filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_106_19489
from PyQt5 import QtCore, QtGui, QtWidgets from morphine.globals import __enviroments__, __intended_audience__, __programming_lang__, __license__, find_packages import os from yapf.yapflib.yapf_api import FormatCode from morphine.template import __minimal_deps__ as template class Ui_minimal_deps(object): def __init__(self, data): self.data = data pass def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(840, 490) MainWindow.setMinimumSize(QtCore.QSize(840, 490)) MainWindow.setMaximumSize(QtCore.QSize(840, 490)) self.obj = MainWindow resolution = QtWidgets.QDesktopWidget().screenGeometry() MainWindow.move( (resolution.width() / 2) - (MainWindow.frameSize().width() / 2), (resolution.height() / 2) - (MainWindow.frameSize().height() / 2), ) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 10, 111, 30)) self.label.setObjectName("label") self.shortDesc = QtWidgets.QLineEdit(self.centralwidget) self.shortDesc.setGeometry(QtCore.QRect(130, 10, 701, 30)) self.shortDesc.setObjectName("shortDesc") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(10, 50, 111, 30)) self.label_2.setObjectName("label_2") self.longDesc = QtWidgets.QLineEdit(self.centralwidget) self.longDesc.setGeometry(QtCore.QRect(130, 50, 661, 30)) self.longDesc.setObjectName("longDesc") self.dependencies = QtWidgets.QLineEdit(self.centralwidget) self.dependencies.setGeometry(QtCore.QRect(130, 90, 301, 30)) self.dependencies.setObjectName("dependencies") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(10, 90, 111, 30)) self.label_3.setObjectName("label_3") self.packages = QtWidgets.QLineEdit(self.centralwidget) self.packages.setGeometry(QtCore.QRect(530, 90, 241, 30)) self.packages.setObjectName("packages") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(450, 90, 71, 30)) self.label_4.setObjectName("label_4") self.keywords = QtWidgets.QLineEdit(self.centralwidget) self.keywords.setGeometry(QtCore.QRect(530, 130, 300, 30)) self.keywords.setObjectName("keywords") self.pyrec = QtWidgets.QLineEdit(self.centralwidget) self.pyrec.setGeometry(QtCore.QRect(130, 130, 301, 30)) self.pyrec.setObjectName("pyrec") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(450, 130, 71, 30)) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(10, 130, 111, 30)) self.label_6.setObjectName("label_6") self.envList = QtWidgets.QComboBox(self.centralwidget) self.envList.setGeometry(QtCore.QRect(130, 170, 220, 30)) self.envList.setObjectName("envList") self.label_7 = QtWidgets.QLabel(self.centralwidget) self.label_7.setGeometry(QtCore.QRect(10, 170, 111, 30)) self.label_7.setObjectName("label_7") self.licList = QtWidgets.QComboBox(self.centralwidget) self.licList.setGeometry(QtCore.QRect(530, 170, 221, 30)) self.licList.setObjectName("licList") self.label_8 = QtWidgets.QLabel(self.centralwidget) self.label_8.setGeometry(QtCore.QRect(450, 170, 71, 30)) self.label_8.setObjectName("label_8") self.audList = QtWidgets.QComboBox(self.centralwidget) self.audList.setGeometry(QtCore.QRect(530, 210, 221, 30)) self.audList.setObjectName("audList") self.label_9 = QtWidgets.QLabel(self.centralwidget) self.label_9.setGeometry(QtCore.QRect(450, 210, 71, 30)) self.label_9.setObjectName("label_9") self.langList = QtWidgets.QComboBox(self.centralwidget) self.langList.setGeometry(QtCore.QRect(130, 210, 221, 30)) self.langList.setObjectName("langList") self.label_10 = QtWidgets.QLabel(self.centralwidget) self.label_10.setGeometry(QtCore.QRect(10, 210, 111, 30)) self.label_10.setObjectName("label_10") self.label_11 = QtWidgets.QLabel(self.centralwidget) self.label_11.setGeometry(QtCore.QRect(10, 260, 81, 30)) self.label_11.setObjectName("label_11") self.classifiers = QtWidgets.QPlainTextEdit(self.centralwidget) self.classifiers.setGeometry(QtCore.QRect(130, 260, 701, 181)) self.classifiers.setReadOnly(True) self.classifiers.setObjectName("classifiers") self.browse_long_desc = QtWidgets.QPushButton(self.centralwidget) self.browse_long_desc.setGeometry(QtCore.QRect(800, 50, 31, 30)) self.browse_long_desc.setObjectName("browse_long_desc") self.find_pack = QtWidgets.QPushButton(self.centralwidget) self.find_pack.setGeometry(QtCore.QRect(780, 90, 51, 30)) self.find_pack.setObjectName("find_pack") self.licAdd = QtWidgets.QPushButton(self.centralwidget) self.licAdd.setGeometry(QtCore.QRect(760, 170, 31, 30)) self.licAdd.setObjectName("licAdd") self.licRem = QtWidgets.QPushButton(self.centralwidget) self.licRem.setGeometry(QtCore.QRect(800, 170, 31, 30)) self.licRem.setObjectName("licRem") self.langRem = QtWidgets.QPushButton(self.centralwidget) self.langRem.setGeometry(QtCore.QRect(400, 210, 31, 30)) self.langRem.setObjectName("langRem") self.langAdd = QtWidgets.QPushButton(self.centralwidget) self.langAdd.setGeometry(QtCore.QRect(360, 210, 31, 30)) self.langAdd.setObjectName("langAdd") self.build = QtWidgets.QPushButton(self.centralwidget) self.build.setGeometry(QtCore.QRect(740, 450, 91, 30)) self.build.setObjectName("build") self.label_12 = QtWidgets.QLabel(self.centralwidget) self.label_12.setGeometry(QtCore.QRect(30, 450, 151, 30)) self.label_12.setStyleSheet("color: rgb(255, 0, 0);\n" "font-style: italic;\n" "text-decoration: underline;\n" "font-size: 13px") self.label_12.setObjectName("label_12") self.audRem = QtWidgets.QPushButton(self.centralwidget) self.audRem.setGeometry(QtCore.QRect(800, 210, 31, 30)) self.audRem.setObjectName("audRem") self.audAdd = QtWidgets.QPushButton(self.centralwidget) self.audAdd.setGeometry(QtCore.QRect(760, 210, 31, 30)) self.audAdd.setObjectName("audAdd") self.envRem = QtWidgets.QPushButton(self.centralwidget) self.envRem.setGeometry(QtCore.QRect(400, 170, 31, 30)) self.envRem.setObjectName("envRem") self.envAdd = QtWidgets.QPushButton(self.centralwidget) self.envAdd.setGeometry(QtCore.QRect(360, 170, 31, 30)) self.envAdd.setObjectName("envAdd") MainWindow.setCentralWidget(self.centralwidget) self.actionsss = QtWidgets.QAction(MainWindow) self.actionsss.setObjectName("actionsss") self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) MainWindow.setTabOrder(self.shortDesc, self.longDesc) MainWindow.setTabOrder(self.longDesc, self.browse_long_desc) MainWindow.setTabOrder(self.browse_long_desc, self.dependencies) MainWindow.setTabOrder(self.dependencies, self.packages) MainWindow.setTabOrder(self.packages, self.find_pack) MainWindow.setTabOrder(self.find_pack, self.pyrec) MainWindow.setTabOrder(self.pyrec, self.keywords) MainWindow.setTabOrder(self.keywords, self.envList) MainWindow.setTabOrder(self.envList, self.envAdd) MainWindow.setTabOrder(self.envAdd, self.envRem) MainWindow.setTabOrder(self.envRem, self.licList) MainWindow.setTabOrder(self.licList, self.licAdd) MainWindow.setTabOrder(self.licAdd, self.licRem) MainWindow.setTabOrder(self.licRem, self.langList) MainWindow.setTabOrder(self.langList, self.langAdd) MainWindow.setTabOrder(self.langAdd, self.langRem) MainWindow.setTabOrder(self.langRem, self.audList) MainWindow.setTabOrder(self.audList, self.audAdd) MainWindow.setTabOrder(self.audAdd, self.audRem) MainWindow.setTabOrder(self.audRem, self.classifiers) MainWindow.setTabOrder(self.classifiers, self.build) # making combo and initial self.envList.addItems(__enviroments__) self.audList.addItems(__intended_audience__) self.licList.addItems(__license__) self.langList.addItems(__programming_lang__) self.classifiers.appendPlainText(self.data.dev_status) # binding buttons self.build.clicked.connect(self.builder) self.find_pack.clicked.connect(self.findall) self.browse_long_desc.clicked.connect(self.browse) self.audAdd.clicked.connect(self.addAud) self.audRem.clicked.connect(self.remAud) self.envAdd.clicked.connect(self.addEnv) self.envRem.clicked.connect(self.remEnv) self.langAdd.clicked.connect(self.addLang) self.langRem.clicked.connect(self.remLang) self.licAdd.clicked.connect(self.addLic) self.licRem.clicked.connect(self.remLic) self.shortDesc.setPlaceholderText("Enter short description") self.longDesc.setPlaceholderText( "Enter long description file path or browse. (Markdown file required)" ) self.keywords.setPlaceholderText("Enter keywords for SEO") self.dependencies.setPlaceholderText( "Enter dependencies (separate by comma)") self.pyrec.setPlaceholderText("Enter python version requirements") self.packages.setPlaceholderText( "Enter python packages to be included or click Find button") pass def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle( _translate("MainWindow", "Morphine :: Minimal + Dependencies :: Maker")) self.label.setText(_translate("MainWindow", "Short Description")) self.label_2.setText(_translate("MainWindow", "Long Description")) self.label_3.setText(_translate("MainWindow", "Dependecies")) self.label_4.setText(_translate("MainWindow", "Packages")) self.label_5.setText(_translate("MainWindow", "Keywords")) self.label_6.setText(_translate("MainWindow", "Python