filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_19321
import itertools import logging import os import sys from contextlib import closing import flask from flask import render_template from flask import request from packaging.version import parse from sqlalchemy import Column from sqlalchemy import create_engine from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker Base = declarative_base() class PluginResult(Base): """Results of testing a pytest plugin against a pytest and python version.""" __tablename__ = "results" id = Column(Integer, primary_key=True) name = Column(String, index=True) version = Column(String, index=True) env = Column(String) pytest = Column(String) status = Column(String) output = Column(String) description = Column(String, default="") def as_dict(self): return { "name": self.name, "version": self.version, "env": self.env, "pytest": self.pytest, "status": self.status, "output": self.output, "description": self.description, } def __repr__(self): attrs = [f"{k}={v!r}" for k, v in self.as_dict().items()] return f"PluginResult({', '.join(attrs)})" def __eq__(self, other): if not isinstance(other, PluginResult): return NotImplemented return self.as_dict() == other.as_dict() app = flask.Flask("plugincompat") def get_python_versions(): """ Python versions we are willing to display on the page, in order to ignore old and incomplete results. """ return {"py36", "py37", "py38"} def get_pytest_versions(): """ Same as `get_python_versions`, but for pytest versions. """ return {"6.0.1"} class PlugsStorage: """ API around a MongoDatabase used to add and obtain test results for pytest plugins. """ def __init__(self, url=None): url = url or os.environ["DATABASE_URL"] self._engine = create_engine(url) Base.metadata.create_all(self._engine) self._session_maker = sessionmaker(autocommit=False, autoflush=False, bind=self._engine) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self._engine.dispose() def add_test_result(self, payload): """ :param result: adds results from a compatibility test for a pytest plugin. The results is given as a dict containing the following keys: * "name": name of the library; * "version": version of the library; * "env": python environment of the test. Examples: "py27", "py32", "py33". * "pytest": pytest version of the test. Examples: "2.3.5" * "status": "ok" or "fail". * "output": string with output from running tox commands. * "description": description of this package (optional). """ expected = {"name", "version", "env", "pytest", "status"} if not expected.issubset(payload): raise TypeError("Invalid keys given: %s" % payload.keys()) with closing(self._session_maker()) as session: result = ( session.query(PluginResult) .filter(PluginResult.name == payload["name"]) .filter(PluginResult.version == payload["version"]) .filter(PluginResult.env == payload["env"]) .filter(PluginResult.pytest == payload["pytest"]) .first() ) if result is None: result = PluginResult(**payload) result.status = payload["status"] result.output = payload.get("output", "") result.description = payload.get("description", "") session.add(result) session.commit() def drop_all(self): Base.metadata.drop_all(self._engine) Base.metadata.create_all(self._engine) def get_all_results(self): with closing(self._session_maker()) as session: return [x.as_dict() for x in session.query(PluginResult).all()] def get_test_results(self, name, version): """ searches the database for all test results given library name and version. If version is LATEST_VERSION, only results for highest version number are returned. """ with closing(self._session_maker()) as session: q = session.query(PluginResult).filter(PluginResult.name == name) if version != LATEST_VERSION: q = q.filter(PluginResult.version == version) results = [p.as_dict() for p in q.all()] if version != LATEST_VERSION: return results else: return filter_latest_results(results) def _filter_entry_ids(self, entries): """ removes special "_id" from entries returned from MongoDB """ result = [] for entry in entries: del entry["_id"] result.append(entry) return result _storage = None def get_storage_for_view(): """ Returns a storage instance to be used by the view functions. This exists solely we can mock this function during testing. """ global _storage if _storage is None: _storage = PlugsStorage() return _storage def authenticate(json_data): """Ensure the posted data contains the correct secret""" if json_data.get("secret") != os.environ["POST_KEY"]: flask.abort(401) @app.route("/", methods=["GET", "POST"]) def index(): storage = get_storage_for_view() if request.method == "POST": data = request.get_json() authenticate(data) results = data["results"] if not isinstance(results, list): results = [results] for result in results: storage.add_test_result(result) return "OK, posted {} entries".format(len(results)) else: all_results = storage.get_all_results() if request.args.get("json", False): response = flask.jsonify(data=all_results) return response else: if all_results: namespace = get_namespace_for_rendering(all_results) return render_template("index.html", **namespace) else: return "Database is empty" def filter_latest_results(all_results): """ given a list of test results read from the db, filter out only the ones for highest library version available in the database. """ latest_versions = set(get_latest_versions((x["name"], x["version"]) for x in all_results)) for result in all_results: if (result["name"], result["version"]) in latest_versions: yield result def get_namespace_for_rendering(all_results): # python_versions, lib_names, pytest_versions, statuses, latest_pytest_ver python_versions = get_python_versions() lib_names = set() pytest_versions = get_pytest_versions() statuses = {} outputs = {} descriptions = {} latest_results = filter_latest_results(all_results) for result in latest_results: ignore = result["env"] not in python_versions or result["pytest"] not in pytest_versions if ignore: continue lib_name = "{}-{}".format(result["name"], result["version"]) lib_names.add(lib_name) key = (lib_name, result["env"], result["pytest"]) statuses[key] = result["status"] outputs[key] = result.get("output", NO_OUTPUT_AVAILABLE) if not descriptions.get(lib_name): descriptions[lib_name] = result.get("description", "") latest_pytest_ver = max(pytest_versions, key=parse) return dict( python_versions=sorted(python_versions), lib_names=sorted(lib_names), pytest_versions=sorted(pytest_versions), statuses=statuses, outputs=outputs, descriptions=descriptions, latest_pytest_ver=latest_pytest_ver, ) def get_latest_versions(names_and_versions): """ Returns an iterator of (name, version) from the given list of (name, version), but returning only the latest version of the package. """ names_and_versions = sorted((name, parse(version)) for (name, version) in names_and_versions) for name, grouped_versions in itertools.groupby(names_and_versions, key=lambda x: x[0]): name, loose_version = list(grouped_versions)[-1] yield name, str(loose_version) @app.route("/status") @app.route("/status/<name>") def get_status_image(name=None): py = request.args.get("py") pytest = request.args.get("pytest") if name and py and pytest: status = get_field_for(name, py, pytest, "status") if not status: status = "unknown" dirname = os.path.dirname(__file__) filename = os.path.join(dirname, "static", "%s.png" % status) response = flask.make_response(open(filename, "rb").read()) response.content_type = "image/png" return response else: if name is None: name = "pytest-pep8-1.0.5" name = name.rsplit("-", 1)[0] return render_template("status_help.html", name=name) @app.route("/output/<name>") def get_output(name): py = request.args.get("py") pytest = request.args.get("pytest") if name and py and pytest: output = get_field_for(name, py, pytest, "output") status_code = 200 if not output: output = NO_OUTPUT_AVAILABLE status_code = 404 response = flask.make_response(output) response.content_type = "text/plain" response.content_type = "text/plain" response.status_code = status_code return response else: return 'Specify "py" and "pytest" parameters' def get_field_for(fullname, env, pytest, field_name): storage = get_storage_for_view() name, version = fullname.rsplit("-", 1) for test_result in storage.get_test_results(name, version): if test_result["env"] == env and test_result["pytest"] == pytest: return test_result.get(field_name, None) # text returned when an entry in the database lacks an "output" field NO_OUTPUT_AVAILABLE = "<no output available>" LATEST_VERSION = "latest" def main(): app.debug = True app.logger.addHandler(logging.StreamHandler(sys.stdout)) app.logger.setLevel(logging.ERROR) app.run(host="127.0.0.1", port=int(os.environ.get("PORT", "5000"))) if __name__ == "__main__": main()
the-stack_106_19324
""" Tools for opening a cluster's web UI. """ import click from dcos_e2e_cli.common.options import ( existing_cluster_id_option, verbosity_option, ) from dcos_e2e_cli.common.utils import check_cluster_id_exists from dcos_e2e_cli.common.web import launch_web_ui from ._common import ClusterInstances, existing_cluster_ids from ._options import aws_region_option @click.command('web') @existing_cluster_id_option @aws_region_option @verbosity_option def web(cluster_id: str, aws_region: str) -> None: """ Open the browser at the web UI. Note that the web UI may not be available at first. Consider using ``minidcos aws wait`` before running this command. """ check_cluster_id_exists( new_cluster_id=cluster_id, existing_cluster_ids=existing_cluster_ids(aws_region=aws_region), ) cluster_instances = ClusterInstances( cluster_id=cluster_id, aws_region=aws_region, ) launch_web_ui(cluster=cluster_instances.cluster)
the-stack_106_19325
from __future__ import absolute_import, annotations import logging from operator import itemgetter from typing import Any, Dict, List, Set, Tuple import numpy as np import scipy from nltk.metrics import edit_distance from ..models.graph import Edge, Graph, Node from ..models.nlp import Embeddings from ..models.ontology import Ontology, OntologyNode from ..models.result import Result from ..services import utils logger = logging.getLogger("recap") config = utils.Config.get_instance() class Similarity(object): """Class to store similarity params and compute metrics based on them""" # Here will be the instance stored. _instance = None @staticmethod def get_instance(): """ Static access method. """ if Similarity._instance == None: Similarity() return Similarity._instance def __init__(self): """ Virtually private constructor. """ if Similarity._instance != None: raise Exception("This class is a singleton!") else: Similarity._instance = self def graphs_similarity( self, graphs: Dict[str, Graph], query_graph: Graph ) -> List[Result]: """Compute similarity between multiple graphs""" similarities: List[Result] = [] for graph in graphs.values(): similarities.append( Result(graph, self.graph_similarity(graph, query_graph)) ) similarities = sorted( similarities, key=lambda result: result.similarity, reverse=True ) return similarities def _cosine_similarity(self, vec1: np.ndarray, vec2: np.ndarray) -> float: """Compute cosine similarity between two vectors""" sim = 0.0 if vec1.any() and vec2.any(): try: sim = 1 - scipy.spatial.distance.cosine(vec1, vec2) except: pass return sim def _angular_similarity(self, vec1: np.ndarray, vec2: np.ndarray) -> float: """Compute angular similarity between two vectors""" sim = 0.0 if vec1.any() and vec2.any(): try: sim = ( 1.0 - np.arccos( np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) ) / np.pi ) except: pass return sim def _edit_distance(self, text1: str, text2: str) -> float: """Calculate the Levenshtein distance between two strings""" sim = 0 if text1 == text2: sim = 1 else: sim = 1 - (edit_distance(text1, text2) / max(len(text1), len(text2))) return sim def _word_movers_distance(self, tokens1: List[str], tokens2: List[str]) -> float: """Calculate the word mover's distance with gensim As multiple models are available, the results are averaged. """ similarities = [] embs = Embeddings.get_instance() for emb in embs.values(): similarities.append(1 / (1 + emb.wmdistance(tokens1, tokens2))) return np.mean(similarities) def _fuzzify(self, s, u): """https://github.com/Babylonpartners/fuzzymax Sentence fuzzifier. Computes membership vector for the sentence S with respect to the universe U :param s: list of word embeddings for the sentence :param u: the universe matrix U with shape (K, d) :return: membership vectors for the sentence """ f_s = np.dot(s, u.T) m_s = np.max(f_s, axis=0) m_s = np.maximum(m_s, 0, m_s) return m_s def _dynamax_jaccard(self, x, y): """https://github.com/Babylonpartners/fuzzymax DynaMax-Jaccard similarity measure between two sentences :param x: list of word embeddings for the first sentence :param y: list of word embeddings for the second sentence :return: similarity score between the two sentences """ u = np.vstack((x, y)) m_x = self._fuzzify(x, u) m_y = self._fuzzify(y, u) m_inter = np.sum(np.minimum(m_x, m_y)) m_union = np.sum(np.maximum(m_x, m_y)) return m_inter / m_union def _max_jaccard(self, x, y): """ MaxPool-Jaccard similarity measure between two sentences :param x: list of word embeddings for the first sentence :param y: list of word embeddings for the second sentence :return: similarity score between the two sentences """ m_x = np.max(x, axis=0) m_x = np.maximum(m_x, 0, m_x) m_y = np.max(y, axis=0) m_y = np.maximum(m_y, 0, m_y) m_inter = np.sum(np.minimum(m_x, m_y)) m_union = np.sum(np.maximum(m_x, m_y)) return m_inter / m_union def _fuzzy_jaccard(self, x, y): m_inter = np.sum(np.minimum(x, y)) m_union = np.sum(np.maximum(x, y)) return m_inter / m_union def _threshold_similarity(self, sim: float) -> float: """Adapt a similarity value to a specified threshold""" if sim < config["similarity_threshold"]: sim = 0.0 elif config["similarity_threshold"] > 0: sim = (sim - config["similarity_threshold"]) / ( 1 - config["similarity_threshold"] ) return sim def graph_similarity(self, graph1: Graph, graph2: Graph) -> float: """Compute similarity of two graphs based on their texts""" return self.general_similarity(graph1, graph2) def general_similarity(self, entity1: Any, entity2: Any) -> float: sim = 0.0 if config["similarity_method"] == "edit": sim = self._edit_distance(entity1.text, entity2.text) elif config["similarity_method"] == "cosine": sim = self._cosine_similarity(entity1.vector, entity2.vector) elif config["similarity_method"] == "angular": sim = self._angular_similarity(entity1.vector, entity2.vector) elif config["similarity_method"] == "wmd": sim = self._word_movers_distance(entity1.tokens, entity2.tokens) elif config["similarity_method"] == "dynamax": sim = self._dynamax_jaccard(entity1.vectors, entity2.vectors) elif config["similarity_method"] == "maxpool": sim = self._max_jaccard(entity1.vectors, entity2.vectors) elif config["similarity_method"] == "fuzzy-jaccard": sim = self._fuzzy_jaccard(entity1.vector, entity2.vector) return self._threshold_similarity(sim) def node_similarity(self, node1: Node, node2: Node) -> float: """Compute similarity of nodes If it is an I-Node, the text will be compared If it is a RA-Node, the ontology can be used to compare the scheme """ sim = 0.0 if node1.type_ == node2.type_: if node1.type_ == "I": sim = self.general_similarity(node1, node2) elif config["use_schemes"]: if node1.text == node2.text: sim = 1 elif node1.type_ == "RA" and config["use_ontology"]: ontology = Ontology.get_instance() sim = self._threshold_similarity( ontology.get_similarity(node1.text, node2.text) ) else: sim = 1 # TODO: Check if this is correct and improves the result # elif node1.type_ in ["RA", "CA"] and node2.type_ in ["RA", "CA"]: # sim = 0.5 return sim def edge_similarity(self, edge1: Edge, edge2: Edge) -> float: """Compute edge similarity by comparing the four corresponding nodes""" return 0.5 * ( self.node_similarity(edge1.from_node, edge2.from_node) + self.node_similarity(edge1.to_node, edge2.to_node) )
the-stack_106_19332
class InvalidPage(Exception): pass class Paginator(object): def __init__(self, object_list, per_page, orphans=0, allow_empty_first_page=True): self.object_list = object_list self.per_page = per_page self.orphans = orphans self.allow_empty_first_page = allow_empty_first_page self._num_pages = self._count = None def validate_number(self, number): "Validates the given 1-based page number." try: number = int(number) except ValueError: raise InvalidPage('That page number is not an integer') if number < 1: raise InvalidPage('That page number is less than 1') if number > self.num_pages: if number == 1 and self.allow_empty_first_page: pass else: raise InvalidPage('That page contains no results') return number def page(self, number): "Returns a Page object for the given 1-based page number." number = self.validate_number(number) bottom = (number - 1) * self.per_page top = bottom + self.per_page if top + self.orphans >= self.count: top = self.count return Page(self.object_list[bottom:top], number, self) def _get_count(self): "Returns the total number of objects, across all pages." if self._count is None: self._count = len(self.object_list) return self._count count = property(_get_count) def _get_num_pages(self): "Returns the total number of pages." if self._num_pages is None: hits = self.count - 1 - self.orphans if hits < 1: hits = 0 if hits == 0 and not self.allow_empty_first_page: self._num_pages = 0 else: self._num_pages = hits // self.per_page + 1 return self._num_pages num_pages = property(_get_num_pages) def _get_page_range(self): """ Returns a 1-based range of pages for iterating through within a template for loop. """ return range(1, self.num_pages + 1) page_range = property(_get_page_range) class QuerySetPaginator(Paginator): """ Like Paginator, but works on QuerySets. """ def _get_count(self): if self._count is None: self._count = self.object_list.count() return self._count count = property(_get_count) class Page(object): def __init__(self, object_list, number, paginator): self.object_list = object_list self.number = number self.paginator = paginator def __repr__(self): return '<Page %s of %s>' % (self.number, self.paginator.num_pages) def has_next(self): return self.number < self.paginator.num_pages def has_previous(self): return self.number > 1 def has_other_pages(self): return self.has_previous() or self.has_next() def next_page_number(self): return self.number + 1 def previous_page_number(self): return self.number - 1 def start_index(self): """ Returns the 1-based index of the first object on this page, relative to total objects in the paginator. """ return (self.paginator.per_page * (self.number - 1)) + 1 def end_index(self): """ Returns the 1-based index of the last object on this page, relative to total objects found (hits). """ if self.number == self.paginator.num_pages: return self.paginator.count return self.number * self.paginator.per_page class ObjectPaginator(Paginator): """ Legacy ObjectPaginator class, for backwards compatibility. Note that each method on this class that takes page_number expects a zero-based page number, whereas the new API (Paginator/Page) uses one-based page numbers. """ def __init__(self, query_set, num_per_page, orphans=0): Paginator.__init__(self, query_set, num_per_page, orphans) import warnings warnings.warn("The ObjectPaginator is deprecated. Use django.core.paginator.Paginator instead.", DeprecationWarning) # Keep these attributes around for backwards compatibility. self.query_set = query_set self.num_per_page = num_per_page self._hits = self._pages = None def validate_page_number(self, page_number): try: page_number = int(page_number) + 1 except ValueError: raise InvalidPage return self.validate_number(page_number) def get_page(self, page_number): try: page_number = int(page_number) + 1 except ValueError: raise InvalidPage return self.page(page_number).object_list def has_next_page(self, page_number): return page_number < self.pages - 1 def has_previous_page(self, page_number): return page_number > 0 def first_on_page(self, page_number): """ Returns the 1-based index of the first object on the given page, relative to total objects found (hits). """ page_number = self.validate_page_number(page_number) return (self.num_per_page * (page_number - 1)) + 1 def last_on_page(self, page_number): """ Returns the 1-based index of the last object on the given page, relative to total objects found (hits). """ page_number = self.validate_page_number(page_number) if page_number == self.num_pages: return self.count return page_number * self.num_per_page def _get_count(self): # The old API allowed for self.object_list to be either a QuerySet or a # list. Here, we handle both. if self._count is None: try: self._count = self.object_list.count() except TypeError: self._count = len(self.object_list) return self._count count = property(_get_count) # The old API called it "hits" instead of "count". hits = count # The old API called it "pages" instead of "num_pages". pages = Paginator.num_pages
the-stack_106_19333
import re from model.contact import Contact def test_main_page_db(app, db): contacts_from_home_page = sorted(app.contact.get_contact_list(), key=Contact.id_or_max) contacts_from_db = sorted(db.get_contact_list(), key=Contact.id_or_max) assert len(contacts_from_home_page) == len(contacts_from_db) for i in range(len(contacts_from_home_page)): assert contacts_from_home_page[i].all_phones == merge_phones_like_on_home_page(contacts_from_db[i]) assert contacts_from_home_page[i].all_emails == merge_emails_like_on_home_page(contacts_from_db[i]) assert contacts_from_home_page[i].firstname == contacts_from_db[i].firstname assert contacts_from_home_page[i].lastname == contacts_from_db[i].lastname assert contacts_from_home_page[i].address == contacts_from_db[i].address def test_phones_on_home_page(app): contact_from_home_page = app.contact.get_contact_list()[0] contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) assert contact_from_home_page.all_phones_from_home_page == merge_phones_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.all_emails == merge_emails_like_on_home_page(contact_from_edit_page) assert contact_from_home_page.firstname == contact_from_edit_page.firstname assert contact_from_home_page.lastname == contact_from_edit_page.lastname assert contact_from_home_page.address == contact_from_edit_page.address def test_pfones_on_contact_view_page(app): contact_from_view_page = app.contact.get_contact_from_view_page(0) contact_from_edit_page = app.contact.get_contact_info_from_edit_page(0) assert contact_from_view_page.home == contact_from_edit_page.home assert contact_from_view_page.work == contact_from_edit_page.work assert contact_from_view_page.mobile == contact_from_edit_page.mobile def clear(s): return re.sub("[() -]", "", s) def merge_phones_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", map(lambda x: clear(x), filter(lambda x: x is not None, [contact.home, contact.mobile, contact.work])))) def merge_emails_like_on_home_page(contact): return "\n".join(filter(lambda x: x != "", filter(lambda x: x is not None, [contact.email, contact.email2, contact.email3])))
the-stack_106_19334
from xdsl.dialects.builtin import * from xdsl.dialects.std import * from xdsl.dialects.arith import * from xdsl.printer import Printer from xdsl.dialects.affine import * def get_example_affine_program(ctx: MLContext, builtin: Builtin, std: Std, affine: Affine) -> Operation: def affine_mm(arg0: BlockArgument, arg1: BlockArgument, arg2: BlockArgument) -> List[Operation]: # yapf: disable return [ affine.for_(0, 256, Block.from_callable([i64], lambda i: [ affine.for_(0, 256, Block.from_callable([i64], lambda j: [ affine.for_(0, 250, Block.from_callable([i64], lambda k: [ l := affine.load(arg0, i, k), r := affine.load(arg1, k, j), o := affine.load(arg2, i, j), m := Mulf.get(l, r), a := Mulf.get(o, m), affine.store(a, arg2, i, j) ])) ])) ])), Return.get(arg2) ] # yapf: enable f = FuncOp.from_callable("affine_mm", [f32, f32, f32], [f32], affine_mm) return f def test_affine(): ctx = MLContext() builtin = Builtin(ctx) std = Std(ctx) arith = Arith(ctx) affine = Affine(ctx) test_empty = new_op("test_empty", 0, 0, 0) ctx.register_op(test_empty) op = test_empty() f = get_example_affine_program(ctx, builtin, std, affine) f.verify() printer = Printer() printer.print_op(f)
the-stack_106_19335
#!/usr/bin/env python import os import sys from setuptools import setup try: from setuptools import find_namespace_packages except ImportError: # the user has a downlevel version of setuptools. print('Error: dbt requires setuptools v40.1.0 or higher.') print('Please upgrade setuptools with "pip install --upgrade setuptools" ' 'and try again') sys.exit(1) package_name = "dbt-bigquery" package_version = "0.16.0b1" description = """The bigquery adapter plugin for dbt (data build tool)""" this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md')) as f: long_description = f.read() setup( name=package_name, version=package_version, description=description, long_description=long_description, long_description_content_type='text/markdown', author="Fishtown Analytics", author_email="[email protected]", url="https://github.com/fishtown-analytics/dbt", packages=find_namespace_packages(include=['dbt', 'dbt.*']), package_data={ 'dbt': [ 'include/bigquery/dbt_project.yml', 'include/bigquery/macros/*.sql', 'include/bigquery/macros/**/*.sql', ] }, install_requires=[ 'dbt-core=={}'.format(package_version), 'google-cloud-core>=1,<=1.1.0', 'google-cloud-bigquery>=1.15.0,<1.24.0', # hidden secret dependency: bq requires this but only documents 1.10.0 # through its dependency chain. # see https://github.com/googleapis/google-cloud-python/issues/9965 'six>=1.13.0', ], zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: Apache Software License', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
the-stack_106_19336
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tensorflow Example proto decoder for object detection. A decoder to decode string tensors containing serialized tensorflow.Example protos for object detection. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum import numpy as np from six.moves import zip import tensorflow.compat.v1 as tf from tf_slim import tfexample_decoder as slim_example_decoder from object_detection.core import data_decoder from object_detection.core import standard_fields as fields from object_detection.protos import input_reader_pb2 from object_detection.utils import label_map_util from object_detection.utils import shape_utils # pylint: disable=g-import-not-at-top try: from tensorflow.contrib import lookup as contrib_lookup except ImportError: # TF 2.0 doesn't ship with contrib. pass # pylint: enable=g-import-not-at-top _LABEL_OFFSET = 1 class Visibility(enum.Enum): """Visibility definitions. This follows the MS Coco convention (http://cocodataset.org/#format-data). """ # Keypoint is not labeled. UNLABELED = 0 # Keypoint is labeled but falls outside the object segment (e.g. occluded). NOT_VISIBLE = 1 # Keypoint is labeled and visible. VISIBLE = 2 class _ClassTensorHandler(slim_example_decoder.Tensor): """An ItemHandler to fetch class ids from class text.""" def __init__(self, tensor_key, label_map_proto_file, shape_keys=None, shape=None, default_value=''): """Initializes the LookupTensor handler. Simply calls a vocabulary (most often, a label mapping) lookup. Args: tensor_key: the name of the `TFExample` feature to read the tensor from. label_map_proto_file: File path to a text format LabelMapProto message mapping class text to id. shape_keys: Optional name or list of names of the TF-Example feature in which the tensor shape is stored. If a list, then each corresponds to one dimension of the shape. shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is reshaped accordingly. default_value: The value used when the `tensor_key` is not found in a particular `TFExample`. Raises: ValueError: if both `shape_keys` and `shape` are specified. """ name_to_id = label_map_util.get_label_map_dict( label_map_proto_file, use_display_name=False) # We use a default_value of -1, but we expect all labels to be contained # in the label map. try: # Dynamically try to load the tf v2 lookup, falling back to contrib lookup = tf.compat.v2.lookup hash_table_class = tf.compat.v2.lookup.StaticHashTable except AttributeError: lookup = contrib_lookup hash_table_class = contrib_lookup.HashTable name_to_id_table = hash_table_class( initializer=lookup.KeyValueTensorInitializer( keys=tf.constant(list(name_to_id.keys())), values=tf.constant(list(name_to_id.values()), dtype=tf.int64)), default_value=-1) display_name_to_id = label_map_util.get_label_map_dict( label_map_proto_file, use_display_name=True) # We use a default_value of -1, but we expect all labels to be contained # in the label map. display_name_to_id_table = hash_table_class( initializer=lookup.KeyValueTensorInitializer( keys=tf.constant(list(display_name_to_id.keys())), values=tf.constant( list(display_name_to_id.values()), dtype=tf.int64)), default_value=-1) self._name_to_id_table = name_to_id_table self._display_name_to_id_table = display_name_to_id_table super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape, default_value) def tensors_to_item(self, keys_to_tensors): unmapped_tensor = super(_ClassTensorHandler, self).tensors_to_item(keys_to_tensors) return tf.maximum(self._name_to_id_table.lookup(unmapped_tensor), self._display_name_to_id_table.lookup(unmapped_tensor)) class _BackupHandler(slim_example_decoder.ItemHandler): """An ItemHandler that tries two ItemHandlers in order.""" def __init__(self, handler, backup): """Initializes the BackupHandler handler. If the first Handler's tensors_to_item returns a Tensor with no elements, the second Handler is used. Args: handler: The primary ItemHandler. backup: The backup ItemHandler. Raises: ValueError: if either is not an ItemHandler. """ if not isinstance(handler, slim_example_decoder.ItemHandler): raise ValueError('Primary handler is of type %s instead of ItemHandler' % type(handler)) if not isinstance(backup, slim_example_decoder.ItemHandler): raise ValueError( 'Backup handler is of type %s instead of ItemHandler' % type(backup)) self._handler = handler self._backup = backup super(_BackupHandler, self).__init__(handler.keys + backup.keys) def tensors_to_item(self, keys_to_tensors): item = self._handler.tensors_to_item(keys_to_tensors) return tf.cond( pred=tf.equal(tf.reduce_prod(tf.shape(item)), 0), true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors), false_fn=lambda: item) class TfExampleDecoder(data_decoder.DataDecoder): """Tensorflow Example proto decoder.""" def __init__(self, load_instance_masks=False, instance_mask_type=input_reader_pb2.NUMERICAL_MASKS, label_map_proto_file=None, use_display_name=False, dct_method='', num_keypoints=0, num_additional_channels=0, load_multiclass_scores=False, load_context_features=False, expand_hierarchy_labels=False, load_dense_pose=False): """Constructor sets keys_to_features and items_to_handlers. Args: load_instance_masks: whether or not to load and handle instance masks. instance_mask_type: type of instance masks. Options are provided in input_reader.proto. This is only used if `load_instance_masks` is True. label_map_proto_file: a file path to a object_detection.protos.StringIntLabelMap proto. If provided, then the mapped IDs of 'image/object/class/text' will take precedence over the existing 'image/object/class/label' ID. Also, if provided, it is assumed that 'image/object/class/text' will be in the data. use_display_name: whether or not to use the `display_name` for label mapping (instead of `name`). Only used if label_map_proto_file is provided. dct_method: An optional string. Defaults to None. It only takes effect when image format is jpeg, used to specify a hint about the algorithm used for jpeg decompression. Currently valid values are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for example, the jpeg library does not have that specific option. num_keypoints: the number of keypoints per object. num_additional_channels: how many additional channels to use. load_multiclass_scores: Whether to load multiclass scores associated with boxes. load_context_features: Whether to load information from context_features, to provide additional context to a detection model for training and/or inference. expand_hierarchy_labels: Expands the object and image labels taking into account the provided hierarchy in the label_map_proto_file. For positive classes, the labels are extended to ancestor. For negative classes, the labels are expanded to descendants. load_dense_pose: Whether to load DensePose annotations. Raises: ValueError: If `instance_mask_type` option is not one of input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or input_reader_pb2.PNG_MASKS. ValueError: If `expand_labels_hierarchy` is True, but the `label_map_proto_file` is not provided. """ # TODO(rathodv): delete unused `use_display_name` argument once we change # other decoders to handle label maps similarly. del use_display_name self.keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/filename': tf.FixedLenFeature((), tf.string, default_value=''), 'image/key/sha256': tf.FixedLenFeature((), tf.string, default_value=''), 'image/source_id': tf.FixedLenFeature((), tf.string, default_value=''), 'image/height': tf.FixedLenFeature((), tf.int64, default_value=1), 'image/width': tf.FixedLenFeature((), tf.int64, default_value=1), # Image-level labels. 'image/class/text': tf.VarLenFeature(tf.string), 'image/class/label': tf.VarLenFeature(tf.int64), 'image/class/confidence': tf.VarLenFeature(tf.float32), # Object boxes and classes. 'image/object/bbox/xmin': tf.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(tf.float32), 'image/object/class/label': tf.VarLenFeature(tf.int64), 'image/object/class/text': tf.VarLenFeature(tf.string), 'image/object/area': tf.VarLenFeature(tf.float32), 'image/object/is_crowd': tf.VarLenFeature(tf.int64), 'image/object/difficult': tf.VarLenFeature(tf.int64), 'image/object/group_of': tf.VarLenFeature(tf.int64), 'image/object/weight': tf.VarLenFeature(tf.float32), } # We are checking `dct_method` instead of passing it directly in order to # ensure TF version 1.6 compatibility. if dct_method: image = slim_example_decoder.Image( image_key='image/encoded', format_key='image/format', channels=3, dct_method=dct_method) additional_channel_image = slim_example_decoder.Image( image_key='image/additional_channels/encoded', format_key='image/format', channels=1, repeated=True, dct_method=dct_method) else: image = slim_example_decoder.Image( image_key='image/encoded', format_key='image/format', channels=3) additional_channel_image = slim_example_decoder.Image( image_key='image/additional_channels/encoded', format_key='image/format', channels=1, repeated=True) self.items_to_handlers = { fields.InputDataFields.image: image, fields.InputDataFields.source_id: ( slim_example_decoder.Tensor('image/source_id')), fields.InputDataFields.key: ( slim_example_decoder.Tensor('image/key/sha256')), fields.InputDataFields.filename: ( slim_example_decoder.Tensor('image/filename')), # Image-level labels. fields.InputDataFields.groundtruth_image_confidences: ( slim_example_decoder.Tensor('image/class/confidence')), # Object boxes and classes. fields.InputDataFields.groundtruth_boxes: ( slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/')), fields.InputDataFields.groundtruth_area: slim_example_decoder.Tensor('image/object/area'), fields.InputDataFields.groundtruth_is_crowd: ( slim_example_decoder.Tensor('image/object/is_crowd')), fields.InputDataFields.groundtruth_difficult: ( slim_example_decoder.Tensor('image/object/difficult')), fields.InputDataFields.groundtruth_group_of: ( slim_example_decoder.Tensor('image/object/group_of')), fields.InputDataFields.groundtruth_weights: ( slim_example_decoder.Tensor('image/object/weight')), } if load_multiclass_scores: self.keys_to_features[ 'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32) self.items_to_handlers[fields.InputDataFields.multiclass_scores] = ( slim_example_decoder.Tensor('image/object/class/multiclass_scores')) if load_context_features: self.keys_to_features[ 'image/context_features'] = tf.VarLenFeature(tf.float32) self.items_to_handlers[fields.InputDataFields.context_features] = ( slim_example_decoder.ItemHandlerCallback( ['image/context_features', 'image/context_feature_length'], self._reshape_context_features)) self.keys_to_features[ 'image/context_feature_length'] = tf.FixedLenFeature((), tf.int64) self.items_to_handlers[fields.InputDataFields.context_feature_length] = ( slim_example_decoder.Tensor('image/context_feature_length')) if num_additional_channels > 0: self.keys_to_features[ 'image/additional_channels/encoded'] = tf.FixedLenFeature( (num_additional_channels,), tf.string) self.items_to_handlers[ fields.InputDataFields. image_additional_channels] = additional_channel_image self._num_keypoints = num_keypoints if num_keypoints > 0: self.keys_to_features['image/object/keypoint/x'] = ( tf.VarLenFeature(tf.float32)) self.keys_to_features['image/object/keypoint/y'] = ( tf.VarLenFeature(tf.float32)) self.keys_to_features['image/object/keypoint/visibility'] = ( tf.VarLenFeature(tf.int64)) self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/keypoint/y', 'image/object/keypoint/x'], self._reshape_keypoints)) kpt_vis_field = fields.InputDataFields.groundtruth_keypoint_visibilities self.items_to_handlers[kpt_vis_field] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/keypoint/x', 'image/object/keypoint/visibility'], self._reshape_keypoint_visibilities)) if load_instance_masks: if instance_mask_type in (input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL_MASKS): self.keys_to_features['image/object/mask'] = ( tf.VarLenFeature(tf.float32)) self.items_to_handlers[ fields.InputDataFields.groundtruth_instance_masks] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/mask', 'image/height', 'image/width'], self._reshape_instance_masks)) elif instance_mask_type == input_reader_pb2.PNG_MASKS: self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string) self.items_to_handlers[ fields.InputDataFields.groundtruth_instance_masks] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/mask', 'image/height', 'image/width'], self._decode_png_instance_masks)) else: raise ValueError('Did not recognize the `instance_mask_type` option.') if load_dense_pose: self.keys_to_features['image/object/densepose/num'] = ( tf.VarLenFeature(tf.int64)) self.keys_to_features['image/object/densepose/part_index'] = ( tf.VarLenFeature(tf.int64)) self.keys_to_features['image/object/densepose/x'] = ( tf.VarLenFeature(tf.float32)) self.keys_to_features['image/object/densepose/y'] = ( tf.VarLenFeature(tf.float32)) self.keys_to_features['image/object/densepose/u'] = ( tf.VarLenFeature(tf.float32)) self.keys_to_features['image/object/densepose/v'] = ( tf.VarLenFeature(tf.float32)) self.items_to_handlers[ fields.InputDataFields.groundtruth_dp_num_points] = ( slim_example_decoder.Tensor('image/object/densepose/num')) self.items_to_handlers[fields.InputDataFields.groundtruth_dp_part_ids] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/densepose/part_index', 'image/object/densepose/num'], self._dense_pose_part_indices)) self.items_to_handlers[ fields.InputDataFields.groundtruth_dp_surface_coords] = ( slim_example_decoder.ItemHandlerCallback( ['image/object/densepose/x', 'image/object/densepose/y', 'image/object/densepose/u', 'image/object/densepose/v', 'image/object/densepose/num'], self._dense_pose_surface_coordinates)) if label_map_proto_file: # If the label_map_proto is provided, try to use it in conjunction with # the class text, and fall back to a materialized ID. label_handler = _BackupHandler( _ClassTensorHandler( 'image/object/class/text', label_map_proto_file, default_value=''), slim_example_decoder.Tensor('image/object/class/label')) image_label_handler = _BackupHandler( _ClassTensorHandler( fields.TfExampleFields.image_class_text, label_map_proto_file, default_value=''), slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label)) else: label_handler = slim_example_decoder.Tensor('image/object/class/label') image_label_handler = slim_example_decoder.Tensor( fields.TfExampleFields.image_class_label) self.items_to_handlers[ fields.InputDataFields.groundtruth_classes] = label_handler self.items_to_handlers[ fields.InputDataFields.groundtruth_image_classes] = image_label_handler self._expand_hierarchy_labels = expand_hierarchy_labels self._ancestors_lut = None self._descendants_lut = None if expand_hierarchy_labels: if label_map_proto_file: ancestors_lut, descendants_lut = ( label_map_util.get_label_map_hierarchy_lut(label_map_proto_file, True)) self._ancestors_lut = tf.constant(ancestors_lut, dtype=tf.int64) self._descendants_lut = tf.constant(descendants_lut, dtype=tf.int64) else: raise ValueError('In order to expand labels, the label_map_proto_file ' 'has to be provided.') def decode(self, tf_example_string_tensor): """Decodes serialized tensorflow example and returns a tensor dictionary. Args: tf_example_string_tensor: a string tensor holding a serialized tensorflow example proto. Returns: A dictionary of the following tensors. fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, 3] containing image. fields.InputDataFields.original_image_spatial_shape - 1D int32 tensor of shape [2] containing shape of the image. fields.InputDataFields.source_id - string tensor containing original image id. fields.InputDataFields.key - string tensor with unique sha256 hash key. fields.InputDataFields.filename - string tensor with original dataset filename. fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape [None, 4] containing box corners. fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape [None] containing classes for the boxes. fields.InputDataFields.groundtruth_weights - 1D float32 tensor of shape [None] indicating the weights of groundtruth boxes. fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape [None] containing containing object mask area in pixel squared. fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape [None] indicating if the boxes enclose a crowd. Optional: fields.InputDataFields.groundtruth_image_confidences - 1D float tensor of shape [None] indicating if a class is present in the image (1.0) or a class is not present in the image (0.0). fields.InputDataFields.image_additional_channels - 3D uint8 tensor of shape [None, None, num_additional_channels]. 1st dim is height; 2nd dim is width; 3rd dim is the number of additional channels. fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape [None] indicating if the boxes represent `difficult` instances. fields.InputDataFields.groundtruth_group_of - 1D bool tensor of shape [None] indicating if the boxes represent `group_of` instances. fields.InputDataFields.groundtruth_keypoints - 3D float32 tensor of shape [None, num_keypoints, 2] containing keypoints, where the coordinates of the keypoints are ordered (y, x). fields.InputDataFields.groundtruth_keypoint_visibilities - 2D bool tensor of shape [None, num_keypoints] containing keypoint visibilites. fields.InputDataFields.groundtruth_instance_masks - 3D float32 tensor of shape [None, None, None] containing instance masks. fields.InputDataFields.groundtruth_image_classes - 1D int64 of shape [None] containing classes for the boxes. fields.InputDataFields.multiclass_scores - 1D float32 tensor of shape [None * num_classes] containing flattened multiclass scores for groundtruth boxes. fields.InputDataFields.context_features - 1D float32 tensor of shape [context_feature_length * num_context_features] fields.InputDataFields.context_feature_length - int32 tensor specifying the length of each feature in context_features """ serialized_example = tf.reshape(tf_example_string_tensor, shape=[]) decoder = slim_example_decoder.TFExampleDecoder(self.keys_to_features, self.items_to_handlers) keys = decoder.list_items() tensors = decoder.decode(serialized_example, items=keys) tensor_dict = dict(zip(keys, tensors)) is_crowd = fields.InputDataFields.groundtruth_is_crowd tensor_dict[is_crowd] = tf.cast(tensor_dict[is_crowd], dtype=tf.bool) tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3]) tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.shape( tensor_dict[fields.InputDataFields.image])[:2] if fields.InputDataFields.image_additional_channels in tensor_dict: channels = tensor_dict[fields.InputDataFields.image_additional_channels] channels = tf.squeeze(channels, axis=3) channels = tf.transpose(channels, perm=[1, 2, 0]) tensor_dict[fields.InputDataFields.image_additional_channels] = channels def default_groundtruth_weights(): return tf.ones( [tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]], dtype=tf.float32) tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond( tf.greater( tf.shape( tensor_dict[fields.InputDataFields.groundtruth_weights])[0], 0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights], default_groundtruth_weights) if fields.InputDataFields.groundtruth_keypoints in tensor_dict: # Set all keypoints that are not labeled to NaN. gt_kpt_fld = fields.InputDataFields.groundtruth_keypoints gt_kpt_vis_fld = fields.InputDataFields.groundtruth_keypoint_visibilities visibilities_tiled = tf.tile( tf.expand_dims(tensor_dict[gt_kpt_vis_fld], -1), [1, 1, 2]) tensor_dict[gt_kpt_fld] = tf.where( visibilities_tiled, tensor_dict[gt_kpt_fld], np.nan * tf.ones_like(tensor_dict[gt_kpt_fld])) if self._expand_hierarchy_labels: input_fields = fields.InputDataFields image_classes, image_confidences = self._expand_image_label_hierarchy( tensor_dict[input_fields.groundtruth_image_classes], tensor_dict[input_fields.groundtruth_image_confidences]) tensor_dict[input_fields.groundtruth_image_classes] = image_classes tensor_dict[input_fields.groundtruth_image_confidences] = ( image_confidences) box_fields = [ fields.InputDataFields.groundtruth_group_of, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_weights, ] def expand_field(field_name): return self._expansion_box_field_labels( tensor_dict[input_fields.groundtruth_classes], tensor_dict[field_name]) # pylint: disable=cell-var-from-loop for field in box_fields: if field in tensor_dict: tensor_dict[field] = tf.cond( tf.size(tensor_dict[field]) > 0, lambda: expand_field(field), lambda: tensor_dict[field]) # pylint: enable=cell-var-from-loop tensor_dict[input_fields.groundtruth_classes] = ( self._expansion_box_field_labels( tensor_dict[input_fields.groundtruth_classes], tensor_dict[input_fields.groundtruth_classes], True)) if fields.InputDataFields.groundtruth_group_of in tensor_dict: group_of = fields.InputDataFields.groundtruth_group_of tensor_dict[group_of] = tf.cast(tensor_dict[group_of], dtype=tf.bool) if fields.InputDataFields.groundtruth_dp_num_points in tensor_dict: tensor_dict[fields.InputDataFields.groundtruth_dp_num_points] = tf.cast( tensor_dict[fields.InputDataFields.groundtruth_dp_num_points], dtype=tf.int32) tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids] = tf.cast( tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids], dtype=tf.int32) return tensor_dict def _reshape_keypoints(self, keys_to_tensors): """Reshape keypoints. The keypoints are reshaped to [num_instances, num_keypoints, 2]. Args: keys_to_tensors: a dictionary from keys to tensors. Expected keys are: 'image/object/keypoint/x' 'image/object/keypoint/y' Returns: A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values in [0, 1]. """ y = keys_to_tensors['image/object/keypoint/y'] if isinstance(y, tf.SparseTensor): y = tf.sparse_tensor_to_dense(y) y = tf.expand_dims(y, 1) x = keys_to_tensors['image/object/keypoint/x'] if isinstance(x, tf.SparseTensor): x = tf.sparse_tensor_to_dense(x) x = tf.expand_dims(x, 1) keypoints = tf.concat([y, x], 1) keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2]) return keypoints def _reshape_keypoint_visibilities(self, keys_to_tensors): """Reshape keypoint visibilities. The keypoint visibilities are reshaped to [num_instances, num_keypoints]. The raw keypoint visibilities are expected to conform to the MSCoco definition. See Visibility enum. The returned boolean is True for the labeled case (either Visibility.NOT_VISIBLE or Visibility.VISIBLE). These are the same categories that COCO uses to evaluate keypoint detection performance: http://cocodataset.org/#keypoints-eval If image/object/keypoint/visibility is not provided, visibilities will be set to True for finite keypoint coordinate values, and 0 if the coordinates are NaN. Args: keys_to_tensors: a dictionary from keys to tensors. Expected keys are: 'image/object/keypoint/x' 'image/object/keypoint/visibility' Returns: A 2-D bool tensor of shape [num_instances, num_keypoints] with values in {0, 1}. 1 if the keypoint is labeled, 0 otherwise. """ x = keys_to_tensors['image/object/keypoint/x'] vis = keys_to_tensors['image/object/keypoint/visibility'] if isinstance(vis, tf.SparseTensor): vis = tf.sparse_tensor_to_dense(vis) if isinstance(x, tf.SparseTensor): x = tf.sparse_tensor_to_dense(x) default_vis = tf.where( tf.math.is_nan(x), Visibility.UNLABELED.value * tf.ones_like(x, dtype=tf.int64), Visibility.VISIBLE.value * tf.ones_like(x, dtype=tf.int64)) # Use visibility if provided, otherwise use the default visibility. vis = tf.cond(tf.equal(tf.size(x), tf.size(vis)), true_fn=lambda: vis, false_fn=lambda: default_vis) vis = tf.math.logical_or( tf.math.equal(vis, Visibility.NOT_VISIBLE.value), tf.math.equal(vis, Visibility.VISIBLE.value)) vis = tf.reshape(vis, [-1, self._num_keypoints]) return vis def _reshape_instance_masks(self, keys_to_tensors): """Reshape instance segmentation masks. The instance segmentation masks are reshaped to [num_instances, height, width]. Args: keys_to_tensors: a dictionary from keys to tensors. Returns: A 3-D float tensor of shape [num_instances, height, width] with values in {0, 1}. """ height = keys_to_tensors['image/height'] width = keys_to_tensors['image/width'] to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32) masks = keys_to_tensors['image/object/mask'] if isinstance(masks, tf.SparseTensor): masks = tf.sparse_tensor_to_dense(masks) masks = tf.reshape( tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape) return tf.cast(masks, tf.float32) def _reshape_context_features(self, keys_to_tensors): """Reshape context features. The instance context_features are reshaped to [num_context_features, context_feature_length] Args: keys_to_tensors: a dictionary from keys to tensors. Returns: A 2-D float tensor of shape [num_context_features, context_feature_length] """ context_feature_length = keys_to_tensors['image/context_feature_length'] to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32) context_features = keys_to_tensors['image/context_features'] if isinstance(context_features, tf.SparseTensor): context_features = tf.sparse_tensor_to_dense(context_features) context_features = tf.reshape(context_features, to_shape) return context_features def _decode_png_instance_masks(self, keys_to_tensors): """Decode PNG instance segmentation masks and stack into dense tensor. The instance segmentation masks are reshaped to [num_instances, height, width]. Args: keys_to_tensors: a dictionary from keys to tensors. Returns: A 3-D float tensor of shape [num_instances, height, width] with values in {0, 1}. """ def decode_png_mask(image_buffer): image = tf.squeeze( tf.image.decode_image(image_buffer, channels=1), axis=2) image.set_shape([None, None]) image = tf.cast(tf.greater(image, 0), dtype=tf.float32) return image png_masks = keys_to_tensors['image/object/mask'] height = keys_to_tensors['image/height'] width = keys_to_tensors['image/width'] if isinstance(png_masks, tf.SparseTensor): png_masks = tf.sparse_tensor_to_dense(png_masks, default_value='') return tf.cond( tf.greater(tf.size(png_masks), 0), lambda: tf.map_fn(decode_png_mask, png_masks, dtype=tf.float32), lambda: tf.zeros(tf.cast(tf.stack([0, height, width]), dtype=tf.int32))) def _dense_pose_part_indices(self, keys_to_tensors): """Creates a tensor that contains part indices for each DensePose point. Args: keys_to_tensors: a dictionary from keys to tensors. Returns: A 2-D int32 tensor of shape [num_instances, num_points] where each element contains the DensePose part index (0-23). The value `num_points` corresponds to the maximum number of sampled points across all instances in the image. Note that instances with less sampled points will be padded with zeros in the last dimension. """ num_points_per_instances = keys_to_tensors['image/object/densepose/num'] part_index = keys_to_tensors['image/object/densepose/part_index'] if isinstance(num_points_per_instances, tf.SparseTensor): num_points_per_instances = tf.sparse_tensor_to_dense( num_points_per_instances) if isinstance(part_index, tf.SparseTensor): part_index = tf.sparse_tensor_to_dense(part_index) part_index = tf.cast(part_index, dtype=tf.int32) max_points_per_instance = tf.cast( tf.math.reduce_max(num_points_per_instances), dtype=tf.int32) num_points_cumulative = tf.concat([ [0], tf.math.cumsum(num_points_per_instances)], axis=0) def pad_parts_tensor(instance_ind): points_range_start = num_points_cumulative[instance_ind] points_range_end = num_points_cumulative[instance_ind + 1] part_inds = part_index[points_range_start:points_range_end] return shape_utils.pad_or_clip_nd(part_inds, output_shape=[max_points_per_instance]) return tf.map_fn(pad_parts_tensor, tf.range(tf.size(num_points_per_instances)), dtype=tf.int32) def _dense_pose_surface_coordinates(self, keys_to_tensors): """Creates a tensor that contains surface coords for each DensePose point. Args: keys_to_tensors: a dictionary from keys to tensors. Returns: A 3-D float32 tensor of shape [num_instances, num_points, 4] where each point contains (y, x, v, u) data for each sampled DensePose point. The (y, x) coordinate has normalized image locations for the point, and (v, u) contains the surface coordinate (also normalized) for the part. The value `num_points` corresponds to the maximum number of sampled points across all instances in the image. Note that instances with less sampled points will be padded with zeros in dim=1. """ num_points_per_instances = keys_to_tensors['image/object/densepose/num'] dp_y = keys_to_tensors['image/object/densepose/y'] dp_x = keys_to_tensors['image/object/densepose/x'] dp_v = keys_to_tensors['image/object/densepose/v'] dp_u = keys_to_tensors['image/object/densepose/u'] if isinstance(num_points_per_instances, tf.SparseTensor): num_points_per_instances = tf.sparse_tensor_to_dense( num_points_per_instances) if isinstance(dp_y, tf.SparseTensor): dp_y = tf.sparse_tensor_to_dense(dp_y) if isinstance(dp_x, tf.SparseTensor): dp_x = tf.sparse_tensor_to_dense(dp_x) if isinstance(dp_v, tf.SparseTensor): dp_v = tf.sparse_tensor_to_dense(dp_v) if isinstance(dp_u, tf.SparseTensor): dp_u = tf.sparse_tensor_to_dense(dp_u) max_points_per_instance = tf.cast( tf.math.reduce_max(num_points_per_instances), dtype=tf.int32) num_points_cumulative = tf.concat([ [0], tf.math.cumsum(num_points_per_instances)], axis=0) def pad_surface_coordinates_tensor(instance_ind): """Pads DensePose surface coordinates for each instance.""" points_range_start = num_points_cumulative[instance_ind] points_range_end = num_points_cumulative[instance_ind + 1] y = dp_y[points_range_start:points_range_end] x = dp_x[points_range_start:points_range_end] v = dp_v[points_range_start:points_range_end] u = dp_u[points_range_start:points_range_end] # Create [num_points_i, 4] tensor, where num_points_i is the number of # sampled points for instance i. unpadded_tensor = tf.stack([y, x, v, u], axis=1) return shape_utils.pad_or_clip_nd( unpadded_tensor, output_shape=[max_points_per_instance, 4]) return tf.map_fn(pad_surface_coordinates_tensor, tf.range(tf.size(num_points_per_instances)), dtype=tf.float32) def _expand_image_label_hierarchy(self, image_classes, image_confidences): """Expand image level labels according to the hierarchy. Args: image_classes: Int64 tensor with the image level class ids for a sample. image_confidences: Float tensor signaling whether a class id is present in the image (1.0) or not present (0.0). Returns: new_image_classes: Int64 tensor equal to expanding image_classes. new_image_confidences: Float tensor equal to expanding image_confidences. """ def expand_labels(relation_tensor, confidence_value): """Expand to ancestors or descendants depending on arguments.""" mask = tf.equal(image_confidences, confidence_value) target_image_classes = tf.boolean_mask(image_classes, mask) expanded_indices = tf.reduce_any((tf.gather( relation_tensor, target_image_classes - _LABEL_OFFSET, axis=0) > 0), axis=0) expanded_indices = tf.where(expanded_indices)[:, 0] + _LABEL_OFFSET new_groundtruth_image_classes = ( tf.concat([ tf.boolean_mask(image_classes, tf.logical_not(mask)), expanded_indices, ], axis=0)) new_groundtruth_image_confidences = ( tf.concat([ tf.boolean_mask(image_confidences, tf.logical_not(mask)), tf.ones([tf.shape(expanded_indices)[0]], dtype=image_confidences.dtype) * confidence_value, ], axis=0)) return new_groundtruth_image_classes, new_groundtruth_image_confidences image_classes, image_confidences = expand_labels(self._ancestors_lut, 1.0) new_image_classes, new_image_confidences = expand_labels( self._descendants_lut, 0.0) return new_image_classes, new_image_confidences def _expansion_box_field_labels(self, object_classes, object_field, copy_class_id=False): """Expand the labels of a specific object field according to the hierarchy. Args: object_classes: Int64 tensor with the class id for each element in object_field. object_field: Tensor to be expanded. copy_class_id: Boolean to choose whether to use class id values in the output tensor instead of replicating the original values. Returns: A tensor with the result of expanding object_field. """ expanded_indices = tf.gather( self._ancestors_lut, object_classes - _LABEL_OFFSET, axis=0) if copy_class_id: new_object_field = tf.where(expanded_indices > 0)[:, 1] + _LABEL_OFFSET else: new_object_field = tf.repeat( object_field, tf.reduce_sum(expanded_indices, axis=1), axis=0) return new_object_field
the-stack_106_19337
#Import required packages from PyPDF2 import PdfFileWriter, PdfFileReader import io from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import A4 # Define variables debugGrid = False def write_pdf(destinationPath, signatureImage, neighbor, gnr, bnr, adress): packet = io.BytesIO() # Create a new PDF with Reportlab can = canvas.Canvas(packet, pagesize=A4) can.setFont("Times-Roman", 11) can.drawString(65, 700, neighbor) can.drawString(80, 637, gnr) can.drawString(138, 637, bnr) can.drawString(80, 616, adress) can.drawImage(signatureImage, 440,45, width=60, mask=[250,255,250,255,250,255], preserveAspectRatio=True, anchor="sw") # Print debug grid to help with text placement if debugGrid: can.grid(range(0,800,20),range(0,1000,20)) can.save() #################### # Start writing PDFs #################### # Move to the beginning of the StringIO buffer packet.seek(0) new_pdf = PdfFileReader(packet) # Read your existing PDF existing_pdf = PdfFileReader(open("input/nabovarsel-utfylt.pdf", "rb")) output = PdfFileWriter() # Add the "watermark" (which is the new pdf) on the existing page page = existing_pdf.getPage(0) page.mergePage(new_pdf.getPage(0)) output.addPage(page) # Finally, write "output" to a real file outputStream = open(destinationPath, "wb") output.write(outputStream) outputStream.close() #Remember to close it # This code runs only if this python-file gets called directly if __name__ == "__main__": write_pdf("output/dest.pdf", "input/Hans Martin Eikerol - signatur.png", \ "Kjære nabo", "50", "100","Testveien 1")
the-stack_106_19338
l,r = input().split() l,r = int(l), int(r) if l == 0 and r == 0: print("Not a moose") elif l == r: print("Even", l+r) elif l != r: mx = max(l,r) print("Odd", mx*2)
the-stack_106_19339
#!/usr/local/bin/python3 import serial, io import time device = '/dev/cu.usbmodem1431' # serial port baud = 9600 # baud rate now=time.localtime(time.time()) currentyear=now.tm_year currentmonth=now.tm_mon currentday=now.tm_mday filename = '{0}_{1}_{2}GAC-log.txt'.format(currentyear,currentmonth,currentday) # log file to save data in with serial.Serial(device,baud) as serialPort, open(filename,'wb') as outFile: while(1): line = serialPort.readline() # must send \n! get a line of log timestamp = int(time.time()) print(timestamp), " ",(line) #print("/t") #print (line) # show line on screen #outFile.write(timestamp) #outFile.write(/t) outFile.write("%s\t%s" % (timestamp,line)) # write line of text to file outFile.flush() # make sure it actually gets written out
the-stack_106_19341
# coding: utf-8 """ Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://www.apache.org/licenses/LICENSE-2.0 or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ ProductAdvertisingAPI https://webservices.amazon.com/paapi5/documentation/index.html # noqa: E501 """ import pprint import re # noqa: F401 import six from .unit_based_attribute import UnitBasedAttribute # noqa: F401,E501 class DimensionBasedAttribute(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'height': 'UnitBasedAttribute', 'length': 'UnitBasedAttribute', 'weight': 'UnitBasedAttribute', 'width': 'UnitBasedAttribute' } attribute_map = { 'height': 'Height', 'length': 'Length', 'weight': 'Weight', 'width': 'Width' } def __init__(self, height=None, length=None, weight=None, width=None): # noqa: E501 """DimensionBasedAttribute - a model defined in Swagger""" # noqa: E501 self._height = None self._length = None self._weight = None self._width = None self.discriminator = None if height is not None: self.height = height if length is not None: self.length = length if weight is not None: self.weight = weight if width is not None: self.width = width @property def height(self): """Gets the height of this DimensionBasedAttribute. # noqa: E501 :return: The height of this DimensionBasedAttribute. # noqa: E501 :rtype: UnitBasedAttribute """ return self._height @height.setter def height(self, height): """Sets the height of this DimensionBasedAttribute. :param height: The height of this DimensionBasedAttribute. # noqa: E501 :type: UnitBasedAttribute """ self._height = height @property def length(self): """Gets the length of this DimensionBasedAttribute. # noqa: E501 :return: The length of this DimensionBasedAttribute. # noqa: E501 :rtype: UnitBasedAttribute """ return self._length @length.setter def length(self, length): """Sets the length of this DimensionBasedAttribute. :param length: The length of this DimensionBasedAttribute. # noqa: E501 :type: UnitBasedAttribute """ self._length = length @property def weight(self): """Gets the weight of this DimensionBasedAttribute. # noqa: E501 :return: The weight of this DimensionBasedAttribute. # noqa: E501 :rtype: UnitBasedAttribute """ return self._weight @weight.setter def weight(self, weight): """Sets the weight of this DimensionBasedAttribute. :param weight: The weight of this DimensionBasedAttribute. # noqa: E501 :type: UnitBasedAttribute """ self._weight = weight @property def width(self): """Gets the width of this DimensionBasedAttribute. # noqa: E501 :return: The width of this DimensionBasedAttribute. # noqa: E501 :rtype: UnitBasedAttribute """ return self._width @width.setter def width(self, width): """Sets the width of this DimensionBasedAttribute. :param width: The width of this DimensionBasedAttribute. # noqa: E501 :type: UnitBasedAttribute """ self._width = width def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DimensionBasedAttribute, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DimensionBasedAttribute): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_106_19342
import faiss import numpy as np class FaissKMeans: def __init__(self, n_clusters=8, n_init=1, max_iter=50): self.n_clusters = n_clusters self.n_init = n_init self.max_iter = max_iter self.kmeans = None self.cluster_centers_ = None self.inertia_ = None self.labels_ = None self.obj = None def predict(self, X): return self.kmeans.index.search(X.astype(np.float32), 1)[1] def fit(self, X, ngpu=2): # This code is based on https://github.com/facebookresearch/faiss/blob/master/benchs/kmeans_mnist.py D = X.shape[1] clus = faiss.Clustering(D, self.n_clusters) # otherwise the kmeans implementation sub-samples the training set clus.max_points_per_centroid = 10000000 clus.niter = self.max_iter clus.nredo = self.n_init res = [faiss.StandardGpuResources() for i in range(ngpu)] flat_config = [] for i in range(ngpu): cfg = faiss.GpuIndexFlatConfig() cfg.useFloat16 = False cfg.device = i flat_config.append(cfg) if ngpu == 1: index = faiss.GpuIndexFlatL2(res[0], D, flat_config[0]) else: indexes = [faiss.GpuIndexFlatL2(res[i], D, flat_config[i]) for i in range(ngpu)] index = faiss.IndexProxy() for sub_index in indexes: index.addIndex(sub_index) clus.train(X.astype(np.float32), index) self.labels_ = index.search(X.astype(np.float32), 1)[1].reshape(-1) stats = clus.iteration_stats stats = [stats.at(i) for i in range(stats.size())] self.obj = np.array([st.obj for st in stats]) self.kmeans = clus self.inertia_ = self.obj[-1] self.cluster_centers_ = self.kmeans.centroids
the-stack_106_19343
from data_importers.management.commands import BaseHalaroseCsvImporter from django.contrib.gis.geos import Point class Command(BaseHalaroseCsvImporter): council_id = "E06000019" addresses_name = ( "parl.2019-12-12/Version 1/polling_station_export-2019-11-08here.csv" ) stations_name = ( "parl.2019-12-12/Version 1/polling_station_export-2019-11-08here.csv" ) elections = ["parl.2019-12-12"] allow_station_point_from_postcode = False def station_record_to_dict(self, record): rec = super().station_record_to_dict(record) if record.pollingstationname == "Weobley Village Hall": rec["location"] = Point(-2.869103, 52.159915, srid=4326) if record.pollingstationname == "Richards Castle Village Hall": rec["location"] = Point(-2.74213, 52.32607, srid=4326) return rec def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.uprn.strip().lstrip("0") if record.housepostcode.strip() == "HR9 7RA": return None if uprn in ["10007369349", "10091655370"]: return None if record.houseid in [ "3072006", "9010513", ]: return None if record.housepostcode.strip() in ["HR1 2PJ", "HR4 8FH"]: return None return rec
the-stack_106_19345
#!/usr/bin/env python import sys import os import re import yaml HEADER = '''--- permalink: "/{}/all/" ---''' def main(language, configPath, crossrefPath, rootDir): slugs, markers = readConfig(configPath) crossref = readCrossref(crossrefPath, markers['crossref']) print(HEADER.format(language)) before, body, after = getBody(os.path.join(rootDir, 'index.html'), markers['start'], markers['end']) print(fixToc(before, language)) print(fixLinks(body, crossref)) slugPaths = [(s, os.path.join(rootDir, s, 'index.html')) for s in slugs] for (slug, path) in slugPaths: _, body, _ = getBody(path, markers['start'], markers['end']) body = body.replace('<h1', '<h1 id="s:{}"'.format(slug)) print(fixLinks(body, crossref)) print(after) def readConfig(configPath): with open(configPath, 'r') as reader: config = yaml.load(reader) slugs = [p.strip('/') for p in config['toc']['lessons'] + config['toc']['extras']] return slugs, config['marker'] def readCrossref(crossrefPath, prefix): with open(crossrefPath, 'r') as reader: data = reader.read() data = data.replace(prefix, '') data = eval(data) return data def getBody(path, markerStart, markerEnd): with open(path, 'r') as reader: text = reader.read() start = text.find(markerStart) + len(markerStart) end = text.find(markerEnd, start) return text[:start], text[start:end], text[end:] def fixToc(doc, language): def link(m): slug = m.group(1) return 'href="#s:{}"'.format(slug) link.pattern = re.compile('href="/{}/(.+?)/"'.format(language)) return link.pattern.sub(link, doc) def fixLinks(doc, crossref): def appendix(m): target = m.group(1) title = crossref[target]['number'] return '<a href="#{}">Appendix {}</a>'.format(target, title) appendix.pattern = re.compile(r'<a href="#APPENDIX">(.+?)</a>') def chapter(m): target = m.group(1) title = crossref[target]['number'] return '<a href="#{}">Chapter {}</a>'.format(target, title) chapter.pattern = re.compile(r'<a href="#CHAPTER">(.+?)</a>') def cite(m): target = m.group(1) return '<a href="#{}">{}</a>'.format(target, target) cite.pattern = re.compile(r'<a href="#CITE">(.+?)</a>') def figure(m): target = m.group(1) title = crossref[target]['number'] return '<a href="#{}">Figure {}</a>'.format(target, title) figure.pattern = re.compile(r'<a href="#FIGURE">(.+?)</a>') def section(m): target = m.group(1) title = crossref[target]['number'] return '<a href="#{}">Section {}</a>'.format(target, title) section.pattern = re.compile(r'<a href="#SECTION">(.+?)</a>') FUNCS = [appendix, figure, cite, chapter, section] for func in FUNCS: doc = func.pattern.sub(func, doc) return doc if __name__ == '__main__': if len(sys.argv) != 5: sys.stderr.write('Usage: mergebook language /path/to/config /path/to/crossref /path/to/site\n') sys.exit(1) main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4])
the-stack_106_19346
""" Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import date from django import forms from django.utils.safestring import mark_safe from django.forms.models import inlineformset_factory from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Fieldset, Div, Submit, Hidden, HTML, Field from crispy_forms.bootstrap import FormActions, AppendedText, InlineRadios from wells.models import ActivitySubmission class ActivitySubmissionSurfaceSealForm(forms.ModelForm): def __init__(self, *args, **kwargs): self.helper = FormHelper() self.helper.form_tag = False self.helper.disable_csrf = True self.helper.render_hidden_fields = True self.helper.layout = Layout( Fieldset( 'Surface Seal and Backfill Information', Div( Div('surface_seal_material', css_class='col-md-3'), Div(AppendedText('surface_seal_depth', 'ft'), css_class='col-md-2'), Div(AppendedText('surface_seal_thickness', 'in'), css_class='col-md-2'), css_class='row', ), Div( Div('surface_seal_method', css_class='col-md-3'), css_class='row', ), Div( Div(HTML('&nbsp;'), css_class='col-md-12'), css_class='row', ), Div( Div('backfill_above_surface_seal', css_class='col-md-3'), Div(AppendedText('backfill_above_surface_seal_depth', 'ft'), css_class='col-md-2'), css_class='row', ), ), Fieldset( 'Liner Information', Div( Div('liner_material', css_class='col-md-3'), css_class='row', ), Div( Div(AppendedText('liner_diameter', 'in'), css_class='col-md-2'), Div(AppendedText('liner_thickness', 'in'), css_class='col-md-2'), css_class='row', ), Div( Div(AppendedText('liner_from', 'ft (bgl)'), css_class='col-md-2'), Div(AppendedText('liner_to', 'ft (bgl)'), css_class='col-md-2'), css_class='row', ), ) ) super(ActivitySubmissionSurfaceSealForm, self).__init__(*args, **kwargs) def clean_surface_seal_material(self): surface_seal_material = self.cleaned_data.get('surface_seal_material') if self.initial['casing_exists'] and not surface_seal_material: raise forms.ValidationError('This field is required.') def clean_surface_seal_depth(self): surface_seal_depth = self.cleaned_data.get('surface_seal_depth') if self.initial['casing_exists'] and not surface_seal_depth: raise forms.ValidationError('This field is required.') def clean_surface_seal_thickness(self): surface_seal_thickness = self.cleaned_data.get('surface_seal_thickness') if self.initial['casing_exists'] and not surface_seal_thickness: raise forms.ValidationError('This field is required.') def clean_surface_seal_method(self): surface_seal_method = self.cleaned_data.get('surface_seal_method') if self.initial['casing_exists'] and not surface_seal_method: raise forms.ValidationError('This field is required.') def clean(self): cleaned_data = super(ActivitySubmissionSurfaceSealForm, self).clean() liner_from = cleaned_data.get('liner_from') liner_to = cleaned_data.get('liner_to') errors = [] if liner_from and liner_to and liner_to < liner_from: errors.append('Liner To must be greater than or equal to From.') if len(errors) > 0: raise forms.ValidationError(errors) return cleaned_data class Meta: model = ActivitySubmission fields = ['surface_seal_material', 'surface_seal_depth', 'surface_seal_thickness', 'surface_seal_method', 'backfill_above_surface_seal', 'backfill_above_surface_seal_depth', 'liner_material', 'liner_diameter', 'liner_thickness', 'liner_from', 'liner_to']
the-stack_106_19347
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from nemo_text_processing.inverse_text_normalization.inverse_normalize import InverseNormalizer from nemo_text_processing.text_normalization.normalize import Normalizer from nemo_text_processing.text_normalization.normalize_with_audio import NormalizerWithAudio from parameterized import parameterized from ..utils import CACHE_DIR, PYNINI_AVAILABLE, parse_test_case_file class TestDate: inverse_normalizer = ( InverseNormalizer(lang='es', cache_dir=CACHE_DIR, overwrite_cache=False) if PYNINI_AVAILABLE else None ) @parameterized.expand(parse_test_case_file('es/data_inverse_text_normalization/test_cases_date.txt')) @pytest.mark.skipif( not PYNINI_AVAILABLE, reason="`pynini` not installed, please install via nemo_text_processing/setup.sh" ) @pytest.mark.run_only_on('CPU') @pytest.mark.unit def test_denorm(self, test_input, expected): pred = self.inverse_normalizer.inverse_normalize(test_input, verbose=False) assert pred == expected normalizer = ( Normalizer(input_case='cased', lang='es', cache_dir=CACHE_DIR, overwrite_cache=False) if PYNINI_AVAILABLE else None ) normalizer_with_audio = ( NormalizerWithAudio(input_case='cased', lang='es', cache_dir=CACHE_DIR, overwrite_cache=False) if PYNINI_AVAILABLE and CACHE_DIR else None ) @parameterized.expand(parse_test_case_file('es/data_text_normalization/test_cases_date.txt')) @pytest.mark.skipif( not PYNINI_AVAILABLE, reason="`pynini` not installed, please install via nemo_text_processing/setup.sh" ) @pytest.mark.run_only_on('CPU') @pytest.mark.unit def test_norm(self, test_input, expected): pred = self.normalizer.normalize(test_input, verbose=False) assert pred == expected if self.normalizer_with_audio: pred_non_deterministic = self.normalizer_with_audio.normalize( test_input, n_tagged=500, punct_post_process=False ) assert expected in pred_non_deterministic
the-stack_106_19348
#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' import os import glob import shutil import numpy as np import matplotlib.pyplot as plt import pycocotools.coco as coco from pycocotools.coco import COCO from pycocotools import mask import skimage.io as skio import skimage.color as skcl import warnings ###################################### dictFoods = { # 'banana' : 52, # 'apple' : 53, 'sandwich' : 54, # 'orange' : 55, # 'broccoli' : 56, # 'carrot' : 57, 'hot dog' : 58, 'pizza' : 59, # 'donut' : 60, 'cake' : 61 } reversedDirFoods = {vv:kk for kk,vv in dictFoods.items()} listSortedFoodNames=[ 'pizza', 'cake', 'sandwich', 'hot dog', # 'donut', # 'banana', # 'apple', # 'orange', # 'broccoli', # 'carrot' ] listSortedFoodIds = [dictFoods[xx] for xx in listSortedFoodNames] ###################################### def makeDirIfNotExists(pathToDir, isCleanIfExists=True): """ create directory if directory is absent :param pathToDir: path to directory :param isCleanIfExists: flag: clean directory if directory exists :return: None """ if os.path.isdir(pathToDir) and isCleanIfExists: shutil.rmtree(pathToDir) if not os.path.isdir(pathToDir): os.makedirs(pathToDir) ###################################### if __name__ == '__main__': # dataDir = '/home/ar/datasets/mscoco' dataDir = '/mnt/data1T2/datasets2/mscoco/raw-data' # dataType = 'train2014' dataType = 'val2014' dirImg = '%s/%s' % (dataDir, dataType) if not os.path.isdir(dirImg): raise Exception('Cant find directory with images [%s]' % dirImg) dirOut = '%s/%s-food2' % (dataDir, dataType) makeDirIfNotExists(pathToDir=dirOut, isCleanIfExists=False) # annFile = '%s/annotations/instances_%s.json' % (dataDir, dataType) imgDir = '%s/%s' % (dataDir, dataType) if not os.path.isdir(imgDir): raise Exception('Cant find directory with MS-COCO images [%s]' % dataDir) # coco = COCO(annFile) # listCatsFoodIdx = coco.getCatIds(supNms=['food']) assert (set(listCatsFoodIdx) == set(listSortedFoodIds)) for ii, idx in enumerate(listCatsFoodIdx): tmpCat = coco.loadCats(ids = idx)[0] print ('%d [%d] : %s (%s)' % (ii, idx, tmpCat['name'], tmpCat['supercategory'])) # tmpDictFoodImgIds = {} for ii, idx in enumerate(listSortedFoodIds): tmpImgIds = coco.getImgIds(catIds=idx) for timgId in tmpImgIds: if tmpDictFoodImgIds.has_key(timgId): tmpDictFoodImgIds[timgId].append(idx) else: tmpDictFoodImgIds[timgId] = [idx] setAllFoodImgIds = sorted(tmpDictFoodImgIds.keys()) print ('#list/#set = %d' % len(tmpDictFoodImgIds.keys())) numImages = len(setAllFoodImgIds) for ii, kk in enumerate(setAllFoodImgIds): print ('[%d/%d]' % (ii, numImages)) timgInfo = coco.loadImgs(kk)[0] foutImg = '%s/%s' % (dirOut, timgInfo['file_name']) foutMsk = '%s/%s-mskfood.png' % (dirOut, timgInfo['file_name']) foutPrv = '%s/%s-preview.jpg' % (dirOut, timgInfo['file_name']) if os.path.isfile(foutPrv): print ('\timage already processed [%s]' % foutImg) continue # fimg = '%s/%s' % (dirImg, timgInfo['file_name']) timg = skio.imread(fimg) # assert (timg.ndim==3) if timg.ndim==2: timg = skcl.gray2rgb(timg) twidth = timgInfo['width'] theight = timgInfo['height'] vv = tmpDictFoodImgIds[kk] tmsk = None for vvi in vv: tannIds = coco.getAnnIds(imgIds=kk, catIds=vvi, iscrowd=False) tanns = coco.loadAnns(tannIds) print ('\t :: processing: %d -> %s' % (vvi, reversedDirFoods[vvi])) tmpMsk = None for ttt in tanns: rle = mask.frPyObjects(ttt['segmentation'], theight, twidth) tmpm = mask.decode(rle) if tmpm.shape[2]>1: print ('\t\t**** multiple shape out :( --> [%s]' % fimg) tmpm = np.sum(tmpm, axis=2) if tmpMsk is None: tmpMsk = tmpm else: tmpMsk += tmpm if tmsk is None: tmsk = np.zeros(tmpMsk.shape, dtype=tmpMsk.dtype) tmsk[tmpMsk>0]=vvi # timgPreview = timg.copy() chIdx = 1 timgPreviewCh = timgPreview[:,:,chIdx] timgPreviewCh[tmsk>0] = 255 timgPreview[:,:,chIdx] = timgPreviewCh # with warnings.catch_warnings(): warnings.simplefilter('ignore') skio.imsave(foutImg, timg) skio.imsave(foutMsk, tmsk[:,:]) skio.imsave(foutPrv, timgPreview) print ('-------')
the-stack_106_19349
import collections from . import base __all__ = ["AdaGrad"] class AdaGrad(base.Optimizer): """AdaGrad optimizer. Parameters ---------- lr eps Attributes ---------- g2 : collections.defaultdict Examples -------- >>> from river import datasets >>> from river import evaluate >>> from river import linear_model >>> from river import metrics >>> from river import optim >>> from river import preprocessing >>> dataset = datasets.Phishing() >>> optimizer = optim.AdaGrad() >>> model = ( ... preprocessing.StandardScaler() | ... linear_model.LogisticRegression(optimizer) ... ) >>> metric = metrics.F1() >>> evaluate.progressive_val_score(dataset, model, metric) F1: 88.01% References ---------- [^1]: [Duchi, J., Hazan, E. and Singer, Y., 2011. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(Jul), pp.2121-2159.](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) """ def __init__(self, lr=0.1, eps=1e-8): super().__init__(lr) self.eps = eps self.g2 = collections.defaultdict(float) def _step_with_dict(self, w, g): for i, gi in g.items(): self.g2[i] += gi**2 w[i] -= self.learning_rate / (self.g2[i] + self.eps) ** 0.5 * gi return w
the-stack_106_19350
import logging from functools import partial from typing import Optional from qcodes import VisaInstrument from qcodes import ChannelList, InstrumentChannel from qcodes.utils import validators as vals import numpy as np from qcodes import MultiParameter, ArrayParameter log = logging.getLogger(__name__) class FrequencySweepMagPhase(MultiParameter): """ Sweep that return magnitude and phase. """ def __init__(self, name, instrument, start, stop, npts, channel): super().__init__(name, names=("", ""), shapes=((), ())) self._instrument = instrument self.set_sweep(start, stop, npts) self._channel = channel self.names = ('magnitude', 'phase') self.labels = ('{} magnitude'.format(instrument.short_name), '{} phase'.format(instrument.short_name)) self.units = ('', 'rad') self.setpoint_units = (('Hz',), ('Hz',)) self.setpoint_labels = (('{} frequency'.format(instrument.short_name),), ('{} frequency'.format(instrument.short_name),)) self.setpoint_names = (('{}_frequency'.format(instrument.short_name),), ('{}_frequency'.format(instrument.short_name),)) def set_sweep(self, start, stop, npts): # needed to update config of the software parameter on sweep change # freq setpoints tuple as needs to be hashable for look up f = tuple(np.linspace(int(start), int(stop), num=npts)) self.setpoints = ((f,), (f,)) self.shapes = ((npts,), (npts,)) def get_raw(self): old_format = self._instrument.format() self._instrument.format('Complex') data = self._instrument._get_sweep_data(force_polar = True) self._instrument.format(old_format) return abs(data), np.angle(data) class FrequencySweep(ArrayParameter): """ Hardware controlled parameter class for Rohde Schwarz ZNB trace. Instrument returns an array of transmission or reflection data depending on the active measurement. Args: name: parameter name instrument: instrument the parameter belongs to start: starting frequency of sweep stop: ending frequency of sweep npts: number of points in frequency sweep Methods: set_sweep(start, stop, npts): sets the shapes and setpoint arrays of the parameter to correspond with the sweep get(): executes a sweep and returns magnitude and phase arrays """ def __init__(self, name, instrument, start, stop, npts, channel): super().__init__(name, shape=(npts,), instrument=instrument, unit='dB', label='{} magnitude'.format( instrument.short_name), setpoint_units=('Hz',), setpoint_labels=('{} frequency'.format(instrument.short_name),), setpoint_names=('{}_frequency'.format(instrument.short_name),)) self.set_sweep(start, stop, npts) self._channel = channel def set_sweep(self, start, stop, npts): # needed to update config of the software parameter on sweep change # freq setpoints tuple as needs to be hashable for look up f = tuple(np.linspace(int(start), int(stop), num=npts)) self.setpoints = (f,) self.shape = (npts,) def get_raw(self): data = self._instrument._get_sweep_data() if self._instrument.format() in ['Polar', 'Complex', 'Smith', 'Inverse Smith']: log.warning("QCoDeS Dataset does not currently support Complex " "values. Will discard the imaginary part. In order to " "acquire phase and amplitude use the " "FrequencySweepMagPhase parameter.") return data class ZNBChannel(InstrumentChannel): def __init__(self, parent: 'ZNB', name: str, channel: int, vna_parameter: str=None, existing_trace_to_bind_to: Optional[str]=None) -> None: """ Args: parent: Instrument that this channel is bound to. name: Name to use for this channel. channel: channel on the VNA to use vna_parameter: Name of parameter on the vna that this should measure such as S12. If left empty this will fall back to `name`. existing_trace_to_bind_to: Name of an existing trace on the VNA. If supplied try to bind to an existing trace with this name rather than creating a new trace. """ n = channel self._instrument_channel = channel if vna_parameter is None: vna_parameter = name self._vna_parameter = vna_parameter super().__init__(parent, name) if existing_trace_to_bind_to is None: self._tracename = "Trc{}".format(channel) else: traces = self._parent.ask(f"CONFigure:TRACe:CATalog?") if existing_trace_to_bind_to not in traces: raise RuntimeError(f"Trying to bind to {existing_trace_to_bind_to} " f"which is not in {traces}") self._tracename = existing_trace_to_bind_to # map hardware channel to measurement # hardware channels are mapped one to one to qcodes channels # we are not using sub traces within channels. if existing_trace_to_bind_to is None: self.write("CALC{}:PAR:SDEF '{}', '{}'".format(self._instrument_channel, self._tracename, self._vna_parameter)) # source power is dependent on model, but not well documented. # here we assume -60 dBm for ZNB20, the others are set, # due to lack of knowledge, to -80 dBm as of before the edit full_modelname = self._parent.get_idn()['model'] model: Optional[str] if full_modelname is not None: model = full_modelname.split('-')[0] else: raise RuntimeError("Could not determine ZNB model") mSourcePower = {'ZNB4':-80, 'ZNB8':-80, 'ZNB20':-60} if model not in mSourcePower.keys(): raise RuntimeError("Unsupported ZNB model: {}".format(model)) self._min_source_power: float self._min_source_power = mSourcePower[model] self.add_parameter(name='vna_parameter', label='VNA parameter', get_cmd="CALC{}:PAR:MEAS? '{}'".format(self._instrument_channel, self._tracename), get_parser=self._strip) self.add_parameter(name='power', label='Power', unit='dBm', get_cmd='SOUR{}:POW?'.format(n), set_cmd='SOUR{}:POW {{:.4f}}'.format(n), get_parser=float, vals=vals.Numbers(self._min_source_power, 25)) # there is an 'increased bandwidth option' (p. 4 of manual) that does # not get taken into account here self.add_parameter(name='bandwidth', label='Bandwidth', unit='Hz', get_cmd='SENS{}:BAND?'.format(n), set_cmd='SENS{}:BAND {{:.4f}}'.format(n), get_parser=int, vals=vals.Enum( *np.append(10**6, np.kron([1, 1.5, 2, 3, 5, 7], 10**np.arange(6)))) ) self.add_parameter(name='avg', label='Averages', unit='', get_cmd='SENS{}:AVER:COUN?'.format(n), set_cmd='SENS{}:AVER:COUN {{:.4f}}'.format(n), get_parser=int, vals=vals.Ints(1, 5000)) self.add_parameter(name='start', get_cmd='SENS{}:FREQ:START?'.format(n), set_cmd=self._set_start, get_parser=float, vals=vals.Numbers(self._parent._min_freq, self._parent._max_freq - 10)) self.add_parameter(name='stop', get_cmd='SENS{}:FREQ:STOP?'.format(n), set_cmd=self._set_stop, get_parser=float, vals=vals.Numbers(self._parent._min_freq + 1, self._parent._max_freq)) self.add_parameter(name='center', get_cmd='SENS{}:FREQ:CENT?'.format(n), set_cmd=self._set_center, get_parser=float, vals=vals.Numbers(self._parent._min_freq + 0.5, self._parent._max_freq - 10)) self.add_parameter(name='span', get_cmd='SENS{}:FREQ:SPAN?'.format(n), set_cmd=self._set_span, get_parser=float, vals=vals.Numbers(1, self._parent._max_freq - self._parent._min_freq)) self.add_parameter(name='npts', get_cmd='SENS{}:SWE:POIN?'.format(n), set_cmd=self._set_npts, get_parser=int) self.add_parameter(name='status', get_cmd='CONF:CHAN{}:MEAS?'.format(n), set_cmd='CONF:CHAN{}:MEAS {{}}'.format(n), get_parser=int) self.add_parameter(name='format', get_cmd=partial(self._get_format, tracename=self._tracename), set_cmd=self._set_format, val_mapping={'dB': 'MLOG\n', 'Linear Magnitude': 'MLIN\n', 'Phase': 'PHAS\n', 'Unwr Phase': 'UPH\n', 'Polar': 'POL\n', 'Smith': 'SMIT\n', 'Inverse Smith': 'ISM\n', 'SWR': 'SWR\n', 'Real': 'REAL\n', 'Imaginary': 'IMAG\n', 'Delay': "GDEL\n", 'Complex': "COMP\n" }) self.add_parameter(name='trace_mag_phase', start=self.start(), stop=self.stop(), npts=self.npts(), channel=n, parameter_class=FrequencySweepMagPhase) self.add_parameter(name='trace', start=self.start(), stop=self.stop(), npts=self.npts(), channel=n, parameter_class=FrequencySweep) self.add_function('autoscale', call_cmd='DISPlay:TRACe1:Y:SCALe:AUTO ONCE, "{}"'.format(self._tracename)) def _get_format(self, tracename): n = self._instrument_channel self.write(f"CALC{n}:PAR:SEL '{tracename}'") return self.ask(f"CALC{n}:FORM?") def _set_format(self, val): unit_mapping = {'MLOG\n': 'dB', 'MLIN\n': '', 'PHAS\n': 'rad', 'UPH\n': 'rad', 'POL\n': '', 'SMIT\n': '', 'ISM\n': '', 'SWR\n': 'U', 'REAL\n': 'U', 'IMAG\n': 'U', 'GDEL\n': 'S', 'COMP\n': ''} label_mapping = {'MLOG\n': 'Magnitude', 'MLIN\n': 'Magnitude', 'PHAS\n': 'Phase', 'UPH\n': 'Unwrapped phase', 'POL\n': 'Complex Magnitude', 'SMIT\n': 'Complex Magnitude', 'ISM\n': 'Complex Magnitude', 'SWR\n': 'Standing Wave Ratio', 'REAL\n': 'Real Magnitude', 'IMAG\n': 'Imaginary Magnitude', 'GDEL\n': 'Delay', 'COMP\n': 'Complex Magnitude'} channel = self._instrument_channel self.write(f"CALC{channel}:PAR:SEL '{self._tracename}'") self.write(f"CALC{channel}:FORM {val}") self.trace.unit = unit_mapping[val] self.trace.label = "{} {}".format( self.short_name, label_mapping[val]) def _strip(self, var): "Strip newline and quotes from instrument reply" return var.rstrip()[1:-1] def _set_start(self, val): channel = self._instrument_channel self.write('SENS{}:FREQ:START {:.7f}'.format(channel, val)) stop = self.stop() if val >= stop: raise ValueError( "Stop frequency must be larger than start frequency.") # we get start as the vna may not be able to set it to the exact value provided start = self.start() if val != start: log.warning( "Could not set start to {} setting it to {}".format(val, start)) self.update_traces() def _set_stop(self, val): channel = self._instrument_channel start = self.start() if val <= start: raise ValueError( "Stop frequency must be larger than start frequency.") self.write('SENS{}:FREQ:STOP {:.7f}'.format(channel, val)) # we get stop as the vna may not be able to set it to the exact value provided stop = self.stop() if val != stop: log.warning( "Could not set stop to {} setting it to {}".format(val, stop)) self.update_traces() def _set_npts(self, val): channel = self._instrument_channel self.write('SENS{}:SWE:POIN {:.7f}'.format(channel, val)) self.update_traces() def _set_span(self, val): channel = self._instrument_channel self.write('SENS{}:FREQ:SPAN {:.7f}'.format(channel, val)) self.update_traces() def _set_center(self, val): channel = self._instrument_channel self.write('SENS{}:FREQ:CENT {:.7f}'.format(channel, val)) self.update_traces() def update_traces(self): """ updates start, stop and npts of all trace parameters""" start = self.start() stop = self.stop() npts = self.npts() for _, parameter in self.parameters.items(): if isinstance(parameter, (ArrayParameter, MultiParameter)): try: parameter.set_sweep(start, stop, npts) except AttributeError: pass def _get_sweep_data(self, force_polar=False): if not self._parent.rf_power(): log.warning("RF output is off when getting sweep data") # it is possible that the instrument and qcodes disagree about # which parameter is measured on this channel instrument_parameter = self.vna_parameter() if instrument_parameter != self._vna_parameter: raise RuntimeError("Invalid parameter. Tried to measure " "{} got {}".format(self._vna_parameter, instrument_parameter)) self.write('SENS{}:AVER:STAT ON'.format(self._instrument_channel)) self.write('SENS{}:AVER:CLE'.format(self._instrument_channel)) # preserve original state of the znb initial_state = self.status() self.status(1) self._parent.cont_meas_off() try: # if force polar is set, the SDAT data format will be used. Here # the data will be transferred as a complex number independent of # the set format in the instrument. if force_polar: data_format_command = 'SDAT' else: data_format_command = 'FDAT' # instrument averages over its last 'avg' number of sweeps # need to ensure averaged result is returned for avgcount in range(self.avg()): self.write('INIT{}:IMM; *WAI'.format(self._instrument_channel)) self._parent.write(f"CALC{self._instrument_channel}:PAR:SEL '{self._tracename}'") data_str = self.ask( 'CALC{}:DATA? {}'.format(self._instrument_channel, data_format_command)) data = np.array(data_str.rstrip().split(',')).astype('float64') if self.format() in ['Polar', 'Complex', 'Smith', 'Inverse Smith']: data = data[0::2] + 1j * data[1::2] finally: self._parent.cont_meas_on() self.status(initial_state) return data class ZNB(VisaInstrument): """ qcodes driver for the Rohde & Schwarz ZNB8 and ZNB20 virtual network analyser. It can probably be extended to ZNB4 and 40 without too much work. Requires FrequencySweep parameter for taking a trace Args: name: instrument name address: Address of instrument probably in format 'TCPIP0::192.168.15.100::inst0::INSTR' init_s_params: Automatically setup channels for all S parameters on the VNA. reset_channels: If True any channels defined on the VNA at the time of initialization are reset and removed. **kwargs: passed to base class TODO: - check initialisation settings and test functions """ CHANNEL_CLASS = ZNBChannel def __init__(self, name: str, address: str, init_s_params: bool = True, reset_channels: bool = True, **kwargs) -> None: super().__init__(name=name, address=address, **kwargs) # TODO(JHN) I could not find a way to get max and min freq from # the API, if that is possible replace below with that # See page 1025 in the manual. 7.3.15.10 for details of max/min freq # no attempt to support ZNB40, not clear without one how the format # is due to variants fullmodel = self.get_idn()['model'] if fullmodel is not None: model = fullmodel.split('-')[0] else: raise RuntimeError("Could not determine ZNB model") # format seems to be ZNB8-4Port mFrequency = {'ZNB4':(9e3, 4.5e9), 'ZNB8':(9e3, 8.5e9), 'ZNB20':(100e3, 20e9)} if model not in mFrequency.keys(): raise RuntimeError("Unsupported ZNB model {}".format(model)) self._min_freq: float self._max_freq: float self._min_freq, self._max_freq = mFrequency[model] self.add_parameter(name='num_ports', get_cmd='INST:PORT:COUN?', get_parser=int) num_ports = self.num_ports() self.add_parameter(name='rf_power', get_cmd='OUTP1?', set_cmd='OUTP1 {}', val_mapping={True: '1\n', False: '0\n'}) self.add_function('reset', call_cmd='*RST') self.add_function('tooltip_on', call_cmd='SYST:ERR:DISP ON') self.add_function('tooltip_off', call_cmd='SYST:ERR:DISP OFF') self.add_function('cont_meas_on', call_cmd='INIT:CONT:ALL ON') self.add_function('cont_meas_off', call_cmd='INIT:CONT:ALL OFF') self.add_function('update_display_once', call_cmd='SYST:DISP:UPD ONCE') self.add_function('update_display_on', call_cmd='SYST:DISP:UPD ON') self.add_function('update_display_off', call_cmd='SYST:DISP:UPD OFF') self.add_function('display_sij_split', call_cmd='DISP:LAY GRID;:DISP:LAY:GRID {},{}'.format( num_ports, num_ports)) self.add_function('display_single_window', call_cmd='DISP:LAY GRID;:DISP:LAY:GRID 1,1') self.add_function('display_dual_window', call_cmd='DISP:LAY GRID;:DISP:LAY:GRID 2,1') self.add_function('rf_off', call_cmd='OUTP1 OFF') self.add_function('rf_on', call_cmd='OUTP1 ON') if reset_channels: self.reset() self.clear_channels() channels = ChannelList(self, "VNAChannels", self.CHANNEL_CLASS, snapshotable=True) self.add_submodule("channels", channels) if init_s_params: for i in range(1, num_ports + 1): for j in range(1, num_ports + 1): ch_name = 'S' + str(i) + str(j) self.add_channel(ch_name) self.channels.lock() self.display_sij_split() self.channels.autoscale() self.update_display_on() if reset_channels: self.rf_off() self.connect_message() def display_grid(self, rows: int, cols: int): """ Display a grid of channels rows by cols """ self.write('DISP:LAY GRID;:DISP:LAY:GRID {},{}'.format(rows, cols)) def add_channel(self, channel_name: str, **kwargs): i_channel = len(self.channels) + 1 channel = self.CHANNEL_CLASS(self, channel_name, i_channel, **kwargs) self.channels.append(channel) if i_channel == 1: self.display_single_window() if i_channel == 2: self.display_dual_window() # shortcut setattr(self, channel_name, channel) # initialising channel self.write('SENS{}:SWE:TYPE LIN'.format(i_channel)) self.write('SENS{}:SWE:TIME:AUTO ON'.format(i_channel)) self.write('TRIG{}:SEQ:SOUR IMM'.format(i_channel)) self.write('SENS{}:AVER:STAT ON'.format(i_channel)) def clear_channels(self): """ Remove all channels from the instrument and channel list and unlock the channel list. """ self.write('CALCulate:PARameter:DELete:ALL') for submodule in self.submodules.values(): if isinstance(submodule, ChannelList): submodule._channels = [] submodule._channel_mapping = {} submodule._locked = False
