id"]) payload = dict( state=1, log_json={}, log_text="", solution_schema="solve_model_dag" ) payload["data"] = solution["data"] response = self.client.write_solution(execution["id"], **payload) self.assertEqual("results successfully saved", response["message"]) def test_get_deployed_dags(self): response = self.client.get_deployed_dags() items = ["id", "description"] for item in items: self.assertIn(item, response[0].keys()) deployed_dags = [v["id"] for v in response] for dag in PUBLIC_DAGS: self.assertIn(dag, deployed_dags) def test_post_deployed_dag(self): response = self.client.create_deployed_dag( name="test_dag", description="test_dag_description" ) items = ["id", "description"] for item in items: self.assertIn(item, response.keys()) self.assertEqual("test_dag", response["id"]) self.assertEqual("test_dag_description", response["description"])
the-stack_106_19796
from __future__ import unicode_literals from io import open import os import re import tempfile import ttfw_idf @ttfw_idf.idf_example_test(env_tag="test_jtag_arm") def test_examples_sysview_tracing_heap_log(env, extra_data): rel_project_path = os.path.join('examples', 'system', 'sysview_tracing_heap_log') dut = env.get_dut('sysview_tracing_heap_log', rel_project_path) idf_path = dut.app.get_sdk_path() proj_path = os.path.join(idf_path, rel_project_path) elf_path = os.path.join(dut.app.get_binary_path(rel_project_path), 'sysview_tracing_heap_log.elf') def get_temp_file(): with tempfile.NamedTemporaryFile(delete=False) as f: return f.name try: tempfiles = [get_temp_file(), get_temp_file()] with open(os.path.join(proj_path, 'gdbinit')) as f_in, open(tempfiles[0], 'w') as f_out: new_content = f_in.read() # localhost connection issue occurs in docker unless: new_content = new_content.replace(':3333', '127.0.0.1:3333', 1) new_content = new_content.replace('file:///tmp/heap_log.svdat', 'file://{}'.format(tempfiles[1]), 1) f_out.write(new_content) with ttfw_idf.OCDProcess(os.path.join(proj_path, 'openocd.log')): dut.start_app() dut.expect('esp_apptrace: Initialized TRAX on CPU0') gdb_args = '-x {} --directory={}'.format(tempfiles[0], os.path.join(proj_path, 'main')) with ttfw_idf.GDBProcess(os.path.join(proj_path, 'gdb.log'), elf_path, dut.app.target, gdb_args) as gdb: gdb.pexpect_proc.expect_exact('Thread 1 hit Temporary breakpoint 2, heap_trace_stop ()') gdb.pexpect_proc.expect_exact('(gdb)') # dut has been restarted by gdb since the last dut.expect() dut.expect('esp_apptrace: Initialized TRAX on CPU0') with ttfw_idf.CustomProcess(' '.join([os.path.join(idf_path, 'tools/esp_app_trace/sysviewtrace_proc.py'), '-p', '-b', elf_path, tempfiles[1]]), logfile='sysviewtrace_proc.log') as sysviewtrace: sysviewtrace.pexpect_proc.expect(re.compile(r'Found \d+ leaked bytes in \d+ blocks.'), timeout=120) finally: for x in tempfiles: try: os.unlink(x) except Exception: pass if __name__ == '__main__': test_examples_sysview_tracing_heap_log()
the-stack_106_19797
# 2. Add Two Numbers [Medium] # You are given two non-empty linked lists representing two non-negative # integers. The digits are stored in reverse order and each of their nodes # contain a single digit. Add the two numbers and return it as a linked list. # You may assume the two numbers do not contain any leading zero, except the # number 0 itself. # Example: # Input: (2 -> 4 -> 3) + (5 -> 6 -> 4) # Output: 7 -> 0 -> 8 # Explanation: 342 + 465 = 807. class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: prehead = node = ListNode(0) carry = 0 while l1 or l2 or carry: # a C/C++ programmer may tend to write: # node = node.next = ListNode(carry) # which is wrong, see discussion below node.next = ListNode(carry) node = node.next if l1: node.val += l1.val l1 = l1.next if l2: node.val += l2.val l2 = l2.next if node.val >= 10: node.val -= 10 carry = 1 else: carry = 0 return prehead.next """ Note for C/C++ programmers In Python, x = y = foo() is equivalent to temp = foo() x = temp y = temp Be careful of the order, which is opposite to that in C. Says the official doc: ... assigns the single resulting object to each of the target lists, from left to right. """
the-stack_106_19799