Required")) self.label_7.setText(_translate("MainWindow", "Enviroment")) self.label_8.setText(_translate("MainWindow", "License")) self.label_9.setText(_translate("MainWindow", "Audience")) self.label_10.setText(_translate("MainWindow", "Prog. Language")) self.label_11.setText(_translate("MainWindow", "Classifiers")) self.browse_long_desc.setText(_translate("MainWindow", "...")) self.find_pack.setText(_translate("MainWindow", "Find")) self.licAdd.setText(_translate("MainWindow", "+")) self.licRem.setText(_translate("MainWindow", "-")) self.langRem.setText(_translate("MainWindow", "-")) self.langAdd.setText(_translate("MainWindow", "+")) self.build.setText(_translate("MainWindow", "&Build")) self.label_12.setText( _translate("MainWindow", "All fields are mandatory")) self.audRem.setText(_translate("MainWindow", "-")) self.audAdd.setText(_translate("MainWindow", "+")) self.envRem.setText(_translate("MainWindow", "-")) self.envAdd.setText(_translate("MainWindow", "+")) self.shortDesc.setFocus() pass def browse(self): file = str( QtWidgets.QFileDialog.getOpenFileName( self.obj, "Select Long Description", ".", "Markdown Files (*MD *md)")[0]) self.longDesc.setText(file) pass def findall(self): self.packages.setText(", ".join(find_packages())) def addAud(self): current = "Intended Audience :: " + self.audList.currentText() classifier = self.classifiers.toPlainText().split("\n") if current in classifier: return None classifier.append(current) self.classifiers.setPlainText("\n".join(classifier)) pass def remAud(self): current = "Intended Audience :: " + self.audList.currentText() classifier = self.classifiers.toPlainText().split("\n") try: classifier.remove(current) except ValueError: pass self.classifiers.setPlainText("\n".join(classifier)) pass def addLang(self): current = "Programming Language :: " + self.langList.currentText() classifier = self.classifiers.toPlainText().split("\n") if current in classifier: return None classifier.append(current) self.classifiers.setPlainText("\n".join(classifier)) pass def remLang(self): current = "Programming Language :: " + self.langList.currentText() classifier = self.classifiers.toPlainText().split("\n") try: classifier.remove(current) except ValueError: pass self.classifiers.setPlainText("\n".join(classifier)) pass def addEnv(self): current = "Environment :: " + self.envList.currentText() classifier = self.classifiers.toPlainText().split("\n") if current in classifier: return None classifier.append(current) self.classifiers.setPlainText("\n".join(classifier)) pass def remEnv(self): current = "Environment :: " + self.envList.currentText() classifier = self.classifiers.toPlainText().split("\n") try: classifier.remove(current) except ValueError: pass self.classifiers.setPlainText("\n".join(classifier)) pass def addLic(self): current = "License :: " + self.licList.currentText() classifier = self.classifiers.toPlainText().split("\n") if current in classifier: return None classifier.append(current) self.classifiers.setPlainText("\n".join(classifier)) pass def remLic(self): current = "License :: " + self.licList.currentText() classifier = self.classifiers.toPlainText().split("\n") try: classifier.remove(current) except ValueError: pass self.classifiers.setPlainText("\n".join(classifier)) pass def builder(self): shortDesc = self.shortDesc.text() if shortDesc == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Field", "Short description is empty") self.shortDesc.setFocus() return None longDesc = self.longDesc.text() if longDesc == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Fields", "Long description is empty") self.shortDesc.setFocus() return None elif not os.path.exists(longDesc): QtWidgets.QMessageBox.warning(self.obj, "Not Exitsts", "Long description file not exists") self.longDesc.setFocus() return None packages = self.packages.text() if packages == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Fields", "Packages are empty") self.packages.setFocus() return None else: packages = [x.strip() for x in packages.split(",")] keywords = self.keywords.text() if keywords == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Fields", "Keywords are empty") self.keywords.setFocus() return None pyreq = self.pyrec.text() if pyreq == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Fields", "Python version required is empty") self.pyrec.setFocus() return None deps = self.dependencies.text() if