the-stack_106_19352
import sys import os import json parent_dir = os.path.abspath(os.path.dirname(__file__)) vendor_dir = os.path.join(parent_dir, 'vendor') sys.path.insert(1, vendor_dir) from multiprocessing import Process from twisted.internet import reactor from scrapy.crawler import CrawlerRunner from scrapy.spiderloader import SpiderLoader from scrapy.utils.log import configure_logging from scrapy.utils.project import get_project_settings def main_handler(event, context): spider_event = event if event.get('body'): spider_event = json.loads(event['body']) print("trigger spider with event {0}".format(spider_event)) try: crawl(**spider_event) return "OK" except Exception as e: print(e) raise e def run_spider(spider_name, project_settings, spider_kwargs): runner = CrawlerRunner(project_settings) deferred = runner.crawl(spider_name) spider_loader = SpiderLoader(project_settings) spider_cls = spider_loader.load(spider_name) runner.crawl(spider_cls, **spider_kwargs) deferred.addBoth(lambda _: reactor.stop()) reactor.run() def crawl(settings={}, spider_name="toscrape-css", spider_kwargs={}): project_settings = get_project_settings() configure_logging(project_settings) # SCF can only write to the /tmp folder. settings['HTTPCACHE_DIR'] = "/tmp" settings['FEED_URI'] = "" settings['FEED_FORMAT'] = "json" crawler_process = Process(target=run_spider, args=(spider_name, project_settings, spider_kwargs)) crawler_process.start() crawler_process.join() if __name__ == "__main__": event = { "spider_name": "toscrape-css", "spider_kwargs": { "key1": "value1", "key2": "value2" } } main_handler(event, {}) # sample apigw event # apigw_event = { # "body": "{\n \"spider_name\": \"toscrape-css\",\n \"spider_kwargs\": {\n \"key1\": \"value1\",\n \"key2\": \"value2\"\n }\n}", # "headerParameters": {}, # "headers": { # "accept": "*/*", # "accept-encoding": "gzip, deflate, br", # }, # "httpMethod": "POST", # "isBase64Encoded": "false", # "path": "/python_simple_demo", # "pathParameters": {}, # "queryString": {}, # "queryStringParameters": {} # } # main_handler(apigw_event, {})
the-stack_106_19353
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # isort:skip_file """Unit tests for Superset""" import cgi import csv import datetime import doctest import io import json import logging import os import pytz import random import re import string from typing import Any, Dict import unittest from unittest import mock, skipUnless import pandas as pd import sqlalchemy as sqla from tests.test_app import app from superset import ( dataframe, db, jinja_context, security_manager, sql_lab, is_feature_enabled, ) from superset.common.query_context import QueryContext from superset.connectors.connector_registry import ConnectorRegistry from superset.connectors.sqla.models import SqlaTable from superset.db_engine_specs.base import BaseEngineSpec from superset.db_engine_specs.mssql import MssqlEngineSpec from superset.models import core as models from superset.models.dashboard import Dashboard from superset.models.datasource_access_request import DatasourceAccessRequest from superset.models.slice import Slice from superset.models.sql_lab import Query from superset.result_set import SupersetResultSet from superset.utils import core as utils from superset.views import core as views from superset.views.database.views import DatabaseView from .base_tests import SupersetTestCase logger = logging.getLogger(__name__) class CoreTests(SupersetTestCase): def __init__(self, *args, **kwargs): super(CoreTests, self).__init__(*args, **kwargs) def setUp(self): db.session.query(Query).delete() db.session.query(DatasourceAccessRequest).delete() db.session.query(models.Log).delete() self.table_ids = { tbl.table_name: tbl.id for tbl in (db.session.query(SqlaTable).all()) } self.original_unsafe_db_setting = app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] def tearDown(self): db.session.query(Query).delete() app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = self.original_unsafe_db_setting def test_login(self): resp = self.get_resp("/login/", data=dict(username="admin", password="general")) self.assertNotIn("User confirmation needed", resp) resp = self.get_resp("/logout/", follow_redirects=True) self.assertIn("User confirmation needed", resp) resp = self.get_resp( "/login/", data=dict(username="admin", password="wrongPassword") ) self.assertIn("User confirmation needed", resp) def test_dashboard_endpoint(self): resp = self.client.get("/superset/dashboard/-1/") assert resp.status_code == 404 def test_slice_endpoint(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) resp = self.get_resp("/superset/slice/{}/".format(slc.id)) assert "Time Column" in resp assert "List Roles" in resp # Testing overrides resp = self.get_resp("/superset/slice/{}/?standalone=true".format(slc.id)) assert '<div class="navbar' not in resp resp = self.client.get("/superset/slice/-1/") assert resp.status_code == 404 def _get_query_context(self) -> Dict[str, Any]: self.login(username="admin") slc = self.get_slice("Girl Name Cloud", db.session) return { "datasource": {"id": slc.datasource_id, "type": slc.datasource_type}, "queries": [ { "granularity": "ds", "groupby": ["name"], "metrics": [{"label": "sum__num"}], "filters": [], "row_limit": 100, } ], } def _get_query_context_with_post_processing(self) -> Dict[str, Any]: self.login(username="admin") slc = self.get_slice("Girl Name Cloud", db.session) return { "datasource": {"id": slc.datasource_id, "type": slc.datasource_type}, "queries": [ { "granularity": "ds", "groupby": ["name", "state"], "metrics": [{"label": "sum__num"}], "filters": [], "row_limit": 100, "post_processing": [ { "operation": "aggregate", "options": { "groupby": ["state"], "aggregates": { "q1": { "operator": "percentile", "column": "sum__num", "options": {"q": 25}, }, "median": { "operator": "median", "column": "sum__num", }, }, }, }, { "operation": "sort", "options": {"columns": {"q1": False, "state": True},}, }, ], } ], } def test_viz_cache_key(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) viz = slc.viz qobj = viz.query_obj() cache_key = viz.cache_key(qobj) self.assertEqual(cache_key, viz.cache_key(qobj)) qobj["groupby"] = [] self.assertNotEqual(cache_key, viz.cache_key(qobj)) def test_cache_key_changes_when_datasource_is_updated(self): qc_dict = self._get_query_context() # construct baseline cache_key query_context = QueryContext(**qc_dict) query_object = query_context.queries[0] cache_key_original = query_context.cache_key(query_object) # make temporary change and revert it to refresh the changed_on property datasource = ConnectorRegistry.get_datasource( datasource_type=qc_dict["datasource"]["type"], datasource_id=qc_dict["datasource"]["id"], session=db.session, ) description_original = datasource.description datasource.description = "temporary description" db.session.commit() datasource.description = description_original db.session.commit() # create new QueryContext with unchanged attributes and extract new cache_key query_context = QueryContext(**qc_dict) query_object = query_context.queries[0] cache_key_new = query_context.cache_key(query_object) # the new cache_key should be different due to updated datasource self.assertNotEqual(cache_key_original, cache_key_new) def test_query_context_time_range_endpoints(self): query_context = QueryContext(**self._get_query_context()) query_object = query_context.queries[0] extras = query_object.to_dict()["extras"] self.assertTrue("time_range_endpoints" in extras) self.assertEquals( extras["time_range_endpoints"], (utils.TimeRangeEndpoint.INCLUSIVE, utils.TimeRangeEndpoint.EXCLUSIVE), ) def test_get_superset_tables_not_allowed(self): example_db = utils.get_example_database() schema_name = self.default_schema_backend_map[example_db.backend] self.login(username="gamma") uri = f"superset/tables/{example_db.id}/{schema_name}/undefined/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 404) def test_get_superset_tables_substr(self): example_db = utils.get_example_database() self.login(username="admin") schema_name = self.default_schema_backend_map[example_db.backend] uri = f"superset/tables/{example_db.id}/{schema_name}/ab_role/" rv = self.client.get(uri) response = json.loads(rv.data.decode("utf-8")) self.assertEqual(rv.status_code, 200) expeted_response = { "options": [ { "label": "ab_role", "schema": schema_name, "title": "ab_role", "type": "table", "value": "ab_role", } ], "tableLength": 1, } self.assertEqual(response, expeted_response) def test_get_superset_tables_not_found(self): self.login(username="admin") uri = f"superset/tables/invalid/public/undefined/" rv = self.client.get(uri) self.assertEqual(rv.status_code, 404) def test_api_v1_query_endpoint(self): self.login(username="admin") qc_dict = self._get_query_context() data = json.dumps(qc_dict) resp = json.loads(self.get_resp("/api/v1/query/", {"query_context": data})) self.assertEqual(resp[0]["rowcount"], 100) def test_api_v1_query_endpoint_with_post_processing(self): self.login(username="admin") qc_dict = self._get_query_context_with_post_processing() data = json.dumps(qc_dict) resp = json.loads(self.get_resp("/api/v1/query/", {"query_context": data})) self.assertEqual(resp[0]["rowcount"], 6) def test_old_slice_json_endpoint(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) json_endpoint = "/superset/explore_json/{}/{}/".format( slc.datasource_type, slc.datasource_id ) resp = self.get_resp( json_endpoint, {"form_data": json.dumps(slc.viz.form_data)} ) assert '"Jennifer"' in resp def test_slice_json_endpoint(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) resp = self.get_resp(slc.explore_json_url) assert '"Jennifer"' in resp def test_old_slice_csv_endpoint(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) csv_endpoint = "/superset/explore_json/{}/{}/?csv=true".format( slc.datasource_type, slc.datasource_id ) resp = self.get_resp(csv_endpoint, {"form_data": json.dumps(slc.viz.form_data)}) assert "Jennifer," in resp def test_slice_csv_endpoint(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) csv_endpoint = "/superset/explore_json/?csv=true" resp = self.get_resp( csv_endpoint, {"form_data": json.dumps({"slice_id": slc.id})} ) assert "Jennifer," in resp def test_admin_only_permissions(self): def assert_admin_permission_in(role_name, assert_func): role = security_manager.find_role(role_name) permissions = [p.permission.name for p in role.permissions] assert_func("can_sync_druid_source", permissions) assert_func("can_approve", permissions) assert_admin_permission_in("Admin", self.assertIn) assert_admin_permission_in("Alpha", self.assertNotIn) assert_admin_permission_in("Gamma", self.assertNotIn) def test_admin_only_menu_views(self): def assert_admin_view_menus_in(role_name, assert_func): role = security_manager.find_role(role_name) view_menus = [p.view_menu.name for p in role.permissions] assert_func("ResetPasswordView", view_menus) assert_func("RoleModelView", view_menus) assert_func("Security", view_menus) assert_func("SQL Lab", view_menus) assert_admin_view_menus_in("Admin", self.assertIn) assert_admin_view_menus_in("Alpha", self.assertNotIn) assert_admin_view_menus_in("Gamma", self.assertNotIn) def test_save_slice(self): self.login(username="admin") slice_name = f"Energy Sankey" slice_id = self.get_slice(slice_name, db.session).id copy_name_prefix = "Test Sankey" copy_name = f"{copy_name_prefix}[save]{random.random()}" tbl_id = self.table_ids.get("energy_usage") new_slice_name = f"{copy_name_prefix}[overwrite]{random.random()}" url = ( "/superset/explore/table/{}/?slice_name={}&" "action={}&datasource_name=energy_usage" ) form_data = { "adhoc_filters": [], "viz_type": "sankey", "groupby": ["target"], "metric": "sum__value", "row_limit": 5000, "slice_id": slice_id, "time_range_endpoints": ["inclusive", "exclusive"], } # Changing name and save as a new slice resp = self.client.post( url.format(tbl_id, copy_name, "saveas"), data={"form_data": json.dumps(form_data)}, ) db.session.expunge_all() new_slice_id = resp.json["form_data"]["slice_id"] slc = db.session.query(Slice).filter_by(id=new_slice_id).one() self.assertEqual(slc.slice_name, copy_name) form_data.pop("slice_id") # We don't save the slice id when saving as self.assertEqual(slc.viz.form_data, form_data) form_data = { "adhoc_filters": [], "viz_type": "sankey", "groupby": ["source"], "metric": "sum__value", "row_limit": 5000, "slice_id": new_slice_id, "time_range": "now", "time_range_endpoints": ["inclusive", "exclusive"], } # Setting the name back to its original name by overwriting new slice self.client.post( url.format(tbl_id, new_slice_name, "overwrite"), data={"form_data": json.dumps(form_data)}, ) db.session.expunge_all() slc = db.session.query(Slice).filter_by(id=new_slice_id).one() self.assertEqual(slc.slice_name, new_slice_name) self.assertEqual(slc.viz.form_data, form_data) # Cleanup slices = ( db.session.query(Slice) .filter(Slice.slice_name.like(copy_name_prefix + "%")) .all() ) for slc in slices: db.session.delete(slc) db.session.commit() def test_filter_endpoint(self): self.login(username="admin") slice_name = "Energy Sankey" slice_id = self.get_slice(slice_name, db.session).id db.session.commit() tbl_id = self.table_ids.get("energy_usage") table = db.session.query(SqlaTable).filter(SqlaTable.id == tbl_id) table.filter_select_enabled = True url = ( "/superset/filter/table/{}/target/?viz_type=sankey&groupby=source" "&metric=sum__value&flt_col_0=source&flt_op_0=in&flt_eq_0=&" "slice_id={}&datasource_name=energy_usage&" "datasource_id=1&datasource_type=table" ) # Changing name resp = self.get_resp(url.format(tbl_id, slice_id)) assert len(resp) > 0 assert "Carbon Dioxide" in resp def test_slice_data(self): # slice data should have some required attributes self.login(username="admin") slc = self.get_slice("Girls", db.session) slc_data_attributes = slc.data.keys() assert "changed_on" in slc_data_attributes assert "modified" in slc_data_attributes def test_slices(self): # Testing by hitting the two supported end points for all slices self.login(username="admin") Slc = Slice urls = [] for slc in db.session.query(Slc).all(): urls += [ (slc.slice_name, "explore", slc.slice_url), (slc.slice_name, "explore_json", slc.explore_json_url), ] for name, method, url in urls: logger.info(f"[{name}]/[{method}]: {url}") print(f"[{name}]/[{method}]: {url}") resp = self.client.get(url) self.assertEqual(resp.status_code, 200) def test_tablemodelview_list(self): self.login(username="admin") url = "/tablemodelview/list/" resp = self.get_resp(url) # assert that a table is listed table = db.session.query(SqlaTable).first() assert table.name in resp assert "/superset/explore/table/{}".format(table.id) in resp def test_add_slice(self): self.login(username="admin") # assert that /chart/add responds with 200 url = "/chart/add" resp = self.client.get(url) self.assertEqual(resp.status_code, 200) def test_get_user_slices(self): self.login(username="admin") userid = security_manager.find_user("admin").id url = f"/sliceasync/api/read?_flt_0_created_by={userid}" resp = self.client.get(url) self.assertEqual(resp.status_code, 200) def test_slices_V2(self): # Add explore-v2-beta role to admin user # Test all slice urls as user with with explore-v2-beta role security_manager.add_role("explore-v2-beta") security_manager.add_user( "explore_beta", "explore_beta", " user", "[email protected]", security_manager.find_role("explore-v2-beta"), password="general", ) self.login(username="explore_beta", password="general") Slc = Slice urls = [] for slc in db.session.query(Slc).all(): urls += [(slc.slice_name, "slice_url", slc.slice_url)] for name, method, url in urls: print(f"[{name}]/[{method}]: {url}") self.client.get(url) def test_doctests(self): modules = [utils, models, sql_lab] for mod in modules: failed, tests = doctest.testmod(mod) if failed: raise Exception("Failed a doctest") def test_misc(self): assert self.get_resp("/health") == "OK" assert self.get_resp("/healthcheck") == "OK" assert self.get_resp("/ping") == "OK" def test_testconn(self, username="admin"): # need to temporarily allow sqlite dbs, teardown will undo this app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = False self.login(username=username) database = utils.get_example_database() # validate that the endpoint works with the password-masked sqlalchemy uri data = json.dumps( { "uri": database.safe_sqlalchemy_uri(), "name": "examples", "impersonate_user": False, } ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 200 assert response.headers["Content-Type"] == "application/json" # validate that the endpoint works with the decrypted sqlalchemy uri data = json.dumps( { "uri": database.sqlalchemy_uri_decrypted, "name": "examples", "impersonate_user": False, } ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 200 assert response.headers["Content-Type"] == "application/json" def test_testconn_failed_conn(self, username="admin"): self.login(username=username) data = json.dumps( {"uri": "broken://url", "name": "examples", "impersonate_user": False} ) response = self.client.post( "/superset/testconn", data=data, content_type="application/json" ) assert response.status_code == 400 assert response.headers["Content-Type"] == "application/json" response_body = json.loads(response.data.decode("utf-8")) expected_body = {"error": "Could not load database driver: broken"} assert response_body == expected_body, "%s != %s" % ( response_body, expected_body, ) def test_testconn_unsafe_uri(self, username="admin"): self.login(username=username) app.config["PREVENT_UNSAFE_DB_CONNECTIONS"] = True response = self.client.post( "/superset/testconn", data=json.dumps( { "uri": "sqlite:///home/superset/unsafe.db", "name": "unsafe", "impersonate_user": False, } ), content_type="application/json", ) self.assertEqual(400, response.status_code) response_body = json.loads(response.data.decode("utf-8")) expected_body = { "error": "SQLite database cannot be used as a data source for security reasons." } self.assertEqual(expected_body, response_body) def test_custom_password_store(self): database = utils.get_example_database() conn_pre = sqla.engine.url.make_url(database.sqlalchemy_uri_decrypted) def custom_password_store(uri): return "password_store_test" models.custom_password_store = custom_password_store conn = sqla.engine.url.make_url(database.sqlalchemy_uri_decrypted) if conn_pre.password: assert conn.password == "password_store_test" assert conn.password != conn_pre.password # Disable for password store for later tests models.custom_password_store = None def test_databaseview_edit(self, username="admin"): # validate that sending a password-masked uri does not over-write the decrypted # uri self.login(username=username) database = utils.get_example_database() sqlalchemy_uri_decrypted = database.sqlalchemy_uri_decrypted url = "databaseview/edit/{}".format(database.id) data = {k: database.__getattribute__(k) for k in DatabaseView.add_columns} data["sqlalchemy_uri"] = database.safe_sqlalchemy_uri() self.client.post(url, data=data) database = utils.get_example_database() self.assertEqual(sqlalchemy_uri_decrypted, database.sqlalchemy_uri_decrypted) # Need to clean up after ourselves database.impersonate_user = False database.allow_dml = False database.allow_run_async = False db.session.commit() def test_warm_up_cache(self): slc = self.get_slice("Girls", db.session) data = self.get_json_resp("/superset/warm_up_cache?slice_id={}".format(slc.id)) self.assertEqual( data, [{"slice_id": slc.id, "viz_error": None, "viz_status": "success"}] ) data = self.get_json_resp( "/superset/warm_up_cache?table_name=energy_usage&db_name=main" ) assert len(data) > 0 def test_shortner(self): self.login(username="admin") data = ( "//superset/explore/table/1/?viz_type=sankey&groupby=source&" "groupby=target&metric=sum__value&row_limit=5000&where=&having=&" "flt_col_0=source&flt_op_0=in&flt_eq_0=&slice_id=78&slice_name=" "Energy+Sankey&collapsed_fieldsets=&action=&datasource_name=" "energy_usage&datasource_id=1&datasource_type=table&" "previous_viz_type=sankey" ) resp = self.client.post("/r/shortner/", data=dict(data=data)) assert re.search(r"\/r\/[0-9]+", resp.data.decode("utf-8")) @skipUnless( (is_feature_enabled("KV_STORE")), "skipping as /kv/ endpoints are not enabled" ) def test_kv(self): self.login(username="admin") resp = self.client.get("/kv/10001/") self.assertEqual(404, resp.status_code) value = json.dumps({"data": "this is a test"}) resp = self.client.post("/kv/store/", data=dict(data=value)) self.assertEqual(resp.status_code, 200) kv = db.session.query(models.KeyValue).first() kv_value = kv.value self.assertEqual(json.loads(value), json.loads(kv_value)) resp = self.client.get("/kv/{}/".format(kv.id)) self.assertEqual(resp.status_code, 200) self.assertEqual(json.loads(value), json.loads(resp.data.decode("utf-8"))) def test_gamma(self): self.login(username="gamma") assert "Charts" in self.get_resp("/chart/list/") assert "Dashboards" in self.get_resp("/dashboard/list/") def test_csv_endpoint(self): self.login("admin") sql = """ SELECT name FROM birth_names WHERE name = 'James' LIMIT 1 """ client_id = "{}".format(random.getrandbits(64))[:10] self.run_sql(sql, client_id, raise_on_error=True) resp = self.get_resp("/superset/csv/{}".format(client_id)) data = csv.reader(io.StringIO(resp)) expected_data = csv.reader(io.StringIO("name\nJames\n")) client_id = "{}".format(random.getrandbits(64))[:10] self.run_sql(sql, client_id, raise_on_error=True) resp = self.get_resp("/superset/csv/{}".format(client_id)) data = csv.reader(io.StringIO(resp)) expected_data = csv.reader(io.StringIO("name\nJames\n")) self.assertEqual(list(expected_data), list(data)) self.logout() def test_extra_table_metadata(self): self.login("admin") dbid = utils.get_example_database().id self.get_json_resp( f"/superset/extra_table_metadata/{dbid}/birth_names/superset/" ) def test_process_template(self): maindb = utils.get_example_database() sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" tp = jinja_context.get_template_processor(database=maindb) rendered = tp.process_template(sql) self.assertEqual("SELECT '2017-01-01T00:00:00'", rendered) def test_get_template_kwarg(self): maindb = utils.get_example_database() s = "{{ foo }}" tp = jinja_context.get_template_processor(database=maindb, foo="bar") rendered = tp.process_template(s) self.assertEqual("bar", rendered) def test_template_kwarg(self): maindb = utils.get_example_database() s = "{{ foo }}" tp = jinja_context.get_template_processor(database=maindb) rendered = tp.process_template(s, foo="bar") self.assertEqual("bar", rendered) def test_templated_sql_json(self): self.login("admin") sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}' as test" data = self.run_sql(sql, "fdaklj3ws") self.assertEqual(data["data"][0]["test"], "2017-01-01T00:00:00") @mock.patch("tests.superset_test_custom_template_processors.datetime") def test_custom_process_template(self, mock_dt) -> None: """Test macro defined in custom template processor works.""" mock_dt.utcnow = mock.Mock(return_value=datetime.datetime(1970, 1, 1)) db = mock.Mock() db.backend = "presto" tp = jinja_context.get_template_processor(database=db) sql = "SELECT '$DATE()'" rendered = tp.process_template(sql) self.assertEqual("SELECT '{}'".format("1970-01-01"), rendered) sql = "SELECT '$DATE(1, 2)'" rendered = tp.process_template(sql) self.assertEqual("SELECT '{}'".format("1970-01-02"), rendered) def test_custom_get_template_kwarg(self): """Test macro passed as kwargs when getting template processor works in custom template processor.""" db = mock.Mock() db.backend = "presto" s = "$foo()" tp = jinja_context.get_template_processor(database=db, foo=lambda: "bar") rendered = tp.process_template(s) self.assertEqual("bar", rendered) def test_custom_template_kwarg(self) -> None: """Test macro passed as kwargs when processing template works in custom template processor.""" db = mock.Mock() db.backend = "presto" s = "$foo()" tp = jinja_context.get_template_processor(database=db) rendered = tp.process_template(s, foo=lambda: "bar") self.assertEqual("bar", rendered) def test_custom_template_processors_overwrite(self) -> None: """Test template processor for presto gets overwritten by custom one.""" db = mock.Mock() db.backend = "presto" tp = jinja_context.get_template_processor(database=db) sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" rendered = tp.process_template(sql) self.assertEqual(sql, rendered) sql = "SELECT '{{ DATE(1, 2) }}'" rendered = tp.process_template(sql) self.assertEqual(sql, rendered) def test_custom_template_processors_ignored(self) -> None: """Test custom template processor is ignored for a difference backend database.""" maindb = utils.get_example_database() sql = "SELECT '$DATE()'" tp = jinja_context.get_template_processor(database=maindb) rendered = tp.process_template(sql) self.assertEqual(sql, rendered) @mock.patch("tests.superset_test_custom_template_processors.datetime") @mock.patch("superset.sql_lab.get_sql_results") def test_custom_templated_sql_json(self, sql_lab_mock, mock_dt) -> None: """Test sqllab receives macros expanded query.""" mock_dt.utcnow = mock.Mock(return_value=datetime.datetime(1970, 1, 1)) self.login("admin") sql = "SELECT '$DATE()' as test" resp = { "status": utils.QueryStatus.SUCCESS, "query": {"rows": 1}, "data": [{"test": "'1970-01-01'"}], } sql_lab_mock.return_value = resp dbobj = self.create_fake_presto_db() json_payload = dict(database_id=dbobj.id, sql=sql) self.get_json_resp( "/superset/sql_json/", raise_on_error=False, json_=json_payload ) assert sql_lab_mock.called self.assertEqual(sql_lab_mock.call_args[0][1], "SELECT '1970-01-01' as test") self.delete_fake_presto_db() def test_fetch_datasource_metadata(self): self.login(username="admin") url = "/superset/fetch_datasource_metadata?" "datasourceKey=1__table" resp = self.get_json_resp(url) keys = [ "name", "type", "order_by_choices", "granularity_sqla", "time_grain_sqla", "id", ] for k in keys: self.assertIn(k, resp.keys()) def test_user_profile(self, username="admin"): self.login(username=username) slc = self.get_slice("Girls", db.session) # Setting some faves url = "/superset/favstar/Slice/{}/select/".format(slc.id) resp = self.get_json_resp(url) self.assertEqual(resp["count"], 1) dash = db.session.query(Dashboard).filter_by(slug="births").first() url = "/superset/favstar/Dashboard/{}/select/".format(dash.id) resp = self.get_json_resp(url) self.assertEqual(resp["count"], 1) userid = security_manager.find_user("admin").id resp = self.get_resp("/superset/profile/admin/") self.assertIn('"app"', resp) data = self.get_json_resp("/superset/recent_activity/{}/".format(userid)) self.assertNotIn("message", data) data = self.get_json_resp("/superset/created_slices/{}/".format(userid)) self.assertNotIn("message", data) data = self.get_json_resp("/superset/created_dashboards/{}/".format(userid)) self.assertNotIn("message", data) data = self.get_json_resp("/superset/fave_slices/{}/".format(userid)) self.assertNotIn("message", data) data = self.get_json_resp("/superset/fave_dashboards/{}/".format(userid)) self.assertNotIn("message", data) data = self.get_json_resp( "/superset/fave_dashboards_by_username/{}/".format(username) ) self.assertNotIn("message", data) def test_slice_id_is_always_logged_correctly_on_web_request(self): # superset/explore case slc = db.session.query(Slice).filter_by(slice_name="Girls").one() qry = db.session.query(models.Log).filter_by(slice_id=slc.id) self.get_resp(slc.slice_url, {"form_data": json.dumps(slc.form_data)}) self.assertEqual(1, qry.count()) def test_slice_id_is_always_logged_correctly_on_ajax_request(self): # superset/explore_json case self.login(username="admin") slc = db.session.query(Slice).filter_by(slice_name="Girls").one() qry = db.session.query(models.Log).filter_by(slice_id=slc.id) slc_url = slc.slice_url.replace("explore", "explore_json") self.get_json_resp(slc_url, {"form_data": json.dumps(slc.form_data)}) self.assertEqual(1, qry.count()) def test_import_csv(self): self.login(username="admin") table_name = "".join(random.choice(string.ascii_uppercase) for _ in range(5)) filename_1 = "testCSV.csv" test_file_1 = open(filename_1, "w+") test_file_1.write("a,b\n") test_file_1.write("john,1\n") test_file_1.write("paul,2\n") test_file_1.close() filename_2 = "testCSV2.csv" test_file_2 = open(filename_2, "w+") test_file_2.write("b,c,d\n") test_file_2.write("john,1,x\n") test_file_2.write("paul,2,y\n") test_file_2.close() example_db = utils.get_example_database() example_db.allow_csv_upload = True db_id = example_db.id db.session.commit() form_data = { "csv_file": open(filename_1, "rb"), "sep": ",", "name": table_name, "con": db_id, "if_exists": "fail", "index_label": "test_label", "mangle_dupe_cols": False, } url = "/databaseview/list/" add_datasource_page = self.get_resp(url) self.assertIn("Upload a CSV", add_datasource_page) url = "/csvtodatabaseview/form" form_get = self.get_resp(url) self.assertIn("CSV to Database configuration", form_get) try: # initial upload with fail mode resp = self.get_resp(url, data=form_data) self.assertIn( f'CSV file "{filename_1}" uploaded to table "{table_name}"', resp ) # upload again with fail mode; should fail form_data["csv_file"] = open(filename_1, "rb") resp = self.get_resp(url, data=form_data) self.assertIn( f'Unable to upload CSV file "{filename_1}" to table "{table_name}"', resp, ) # upload again with append mode form_data["csv_file"] = open(filename_1, "rb") form_data["if_exists"] = "append" resp = self.get_resp(url, data=form_data) self.assertIn( f'CSV file "{filename_1}" uploaded to table "{table_name}"', resp ) # upload again with replace mode form_data["csv_file"] = open(filename_1, "rb") form_data["if_exists"] = "replace" resp = self.get_resp(url, data=form_data) self.assertIn( f'CSV file "{filename_1}" uploaded to table "{table_name}"', resp ) # try to append to table from file with different schema form_data["csv_file"] = open(filename_2, "rb") form_data["if_exists"] = "append" resp = self.get_resp(url, data=form_data) self.assertIn( f'Unable to upload CSV file "{filename_2}" to table "{table_name}"', resp, ) # replace table from file with different schema form_data["csv_file"] = open(filename_2, "rb") form_data["if_exists"] = "replace" resp = self.get_resp(url, data=form_data) self.assertIn( f'CSV file "{filename_2}" uploaded to table "{table_name}"', resp ) table = ( db.session.query(SqlaTable) .filter_by(table_name=table_name, database_id=db_id) .first() ) # make sure the new column name is reflected in the table metadata self.assertIn("d", table.column_names) finally: os.remove(filename_1) os.remove(filename_2) def test_dataframe_timezone(self): tz = pytz.FixedOffset(60) data = [ (datetime.datetime(2017, 11, 18, 21, 53, 0, 219225, tzinfo=tz),), (datetime.datetime(2017, 11, 18, 22, 6, 30, tzinfo=tz),), ] results = SupersetResultSet(list(data), [["data"]], BaseEngineSpec) df = results.to_pandas_df() data = dataframe.df_to_records(df) json_str = json.dumps(data, default=utils.pessimistic_json_iso_dttm_ser) self.assertDictEqual( data[0], {"data": pd.Timestamp("2017-11-18 21:53:00.219225+0100", tz=tz)} ) self.assertDictEqual( data[1], {"data": pd.Timestamp("2017-11-18 22:06:30+0100", tz=tz)} ) self.assertEqual( json_str, '[{"data": "2017-11-18T21:53:00.219225+01:00"}, {"data": "2017-11-18T22:06:30+01:00"}]', ) def test_mssql_engine_spec_pymssql(self): # Test for case when tuple is returned (pymssql) data = [ (1, 1, datetime.datetime(2017, 10, 19, 23, 39, 16, 660000)), (2, 2, datetime.datetime(2018, 10, 19, 23, 39, 16, 660000)), ] results = SupersetResultSet( list(data), [["col1"], ["col2"], ["col3"]], MssqlEngineSpec ) df = results.to_pandas_df() data = dataframe.df_to_records(df) self.assertEqual(len(data), 2) self.assertEqual( data[0], {"col1": 1, "col2": 1, "col3": pd.Timestamp("2017-10-19 23:39:16.660000")}, ) def test_comments_in_sqlatable_query(self): clean_query = "SELECT '/* val 1 */' as c1, '-- val 2' as c2 FROM tbl" commented_query = "/* comment 1 */" + clean_query + "-- comment 2" table = SqlaTable( table_name="test_comments_in_sqlatable_query_table", sql=commented_query ) rendered_query = str(table.get_from_clause()) self.assertEqual(clean_query, rendered_query) def test_slice_payload_no_results(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) json_endpoint = "/superset/explore_json/" form_data = slc.form_data form_data.update( { "adhoc_filters": [ { "clause": "WHERE", "comparator": "NA", "expressionType": "SIMPLE", "operator": "==", "subject": "gender", } ] } ) data = self.get_json_resp(json_endpoint, {"form_data": json.dumps(form_data)}) self.assertEqual(data["status"], utils.QueryStatus.SUCCESS) self.assertEqual(data["error"], None) def test_slice_payload_invalid_query(self): self.login(username="admin") slc = self.get_slice("Girls", db.session) form_data = slc.form_data form_data.update({"groupby": ["N/A"]}) data = self.get_json_resp( "/superset/explore_json/", {"form_data": json.dumps(form_data)} ) self.assertEqual(data["status"], utils.QueryStatus.FAILED) def test_slice_payload_no_datasource(self): self.login(username="admin") data = self.get_json_resp("/superset/explore_json/", raise_on_error=False) self.assertEqual( data["error"], "The datasource associated with this chart no longer exists" ) @mock.patch("superset.security.SupersetSecurityManager.schemas_accessible_by_user") @mock.patch("superset.security.SupersetSecurityManager.database_access") @mock.patch("superset.security.SupersetSecurityManager.all_datasource_access") def test_schemas_access_for_csv_upload_endpoint( self, mock_all_datasource_access, mock_database_access, mock_schemas_accessible ): self.login(username="admin") dbobj = self.create_fake_db() mock_all_datasource_access.return_value = False mock_database_access.return_value = False mock_schemas_accessible.return_value = ["this_schema_is_allowed_too"] data = self.get_json_resp( url="/superset/schemas_access_for_csv_upload?db_id={db_id}".format( db_id=dbobj.id ) ) assert data == ["this_schema_is_allowed_too"] self.delete_fake_db() def test_select_star(self): self.login(username="admin") examples_db = utils.get_example_database() resp = self.get_resp(f"/superset/select_star/{examples_db.id}/birth_names") self.assertIn("gender", resp) def test_get_select_star_not_allowed(self): """ Database API: Test get select star not allowed """ self.login(username="gamma") example_db = utils.get_example_database() resp = self.client.get(f"/superset/select_star/{example_db.id}/birth_names") self.assertEqual(resp.status_code, 404) @mock.patch("superset.views.core.results_backend_use_msgpack", False) @mock.patch("superset.views.core.results_backend") @mock.patch("superset.views.core.db") def test_display_limit(self, mock_superset_db, mock_results_backend): query_mock = mock.Mock() query_mock.sql = "SELECT *" query_mock.database = 1 query_mock.schema = "superset" mock_superset_db.session.query().filter_by().one_or_none.return_value = ( query_mock ) data = [{"col_0": i} for i in range(100)] payload = { "status": utils.QueryStatus.SUCCESS, "query": {"rows": 100}, "data": data, } # do not apply msgpack serialization use_msgpack = app.config["RESULTS_BACKEND_USE_MSGPACK"] app.config["RESULTS_BACKEND_USE_MSGPACK"] = False serialized_payload = sql_lab._serialize_payload(payload, False) compressed = utils.zlib_compress(serialized_payload) mock_results_backend.get.return_value = compressed # get all results result = json.loads(self.get_resp("/superset/results/key/")) expected = {"status": "success", "query": {"rows": 100}, "data": data} self.assertEqual(result, expected) # limit results to 1 limited_data = data[:1] result = json.loads(self.get_resp("/superset/results/key/?rows=1")) expected = { "status": "success", "query": {"rows": 100}, "data": limited_data, "displayLimitReached": True, } self.assertEqual(result, expected) app.config["RESULTS_BACKEND_USE_MSGPACK"] = use_msgpack def test_results_default_deserialization(self): use_new_deserialization = False data = [("a", 4, 4.0, "2019-08-18T16:39:16.660000")] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() results = SupersetResultSet(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": utils.QueryStatus.PENDING, } ( serialized_data, selected_columns, all_columns, expanded_columns, ) = sql_lab._serialize_and_expand_data( results, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": utils.QueryStatus.SUCCESS, "state": utils.QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized_payload = sql_lab._serialize_payload( payload, use_new_deserialization ) self.assertIsInstance(serialized_payload, str) query_mock = mock.Mock() deserialized_payload = views._deserialize_results_payload( serialized_payload, query_mock, use_new_deserialization ) self.assertDictEqual(deserialized_payload, payload) query_mock.assert_not_called() def test_results_msgpack_deserialization(self): use_new_deserialization = True data = [("a", 4, 4.0, "2019-08-18T16:39:16.660000")] cursor_descr = ( ("a", "string"), ("b", "int"), ("c", "float"), ("d", "datetime"), ) db_engine_spec = BaseEngineSpec() results = SupersetResultSet(data, cursor_descr, db_engine_spec) query = { "database_id": 1, "sql": "SELECT * FROM birth_names LIMIT 100", "status": utils.QueryStatus.PENDING, } ( serialized_data, selected_columns, all_columns, expanded_columns, ) = sql_lab._serialize_and_expand_data( results, db_engine_spec, use_new_deserialization ) payload = { "query_id": 1, "status": utils.QueryStatus.SUCCESS, "state": utils.QueryStatus.SUCCESS, "data": serialized_data, "columns": all_columns, "selected_columns": selected_columns, "expanded_columns": expanded_columns, "query": query, } serialized_payload = sql_lab._serialize_payload( payload, use_new_deserialization ) self.assertIsInstance(serialized_payload, bytes) with mock.patch.object( db_engine_spec, "expand_data", wraps=db_engine_spec.expand_data ) as expand_data: query_mock = mock.Mock() query_mock.database.db_engine_spec.expand_data = expand_data deserialized_payload = views._deserialize_results_payload( serialized_payload, query_mock, use_new_deserialization ) df = results.to_pandas_df() payload["data"] = dataframe.df_to_records(df) self.assertDictEqual(deserialized_payload, payload) expand_data.assert_called_once() @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"FOO": lambda x: 1}, clear=True, ) def test_feature_flag_serialization(self): """ Functions in feature flags don't break bootstrap data serialization. """ self.login() encoded = json.dumps( {"FOO": lambda x: 1, "super": "set"}, default=utils.pessimistic_json_iso_dttm_ser, ) html = cgi.escape(encoded).replace("'", "&#39;").replace('"', "&#34;") urls = [ "/superset/sqllab", "/superset/welcome", "/superset/dashboard/1/", "/superset/profile/admin/", "/superset/explore/table/1", ] for url in urls: data = self.get_resp(url) self.assertTrue(html in data) @mock.patch.dict( "superset.extensions.feature_flag_manager._feature_flags", {"SQLLAB_BACKEND_PERSISTENCE": True}, clear=True, ) def test_sqllab_backend_persistence_payload(self): username = "admin" self.login(username) user_id = security_manager.find_user(username).id # create a tab data = { "queryEditor": json.dumps( { "title": "Untitled Query 1", "dbId": 1, "schema": None, "autorun": False, "sql": "SELECT ...", "queryLimit": 1000, } ) } resp = self.get_json_resp("/tabstateview/", data=data) tab_state_id = resp["id"] # run a query in the created tab self.run_sql( "SELECT name FROM birth_names", "client_id_1", user_name=username, raise_on_error=True, sql_editor_id=tab_state_id, ) # run an orphan query (no tab) self.run_sql( "SELECT name FROM birth_names", "client_id_2", user_name=username, raise_on_error=True, ) # we should have only 1 query returned, since the second one is not # associated with any tabs payload = views.Superset._get_sqllab_tabs(user_id=user_id) self.assertEqual(len(payload["queries"]), 1) if __name__ == "__main__": unittest.main()
the-stack_106_19354
# -*- coding: utf-8 -*- from __future__ import unicode_literals import string from django.core.exceptions import ValidationError from django.test import SimpleTestCase from select_multiple_field.codecs import encode_list_to_csv from select_multiple_field.models import SelectMultipleField from select_multiple_field.validators import MaxLengthValidator class SelectMultipleFieldValidatorsTestCase(SimpleTestCase): def setUp(self): self.choices = tuple((c, c) for c in string.ascii_letters) self.choices_list = [c[0] for c in self.choices[0:len(self.choices)]] def test_max_length_single(self): item = SelectMultipleField(choices=self.choices, max_length=1) self.assertEqual(item.max_length, 1) self.assertIsInstance(item.validators[0], MaxLengthValidator) choice = self.choices_list[0:1] self.assertIs(item.run_validators(value=choice), None) def test_max_length_many(self): for n in range(2, len(self.choices_list)): many_choices = self.choices_list[0:n] encoded_choices_len = len(encode_list_to_csv(many_choices)) item = SelectMultipleField( choices=self.choices, max_length=encoded_choices_len) self.assertEqual(item.max_length, encoded_choices_len) self.assertIsInstance(item.validators[0], MaxLengthValidator) self.assertIs(item.run_validators(value=many_choices), None) def test_max_length_validationerror_single(self): item = SelectMultipleField(choices=self.choices, max_length=1) self.assertEqual(item.max_length, 1) self.assertIsInstance(item.validators[0], MaxLengthValidator) two_choices = self.choices_list[0:2] with self.assertRaises(ValidationError) as cm: item.run_validators(value=two_choices) self.assertEqual( cm.exception.messages[0], MaxLengthValidator.message % {'limit_value': 1, 'show_value': 3} ) def test_max_length_validationerror_many(self): for n in range(2, len(self.choices_list)): test_max_length = 2 * n - 2 # One less than encoded list len item = SelectMultipleField( choices=self.choices, max_length=test_max_length) self.assertEqual(item.max_length, test_max_length) self.assertIsInstance(item.validators[0], MaxLengthValidator) many_choices = self.choices_list[0:n] many_choices_len = len(encode_list_to_csv(many_choices)) self.assertTrue(many_choices_len > test_max_length) with self.assertRaises(ValidationError) as cm: item.run_validators(value=many_choices) self.assertEqual( cm.exception.messages[0], MaxLengthValidator.message % { 'limit_value': item.max_length, 'show_value': many_choices_len} )
the-stack_106_19358
""" raven.contrib.django.client ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2012 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import logging from django.conf import settings from django.core.exceptions import SuspiciousOperation from django.http import HttpRequest from django.template import TemplateSyntaxError from django.template.loader import LoaderOrigin from raven.base import Client from raven.contrib.django.utils import get_data_from_template, get_host from raven.contrib.django.middleware import SentryLogMiddleware from raven.utils.wsgi import get_headers, get_environ __all__ = ('DjangoClient',) class DjangoClient(Client): logger = logging.getLogger('sentry.errors.client.django') def get_user_info(self, user): if not user.is_authenticated(): return {'is_authenticated': False} user_info = { 'id': user.pk, 'is_authenticated': True, } if hasattr(user, 'email'): user_info['email'] = user.email if hasattr(user, 'get_username'): user_info['username'] = user.get_username() elif hasattr(user, 'username'): user_info['username'] = user.username return user_info def get_data_from_request(self, request): try: from django.contrib.auth.models import AbstractBaseUser as BaseUser except ImportError: from django.contrib.auth.models import User as BaseUser # NOQA result = {} if hasattr(request, 'user') and isinstance(request.user, BaseUser): result['user'] = self.get_user_info(request.user) try: uri = request.build_absolute_uri() except SuspiciousOperation: # attempt to build a URL for reporting as Django won't allow us to # use get_host() if request.is_secure(): scheme = 'https' else: scheme = 'http' host = get_host(request) uri = '%s://%s%s' % (scheme, host, request.path) if request.method != 'GET': try: data = request.body except Exception: try: data = request.raw_post_data except Exception: # assume we had a partial read. try: data = request.POST or '<unavailable>' except Exception: data = '<unavailable>' else: data = None environ = request.META result.update({ 'request': { 'method': request.method, 'url': uri, 'query_string': request.META.get('QUERY_STRING'), 'data': data, 'cookies': dict(request.COOKIES), 'headers': dict(get_headers(environ)), 'env': dict(get_environ(environ)), } }) return result def build_msg(self, *args, **kwargs): data = super(DjangoClient, self).build_msg(*args, **kwargs) stacks = [ data.get('stacktrace'), ] if 'exception' in data: stacks.append(data['exception']['values'][0]['stacktrace']) for stacktrace in filter(bool, stacks): for frame in stacktrace['frames']: module = frame.get('module') if not module: continue if module.startswith('django.'): frame['in_app'] = False if not self.site and 'django.contrib.sites' in settings.INSTALLED_APPS: try: from django.contrib.sites.models import Site site = Site.objects.get_current() site_name = site.name or site.domain data['tags'].setdefault('site', site_name) except Exception: # Database error? Fallback to the id data['tags'].setdefault('site', settings.SITE_ID) return data def capture(self, event_type, request=None, **kwargs): if 'data' not in kwargs: kwargs['data'] = data = {} else: data = kwargs['data'] if request is None: request = getattr(SentryLogMiddleware.thread, 'request', None) is_http_request = isinstance(request, HttpRequest) if is_http_request: data.update(self.get_data_from_request(request)) if kwargs.get('exc_info'): exc_value = kwargs['exc_info'][1] # As of r16833 (Django) all exceptions may contain a ``django_template_source`` attribute (rather than the # legacy ``TemplateSyntaxError.source`` check) which describes template information. if hasattr(exc_value, 'django_template_source') or ((isinstance(exc_value, TemplateSyntaxError) and isinstance(getattr(exc_value, 'source', None), (tuple, list)) and isinstance(exc_value.source[0], LoaderOrigin))): source = getattr(exc_value, 'django_template_source', getattr(exc_value, 'source', None)) if source is None: self.logger.info('Unable to get template source from exception') data.update(get_data_from_template(source)) result = super(DjangoClient, self).capture(event_type, **kwargs) if is_http_request and result: # attach the sentry object to the request request.sentry = { 'project_id': data.get('project', self.remote.project), 'id': self.get_ident(result), } return result
the-stack_106_19359
from .forms import NewProjectForm,ProfileForm,Votes from django.contrib.auth.decorators import login_required from django.shortcuts import render,redirect,get_object_or_404 from django.http import HttpResponse from .models import Project,Profile,Ratings from django.contrib.auth.models import User # from django.http import JsonResponse from rest_framework.response import Response from rest_framework.views import APIView from django.http import Http404 from .serializer import MerchSerializer,ProfileSerializer from rest_framework import status from .permissions import IsAdminOrReadOnly # Create your views here. @login_required def post(request): posts = Project.objects.all() return render(request,'all-awards/post.html',{"posts":posts}) def awards(request): vote = Votes() if request.method == 'POST': vote_form = Votes(request.POST) if vote_form.is_valid(): design = vote_form.cleaned_data['design'] usability = vote_form.cleaned_data['usability'] content = vote_form.cleaned_data['content'] creativity = vote_form.cleaned_data['creativity'] rating = Ratings(design=design,usability=usability, content=content,creativity=creativity, user=request.user,post=project) rating.save() return redirect('/') else: vote_form = Votes() return render(request,'awards.html',{"vote":vote_form}) @login_required(login_url='/accounts/login/') def projects(request, projects_id): project = Project.objects.get(id=projects_id) likes = Ratings.objects.filter(post=project) design = [] usability = [] creativity = [] content = [] for x in likes: design.append(x.design) usability.append(x.usability) creativity.append(x.creativity) content.append(x.content) de = [] us = [] cre = [] con = [] if len(usability)>0: usa = (sum(usability)/len(usability)) us.append(usa) if len(creativity)>0: crea = (sum(creativity)/len(creativity)) cre.append(crea) if len(design)>0: des = (sum(design)/len(design)) de.append(des) if len(content)>0: cont = (sum(content)/len(content)) con.append(cont) vote = Votes() if request.method == 'POST': vote_form = Votes(request.POST) if vote_form.is_valid(): design = vote_form.cleaned_data['design'] usability = vote_form.cleaned_data['usability'] content = vote_form.cleaned_data['content'] creativity = vote_form.cleaned_data['creativity'] rating = Ratings(design=design,usability=usability, content=content,creativity=creativity, user=request.user,post=project) rating.save() return redirect('/') return render(request,"awards.html",{"post":project,"des":de,"usa":us,"cont":con,"crea":cre,"vote":vote}) # try: # project = Project.objects.get(id = project_id) # except DoesNotExist: # raise Http404() # return render(request,"all-awards/awards.html", {"project":project}) def search_results(request): if 'project' in request.GET and request.GET["project"]: search_term = request.GET.get("project") searched_project = Project.search_by_title(search_term) message = f"{search_term}" return render(request, 'all-awards/search.html',{"message":message,"project": searched_projects}) else: message = "You haven't searched for any term" return render(request, 'all-awards/search.html',{"message":message}) @login_required(login_url='/accounts/login/') def new_project(request): current_user = request.user if request.method == 'POST': form = NewProjectForm(request.POST,request.FILES) if form.is_valid(): post = form.save(commit=False) post.user = request.user post.save() return redirect('home') print('saved') return redirect('home') else: form = NewProjectForm() return render(request, 'new_project.html', {"form": form}) def profile(request, username): profile = get_object_or_404(User,username=username) try: profile_details = Profile.get_by_id(profile.id) except: profile_details = Profile.filter_by_id(profile.id) # images = Project.get_profile_images(profile.id) title = f'@{profile.username} Instagram photos and videos' return render(request, 'profile/profile.html', {'title':title, 'profile':profile, 'profile_details':profile_details}) def edit_profile(request): if request.method == 'POST': form = ProfileForm(request.POST, request.FILES) if form.is_valid(): edit = form.save(commit=False) edit.user = request.user edit.save() username = request.user.username return redirect('profile', username=username) else: form = ProfileForm() return render(request, 'profile/edit_profile.html', {'form': form}) class MerchList(APIView): permission_classes = (IsAdminOrReadOnly,) def get(self, request, format=None): all_merch = Project.objects.all() serializers = MerchSerializer(all_merch, many=True) return Response(serializers.data) def post(self, request, format=None): serializers = MerchSerializer(data=request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data, status=status.HTTP_201_CREATED) return Response(serializers.errors, status=status.HTTP_400_BAD_REQUEST) class MerchDescription(APIView): permission_classes = (IsAdminOrReadOnly,) def get_merch(self, pk): try: return Profile.objects.get(id=pk) except Profile.DoesNotExist: return Http404 def get(self, request, pk, format=None): merch = self.get_merch(pk) serializers = ProfileSerializer(merch) return Response(serializers.data) def put(self, request, pk, format=None): merch = self.get_merch(pk) serializers = MerchSerializer(merch, request.data) if serializers.is_valid(): serializers.save() return Response(serializers.data) else: return Response(serializers.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk, format=None): merch = self.get_merch(pk) merch.delete() return Response(status=status.HTTP_204_NO_CONTENT)
the-stack_106_19362
from __future__ import print_function import sys import os import keras from tensorflow.python.platform import gfile import numpy as np import tensorflow as tf from tensorflow.python.layers.core import Dense from utils.data_manager import load_data from utils.vocab import load_vocab_all from utils.bleu import moses_multi_bleu from collections import defaultdict from argparse import ArgumentParser import utils.vocab as vocab import sys reload(sys) sys.setdefaultencoding('utf8') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' _PAD = vocab._PAD _GO = vocab._GO _END = vocab._END def train(sess, env, X_data, y_data, epochs=10, load=False, shuffle=True, batch_size=128, name='model', base=0, model2load=''): """ Train TF model by env.train_op """ if load: print('\nLoading saved model') env.saver.restore(sess, model2load ) print('\nTrain model') n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) for epoch in range(epochs): print('\nEpoch {0}/{1}'.format(epoch+1, epochs)) sys.stdout.flush() if shuffle: print('\nShuffling data') ind = np.arange(n_sample) np.random.shuffle(ind) X_data = X_data[ind] y_data = y_data[ind] for batch in range(n_batch): print(' batch {0}/{1}'.format(batch+1, n_batch),end='\r') start = batch * batch_size end = min(n_sample, start+batch_size) sess.run(env.train_op, feed_dict={env.x: X_data[start:end], env.y: y_data[start:end], env.training: True}) evaluate(sess, env, X_data, y_data, batch_size=batch_size) if (epoch+1) == epochs: print('\n Saving model') env.saver.save(sess, 'model/{0}-{1}'.format(name, base)) return 'model/{0}-{1}'.format(name, base) def evaluate(sess, env, X_data, y_data, batch_size=128): """ Evaluate TF model by running env.loss and env.acc. """ print('\nEvaluating') n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) loss, acc = 0, 0 for batch in range(n_batch): print(' batch {0}/{1}'.format(batch+1, n_batch),end='\r') sys.stdout.flush() start = batch * batch_size end = min(n_sample, start+batch_size) cnt = end - start batch_loss, batch_acc = sess.run( [env.loss,env.acc], feed_dict={env.x: X_data[start:end], env.y: y_data[start:end]}) loss += batch_loss * cnt acc += batch_acc * cnt loss /= n_sample acc /= n_sample print(' loss: {0:.4f} acc: {1:.4f}'.format(loss, acc)) return acc def _decode_data(sess, env, X_data, batch_size, reverse_vocab_dict): print('\nDecoding') logics_all = [] n_sample = X_data.shape[0] n_batch = int((n_sample+batch_size-1) / batch_size) for batch in range(n_batch): print(' batch {0}/{1}'.format(batch+1, n_batch),end='\r') sys.stdout.flush() start = batch * batch_size end = min(n_sample, start+batch_size) cnt = end - start ybar = sess.run(env.pred_ids, feed_dict={env.x: X_data[start:end]}) ybar = np.asarray(ybar) ybar = np.squeeze(ybar[:,0,:]) # pick top prediction for seq in ybar: seq = np.append(seq, _END) seq = seq[:list(seq).index(_END)] logic = " ".join([reverse_vocab_dict[idx] for idx in seq]) logics_all.append(logic) return logics_all def decode_data_recover(sess, env, args, X_data, y_data, s, batch_size=128): """ Inference and calculate EM acc based on recovered SQL """ annotation_path = args.annotation_path i, acc = 0, 0 _, reverse_vocab_dict, _, _ = load_vocab_all(args) inf_logics = _decode_data(sess, env, X_data, batch_size, reverse_vocab_dict) xtru, ytru = X_data, y_data with gfile.GFile(annotation_path+'%s_infer.txt'%s, mode='w') as output, gfile.GFile(annotation_path+'%s_ground_truth.txt'%s, mode='r') as S_ori_file, \ gfile.GFile(annotation_path+'%s_sym_pairs.txt'%s, mode='r') as sym_pair_file: sym_pairs = sym_pair_file.readlines() # annotation pairs from question & table files S_oris = S_ori_file.readlines() # SQL files before annotation for true_seq, logic, x, sym_pair, S_ori in zip(ytru, inf_logics, xtru, sym_pairs, S_oris): sym_pair = sym_pair.replace('<>\n','') S_ori = S_ori.replace('\n','') Qpairs = [] for pair in sym_pair.split('<>'): Qpairs.append(pair.split('=>')) true_seq = true_seq[1:] #delete <bos> x = x[1:] #delete <bos> true_seq = true_seq[:list(true_seq).index(_END)] x = np.append(x, _END) x = x[:list(x).index(_END)] xseq = " ".join([reverse_vocab_dict[idx] for idx in x]) true_logic = " ".join([reverse_vocab_dict[idx] for idx in true_seq]) logic = logic.replace(' (','').replace(' )','') true_logic = true_logic.replace(' (','').replace(' )','') logic = _switch_cond(logic, true_logic) recover_S = logic for sym, word in Qpairs: recover_S = recover_S.replace(sym, word) acc += (recover_S==S_ori) output.write(recover_S + '\n') i += 1 print('EM: %.4f'%(acc*1./len(y_data))) print('number of correct ones:%d'%acc) return acc*1./len(y_data) def decode_data(sess, env, args, X_data, y_data, batch_size=128, filename='output.txt'): """ Inference w/o recover annotation symbols """ i, acc = 0, 0 _, reverse_vocab_dict, _, _ = load_vocab_all(args) logics_all = _decode_data(sess, env, X_data, batch_size, reverse_vocab_dict) xtru, ytru = X_data, y_data for true_seq, logic, x in zip(ytru, logics_all, xtru): true_seq = true_seq[1:] x = x[1:] true_seq = np.append(true_seq, _END) x = np.append(x, _END) true_seq=true_seq[:list(true_seq).index(_END)] x=x[:list(x).index(_END)] xseq = " ".join([reverse_vocab_dict[idx] for idx in x ]) true_logic = " ".join([reverse_vocab_dict[idx] for idx in true_seq ]) logic = logic.replace(' (','').replace(' )','') true_logic = true_logic.replace(' (','').replace(' )','') logic = _switch_cond(logic, true_logic) acc += (logic==true_logic) i += 1 print('EM: %.4f'%(acc*1./len(y_data))) print('number of correct ones:%d'%acc) return acc*1./len(y_data) def _switch_cond(logic, true_logic): logic_tokens = logic.split() if len(logic_tokens) > 8 and logic_tokens[5] == 'and': newlogic = [x for x in logic_tokens] newlogic[2], newlogic[6], newlogic[4], newlogic[8] = logic_tokens[6], logic_tokens[2], logic_tokens[8], logic_tokens[4] newline = ' '.join(newlogic) if newline == true_logic: logic = newline elif len(logic_tokens) > 9 and logic_tokens[6] == 'and': newlogic = [x for x in logic_tokens] newlogic[3], newlogic[7], newlogic[5], newlogic[9] = logic_tokens[7], logic_tokens[3], logic_tokens[9], logic_tokens[5] newline = ' '.join(newlogic) if newline == true_logic: logic = newline return logic
the-stack_106_19363
# -*- coding: utf-8 -*- """ProximityForest test code.""" import numpy as np from numpy import testing from sktime.classification.distance_based import ProximityForest from sktime.datasets import load_unit_test def test_pf_on_unit_test_data(): """Test of ProximityForest on unit test data.""" # load unit test data X_train, y_train = load_unit_test(split="train") X_test, y_test = load_unit_test(split="test") indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False) # train PF pf = ProximityForest(n_estimators=5, random_state=0) pf.fit(X_train, y_train) # assert probabilities are the same probas = pf.predict_proba(X_test.iloc[indices]) testing.assert_array_almost_equal(probas, pf_unit_test_probas, decimal=2) pf_unit_test_probas = np.array( [ [ 0.0, 1.0, ], [ 1.0, 0.0, ], [ 0.0, 1.0, ], [ 1.0, 0.0, ], [ 0.8, 0.2, ], [ 1.0, 0.0, ], [ 0.0, 1.0, ], [ 0.0, 1.0, ], [ 0.2, 0.8, ], [ 1.0, 0.0, ], ] )
the-stack_106_19365
'''Parsing HTML forms.''' import re import warnings from lxml import html from .htmlib import rm_ws from .httplib import retry_get from .quick import contains # 判断表格是否包含相关数据 def is_table(tables, within, without): '''Determine whether the table contains relevant data.''' is_tab, table = False, None for table in tables: string = re.sub(r'\s', '', table.text_content()) if contains(string, within, without): is_tab = True break return is_tab, table # 提取表格全部文本 def extract_string(table) -> str: '''Extract all text in the table.''' return rm_ws(table.text_content()) # 按行按列提取表格文本放入元组列表 def extract_list(table) -> list: '''Extract the table text by row and column and put it into the tuple list.''' rows = table.xpath('tr | */tr') form = [] for row in rows: cols = row.xpath('td | th') res = [] for col in cols: res.append(rm_ws(col.text_content(), '')) if res: form.append(tuple(res)) return form # 判断是否是每行列数相同的表格 def is_equal(form): '''Determine whether it is a table with the same number of columns in each row.''' return all(len(form[0]) == len( form[pos]) for pos in range(1, len(form))) # 打包全部操作 def parse_form(form_url, within, without=tuple(), encoding='utf-8', sep='</t', to_list=False): response = retry_get(form_url) if not response: raise Exception('Request failed, invalid URL or parameter.') string = response.content.decode(encoding) elements = html.fromstring(string.replace(sep, '\n'+sep)) tables = elements.xpath('//table') # 找到全部表格 is_tab, table = is_table(tables, within, without) if is_tab: return extract_list(table) if to_list else extract_string(table) warnings.warn('Cannot find table with required data.') return False
the-stack_106_19366
# -*- encoding: utf-8 -*- """ Copyright (c) Minu Kim - [email protected] Templates from AppSeed.us """ from app import db, login, app from flask_login import UserMixin, AnonymousUserMixin from werkzeug.security import generate_password_hash, check_password_hash from time import time import jwt import json enrolment = db.Table('enrolment', db.Column('user_id', db.Integer, db.ForeignKey('user.id'), primary_key=True), db.Column('course_id', db.Integer, db.ForeignKey('course.id'), primary_key=True)) class User(UserMixin, db.Model): """ db.Model class that defines a user. Parameters ---------- id, username, email: db.Column stores id (in number id), username (user specified username), and email password_hash: db.Column stores a hash value of a password. admitted_year: db.Column admitted year to KAIST in integer (e.g. 2018) department: db.relationship db.Model class of department for each user courses: db.relationship relationship table of db.Model for taken courses for each user. course_info: db.Column string of json that stores course information for each user doubly_recognized: db.Column string of json that stores the list of courses in course.id that are chosen to be doubly recognized (상호인정 과목) replaced: db.Column string of json that stores the list of courses in course.id that are chosen to be replaced by different courses. (대체 교과목) individual: db.Column string of json that stores the list of courses in course.id that are chosen to be determined as courses for individually designed major. recognized_as: db.Column string of json that stores the list of courses in course.id that are chosen to be recognized as other major courses (타학과 인정 교과목) """ id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(120), index=True, unique=True) password_hash = db.Column(db.String(128)) admitted_year = db.Column(db.Integer) department = db.relationship('Department', backref='user', uselist=False) courses = db.relationship('Course', secondary=enrolment, backref='enrolment') course_info = db.Column(db.Text) doubly_recognized = db.Column(db.String(64)) replaced = db.Column(db.String(64)) individual = db.Column(db.String(64)) recognized_as = db.Column(db.String(128)) def __repr__(self): return '<User {}>'.format(self.username) def set_password(self, password): """ stores hashed values of user typed password. uses werkzeug security modules Parameters ---------- password: str user typed string value """ self.password_hash = generate_password_hash(password) def check_password(self, password): """ checks whether the user typed password equals the stored value when hashed with werkzeug security modules Parameters ---------- password: str user typed string value Returns ------- check_password: bool boolean value that specifies whether the typed password matches stored value when hashed. """ return check_password_hash(self.password_hash, password) def get_reset_password_token(self, expires_in=600): """ gets a reset_password_token in case user requests. TBA later """ return jwt.encode( {'reset_password': self.id, 'exp': time() + expires_in}, app.config['SECRET_KEY'], algorithm='HS256') @staticmethod def verify_reset_password_token(token): """ verifies a reset password token TBA later """ try: id = jwt.decode(token, app.config['SECRET_KEY'], algorithms=['HS256'])['reset_password'] except: return return User.query.get(id) def valid_department(self): """ checks whether the user chosen department is valid in terms of graduation requirements. Returns ------- valid_department: bool True if the department choice is valid. """ try: if self.department.major is None: return False if self.department.major == "": return False except AttributeError: return False if self.department.double_major + self.department.minor == "": if self.department.is_advanced_major + self.department.is_individually_designed == 0: return False if self.department.major == "MSB": if self.department.double_major == "": return False return True def required_major_credits(self): """ calculates and returns the required major credits for graduation. considers the departments and admitted year of the user. Returns ------- dict_major_credits: dict dictionary of required major credit values """ if not self.valid_department(): return None year = self.admitted_year if year is None: year = 2021 major = self.department.major minor = self.department.minor double_major = self.department.double_major is_advanced_major = self.department.is_advanced_major dict_major_credits = {} # 건설및환경공학과학과 전공과목 이수요건 if year <= 2015: if major == "CE": dict_major_credits["CE"] = (12, 45) if "CE" in minor: dict_major_credits["CE"] = (12, 21) if "CE" in double_major: dict_major_credits["CE"] = (12, 40) if year >= 2016: if major == "CE": dict_major_credits["CE"] = (12, 45) if is_advanced_major: dict_major_credits["CE"] = (12, 57) if "CE" in minor: dict_major_credits["CE"] = (12, 18) if "CE" in double_major: dict_major_credits["CE"] = (12, 40) # 기계공학과 전공과목 이수요건 if year <= 2015: if major == "ME": if year <= 2012: dict_major_credits["ME"] = (9, 49) else: dict_major_credits["ME"] = (12, 59) if "ME" in minor: dict_major_credits["ME"] = (9, 21) if "ME" in double_major: dict_major_credits["ME"] = (12, 40) if year >= 2016: if major == "ME": dict_major_credits["ME"] = (12, 48) if is_advanced_major: dict_major_credits["ME"] = (12, 63) if "ME" in minor: dict_major_credits["ME"] = (6, 21) if "ME" in double_major: dict_major_credits["ME"] = (12, 40) # 기술경영학부 전공과목 이수요건 if year <= 2015: if major == "MSB": dict_major_credits["MSB"] = (9, 42) if "MSB" in minor: dict_major_credits["MSB"] = (6, 18) if "MSB" in double_major: dict_major_credits["MSB"] = (6, 40) if year >= 2016: if major == "MSB": dict_major_credits["MSB"] = (9, 48) if "MSB" in minor: dict_major_credits["MSB"] = (6, 18) if "MSB" in double_major: dict_major_credits["MSB"] = (6, 40) # 물리학과 전공과목 이수요건 if year <= 2015: if major == "PH": dict_major_credits["PH"] = (19, 40) if "PH" in minor: dict_major_credits["PH"] = (6, 19) if "PH" in double_major: dict_major_credits["PH"] = (19, 40) if year >= 2016: if major == "PH": dict_major_credits["PH"] = (19, 43) if is_advanced_major: dict_major_credits["PH"] = (19, 55) if "PH" in minor: dict_major_credits["PH"] = (6, 18) if "PH" in double_major: dict_major_credits["PH"] = (19, 40) # 바이오및뇌공학과 전공과목 이수요건 if year <= 2015: if major == "BiS": dict_major_credits["BiS"] = (14, 42) if "BiS" in minor: dict_major_credits["BiS"] = (14, 18) if "BiS" in double_major: dict_major_credits["BiS"] = (14, 40) if year >= 2016: if major == "BiS": dict_major_credits["BiS"] = (14, 44) if is_advanced_major: dict_major_credits["BiS"] = (14, 56) if "BiS" in minor: dict_major_credits["BiS"] = (14, 18) if "BiS" in double_major: dict_major_credits["BiS"] = (14, 40) # 산업디자인학과 전공과목 이수요건 if year <= 2015: if major == "ID": dict_major_credits["ID"] = (27, 54) if "ID" in minor: dict_major_credits["ID"] = (9, 18) if "ID" in double_major: dict_major_credits["ID"] = (27, 40) if year >= 2016: if major == "ID": dict_major_credits["ID"] = (15, 45) if is_advanced_major: dict_major_credits["ID"] = (15, 57) if "ID" in minor: dict_major_credits["ID"] = (9, 18) if "ID" in double_major: dict_major_credits["ID"] = (15, 40) # 산업및시스템공학과 전공과목 이수요건 if year <= 2015: if major == "IE": dict_major_credits["IE"] = (24, 51) if "IE" in minor: dict_major_credits["IE"] = (0, 18) if "IE" in double_major: dict_major_credits["IE"] = (24, 40) if year >= 2016: if major == "IE": dict_major_credits["IE"] = (24, 45) if is_advanced_major: dict_major_credits["IE"] = (24, 57) if "IE" in minor: dict_major_credits["IE"] = (0, 18) if "IE" in double_major: dict_major_credits["IE"] = (24, 40) # 생명과학과 전공과목 이수요건 if year <= 2015: if major == "BS": dict_major_credits["BS"] = (18, 48) if "BS" in minor: dict_major_credits["BS"] = (12, 21) if "BS" in double_major: dict_major_credits["BS"] = (18, 40) if year >= 2016: if major == "BS": dict_major_credits["BS"] = (18, 42) if is_advanced_major: dict_major_credits["BS"] = (18, 54) if "BS" in minor: dict_major_credits["BS"] = (12, 21) if "BS" in double_major: dict_major_credits["BS"] = (18, 40) # 생명화학공학과 전공과목 이수요건 if year <= 2015: if major == "CBE": dict_major_credits["CBE"] = (21, 41) if year <= 2013: dict_major_credits["CBE"] = (18, 41) if year <= 2010: dict_major_credits["CBE"] = (6, 41) if "CBE" in minor: if year <= 2010: dict_major_credits["CBE"] = (3, 18) else: dict_major_credits["CBE"] = (9, 18) if "CBE" in double_major: dict_major_credits["CBE"] = (21, 41) if year >= 2016: if major == "CBE": dict_major_credits["CBE"] = (21, 42) if is_advanced_major: dict_major_credits["CBE"] = (21, 54) if "CBE" in minor: dict_major_credits["CBE"] = (9, 18) if "CBE" in double_major: dict_major_credits["CBE"] = (21, 42) # 수리과학과 전공과목 이수요건 if year <= 2015: if major == "MAS": dict_major_credits["MAS"] = (0, 42) if "MAS" in minor: dict_major_credits["MAS"] = (0, 18) if "MAS" in double_major: dict_major_credits["MAS"] = (0, 40) if year >= 2016: if major == "MAS": dict_major_credits["MAS"] = (0, 42) if is_advanced_major: dict_major_credits["MAS"] = (0, 55) if "MAS" in minor: dict_major_credits["MAS"] = (0, 18) if "MAS" in double_major: dict_major_credits["MAS"] = (0, 40) # 신소재공학과 전공과목 이수요건 if year <= 2015: if major == "MS": dict_major_credits["MS"] = (18, 42) if "@MS@" in minor: dict_major_credits["MS"] = (9, 18) if "@MS@" in double_major: dict_major_credits["MS"] = (18, 40) if year >= 2016: if major == "MS": dict_major_credits["MS"] = (18, 42) if is_advanced_major: dict_major_credits["MS"] = (18, 57) if "@MS@" in minor: dict_major_credits["MS"] = (9, 18) if "@MS@" in double_major: dict_major_credits["MS"] = (18, 40) # 원자력및양자공학과 전공과목 이수요건 if year <= 2015: if major == "NQE": dict_major_credits["NQE"] = (25, 43) if "NQE" in minor: dict_major_credits["NQE"] = (15, 21) if "NQE" in double_major: dict_major_credits["NQE"] = (25, 40) if year >= 2016: if major == "NQE": dict_major_credits["NQE"] = (25, 43) if is_advanced_major: dict_major_credits["NQE"] = (25, 55) if "NQE" in minor: dict_major_credits["NQE"] = (15, 21) if "NQE" in double_major: dict_major_credits["NQE"] = (25, 40) # 융합인재학부 이수요건 if major == "TS": dict_major_credits["TS"] = (21, 42) if is_advanced_major: dict_major_credits["TS"] = (21, 54) if "TS" in minor: dict_major_credits["TS"] = (18, 18) if "TS" in double_major: dict_major_credits["TS"] = (21, 42) # 전기및전자공학부 전공과목 이수요건 if year <= 2015: if major == "EE": dict_major_credits["EE"] = (18, 53) if double_major + minor != "": dict_major_credits["EE"] = (18, 47) if year <= 2013: dict_major_credits["EE"] = (18, 47) if "EE" in minor: dict_major_credits["EE"] = (12, 21) if "EE" in double_major: dict_major_credits["EE"] = (18, 40) if year >= 2016: if major == "EE": dict_major_credits["EE"] = (18, 50) if is_advanced_major: dict_major_credits["EE"] = (18, 62) if "EE" in minor: dict_major_credits["EE"] = (3, 21) if "EE" in double_major: dict_major_credits["EE"] = (18, 40) if year >= 2018: if major == "EE": dict_major_credits["EE"] = (15, 50) if is_advanced_major: dict_major_credits["EE"] = (15, 62) if "EE" in minor: dict_major_credits["EE"] = (3, 21) if "EE" in double_major: dict_major_credits["EE"] = (15, 40) # 전산학부 전공과목 이수요건 if year <= 2015: if major == "CS": dict_major_credits["CS"] = (19, 43) if "CS" in minor: dict_major_credits["CS"] = (15, 21) if "CS" in double_major: dict_major_credits["CS"] = (19, 40) if year >= 2016: if major == "CS": dict_major_credits["CS"] = (19, 49) if is_advanced_major: dict_major_credits["CS"] = (19, 61) if "CS" in minor: dict_major_credits["CS"] = (15, 21) if "CS" in double_major: dict_major_credits["CS"] = (19, 40) # 항공우주공학과 전공과목 이수요건 if year <= 2015: if major == "AE": dict_major_credits["AE"] = (19, 49) if "AE" in minor: dict_major_credits["AE"] = (12, 21) if "AE" in double_major: dict_major_credits["AE"] = (19, 40) if year >= 2016: if major == "AE": dict_major_credits["AE"] = (21, 42) if is_advanced_major: dict_major_credits["AE"] = (21, 60) if "AE" in minor: dict_major_credits["AE"] = (9, 18) if "AE" in double_major: dict_major_credits["AE"] = (21, 42) # 화학과 전공과목 이수요건 if year <= 2015: if major == "CH": dict_major_credits["CH"] = (24, 42) if year <= 2011: dict_major_credits["CH"] = (18, 42) if "CH" in minor: dict_major_credits["CH"] = (12, 21) if "CH" in double_major: dict_major_credits["CH"] = (24, 40) if year >= 2016: if major == "CH": dict_major_credits["CH"] = (24, 42) if is_advanced_major: dict_major_credits["CH"] = (24, 54) if "CH" in minor: dict_major_credits["CH"] = (12, 21) if "CH" in double_major: dict_major_credits["CH"] = (24, 40) return dict_major_credits def required_other_credits(self): """ calculates and returns credits other than major credits that are required for graduation. considers department and admitted year of the user. Returns ------- elective_basic: int required credit for elective basic courses research: int requried credit for research courses total_major: int required credit for his/her major courses. calculated from required_major_credits() total_other_major: int required credit for his/her other majors other than his/her department. calculated from required_major_credits() humanities: int required credit for humanities courses. """ # 전공 필수 및 교양 필수 학점을 제외한 필요 학점만 계산함. if not self.valid_department(): return None # 기초 선택 학점 이수 요건 if self.department.double_major == "": elective_basic = 9 else: if self.department.major in ["ME", "PH", "BiS", "MAS", "EE", "CS"]: elective_basic = 3 else: elective_basic = 6 # 연구 학점 이수 요건 if self.department.double_major != "": research = 0 else: if self.department.major in ["MSB", "IE", "CBE"]: research = 4 elif self.department.major in ["PH", "BiS"]: research = 5 else: research = 3 # 총 전공 학점 이수 요건 required_major_credits = self.required_major_credits() total_major = required_major_credits[self.department.major][1] total_other_major = 0 for key in required_major_credits: if key != self.department.major: total_other_major += required_major_credits[key][1] if self.department.is_individually_designed == 1: total_other_major += 12 # 인문 사회 선택 학점 이수 요건 humanities = 21 if self.department.double_major != "": humanities = 12 return elective_basic, research, total_major, total_other_major, humanities def required_credits(self): """ calculates and returns all credits including the total credits that are required for graduation. Returns ------- mandatory_general: int required credit for mandatory general courses mandatory_basic: int required credit for mandatory basic courses elective_basic: int required credit for elective basic courses research: int requried credit for research courses total_major: int required credit for his/her major courses. calculated from required_major_credits() total_other_major: int required credit for his/her other majors other than his/her department. calculated from required_major_credits() humanities: int required credit for humanities courses. """ if not self.valid_department(): return None required_other_credits = self.required_other_credits() mandatory_general = 7 mandatory_basic = 23 elective_basic = required_other_credits[0] research = required_other_credits[1] major = required_other_credits[2] other_major = required_other_credits[3] humanities = required_other_credits[4] if self.admitted_year <= 2015: total = 130 else: total = 136 return mandatory_general, mandatory_basic, elective_basic, research, \ major, other_major, humanities, total def completed_credits(self): """ calculates and returns completed credits for a user. considers db.department, db.courses and db.admitted_year. Returns ------- mandatory_general: int mandatory_au: int mandatory_basic: int elective_basic: int major: int completed credits for all major requirements of his/her department (summed up) other_major: int completed credits for all other major requirements that are not from his/her department (summed up) humanities: int others: int research: int dict_completed_major: dict dictionary that stores completed credits for major courses of each department individual_major: dict total: int total credit one has completed """ if not self.valid_department(): return None courses = self.courses if courses is None: courses = [] for course in courses: if "EE Co-op 1" in course.name: course1 = Course.query.filter_by(code="EE405").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="EE490").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) if "ISysE Co-op 1" in course.name: course1 = Course.query.filter_by(code="IE436").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="IE481").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) course3 = Course.query.filter_by(code="IE490").first() if (course3 not in courses) and (course3 is not None): courses.append(course3) if "ME Co-op 1" in course.name: course1 = Course.query.filter_by(code="ME490").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) if "SoC Co-op 1" in course.name: course1 = Course.query.filter_by(code="CS490").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="CS409").