# Imports import pyttsx3 from time import time, sleep import unicodedata # Retrieves wpm speed rate = int(input('WPM : ')) while not(0 < rate <= 50): rate = int(input('Please enter a speed between 0 and 50 WPM : ')) # Reads the text of the user in the text.txt file with open('text.txt', 'r') as f: string = f.read() def preprocess(string, punctuation): """Transform the raw txt into a list of word for TTS Parameters ---------- string : str Raw text file punctuation : dict Dictionnary with the punctation to pronounce Returns ------- list List of preprocessed words """ string = string.replace('\n', ' ') # Delete all \n (skip line) for key, value in punctuation.items(): string = string.replace(key, value) # Replace punctuation string = unicodedata.normalize('NFD', string)\ .encode('ascii', 'ignore')\ .decode("utf-8") # Normalize special characters string = string.split(' ') # Split the string into a list txt = [] for word in string: if word not in [' ', '']: txt.append(word) # Avoid having spaces or blank return txt def need(word, rate, len_word=5): """Computes the time needed to write word Parameters ---------- word : str The word rate : int Word per minute len_word : int, optional Usually, a word is defined as 5 characters Returns ------- float Time needed (s) """ pause = len(word)/len_word*60/rate return pause # French common punctuation punctuation = { ',' : ' virgule ', '?' : " point d'interrogation ", '!' : " point d'exclamation ", ':' : ' deux points ', '.' : ' point ', '...' : ' trois petits points ', '=' : ' egal ' } # Reverse punctuation reverse = {value[1:-1]: key for key, value in punctuation.items()} # Preprocess the txt file and init TTS txt = preprocess(string, punctuation) engine = pyttsx3.init() # Track wpm speed length = 0 start = time() sleep(need(txt[0], rate)) # Avoid division by 0 the first loop # Loop through each word for word in txt: if sum([word == value[1:-1] for value in punctuation.values()]): # If word is a punctuation length += 1 print(reverse[word]) # TTS engine.say(word) engine.runAndWait() else: # If it is a word length += len(word) wpm = (length/5)/((time()-start)/60) print(word) # Compute the needed time and save when TTS started pause = need(word, rate) t = time() # TTS engine.say(word) engine.runAndWait() # Pause sleep(max(0, t+pause-time())) print(f'{(length/5)/((time()-start)/60)}wpm') # Print wpm speed
the-stack_106_19803
from data import data_info import numpy as np import pandas as pd import sys import matplotlib.pyplot as plt import plotly.graph_objects as go def csv_to_df(csv_file): data = pd.read_csv(csv_file) data.rename(columns={data.columns[0]: "Number", data.columns[1]: "x", data.columns[2]: "y"}, inplace=True) data.set_index("Number", inplace=True) data.index = data.rename(index=str).index #print(data) #print(data.index) return data data_path = data_info.dundee_data_path experiments_dundee = [ ['Ube2T_ref_final.csv', 'ube2t_em02_5mM_final.csv'], ['Ube2T_ref_final.csv', 'ube_2t_em11_3mM_final.csv'], ['Ube2T_ref_final.csv', 'ube2t_em04_3mM_final.csv'], ['Ube2T_ref_final.csv', 'ube2t_em09_3mM_final.csv'], ['Ube2T_ref_final.csv', 'ube2t_em17_3mM_final.csv'], ['Ube2T_ref_final.csv', 'ube2t_em29_3mM_final.csv'], ['baz2b_phd_ref_renumbered.csv', 'baz2b_vs_5-mer_20_1_renumbered.csv'], ['baz2a_phd_ref_renumbered.csv', 'baz2a_phd_vs_5mer_64_1_renumbered.csv'], ['baz2a_phd_ref_renumbered.csv', 'baz2a_phd_vs_10mer_8_1_renumbered.csv'], ] for free_prot, prot_with_ligand in experiments_dundee: peaks = csv_to_df(data_path.joinpath(free_prot)) new_peaks = csv_to_df(data_path.joinpath(prot_with_ligand)) print(peaks) print(new_peaks) peak_distances = pd.DataFrame(columns=['shift']) for free_pk_idx in peaks.index: if free_pk_idx in new_peaks.index: free_xy = peaks.loc[free_pk_idx].to_numpy() with_ligand_xy = new_peaks.loc[free_pk_idx].to_numpy() free_prot_name = free_prot.split('.csv')[0] with_ligand_name = prot_with_ligand.split('.csv')[0] print(free_pk_idx, free_xy, with_ligand_xy, free_xy - with_ligand_xy, np.square(free_xy - with_ligand_xy), np.square(free_xy - with_ligand_xy).sum(), np.sqrt( np.square(free_xy - with_ligand_xy).sum())) dist = np.sqrt( np.square(free_xy - with_ligand_xy).sum() ) peak_distances.loc[free_pk_idx, 'shift'] = dist #print(dist) print(np.linalg.norm(free_xy - with_ligand_xy)) fig2 = go.Figure(layout=go.Layout( title= free_prot_name + " - " + with_ligand_name, font=dict(size=10))) fig2.add_trace(go.Bar( # x=df1.index, x=peak_distances.index.tolist(), y=peak_distances['shift'].tolist(), name='Real Shift Distance', marker_color='lightgray' )) fig2.show() #peak_distances.plot.bar() #plt.title(free_prot+" * "+prot_with_ligand) #ax1 = plt.axes() #x_axis = ax1.axes.get_xaxis() #x_axis.set_visible(False) #plt.show() print(peak_distances) peak_distances.to_csv(free_prot_name+"____"+with_ligand_name+".csv") sys.exit()