deps == "": QtWidgets.QMessageBox.warning(self.obj, "Empty Fields", "Python version required is empty") self.dependencies.setFocus() return None else: deps = [x.strip() for x in deps.split(",")] classifiers = self.classifiers.toPlainText().split("\n") setup = FormatCode( template.format( name=self.data.name, packages=packages, version=self.data.version, auth_name=self.data.authorname, auth_email=self.data.authoremail, home_url=self.data.home_url, down_url=self.data.down_url, short_desc=shortDesc, long_desc=longDesc, license=self.data.license, keywords=keywords, classifiers=classifiers, python_required=pyreq, install_requires=deps), style_config="pep8")[0] with open(os.path.join(self.data.dir, "setup.py"), "w") as file: file.write(setup) file.close() QtWidgets.QMessageBox.information( self.obj, "Done", "Hurry ^_^\nSetup file has been created") pass
the-stack_106_19490
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DeleteIpWhiteItemRequest(JDCloudRequest): """ 删除一条IP白名单记录 """ def __init__(self, parameters, header=None, version="v1"): super(DeleteIpWhiteItemRequest, self).__init__( '/regions/{regionId}/instances/{insId}/ipwhitelist', 'DELETE', header, version) self.parameters = parameters class DeleteIpWhiteItemParameters(object): def __init__(self, regionId, insId, cidr): """ :param regionId: 地域 Id :param insId: 审计实例ID :param cidr: IP白名单记录,支持掩码 """ self.regionId = regionId self.insId = insId self.cidr = cidr
the-stack_106_19491
import logging from typing import Tuple, Optional from flask import current_app import redis from redis import Redis from sqlalchemy.exc import OperationalError from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from backend.database.objects import DBObjectBase logger = logging.getLogger(__name__) def login(connection_string, recreate_database=False) -> Tuple[create_engine, sessionmaker]: print(connection_string) engine = create_engine(connection_string, echo=False) if recreate_database: conn = engine.connect() conn.execute("commit") conn.execute("create database saltie") conn.close() engine = create_engine(connection_string + '/saltie', echo=False) DBObjectBase.metadata.create_all(engine) session = sessionmaker(bind=engine) return engine, session def startup() -> sessionmaker: try: # Sql Stuff connection_string = 'postgresql:///saltie' engine, session = login(connection_string) except OperationalError as e: print('trying backup info', e) try: engine, session = login('postgresql://postgres:postgres@localhost/saltie') except Exception as e: engine, session = login('postgresql://postgres:postgres@localhost', recreate_database=True) return session def get_current_session(): return EngineStartup.get_current_session() stored_session: sessionmaker = None stored_redis = None redis_attempted = False def lazy_startup(): global stored_session if stored_session is not None: return stored_session stored_session = EngineStartup.startup() return stored_session def lazy_get_redis(): global stored_redis global redis_attempted if stored_redis is not None or redis_attempted: return stored_redis stored_redis = EngineStartup.get_redis() redis_attempted = True return stored_redis def get_strict_redis(): return EngineStartup.get_strict_redis() # session getting class EngineStartup: @staticmethod def login_db() -> Tuple[any, sessionmaker]: try: # Sql Stuff connection_string = 'postgresql:///saltie' engine, session = login(connection_string) except OperationalError as e: print('trying backup info', e) try: engine, session = login('postgresql://postgres:postgres@localhost/saltie') except Exception as e: engine, session = login('postgresql://postgres:postgres@localhost', recreate_database=True) return engine, session @staticmethod def startup() -> sessionmaker: _, session = EngineStartup.login_db() return session @staticmethod def get_redis() -> Optional[Redis]: try: _redis = Redis( host='localhost', port=6379) _redis.get('test') # Make Redis try to actually use the connection, to generate error if not connected. return _redis except: # TODO: Investigate and specify this except. logger.error("Not using redis.") return None @staticmethod def get_strict_redis(): return redis.StrictRedis() @staticmethod def get_current_session(): try: return current_app.config['db']() except: _session = lazy_startup() return _session()
the-stack_106_19493