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) mandatory_general = 0 mandatory_au = 0 mandatory_basic = 0 elective_basic = 0 major = 0 other_major = 0 humanities = 0 research = 0 others = 0 individual_major = 0 dict_completed_major = {} total = 0 required_major_credits = self.required_major_credits() for key in required_major_credits: dict_completed_major[key] = [0, 0] for course in courses: try: course_info = json.loads(self.course_info) if str(course.id) in course_info: if course_info[str(course.id)]["letter"] in ["F", "U"]: continue except KeyError: pass except TypeError: pass if "Co-op 2" in course.name: others += 3 total += 3 continue if "ISysE Co-op 1" in course.name: continue if "ME Co-op 1" in course.name: others += 3 try: dict_completed_major["ME"][1] += 3 except KeyError: total -= 3 total += 6 continue if "Co-op 1" in course.name: others += 3 total += 3 continue if "@" + str(course.id) + "@" in self.doubly_recognized: recognizables = course.recognizables() + [course.extract_department(replace=False)] for key in required_major_credits: if key in recognizables: if key == course.extract_department(replace=False): if '필수' in course.subject_type: dict_completed_major[key][0] += int(course.credit) dict_completed_major[key][1] += int(course.credit) total += int(course.credit) else: dict_completed_major[key][1] += int(course.credit) total += int(course.credit) else: dict_completed_major[key][1] += int(course.credit) total += int(course.credit) continue if "@" + str(course.id) + "@" in self.replaced: course = Course.query.filter_by(code=course.replaceables()).first() if "AU" in course.credit: mandatory_au += int(course.credit[0]) elif course.subject_type == '교양필수': mandatory_general += int(course.credit) total += int(course.credit) elif course.subject_type == '기초필수': mandatory_basic += int(course.credit) total += int(course.credit) elif course.subject_type == '기초선택': elective_basic += int(course.credit) total += int(course.credit) elif course.subject_type == '인문사회선택': humanities += int(course.credit) total += int(course.credit) elif ('전공' in course.subject_type) or ("석/박" in course.subject_type): if "@" + str(course.id) + "@" in self.individual: individual_major += int(course.credit) total += int(course.credit) continue subject_type = course.subject_type code = course.code recognized = json.loads(self.recognized_as) if str(course.id) in recognized: subject_type = "전공선택" code = recognized[str(course.id)] for key in required_major_credits: # 해당 과목이 이수요건에 필요한 전공 교과목일 경우 if key in code: # 해당 과목이 주전공 교과목일 경우 if key == self.department.major: if '필수' in subject_type: dict_completed_major[key][0] += int(course.credit) dict_completed_major[key][1] += int(course.credit) total += int(course.credit) else: dict_completed_major[key][1] += int(course.credit) total += int(course.credit) # 해당 과목이 주전공 이외 복/부전공 학과의 교과목일 경우 else: # 그 외 일반적인 경우 if '필수' in subject_type: dict_completed_major[key][0] += int(course.credit) dict_completed_major[key][1] += int(course.credit) total += int(course.credit) else: dict_completed_major[key][1] += int(course.credit) total += int(course.credit) is_other = True for key in required_major_credits: if key in code: is_other = False if is_other: total += int(course.credit) others += int(course.credit) elif ('연구' in course.subject_type) or ("세미나" in course.subject_type): if self.department.major in course.code: research += int(course.credit) else: others += int(course.credit) total += int(course.credit) else: try: others += int(course.credit) total += int(course.credit) except ValueError: print('Unexpected non-integer credit in: ', course.name) pass for key in dict_completed_major: if key == self.department.major: major += dict_completed_major[key][1] else: other_major += dict_completed_major[key][1] other_major += individual_major return mandatory_general, mandatory_au, mandatory_basic, elective_basic, major, other_major, \ humanities, others, research, dict_completed_major, individual_major, total def total_credits(self): """ calculates and returns total credits a user has taken this excludes AU credits Returns ------- total: int total credit a user has taken """ total = 0 for course in self.courses: if "AU" not in course.credit: total += int(course.credit) return total def remaining_credits(self): """ calculates and returns remaining credits to be taken until the requirement for graduation is fulfilled. Returns ------- happy, exciting, leadership, physical, mandatory_general, \ mandatory_basic, elective_basic, research, humanities: int major, other_major: list list of integers of size 2 which consists of mandatory major credits and others. (전공필수 학점, 전공선택 학점) """ if not self.valid_department(): return None courses = self.courses if courses is None: courses = [] required_other_credits = self.required_other_credits() mandatory_general = 7 mandatory_basic = 23 elective_basic = required_other_credits[0] research = required_other_credits[1] humanities = required_other_credits[4] happy = 1 exciting = 1 leadership = 2 physical = 4 rm = self.required_major_credits() cm = self.completed_credits()[-3] completed_individual = self.completed_credits()[-2] dict_remaining_major = {} try: for key in rm: dict_remaining_major[key] = (max(0, rm[key][0] - cm[key][0]), max(0, rm[key][1] - cm[key][1])) except: return None other_major = [0, 0] for key in dict_remaining_major: if key == self.department.major: major = dict_remaining_major[key] else: other_major = [other_major[0] + dict_remaining_major[key][0], other_major[1] + dict_remaining_major[key][1]] if self.department.is_individually_designed: other_major[1] += (12 - completed_individual) for course in courses: try: course_info = json.loads(self.course_info) if str(course.id) in course_info: if course_info[str(course.id)]["letter"] in ["F", "U"]: continue except KeyError: pass except TypeError: pass if "AU" in course.credit: if course.code == 'HSS090': happy = 0 elif course.code == 'HSS091': exciting = 0 elif '인성/리더십' in course.name: leadership -= 1 else: physical -= 2 elif course.code in ["HSS001", "HSS022", "HSS023", "HSS024", "HSS025"]: mandatory_general -= int(course.credit) elif course.subject_type == "기초필수": mandatory_basic -= int(course.credit) elif course.subject_type == "기초선택": elective_basic -= int(course.credit) elif course.subject_type == "인문사회선택": humanities -= int(course.credit) elif ('연구' in course.subject_type) or ("세미나" in course.subject_type): research -= int(course.credit) elif "전공" in course.subject_type: pass else: pass return happy, exciting, max(0, leadership), max(0, physical), \ max(0, mandatory_general), max(0, mandatory_basic), max(0, elective_basic), \ max(0, research), major, other_major, max(0, humanities) def render_remaining_total_credits(self): """ calculates and returns remaining total credits the valud is used to render html file Returns ------- remaining_total: int remaining total credit until graduation """ if not self.valid_department(): return None remaining_credits = self.remaining_credits() completed_credits = self.completed_credits() requirement = self.required_credits()[-1] remaining = sum(remaining_credits[4:8]) + remaining_credits[8][1] + \ remaining_credits[9][1] + remaining_credits[10] total = sum(completed_credits[:-3]) - completed_credits[1] return max(requirement - total, remaining) def remaining_courses(self): """ calculates and returns remaining courses that must be taken to graduate. return value consists of multiple tuples that contain 1) a list of course codes and 2) number of courses that may be skipped. Returns ------- general_mandatory: tuple major_mandatory: tuple """ if not self.valid_department(): return None courses = self.courses if courses is None: courses = [] # 기초필수, 교양필수 과목 이수 요건 general_mandatory = ["HSS022", "HSS023", "HSS024", "HSS025", "HSS090", "HSS091", "HSS001", ("PH141", "PH161"), ("PH142", "PH162"), "BS120", "CH101", "MAS101", "MAS102", ("CH102", "CH451"), "CS101"] if self.admitted_year >= 2020: general_mandatory.append(("PH151", "PH152")) else: general_mandatory.append("PH151") for course in courses: if "EE Co-op 1" in course.name: course1 = Course.query.filter_by(code="EE405").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="EE490").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) if "ISysE Co-op 1" in course.name: course1 = Course.query.filter_by(code="IE436").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="IE481").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) course3 = Course.query.filter_by(code="IE490").first() if (course3 not in courses) and (course3 is not None): courses.append(course3) if "ME Co-op 1" in course.name: course1 = Course.query.filter_by(code="ME490").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) if "SoC Co-op 1" in course.name: course1 = Course.query.filter_by(code="CS490").first() if (course1 not in courses) and (course1 is not None): courses.append(course1) course2 = Course.query.filter_by(code="CS409").first() if (course2 not in courses) and (course2 is not None): courses.append(course2) for course in courses: for code in general_mandatory: if course.code in code: general_mandatory.remove(code) if course.code == "PH171": for code in general_mandatory: if "PH141" in code: general_mandatory.remove(code) if "PH151" in code: general_mandatory.remove(code) if course.code == "PH172": for code in general_mandatory: if "PH142" in code: general_mandatory.remove(code) if "PH152" in code: general_mandatory.remove(code) # 전공과목 이수요건 major_mandatory = [] # 건설및환경공학과학과 이수요건 if self.department.major == "CE": major_mandatory.append((["CE201", "CE230", "CE350", "CE371"], 0)) if self.department.double_major == "": major_mandatory.append((["CE490"], 0)) if "CE" in self.department.minor: major_mandatory.append((["CE201", "CE230", "CE350", "CE371"], 0)) if "CE" in self.department.double_major: major_mandatory.append((["CE201", "CE230", "CE350", "CE371"], 0)) # 기계공학과 이수요건 if self.admitted_year <= 2015: if self.department.major == "ME": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS202"], 1)) major_mandatory.append((["ME490", "ME401"], 1)) if self.admitted_year <= 2012: major_mandatory.append((["ME200", "ME205", "ME400"], 0)) major_mandatory.append((["ME231", "ME340", "ME251", "ME360", "ME361", "ME211", "ME221", "ME307", "ME370"], 3)) else: major_mandatory.append((["ME200", "ME205", "ME400", "ME340"], 0)) major_mandatory.append((["ME231", "ME340", "ME251", "ME360", "ME361", "ME211", "ME221", "ME307", "ME370", "ME311"], 4)) if "ME" in self.department.minor: major_mandatory.append((["ME200", "ME205", "ME400"], 0)) major_mandatory.append((["ME231", "ME340", "ME251", "ME360", "ME361", "ME211", "ME221", "ME307", "ME370", "ME311"], 6)) if "ME" in self.department.double_major: major_mandatory.append((["ME200", "ME205", "ME400", "ME340"], 0)) if self.admitted_year >= 2016: if self.department.major == "ME": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS202"], 1)) major_mandatory.append((["ME490", "ME401"], 1)) major_mandatory.append((["ME231", "ME340", "ME251", "ME360", "ME361", "ME211", "ME221", "ME307", "ME370", "ME311"], 5)) if "ME" in self.department.minor: major_mandatory.append((["ME200", "ME205", "ME400", "ME340"], 2)) if "ME" in self.department.double_major: major_mandatory.append((["ME200", "ME205", "ME400", "ME340"], 0)) # 기술경영학부 이수요건 if self.department.major == "MSB": major_mandatory.append((["MSB200", "MSB204", "MSB351"], 0)) major_mandatory.append((["MSB493", "MSB490"], 1)) major_mandatory.append((["MSB496"], 0)) if "MSB" in self.department.minor: major_mandatory.append((["MSB200", "MSB204", "MSB351"], 1)) if "MSB" in self.department.double_major: major_mandatory.append((["MSB200", "MSB204", "MSB351"], 1)) # 물리학과 이수요건 if self.department.major == "PH": major_mandatory.append((["PH152"], 0)) major_mandatory.append((["PH221", "PH231", "PH251", "PH301", "PH302", "PH311", "PH351"], 0)) if self.department.double_major == "": major_mandatory.append((["PH490", "PH496"], 0)) if "PH" in self.department.minor: major_mandatory.append((["PH301", "PH351"], 0)) if "PH" in self.department.double_major: major_mandatory.append((["PH221", "PH231", "PH251", "PH301", "PH302", "PH311", "PH351"], 0)) # 바이오및뇌공학과 이수요건 if self.department.major == "BiS": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS250"], 0)) major_mandatory.append((["BiS490", "BiS496"], 0)) else: major_mandatory.append((["MAS109", "MAS201", "MAS250"], 2)) major_mandatory.append((["BiS200", "BiS222", "BiS301", "BiS350"], 0)) if "BiS" in self.department.minor: major_mandatory.append((["BiS200", "BiS222", "BiS301", "BiS350"], 0)) if "BiS" in self.department.double_major: major_mandatory.append((["BiS200", "BiS222", "BiS301", "BiS350"], 0)) # 산업디자인학과 이수요건 if self.admitted_year <= 2015: if self.department.major == "ID": major_mandatory.append((["ID202"], 0)) major_mandatory.append((["ID211", "ID212", "ID213", "ID301", "ID304", "ID402", "ID403", "ID409", "ID414"], 0)) if self.department.double_major == "": major_mandatory.append((["ID490"], 0)) if "ID" in self.department.minor: major_mandatory.append((["ID212", "ID213", "ID301"], 0)) if "ID" in self.department.double_major: major_mandatory.append((["ID211", "ID212", "ID213", "ID301", "ID304", "ID402", "ID403", "ID409", "ID414"], 0)) if self.admitted_year >= 2016: if self.department.major == "ID": major_mandatory.append((["ID202"], 0)) major_mandatory.append((["ID212", "ID213", "ID301", "ID304", "ID403"], 0)) if self.department.double_major == "": major_mandatory.append((["ID490"], 0)) if self.department.is_advanced_major == 1: major_mandatory.append((["ID409", "ID414"], 0)) if "ID" in self.department.minor: major_mandatory.append((["ID212", "ID213", "ID301"], 0)) if "ID" in self.department.double_major: major_mandatory.append((["ID212", "ID213", "ID301", "ID304", "ID403"], 0)) # 산업및시스템공학과 이수요건 if self.department.major == "IE": major_mandatory.append((["MAS109"], 0)) major_mandatory.append((["IE241", "IE251", "IE260", "IE261", "IE331"], 0)) major_mandatory.extend([(["IE221", "IE321"], 1), (["IE232", "IE332"], 1), (["IE242", "IE341"], 1)]) if self.department.double_major == "": major_mandatory.append((["IE490", "IE496"], 0)) if "IE" in self.department.double_major: major_mandatory.append((["IE241", "IE251", "IE260", "IE261", "IE331"], 0)) major_mandatory.extend([(["IE221", "IE321"], 1), (["IE232", "IE332"], 1), (["IE242", "IE341"], 1)]) # 생명과학과 이수요건 if self.department.major == "BS": major_mandatory.append((["CH103"], 0)) if self.department.double_major == "": major_mandatory.append((["BS490"], 0)) major_mandatory.append((["BS209", "BS205", "BS208", "BS200", "BS202", "BS319"], 0)) if "BS" in self.department.double_major: major_mandatory.append((["BS209", "BS205", "BS208", "BS200", "BS202", "BS319"], 0)) # 생명화학공학과 이수요건 if self.admitted_year <= 2015: if self.department.major == "CBE": if self.admitted_year <= 2010: major_mandatory.append((["CBE201", "CBE301"], 0)) elif self.admitted_year <= 2013: major_mandatory.append((["CBE201", "CBE202", "CBE203", "CBE205", "CBE221", "CBE301"], 0)) else: major_mandatory.append((["CBE201", "CBE202", "CBE203", "CBE205", "CBE221", "CBE301", "CBE442"], 0)) if self.department.double_major == "": major_mandatory.append((["CBE490", "CBE496"], 0)) if "CBE" in self.department.minor: major_mandatory.append((["CBE201", "CBE301"], 1)) if self.admitted_year > 2010: major_mandatory.append((["CBE202"], 0)) if "CBE" in self.department.double_major: major_mandatory.append((["CBE201", "CBE202", "CBE203", "CBE205", "CBE221", "CBE301", "CBE442"], 0)) if self.admitted_year >= 2016: if self.department.major == "CBE": major_mandatory.append((["CBE201", "CBE202", "CBE203", "CBE205", "CBE221", "CBE301", "CBE442"], 0)) if self.department.double_major == "": major_mandatory.append((["CBE490", "CBE496"], 0)) if self.department.is_advanced_major == 1: major_mandatory.append((["CBE206", "CBE261", "CBE311", "CBE331", "CBE332", "CBE351"], 2)) if "CBE" in self.department.minor: major_mandatory.append((["CBE201", "CBE301"], 1)) major_mandatory.append((["CBE202"], 0)) if "CBE" in self.department.double_major: major_mandatory.append((["CBE201", "CBE202", "CBE203", "CBE205", "CBE221", "CBE301", "CBE442"], 0)) # 수리과학과 이수요건 if self.admitted_year <= 2015: if self.department.major == "MAS": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS202"], 1)) else: major_mandatory.append(["MAS201", "MAS202"], 1) major_mandatory.append((["MAS212", "MAS241", "MAS311", "MAS321", "MAS331", "MAS341", "MAS250"], 3)) if self.department.is_advanced_major == 1: major_mandatory.append((["MAS242", "MAS312", "MAS430", "MAS440"], 0)) if "MAS" in self.department.double_major: major_mandatory.append((["MAS212", "MAS241", "MAS311", "MAS321", "MAS331", "MAS341", "MAS250"], 3)) if self.admitted_year >= 2016: if self.department.major == "MAS": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS202", "MAS250"], 2)) else: major_mandatory.append((["MAS201", "MAS202", "MAS250"], 2)) major_mandatory.append((["MAS212", "MAS241", "MAS311", "MAS321", "MAS331", "MAS341", "MAS355"], 3)) if self.department.is_advanced_major == 1: major_mandatory.append((["MAS242", "MAS312", "MAS430", "MAS440"], 0)) if "MAS" in self.department.double_major: major_mandatory.append((["MAS212", "MAS241", "MAS311", "MAS321", "MAS331", "MAS341", "MAS355"], 3)) # 신소재공학과 이수요건 if self.department.major == "MS": major_mandatory.append((["MS212", "MS213", "MS310", "MS311", "MS321", "MS322"], 0)) if self.department.double_major == "": major_mandatory.append((["MS490"], 0)) if "@MS@" in self.department.double_major: major_mandatory.append((["MS212", "MS213", "MS310", "MS311", "MS321", "MS322"], 0)) # 원자력및양자공학과 이수요건 if self.department.major == "NQE": major_mandatory.append((["NQE201", "NQE202", "NQE203", "NQE204", "NQE301", "NQE303", "NQE401", "NQE402"], 0)) if self.department.double_major == "": major_mandatory.append((["NQE490"], 0)) # 융합인재학부 이수요건 # 아직 개설되지 않은 교과목이 많아 과목 코드를 알 수 없어 보류함. # 전기및전자공학부 이수요건 if self.admitted_year <= 2015: if self.department.major == "EE": if self.department.double_major == "": major_mandatory.append((["MAS201", "MAS109", "MAS202"], 1)) major_mandatory.append((["EE490"], 0)) else: major_mandatory.append((["MAS109", "MAS201", "MAS202"], 2)) major_mandatory.append((["EE305", "EE405", "EE201", "EE202", "EE204", "EE209"], 0)) if "EE" in self.department.minor: major_mandatory.append((["EE201", "EE202", "EE204", "EE303", "EE304", "EE305"], 0)) if "EE" in self.department.double_major: major_mandatory.append((["EE305", "EE405", "EE201", "EE202", "EE204", "EE209"], 0)) elif self.admitted_year <= 2017: if self.department.major == "EE": if self.department.double_major == "": major_mandatory.append((["MAS201", "MAS109", "MAS202"], 1)) major_mandatory.append((["EE490"], 0)) else: major_mandatory.append((["MAS109", "MAS201", "MAS202"], 2)) major_mandatory.append((["EE305", "EE405", "EE201", "EE202", "EE204", "EE209"], 0)) if "EE" in self.department.minor: major_mandatory.append((["EE305"], 0)) if "EE" in self.department.double_major: major_mandatory.append((["EE305", "EE405", "EE201", "EE202", "EE204", "EE209"], 0)) else: if self.department.major == "EE": if self.department.double_major == "": major_mandatory.append((["MAS201", "MAS109", "MAS202"], 1)) major_mandatory.append((["EE490"], 0)) else: major_mandatory.append((["MAS109", "MAS201", "MAS202"], 2)) major_mandatory.append((["EE305", "EE405"], 0)) major_mandatory.append((["EE201", "EE202", "EE204", "EE209", "EE210", "EE211"], 3)) if "EE" in self.department.minor: major_mandatory.append((["EE305"], 0)) if "EE" in self.department.double_major: major_mandatory.append((["EE305", "EE405", "EE201", "EE202", "EE204", "EE209", "EE201", "EE211"], 3)) # 전산학부 이수요건 if self.admitted_year <= 2015: if self.department.major == "CS": major_mandatory.append((["MAS109"], 0)) major_mandatory.append((["CS204", "CS206", "CS300", "CS311", "CS320", "CS330"], 0)) if self.department.double_major == "": major_mandatory.append((["CS490", "CS408"], 1)) if "CS" in self.department.double_major: major_mandatory.append((["CS204", "CS206", "CS300", "CS311", "CS320", "CS330"], 0)) if self.admitted_year >= 2016: if self.department.major == "CS": major_mandatory.append((["MAS109"], 0)) major_mandatory.append((["CS204", "CS206", "CS300", "CS311", "CS320", "CS330"], 0)) if self.admitted_year >= 2020: major_mandatory.append((["CS350", "CS360", "CS374", "CS408", "CS409", "CS423", "CS442", "CS453", "CS454", "CS457", "CS459", "CS473", "CS474", "CS482"], 13)) if self.department.double_major == "": major_mandatory.append((["CS490", "CS408"], 1)) if "CS" in self.department.double_major: major_mandatory.append((["CS204", "CS206", "CS300", "CS311", "CS320", "CS330"], 0)) # 항공우주공학과 이수요건 if self.admitted_year <= 2015: if self.department.major == "AE": if self.department.double_major == "": major_mandatory.append((["MAS109", "MAS201", "MAS202"], 1)) major_mandatory.append((["MAE406", "MAE490", "AE490", "AE401"], 3)) else: major_mandatory.append((["MAS109", "MAS202", "MAS201"], 2)) major_mandatory.append((["AE210", "MAE210", "MAE211"], 2)) major_mandatory.append((["AE220", "MAE220", "MAE221"], 2)) major_mandatory.append((["AE300", "MAE365"], 1)) major_mandatory.append((["AE208", "AE308", "MAE308"], 2)) major_mandatory.append((["AE307", "AE309", "MAE309"], 2)) major_mandatory.append((["AE330", "MAE335"], 1)) major_mandatory.append((["AE400", "MAE405"], 1)) if "AE" in self.department.double_major: major_mandatory.append((["AE210", "MAE210", "MAE211"], 2)) major_mandatory.append((["AE220", "MAE220", "MAE221"], 2)) major_mandatory.append((["AE300", "MAE365"], 1)) major_mandatory.append((["AE208", "AE308", "MAE308"], 2)) major_mandatory.append((["AE307", "AE309", "MAE309"], 2)) major_mandatory.append((["AE330", "MAE335"], 1)) major_mandatory.append((["AE400", "MAE405"], 1)) if self.admitted_year >= 2016: if self.department.major == "AE": major_mandatory.append((["AE208", "AE210", "AE220", "AE300", "AE307", "AE330", "AE400"], 0)) if self.department.double_major == "": major_mandatory.append((["AE490", "AE401"])) if "AE" in self.department.double_major: major_mandatory.append((["AE208", "AE210", "AE220", "AE300", "AE307", "AE330", "AE400"], 0)) # 화학과 이수요건 if self.department.major == "CH": if self.department.double_major == "": major_mandatory.append((["CH103", "CH104"], 0)) major_mandatory.append((["CH490"], 0)) else: major_mandatory.append((["CH103"], 0)) major_mandatory.append((["CH491", "CH492"], 0)) major_mandatory.append((["CH211", "CH213", "CH221", "CH223", "CH252", "CH352", "CH353"], 0)) major_mandatory.append((["CH241", "CH344"], 1)) major_mandatory.append((["CH263", "CH361"], 1)) if "CH" in self.department.double_major: major_mandatory.append((["CH211", "CH213", "CH221", "CH223", "CH252", "CH352", "CH353"], 0)) major_mandatory.append((["CH241", "CH344"], 1)) major_mandatory.append((["CH263", "CH361"], 1)) # 이수 요건에 충족하였는지 계산 for course in courses: if "@" + str(course.id) + "@" in self.replaced: course = Course.query.filter_by(code=course.replaceables()).first() for requirement in major_mandatory: if ("490" in course.code) and ("490" in requirement[0]): requirement[0].remove(course.code) if course.code in requirement[0]: requirement[0].remove(course.code) if len(requirement[0]) <= int(requirement[1]): major_mandatory.remove(requirement) return general_mandatory, major_mandatory def remaining_course_alert(self): """ returns alerts for remaining courses. the list of return values consists of tuples that includes 1) number of currently taken courses 2) number of left like courses that must be taken 3) course codes that must be taken for graduation if there are no courses left to be taken, returns 'Success' string. """ if not self.valid_department(): return None general_mandatory = self.remaining_courses()[0] major_mandatory = self.remaining_courses()[1] if len(general_mandatory) + len(major_mandatory) == 0: return "Success" alerts, others = [], [] for course in general_mandatory: if len(course) < 3: course1 = Course.query.filter_by(code=course[0]).first() course2 = Course.query.filter_by(code=course[1]).first() alerts.append((2, 1, [course1, course2])) else: others.append(Course.query.filter_by(code=course).first()) if len(others) > 0: alerts.append((len(others), len(others), others)) for code in major_mandatory: courses = [] for course in code[0]: courses.append(Course.query.filter_by(code=course).first()) alerts.append((len(code[0]), len(code[0]) - code[1], courses)) return alerts def remaining_credit_alert(self): happy, exciting, leadership, physical, mg, mb, me, rs, mj, om, hm = self.remaining_credits() alerts = {"즐거운 대학생활": 1 if happy != 0 else None, "신나는 대학생활": 1 if exciting != 0 else None, "인성/리더십": leadership if leadership != 0 else None, "체육": physical if physical != 0 else None, "교양필수": mg if mg != 0 else None, "기초필수": mb if mb != 0 else None, "기초선택": me if me != 0 else None, "연구": rs if rs != 0 else None, "전공 교과목": mj[1] if mj[1] != 0 else None, "전공필수": mj[0] if mj[0] != 0 else None, "타학과 전공 교과목": om[1] if om[1] != 0 else None, "타학과 전공필수": om[0] if om[0] != 0 else None, "인문사회선택": hm if hm != 0 else None} return alerts def check_credit_requirements(self): """ checks whether the credit requirement for graduation is fulfilled. Returns check_credit_requirements: bool True if there are no remaining credit requirements """ return self.render_remaining_total_credits() == 0 def check_course_requirements(self): """ checks whether the course requirement for graduation is fulfilled. Returns check_course_requirements: bool True if there are no remaining course requirements """ if self.department.is_individually_designed == 1: other_majors = [] for course in self.courses: if "@" + str(course.id) + "@" in self.individual: department = course.extract_department(replace=False) if department not in other_majors: other_majors.append(department) if len(other_majors) < 2: return False return len(self.remaining_courses()[0] + self.remaining_courses()[1]) == 0 def graduate_percent(self): """ renders graduate percentage until so far. this percentage is not totally accurate, but implemented for visual fulfillment :) Returns ------- percentage: float percentage achieved for graduation. """ try: remaining = self.render_remaining_total_credits() required = self.required_credits()[7] percent = round((1 - remaining / max(required, remaining)) * 100,1) except TypeError: return 0 try: if not self.check_course_requirements(): percent -= 1 except TypeError: pass return max(0, percent) def render_replaceables(self): """ renders replaceable courses that can be chosen for requirement calculation. Returns ------- render: list list of tuples of course codes and code for replaceable courses. """ if not self.valid_department(): return None courses = self.courses render = [] for course in courses: if course.extract_department(replace=True) in self.department.major + self.department.double_major: replaceable = Course.query.filter_by(code=course.replaceables()).first() render.append((course, replaceable)) elif (course.extract_department(replace=True) == "CE") and ("CE" in self.department.minor): replaceable = Course.query.filter_by(code=course.replaceables()).first() render.append((course, replaceable)) return render def render_recognizables(self): """ renders recognizable courses that can be chosen for requirement calculation. Returns ------- render: list list of tuples of course codes and codes for recognizable courses. """ if not self.valid_department(): return None dict_departments = {"MAS": "수리과학과", "PH": "물리학과", "CH": "화학과", "BS": "생명과학과", "ME": "기계공학과", "AE": "항공우주공학과", "EE": "전기및전자공학부", "CE": "건설및환경공학과학과", "CS": "전산학부", "BiS": "바이오및뇌공학과", "CBE": "생명화학공학과", "ID": "산업디자인학과", "IE": "산업및시스템공학과", "MS": "신소재공학과", "NQE": "원자력및양자공학과", "MSB": "기술경영학부", "TS": "융합인재학부"} courses = self.courses render = [] for course in courses: if "@" + str(course.id) + "@" in self.replaced: continue availables = [] recognizables = course.recognizables() if recognizables == "None": continue for recognizable in recognizables: if recognizable in self.department.major + self.department.double_major: if (self.department.major in course.code) and (recognizable == self.department.major): pass else: availables.append(dict_departments[recognizable]) if availables: render.append((course, availables)) return render def render_doubly_recognizables(self): """ renders doubly recognizable courses that can be chosen for requirement calculation. Returns ------- render: list list of tuples of course codes and codes for doubly recognizable courses. """ if not self.valid_department(): return None dict_departments = {"MAS": "수리과학과", "PH": "물리학과", "CH": "화학과", "BS": "생명과학과", "ME": "기계공학과", "AE": "항공우주공학과", "EE": "전기및전자공학부", "CE": "건설및환경공학과학과", "CS": "전산학부", "BiS": "바이오및뇌공학과", "CBE": "생명화학공학과", "ID": "산업디자인학과", "IE": "산업및시스템공학과", "MS": "신소재공학과", "NQE": "원자력및양자공학과", "MSB": "기술경영학부", "TS": "융합인재학부"} courses = self.courses render = [] for course in courses: availables = [] if "@" + str(course.id) + "@" in self.replaced: continue recognizables = course.recognizables() if recognizables == "None": continue course_code = course.extract_department(replace=False) if course_code not in recognizables: recognizables.append(course_code) more_than_two = 0 ce_in_minor = "CE" if "CE" in self.department.minor else "" for recognizable in recognizables: if recognizable in self.department.major + self.department.double_major + ce_in_minor: more_than_two += 1 availables.append(dict_departments[recognizable]) if more_than_two >= 2: render.append((course, availables)) return render def render_individual(self): if not self.valid_department(): return None render = [] courses = self.courses for course in courses: if "@" + str(course.id) + "@" in self.replaced: if "@" + str(course.id) + "@" in self.individual: self.individual = self.individual.remove("@" + str(course.id) + "@", "") db.session.commit() continue if "전공" in course.subject_type: if self.department.major not in course.code: render.append(course) return render @login.user_loader def load_user(id): return User.query.get(int(id)) class Department(db.Model): """ db.Model class that stores choices of departments for each user class contains major department, minor/double_major departments and etc. Parameters ---------- id, userid: db.Column major: db.Column string that stores the code for major department is_advanced_major: db.Column binary integer where 1 for advanced majors and 0 if not is_individually_designed: db.Column binary integer where 1 if chosen individually designed major and 0 otherwise. double_major: db.Column string that contains list of double majors of choices minor: db.Column string that contains list of minors of choice """ id = db.Column(db.Integer, primary_key=True) userid = db.Column(db.Integer, db.ForeignKey('user.id')) major = db.Column(db.String(64)) is_advanced_major = db.Column(db.Integer) is_individually_designed = db.Column(db.Integer) double_major = db.Column(db.String(64)) minor = db.Column(db.String(64)) def major_name_kr(self): """ renders the department name in Korean. Returns ------- major, double_major, minor: str names in Korean. """ dict_departments = {"MAS": "수리과학과", "PH": "물리학과", "CH": "화학과", "BS": "생명과학과", "ME": "기계공학과", "AE": "항공우주공학과", "EE": "전기및전자공학부", "CE": "건설및환경공학과학과", "CS": "전산학부", "BiS": "바이오및뇌공학과", "CBE": "생명화학공학과", "ID": "산업디자인학과", "IE": "산업및시스템공학과", "@MS@": "신소재공학과", "NQE": "원자력및양자공학과", "MSB": "기술경영학부", "TS": "융합인재학부"} major = '(선택 정보 없음)' double = [] minor = [] for key in dict_departments: if key == self.major: major = dict_departments[key] elif key in self.double_major: double.append(dict_departments[key]) elif key in self.minor: minor.append(dict_departments[key]) return major, double, minor def validate_major(self): """ validates major choices to avoid error raises. prevents duplicates of same departments chosen for both minor, double major and major. """ if self.major is None or self.major == "": return dict_departments = {"MAS": "수리과학과", "PH": "물리학과", "CH": "화학과", "BS": "생명과학과", "ME": "기계공학과", "AE": "항공우주공학과", "EE": "전기및전자공학부", "CE": "건설및환경공학과학과", "CS": "전산학부", "BiS": "바이오및뇌공학과", "CBE": "생명화학공학과", "ID": "산업디자인학과", "IE": "산업및시스템공학과", "MS": "신소재공학과", "NQE": "원자력및양자공학과", "MSB": "기술경영학부", "TS": "융합인재학부"} for key in dict_departments: if key in self.minor: if key in self.double_major: self.minor.replace(key, "") db.session.commit() class Course(db.Model): """ db.Model class that stores courses that are able to be taken for each users. a relationship table is defined with users so that each user can query courses that he/she has taken or can query for each course the users who have taken it Parameters ---------- id: db.Column course_id: db.Column course id that is identical to the CAIS system (e.g. 09.113) department: db.Column department that opens the course (e.g. 수리과학과) subject_type: db.Column type of the subject (e.g. 기초필수) code: db.Column course code of the subject (e.g. MAS101) name: db.Column name of the course credit: db.Column credit of the course. includes 'AU' at the end if AU credit. """ id = db.Column(db.Integer, primary_key=True) # userid = db.Column(db.Integer, db.ForeignKey('user.id')) course_id = db.Column(db.String(8)) department = db.Column(db.String(32)) subject_type = db.Column(db.String(32)) code = db.Column(db.String(32)) name = db.Column(db.String(200)) credit = db.Column(db.String(8)) def recognizables(self): """ renders departments that can recognize the course Returns ------- recognizables: list """ if self.code in ["ME203", "ME301", "ME312", "ME330", "ME351", "ME420", "IE363", "CH211", "CH241"]: return ["CE"] if self.code in ["CH223", "CH325", "BiS335"]: return ["BS"] if self.code in ["CH221", "CH263"]: return ["CE", "BS"] if self.code in ["PH212", "PH221", "PH301", "MAE200", "MAE221", "MAE230", "MAE231", "IE331", "IE341", "IE342", "EE202", "EE204", "PH231", "EE321", "CS206", "CS300"]: return ["MAS"] if self.code in ["ME221"]: return ["CE", "MAS"] if self.code in ["ME231"]: return ["CE", "MAS", "IE"] if self.code in ["CBE471", "EE381"]: return ["CE", "IE"] if self.code in ["BiS438"]: return ["BS", "IE"] if self.code in ["CE206", "CE350", "ME200", "ME205", "ME303", "ME208", "ME370", "ME453", "ME460", "MSB230", "PH221", "BiS200", "BiS252", "BiS321", "BiS351", "BiS352", "BiS377", "BiS437", "BiS470", "ID213", "ID216", "ID301", "ID303", "ID304", "ID307", "ID308", "ID309", "ID310", "ID403", "ID407", "BS223", "BS357", "CBE260", "CBE362", "CBE483", "MAS212", "MAS241", "MAS242", "MAS270", "MAS275", "MAS311", "MAS365", "MAS475", "MAS476", "MS481", "MS635", "NQE201", "NQE202", "NQE272", "NQE281", "EE201", "EE202", "EE204", "EE303", "EE304", "EE206", "EE305", "EE312", "EE321", "EE324", "EE342", "EE372", "EE411", "EE414", "EE421", "CS204", "CS211", "CS230", "CS310", "CS320", "CS322", "CS341", "CS350", "CS370", "CS376", "CS380", "CS402", "CS440", "CS470", "MAE230"]: return ["IE"] return "None" def replaceables(self): """ renders courses that can replace the course Returns ------- replaceable: str """ if self.code == "ME221": return "AE210" if self.code == "ME231": return "AE230" if self.code == "ME311": return "AE311" if self.code == "ME301": return "AE370" if self.code == "MAS275": return "CS204" if self.code == "EE312": return "CS311" if self.code == "CH221": return "CBE203" if self.code == "BS209": return "CBE260" if self.code == "CH213": return "CBE303" if self.code == "BiS438": return "CBE362" if self.code == "CH211": return "CBE404" if self.code == "BiS622": return "CBE567" if self.code == "MAE633": return "CBE653" if self.code == "MS654": return "CBE712" if self.code == "BS760": return "CBE861" if self.code == "IE362": return "IE260" if self.code == "IE442": return "IE343" if self.code == "IE641": return "IE541" if self.code == "CS206": return "IE260" return "None" def extract_department(self, replace=False): """ extracts the department name when a course code is given Returns ------- code: str """ if not replace: code = self.code if replace: code = self.replaceables() try: for i in range(10): code = code.replace(str(i), "") except NameError: return None return code
the-stack_106_19368
from django.shortcuts import redirect from django.utils.cache import patch_vary_headers from amo.helpers import urlparams from amo.urlresolvers import set_url_prefix from mkt.constants.carriers import CARRIER_MAP from . import set_carrier class CarrierURLMiddleware(object): """ Supports psuedo-URL prefixes that define a custom carrier store. For example, if you browse the Marketplace at /telefonica/ then this middleware will 1. strip off the telefonica part so all other URLs work as expected; 2. allow you to access 'telefonica' from mkt.carriers.get_carrier(); and 3. set a prefix so that reverse('whatever') returns /telefonica/whatever. See bug 769421 """ def process_request(self, request): carrier = stored_carrier = None set_url_prefix(None) set_carrier(None) # If I have a cookie use that carrier. remembered = request.COOKIES.get('carrier') if remembered in CARRIER_MAP: carrier = stored_carrier = remembered choice = request.REQUEST.get('carrier') if choice in CARRIER_MAP: carrier = choice elif 'carrier' in request.GET: # We are clearing the carrier. carrier = None # Update cookie if value have changed. if carrier != stored_carrier: request.set_cookie('carrier', carrier) set_carrier(carrier) def process_response(self, request, response): if request.REQUEST.get('vary') != '0': patch_vary_headers(response, ['Accept-Language', 'Cookie']) return response
the-stack_106_19370
from django.http import Http404 from django.views.decorators.cache import cache_page from django.utils.decorators import method_decorator from rest_framework.response import Response from rest_framework.generics import ListAPIView from rest_framework.views import APIView from . import filters from . import models from . import serializers from .settings import CACHE_PAGE_TIMEOUT import json DEFAULT_COUNTRY_CODE = 'CHN' class LatestStatisticsView(APIView): """最新统计信息""" def get_object(self): result = {} inst = models.Statistics.objects.order_by('-id').first() if inst is None: raise Http404 return inst @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='statistics-lastest')) def get(self, request): obj = self.get_object() result = {} for field in models.Statistics._meta.fields: name = field.attname value = getattr(obj, name) if name not in models.Statistics.JSON_FIELDS: result[name] = value continue try: value = json.loads(value) except ValueError: value = None result[name] = value serializer = serializers.LatestStatisticsSerializer(result) return Response(serializer.data) class StatisticsListView(ListAPIView): """统计信息列表""" serializer_class = serializers.StatisticsSerializer def get_queryset(self): result = [] qs = models.Statistics.objects.all().order_by('-modifyTime') values_fields = ( 'globalStatistics', 'domesticStatistics', 'internationalStatistics', 'modifyTime', 'createTime') for item in qs.values_list(*values_fields): item = dict(zip(values_fields, item)) statistics = {} for name, value in item.items(): if name not in models.Statistics.JSON_FIELDS: statistics[name] = value continue try: value = json.loads(value) except ValueError: value = None statistics[name] = value result.append(statistics) return result @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='statistics-list')) def dispatch(self, *args, **kwargs): return super(StatisticsListView, self).dispatch(*args, **kwargs) class CountryListView(ListAPIView): serializer_class = serializers.CountrySerializer filter_class = filters.CountryFilter def get_queryset(self): return models.Country.objects.all().order_by( 'continents', 'countryCode') @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='country-list')) def dispatch(self, *args, **kwargs): return super(CountryListView, self).dispatch(*args, **kwargs) class CountryListDailyView(ListAPIView): serializer_class = serializers.CountryDailySerializer filter_class = filters.CountryFilter def get_queryset(self): return models.Country.objects.all().order_by( 'continents', 'countryCode') def list(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) result = [] page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) for item in serializer.data: dailyData = json.loads(item['dailyData']) result.extend(dailyData) return self.get_paginated_response(result) serializer = self.get_serializer(queryset, many=True) for item in serializer.data: dailyData = json.loads(item['dailyData']) result.extend(dailyData) return Response(result) @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='country-list-daily')) def dispatch(self, *args, **kwargs): return super(CountryListDailyView, self).dispatch(*args, **kwargs) class CountryRetrieveView(APIView): def get_object(self, countryCode): country = models.Country.objects.filter( countryCode=countryCode).first() if country is None: raise Http404 return country @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='country-detail')) def get(self, request, countryCode): country = self.get_object(countryCode) serializer = serializers.CountrySerializer(country) return Response(serializer.data) class CountryDailyView(APIView): def get_object(self, countryCode): country = models.Country.objects.filter( countryCode=countryCode).first() if country is None: raise Http404 return country @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='country-daily-list')) def get(self, request, countryCode): country = self.get_object(countryCode) result = country.dailyData result = json.loads(result) return Response(result) class ProvinceListView(ListAPIView): """省列表""" serializer_class = serializers.ProvinceSerializer filter_class = filters.ProvinceFilter def get_queryset(self): countryCode = self.kwargs['countryCode'] if not countryCode: countryCode = DEFAULT_COUNTRY_CODE return models.Province.objects.filter( countryCode=countryCode).order_by('provinceCode') @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-list')) def dispatch(self, *args, **kwargs): return super(ProvinceListView, self).dispatch(*args, **kwargs) class ProvinceDailyView(APIView): """省按天返回列表""" def get_object(self, countryCode, provinceCode): province = models.Province.objects.filter( countryCode=countryCode, provinceCode=provinceCode).first() if province is None: raise Http404 return province @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-daily-list')) def get(self, request, countryCode, provinceCode): if countryCode is None: countryCode = DEFAULT_COUNTRY_CODE province = self.get_object(countryCode, provinceCode) result = province.dailyData result = json.loads(result) return Response(result) class ProvinceDailyByNameView(APIView): """省按天返回列表""" def get_object(self, countryCode, provinceName): province = models.Province.objects.filter( countryCode=countryCode, provinceName=provinceName).first() if province is None: raise Http404 return province @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-daily-list-by-name')) def get(self, request, countryCode, provinceName): if countryCode is None: countryCode = DEFAULT_COUNTRY_CODE province = self.get_object(countryCode, provinceName) result = province.dailyData result = json.loads(result) return Response(result) class ProvinceListDailyView(ListAPIView): serializer_class = serializers.ProvinceDailySerializer filter_class = filters.ProvinceFilter def get_queryset(self): countryCode = self.kwargs['countryCode'] if not countryCode: countryCode = DEFAULT_COUNTRY_CODE return models.Province.objects.filter( countryCode=countryCode).order_by('provinceCode') def list(self, request, *args, **kwargs): queryset = self.filter_queryset(self.get_queryset()) result = [] page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) for item in serializer.data: dailyData = json.loads(item['dailyData']) result.extend(dailyData) return self.get_paginated_response(result) serializer = self.get_serializer(queryset, many=True) for item in serializer.data: dailyData = json.loads(item['dailyData']) result.extend(dailyData) return Response(result) @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-list-daily')) def dispatch(self, *args, **kwargs): return super(ProvinceListDailyView, self).dispatch(*args, **kwargs) class ProvinceRetrieveView(APIView): """通过省编码获取数据""" def get_object(self, countryCode, provinceCode): province = models.Province.objects.filter( countryCode=countryCode, provinceCode=provinceCode).first() if province is None: raise Http404 return province @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-detail')) def get(self, request, countryCode, provinceCode): if countryCode is None: countryCode = DEFAULT_COUNTRY_CODE province = self.get_object(countryCode, provinceCode) serializer = serializers.ProvinceSerializer(province) return Response(serializer.data) class ProvinceRetrieveByNameView(APIView): """通过省名获取数据""" def get_object(self, countryCode, provinceName): province = models.Province.objects.filter( countryCode=countryCode, provinceName=provinceName).first() if province is None: raise Http404 return province @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='province-detail-by-name')) def get(self, request, countryCode, provinceName=None): if countryCode is None: countryCode = DEFAULT_COUNTRY_CODE province = self.get_object(countryCode, provinceName) serializer = serializers.ProvinceSerializer(province) return Response(serializer.data) class CityListView(ListAPIView): serializer_class = serializers.CitySerializer filter_class = filters.CityFilter def get_queryset(self): countryCode = self.kwargs['countryCode'] if not countryCode: countryCode = DEFAULT_COUNTRY_CODE return models.City.objects.filter( countryCode=countryCode).order_by('provinceCode', 'cityName') @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='city-list')) def dispatch(self, *args, **kwargs): return super(CityListView, self).dispatch(*args, **kwargs) class CityRetrieveByNameView(APIView): def get_object(self, countryCode, cityName): city = models.City.objects.filter( countryCode=countryCode, cityName=cityName).first() if city is None: raise Http404 return city @method_decorator(cache_page( CACHE_PAGE_TIMEOUT, key_prefix='city-detail-by-name')) def get(self, request, countryCode, cityName): if countryCode is None: countryCode = DEFAULT_COUNTRY_CODE city = self.get_object(countryCode, cityName) serializer = serializers.CitySerializer(city) return Response(serializer.data)
the-stack_106_19371
import numpy as np import cv2 import json import sys shape='n/a' imgPath="C:\\xampp\\htdocs\\projektmunka\\python\\haromszog.png" img = cv2.imread(imgPath, -1) alpha = img[:,:,3] img = ~alpha thresh = 100 ret,thresh_img = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_contours = np.zeros(img.shape) img=cv2.drawContours(img_contours, contours, -1, (0,255,0), 3) for contour in contours: approx = cv2.approxPolyDP(contour, 0.01* cv2.arcLength(contour, True), True) cv2.drawContours(img, [approx], 0, (0, 0, 0), 5) x = approx.ravel()[0] y = approx.ravel()[1] - 5 if len(approx) == 3: shape="Triangle" elif len(approx) == 4: x1 ,y1, w, h = cv2.boundingRect(approx) aspectRatio = float(w)/h if aspectRatio >= 0.95 and aspectRatio <= 1.05: shape="Square" else: shape="Rectangle" elif len(approx) == 5: shape="Pentagon" elif len(approx) == 6: shape="Hexagon" elif len(approx) == 7: shape="Optagon" elif len(approx) == 8: shape="Octagon" elif len(approx) == 10: shape="Star" else: shape="Circle" print(shape)
the-stack_106_19373
from django.conf import settings from django.db.models import Model from wagtail import hooks from wagtail.models import Locale class SimpleTranslation(Model): """ SimpleTranslation, dummy model to create the `submit_translation` permission. We need this model to be concrete or the following management commands will misbehave: - `remove_stale_contenttypes`, will drop the perm - `dump_data`, will complain about the missing table """ class Meta: default_permissions = [] permissions = [ ("submit_translation", "Can submit translations"), ] @hooks.register("after_create_page") def after_create_page(request, page): """Creates page aliases in other locales when a page is created. Whenever a page is created under a specific locale, this signal handler creates an alias page for that page under the other locales. e.g. When an editor creates the page "blog/my-blog-post" under the English tree, this signal handler creates an alias of that page called "blog/my-blog-post" under the other locales' trees. """ if getattr(settings, "WAGTAILSIMPLETRANSLATION_SYNC_PAGE_TREE", False): # Check if the source tree needs to be synchronised into any other trees # Create aliases in all those locales for locale in Locale.objects.exclude(pk=page.locale_id): if not page.has_translation(locale): page.copy_for_translation(locale, copy_parents=True, alias=True)
the-stack_106_19375
import asyncio import json from multiprocessing import Queue from typing import Awaitable, Dict, List import websockets from liualgotrader.common import market_data from liualgotrader.common.tlog import tlog from ..common import config from .streaming_base import StreamingBase, WSConnectState NY = "America/New_York" class AlpacaStreaming(StreamingBase): END_POINT = "wss://data.alpaca.markets/stream" def __init__(self, key: str, secret: str, queues: List[Queue]): self.key = key self.secret = secret self.state: WSConnectState = WSConnectState.NOT_CONNECTED self.websocket: websockets.client.WebSocketClientProtocol self.consumer_task: asyncio.Task self.stream_map: Dict = {} super().__init__(queues) async def connect(self) -> bool: """Connect web-socket and authenticate, update internal state""" try: self.websocket = await websockets.client.connect(self.END_POINT) self.state = WSConnectState.CONNECTED except websockets.WebSocketException as wse: tlog(f"Exception when connecting to Alpaca WS {wse}") self.state = WSConnectState.NOT_CONNECTED return False auth_payload = { "action": "authenticate", "data": {"key_id": self.key, "secret_key": self.secret}, } await self.websocket.send(json.dumps(auth_payload)) _greeting = await self.websocket.recv() if isinstance(_greeting, bytes): _greeting = _greeting.decode("utf-8") msg = json.loads(_greeting) if msg.get("data", {}).get("status") != "authorized": tlog(f"Invalid Alpaca API credentials, Failed to authenticate: {msg}") raise ValueError( f"Invalid Alpaca API credentials, Failed to authenticate: {msg}" ) self.state = WSConnectState.AUTHENTICATED self.consumer_task = asyncio.create_task( self._consumer(), name="alpaca-streaming-consumer-task" ) tlog("Successfully connected to Alpaca web-socket") return True async def close(self) -> None: """Close open websocket, if open""" if self.state not in ( WSConnectState.AUTHENTICATED, WSConnectState.CONNECTED, ): raise ValueError("can't close a non-open connection") try: await self.websocket.close() except websockets.WebSocketException as wse: tlog(f"failed to close web-socket w exception {wse}") self.state = WSConnectState.NOT_CONNECTED async def subscribe(self, symbol: str, handler: Awaitable) -> bool: if self.state != WSConnectState.AUTHENTICATED: raise ValueError( f"{symbol} web-socket not ready for listening, make sure connect passed successfully" ) _subscribe_payload = { "action": "listen", "data": {"streams": [f"alpacadatav1/AM.{symbol}"]}, } await self.websocket.send(json.dumps(_subscribe_payload)) q_id = int( list(market_data.minute_history.keys()).index(symbol) / config.num_consumer_processes_ratio ) self.stream_map[symbol] = (handler, q_id) return True async def unsubscribe(self, symbol: str) -> bool: if self.state != WSConnectState.AUTHENTICATED: raise ValueError( f"{symbol} web-socket not ready for listening, make sure connect passed successfully" ) _subscribe_payload = { "action": "unlisten", "data": {"streams": [f"alpacadatav1/AM.{symbol}"]}, } await self.websocket.send(json.dumps(_subscribe_payload)) self.stream_map.pop(symbol, None) return False async def _reconnect(self) -> None: """automatically reconnect socket, and re-subscribe, internal""" tlog(f"{self.consumer_task.get_name()} reconnecting") await self.close() if await self.connect(): _dict = self.stream_map.copy() self.stream_map.clear() for symbol in _dict: await self.subscribe(symbol, _dict[symbol]) else: tlog( f"{self.consumer_task.get_name()} failed reconnect check log for reason" ) async def _consumer(self) -> None: """Main tread loop for consuming incoming messages, internal only """ tlog(f"{self.consumer_task.get_name()} starting") try: while True: _msg = await self.websocket.recv() if isinstance(_msg, bytes): _msg = _msg.decode("utf-8") msg = json.loads(_msg) stream = msg.get("stream") if stream != "listening": try: _func, _q_id = self.stream_map.get(stream[3:], None) if _func: await _func(stream, msg["data"], self.queues[_q_id]) else: tlog( f"{self.consumer_task.get_name()} received {_msg} to an unknown stream {stream}" ) except Exception as e: tlog( f"{self.consumer_task.get_name()} exception {e.__class__.__qualname__}:{e}" ) except websockets.WebSocketException as wse: tlog(f"{self.consumer_task.get_name()} received WebSocketException {wse}") await self._reconnect() except asyncio.CancelledError: tlog(f"{self.consumer_task.get_name()} cancelled") tlog(f"{self.consumer_task.get_name()} completed") @classmethod async def minutes_handler(cls, symbol: str, data: Dict, queue: Queue) -> None: if data["ev"] != "AM": tlog( f"AlpacaStreaming.minutes_handler() got invalid event data: {symbol}:{data}" ) return if symbol[3:] != data["T"]: tlog( f"AlpacaStreaming.minutes_handler() symbol does not match data payload {symbol}:{data}" ) return try: data["EV"] = "AM" data["open"] = data["o"] data["high"] = data["h"] data["low"] = data["l"] data["close"] = data["c"] data["volume"] = data["v"] data["vwap"] = data["vw"] data["average"] = data["a"] queue.put(json.dumps(data)) except Exception as e: tlog( f"Exception in handle_minute_bar(): exception of type {type(e).__name__} with args {e.args}" )
the-stack_106_19378
class Wire: def __init__( self, nm, layer, direction, *, clg, spg): self.nm = nm self.layer = layer self.direction = direction assert direction in ['v','h'] self.clg = clg self.spg = spg def segment( self, netName, pinName, center, bIdx, eIdx, *, bS=None, eS=None): if bS is None: bS=self.spg if eS is None: eS=self.spg (c,(w,clr)) = self.clg.value( center) c0 = c - w//2 c1 = c + w//2 bPhys = bS.value(bIdx)[0] ePhys = eS.value(eIdx)[0] if self.direction == 'h': rect = [ bPhys, c0, ePhys, c1] else: rect = [ c0, bPhys, c1, ePhys] data = { 'netName' : netName, 'layer' : self.layer, 'rect' : rect} if pinName is not None: data['pin'] = pinName if clr is not None: data['color'] = clr return data class Region: def __init__( self, nm, layer, *, h_grid, v_grid): self.nm = nm self.layer = layer self.h_grid = h_grid self.v_grid = v_grid def physical_x( self, grid_x): return self.v_grid.value( grid_x)[0] def physical_y( self, grid_y): return self.h_grid.value( grid_y)[0] def segment( self, netName, pinName, grid_x0, grid_y0, grid_x1, grid_y1): rect = [self.physical_x(grid_x0), self.physical_y(grid_y0), self.physical_x(grid_x1), self.physical_y(grid_y1)] data = { 'netName' : netName, 'layer' : self.layer, 'rect' : rect} if pinName is not None: data['pin'] = pinName return data class Via: def __init__( self, nm, layer, *, h_clg, v_clg, h_ext=1, v_ext=1): self.nm = nm self.layer = layer self.h_clg = h_clg self.v_clg = v_clg self.h_ext = h_ext self.v_ext = v_ext def physical_xs( self, p): (c,(w,_)) = self.v_clg.value( p) return (c-w//2,c+w//2) def physical_ys( self, p): (c,(w,_)) = self.h_clg.value( p) return (c-w//2,c+w//2) def segment( self, netName, pinName, grid_cx, grid_cy): (x0,x1) = self.physical_xs( grid_cx) (y0,y1) = self.physical_ys( grid_cy) rect = [ x0, y0, x1, y1] data = { 'netName' : netName, 'layer' : self.layer, 'rect' : rect} if pinName is not None: data['pin'] = pinName return data def center_to_metal_edge(self, direction): assert direction in ('h', 'v') return getattr(self, f'{direction}_ext')
the-stack_106_19381
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import heapq import tensorflow as tf from zoo import init_nncontext from zoo.tfpark import TFOptimizer, TFDataset from bigdl.optim.optimizer import * import numpy as np import sys from bigdl.dataset import mnist from bigdl.dataset.transformer import * sys.path.append("/tmp/models/slim") # add the slim library from nets import lenet slim = tf.contrib.slim def main(max_epoch, data_num): sc = init_nncontext() # get data, pre-process and create TFDataset def get_data_rdd(dataset): (images_data, labels_data) = mnist.read_data_sets("/tmp/mnist", dataset) image_rdd = sc.parallelize(images_data[:data_num]) labels_rdd = sc.parallelize(labels_data[:data_num]) rdd = image_rdd.zip(labels_rdd) \ .map(lambda rec_tuple: [normalizer(rec_tuple[0], mnist.TRAIN_MEAN, mnist.TRAIN_STD), np.array(rec_tuple[1])]) return rdd training_rdd = get_data_rdd("train") testing_rdd = get_data_rdd("test") dataset = TFDataset.from_rdd(training_rdd, names=["features", "labels"], shapes=[[28, 28, 1], []], types=[tf.float32, tf.int32], batch_size=280, val_rdd=testing_rdd ) # construct the model from TFDataset images, labels = dataset.tensors with slim.arg_scope(lenet.lenet_arg_scope()): logits, end_points = lenet.lenet(images, num_classes=10, is_training=True) loss = tf.reduce_mean(tf.losses.sparse_softmax_cross_entropy(logits=logits, labels=labels)) # create a optimizer optimizer = TFOptimizer(loss, Adam(1e-3), val_outputs=[logits], val_labels=[labels], val_method=Top1Accuracy(), model_dir="/tmp/lenet/") # kick off training optimizer.optimize(end_trigger=MaxEpoch(max_epoch)) saver = tf.train.Saver() saver.save(optimizer.sess, "/tmp/lenet/model") if __name__ == '__main__': max_epoch = 5 data_num = 60000 if len(sys.argv) > 1: max_epoch = int(sys.argv[1]) data_num = int(sys.argv[2]) main(max_epoch, data_num)
the-stack_106_19382
import sys from os.path import abspath, dirname, join import airsim import numpy as np import os import tempfile import pprint from time import sleep import random import re import torch import pickle import time from problems.flocking import FlockingProblem from utils import * import argparse from network_agg import Network as Network_Agg from network_yolo import Network as Network_Feat parser = argparse.ArgumentParser("trace") parser.add_argument('--model_feat_path', type=str, default='None', help='path to save the model') parser.add_argument('--model_agg_path', type=str, default='None', help='path to save the model') args = parser.parse_args() def main(): ## load model model_feat = Network_Feat() params = torch.load(args.model_feat_path)['state_dict'] model_feat.load_state_dict(params) model_feat = torch.nn.DataParallel(model_feat).cuda() model_feat.eval() model_agg = Network_Agg() params = torch.load(args.model_agg_path)['state_dict'] model_agg.load_state_dict(params) model_agg = torch.nn.DataParallel(model_agg).cuda() model_agg.eval() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") img_size = 416 model_def = '/home/grads/t/tkhu/PyTorch-YOLOv3-tkhu/config/yolov3-custom.cfg' weights_path = '/home/grads/t/tkhu/PyTorch-YOLOv3-tkhu/checkpoints/yolov3_ckpt_99.pth' model_yolo = Darknet(model_def, img_size=img_size).to(device) model_yolo.load_state_dict(torch.load(weights_path)) problem = pickle.load(open('problem.pkl', 'rb')) problem.comm_radius = 1.5 # parse settings file with drone names and home locations fname = '/home/grads/t/tkhu/Documents/AirSim/settings.json' names, home = parse_settings(fname) n_agents = len(names) problem.n_nodes = n_agents ##################### # use centralized controller problem.centralized_controller = True # rescale locations and velocities to avoid changing potential function scale = 6 init_scale = 6 # duration of velocity commands duration = 0.01 # duration of each control action used for training true_dt = 1.0 / 7.5 # average of actual measurements # make the problem easier because of slow control loop frequency problem.v_max = 3 print(problem.v_max) problem.v_max = problem.v_max * 0.075 problem.v_bias = problem.v_bias * 0.3 # connect to the AirSim simulator client = airsim.MultirotorClient() client.confirmConnection() display_msg(client, 'Initializing...') measure_deltat = True #z = -40 z = np.random.uniform(low=-43, high=-37, size=(n_agents,)) len_exp = 100 for nx in range(5 , 15): # airsim setup and takeoff # client.simPause(False) setup_drones(n_agents, names, client) # get drone locations and mean locations mean_x = 2.0 mean_y = 0.0 cost = 0 ################################################################ # option 1: two flocks colliding #x0, v0 = twoflocks(n_agents) #initial_v_dt = 8.0 # good for twoflocks() # initial_v_dt = 2.0 # better for the rest of the cases # option 2: two circles with inwards velocities # x0, v0 = circle(N) # option 3: tight grid of agents # x0 = grid(N) # option 4: random initialization as in training #states = benchmark[nx,:,:] states = problem.initialize() trace = {} trace['init_state'] = states trace['z'] = z x0 = states[:,0:3] v0 = states[:,2:4] initial_v_dt = 2.0 ###################################################################### # scale positions and velocities x0 = x0 * init_scale if v0 is not None: v0 = v0 * init_scale display_msg(client, 'Moving to new positions...') send_loc_commands(client, n_agents, x0, home, mean_x, mean_y, z, names) if v0 is not None: send_velocity_commands(client, n_agents, v0, z, initial_v_dt, names) display_msg(client, 'Flocking...') history_imgs = np.zeros((n_agents, 3, 128 )) if isinstance(problem, FlockingProblem): x_agg3 = np.zeros((problem.n_nodes, problem.nx * problem.filter_len, problem.n_pools)) else: x_agg3 = np.zeros((problem.n_agents * problem.nx, problem.episode_len)) cost = 0 states = np.zeros((n_agents, 4, len_exp)) costs = np.zeros((1, len_exp)) for t in range(0, len_exp): xt1 = getStates(n_agents, names, client, home) / scale # get drone locations and velocities ut1_gt = problem.controller(xt1) states[:,:, t] = xt1 image = get_imgs(client, n_agents, names, model_yolo, device) if t == 0: history_imgs[:, 0, : ] = image[:, 0, : ] history_imgs[:, 1, : ] = image[:, 0, : ] history_imgs[:, 2, : ] = image[:, 0, : ] else: history_imgs = np.concatenate((image, history_imgs), axis=1) history_imgs = np.delete(history_imgs, [3], axis=1) new_state = get_feats(client, n_agents, names, model_feat, history_imgs[:, :, :]) new_state = np.clip(new_state, -30, 30) a_net = problem.get_connectivity(xt1) new_agg = problem.get_comms(problem.get_features(x_agg3[:, :, 0]), a_net) new_agg = problem.pooling[0](new_agg, axis=1) new_agg = new_agg.reshape((new_agg.shape[0], new_agg.shape[-1])) new_feat = np.concatenate((new_state, new_agg), axis=1) x_agg3[:, :, 0] = np.clip(new_feat, -100, 100) x_agg3_t = np.clip(x_agg3.reshape((problem.n_nodes, problem.filter_len * problem.nx * problem.n_pools)), -100, 100) record_images(client, n_agents, xt1, ut1_gt, names, nx, t, x_agg3_t, new_state) #x_agg3_t = x_agg3.reshape((problem.n_nodes, problem.filter_len * problem.nx * problem.n_pools)) x_agg3_t = torch.from_numpy(x_agg3_t).float().cuda() ut1 = model_agg(x_agg3_t).data.cpu().numpy().reshape(problem.n_nodes, problem.nu) if t == 0: init_cost = problem.instant_cost(xt1, ut1) current_cost = problem.instant_cost(xt1, ut1) * problem.dt costs[:,t] = current_cost cost = cost + current_cost new_vel = (ut1 * true_dt + xt1[:, 2:4]) * scale # random pertubt z for visibility z = np.random.uniform(low=-43, high=-37, size=(n_agents,)) send_velocity_commands(client, n_agents, new_vel, z, duration, names) print('current time step is ' + str(t) + ' , current cost is ' + str(current_cost)) trace['states'] = states trace['costs'] = costs f = open('./trace/gt_' + str(nx) + '_' + str(t)+'.pkl',"wb") pickle.dump(trace,f) f.close() print('final_cost = ' + str(cost)) client.reset() trace['states'] = states trace['costs'] = costs f = open('./trace/gt' + str(nx) + '.pkl',"wb") pickle.dump(trace,f) f.close() if __name__ == '__main__': main()
the-stack_106_19384
import numpy as np import matplotlib.pyplot as plt from custom_poling.utils.pmf import pmf class Crystal: """ A class for a poled crystal. Attr: domain_width number_domains z0 length = domain_width * number_domains domain_walls domain_middles """ def __init__(self, domain_width, number_domains, z0=0): """ Initialize the Crystal class. Params: domain_width number_domains """ self.domain_width = domain_width self.number_domains = number_domains self.z0 = z0 self.length = self.number_domains * self.domain_width self.domain_walls = np.arange(z0, z0 + (self.number_domains + 1) * self.domain_width, self.domain_width) self.domain_middles = (self.domain_walls + self.domain_width/2)[0:-1] def compute_pmf(self, domain_configuration, k_array): """Returns the phasematching function (PMF) as a function of k for a given domain_configuration. Args: domain_configuration (list of int): elements of list must be +1 or -1 k_array (array of floats) Returns: PMF as an array of floats """ self.domain_configuration = domain_configuration self.k_array = k_array crystal_pmf = pmf(self.domain_walls, self.domain_configuration, self.k_array) return crystal_pmf def plot_domains(self,domain_configuration,n_max=None,show=True,save_as=False,fix_ticks=False): x_axis = self.domain_walls y_axis = np.concatenate(([domain_configuration[0]],domain_configuration)) if n_max != None and n_max < len(x_axis): x_axis = x_axis[0:n_max] y_axis = y_axis[0:n_max] plt.step(x_axis,y_axis) plt.xlabel('z') plt.ylabel('g(z)') plt.ylim([-1.2, 1.2]) if fix_ticks==True: plt.xticks(rotation=45) if type(save_as)==str: plt.savefig(save_as) plt.close() print("Saved figure as: " + save_as) if show==False: plt.close() if show: plt.show()
the-stack_106_19385
""" Copyright 2017 Inmanta Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Contact: [email protected] """ import argparse from typing import Callable, Dict, List, Optional FunctionType = Callable[[argparse.Namespace], None] ParserConfigType = Callable[[argparse.ArgumentParser], None] class CLIException(Exception): def __init__(self, *args: str, exitcode: int) -> None: self.exitcode = exitcode super(CLIException, self).__init__(*args) class ShowUsageException(Exception): """ Raise this exception to show the usage message of the given level """ class Commander(object): """ This class handles commands """ __command_functions: Dict[str, Dict[str, object]] = {} @classmethod def add( cls, name: str, function: FunctionType, help_msg: str, parser_config: Optional[ParserConfigType], require_project: bool = False, aliases: List[str] = [], ) -> None: """ Add a new export function """ if name in cls.__command_functions: raise Exception("Command %s already registered" % name) cls.__command_functions[name] = { "function": function, "help": help_msg, "parser_config": parser_config, "require_project": require_project, "aliases": aliases, } config = None @classmethod def reset(cls) -> None: """ Return a list of commands """ cls.__command_functions = {} @classmethod def commands(cls) -> Dict[str, Dict[str, object]]: """ Return a list of commands """ return cls.__command_functions class command(object): # noqa: N801 """ A decorator that registers an export function """ def __init__( self, name: str, help_msg: str, parser_config: Optional[ParserConfigType] = None, require_project: bool = False, aliases: List[str] = [], ) -> None: self.name = name self.help = help_msg self.require_project = require_project self.parser_config = parser_config self.aliases = aliases def __call__(self, function: FunctionType) -> FunctionType: """ The wrapping """ Commander.add(self.name, function, self.help, self.parser_config, self.require_project, self.aliases) return function
the-stack_106_19386
from unittest.mock import Mock from django.test import RequestFactory, TestCase from .middleware import WiretapMiddleware from .models import Message, Tap class WiretapTestCase(TestCase): def setUp(self): self.request_factory = RequestFactory() self.mock = Mock() self.wiretap_middleware = WiretapMiddleware(self.mock) def test_initialization(self): self.assertEqual(self.wiretap_middleware.get_response, self.mock) def test_no_taps(self): self.assertEqual(Tap.objects.count(), 0) self.wiretap_middleware(self.request_factory.get("/")) self.assertEqual(Message.objects.count(), 0) def test_tap_match(self): Tap.objects.create(path="/test", is_active=True) self.mock.side_effect = [ Mock( name="response", items=dict().items, status_code=200, reason_phrase="OK", content=b"", ) ] self.wiretap_middleware(self.request_factory.get("/test")) self.assertEqual(Message.objects.count(), 1) def test_tap_mismatch(self): Tap.objects.create(path="/test", is_active=True) self.wiretap_middleware(self.request_factory.get("/real")) self.assertEqual(Message.objects.count(), 0) def test_tap_not_active(self): Tap.objects.create(path="/test", is_active=False) self.wiretap_middleware(self.request_factory.get("/test")) self.assertEqual(Message.objects.count(), 0)
the-stack_106_19387
import sys, os.path import math dir_nodo = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..','..')) + '\\EXPRESION\\EXPRESION\\') sys.path.append(dir_nodo) ent_nodo = (os.path.abspath(os.path.join(os.path.dirname(__file__), '..','..')) + '\\ENTORNO\\') sys.path.append(ent_nodo) from Expresion import Expresion from Tipo import Data_Type from Tipo_Expresion import Type_Expresion class Function_Substr(Expresion): def __init__(self, nombreNodo, fila, columna, valor): Expresion.__init__(self, nombreNodo, fila, columna, valor) def execute(self, enviroment): exp = self.hijos[0] exp2 = self.hijos[1] exp3 = self.hijos[2] valueExp = exp.execute(enviroment) valueExp2 = exp2.execute(enviroment) valueExp3 = exp3.execute(enviroment) if exp.tipo.data_type == Data_Type.character : if exp2.tipo.data_type == Data_Type.numeric and exp3.tipo.data_type == Data_Type.numeric : try : rango = slice(valueExp2-1, valueExp3) self.tipo = Type_Expresion(Data_Type.character) self.valorExpresion = valueExp[rango] return self.valorExpresion except : self.tipo = Type_Expresion(Data_Type.error) self.valorExpresion = None return self.valorExpresion else : self.tipo = Type_Expresion(Data_Type.error) self.valorExpresion = None return self.valorExpresion else : self.tipo = Type_Expresion(Data_Type.error) self.valorExpresion = None return self.valorExpresion
the-stack_106_19389
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.c (the "License"); # you may not use this file except in compliance with the License. """ Userbot module for having some fun with people. """ import time import datetime from telethon import events import io import os import urllib from urllib.request import urlopen import requests from bs4 import BeautifulSoup import re from re import sub from cowpy import cow from asyncio import sleep from collections import deque from random import choice, getrandbits, randint from telethon.tl.types import MessageMediaPhoto from PIL import Image from telethon.tl.functions.account import UpdateNotifySettingsRequest from userbot import bot, CMD_HELP from userbot.events import register from userbot.modules.admin import get_user_from_event # ================= CONSTANT ================= METOOSTR = [ "Me too thanks", "Haha yes, me too", "Same lol", "Me irl", "Same here", "Haha yes", "Me rn", ] ZALG_LIST = [[ "̖", " ̗", " ̘", " ̙", " ̜", " ̝", " ̞", " ̟", " ̠", " ̤", " ̥", " ̦", " ̩", " ̪", " ̫", " ̬", " ̭", " ̮", " ̯", " ̰", " ̱", " ̲", " ̳", " ̹", " ̺", " ̻", " ̼", " ͅ", " ͇", " ͈", " ͉", " ͍", " ͎", " ͓", " ͔", " ͕", " ͖", " ͙", " ͚", " ", ], [ " ̍", " ̎", " ̄", " ̅", " ̿", " ̑", " ̆", " ̐", " ͒", " ͗", " ͑", " ̇", " ̈", " ̊", " ͂", " ̓", " ̈́", " ͊", " ͋", " ͌", " ̃", " ̂", " ̌", " ͐", " ́", " ̋", " ̏", " ̽", " ̉", " ͣ", " ͤ", " ͥ", " ͦ", " ͧ", " ͨ", " ͩ", " ͪ", " ͫ", " ͬ", " ͭ", " ͮ", " ͯ", " ̾", " ͛", " ͆", " ̚", ], [ " ̕", " ̛", " ̀", " ́", " ͘", " ̡", " ̢", " ̧", " ̨", " ̴", " ̵", " ̶", " ͜", " ͝", " ͞", " ͟", " ͠", " ͢", " ̸", " ̷", " ͡", ]] EMOJIS = [ "😂", "😂", "👌", "✌", "💞", "👍", "👌", "💯", "🎶", "👀", "😂", "👓", "👏", "👐", "🍕", "💥", "🍴", "💦", "💦", "🍑", "🍆", "😩", "😏", "👉👌", "👀", "👅", "😩", "🚰", ] INSULT_STRINGS = [ "Owww ... Such a stupid idiot.", "Don't drink and type.", "I think you should go home or better a mental asylum.", "Command not found. Just like your brain.", "Do you realize you are making a fool of yourself? Apparently not.", "You can type better than that.", "Bot rule 544 section 9 prevents me from replying to stupid humans like you.", "Sorry, we do not sell brains.", "Believe me you are not normal.", "I bet your brain feels as good as new, seeing that you never use it.", "If I wanted to kill myself I'd climb your ego and jump to your IQ.", "Zombies eat brains... you're safe.", "You didn't evolve from apes, they evolved from you.", "Come back and talk to me when your I.Q. exceeds your age.", "I'm not saying you're stupid, I'm just saying you've got bad luck when it comes to thinking.", "What language are you speaking? Cause it sounds like bullshit.", "Stupidity is not a crime so you are free to go.", "You are proof that evolution CAN go in reverse.", "I would ask you how old you are but I know you can't count that high.", "As an outsider, what do you think of the human race?", "Brains aren't everything. In your case they're nothing.", "Ordinarily people live and learn. You just live.", "I don't know what makes you so stupid, but it really works.", "Keep talking, someday you'll say something intelligent! (I doubt it though)", "Shock me, say something intelligent.", "Your IQ's lower than your shoe size.", "Alas! Your neurotransmitters are no more working.", "Are you crazy you fool.", "Everyone has the right to be stupid but you are abusing the privilege.", "I'm sorry I hurt your feelings when I called you stupid. I thought you already knew that.", "You should try tasting cyanide.", "Your enzymes are meant to digest rat poison.", "You should try sleeping forever.", "Pick up a gun and shoot yourself.", "You could make a world record by jumping from a plane without parachute.", "Stop talking BS and jump in front of a running bullet train.", "Try bathing with Hydrochloric Acid instead of water.", "Try this: if you hold your breath underwater for an hour, you can then hold it forever.", "Go Green! Stop inhaling Oxygen.", "God was searching for you. You should leave to meet him.", "give your 100%. Now, go donate blood.", "Try jumping from a hundred story building but you can do it only once.", "You should donate your brain seeing that you never used it.", "Volunteer for target in an firing range.", "Head shots are fun. Get yourself one.", "You should try swimming with great white sharks.", "You should paint yourself red and run in a bull marathon.", "You can stay underwater for the rest of your life without coming back up.", "How about you stop breathing for like 1 day? That'll be great.", "Try provoking a tiger while you both are in a cage.", "Have you tried shooting yourself as high as 100m using a canon.", "You should try holding TNT in your mouth and igniting it.", "Try playing catch and throw with RDX its fun.", "I heard phogine is poisonous but i guess you wont mind inhaling it for fun.", "Launch yourself into outer space while forgetting oxygen on Earth.", "You should try playing snake and ladders, with real snakes and no ladders.", "Dance naked on a couple of HT wires.", "Active Volcano is the best swimming pool for you.", "You should try hot bath in a volcano.", "Try to spend one day in a coffin and it will be yours forever.", "Hit Uranium with a slow moving neutron in your presence. It will be a worthwhile experience.", "You can be the first person to step on sun. Have a try.", ] UWUS = [ "(・`ω´・)", ";;w;;", "owo", "UwU", ">w<", "^w^", r"\(^o\) (/o^)/", "( ^ _ ^)∠☆", "(ô_ô)", "~:o", ";-;", "(*^*)", "(>_", "(♥_♥)", "*(^O^)*", "((+_+))", ] IWIS = [ "┐(´д`)┌", "┐(´~`)┌", "┐(´ー`)┌", "┐( ̄ヘ ̄)┌", "╮(╯∀╰)╭", "╮(╯_╰)╭", "┐(´д`)┌", "┐(´∀`)┌", "ʅ(́◡◝)ʃ", "┐(゚~゚)┌", "┐('д')┌", "┐(‘~`;)┌", "ヘ(´-`;)ヘ", "┐( -“-)┌", "ʅ(´◔౪◔)ʃ", "ヽ(゜~゜o)ノ", "ヽ(~~~ )ノ", "┐(~ー~;)┌", "┐(-。ー;)┌", r"¯\_(ツ)_/¯", r"¯\_(⊙_ʖ⊙)_/¯", r"¯\_༼ ಥ ‿ ಥ ༽_/¯", "乁( ⁰͡ Ĺ̯ ⁰͡ ) ㄏ", ] FACEREACTS = [ "ʘ‿ʘ", "ヾ(-_- )ゞ", "(っ˘ڡ˘ς)", "(´ж`ς)", "( ಠ ʖ̯ ಠ)", "(° ͜ʖ͡°)╭∩╮", "(ᵟຶ︵ ᵟຶ)", "(งツ)ว", "ʚ(•`", "(っ▀¯▀)つ", "(◠﹏◠)", "( ͡ಠ ʖ̯ ͡ಠ)", "( ఠ ͟ʖ ఠ)", "(∩`-´)⊃━☆゚.*・。゚", "(⊃。•́‿•̀。)⊃", "(._.)", "{•̃_•̃}", "(ᵔᴥᵔ)", "♨_♨", "⥀.⥀", "ح˚௰˚づ ", "(҂◡_◡)", "ƪ(ړײ)‎ƪ​​", "(っ•́。•́)♪♬", "◖ᵔᴥᵔ◗ ♪ ♫ ", "(☞゚ヮ゚)☞", "[¬º-°]¬", "(Ծ‸ Ծ)", "(•̀ᴗ•́)و ̑̑", "ヾ(´〇`)ノ♪♪♪", "(ง'̀-'́)ง", "ლ(•́•́ლ)", "ʕ •́؈•̀ ₎", "♪♪ ヽ(ˇ∀ˇ )ゞ", "щ(゚Д゚щ)", "( ˇ෴ˇ )", "눈_눈", "(๑•́ ₃ •̀๑) ", "( ˘ ³˘)♥ ", "ԅ(≖‿≖ԅ)", "♥‿♥", "◔_◔", "⁽⁽ଘ( ˊᵕˋ )ଓ⁾⁾", "乁( ◔ ౪◔)「 ┑( ̄Д  ̄)┍", "( ఠൠఠ )ノ", "٩(๏_๏)۶", "┌(ㆆ㉨ㆆ)ʃ", "ఠ_ఠ", "(づ。◕‿‿◕。)づ", "(ノಠ ∩ಠ)ノ彡( \\o°o)\\", "“ヽ(´▽`)ノ”", "༼ ༎ຶ ෴ ༎ຶ༽", "。゚( ゚இ‸இ゚)゚。", "(づ ̄ ³ ̄)づ", "(⊙.☉)7", "ᕕ( ᐛ )ᕗ", "t(-_-t)", "(ಥ⌣ಥ)", "ヽ༼ ಠ益ಠ ༽ノ", "༼∵༽ ༼⍨༽ ༼⍢༽ ༼⍤༽", "ミ●﹏☉ミ", "(⊙_◎)", "¿ⓧ_ⓧﮌ", "ಠ_ಠ", "(´・_・`)", "ᕦ(ò_óˇ)ᕤ", "⊙﹏⊙", "(╯°□°)╯︵ ┻━┻", r"¯\_(⊙︿⊙)_/¯", "٩◔̯◔۶", "°‿‿°", "ᕙ(⇀‸↼‶)ᕗ", "⊂(◉‿◉)つ", "V•ᴥ•V", "q(❂‿❂)p", "ಥ_ಥ", "ฅ^•ﻌ•^ฅ", "ಥ﹏ಥ", "( ^_^)o自自o(^_^ )", "ಠ‿ಠ", "ヽ(´▽`)/", "ᵒᴥᵒ#", "( ͡° ͜ʖ ͡°)", "┬─┬ ノ( ゜-゜ノ)", "ヽ(´ー`)ノ", "☜(⌒▽⌒)☞", "ε=ε=ε=┌(;*´Д`)ノ", "(╬ ಠ益ಠ)", "┬─┬⃰͡ (ᵔᵕᵔ͜ )", "┻━┻ ︵ヽ(`Д´)ノ︵ ┻━┻", r"¯\_(ツ)_/¯", "ʕᵔᴥᵔʔ", "(`・ω・´)", "ʕ•ᴥ•ʔ", "ლ(`ー´ლ)", "ʕʘ̅͜ʘ̅ʔ", "( ゚Д゚)", r"¯\(°_o)/¯", "(。◕‿◕。)", ] RUNS_STR = [ "Runs to Thanos..", "Runs far, far away from earth..", "Running faster than Bolt coz i'mma userbot !!", "Runs to Marie..", "This Group is too cancerous to deal with.", "Cya bois", "Kys", "I go away", "I am just walking off, coz me is too fat.", "I Fugged off!", "Will run for chocolate.", "I run because I really like food.", "Running...\nbecause dieting is not an option.", "Wicked fast runnah", "If you wanna catch me, you got to be fast...\nIf you wanna stay with me, you got to be good...\nBut if you wanna pass me...\nYou've got to be kidding.", "Anyone can run a hundred meters, it's the next forty-two thousand and two hundred that count.", "Why are all these people following me?", "Are the kids still chasing me?", "Running a marathon...there's an app for that.", ] CHASE_STR = [ "Where do you think you're going?", "Huh? what? did they get away?", "ZZzzZZzz... Huh? what? oh, just them again, nevermind.", "Get back here!", "Not so fast...", "Look out for the wall!", "Don't leave me alone with them!!", "You run, you die.", "Jokes on you, I'm everywhere", "You're gonna regret that...", "You could also try /kickme, I hear that's fun.", "Go bother someone else, no-one here cares.", "You can run, but you can't hide.", "Is that all you've got?", "I'm behind you...", "You've got company!", "We can do this the easy way, or the hard way.", "You just don't get it, do you?", "Yeah, you better run!", "Please, remind me how much I care?", "I'd run faster if I were you.", "That's definitely the droid we're looking for.", "May the odds be ever in your favour.", "Famous last words.", "And they disappeared forever, never to be seen again.", "\"Oh, look at me! I'm so cool, I can run from a bot!\" - this person", "Yeah yeah, just tap /kickme already.", "Here, take this ring and head to Mordor while you're at it.", "Legend has it, they're still running...", "Unlike Harry Potter, your parents can't protect you from me.", "Fear leads to anger. Anger leads to hate. Hate leads to suffering. If you keep running in fear, you might " "be the next Vader.", "Multiple calculations later, I have decided my interest in your shenanigans is exactly 0.", "Legend has it, they're still running.", "Keep it up, not sure we want you here anyway.", "You're a wiza- Oh. Wait. You're not Harry, keep moving.", "NO RUNNING IN THE HALLWAYS!", "Hasta la vista, baby.", "Who let the dogs out?", "It's funny, because no one cares.", "Ah, what a waste. I liked that one.", "Frankly, my dear, I don't give a damn.", "My milkshake brings all the boys to yard... So run faster!", "You can't HANDLE the truth!", "A long time ago, in a galaxy far far away... Someone would've cared about that. Not anymore though.", "Hey, look at them! They're running from the inevitable banhammer... Cute.", "Han shot first. So will I.", "What are you running after, a white rabbit?", "As The Doctor would say... RUN!", ] HELLOSTR = [ "Hi !", "‘Ello, gov'nor!", "What’s crackin’?", "‘Sup, homeslice?", "Howdy, howdy ,howdy!", "Hello, who's there, I'm talking.", "You know who this is.", "Yo!", "Whaddup.", "Greetings and salutations!", "Hello, sunshine!", "Hey, howdy, hi!", "What’s kickin’, little chicken?", "Peek-a-boo!", "Howdy-doody!", "Hey there, freshman!", "I come in peace!", "Ahoy, matey!", "Hiya!", ] SHGS = [ "┐(´д`)┌", "┐(´~`)┌", "┐(´ー`)┌", "┐( ̄ヘ ̄)┌", "╮(╯∀╰)╭", "╮(╯_╰)╭", "┐(´д`)┌", "┐(´∀`)┌", "ʅ(́◡◝)ʃ", "┐(゚~゚)┌", "┐('д')┌", "┐(‘~`;)┌", "ヘ(´-`;)ヘ", "┐( -“-)┌", "ʅ(´◔౪◔)ʃ", "ヽ(゜~゜o)ノ", "ヽ(~~~ )ノ", "┐(~ー~;)┌", "┐(-。ー;)┌", r"¯\_(ツ)_/¯", r"¯\_(⊙_ʖ⊙)_/¯", r"¯\_༼ ಥ ‿ ಥ ༽_/¯", "乁( ⁰͡ Ĺ̯ ⁰͡ ) ㄏ", ] CRI = [ "أ‿أ", "╥﹏╥", "(;﹏;)", "(ToT)", "(┳Д┳)", "(ಥ﹏ಥ)", "(;へ:)", "(T_T)", "(πーπ)", "(T▽T)", "(⋟﹏⋞)", "(iДi)", "(´Д⊂ヽ", "(;Д;)", "(>﹏<)", "(TдT)", "(つ﹏⊂)", "༼☯﹏☯༽", "(ノ﹏ヽ)", "(ノAヽ)", "(╥_╥)", "(T⌓T)", "(༎ຶ⌑༎ຶ)", "(☍﹏⁰)。", "(ಥ_ʖಥ)", "(つд⊂)", "(≖͞_≖̥)", "(இ﹏இ`。)", "༼ಢ_ಢ༽", "༼ ༎ຶ ෴ ༎ຶ༽", ] SLAP_TEMPLATES_EN = [ "{hits} {victim} with a {item}.", "{hits} {victim} in the face with a {item}.", "{hits} {victim} around a bit with a {item}.", "`{throws} a {item} at {victim}.`", "grabs a {item} and {throws} it at {victim}'s face.", "{hits} a {item} at {victim}.", "{throws} a few {item} at {victim}.", "grabs a {item} and {throws} it in {victim}'s face.", "launches a {item} in {victim}'s general direction.", "sits on {victim}'s face while slamming a {item} {where}.", "starts slapping {victim} silly with a {item}.", "pins {victim} down and repeatedly {hits} them with a {item}.", "grabs up a {item} and {hits} {victim} with it.", "starts slapping {victim} silly with a {item}.", "holds {victim} down and repeatedly {hits} them with a {item}.", "prods {victim} with a {item}.", "picks up a {item} and {hits} {victim} with it.", "`ties {victim} to a chair and {throws} a {item} at them.`", "{hits} {victim} {where} with a {item}.", "ties {victim} to a pole and whips them {where} with a {item}." "gave a friendly push to help {victim} learn to swim in lava.", "sent {victim} to /dev/null.", "sent {victim} down the memory hole.", "beheaded {victim}.", "threw {victim} off a building.", "replaced all of {victim}'s music with Nickelback.", "spammed {victim}'s email.", "made {victim} a knuckle sandwich.", "slapped {victim} with pure nothing.", "hit {victim} with a small, interstellar spaceship.", "quickscoped {victim}.", "put {victim} in check-mate.", "RSA-encrypted {victim} and deleted the private key.", "put {victim} in the friendzone.", "slaps {victim} with a DMCA takedown request!" ] ITEMS_EN = [ "cast iron skillet", "large trout", "baseball bat", "cricket bat", "wooden cane", "nail", "printer", "shovel", "pair of trousers", "CRT monitor", "diamond sword", "baguette", "physics textbook", "toaster", "portrait of Richard Stallman", "television", "mau5head", "five ton truck", "roll of duct tape", "book", "laptop", "old television", "sack of rocks", "rainbow trout", "cobblestone block", "lava bucket", "rubber chicken", "spiked bat", "gold block", "fire extinguisher", "heavy rock", "chunk of dirt", "beehive", "piece of rotten meat", "bear", "ton of bricks", ] THROW_EN = [ "throws", "flings", "chucks", "hurls", ] HIT_EN = [ "hits", "whacks", "slaps", "smacks", "bashes", ] WHERE_EN = ["in the chest", "on the head", "on the butt", "on the crotch"] # ID translation by @yincen SLAP_TEMPLATES_ID = [ "{hits} {victim} dengan {item}.", "{throws} sebuah {item} kepada {victim}.", "mengambil {item} dan {hits} {victim} .", "Mengambil Sebuah {item} dan {hits} {victim} Dengan itu.", "Menjatuhkan {victim} Ke Lava.", "Mengirimkan {victim} ke Kawah.", "Membuang {victim} Ke Laut.", "Mengeluarkan {victim} Dari Bumi.", "Melempar {victim} Ke luar angkasa.", "Menaruh {victim} di Pluto.", "Melemparkan sebuah {item} ke {victim}.", "Melemparkan {item} kepada {victim}.", "Menampar {victim} menggunakan {item}.", "Membuang {victim} Ke udara.", "Menghapus {victim} Dari Daftar Teman.", "Melemparkan {item} {where} {victim}.", "Meletakan {item} {where} {victim}.", "Menyerang {victim} menggunakan {anime}.", "Mengehack Seluruh akun {victim}" ] ITEMS_ID = [ "Tabung Gas", "Televisi 42 In", "Raket", "Raket Nyamuk", "Kaca", "Buku", "Ringgis", "Telur", "Jarum", "Monitor Tabung", "Obeng", "Almunium", "Emas", "Printer", "Speaker", "Gas Lpg", "Tangki Bensin", "Tandon Air", "Bola Boling", "Laptop", "Hardisk Rusak", "Wajan Panas", "Virus Corona", "Meja Kantor", "Meja Arsip", "Lemari", "Ember Besi", "Besi Beton", "Timah Panas", "Harimau", "Batu Krikil", "Makanan Basi", "Pesawat AirBus", "Roket Nasa", "Satelit Nasa", "Matahari", "Meteor", "Berkas Kantor", "Beton panas", "Cermin", "Batu Giok", "Botol", "Nezuko", "Kaset Pita", "Tiang Jemuran", "Pisau Lipat", "Bongkahan Es ", "Asteroid", ] THROW_ID = [ "Melempar", "Melemparkan", ] HIT_ID = [ "Memukul", "melemparkan", "Memukuli", ] WHERE_ID = ["di pipi", "di kepala", "di bokong", "di badan"] SLAP_TEMPLATES_Jutsu = [ "Menyerang {victim} Menggunakan {hits}.", "Menyerang {victim} Menggunakan {item}.", "Melemparkan {throws} kepada {victim} .", "Melemparkan {throws} {where} {victim}." ] ITEMS_Jutsu = [ "KAA MEE HAA MEE HAA", "Chibaku Tensei", ] THROW_Jutsu = [ "Futon Rasen Shuriken", "Shuriken", ] HIT_Jutsu = [ "Rasengan", "Chidori", ] GAMBAR_TITIT = """ 😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘 😘😘😘😘 😘😘😘😘😘😘 😘😘😘 😘😘😘 😘😘 😘😘 """ WHERE_Jutsu = ["Di Pipi", "Di Kepala", "Di Bokong", "Di Badan ,Di Pantat"] normiefont = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] weebyfont = ['卂', '乃', '匚', '刀', '乇', '下', '厶', '卄', '工', '丁', '长', '乚', '从', '𠘨', '口', '尸', '㔿', '尺', '丂', '丅', '凵', 'リ', '山', '乂', '丫', '乙'] # =========================================== @register(outgoing=True, pattern=r"^\.(\w+)say (.*)") async def univsaye(cowmsg): """ For .cowsay module, userbot wrapper for cow which says things. """ arg = cowmsg.pattern_match.group(1).lower() text = cowmsg.pattern_match.group(2) if arg == "cow": arg = "default" if arg not in cow.COWACTERS: return cheese = cow.get_cow(arg) cheese = cheese() await cowmsg.edit(f"`{cheese.milk(text).replace('`', '´')}`") @register(outgoing=True, pattern=r"^\.coinflip (.*)") async def coin(event): r = choice(["heads", "tails"]) input_str = event.pattern_match.group(1) if input_str: input_str = input_str.lower() if r == "heads": if input_str == "heads": await event.edit( "The coin landed on: **Heads**.\nYou were correct.") elif input_str == "tails": await event.edit( "The coin landed on: **Heads**.\nYou weren't correct, try again ..." ) else: await event.edit("The coin landed on: **Heads**.") elif r == "tails": if input_str == "tails": await event.edit( "The coin landed on: **Tails**.\nYou were correct.") elif input_str == "heads": await event.edit( "The coin landed on: **Tails**.\nYou weren't correct, try again ..." ) else: await event.edit("The coin landed on: **Tails**.") @register(pattern="^\.slap(?: |$)(.*)", outgoing=True) async def who(event): """ slaps a user, or get slapped if not a reply. """ replied_user = await get_user_from_event(event) if replied_user: replied_user = replied_user[0] else: return caption = await slap(replied_user, event) try: await event.edit(caption) except BaseException: await event.edit( "`Can't slap this person, need to fetch some sticks and stones !!`" ) async def slap(replied_user, event): """ Construct a funny slap sentence !! """ user_id = replied_user.id first_name = replied_user.first_name username = replied_user.username if username: slapped = "@{}".format(username) else: slapped = f"[{first_name}](tg://user?id={user_id})" slap_str = event.pattern_match.group(1) if slap_str == "en": temp = choice(SLAP_TEMPLATES_EN) item = choice(ITEMS_EN) hit = choice(HIT_EN) throw = choice(THROW_EN) where = choice(WHERE_EN) elif slap_str == "id": temp = choice(SLAP_TEMPLATES_ID) item = choice(ITEMS_ID) hit = choice(HIT_ID) throw = choice(THROW_ID) where = choice(WHERE_ID) elif slap_str == "jutsu": temp = choice(SLAP_TEMPLATES_Jutsu) item = choice(ITEMS_Jutsu) hit = choice(HIT_Jutsu) throw = choice(THROW_Jutsu) where = choice(WHERE_Jutsu) else: temp = choice(SLAP_TEMPLATES_EN) item = choice(ITEMS_EN) hit = choice(HIT_EN) throw = choice(THROW_EN) where = choice(WHERE_EN) caption = "..." + temp.format( victim=slapped, item=item, hits=hit, throws=throw, where=where) return caption @register(outgoing=True, pattern="^\.boobs(?: |$)(.*)") async def boobs(e): await e.edit("`Finding some big boobs...`") await sleep(3) await e.edit("`Sending some big boobs...`") nsfw = requests.get('http://api.oboobs.ru/noise/1').json()[0]["preview"] urllib.request.urlretrieve("http://media.oboobs.ru/{}".format(nsfw), "*.jpg") os.rename('*.jpg', 'boobs.jpg') await e.client.send_file(e.chat_id, "boobs.jpg") os.remove("boobs.jpg") await e.delete() @register(outgoing=True, pattern="^\.butts(?: |$)(.*)") async def butts(e): await e.edit("`Finding some beautiful butts...`") await sleep(3) await e.edit("`Sending some beautiful butts...`") nsfw = requests.get('http://api.obutts.ru/noise/1').json()[0]["preview"] urllib.request.urlretrieve("http://media.obutts.ru/{}".format(nsfw), "*.jpg") os.rename('*.jpg', 'butts.jpg') await e.client.send_file(e.chat_id, "butts.jpg") os.remove("butts.jpg") await e.delete() @register(outgoing=True, pattern="^\.