the-stack_106_19804
from django.contrib.contenttypes.models import ContentType from django.db.models import Count, Model from modelcluster.fields import ParentalKey from taggit.models import Tag # The edit_handlers module extends Page with some additional attributes required by # wagtail admin (namely, base_form_class and get_edit_handler). Importing this within # wagtail.admin.models ensures that this happens in advance of running wagtail.admin's # system checks. from wagtail.admin import edit_handlers # NOQA from wagtail.core.models import Page # A dummy model that exists purely to attach the access_admin permission type to, so that it # doesn't get identified as a stale content type and removed by the remove_stale_contenttypes # management command. class Admin(Model): class Meta: default_permissions = [] # don't create the default add / change / delete / view perms permissions = [ ('access_admin', "Can access Wagtail admin"), ] def get_object_usage(obj): """Returns a queryset of pages that link to a particular object""" pages = Page.objects.none() # get all the relation objects for obj relations = [f for f in type(obj)._meta.get_fields(include_hidden=True) if (f.one_to_many or f.one_to_one) and f.auto_created] for relation in relations: related_model = relation.related_model # if the relation is between obj and a page, get the page if issubclass(related_model, Page): pages |= Page.objects.filter( id__in=related_model._base_manager.filter(**{ relation.field.name: obj.id }).values_list('id', flat=True) ) else: # if the relation is between obj and an object that has a page as a # property, return the page for f in related_model._meta.fields: if isinstance(f, ParentalKey) and issubclass(f.remote_field.model, Page): pages |= Page.objects.filter( id__in=related_model._base_manager.filter( **{ relation.field.name: obj.id }).values_list(f.attname, flat=True) ) return pages def popular_tags_for_model(model, count=10): """Return a queryset of the most frequently used tags used on this model class""" content_type = ContentType.objects.get_for_model(model) return Tag.objects.filter( taggit_taggeditem_items__content_type=content_type ).annotate( item_count=Count('taggit_taggeditem_items') ).order_by('-item_count')[:count]
the-stack_106_19805
from selenium import webdriver import os, time # 加载启动项 option = webdriver.ChromeOptions() option.add_argument('headless') # 更换头部 option.add_argument('user-agent=Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Mobile Safari/537.36') # 定义截图地址&图片格式 screen_path = os.path.dirname(os.getcwd()) + '/report/Screenshots/' rq = time.strftime('%Y%m%d%H%M', time.localtime(time.time())) screen_name = screen_path + rq + '.png' # 打开chrome浏览器 # driver = webdriver.Chrome(chrome_options=option) # 版本更新,需要options 代替chrome_option driver = webdriver.Chrome(options=option) # 定义url 地址 url = 'https://www.toutiao.com/i6827512913318642187/' driver.get(url=url) time.sleep(2) print(driver.page_source) # 截图 # print(screen_name) # driver.save_screenshot(screen_name) # time.sleep(3) # 退出并关闭浏览器 driver.quit() """ 只要你执行navigator.webdriver返回值是true就是浏览器内核访问 如果不是返回值是undefined selenium为了解决这个需进行js 注入 from selenium import webdriver browser = webdriver.Chrome() script='''Object.defineProperties(navigator, {webdriver:{get:()=>undefined}})''' #js1 = '''() =>{ Object.defineProperties(navigator,{ webdriver:{ get: () => false } }) }''' browser.execute_script(script) """
the-stack_106_19806
# gunicorn config # gunicorn -c config/gunicorn.py --worker-class sanic.worker.GunicornWorker server:app bind = '0.0.0.0:8001' backlog = 2048 workers = 2 worker_connections = 1000 timeout = 30 keepalive = 2 spew = False daemon = False umask = 0