"""This config file is just a dictionnary of useful values.""" # Author: Juju import os from pathlib import Path import dotmap PATHS = dotmap.DotMap DATA = dotmap.DotMap OS = os.name PATHS.lib = str(Path(os.path.abspath(__file__)).parent.parent) # replace ~ by the full path name PATHS.home = os.path.expanduser('~') # TRIP DATA PATHS if OS == "posix": # for the unix root, you should create a symbolic link to the data # folder by ln -s /media/sf_R_DRIVE/.../ ~/dev/data/ # you can alternatively copy the data there PATHS.data = PATHS.home + '/dev/data/' if not os.path.exists(PATHS.data): Warning('# Please create a symbolic link to data in ' 'directory ' + PATHS.data + '!') PATHS.data = \ '/media/sf_R_DRIVE/dev/data' else: raise Exception('# NOT IMPLEMENTED FOR WINDOWS, MODIFY THE SCRIPT !') PATHS.data = '???' PATHS.trips = PATHS.data + 'trip_data/'
the-stack_106_19497
""" Monkeypatches for the Content class in Pelican, which has some assumptions that it is working with HTML. """ import os import re import logging from html import unescape from urllib.parse import urlparse, urlunparse, urljoin, unquote logger = logging.getLogger(__name__) def _get_intrasite_link_regex(self): intrasite_link_regex = self.settings['INTRASITE_LINK_REGEX'] regex = r"(?P<markup>=> )(?P<quote>)(?P<path>{}(?P<value>[\S]*))".format(intrasite_link_regex) return re.compile(regex) # Wrapper around urljoin so that gemini protocol base won't be rejected def _urljoin(base, url, *args, **kwargs): is_gemini = base.startswith('gemini://') if is_gemini: base = base.replace('gemini://', 'https://') result = urljoin(base, url, *args, **kwargs) if is_gemini: result = result.replace('https://', 'gemini://') return result def _link_replacer(self, siteurl, m): what = m.group('what') value = urlparse(m.group('value')) path = value.path origin = m.group('path') # urllib.parse.urljoin() produces `a.html` for urljoin("..", "a.html") # so if RELATIVE_URLS are enabled, we fall back to os.path.join() to # properly get `../a.html`. However, os.path.join() produces # `baz/http://foo/bar.html` for join("baz", "http://foo/bar.html") # instead of correct "http://foo/bar.html", so one has to pick a side # as there is no silver bullet. if self.settings['RELATIVE_URLS']: joiner = os.path.join else: joiner = _urljoin # However, it's not *that* simple: urljoin("blog", "index.html") # produces just `index.html` instead of `blog/index.html` (unlike # os.path.join()), so in order to get a correct answer one needs to # append a trailing slash to siteurl in that case. This also makes # the new behavior fully compatible with Pelican 3.7.1. if not siteurl.endswith('/'): siteurl += '/' # XXX Put this in a different location. if what in {'filename', 'static', 'attach'}: def _get_linked_content(key, url): nonlocal value def _find_path(path): if path.startswith('/'): path = path[1:] else: # relative to the source path of this content path = self.get_relative_source_path( os.path.join(self.relative_dir, path) ) return self._context[key].get(path, None) # try path result = _find_path(url.path) if result is not None: return result # try unquoted path result = _find_path(unquote(url.path)) if result is not None: return result # try html unescaped url unescaped_url = urlparse(unescape(url.geturl())) result = _find_path(unescaped_url.path) if result is not None: value = unescaped_url return result # check if a static file is linked with {filename} if what == 'filename' and key == 'generated_content': linked_content = _get_linked_content('static_content', value) if linked_content: logger.warning( '{filename} used for linking to static' ' content %s in %s. Use {static} instead', value.path, self.get_relative_source_path()) return linked_content return None if what == 'filename': key = 'generated_content' else: key = 'static_content' linked_content = _get_linked_content(key, value) if linked_content: if what == 'attach': linked_content.attach_to(self) origin = joiner(siteurl, linked_content.url) origin = origin.replace('\\', '/') # for Windows paths. else: logger.warning( "Unable to find '%s', skipping url replacement.", value.geturl(), extra={ 'limit_msg': ("Other resources were not found " "and their urls not replaced")}) elif what == 'category': origin = joiner(siteurl, Category(path, self.settings).url) elif what == 'tag': origin = joiner(siteurl, Tag(path, self.settings).url) elif what == 'index': origin = joiner(siteurl, self.settings['INDEX_SAVE_AS']) elif what == 'author': origin = joiner(siteurl, Author(path, self.settings).url) else: logger.warning( "Replacement Indicator '%s' not recognized, " "skipping replacement", what) # keep all other parts, such as query, fragment, etc. parts = list(value) parts[2] = origin origin = urlunparse(parts) return ''.join((m.group('markup'), m.group('quote'), origin, m.group('quote'))) # Could maybe use the content_object_init signal to perform this patching # Not sure there is any advantage though def _patch_content(): from pelican.contents import Content # This method is tied intimately to html. I don't see any legit mechanism # to change its behaviour in a plugin, so we have to monkeypatch it. Content._get_intrasite_link_regex = _get_intrasite_link_regex # This method has a problem in how it joins URLs - urllib doesn't know # about gemini, and just ignores the siteurl Content._link_replacer = _link_replacer
the-stack_106_19504
from typing import Tuple, List, Optional def swap_sum(arr_a: List[int], arr_b: List[int]) -> Optional[Tuple]: sum_a = sum(arr_a) sum_b = sum(arr_b) # sum_a - a + b = sum_b - b + a # a - b = (sum_a - sum_b) / 2 diff = sum_a - sum_b if diff % 2 != 0: return None target = int(diff / 2) for i in arr_a: for j in arr_b: if i - j == target: return i, j return None def __check_swap(swap: Tuple, arr_a: List[int], arr_b: List[int]): assert sum(arr_a) - swap[0] + swap[1] == sum(arr_b) - swap[1] + swap[0] if __name__ == '__main__': a = [4, 1, 2, 1, 1, 2] b = [3, 6, 3, 3] __check_swap(swap_sum(a, b), a, b)
the-stack_106_19505
"""Implementation of SPNEGO wsgi middleware.""" import functools import logging import re import base64 import gssapi from werkzeug import local from werkzeug.wrappers import BaseRequest, BaseResponse _LOGGER = logging.getLogger(__name__) _AUTH_ERROR = functools.partial(BaseResponse, status=500) _FORBIDDEN = functools.partial(BaseResponse, status=403) _UNAUTHORIZED = functools.partial(BaseResponse, status=401) def wrap(wsgi_app, protect): """Wrap FLASK app in webauthd middleware.""" _LOGGER.info('Loading spnego auth.') unprotected_paths = ['/'] unprotected_methods = ['OPTIONS'] protected_paths = [] if protect: protected_paths.extend(protect) local_manager = local.LocalManager([SpnegoAuth.LOCALS]) app = SpnegoAuth( wsgi_app, protected_paths=protected_paths, unprotected_paths=unprotected_paths, unprotected_methods=unprotected_methods, unprotected_is_regex=False ) return local_manager.make_middleware(app) class SpnegoAuth: """SPNEGO authentication implementation.""" LOCALS = local.Local() def __init__(self, wrapped, protected_paths=(), unprotected_paths=(), unprotected_methods=(), unprotected_is_regex=False): """ :param protected_paths: Provide a list of path for which this module should enforce auth (e.g. '/login') :param wad_cnx_settings: Tuple connection settings the WebAuthD daemon (e.g. ('inet', [port]) or ('unix', [path])) :param unprotected_is_regex: Whether unprotected_paths parameter contains regexes (default: False) """ self._wrapped = wrapped # build a re like this '^(/path1(/.*)?|/path2(/.*)?|/path3(/.*)?)$' # Note that empty protected_paths matches *EVERY* paths self.protected_paths_re = re.compile( r'^(:?' + r'(:?/.*)?|'.join(protected_paths) + r'(:?/.*)?)$' ) if unprotected_paths: if not unprotected_is_regex: unprotected_paths = [ path + '(:?/.*)?' for path in unprotected_paths ] self.unprotected_paths_re = re.compile( r'^(:?' + r'|'.join(unprotected_paths) + r')$' ) else: self.unprotected_paths_re = None self.unprotected_methods = unprotected_methods # Print WebAuthD version for information _LOGGER.info('Protecting paths: %r', self.protected_paths_re.pattern) _LOGGER.info('Unprotecting paths: %r', (self.unprotected_paths_re.pattern if self.unprotected_paths_re is not None else None)) _LOGGER.info('Unprotecting methods: %r', self.unprotected_methods) def _wrapped_authenticated(self, auth_user, auth_token=None): def _wrapped(environ, start_response): environ['REMOTE_USER'] = auth_user # TODO: when is auth token every none? if auth_token: def spnego_start_response(status, headers, exc_info=None): """Initial spnego response.""" headers.append( ('WWW-Authenticate', 'Negotiate %s' % auth_token) ) return start_response(status, headers, exc_info) else: spnego_start_response = start_response return self._wrapped(environ, spnego_start_response) return _wrapped def _auth_spnego(self, request): """Perform SPNEGO authentication. """ if 'Authorization' not in request.headers: # Send the SPNEGO Negociate