(yes|no|maybe|decide)$") async def decide(event): decision = event.pattern_match.group(1).lower() message_id = event.reply_to_msg_id if event.reply_to_msg_id else None if decision != "decide": r = requests.get(f"https://yesno.wtf/api?force={decision}").json() else: r = requests.get(f"https://yesno.wtf/api").json() await event.delete() await event.client.send_message(event.chat_id, str(r["answer"]).upper(), reply_to=message_id, file=r["image"]) @register(outgoing=True, pattern="^\.fp$") async def facepalm(e): """ Facepalm 🤦‍♂ """ await e.edit("🤦‍♂") @register(outgoing=True, pattern="^\.cry$") async def cry(e): """ y u du dis, i cry everytime !! """ await e.edit(choice(CRI)) @register(outgoing=True, pattern="^\.insult$") async def insult(e): """ I make you cry !! """ await e.edit(choice(INSULT_STRINGS)) @register(outgoing=True, pattern="^\.cp(?: |$)(.*)") async def copypasta(cp_e): """ Copypasta the famous meme """ textx = await cp_e.get_reply_message() message = cp_e.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await cp_e.edit("`😂🅱️IvE👐sOME👅text👅for✌️Me👌tO👐MAkE👀iT💞funNy!💦`") reply_text = choice(EMOJIS) # choose a random character in the message to be substituted with 🅱️ b_char = choice(message).lower() for owo in message: if owo == " ": reply_text += choice(EMOJIS) elif owo in EMOJIS: reply_text += owo reply_text += choice(EMOJIS) elif owo.lower() == b_char: reply_text += "🅱️" else: if bool(getrandbits(1)): reply_text += owo.upper() else: reply_text += owo.lower() reply_text += choice(EMOJIS) await cp_e.edit(reply_text) @register(outgoing=True, pattern="^\.vapor(?: |$)(.*)") async def vapor(vpr): """ Vaporize everything! """ reply_text = list() textx = await vpr.get_reply_message() message = vpr.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await vpr.edit("`Give some text for vapor!`") for charac in message: if 0x21 <= ord(charac) <= 0x7F: reply_text.append(chr(ord(charac) + 0xFEE0)) elif ord(charac) == 0x20: reply_text.append(chr(0x3000)) else: reply_text.append(charac) await vpr.edit("".join(reply_text)) @register(outgoing=True, pattern="^\.str(?: |$)(.*)") async def stretch(stret): """ Stretch it.""" textx = await stret.get_reply_message() message = stret.text message = stret.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await stret.edit("`GiiiiiiiB sooooooomeeeeeee teeeeeeext!`") count = randint(3, 10) reply_text = sub(r"([aeiouAEIOUaeiouAEIOUаеиоуюяыэё])", (r"\1" * count), message) await stret.edit(reply_text) @register(outgoing=True, pattern="^\.zal(?: |$)(.*)") async def zal(zgfy): """ Invoke the feeling of chaos. """ reply_text = list() textx = await zgfy.get_reply_message() message = zgfy.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await zgfy.edit( "`gͫ ̆ i̛ ̺ v͇̆ ȅͅ a̢ͦ s̴̪ c̸̢ ä̸ rͩͣ y͖͞ t̨͚ é̠ x̢͖ t͔͛`" ) for charac in message: if not charac.isalpha(): reply_text.append(charac) continue for _ in range(0, 3): rand = randint(0, 2) if rand == 0: charac = charac.strip() + \ choice(ZALG_LIST[0]).strip() elif rand == 1: charac = charac.strip() + \ choice(ZALG_LIST[1]).strip() else: charac = charac.strip() + \ choice(ZALG_LIST[2]).strip() reply_text.append(charac) await zgfy.edit("".join(reply_text)) @register(outgoing=True, pattern="^\.hi$") async def hoi(hello): """ Greet everyone! """ await hello.edit(choice(HELLOSTR)) @register(outgoing=True, pattern="^\.owo(?: |$)(.*)") async def faces(owo): """ UwU """ textx = await owo.get_reply_message() message = owo.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await owo.edit("` UwU no text given! `") reply_text = sub(r"(r|l)", "w", message) reply_text = sub(r"(R|L)", "W", reply_text) reply_text = sub(r"n([aeiou])", r"ny\1", reply_text) reply_text = sub(r"N([aeiouAEIOU])", r"Ny\1", reply_text) reply_text = sub(r"\!+", " " + choice(UWUS), reply_text) reply_text = reply_text.replace("ove", "uv") reply_text += " " + choice(UWUS) await owo.edit(reply_text) @register(outgoing=True, pattern="^\.react$") async def react_meme(react): """ Make your userbot react to everything. """ await react.edit(choice(FACEREACTS)) @register(outgoing=True, pattern="^\.shg$") async def shrugger(shg): r""" ¯\_(ツ)_/¯ """ await shg.edit(choice(SHGS)) @register(outgoing=True, pattern="^\.chase$") async def police(chase): """ Run boi run, i'm gonna catch you !! """ await chase.edit(choice(CHASE_STR)) @register(outgoing=True, pattern="^\.run$") async def runner_lol(run): """ Run, run, RUNNN! """ await run.edit(choice(RUNS_STR)) @register(outgoing=True, pattern="^\.metoo$") async def metoo(hahayes): """ Haha yes """ await hahayes.edit(choice(METOOSTR)) @register(outgoing=True, pattern="^\.oem$") async def oem(e): t = "Oem" for j in range(16): t = t[:-1] + "em" await e.edit(t) @register(outgoing=True, pattern="^\.Oem$") async def Oem(e): t = "Oem" for j in range(16): t = t[:-1] + "em" await e.edit(t) @register(outgoing=True, pattern="^\.10iq$") async def iqless(e): await e.edit("♿") @register(outgoing=True, pattern="^\.moon$") async def moon(event): deq = deque(list("🌗🌘🌑🌒🌓🌔🌕🌖")) try: for x in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^\.clock$") async def clock(event): deq = deque(list("🕙🕘🕗🕖🕕🕔🕓🕒🕑🕐🕛")) try: for x in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.rain$") async def rain(event): deq = deque(list("☀️🌤⛅️🌥☁️🌧⛈")) try: for x in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.love$") async def love(event): deq = deque(list("❤️🧡💛💚💙💜🖤💕💞💓💗💖💘💝")) try: for x in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.earth$") async def earth(event): deq = deque(list("🌏🌍🌎🌎🌍🌏🌍🌎")) try: for x in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^\.mock(?: |$)(.*)") async def spongemocktext(mock): """ Do it and find the real fun. """ reply_text = list() textx = await mock.get_reply_message() message = mock.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await mock.edit("`gIvE sOMEtHInG tO MoCk!`") for charac in message: if charac.isalpha() and randint(0, 1): to_app = charac.upper() if charac.islower() else charac.lower() reply_text.append(to_app) else: reply_text.append(charac) await mock.edit("".join(reply_text)) @register(outgoing=True, pattern="^\.weeb(?: |$)(.*)") async def weebify(e): args = e.pattern_match.group(1) if not args: get = await e.get_reply_message() args = get.text if not args: await e.edit("`What I am Supposed to Weebify U Dumb`") return string = ' '.join(args).lower() for normiecharacter in string: if normiecharacter in normiefont: weebycharacter = weebyfont[normiefont.index(normiecharacter)] string = string.replace(normiecharacter, weebycharacter) await e.edit(string) @register(outgoing=True, pattern="^\.clap(?: |$)(.*)") async def claptext(memereview): """ Praise people! """ textx = await memereview.get_reply_message() message = memereview.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await memereview.edit("`Hah, I don't clap pointlessly!`") reply_text = "👏 " reply_text += message.replace(" ", " 👏 ") reply_text += " 👏" await memereview.edit(reply_text) @register(outgoing=True, pattern="^\.bt$") async def bluetext(bt_e): """ Believe me, you will find this useful. """ if await bt_e.get_reply_message() and bt_e.is_group: await bt_e.edit( "/BLUETEXT /MUST /CLICK.\n" "/ARE /YOU /A /STUPID /ANIMAL /WHICH /IS /ATTRACTED /TO /COLOURS?") @register(outgoing=True, pattern=r"^\.f (.*)") async def payf(event): paytext = event.pattern_match.group(1) pay = "{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}".format( paytext * 8, paytext * 8, paytext * 2, paytext * 2, paytext * 2, paytext * 6, paytext * 6, paytext * 2, paytext * 2, paytext * 2, paytext * 2, paytext * 2) await event.edit(pay) @register(outgoing=True, pattern="^\.lfy (.*)") async def let_me_google_that_for_you(lmgtfy_q): textx = await lmgtfy_q.get_reply_message() qry = lmgtfy_q.pattern_match.group(1) if qry: query = str(qry) elif textx: query = textx query = query.message query_encoded = query.replace(" ", "+") lfy_url = f"http://lmgtfy.com/?s=g&iie=1&q={query_encoded}" payload = {'format': 'json', 'url': lfy_url} r = requests.get('http://is.gd/create.php', params=payload) await lmgtfy_q.edit("Here you are, help yourself." f"\n[{query}]({r.json()['shorturl']})") @register(outgoing=True, pattern="^\.sayhi$") async def sayhi(e): await e.edit( "\n💰💰💰💰💰💰💰💰💰💰💰💰" "\n💰🔷💰💰💰🔷💰💰🔷🔷🔷💰" "\n💰🔷💰💰💰🔷💰💰💰🔷💰💰" "\n💰🔷💰💰💰🔷💰💰💰🔷💰💰" "\n💰🔷🔷🔷🔷🔷💰💰💰🔷💰💰" "\n💰🔷💰💰💰🔷💰💰💰🔷💰💰" "\n💰🔷💰💰💰🔷💰💰💰🔷💰💰" "\n💰🔷💰💰💰🔷💰💰🔷🔷🔷💰" "\n💰💰💰💰💰💰💰💰💰💰💰💰") @register(pattern=r".scam(?: |$)(.*)", outgoing=True) async def scam(event): """ Just a small command to fake chat actions for fun !! """ options = [ 'typing', 'contact', 'game', 'location', 'voice', 'round', 'video', 'photo', 'document', 'cancel' ] input_str = event.pattern_match.group(1) args = input_str.split() if len(args) == 0: # Let bot decide action and time scam_action = choice(options) scam_time = randint(30, 60) elif len(args) == 1: # User decides time/action, bot decides the other. try: scam_action = str(args[0]).lower() scam_time = randint(30, 60) except ValueError: scam_action = choice(options) scam_time = int(args[0]) elif len(args) == 2: # User decides both action and time scam_action = str(args[0]).lower() scam_time = int(args[1]) else: await event.edit("`Invalid Syntax !!`") return try: if (scam_time > 0): await event.delete() async with event.client.action(event.chat_id, scam_action): await sleep(scam_time) except BaseException: return @register(pattern=r".type(?: |$)(.*)", outgoing=True) async def typewriter(typew): """ Just a small command to make your keyboard become a typewriter! """ textx = await typew.get_reply_message() message = typew.pattern_match.group(1) if message: pass elif textx: message = textx.text else: return await typew.edit("`Give a text to type!`") sleep_time = 0.03 typing_symbol = "|" old_text = "" await typew.edit(typing_symbol) await sleep(sleep_time) for character in message: old_text = old_text + "" + character typing_text = old_text + "" + typing_symbol await typew.edit(typing_text) await sleep(sleep_time) await typew.edit(old_text) await sleep(sleep_time) @register(outgoing=True, pattern="^\.leave$") async def leave(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`You must Leaving dis Group kek!`") @register(outgoing=True, pattern="^\.fail$") async def fail(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ `" "`\n████▌▄▌▄▐▐▌█████ `" "`\n████▌▄▌▄▐▐▌▀████ `" "`\n▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ `") @register(outgoing=True, pattern="^\.lol$") async def lol(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n╱┏┓╱╱╱╭━━━╮┏┓╱╱╱╱ `" "`\n╱┃┃╱╱╱┃╭━╮┃┃┃╱╱╱╱ `" "`\n╱┃┗━━┓┃╰━╯┃┃┗━━┓╱ `" "`\n╱┗━━━┛╰━━━╯┗━━━┛╱ `") @register(outgoing=True, pattern="^\.lool$") async def lool(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n╭╭━━━╮╮┈┈┈┈┈┈┈┈┈┈\n┈┃╭━━╯┈┈┈┈▕╲▂▂╱▏┈\n┈┃┃╱▔▔▔▔▔▔▔▏╱▋▋╮┈`" "`\n┈┃╰▏┃╱╭╮┃╱╱▏╱╱▆┃┈\n┈╰━▏┗━╰╯┗━╱╱╱╰┻┫┈\n┈┈┈▏┏┳━━━━▏┏┳━━╯┈`" "`\n┈┈┈▏┃┃┈┈┈┈▏┃┃┈┈┈┈ `") @register(outgoing=True, pattern="^\.stfu$") async def stfu(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n██████████████████████████████`" "`\n██▀▀▀▀████▀▀▀▀████▀▀▀▀▀███▀▀██▀▀█`" "`\n█──────██──────██───────██──██──█`" "`\n█──██▄▄████──████──███▄▄██──██──█`" "`\n█▄────▀████──████────█████──██──█`" "`\n█▀▀██──████──████──███████──██──█`" "`\n█──────████──████──███████──────█`" "`\n██▄▄▄▄█████▄▄████▄▄████████▄▄▄▄██`" "`\n█████████████████████████████████`") @register(outgoing=True, pattern="^\.gtfo$") async def gtfo(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n███████████████████████████████ `" "`\n█▀▀▀▀▀▀▀█▀▀▀▀▀▀█▀▀▀▀▀▀▀█▀▀▀▀▀▀█ `" "`\n█───────█──────█───────█──────█ `" "`\n█──███──███──███──███▄▄█──██──█ `" "`\n█──███▄▄███──███─────███──██──█ `" "`\n█──██───███──███──██████──██──█ `" "`\n█──▀▀▀──███──███──██████──────█ `" "`\n█▄▄▄▄▄▄▄███▄▄███▄▄██████▄▄▄▄▄▄█ `" "`\n███████████████████████████████ `") @register(outgoing=True, pattern="^\.nih$") async def nih(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n(\_/)`" "`\n(●_●)`" "`\n />🌹 *ini buat kamu`" "`\n `" "`\n(\_/)`" "`\n(●_●)`" "`\n🌹<\ *tapi boong`") @register(outgoing=True, pattern="^\.fag$") async def gtfo(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n█████████`" "`\n█▄█████▄█`" "`\n█▼▼▼▼▼`" "`\n█ STFU FAGGOT'S`" "`\n█▲▲▲▲▲`" "`\n█████████`" "`\n ██ ██`") @register(outgoing=True, pattern="^\.taco$") async def taco(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("\n{\__/}" "\n(●_●)" "\n( >🌮 Want a taco?") @register(outgoing=True, pattern="^\.paw$") async def paw(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`(=ↀωↀ=)") @register(outgoing=True, pattern="^\.tf$") async def tf(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("(̿▀̿ ̿Ĺ̯̿̿▀̿ ̿)̄ ") @register(outgoing=True, pattern="^\.gey$") async def gey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈┈┈╭━━━━━╮┈┈┈┈┈\n┈┈┈┃┊┊┊┊┊┃┈┈┈┈┈`" "`\n┈┈┈┃┊┊╭━╮┻╮┈┈┈┈\n┈┈┈╱╲┊┃▋┃▋┃┈┈┈┈\n┈┈╭┻┊┊╰━┻━╮┈┈┈┈`" "`\n┈┈╰┳┊╭━━━┳╯┈┈┈┈\n┈┈┈┃┊┃╰━━┫┈NIGGA U GEY`" "\n┈┈┈┈┈┈┏━┓┈┈┈┈┈┈") @register(outgoing=True, pattern="^\.gay$") async def gey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈┈┈╭━━━━━╮┈┈┈┈┈\n┈┈┈┃┊┊┊┊┊┃┈┈┈┈┈`" "`\n┈┈┈┃┊┊╭━╮┻╮┈┈┈┈\n┈┈┈╱╲┊┃▋┃▋┃┈┈┈┈\n┈┈╭┻┊┊╰━┻━╮┈┈┈┈`" "`\n┈┈╰┳┊╭━━━┳╯┈┈┈┈\n┈┈┈┃┊┃╰━━┫┈BAPAQ U GAY`" "\n┈┈┈┈┈┈┏━┓┈┈┈┈┈┈") @register(outgoing=True, pattern="^\.bot$") async def bot(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("` \n ╲╲╭━━━━╮ \n╭╮┃▆┈┈▆┃╭╮ \n┃╰┫▽▽▽┣╯┃ \n╰━┫△△△┣━╯`" "`\n╲╲┃┈┈┈┈┃ \n╲╲┃┈┏┓┈┃ `") @register(outgoing=True, pattern="^\.hey$") async def hey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("\n┈┈┈╱▔▔▔▔╲┈╭━━━━━\n┈┈▕▂▂▂▂▂▂▏┃HEY!┊😀`" "`\n┈┈▕▔▇▔▔┳▔▏╰┳╮HEY!┊\n┈┈▕╭━╰╯━╮▏━╯╰━━━\n╱▔▔▏▅▅▅▅▕▔▔╲┈┈┈┈`" "`\n▏┈┈╲▂▂▂▂╱┈┈┈▏┈┈┈`") @register(outgoing=True, pattern="^\.nou$") async def nou(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈╭╮╭╮\n┈┃┃┃┃\n╭┻┗┻┗╮`" "`\n┃┈▋┈▋┃\n┃┈╭▋━╮━╮\n┃┈┈╭╰╯╰╯╮`" "`\n┫┈┈ NoU\n┃┈╰╰━━━━╯`" "`\n┗━━┻━┛`") @register(outgoing=True, pattern="^\.iwi(?: |$)(.*)") async def faces(siwis): """ IwI """ textx = await siwis.get_reply_message() message = siwis.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await siwis.edit("` IwI no text given! `") return reply_text = sub(r"(a|i|u|e|o)", "i", message) reply_text = sub(r"(A|I|U|E|O)", "I", reply_text) reply_text = sub(r"\!+", " " + choice(IWIS), reply_text) reply_text += " " + choice(IWIS) await siwis.edit(reply_text) @register(outgoing=True, pattern="^.koc$") async def koc(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("8✊===D") await e.edit("8=✊==D") await e.edit("8==✊=D") await e.edit("8===✊D") await e.edit("8==✊=D") await e.edit("8=✊==D") await e.edit("8✊===D") await e.edit("8=✊==D") await e.edit("8==✊=D") await e.edit("8===✊D") await e.edit("8==✊=D") await e.edit("8=✊==D") await e.edit("8✊===D") await e.edit("8=✊==D") await e.edit("8==✊=D") await e.edit("8===✊D") await e.edit("8===✊D💦") await e.edit("8====D💦💦") await e.edit("crooottssssssss") await e.edit(choice(FACEREACTS)) @register(outgoing=True, pattern="^\.shg$") async def shrugger(shg): r""" ¯\_(ツ)_/¯ """ await shg.edit(choice(SHGS)) @register(outgoing=True, pattern=r"^\.(?:penis|dick)\s?(.)?") async def emoji_penis(e): emoji = e.pattern_match.group(1) titid = GAMBAR_TITIT if emoji: titid = titid.replace('🤡', emoji) await e.edit(titid) CMD_HELP.update({ "memes": ">`.cowsay`" "\nUsage: cow which says things." "\n\n>`.cp`" "\nUsage: Copypasta the famous meme" "\n\n>`.vapor`" "\nUsage: Vaporize everything!" "\n\n>`.str`" "\nUsage: Stretch it." "\n\n>`.10iq`" "\nUsage: You retard !!" "\n\n>`.zal`" "\nUsage: Invoke the feeling of chaos." "\n\n>`Oem`" "\nUsage: Oeeeem" "\n\n>`.fp`" "\nUsage: Facepalm :P" "\n\n>`.moon`" "\nUsage: kensar moon animation." "\n\n>`.clock`" "\nUsage: kensar clock animation." "\n\n>`.hi`" "\nUsage: Greet everyone!" "\n\n>`.coinflip <heads/tails>`" "\nUsage: Flip a coin !!" "\n\n>`.owo`" "\nUsage: UwU" "\n\n>`.react`" "\nUsage: Make your userbot react to everything." "\n\n>`.slap` <id/jutsu>" "\nUsage: reply to slap them with random objects !!" "\n\n>`.cry`" "\nUsage: y u du dis, i cri." "\n\n>`.shg`" "\nUsage: Shrug at it !!" "\n\n>`.run`" "\nUsage: Let Me Run, run, RUNNN!" "\n\n>`.chase`" "\nUsage: You better start running" "\n\n>`.metoo`" "\nUsage: Haha yes" "\n\n>`.mock`" "\nUsage: Do it and find the real fun." "\n\n>`.clap`" "\nUsage: Praise people!" "\n\n>`.boobs`" "\nUsage: Get b00bs imej" "\n\n>`.butts`" "\nUsage: Get 🅱️utts imej" "\n\n>`.f <emoji/character>`" "\nUsage: Pay Respects." "\n\n>`.bt`" "\nUsage: Believe me, you will find this useful." "\n\n>`.weeb`" "\nUsage: To Weeb-ify your text." "\n\n>`.type`" "\nUsage: Just a small command to make your keyboard become a typewriter!" "\n\n>`.lfy <query>`" "\nUsage: Let me Google that for you real quick !!" "\n\n>`.decide [Alternates: (.yes, .no, .maybe)]`" "\nUsage: Make a quick decision." "\n\n>`.scam <action> <time>`" "\n[Available Actions: (typing, contact, game, location, voice, round, video, photo, document, cancel)]" "\nUsage: Create fake chat actions, for fun. (Default action: typing)" "\n\nAnd many more" "`\n>.nou ; .bot ; .gey ; .gey ; .tf ; .paw ; .taco ; .nih ;`" "`\n>.fag ; .gtfo ; .stfu ; .lol ; .lool ; .fail ; .leave`" "`\n>.iwi ; .sayhi` ; .koc` ; .earth` ; .love` ; .rain` ; .penis`" "\n\n\nThanks to 🅱️ottom🅱️ext🅱️ot (@NotAMemeBot) for some of these." })
the-stack_106_19390
# -*- coding: utf-8 -*- # (C) Copyright Ji Liu and Luciano Bello 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from os import path from qiskit import QuantumCircuit QASMDIR = path.dirname(path.abspath(__file__)) def circuits(): for n_qubits in range(2, 15, 2): filename = "VQE_" + str(n_qubits) + "node.qasm" qc = QuantumCircuit.from_qasm_file(path.join(QASMDIR, filename)) yield qc
the-stack_106_19392
import datetime import os import tempfile from io import StringIO from wsgiref.util import FileWrapper from django import forms from django.conf.urls import url from django.contrib import admin from django.contrib.admin import BooleanFieldListFilter from django.contrib.admin.views.main import ChangeList from django.contrib.auth.admin import GroupAdmin, UserAdmin from django.contrib.auth.models import Group, User from django.core.exceptions import ValidationError from django.core.files.storage import FileSystemStorage from django.core.mail import EmailMessage from django.db import models from django.forms.models import BaseModelFormSet from django.http import HttpResponse, StreamingHttpResponse from django.utils.html import format_html from django.utils.safestring import mark_safe from .forms import MediaActionForm from .models import ( Actor, AdminOrderedAdminMethod, AdminOrderedCallable, AdminOrderedField, AdminOrderedModelMethod, Album, Answer, Answer2, Article, BarAccount, Book, Bookmark, Category, Chapter, ChapterXtra1, Child, ChildOfReferer, Choice, City, Collector, Color, Color2, ComplexSortedPerson, CoverLetter, CustomArticle, CyclicOne, CyclicTwo, DependentChild, DooHickey, EmptyModel, EmptyModelHidden, EmptyModelMixin, EmptyModelVisible, ExplicitlyProvidedPK, ExternalSubscriber, Fabric, FancyDoodad, FieldOverridePost, FilteredManager, FooAccount, FoodDelivery, FunkyTag, Gadget, Gallery, GenRelReference, Grommet, ImplicitlyGeneratedPK, Ingredient, InlineReference, InlineReferer, Inquisition, Language, Link, MainPrepopulated, ModelWithStringPrimaryKey, NotReferenced, OldSubscriber, OtherStory, Paper, Parent, ParentWithDependentChildren, ParentWithUUIDPK, Person, Persona, Picture, Pizza, Plot, PlotDetails, PlotProxy, PluggableSearchPerson, Podcast, Post, PrePopulatedPost, PrePopulatedPostLargeSlug, PrePopulatedSubPost, Promo, Question, ReadablePizza, ReadOnlyPizza, Recipe, Recommendation, Recommender, ReferencedByGenRel, ReferencedByInline, ReferencedByParent, RelatedPrepopulated, RelatedWithUUIDPKModel, Report, Reservation, Restaurant, RowLevelChangePermissionModel, Section, ShortMessage, Simple, Sketch, State, Story, StumpJoke, Subscriber, SuperVillain, Telegram, Thing, Topping, UnchangeableObject, UndeletableObject, UnorderedObject, UserMessenger, Villain, Vodcast, Whatsit, Widget, Worker, WorkHour, ) def callable_year(dt_value): try: return dt_value.year except AttributeError: return None callable_year.admin_order_field = 'date' class ArticleInline(admin.TabularInline): model = Article fk_name = 'section' prepopulated_fields = { 'title': ('content',) } fieldsets = ( ('Some fields', { 'classes': ('collapse',), 'fields': ('title', 'content') }), ('Some other fields', { 'classes': ('wide',), 'fields': ('date', 'section') }) ) class ChapterInline(admin.TabularInline): model = Chapter class ChapterXtra1Admin(admin.ModelAdmin): list_filter = ( 'chap', 'chap__title', 'chap__book', 'chap__book__name', 'chap__book__promo', 'chap__book__promo__name', 'guest_author__promo__book', ) class ArticleForm(forms.ModelForm): extra_form_field = forms.BooleanField(required=False) class Meta: fields = '__all__' model = Article class ArticleAdmin(admin.ModelAdmin): list_display = ( 'content', 'date', callable_year, 'model_year', 'modeladmin_year', 'model_year_reversed', 'section', lambda obj: obj.title, 'order_by_expression', ) list_editable = ('section',) list_filter = ('date', 'section') autocomplete_fields = ('section',) view_on_site = False form = ArticleForm fieldsets = ( ('Some fields', { 'classes': ('collapse',), 'fields': ('title', 'content', 'extra_form_field'), }), ('Some other fields', { 'classes': ('wide',), 'fields': ('date', 'section', 'sub_section') }) ) def order_by_expression(self, obj): return obj.model_year # This ordering isn't particularly useful but shows that expressions can # be used for admin_order_field. order_by_expression.admin_order_field = models.F('date') + datetime.timedelta(days=3) def changelist_view(self, request): return super().changelist_view(request, extra_context={'extra_var': 'Hello!'}) def modeladmin_year(self, obj): return obj.date.year modeladmin_year.admin_order_field = 'date' modeladmin_year.short_description = None def delete_model(self, request, obj): EmailMessage( 'Greetings from a deleted object', 'I hereby inform you that some user deleted me', '[email protected]', ['[email protected]'] ).send() return super().delete_model(request, obj) def save_model(self, request, obj, form, change=True): EmailMessage( 'Greetings from a created object', 'I hereby inform you that some user created me', '[email protected]', ['[email protected]'] ).send() return super().save_model(request, obj, form, change) class ArticleAdmin2(admin.ModelAdmin): def has_module_permission(self, request): return False class RowLevelChangePermissionModelAdmin(admin.ModelAdmin): def has_change_permission(self, request, obj=None): """ Only allow changing objects with even id number """ return request.user.is_staff and (obj is not None) and (obj.id % 2 == 0) def has_view_permission(self, request, obj=None): """Only allow viewing objects if id is a multiple of 3.""" return request.user.is_staff and obj is not None and obj.id % 3 == 0 class CustomArticleAdmin(admin.ModelAdmin): """ Tests various hooks for using custom templates and contexts. """ change_list_template = 'custom_admin/change_list.html' change_form_template = 'custom_admin/change_form.html' add_form_template = 'custom_admin/add_form.html' object_history_template = 'custom_admin/object_history.html' delete_confirmation_template = 'custom_admin/delete_confirmation.html' delete_selected_confirmation_template = 'custom_admin/delete_selected_confirmation.html' popup_response_template = 'custom_admin/popup_response.html' def changelist_view(self, request): return super().changelist_view(request, extra_context={'extra_var': 'Hello!'}) class ThingAdmin(admin.ModelAdmin): list_filter = ('color', 'color__warm', 'color__value', 'pub_date') class InquisitionAdmin(admin.ModelAdmin): list_display = ('leader', 'country', 'expected', 'sketch') def sketch(self, obj): # A method with the same name as a reverse accessor. return 'list-display-sketch' class SketchAdmin(admin.ModelAdmin): raw_id_fields = ('inquisition', 'defendant0', 'defendant1') class FabricAdmin(admin.ModelAdmin): list_display = ('surface',) list_filter = ('surface',) class BasePersonModelFormSet(BaseModelFormSet): def clean(self): for person_dict in self.cleaned_data: person = person_dict.get('id') alive = person_dict.get('alive') if person and alive and person.name == "Grace Hopper": raise forms.ValidationError("Grace is not a Zombie") class PersonAdmin(admin.ModelAdmin): list_display = ('name', 'gender', 'alive') list_editable = ('gender', 'alive') list_filter = ('gender',) search_fields = ('^name',) save_as = True def get_changelist_formset(self, request, **kwargs): return super().get_changelist_formset(request, formset=BasePersonModelFormSet, **kwargs) def get_queryset(self, request): # Order by a field that isn't in list display, to be able to test # whether ordering is preserved. return super().get_queryset(request).order_by('age') class FooAccountAdmin(admin.StackedInline): model = FooAccount extra = 1 class BarAccountAdmin(admin.StackedInline): model = BarAccount extra = 1 class PersonaAdmin(admin.ModelAdmin): inlines = ( FooAccountAdmin, BarAccountAdmin ) class SubscriberAdmin(admin.ModelAdmin): actions = ['mail_admin'] action_form = MediaActionForm def delete_queryset(self, request, queryset): SubscriberAdmin.overridden = True super().delete_queryset(request, queryset) def mail_admin(self, request, selected): EmailMessage( 'Greetings from a ModelAdmin action', 'This is the test email from an admin action', '[email protected]', ['[email protected]'] ).send() def external_mail(modeladmin, request, selected): EmailMessage( 'Greetings from a function action', 'This is the test email from a function action', '[email protected]', ['[email protected]'] ).send() external_mail.short_description = 'External mail (Another awesome action)' def redirect_to(modeladmin, request, selected): from django.http import HttpResponseRedirect return HttpResponseRedirect('/some-where-else/') redirect_to.short_description = 'Redirect to (Awesome action)' def download(modeladmin, request, selected): buf = StringIO('This is the content of the file') return StreamingHttpResponse(FileWrapper(buf)) download.short_description = 'Download subscription' def no_perm(modeladmin, request, selected): return HttpResponse(content='No permission to perform this action', status=403) no_perm.short_description = 'No permission to run' class ExternalSubscriberAdmin(admin.ModelAdmin): actions = [redirect_to, external_mail, download, no_perm] class PodcastAdmin(admin.ModelAdmin): list_display = ('name', 'release_date') list_editable = ('release_date',) date_hierarchy = 'release_date' ordering = ('name',) class VodcastAdmin(admin.ModelAdmin): list_display = ('name', 'released') list_editable = ('released',) ordering = ('name',) class ChildInline(admin.StackedInline): model = Child class ParentAdmin(admin.ModelAdmin): model = Parent inlines = [ChildInline] save_as = True list_display = ('id', 'name',) list_display_links = ('id',) list_editable = ('name',) def save_related(self, request, form, formsets, change): super().save_related(request, form, formsets, change) first_name, last_name = form.instance.name.split() for child in form.instance.child_set.all(): if len(child.name.split()) < 2: child.name = child.name + ' ' + last_name child.save() class EmptyModelAdmin(admin.ModelAdmin): def get_queryset(self, request): return super().get_queryset(request).filter(pk__gt=1) class OldSubscriberAdmin(admin.ModelAdmin): actions = None temp_storage = FileSystemStorage(tempfile.mkdtemp()) UPLOAD_TO = os.path.join(temp_storage.location, 'test_upload') class PictureInline(admin.TabularInline): model = Picture extra = 1 class GalleryAdmin(admin.ModelAdmin): inlines = [PictureInline] class PictureAdmin(admin.ModelAdmin): pass class LanguageAdmin(admin.ModelAdmin): list_display = ['iso', 'shortlist', 'english_name', 'name'] list_editable = ['shortlist'] class RecommendationAdmin(admin.ModelAdmin): show_full_result_count = False search_fields = ('=titletranslation__text', '=the_recommender__titletranslation__text',) class WidgetInline(admin.StackedInline): model = Widget class DooHickeyInline(admin.StackedInline): model = DooHickey class GrommetInline(admin.StackedInline): model = Grommet class WhatsitInline(admin.StackedInline): model = Whatsit class FancyDoodadInline(admin.StackedInline): model = FancyDoodad class CategoryAdmin(admin.ModelAdmin): list_display = ('id', 'collector', 'order') list_editable = ('order',) class CategoryInline(admin.StackedInline): model = Category class CollectorAdmin(admin.ModelAdmin): inlines = [ WidgetInline, DooHickeyInline, GrommetInline, WhatsitInline, FancyDoodadInline, CategoryInline ] class LinkInline(admin.TabularInline): model = Link extra = 1 readonly_fields = ("posted", "multiline", "readonly_link_content") def multiline(self, instance): return "InlineMultiline\ntest\nstring" class SubPostInline(admin.TabularInline): model = PrePopulatedSubPost prepopulated_fields = { 'subslug': ('subtitle',) } def get_readonly_fields(self, request, obj=None): if obj and obj.published: return ('subslug',) return self.readonly_fields def get_prepopulated_fields(self, request, obj=None): if obj and obj.published: return {} return self.prepopulated_fields class PrePopulatedPostAdmin(admin.ModelAdmin): list_display = ['title', 'slug'] prepopulated_fields = { 'slug': ('title',) } inlines = [SubPostInline] def get_readonly_fields(self, request, obj=None): if obj and obj.published: return ('slug',) return self.readonly_fields def get_prepopulated_fields(self, request, obj=None): if obj and obj.published: return {} return self.prepopulated_fields class PostAdmin(admin.ModelAdmin): list_display = ['title', 'public'] readonly_fields = ( 'posted', 'awesomeness_level', 'coolness', 'value', 'multiline', 'multiline_html', lambda obj: "foo", 'readonly_content', ) inlines = [ LinkInline ] def coolness(self, instance): if instance.pk: return "%d amount of cool." % instance.pk else: return "Unknown coolness." def value(self, instance): return 1000 value.short_description = 'Value in $US' def multiline(self, instance): return "Multiline\ntest\nstring" def multiline_html(self, instance): return mark_safe("Multiline<br>\nhtml<br>\ncontent") class FieldOverridePostForm(forms.ModelForm): model = FieldOverridePost class Meta: help_texts = { 'posted': 'Overridden help text for the date', } labels = { 'public': 'Overridden public label', } class FieldOverridePostAdmin(PostAdmin): form = FieldOverridePostForm class CustomChangeList(ChangeList): def get_queryset(self, request): return self.root_queryset.order_by('pk').filter(pk=9999) # Doesn't exist class GadgetAdmin(admin.ModelAdmin): def get_changelist(self, request, **kwargs): return CustomChangeList class ToppingAdmin(admin.ModelAdmin): readonly_fields = ('pizzas',) class PizzaAdmin(admin.ModelAdmin): readonly_fields = ('toppings',) class StudentAdmin(admin.ModelAdmin): search_fields = ('name',) class ReadOnlyPizzaAdmin(admin.ModelAdmin): readonly_fields = ('name', 'toppings') def has_add_permission(self, request): return False def has_change_permission(self, request, obj=None): return True def has_delete_permission(self, request, obj=None): return True class WorkHourAdmin(admin.ModelAdmin): list_display = ('datum', 'employee') list_filter = ('employee',) class FoodDeliveryAdmin(admin.ModelAdmin): list_display = ('reference', 'driver', 'restaurant') list_editable = ('driver', 'restaurant') class CoverLetterAdmin(admin.ModelAdmin): """ A ModelAdmin with a custom get_queryset() method that uses defer(), to test verbose_name display in messages shown after adding/editing CoverLetter instances. Note that the CoverLetter model defines a __str__ method. For testing fix for ticket #14529. """ def get_queryset(self, request): return super().get_queryset(request).defer('date_written') class PaperAdmin(admin.ModelAdmin): """ A ModelAdmin with a custom get_queryset() method that uses only(), to test verbose_name display in messages shown after adding/editing Paper instances. For testing fix for ticket #14529. """ def get_queryset(self, request): return super().get_queryset(request).only('title') class ShortMessageAdmin(admin.ModelAdmin): """ A ModelAdmin with a custom get_queryset() method that uses defer(), to test verbose_name display in messages shown after adding/editing ShortMessage instances. For testing fix for ticket #14529. """ def get_queryset(self, request): return super().get_queryset(request).defer('timestamp') class TelegramAdmin(admin.ModelAdmin): """ A ModelAdmin with a custom get_queryset() method that uses only(), to test verbose_name display in messages shown after adding/editing Telegram instances. Note that the Telegram model defines a __str__ method. For testing fix for ticket #14529. """ def get_queryset(self, request): return super().get_queryset(request).only('title') class StoryForm(forms.ModelForm): class Meta: widgets = {'title': forms.HiddenInput} class StoryAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'content') list_display_links = ('title',) # 'id' not in list_display_links list_editable = ('content',) form = StoryForm ordering = ['-id'] class OtherStoryAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'content') list_display_links = ('title', 'id') # 'id' in list_display_links list_editable = ('content',) ordering = ['-id'] class ComplexSortedPersonAdmin(admin.ModelAdmin): list_display = ('name', 'age', 'is_employee', 'colored_name') ordering = ('name',) def colored_name(self, obj): return format_html('<span style="color: #ff00ff;">{}</span>', obj.name) colored_name.admin_order_field = 'name' class PluggableSearchPersonAdmin(admin.ModelAdmin): list_display = ('name', 'age') search_fields = ('name',) def get_search_results(self, request, queryset, search_term): queryset, use_distinct = super().get_search_results(request, queryset, search_term) try: search_term_as_int = int(search_term) except ValueError: pass else: queryset |= self.model.objects.filter(age=search_term_as_int) return queryset, use_distinct class AlbumAdmin(admin.ModelAdmin): list_filter = ['title'] class QuestionAdmin(admin.ModelAdmin): ordering = ['-posted'] search_fields = ['question'] autocomplete_fields = ['related_questions'] class AnswerAdmin(admin.ModelAdmin): autocomplete_fields = ['question'] class PrePopulatedPostLargeSlugAdmin(admin.ModelAdmin): prepopulated_fields = { 'slug': ('title',) } class AdminOrderedFieldAdmin(admin.ModelAdmin): ordering = ('order',) list_display = ('stuff', 'order') class AdminOrderedModelMethodAdmin(admin.ModelAdmin): ordering = ('order',) list_display = ('stuff', 'some_order') class AdminOrderedAdminMethodAdmin(admin.ModelAdmin): def some_admin_order(self, obj): return obj.order some_admin_order.admin_order_field = 'order' ordering = ('order',) list_display = ('stuff', 'some_admin_order') def admin_ordered_callable(obj): return obj.order admin_ordered_callable.admin_order_field = 'order' class AdminOrderedCallableAdmin(admin.ModelAdmin): ordering = ('order',) list_display = ('stuff', admin_ordered_callable) class ReportAdmin(admin.ModelAdmin): def extra(self, request): return HttpResponse() def get_urls(self): # Corner case: Don't call parent implementation return [url(r'^extra/$', self.extra, name='cable_extra')] class CustomTemplateBooleanFieldListFilter(BooleanFieldListFilter): template = 'custom_filter_template.html' class CustomTemplateFilterColorAdmin(admin.ModelAdmin): list_filter = (('warm', CustomTemplateBooleanFieldListFilter),) # For Selenium Prepopulated tests ------------------------------------- class RelatedPrepopulatedInline1(admin.StackedInline): fieldsets = ( (None, { 'fields': ( ('fk', 'm2m'), ('pubdate', 'status'), ('name', 'slug1', 'slug2',), ), }), ) formfield_overrides = {models.CharField: {'strip': False}} model = RelatedPrepopulated extra = 1 autocomplete_fields = ['fk', 'm2m'] prepopulated_fields = {'slug1': ['name', 'pubdate'], 'slug2': ['status', 'name']} class RelatedPrepopulatedInline2(admin.TabularInline): model = RelatedPrepopulated extra = 1 autocomplete_fields = ['fk', 'm2m'] prepopulated_fields = {'slug1': ['name', 'pubdate'], 'slug2': ['status', 'name']} class RelatedPrepopulatedInline3(admin.TabularInline): model = RelatedPrepopulated extra = 0 autocomplete_fields = ['fk', 'm2m'] class MainPrepopulatedAdmin(admin.ModelAdmin): inlines = [RelatedPrepopulatedInline1, RelatedPrepopulatedInline2, RelatedPrepopulatedInline3] fieldsets = ( (None, { 'fields': (('pubdate', 'status'), ('name', 'slug1', 'slug2', 'slug3')) }), ) formfield_overrides = {models.CharField: {'strip': False}} prepopulated_fields = { 'slug1': ['name', 'pubdate'], 'slug2': ['status', 'name'], 'slug3': ['name'], } class UnorderedObjectAdmin(admin.ModelAdmin): list_display = ['id', 'name'] list_display_links = ['id'] list_editable = ['name'] list_per_page = 2 class UndeletableObjectAdmin(admin.ModelAdmin): def change_view(self, *args, **kwargs): kwargs['extra_context'] = {'show_delete': False} return super().change_view(*args, **kwargs) class UnchangeableObjectAdmin(admin.ModelAdmin): def get_urls(self): # Disable change_view, but leave other urls untouched urlpatterns = super().get_urls() return [p for p in urlpatterns if p.name and not p.name.endswith("_change")] def callable_on_unknown(obj): return obj.unknown class AttributeErrorRaisingAdmin(admin.ModelAdmin): list_display = [callable_on_unknown] class CustomManagerAdmin(admin.ModelAdmin): def get_queryset(self, request): return FilteredManager.objects class MessageTestingAdmin(admin.ModelAdmin): actions = ["message_debug", "message_info", "message_success", "message_warning", "message_error", "message_extra_tags"] def message_debug(self, request, selected): self.message_user(request, "Test debug", level="debug") def message_info(self, request, selected): self.message_user(request, "Test info", level="info") def message_success(self, request, selected): self.message_user(request, "Test success", level="success") def message_warning(self, request, selected): self.message_user(request, "Test warning", level="warning") def message_error(self, request, selected): self.message_user(request, "Test error", level="error") def message_extra_tags(self, request, selected): self.message_user(request, "Test tags", extra_tags="extra_tag") class ChoiceList(admin.ModelAdmin): list_display = ['choice'] readonly_fields = ['choice'] fields = ['choice'] class DependentChildAdminForm(forms.ModelForm): """ Issue #20522 Form to test child dependency on parent object's validation """ def clean(self): parent = self.cleaned_data.get('parent') if parent.family_name and parent.family_name != self.cleaned_data.get('family_name'): raise ValidationError("Children must share a family name with their parents " + "in this contrived test case") return super().clean() class DependentChildInline(admin.TabularInline): model = DependentChild form = DependentChildAdminForm class ParentWithDependentChildrenAdmin(admin.ModelAdmin): inlines = [DependentChildInline] # Tests for ticket 11277 ---------------------------------- class FormWithoutHiddenField(forms.ModelForm): first = forms.CharField() second = forms.CharField() class FormWithoutVisibleField(forms.ModelForm): first = forms.CharField(widget=forms.HiddenInput) second = forms.CharField(widget=forms.HiddenInput) class FormWithVisibleAndHiddenField(forms.ModelForm): first = forms.CharField(widget=forms.HiddenInput) second = forms.CharField() class EmptyModelVisibleAdmin(admin.ModelAdmin): form = FormWithoutHiddenField fieldsets = ( (None, { 'fields': (('first', 'second'),), }), ) class EmptyModelHiddenAdmin(admin.ModelAdmin): form = FormWithoutVisibleField fieldsets = EmptyModelVisibleAdmin.fieldsets class EmptyModelMixinAdmin(admin.ModelAdmin): form = FormWithVisibleAndHiddenField fieldsets = EmptyModelVisibleAdmin.fieldsets class CityInlineAdmin(admin.TabularInline): model = City view_on_site = False class StateAdmin(admin.ModelAdmin): inlines = [CityInlineAdmin] class RestaurantInlineAdmin(admin.TabularInline): model = Restaurant view_on_site = True class CityAdmin(admin.ModelAdmin): inlines = [RestaurantInlineAdmin] view_on_site = True class WorkerAdmin(admin.ModelAdmin): def view_on_site(self, obj): return '/worker/%s/%s/' % (obj.surname, obj.name) class WorkerInlineAdmin(admin.TabularInline): model = Worker def view_on_site(self, obj): return '/worker_inline/%s/%s/' % (obj.surname, obj.name) class RestaurantAdmin(admin.ModelAdmin): inlines = [WorkerInlineAdmin] view_on_site = False def get_changeform_initial_data(self, request): return {'name': 'overridden_value'} class FunkyTagAdmin(admin.ModelAdmin): list_display = ('name', 'content_object') class InlineReferenceInline(admin.TabularInline): model = InlineReference class InlineRefererAdmin(admin.ModelAdmin): inlines = [InlineReferenceInline] class PlotReadonlyAdmin(admin.ModelAdmin): readonly_fields = ('plotdetails',) class GetFormsetsArgumentCheckingAdmin(admin.ModelAdmin): fields = ['name'] def add_view(self, request, *args, **kwargs): request.is_add_view = True return super().add_view(request, *args, **kwargs) def change_view(self, request, *args, **kwargs): request.is_add_view = False return super().change_view(request, *args, **kwargs) def get_formsets_with_inlines(self, request, obj=None): if request.is_add_view and obj is not None: raise Exception("'obj' passed to get_formsets_with_inlines wasn't None during add_view") if not request.is_add_view and obj is None: raise Exception("'obj' passed to get_formsets_with_inlines was None during change_view") return super().get_formsets_with_inlines(request, obj) site = admin.AdminSite(name="admin") site.site_url = '/my-site-url/' site.register(Article, ArticleAdmin) site.register(CustomArticle, CustomArticleAdmin) site.register( Section, save_as=True, inlines=[ArticleInline], readonly_fields=['name_property'], search_fields=['name'], ) site.register(ModelWithStringPrimaryKey) site.register(Color) site.register(Thing, ThingAdmin) site.register(Actor) site.register(Inquisition, InquisitionAdmin) site.register(Sketch, SketchAdmin) site.register(Person, PersonAdmin) site.register(Persona, PersonaAdmin) site.register(Subscriber, SubscriberAdmin) site.register(ExternalSubscriber, ExternalSubscriberAdmin) site.register(OldSubscriber, OldSubscriberAdmin) site.register(Podcast, PodcastAdmin) site.register(Vodcast, VodcastAdmin) site.register(Parent, ParentAdmin) site.register(EmptyModel, EmptyModelAdmin) site.register(Fabric, FabricAdmin) site.register(Gallery, GalleryAdmin) site.register(Picture, PictureAdmin) site.register(Language, LanguageAdmin) site.register(Recommendation, RecommendationAdmin) site.register(Recommender) site.register(Collector, CollectorAdmin) site.register(Category, CategoryAdmin) site.register(Post, PostAdmin) site.register(FieldOverridePost, FieldOverridePostAdmin) site.register(Gadget, GadgetAdmin) site.register(Villain) site.register(SuperVillain) site.register(Plot) site.register(PlotDetails) site.register(PlotProxy, PlotReadonlyAdmin) site.register(Bookmark) site.register(CyclicOne) site.register(CyclicTwo) site.register(WorkHour, WorkHourAdmin) site.register(Reservation) site.register(FoodDelivery, FoodDeliveryAdmin) site.register(RowLevelChangePermissionModel, RowLevelChangePermissionModelAdmin) site.register(Paper, PaperAdmin) site.register(CoverLetter, CoverLetterAdmin) site.register(ShortMessage, ShortMessageAdmin) site.register(Telegram, TelegramAdmin) site.register(Story, StoryAdmin) site.register(OtherStory, OtherStoryAdmin) site.register(Report, ReportAdmin) site.register(MainPrepopulated, MainPrepopulatedAdmin) site.register(UnorderedObject, UnorderedObjectAdmin) site.register(UndeletableObject, UndeletableObjectAdmin) site.register(UnchangeableObject, UnchangeableObjectAdmin) site.register(State, StateAdmin) site.register(City, CityAdmin) site.register(Restaurant, RestaurantAdmin) site.register(Worker, WorkerAdmin) site.register(FunkyTag, FunkyTagAdmin) site.register(ReferencedByParent) site.register(ChildOfReferer) site.register(ReferencedByInline) site.register(InlineReferer, InlineRefererAdmin) site.register(ReferencedByGenRel) site.register(GenRelReference) site.register(ParentWithUUIDPK) site.register(RelatedPrepopulated, search_fields=['name']) site.register(RelatedWithUUIDPKModel) # We intentionally register Promo and ChapterXtra1 but not Chapter nor ChapterXtra2. # That way we cover all four cases: # related ForeignKey object registered in admin # related ForeignKey object not registered in admin # related OneToOne object registered in admin # related OneToOne object not registered in admin # when deleting Book so as exercise all four paths through # contrib.admin.utils's get_deleted_objects function. site.register(Book, inlines=[ChapterInline]) site.register(Promo) site.register(ChapterXtra1, ChapterXtra1Admin) site.register(Pizza, PizzaAdmin) site.register(ReadOnlyPizza, ReadOnlyPizzaAdmin) site.register(ReadablePizza) site.register(Topping, ToppingAdmin) site.register(Album, AlbumAdmin) site.register(Question, QuestionAdmin) site.register(Answer, AnswerAdmin, date_hierarchy='question__posted') site.register(Answer2, date_hierarchy='question__expires') site.register(PrePopulatedPost, PrePopulatedPostAdmin) site.register(ComplexSortedPerson, ComplexSortedPersonAdmin) site.register(FilteredManager, CustomManagerAdmin) site.register(PluggableSearchPerson, PluggableSearchPersonAdmin) site.register(PrePopulatedPostLargeSlug, PrePopulatedPostLargeSlugAdmin) site.register(AdminOrderedField, AdminOrderedFieldAdmin) site.register(AdminOrderedModelMethod, AdminOrderedModelMethodAdmin) site.register(AdminOrderedAdminMethod, AdminOrderedAdminMethodAdmin) site.register(AdminOrderedCallable, AdminOrderedCallableAdmin) site.register(Color2, CustomTemplateFilterColorAdmin) site.register(Simple, AttributeErrorRaisingAdmin) site.register(UserMessenger, MessageTestingAdmin) site.register(Choice, ChoiceList) site.register(ParentWithDependentChildren, ParentWithDependentChildrenAdmin) site.register(EmptyModelHidden, EmptyModelHiddenAdmin) site.register(EmptyModelVisible, EmptyModelVisibleAdmin) site.register(EmptyModelMixin, EmptyModelMixinAdmin) site.register(StumpJoke) site.register(Recipe) site.register(Ingredient) site.register(NotReferenced) site.register(ExplicitlyProvidedPK, GetFormsetsArgumentCheckingAdmin) site.register(ImplicitlyGeneratedPK, GetFormsetsArgumentCheckingAdmin) # Register core models we need in our tests site.register(User, UserAdmin) site.register(Group, GroupAdmin) # Used to test URL namespaces site2 = admin.AdminSite(name="namespaced_admin") site2.register(User, UserAdmin) site2.register(Group, GroupAdmin) site2.register(ParentWithUUIDPK) site2.register( RelatedWithUUIDPKModel, list_display=['pk', 'parent'], list_editable=['parent'], raw_id_fields=['parent'], ) site2.register(Person, save_as_continue=False) site7 = admin.AdminSite(name="admin7") site7.register(Article, ArticleAdmin2) site7.register(Section) # Used to test ModelAdmin.sortable_by and get_sortable_by(). class ArticleAdmin6(admin.ModelAdmin): list_display = ( 'content', 'date', callable_year, 'model_year', 'modeladmin_year', 'model_year_reversed', 'section', ) sortable_by = ('date', callable_year) def modeladmin_year(self, obj): return obj.date.year modeladmin_year.admin_order_field = 'date' class ActorAdmin6(admin.ModelAdmin): list_display = ('name', 'age') sortable_by = ('name',) def get_sortable_by(self, request): return ('age',) class ChapterAdmin6(admin.ModelAdmin): list_display = ('title', 'book') sortable_by = () class ColorAdmin6(admin.ModelAdmin): list_display = ('value',) def get_sortable_by(self, request): return () site6 = admin.AdminSite(name='admin6') site6.register(Article, ArticleAdmin6) site6.register(Actor, ActorAdmin6) site6.register(Chapter, ChapterAdmin6) site6.register(Color, ColorAdmin6) class ArticleAdmin9(admin.ModelAdmin): def has_change_permission(self, request, obj=None): # Simulate that the user can't change a specific object. return obj is None site9 = admin.AdminSite(name='admin9') site9.register(Article, ArticleAdmin9) class ArticleAdmin10(admin.ModelAdmin): def has_change_permission(self, request, obj=None): return False site10 = admin.AdminSite(name='admin10') site10.register(Article, ArticleAdmin10)
the-stack_106_19393
import numpy as np import tensorflow as tf from tfumap.umap import compute_cross_entropy from pynndescent import NNDescent from scipy.sparse import csr_matrix from sklearn.utils import check_random_state, check_array from umap.umap_ import fuzzy_simplicial_set, discrete_metric_simplicial_set_intersection from scipy import optimize from functools import partial random_state = check_random_state(None) def build_fuzzy_simplicial_set(X, y=None, n_neighbors=15): """ Build nearest neighbor graph, then fuzzy simplicial set Parameters ---------- X : [type] [description] n_neighbors : int, optional [description], by default 15 """ n_trees = 5 + int(round((X.shape[0]) ** 0.5 / 20.0)) n_iters = max(5, int(round(np.log2(X.shape[0])))) # get nearest neighbors nnd = NNDescent( X, n_neighbors=n_neighbors, metric="euclidean", n_trees=n_trees, n_iters=n_iters, max_candidates=60, ) # get indices and distances knn_indices, knn_dists = nnd.neighbor_graph random_state = check_random_state(None) # build graph umap_graph, sigmas, rhos = fuzzy_simplicial_set( X=X, n_neighbors=n_neighbors, metric="euclidean", random_state=random_state, knn_indices=knn_indices, knn_dists=knn_dists, ) if y is not None: # set far_dist based on the assumption that target_weight == 1 far_dist = 1.0e12 y_ = check_array(y, ensure_2d=False) umap_graph = discrete_metric_simplicial_set_intersection( umap_graph, y_, far_dist=far_dist ) return umap_graph def convert_distance_to_probability(distances, a, b): """ convert distance representation into probability, as a function of a, b params """ return 1.0 / (1.0 + a * distances ** (2 * b)) def find_a_b(min_dist=0.1): """ determine optimal params a, b to such that distances less than min_dist have a probability of zero """ # input distances x = np.linspace(0, 3, 300) # optimal output (if close enough, don't try to make closer) y = np.exp(-x + min_dist) * (x > min_dist) + (x < min_dist) # run through scipy,optimize a, b parameters for min_dist # get the optimal (a, b), _ = optimize.curve_fit(f=convert_distance_to_probability, xdata=x, ydata=y) # a and b parameters for computing probability in low-d a = tf.constant(a, dtype=tf.float32,) b = tf.constant(b, dtype=tf.float32,) return a, b def batch_data(x, batch_size=100): n_batch = int(np.ceil((len(x) / batch_size))) return [x[batch_size * i : batch_size * (i + 1)] for i in range(n_batch)] def compute_classifier_loss(X, y, encoder, classifier, sparse_ce): """ compute the cross entropy loss for classification """ d = classifier(encoder(X)) return sparse_ce(y, d) def compute_classifier_loss_batch(X, y, encoder, classifier, sparse_ce): """ compute the cross entropy loss for classification """ X_batch = batch_data(X) pred = tf.stack([classifier(encoder(i)) for i in X_batch]) return sparse_ce(y, pred) def compute_umap_loss( batch_to, batch_from, embedder, encoder, _a, _b, negative_sample_rate=5, repulsion_strength=1, ): """ compute the cross entropy loss for learning embeddings Parameters ---------- batch_to : tf.int or tf.float32 Either X or the index locations of the embeddings for verticies (to) batch_from : tf.int or tf.float32 Either X or the index locations of the embeddings for verticies (from) Returns ------- ce_loss : tf.float cross entropy loss for UMAP embedding_to : tf.float embeddings for verticies (to) embedding_from : tf.float embeddings for verticies (from) """ # encode embedding_to = embedder(encoder(batch_to)) embedding_from = embedder(encoder(batch_from)) # get negative samples embedding_neg_to = tf.repeat(embedding_to, negative_sample_rate, axis=0) repeat_neg = tf.repeat(embedding_from, negative_sample_rate, axis=0) embedding_neg_from = tf.gather( repeat_neg, tf.random.shuffle(tf.range(tf.shape(repeat_neg)[0])) ) # distances between samples distance_embedding = tf.concat( [ tf.norm(embedding_to - embedding_from, axis=1), tf.norm(embedding_neg_to - embedding_neg_from, axis=1), ], axis=0, ) # convert probabilities to distances probabilities_distance = convert_distance_to_probability(distance_embedding, _a, _b) # treat positive samples as p=1, and negative samples as p=0 probabilities_graph = tf.concat( [tf.ones(embedding_to.shape[0]), tf.zeros(embedding_neg_to.shape[0])], axis=0, ) # cross entropy loss (attraction_loss, repellant_loss, ce_loss) = compute_cross_entropy( probabilities_graph, probabilities_distance, repulsion_strength=repulsion_strength, ) return ( attraction_loss, repellant_loss, ce_loss, ) def batch_epoch_edges(edges_to, edges_from, batch_size): """ permutes and batches edges for epoch """ # compute the number of batches in one epoch n_batches = int(len(edges_to) / batch_size) # permute list of edges permutation_mask = np.random.permutation(len(edges_to))[: n_batches * batch_size] to_all = tf.reshape(tf.gather(edges_to, permutation_mask), (n_batches, batch_size)) from_all = tf.reshape( tf.gather(edges_from, permutation_mask), (n_batches, batch_size) ) # return a tensorflow dataset of one epoch's worth of batches return tf.data.Dataset.from_tensor_slices((to_all, from_all)) def create_edge_iterator( head, tail, weight, batch_size, max_sample_repeats_per_epoch=25 ): """ create an iterator for edges """ # set the maximum number of times each edge should be repeated per epoch epochs_per_sample = np.clip( (weight / np.max(weight)) * max_sample_repeats_per_epoch, 1, max_sample_repeats_per_epoch, ).astype("int") edges_to_exp, edges_from_exp = ( np.array([np.repeat(head, epochs_per_sample.astype("int"))]), np.array([np.repeat(tail, epochs_per_sample.astype("int"))]), ) edge_iter = tf.data.Dataset.from_tensor_slices((edges_to_exp, edges_from_exp)) edge_iter = edge_iter.repeat() # edge_iter = edge_iter.map(batch_epoch_edges) edge_iter = edge_iter.map(partial(batch_epoch_edges, batch_size=batch_size)) edge_iter = edge_iter.prefetch(buffer_size=10) return iter(edge_iter), np.shape(edges_to_exp)[1] def create_classification_iterator(X_labeled, y_labeled, batch_size): """ Creates a tensorflow iterator for classification data (X, y) """ # # create labeled data iterator labeled_data = tf.data.Dataset.from_tensor_slices((X_labeled, y_labeled)) labeled_data = labeled_data.repeat() labeled_data = labeled_data.shuffle(np.min([10000, len(y_labeled)])) labeled_data = labeled_data.batch(batch_size) labeled_data = labeled_data.prefetch(buffer_size=1) return iter(labeled_data) def create_validation_iterator(valid_X, valid_Y, batch_size, repeat=False): """ Create an iterator that returns validation X and Y """ data_valid = tf.data.Dataset.from_tensor_slices((valid_X, valid_Y)) data_valid = data_valid.cache() if repeat: data_valid = data_valid.repeat() data_valid = data_valid.batch(batch_size) data_valid = data_valid.prefetch(buffer_size=1) return data_valid, len(valid_X)
the-stack_106_19397
import csv import requests from bs4 import BeautifulSoup import re ''' Created on 28 Sep 2013 @author: rob dobson ''' class StockSymbolList(): def getStocksFromCSV(self): self.stockList = [] with open('ukstocks.csv', 'r') as csvfile: stkReader = csv.reader(csvfile) for row in stkReader: self.stockList.append(row[0:2]) self.stockList = sorted(self.stockList) def getStocksFromWeb(self): self.stockList = [] r = None for getStocksAttempt in range(3): try: r = requests.get('http://www.lse.co.uk/index-constituents.asp?index=idx:asx') break except Exception as excp: print("Faield to get FTSE list from LSE, attempt", getStocksAttempt) if r is None: return soup = BeautifulSoup(r.text, "html.parser") for x in soup.find_all('a', attrs={'class':"linkTabs"}): #print (x.text) mtch = re.match("(.+?)\((.+?)\)", x.text) if (mtch != None and mtch.lastindex == 2): #print (mtch.group(1), mtch.group(2)) # Append .L to make it work with Yahoo coName = mtch.group(1) symb = mtch.group(2) + ".L" if (mtch.group(2)[-1]!='.') else mtch.group(2) + "L" self.stockList.append([coName,symb]) else: print("Failed Match", x.text) def getNumStocks(self): return len(self.stockList) def getStockList(self): return self.stockList
the-stack_106_19398
# -*- coding: utf-8 -*- """ Created on Sun May 5 22:56:49 2019 @author: MiaoLi """ import time import idea1_stimuliGeneration_a0428 # https://morvanzhou.github.io/tutorials/python-basic/multiprocessing/5-pool/ import multiprocessing as mp from functools import partial from tqdm import tqdm # ============================================================================= # parameter before running # ============================================================================= crowding_cons = 0 # 0: no crowding; 1: crowding; 2: reference if not crowding_cons == 2: ellipse_ka = 0.25 ellipse_kb = 0.1 if crowding_cons == 2: ellipse_ka = 0.158 ellipse_kb = 0.158 drawEllipseFig = False # drawEllipseFig = True newWindowSize = 0.3 # newWindowSize = 0.4 # newWindowSize = 0.5 # newWindowSize = 0.6 # newWindowSize = 0.7 runN = 2 # run times # ============================================================================= # run with pool # ============================================================================= start = time.time() multiParaFunc = partial(idea1_stimuliGeneration_a0428.runStimuliGeneration, crowding_cons, newWindowSize, drawEllipseFig, ellipse_ka, ellipse_kb) # def runStimuliGeneration(crowding_cons, newWindowSize, visualization = False, ka = 0.25, kb = 0.1,loop_number=1): if __name__ == '__main__': # tqdm task time Bar: https://github.com/tqdm/tqdm/issues/484 pool = mp.Pool() # pool.map(multiParaFunc, range(0,runN)) # https://www.zhihu.com/question/52188800 for _ in tqdm(pool.imap_unordered(multiParaFunc, range(0,runN)), total=runN):#range(1,50) runs 49 times from 1 to 49 pass # multicore() pool.close() pool.join() end = time.time() runtime = round((end-start)*0.0167,2) print('This lovely code runs', runtime, 'minutes') # ============================================================================= # call os to run # ============================================================================= # import os # loop_number=1 # start = time.time() # while(loop_number <= 10): # os.system('python xxx.py' + ' ' + str(loop_number)) # # os.system('start /min python XXX.py' + ' ' + str(loop_number)) # loop_number += 1 # end = time.time() # print('time', str(end-start))
the-stack_106_19399
from __future__ import annotations from datetime import timedelta import operator from typing import ( TYPE_CHECKING, Any, Callable, Literal, Sequence, ) import numpy as np from pandas._libs import algos as libalgos from pandas._libs.arrays import NDArrayBacked from pandas._libs.tslibs import ( BaseOffset, NaT, NaTType, Timedelta, delta_to_nanoseconds, dt64arr_to_periodarr as c_dt64arr_to_periodarr, iNaT, parsing, period as libperiod, to_offset, ) from pandas._libs.tslibs.dtypes import FreqGroup from pandas._libs.tslibs.fields import isleapyear_arr from pandas._libs.tslibs.offsets import ( Tick, delta_to_tick, ) from pandas._libs.tslibs.period import ( DIFFERENT_FREQ, IncompatibleFrequency, Period, get_period_field_arr, period_asfreq_arr, ) from pandas._typing import ( AnyArrayLike, Dtype, NpDtype, npt, ) from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.core.dtypes.common import ( TD64NS_DTYPE, ensure_object, is_datetime64_any_dtype, is_datetime64_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_period_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.dtypes.generic import ( ABCIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import ( isna, notna, ) import pandas.core.algorithms as algos from pandas.core.arrays import datetimelike as dtl from pandas.core.arrays.base import ExtensionArray import pandas.core.common as com if TYPE_CHECKING: from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas.core.arrays import DatetimeArray _shared_doc_kwargs = { "klass": "PeriodArray", } def _field_accessor(name: str, docstring=None): def f(self): base = self.freq._period_dtype_code result = get_period_field_arr(name, self.asi8, base) return result f.__name__ = name f.__doc__ = docstring return property(f) class PeriodArray(dtl.DatelikeOps): """ Pandas ExtensionArray for storing Period data. Users should use :func:`~pandas.period_array` to create new instances. Alternatively, :func:`~pandas.array` can be used to create new instances from a sequence of Period scalars. Parameters ---------- values : Union[PeriodArray, Series[period], ndarray[int], PeriodIndex] The data to store. These should be arrays that can be directly converted to ordinals without inference or copy (PeriodArray, ndarray[int64]), or a box around such an array (Series[period], PeriodIndex). dtype : PeriodDtype, optional A PeriodDtype instance from which to extract a `freq`. If both `freq` and `dtype` are specified, then the frequencies must match. freq : str or DateOffset The `freq` to use for the array. Mostly applicable when `values` is an ndarray of integers, when `freq` is required. When `values` is a PeriodArray (or box around), it's checked that ``values.freq`` matches `freq`. copy : bool, default False Whether to copy the ordinals before storing. Attributes ---------- None Methods ------- None See Also -------- Period: Represents a period of time. PeriodIndex : Immutable Index for period data. period_range: Create a fixed-frequency PeriodArray. array: Construct a pandas array. Notes ----- There are two components to a PeriodArray - ordinals : integer ndarray - freq : pd.tseries.offsets.Offset The values are physically stored as a 1-D ndarray of integers. These are called "ordinals" and represent some kind of offset from a base. The `freq` indicates the span covered by each element of the array. All elements in the PeriodArray have the same `freq`. """ # array priority higher than numpy scalars __array_priority__ = 1000 _typ = "periodarray" # ABCPeriodArray _scalar_type = Period _recognized_scalars = (Period,) _is_recognized_dtype = is_period_dtype _infer_matches = ("period",) # Names others delegate to us _other_ops: list[str] = [] _bool_ops: list[str] = ["is_leap_year"] _object_ops: list[str] = ["start_time", "end_time", "freq"] _field_ops: list[str] = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "weekday", "week", "dayofweek", "day_of_week", "dayofyear", "day_of_year", "quarter", "qyear", "days_in_month", "daysinmonth", ] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops _datetimelike_methods: list[str] = ["strftime", "to_timestamp", "asfreq"] _dtype: PeriodDtype # -------------------------------------------------------------------- # Constructors def __init__( self, values, dtype: Dtype | None = None, freq=None, copy: bool = False ): freq = validate_dtype_freq(dtype, freq) if freq is not None: freq = Period._maybe_convert_freq(freq) if isinstance(values, ABCSeries): values = values._values if not isinstance(values, type(self)): raise TypeError("Incorrect dtype") elif isinstance(values, ABCPeriodIndex): values = values._values if isinstance(values, type(self)): if freq is not None and freq != values.freq: raise raise_on_incompatible(values, freq) values, freq = values._ndarray, values.freq values = np.array(values, dtype="int64", copy=copy) if freq is None: raise ValueError("freq is not specified and cannot be inferred") NDArrayBacked.__init__(self, values, PeriodDtype(freq)) # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: np.ndarray, freq: BaseOffset | None = None, dtype: Dtype | None = None, ) -> PeriodArray: # alias for PeriodArray.__init__ assertion_msg = "Should be numpy array of type i8" assert isinstance(values, np.ndarray) and values.dtype == "i8", assertion_msg return cls(values, freq=freq, dtype=dtype) @classmethod def _from_sequence( cls: type[PeriodArray], scalars: Sequence[Period | None] | AnyArrayLike, *, dtype: Dtype | None = None, copy: bool = False, ) -> PeriodArray: if dtype and isinstance(dtype, PeriodDtype): freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq) @classmethod def _from_sequence_of_strings( cls, strings, *, dtype: Dtype | None = None, copy: bool = False ) -> PeriodArray: return cls._from_sequence(strings, dtype=dtype, copy=copy) @classmethod def _from_datetime64(cls, data, freq, tz=None) -> PeriodArray: """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): periods = dtl.validate_periods(periods) if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if start is not None or end is not None: if field_count > 0: raise ValueError( "Can either instantiate from fields or endpoints, but not both" ) subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError("Not enough parameters to construct Period range") return subarr, freq # ----------------------------------------------------------------- # DatetimeLike Interface # error: Argument 1 of "_unbox_scalar" is incompatible with supertype # "DatetimeLikeArrayMixin"; supertype defines the argument type as # "Union[Union[Period, Any, Timedelta], NaTType]" def _unbox_scalar( # type: ignore[override] self, value: Period | NaTType, setitem: bool = False, ) -> np.int64: if value is NaT: # error: Item "Period" of "Union[Period, NaTType]" has no attribute "value" return np.int64(value.value) # type: ignore[union-attr] elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=setitem) return np.int64(value.ordinal) else: raise ValueError(f"'value' should be a Period. Got '{value}' instead.") def _scalar_from_string(self, value: str) -> Period: return Period(value, freq=self.freq) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return self._require_matching_freq(other) # -------------------------------------------------------------------- # Data / Attributes @cache_readonly def dtype(self) -> PeriodDtype: return self._dtype # error: Read-only property cannot override read-write property @property # type: ignore[misc] def freq(self) -> BaseOffset: """ Return the frequency object for this PeriodArray. """ return self.dtype.freq def __array__(self, dtype: NpDtype | None = None) -> np.ndarray: if dtype == "i8": return self.asi8 elif dtype == bool: return ~self._isnan # This will raise TypeError for non-object dtypes return np.array(list(self), dtype=object) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow from pandas.core.arrays._arrow_utils import ArrowPeriodType if type is not None: if pyarrow.types.is_integer(type): return pyarrow.array(self._ndarray, mask=self.isna(), type=type) elif isinstance(type, ArrowPeriodType): # ensure we have the same freq if self.freqstr != type.freq: raise TypeError( "Not supported to convert PeriodArray to array with different " f"'freq' ({self.freqstr} vs {type.freq})" ) else: raise TypeError( f"Not supported to convert PeriodArray to '{type}' type" ) period_type = ArrowPeriodType(self.freqstr) storage_array = pyarrow.array(self._ndarray, mask=self.isna(), type="int64") return pyarrow.ExtensionArray.from_storage(period_type, storage_array) # -------------------------------------------------------------------- # Vectorized analogues of Period properties year = _field_accessor( "year", """ The year of the period. """, ) month = _field_accessor( "month", """ The month as January=1, December=12. """, ) day = _field_accessor( "day", """ The days of the period. """, ) hour = _field_accessor( "hour", """ The hour of the period. """, ) minute = _field_accessor( "minute", """ The minute of the period. """, ) second = _field_accessor( "second", """ The second of the period. """, ) weekofyear = _field_accessor( "week", """ The week ordinal of the year. """, ) week = weekofyear day_of_week = _field_accessor( "day_of_week", """ The day of the week with Monday=0, Sunday=6. """, ) dayofweek = day_of_week weekday = dayofweek dayofyear = day_of_year = _field_accessor( "day_of_year", """ The ordinal day of the year. """, ) quarter = _field_accessor( "quarter", """ The quarter of the date. """, ) qyear = _field_accessor("qyear") days_in_month = _field_accessor( "days_in_month", """ The number of days in the month. """, ) daysinmonth = days_in_month @property def is_leap_year(self) -> np.ndarray: """ Logical indicating if the date belongs to a leap year. """ return isleapyear_arr(np.asarray(self.year)) def to_timestamp(self, freq=None, how: str = "start") -> DatetimeArray: """ Cast to DatetimeArray/Index. Parameters ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod.validate_end_alias(how) end = how == "E" if end: if freq == "B" or self.freq == "B": # roll forward to ensure we land on B date adjust = Timedelta(1, "D") - Timedelta(1, "ns") return self.to_timestamp(how="start") + adjust else: adjust = Timedelta(1, "ns") return (self + self.freq).to_timestamp(how="start") - adjust if freq is None: freq = self._get_to_timestamp_base() base = freq else: freq = Period._maybe_convert_freq(freq) base = freq._period_dtype_code new_parr = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_parr.asi8, base) dta = DatetimeArray(new_data) if self.freq.name == "B": # See if we can retain BDay instead of Day in cases where # len(self) is too small for infer_freq to distinguish between them diffs = libalgos.unique_deltas(self.asi8) if len(diffs) == 1: diff = diffs[0] if diff == self.freq.n: dta._freq = self.freq elif diff == 1: dta._freq = self.freq.base # TODO: other cases? return dta else: return dta._with_freq("infer") # -------------------------------------------------------------------- def _time_shift(self, periods: int, freq=None) -> PeriodArray: """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None: raise TypeError( "`freq` argument is not supported for " f"{type(self).__name__}._time_shift" ) values = self.asi8 + periods * self.freq.n if self._hasna: values[self._isnan] = iNaT return type(self)(values, freq=self.freq) def _box_func(self, x) -> Period | NaTType: return Period._from_ordinal(ordinal=x, freq=self.freq) @doc(**_shared_doc_kwargs, other="PeriodIndex", other_name="PeriodIndex") def asfreq(self, freq=None, how: str = "E") -> PeriodArray: """ Convert the {klass} to the specified frequency `freq`. Equivalent to applying :meth:`pandas.Period.asfreq` with the given arguments to each :class:`~pandas.Period` in this {klass}. Parameters ---------- freq : str A frequency. how : str {{'E', 'S'}}, default 'E' Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- {klass} The transformed {klass} with the new frequency. See Also -------- {other}.asfreq: Convert each Period in a {other_name} to the given frequency. Period.asfreq : Convert a :class:`~pandas.Period` object to the given frequency. Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[A-DEC]') >>> pidx.asfreq('M') PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]') >>> pidx.asfreq('M', how='S') PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]') """ how = libperiod.validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1 = self.freq._period_dtype_code base2 = freq._period_dtype_code asi8 = self.asi8 # self.freq.n can't be negative or 0 end = how == "E" if end: ordinal = asi8 + self.freq.n - 1 else: ordinal = asi8 new_data = period_asfreq_arr(ordinal, base1, base2, end) if self._hasna: new_data[self._isnan] = iNaT return type(self)(new_data, freq=freq) # ------------------------------------------------------------------ # Rendering Methods def _formatter(self, boxed: bool = False): if boxed: return str return "'{}'".format @dtl.ravel_compat def _format_native_types( self, *, na_rep="NaT", date_format=None, **kwargs ) -> np.ndarray: """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: str(dt) if self._hasna: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values # ------------------------------------------------------------------ def astype(self, dtype, copy: bool = True): # We handle Period[T] -> Period[U] # Our parent handles everything else. dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self._dtype): if not copy: return self else: return self.copy() if is_period_dtype(dtype): return self.asfreq(dtype.freq) if is_datetime64_any_dtype(dtype): # GH#45038 match PeriodIndex behavior. tz = getattr(dtype, "tz", None) return self.to_timestamp().tz_localize(tz) return super().astype(dtype, copy=copy) def searchsorted( self, value: NumpyValueArrayLike | ExtensionArray, side: Literal["left", "right"] = "left", sorter: NumpySorter = None, ) -> npt.NDArray[np.intp] | np.intp: npvalue = self._validate_searchsorted_value(value).view("M8[ns]") # Cast to M8 to get datetime-like NaT placement m8arr = self._ndarray.view("M8[ns]") return m8arr.searchsorted(npvalue, side=side, sorter=sorter) def fillna(self, value=None, method=None, limit=None) -> PeriodArray: if method is not None: # view as dt64 so we get treated as timelike in core.missing dta = self.view("M8[ns]") result = dta.fillna(value=value, method=method, limit=limit) # error: Incompatible return value type (got "Union[ExtensionArray, # ndarray[Any, Any]]", expected "PeriodArray") return result.view(self.dtype) # type: ignore[return-value] return super().fillna(value=value, method=method, limit=limit) # ------------------------------------------------------------------ # Arithmetic Methods def _sub_datelike(self, other): assert other is not NaT return NotImplemented def _sub_period(self, other): # If the operation is well-defined, we return an object-Index # of DateOffsets. Null entries are filled with pd.NaT self._check_compatible_with(other) asi8 = self.asi8 new_data = asi8 - other.ordinal new_data = np.array([self.freq * x for x in new_data]) if self._hasna: new_data[self._isnan] = NaT return new_data def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ self._require_matching_freq(other) new_values = algos.checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasna or other._hasna: mask = self._isnan | other._isnan new_values[mask] = NaT return new_values def _addsub_int_array( self, other: np.ndarray, op: Callable[[Any, Any], Any] ) -> PeriodArray: """ Add or subtract array of integers; equivalent to applying `_time_shift` pointwise. Parameters ---------- other : np.ndarray[integer-dtype] op : {operator.add, operator.sub} Returns ------- result : PeriodArray """ assert op in [operator.add, operator.sub] if op is operator.sub: other = -other res_values = algos.checked_add_with_arr(self.asi8, other, arr_mask=self._isnan) res_values = res_values.view("i8") np.putmask(res_values, self._isnan, iNaT) return type(self)(res_values, freq=self.freq) def _add_offset(self, other: BaseOffset): assert not isinstance(other, Tick) self._require_matching_freq(other, base=True) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. result = super()._add_timedeltalike_scalar(other.n) return type(self)(result, freq=self.freq) def _add_timedeltalike_scalar(self, other): """ Parameters ---------- other : timedelta, Tick, np.timedelta64 Returns ------- PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray raise raise_on_incompatible(self, other) if notna(other): # special handling for np.timedelta64("NaT"), avoid calling # _check_timedeltalike_freq_compat as that would raise TypeError other = self._check_timedeltalike_freq_compat(other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. return super()._add_timedeltalike_scalar(other) def _add_timedelta_arraylike(self, other): """ Parameters ---------- other : TimedeltaArray or ndarray[timedelta64] Returns ------- result : ndarray[int64] """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray raise TypeError( f"Cannot add or subtract timedelta64[ns] dtype from {self.dtype}" ) if not np.all(isna(other)): delta = self._check_timedeltalike_freq_compat(other) else: # all-NaT TimedeltaIndex is equivalent to a single scalar td64 NaT return self + np.timedelta64("NaT") ordinals = self._addsub_int_array(delta, operator.add).asi8 return type(self)(ordinals, dtype=self.dtype) def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function base_nanos = self.freq.base.nanos if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == "m" if other.dtype != TD64NS_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(TD64NS_DTYPE) nanos = other.view("i8") else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta raise raise_on_incompatible(self, other) # ------------------------------------------------------------------ # TODO: See if we can re-share this with Period def _get_to_timestamp_base(self) -> int: """ Return frequency code group used for base of to_timestamp against frequency code. Return day freq code against longer freq than day. Return second freq code against hour between second. Returns ------- int """ base = self._dtype._dtype_code if base < FreqGroup.FR_BUS.value: return FreqGroup.FR_DAY.value elif FreqGroup.FR_HR.value <= base <= FreqGroup.FR_SEC.value: return FreqGroup.FR_SEC.value return base @property def start_time(self) -> DatetimeArray: return self.to_timestamp(how="start") @property def end_time(self) -> DatetimeArray: return self.to_timestamp(how="end") def _require_matching_freq(self, other, base: bool = False) -> None: # See also arrays.period.raise_on_incompatible if isinstance(other, BaseOffset): other_freq = other else: other_freq = other.freq if base: condition = self.freq.base != other_freq.base else: condition = self.freq != other_freq if condition: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other_freq.freqstr, ) raise IncompatibleFrequency(msg) def raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : None, DateOffset, Period, ndarray, or timedelta-like Returns ------- IncompatibleFrequency Exception to be raised by the caller. """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, (np.ndarray, ABCTimedeltaArray)) or right is None: other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, BaseOffset)): other_freq = right.freqstr else: other_freq = delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format( cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq ) return IncompatibleFrequency(msg) # ------------------------------------------------------------------- # Constructor Helpers def period_array( data: Sequence[Period | str | None] | AnyArrayLike, freq: str | Tick | None = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') <PeriodArray> ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ data_dtype = getattr(data, "dtype", None) if is_datetime64_dtype(data_dtype): return PeriodArray._from_datetime64(data, freq) if is_period_dtype(data_dtype): return PeriodArray(data, freq=freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple, ABCSeries)): data = list(data) arrdata = np.asarray(data) dtype: PeriodDtype | None if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(arrdata) and len(arrdata) > 0: raise TypeError("PeriodIndex does not allow floating point in construction") if is_integer_dtype(arrdata.dtype): arr = arrdata.astype(np.int64, copy=False) ordinals = libperiod.from_ordinals(arr, freq) return PeriodArray(ordinals, dtype=dtype) data = ensure_object(arrdata) return PeriodArray._from_sequence(data, dtype=dtype) def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError("dtype must be PeriodDtype") if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency("specified freq and dtype are different") return freq def dt64arr_to_periodarr(data, freq, tz=None): """ Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int64] freq : Tick The frequency extracted from the Series or DatetimeIndex if that's used. """ if data.dtype != np.dtype("M8[ns]"): raise ValueError(f"Wrong dtype: {data.dtype}") if freq is None: if isinstance(data, ABCIndex): data, freq = data._values, data.freq elif isinstance(data, ABCSeries): data, freq = data._values, data.dt.freq elif isinstance(data, (ABCIndex, ABCSeries)): data = data._values freq = Period._maybe_convert_freq(freq) base = freq._period_dtype_code return c_dt64arr_to_periodarr(data.view("i8"), base, tz), freq def _get_ordinal_range(start, end, periods, freq, mult=1): if com.count_not_none(start, end, periods) != 2: raise ValueError( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) if freq is not None: freq = to_offset(freq) mult = freq.n if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError("start and end must have same freq") if start is NaT or end is NaT: raise ValueError("start and end must not be NaT") if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError("Could not infer freq from start/end") if periods is not None: periods = periods * mult if start is None: data = np.arange( end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64 ) else: data = np.arange( start.ordinal, start.ordinal + periods, mult, dtype=np.int64 ) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields( year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None, ) -> tuple[np.ndarray, BaseOffset]: if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = to_offset("Q") base = FreqGroup.FR_QTR.value else: freq = to_offset(freq) base = libperiod.freq_to_dtype_code(freq) if base != FreqGroup.FR_QTR.value: raise AssertionError("base must equal FR_QTR") freqstr = freq.freqstr year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = parsing.quarter_to_myear(y, q, freqstr) val = libperiod.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: freq = to_offset(freq) base = libperiod.freq_to_dtype_code(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(libperiod.period_ordinal(y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields) -> list[np.ndarray]: length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError("Mismatched Period array lengths") elif length is None: length = len(x) # error: Argument 2 to "repeat" has incompatible type "Optional[int]"; expected # "Union[Union[int, integer[Any]], Union[bool, bool_], ndarray, Sequence[Union[int, # integer[Any]]], Sequence[Union[bool, bool_]], Sequence[Sequence[Any]]]" return [ np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) # type: ignore[arg-type] for x in fields ]
the-stack_106_19400
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the rawtransaction RPCs. Test the following RPCs: - createrawtransaction - signrawtransactionwithwallet - sendrawtransaction - decoderawtransaction - getrawtransaction """ from collections import OrderedDict from decimal import Decimal from io import BytesIO from test_framework.messages import CTransaction, ToHex from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error, bytes_to_hex_str, connect_nodes_bi, hex_str_to_bytes class multidict(dict): """Dictionary that allows duplicate keys. Constructed with a list of (key, value) tuples. When dumped by the json module, will output invalid json with repeated keys, eg: >>> json.dumps(multidict([(1,2),(1,2)]) '{"1": 2, "1": 2}' Used to test calls to rpc methods with repeated keys in the json object.""" def __init__(self, x): dict.__init__(self, x) self.x = x def items(self): return self.x # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [["-addresstype=legacy", "-txindex"], ["-addresstype=legacy", "-txindex"], ["-addresstype=legacy", "-txindex"]] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self): super().setup_network() connect_nodes_bi(self.nodes, 0, 2) def run_test(self): self.log.info('prepare some coins for multiple *rawtransaction commands') self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0) self.sync_all() self.nodes[0].generate(5) self.sync_all() self.log.info('Test getrawtransaction on genesis block coinbase returns an error') block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error(-5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) self.log.info('Check parameter types and required parameters of createrawtransaction') # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, False, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error(-8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{'txid': 'foo'}], {}) assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", self.nodes[0].createrawtransaction, [{'txid': 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid}], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 'foo'}], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': -1}], {}) assert_raises_rpc_error(-8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{'txid': txid, 'vout': 0, 'sequence': -1}], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() address2 = self.nodes[0].getnewaddress() assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') self.nodes[0].createrawtransaction(inputs=[], outputs={}) # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid BitcoinMeta address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error(-8, "Invalid parameter, duplicated address: %s" % address, self.nodes[0].createrawtransaction, [], [{address: 1}, {address: 1}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{"data": 'aa'}, {"data": "bb"}]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")])) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{'a': 1, 'b': 2}]) assert_raises_rpc_error(-8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) # Test `createrawtransaction` invalid `replaceable` assert_raises_rpc_error(-3, "Expected type bool", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') self.log.info('Check that createrawtransaction accepts an array and object as outputs') tx = CTransaction() # One output tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs={address: 99})))) assert_equal(len(tx.vout), 1) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}]), ) # Two outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=OrderedDict([(address, 99), (address2, 99)]))))) assert_equal(len(tx.vout), 2) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}]), ) # Multiple mixed outputs tx.deserialize(BytesIO(hex_str_to_bytes(self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=multidict([(address, 99), (address2, 99), ('data', '99')]))))) assert_equal(len(tx.vout), 3) assert_equal( bytes_to_hex_str(tx.serialize()), self.nodes[2].createrawtransaction(inputs=[{'txid': txid, 'vout': 9}], outputs=[{address: 99}, {address2: 99}, {'data': '99'}]), ) for type in ["bech32", "p2sh-segwit", "legacy"]: addr = self.nodes[0].getnewaddress("", type) addrinfo = self.nodes[0].getaddressinfo(addr) pubkey = addrinfo["scriptPubKey"] self.log.info('sendrawtransaction with missing prevtx info (%s)' %(type)) # Test `signrawtransactionwithwallet` invalid `prevtxs` inputs = [ {'txid' : txid, 'vout' : 3, 'sequence' : 1000}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1) succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx]) assert succ["complete"] if type == "legacy": del prevtx["amount"] succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx]) assert succ["complete"] if type != "legacy": assert_raises_rpc_error(-3, "Missing amount", self.nodes[0].signrawtransactionwithwallet, rawtx, [ { "txid": txid, "scriptPubKey": pubkey, "vout": 3, } ]) assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransactionwithwallet, rawtx, [ { "txid": txid, "scriptPubKey": pubkey, "amount": 1, } ]) assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransactionwithwallet, rawtx, [ { "scriptPubKey": pubkey, "vout": 3, "amount": 1, } ]) assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransactionwithwallet, rawtx, [ { "txid": txid, "vout": 3, "amount": 1 } ]) ######################################### # sendrawtransaction with missing input # ######################################### self.log.info('sendrawtransaction with missing input') inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1}] #won't exists outputs = { self.nodes[0].getnewaddress() : 4.998 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error(-25, "Missing inputs", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error(-8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error(-8, "parameter 3 must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].getrawtransaction, tx, True, "ZZZ0000000000000000000000000000000000000000000000000000000000000") assert_raises_rpc_error(-5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction(txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) ######################### # RAW TX MULTISIG TESTS # ######################### # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # createmultisig can only take public keys assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) # addmultisigaddress can take both pubkeys and addresses so long as they are in the wallet, which is tested here. mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr1])['address'] #use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BTC to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), bal+Decimal('1.20000000')) #node2 has both keys of the 2of2 ms addr., tx should affect the balance # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey']])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() #THIS IS AN INCOMPLETE FEATURE #NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND COUNT AT BALANCE CALCULATION assert_equal(self.nodes[2].getbalance(), bal) #for now, assume the funds of a 2of3 multisig tx are not marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "amount" : vout['value']}] outputs = { self.nodes[0].getnewaddress() : 2.19 } rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet(rawTx, inputs) assert_equal(rawTxPartialSigned['complete'], False) #node1 only has one key, can't comp. sign the tx rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) assert_equal(rawTxSigned['complete'], True) #node2 can sign the tx compl., own two of three keys self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2.2) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), bal) # the funds of a 2of2 multisig tx should not be marked as spendable txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = False for outpoint in rawTx2['vout']: if outpoint['value'] == Decimal('2.20000000'): vout = outpoint break bal = self.nodes[0].getbalance() inputs = [{ "txid" : txId, "vout" : vout['n'], "scriptPubKey" : vout['scriptPubKey']['hex'], "redeemScript" : mSigObjValid['hex'], "amount" : vout['value']}] outputs = { self.nodes[0].getnewaddress() : 2.19 } rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet(rawTx2, inputs) self.log.debug(rawTxPartialSigned1) assert_equal(rawTxPartialSigned1['complete'], False) #node1 only has one key, can't comp. sign the tx rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet(rawTx2, inputs) self.log.debug(rawTxPartialSigned2) assert_equal(rawTxPartialSigned2['complete'], False) #node2 only has one key, can't comp. sign the tx rawTxComb = self.nodes[2].combinerawtransaction([rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal+Decimal('50.00000000')+Decimal('2.19000000')) #block reward + tx # decoderawtransaction tests # witness transaction encrawtx = "010000000001010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f50500000000000102616100000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx, True) # decode as witness transaction assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000')) assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, encrawtx, False) # force decode as non-witness transaction # non-witness transaction encrawtx = "01000000010000000000000072c1a6a246ae63f74f931e8365e15a089c68d61900000000000000000000ffffffff0100e1f505000000000000000000" decrawtx = self.nodes[0].decoderawtransaction(encrawtx, False) # decode as non-witness transaction assert_equal(decrawtx['vout'][0]['value'], Decimal('1.00000000')) # getrawtransaction tests # 1. valid parameters - only supply txid txHash = rawTx["hash"] assert_equal(self.nodes[0].getrawtransaction(txHash), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction(txHash, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction(txHash, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, "Flase") # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txHash, {}) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 1000}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : -1}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967296}] outputs = { self.nodes[0].getnewaddress() : 1 } assert_raises_rpc_error(-8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs = [ {'txid' : "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout' : 1, 'sequence' : 4294967294}] outputs = { self.nodes[0].getnewaddress() : 1 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx= self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) #################################### # TRANSACTION VERSION NUMBER TESTS # #################################### # Test the minimum transaction version number that fits in a signed 32-bit integer. tx = CTransaction() tx.nVersion = -0x80000000 rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], -0x80000000) # Test the maximum transaction version number that fits in a signed 32-bit integer. tx = CTransaction() tx.nVersion = 0x7fffffff rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x7fffffff) if __name__ == '__main__': RawTransactionsTest().main()
the-stack_106_19401
# -*- coding: utf-8 -*- from branca.element import CssLink, Element, Figure, JavascriptLink from branca.utilities import none_max, none_min from folium.map import Layer from jinja2 import Template class HeatMapWithTime(Layer): """ Create a HeatMapWithTime layer Parameters ---------- data: list of list of points of the form [lat, lng] or [lat, lng, weight] The points you want to plot. The outer list corresponds to the various time steps in sequential order. (weight is in (0, 1] range and defaults to 1 if not specified for a point) index: Index giving the label (or timestamp) of the elements of data. Should have the same length as data, or is replaced by a simple count if not specified. name : string, default None The name of the Layer, as it will appear in LayerControls. radius: default 15. The radius used around points for the heatmap. min_opacity: default 0 The minimum opacity for the heatmap. max_opacity: default 0.6 The maximum opacity for the heatmap. scale_radius: default False Scale the radius of the points based on the zoom level. gradient: dict, default None Match point density values to colors. Color can be a name ('red'), RGB values ('rgb(255,0,0)') or a hex number ('#FF0000'). use_local_extrema: default False Defines whether the heatmap uses a global extrema set found from the input data OR a local extrema (the maximum and minimum of the currently displayed view). auto_play: default False Automatically play the animation across time. display_index: default True Display the index (usually time) in the time control. index_steps: default 1 Steps to take in the index dimension between aimation steps. min_speed: default 0.1 Minimum fps speed for animation. max_speed: default 10 Maximum fps speed for animation. speed_step: default 0.1 Step between different fps speeds on the speed slider. position: default 'bottomleft' Position string for the time slider. Format: 'bottom/top'+'left/right'. overlay : bool, default True Adds the layer as an optional overlay (True) or the base layer (False). control : bool, default True Whether the Layer will be included in LayerControls. show: bool, default True Whether the layer will be shown on opening (only for overlays). """ _template = Template(u""" {% macro script(this, kwargs) %} var times = {{this.times}}; {{this._parent.get_name()}}.timeDimension = L.timeDimension( {times : times, currentTime: new Date(1)} ); var {{this._control_name}} = new L.Control.TimeDimensionCustom({{this.index}}, { autoPlay: {{this.auto_play}}, backwardButton: {{this.backward_button}}, displayDate: {{this.display_index}}, forwardButton: {{this.forward_button}}, limitMinimumRange: {{this.limit_minimum_range}}, limitSliders: {{this.limit_sliders}}, loopButton: {{this.loop_button}}, maxSpeed: {{this.max_speed}}, minSpeed: {{this.min_speed}}, playButton: {{this.play_button}}, playReverseButton: {{this.play_reverse_button}}, position: "{{this.position}}", speedSlider: {{this.speed_slider}}, speedStep: {{this.speed_step}}, styleNS: "{{this.style_NS}}", timeSlider: {{this.time_slider}}, timeSliderDrapUpdate: {{this.time_slider_drap_update}}, timeSteps: {{this.index_steps}} }) .addTo({{this._parent.get_name()}}); var {{this.get_name()}} = new TDHeatmap({{this.data}}, {heatmapOptions: { radius: {{this.radius}}, minOpacity: {{this.min_opacity}}, maxOpacity: {{this.max_opacity}}, scaleRadius: {{this.scale_radius}}, useLocalExtrema: {{this.use_local_extrema}}, defaultWeight: 1, {% if this.gradient %}gradient: {{ this.gradient }}{% endif %} } }) .addTo({{this._parent.get_name()}}); {% endmacro %} """) def __init__(self, data, index=None, name=None, radius=15, min_opacity=0, max_opacity=0.6, scale_radius=False, gradient=None, use_local_extrema=False, auto_play=False, display_index=True, index_steps=1, min_speed=0.1, max_speed=10, speed_step=0.1, position='bottomleft', overlay=True, control=True, show=True): super(HeatMapWithTime, self).__init__(name=name, overlay=overlay, control=control, show=show) self._name = 'HeatMap' self._control_name = self.get_name() + 'Control' # Input data. self.data = data self.index = index if index is not None else [str(i) for i in range(1, len(data)+1)] if len(self.data) != len(self.index): raise ValueError('Input data and index are not of compatible lengths.') # noqa self.times = list(range(1, len(data)+1)) # Heatmap settings. self.radius = radius self.min_opacity = min_opacity self.max_opacity = max_opacity self.scale_radius = 'true' if scale_radius else 'false' self.use_local_extrema = 'true' if use_local_extrema else 'false' self.gradient = gradient # Time dimension settings. self.auto_play = 'true' if auto_play else 'false' self.display_index = 'true' if display_index else 'false' self.min_speed = min_speed self.max_speed = max_speed self.position = position self.speed_step = speed_step self.index_steps = index_steps # Hard coded defaults for simplicity. self.backward_button = 'true' self.forward_button = 'true' self.limit_sliders = 'true' self.limit_minimum_range = 5 self.loop_button = 'true' self.speed_slider = 'true' self.time_slider = 'true' self.play_button = 'true' self.play_reverse_button = 'true' self.time_slider_drap_update = 'false' self.style_NS = 'leaflet-control-timecontrol' def render(self, **kwargs): super(HeatMapWithTime, self).render(**kwargs) figure = self.get_root() assert isinstance(figure, Figure), ('You cannot render this Element ' 'if it is not in a Figure.') figure.header.add_child( JavascriptLink('https://rawgit.com/socib/Leaflet.TimeDimension/master/dist/leaflet.timedimension.min.js'), # noqa name='leaflet.timedimension.min.js') figure.header.add_child( JavascriptLink( 'https://rawgit.com/python-visualization/folium/master/folium/templates/pa7_hm.min.js'), # noqa name='heatmap.min.js') figure.header.add_child( JavascriptLink('https://rawgit.com/pa7/heatmap.js/develop/plugins/leaflet-heatmap/leaflet-heatmap.js'), # noqa name='leaflet-heatmap.js') figure.header.add_child( CssLink('http://apps.socib.es/Leaflet.TimeDimension/dist/leaflet.timedimension.control.min.css'), # noqa name='leaflet.timedimension.control.min.css') figure.header.add_child( Element( """ <script> var TDHeatmap = L.TimeDimension.Layer.extend({ initialize: function(data, options) { var heatmapCfg = { radius: 15, maxOpacity: 1., scaleRadius: false, useLocalExtrema: false, latField: 'lat', lngField: 'lng', valueField: 'count', defaultWeight : 1, }; heatmapCfg = $.extend({}, heatmapCfg, options.heatmapOptions || {}); var layer = new HeatmapOverlay(heatmapCfg); L.TimeDimension.Layer.prototype.initialize.call(this, layer, options); this._currentLoadedTime = 0; this._currentTimeData = { data: [] }; this.data= data; this.defaultWeight = heatmapCfg.defaultWeight || 1; }, onAdd: function(map) { L.TimeDimension.Layer.prototype.onAdd.call(this, map); map.addLayer(this._baseLayer); if (this._timeDimension) { this._getDataForTime(this._timeDimension.getCurrentTime()); } }, _onNewTimeLoading: function(ev) { this._getDataForTime(ev.time); return; }, isReady: function(time) { return (this._currentLoadedTime == time); }, _update: function() { this._baseLayer.setData(this._currentTimeData); return true; }, _getDataForTime: function(time) { delete this._currentTimeData.data; this._currentTimeData.data = []; var data = this.data[time-1]; for (var i = 0; i < data.length; i++) { this._currentTimeData.data.push({ lat: data[i][0], lng: data[i][1], count: data[i].length>2 ? data[i][2] : this.defaultWeight }); } this._currentLoadedTime = time; if (this._timeDimension && time == this._timeDimension.getCurrentTime() && !this._timeDimension.isLoading()) { this._update(); } this.fire('timeload', { time: time }); } }); L.Control.TimeDimensionCustom = L.Control.TimeDimension.extend({ initialize: function(index, options) { var playerOptions = { buffer: 1, minBufferReady: -1 }; options.playerOptions = $.extend({}, playerOptions, options.playerOptions || {}); L.Control.TimeDimension.prototype.initialize.call(this, options); this.index = index; }, _getDisplayDateFormat: function(date){ return this.index[date.getTime()-1]; } }); </script> """, # noqa template_name='timeControlScript' ) ) def _get_self_bounds(self): """ Computes the bounds of the object itself (not including it's children) in the form [[lat_min, lon_min], [lat_max, lon_max]]. """ bounds = [[None, None], [None, None]] for point in self.data: bounds = [ [ none_min(bounds[0][0], point[0]), none_min(bounds[0][1], point[1]), ], [ none_max(bounds[1][0], point[0]), none_max(bounds[1][1], point[1]), ], ] return bounds
the-stack_106_19402
import os import angr import angrop # pylint: disable=unused-import BIN_DIR = os.path.join(os.path.dirname(__file__), "..", "..", "binaries") def test_arm_conditional(): """ Currently, we don't model conditional execution in arm. So we don't allow conditional execution in arm at this moment. """ proj = angr.Project(os.path.join(BIN_DIR, "tests", "armel", "helloworld")) rop = proj.analyses.ROP(rebase=False) rop.find_gadgets_single_threaded(show_progress=False) cond_gadget_addrs = [0x10368, 0x1036c, 0x10370, 0x10380, 0x10384, 0x1038c, 0x1039c, 0x103a0, 0x103b8, 0x103bc, 0x103c4, 0x104e8, 0x104ec] assert all(x.addr not in cond_gadget_addrs for x in rop._gadgets) def test_jump_gadget(): """ Ensure it finds gadgets ending with jumps Ensure angrop can use jump gadgets to build ROP chains """ proj = angr.Project(os.path.join(BIN_DIR, "tests", "mipsel", "fauxware")) rop = proj.analyses.ROP(rebase=False) rop.find_gadgets_single_threaded(show_progress=False) jump_gadgets = [x for x in rop._gadgets if x.gadget_type == "jump"] assert len(jump_gadgets) > 0 jump_regs = [x.jump_reg for x in jump_gadgets] assert 't9' in jump_regs assert 'ra' in jump_regs def run_all(): functions = globals() all_functions = dict(filter((lambda kv: kv[0].startswith('test_')), functions.items())) for f in sorted(all_functions.keys()): if hasattr(all_functions[f], '__call__'): all_functions[f]() if __name__ == "__main__": import sys import logging logging.getLogger("angrop.rop").setLevel(logging.DEBUG) if len(sys.argv) > 1: globals()['test_' + sys.argv[1]]() else: run_all()
the-stack_106_19403
a,b=input().split() a,b=int(a),int(b) c=a-b c1=str(a) c2=str(b) c=str(c) if(len(c)==1): if(int(c)!=9): print(int(c)+1) else: print(int(c)-1) else: if(int(c[0])!=9): print(str(int(c[0])+1),end="") else: print(str(int(c[0])-1),end="") print(c[1:])
the-stack_106_19404
from asyncio import sleep from json import loads from json.decoder import JSONDecodeError from os import environ from sys import setrecursionlimit import spotify_token as st from requests import get from telethon.tl.functions.account import UpdateProfileRequest from sample_config import Config from uniborg.util import admin_cmd # =================== CONSTANT =================== SPO_BIO_ENABLED = "```Spotify Current Music to Bio enabled.```" SPO_BIO_DISABLED = "```Spotify Current Music to Bio disabled. Bio is default now.```" SPO_BIO_RUNNING = "```Spotify Current Music to Bio already running.```" SPO_BIO_CONFIG_ERROR = "```Error.```" ERROR_MSG = "```Module halted, Unexpected error.```" sp_dc = Config.SPOTIFY_DC sp_key = Config.SPOTIFY_KEY ARTIST = 0 SONG = 0 BIOPREFIX = "Now Playing.." SPOTIFYCHECK = False RUNNING = False OLDEXCEPT = False PARSE = False # ================================================ async def get_spotify_token(): sptoken = st.start_session(sp_dc, sp_key) access_token = sptoken[0] environ["spftoken"] = access_token async def update_spotify_info(): global ARTIST global SONG global PARSE global SPOTIFYCHECK global RUNNING global OLDEXCEPT oldartist = "" oldsong = "" while SPOTIFYCHECK: try: RUNNING = True spftoken = environ.get("spftoken", None) hed = {"Authorization": "Bearer " + spftoken} url = "https://api.spotify.com/v1/me/player/currently-playing" response = get(url, headers=hed) data = loads(response.content) artist = data["item"]["album"]["artists"][0]["name"] song = data["item"]["name"] OLDEXCEPT = False oldsong = environ.get("oldsong", None) if song != oldsong and artist != oldartist: oldartist = artist environ["oldsong"] = song spobio = BIOPREFIX + " 🎧: " + artist + " - " + song await borg(UpdateProfileRequest(about=spobio)) environ["errorcheck"] = "0" except KeyError: errorcheck = environ.get("errorcheck", None) if errorcheck == 0: await update_token() elif errorcheck == 1: SPOTIFYCHECK = False await borg(UpdateProfileRequest(about=Config.DEFAULT_BIO)) print(ERROR_MSG) if Config.LOGGER: await borg.send_message(Config.PM_LOGGR_BOT_API_ID, ERROR_MSG) except JSONDecodeError: OLDEXCEPT = True await sleep(6) await borg(UpdateProfileRequest(about=Config.DEFAULT_BIO)) except TypeError: await dirtyfix() SPOTIFYCHECK = False await sleep(2) await dirtyfix() RUNNING = False async def update_token(): sptoken = st.start_session(sp_dc, sp_key) access_token = sptoken[0] environ["spftoken"] = access_token environ["errorcheck"] = "1" await update_spotify_info() async def dirtyfix(): global SPOTIFYCHECK SPOTIFYCHECK = True await sleep(4) await update_spotify_info() @borg.on(admin_cmd(pattern="enablespotify ?(.*)")) # pylint:disable=E0602 async def set_biostgraph(setstbio): setrecursionlimit(700000) if not SPOTIFYCHECK: environ["errorcheck"] = "0" await setstbio.edit(SPO_BIO_ENABLED) await get_spotify_token() await dirtyfix() else: await setstbio.edit(SPO_BIO_RUNNING) @borg.on(admin_cmd(pattern="disablespotify ?(.*)")) # pylint:disable=E0602 async def set_biodgraph(setdbio): global SPOTIFYCHECK global RUNNING SPOTIFYCHECK = False RUNNING = False await borg(UpdateProfileRequest(about=Config.DEFAULT_BIO)) await setdbio.edit(SPO_BIO_DISABLED)
the-stack_106_19406
from mcpi.minecraft import Minecraft mc = Minecraft.create() from flask import Flask app = Flask(__name__) @app.route("/") def showName(): pos = mc.player.getTilePos() return "Player position: x: "+str(pos.x)+" y: "+str(pos.y) +" z: "+str(pos.z) if __name__ == '__main__': app.run()
the-stack_106_19407
""" plottr/apps/inspectr.py -- tool for browsing qcodes data. This module provides a GUI tool to browsing qcodes .db files. You can drap/drop .db files into the inspectr window, then browse through datasets by date. The inspectr itself shows some elementary information about each dataset and you can launch a plotting window that allows visualizing the data in it. Note that this tool is essentially only visualizing some basic structure of the runs contained in the database. It does not to any handling or loading of data. it relies on the public qcodes API to get its information. """ import os import time import sys import argparse import logging from typing import Optional, Sequence, List, Dict, Iterable, Union, cast, Tuple from typing_extensions import TypedDict from numpy import rint import pandas from plottr import QtCore, QtWidgets, Signal, Slot, QtGui, Flowchart from .. import log as plottrlog from ..data.qcodes_dataset import (get_runs_from_db_as_dataframe, get_ds_structure, load_dataset_from) from plottr.gui.widgets import MonitorIntervalInput, FormLayoutWrapper, dictToTreeWidgetItems from .autoplot import autoplotQcodesDataset, QCAutoPlotMainWindow __author__ = 'Wolfgang Pfaff' __license__ = 'MIT' def logger() -> logging.Logger: logger = plottrlog.getLogger('plottr.apps.inspectr') return logger ### Database inspector tool class DateList(QtWidgets.QListWidget): """Displays a list of dates for which there are runs in the database.""" datesSelected = Signal(list) fileDropped = Signal(str) def __init__(self, parent: Optional[QtWidgets.QWidget] = None): super().__init__(parent) self.setAcceptDrops(True) self.setDefaultDropAction(QtCore.Qt.CopyAction) self.setSelectionMode(QtWidgets.QListView.ExtendedSelection) self.itemSelectionChanged.connect(self.sendSelectedDates) @Slot(list) def updateDates(self, dates: Sequence[str]) -> None: for d in dates: if len(self.findItems(d, QtCore.Qt.MatchExactly)) == 0: self.insertItem(0, d) i = 0 while i < self.count(): if self.item(i).text() not in dates: item = self.takeItem(i) del item else: i += 1 if i >= self.count(): break self.sortItems(QtCore.Qt.DescendingOrder) @Slot() def sendSelectedDates(self) -> None: selection = [item.text() for item in self.selectedItems()] self.datesSelected.emit(selection) ### Drag/drop handling def dragEnterEvent(self, event: QtGui.QDragEnterEvent) -> None: if event.mimeData().hasUrls(): urls = event.mimeData().urls() if len(urls) == 1: url = urls[0] if url.isLocalFile(): event.accept() else: event.ignore() else: event.ignore() def dropEvent(self, event: QtGui.QDropEvent) -> None: url = event.mimeData().urls()[0].toLocalFile() self.fileDropped.emit(url) def mimeTypes(self) -> List[str]: return ([ 'text/uri-list', 'application/x-qabstractitemmodeldatalist', ]) class SortableTreeWidgetItem(QtWidgets.QTreeWidgetItem): """ QTreeWidgetItem with an overridden comparator that sorts numerical values as numbers instead of sorting them alphabetically. """ def __init__(self, strings: Iterable[str]): super().__init__(strings) def __lt__(self, other: "SortableTreeWidgetItem") -> bool: col = self.treeWidget().sortColumn() text1 = self.text(col) text2 = other.text(col) try: return float(text1) < float(text2) except ValueError: return text1 < text2 class RunList(QtWidgets.QTreeWidget): """Shows the list of runs for a given date selection.""" cols = ['Run ID', 'Experiment', 'Sample', 'Name', 'Started', 'Completed', 'Records', 'GUID'] runSelected = Signal(int) runActivated = Signal(int) def __init__(self, parent: Optional[QtWidgets.QWidget] = None): super().__init__(parent) self.setColumnCount(len(self.cols)) self.setHeaderLabels(self.cols) self.itemSelectionChanged.connect(self.selectRun) self.itemActivated.connect(self.activateRun) self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.customContextMenuRequested.connect(self.copy_to_clipboard) @Slot(QtCore.QPoint) def copy_to_clipboard(self, position: QtCore.QPoint) -> None: menu = QtWidgets.QMenu() copy_icon = self.style().standardIcon(QtWidgets.QStyle.SP_DialogSaveButton) copy_action = menu.addAction(copy_icon, "Copy") action = menu.exec_(self.mapToGlobal(position)) if action == copy_action: model_index = self.indexAt(position) item = self.itemFromIndex(model_index) QtWidgets.QApplication.clipboard().setText(item.text( model_index.column())) def addRun(self, runId: int, **vals: str) -> None: lst = [str(runId)] lst.append(vals.get('experiment', '')) lst.append(vals.get('sample', '')) lst.append(vals.get('name', '')) lst.append(vals.get('started_date', '') + ' ' + vals.get('started_time', '')) lst.append(vals.get('completed_date', '') + ' ' + vals.get('completed_time', '')) lst.append(str(vals.get('records', ''))) lst.append(vals.get('guid', '')) item = SortableTreeWidgetItem(lst) self.addTopLevelItem(item) def setRuns(self, selection: Dict[int, Dict[str, str]]) -> None: self.clear() # disable sorting before inserting values to avoid performance hit self.setSortingEnabled(False) for runId, record in selection.items(): self.addRun(runId, **record) self.setSortingEnabled(True) for i in range(len(self.cols)): self.resizeColumnToContents(i) def updateRuns(self, selection: Dict[int, Dict[str, str]]) -> None: run_added = False for runId, record in selection.items(): item = self.findItems(str(runId), QtCore.Qt.MatchExactly) if len(item) == 0: self.setSortingEnabled(False) self.addRun(runId, **record) run_added = True elif len(item) == 1: completed = record.get('completed_date', '') + ' ' + record.get( 'completed_time', '') if completed != item[0].text(5): item[0].setText(5, completed) num_records = str(record.get('records', '')) if num_records != item[0].text(6): item[0].setText(6, num_records) else: raise RuntimeError(f"More than one runs found with runId: " f"{runId}") if run_added: self.setSortingEnabled(True) for i in range(len(self.cols)): self.resizeColumnToContents(i) @Slot() def selectRun(self) -> None: selection = self.selectedItems() if len(selection) == 0: return runId = int(selection[0].text(0)) self.runSelected.emit(runId) @Slot(QtWidgets.QTreeWidgetItem, int) def activateRun(self, item: QtWidgets.QTreeWidgetItem, column: int) -> None: runId = int(item.text(0)) self.runActivated.emit(runId) class RunInfo(QtWidgets.QTreeWidget): """widget that shows some more details on a selected run. When sending information in form of a dictionary, it will create a tree view of that dictionary and display that. """ def __init__(self, parent: Optional[QtWidgets.QWidget] = None): super().__init__(parent) self.setHeaderLabels(['Key', 'Value']) self.setColumnCount(2) @Slot(dict) def setInfo(self, infoDict: Dict[str, Union[dict, str]]) -> None: self.clear() items = dictToTreeWidgetItems(infoDict) for item in items: self.addTopLevelItem(item) item.setExpanded(True) self.expandAll() for i in range(2): self.resizeColumnToContents(i) class LoadDBProcess(QtCore.QObject): """ Worker object for getting a qcodes db overview as pandas dataframe. It's good to have this in a separate thread because it can be a bit slow for large databases. """ dbdfLoaded = Signal(object) pathSet = Signal() def setPath(self, path: str) -> None: self.path = path self.pathSet.emit() def loadDB(self) -> None: dbdf = get_runs_from_db_as_dataframe(self.path) self.dbdfLoaded.emit(dbdf) class QCodesDBInspector(QtWidgets.QMainWindow): """ Main window of the inspectr tool. """ #: `Signal ()` -- Emitted when when there's an update to the internally #: cached data (the *data base data frame* :)). dbdfUpdated = Signal() #: Signal (`dict`) -- emitted to communicate information about a given #: run to the widget that displays the information _sendInfo = Signal(dict) def __init__(self, parent: Optional[QtWidgets.QWidget] = None, dbPath: Optional[str] = None): """Constructor for :class:`QCodesDBInspector`.""" super().__init__(parent) self._plotWindows: Dict[int, WindowDict] = {} self.filepath = dbPath self.dbdf = None self.monitor = QtCore.QTimer() # flag for determining what has been loaded so far. # * None: nothing opened yet. # * -1: empty DS open. # * any value > 0: run ID from the most recent loading. self.latestRunId = None self.setWindowTitle('Plottr | QCoDeS dataset inspectr') ### GUI elements # Main Selection widgets self.dateList = DateList() self._selected_dates: Tuple[str, ...] = () self.runList = RunList() self.runInfo = RunInfo() rightSplitter = QtWidgets.QSplitter(QtCore.Qt.Vertical) rightSplitter.addWidget(self.runList) rightSplitter.addWidget(self.runInfo) rightSplitter.setSizes([400, 200]) splitter = QtWidgets.QSplitter() splitter.addWidget(self.dateList) splitter.addWidget(rightSplitter) splitter.setSizes([100, 500]) self.setCentralWidget(splitter) # status bar self.status = QtWidgets.QStatusBar() self.setStatusBar(self.status) # toolbar self.toolbar = self.addToolBar('Data monitoring') # toolbar item: monitor interval self.monitorInput = MonitorIntervalInput() self.monitorInput.setToolTip('Set to 0 for disabling') self.monitorInput.intervalChanged.connect(self.setMonitorInterval) self.toolbar.addWidget(self.monitorInput) self.toolbar.addSeparator() # toolbar item: auto-launch plotting self.autoLaunchPlots = FormLayoutWrapper([ ('Auto-plot new', QtWidgets.QCheckBox()) ]) tt = "If checked, and automatic refresh is running, " tt += " launch plotting window for new datasets automatically." self.autoLaunchPlots.setToolTip(tt) self.toolbar.addWidget(self.autoLaunchPlots) # menu bar menu = self.menuBar() fileMenu = menu.addMenu('&File') # action: load db file loadAction = QtWidgets.QAction('&Load', self) loadAction.setShortcut('Ctrl+L') loadAction.triggered.connect(self.loadDB) fileMenu.addAction(loadAction) # action: updates from the db file refreshAction = QtWidgets.QAction('&Refresh', self) refreshAction.setShortcut('R') refreshAction.triggered.connect(self.refreshDB) fileMenu.addAction(refreshAction) # sizing scaledSize = 640 * rint(self.logicalDpiX() / 96.0) self.resize(scaledSize, scaledSize) ### Thread workers # DB loading. can be slow, so nice to have in a thread. self.loadDBProcess = LoadDBProcess() self.loadDBThread = QtCore.QThread() self.loadDBProcess.moveToThread(self.loadDBThread) self.loadDBProcess.pathSet.connect(self.loadDBThread.start) self.loadDBProcess.dbdfLoaded.connect(self.DBLoaded) self.loadDBProcess.dbdfLoaded.connect(self.loadDBThread.quit) self.loadDBThread.started.connect(self.loadDBProcess.loadDB) ### connect signals/slots self.dbdfUpdated.connect(self.updateDates) self.dbdfUpdated.connect(self.showDBPath) self.dateList.datesSelected.connect(self.setDateSelection) self.dateList.fileDropped.connect(self.loadFullDB) self.runList.runSelected.connect(self.setRunSelection) self.runList.runActivated.connect(self.plotRun) self._sendInfo.connect(self.runInfo.setInfo) self.monitor.timeout.connect(self.monitorTriggered) if self.filepath is not None: self.loadFullDB(self.filepath) def closeEvent(self, event: QtGui.QCloseEvent) -> None: """ When closing the inspectr window, do some house keeping: * stop the monitor, if running * close all plot windows """ if self.monitor.isActive(): self.monitor.stop() for runId, info in self._plotWindows.items(): info['window'].close() @Slot() def showDBPath(self) -> None: tstamp = time.strftime("%Y-%m-%d %H:%M:%S") assert self.filepath is not None path = os.path.abspath(self.filepath) self.status.showMessage(f"{path} (loaded: {tstamp})") ### loading the DB and populating the widgets @Slot() def loadDB(self) -> None: """ Open a file dialog that allows selecting a .db file for loading. If a file is selected, opens the db. """ if self.filepath is not None: curdir = os.path.split(self.filepath)[0] else: curdir = os.getcwd() path, _fltr = QtWidgets.QFileDialog.getOpenFileName( self, 'Open qcodes .db file', curdir, 'qcodes .db files (*.db);;all files (*.*)', ) if path: logger().info(f"Opening: {path}") self.loadFullDB(path=path) def loadFullDB(self, path: Optional[str] = None) -> None: if path is not None and path != self.filepath: self.filepath = path # makes sure we treat a newly loaded file fresh and not as a # refreshed one. self.latestRunId = None if self.filepath is not None: if not self.loadDBThread.isRunning(): self.loadDBProcess.setPath(self.filepath) def DBLoaded(self, dbdf: pandas.DataFrame) -> None: if dbdf.equals(self.dbdf): logger().debug('DB reloaded with no changes. Skipping update') return None self.dbdf = dbdf self.dbdfUpdated.emit() self.dateList.sendSelectedDates() logger().debug('DB reloaded') if self.latestRunId is not None: idxs = self.dbdf.index.values newIdxs = idxs[idxs > self.latestRunId] if self.monitor.isActive() and self.autoLaunchPlots.elements['Auto-plot new'].isChecked(): for idx in newIdxs: self.plotRun(idx) self._plotWindows[idx]['window'].setMonitorInterval( self.monitorInput.spin.value() ) @Slot() def updateDates(self) -> None: assert self.dbdf is not None if self.dbdf.size > 0: dates = list(self.dbdf.groupby('started_date').indices.keys()) self.dateList.updateDates(dates) ### reloading the db @Slot() def refreshDB(self) -> None: if self.filepath is not None: if self.dbdf is not None and self.dbdf.size > 0: self.latestRunId = self.dbdf.index.values.max() else: self.latestRunId = -1 self.loadFullDB() @Slot(float) def setMonitorInterval(self, val: float) -> None: self.monitor.stop() if val > 0: self.monitor.start(int(val * 1000)) self.monitorInput.spin.setValue(val) @Slot() def monitorTriggered(self) -> None: logger().debug('Refreshing DB') self.refreshDB() ### handling user selections @Slot(list) def setDateSelection(self, dates: Sequence[str]) -> None: if len(dates) > 0: assert self.dbdf is not None selection = self.dbdf.loc[self.dbdf['started_date'].isin(dates)].sort_index(ascending=False) old_dates = self._selected_dates if not all(date in old_dates for date in dates): self.runList.setRuns(selection.to_dict(orient='index')) else: self.runList.updateRuns(selection.to_dict(orient='index')) self._selected_dates = tuple(dates) else: self._selected_dates = () self.runList.clear() @Slot(int) def setRunSelection(self, runId: int) -> None: assert self.filepath is not None ds = load_dataset_from(self.filepath, runId) snap = None if hasattr(ds, 'snapshot'): snap = ds.snapshot structure = cast(Dict[str, dict], get_ds_structure(ds)) # cast away typed dict so we can pop a key for k, v in structure.items(): v.pop('values') contentInfo = {'Data structure': structure, 'QCoDeS Snapshot': snap} self._sendInfo.emit(contentInfo) @Slot(int) def plotRun(self, runId: int) -> None: assert self.filepath is not None fc, win = autoplotQcodesDataset(pathAndId=(self.filepath, runId)) self._plotWindows[runId] = { 'flowchart': fc, 'window': win, } win.showTime() class WindowDict(TypedDict): flowchart: Flowchart window: QCAutoPlotMainWindow def inspectr(dbPath: Optional[str] = None) -> QCodesDBInspector: win = QCodesDBInspector(dbPath=dbPath) return win def main(dbPath: Optional[str]) -> None: app = QtWidgets.QApplication([]) plottrlog.enableStreamHandler(True) win = inspectr(dbPath=dbPath) win.show() if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): appinstance = QtWidgets.QApplication.instance() assert appinstance is not None appinstance.exec_() def script() -> None: parser = argparse.ArgumentParser(description='inspectr -- sifting through qcodes data.') parser.add_argument('--dbpath', help='path to qcodes .db file', default=None) args = parser.parse_args() main(args.dbpath)
the-stack_106_19411
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Utility for plotting peaks in a certain region. """ import os import sys import math import argparse import itertools import cmder import inflect import pandas as pd import pyBigWig from seqflow import Flow, task, logger import matplotlib.pylab as plt import seaborn as sns from matplotlib import rcParams import matplotlib.colors rcParams['font.sans-serif'] = ['Times New Roman', 'Tahoma', 'DejaVu Sans', 'Lucida Grande', 'Verdana'] plt.switch_backend('agg') parser = argparse.ArgumentParser(description=__doc__, prog='peak-plot') parser.add_argument('--peak_beds', nargs='+', help="Space separated peak bed files.") parser.add_argument('--pos_bigwigs', nargs='+', help="Path to BigWig files contains data on positive strand.") parser.add_argument('--neg_bigwigs', nargs='+', help="Path to BigWig files contains data on negative strand.") parser.add_argument('--outdir', type=str, help="Path to output directory, default: current work directory.") parser.add_argument('--bases', type=int, help="Number of bases need to expand from peak center, default: 50.", default=50) parser.add_argument('--peak_bed_ids', nargs='+', help="Optional space separated short IDs (e.g., S1, S2, ...) for " "peak bed files, default: basename of each peak bed file " "without .bed extension.") parser.add_argument('--bigwig_ids', nargs='+', help="Optional space separated short IDs (e.g., S1, S2, ...) for " "BigWig files, default: basename of each BigWig file " "without .bw extension.") parser.add_argument('--cleanup', action='store_true', help='Clean up temporary files and links after complete.') parser.add_argument('--dry_run', action='store_true', help='Print out steps and inputs/outputs of each step without actually running the pipeline.') parser.add_argument('--debug', action='store_true', help='Invoke debug mode (only for develop purpose).') if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) args = parser.parse_args() NEED_TO_DELETE = [] def right_replace(s, src, tar): if s.endswith(src): return f'{s[:-len(src)]}{tar}' return s def validate_paths(): def files_exist(files, tag): if not files: logger.error(f'No {tag} were provided, aborted.') sys.exit(1) engine, paths = inflect.engine(), [] for i, file in enumerate(files, start=1): if os.path.exists(file): if not os.path.isfile(file): logger.error(f'The {engine.ordinal(i)} file in {tag} "{file}" is not a file.') sys.exit(1) else: paths.append(os.path.abspath(file)) else: logger.error(f'The {engine.ordinal(i)} file in {tag} "{file}" does not exist.') sys.exit(1) return paths def link_file(file, link): if not os.path.exists(link): os.symlink(file, link) NEED_TO_DELETE.append(link) return link peak_beds = files_exist(args.peak_beds, 'Peak beds') pos_bigwigs = files_exist(args.pos_bigwigs, 'BigWig positive') neg_bigwigs = files_exist(args.neg_bigwigs, 'BigWig negative') outdir = args.outdir or os.getcwd() if os.path.exists(outdir): if not os.path.isdir(outdir): logger.error(f'Outdir "{outdir}" is a file not a directory.') sys.exit(1) else: logger.error(f'Outdir "{outdir}" does not exist, try to create ...') os.mkdir(outdir) logger.error(f'Successfully created Outdir "{outdir}".') beds, positive_bigwigs, negative_bigwigs = {}, {}, {} peak_bed_ids = args.peak_bed_ids if args.peak_bed_ids else [''] * len(peak_beds) for i, (peak_bed, basename) in enumerate(zip(peak_beds, peak_bed_ids), start=1): basename = basename if basename else right_replace(os.path.basename(peak_bed), '.bed', '') peak_bed_link = link_file(peak_bed, os.path.join(outdir, f'{basename}.peak.bed')) beds[basename] = peak_bed_link bigwig_ids = args.bigwig_ids if args.bigwig_ids else [''] * len(pos_bigwigs) if len(pos_bigwigs) == len(neg_bigwigs) == len(bigwig_ids): for i, (bw_pos, bw_neg, basename) in enumerate(zip(pos_bigwigs, neg_bigwigs, bigwig_ids), start=1): basename = basename if basename else right_replace(os.path.basename(bw_pos), '.bw', '') bw_pos_link = link_file(bw_pos, os.path.join(outdir, f'{basename}.pos.bw')) bw_neg_link = link_file(bw_neg, os.path.join(outdir, f'{basename}.neg.bw')) positive_bigwigs[basename] = bw_pos_link negative_bigwigs[basename] = bw_neg_link return beds, positive_bigwigs, negative_bigwigs, outdir, args.bases beds, positive_bigwigs, negative_bigwigs, outdir, bases = validate_paths() names = list(positive_bigwigs.keys()) POS_HANDLERS = {k: pyBigWig.open(v) for k, v in positive_bigwigs.items()} NEG_HANDLERS = {k: pyBigWig.open(v) for k, v in negative_bigwigs.items()} class Peak: def __init__(self, chrom, start, end, strand): self.chrom = chrom self.start = start self.end = end self.strand = strand self.peak = f'{chrom}:{start}-{end}:{strand}' @task(inputs=[], outputs=os.path.join(outdir, 'peaks.union.bed'), kind='create') def concatenate_bed(inputs, bed): cmder.run(f'cat {" ".join([v for v in beds.values()])} > {bed}', msg='Concatenating peak bed files ...') return bed @task(inputs=concatenate_bed, outputs=lambda i: right_replace(i, '.union.bed', '.merged.bed')) def merge_bed(bed, out): tmp = right_replace(bed, '.union.bed', '.tmp.bed') cmder.run(f'sort -k1,1 -k2,2n {bed} > {tmp}', msg=f'Sorting {bed} ...') # Not output strand ? cmder.run(f'bedtools merge -i {tmp} -s -c 6 -o distinct > {out}', msg=f'Merging peaks in {tmp} ...') os.unlink(tmp) return out def get_density(chrom, start, end, handler): density = handler.values(chrom, start, end + 1) return density @task(inputs=merge_bed, outputs=os.path.join(outdir, 'peaks.density.matrix.tsv')) def create_matrix(bed, tsv): bed = right_replace(tsv, '.density.matrix.tsv', '.merged.bed') df = pd.read_csv(bed, sep='\t', header=None, names=['chrom', 'start', 'end', 'strand']) dd, headers = [], ['Peak', 'Base'] for name in names: headers.extend([f'{name}:{i}' for i in list(range(-args.bases, 1)) + list(range(1, args.bases + 1))]) for i, row in enumerate(df.itertuples()): densities = [] peak = Peak(row.chrom, row.start, row.end, row.strand) dx = {k: get_density(row.chrom, row.start, row.end, POS_HANDLERS[k] if row.strand == '+' else NEG_HANDLERS[k]) for k in names} dx = pd.DataFrame(dx) center = dx.abs().max(axis=1).idxmax() + row.start left, right = center - bases, center + bases densities.extend([peak.peak, f'{left}-{right}']) dx = {k: get_density(row.chrom, left - 1, right - 1, POS_HANDLERS[k] if row.strand == '+' else NEG_HANDLERS[k]) for k in names} maximum = pd.DataFrame(dx).abs().max().max() for k in sorted(names): densities.extend([abs(v) / maximum for v in dx[k]]) # densities.extend([abs(v) for v in dx[k]]) if args.debug and i == 100: break dd.append(densities) dd = pd.DataFrame(dd, columns=headers) dd = dd.fillna(0) dd = dd[dd.sum(axis=1) > 0] dd.to_csv(tsv, index=False, sep='\t', float_format='%.4f') @task(inputs=create_matrix, outputs=lambda i: i.replace('.density.matrix.tsv', '.heatmap.png')) def plot_peak(tsv, png): df = pd.read_csv(tsv, sep='\t') # print(df) df = df.drop(columns=['Peak', 'Base']) # df = df.drop(columns=[0, 1]) g = sns.clustermap(df, col_cluster=False, figsize=(12, 8), cmap='Greens', cbar_pos=(0.21, 0.9, 0.78, 0.03), xticklabels=False, yticklabels=False, cbar_kws={"orientation": "horizontal"}) g.ax_row_dendrogram.set_visible(False) g.ax_heatmap.set_xticks(list(range(51, len(names) * 100, 101))) g.ax_heatmap.set_xticklabels([name.replace('QKI_', '').replace('.merged.rmDup.r2.sorted.bam.p.sort', '') for name in names], rotation=90) g.savefig(png, dpi=300) # g.savefig(right_replace(png, '.png', '.pdf')) # g.savefig(right_replace(png, '.png', '.svg')) def main(): try: flow = Flow('PeakPlot', description=__doc__.strip()) flow.run(dry=args.dry_run) if NEED_TO_DELETE and args.cleanup: logger.info('Cleaning up ...') for file in need_to_remove: cmder.run(f'rm {file}') logger.info('Cleaning up complete.') finally: for k, v in POS_HANDLERS.items(): v.close() for k, v in NEG_HANDLERS.items(): v.close() if __name__ == '__main__': main()
the-stack_106_19413
from django.urls import reverse from django.test import TestCase from rest_framework import status from core.models import Ingredient, Recipe from rest_framework.test import APIClient from django.contrib.auth import get_user_model from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') class PublicIngredientsApiTests(TestCase): """Test the publicly available ingredients API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that the login is required to access the endpoint""" res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateIngredientsApiTests(TestCase): """Test the authorized user ingredients API""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( '[email protected]', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_ingredient_list(self): """Test retrieving a list of ingredients""" Ingredient.objects.create(user=self.user, name='kale') Ingredient.objects.create(user=self.user, name='salt') res = self.client.get(INGREDIENTS_URL) ingredients = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredients, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_ingredients_limited_to_user(self): """Test that only ingredients for authenticated user are returned""" user2 = get_user_model().objects.create_user( '[email protected]', 'testpass' ) Ingredient.objects.create(user=user2, name='Vinegar') ingredient = Ingredient.objects.create(user=self.user, name='tumeric') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], ingredient.name) def test_create_ingredient_successful(self): """Test creating a new ingredient""" payload = {'name': 'Fish'} self.client.post(INGREDIENTS_URL, payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) def test_create_ingredient_invalid(self): """Test creating a new ingredient with invalid payload""" payload = {'name': ''} res = self.client.post(INGREDIENTS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_ingredients_assigned_to_recipes(self): """Test filtering ingredients by those assigned to recipes""" ingredient1 = Ingredient.objects.create( user=self.user, name='Apples' ) ingredient2 = Ingredient.objects.create( user=self.user, name='Turkey' ) recipe = Recipe.objects.create( title='Apple crumble', time_minutes=5, price=10.00, user=self.user ) recipe.ingredients.add(ingredient1) res = self.client.get(INGREDIENTS_URL, {'assigned_only': 1}) serializer1 = IngredientSerializer(ingredient1) serializer2 = IngredientSerializer(ingredient2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data) def test_retrieve_ingredient_assigned_unique(self): """Test filtering ingredients by assigned returns unique items""" ingredient = Ingredient.objects.create(user=self.user, name='Eggs') Ingredient.objects.create(user=self.user, name='Cheese') recipe1 = Recipe.objects.create( title='Eggs benedict', time_minutes=30, price=12.00, user=self.user ) recipe1.ingredients.add(ingredient) recipe2 = Recipe.objects.create( title='Green eggs on toast', time_minutes=20, price=5.00, user=self.user ) recipe2.ingredients.add(ingredient) res = self.client.get(INGREDIENTS_URL, {'assigned_only': 1}) self.assertEqual(len(res.data), 1)
the-stack_106_19414
import numpy as np from gym_wmgds import Env, spaces from gym_wmgds.utils import seeding def categorical_sample(prob_n, np_random): """ Sample from categorical distribution Each row specifies class probabilities """ prob_n = np.asarray(prob_n) csprob_n = np.cumsum(prob_n) return (csprob_n > np_random.rand()).argmax() class DiscreteEnv(Env): """ Has the following members - nS: number of states - nA: number of actions - P: transitions (*) - isd: initial state distribution (**) (*) dictionary dict of dicts of lists, where P[s][a] == [(probability, nextstate, reward, done), ...] (**) list or array of length nS """ def __init__(self, nS, nA, P, isd): self.P = P self.isd = isd self.lastaction = None # for rendering self.nS = nS self.nA = nA self.action_space = spaces.Discrete(self.nA) self.observation_space = spaces.Discrete(self.nS) self.seed() self.reset() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def reset(self): self.s = categorical_sample(self.isd, self.np_random) self.lastaction = None return self.s def step(self, a): transitions = self.P[self.s][a] i = categorical_sample([t[0] for t in transitions], self.np_random) p, s, r, d= transitions[i] self.s = s self.lastaction = a return (s, r, d, {"prob" : p})
the-stack_106_19421
class ReadFile: """ReadFile is a class for reading the lines from a given txt file. """ def __init__(self): """Keyword argumnets: file_name -- path to the file wished to be read """ try: print("Started creation of object type of ReadFile succesfully.") except Exception as exc: print("Error in creation of object type of ReadFile.") print(exc) finally: print("Ended creation of object type of ReadFile succesfully.\n") def read_txt_lines(self, file_name): try: print("Started succesfully ReadFile: read_txt_lines()") url_file = open(file_name, "r") lines = url_file.readlines() url_file.close() return lines except Exception as exc: print("Error in ReadFile: read_txt_lines()!") print(exc) finally: print("Ended succesfully ReadFile: read_txt_lines()\n") def read_from_couple(self, prename): try: print("Started succesfully ReadFile: read_from_dict()") save_dir = prename + "/" file_path = prename + ".txt" return save_dir, file_path except Exception as exc: print("Error in ReadFile: read_from_dict()!") print(exc) finally: print("Ended succesfully ReadFile: read_from_dict()\n") def create_couples(self, urls_path): try: print("Started succesfully ReadFile: create_dict()") lines = self.read_txt_lines(urls_path) couples_list = list() for line in lines: words = line.split(',') if words[1].endswith('\n'): words[1] = words[1].rstrip() couples_list.append(words) return couples_list except Exception as exc: print("Error in ReadFile: create_dict()!") print(exc) finally: print("Ended succesfully ReadFile: create_dict()\n")
the-stack_106_19422
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Distributed under terms of the MIT license. from .extractor import Extractor from ..vocab import Vocab import jieba import re import numpy as np UNK_IDX = 0 EOS_IDX = 2 class WordEmbedExtractor(Extractor): def __init__(self): Extractor.__init__(self, name="WordEmbedExtractor") self.max_clen = 300 self.max_wlen = 100 self.feat_names = ['label', 'sid', 's1_word', 's2_word', 's1_word_rvs', 's2_word_rvs', 's1_wlen', 's2_wlen',\ 's1_char', 's2_char', 's1_char_rvs', 's2_char_rvs', 's1_clen', 's2_clen'] self.feat_lens = [1, 1, self.max_wlen, self.max_wlen, self.max_wlen, self.max_wlen, 1, 1,\ self.max_clen, self.max_clen, self.max_clen, self.max_clen, 1, 1] self.feat_levels = ['p', 'p', 'w', 'w', 'w', 'w', 's', 's', 'c', 'c', 'c', 'c', 's', 's'] def extract(self, data, char_vocab, word_vocab, mode='train'): s1_word = [] s2_word = [] s1_word_rvs = [] s2_word_rvs = [] s1_char = [] s2_char = [] s1_char_rvs = [] s2_char_rvs = [] s1_wlen = [] s2_wlen = [] s1_clen = [] s2_clen = [] sid = [] label = [] for ins in data: if mode == 'train': label.append([ins['label']]) sid.append([ins['sid']]) s1_wlen.append([len(ins['s1_word'])]) s2_wlen.append([len(ins['s2_word'])]) s1_word.append(np.pad(word_vocab.toi(ins['s1_word']), (0, self.max_wlen - len(ins['s1_word'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s2_word.append(np.pad(word_vocab.toi(ins['s2_word']), (0, self.max_wlen - len(ins['s2_word'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s1_word_rvs.append(np.pad(word_vocab.toi(ins['s1_word'])[::-1], (0, self.max_wlen - len(ins['s1_word'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s2_word_rvs.append(np.pad(word_vocab.toi(ins['s2_word'])[::-1], (0, self.max_wlen - len(ins['s2_word'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s1_clen.append([len(ins['s1_char'])]) s2_clen.append([len(ins['s2_char'])]) s1_char.append(np.pad(char_vocab.toi(ins['s1_char']), (0, self.max_clen - len(ins['s1_char'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s2_char.append(np.pad(char_vocab.toi(ins['s2_char']), (0, self.max_clen - len(ins['s2_char'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s1_char_rvs.append(np.pad(char_vocab.toi(ins['s1_char'])[::-1], (0, self.max_clen - len(ins['s1_char'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) s2_char_rvs.append(np.pad(char_vocab.toi(ins['s2_char'])[::-1], (0, self.max_clen - len(ins['s2_char'])),\ 'constant', constant_values=(EOS_IDX, EOS_IDX))) if mode == 'train': feats = np.concatenate((label, sid, s1_word, s2_word, s1_word_rvs, s2_word_rvs, s1_wlen, s2_wlen, s1_char, s2_char, s1_char_rvs, s2_char_rvs, s1_clen, s2_clen), axis=1) else: feats = np.concatenate((sid, sid, s1_word, s2_word, s1_word_rvs, s2_word_rvs, s1_wlen, s2_wlen, s1_char, s2_char, s1_char_rvs, s2_char_rvs, s1_clen, s2_clen), axis=1) return feats
the-stack_106_19424
# Auto-Discovery of Content Files # print('This is working') # write in base.html the navigation links template = open("template/base.html").read() #read files in the content directory import glob all_html_files = glob.glob("content/*.html") i=0 pages = [] template = open("template/base.html").read() navbar = "" navbar_output = "" add_navbar = [] combined_base = "" filename = {} # create the auto-generated list: for html_file in all_html_files: import os file_path = all_html_files[i] file_name = os.path.basename(file_path) i = i+1 name_only, extension = os.path.splitext(file_name) path = "content/index.html" pages.append({ "filename": "content/" + file_name, "title":"" + name_only + "", "output": "docs/" + file_name, }) # create the auto-generated navigation bar: add_navbar = '<li class="nav-item"> ' + '<a class="nav-link js-scroll-trigger" href="' + file_name + '#' + name_only + '">' + name_only + '</a> ' + '</li>' navbar_output = navbar_output + '\n' + add_navbar # write the auto-generated navbar in the base template: template = template.replace("{{navbar}}", navbar_output) #combine the base template with the content and title: for page in pages: filename = open(page['filename']).read() combined_file = template.replace("{{content}}", filename) combined_file = combined_file.replace("{{title}}", page['title']) open(page['output'], 'w+').write(combined_file) #---------------------------------------
the-stack_106_19425
""" Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You may assume no duplicates in the array. @author: Lisong Guo <[email protected]> @date: July 30, 2018 """ class Solution: def _searchInsert(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int return the position to insert a new element into the sorted list. Note: the solution can be implemented in a recursive way. """ size = len(nums) if (size == 0): # empty input list, early exit return 0 mid_index = int(size/2) if (nums[mid_index] == target): return mid_index elif (nums[mid_index] > target): return self.searchInsert(nums[0:mid_index], target) else: return mid_index + 1 + self.searchInsert(nums[mid_index+1:], target) def searchInsert(self, nums, target): return self.tail_recursive_searchInsert(0, nums, target) def tail_recursive_searchInsert(self, start, nums, target): """ :type nums: List[int] :type target: int :rtype: int return the position to insert a new element into the sorted list. Note: the solution can be implemented in a recursive way. """ size = len(nums) if (size == 0): # empty input list, early exit return start mid_index = int(size/2) if (nums[mid_index] == target): return start + mid_index elif (nums[mid_index] > target): return self.tail_recursive_searchInsert( start, nums[0:mid_index], target) else: return self.tail_recursive_searchInsert( start+mid_index+1, nums[mid_index+1:], target) def verify(case_name, test_input, test_target): """ utility function for unit testing """ solution = Solution() print(case_name, test_input, ' target:', test_target) assert(test_target == solution.searchInsert(*test_input)) if __name__ == "__main__": solution = Solution() test_case_1_input = ([1,3,5,6], 5) test_case_1_target = 2 verify('test case 1:', test_case_1_input, test_case_1_target) test_case_2_input = ([], 1) test_case_2_target = 0 verify('test case 2 (empty list):', test_case_2_input, test_case_2_target) test_case_3_input = ([1,3,5,6], 2) test_case_3_target = 1 verify("test case 3:", test_case_3_input, test_case_3_target) test_case_4_input = ([1,3,5,6], 7) test_case_4_target = 4 verify("test case 4:", test_case_4_input, test_case_4_target) test_case_5_input = ([1,3,5,6], 0) test_case_5_target = 0 verify("test case 5:", test_case_5_input, test_case_5_target)
the-stack_106_19427
# Copyright 2020 Mike Iacovacci # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from lib.classes import * from colorama import Fore, Style from io import BytesIO from os import geteuid, listdir, mkdir, path, rename, remove from pickle import dump, load, PickleError from prompt_toolkit import prompt from prompt_toolkit.completion import FuzzyCompleter, WordCompleter from prompt_toolkit.styles import Style as ptkStyle from re import split from shutil import rmtree from sys import argv from requests import get, RequestException from yaml import safe_load_all, parser, scanner from zipfile import BadZipFile, LargeZipFile, ZipFile def able_to_merge(current_tool, tool_id, tools): """ SUMMARY: determines if merging YAML data from 2 files is possible without data loss INPUT: 1) an AxiomTool object, a tool ID value (int), and 2) a list of AxiomTool objects OUTPUT: True or False """ if tool_id < 0: return False match = tools[tool_id] temp_list = [] new_list = [] if current_tool[0]["ptf_module"] != match.ptf_module: return False if current_tool[0]["description"] != match.description: return False action_count = 0 while action_count < match.action_list.__len__(): temp_list.append(match.action_list[action_count].name) action_count += 1 command_count = 0 while command_count < match.command_list.__len__(): temp_list.append(match.command_list[command_count].name) command_count += 1 new_count = 0 while new_count < current_tool[1]["commands"].__len__(): new_list.append(list(current_tool[1]["commands"][new_count].keys())[0]) new_count += 1 for command_name in new_list: if command_name in temp_list: return False return True def axiom_help(): """ SUMMARY: displays helpful CLI usage details with examples INPUT: none OUTPUT: none, only prints to the screen """ print("\n" + "Standard usage: ./axiom [MODE] [TOOL] [NUM]" "\n" + "" + "\n" + " ./axiom show nmap" + "\n" + " ./axiom show mimikatz 1" + "\n" + " ./axiom build powershell 4" + "\n" + " ./axiom run hashcat 3" + "\n" + "" + "\n" + "Configuration management: ./axiom [MODE] [URL]" + "\n" + "" + "\n" + " ./axiom new" + "\n" + " ./axiom reload" + "\n" + " ./axiom init" + "\n" + " ./axiom init https://example.com/config.yml" + "\n") def axiom_prompt(tool_list, tool_names, tools): """ SUMMARY: main interactive prompt loop of the program, handles multiple tool selection loops INPUT: 1) list of two-item tuples (name, platform), 2) set of tool names, and 3) list of AxiomTool objects OUTPUT: exit value (int) to be immediately passed to exit() in __main__ """ exit_code = 1 while exit_code > 0: exit_code = tool_selection_prompt(tool_list, tool_names, tools) return exit_code def branch(settings, tool_list, tools): """ SUMMARY: changes program flow based on user-supplied settings INPUT: 1) a three-item dictionary, 2) a de-duplicated list of tuples, and 3) list of AxiomTool objects OUTPUT: no return value, may exit the entire program """ if settings.get("mode") in [None, "reload", "init"]: return if settings.get("mode") == "new": new_generate_command() if settings.get("num") == -1: print_error("ERROR: Invalid command ID") exit(1) text = settings.get("tool") tool_id = disambiguate_tool_name(text, tool_list, tools) if tool_id < 0: print_error("ERROR: Invalid tool") exit(1) tool = tools[tool_id] if settings.get("mode") == "show": if settings.get("num") is None: tool.show() print() exit(0) elif int(settings.get("num") - 1) not in range(tool.combined_list.__len__()): print_error("ERROR: Invalid command specified") exit(1) else: number = int(settings.get("num") - 1) command_type, id_value = tool.resolve_command(number) if command_type == "action": tool.action_list[id_value].show() print() elif command_type == "command": tool.command_list[id_value].show() print() exit(0) if settings.get("mode") == "run": if settings.get("num") is None: print_error("ERROR: No command specified") exit(1) elif int(settings.get("num") - 1) not in range(tool.combined_list.__len__()): print_error("ERROR: Invalid command specified") exit(1) else: number = int(settings.get("num") - 1) command_type, id_value = tool.resolve_command(number) if command_type == "action": if tool.action_list[id_value].execution_type in ["standalone", "autonomous", "NX"]: tool.action_list[id_value].run(tool) else: print_error("ERROR: Selected action must be executed via interactive AXIOM prompt") exit(1) elif command_type == "command": if tool.command_list[id_value].execution_type in ["standalone", "autonomous", "NX"]: tool.command_list[id_value].run(tool) else: print_error("ERROR: Selected command must be executed via interactive AXIOM prompt") exit(1) exit(0) if settings.get("mode") == "build": if settings.get("num") is None: print_error("ERROR: No command specified") exit(1) elif int(settings.get("num") - 1) not in range(tool.combined_list.__len__()): print_error("ERROR: Invalid command specified") exit(1) else: number = int(settings.get("num") - 1) command_type, id_value = tool.resolve_command(number) if command_type == "action": tool.action_list[id_value].cli_print() elif command_type == "command": tool.command_list[id_value].cli_print() exit(0) def command_selection_prompt(tool): """ SUMMARY: prompts user to select a listed command/action for the current tool and calls the execution function INPUT: an AxiomTool object OUTPUT: none """ while True: tool.show() number = prompt('\n[AXIOM] Select command: ') if number == "back": return if number == "exit" or number == "quit": print("Exiting...") exit(0) if number == "": continue try: number = int(number) number -= 1 except (ValueError, TypeError): number = -1 if number not in range(tool.combined_list.__len__()): print_error("\nERROR: Invalid command specified") else: command_type, id_value = tool.resolve_command(number) if command_type == "action": confirmed = tool.action_list[id_value].confirm_and_execute(tool) elif command_type == "command": confirmed = tool.command_list[id_value].confirm_and_execute(tool) else: confirmed = False if confirmed: dispatch.continue_trigger.wait(timeout=None) dispatch.continue_trigger.clear() print() input("[AXIOM] Press ENTER to continue ") def create_missing_folder(folder): """ SUMMARY: checks if specified folder exists, creates it if it does not exist INPUT: a string specifying a folder on the filesystem OUTPUT: none, creates necessary folder if it does not exist """ if path.exists(folder): return else: try: mkdir(folder) except OSError: print_error(str("ERROR: Cannot create folder \"" + folder + "\"")) exit(1) def delete_and_recreate_folder(folder): """ SUMMARY: deletes specified folder, if it exists, and (re)creates it on the filesystem INPUT: a string specifying a folder on the filesystem OUTPUT: none, deletes files from the filesystem and/or creates necessary folders """ if path.exists(folder): try: rmtree(folder) except OSError: print_error(str("ERROR: Cannot delete folder \"" + folder + "\"")) exit(1) create_missing_folder(folder) def disambiguate_tool_name(text, tool_list, tools): """ SUMMARY: finds the user-intended tool ID for multi-platform tool names prompting the user as needed INPUT: 1) supplied tool name (str), 2) de-duplicated list of tuples, and 3) list of AxiomTool objects OUTPUT: tool ID value (int) or -1 if invalid number of platforms or no matching tool found """ platform_list = [] for x in tool_list: if x[0] == text: platform_list.append(x[1]) platform_list = sorted(platform_list, key=str.casefold) potential_tool = [] if platform_list.__len__() == 0: return -1 elif platform_list.__len__() == 1: potential_tool.append(text) potential_tool.append(platform_list[0]) else: selection = 0 while selection == 0: print("\nPlatforms\n") i = 0 while i < platform_list.__len__(): print(" " + str(i + 1) + "\t" + platform_list[i]) i += 1 platform = prompt('\n[AXIOM] Select platform: ') try: number = int(platform) except (ValueError, TypeError): number = 0 if number > 0: if number <= platform_list.__len__(): potential_tool.append(text) potential_tool.append(platform_list[number - 1]) selection = 1 return resolve_tool_id(potential_tool, tools) def download_and_extract_zip(zip_url, extracted_folder, destination_folder, human_name): """ SUMMARY: prepares the filesystem, downloads a ZIP file, and extracts it to a folder with a specified name INPUT: ZIP file URL, temporary folder name, destination folder name, and human-friendly name (all strings) OUTPUT: no return values, modifies the filesystem """ if path.exists(destination_folder): try: rmtree(destination_folder) except OSError: print_error(str("ERROR: Cannot prepare extraction location \"" + destination_folder + "\"")) exit(1) print("Downloading " + human_name + "...") try: request = get(zip_url) except RequestException: print_error(str("ERROR: Cannot download \"" + human_name + "\" from " + zip_url)) exit(1) else: if request.status_code == 200: try: zipfile = ZipFile(BytesIO(request.content)) zipfile.extractall(".") rename(extracted_folder, destination_folder) except (BadZipFile, LargeZipFile, OSError): print_error(str("ERROR: Cannot extract \"" + extracted_folder + "\"")) exit(1) else: print_error(str("ERROR: Failed to download \"" + human_name + "\"")) exit(1) def get_args(): """ SUMMARY: processes command-line arguments to modify overall program execution flow INPUT: none, checks argv for arguments supplied via CLI OUTPUT: three-item dictionary containing the mode type, tool name, and command/action number """ if argv.__len__() < 2: return {"mode": None, "tool": None, "num": None} elif argv.__len__() > 4: axiom_help() exit(1) elif argv.__len__() == 2: if argv[1] == "init": return {"mode": "init", "tool": None, "num": None} if argv[1] == "reload": return {"mode": "reload", "tool": None, "num": None} if argv[1] in ["n", "ne", "new", "-n", "--new"]: return {"mode": "new", "tool": None, "num": None} else: axiom_help() exit(1) elif argv.__len__() == 3 or 4: if argv[1] == "init": return {"mode": "init", "tool": str(argv[2]), "num": None} if argv[1] in ["s", "sh", "sho", "show", "-s", "--show"]: if argv.__len__() == 3: return {"mode": "show", "tool": str(argv[2]), "num": None} if argv.__len__() == 4: try: number = int(argv[3]) except (ValueError, TypeError): number = -1 return {"mode": "show", "tool": str(argv[2]), "num": number} if argv[1] in ["r", "ru", "run", "-r", "--run"]: if argv.__len__() == 3: return {"mode": "run", "tool": str(argv[2]), "num": None} if argv.__len__() == 4: try: number = int(argv[3]) except (ValueError, TypeError): number = -1 return {"mode": "run", "tool": str(argv[2]), "num": number} if argv[1] in ["b", "bu", "bui", "buil", "build", "-b", "--build"]: if argv.__len__() == 3: return {"mode": "build", "tool": str(argv[2]), "num": None} if argv.__len__() == 4: try: number = int(argv[3]) except (ValueError, TypeError): number = -1 return {"mode": "build", "tool": str(argv[2]), "num": number} else: axiom_help() exit(1) else: axiom_help() exit(1) def get_input_types(input_types_list, text): """ SUMMARY: parses placeholder text to determine the type of input required for command/action execution INPUT: 1) list of all possible input types (strings), and 2) the command text (list or str) OUTPUT: a list of strings """ if isinstance(text, list): temporary_string = "" line_count = 0 while line_count < text.__len__(): temporary_string += text[line_count] line_count += 1 text = temporary_string used_input_types = [] end = text.__len__() indices = [i for i in range(end) if text.startswith("{", i)] hit_count = 0 while hit_count < indices.__len__(): min_beginning = indices[hit_count] if min_beginning + 10 > end: max_ending = end else: max_ending = min_beginning + 10 target = text[min_beginning:max_ending] for entry in input_types_list: if str(entry + "}") in target: used_input_types.append(entry) break hit_count += 1 return used_input_types def get_tool_names(tool_list): """ SUMMARY: creates a list (set) of unique tool names for searching, auto-suggestion, etc. INPUT: a list of two-item tuple (tool, platform) OUTPUT: a de-duplicated list (set) of tool names """ tool_names = [] for x in tool_list: tool_names.append(x[0]) return set(tool_names) def initialize(settings): """ SUMMARY: installs PTF + toolkits, optionally downloads/loads user-supplied config file (overwriting existing) INPUT: three-item settings dictionary OUTPUT: no return values, modifies the filesystem and global config variable """ print("Initializing...") if isinstance(settings.get("tool"), str): config_yaml_url = str(settings.get("tool")) print("Downloading configuration file...") try: request = get(config_yaml_url) except RequestException: print_error(str("ERROR: Cannot download configuration file from " + config_yaml_url)) exit(1) else: if request.status_code == 200: try: remove(config.axiom.config_file) with open(config.axiom.config_file, 'wb') as config_file: config_file.write(request.content) except OSError: print_error("ERROR: Cannot replace existing configuration file") exit(1) else: config.axiom = config.AxiomConfig(config.axiom.config_file) setup_ptf() setup_toolkits() else: print_error("ERROR: Configuration file download failure") exit(1) elif settings.get("tool") is None: setup_ptf() setup_toolkits() else: print_error("ERROR: Invalid configuration file URL") exit(1) def load_commands(yam, inputs_pattern, input_types_list): """ SUMMARY: creates all command and action objects for a given tool file's YAML data INPUT: 1) a list of 2 dicts from the source YAML file, 2) a regex pattern (str), and 3) a list of strings OUTPUT: a two-item tuple of 1) a list of AxiomCommand objects and 2) a list of AxiomAction objects """ total = yam[1]['commands'].__len__() command_list = [] action_list = [] tool_string = "" i = 0 while i < total: current_cmd = yam[1]['commands'][i] name = str(list(current_cmd.keys())[0]) for x in command_list: if x.name == name: tool_string = str(yam[0]["name"] + " (" + yam[0]["os"] + ") ") print_error(str("ERROR: " + tool_string + "contains non-unique command name \"" + name + "\"")) exit(1) for y in action_list: if y.name == name: tool_string = str(yam[0]["name"] + " (" + yam[0]["os"] + ") ") print_error(str("ERROR: " + tool_string + "contains non-unique action name \"" + name + "\"")) exit(1) prompt_type = str(list(list(current_cmd.values())[0][0].values())[0][0]) execution_type = str(list(list(current_cmd.values())[0][0].values())[0][1]) text = list(list(current_cmd.values())[0][1].values())[0] note = str(list(list(current_cmd.values())[0][4].values())[0]) raw_output_list = list(list(current_cmd.values())[0][3].values())[0] output_list = None if raw_output_list: output_list = load_outputs(raw_output_list, tool_string) raw_input_list = list(list(current_cmd.values())[0][2].values())[0] if raw_input_list: tokens, input_list = load_text_and_inputs(text, inputs_pattern, input_types_list, raw_input_list) command_list.append(AxiomCommand(name, prompt_type, execution_type, tokens, output_list, note, input_list)) else: action_list.append(AxiomAction(name, prompt_type, execution_type, text, output_list, note)) i += 1 return command_list, action_list def load_inventory(): """ SUMMARY: instantiates the runtime toolkits that organize all tools and their commands/actions INPUT: none OUTPUT: a list of AxiomToolkit objects """ loadable_inventory_file = str(config.axiom.binary_folder + "/inventory.axiom") if path.exists(loadable_inventory_file): try: with open(loadable_inventory_file, 'rb') as inventory_dump: toolkits = load(inventory_dump) except (OSError, PickleError): print_error(str("ERROR: Failed to load inventory binary file " + loadable_inventory_file)) exit(1) else: return toolkits folders = [] if path.exists(config.axiom.inventory_folder): folders = listdir(config.axiom.inventory_folder) else: print_error(str("ERROR: Inventory folder " + config.axiom.inventory_folder + " not found")) exit(1) toolkits = [] for i in range(folders.__len__()): kit_name = folders[i] kit_folder = str(config.axiom.inventory_folder + "/" + kit_name) tool_list = [] for filename in listdir(kit_folder): current_file = str(kit_folder + "/" + filename) if current_file.endswith(".yml"): try: with open(current_file, 'r') as tool_file: tool_yaml = list(safe_load_all(tool_file))[0] tool_name = tool_yaml["name"] tool_platform = tool_yaml["os"] tool_list.append((tool_name, tool_platform)) except (OSError, parser.ParserError, scanner.ScannerError): print_error(str("ERROR: Failed to load " + current_file)) exit(1) tool_list = set(tool_list) toolkits.append(AxiomToolkit(kit_name, kit_folder, tool_list)) try: with open(loadable_inventory_file, 'wb') as inventory: dump(toolkits, inventory) except (OSError, PickleError): print_error(str("ERROR: Failed to save inventory binary file " + loadable_inventory_file)) exit(1) return toolkits def load_outputs(raw_output_list, tool): """ SUMMARY: retrieves a list of values representing each command/action output INPUT: 1) a list of outputs (str) taken directly from a YAML file 2) the target tool (str) OUTPUT: a list of two-item tuples """ output_list = [] output_count = 0 try: while output_count < raw_output_list.__len__(): current_output = raw_output_list[output_count] if isinstance(current_output, dict): if list(current_output)[0] == "FILE": if list(list(current_output.values())[0].keys())[0] == "input": output_list.append(("F_INPUT", int(list(list(current_output.values())[0].values())[0]))) elif list(list(current_output.values())[0].keys())[0] == "string": output_list.append(("F_STRING", str(list(list(current_output.values())[0].values())[0]))) elif list(list(current_output.values())[0].keys())[0] == "prefix": input_number = int(list(list(current_output.values())[0].values())[0][0]) if isinstance(list(list(current_output.values())[0].values())[0][1], str): # single extension extension_string = str(list(list(current_output.values())[0].values())[0][1]) output_list.append(("F_PREFIX", (input_number, extension_string))) elif isinstance(list(list(current_output.values())[0].values())[0][1], list): # >1 extensions prefix_count = 0 while prefix_count <= list(list(current_output.values())[0].values())[0][0]: extension_string = str(list(list( current_output.values())[0].values())[0][1][prefix_count]) output_list.append(("F_PREFIX", (input_number, extension_string))) prefix_count += 1 elif list(current_output)[0] == "PROMPT": output_list.append(("PROMPT", str(list(current_output.values())[0]))) else: output_list.append(str(current_output)) output_count += 1 except (AttributeError, IndexError, KeyError, TypeError, ValueError): print_error(str("ERROR: Invalid outputs defined for " + tool)) exit(1) return output_list def load_text_and_inputs(text, inputs_pattern, input_types_list, raw_input_list): """ SUMMARY: retrieves executable command/action text (tokens) and the inputs required at execution INPUT: 1) command text (str), 2) regex pattern (str), 3) list of types (list), and 4) list of inputs (list) OUTPUT: a two-item tuple containing 1) a list of strings and 2) a list of 2-item or 3-item tuples """ used_input_types = get_input_types(input_types_list, text) tokens = [] if isinstance(text, str): tokens = list(split(inputs_pattern, text)) elif isinstance(text, list): line_count = 0 while line_count < text.__len__(): current_line = text[line_count] tokens.append(list(split(inputs_pattern, current_line))) line_count += 1 input_list = [] input_count = 0 while input_count < raw_input_list.__len__(): current_input = raw_input_list[input_count] current_type = used_input_types[input_count] if isinstance(current_input, str): input_list.append(tuple((current_input, current_type))) elif isinstance(current_input, dict): current_name = list(current_input.keys())[0] current_options = list(current_input.values())[0] input_list.append(tuple((current_name, current_type, current_options))) input_count += 1 return tokens, input_list def load_tool_list(inventory): """ SUMMARY: creates a de-duplicated list of all tools present in all toolkits INPUT: a list of AxiomToolkit objects OUTPUT: a list of two-item tuples (tool, platform) """ loadable_list_file = str(config.axiom.binary_folder + '/tool_list.axiom') if path.exists(loadable_list_file): try: with open(loadable_list_file, 'rb') as list_dump: loaded_list = load(list_dump) except (OSError, PickleError): print_error(str("ERROR: Failed to load tool list binary file " + loadable_list_file)) exit(1) else: return loaded_list master_tool_list = [] for i in range(inventory.__len__()): for x in inventory[i].tool_name_list: master_tool_list.append(x) master_tool_list = set(master_tool_list) try: with open(loadable_list_file, 'wb') as tool_list: dump(list(master_tool_list), tool_list) except (OSError, PickleError): print_error(str("ERROR: Failed to save tool list binary file " + loadable_list_file)) exit(1) return list(master_tool_list) def load_tools(inventory, unloaded_tools): """ SUMMARY: imports all tool data from all YAML files from all inventory folders INPUT: 1) a list of AxiomToolkit objects, and 2) a list of two-item tuples (tool, platform) OUTPUT: a list of AxiomTool objects """ loadable_tools_file = str(config.axiom.binary_folder + "/tools.axiom") if path.exists(loadable_tools_file): try: with open(loadable_tools_file, 'rb') as tools_dump: loaded_tools = load(tools_dump) except (OSError, PickleError): print_error(str("ERROR: Failed to load tools binary file " + loadable_tools_file)) exit(1) else: return loaded_tools tools = [] for i in range(len(inventory)): folder = inventory[i].location for filename in listdir(folder): current_file = str(folder + "/" + filename) if current_file.endswith(".yml"): try: with open(current_file, 'r') as tool_file: tool = list(safe_load_all(tool_file)) current_tool = (tool[0]["name"], tool[0]["os"]) if current_tool in unloaded_tools: command_list, action_list = load_commands(tool, config.axiom.inputs_pattern, config.axiom.input_types_list) tools.append(AxiomTool(tool[0]["name"], tool[0]["os"], tool[0]["ptf_module"], tool[0]["description"], action_list, command_list)) unloaded_tools.remove(current_tool) else: tool_id = resolve_tool_id(current_tool, tools) if able_to_merge(tool, tool_id, tools): if merge(tool, tool_id, tools, config.axiom.inputs_pattern, config.axiom.input_types_list): continue else: print_error(str("ERROR: Merge failure for " + str(tool[0]["name"]) + " from " + str(current_file))) exit(1) else: print_error(str("ERROR: Unable to merge " + str(tool[0]["name"]) + " from " + str(current_file))) exit(1) except (AttributeError, IndexError, KeyError, OSError, TypeError, ValueError): print_error(str("ERROR: Failed to load " + current_file)) exit(1) for item in tools: item.initialize_combined_list() try: with open(loadable_tools_file, 'wb') as axiom: dump(tools, axiom) except (OSError, PickleError): print_error(str("ERROR: Failed to save tools binary file " + loadable_tools_file)) exit(1) return tools def merge(tool, tool_id, tools, inputs_pattern, input_types_list): """ SUMMARY: merges new commands/actions into existing AxiomTool objects INPUT: 1) list of two dictionaries 2) tool ID value (int) 3) list of AxiomTool objects 4) regex pattern (str) and 5) list of strings OUTPUT: Returns True after completing merge procedure """ command_list, action_list = load_commands(tool, inputs_pattern, input_types_list) action_count = 0 command_count = 0 if action_list.__len__() > 0: while action_count < action_list.__len__(): tools[tool_id].action_list.append(action_list[action_count]) action_count += 1 if command_list.__len__() > 0: while command_count < command_list.__len__(): tools[tool_id].command_list.append(command_list[command_count]) command_count += 1 return True def new_generate_command(): """ SUMMARY: prompts user with data entry questions and prints a complete and valid YAML snippet to the screen INPUT: none OUTPUT: none, prints to the screen and exits """ name = prompt("[AXIOM] Enter command name: ") prompt_selection = new_get_prompt_selection() execution_type = new_get_execution_type(prompt_selection) text = new_get_text() inputs = new_get_inputs(text) outputs = new_get_outputs(execution_type, text) note = prompt("[AXIOM] Enter command note: ") name = new_get_escaped_text(name) note = new_get_escaped_text(note) new_print_finalized_command_text(name, prompt_selection, execution_type, text, inputs, outputs, note) exit(0) def new_get_escaped_text(text): """ SUMMARY: replaces any backslash and double-quote characters with backslash-escaped character sequences INPUT: command text line(s) (list or str) OUTPUT: returns backslash-escaped command text (list or str) """ if isinstance(text, list): new_list = [] for line in range(text.__len__()): new_list.append(text[line].replace("\\", "\\\\").replace("\"", "\\\"")) return new_list else: return text.replace("\\", "\\\\").replace("\"", "\\\"") def new_get_execution_type(prompt_selection): """ SUMMARY: prompts user to enter the command execution type INPUT: the current command's prompt type (str) OUTPUT: returns the execution type name (str) """ if prompt_selection == "other": return "NX" print("\nExecution Types\n") print(" 1\tstandalone") print(" 2\tautonomous") print(" 3\tinteractive") print(" 4\tNX") number = prompt("\n[AXIOM] Select an option: ") try: number = int(number) if number == 1: return "standalone" elif number == 2: return "autonomous" elif number == 3: return "interactive" elif number == 4: return "NX" else: print_error("ERROR: Invalid execution type selection") exit(1) except (ValueError, TypeError): print_error("ERROR: Invalid execution type selection") exit(1) def new_get_inputs(text): """ SUMMARY: prompts user to enter input descriptions and related data INPUT: the command text (list or str) OUTPUT: returns the inputs text line (str) """ inputs = "[" used_input_types = get_input_types(config.axiom.input_types_list, text) input_count = used_input_types.__len__() for i in range(input_count): description = prompt(str("[AXIOM] Enter name for input " + str("(" + str(i + 1) + "/" + str(input_count) + ")") + " {" + used_input_types[i] + "}: ")) description = new_get_escaped_text(description) if used_input_types[i] in ["INTMENU", "STRMENU"]: option_count = prompt(str("[AXIOM] Enter number of \"" + description + "\" options: ")) try: option_count = int(option_count) if option_count <= 0: print_error("ERROR: Invalid number of options") exit(1) option_text = "[" except (ValueError, TypeError): print_error("ERROR: Invalid number of options") exit(1) if used_input_types[i] == "INTMENU": for x in range(option_count): single_option = prompt(str("[AXIOM] Enter \"" + description + "\" option (" + str(x + 1) + "/" + str(option_count) + ") {INT}: ")) try: single_option = int(single_option) except (ValueError, TypeError): print_error("ERROR: Invalid integer option") exit(1) option_text = str(option_text + str(single_option) + ",") option_text = str(option_text[:-1] + "]") elif used_input_types[i] == "STRMENU": for x in range(option_count): single_option = prompt(str("[AXIOM] Enter \"" + description + "\" option (" + str(x + 1) + "/" + str(option_count) + ") {STR}: ")) single_option = new_get_escaped_text(single_option) option_text = str(option_text + "\"" + str(single_option) + "\"" + ",") option_text = str(option_text[:-1] + "]") inputs = str(inputs + "{\"" + description + "\":" + option_text + "},") else: inputs = str(inputs + "\"" + description + "\",") if inputs == "[": return "null" else: inputs = str(inputs[:-1] + "]") return inputs def new_get_output_details(input_count, current_output_index, output_count): """ SUMMARY: prompts user to select output type and enter type-specific details INPUT: 1) number of total inputs (int) 2) current output number (int) 3) total number of outputs (int) OUTPUT: returns the outputs text line (str) """ print(str("[AXIOM] Select output type for remaining output (" + str(current_output_index + 1) + "/" + str(output_count) + "): ")) print("\nOutput Types\n") print(" 1\tFile (input)\tfilename is entirely user-controlled command input") print(" 2\tFile (prefix)\tfilename prefix is command input, file extension(s) hardcoded") print(" 3\tFile (string)\tfilename is entirely hardcoded") print(" 4\tSTDERR\t\tstandard error") number = prompt("\n[AXIOM] Select an option: ") try: number = int(number) if number == 1: if input_count <= 0: print_error("ERROR: Output type requires at least one command input") exit(1) input_number = prompt("[AXIOM] Enter the corresponding input number: ") input_number = int(input_number) if int(input_number - 1) in range(input_count): return str("{\"FILE\":{\"input\":" + str(input_number) + "}}") else: print_error("ERROR: Invalid input number") exit(1) elif number == 2: if input_count <= 0: print_error("ERROR: Output type requires at least one command input") exit(1) extensions = "" entry = prompt("[AXIOM] Enter the corresponding input number: ") entry = int(entry) if int(entry - 1) in range(input_count): extension_count = prompt("[AXIOM] Enter number of file extensions: ") extension_count = int(extension_count) if extension_count > 0: for e in range(extension_count): current_ext = prompt("[AXIOM] Enter file extension (" + str(e + 1) + "/" + str(extension_count) + "): ") current_ext = new_get_escaped_text(current_ext) extensions = str(extensions + "\"" + current_ext + "\",") extensions = extensions[:-1] return str("{\"FILE\":{\"prefix\":[" + str(entry) + "," + extensions + "]}}") else: print_error("ERROR: Invalid number of file extensions") exit(1) else: print_error("ERROR: Invalid input number") exit(1) elif number == 3: filename = prompt("[AXIOM] Enter the output filename: ") filename = new_get_escaped_text(filename) return str("{\"FILE\":{\"string\":\"" + str(filename) + "\"}}") elif number == 4: return "\"STDERR\"" else: print_error("ERROR: Invalid output type selection") exit(1) except (ValueError, TypeError): print_error("ERROR: Invalid number entered") exit(1) def new_get_outputs(execution_type, text): """ SUMMARY: prompts user to enter output data INPUT: 1) command execution type name (str) 2) command text (list or str) OUTPUT: returns completed outputs text line (str) """ input_count = get_input_types(config.axiom.input_types_list, text).__len__() outputs = "[" answer = prompt("[AXIOM] Does command output to STDOUT? [Y/n] ") if answer not in ["Y", "y", "Yes", "yes"]: pass else: outputs = "[\"STDOUT\"," if execution_type == "interactive": print("[AXIOM] Select prompt type emitted by interactive command: ") prompt_type = new_get_prompt_selection() if outputs == "[\"STDOUT\",": outputs = str("[\"STDOUT\"," + "{\"PROMPT\":\"" + prompt_type + "\"},") else: outputs = str("[{\"PROMPT\":\"" + prompt_type + "\"},") output_count = prompt("[AXIOM] Enter number of remaining outputs: ") try: output_count = int(output_count) except (ValueError, TypeError): print_error("ERROR: Invalid number of outputs") exit(1) if output_count <= 0: if outputs == "[": return "null" else: return str(outputs[:-1] + "]") for y in range(output_count): outputs = str(outputs + new_get_output_details(input_count, y, output_count) + ",") return str(outputs[:-1] + "]") def new_get_prompt_selection(): """ SUMMARY: prompts user to select command prompt type INPUT: none, gets input from user OUTPUT: returns a prompt name from the global config (str) """ print("\nPrompts\n") for i in range(config.axiom.prompts.__len__()): print(" " + str(i + 1) + "\t" + str(config.axiom.prompts[i][0])) number = prompt("\n[AXIOM] Select an option: ") try: number = int(number) if int(number - 1) in range(config.axiom.prompts.__len__()): return config.axiom.prompts[number - 1][0] else: print_error("ERROR: Invalid prompt selection") exit(1) except (ValueError, TypeError): print_error("ERROR: Invalid prompt selection") exit(1) def new_get_text(): """ SUMMARY: prompts user for number of command text lines and the line contents INPUT: none, gets input from the user OUTPUT: returns completed and sanitized command text (list or str) """ line_count = prompt("[AXIOM] Enter number of text input lines: ") try: line_count = int(line_count) except (ValueError, TypeError): print_error("ERROR: Invalid number of lines") exit(1) if line_count <= 0: print_error("ERROR: Invalid number of lines") exit(1) elif line_count == 1: text = prompt("[AXIOM] Enter command text: ") else: text = [] for i in range(line_count): text.append(prompt(str("[AXIOM] Enter command text (line " + str(i + 1) + "): "))) return new_get_escaped_text(text) def new_print_finalized_command_text(name, prompt_selection, execution_type, text, inputs, outputs, note): """ SUMMARY: prints newly-generated YAML text to the screen INPUT: seven variables generated by related functions, all are strings but "text" can also be a list OUTPUT: none, only prints to the screen """ print() print(" - \"" + name + "\":") print(" - type: [\"" + prompt_selection + "\",\"" + execution_type + "\"]") if isinstance(text, str): print(" - text: \"" + text + "\"") else: print(" - text:") for i in range(text.__len__()): print(" - \"" + text[i] + "\"") print(" - input: " + inputs + "") print(" - output: " + outputs + "") print(" - note: \"" + note + "\"") print() def print_banner(banner_file): """ SUMMARY: displays ASCII art from file and other introductory info INPUT: filename (str) of text file on filesystem OUTPUT: none, only prints to screen """ try: with open(banner_file, 'r') as file: data = file.readlines() for line in data: print(Fore.RED + line.replace('\n', '')) print(Style.RESET_ALL, end='') except OSError: print_error(str("ERROR: Unable to access banner file " + banner_file)) exit(1) else: print(" C9EE FD5E 15DA 9C02 1B0C 603C A397 0118 D56B 2E35 ") print() print(" Created by Mike Iacovacci https://payl0ad.run ") print() print() def print_stats(inventory, tool_list, tools): """ SUMMARY: displays counts of loaded tools, commands/actions, and toolkits INPUT: 1) list of AxiomToolkit objects objects 2) de-deplicated list of tuples 3) list of AxiomTool objects OUTPUT: none, only prints to the screen """ action_count = 0 command_count = 0 for tool in tools: current_actions = tool.action_list.__len__() current_commands = tool.command_list.__len__() action_count = action_count + current_actions command_count = command_count + current_commands combined_count = str(action_count + command_count) tool_count = str(tool_list.__len__()) toolkit_count = str(inventory.__len__()) print("\n" + "Loaded " + combined_count + " commands for " + tool_count + " unique tools from " + toolkit_count + " toolkits." "\n") def reload(): """ SUMMARY: deletes and recreates binary folder causing all YAML tool files to be deserialized again INPUT: none OUTPUT: none """ print("Reloading...") delete_and_recreate_folder(config.axiom.binary_folder) def resolve_tool_id(potential_tool, tools): """ SUMMARY: searches for a tool's ID number using a user-supplied tool name string INPUT: 1) a tool name (str), and 2) a list of AxiomTool objects OUTPUT: a tool ID value (int) or -1 if no match is found """ tool_id = 0 while tool_id < tools.__len__(): if tools[tool_id].name == potential_tool[0] and tools[tool_id].platform == potential_tool[1]: return tool_id tool_id += 1 return -1 def set_user_expectations(settings): """ SUMMARY: prints a message so the user expects to wait while the YAML is deserialized INPUT: three-item settings dictionary OUTPUT: no return value, only prints to the screen conditionally """ if path.exists(str(config.axiom.binary_folder + "/inventory.axiom")) and \ path.exists(str(config.axiom.binary_folder + "/tool_list.axiom")) and \ path.exists(str(config.axiom.binary_folder + "/tools.axiom")) or \ settings.get("mode") in ["init", "reload"]: return else: print("Initializing...") def setup_folders(settings): """ SUMMARY: initializes folders for history/binary files and installs PTF if missing INPUT: three-item settings dictionary OUTPUT: none, causes filesystem modifications within user-defined locations """ set_user_expectations(settings) create_missing_folder(config.axiom.history_folder) create_missing_folder(config.axiom.binary_folder) if not path.exists(config.axiom.ptf_folder): setup_ptf() if not path.exists(config.axiom.inventory_folder): setup_toolkits() def setup_ptf(): """ SUMMARY: deletes existing PTF folder and downloads/installs the latest version from GitHub master branch INPUT: none OUTPUT: no return values, modifies the filesystem """ download_and_extract_zip("https://github.com/trustedsec/ptf/archive/master.zip", "ptf-master", config.axiom.ptf_folder, "The PenTesters Framework (PTF)") def setup_toolkits(): """ SUMMARY: deletes existing inventory folder, downloads all listed toolkits, and reloads the binary data INPUT: none OUTPUT: no return values, modifies the filesystem """ delete_and_recreate_folder(config.axiom.inventory_folder) for toolkit in config.axiom.toolkits: download_and_extract_zip(toolkit[2], toolkit[1], str(config.axiom.inventory_folder + "/" + toolkit[0]), toolkit[0]) reload() def tool_selection_prompt(tool_list, tool_names, tools): """ SUMMARY: prompts user to select a tool, provides a fuzzy word completer interface INPUT: 1) list of two-item tuples (name, platform), 2) set of tool names, and 3) list of AxiomTool objects OUTPUT: exit value (int) """ tool_names = FuzzyCompleter(WordCompleter(tool_names)) completer_style = ptkStyle.from_dict({ "completion-menu": "bg:#111111", "scrollbar.background": "bg:#111111", "scrollbar.button": "bg:#999999", "completion-menu.completion.current": "nobold bg:ansired", "completion-menu.completion fuzzymatch.outside": "nobold fg:#AAAAAA", "completion-menu.completion fuzzymatch.inside": "nobold fg:ansired", "completion-menu.completion fuzzymatch.inside.character": "nobold nounderline fg:ansired", "completion-menu.completion.current fuzzymatch.outside": "nobold fg:#AAAAAA", "completion-menu.completion.current fuzzymatch.inside": "nobold fg:#AAAAAA", "completion-menu.completion.current fuzzymatch.inside.character": "nobold nounderline fg:#AAAAAA"}) while True: text = prompt('[AXIOM] Enter tool: ', completer=tool_names, complete_while_typing=True, style=completer_style) if text == "exit" or text == "quit": return 0 if text == "": continue tool_id = disambiguate_tool_name(text, tool_list, tools) if tool_id < 0: print_error("ERROR: Invalid tool name") else: tool = tools[tool_id] command_selection_prompt(tool) return 1 def validate_privileges(mode): """ SUMMARY: confirms effective root privilege level if writing to the filesystem or spawning a subprocess INPUT: program mode type (str) OUTPUT: none """ if mode not in ["show", "new"]: if geteuid() != 0: print_error("ERROR: AXIOM requires root privileges") exit(1)
the-stack_106_19428