challenge _LOGGER.debug("Sending SPNEGO Negotiate request") resp = BaseResponse(status=401) resp.headers['WWW-Authenticate'] = 'Negotiate' return resp # We have authorization headers auth_type, auth_chal = request.headers['Authorization'].split(' ', 3) if auth_type != 'Negotiate': return _UNAUTHORIZED('Invalid authorization header.') _LOGGER.debug("Received SPNEGO Negociate token: %r", auth_chal) try: if not hasattr(self.LOCALS, 'ctx'): # pylint: disable=assigning-non-slot self.LOCALS.ctx = gssapi.SecurityContext( creds=None, usage='accept' ) _LOGGER.debug('Init security context.') in_token = base64.standard_b64decode(auth_chal) out_token = self.LOCALS.ctx.step(in_token) auth_token = base64.b64encode(out_token) if not self.LOCALS.ctx.complete: _LOGGER.debug("Sending SPNEGO Negotiate (continue).") resp = BaseResponse(status=401) resp.headers['WWW-Authenticate'] = 'Negotiate %s' % auth_token return resp # GSSAPI negotiation completed. auth_user = str(self.LOCALS.ctx.initiator_name) _LOGGER.info('Authenticated user: %s', auth_user) return self._wrapped_authenticated(auth_user, auth_token) # pylint: disable=c-extension-no-member except gssapi.raw.misc.GSSError as err: _LOGGER.warning('Unhandled exception: %s', str(err)) return _UNAUTHORIZED(str(err)) def wsgi_app(self, environ, start_response): """WSGI middleware main entry point. """ request = BaseRequest(environ) if request.method in self.unprotected_methods: return self._wrapped(environ, start_response) if not self.protected_paths_re.match(request.path): return self._wrapped(environ, start_response) if (self.unprotected_paths_re is not None and self.unprotected_paths_re.match(request.path)): return self._wrapped(environ, start_response) _LOGGER.info('Authenticating access to %s', request.path) app = self._auth_spnego(request) return app(environ, start_response) def __call__(self, environ, start_response): return self.wsgi_app(environ, start_response)
the-stack_106_19507
# Copyright (C) 2018 Atsushi Togo # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np from phonopy.api_phonopy import Phonopy from phonopy.interface.phonopy_yaml import PhonopyYaml from phonopy.interface.calculator import get_default_physical_units import phonopy.cui.load_helper as load_helper from phonopy.structure.cells import get_primitive_matrix def load(phonopy_yaml=None, # phonopy.yaml-like must be the first argument. supercell_matrix=None, primitive_matrix=None, is_nac=True, calculator=None, unitcell=None, supercell=None, nac_params=None, unitcell_filename=None, supercell_filename=None, born_filename=None, force_sets_filename=None, force_constants_filename=None, fc_calculator=None, fc_calculator_options=None, factor=None, frequency_scale_factor=None, produce_fc=True, is_symmetry=True, symmetrize_fc=True, is_compact_fc=True, symprec=1e-5, log_level=0): """Create Phonopy instance from parameters and/or input files. "phonopy_yaml"-like file is parsed unless crystal structure information is given by unitcell_filename, supercell_filename, unitcell (PhonopyAtoms-like), or supercell (PhonopyAtoms-like). Even when "phonopy_yaml"-like file is parse, parameters except for crystal structure can be overwritten. Phonopy default files of 'FORCE_SETS' and 'BORN' are parsed when they are found in current directory and those data are not yet provided by other means. Crystal structure ----------------- Means to provide crystal structure(s) and their priority: 1. unitcell_filename (with supercell_matrix) 2. supercell_filename 3. unitcell (with supercell_matrix) 4. supercell. 5. phonopy_yaml Force sets or force constants ----------------------------- Optional. Means to provide information to generate force constants and their priority: 1. force_constants_filename 2. force_sets_filename 3. phonopy_yaml if force constants are found in phonoy_yaml. 4. phonopy_yaml if forces are found in phonoy_yaml.dataset. 5. 'FORCE_CONSTANTS' is searched in current directory. 6. 'force_constants.hdf5' is searched in current directory. 7. 'FORCE_SETS' is searched in current directory. When both of 3 and 4 are satisfied but not others, force constants and dataset are stored in Phonopy instance, but force constants are not produced from dataset. Parameters for non-analytical term correctiion (NAC) ---------------------------------------------------- Optional. Means to provide NAC parameters and their priority: 1. born_filename 2. nac_params 3. phonopy_yaml.nac_params if existed and is_nac=True. 4. 