import pygame import pygame.gfxdraw class PrimitiveManager(pygame.sprite.Sprite): """A primitive manager for each platoon """ def __init__(self, map_instance, platoon_id, vehicle_type): pygame.sprite.Sprite.__init__(self) self.platoon_id = platoon_id self.vehicle_type = vehicle_type self.map = map_instance self.key = self.vehicle_type + '_p_' + str(self.platoon_id) return None def get_centroid(self): return self.state['centroid_pos'] def get_vehicles(self, states): self.state = states[self.vehicle_type][self.key] vehicles = self.state['vehicles'] return vehicles def convert_to_pixel(self, points): pos = [int(points[1] / .2 + 420), int(points[0] / .2 + 340)] return pos def update(self, states): self.vehicles = self.get_vehicles(states) # Execute only if the number of vehicles are > 0 # if self.state['n_vehicles'] > 0: if self.vehicle_type == 'uav': color = (0, 153, 76) for vehicle in self.vehicles: pos = self.convert_to_pixel(vehicle.current_pos) # Draw a circle pygame.gfxdraw.filled_circle(self.map.env_surface, pos[0], pos[1], 3, color) pygame.gfxdraw.aacircle(self.map.env_surface, pos[0], pos[1], 3, color) else: color = (0, 0, 255) for vehicle in self.vehicles: pos = self.convert_to_pixel(vehicle.current_pos) # Draw a rectangle pygame.draw.rect(self.map.env_surface, color, pygame.Rect(pos, [5, 5])) # Draw a black circle around the platoons if it is selected if self.state['selected']: color = (0, 0, 0) cent_pos = self.convert_to_pixel(self.get_centroid()) pygame.draw.circle(self.map.env_surface, color, cent_pos, 25, 3) self.map.surface.blit(self.map.env_surface, self.map.position) return None
the-stack_106_19429
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Paddle-Lite light python api demo ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from paddlelite.lite import * import numpy as np # Command arguments parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", default="", type=str, help="Non-combined Model dir path") parser.add_argument( "--input_shape", default=[1, 3, 224, 224], nargs='+', type=int, required=False, help="Model input shape, eg: 1 3 224 224. Defalut: 1 3 224 224") parser.add_argument( "--backend", default="", type=str, help="To use a particular backend for execution. Should be one of: arm|opencl|x86|x86_opencl|metal" ) parser.add_argument( "--image_path", default="", type=str, help="The path of test image file") parser.add_argument( "--label_path", default="", type=str, help="The path of label file") parser.add_argument( "--print_results", type=bool, default=False, help="Print results. Default: False") def RunModel(args): # 1. Set config information config = MobileConfig() config.set_model_from_file(args.model_dir) if args.backend.upper() in ["OPENCL", "X86_OPENCL"]: bin_path = "./" bin_name = "lite_opencl_kernel.bin" config.set_opencl_binary_path_name(bin_path, bin_name) ''' opencl tune option: CL_TUNE_NONE CL_TUNE_RAPID CL_TUNE_NORMAL CL_TUNE_EXHAUSTIVE ''' tuned_path = "./" tuned_name = "lite_opencl_tuned.bin" config.set_opencl_tune(CLTuneMode.CL_TUNE_NORMAL, tuned_path, tuned_name, 4) ''' opencl precision option: CL_PRECISION_AUTO, first fp16 if valid, default CL_PRECISION_FP32, force fp32 CL_PRECISION_FP16, force fp16 ''' config.set_opencl_precision(CLPrecisionType.CL_PRECISION_AUTO) elif args.backend.upper() in ["METAL"]: # set metallib path import paddlelite, os module_path = os.path.dirname(paddlelite.__file__) config.set_metal_lib_path(module_path + "/libs/lite.metallib") config.set_metal_use_mps(True) # 2. Create paddle predictor predictor = create_paddle_predictor(config) # 3. Set input data input_tensor = predictor.get_input(0) c, h, w = args.input_shape[1], args.input_shape[2], args.input_shape[3] read_image = len(args.image_path) != 0 and len(args.label_path) != 0 if read_image == True: import cv2 with open(args.label_path, "r") as f: label_list = f.readlines() image_mean = [0.485, 0.456, 0.406] image_std = [0.229, 0.224, 0.225] image_data = cv2.imread(args.image_path) image_data = cv2.resize(image_data, (h, w)) image_data = cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB) image_data = image_data.transpose((2, 0, 1)) / 255.0 image_data = (image_data - np.array(image_mean).reshape( (3, 1, 1))) / np.array(image_std).reshape((3, 1, 1)) image_data = image_data.reshape([1, c, h, w]).astype('float32') input_tensor.from_numpy(image_data) else: input_tensor.from_numpy(np.ones((1, c, h, w)).astype("float32")) # 4. Run model predictor.run() # 5. Get output data output_tensor = predictor.get_output(0) output_data = output_tensor.numpy() if args.print_results == True: print("result data:\n{}".format(output_data)) print("mean:{:.6e}, std:{:.6e}, min:{:.6e}, max:{:.6e}".format( np.mean(output_data), np.std(output_data), np.min(output_data), np.max(output_data))) # 6. Post-process if read_image == True: output_data = output_data.flatten() class_id = np.argmax(output_data) class_name = label_list[class_id] score = output_data[class_id] print("class_name: {} score: {}".format(class_name, score)) if __name__ == '__main__': args = parser.parse_args() RunModel(args)
the-stack_106_19431
# -*- coding: utf-8 -*- # Copyright (c) 2006-2014 LOGILAB S.A. (Paris, FRANCE) <[email protected]> # Copyright (c) 2014-2018 Claudiu Popa <[email protected]> # Copyright (c) 2014 Google, Inc. # Copyright (c) 2015-2017 Ceridwen <[email protected]> # Copyright (c) 2015 Florian Bruhin <[email protected]> # Copyright (c) 2015 Radosław Ganczarek <[email protected]> # Copyright (c) 2016 Moises Lopez <[email protected]> # Copyright (c) 2017 Hugo <[email protected]> # Copyright (c) 2017 Łukasz Rogalski <[email protected]> # Copyright (c) 2017 Calen Pennington <[email protected]> # Copyright (c) 2018 Ashley Whetter <[email protected]> # Copyright (c) 2018 Bryce Guinta <[email protected]> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """astroid packaging information""" distname = 'astroid' modname = 'astroid' version = '2.0.4' numversion = tuple(int(elem) for elem in version.split('.') if elem.isdigit()) extras_require = {} install_requires = [ 'lazy_object_proxy', 'six', 'wrapt', 'typing;python_version<"3.5"', 'typed_ast;python_version<"3.7" and implementation_name== "cpython"' ] # pylint: disable=redefined-builtin; why license is a builtin anyway? license = 'LGPL' author = 'Python Code Quality Authority' author_email = '[email protected]' mailinglist = "mailto://%s" % author_email web = 'https://github.com/PyCQA/astroid' description = "An abstract syntax tree for Python with inference support." classifiers = ["Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Software Development :: Quality Assurance", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", ]
the-stack_106_19432
import re import math import numpy as np from matplotlib import pyplot as plt class EM: X = [] Y = [] F = "" def __init__(self, func, size, initialX, initialY, finalX): self.f = func self.h = size self.x0 = initialX self.y0 = initialY self.xf = finalX def __del__(self): class_name=self.__class__.__name__ def Func(self): self.f = re.sub("(x)+", "*x", self.f) self.f = re.sub("(y)+", "*y", self.f) self.f = re.sub("(\()+", "*(", self.f) self.f = re.sub("(asin\*)+", "*math.asin", self.f) self.f = re.sub("(acos\*)+", "*math.acos", self.f) self.f = re.sub("(atan\*)+", "*math.atan", self.f) self.f = re.sub("(sin\*)+", "*math.sin", self.f) # sin(x) self.f = re.sub("(cos\*)+", "*math.cos", self.f) self.f = re.sub("(tan\*)+", "*math.tan", self.f) self.f = re.sub("(cot\*)+", "*1/math.tan", self.f) self.f = re.sub("(sec\*)+", "*1/math.cos", self.f) self.f = re.sub("(csc\*)+", "*1/math.sin", self.f) # self.f = re.sub("(acot\*)+", "*math.acot", self.f) # self.f = re.sub("(asec\*)+", "*math.asec", self.f) # self.f = re.sub("(acsc\*)+", "*math.acsc", self.f) if "e^" not in self.f: self.f = re.sub("(e)+", "*math.e", self.f) self.f = re.sub("(pi)+", "*math.pi", self.f) self.f = re.sub("(log\*)+", "*math.log", self.f) # log(x, base) self.f = re.sub("(e\^\*)+", "*math.exp", self.f) # e^(x) self.f = re.sub("(ln\*)+", "*math.log", self.f) # ln(x) #log.e(x) self.f = re.sub("(lg\*)+", "*math.log10", self.f) # log(x) #log.10(x) self.f = re.sub("(sqrt\*)+", "*math.sqrt", self.f) self.f = re.sub("(\^\*)+", "**", self.f) # x^() #if cube root(1/3) self.f = re.sub("(abs\*)+", "*math.fabs", self.f) # abs() || self.f = re.sub("(/\*)+", "/", self.f) self.f = re.sub("(\(\*)+", "(", self.f) self.f = re.sub("(\+\*)+", "+", self.f) self.f = re.sub("(\-\*)+", "-", self.f) if self.f.find("*") == 0: # remove if 1st is * self.f = self.f[1::] return self.f def Error(self): EM.F = self.Func() x=1 y=1 try: eval(EM.F) try: self.EMcalc() return False except: return True except: return True def FuncError(self): EM.F = self.Func() x=1 y=1 try: eval(EM.F) return False except: return True def EMcalc(self): x = self.x0 y = self.y0 n = int((self.xf-self.x0)/self.h) EM.X.clear() EM.Y.clear() EM.X.append(x) EM.Y.append(y) for i in range(n): y = y + self.h * eval(EM.F) x = x + self.h EM.X.append(round(x, 2)) EM.Y.append(y) def xValue(self): return self.MatBrk(np.array([EM.X]).reshape(len(EM.X),1)) def yValue(self): return self.MatBrk(np.array(np.round([EM.Y], decimals=5)).reshape(len(EM.Y), 1)) def MatBrk(self, arr): return str(arr).replace('[[', ' ').replace(']]', '').replace('[', '').replace(']', '') def Graph(self): plt.close('all') plt.rcParams['axes.facecolor'] = 'black' fig = plt.figure() # fig.patch.set_facecolor('xkcd:black') fig.canvas.set_window_title("Euler's Method Graph") plt.tick_params(direction='out', length=5, width=1, colors='r', grid_color='r', grid_alpha=0.8, labelcolor='r') plt.plot(EM.X, EM.Y, 'bo') plt.grid(True,color='red') plt.xlabel("X-label") plt.ylabel("Y-label") plt.title("Approximate Solution with Euler's Method") plt.show() def CloseGraph(self): return plt.close('all')
the-stack_106_19435
import paystacklib from paystacklib.base.baseapi import BaseApi from paystacklib.util.utils import clean_params class Page(BaseApi): object_type = '/page' def __init__( self, secret_key=None, uri=paystacklib.api_base + object_type, method=None, headers=None, params=None): BaseApi.__init__(self, secret_key, uri, method, headers, params) @classmethod def create( cls, name, description=None, amount= None, slug=None, metadata=None, redirect_url=None, custom_fields=None): params = clean_params(locals()) uri = paystacklib.api_base + cls.object_type return cls(uri=uri, method='post', params=params).execute() @classmethod def list(cls, perPage=None, page=None): params = clean_params(locals()) uri = paystacklib.api_base + cls.object_type return cls(uri=uri, method='get', params=params).execute() @classmethod def fetch(cls, id_or_slug): uri = paystacklib.api_base + \ '{0}/{1}'.format(cls.object_type, str(id_or_slug)) return cls(uri=uri, method='get').execute() @classmethod def update( cls, id_or_slug, name=None, description=None, amount=None, active=None): params = clean_params(locals()) uri = paystacklib.api_base + \ '{0}/{1}'.format(cls.object_type, str(id_or_slug)) return cls(uri=uri, method='put', params=params).execute() @classmethod def check_slug_availability(cls, slug): uri = paystacklib.api_base + \ '{0}/{1}'.format(cls.api_base, slug) return cls(uri=uri, method='get').execute() @classmethod def add_products(page_id, products): """ products is an array of product ids """ params = clean_params(locals()) del params['page_id'] uri = paystacklib.api_base + \ '{0}/{1}'.format(cls.object_type, str(page_id)) + '/product' return cls(uri=uri, method='post', params=params).execute()
the-stack_106_19438
""".""" import pandas as pd import numpy as np from matplotlib import pyplot as plt plt.style.use('fivethirtyeight') data = pd.read_csv('data/data_3.csv') ids = data['Responder_id'] ages = data['Age'] bins = np.arange(10, 110, step=10) plt.hist(ages, bins=bins, edgecolor='black', log=True) median_age = int(data['Age'].median()) color = '#fc4f30' plt.axvline(median_age, color=color, label='Age Median', linewidth=2) plt.legend() plt.title('Ages of Respondents') plt.xticks(bins) plt.xlabel('Ages') plt.ylabel('Total Respondents') plt.tight_layout() plt.show()
the-stack_106_19439
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import unittest from parameterized import parameterized from qiskit import QuantumRegister from test.common import QiskitAquaTestCase from qiskit.aqua.components.reciprocals.lookup_rotation import LookupRotation class TestLookupRotation(QiskitAquaTestCase): """Lookup Rotation tests.""" #def setUp(self): @parameterized.expand([[3, 330], [5, 1478], [7, 6592], [9, 11484], [11, 17652]]) def test_lookup_rotation(self, reg_size, gate_cnt): self.log.debug('Testing Lookup Rotation with positive eigenvalues') a = QuantumRegister(reg_size, name='a') lrot = LookupRotation(negative_evals=False) lrot_circuit = lrot.construct_circuit('', a) circuit_cnt = lrot_circuit.data.__len__() assert(circuit_cnt == gate_cnt) self.log.debug('Lookup rotation register size: {}'.format(reg_size)) self.log.debug('Lookup rotation gate count: {}'.format(circuit_cnt)) @parameterized.expand([[3, 185], [5, 761], [7, 4425], [9, 9033], [11, 14329]]) def test_lookup_rotation_neg(self, reg_size, gate_cnt): self.log.debug('Testing Lookup Rotation with support for negative ' 'eigenvalues') a = QuantumRegister(reg_size, name='a') lrot = LookupRotation(negative_evals=True) lrot_circuit = lrot.construct_circuit('', a) circuit_cnt = lrot_circuit.data.__len__() assert(circuit_cnt == gate_cnt) self.log.debug('Lookup rotation register size: {}'.format(reg_size)) self.log.debug('Lookup rotation gate count: {}'.format(circuit_cnt)) if __name__ == '__main__': unittest.main()
the-stack_106_19440
# coding=utf8 # Copyright 2018-2025 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DescribeVpcRequest(JDCloudRequest): """ 查询Vpc信息详情 """ def __init__(self, parameters, header=None, version="v1"): super(DescribeVpcRequest, self).__init__( '/regions/{regionId}/vpcs/{vpcId}', 'GET', header, version) self.parameters = parameters class DescribeVpcParameters(object): def __init__(self, regionId, vpcId, ): """ :param regionId: Region ID :param vpcId: Vpc ID """ self.regionId = regionId self.vpcId = vpcId
the-stack_106_19441
# # Copyright 2018 the original author or authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from task import Task from datetime import datetime from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks, TimeoutError, failure from voltha.extensions.omci.omci_defs import ReasonCodes from voltha.extensions.omci.omci_frame import OmciFrame, OmciGet class IntervalDataTaskFailure(Exception): pass class IntervalDataTask(Task): """ OpenOMCI Performance Interval Get Request """ task_priority = Task.DEFAULT_PRIORITY name = "Interval Data Task" max_payload = 29 def __init__(self, omci_agent, device_id, class_id, entity_id, max_get_response_payload=max_payload): """ Class initialization :param omci_agent: (OmciAdapterAgent) OMCI Adapter agent :param device_id: (str) ONU Device ID :param class_id: (int) ME Class ID :param entity_id: (int) ME entity ID :param max_get_response_payload: (int) Maximum number of octets in a single GET response frame """ super(IntervalDataTask, self).__init__(IntervalDataTask.name, omci_agent, device_id, priority=IntervalDataTask.task_priority, exclusive=False) self._local_deferred = None self._class_id = class_id self._entity_id = entity_id me_map = self.omci_agent.get_device(self.device_id).me_map if self._class_id not in me_map: msg = "The requested ME Class () does not exist in the ONU's ME Map".format(self._class_id) self.log.warn('unknown-pm-me', msg=msg) raise IntervalDataTaskFailure(msg) self._entity = me_map[self._class_id] self._counter_attributes = self.get_counter_attributes_names_and_size() self._max_payload = max_get_response_payload def cancel_deferred(self): super(IntervalDataTask, self).cancel_deferred() d, self._local_deferred = self._local_deferred, None try: if d is not None and not d.called: d.cancel() except: pass def start(self): """ Start the tasks """ super(IntervalDataTask, self).start() self._local_deferred = reactor.callLater(0, self.perform_get_interval) def stop(self): """ Shutdown the tasks """ self.log.debug('stopping') self.cancel_deferred() super(IntervalDataTask, self).stop() def get_counter_attributes_names_and_size(self): """ Get all of the counter attributes names and the amount of storage they take :return: (dict) Attribute name -> length """ return {name: self._entity.attributes[attr_index].field.sz for name, attr_index in self._entity.attribute_name_to_index_map.items() if self._entity.attributes[attr_index].is_counter} @inlineCallbacks def perform_get_interval(self): """ Sync the time """ self.log.info('perform-get-interval', class_id=self._class_id, entity_id=self._entity_id) device = self.omci_agent.get_device(self.device_id) attr_names = self._counter_attributes.keys() final_results = { 'class_id': self._class_id, 'entity_id': self._entity_id, 'me_name': self._entity.__name__, # Mostly for debugging... 'interval_utc_time': None, # Counters added here as they are retrieved } last_end_time = None while len(attr_names) > 0: # Get as many attributes that will fit. Always include the 1 octet # Interval End Time Attribute and 2 octets for the Entity ID remaining_payload = self._max_payload - 3 attributes = list() for name in attr_names: if self._counter_attributes[name] > remaining_payload: break attributes.append(name) remaining_payload -= self._counter_attributes[name] attr_names = attr_names[len(attributes):] attributes.append('interval_end_time') frame = OmciFrame( transaction_id=None, message_type=OmciGet.message_id, omci_message=OmciGet( entity_class=self._class_id, entity_id=self._entity_id, attributes_mask=self._entity.mask_for(*attributes) ) ) self.log.debug('interval-get-request', class_id=self._class_id, entity_id=self._entity_id) try: results = yield device.omci_cc.send(frame) omci_msg = results.fields['omci_message'].fields status = omci_msg['success_code'] end_time = omci_msg['data'].get('interval_end_time') self.log.debug('interval-get-results', class_id=self._class_id, entity_id=self._entity_id, status=status, end_time=end_time) if status != ReasonCodes.Success: raise IntervalDataTaskFailure('Unexpected Response Status: {}, Class ID: {}'. format(status, self._class_id)) if last_end_time is None: last_end_time = end_time elif end_time != last_end_time: msg = 'Interval End Time Changed during retrieval from {} to {}'\ .format(last_end_time, end_time) self.log.info('interval-roll-over', msg=msg, class_id=self._class_id) raise IntervalDataTaskFailure(msg) final_results['interval_utc_time'] = datetime.utcnow() for attribute in attributes: final_results[attribute] = omci_msg['data'].get(attribute) except TimeoutError as e: self.log.warn('interval-get-timeout', e=e, class_id=self._class_id) self.deferred.errback(failure.Failure(e)) except Exception as e: self.log.exception('interval-get-failure', e=e, class_id=self._class_id) self.deferred.errback(failure.Failure(e)) # Successful if here self.deferred.callback(final_results)
the-stack_106_19443
from discord.ext import commands from discord import utils from datetime import datetime as d import typing from botmodules import converters class Converters(commands.Cog): def __init__(self, bot): self.bot = bot self.color = 0xffffff @commands.command( brief="Wandle Morsecode um", description="Wandle Morsecode um", aliases=["mors","morsecode"], help="Benutze /morse <Text> und erhalte den Text in Morsecode oder umgekehrt", usage="" ) async def morse(self, ctx): message = ctx.getargs() if message.replace("-","").replace("_","").replace(".","").replace(" ","") == "": text = converters.morse_decrypt(message.replace("_","-")) morse = message else: text = message morse = converters.morse_encrypt(message) await ctx.sendEmbed(title="Morsecode", color=self.color, fields=[("Morsecode", morse.replace(" "," | ")),("Text", text)]) def setup(bot): bot.add_cog(Converters(bot))
the-stack_106_19444
# Copyright (c) 2020 Rik079, Worthy Alpaca, Zibadian, Micro-T. All rights reserved. __version__ = "Alpha" # Discord login Token token = "" # Path to modules folder modulepath = "./modules" # AWS credentials aws_id = '' aws_secret = '' aws_region = 'us-west-2' # Staff # ------------------------ # Admins adminids = [] # Tech guys botadminids = []
the-stack_106_19446
# -- coding: utf-8 -- ''' Script for comparing our Bayesian preference learning approach with the results from Habernal 2016. Steps in this test: 1. Load word embeddings for the original text data that were used in the NN approach in Habernal 2016. -- done, but only using averages to combine them. 2. Load feature data that was used in the SVM-based approach in Habernal 2016. 3. Load the crowdsourced data. -- done. 4. Copy a similar testing setup to Habernal 2016 (training/test split?) and run the Bayesian approach (during testing, we can set aside some held-out data). -- done, results saved to file with no metrics computed yet except acc. 5. Print some simple metrics that are comparable to those used in Habernal 2016. Thoughts: 1. NN takes into account sequence of word embeddings; here we need to use a combined embedding for whole text to avoid a 300x300 dimensional input space. 2. So our method can only learn which elements of the embedding are important, but cannot learn from patterns in the sequence, unless we can find a way to encode those. 3. However, the SVM-based approach also did well. Which method is better, NN or SVM, and by how much? 4. We should be able to improve on the SVM-based approach. 5. The advantages of our method: ranking with sparse data; personalised predictions to the individual annotators; uncertainty estimates for active learning and decision-making confidence thresholds. Created on 20 Mar 2017 @author: simpson ''' import logging from scipy.stats.stats import kendalltau from sklearn.metrics import log_loss from sklearn.svm.classes import NuSVR, SVC logging.basicConfig(level=logging.DEBUG) import sys import os sys.path.append("./python") sys.path.append("./python/analysis") sys.path.append("./python/models") sys.path.append("./python/analysis/habernal_comparison") svm_python_path = '~/libsvm-3.22/python' # sys.path.append(os.path.expanduser("~/data/personalised_argumentation/embeddings/skip-thoughts")) # sys.path.append(os.path.expanduser("~/data/personalised_argumentation/embeddings/Siamese-CBOW/siamese-cbow")) sys.path.append(os.path.expanduser(svm_python_path)) import pickle import time from gp_pref_learning import GPPrefLearning, pref_likelihood from gp_classifier_svi import GPClassifierSVI from gp_classifier_vb import compute_median_lengthscales from sklearn.svm import SVR from embeddings import load_embeddings, load_siamese_cbow_embeddings, load_skipthoughts_embeddings, get_mean_embeddings from data_loader import data_root_dir, load_train_test_data, load_ling_features import numpy as np import pandas as pd ndebug_features = 10 verbose = False # Lengthscale initialisation ------------------------------------------------------------------------------------------- # use the median heuristic to find a reasonable initial length-scale. This is the median of the distances. # First, grab a sample of points because N^2 could be too large. def compute_lengthscale_heuristic(feature_type, embeddings_type, embeddings, ling_feat_spmatrix, docids, folds, index_to_word_map): # get the embedding values for the test data -- need to find embeddings of the whole piece of text if feature_type == 'both' or feature_type == 'embeddings' or feature_type == 'debug': docidxs = [] doc_tok_seqs = [] doctexts = [] for f in folds: doc_tok_seqs.append(folds.get(f)["test"][0]) doc_tok_seqs.append(folds.get(f)["test"][1]) testids = np.array([ids_pair.split('_') for ids_pair in folds.get(f)["test"][3]]) docidxs.append(get_docidxs_from_ids(docids, testids[:, 0])) docidxs.append(get_docidxs_from_ids(docids, testids[:, 1])) doctexts.append(folds.get(f)["test"][5]) doctexts.append(folds.get(f)["test"][6]) X, _, utexts = get_doc_token_seqs(docidxs, doc_tok_seqs, doctexts) if embeddings_type == 'word_mean': items_feat = get_mean_embeddings(embeddings, X) elif embeddings_type == 'skipthoughts': global skipthoughts import skipthoughts items_feat = skipthoughts.encode(embeddings, utexts) elif embeddings_type == 'siamese-cbow': items_feat = np.array([embeddings.getAggregate(index_to_word_map[Xi]) for Xi in X]) else: logging.info("invalid embeddings type! %s" % embeddings_type) if feature_type == 'both' or feature_type == 'debug': items_feat = np.concatenate((items_feat, ling_feat_spmatrix.toarray()), axis=1) if feature_type == 'ling': items_feat = ling_feat_spmatrix.toarray() if feature_type == 'debug': items_feat = items_feat[:, :ndebug_features] starttime = time.time() #for f in range(items_feat.shape[1]): ls_initial = compute_median_lengthscales(items_feat, N_max=3000) endtime = time.time() logging.info('@@@ Selected initial lengthscales in %f seconds' % (endtime - starttime)) return ls_initial def get_doc_token_seqs(ids, X_list, texts=None): ''' ids -- list of document IDs X_list -- list of lists of word indices for each argument corresponding to the ids texts -- list of texts corresponding to the ids returns X -- list of lists of word indices for each argument corresponding to the uids uids -- list of unique document IDs utexts -- unique texts corresponding to the uids ''' # X_train_a1 and a1_train both have one entry per observation. We want to replace them with a list of # unique arguments, and the indexes into that list. First, get the unique argument ids from trainids and testids: if hasattr(ids[0], '__len__'): allids = np.concatenate(ids) else: allids = ids uids, uidxs = np.unique(allids, return_index=True) # get the word index vectors corresponding to the unique arguments X = np.empty(np.max(uids) + 1, dtype=object) if texts is not None: utexts = np.zeros(np.max(uids) + 1, dtype=object) utexts[:] = '' start = 0 fin = 0 for i in range(len(X)): if i not in uids: X[i] = [] for i in range(len(X_list)): fin += len(X_list[i]) idxs = (uidxs>=start) & (uidxs<fin) # keep the original IDs to try to make life easier. This means the IDs become indexes into X X[uids[idxs]] = np.array(X_list[i])[uidxs[idxs] - start] if texts is not None: utexts[uids[idxs]] = np.array(texts[i])[uidxs[idxs] - start] start += len(X_list[i]) if texts is not None: utexts = [utext for utext in utexts] return X, uids, utexts else: return X, uids def get_docidxs_from_ids(all_docids, ids_to_map): return np.array([np.argwhere(docid == all_docids)[0][0] for docid in ids_to_map]) def get_fold_data(folds, fold, docids): #X_train_a1, X_train_a2 are lists of lists of word indexes X_train_a1, X_train_a2, prefs_train, ids_train, person_train, tr_a1, tr_a2 = folds.get(fold)["training"] X_test_a1, X_test_a2, prefs_test, ids_test, person_test, test_a1, test_a2 = folds.get(fold)["test"] #a1_train, a2_train are lists of argument ids trainids = np.array([ids_pair.split('_') for ids_pair in ids_train]) if docids is None: docids = np.arange(np.unique(trainids).size) a1_train = get_docidxs_from_ids(docids, trainids[:, 0]) a2_train = get_docidxs_from_ids(docids, trainids[:, 1]) testids = np.array([ids_pair.split('_') for ids_pair in ids_test]) a1_test = get_docidxs_from_ids(docids, testids[:, 0]) a2_test = get_docidxs_from_ids(docids, testids[:, 1]) X, uids, utexts = get_doc_token_seqs((a1_train, a2_train, a1_test, a2_test), [X_train_a1, X_train_a2, X_test_a1, X_test_a2], (tr_a1, tr_a2, test_a1, test_a2)) print(("Training instances ", len(X_train_a1), " training labels ", len(prefs_train))) print(("Test instances ", len(X_test_a1), " test labels ", len(prefs_test))) prefs_train = np.array(prefs_train) prefs_test = np.array(prefs_test) person_train = np.array(person_train) person_test = np.array(person_test) personIDs = np.concatenate((person_train, person_test)) upersonIDs, personIdxs = np.unique(personIDs, return_inverse=True) person_train = personIdxs[:len(person_train)] person_test = personIdxs[len(person_train):] return a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test, \ X, uids, utexts, upersonIDs def get_noisy_fold_data(folds, folds_test, fold, docids, tr_pair_subset=None): a1_train, a2_train, prefs_train, person_train, _, _, _, _, X, \ uids, utexts, upersonIDs = get_fold_data(folds, fold, docids) a1_agg, a2_agg, gold_train, person_agg, a1_test, a2_test, prefs_test, person_test, _, \ _, _, _ = get_fold_data(folds_test, fold, docids) # now subsample the training data N = len(a1_train) if tr_pair_subset is not None: Nsub = N * tr_pair_subset subidxs = np.random.choice(N, Nsub, replace=False) a1_train = a1_train[subidxs] a2_train = a2_train[subidxs] prefs_train = prefs_train[subidxs] person_train = person_train[subidxs] gold_train = gold_train[subidxs] else: Nsub = N return a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test, \ X, uids, utexts, upersonIDs, a1_agg, a2_agg, gold_train, person_agg def get_fold_regression_data(folds_regression, fold, docids): if folds_regression is not None: _, scores_rank_train, argids_rank_train, person_rank_train, _ = folds_regression.get(fold)["training"] # blank argument is turkIDs_rank_test item_idx_ranktrain = np.array([np.argwhere(trainid==docids)[0][0] for trainid in argids_rank_train]) scores_rank_train = np.array(scores_rank_train) argids_rank_train = np.array(argids_rank_train) _, scores_rank_test, argids_rank_test, person_rank_test, _ = folds_regression.get(fold)["test"] # blank argument is turkIDs_rank_test item_idx_ranktest = np.array([np.argwhere(testid==docids)[0][0] for testid in argids_rank_test]) scores_rank_test = np.array(scores_rank_test) argids_rank_test = np.array(argids_rank_test) else: item_idx_ranktrain = None scores_rank_train = None argids_rank_train = None person_rank_train = None item_idx_ranktest = None scores_rank_test = None argids_rank_test = None person_rank_test = None return item_idx_ranktrain, scores_rank_train, argids_rank_train, person_rank_train,\ item_idx_ranktest, scores_rank_test, argids_rank_test, person_rank_test def subsample_tr_data(subsample_amount, a1_train, a2_train): item_subsample_ids = [] nselected = 0 while nselected < subsample_amount: idx = np.random.choice(len(a1_train), 1) if a1_train[idx] not in item_subsample_ids: item_subsample_ids.append(a1_train[idx]) if a2_train[idx] not in item_subsample_ids: item_subsample_ids.append(a2_train[idx]) nselected = len(item_subsample_ids) pair_subsample_idxs = np.argwhere(np.in1d(a1_train, item_subsample_ids) & np.in1d(a2_train, item_subsample_ids)).flatten() # pair_subsample_idxs = np.random.choice(len(a1_train), subsample_amount, replace=False) return pair_subsample_idxs class TestRunner: def __init__(self, current_expt_output_dir, datasets, feature_types, embeddings_types, methods, dataset_increment, expt_tag='habernal'): self.folds = None self.initial_pair_subset = {} self.default_ls_values = {} self.expt_output_dir = current_expt_output_dir self.expt_tag = expt_tag self.datasets = datasets self.feature_types = feature_types self.embeddings_types = embeddings_types self.methods = methods self.dataset_increment = dataset_increment self.vscales = [] # record the latent factor scales def load_features(self, feature_type, embeddings_type, a1_train, a2_train, uids, utexts=None): ''' Load all the features specified by the type into an items_feat object. Remove any features where the values are all zeroes. ''' # get the embedding values for the test data -- need to find embeddings of the whole piece of text if feature_type == 'both' or feature_type == 'embeddings' or feature_type=='debug': logging.info("Converting texts to mean embeddings (we could use a better sentence embedding?)...") if embeddings_type == 'word_mean': items_feat = get_mean_embeddings(self.embeddings, self.X) elif embeddings_type == 'skipthoughts': global skipthoughts import skipthoughts items_feat = skipthoughts.encode(self.embeddings, utexts) elif embeddings_type == 'siamese-cbow': items_feat = np.array([self.embeddings.getAggregate(self.index_to_word_map[Xi]) for Xi in self.X]) else: logging.info("invalid embeddings type! %s" % embeddings_type) logging.info("...embeddings loaded.") # trim away any features not in the training data because we can't learn from them valid_feats = np.sum((items_feat[a1_train] != 0) + (items_feat[a2_train] != 0), axis=0) > 0 items_feat = items_feat[:, valid_feats] self.ling_items_feat = None # will get overwritten if we load the linguistic features further down. self.embeddings_items_feat = items_feat elif feature_type == 'ling': items_feat = np.zeros((self.X.shape[0], 0)) valid_feats = np.zeros(0) self.embeddings_items_feat = None if feature_type == 'both' or feature_type == 'ling' or feature_type == 'debug': logging.info("Obtaining linguistic features for argument texts.") # trim the features that are not used in training valid_feats_ling = np.sum( (self.ling_feat_spmatrix[a1_train, :] != 0) + (self.ling_feat_spmatrix[a2_train, :] != 0), axis=0) > 0 valid_feats_ling = np.array(valid_feats_ling).flatten() self.ling_items_feat = self.ling_feat_spmatrix[uids, :][:, valid_feats_ling].toarray() items_feat = np.concatenate((items_feat, self.ling_items_feat), axis=1) logging.info("...loaded all linguistic features for training and test data.") valid_feats = np.concatenate((valid_feats, valid_feats_ling)) print('Found %i features.' % items_feat.shape[1]) if feature_type=='debug': items_feat = items_feat[:, :ndebug_features] #use only n features for faster debugging self.ling_items_feat = items_feat self.embeddings_items_feat = items_feat valid_feats = valid_feats[:ndebug_features] self.items_feat = items_feat self.ndims = self.items_feat.shape[1] self.valid_feats = valid_feats.astype(bool) # Methods for running the prediction methods ----------------------------------------------------------------------- def run_gppl(self): if 'additive' in self.method: kernel_combination = '+' else: kernel_combination = '*' if 'shrunk' in self.method: ls_initial = self.ls_initial / float(len(self.ls_initial)) else: ls_initial = self.ls_initial if 'weaksprior' in self.method: shape_s0 = 2.0 rate_s0 = 200.0 elif 'lowsprior' in self.method: shape_s0 = 1.0 rate_s0 = 1.0 elif 'weakersprior' in self.method: shape_s0 = 2.0 rate_s0 = 2000.0 else: shape_s0 = 200.0 rate_s0 = 20000.0 if '_M' in self.method: validx = self.method.find('_M') + 2 M = int(self.method[validx:].split('_')[0]) else: M = 500 if '_SS' in self.method: validx = self.method.find('_SS') + 3 SS = int(self.method[validx:].split('_')[0]) else: SS = 200 if self.model is None: if M == 0: use_svi = False else: use_svi = True self.model = GPPrefLearning(ninput_features=self.ndims, ls_initial=ls_initial, verbose=self.verbose, shape_s0=shape_s0, rate_s0=rate_s0, rate_ls = 1.0 / np.mean(ls_initial), use_svi=use_svi, ninducing=M, max_update_size=SS, kernel_combination=kernel_combination, forgetting_rate=0.9, delay=1.0) self.model.max_iter_VB = 200 new_items_feat = self.items_feat # pass only when initialising else: new_items_feat = None print("no. features: %i" % new_items_feat.shape[1]) self.model.fit(self.a1_train, self.a2_train, new_items_feat, np.array(self.prefs_train, dtype=float)-1, optimize=self.optimize_hyper, input_type='zero-centered') proba = self.model.predict(None, self.a1_test, self.a2_test, reuse_output_kernel=True, return_var=False) if self.a1_unseen is not None and len(self.a1_unseen): tr_proba, _ = self.model.predict(None, self.a1_unseen, self.a2_unseen, reuse_output_kernel=True) else: tr_proba = None if self.a_rank_test is not None: predicted_f, _ = self.model.predict_f(None, self.a_rank_test) else: predicted_f = None if self.a_rank_train is not None: tr_f, _ = self.model.predict_f(None, self.a_rank_train) else: tr_f = None return proba, predicted_f, tr_proba, tr_f # model, _, a1_train, a2_train, self.prefs_train, items_feat, _, _, self.a1_test, self.a2_test, # self.a1_unseen, self.a2_unseen, ls_initial, verbose, _, self.a_rank_test=None, _, _, _ def run_gpsvm(self): if self.model is None: self.model = GPPrefLearning(ninput_features=1, ls_initial=[1000], verbose=self.verbose, shape_s0 = 1.0, rate_s0 = 1.0, rate_ls = 1.0 / np.mean(self.ls_initial), use_svi=False, kernel_func='diagonal') self.model.max_iter_VB = 10 # never use optimize with diagonal kernel self.model.fit(self.a1_train, self.a2_train, np.arange(self.items_feat.shape[0])[:, np.newaxis], np.array(self.prefs_train, dtype=float)-1, optimize=False, input_type='zero-centered') train_idxs = np.unique([self.a1_train, self.a2_train]) train_feats = self.items_feat[train_idxs] f, _ = self.model.predict_f(train_idxs[:, np.newaxis]) svm = SVR() svm.fit(train_feats, f) test_f = svm.predict(self.items_feat) # apply the preference likelihood from GP method proba = pref_likelihood(test_f, v=self.a1_test, u=self.a2_test, return_g_f=False) if self.a_rank_test is not None: predicted_f = svm.predict(self.items_feat[self.a_rank_test]) else: predicted_f = None if self.a1_unseen is not None and len(self.a1_unseen): tr_proba = pref_likelihood(test_f, v=self.a1_unseen, u=self.a2_unseen, return_g_f=False) else: tr_proba = None return proba, predicted_f, tr_proba def run_gpc(self): if 'additive' in self.method: kernel_combination = '+' else: kernel_combination = '*' if 'weaksprior' in self.method: shape_s0 = 2.0 rate_s0 = 200.0 elif 'lowsprior': shape_s0 = 1.0 rate_s0 = 1.0 else: shape_s0 = 200.0 rate_s0 = 20000.0 # twice as many features means the lengthscale heuristic is * 2 if self.model is None: ls_initial = np.concatenate((self.ls_initial * 2.0, self.ls_initial * 2.0)) self.model = GPClassifierSVI(ninput_features=self.ndims, ls_initial=ls_initial, verbose=self.verbose, shape_s0=shape_s0, rate_s0=rate_s0, rate_ls=1.0 / np.mean(self.ls_initial), use_svi=True, ninducing=500, max_update_size=200, kernel_combination=kernel_combination) self.model.max_iter_VB = 500 # with the argument order swapped around and data replicated: gpc_feats = np.empty(shape=(len(self.a1_train)*2, self.items_feat.shape[1]*2)) gpc_feats[:len(self.a1_train), :self.items_feat.shape[1]] = self.items_feat[self.a1_train] gpc_feats[len(self.a1_train):, :self.items_feat.shape[1]] = self.items_feat[self.a2_train] gpc_feats[:len(self.a1_train), self.items_feat.shape[1]:] = self.items_feat[self.a2_train] gpc_feats[len(self.a1_train):, self.items_feat.shape[1]:] = self.items_feat[self.a1_train] gpc_labels = np.concatenate((np.array(self.prefs_train, dtype=float) * 0.5, 1 - np.array(self.prefs_train, dtype=float) * 0.5)) self.model.fit(np.arange(len(self.a1_train)), gpc_labels, optimize=self.optimize_hyper, features=gpc_feats) proba, _ = self.model.predict(np.concatenate((self.items_feat[self.a1_test], self.items_feat[self.a2_test]), axis=1)) if self.a_rank_test is not None: predicted_f = np.zeros(len(self.a_rank_test)) # can't easily rank with this method else: predicted_f = None if self.a1_unseen is not None and len(self.a1_unseen): tr_proba, _ = self.model.predict(np.concatenate((self.items_feat[self.a1_unseen], self.items_feat[self.a2_unseen]), axis=1)) else: tr_proba = None return proba, predicted_f, tr_proba def run_svm(self, feature_type): prefs_train_fl = np.array(self.prefs_train, dtype=float) # cannot train on uncertain labels idxs = (prefs_train_fl == 0) | (prefs_train_fl == 2) prefs_train_fl = prefs_train_fl[idxs] svc_labels = np.concatenate((prefs_train_fl * 0.5, 1 - prefs_train_fl * 0.5)) svc = SVC(probability=True) trainfeats = np.concatenate(( np.concatenate(( self.items_feat[self.a1_train[idxs]], self.items_feat[self.a2_train[idxs]]), axis=1), np.concatenate(( self.items_feat[self.a1_train[idxs]], self.items_feat[self.a2_train[idxs]]), axis=1)), axis=0) print("SVM classifier: no. features: %i" % trainfeats.shape[1]) print("SVM classifier: no. pairs: %i" % trainfeats.shape[0]) svc.fit(trainfeats, svc_labels.astype(int)) proba = svc.predict_proba(np.concatenate((self.items_feat[self.a1_train], self.items_feat[self.a2_train]), axis=1)) maxdiff = np.max(proba) - np.min(proba) if maxdiff == 0: maxdiff = 1 proba = (proba - np.min(proba)) / maxdiff # sometimes the probability estimates are too # squashed together... may be as bug in later versions of sklearn # libSVM flips the labels if the first one it sees is positive if svc_labels[0] == 1: proba = 1 - np.array(proba) if self.a_rank_test is not None: svr = NuSVR() svr.fit(self.items_feat[self.a_rank_train], self.scores_rank_train) predicted_f = svr.predict(self.items_feat[self.a_rank_test]) logging.debug('Predictions from SVM regression: %s ' % predicted_f) else: predicted_f = None if self.a1_unseen is not None and len(self.a1_unseen): tr_proba = svc.predict_proba(np.concatenate((self.items_feat[self.a1_unseen], self.items_feat[self.a2_unseen]), axis=1))[:, 0] # libSVM flips the labels if the first one it sees is positive if svc_labels[0] == 1: tr_proba = 1 - np.array(tr_proba) tr_proba = tr_proba[:, None] else: tr_proba = None return proba[:, None], predicted_f, tr_proba def run_bilstm(self, feature_type): import os os.environ['KERAS_BACKEND'] = 'theano' from keras.preprocessing import sequence from keras.models import Graph from keras.layers.core import Dense, Dropout from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM # Include document-level features in a simple manner using one hidden layer, which is then combined with the outputs of # the LSTM layers, as in "Boosting Information Extraction Systems with Character-level Neural Networks and Free Noisy # Supervision". This is equivalent to an MLP with one hidden layer combined with the LSTM. if feature_type == 'ling' or feature_type == 'both' or feature_type == 'debug': use_doc_level_features = True n_doc_level_feats = self.ling_items_feat.shape[1] else: use_doc_level_features = False np.random.seed(1337) # for reproducibility max_len = 300 # cut texts after this number of words (among top max_features most common words) batch_size = 32 nb_epoch = 5 # 5 epochs are meaningful to prevent over-fitting... print(len(self.folds.get(self.fold)["training"])) X_train1 = self.X[self.a1_train] X_train2 = self.X[self.a2_train] y_train = self.prefs_train.tolist() X_train = [] for i, row1 in enumerate(X_train1): row1 = row1 + X_train2[i] X_train.append(row1) X_test1, X_test2, _, _, _, _, _ = self.folds.get(self.fold)["test"] X_test = [] for i, row1 in enumerate(X_test1): row1 = row1 + X_test2[i] X_test.append(row1) print("Pad sequences (samples x time)") X_train = sequence.pad_sequences(X_train, maxlen=max_len) X_test = sequence.pad_sequences(X_test, maxlen=max_len) print(('X_train shape:', X_train.shape)) print(('X_test shape:', X_test.shape)) y_train = np.array(y_train) / 2.0 print(('y_train values: ', np.unique(y_train))) print('Training data sizes:') print((X_train.shape)) print((y_train.shape)) if use_doc_level_features: pair_doc_feats_tr = np.concatenate((self.ling_items_feat[self.a1_train, :], self.ling_items_feat[self.a2_train, :]), axis=1) print((pair_doc_feats_tr.shape)) print(n_doc_level_feats * 2) pair_doc_feats_test = np.concatenate((self.ling_items_feat[self.a1_test, :], self.ling_items_feat[self.a2_test, :]), axis=1) print('Build model...') if self.model is None: self.model = Graph() self.model.add_input(name='input', input_shape=(max_len,), dtype='int') self.model.add_node(Embedding(self.embeddings.shape[0], self.embeddings.shape[1], input_length=max_len, weights=[self.embeddings]), name='embedding', input='input') self.model.add_node(LSTM(64), name='forward', input='embedding') self.model.add_node(LSTM(64, go_backwards=True), name='backward', input='embedding') self.model.add_node(Dropout(0.5), name='dropout', inputs=['forward', 'backward']) if use_doc_level_features: self.model.add_input(name='docfeatures', input_shape=(n_doc_level_feats*2,), dtype='float') self.model.add_node(Dense(64, activation='relu'), name='docfeatures_hiddenlayer', input='docfeatures') self.model.add_node(Dropout(0.5), name='dropout_docfeatures', input='docfeatures_hiddenlayer') self.model.add_node(Dense(1, activation='sigmoid'), name='sigmoid', inputs=['dropout_docfeatures', 'dropout']) else: self.model.add_node(Dense(1, activation='sigmoid'), name='sigmoid', input='dropout') self.model.add_output(name='output', input='sigmoid') # try using different optimizers and different optimizer configs self.model.compile('adam', {'output': 'binary_crossentropy'}) print('Train...') if use_doc_level_features: self.model.fit({'input': X_train, 'docfeatures' : pair_doc_feats_tr, 'output': y_train}, batch_size=batch_size, nb_epoch=nb_epoch) else: self.model.fit({'input': X_train, 'output': y_train}, batch_size=batch_size, nb_epoch=nb_epoch) print('Prediction') if use_doc_level_features: model_predict = self.model.predict({'input': X_test, 'docfeatures': pair_doc_feats_test}, batch_size=batch_size) else: model_predict = self.model.predict({'input': X_test}, batch_size=batch_size) proba = np.array(model_predict['output']) #proba = np.zeros(len(prefs_test)) if self.a_rank_test is not None: X_train = self.X[self.a_rank_train] X_test = self.X[self.a_rank_test] print((len(X_train), 'train sequences')) print((len(X_test), 'test sequences')) print("Pad sequences (samples x time)") X_train = sequence.pad_sequences(X_train, maxlen=max_len) X_test = sequence.pad_sequences(X_test, maxlen=max_len) print(('X_train shape:', X_train.shape)) print(('X_test shape:', X_test.shape)) print('Build model...') rank_model = Graph() rank_model.add_input(name='input', input_shape=(max_len,), dtype=int) rank_model.add_node(Embedding(self.embeddings.shape[0], self.embeddings.shape[1], input_length=max_len, weights=[self.embeddings]), name='embedding', input='input') rank_model.add_node(LSTM(64), name='forward', input='embedding') rank_model.add_node(LSTM(64, go_backwards=True), name='backward', input='embedding') rank_model.add_node(Dropout(0.5), name='dropout', inputs=['forward', 'backward']) # match output layer for regression better if use_doc_level_features: rank_model.add_input(name='docfeatures', input_shape=(n_doc_level_feats,), dtype='float') rank_model.add_node(Dense(64, activation='relu'), name='docfeatures_hiddenlayer', input='docfeatures') rank_model.add_node(Dropout(0.5), name='dropout_docfeatures', input='docfeatures_hiddenlayer') rank_model.add_node(Dense(1, activation='linear', init='uniform'), name='output_layer', inputs=['dropout_docfeatures', 'dropout']) else: rank_model.add_node(Dense(1, activation='linear', init='uniform'), name='output_layer', input='dropout') rank_model.add_output(name='output', input='output_layer') # use mean absolute error loss rank_model.compile('adam', {'output': 'mean_absolute_error'}) print('Train...') if use_doc_level_features: rank_model.fit({'input': X_train, 'docfeatures' : self.ling_items_feat[self.a_rank_train, :], 'output': self.scores_rank_train}, batch_size=batch_size, nb_epoch=nb_epoch) else: rank_model.fit({'input': X_train, 'output': self.scores_rank_train}, batch_size=batch_size, nb_epoch=nb_epoch) print('Prediction') if use_doc_level_features: model_predict = rank_model.predict({'input': X_test, 'docfeatures': self.ling_items_feat[self.a_rank_test, :]}, batch_size=batch_size) else: model_predict = rank_model.predict({'input': X_test}, batch_size=batch_size) predicted_f = np.asarray(model_predict['output']).flatten() print(('Unique regression predictions: ', np.unique(predicted_f))) else: predicted_f = None if self.a1_unseen is not None and len(self.a1_unseen): X_test = [] X_test1 = self.X[self.a1_unseen] X_test2 = self.X[self.a2_unseen] for i, row1 in enumerate(X_test1): row1 = row1 + X_test2[i] X_test.append(row1) X_test = sequence.pad_sequences(X_test, maxlen=max_len) print('Prediction on unseen data...') if use_doc_level_features: pair_doc_feats_unseen = np.concatenate((self.ling_items_feat[self.a1_unseen, :], self.ling_items_feat[self.a2_unseen, :]), axis=1) model_predict = self.model.predict({'input': X_test, 'docfeatures': pair_doc_feats_unseen}, batch_size=batch_size) else: model_predict = self.model.predict({'input': X_test}, batch_size=batch_size) tr_proba = np.array(model_predict['output']) else: tr_proba = None return proba, predicted_f, tr_proba def _choose_method_fun(self, feature_type): if 'SinglePrefGP' in self.method: method_runner_fun = self.run_gppl elif 'GP+SVM' in self.method: method_runner_fun = self.run_gpsvm elif 'SingleGPC' in self.method: method_runner_fun = self.run_gpc elif 'SVM' in self.method: method_runner_fun = lambda: self.run_svm(feature_type) elif 'BI-LSTM' in self.method: if feature_type == 'ling': logging.error("BI-LSTM is not set up to run without using embeddings. Will switch to feature type=both...") feature_type = 'both' method_runner_fun = lambda: self.run_bilstm(feature_type) return method_runner_fun def _set_resultsfile(self, feature_type, embeddings_type, data_inc): # To run the active learning tests, call this function with dataset_increment << 1.0. output_data_dir = os.path.join(data_root_dir, 'outputdata/') if not os.path.isdir(output_data_dir): os.mkdir(output_data_dir) output_data_dir = os.path.join(output_data_dir, self.expt_output_dir) if not os.path.isdir(output_data_dir): os.mkdir(output_data_dir) # Select output paths for CSV files and final results output_filename_template = output_data_dir + '/%s' % self.expt_tag output_filename_template += '_%s_%s_%s_%s_di%.2f' results_stem = output_filename_template % (self.dataset, self.method, feature_type, embeddings_type, data_inc) resultsfile = results_stem + '_test.pkl' # the old results format with everything in one file # modelfile = results_stem + '_model_fold%i.pkl' logging.info('The output file for the results will be: %s' % resultsfile) if not os.path.isdir(results_stem): os.mkdir(results_stem) return resultsfile, results_stem def _load_dataset(self, dataset): self.folds, self.folds_test, self.folds_r, self.word_index_to_embeddings_map, self.word_to_indices_map, \ self.index_to_word_map = load_train_test_data(dataset) self.ling_feat_spmatrix, self.docids = load_ling_features(dataset) self.dataset = dataset def _init_ls(self, feature_type, embeddings_type, ls_factor=1): if self.dataset in self.default_ls_values and feature_type in self.default_ls_values[self.dataset] and \ embeddings_type in self.default_ls_values[self.dataset][feature_type]: self.default_ls = self.default_ls_values[self.dataset][feature_type][embeddings_type] elif 'GP' in self.method: ls_file = './data/ls_%s_%s_%s.csv' % (self.dataset, feature_type, embeddings_type) if os.path.exists(ls_file): self.default_ls = np.genfromtxt(ls_file) else: self.default_ls = compute_lengthscale_heuristic(feature_type, embeddings_type, self.embeddings, self.ling_feat_spmatrix, self.docids, self.folds, self.index_to_word_map) np.savetxt(ls_file, self.default_ls) self.default_ls *= ls_factor # self.default_ls /= float(len(self.default_ls)) # long lengthscale does strange things with training dataset if self.dataset not in self.default_ls_values: self.default_ls_values[self.dataset] = {} if feature_type not in self.default_ls_values[self.dataset]: self.default_ls_values[self.dataset][feature_type] = {} self.default_ls_values[self.dataset][feature_type][embeddings_type] = self.default_ls else: self.default_ls = [] def _set_embeddings(self, embeddings_type): if 'word_mean' == embeddings_type and not hasattr(self, 'word_embeddings'): self.word_embeddings = load_embeddings(self.word_index_to_embeddings_map) elif 'word_mean' != embeddings_type: self.word_embeddings = None if 'skipthoughts' == embeddings_type and not hasattr(self, 'skipthoughts_model'): self.skipthoughts_model = load_skipthoughts_embeddings(self.word_to_indices_map) elif 'skipthoughts' != embeddings_type: self.skipthoughts_model = None if 'siamese-cbow' == embeddings_type and not hasattr(self, 'siamese_cbow_embeddings'): self.siamese_cbow_embeddings = load_siamese_cbow_embeddings(self.word_to_indices_map) elif 'siamese-cbow' != embeddings_type: self.siamese_cbow_embeddings = None if embeddings_type == 'word_mean': self.embeddings = self.word_embeddings elif embeddings_type == 'skipthoughts': self.embeddings = self.skipthoughts_model elif embeddings_type == 'siamese-cbow': self.embeddings = self.siamese_cbow_embeddings else: self.embeddings = None def _reload_partial_result(self, resultsfile): if not os.path.isfile(resultsfile): all_proba = {} all_predictions = {} all_f = {} all_tr_proba = {} all_tr_f = {} all_target_prefs = {} all_target_rankscores = {} final_ls = {} times = {} else: with open(resultsfile, 'rb') as fh: all_proba, all_predictions, all_f, all_target_prefs, all_target_rankscores, _, times, final_ls, \ all_tr_proba, all_tr_f, _ = pickle.load(fh, encoding='latin1') if all_tr_proba is None: all_tr_proba = {} if all_tr_f is None: all_tr_f = {} return all_proba, all_predictions, all_f, all_target_prefs, all_target_rankscores, times, final_ls, \ all_tr_proba, all_tr_f def run_test(self, feature_type, embeddings_type=None, dataset_increment=0, subsample_amount=0, min_no_folds=0, max_no_folds=32, npairs=0, test_on_all_training_pairs=False, ls_factor=1): logging.info("**** Running method %s with features %s, embeddings %s, on dataset %s ****" % (self.method, feature_type, embeddings_type, self.dataset) ) self._set_embeddings(embeddings_type) self._init_ls(feature_type, embeddings_type, ls_factor) resultsfile, results_stem = self._set_resultsfile(feature_type, embeddings_type, dataset_increment) self.results_stem = results_stem all_proba, all_predictions, all_f, all_target_prefs, all_target_rankscores, times, final_ls, all_tr_proba, \ all_tr_f = self._reload_partial_result(resultsfile) np.random.seed(121) # allows us to get the same initialisation for all methods/feature types/embeddings if os.path.isfile(results_stem + '/foldorder.txt'): fold_keys = np.genfromtxt(os.path.expanduser(results_stem + '/foldorder.txt'), dtype=str) else: fold_keys = list(self.folds.keys()) fold_keys = np.sort(fold_keys) for foldidx, self.fold in enumerate(fold_keys): self.foldidx = foldidx if foldidx in all_proba and dataset_increment==0: print(("Skipping fold %i, %s" % (foldidx, self.fold))) continue if foldidx >= max_no_folds or foldidx < min_no_folds: print(("Already completed maximum no. folds or this fold is below the minimum specified." " Skipping fold %i, %s" % (foldidx, self.fold))) continue foldresultsfile = results_stem + '/fold%i.pkl' % foldidx if foldidx not in all_proba and os.path.isfile(foldresultsfile): if dataset_increment == 0: print(("Skipping fold %i, %s" % (foldidx, self.fold))) continue with open(foldresultsfile, 'rb') as fh: all_proba[foldidx], all_predictions[foldidx], all_f[foldidx], all_target_prefs[foldidx],\ all_target_rankscores[foldidx], _, times[foldidx], final_ls[foldidx], all_tr_proba[foldidx], _, _ = \ pickle.load(fh, encoding='latin1') # Get data for this fold ----------------------------------------------------------------------------------- print(("Fold name ", self.fold)) a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test,\ self.X, uids, utexts, upersonIDs, a1_agg, a2_agg, gold_train, person_agg \ = get_noisy_fold_data(self.folds, self.folds_test, self.fold, self.docids) # ranking folds a_rank_train, scores_rank_train, _, person_rank_train, a_rank_test, scores_rank_test, _, \ person_rank_test = get_fold_regression_data(self.folds_r, self.fold, self.docids) # rand_items = np.random.choice(1052, 200, replace=False) # tridxs = np.in1d(a1_train, rand_items) & np.in1d(a2_train, rand_items) # a1_train = a1_train[tridxs] # a2_train = a2_train[tridxs] # prefs_train = prefs_train[tridxs] # person_train = person_train[tridxs] # convert the ranking person IDs to the idxs if person_rank_train is not None and len(person_rank_train): person_rank_train = np.array([np.argwhere(upersonIDs == p.strip())[0][0] if p.strip() in upersonIDs else -1 for p in person_rank_train]) a_rank_train = a_rank_train[person_rank_train != -1] scores_rank_train = scores_rank_train[person_rank_train != -1] person_rank_train = person_rank_train[person_rank_train != -1] if person_rank_test is not None and len(person_rank_test): # If running personalized predictions, ensure we only test on workers that were seen in training because # we have no worker features to predict preferences of new workers. person_rank_test = np.array([np.argwhere(upersonIDs == p.strip())[0][0] if p.strip() in upersonIDs else -1 for p in person_rank_test]) valid_test_idxs = (person_rank_test != -1) & np.in1d(person_rank_test, person_rank_train) a_rank_test = a_rank_test[valid_test_idxs] scores_rank_test = scores_rank_test[valid_test_idxs] person_rank_test = person_rank_test[valid_test_idxs] if len(person_test) and len(np.unique(person_test)) > 1: # If running personalized predictions, ensure we only test on workers that were seen in training because # we have no worker features to predict preferences of new workers. valid_test_idxs = np.in1d(person_test, person_train) a1_test = a1_test[valid_test_idxs] a2_test = a2_test[valid_test_idxs] person_test = person_test[valid_test_idxs] prefs_test = prefs_test[valid_test_idxs] self.prefs_test = prefs_test self.load_features(feature_type, embeddings_type, a1_train, a2_train, uids, utexts) #items_feat = items_feat[:, :ndebug_features] # Subsample training data -------------------------------------------------------------------------------------- if npairs == 0: npairs_f = len(a1_train) else: npairs_f = npairs nseen_so_far = 0 if dataset_increment != 0: if foldidx in all_proba and all_proba[foldidx].shape[1] >= float(npairs_f) / dataset_increment: print(("Skipping fold %i, %s" % (foldidx, self.fold))) continue nnew_pairs = dataset_increment else: nnew_pairs = npairs_f # choose the initial dataset if self.fold in self.initial_pair_subset: pair_subset = self.initial_pair_subset[self.fold] elif dataset_increment != 0: pair_subset = np.random.choice(len(a1_train), nnew_pairs, replace=False) elif subsample_amount > 0: pair_subset = subsample_tr_data(subsample_amount, a1_train, a2_train) else: pair_subset = np.arange(npairs_f) # save so we can reuse for another method self.initial_pair_subset[self.fold] = pair_subset self.verbose = verbose self.optimize_hyper = ('noOpt' not in self.method) # with open(modelfile % foldidx, 'r') as fh: # model = pickle.load(fh) # items_feat_test = None self.model = None # initial value if len(self.default_ls) > 1: self.ls_initial = self.default_ls[self.valid_feats] else: self.ls_initial = self.default_ls if '_oneLS' in self.method: self.ls_initial = np.median(self.ls_initial) logging.info("Selecting a single LS for all features: %f" % self.ls_initial) logging.info("Starting test with method %s..." % (self.method)) starttime = time.time() unseen_subset = np.ones(len(a1_train), dtype=bool) # Run the chosen method with active learning simulation if required--------------------------------------------- while nseen_so_far < npairs_f: logging.info('****** Fitting model with %i pairs in fold %i, %s ******' % (len(pair_subset), foldidx, self.fold)) # get the indexes of data points that are not yet seen if not test_on_all_training_pairs: unseen_subset[pair_subset] = False if dataset_increment == 0: # no active learning, don't need to evaluate the unseen data points unseen_subset[:] = False # set the current dataset self.a1_train = a1_train[pair_subset] self.a2_train = a2_train[pair_subset] self.prefs_train = prefs_train[pair_subset] self.person_train = person_train[pair_subset] self.a1_test = a1_test self.a2_test = a2_test self.person_test = person_test self.a1_unseen = a1_agg #unseen_subset] change it so we test on train -- test the aggregated labels after combining the crowd self.a2_unseen = a2_agg #unseen_subset] self.person_unseen = person_agg #unseen_subset] self.a_rank_train = a_rank_train self.scores_rank_train = scores_rank_train self.person_rank_train = person_rank_train self.a_rank_test = a_rank_test self.person_rank_test = person_rank_test if self.a_rank_test is not None and len(self.person_rank_test) == 0: self.person_rank_test = np.zeros(len(self.a_rank_test)) # if no person IDs, make sure we default to 0 # run the method with the current data subset method_runner_fun = self._choose_method_fun(feature_type) proba, predicted_f, tr_proba, tr_f = method_runner_fun() endtime = time.time() # make it the right shape proba = np.array(proba) if proba.ndim == 2 and proba.shape[1] > 1: proba = proba[:, 1:2] elif proba.ndim == 1: proba = proba[:, None] predictions = np.round(proba) if predicted_f is not None: predicted_f = np.array(predicted_f) if predicted_f.ndim == 3: predicted_f = predicted_f[0] if predicted_f.ndim == 1: predicted_f = predicted_f[:, None] if tr_proba is not None: tr_proba = np.array(tr_proba) if tr_proba.ndim == 2 and tr_proba.shape[1] > 1: tr_proba = tr_proba[:, 1:2] elif tr_proba.ndim == 1: tr_proba = tr_proba[:, None] if tr_f is not None: tr_f = np.array(tr_f) if tr_f.ndim == 1: tr_f = tr_f[:, None] # get more data nseen_so_far += nnew_pairs nnew_pairs = dataset_increment # int(np.floor(dataset_increment * npairs_f)) if nseen_so_far >= npairs_f: # the last iteration possible nnew_pairs = npairs_f - nseen_so_far nseen_so_far = npairs_f else: # don't do this if we have already seen all the data # use predictions at available training points tr_proba = np.array(tr_proba) uncertainty = tr_proba * np.log(tr_proba) + (1-tr_proba) * np.log(1-tr_proba) # -ve shannon entropy ranked_pair_idxs = np.argsort(uncertainty.flatten()) new_pair_subset = ranked_pair_idxs[:nnew_pairs] # active learning (uncertainty sampling) step new_pair_subset = np.argwhere(unseen_subset)[new_pair_subset].flatten() pair_subset = np.concatenate((pair_subset, new_pair_subset)) # if tr_proba is not None: # tr_proba_complete = prefs_train.flatten()[:, np.newaxis] / 2.0 # tr_proba_complete[unseen_subset] = tr_proba # tr_proba = tr_proba_complete logging.info("@@@ Completed running fold %i with method %s, features %s, %i data so far, in %f seconds." % ( foldidx, self.method, feature_type, nseen_so_far, endtime-starttime) ) if predictions.size == prefs_test.size: acc = np.sum(prefs_test[prefs_test != 1] == 2 * predictions.flatten()[prefs_test != 1] ) / float(np.sum(prefs_test != 1)) CEE = log_loss(prefs_test[prefs_test != 1] == 2, proba[prefs_test != 1]) print("Accuracy for fold = %f" % acc) print('CEE = %f' % CEE) tau = 0 tau_40 = 0 if predicted_f is not None and predicted_f.size == scores_rank_test.size: # print out the pearson correlation if person_rank_test is not None and len(person_rank_test): for upeep in np.unique(person_rank_test): idxs = person_rank_test == upeep if np.sum(idxs) < 2 or len(scores_rank_test[idxs]) < 2: continue tau_p, _ = kendalltau(scores_rank_test[idxs], predicted_f.flatten()[idxs]) if np.isnan(tau_p): continue tau.append(tau_p) if np.sum(person_rank_train == upeep) >= 40: tau_40.append(tau_p) tau = np.mean(tau) tau_40 = np.mean(tau_40) else: tau, _ = kendalltau(scores_rank_test, predicted_f.flatten()) tau_40 = tau print("Kendall's tau for fold = %f" % tau) print("For worker IDs with at least 40 annotations: Kendall's tau for fold = %f" % tau_40) if tr_proba is not None: tr_acc = np.sum(gold_train[gold_train != 1] == 2 * np.round(tr_proba).flatten()[gold_train != 1] ) / float(np.sum(gold_train != 1)) tr_cee = log_loss(gold_train[gold_train != 1]==2, tr_proba[gold_train != 1]) print("Unseen data in the training fold, accuracy for fold = %f" % tr_acc ) else: tr_acc = 0 tr_cee = 0 tr_tau = 0 tr_tau_40 = 0 if tr_f is not None: for upeep in np.unique(person_rank_train): idxs = person_rank_train == upeep if np.sum(idxs) < 2: continue tau_p, _ = kendalltau(scores_rank_train[idxs], tr_f.flatten()[idxs]) tr_tau.append(tau_p) if np.sum(person_rank_train == upeep) >= 40: tr_tau_40.append(tau_p) tr_tau = np.mean(tr_tau) tr_tau_40 = np.mean(tr_tau_40) print("(training set) Kendall's tau for fold = %f" % tr_tau) print("(training set) For worker IDs with at least 40 annotations: Kendall's tau for fold = %f" % tr_tau_40) else: tr_tau = 0 # Save the data for later analysis ---------------------------------------------------------------------------- if hasattr(self.model, 'ls'): final_ls[foldidx] = self.model.ls else: final_ls[foldidx] = [0] # Outputs from the tested method if foldidx not in all_proba: all_proba[foldidx] = proba all_predictions[foldidx] = predictions all_f[foldidx] = predicted_f all_tr_proba[foldidx] = tr_proba all_tr_f[foldidx] = tr_f else: all_proba[foldidx] = np.concatenate((all_proba[foldidx], proba), axis=1) all_predictions[foldidx] = np.concatenate((all_predictions[foldidx], predictions), axis=1) if predicted_f is not None: all_f[foldidx] = np.concatenate((all_f[foldidx], predicted_f), axis=1) if tr_proba is not None: all_tr_proba[foldidx] = np.concatenate((all_tr_proba[foldidx], tr_proba), axis=1) if tr_f is not None: all_tr_f[foldidx] = np.concatenate((all_tr_f[foldidx], tr_f), axis=1) # Save the ground truth all_target_prefs[foldidx] = prefs_test if self.folds_r is not None: all_target_rankscores[foldidx] = scores_rank_test else: all_target_rankscores[foldidx] = None # Save the time taken times[foldidx] = endtime-starttime results = (all_proba[foldidx], all_predictions[foldidx], all_f[foldidx], all_target_prefs[foldidx], all_target_rankscores[foldidx], self.ls_initial, times[foldidx], final_ls[foldidx], all_tr_proba[foldidx], all_tr_f[foldidx], len(self.a1_train)) with open(foldresultsfile, 'wb') as fh: pickle.dump(results, fh) pair_prob_file = results_stem + '/pair_probs_%i.csv' % foldidx pd.DataFrame(proba).to_csv(pair_prob_file) if not os.path.isfile(results_stem + "/foldorder.txt"): np.savetxt(results_stem + "/foldorder.txt", fold_keys[:, None], fmt="%s") results_file = os.path.join(self.results_stem, 'metrics.csv') try: metrics = pd.read_csv(results_file).values.tolist() except: metrics = [] metrics.append([acc, CEE, tau, tau_40, tr_acc, tr_cee, tr_tau, tr_tau_40]) metric_names = ['acc', 'CEE', 'tau', 'tau_40', 'tr_acc', 'tr_CEE', 'tr_tau', 'tr_tau_40'] pd.DataFrame(np.array(metrics), columns=metric_names).to_csv(results_file, index=False) # with open(modelfile % foldidx, 'w') as fh: # pickle.dump(model, fh) del self.model # release the memory before we try to do another iteration results_file = os.path.join(self.results_stem, 'metrics.csv') try: metrics = pd.read_csv(results_file).values.tolist() metric_means = np.mean(metrics, axis=0) print(metric_means) metrics.append(metric_means) pd.DataFrame(np.array(metrics), columns=metric_names).to_csv(results_file, index=False) except: print('no metrics file found') def run_test_set(self, subsample_tr=0, min_no_folds=0, max_no_folds=32, npairs=0, test_on_train=False, ls_factor=1): # keep these variables around in case we are restarting the script with different method settings and same data. for dataset in self.datasets: self.initial_pair_subset = {} # reset this when we use a different dataset for self.method in self.methods: if self.folds is None or self.dataset != dataset: self._load_dataset(dataset) # reload only if we use a new dataset if (self.dataset == 'UKPConvArgAll' or self.dataset == 'UKPConvArgStrict' or self.dataset == 'UKPConvArgCrowd_evalAll') \ and ('IndPref' in self.method or 'Personalised' in self.method): logging.warning('Skipping method %s on dataset %s because there are no separate worker IDs.' % (self.method, self.dataset)) continue for feature_type in self.feature_types: if feature_type == 'embeddings' or feature_type == 'both' or feature_type=='debug': embeddings_to_use = self.embeddings_types else: embeddings_to_use = [''] for embeddings_type in embeddings_to_use: self.run_test(feature_type, embeddings_type, dataset_increment=self.dataset_increment, subsample_amount=subsample_tr, min_no_folds=min_no_folds, max_no_folds=max_no_folds, npairs=npairs, test_on_all_training_pairs=test_on_train, ls_factor=ls_factor) logging.info("**** Completed: method %s with features %s, embeddings %s ****" % (self.method, feature_type, embeddings_type) ) if __name__ == '__main__': dataset_increment = 0 # datasets = ['UKPConvArgCrowdSample_evalMACE'] # methods = ['dummy'] # feature_types = ['both'] # embeddings_types = ['word_mean'] # # runner = TestRunner('personalised', datasets, feature_types, embeddings_types, methods, # dataset_increment) # runner.run_test_set(min_no_folds=0, max_no_folds=32) datasets = ['UKPConvArgStrict'] methods = ['SinglePrefGP_weaksprior_noOpt'] feature_types = ['both'] embeddings_types = ['word_mean'] runner = TestRunner('crowdsourcing_argumentation_expts', datasets, feature_types, embeddings_types, methods, dataset_increment) runner.run_test_set(min_no_folds=0, max_no_folds=32)
the-stack_106_19448
#!/usr/bin/env pytest-3 # -*- coding: utf-8 -*- __author__ = "Marc-Olivier Buob" __maintainer__ = "Marc-Olivier Buob" __email__ = "[email protected]" __copyright__ = "Copyright (C) 2020, Nokia" __license__ = "BSD-3" from pybgl.ipynb import in_ipynb, ipynb_display_graph from pybgl.nfa import ( Nfa, accepts, add_edge, initials, finals, delta, set_final ) from pybgl.thompson_compile_nfa import ( DEFAULT_ALPHABET, alternation, bracket, concatenation, literal, one_or_more, parse_bracket, parse_escaped, parse_repetition, repetition, repetition_range, thompson_compile_nfa, zero_or_one, zero_or_more, ) def nfa_to_triple(nfa) -> tuple: q0s = set(initials(nfa)) assert len(q0s) == 1 q0 = q0s.pop() fs = set(finals(nfa)) assert len(fs) == 1 f = fs.pop() return (nfa, q0, f) def make_nfa1() -> Nfa: (nfa, q0, f) = literal("x") return nfa def make_nfa2() -> Nfa: g = Nfa(2) add_edge(0, 0, "a", g) add_edge(0, 1, "b", g) set_final(1, g) return g def test_literal(): (nfa, q0, f) = literal("a") assert set(initials(nfa)) == {0} assert set(finals(nfa)) == {1} assert delta(0, "a", nfa) == {1} def test_concatenation(): (nfa1, q01, f1) = nfa_to_triple(make_nfa1()) (nfa2, q02, f2) = nfa_to_triple(make_nfa2()) (nfa, q0, f) = concatenation(nfa1, q01, f1, nfa2, q02, f2) assert accepts("xaab", nfa) == True assert accepts("x", nfa) == False assert accepts("aab", nfa) == False def test_alternation(): (nfa1, q01, f1) = nfa_to_triple(make_nfa1()) (nfa2, q02, f2) = nfa_to_triple(make_nfa2()) (nfa, q0, f) = alternation(nfa1, q01, f1, nfa2, q02, f2) assert accepts("xaab", nfa) == False assert accepts("x", nfa) == True assert accepts("aab", nfa) == True def test_zero_or_one(): (nfa, q0, f) = nfa_to_triple(make_nfa1()) (nfa, q0, f) = zero_or_one(nfa, q0, f) assert accepts("", nfa) == True assert accepts("x", nfa) == True assert accepts("xx", nfa) == False assert accepts("a", nfa) == False def test_zero_or_more(): (nfa, q0, f) = nfa_to_triple(make_nfa1()) (nfa, q0, f) = zero_or_more(nfa, q0, f) assert accepts("", nfa) == True assert accepts("x", nfa) == True assert accepts("xx", nfa) == True assert accepts("a", nfa) == False def test_one_or_more(): (nfa, q0, f) = nfa_to_triple(make_nfa1()) (nfa, q0, f) = one_or_more(nfa, q0, f) assert accepts("", nfa) == False assert accepts("x", nfa) == True assert accepts("xx", nfa) == True assert accepts("a", nfa) == False def test_parse_repetition(): for (m, n) in [(0, 1), (0, None), (1, None), (3, 3), (2, 4), (2, None)]: for fmt in ["{%s,%s}", "{ %s , %s }"]: s = "{%s, %s}" % ( m if m is not None else "", n if n is not None else "" ) assert parse_repetition(s) == (m, n) def test_repetition(): (nfa, q0, f) = nfa_to_triple(make_nfa1()) m = 4 (nfa, q0, f) = repetition(nfa, q0, f, m) words = ["x" * i for i in range(10)] # Exactly m repetition for (i, w) in enumerate(words): assert accepts(w, nfa) == (i == m) def test_repetition_range(): a = "a" for (m, n) in [(3, 5), (0, 3), (3, 3), (3, None)]: (nfa, q0, f) = literal(a) (nfa, q0, f) = repetition_range(nfa, q0, f, m, n) for i in range(10): expected = (m <= i) and (n is None or i <= n) w = a * i obtained = accepts(w, nfa) assert obtained == expected, f"(m, n) = {(m, n)} i = {i} w = {w}" def test_parse_bracket(): map_input_expected = { "[a-z]" : [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' ], "[a-zA-Z]" : [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' ], "[a-e0-9P-T]" : [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'P', 'Q', 'R', 'S', 'T', 'a', 'b', 'c', 'd', 'e' ], "[^a-zA-Z]" : [ '\t', '\n', '\x0b', '\x0c', '\r', ' ', '!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', '[', '\\', ']', '^', '_', '`', '{', '|', '}', '~' ], } for (s, expected) in map_input_expected.items(): assert sorted(parse_bracket(s)) == expected def test_parse_bracket(): s = "[X-Z03a-e]" chars = parse_bracket(s) (nfa, q0, f) = bracket(chars) for a in "XYZ03abcde": assert accepts(a, nfa) == True for a in "ABC12456789fghi": assert accepts(a, nfa) == False def test_parse_bracket_escaped(): s = r"[\s]" assert parse_bracket(s) == {' ', '\t'} def test_parse_escaped(): assert parse_escaped(r"\.") == {"."} assert parse_escaped(r"\|") == {"|"} assert parse_escaped(r"\?") == {"?"} assert parse_escaped(r"\*") == {"*"} assert parse_escaped(r"\+") == {"+"} assert parse_escaped(r"\(") == {"("} assert parse_escaped(r"\)") == {")"} assert parse_escaped(r"\[") == {"["} assert parse_escaped(r"\]") == {"]"} assert parse_escaped(r"\{") == {"{"} assert parse_escaped(r"\}") == {"}"} assert parse_escaped(r"\w") == parse_bracket("[a-zA-Z0-9]") assert parse_escaped(r"\W") == parse_bracket("[^a-zA-Z0-9]") assert parse_escaped(r"\d") == parse_bracket("[0-9]") assert parse_escaped(r"\D") == parse_bracket("[^0-9]") assert parse_escaped(r"\a") == {"\a"} assert parse_escaped(r"\b") == {"\b"} assert parse_escaped(r"\f") == {"\f"} assert parse_escaped(r"\n") == {"\n"} assert parse_escaped(r"\r") == {"\r"} assert parse_escaped(r"\t") == {"\t"} assert parse_escaped(r"\v") == {"\v"} def test_escaped_operator(): (nfa, q0, f) = thompson_compile_nfa("a\\?b") assert accepts("a?b", nfa) == True assert accepts("ab", nfa) == False assert accepts("b", nfa) == False (nfa, q0, f) = thompson_compile_nfa("a?b") assert accepts("a?b", nfa) == False assert accepts("ab", nfa) == True assert accepts("b", nfa) == True for regexp in r"\|", r"\.", r"\*", r"\+", r"\(", r"\)", r"\{", r"\}", r"\[", r"\]": (nfa, q0, f) = thompson_compile_nfa(regexp) assert accepts(regexp.replace("\\", ""), nfa) regexp = r"\|\.\*\+\(\)\{\}\[\]" (nfa, q0, f) = thompson_compile_nfa(regexp) accepts(regexp.replace("\\", ""), nfa) def test_escaped_classes(): whole_alphabet = DEFAULT_ALPHABET escaped_classes = [r"\d", r"\w", r"\s", r"\D", r"\W", r"\S"] map_escape_allowed = { r : set(parse_escaped(r, whole_alphabet)) for r in escaped_classes } for regexp in [r"\d", r"\w", r"\s", r"\D", r"\W", r"\S"]: allowed = map_escape_allowed[regexp.lower()] if regexp.lower() != regexp: allowed = set(whole_alphabet) - allowed (nfa, q0, f) = thompson_compile_nfa(regexp, whole_alphabet) for a in whole_alphabet: assert accepts(a, nfa) == (a in allowed), \ f"regexp = {regexp} a = '{a}' ({ord(a)}) allowed = '{allowed}' obtained = {accepts(a, nfa)} expected = {a in allowed}" def test_class_s(): for r in (r"\s+", r"[\s]+"): print(r) (nfa, q0, f) = thompson_compile_nfa(r) assert nfa.accepts(" ") assert nfa.accepts(" ") assert nfa.accepts("\t\t") assert nfa.accepts(" \t \t ") def test_thompson_compile_nfa(): (nfa, q0, f) = thompson_compile_nfa("(a?b)*?c+d") if in_ipynb(): ipynb_display_graph(nfa) w = "babbbababcccccd" assert accepts(w, nfa) == True def test_thompson_compile_nfa_bracket_repetitions(): (nfa, q0, f) = thompson_compile_nfa("[x-z]{1,3}") if in_ipynb(): ipynb_display_graph(nfa) for w in ["x", "y", "xx", "xy", "zy", "xxx", "yyy", "zzz", "xyz", "zyx"]: assert accepts(w, nfa) == True for w in ["", "xxxx", "aaa"]: assert accepts(w, nfa) == False (nfa, q0, f) = thompson_compile_nfa("x{3}") assert accepts("xxx", nfa) def test_thompson_compile_nfa_escaped_operators(): regexp = r"\|\.\*\+\(\)\{\}\[\]aa" (nfa, q0, f) = thompson_compile_nfa(regexp) accepts(regexp.replace("\\", ""), nfa) if in_ipynb(): ipynb_display_graph(nfa)
the-stack_106_19449
import os from typing import Dict from typing import List from typing import cast from cleo.helpers import argument from cleo.helpers import option from poetry.console.application import Application from poetry.console.commands.init import InitCommand from poetry.console.commands.update import UpdateCommand class PluginAddCommand(InitCommand): name = "plugin add" description = "Adds new plugins." arguments = [ argument("plugins", "The names of the plugins to install.", multiple=True), ] options = [ option( "dry-run", None, "Output the operations but do not execute anything (implicitly enables --verbose).", ) ] help = """ The <c1>plugin add</c1> command installs Poetry plugins globally. It works similarly to the <c1>add</c1> command: If you do not specify a version constraint, poetry will choose a suitable one based on the available package versions. You can specify a package in the following forms: - A single name (<b>requests</b>) - A name and a constraint (<b>requests@^2.23.0</b>) - A git url (<b>git+https://github.com/python-poetry/poetry.git</b>) - A git url with a revision (<b>git+https://github.com/python-poetry/poetry.git#develop</b>) - A git SSH url (<b>git+ssh://github.com/python-poetry/poetry.git</b>) - A git SSH url with a revision (<b>git+ssh://github.com/python-poetry/poetry.git#develop</b>) - A file path (<b>../my-package/my-package.whl</b>) - A directory (<b>../my-package/</b>) - A url (<b>https://example.com/packages/my-package-0.1.0.tar.gz</b>)\ """ def handle(self) -> int: from pathlib import Path import tomlkit from cleo.io.inputs.string_input import StringInput from cleo.io.io import IO from poetry.core.pyproject.toml import PyProjectTOML from poetry.core.semver.helpers import parse_constraint from poetry.factory import Factory from poetry.packages.project_package import ProjectPackage from poetry.repositories.installed_repository import InstalledRepository from poetry.utils.env import EnvManager plugins = self.argument("plugins") # Plugins should be installed in the system env to be globally available system_env = EnvManager.get_system_env(naive=True) env_dir = Path(os.getenv("POETRY_HOME") or system_env.path) # We check for the plugins existence first. if env_dir.joinpath("pyproject.toml").exists(): pyproject = tomlkit.loads( env_dir.joinpath("pyproject.toml").read_text(encoding="utf-8") ) poetry_content = pyproject["tool"]["poetry"] existing_packages = self.get_existing_packages_from_input( plugins, poetry_content, "dependencies" ) if existing_packages: self.notify_about_existing_packages(existing_packages) plugins = [plugin for plugin in plugins if plugin not in existing_packages] if not plugins: return 0 plugins = self._determine_requirements(plugins) # We retrieve the packages installed in the system environment. # We assume that this environment will be a self contained virtual environment # built by the official installer or by pipx. # If not, it might lead to side effects since other installed packages # might not be required by Poetry but still taken into account when resolving dependencies. installed_repository = InstalledRepository.load( system_env, with_dependencies=True ) root_package = None for package in installed_repository.packages: if package.name == "poetry": root_package = ProjectPackage(package.name, package.version) for dependency in package.requires: root_package.add_dependency(dependency) break root_package.python_versions = ".".join( str(v) for v in system_env.version_info[:3] ) # We create a `pyproject.toml` file based on all the information # we have about the current environment. if not env_dir.joinpath("pyproject.toml").exists(): Factory.create_pyproject_from_package(root_package, env_dir) # We add the plugins to the dependencies section of the previously # created `pyproject.toml` file pyproject = PyProjectTOML(env_dir.joinpath("pyproject.toml")) poetry_content = pyproject.poetry_config poetry_dependency_section = poetry_content["dependencies"] plugin_names = [] for plugin in plugins: if "version" in plugin: # Validate version constraint parse_constraint(plugin["version"]) constraint = tomlkit.inline_table() for name, value in plugin.items(): if name == "name": continue constraint[name] = value if len(constraint) == 1 and "version" in constraint: constraint = constraint["version"] poetry_dependency_section[plugin["name"]] = constraint plugin_names.append(plugin["name"]) pyproject.save() # From this point forward, all the logic will be deferred to # the update command, by using the previously created `pyproject.toml` # file. application = cast(Application, self.application) update_command: UpdateCommand = cast(UpdateCommand, application.find("update")) # We won't go through the event dispatching done by the application # so we need to configure the command manually update_command.set_poetry(Factory().create_poetry(env_dir)) update_command.set_env(system_env) application._configure_installer(update_command, self._io) argv = ["update"] + plugin_names if self.option("dry-run"): argv.append("--dry-run") return update_command.run( IO( StringInput(" ".join(argv)), self._io.output, self._io.error_output, ) ) def get_existing_packages_from_input( self, packages: List[str], poetry_content: Dict, target_section: str ) -> List[str]: existing_packages = [] for name in packages: for key in poetry_content[target_section]: if key.lower() == name.lower(): existing_packages.append(name) return existing_packages def notify_about_existing_packages(self, existing_packages: List[str]) -> None: self.line( "The following plugins are already present in the " "<c2>pyproject.toml</c2> file and will be skipped:\n" ) for name in existing_packages: self.line(f" • <c1>{name}</c1>") self.line( "\nIf you want to update it to the latest compatible version, " "you can use `<c2>poetry plugin update package</c2>`.\n" "If you prefer to upgrade it to the latest available version, " "you can use `<c2>poetry plugin add package@latest</c2>`.\n" )
the-stack_106_19450
from django.shortcuts import render,redirect from django.http import JsonResponse,HttpResponse from django.contrib.auth import login from django.conf import settings from django.views import View from QQLoginTool.QQtool import OAuthQQ from oauth.models import OAuthQQUser from django_redis import get_redis_connection from users.models import User from itsdangerous import TimedJSONWebSignatureSerializer as TJS class QQLoginView(View): def get(self, request): # 获取登录成功后的跳转连接 next = request.GET.get('next') if next is None: next = '/' # 1、初始化创建qq对象 qq = OAuthQQ(client_id=settings.QQ_CLIENT_ID, client_secret=settings.QQ_CLIENT_SECRET, redirect_uri=settings.QQ_REDIRECT_URI, state=next) # 2、调用方法生成跳转连接 login_url = qq.get_qq_url() # 3、返回跳转连接 return JsonResponse({'login_url': login_url}) class QQCallBackView(View): def get(self,request): # 获取用户的code值 和状态信息 code=request.GET.get('code') state=request.GET.get('state') if code is None or state is None: return JsonResponse({'error':'缺少数据'},state=400) # 生成qq对象 qq = OAuthQQ(client_id=settings.QQ_CLIENT_ID, client_secret=settings.QQ_CLIENT_SECRET, redirect_uri=settings.QQ_REDIRECT_URI, state=next) # 获取access_token try: access_token=qq.get_access_token(code) open_id=qq.get_open_id(access_token) # 调用方法获取open_id的值 except: return JsonResponse({'error':'网络错误'},state=400) # 判断用户是否绑定梅朵用户 try: # 查询mysql数据表中是否有此qq用户 qq_user=OAuthQQUser.objects.get(openid=open_id) except: tjs = TJS(settings.SECRET_KEY, 300) openid = tjs.dumps({'openid': open_id}).decode() return render(request, 'oauth_callback.html', {'token': openid}) login(request,qq_user.user) # 没有异常说明qq查询到绑定的qq用户 # 将用户名写入cookie中 在页面中显示 response=redirect(state) response.set_cookie('username',qq_user.user.username,60*60*2) return response def post(self,request): #绑定qq用户 data=request.POST mobile=data.get('mobile') password=data.get('pwd') sms_code=data.get('sms_code') openid=data.get('access_token') # 验证数据 # 短信验证 client=get_redis_connection('verfycode') real_sms_code=client.get('sms_code_%s'%mobile) if real_sms_code is None: return render(request, 'oauth_callback.html', {'errmsg': '短信验证码已失效'}) if sms_code != real_sms_code.decode(): return render(request, 'oauth_callback.html', {'errmsg': '短信验证码错误'}) # 3、绑定数据 try: user=User.objects.get(mobile=mobile) # 验证qq用户的密码是否正确 if not user.check_password(password): return render(request,'oauth_callback.html',{'errmsg': '密码错误'}) except: # 当前用户为注册为梅朵用户 注册新用户 user=User.objects.create_user(username=mobile,mobile=mobile,password=password) tjs = TJS(settings.SECRET_KEY, 300) try: data = tjs.loads(openid) except: return render(request, 'oauth_callback.html', {'errmsg': 'openid异常'}) openid = data.get('openid') OAuthQQUser.objects.create(openid=openid, user=user) return redirect('/')
the-stack_106_19451
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor from ..compat import ( compat_str, compat_xpath, compat_urlparse, ) from ..utils import ( ExtractorError, find_xpath_attr, fix_xml_ampersands, float_or_none, HEADRequest, RegexNotFoundError, sanitized_Request, strip_or_none, timeconvert, try_get, unescapeHTML, update_url_query, url_basename, get_domain, xpath_text, ) def _media_xml_tag(tag): return '{http://search.yahoo.com/mrss/}%s' % tag class MTVServicesInfoExtractor(InfoExtractor): _MOBILE_TEMPLATE = None _LANG = None @staticmethod def _id_from_uri(uri): return uri.split(':')[-1] @staticmethod def _remove_template_parameter(url): # Remove the templates, like &device={device} return re.sub(r'&[^=]*?={.*?}(?=(&|$))', '', url) def _get_feed_url(self, uri, url=None): return self._FEED_URL def _get_thumbnail_url(self, uri, itemdoc): search_path = '%s/%s' % (_media_xml_tag('group'), _media_xml_tag('thumbnail')) thumb_node = itemdoc.find(search_path) if thumb_node is None: return None return thumb_node.get('url') or thumb_node.text or None def _extract_mobile_video_formats(self, mtvn_id): webpage_url = self._MOBILE_TEMPLATE % mtvn_id req = sanitized_Request(webpage_url) # Otherwise we get a webpage that would execute some javascript req.add_header('User-Agent', 'curl/7') webpage = self._download_webpage(req, mtvn_id, 'Downloading mobile page') metrics_url = unescapeHTML(self._search_regex(r'<a href="(http://metrics.+?)"', webpage, 'url')) req = HEADRequest(metrics_url) response = self._request_webpage(req, mtvn_id, 'Resolving url') url = response.geturl() # Transform the url to get the best quality: url = re.sub(r'.+pxE=mp4', 'http://mtvnmobile.vo.llnwd.net/kip0/_pxn=0+_pxK=18639+_pxE=mp4', url, 1) return [{'url': url, 'ext': 'mp4'}] def _extract_video_formats(self, mdoc, mtvn_id, video_id): if re.match(r'.*/(error_country_block\.swf|geoblock\.mp4|copyright_error\.flv(?:\?geo\b.+?)?)$', mdoc.find('.//src').text) is not None: if mtvn_id is not None and self._MOBILE_TEMPLATE is not None: self.to_screen('The normal version is not available from your ' 'country, trying with the mobile version') return self._extract_mobile_video_formats(mtvn_id) raise ExtractorError('This video is not available from your country.', expected=True) formats = [] for rendition in mdoc.findall('.//rendition'): if rendition.get('method') == 'hls': hls_url = rendition.find('./src').text formats.extend(self._extract_m3u8_formats( hls_url, video_id, ext='mp4', entry_protocol='m3u8_native', m3u8_id='hls', fatal=False)) else: # fms try: _, _, ext = rendition.attrib['type'].partition('/') rtmp_video_url = rendition.find('./src').text if 'error_not_available.swf' in rtmp_video_url: raise ExtractorError( '%s said: video is not available' % self.IE_NAME, expected=True) if rtmp_video_url.endswith('siteunavail.png'): continue formats.extend([{ 'ext': 'flv' if rtmp_video_url.startswith('rtmp') else ext, 'url': rtmp_video_url, 'format_id': '-'.join(filter(None, [ 'rtmp' if rtmp_video_url.startswith('rtmp') else None, rendition.get('bitrate')])), 'width': int(rendition.get('width')), 'height': int(rendition.get('height')), }]) except (KeyError, TypeError): raise ExtractorError('Invalid rendition field.') if formats: self._sort_formats(formats) return formats def _extract_subtitles(self, mdoc, mtvn_id): subtitles = {} for transcript in mdoc.findall('.//transcript'): if transcript.get('kind') != 'captions': continue lang = transcript.get('srclang') for typographic in transcript.findall('./typographic'): sub_src = typographic.get('src') if not sub_src: continue ext = typographic.get('format') if ext == 'cea-608': ext = 'scc' subtitles.setdefault(lang, []).append({ 'url': compat_str(sub_src), 'ext': ext }) return subtitles def _get_video_info(self, itemdoc, use_hls=True): uri = itemdoc.find('guid').text video_id = self._id_from_uri(uri) self.report_extraction(video_id) content_el = itemdoc.find('%s/%s' % (_media_xml_tag('group'), _media_xml_tag('content'))) mediagen_url = self._remove_template_parameter(content_el.attrib['url']) mediagen_url = mediagen_url.replace('device={device}', '') if 'acceptMethods' not in mediagen_url: mediagen_url += '&' if '?' in mediagen_url else '?' mediagen_url += 'acceptMethods=' mediagen_url += 'hls' if use_hls else 'fms' mediagen_doc = self._download_xml( mediagen_url, video_id, 'Downloading video urls', fatal=False) if mediagen_doc is False: return None item = mediagen_doc.find('./video/item') if item is not None and item.get('type') == 'text': message = '%s returned error: ' % self.IE_NAME if item.get('code') is not None: message += '%s - ' % item.get('code') message += item.text raise ExtractorError(message, expected=True) description = strip_or_none(xpath_text(itemdoc, 'description')) timestamp = timeconvert(xpath_text(itemdoc, 'pubDate')) title_el = None if title_el is None: title_el = find_xpath_attr( itemdoc, './/{http://search.yahoo.com/mrss/}category', 'scheme', 'urn:mtvn:video_title') if title_el is None: title_el = itemdoc.find(compat_xpath('.//{http://search.yahoo.com/mrss/}title')) if title_el is None: title_el = itemdoc.find(compat_xpath('.//title')) if title_el.text is None: title_el = None title = title_el.text if title is None: raise ExtractorError('Could not find video title') title = title.strip() # This a short id that's used in the webpage urls mtvn_id = None mtvn_id_node = find_xpath_attr(itemdoc, './/{http://search.yahoo.com/mrss/}category', 'scheme', 'urn:mtvn:id') if mtvn_id_node is not None: mtvn_id = mtvn_id_node.text formats = self._extract_video_formats(mediagen_doc, mtvn_id, video_id) # Some parts of complete video may be missing (e.g. missing Act 3 in # http://www.southpark.de/alle-episoden/s14e01-sexual-healing) if not formats: return None self._sort_formats(formats) return { 'title': title, 'formats': formats, 'subtitles': self._extract_subtitles(mediagen_doc, mtvn_id), 'id': video_id, 'thumbnail': self._get_thumbnail_url(uri, itemdoc), 'description': description, 'duration': float_or_none(content_el.attrib.get('duration')), 'timestamp': timestamp, } def _get_feed_query(self, uri): data = {'uri': uri} if self._LANG: data['lang'] = self._LANG return data def _get_videos_info(self, uri, use_hls=True, url=None): video_id = self._id_from_uri(uri) feed_url = self._get_feed_url(uri, url) info_url = update_url_query(feed_url, self._get_feed_query(uri)) return self._get_videos_info_from_url(info_url, video_id, use_hls) def _get_videos_info_from_url(self, url, video_id, use_hls=True): idoc = self._download_xml( url, video_id, 'Downloading info', transform_source=fix_xml_ampersands) title = xpath_text(idoc, './channel/title') description = xpath_text(idoc, './channel/description') entries = [] for item in idoc.findall('.//item'): info = self._get_video_info(item, use_hls) if info: entries.append(info) return self.playlist_result( entries, playlist_title=title, playlist_description=description) def _extract_triforce_mgid(self, webpage, data_zone=None, video_id=None): triforce_feed = self._parse_json(self._search_regex( r'triforceManifestFeed\s*=\s*({.+?})\s*;\s*\n', webpage, 'triforce feed', default='{}'), video_id, fatal=False) data_zone = self._search_regex( r'data-zone=(["\'])(?P<zone>.+?_lc_promo.*?)\1', webpage, 'data zone', default=data_zone, group='zone') feed_url = try_get( triforce_feed, lambda x: x['manifest']['zones'][data_zone]['feed'], compat_str) if not feed_url: return feed = self._download_json(feed_url, video_id, fatal=False) if not feed: return return try_get(feed, lambda x: x['result']['data']['id'], compat_str) def _extract_new_triforce_mgid(self, webpage, url='', video_id=None): if url == '': return domain = get_domain(url) if domain is None: raise ExtractorError( '[%s] could not get domain' % self.IE_NAME, expected=True) url = url.replace("https://", "http://") enc_url = compat_urlparse.quote(url, safe='') _TRIFORCE_V8_TEMPLATE = 'https://%s/feeds/triforce/manifest/v8?url=%s' triforce_manifest_url = _TRIFORCE_V8_TEMPLATE % (domain, enc_url) manifest = self._download_json(triforce_manifest_url, video_id, fatal=False) if manifest: if manifest.get('manifest').get('type') == 'redirect': self.to_screen('Found a redirect. Downloading manifest from new location') new_loc = manifest.get('manifest').get('newLocation') new_loc = new_loc.replace("https://", "http://") enc_new_loc = compat_urlparse.quote(new_loc, safe='') triforce_manifest_new_loc = _TRIFORCE_V8_TEMPLATE % (domain, enc_new_loc) manifest = self._download_json(triforce_manifest_new_loc, video_id, fatal=False) item_id = try_get(manifest, lambda x: x['manifest']['reporting']['itemId'], compat_str) if not item_id: self.to_screen('No id found!') return # 'episode' can be anything. 'content' is used often as well _MGID_TEMPLATE = 'mgid:arc:episode:%s:%s' mgid = _MGID_TEMPLATE % (domain, item_id) return mgid def _extract_mgid(self, webpage, url, title=None, data_zone=None): try: # the url can be http://media.mtvnservices.com/fb/{mgid}.swf # or http://media.mtvnservices.com/{mgid} og_url = self._og_search_video_url(webpage) mgid = url_basename(og_url) if mgid.endswith('.swf'): mgid = mgid[:-4] except RegexNotFoundError: mgid = None if not title: title = url_basename(url) try: window_data = self._parse_json(self._search_regex( r'(?s)window.__DATA__ = (?P<json>{.+});', webpage, 'JSON Window Data', default=None, fatal=False, group='json'), title, fatal=False) main_container = None for i in range(len(window_data['children'])): if window_data['children'][i]['type'] == 'MainContainer': main_container = window_data['children'][i] mgid = main_container['children'][0]['props']['media']['video']['config']['uri'] except (KeyError, IndexError, TypeError): pass if mgid is None or ':' not in mgid: mgid = self._search_regex( [r'data-mgid="(.*?)"', r'swfobject\.embedSWF\(".*?(mgid:.*?)"'], webpage, 'mgid', default=None) if not mgid: sm4_embed = self._html_search_meta( 'sm4:video:embed', webpage, 'sm4 embed', default='') mgid = self._search_regex( r'embed/(mgid:.+?)["\'&?/]', sm4_embed, 'mgid', default=None) if not mgid: mgid = self._extract_new_triforce_mgid(webpage, url) if not mgid: mgid = self._extract_triforce_mgid(webpage, data_zone) return mgid def _real_extract(self, url): title = url_basename(url) webpage = self._download_webpage(url, title) mgid = self._extract_mgid(webpage, url, title=title) videos_info = self._get_videos_info(mgid, url=url) return videos_info class MTVServicesEmbeddedIE(MTVServicesInfoExtractor): IE_NAME = 'mtvservices:embedded' _VALID_URL = r'https?://media\.mtvnservices\.com/embed/(?P<mgid>.+?)(\?|/|$)' _TEST = { # From http://www.thewrap.com/peter-dinklage-sums-up-game-of-thrones-in-45-seconds-video/ 'url': 'http://media.mtvnservices.com/embed/mgid:uma:video:mtv.com:1043906/cp~vid%3D1043906%26uri%3Dmgid%3Auma%3Avideo%3Amtv.com%3A1043906', 'md5': 'cb349b21a7897164cede95bd7bf3fbb9', 'info_dict': { 'id': '1043906', 'ext': 'mp4', 'title': 'Peter Dinklage Sums Up \'Game Of Thrones\' In 45 Seconds', 'description': '"Sexy sexy sexy, stabby stabby stabby, beautiful language," says Peter Dinklage as he tries summarizing "Game of Thrones" in under a minute.', 'timestamp': 1400126400, 'upload_date': '20140515', }, } @staticmethod def _extract_url(webpage): mobj = re.search( r'<iframe[^>]+?src=(["\'])(?P<url>(?:https?:)?//media.mtvnservices.com/embed/.+?)\1', webpage) if mobj: return mobj.group('url') def _get_feed_url(self, uri): video_id = self._id_from_uri(uri) config = self._download_json( 'http://media.mtvnservices.com/pmt/e1/access/index.html?uri=%s&configtype=edge' % uri, video_id) return self._remove_template_parameter(config['feedWithQueryParams']) def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) mgid = mobj.group('mgid') return self._get_videos_info(mgid) class MTVIE(MTVServicesInfoExtractor): IE_NAME = 'mtv' _VALID_URL = r'https?://(?:www\.)?mtv\.com/(?:video-clips|(?:full-)?episodes)/(?P<id>[^/?#.]+)' _FEED_URL = 'http://www.mtv.com/feeds/mrss/' _TESTS = [{ 'url': 'http://www.mtv.com/video-clips/vl8qof/unlocking-the-truth-trailer', 'md5': '1edbcdf1e7628e414a8c5dcebca3d32b', 'info_dict': { 'id': '5e14040d-18a4-47c4-a582-43ff602de88e', 'ext': 'mp4', 'title': 'Unlocking The Truth|July 18, 2016|1|101|Trailer', 'description': '"Unlocking the Truth" premieres August 17th at 11/10c.', 'timestamp': 1468846800, 'upload_date': '20160718', }, }, { 'url': 'http://www.mtv.com/full-episodes/94tujl/unlocking-the-truth-gates-of-hell-season-1-ep-101', 'only_matching': True, }, { 'url': 'http://www.mtv.com/episodes/g8xu7q/teen-mom-2-breaking-the-wall-season-7-ep-713', 'only_matching': True, }] class MTVJapanIE(MTVServicesInfoExtractor): IE_NAME = 'mtvjapan' _VALID_URL = r'https?://(?:www\.)?mtvjapan\.com/videos/(?P<id>[0-9a-z]+)' _TEST = { 'url': 'http://www.mtvjapan.com/videos/prayht/fresh-info-cadillac-escalade', 'info_dict': { 'id': 'bc01da03-6fe5-4284-8880-f291f4e368f5', 'ext': 'mp4', 'title': '【Fresh Info】Cadillac ESCALADE Sport Edition', }, 'params': { 'skip_download': True, }, } _GEO_COUNTRIES = ['JP'] _FEED_URL = 'http://feeds.mtvnservices.com/od/feed/intl-mrss-player-feed' def _get_feed_query(self, uri): return { 'arcEp': 'mtvjapan.com', 'mgid': uri, } class MTVVideoIE(MTVServicesInfoExtractor): IE_NAME = 'mtv:video' _VALID_URL = r'''(?x)^https?:// (?:(?:www\.)?mtv\.com/videos/.+?/(?P<videoid>[0-9]+)/[^/]+$| m\.mtv\.com/videos/video\.rbml\?.*?id=(?P<mgid>[^&]+))''' _FEED_URL = 'http://www.mtv.com/player/embed/AS3/rss/' _TESTS = [ { 'url': 'http://www.mtv.com/videos/misc/853555/ours-vh1-storytellers.jhtml', 'md5': '850f3f143316b1e71fa56a4edfd6e0f8', 'info_dict': { 'id': '853555', 'ext': 'mp4', 'title': 'Taylor Swift - "Ours (VH1 Storytellers)"', 'description': 'Album: Taylor Swift performs "Ours" for VH1 Storytellers at Harvey Mudd College.', 'timestamp': 1352610000, 'upload_date': '20121111', }, }, ] def _get_thumbnail_url(self, uri, itemdoc): return 'http://mtv.mtvnimages.com/uri/' + uri def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('videoid') uri = mobj.groupdict().get('mgid') if uri is None: webpage = self._download_webpage(url, video_id) # Some videos come from Vevo.com m_vevo = re.search( r'(?s)isVevoVideo = true;.*?vevoVideoId = "(.*?)";', webpage) if m_vevo: vevo_id = m_vevo.group(1) self.to_screen('Vevo video detected: %s' % vevo_id) return self.url_result('vevo:%s' % vevo_id, ie='Vevo') uri = self._html_search_regex(r'/uri/(.*?)\?', webpage, 'uri') return self._get_videos_info(uri) class MTVDEIE(MTVServicesInfoExtractor): IE_NAME = 'mtv.de' _VALID_URL = r'https?://(?:www\.)?mtv\.de/(?:musik/videoclips|folgen|news)/(?P<id>[0-9a-z]+)' _TESTS = [{ 'url': 'http://www.mtv.de/musik/videoclips/2gpnv7/Traum', 'info_dict': { 'id': 'd5d472bc-f5b7-11e5-bffd-a4badb20dab5', 'ext': 'mp4', 'title': 'Traum', 'description': 'Traum', }, 'params': { # rtmp download 'skip_download': True, }, 'skip': 'Blocked at Travis CI', }, { # mediagen URL without query (e.g. http://videos.mtvnn.com/mediagen/e865da714c166d18d6f80893195fcb97) 'url': 'http://www.mtv.de/folgen/6b1ylu/teen-mom-2-enthuellungen-S5-F1', 'info_dict': { 'id': '1e5a878b-31c5-11e7-a442-0e40cf2fc285', 'ext': 'mp4', 'title': 'Teen Mom 2', 'description': 'md5:dc65e357ef7e1085ed53e9e9d83146a7', }, 'params': { # rtmp download 'skip_download': True, }, 'skip': 'Blocked at Travis CI', }, { 'url': 'http://www.mtv.de/news/glolix/77491-mtv-movies-spotlight--pixels--teil-3', 'info_dict': { 'id': 'local_playlist-4e760566473c4c8c5344', 'ext': 'mp4', 'title': 'Article_mtv-movies-spotlight-pixels-teil-3_short-clips_part1', 'description': 'MTV Movies Supercut', }, 'params': { # rtmp download 'skip_download': True, }, 'skip': 'Das Video kann zur Zeit nicht abgespielt werden.', }] _GEO_COUNTRIES = ['DE'] _FEED_URL = 'http://feeds.mtvnservices.com/od/feed/intl-mrss-player-feed' def _get_feed_query(self, uri): return { 'arcEp': 'mtv.de', 'mgid': uri, }
the-stack_106_19452
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2016, Silvio Peroni <[email protected]> # # Permission to use, copy, modify, and/or distribute this software for any purpose # with or without fee is hereby granted, provided that the above copyright notice # and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, # OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, # DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS # SOFTWARE. import unittest from rdflib import Literal, RDF from oc_ocdm.graph.graph_entity import GraphEntity from oc_ocdm.graph.graph_set import GraphSet class TestDiscourseElement(unittest.TestCase): resp_agent = 'http://resp_agent.test/' @classmethod def setUpClass(cls) -> None: cls.graph_set = GraphSet("http://test/", "./info_dir/", "", False) def setUp(self): self.rp = self.graph_set.add_rp(self.resp_agent) self.pl = self.graph_set.add_pl(self.resp_agent) self.de1 = self.graph_set.add_de(self.resp_agent) self.de2 = self.graph_set.add_de(self.resp_agent) def test_has_title(self): title = "DiscourseElement" result = self.de1.has_title(title) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_title, Literal(title) self.assertIn(triple, self.de1.g) def test_contains_discourse_element(self): result = self.de1.contains_discourse_element(self.de2) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_contains_de, self.de2.res self.assertIn(triple, self.de1.g) def test_has_next_de(self): result = self.de1.has_next_de(self.de2) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_has_next, self.de2.res self.assertIn(triple, self.de1.g) def test_is_context_of_rp(self): result = self.de1.is_context_of_rp(self.rp) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_is_context_of, self.rp.res self.assertIn(triple, self.de1.g) def test_is_context_of_pl(self): result = self.de1.is_context_of_pl(self.pl) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_is_context_of, self.pl.res self.assertIn(triple, self.de1.g) def test_has_content(self): content = "Content" result = self.de1.has_content(content) self.assertIsNone(result) triple = self.de1.res, GraphEntity.iri_has_content, Literal(content) self.assertIn(triple, self.de1.g) def test_create_section(self): result = self.de1.create_section() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_section self.assertIn(triple, self.de1.g) def test_create_section_title(self): result = self.de1.create_section_title() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_section_title self.assertIn(triple, self.de1.g) def test_create_paragraph(self): result = self.de1.create_paragraph() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_paragraph self.assertIn(triple, self.de1.g) def test_create_sentence(self): result = self.de1.create_sentence() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_sentence self.assertIn(triple, self.de1.g) def test_create_text_chunk(self): result = self.de1.create_text_chunk() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_text_chunk self.assertIn(triple, self.de1.g) def test_create_table(self): result = self.de1.create_table() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_table self.assertIn(triple, self.de1.g) def test_create_footnote(self): result = self.de1.create_footnote() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_footnote self.assertIn(triple, self.de1.g) def test_create_caption(self): result = self.de1.create_caption() self.assertIsNone(result) triple = self.de1.res, RDF.type, GraphEntity.iri_caption self.assertIn(triple, self.de1.g) if __name__ == '__main__': unittest.main()
the-stack_106_19453
#!/usr/bin/env python import pandas as pd import os import tensorflow as tf from utils import load_dataset, data_augment from config import * from networks import * from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score import math train_data = pd.read_csv(train_path) train_data.head() X_data = train_data["image_id"].apply(lambda id: os.path.join(images_path, id + '.jpg')) y_data = train_data.loc[:, 'healthy':'scab'] X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.20, random_state=42) train_dataset = ( tf.data.Dataset .from_tensor_slices((X_train, y_train)) .map(load_dataset) .map(data_augment) .repeat() .shuffle(256) .batch(batch_size) ) test_dataset = ( tf.data.Dataset .from_tensor_slices(X_test) .map(load_dataset) .batch(batch_size) ) classes = y_train.shape[1] model = my_model(input_shape, classes) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() if not os.path.exists(models_path): os.makedirs(models_path) model.fit(train_dataset, epochs=epochs, steps_per_epoch=X_train.shape[0]//batch_size*2, callbacks=[ keras.callbacks.EarlyStopping(monitor="loss", min_delta=0, patience=7, verbose=0, mode="min"), keras.callbacks.ModelCheckpoint( filepath=os.path.join(models_path, 'model_best.hdf5'), save_weights_only=False, monitor='loss', mode='min', save_best_only=True ) ] ) steps = math.ceil(X_test.shape[0]/batch_size) predicted = model.predict(test_dataset, verbose=1, steps=steps) score = roc_auc_score(y_test, predicted) print("roc auc score:", score) model.save(os.path.join(models_path, 'model.hdf5'))
the-stack_106_19454
import pandas as pd import mol_sim def test_input_data(): '''Tests input_data function in mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.input_data(input_df) assert isinstance(test_df, pd.DataFrame) == True, """TypeError, function should return a pandas dataframe""" #assert return '1/1 tests successful' def test_fingerprint_products(): '''Tests fingerprint_products function in mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.input_data(input_df) assert isinstance(mol_sim.fingerprint_products(test_df), pd.DataFrame) == True, """TypeError, function should return a pandas dataframe""" #assert return '1/1 tests successful' def test_split_by_enzyme(): '''Tests split_by_enzyme function in mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.fingerprint_products(mol_sim.input_data(input_df)) assert isinstance(mol_sim.split_by_enzyme(test_df), list) == True, """TypeError, function should return a pandas dataframe""" #assert return '1/1 tests successful' def test_sim_i_j(): '''Tests sim_i_j function in mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.fingerprint_products(mol_sim.input_data(input_df)) A = test_df.iloc[0] #B = test_df.iloc[1] #C = test_df.iloc[2] assert mol_sim.sim_i_j(A, A) == 1, "Self correlation is broken" #assert mol_sim.sim_i_j(A, B) == -1, "Standard correlation is broken" #assert mol_sim.sim_i_j(A, C) == 0, "Standard correlation is broken" return '1/1 tests successful' def test_sim_i_all(): '''Test sim_i_all functionin mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.fingerprint_products(mol_sim.input_data(input_df)) metric = pd.DataFrame() assert metric.empty == True, """ShapeError, input metric dataframe should be initialized as empty""" for index, row in test_df.iterrows(): assert mol_sim.sim_i_all(test_df, index, row, metric) == None, """OutputError, function shouldn't return anything""" assert metric[index].all() >= 0 and metric[index].all() <= 1.0, """ValueError, metric should be between 0 and 1""" return "3/3 Tests successful" def test_sim_metric(): '''Test sim_i_all functionin mol_sim.py''' input_df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.fingerprint_products(mol_sim.input_data(input_df)) assert isinstance(mol_sim.sim_metric(test_df), pd.DataFrame) == True, """TypeError, function should return a dataframe""" assert mol_sim.sim_metric(test_df).isnull().values.any() == False, """ValueError, function-generated dataframe should not contain null values""" #assert test_df.size == mol_sim.sim_metric(test_df).size, """ShapeError, #function-generated dataframe should be the same size as input dataframe""" return "2/2 Tests successful" def test_calculate_dist(): df = pd.read_csv('playground_df_cleaned_kegg_with_smiles.csv') test_df = mol_sim.calculate_dist(df) assert isinstance(test_df, pd.DataFrame) == True, """TypeError, function should return a dataframe""" #assert len(test_df.columns) == 3+len(df.columns), """ShapeError, #function should add 3 columns to dataframe""" return "1/1 Tests successful"
the-stack_106_19457
#!/usr/bin/python3 import os import sys import matplotlib.pyplot as plt import cv2 import numpy as np #image = cv2.imread("/Users/sam/code/Hackathon/InnerOuter/0-0/12.250-CF716-U02822-35625-2017-11-17-NA_B1.JPG") #image = cv2.imread("/Users/sam/code/Hackathon/InnerOuter/0-0/DSC01277.JPG") def get_circles(filename, circle_folder): image = cv2.imread(filename,0) #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Create mask height,width = image.shape mask = np.zeros((height,width), np.uint8) gray = cv2.GaussianBlur(image,(5,5),0) gray = cv2.medianBlur(gray,5) gimage = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,3.5) circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,145,param1=150,param2=22 ,minRadius=50,maxRadius=150) #circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1.5, 450) # circles = np.uint16(np.around(circles)) if not circles is None: for _,i in enumerate(circles[0,:]): mask = np.zeros((height,width), np.uint8) # draw the outer circle # .circle(image,(i[0],i[1]),i[2],(0,255,0),2) # draw the center of the circle # cv2.circle(image,(i[0],i[1]),2,(0,0,255),3) #Code below this point deals with cropping out found circles and writing the cropped circle cv2.circle(mask,(i[0],i[1]),i[2],(255,255,255),thickness=-1) # Copy that image using that mask masked_data = cv2.bitwise_and(image, image, mask=mask) # Apply Threshold __,thresh = cv2.threshold(mask,1,255,cv2.THRESH_BINARY) # Find Contour contours = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) x,y,w,h = cv2.boundingRect(contours[0]) # Crop masked_data crop = masked_data[y:y+h,x:x+w] #Finaly write circle to file (Probably need to change path or except arguments here) #print("%s/circle-%s.jpg" % (circle_folder,_)) cv2.imwrite("%s/circle-%s.jpg" % (circle_folder,_), crop) #Used to add text to image. Maybe useful method to note which circles are which #font = cv2.FONT_HERSHEY_SIMPLEX #cv2.putText(image,'OpenCV',(10,500), font, 4,(255,255,255),2,cv2.LINE_AA) #cv2.imshow('detected circles',image) #Used to show cropped images #cv2.imshow('Cropped Eye',crop) cv2.waitKey(0) cv2.destroyAllWindows() return True else: return False
the-stack_106_19461
""" Tests to verify text fields are rendered correctly. """ import os from django.test.html import parse_html from tbxforms.tbxforms.helper import FormHelper from tbxforms.tbxforms.layout import ( Field, Layout, Size, ) from tests.forms import ( CheckboxesForm, TextInputForm, ) from tests.utils import ( TEST_DIR, parse_contents, parse_form, render_template, ) RESULT_DIR = os.path.join(TEST_DIR, "helpers", "results") def test_default_label_size(): """Verify a default label size can set for fields.""" form = TextInputForm() form.helper = FormHelper(form) form.helper.label_size = Size.MEDIUM assert parse_form(form) == parse_contents(RESULT_DIR, "label_size.html") def test_override_default_label_size(): """Verify a default label size can be overridden on the field.""" form = TextInputForm() form.helper = FormHelper() form.helper.label_size = Size.MEDIUM form.helper.layout = Layout(Field.text("name", label_size=Size.LARGE)) assert parse_form(form) == parse_contents( RESULT_DIR, "override_label_size.html" ) def test_default_legend_size(): """Verify a default legend size can set for fields.""" form = CheckboxesForm() form.helper = FormHelper(form) form.helper.legend_size = Size.MEDIUM assert parse_form(form) == parse_contents(RESULT_DIR, "legend_size.html") def test_override_default_legend_size(): """Verify a default legend size can be overridden on the field.""" form = CheckboxesForm() form.helper = FormHelper() form.helper.legend_size = Size.MEDIUM form.helper.layout = Layout( Field.checkboxes("method", legend_size=Size.LARGE) ) assert parse_form(form) == parse_contents( RESULT_DIR, "override_legend_size.html" )
the-stack_106_19463
import logging import reversion from django.conf import settings from django.db import transaction from django.db.models import ( Count, ExpressionWrapper, F, OuterRef, PositiveSmallIntegerField, Q, Subquery, ) from django.db.models.aggregates import Sum from django.http import HttpResponse from django.http.response import JsonResponse from django.shortcuts import get_object_or_404 from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.views.decorators.csrf import csrf_exempt from django_filters.rest_framework import DjangoFilterBackend from django_fsm import TransitionNotAllowed from rest_framework import exceptions as rf_exceptions from rest_framework import mixins from rest_framework import permissions as rf_permissions from rest_framework import status, views from rest_framework import viewsets as rf_viewsets from rest_framework.decorators import action from rest_framework.exceptions import PermissionDenied, ValidationError from rest_framework.generics import ListAPIView from rest_framework.response import Response from waldur_core.core import models as core_models from waldur_core.core import permissions as core_permissions from waldur_core.core import utils as core_utils from waldur_core.core import validators as core_validators from waldur_core.core import views as core_views from waldur_core.core.mixins import EagerLoadMixin from waldur_core.core.utils import is_uuid_like, month_start, order_with_nulls from waldur_core.structure import filters as structure_filters from waldur_core.structure import models as structure_models from waldur_core.structure import permissions as structure_permissions from waldur_core.structure import serializers as structure_serializers from waldur_core.structure import utils as structure_utils from waldur_core.structure import views as structure_views from waldur_core.structure.exceptions import ServiceBackendError from waldur_core.structure.permissions import _has_owner_access from waldur_core.structure.registry import get_resource_type from waldur_core.structure.serializers import ( ProjectUserSerializer, get_resource_serializer_class, ) from waldur_core.structure.signals import resource_imported from waldur_mastermind.invoices import models as invoice_models from waldur_mastermind.marketplace import callbacks from waldur_mastermind.marketplace.utils import validate_attributes from waldur_pid import models as pid_models from . import filters, log, models, permissions, plugins, serializers, tasks, utils logger = logging.getLogger(__name__) class BaseMarketplaceView(core_views.ActionsViewSet): lookup_field = 'uuid' filter_backends = (DjangoFilterBackend,) update_permissions = partial_update_permissions = destroy_permissions = [ structure_permissions.is_owner ] class PublicViewsetMixin: def get_permissions(self): if settings.WALDUR_MARKETPLACE[ 'ANONYMOUS_USER_CAN_VIEW_OFFERINGS' ] and self.action in ['list', 'retrieve']: return [rf_permissions.AllowAny()] else: return super(PublicViewsetMixin, self).get_permissions() class ServiceProviderViewSet(PublicViewsetMixin, BaseMarketplaceView): queryset = models.ServiceProvider.objects.all().order_by('customer__name') serializer_class = serializers.ServiceProviderSerializer filterset_class = filters.ServiceProviderFilter api_secret_code_permissions = ( projects_permissions ) = ( project_permissions_permissions ) = keys_permissions = users_permissions = set_offerings_username_permissions = [ structure_permissions.is_owner ] @action(detail=True, methods=['GET', 'POST']) def api_secret_code(self, request, uuid=None): """On GET request - return service provider api_secret_code. On POST - generate new service provider api_secret_code. """ service_provider = self.get_object() if request.method == 'GET': return Response( {'api_secret_code': service_provider.api_secret_code}, status=status.HTTP_200_OK, ) else: service_provider.generate_api_secret_code() service_provider.save() return Response( { 'detail': _('Api secret code updated.'), 'api_secret_code': service_provider.api_secret_code, }, status=status.HTTP_200_OK, ) def get_customer_project_ids(self): service_provider = self.get_object() offering_ids = models.Offering.objects.filter( shared=True, customer=service_provider.customer ).values_list('id', flat=True) project_ids = ( models.Resource.objects.filter(offering_id__in=offering_ids) .exclude(state=models.Resource.States.TERMINATED) .values_list('project_id', flat=True) ) return project_ids @action(detail=True, methods=['GET']) def projects(self, request, uuid=None): project_ids = self.get_customer_project_ids() projects = structure_models.Project.objects.filter(id__in=project_ids) page = self.paginate_queryset(projects) serializer = structure_serializers.ProjectSerializer( page, many=True, context=self.get_serializer_context() ) return self.get_paginated_response(serializer.data) @action(detail=True, methods=['GET']) def project_permissions(self, request, uuid=None): project_ids = self.get_customer_project_ids() permissions = structure_models.ProjectPermission.objects.filter( project_id__in=project_ids, is_active=True ) page = self.paginate_queryset(permissions) serializer = structure_serializers.ProjectPermissionLogSerializer( page, many=True, context=self.get_serializer_context() ) return self.get_paginated_response(serializer.data) @action(detail=True, methods=['GET']) def keys(self, request, uuid=None): project_ids = self.get_customer_project_ids() user_ids = structure_models.ProjectPermission.objects.filter( project_id__in=project_ids, is_active=True ).values_list('user_id', flat=True) keys = core_models.SshPublicKey.objects.filter(user_id__in=user_ids) page = self.paginate_queryset(keys) serializer = structure_serializers.SshKeySerializer( page, many=True, context=self.get_serializer_context() ) return self.get_paginated_response(serializer.data) @action(detail=True, methods=['GET']) def users(self, request, uuid=None): project_ids = self.get_customer_project_ids() user_ids = structure_models.ProjectPermission.objects.filter( project_id__in=project_ids, is_active=True ).values_list('user_id', flat=True) users = core_models.User.objects.filter(id__in=user_ids) page = self.paginate_queryset(users) serializer = structure_serializers.UserSerializer( page, many=True, context=self.get_serializer_context() ) return self.get_paginated_response(serializer.data) def check_related_resources(request, view, obj=None): if obj and obj.has_active_offerings: raise rf_exceptions.ValidationError( _('Service provider has active offerings. Please archive them first.') ) destroy_permissions = [structure_permissions.is_owner, check_related_resources] @action(detail=True, methods=['POST']) def set_offerings_username(self, request, uuid=None): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) user_uuid = serializer.validated_data['user_uuid'] username = serializer.validated_data['username'] try: user = core_models.User.objects.get(uuid=user_uuid) except core_models.User.DoesNotExist: validation_message = f'A user with the uuid [{user_uuid}] is not found.' raise rf_exceptions.ValidationError(_(validation_message)) user_projects_ids = structure_models.ProjectPermission.objects.filter( user=user, is_active=True, ).values_list('project_id', flat=True) offering_ids = ( models.Resource.objects.exclude(state=models.Resource.States.TERMINATED) .filter( project_id__in=user_projects_ids, offering__customer=self.get_object().customer, ) .values_list('offering_id', flat=True) ) for offering_id in offering_ids: models.OfferingUser.objects.update_or_create( user=user, offering_id=offering_id, defaults={'username': username} ) return Response( {'detail': _('Offering users have been set.'),}, status=status.HTTP_201_CREATED, ) set_offerings_username_serializer_class = serializers.SetOfferingsUsernameSerializer class CategoryViewSet(PublicViewsetMixin, EagerLoadMixin, core_views.ActionsViewSet): queryset = models.Category.objects.all() serializer_class = serializers.CategorySerializer lookup_field = 'uuid' filter_backends = (DjangoFilterBackend,) filterset_class = filters.CategoryFilter create_permissions = ( update_permissions ) = partial_update_permissions = destroy_permissions = [ structure_permissions.is_staff ] def can_update_offering(request, view, obj=None): offering = obj if not offering: return if offering.state == models.Offering.States.DRAFT: if offering.has_user(request.user) or _has_owner_access( request.user, offering.customer ): return else: raise rf_exceptions.PermissionDenied() else: structure_permissions.is_staff(request, view) def validate_offering_update(offering): if offering.state == models.Offering.States.ARCHIVED: raise rf_exceptions.ValidationError( _('It is not possible to update archived offering.') ) class OfferingViewSet( core_views.CreateReversionMixin, core_views.UpdateReversionMixin, PublicViewsetMixin, BaseMarketplaceView, ): """ This viewset enables uniform implementation of resource import. Consider the following example: importable_resources_backend_method = 'get_tenants_for_import' import_resource_executor = executors.TenantImportExecutor It is expected that importable_resources_backend_method returns list of dicts, each of which contains two mandatory fields: name and backend_id, and one optional field called extra. This optional field should be list of dicts, each of which contains two mandatory fields: name and value. Note that there are only 3 mandatory parameters: * importable_resources_backend_method * importable_resources_serializer_class * import_resource_serializer_class """ queryset = models.Offering.objects.all() serializer_class = serializers.OfferingDetailsSerializer create_serializer_class = serializers.OfferingCreateSerializer update_serializer_class = ( partial_update_serializer_class ) = serializers.OfferingUpdateSerializer filterset_class = filters.OfferingFilter filter_backends = ( DjangoFilterBackend, filters.OfferingCustomersFilterBackend, filters.OfferingImportableFilterBackend, filters.ExternalOfferingFilterBackend, ) def get_queryset(self): queryset = super(OfferingViewSet, self).get_queryset() if self.request.user.is_anonymous: return queryset.filter( state__in=[ models.Offering.States.ACTIVE, models.Offering.States.PAUSED, ], shared=True, ) return queryset @action(detail=True, methods=['post']) def activate(self, request, uuid=None): return self._update_state('activate') @action(detail=True, methods=['post']) def draft(self, request, uuid=None): return self._update_state('draft') @action(detail=True, methods=['post']) def pause(self, request, uuid=None): return self._update_state('pause', request) pause_serializer_class = serializers.OfferingPauseSerializer @action(detail=True, methods=['post']) def unpause(self, request, uuid=None): return self._update_state('unpause', request) @action(detail=True, methods=['post']) def archive(self, request, uuid=None): return self._update_state('archive') def _update_state(self, action, request=None): offering = self.get_object() try: getattr(offering, action)() except TransitionNotAllowed: raise rf_exceptions.ValidationError(_('Offering state is invalid.')) with reversion.create_revision(): if request: serializer = self.get_serializer( offering, data=request.data, partial=True ) serializer.is_valid(raise_exception=True) offering = serializer.save() offering.save(update_fields=['state']) reversion.set_user(self.request.user) reversion.set_comment( f'Offering state has been updated using method {action}' ) return Response( { 'detail': _('Offering state updated.'), 'state': offering.get_state_display(), }, status=status.HTTP_200_OK, ) pause_permissions = unpause_permissions = archive_permissions = [ permissions.user_is_owner_or_service_manager, ] activate_permissions = [structure_permissions.is_staff] activate_validators = pause_validators = archive_validators = destroy_validators = [ structure_utils.check_customer_blocked ] update_permissions = partial_update_permissions = [can_update_offering] update_validators = partial_update_validators = [ validate_offering_update, structure_utils.check_customer_blocked, ] def perform_create(self, serializer): customer = serializer.validated_data['customer'] structure_utils.check_customer_blocked(customer) super(OfferingViewSet, self).perform_create(serializer) @action(detail=True, methods=['get']) def importable_resources(self, request, uuid=None): offering = self.get_object() method = plugins.manager.get_importable_resources_backend_method(offering.type) if not method: raise rf_exceptions.ValidationError( 'Current offering plugin does not support resource import' ) backend = offering.scope.get_backend() resources = getattr(backend, method)() page = self.paginate_queryset(resources) return self.get_paginated_response(page) importable_resources_permissions = [permissions.user_can_list_importable_resources] import_resource_permissions = [permissions.user_can_list_importable_resources] import_resource_serializer_class = serializers.ImportResourceSerializer @action(detail=True, methods=['post']) def import_resource(self, request, uuid=None): import_resource_serializer = self.get_serializer(data=request.data) import_resource_serializer.is_valid(raise_exception=True) plan = import_resource_serializer.validated_data.get('plan', None) project = import_resource_serializer.validated_data['project'] backend_id = import_resource_serializer.validated_data['backend_id'] offering = self.get_object() backend = offering.scope.get_backend() method = plugins.manager.import_resource_backend_method(offering.type) if not method: raise rf_exceptions.ValidationError( 'Current offering plugin does not support resource import' ) resource_model = plugins.manager.get_resource_model(offering.type) if resource_model.objects.filter( service_settings=offering.scope, backend_id=backend_id ).exists(): raise rf_exceptions.ValidationError( _('Resource has been imported already.') ) try: resource = getattr(backend, method)(backend_id=backend_id, project=project) except ServiceBackendError as e: raise rf_exceptions.ValidationError(str(e)) else: resource_imported.send( sender=resource.__class__, instance=resource, plan=plan, offering=offering, ) import_resource_executor = plugins.manager.get_import_resource_executor( offering.type ) if import_resource_executor: transaction.on_commit(lambda: import_resource_executor.execute(resource)) marketplace_resource = models.Resource.objects.get(scope=resource) resource_serializer = serializers.ResourceSerializer( marketplace_resource, context=self.get_serializer_context() ) return Response(data=resource_serializer.data, status=status.HTTP_201_CREATED) @action(detail=True, methods=['post']) def update_attributes(self, request, uuid=None): offering = self.get_object() if not isinstance(request.data, dict): raise rf_exceptions.ValidationError('Dictionary is expected.') validate_attributes(request.data, offering.category) offering.attributes = request.data with reversion.create_revision(): offering.save(update_fields=['attributes']) reversion.set_user(self.request.user) reversion.set_comment('Offering attributes have been updated via REST API') return Response(status=status.HTTP_200_OK) update_attributes_permissions = [permissions.user_is_owner_or_service_manager] update_attributes_validators = [validate_offering_update] @action(detail=True, methods=['post']) def update_thumbnail(self, request, uuid=None): offering = self.get_object() serializer = serializers.OfferingThumbnailSerializer( instance=offering, data=request.data ) serializer.is_valid(raise_exception=True) serializer.save() return Response(status=status.HTTP_200_OK) update_thumbnail_permissions = [permissions.user_can_update_thumbnail] @action(detail=True, methods=['post']) def delete_thumbnail(self, request, uuid=None): offering = self.get_object() offering.thumbnail = None offering.save() return Response(status=status.HTTP_204_NO_CONTENT) delete_thumbnail_permissions = update_thumbnail_permissions @action(detail=True) def customers(self, request, uuid): offering = self.get_object() active_customers = utils.get_active_customers(request, self) customer_queryset = utils.get_offering_customers(offering, active_customers) serializer_class = structure_serializers.CustomerSerializer serializer = serializer_class( instance=customer_queryset, many=True, context=self.get_serializer_context() ) page = self.paginate_queryset(serializer.data) return self.get_paginated_response(page) customers_permissions = [structure_permissions.is_owner] def get_stats(self, get_queryset, serializer, serializer_context=None): offering = self.get_object() active_customers = utils.get_active_customers(self.request, self) start, end = utils.get_start_and_end_dates_from_request(self.request) invoice_items = invoice_models.InvoiceItem.objects.filter( details__offering_uuid=offering.uuid.hex, invoice__customer__in=active_customers, invoice__created__gte=start, invoice__created__lte=end, ) queryset = get_queryset(invoice_items) serializer = serializer( instance=queryset, many=True, context=serializer_context ) page = self.paginate_queryset(serializer.data) return self.get_paginated_response(page) @action(detail=True) def costs(self, *args, **kwargs): return self.get_stats( utils.get_offering_costs, serializers.OfferingCostSerializer ) costs_permissions = [structure_permissions.is_owner] @action(detail=True) def component_stats(self, *args, **kwargs): offering = self.get_object() offering_components_map = { component.type: component for component in offering.components.all() } def get_offering_component_stats(invoice_items): return ( invoice_items.filter( details__offering_component_type__in=offering_components_map.keys() ) .values( 'details__offering_component_type', 'invoice__year', 'invoice__month', ) .order_by( 'details__offering_component_type', 'invoice__year', 'invoice__month', ) .annotate(total_quantity=Sum('quantity')) ) serializer_context = { 'offering_components_map': offering_components_map, } return self.get_stats( get_offering_component_stats, serializers.OfferingComponentStatSerializer, serializer_context, ) component_stats_permissions = [structure_permissions.is_owner] @action(detail=True, methods=['post']) def update_divisions(self, request, uuid): offering = self.get_object() serializer = serializers.DivisionsSerializer( instance=offering, context={'request': request}, data=request.data ) serializer.is_valid(raise_exception=True) serializer.save() return Response(status=status.HTTP_200_OK) update_divisions_permissions = [structure_permissions.is_owner] @action(detail=True, methods=['post']) def delete_divisions(self, request, uuid=None): offering = self.get_object() offering.divisions.clear() return Response(status=status.HTTP_204_NO_CONTENT) delete_divisions_permissions = update_divisions_permissions @action(detail=False) def groups(self, *args, **kwargs): OFFERING_LIMIT = 4 qs = self.get_queryset() customer_ids = self.paginate_queryset( qs.order_by('customer__name') .values_list('customer_id', flat=True) .distinct() ) customers = { customer.id: customer for customer in structure_models.Customer.objects.filter( id__in=customer_ids ) } return Response( data=[ { 'customer_name': customers[customer_id].name, 'customer_uuid': customers[customer_id].uuid.hex, 'offerings': [ { 'offering_name': offering.name, 'offering_uuid': offering.uuid.hex, } for offering in qs.filter(customer_id=customer_id)[ :OFFERING_LIMIT ] ], } for customer_id in customer_ids ] ) class OfferingReferralsViewSet(PublicViewsetMixin, rf_viewsets.ReadOnlyModelViewSet): queryset = pid_models.DataciteReferral.objects.all() serializer_class = serializers.OfferingReferralSerializer lookup_field = 'uuid' filter_backends = ( filters.OfferingReferralScopeFilterBackend, structure_filters.GenericRoleFilter, DjangoFilterBackend, ) filterset_class = filters.OfferingReferralFilter class OfferingPermissionViewSet(structure_views.BasePermissionViewSet): queryset = models.OfferingPermission.objects.filter(is_active=True).order_by( '-created' ) serializer_class = serializers.OfferingPermissionSerializer filter_backends = ( structure_filters.GenericRoleFilter, DjangoFilterBackend, ) filterset_class = filters.OfferingPermissionFilter scope_field = 'offering' class OfferingPermissionLogViewSet( mixins.RetrieveModelMixin, mixins.ListModelMixin, rf_viewsets.GenericViewSet ): queryset = models.OfferingPermission.objects.filter(is_active=None).order_by( 'offering__name' ) serializer_class = serializers.OfferingPermissionLogSerializer filter_backends = ( structure_filters.GenericRoleFilter, DjangoFilterBackend, ) filterset_class = filters.OfferingPermissionFilter class PlanUsageReporter: """ This class provides aggregate counts of how many plans of a certain type for each offering is used. """ def __init__(self, view, request): self.view = view self.request = request def get_report(self): plans = models.Plan.objects.exclude(offering__billable=False) query = self.parse_query() if query: plans = self.apply_filters(query, plans) resources = self.get_subquery() remaining = ExpressionWrapper( F('limit') - F('usage'), output_field=PositiveSmallIntegerField() ) plans = plans.annotate( usage=Subquery(resources[:1]), limit=F('max_amount') ).annotate(remaining=remaining) plans = self.apply_ordering(plans) return self.serialize(plans) def parse_query(self): if self.request.query_params: serializer = serializers.PlanUsageRequestSerializer( data=self.request.query_params ) serializer.is_valid(raise_exception=True) return serializer.validated_data return None def get_subquery(self): # Aggregate resources = ( models.Resource.objects.filter(plan_id=OuterRef('pk')) .exclude(state=models.Resource.States.TERMINATED) .annotate(count=Count('*')) .values_list('count', flat=True) ) # Workaround for Django bug: # https://code.djangoproject.com/ticket/28296 # It allows to remove extra GROUP BY clause from the subquery. resources.query.group_by = [] return resources def apply_filters(self, query, plans): if query.get('offering_uuid'): plans = plans.filter(offering__uuid=query.get('offering_uuid')) if query.get('customer_provider_uuid'): plans = plans.filter( offering__customer__uuid=query.get('customer_provider_uuid') ) return plans def apply_ordering(self, plans): param = ( self.request.query_params and self.request.query_params.get('o') or '-usage' ) return order_with_nulls(plans, param) def serialize(self, plans): page = self.view.paginate_queryset(plans) serializer = serializers.PlanUsageResponseSerializer(page, many=True) return self.view.get_paginated_response(serializer.data) def validate_plan_update(plan): if models.Resource.objects.filter(plan=plan).exists(): raise rf_exceptions.ValidationError( _('It is not possible to update plan because it is used by resources.') ) def validate_plan_archive(plan): if plan.archived: raise rf_exceptions.ValidationError(_('Plan is already archived.')) class PlanViewSet(core_views.UpdateReversionMixin, BaseMarketplaceView): queryset = models.Plan.objects.all() serializer_class = serializers.PlanDetailsSerializer filterset_class = filters.PlanFilter disabled_actions = ['destroy'] update_validators = partial_update_validators = [validate_plan_update] archive_permissions = [structure_permissions.is_owner] archive_validators = [validate_plan_archive] @action(detail=True, methods=['post']) def archive(self, request, uuid=None): plan = self.get_object() with reversion.create_revision(): plan.archived = True plan.save(update_fields=['archived']) reversion.set_user(self.request.user) reversion.set_comment('Plan has been archived.') return Response( {'detail': _('Plan has been archived.')}, status=status.HTTP_200_OK ) @action(detail=False) def usage_stats(self, request): return PlanUsageReporter(self, request).get_report() class PlanComponentViewSet(PublicViewsetMixin, rf_viewsets.ReadOnlyModelViewSet): queryset = models.PlanComponent.objects.filter() serializer_class = serializers.PlanComponentSerializer filterset_class = filters.PlanComponentFilter lookup_field = 'uuid' def get_queryset(self): queryset = super(PlanComponentViewSet, self).get_queryset() if self.request.user.is_anonymous: return queryset.filter(plan__offering__shared=True,) class ScreenshotViewSet( core_views.CreateReversionMixin, core_views.UpdateReversionMixin, BaseMarketplaceView, ): queryset = models.Screenshot.objects.all().order_by('offering__name') serializer_class = serializers.ScreenshotSerializer filterset_class = filters.ScreenshotFilter class OrderViewSet(BaseMarketplaceView): queryset = models.Order.objects.all() serializer_class = serializers.OrderSerializer filter_backends = (DjangoFilterBackend,) filterset_class = filters.OrderFilter destroy_validators = partial_update_validators = [ structure_utils.check_customer_blocked ] def get_queryset(self): """ Orders are available to both service provider and service consumer. """ if self.request.user.is_staff or self.request.user.is_support: return self.queryset return self.queryset.filter( Q( project__permissions__user=self.request.user, project__permissions__is_active=True, ) | Q( project__customer__permissions__user=self.request.user, project__customer__permissions__is_active=True, ) | Q( items__offering__customer__permissions__user=self.request.user, items__offering__customer__permissions__is_active=True, ) ).distinct() @action(detail=True, methods=['post']) def approve(self, request, uuid=None): tasks.approve_order(self.get_object(), request.user) return Response( {'detail': _('Order has been approved.')}, status=status.HTTP_200_OK ) approve_validators = [ core_validators.StateValidator(models.Order.States.REQUESTED_FOR_APPROVAL), structure_utils.check_customer_blocked, structure_utils.check_project_end_date, ] approve_permissions = [permissions.user_can_approve_order_permission] @action(detail=True, methods=['post']) def reject(self, request, uuid=None): order = self.get_object() order.reject() order.save(update_fields=['state']) return Response( {'detail': _('Order has been rejected.')}, status=status.HTTP_200_OK ) reject_validators = [ core_validators.StateValidator(models.Order.States.REQUESTED_FOR_APPROVAL), structure_utils.check_customer_blocked, ] reject_permissions = [permissions.user_can_reject_order] @action(detail=True) def pdf(self, request, uuid=None): order = self.get_object() file = utils.create_order_pdf(order) file_response = HttpResponse(file, content_type='application/pdf') filename = order.get_filename() file_response[ 'Content-Disposition' ] = 'attachment; filename="{filename}"'.format(filename=filename) return file_response def perform_create(self, serializer): project = serializer.validated_data['project'] structure_utils.check_customer_blocked(project) structure_utils.check_project_end_date(project) super(OrderViewSet, self).perform_create(serializer) class PluginViewSet(views.APIView): def get(self, request): offering_types = plugins.manager.get_offering_types() payload = [] for offering_type in offering_types: components = [ dict( type=component.type, name=component.name, measured_unit=component.measured_unit, billing_type=component.billing_type, ) for component in plugins.manager.get_components(offering_type) ] payload.append( dict( offering_type=offering_type, components=components, available_limits=plugins.manager.get_available_limits( offering_type ), ) ) return Response(payload, status=status.HTTP_200_OK) class OrderItemViewSet(BaseMarketplaceView): queryset = models.OrderItem.objects.all() filter_backends = (DjangoFilterBackend,) serializer_class = serializers.OrderItemDetailsSerializer filterset_class = filters.OrderItemFilter def order_items_destroy_validator(order_item): if not order_item: return if order_item.order.state != models.Order.States.REQUESTED_FOR_APPROVAL: raise rf_exceptions.PermissionDenied() destroy_validators = [order_items_destroy_validator] destroy_permissions = terminate_permissions = [ structure_permissions.is_administrator ] def get_queryset(self): """ OrderItems are available to both service provider and service consumer. """ if self.request.user.is_staff or self.request.user.is_support: return self.queryset return self.queryset.filter( Q( order__project__permissions__user=self.request.user, order__project__permissions__is_active=True, ) | Q( order__project__customer__permissions__user=self.request.user, order__project__customer__permissions__is_active=True, ) | Q( offering__customer__permissions__user=self.request.user, offering__customer__permissions__is_active=True, ) ).distinct() approve_permissions = [permissions.can_approve_order_item] reject_permissions = [permissions.can_reject_order_item] # Approve action is enabled for service provider, and # reject action is enabled for both provider and consumer. # Pending order item for remote offering is executed after it is approved by service provider. @action(detail=True, methods=['post']) def reject(self, request, uuid=None): order_item = self.get_object() if order_item.state == models.OrderItem.States.EXECUTING: if not order_item.resource: raise ValidationError('Order item does not have a resource.') callbacks.sync_order_item_state( order_item, models.OrderItem.States.TERMINATED ) elif order_item.state == models.OrderItem.States.PENDING: order_item.reviewed_at = timezone.now() order_item.reviewed_by = request.user order_item.set_state_terminated() order_item.save() else: raise ValidationError('Order item is not in executing or pending state.') return Response(status=status.HTTP_200_OK) @action(detail=True, methods=['post']) def approve(self, request, uuid=None): order_item = self.get_object() if order_item.state == models.OrderItem.States.EXECUTING: if not order_item.resource: raise ValidationError('Order item does not have a resource.') callbacks.sync_order_item_state(order_item, models.OrderItem.States.DONE) elif order_item.state == models.OrderItem.States.PENDING: order_item.reviewed_at = timezone.now() order_item.reviewed_by = request.user order_item.set_state_executing() order_item.save() transaction.on_commit( lambda: tasks.process_order_item.delay( core_utils.serialize_instance(order_item), core_utils.serialize_instance(request.user), ) ) else: raise ValidationError('Order item is not in executing or pending state.') return Response(status=status.HTTP_200_OK) @action(detail=True, methods=['post']) def terminate(self, request, uuid=None): order_item = self.get_object() if not plugins.manager.can_terminate_order_item(order_item.offering.type): return Response( { 'details': 'Order item could not be terminated because it is not supported by plugin.' }, status=status.HTTP_400_BAD_REQUEST, ) try: # It is expected that plugin schedules Celery task to call backend # and then switches order item to terminated state. order_item.set_state_terminating() order_item.save(update_fields=['state']) except TransitionNotAllowed: return Response( { 'details': 'Order item could not be terminated because it has been already processed.' }, status=status.HTTP_400_BAD_REQUEST, ) return Response( {'details': 'Order item termination has been scheduled.'}, status=status.HTTP_202_ACCEPTED, ) class CartItemViewSet(core_views.ActionsViewSet): queryset = models.CartItem.objects.all() lookup_field = 'uuid' serializer_class = serializers.CartItemSerializer filter_backends = (DjangoFilterBackend,) filterset_class = filters.CartItemFilter def get_queryset(self): return self.queryset.filter(user=self.request.user) @action(detail=False, methods=['post']) def submit(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) order = serializer.save() order_serializer = serializers.OrderSerializer( instance=order, context=self.get_serializer_context() ) return Response(order_serializer.data, status=status.HTTP_201_CREATED) submit_serializer_class = serializers.CartSubmitSerializer class ResourceViewSet(core_views.ActionsViewSet): queryset = models.Resource.objects.all() filter_backends = (DjangoFilterBackend, filters.ResourceScopeFilterBackend) filterset_class = filters.ResourceFilter lookup_field = 'uuid' serializer_class = serializers.ResourceSerializer disabled_actions = ['create', 'destroy'] update_serializer_class = ( partial_update_serializer_class ) = serializers.ResourceUpdateSerializer def get_queryset(self): """ Resources are available to both service provider and service consumer. """ if self.request.user.is_staff or self.request.user.is_support: return self.queryset return self.queryset.filter( Q( project__permissions__user=self.request.user, project__permissions__is_active=True, ) | Q( project__customer__permissions__user=self.request.user, project__customer__permissions__is_active=True, ) | Q( offering__customer__permissions__user=self.request.user, offering__customer__permissions__is_active=True, ) ).distinct() @action(detail=True, methods=['get']) def details(self, request, uuid=None): resource = self.get_object() if not resource.scope: return Response(status=status.HTTP_404_NOT_FOUND) resource_type = get_resource_type(resource.scope) serializer_class = get_resource_serializer_class(resource_type) if not serializer_class: return Response(status.HTTP_204_NO_CONTENT) serializer = serializer_class( instance=resource.scope, context=self.get_serializer_context() ) return Response(serializer.data, status=status.HTTP_200_OK) @action(detail=True, methods=['post']) def terminate(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) attributes = serializer.validated_data.get('attributes', {}) with transaction.atomic(): order_item = models.OrderItem( resource=resource, offering=resource.offering, type=models.OrderItem.Types.TERMINATE, attributes=attributes, ) try: project = resource.project except structure_models.Project.DoesNotExist: project = structure_models.Project.all_objects.get( pk=resource.project_id ) order = serializers.create_order( project=project, user=self.request.user, items=[order_item], request=request, ) return Response({'order_uuid': order.uuid.hex}, status=status.HTTP_200_OK) terminate_serializer_class = serializers.ResourceTerminateSerializer terminate_permissions = [permissions.user_can_terminate_resource] terminate_validators = [ core_validators.StateValidator( models.Resource.States.OK, models.Resource.States.ERRED ), utils.check_customer_blocked_for_terminating, ] @action(detail=True, methods=['post']) def switch_plan(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) plan = serializer.validated_data['plan'] with transaction.atomic(): order_item = models.OrderItem( resource=resource, offering=resource.offering, old_plan=resource.plan, plan=plan, type=models.OrderItem.Types.UPDATE, limits=resource.limits or {}, ) order = serializers.create_order( project=resource.project, user=self.request.user, items=[order_item], request=request, ) return Response({'order_uuid': order.uuid.hex}, status=status.HTTP_200_OK) switch_plan_serializer_class = serializers.ResourceSwitchPlanSerializer @action(detail=True, methods=['post']) def update_limits(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) limits = serializer.validated_data['limits'] with transaction.atomic(): order_item = models.OrderItem( resource=resource, offering=resource.offering, plan=resource.plan, type=models.OrderItem.Types.UPDATE, limits=limits, attributes={'old_limits': resource.limits}, ) order = serializers.create_order( project=resource.project, user=self.request.user, items=[order_item], request=request, ) return Response({'order_uuid': order.uuid.hex}, status=status.HTTP_200_OK) update_limits_serializer_class = serializers.ResourceUpdateLimitsSerializer switch_plan_permissions = update_limits_permissions = [ structure_permissions.is_administrator ] switch_plan_validators = update_limits_validators = [ core_validators.StateValidator(models.Resource.States.OK), structure_utils.check_customer_blocked, ] @action(detail=True, methods=['get']) def plan_periods(self, request, uuid=None): resource = self.get_object() qs = models.ResourcePlanPeriod.objects.filter(resource=resource) qs = qs.filter(Q(end=None) | Q(end__gte=month_start(timezone.now()))) serializer = serializers.ResourcePlanPeriodSerializer(qs, many=True) return Response(serializer.data, status=status.HTTP_200_OK) @action(detail=True, methods=['post']) def move_resource(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) project = serializer.validated_data['project'] try: utils.move_resource(resource, project) except utils.MoveResourceException as exception: error_message = str(exception) return JsonResponse({'error_message': error_message}, status=409) serialized_resource = serializers.ResourceSerializer( resource, context=self.get_serializer_context() ) return Response(serialized_resource.data, status=status.HTTP_200_OK) move_resource_serializer_class = serializers.MoveResourceSerializer move_resource_permissions = [structure_permissions.is_staff] @action(detail=True, methods=['post']) def set_backend_id(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) new_backend_id = serializer.validated_data['backend_id'] old_backend_id = resource.backend_id resource.backend_id = serializer.validated_data['backend_id'] resource.save() logger.info( '%s has changed backend_id from %s to %s', request.user.full_name, old_backend_id, new_backend_id, ) return Response( {'status': _('Resource backend_id has been changed.')}, status=status.HTTP_200_OK, ) set_backend_id_permissions = [permissions.user_is_owner_or_service_manager] set_backend_id_serializer_class = serializers.ResourceBackendIDSerializer @action(detail=True, methods=['post']) def submit_report(self, request, uuid=None): resource = self.get_object() serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) resource.report = serializer.validated_data['report'] resource.save(update_fields=['report']) return Response({'status': _('Report is submitted')}, status=status.HTTP_200_OK) submit_report_permissions = [ permissions.user_is_service_provider_owner_or_service_provider_manager ] submit_report_serializer_class = serializers.ResourceReportSerializer def _set_end_date(self, request, is_staff_action): resource = self.get_object() serializer = serializers.ResourceEndDateByProviderSerializer( data=request.data, instance=resource, context={'request': request} ) serializer.is_valid(raise_exception=True) serializer.save() transaction.on_commit( lambda: tasks.notify_about_resource_termination.delay( resource.uuid.hex, request.user.uuid.hex, is_staff_action ) ) if not is_staff_action: log.log_marketplace_resource_end_date_has_been_updated_by_provider( resource, request.user ) else: log.log_marketplace_resource_end_date_has_been_updated_by_staff( resource, request.user ) return Response(status=status.HTTP_200_OK) @action(detail=True, methods=['post']) def set_end_date_by_provider(self, request, uuid=None): return self._set_end_date(request, False) set_end_date_by_provider_permissions = [ permissions.user_can_set_end_date_by_provider ] @action(detail=True, methods=['post']) def set_end_date_by_staff(self, request, uuid=None): return self._set_end_date(request, True) set_end_date_by_staff_permissions = [structure_permissions.is_staff] # Service provider endpoint only @action(detail=True, methods=['get']) def team(self, request, uuid=None): resource = self.get_object() project = resource.project return Response( ProjectUserSerializer( instance=project.get_users(), many=True, context={'project': project, 'request': request}, ).data, status=status.HTTP_200_OK, ) team_permissions = [ permissions.user_is_service_provider_owner_or_service_provider_manager ] class ProjectChoicesViewSet(ListAPIView): def get_project(self): project_uuid = self.kwargs['project_uuid'] if not is_uuid_like(project_uuid): return Response( status=status.HTTP_400_BAD_REQUEST, data='Project UUID is invalid.' ) return get_object_or_404(structure_models.Project, uuid=project_uuid) def get_category(self): category_uuid = self.kwargs['category_uuid'] if not is_uuid_like(category_uuid): return Response( status=status.HTTP_400_BAD_REQUEST, data='Category UUID is invalid.' ) return get_object_or_404(models.Category, uuid=category_uuid) class ResourceOfferingsViewSet(ProjectChoicesViewSet): serializer_class = serializers.ResourceOfferingSerializer def get_queryset(self): project = self.get_project() category = self.get_category() offerings = ( models.Resource.objects.filter(project=project, offering__category=category) .exclude(state=models.Resource.States.TERMINATED) .values_list('offering_id', flat=True) ) return models.Offering.objects.filter(pk__in=offerings) class CategoryComponentUsageViewSet(core_views.ReadOnlyActionsViewSet): queryset = models.CategoryComponentUsage.objects.all().order_by( '-date', 'component__type' ) filter_backends = ( DjangoFilterBackend, filters.CategoryComponentUsageScopeFilterBackend, ) filterset_class = filters.CategoryComponentUsageFilter serializer_class = serializers.CategoryComponentUsageSerializer class ComponentUsageViewSet(core_views.ReadOnlyActionsViewSet): queryset = models.ComponentUsage.objects.all().order_by('-date', 'component__type') filter_backends = (structure_filters.GenericRoleFilter, DjangoFilterBackend) filterset_class = filters.ComponentUsageFilter serializer_class = serializers.ComponentUsageSerializer @action(detail=False, methods=['post']) def set_usage(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) resource = serializer.validated_data['plan_period'].resource if not _has_owner_access( request.user, resource.offering.customer ) and not resource.offering.has_user(request.user): raise PermissionDenied( _( 'Only staff, service provider owner and service manager are allowed ' 'to submit usage data for marketplace resource.' ) ) serializer.save() return Response(status=status.HTTP_201_CREATED) set_usage_serializer_class = serializers.ComponentUsageCreateSerializer class MarketplaceAPIViewSet(rf_viewsets.ViewSet): """ TODO: Move this viewset to ComponentUsageViewSet. """ permission_classes = () serializer_class = serializers.ServiceProviderSignatureSerializer def get_validated_data(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data['data'] dry_run = serializer.validated_data['dry_run'] if self.action == 'set_usage': data_serializer = serializers.ComponentUsageCreateSerializer(data=data) data_serializer.is_valid(raise_exception=True) if not dry_run: data_serializer.save() return serializer.validated_data, dry_run @action(detail=False, methods=['post']) @csrf_exempt def check_signature(self, request, *args, **kwargs): self.get_validated_data(request) return Response(status=status.HTTP_200_OK) @action(detail=False, methods=['post']) @csrf_exempt def set_usage(self, request, *args, **kwargs): self.get_validated_data(request) return Response(status=status.HTTP_201_CREATED) class OfferingFileViewSet(core_views.ActionsViewSet): queryset = models.OfferingFile.objects.all().order_by('name') filterset_class = filters.OfferingFileFilter filter_backends = [DjangoFilterBackend] serializer_class = serializers.OfferingFileSerializer lookup_field = 'uuid' disabled_actions = ['update', 'partial_update'] def check_create_permissions(request, view, obj=None): serializer = view.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) user = request.user offering = serializer.validated_data['offering'] if user.is_staff or ( offering.customer and offering.customer.has_user(user, structure_models.CustomerRole.OWNER) ): return raise rf_exceptions.PermissionDenied() create_permissions = [check_create_permissions] destroy_permissions = [structure_permissions.is_owner] class OfferingUsersViewSet( mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.CreateModelMixin, rf_viewsets.GenericViewSet, ): queryset = models.OfferingUser.objects.all() serializer_class = serializers.OfferingUserSerializer lookup_field = 'uuid' filter_backends = (DjangoFilterBackend,) filterset_class = filters.OfferingUserFilter def get_queryset(self): queryset = super(OfferingUsersViewSet, self).get_queryset() if self.request.user.is_staff or self.request.user.is_support: return queryset queryset = queryset.filter( Q(user=self.request.user) | Q( offering__customer__permissions__user=self.request.user, offering__customer__permissions__is_active=True, ) ) return queryset class CustomerStatsViewSet(rf_viewsets.ViewSet): permission_classes = [rf_permissions.IsAuthenticated, core_permissions.IsSupport] @action(detail=False, methods=['get']) def organization_project_count(self, request, *args, **kwargs): data = structure_models.Project.objects.values( 'customer__abbreviation', 'customer__name', 'customer__uuid' ).annotate(count=Count('customer__uuid')) serializer = serializers.CustomerStatsSerializer(data, many=True) return Response(status=status.HTTP_200_OK, data=serializer.data) @action(detail=False, methods=['get']) def organization_resource_count(self, request, *args, **kwargs): data = ( models.Resource.objects.filter(state=models.Resource.States.OK) .values( 'project__customer__abbreviation', 'project__customer__name', 'project__customer__uuid', ) .annotate(count=Count('project__customer__uuid')) ) serializer = serializers.CustomerStatsSerializer(data, many=True) return Response(status=status.HTTP_200_OK, data=serializer.data) @action(detail=False, methods=['get']) def customer_member_count(self, request, *args, **kwargs): data = ( structure_models.CustomerPermission.objects.filter(is_active=True) .values('customer__abbreviation', 'customer__name', 'customer__uuid') .annotate(count=Count('customer__uuid')) ) serializer = serializers.CustomerStatsSerializer(data, many=True) return Response(status=status.HTTP_200_OK, data=serializer.data) @action(detail=False, methods=['get']) def project_member_count(self, request, *args, **kwargs): data = ( structure_models.ProjectPermission.objects.filter(is_active=True) .values( 'project__customer__abbreviation', 'project__customer__name', 'project__customer__uuid', ) .annotate(count=Count('project__customer__uuid')) ) serializer = serializers.CustomerStatsSerializer(data, many=True) return Response(status=status.HTTP_200_OK, data=serializer.data) for view in (structure_views.ProjectCountersView, structure_views.CustomerCountersView): def inject_resources_counter(scope): counters = models.AggregateResourceCount.objects.filter(scope=scope).only( 'count', 'category' ) return { 'marketplace_category_{}'.format(counter.category.uuid): counter.count for counter in counters } view.register_dynamic_counter(inject_resources_counter)
the-stack_106_19464
from itertools import chain from cms.exceptions import NoHomeFound from cms.utils import get_language_from_request, get_template_from_request from cms.utils.moderator import get_cmsplugin_queryset, get_page_queryset from cms.plugin_rendering import render_plugins, render_placeholder, render_placeholder_toolbar from cms.plugins.utils import get_plugins from cms.models import Page, Placeholder from django import template from django.conf import settings from django.contrib.sites.models import Site from django.core.cache import cache from django.core.mail import mail_managers from django.template.defaultfilters import title from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from django.forms.widgets import Media register = template.Library() def get_site_id(site): if site: if isinstance(site, Site): site_id = site.id elif isinstance(site, int): site_id = site else: site_id = settings.SITE_ID else: site_id = settings.SITE_ID return site_id def has_permission(page, request): return page.has_change_permission(request) register.filter(has_permission) def _get_cache_key(name, page_lookup, lang, site_id): if isinstance(page_lookup, Page): page_key = str(page_lookup.pk) else: page_key = str(page_lookup) return name+'__page_lookup:'+page_key+'_site:'+str(site_id)+'_lang:'+str(lang) def _get_page_by_untyped_arg(page_lookup, request, site_id): """ The `page_lookup` argument can be of any of the following types: - Integer: interpreted as `pk` of the desired page - String: interpreted as `reverse_id` of the desired page - `dict`: a dictionary containing keyword arguments to find the desired page (for instance: `{'pk': 1}`) - `Page`: you can also pass a Page object directly, in which case there will be no database lookup. - `None`: the current page will be used """ if page_lookup is None: return request.current_page if isinstance(page_lookup, Page): return page_lookup if isinstance(page_lookup, basestring): page_lookup = {'reverse_id': page_lookup} elif isinstance(page_lookup, (int, long)): page_lookup = {'pk': page_lookup} elif not isinstance(page_lookup, dict): raise TypeError('The page_lookup argument can be either a Dictionary, Integer, Page, or String.') page_lookup.update({'site': site_id}) try: return get_page_queryset(request).get(**page_lookup) except Page.DoesNotExist: site = Site.objects.get_current() subject = _('Page not found on %(domain)s') % {'domain':site.domain} body = _("A template tag couldn't find the page with lookup arguments `%(page_lookup)s\n`. " "The URL of the request was: http://%(host)s%(path)s") \ % {'page_lookup': repr(page_lookup), 'host': site.domain, 'path': request.path} if settings.DEBUG: raise Page.DoesNotExist(body) else: mail_managers(subject, body, fail_silently=True) return None def page_url(context, page_lookup, lang=None, site=None): """ Show the url of a page with a reverse id in the right language This is mostly used if you want to have a static link in a template to a page """ site_id = get_site_id(site) request = context.get('request', False) if not request: return {'content': ''} if request.current_page == "dummy": return {'content': ''} if lang is None: lang = get_language_from_request(request) cache_key = _get_cache_key('page_url', page_lookup, lang, site_id)+'_type:absolute_url' url = cache.get(cache_key) if not url: page = _get_page_by_untyped_arg(page_lookup, request, site_id) if page: url = page.get_absolute_url(language=lang) cache.set(cache_key, url, settings.CMS_CONTENT_CACHE_DURATION) if url: return {'content': url} return {'content': ''} page_url = register.inclusion_tag('cms/content.html', takes_context=True)(page_url) def page_id_url(context, reverse_id, lang=None, site=None): return page_url(context, reverse_id, lang, site) page_id_url = register.inclusion_tag('cms/content.html', takes_context=True)(page_id_url) def do_placeholder(parser, token): error_string = '%r tag requires at least 1 and accepts at most 2 arguments' nodelist_or = None inherit = False try: # split_contents() knows not to split quoted strings. bits = token.split_contents() # if the `placeholderor` tag was used, look for closing tag, and pass the enclosed nodes # to PlaceholderNode below if bits[-1].lower() == 'or': bits.pop() nodelist_or = parser.parse(('endplaceholder',)) parser.delete_first_token() elif bits[-1].lower() == 'inherit': bits.pop() inherit = True else: bit = bits[-1] if bit[0] == bit[-1] and bit[0] in ('"', "'"): bit = bit[1:-1] if bit.isdigit(): import warnings warnings.warn("The width parameter for the placeholder tag is deprecated.", DeprecationWarning) except ValueError: raise template.TemplateSyntaxError(error_string % bits[0]) if len(bits) == 2: #tag_name, name return PlaceholderNode(bits[1], nodelist_or=nodelist_or, inherit=inherit) elif len(bits) == 3: #tag_name, name, width return PlaceholderNode(bits[1], bits[2], nodelist_or=nodelist_or, inherit=inherit) else: raise template.TemplateSyntaxError(error_string % bits[0]) class PlaceholderNode(template.Node): """This template node is used to output page content and is also used in the admin to dynamically generate input fields. eg: {% placeholder "placeholder_name" %} {% placeholder "sidebar" inherit %} {% placeholder "footer" inherit or %} <a href="/about/">About us</a> {% endplaceholder %} Keyword arguments: name -- the name of the placeholder width -- additional width attribute (integer) which gets added to the plugin context (deprecated, use `{% with 320 as width %}{% placeholder "foo"}{% endwith %}`) inherit -- optional argument which if given will result in inheriting the content of the placeholder with the same name on parent pages or -- optional argument which if given will make the template tag a block tag whose content is shown if the placeholder is empty """ def __init__(self, name, width=None, nodelist_or=None, inherit=False): self.name = "".join(name.lower().split('"')) if width: self.width_var = template.Variable(width) self.nodelist_or = nodelist_or self.inherit = inherit def __repr__(self): return "<Placeholder Node: %s>" % self.name def render(self, context): if not 'request' in context: return '' request = context['request'] width_var = getattr(self, 'width_var', None) if width_var: try: width = int(width_var.resolve(context)) context.update({'width': width}) except (template.VariableDoesNotExist, ValueError): pass page = request.current_page if not page or page == 'dummy': return '' try: placeholder = page.placeholders.get(slot=self.name) except Placeholder.DoesNotExist: from cms.utils.plugins import get_placeholders placeholders = get_placeholders(page.get_template()) found = None for slot in placeholders: new, created = page.placeholders.get_or_create(slot=slot) if slot == self.name: found = new placeholder = found if not found: if settings.DEBUG: raise Placeholder.DoesNotExist("No placeholder '%s' found for page '%s'" % (self.name, page.pk)) else: return "<!-- ERROR:cms.utils.plugins.get_placeholders:%s -->" % self.name content = self.get_content(request, page, context) if not content: if self.nodelist_or: content = self.nodelist_or.render(context) if self.edit_mode(placeholder, context): return render_placeholder_toolbar(placeholder, context, content) return content return content def edit_mode(self, placeholder, context): from cms.utils.placeholder import get_page_from_placeholder_if_exists request = context['request'] page = get_page_from_placeholder_if_exists(placeholder) if ("edit" in request.GET or request.session.get("cms_edit", False)) and \ 'cms.middleware.toolbar.ToolbarMiddleware' in settings.MIDDLEWARE_CLASSES and \ request.user.is_staff and request.user.is_authenticated() and \ (not page or page.has_change_permission(request)): return True return False def get_content(self, request, page, context): from cms.utils.plugins import get_placeholders pages = [page] if self.inherit: pages = chain([page], page.get_cached_ancestors(ascending=True)) for page in pages: template = get_template_from_request(request, page) placeholder = page.placeholders.filter(slot__in=get_placeholders(template)).get(slot=self.name) if not get_plugins(request, placeholder): continue request.placeholder_media += placeholder.get_media(request, context) content = render_placeholder(placeholder, context) if content: return content return '' register.tag('placeholder', do_placeholder) def do_page_attribute(parser, token): error_string = '%r tag requires one argument' % token.contents[0] try: # split_contents() knows not to split quoted strings. bits = token.split_contents() except ValueError: raise template.TemplateSyntaxError(error_string) if len(bits) >= 2: # tag_name, name # tag_name, name, page_lookup page_lookup = len(bits) == 3 and bits[2] or None return PageAttributeNode(bits[1], page_lookup) else: raise template.TemplateSyntaxError(error_string) class PageAttributeNode(template.Node): """This template node is used to output attribute from a page such as its title or slug. Synopsis {% page_attribute "field-name" %} {% page_attribute "field-name" page_lookup %} Example {# Output current page's page_title attribute: #} {% page_attribute "page_title" %} {# Output page_title attribute of the page with reverse_id "the_page": #} {% page_attribute "page_title" "the_page" %} {# Output slug attribute of the page with pk 10: #} {% page_attribute "slug" 10 %} Keyword arguments: field-name -- the name of the field to output. Use one of: - title - menu_title - page_title - slug - meta_description - meta_keywords page_lookup -- lookup argument for Page, if omitted field-name of current page is returned. See _get_page_by_untyped_arg() for detailed information on the allowed types and their interpretation for the page_lookup argument. """ def __init__(self, name, page_lookup=None): self.name_var = template.Variable(name) self.page_lookup = None self.valid_attributes = ["title", "slug", "meta_description", "meta_keywords", "page_title", "menu_title"] if page_lookup: self.page_lookup_var = template.Variable(page_lookup) def render(self, context): if not 'request' in context: return '' var_name = self.name_var.var.lower() if var_name in self.valid_attributes: # Variable name without quotes works, but is deprecated self.name = var_name else: self.name = self.name_var.resolve(context) lang = get_language_from_request(context['request']) page_lookup_var = getattr(self, 'page_lookup_var', None) if page_lookup_var: page_lookup = page_lookup_var.resolve(context) else: page_lookup = None page = _get_page_by_untyped_arg(page_lookup, context['request'], get_site_id(None)) if page == "dummy": return '' if page and self.name in self.valid_attributes: f = getattr(page, "get_"+self.name) return f(language=lang, fallback=True) return '' def __repr__(self): return "<PageAttribute Node: %s>" % self.name register.tag('page_attribute', do_page_attribute) def clean_admin_list_filter(cl, spec): """ used in admin to display only these users that have actually edited a page and not everybody """ choices = sorted(list(spec.choices(cl)), key=lambda k: k['query_string']) query_string = None unique_choices = [] for choice in choices: if choice['query_string'] != query_string: unique_choices.append(choice) query_string = choice['query_string'] return {'title': spec.title(), 'choices' : unique_choices} clean_admin_list_filter = register.inclusion_tag('admin/filter.html')(clean_admin_list_filter) def _show_placeholder_for_page(context, placeholder_name, page_lookup, lang=None, site=None, cache_result=True): """ Shows the content of a page with a placeholder name and given lookup arguments in the given language. This is useful if you want to have some more or less static content that is shared among many pages, such as a footer. See _get_page_by_untyped_arg() for detailed information on the allowed types and their interpretation for the page_lookup argument. """ request = context.get('request', False) site_id = get_site_id(site) if not request: return {'content': ''} if lang is None: lang = get_language_from_request(request) content = None if cache_result: cache_key = _get_cache_key('_show_placeholder_for_page', page_lookup, lang, site_id)+'_placeholder:'+placeholder_name content = cache.get(cache_key) if not content: page = _get_page_by_untyped_arg(page_lookup, request, site_id) if not page: return {'content': ''} placeholder = page.placeholders.get(slot=placeholder_name) plugins = get_cmsplugin_queryset(request).filter(placeholder=placeholder, language=lang, placeholder__slot__iexact=placeholder_name, parent__isnull=True).order_by('position').select_related() c = render_plugins(plugins, context, placeholder) content = "".join(c) if cache_result: cache.set(cache_key, content, settings.CMS_CONTENT_CACHE_DURATION) if content: return {'content': mark_safe(content)} return {'content': ''} def show_placeholder_by_id(context, placeholder_name, reverse_id, lang=None, site=None): """ Show the content of a specific placeholder, from a page found by reverse id, in the given language. This templatetag is deprecated, replace with `show_placeholder`. """ return _show_placeholder_for_page(context, placeholder_name, {'reverse_id': reverse_id}, lang=lang, site=site) show_placeholder_by_id = register.inclusion_tag('cms/content.html', takes_context=True)(show_placeholder_by_id) def show_uncached_placeholder_by_id(context, placeholder_name, reverse_id, lang=None, site=None): """ Show the uncached content of a specific placeholder, from a page found by reverse id, in the given language. This templatetag is deprecated, replace with `show_uncached_placeholder`. """ return _show_placeholder_for_page(context, placeholder_name, {'reverse_id': reverse_id}, lang=lang, site=site, cache_result=False) show_uncached_placeholder_by_id = register.inclusion_tag('cms/content.html', takes_context=True)(show_uncached_placeholder_by_id) def show_placeholder(context, placeholder_name, page_lookup, lang=None, site=None): """ Show the content of a specific placeholder, from a page found by pk|reverse_id|dict or passed to the function, in the given language. """ return _show_placeholder_for_page(context, placeholder_name, page_lookup, lang=lang, site=site) show_placeholder_for_page = register.inclusion_tag('cms/content.html', takes_context=True)(show_placeholder) def show_uncached_placeholder(context, placeholder_name, page_lookup, lang=None, site=None): """ Show the uncached content of a specific placeholder, from a page found by pk|reverse_id|dict or passed to the function, in the given language. """ return _show_placeholder_for_page(context, placeholder_name, page_lookup, lang=lang, site=site, cache_result=False) show_uncached_placeholder_for_page = register.inclusion_tag('cms/content.html', takes_context=True)(show_uncached_placeholder) def do_plugins_media(parser, token): args = token.split_contents() if len(args) > 2: raise template.TemplateSyntaxError("Invalid syntax. Expected " "'{%% %s [page_lookup] %%}'" % tag) elif len(args) == 2: page_lookup = args[1] else: page_lookup = None return PluginsMediaNode(page_lookup) class PluginsMediaNode(template.Node): """ This template node is used to output media for plugins. eg: {% plugins_media %} You can also pass the object a page_lookup arg if you want to output media tags for a specific page other than the current page. eg: {% plugins_media "gallery" %} """ def __init__(self, page_lookup=None): if page_lookup: self.page_lookup_var = template.Variable(page_lookup) def render(self, context): from cms.plugins.utils import get_plugins_media if not 'request' in context: return '' request = context['request'] from cms.plugins.utils import get_plugins_media plugins_media = None page_lookup_var = getattr(self, 'page_lookup_var', None) if page_lookup_var: page_lookup = page_lookup_var.resolve(context) page = _get_page_by_untyped_arg(page_lookup, request, get_site_id(None)) plugins_media = get_plugins_media(request, page) else: page = request.current_page if page == "dummy": return '' # make sure the plugin cache is filled plugins_media = get_plugins_media(request, context, request._current_page_cache) if plugins_media: return plugins_media.render() else: return u'' def __repr__(self): return "<PluginsMediaNode Node: %s>" % getattr(self, 'name', '') register.tag('plugins_media', do_plugins_media)
the-stack_106_19465
from Echo import * from Broadcast import * from RestPersistBroadcast import * from RestPersistSendToGroup import * from RestPersistSendToUser import * from RestSendToGroup import * from RestSendToUser import * from RestBroadcast import * from SendToClient import * from SendToGroup import * from StreamingEcho import * from FrequentJoinLeaveGroup import * import argparse from Util.SettingsHelper import * from Util.Common import * def parse_arguments(): arg_type = ArgType() kind_type = KindType() scenario_type = ScenarioType() parser = argparse.ArgumentParser(description='Generate benchmark configuration') # required parser.add_argument('-u', '--unit', type=int, required=True, help="Azure SignalR service unit.") parser.add_argument('-S', '--scenario', required=True, choices=[scenario_type.echo, scenario_type.broadcast, scenario_type.rest_persist_broadcast, scenario_type.rest_persist_send_to_group, scenario_type.rest_persist_send_to_user, scenario_type.rest_broadcast, scenario_type.rest_send_to_group, scenario_type.rest_send_to_user, scenario_type.send_to_client, scenario_type.send_to_group, scenario_type.streaming_echo, scenario_type.frequent_join_leave_group], help="Scenario, choose from <{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>|<{}>" .format(scenario_type.echo, scenario_type.broadcast, scenario_type.rest_persist_broadcast, scenario_type.rest_persist_send_to_group, scenario_type.rest_persist_send_to_user, scenario_type.rest_broadcast, scenario_type.rest_send_to_group, scenario_type.rest_send_to_user, scenario_type.send_to_client, scenario_type.send_to_group, scenario_type.streaming_echo, scenario_type.frequent_join_leave_group)) parser.add_argument('-p', '--protocol', required=False, default=arg_type.protocol_json, choices=[arg_type.protocol_json, arg_type.protocol_messagepack], help="SignalR Hub protocol, choose from <{}>|<{}>" .format(arg_type.protocol_json, arg_type.protocol_messagepack)) parser.add_argument('-t', '--transport', required=False, default=arg_type.transport_websockets, choices=[arg_type.transport_websockets, arg_type.transport_long_polling, arg_type.transport_server_sent_event], help="SignalR connection transport type, choose from: <{}>|<{}>|<{}>".format( arg_type.transport_websockets, arg_type.transport_long_polling, arg_type.transport_server_sent_event)) parser.add_argument('-U', '--url', required=True, help="App server Url or connection string (only for REST API test)") parser.add_argument('-m', '--use_max_connection', action='store_true', help="Flag indicates using max connection or not. Set true to apply 1.5x on normal connections") # todo: add default value parser.add_argument('-g', '--group_type', type=str, choices=[arg_type.group_tiny, arg_type.group_small, arg_type.group_big], default=arg_type.group_tiny, help="Group type, choose from <{}>|<{}>|<{}>".format(arg_type.group_tiny, arg_type.group_small, arg_type.group_big)) # todo: set default value parser.add_argument('-ms', '--message_size', type=int, default=2*1024, help="Message size") # todo: set default value parser.add_argument('-M', '--module', help='Plugin name', default='Plugin.Microsoft.Azure.SignalR.Benchmark.\ SignalRBenchmarkPlugin, Plugin.Microsoft.Azure.SignalR.Benchmark') # todo: set default value parser.add_argument('-s', '--settings', type=str, default='settings.yaml', help='Settings from different unit') parser.add_argument('-d', '--duration', type=int, default=240, help='Duration to run (second)') parser.add_argument('-i', '--interval', type=int, default=1000, help='Interval for message sending (millisecond)') parser.add_argument('-c', '--config_save_path', default='config.yaml', help='Path of output benchmark configuration') # args for conditional stop parser.add_argument('-cc', '--criteria_max_fail_connection_amount', type=int, default=100, help='Criteria for max \ failed connection amount') parser.add_argument('-cp', '--criteria_max_fail_connection_percentage', type=float, default=0.01, help='Criteria \ for max failed connection percentage') parser.add_argument('-cs', '--criteria_max_fail_sending_percentage', type=float, default=0.01, help='Criteria \ for max failed sending percentage') # args for statistics collector parser.add_argument('-so', '--statistics_output_path', default='counters.txt', help='Path to counters which record the statistics while running benchmark') parser.add_argument('-si', '--statistic_interval', type=int, default=1000, help='Interval for collecting intervals') parser.add_argument('-w', '--wait_time', type=int, default=15000, help='Waiting time for each epoch') parser.add_argument('-lm', '--statistic_latency_max', type=int, default=1000, help='Latency max of statistics') parser.add_argument('-ls', '--statistic_latency_step', type=int, default=100, help='Latency step of statistics') parser.add_argument('-csp', '--connection_percentile_list', type=str, default='0.5,0.9,0.95,0.99', help='Specify the percentile list for connection stat') # group config mode parser.add_argument('-gm', '--group_config_mode', choices=[arg_type.group_config_mode_group, arg_type.group_config_mode_connection], default=arg_type.group_config_mode_connection, help='Group configuration mode') parser.add_argument('-ct', '--connection_type', type=str, choices=[arg_type.connection_type_core, arg_type.connection_type_aspnet, arg_type.connection_type_rest_direct], default=arg_type.connection_type_core, help='Specify the connection type: Core, AspNet, or CoreDirect') # kinds: perf, longrun parser.add_argument('-k', '--kind', type=str, choices=[kind_type.perf, kind_type.longrun], default=kind_type.perf, help="Specify the kind of benchmark: perf or longrun, default is perf") # streaming parser.add_argument('-sic', '--streaming_item_count', type=int, default=2, help='Streaming item count') parser.add_argument('-sisi', '--streaming_item_send_interval', type=int, default=0, help='Streaming item sending interval') # args args = parser.parse_args() # unit convert from second to millisecond args.duration = args.duration * 1000 return args def main(): args = parse_arguments() # parse settings scenario_config_collection = parse_settings(args.settings) # constant config constant_config = ConstantConfig(args.module, args.wait_time, args.config_save_path, args.criteria_max_fail_connection_amount, args.criteria_max_fail_connection_percentage, args.criteria_max_fail_sending_percentage) # statistics config statistics_config = StatisticsConfig(args.statistics_output_path, args.statistic_interval, args.statistic_latency_max, args.statistic_latency_step, args.connection_percentile_list) # connection config connection_config = ConnectionConfig(args.url, args.protocol, args.transport) # determine settings scenario_config = determine_scenario_config(scenario_config_collection, args.unit, args.scenario, args.transport, args.protocol, args.use_max_connection, args.message_size, args.group_type, args.group_config_mode, args.streaming_item_count, args.streaming_item_send_interval) # basic sending config sending_config = SendingConfig(args.duration, args.interval, args.message_size) kind = PERF_KIND if args.kind == "longrun": kind = LONGRUN_KIND lst = [word[0].upper() + word[1:] for word in args.scenario.split()] func = "".join(lst) callfunc='''{func_name}(sending_config, scenario_config, connection_config, statistics_config, constant_config, args.connection_type, {kind}).generate_config()'''.format(func_name=func, kind=kind) eval(callfunc) if __name__ == "__main__": main()
the-stack_106_19466
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from django.db.models import Count, F from django.template.loader import render_to_string from django.urls import reverse from django.utils.html import escape from django.utils.safestring import mark_safe from hc.accounts.models import Profile, Project @mark_safe def _format_usage(num_checks, num_channels): result = "" if num_checks == 0: result += "0 checks, " elif num_checks == 1: result += "1 check, " else: result += f"<strong>{num_checks} checks</strong>, " if num_channels == 0: result += "0 channels" elif num_channels == 1: result += "1 channel" else: result += f"<strong>{num_channels} channels</strong>" return result class Fieldset: name = None fields = [] @classmethod def tuple(cls): return (cls.name, {"fields": cls.fields}) class ProfileFieldset(Fieldset): name = "User Profile" fields = ( "email", "reports_allowed", "next_report_date", "nag_period", "next_nag_date", "deletion_notice_date", "token", "sort", ) class TeamFieldset(Fieldset): name = "Team" fields = ( "team_limit", "check_limit", "ping_log_limit", "sms_limit", "sms_sent", "last_sms_date", ) class NumChecksFilter(admin.SimpleListFilter): title = "Checks" parameter_name = "num_checks" def lookups(self, request, model_admin): return ( ("20", "more than 20"), ("50", "more than 50"), ("100", "more than 100"), ("500", "more than 500"), ("1000", "more than 1000"), ) def queryset(self, request, queryset): if not self.value(): return value = int(self.value()) return queryset.filter(num_checks__gt=value) @admin.register(Profile) class ProfileAdmin(admin.ModelAdmin): class Media: css = {"all": ("css/admin/profiles.css",)} readonly_fields = ("user", "email") search_fields = ["id", "user__email"] list_per_page = 30 list_select_related = ("user",) list_display = ( "id", "email", "date_joined", "last_active_date", "projects", "checks", "invited", "sms", "reports_allowed", ) list_filter = ( "user__date_joined", "last_active_date", "reports_allowed", "check_limit", NumChecksFilter, ) fieldsets = (ProfileFieldset.tuple(), TeamFieldset.tuple()) def get_queryset(self, request): qs = super(ProfileAdmin, self).get_queryset(request) qs = qs.prefetch_related("user__project_set") qs = qs.annotate(num_members=Count("user__project__member", distinct=True)) qs = qs.annotate(num_checks=Count("user__project__check", distinct=True)) qs = qs.annotate(plan=F("user__subscription__plan_name")) return qs @mark_safe def email(self, obj): s = escape(obj.user.email) if obj.plan: return "<span title='%s'>%s</span>" % (obj.plan, s) return s def date_joined(self, obj): return obj.user.date_joined @mark_safe def projects(self, obj): return render_to_string("admin/profile_list_projects.html", {"profile": obj}) def checks(self, obj): return "%d of %d" % (obj.num_checks, obj.check_limit) def invited(self, obj): return "%d of %d" % (obj.num_members, obj.team_limit) def sms(self, obj): return "%d of %d" % (obj.sms_sent, obj.sms_limit) @admin.register(Project) class ProjectAdmin(admin.ModelAdmin): readonly_fields = ("code", "owner") list_select_related = ("owner",) list_display = ("id", "name_", "users", "usage", "switch") search_fields = ["id", "name", "owner__email"] class Media: css = {"all": ("css/admin/projects.css",)} def get_queryset(self, request): qs = super(ProjectAdmin, self).get_queryset(request) qs = qs.annotate(num_channels=Count("channel", distinct=True)) qs = qs.annotate(num_checks=Count("check", distinct=True)) qs = qs.annotate(num_members=Count("member", distinct=True)) return qs def name_(self, obj): if obj.name: return obj.name return "Default Project for %s" % obj.owner.email @mark_safe def users(self, obj): if obj.num_members == 0: return obj.owner.email else: return render_to_string("admin/project_list_team.html", {"project": obj}) def email(self, obj): return obj.owner.email def usage(self, obj): return _format_usage(obj.num_checks, obj.num_channels) @mark_safe def switch(self, obj): url = reverse("hc-checks", args=[obj.code]) return "<a href='%s'>Show Checks</a>" % url class HcUserAdmin(UserAdmin): actions = ["send_report", "send_nag"] list_display = ( "id", "email", "usage", "date_joined", "last_login", "is_staff", ) list_display_links = ("id", "email") list_filter = ("last_login", "date_joined", "is_staff", "is_active") ordering = ["-id"] def get_queryset(self, request): qs = super().get_queryset(request) qs = qs.annotate(num_checks=Count("project__check", distinct=True)) qs = qs.annotate(num_channels=Count("project__channel", distinct=True)) return qs @mark_safe def usage(self, user): return _format_usage(user.num_checks, user.num_channels) def send_report(self, request, qs): for user in qs: user.profile.send_report() self.message_user(request, "%d email(s) sent" % qs.count()) def send_nag(self, request, qs): for user in qs: user.profile.send_report(nag=True) self.message_user(request, "%d email(s) sent" % qs.count()) admin.site.unregister(User) admin.site.register(User, HcUserAdmin)
the-stack_106_19468
import re import shutil import subprocess import sys import time from pathlib import Path from random import random from pythonfuzz.main import PythonFuzz class Result(object): """ Use the output from the tool to collect the information about its execution. Very sensitive to the format of the output as to whether it collects information or not. """ coverage_re = re.compile('cov: (\d+)') corpus_re = re.compile('corp: (\d+)') speed_re = re.compile('exec/s: (\d+)') memory_re = re.compile('rss: (\d+\.\d+)') count_re = re.compile('^#(\d+)') count2_re = re.compile('^did (\d+) runs, stopping now') exception_re = re.compile('^Exception: (.*)') failfile_re = re.compile('^sample written to (.*)') def __init__(self): self.coverage = None self.corpus = None self.speed = None self.memory = None self.count = None self.time_start = None self.time_end = None self.fail_file = None self.exception = None self.lines = [] self.rc = None def record_start(self): self.time_start = time.time() def record_end(self): self.time_end = time.time() @property def time_duration(self): """ Number of seconds the execution took, or None if not known """ if self.time_start and self.time_end: return self.time_end - self.time_start if self.time_start: return time.time() - self.time_start return None def process_output(self, line): match = self.coverage_re.search(line) if match: self.coverage = int(match.group(1)) match = self.corpus_re.search(line) if match: self.corpus = int(match.group(1)) match = self.speed_re.search(line) if match: self.speed = int(match.group(1)) match = self.memory_re.search(line) if match: self.memory = float(match.group(1)) match = self.count_re.search(line) or self.count2_re.search(line) if match: self.count = int(match.group(1)) match = self.exception_re.search(line) if match: self.exception = match.group(1) match = self.failfile_re.search(line) if match: self.fail_file = match.group(1) self.lines.append(line) def show(self, show_lines=False, indent=''): """ Show the status of this result. """ print("{}Executions : {}".format(indent, self.count)) print("{}Corpus : {}".format(indent, self.corpus)) print("{}Coverage : {}".format(indent, self.coverage)) print("{}Final speed : {}/s".format(indent, self.speed)) if self.memory: print("{}Memory : {:.2f} MB".format(indent, self.memory)) print("{}Runtime : {:.2f} s".format(indent, self.time_duration)) if self.time_duration and self.count: print("{}Overall speed : {:.2f}/s".format(indent, self.count / self.time_duration)) print("{}Return code : {}".format(indent, self.rc)) if self.exception: print("{}Exception : {}".format(indent, self.exception)) if self.fail_file: print("{}Failed filename : {}".format(indent, self.fail_file)) if show_lines or self.rc: print("{}Lines:".format(indent)) for line in self.lines: print("{} {}".format(indent, line.strip('\n'))) def run(cwd, workdir, python='python', log='/dev/null'): """ Run the script, capturing the output and processing it. """ cmd = [python, '-m', 'rial.main', '--workdir', workdir] result = Result() with open(log, 'w') as log_fh: proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=cwd) result.record_start() for line in proc.stdout: line = line.decode('utf-8', 'replace') result.process_output(line) result.record_end() proc.wait() result.rc = proc.returncode return result @PythonFuzz def fuzz(buf): try: string = buf.decode("utf-8") except UnicodeDecodeError: return cur_directory = Path(__file__.replace("fuzzing.py", "")) tmp_directory = cur_directory.joinpath(f"tmp_{random()}") tmp_directory.mkdir(parents=False, exist_ok=False) src_directory = tmp_directory.joinpath("src") src_directory.mkdir(parents=False, exist_ok=False) with open(src_directory.joinpath("main.rial"), "w") as file: file.write(string) try: result = run(str(cur_directory.joinpath("..")), tmp_directory, sys.executable) result.show(indent=' ') except: raise finally: shutil.rmtree(tmp_directory) if __name__ == '__main__': fuzz(dirs=[str(Path(__file__.replace("fuzzing.py", "").replace("/rial", "")).joinpath("fuzzing_out")), str(Path(__file__.replace("fuzzing.py", "").replace("/rial", "")).joinpath("fuzzing_in"))])
the-stack_106_19469
import discord import os import requests import json client = discord.Client() def get_quote(): response = requests.get("https://zenquotes.io/api/random") json_data = json.loads(response.text) quote = json_data[0]['q'] + " -" + json_data[0]['a'] return(quote) @client.event async def on_ready(): print('We have logged in as {0.user}'.format(client)) @client.event async def on_message(message): if message.author == client.user: return elif message.content.startswith('$inspire'): quote = get_quote() await message.channel.send('Some Inspiration:') await message.channel.send(quote) elif message.content.startswith('$'): await message.channel.send('That went over my head!') elif message.content.startswith('Hey You'): await message.channel.send('How are you ' + str(message.author) +'?') client.run(os.getenv('TOKEN'))
the-stack_106_19470
from string import printable from typing import (Any, Callable, Generic, Iterable, NoReturn, Tuple, TypeVar, Union) from . import (Dict, Immutable, List, aio_trampoline, effect, either, maybe, trampoline) try: from hypothesis.strategies import ( booleans, builds, composite, dictionaries, floats, integers, just, lists as lists_, one_of, recursive, text, SearchStrategy ) except ImportError: raise ImportError( 'Could not import hypothesis. To use pfun.hypothesis_strategies, ' 'install pfun with \n\n\tpip install pfun[test]' ) A = TypeVar('A') def _everything(allow_nan: bool = False) -> Tuple[SearchStrategy[int], SearchStrategy[bool], SearchStrategy[str], SearchStrategy[float]]: return integers(), booleans(), text(), floats(allow_nan=allow_nan) def anything(allow_nan: bool = False ) -> SearchStrategy[Union[int, bool, str, float]]: """ Create a search strategy that produces one of int, bool, str or floats. Args: Allow_nan: whether to allow nan values Return: Search strategy that produces ints, bools, str or floats """ return one_of(*_everything(allow_nan)) CO = TypeVar('CO', covariant=True) class Unary(Immutable, Generic[CO]): return_value: CO def __repr__(self): return f'lambda _: {repr(self.return_value)}' def __call__(self, _: object) -> CO: return self.return_value def unaries(return_strategy: SearchStrategy[A] ) -> SearchStrategy[Callable[[object], A]]: """ Create a search strategy that produces functions of 1 argument Example: >>> f = unaries(integers()).example() >>> f <function ...> >>> f(None) 2 Args: return_strategy: strategy used to draw return values Return: Search strategy that produces callables of 1 argument """ return builds(Unary, return_strategy) def maybes(value_strategy: SearchStrategy[A] ) -> SearchStrategy[maybe.Maybe[A]]: """ Create a search strategy that produces `pfun.maybe.Maybe` values Example: >>> maybes(integers()).example() Just(1) Args: value_strategy: search strategy to draw values from Return: search strategy that produces `pfun.maybe.Maybe` values """ justs = builds(maybe.Just, value_strategy) nothings = just(maybe.Nothing()) return one_of(justs, nothings) def rights(value_strategy: SearchStrategy[A] ) -> SearchStrategy[either.Right[A]]: """ Create a search strategy that produces `pfun.either.Right` values Args: value_strategy: search strategy to draw values from Example: >>> rights(integers()).example() Right(0) Return: search strategy that produces `pfun.either.Right` values """ return builds(either.Right, value_strategy) def lefts(value_strategy: SearchStrategy[A]) -> SearchStrategy[either.Left[A]]: """ Create a search strategy that produces `pfun.either.Left` values Args: value_strategy: search strategy to draw values from Example: >>> lefts(integers()).example() Left(0) Return: search strategy that produces `pfun.either.Left` values """ return builds(either.Left, value_strategy) def eithers(value_strategy: SearchStrategy[A] ) -> SearchStrategy[either.Either[A, A]]: """ Create a search strategy that produces `pfun.either.Either` values Args: value_strategy: search strategy to draw values from Example: >>> s = eithers(integers()) >>> s.example() Right(0) >>> s.example() Left(0) Return: search strategy that produces `pfun.either.Either` values """ return one_of(lefts(value_strategy), rights(value_strategy)) def nullaries(return_strategy: SearchStrategy[A] ) -> SearchStrategy[Callable[[], A]]: """ Create a search strategy that produces functions of 0 arguments Args: return_strategy: strategy used to draw return values Example: >>> f = unaries(integers()).example() >>> f <function ...> >>> f() 2 Return: Search strategy that produces callables of 0 arguments """ def f(v): return lambda: v return builds(f, return_strategy) def trampolines(value_strategy: SearchStrategy[A] ) -> SearchStrategy[trampoline.Trampoline[A]]: """ Create a strategy that produces `pfun.trampoline.Trampoline` instances Args: value_strategy: strategy used to draw result values Example: >>> trampolines(integers()).example() Call(thunk=<function ... at 0x1083d2d40>) Return: search strategy that produces `pfun.trampoline.Trampoline` instances """ dones = builds(trampoline.Done, value_strategy) @composite def call(draw): t = draw(trampolines(value_strategy)) return trampoline.Call(lambda: t) @composite def and_then(draw): t = draw(trampolines(value_strategy)) cont = lambda _: t return trampoline.AndThen(draw(trampolines(value_strategy)), cont) return one_of(dones, call(), and_then()) def aio_trampolines(value_strategy: SearchStrategy[A] ) -> SearchStrategy[trampoline.Trampoline[A]]: """ Create a strategy that produces `pfun.aio_trampoline.Trampoline` instances Args: value_strategy: strategy used to draw result values Example: >>> aio_trampolines(integers()).example() Call(thunk=<function ... at 0x1083d2d40>) Return: search strategy that produces \ `pfun.aio_trampoline.Trampoline` instances """ dones = builds(aio_trampoline.Done, value_strategy) @composite def call(draw): t = draw(aio_trampolines(value_strategy)) async def f(): return t return aio_trampoline.Call(f) @composite def and_then(draw): t = draw(aio_trampolines(value_strategy)) cont = lambda _: t return aio_trampoline.AndThen( draw(aio_trampolines(value_strategy)), cont ) return one_of(dones, call(), and_then()) def lists(elements: SearchStrategy[A], min_size=0): """ Create a search strategy that produces `pfun.list.List` instances Args: elements: strategy used to draw elements of the list min_size: minimum size of the lists Example: >>> lists(integers()).example() List((0,)) Return: search strategy that produces `pfun.list.List` instances """ return builds(List, lists_(elements, min_size=min_size)) B = TypeVar('B') def dicts( keys: SearchStrategy[A], values: SearchStrategy[B], min_size: int = 0, max_size: int = None ) -> SearchStrategy[Dict[A, B]]: """ Create a search strategy that produces `pfun.dict.Dict` instances Args: keys: search strategy used to draw keys for the Dict instances values: search strategy used to draw values for the Dict instances min_size: minimum size of the Dicts max_size: max size of the Dicts Example: >>> dicts(text(), integers()).example() Dict({'0': 0}) Return: search strategy that produces `pfun.dict.Dict` instances """ return builds( Dict, dictionaries(keys, values, min_size=min_size, max_size=max_size) ) TestEffect = effect.Effect[object, Any, A] class TestException(Exception): """ Dummy exception used to avoid catching any exceptions unintentionally in tests. """ def effects( value_strategy: SearchStrategy[A], include_errors: bool = False, max_size: int = 10, max_leaves: int = 10 ) -> SearchStrategy[TestEffect[A]]: """ Create a search strategy that produces `pfun.effect.Effect` instances Args: value_strategy: search strategy used to draw success values include_errors: whether to include effects that fail max_size: max size of effects that produces iterables \ (such as `pfun.effect.gather`) max_leaves: max number of leaf effects \ (`pfun.effect.success`, `pfun.effect.from_callable` etc) \ to be drawn Example: >>> e = effects(integers()).example() >>> e success(0) >>> e.run(None) 0 Return: search strategy that produces `pfun.effect.Effect` instances """ def extend(children: SearchStrategy[TestEffect[A]] ) -> SearchStrategy[TestEffect[A]]: maps: SearchStrategy[TestEffect[A]] = children.flatmap( lambda e: unaries(value_strategy).map(lambda f: e.map(f)) ) and_then = children.flatmap( lambda e: unaries(children).map(lambda f: e.and_then(f)) ) discard_and_then = children.flatmap( lambda e: children.map(lambda e2: e.discard_and_then(e2)) ) either = children.map(lambda e: e.either()) recover = children.flatmap( lambda e: children.map(lambda e2: e.recover(lambda _: e2)) ) memoize = children.map(lambda e: e.memoize()) ensure = children.flatmap( lambda e: children.map(lambda e2: e.ensure(e2)) ) with_repr = children.flatmap( lambda e: text(printable).map(lambda s: e.with_repr(s)) ) gather: SearchStrategy[TestEffect[Iterable[A]]] = lists_( children, max_size=10).map( effect.gather ) gather_async: SearchStrategy[TestEffect[Iterable[A]]] = lists_( children, max_size=max_size ).map( effect.gather_async ) lift = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.lift(f)(e)) ) lift_io_bound = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.lift_io_bound(f)(e)) ) lift_cpu_bound = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.lift_cpu_bound(f)(e)) ) combine = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.combine(e)(f)) ) combine_io_bound = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.combine_io_bound(e)(f)) ) combine_cpu_bound = unaries(value_strategy).flatmap( lambda f: children.map(lambda e: effect.combine_cpu_bound(e)(f)) ) race = children.map(lambda e: e.race(e)) return one_of( maps, and_then, discard_and_then, either, recover, memoize, ensure, with_repr, gather, gather_async, lift, lift_io_bound, lift_cpu_bound, combine, combine_io_bound, combine_cpu_bound, race ) success = builds(effect.success, value_strategy) depends: SearchStrategy[effect.Effect[Any, NoReturn, Any] ] = builds(effect.depend) from_callable: SearchStrategy[TestEffect[A] ] = unaries(rights(value_strategy) ).map(effect.from_callable) from_io_bound_callable: SearchStrategy[TestEffect[A]] = unaries( rights(value_strategy) ).map(effect.from_io_bound_callable) from_cpu_bound_callable: SearchStrategy[TestEffect[A]] = unaries( rights(value_strategy) ).map(effect.from_cpu_bound_callable) catch: SearchStrategy[TestEffect[A]] = unaries( value_strategy ).flatmap( lambda f: value_strategy.map( lambda a: effect.catch(TestException)(f)(a)) ) catch_io_bound: SearchStrategy[TestEffect[A]] = unaries( value_strategy ).flatmap( lambda f: value_strategy.map( lambda a: effect.catch_io_bound(TestException)(f)(a) ) ) catch_cpu_bound: SearchStrategy[TestEffect[A]] = unaries( value_strategy ).flatmap( lambda f: value_strategy.map( lambda a: effect.catch_cpu_bound(TestException)(f)(a) ) ) purify = nullaries(value_strategy).map(lambda f: effect.purify(f)()) base = ( success | from_callable | from_io_bound_callable | from_cpu_bound_callable | depends | catch | catch_io_bound | catch_cpu_bound | purify ) if include_errors: errors = builds(effect.error, value_strategy) base = base | errors return recursive(base, extend, max_leaves=max_leaves)
the-stack_106_19471
#!/usr/bin/python # -*- coding: utf-8 -*- """ archivebot.py - discussion page archiving bot. usage: python pwb.py archivebot [OPTIONS] TEMPLATE_PAGE Bot examines backlinks (Special:WhatLinksHere) to TEMPLATE_PAGE. Then goes through all pages (unless a specific page specified using options) and archives old discussions. This is done by breaking a page into threads, then scanning each thread for timestamps. Threads older than a specified threshold are then moved to another page (the archive), which can be named either basing on the thread's name or then name can contain a counter which will be incremented when the archive reaches a certain size. Transcluded template may contain the following parameters: {{TEMPLATE_PAGE |archive = |algo = |counter = |maxarchivesize = |minthreadsleft = |minthreadstoarchive = |archiveheader = |key = }} Meanings of parameters are: archive Name of the page to which archived threads will be put. Must be a subpage of the current page. Variables are supported. algo Specifies the maximum age of a thread. Must be in the form old(<delay>) where <delay> specifies the age in seconds (s), hours (h), days (d), weeks (w), or years (y) like 24h or 5d. Default is old(24h). counter The current value of a counter which could be assigned as variable. Will be updated by bot. Initial value is 1. maxarchivesize The maximum archive size before incrementing the counter. Value can be given with appending letter like K or M which indicates KByte or MByte. Default value is 200K. minthreadsleft Minimum number of threads that should be left on a page. Default value is 5. minthreadstoarchive The minimum number of threads to archive at once. Default value is 2. archiveheader Content that will be put on new archive pages as the header. This parameter supports the use of variables. Default value is {{talkarchive}} key A secret key that (if valid) allows archives not to be subpages of the page being archived. Variables below can be used in the value for "archive" in the template above: %(counter)d the current value of the counter %(year)d year of the thread being archived %(isoyear)d ISO year of the thread being archived %(isoweek)d ISO week number of the thread being archived %(semester)d semester term of the year of the thread being archived %(quarter)d quarter of the year of the thread being archived %(month)d month (as a number 1-12) of the thread being archived %(monthname)s localized name of the month above %(monthnameshort)s first three letters of the name above %(week)d week number of the thread being archived The ISO calendar starts with the Monday of the week which has at least four days in the new Gregorian calendar. If January 1st is between Monday and Thursday (including), the first week of that year started the Monday of that week, which is in the year before if January 1st is not a Monday. If it's between Friday or Sunday (including) the following week is then the first week of the year. So up to three days are still counted as the year before. See also: - http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm - https://docs.python.org/3.4/library/datetime.html#datetime.date.isocalendar Options (may be omitted): -help show this help message and exit -calc:PAGE calculate key for PAGE and exit -file:FILE load list of pages from FILE -force override security options -locale:LOCALE switch to locale LOCALE -namespace:NS only archive pages from a given namespace -page:PAGE archive a single PAGE, default ns is a user talk page -salt:SALT specify salt """ # # (C) Pywikibot team, 2006-2020 # # Distributed under the terms of the MIT license. # import datetime import locale import math import os import re import time from collections import defaultdict, OrderedDict from hashlib import md5 from math import ceil from typing import Any, Optional, Pattern import pywikibot from pywikibot.date import apply_month_delta from pywikibot import i18n from pywikibot.textlib import (extract_sections, findmarker, TimeStripper, to_local_digits) from pywikibot.tools import ( deprecated, FrozenDict, issue_deprecation_warning, PYTHON_VERSION, ) if PYTHON_VERSION >= (3, 9): List = list Set = set Tuple = tuple else: from typing import List, Set, Tuple ShouldArchive = Tuple[str, str] Size = Tuple[int, str] ZERO = datetime.timedelta(0) MW_KEYS = FrozenDict({ 's': 'seconds', 'h': 'hours', 'd': 'days', 'w': 'weeks', 'y': 'years', # 'months' and 'minutes' were removed because confusion outweighs merit }, 'MW_KEYS is a dict constant') class ArchiveBotSiteConfigError(pywikibot.Error): """There is an error originated by archivebot's on-site configuration.""" class MalformedConfigError(ArchiveBotSiteConfigError): """There is an error in the configuration template.""" class MissingConfigError(ArchiveBotSiteConfigError): """ The config is missing in the header. It's in one of the threads or transcluded from another page. """ class AlgorithmError(MalformedConfigError): """Invalid specification of archiving algorithm.""" class ArchiveSecurityError(ArchiveBotSiteConfigError): """ Page title is not a valid archive of page being archived. The page title is neither a subpage of the page being archived, nor does it match the key specified in the archive configuration template. """ def str2localized_duration(site, string: str) -> str: """ Localise a shorthand duration. Translates a duration written in the shorthand notation (ex. "24h", "7d") into an expression in the local wiki language ("24 hours", "7 days"). """ key, duration = checkstr(string) template = site.mediawiki_message(MW_KEYS[key]) if template: # replace plural variants exp = i18n.translate(site.code, template, {'$1': int(duration)}) return exp.replace('$1', to_local_digits(duration, site.code)) else: return to_local_digits(string, site.code) def str2time(string: str, timestamp=None) -> datetime.timedelta: """ Return a timedelta for a shorthand duration. @param string: a string defining a time period: 300s - 300 seconds 36h - 36 hours 7d - 7 days 2w - 2 weeks (14 days) 1y - 1 year @param timestamp: a timestamp to calculate a more accurate duration offset used by years @type timestamp: datetime.datetime @return: the corresponding timedelta object """ key, duration = checkstr(string) if duration.isdigit(): duration = int(duration) else: key = '' if key in ['d', 's', 'h', 'w']: # days, seconds, hours, weeks return datetime.timedelta(**{MW_KEYS[key]: duration}) if key == 'y': # years days = math.ceil(duration * 365.25) duration *= 12 else: raise MalformedConfigError( 'Unrecognized parameter in template: {0}'.format(string)) if timestamp: return apply_month_delta( timestamp.date(), month_delta=duration) - timestamp.date() else: return datetime.timedelta(days=days) def checkstr(string: str) -> Tuple[str, str]: """ Return the key and duration extracted from the string. @param string: a string defining a time period: 300s - 300 seconds 36h - 36 hours 7d - 7 days 2w - 2 weeks (14 days) 1y - 1 year @return: key and duration extracted form the string """ if string.isdigit(): key = 's' duration = string issue_deprecation_warning('Time period without qualifier', string + key, 1, UserWarning, since='20161009') else: key = string[-1] duration = string[:-1] return key, duration def str2size(string: str) -> Size: """ Return a size for a shorthand size. Accepts a string defining a size: 1337 - 1337 bytes 150K - 150 kilobytes 2M - 2 megabytes Returns a tuple (size,unit), where size is an integer and unit is 'B' (bytes) or 'T' (threads). """ match = re.fullmatch(r'(\d{1,3}(?: \d{3})+|\d+) *([BkKMT]?)', string) if not match: raise MalformedConfigError("Couldn't parse size: {}".format(string)) val, unit = (int(match.group(1).replace(' ', '')), match.group(2)) if unit == 'M': val *= 1024 unit = 'K' if unit in ('K', 'k'): val *= 1024 if unit != 'T': unit = 'B' return val, unit def template_title_regex(tpl_page: pywikibot.Page) -> Pattern: """ Return a regex that matches to variations of the template title. It supports the transcluding variant as well as localized namespaces and case-insensitivity depending on the namespace. @param tpl_page: The template page @type tpl_page: pywikibot.page.Page """ ns = tpl_page.site.namespaces[tpl_page.namespace()] marker = '?' if ns.id == 10 else '' title = tpl_page.title(with_ns=False) if ns.case != 'case-sensitive': title = '[{}{}]{}'.format(re.escape(title[0].upper()), re.escape(title[0].lower()), re.escape(title[1:])) else: title = re.escape(title) return re.compile(r'(?:(?:%s):)%s%s' % ('|'.join(ns), marker, title)) def calc_md5_hexdigest(txt, salt) -> str: """Return md5 hexdigest computed from text and salt.""" s = md5() s.update(salt.encode('utf-8')) s.update(b'\n') s.update(txt.encode('utf8')) s.update(b'\n') return s.hexdigest() class TZoneUTC(datetime.tzinfo): """Class building a UTC tzinfo object.""" def utcoffset(self, dt) -> datetime.timedelta: """Subclass implementation, return timedelta(0).""" return ZERO def tzname(self, dt) -> str: """Subclass implementation.""" return 'UTC' def dst(self, dt) -> datetime.timedelta: """Subclass implementation, return timedelta(0).""" return ZERO def __repr__(self) -> str: """Return a string representation.""" return '{}()'.format(self.__class__.__name__) class DiscussionThread: """ An object representing a discussion thread on a page. It represents something that is of the form: == Title of thread == Thread content here. ~~~~ :Reply, etc. ~~~~ """ def __init__(self, title: str, _now=None, timestripper=None) -> None: """Initializer.""" if _now is not None: issue_deprecation_warning( 'Argument "now" in DiscussionThread.__init__()', warning_class=FutureWarning, since='20200727') assert timestripper is not None self.title = title self.ts = timestripper self.code = self.ts.site.code self.content = '' self.timestamp = None def __repr__(self) -> str: """Return a string representation.""" return '{}("{}",{} bytes)'.format(self.__class__.__name__, self.title, len(self.content.encode('utf-8'))) def feed_line(self, line: str) -> None: """Add a line to the content and find the newest timestamp.""" if not self.content and not line: return self.content += line + '\n' timestamp = self.ts.timestripper(line) if not self.timestamp: # first time self.timestamp = timestamp if timestamp: self.timestamp = max(self.timestamp, timestamp) def size(self) -> int: """ Return size of discussion thread. Note that the result is NOT equal to that of len(self.to_text()). This method counts bytes, rather than codepoints (characters). This corresponds to MediaWiki's definition of page size. """ return len(self.title.encode('utf-8')) + len( self.content.encode('utf-8')) + 12 def to_text(self) -> str: """Return wikitext discussion thread.""" return '== {} ==\n\n{}'.format(self.title, self.content) @deprecated('PageArchiver.should_archive_thread(thread)', since='20200727', future_warning=True) def should_be_archived(self, archiver) -> Optional[ShouldArchive]: """Check whether thread has to be archived.""" return archiver.should_archive_thread(self) class DiscussionPage(pywikibot.Page): """ A class that represents a single page of discussion threads. Feed threads to it and run an update() afterwards. """ def __init__(self, source, archiver, params=None) -> None: """Initializer.""" super().__init__(source) self.threads = [] self.full = False self.archiver = archiver # for testing purposes we allow archiver to be None and we are able # to create the a DiscussionPage in this way: # >>> import pywikibot as py # >>> from scripts.archivebot import DiscussionPage # >>> d = DiscussionPage(py.Page(py.Site(), <talk page name>), None) if archiver is None: self.timestripper = TimeStripper(self.site) else: self.timestripper = self.archiver.timestripper self.params = params try: self.load_page() except pywikibot.NoPage: self.header = archiver.get_attr('archiveheader', i18n.twtranslate( self.site.code, 'archivebot-archiveheader')) if self.params: self.header = self.header % self.params def load_page(self) -> None: """Load the page to be archived and break it up into threads.""" self.header = '' self.threads = [] self.archives = {} self.archived_threads = 0 # Exclude unsupported headings (h1, h3, etc): # adding the marker will make them ignored by extract_sections() text = self.get() marker = findmarker(text) text = re.sub(r'^((=|={3,})[^=])', marker + r'\1', text, flags=re.M) # Find threads, avoid archiving categories or interwiki header, threads, footer = extract_sections(text, self.site) header = header.replace(marker, '') if header and footer: self.header = '\n\n'.join((header.rstrip(), footer, '')) else: self.header = header + footer for thread_heading, thread_content in threads: cur_thread = DiscussionThread( thread_heading.strip('= '), timestripper=self.timestripper) # remove heading line _, *lines = thread_content.replace(marker, '').splitlines() for line in lines: cur_thread.feed_line(line) self.threads.append(cur_thread) # This extra info is not desirable when run under the unittest # framework, which may be run either directly or via setup.py if pywikibot.calledModuleName() not in ['archivebot_tests', 'setup']: pywikibot.output('{} thread(s) found on {}' .format(len(self.threads), self)) def is_full(self, max_archive_size=(250 * 1024, 'B')) -> bool: """Check whether archive size exceeded.""" if max_archive_size[1] == 'B': if self.size() >= max_archive_size[0]: self.full = True # xxx: this is one-way flag elif max_archive_size[1] == 'T': if len(self.threads) >= max_archive_size[0]: self.full = True return self.full def feed_thread(self, thread: DiscussionThread, max_archive_size=(250 * 1024, 'B')) -> bool: """Append a new thread to the archive.""" self.threads.append(thread) self.archived_threads += 1 return self.is_full(max_archive_size) def size(self) -> int: """ Return size of talk page threads. Note that this method counts bytes, rather than codepoints (characters). This corresponds to MediaWiki's definition of page size. """ return len(self.header.encode('utf-8')) + sum(t.size() for t in self.threads) def update(self, summary, sort_threads=False) -> None: """Recombine threads and save page.""" if sort_threads: pywikibot.output('Sorting threads...') self.threads.sort(key=lambda t: t.timestamp) newtext = re.sub('\n*$', '\n\n', self.header) # Fix trailing newlines for t in self.threads: newtext += t.to_text() if self.full: summary += ' ' + i18n.twtranslate(self.site.code, 'archivebot-archive-full') self.text = newtext self.save(summary) class PageArchiver: """A class that encapsulates all archiving methods.""" algo = 'none' def __init__(self, page, template, salt, force=False) -> None: """Initializer. param page: a page object to be archived type page: pywikibot.Page param template: a template with configuration settings type template: pywikibot.Page param salt: salt value type salt: str param force: override security value type force: bool """ self.attributes = OrderedDict([ ('archive', ['', False]), ('algo', ['old(24h)', False]), ('counter', ['1', False]), ('maxarchivesize', ['200K', False]), ]) self.salt = salt self.force = force self.site = page.site self.tpl = template self.timestripper = TimeStripper(site=self.site) self.page = DiscussionPage(page, self) self.load_config() self.comment_params = { 'from': self.page.title(), } self.now = datetime.datetime.utcnow().replace(tzinfo=TZoneUTC()) self.archives = {} self.archived_threads = 0 self.month_num2orig_names = {} for n, (long, short) in enumerate(self.site.months_names, start=1): self.month_num2orig_names[n] = {'long': long, 'short': short} def get_attr(self, attr, default='') -> Any: """Get an archiver attribute.""" return self.attributes.get(attr, [default])[0] def set_attr(self, attr, value, out=True) -> None: """Set an archiver attribute.""" if attr == 'archive': value = value.replace('_', ' ') self.attributes[attr] = [value, out] def saveables(self) -> List[str]: """Return a list of saveable attributes.""" return [a for a in self.attributes if self.attributes[a][1] and a != 'maxage'] def attr2text(self) -> str: """Return a template with archiver saveable attributes.""" return '{{%s\n%s\n}}' \ % (self.tpl.title(with_ns=(self.tpl.namespace() != 10)), '\n'.join('|{} = {}'.format(a, self.get_attr(a)) for a in self.saveables())) def key_ok(self) -> bool: """Return whether key is valid.""" hexdigest = calc_md5_hexdigest(self.page.title(), self.salt) return self.get_attr('key') == hexdigest def load_config(self) -> None: """Load and validate archiver template.""" pywikibot.output('Looking for: {{%s}} in %s' % (self.tpl.title(), self.page)) for tpl, params in self.page.raw_extracted_templates: try: # Check tpl name before comparing; it might be invalid. tpl_page = pywikibot.Page(self.site, tpl, ns=10) tpl_page.title() except pywikibot.Error: continue if tpl_page == self.tpl: for item, value in params.items(): self.set_attr(item.strip(), value.strip()) break else: raise MissingConfigError('Missing or malformed template') if not self.get_attr('algo', ''): raise MissingConfigError('Missing argument "algo" in template') if not self.get_attr('archive', ''): raise MissingConfigError('Missing argument "archive" in template') def should_archive_thread(self, thread: DiscussionThread ) -> Optional[ShouldArchive]: """ Check whether a thread has to be archived. @return: the archivation reason as a tuple of localization args """ # Archived by timestamp algo = self.get_attr('algo') re_t = re.fullmatch(r'old\((.*)\)', algo) if re_t: if not thread.timestamp: return None # TODO: handle unsigned maxage = str2time(re_t.group(1), thread.timestamp) if self.now - thread.timestamp > maxage: duration = str2localized_duration(self.site, re_t.group(1)) return ('duration', duration) # TODO: handle marked with template return None def get_archive_page(self, title: str, params=None) -> DiscussionPage: """ Return the page for archiving. If it doesn't exist yet, create and cache it. Also check for security violations. """ page_title = self.page.title() archive = pywikibot.Page(self.site, title) if not (self.force or title.startswith(page_title + '/') or self.key_ok()): raise ArchiveSecurityError( 'Archive page {} does not start with page title ({})!' .format(archive, page_title)) if title not in self.archives: self.archives[title] = DiscussionPage(archive, self, params) return self.archives[title] @deprecated(since='20200727', future_warning=True) def feed_archive(self, archive: pywikibot.Page, thread: DiscussionThread, max_archive_size: Size, params=None) -> bool: """ Feed the thread to one of the archives. Also check for security violations. @return: whether the archive is full """ archive_page = self.get_archive_page( archive.title(with_ns=True), params) return archive_page.feed_thread(thread, max_archive_size) def get_params(self, timestamp, counter: int) -> dict: """Make params for archiving template.""" lang = self.site.lang return { 'counter': to_local_digits(counter, lang), 'year': to_local_digits(timestamp.year, lang), 'isoyear': to_local_digits(timestamp.isocalendar()[0], lang), 'isoweek': to_local_digits(timestamp.isocalendar()[1], lang), 'semester': to_local_digits(int(ceil(timestamp.month / 6)), lang), 'quarter': to_local_digits(int(ceil(timestamp.month / 3)), lang), 'month': to_local_digits(timestamp.month, lang), 'monthname': self.month_num2orig_names[timestamp.month]['long'], 'monthnameshort': self.month_num2orig_names[ timestamp.month]['short'], 'week': to_local_digits( int(time.strftime('%W', timestamp.timetuple())), lang), } def analyze_page(self) -> Set[ShouldArchive]: """Analyze DiscussionPage.""" max_arch_size = str2size(self.get_attr('maxarchivesize')) counter = int(self.get_attr('counter', '1')) pattern = self.get_attr('archive') keep_threads = [] threads_per_archive = defaultdict(list) whys = set() pywikibot.output('Processing {} threads' .format(len(self.page.threads))) for i, thread in enumerate(self.page.threads): # TODO: Make an option so that unstamped (unsigned) posts get # archived. why = self.should_archive_thread(thread) if not why or why[0] != 'duration': keep_threads.append(i) continue params = self.get_params(thread.timestamp, counter) # this is actually just a dummy key to group the threads by # "era" regardless of the counter and deal with it later key = pattern % params threads_per_archive[key].append((i, thread)) whys.add(why) # xxx: we don't now if we ever archive anything params = self.get_params(self.now, counter) aux_params = self.get_params(self.now, counter + 1) counter_matters = (pattern % params) != (pattern % aux_params) del params, aux_params # we need to start with the oldest archive since that is # the one the saved counter applies to, so sort the groups # by the oldest timestamp groups = sorted(threads_per_archive.values(), key=lambda group: min(t.timestamp for _, t in group)) era_change = False for group in groups: # We will reset counter IFF: # 1. it matters (AND) # 2. "era" (year, month, etc.) changes (AND) # 3. there is something to put to the new archive. for i, thread in group: threads_left = len(self.page.threads) - self.archived_threads if threads_left <= int(self.get_attr('minthreadsleft', 5)): keep_threads.append(i) continue # Because there's too little threads left. if era_change: era_change = False counter = 1 params = self.get_params(thread.timestamp, counter) archive = self.get_archive_page(pattern % params, params) if counter_matters: while counter > 1 and not archive.exists(): # This may happen when either: # 1. a previous version of the bot run and reset # the counter without archiving anything # (number #3 above) # 2. era changed between runs. # Decrease the counter. # TODO: This can be VERY slow, use preloading # or binary search. counter -= 1 params = self.get_params(thread.timestamp, counter) archive = self.get_archive_page( pattern % params, params) while archive.is_full(max_arch_size): counter += 1 params = self.get_params(thread.timestamp, counter) archive = self.get_archive_page( pattern % params, params) archive.feed_thread(thread, max_arch_size) self.archived_threads += 1 if counter_matters: era_change = True if self.archived_threads: self.page.threads = [self.page.threads[i] for i in sorted(keep_threads)] self.set_attr('counter', str(counter)) return whys else: return set() def run(self) -> None: """Process a single DiscussionPage object.""" if not self.page.botMayEdit(): return whys = self.analyze_page() mintoarchive = int(self.get_attr('minthreadstoarchive', 2)) if self.archived_threads < mintoarchive: # We might not want to archive a measly few threads # (lowers edit frequency) pywikibot.output('Only {} (< {}) threads are old enough. Skipping' .format(self.archived_threads, mintoarchive)) return if whys: # Search for the marker template rx = re.compile(r'\{\{%s\s*?\n.*?\n\}\}' % (template_title_regex(self.tpl).pattern), re.DOTALL) if not rx.search(self.page.header): raise MalformedConfigError( "Couldn't find the template in the header" ) pywikibot.output('Archiving {0} thread(s).' .format(self.archived_threads)) # Save the archives first (so that bugs don't cause a loss of data) for title, archive in sorted(self.archives.items()): count = archive.archived_threads if count == 0: continue self.comment_params['count'] = count comment = i18n.twtranslate(self.site.code, 'archivebot-archive-summary', self.comment_params) archive.update(comment) # Save the page itself self.page.header = rx.sub(self.attr2text(), self.page.header) self.comment_params['count'] = self.archived_threads comma = self.site.mediawiki_message('comma-separator') self.comment_params['archives'] = comma.join( a.title(as_link=True) for a in self.archives.values() if a.archived_threads > 0 ) # Find out the reasons and return them localized translated_whys = set() for why, arg in whys: # Archived by timestamp if why == 'duration': translated_whys.add( i18n.twtranslate(self.site.code, 'archivebot-older-than', {'duration': arg, 'count': self.archived_threads})) # TODO: handle unsigned or archived by template self.comment_params['why'] = comma.join(translated_whys) comment = i18n.twtranslate(self.site.code, 'archivebot-page-summary', self.comment_params) self.page.update(comment) def main(*args) -> None: """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: str """ filename = None pagename = None namespace = None salt = '' force = False calc = None templates = [] local_args = pywikibot.handle_args(args) for arg in local_args: option, _, value = arg.partition(':') if not option.startswith('-'): templates.append(arg) continue option = option[1:] if option in ('file', 'filename'): filename = value elif option == 'locale': # Required for english month names locale.setlocale(locale.LC_TIME, value.encode('utf8')) elif option == 'timezone': os.environ['TZ'] = value.timezone # Or use the preset value if hasattr(time, 'tzset'): time.tzset() elif option == 'calc': calc = value elif option == 'salt': salt = value elif option == 'force': force = True elif option == 'page': pagename = value elif option == 'namespace': namespace = value site = pywikibot.Site() if calc: if not salt: pywikibot.bot.suggest_help(missing_parameters=['-salt']) return page = pywikibot.Page(site, calc) if page.exists(): calc = page.title() else: pywikibot.output( 'NOTE: the specified page "{0}" does not (yet) exist.' .format(calc)) pywikibot.output('key = {}'.format(calc_md5_hexdigest(calc, salt))) return if not templates: pywikibot.bot.suggest_help( additional_text='No template was specified.') return for template_name in templates: pagelist = [] tmpl = pywikibot.Page(site, template_name, ns=10) if not filename and not pagename: if namespace is not None: ns = [str(namespace)] else: ns = [] pywikibot.output('Fetching template transclusions...') pagelist.extend(tmpl.getReferences(only_template_inclusion=True, follow_redirects=False, namespaces=ns)) if filename: for pg in open(filename, 'r').readlines(): pagelist.append(pywikibot.Page(site, pg, ns=10)) if pagename: pagelist.append(pywikibot.Page(site, pagename, ns=3)) pagelist.sort() for pg in pagelist: pywikibot.output('Processing {}'.format(pg)) # Catching exceptions, so that errors in one page do not bail out # the entire process try: archiver = PageArchiver(pg, tmpl, salt, force) archiver.run() except ArchiveBotSiteConfigError as e: # no stack trace for errors originated by pages on-site pywikibot.error('Missing or malformed template in page {}: {}' .format(pg, e)) except Exception: pywikibot.error('Error occurred while processing page {}' .format(pg)) pywikibot.exception(tb=True) if __name__ == '__main__': main()
the-stack_106_19472
#FLM: Typerig Panel # ---------------------------------------- # (C) Vassil Kateliev, 2018 (http://www.kateliev.com) # (C) Karandash Type Foundry (http://www.karandash.eu) #----------------------------------------- # www.typerig.com # No warranties. By using this you agree # that you use it at your own risk! # - Dependencies ----------------- #import fontlab as fl6 #import fontgate as fgt from PythonQt import QtCore from typerig import QtGui # -- Internals - Load toolpanels import Panel # - Init -------------------------- app_version = '0.46' app_name = 'TypeRig Panel' ignorePanel = '__' # - Style ------------------------- ss_Toolbox_none = """/* EMPTY STYLESHEET */ """ # - Interface ----------------------------- # -- Main Widget -------------------------- class typerig_Panel(QtGui.QDialog): def __init__(self): super(typerig_Panel, self).__init__() #self.setStyleSheet(ss_Toolbox_none) # - Layers -------------------------- self.chk_ActiveLayer = QtGui.QCheckBox('Active') self.chk_Masters = QtGui.QCheckBox('Masters') self.chk_Masks = QtGui.QCheckBox('Masks') self.chk_Service = QtGui.QCheckBox('Services') self.chk_ActiveLayer.setCheckState(QtCore.Qt.Checked) #self.chk_ActiveLayer.setStyleSheet('QCheckBox::indicator:checked {background-color: limegreen; border: 1px Solid limegreen;}') self.chk_ActiveLayer.stateChanged.connect(self.refreshLayers) self.chk_Masters.stateChanged.connect(self.refreshLayers) self.chk_Masks.stateChanged.connect(self.refreshLayers) self.chk_Service.stateChanged.connect(self.refreshLayers) self.refreshLayers() # - Glyphs -------------------------- self.rad_glyph = QtGui.QRadioButton('Glyph') self.rad_window = QtGui.QRadioButton('Window') self.rad_selection = QtGui.QRadioButton('Selection') self.rad_font = QtGui.QRadioButton('Font') self.rad_glyph.toggled.connect(self.refreshMode) self.rad_window.toggled.connect(self.refreshMode) self.rad_selection.toggled.connect(self.refreshMode) self.rad_font.toggled.connect(self.refreshMode) self.rad_glyph.setChecked(True) self.rad_glyph.setEnabled(True) self.rad_window.setEnabled(True) self.rad_selection.setEnabled(True) self.rad_font.setEnabled(False) self.rad_glyph.setToolTip('Affect current glyph') self.rad_window.setToolTip('Affect glyphs in active window') self.rad_selection.setToolTip('Affect selected glyphs') self.rad_font.setToolTip('Affect the entire font') # - Fold Button --------------------- self.btn_fold = QtGui.QPushButton('^') self.btn_unfold = QtGui.QPushButton('Restore Panel') self.btn_fold.setFixedHeight(self.chk_ActiveLayer.sizeHint.height()*2.5) self.btn_fold.setFixedWidth(self.chk_ActiveLayer.sizeHint.height()) self.btn_unfold.setFixedHeight(self.chk_ActiveLayer.sizeHint.height() + 5) self.btn_fold.setToolTip('Fold Panel') self.btn_unfold.setToolTip('Unfold Panel') self.btn_fold.clicked.connect(self.fold) self.btn_unfold.clicked.connect(self.fold) self.flag_fold = False # - Tabs -------------------------- # -- Dynamically load all tabs self.tabs = QtGui.QTabWidget() self.tabs.setTabPosition(QtGui.QTabWidget.East) # --- Load all tabs from this directory as modules. Check __init__.py # --- <dirName>.modules tabs/modules manifest in list format for toolName in Panel.modules: if ignorePanel not in toolName: self.tabs.addTab(eval('Panel.%s.tool_tab()' %toolName), toolName) # - Layouts ------------------------------- layoutV = QtGui.QVBoxLayout() layoutV.setContentsMargins(0,0,0,0) self.lay_controller = QtGui.QGridLayout() self.fr_controller = QtGui.QFrame() self.lay_controller.setContentsMargins(15,5,5,3) self.lay_controller.setSpacing(5) # -- Build layouts ------------------------------- self.lay_controller.addWidget(self.chk_ActiveLayer, 0, 0, 1, 1) self.lay_controller.addWidget(self.chk_Masters, 0, 1, 1, 1) self.lay_controller.addWidget(self.chk_Masks, 0, 2, 1, 1) self.lay_controller.addWidget(self.chk_Service, 0, 3, 1, 1) self.lay_controller.addWidget(self.btn_fold, 0, 4, 2, 1) self.lay_controller.addWidget(self.rad_glyph, 1, 0, 1, 1) self.lay_controller.addWidget(self.rad_window, 1, 1, 1, 1) self.lay_controller.addWidget(self.rad_selection, 1, 2, 1, 1) self.lay_controller.addWidget(self.rad_font, 1, 3, 1, 1) layoutV.addWidget(self.btn_unfold) self.fr_controller.setLayout(self.lay_controller) layoutV.addWidget(self.fr_controller) layoutV.addWidget(self.tabs) self.btn_unfold.hide() # - Set Widget ------------------------------- self.setLayout(layoutV) self.setWindowTitle('%s %s' %(app_name, app_version)) self.setGeometry(300, 300, 240, 440) self.setWindowFlags(QtCore.Qt.WindowStaysOnTopHint) # Always on top!! #self.setMinimumWidth(300) self.show() def refreshMode(self): global pMode pMode = 0 if self.rad_glyph.isChecked(): pMode = 0 if self.rad_window.isChecked(): pMode = 1 if self.rad_selection.isChecked(): pMode = 2 if self.rad_font.isChecked(): pMode = 3 for toolName in Panel.modules: exec('Panel.%s.pMode = %s' %(toolName, pMode)) def refreshLayers(self): global pLayers pLayers = (self.chk_ActiveLayer.isChecked(), self.chk_Masters.isChecked(), self.chk_Masks.isChecked(), self.chk_Service.isChecked()) for toolName in Panel.modules: exec('Panel.%s.pLayers = %s' %(toolName, pLayers)) def fold(self): # - Init width_all = self.chk_ActiveLayer.sizeHint.width() height_folded = self.btn_unfold.sizeHint.height() height_expanded = self.tabs.sizeHint.height() + 40 #Fix this! + 40 Added because Nodes tab breaks #self.resize(QtCore,Qsize(width_all, height_folded)) # - Do if not self.flag_fold: self.tabs.hide() self.fr_controller.hide() self.btn_unfold.show() self.repaint() self.setFixedHeight(height_folded) self.flag_fold = True else: self.setFixedHeight(height_expanded) self.tabs.show() self.fr_controller.show() self.btn_unfold.hide() self.repaint() self.flag_fold = False # - STYLE OVERRIDE ------------------- # -- Following (uncommented) will override the default OS styling for Qt Widgets on Mac OS. from platform import system if system() == 'Darwin': QtGui.QApplication.setStyle(QtGui.QStyleFactory.create('macintosh')) # Options: Windows, WindowsXP, WindowsVista, Fusion # - RUN ------------------------------ dialog = typerig_Panel()
the-stack_106_19475
import os import shutil from openpype.hosts import tvpaint from openpype.lib import ( PreLaunchHook, get_pype_execute_args ) import avalon class TvpaintPrelaunchHook(PreLaunchHook): """Launch arguments preparation. Hook add python executable and script path to tvpaint implementation before tvpaint executable and add last workfile path to launch arguments. Existence of last workfile is checked. If workfile does not exists tries to copy templated workfile from predefined path. """ app_groups = ["tvpaint"] def execute(self): # Pop tvpaint executable executable_path = self.launch_context.launch_args.pop(0) # Pop rest of launch arguments - There should not be other arguments! remainders = [] while self.launch_context.launch_args: remainders.append(self.launch_context.launch_args.pop(0)) new_launch_args = get_pype_execute_args( "run", self.launch_script_path(), executable_path ) # Add workfile to launch arguments workfile_path = self.workfile_path() if workfile_path: new_launch_args.append(workfile_path) # How to create new command line # if platform.system().lower() == "windows": # new_launch_args = [ # "cmd.exe", # "/c", # "Call cmd.exe /k", # *new_launch_args # ] # Append as whole list as these areguments should not be separated self.launch_context.launch_args.append(new_launch_args) if remainders: self.log.warning(( "There are unexpected launch arguments in TVPaint launch. {}" ).format(str(remainders))) self.launch_context.launch_args.extend(remainders) def launch_script_path(self): avalon_dir = os.path.dirname(os.path.abspath(avalon.__file__)) script_path = os.path.join( avalon_dir, "tvpaint", "launch_script.py" ) return script_path def workfile_path(self): workfile_path = self.data["last_workfile_path"] # copy workfile from template if doesnt exist any on path if not os.path.exists(workfile_path): # TODO add ability to set different template workfile path via # settings pype_dir = os.path.dirname(os.path.abspath(tvpaint.__file__)) template_path = os.path.join( pype_dir, "resources", "template.tvpp" ) if not os.path.exists(template_path): self.log.warning( "Couldn't find workfile template file in {}".format( template_path ) ) return self.log.info( f"Creating workfile from template: \"{template_path}\"" ) # Copy template workfile to new destinantion shutil.copy2( os.path.normpath(template_path), os.path.normpath(workfile_path) ) self.log.info(f"Workfile to open: \"{workfile_path}\"") return workfile_path
the-stack_106_19477
#!/usr/bin/env python import os import sys import vtk from vtk.util.misc import vtkGetDataRoot, vtkGetTempDir gotWarning = False gotError = False def WarningCallback(obj, evt): global gotWarning gotWarning = True VTK_DATA_ROOT = vtkGetDataRoot() VTK_TEMP_DIR = vtkGetTempDir() # Image pipeline image1 = vtk.vtkTIFFReader() image1.SetFileName(VTK_DATA_ROOT + "/Data/beach.tif") # "beach.tif" image contains ORIENTATION tag which is # ORIENTATION_TOPLEFT (row 0 top, col 0 lhs) type. The TIFF # reader parses this tag and sets the internal TIFF image # orientation accordingly. To overwrite this orientation with a vtk # convention of ORIENTATION_BOTLEFT (row 0 bottom, col 0 lhs ), invoke # SetOrientationType method with parameter value of 4. image1.SetOrientationType(4) image1.Update() filename = VTK_TEMP_DIR + "/" + "pngw1.png" testKey = "test key" testValue = "test value" longKey = "0123456789012345678901234567890123456789"\ "0123456789012345678901234567890123456789" longKeyValue = "this also prints a warning" try: # Can we write to the directory? channel = open(filename, "wb") channel.close() writer = vtk.vtkPNGWriter() writer.SetInputConnection(image1.GetOutputPort()) writer.SetFileName(filename) writer.AddText(testKey, testValue); # this is fine writer.AddText(testKey, testValue); observerId = writer.AddObserver(vtk.vtkCommand.WarningEvent, WarningCallback) # this prints a warning and does not add the text chunk writer.AddText("", "this prints a warning") if (not gotWarning): print("Error: expect warning when adding a text chunk with empty key") gotError = True gotWarning = False # this prints a warning and add a text chunk with a truncated key writer.AddText(longKey, longKeyValue) if (not gotWarning): print("Error: expect warning when adding a text chunk "\ "with key length bigger than 79 characters") gotError = True writer.RemoveObserver(observerId) writer.Write() reader = vtk.vtkPNGReader() reader.SetFileName(filename); reader.Update(); if (reader.GetNumberOfTextChunks() != 3): print("Error: Expecting three text chunks in the PNG file but got",\ reader.GetNumberOfTextChunks()) gotError = True beginEnd = [0, 0] reader.GetTextChunks(testKey,beginEnd) # the key starting with 0 comes in first. if (beginEnd[0] != 1 and beginEnd[1] != 3): print("Error: expect \"%s\" at index 1 and 2 but got "\ "them at positions %d and %d" % (testKey, beginEnd[0], beginEnd[1])) gotError = True if (reader.GetTextKey(1) != testKey or reader.GetTextKey(2) != testKey): print("Error: expecting key \"%s\" at index 1 and 2 but got \"%s\"" % \ (testKey, reader.GetTextKey(1))) gotError = True if (reader.GetTextValue(1) != testValue or reader.GetTextValue(2) != testValue): print("Error: expecting value \"%s\" at index 1 and 2 but got \"%s\"" % \ (testValue, reader.GetTextValue(1))) gotError = True if (reader.GetTextKey(0) != longKey[:-1]): print("Error: expecting value \"%s\" at index but got \"%s\"" % \ (longKey[:-1], reader.GetTextKey(0))) gotError = True if (gotError): sys.exit(1) else: sys.exit(0) except IOError: print("Error: Unable to test PNG write/read of text chunks.") sys.exit(1)
the-stack_106_19479
from asyncio import get_running_loop from tesoro import REVEALER from sys import exc_info import logging logger = logging.getLogger(__name__) def kapicorp_labels(req_uid, req_obj): "returns kapicorp labels dict for req_obj" labels = {} try: for label_key, label_value in req_obj["metadata"]["labels"].items(): if label_key.startswith("tesoro.kapicorp.com"): labels[label_key] = label_value except KeyError: logger.error("request_id=%s Tesoro label not found", req_uid) return labels return labels async def run_blocking(func): "run blocking funcion in async executor" loop = get_running_loop() return await loop.run_in_executor(None, func) def kapitan_reveal_json(req_uid, json_doc, retries=3): "return revealed object, total revealed tags (TODO)" for retry in range(retries): try: return REVEALER.reveal_obj(json_doc) except Exception as e: exc_type, exc_value, _ = exc_info() if retry + 1 <= retries: logger.error("message=\"Kapitan reveal failed, retrying\", request_uid=%s, " "retry=\"%d of %d\", exception_type=%s, error=\"%s\"", req_uid, retry + 1, retries, exc_type, exc_value) continue raise def setup_logging(level=logging.INFO, kapitan_debug=False): "setup logging, set kapitan_debug to True for kapitan debug logging (dangerous)" for name, logger in logging.root.manager.loggerDict.items(): if name.startswith("kapitan."): logger.disabled = not kapitan_debug logging.basicConfig( format="%(asctime)s %(levelname)-8s %(message)s", level=level, datefmt="%Y-%m-%d %H:%M:%S" ) logging.getLogger("tesoro").setLevel(level) class KapitanRevealFail(Exception): pass
the-stack_106_19481
"""Notification Model""" from datetime import datetime from enum import Enum import requests from flask import current_app from pushover_complete import PushoverAPI from .. import db class Service(Enum): Pushover = "Pushover" LineNotify = "Line Notify" VALID_ARGS = { Service.Pushover: [ "device", "title", "url", "url_title", "image_url", "priority", "retry", "expire", "callback_url", "timestamp", "sound", "html", ], Service.LineNotify: [ "image_url", "stickerPackageId", "stickerId", "notificationDisabled", ], } class Notification(db.Model): """An Object which describe a Notification for a specific user Variables: id {str} -- identifier of this notification initiator {str} -- function or task which fire this notification user_id {str} -- receiver's username user {user.User} -- receiver user object service {str} -- service used to send notification message {str} -- notification body kwargs {dict} -- other miscs of this notification sent_datetime {datetime.datetime} -- datetime when this object is created response {dict} -- server response when notification is sent """ __tablename__ = "notification" id = db.Column(db.Integer, primary_key=True) initiator = db.Column(db.String(16), nullable=False) username = db.Column(db.String(32), db.ForeignKey("user.username")) service = db.Column(db.Enum(Service)) message = db.Column(db.Text) kwargs = db.Column(db.JSON, nullable=False, default={}) sent_timestamp = db.Column(db.DateTime, index=True) response = db.Column(db.JSON, nullable=False, default={}) user = db.relationship("User", back_populates="notifications") def __init__(self, initiator, user, service, send=True, **kwargs): """An Object which describe a Notification for a specific user Arguments: initiator {str} -- function or task which fire this notification user {user.User} -- receiver user object service {str or notification.Service} -- service used to send notification Keyword Arguments: send {bool} -- Send on initialize (default: {True}) message {str} -- message of Notification image_url {str} -- URL of the image """ self.user = user self.service = Service(service) # This step validate that the user has authorized the service getattr(self.user, self.service.value.lower()) self.initiator = initiator self.message = kwargs.pop("message", None) self.kwargs = kwargs db.session.add(self) db.session.commit() current_app.logger.info(f"Notification <{self.id}>: Create") if send: self.send() def __repr__(self): return f"<Notification <{self.id}>" @staticmethod def _clean_up_kwargs(kwargs, service): invalid_args = { key: val for key, val in kwargs.items() if key not in VALID_ARGS[service] } for key, val in invalid_args.items(): current_app.logger.warning(f"Invalid argument ({key}, {val}) is ommited") kwargs.pop(key) return kwargs def send(self): """Trigger Sending with the service assigned Returns: dict -- Response from service Raises: AttributeError -- Description of why notification is unsentable """ if not self.service: raise AttributeError("Service is not set") if not self.message: raise AttributeError("Message is empty") if self.sent_timestamp: raise AttributeError("This Notification has already sent") if self.service is Service.Pushover: self.response = self._send_with_pushover() if self.service is Service.LineNotify: self.response = self._send_with_line_notify().json() self.sent_timestamp = datetime.utcnow() db.session.commit() current_app.logger.info(f"Notification <{self.id}>: Sent") return self.response def _send_with_pushover(self): """Send Notification with Pushover API Returns: dict -- Response from service """ kwargs = Notification._clean_up_kwargs(self.kwargs.copy(), self.service) image_url = kwargs.pop("image_url", None) if image_url: kwargs["image"] = requests.get(image_url, stream=True).content pusher = PushoverAPI(current_app.config["PUSHOVER_TOKEN"]) return pusher.send_message(self.user.pushover, self.message, **kwargs) def _send_with_line_notify(self): """Send Notification with Line Notify API Returns: dict -- Response from service """ kwargs = Notification._clean_up_kwargs(self.kwargs.copy(), self.service) kwargs["imageFullsize"] = kwargs.pop("image_url", None) return self.user.line_notify.post( "api/notify", data=dict(message=self.message, **kwargs) )
the-stack_106_19482
# encoding: utf-8 # This file contains commonly used parts of external libraries. The idea is # to help in removing helpers from being used as a dependency by many files # but at the same time making it easy to change for example the json lib # used. # # NOTE: This file is specificaly created for # from ckan.common import x, y, z to be allowed from collections import MutableMapping import flask import six from werkzeug.local import Local, LocalProxy from flask_babel import (gettext as flask_ugettext, ngettext as flask_ungettext) import simplejson as json import ckan.lib.maintain as maintain current_app = flask.current_app @maintain.deprecated('All web requests are served by Flask', since="2.10.0") def is_flask_request(): u''' This function is deprecated. All CKAN requests are now served by Flask ''' return True def streaming_response( data, mimetype=u'application/octet-stream', with_context=False): iter_data = iter(data) if is_flask_request(): # Removal of context variables for pylon's app is prevented # inside `pylons_app.py`. It would be better to decide on the fly # whether we need to preserve context, but it won't affect performance # in any visible way and we are going to get rid of pylons anyway. # Flask allows to do this in easy way. if with_context: iter_data = flask.stream_with_context(iter_data) resp = flask.Response(iter_data, mimetype=mimetype) return resp def ugettext(*args, **kwargs): return flask_ugettext(*args, **kwargs) _ = ugettext def ungettext(*args, **kwargs): return flask_ungettext(*args, **kwargs) class CKANConfig(MutableMapping): u'''Main CKAN configuration object This is a dict-like object that also proxies any changes to the Flask and Pylons configuration objects. The actual `config` instance in this module is initialized in the `load_environment` method with the values of the ini file or env vars. ''' def __init__(self, *args, **kwargs): self.store = dict() self.update(dict(*args, **kwargs)) def __getitem__(self, key): return self.store[key] def __iter__(self): return iter(self.store) def __len__(self): return len(self.store) def __repr__(self): return self.store.__repr__() def copy(self): return self.store.copy() def clear(self): self.store.clear() try: flask.current_app.config.clear() except RuntimeError: pass def __setitem__(self, key, value): self.store[key] = value try: flask.current_app.config[key] = value except RuntimeError: pass def __delitem__(self, key): del self.store[key] try: del flask.current_app.config[key] except RuntimeError: pass def _get_request(): return flask.request class CKANRequest(LocalProxy): u'''Common request object This is just a wrapper around LocalProxy so we can handle some special cases for backwards compatibility. LocalProxy will forward to Flask or Pylons own request objects depending on the output of `_get_request` (which essentially calls `is_flask_request`) and at the same time provide all objects methods to be able to interact with them transparently. ''' @property def params(self): u''' Special case as Pylons' request.params is used all over the place. All new code meant to be run just in Flask (eg views) should always use request.args ''' try: return super(CKANRequest, self).params except AttributeError: return self.args def _get_c(): return flask.g def _get_session(): return flask.session local = Local() # This a proxy to the bounded config object local(u'config') # Thread-local safe objects config = local.config = CKANConfig() # Proxies to already thread-local safe objects request = CKANRequest(_get_request) # Provide a `c` alias for `g` for backwards compatibility g = c = LocalProxy(_get_c) session = LocalProxy(_get_session) truthy = frozenset([u'true', u'yes', u'on', u'y', u't', u'1']) falsy = frozenset([u'false', u'no', u'off', u'n', u'f', u'0']) def asbool(obj): if isinstance(obj, str): obj = obj.strip().lower() if obj in truthy: return True elif obj in falsy: return False else: raise ValueError(u"String is not true/false: {}".format(obj)) return bool(obj) def asint(obj): try: return int(obj) except (TypeError, ValueError): raise ValueError(u"Bad integer value: {}".format(obj)) def aslist(obj, sep=None, strip=True): if isinstance(obj, str): lst = obj.split(sep) if strip: lst = [v.strip() for v in lst] return lst elif isinstance(obj, (list, tuple)): return obj elif obj is None: return [] else: return [obj]
the-stack_106_19483
import setuptools import castero install_requires = [ 'requests', 'grequests', 'cjkwrap', 'beautifulsoup4', 'lxml', 'python-vlc', 'python-mpv' ] tests_require = [ 'pytest', 'coverage', 'codacy-coverage' ] extras_require = { 'test': tests_require } def long_description(): with open("README.md") as readme: return readme.read() setuptools.setup( name=castero.__title__, version=castero.__version__, description=castero.__description__, long_description=long_description(), long_description_content_type='text/markdown', keywords=castero.__keywords__, url=castero.__url__, author=castero.__author__, author_email=castero.__author_email__, license=castero.__license__, packages=[ 'castero', 'castero.perspectives', 'castero.players', 'castero.menus' ], package_data={ 'castero': ['templates/*', 'templates/migrations/*'], }, python_requires='>=3', install_requires=install_requires, tests_require=tests_require, extras_require=extras_require, entry_points={'console_scripts': ['castero=castero.__main__:main']}, classifiers=[ 'Intended Audience :: End Users/Desktop', 'Environment :: Console :: Curses', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: MIT License', 'Topic :: Terminals' ], )
the-stack_106_19486
import speech_recognition as sr import re import philips_hue as ph import soundclassify as sc import pyaudio import wave from jesica4 import create_dashboard from jesica4 import command_light from jesica4 import command_SoundSystem from jesica4 import command_Door from jesica4 import command_detectsound command_light(True, '#FFC200', 'Turn on the light Jesica to red') command_SoundSystem('On', 30, 'Can you turn on the speakers to 30%') command_Door('Open', 'Please open the door') command_detectsound('dog_bark') r = sr.Recognizer() m = sr.Microphone() stopCommands = ["stop","stop listening"] callCommand = ["OK Google" , "hey Google" , "hey Alexa" , "Alexa", "hey", "hey Jeffrey","Jeffrey","hey Dennis", 'hey Jessica', 'Jessica'] volume = 50 def Record(): CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 2 RATE = 44100 RECORD_SECONDS = 5 WAVE_OUTPUT_FILENAME = "output.wav" p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) print("* recording") frames = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) print("* done recording") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() return WAVE_OUTPUT_FILENAME def processCommand(speech): for stopCmd in stopCommands: if stopCmd in value: print("stop listening...") exit() for cmd in callCommand: if (cmd in speech): print("call command specified") break else: return lights_on = re.compile(r'^(?=.*turn)((?=.*lights)|(?=.*light))(?=.*on).*$', re.I) lights_off = re.compile(r'^(?=.*turn)((?=.*lights)|(?=.*light))(?=.*off).*$', re.I) decrease_brightness = re.compile(r'^(?=.*decrease)(?=.*brightness).*$', re.I) increase_brightness = re.compile(r'^(?=.*increase)(?=.*brightness).*$', re.I) set_brightness = re.compile(r'^(?=.*set)(?=.*brightness).*$', re.I) rotate_color = re.compile(r'^(?=.*rotate)((?=.*color)|(?=.*colour)).*$', re.I) set_color = re.compile(r'^(?=.*set)((?=.*color)|(?=.*colour)).*$', re.I) play_song = re.compile(r'^(?=.*play)*((?=.*song)|(?=.*something)).*$', re.I) stop_song = re.compile(r'^(?=.*stop)*((?=.*playing)|(?=.*music)).*$', re.I) pause_song = re.compile(r'^(?=.*pause)*((?=.*song)|(?=.*music)).*$', re.I) increase_volume = re.compile(r'^((?=.*increase)(?=.*volume))|((?=.*make)(?=.*louder)).*$', re.I) decrease_volume = re.compile(r'^((?=.*decrease)(?=.*volume))|((?=.*make)(?=.*softer)).*$', re.I) open_door = re.compile(r'^(?=.*open)(?=.*door).*$', re.I) close_door = re.compile(r'^(?=.*close)(?=.*door).*$', re.I) if lights_on.match(speech): ph.turn_on_group('lights') print("turning lights on") return if lights_off.match(speech): ph.turn_off_group('lights') print("turning lights off") return if decrease_brightness.match(speech): ph.decrease_brightness_group('lights') print("decreasing brightness") return if increase_brightness.match(speech): ph.increase_brightness_group('lights') print("increasing brightness") return if set_brightness.match(speech): temp = re.findall(r'\d+', speech) percentage = list(map(int, temp)) if percentage[0] > 100: ph.set_brightness_group('lights', 100) print("setting brightness to 100%") elif percentage[0] < 0: ph.set_brightness_group('lights', 0) print("setting brightness to 0%") else: ph.set_brightness_group('lights', percentage[0]) print("setting brightness to " + str(percentage[0]) + "%") return if set_color.match(speech): temp = speech.split(" ") color = temp[-1] ph.set_color('lights', color) return if rotate_color.match(speech): ph.rotate_color() return if play_song.match(speech): print("playing a song") command_SoundSystem("Playing a song", volume, speech) return if stop_song.match(speech): print("stopping song") command_SoundSystem("Stopping song", volume, speech) return if pause_song.match(speech): print("pausing a song") command_SoundSystem("Pausing song", volume, speech) return if increase_volume.match(speech): print("increasing volume") edit_volume(10) command_SoundSystem("Increasing volume", volume, speech) return if decrease_volume.match(speech): print("decreasing volume") edit_volume(-10) command_SoundSystem("Decreasing volume", volume, speech) return if open_door.match(speech): print("opening door") command_Door('Open', speech) return if close_door.match(speech): print("closing door") command_Door('Closed', speech) return if("identify" in speech): #todo #filtered = output_audio_file(Record()) #print(filtered) result = sc.classify(Record()) command_detectsound(result) return def edit_volume(vol): volume += vol try: print("A moment of silence, please...") with m as source: r.adjust_for_ambient_noise(source) print("Set minimum energy threshold to {}".format(r.energy_threshold)) while True: print("Say something!") try : with m as source: audio = r.listen(source, timeout = 3, phrase_time_limit = 7) except sr.WaitTimeoutError as e: print("Timeout!") print(e) continue except Exception as e: print(e) print("Got it! Now to recognize it...") try: # recognize speech using Google Speech Recognition value = r.recognize_google(audio) # we need some special handling here to correctly print unicode characters to standard output if str is bytes: # this version of Python uses bytes for strings (Python 2) print(u"You said {}".format(value).encode("utf-8")) else: # this version of Python uses unicode for strings (Python 3+) print("You said {}".format(value)) processCommand(value) except sr.UnknownValueError: print("Oops! Didn't catch that") except sr.RequestError as e: print("Uh oh! Couldn't request results from Google Speech Recognition service; {0}".format(e)) except KeyboardInterrupt: pass