'BORN' is searched in current directory when is_nac=True. Parameters ---------- phonopy_yaml : str, optional Filename of "phonopy.yaml"-like file. If this is given, the data in the file are parsed. Default is None. supercell_matrix : array_like, optional Supercell matrix multiplied to input cell basis vectors. shape=(3, ) or (3, 3), where the former is considered a diagonal matrix. Default is the unit matrix. dtype=int primitive_matrix : array_like or str, optional Primitive matrix multiplied to input cell basis vectors. Default is None, which is equivalent to 'auto'. For array_like, shape=(3, 3), dtype=float. When 'F', 'I', 'A', 'C', or 'R' is given instead of a 3x3 matrix, the primitive matrix for the character found at https://spglib.github.io/spglib/definition.html is used. is_nac : bool, optional If True, look for 'BORN' file. If False, NAS is turned off. Default is True. calculator : str, optional. Calculator used for computing forces. This is used to switch the set of physical units. Default is None, which is equivalent to "vasp". unitcell : PhonopyAtoms, optional Input unit cell. Default is None. supercell : PhonopyAtoms, optional Input supercell. With given, default value of primitive_matrix is set to 'auto' (can be overwitten). supercell_matrix is ignored. Default is None. nac_params : dict, optional Parameters required for non-analytical term correction. Default is None. {'born': Born effective charges (array_like, shape=(primitive cell atoms, 3, 3), dtype=float), 'dielectric': Dielectric constant matrix (array_like, shape=(3, 3), dtype=float), 'factor': unit conversion facotr (float)} unitcell_filename : str, optional Input unit cell filename. Default is None. supercell_filename : str, optional Input supercell filename. When this is specified, supercell_matrix is ignored. Default is None. born_filename : str, optional Filename corresponding to 'BORN', a file contains non-analytical term correction parameters. force_sets_filename : str, optional Filename of a file corresponding to 'FORCE_SETS', a file contains sets of forces and displacements. Default is None. force_constants_filename : str, optional Filename of a file corresponding to 'FORCE_CONSTANTS' or 'force_constants.hdf5', a file contains force constants. Default is None. fc_calculator : str, optional Force constants calculator. Currently only 'alm'. Default is None. fc_calculator_options : str, optional Optional parameters that are passed to the external fc-calculator. This is given as one text string. How to parse this depends on the fc-calculator. For alm, each parameter is splitted by comma ',', and each set of key and value pair is written in 'key = value'. factor : float, optional Phonon frequency unit conversion factor. Unless specified, default unit conversion factor for each calculator is used. frequency_scale_factor : float, optional Factor multiplied to calculated phonon frequency. Default is None, i.e., effectively 1. produce_fc : bool, optional Setting False, force constants are not calculated from displacements and forces. Default is True. is_symmetry : bool, optional Setting False, crystal symmetry except for lattice translation is not considered. Default is True. symmetrize_fc : bool, optional Setting False, force constants are not symmetrized when creating force constants from displacements and forces. Default is True. is_compact_fc : bool Force constants are produced in the array whose shape is True: (primitive, supecell, 3, 3) False: (supercell, supecell, 3, 3) where 'supercell' and 'primitive' indicate number of atoms in these cells. Default is True. symprec : float, optional Tolerance used to find crystal symmetry. Default is 1e-5. log_level : int, optional Verbosity control. Default is 0. """ if (supercell is not None or supercell_filename is not None or unitcell is not None or unitcell_filename is not None): cell, smat, pmat = load_helper.get_cell_settings( supercell_matrix=supercell_matrix, primitive_matrix=primitive_matrix, unitcell=unitcell, supercell=supercell, unitcell_filename=unitcell_filename, supercell_filename=supercell_filename, calculator=calculator, symprec=symprec, log_level=log_level) _calculator = calculator _nac_params = nac_params _dataset = None _fc = None elif phonopy_yaml is not None: phpy_yaml = PhonopyYaml() phpy_yaml.read(phonopy_yaml) cell = phpy_yaml.unitcell smat = phpy_yaml.supercell_matrix if smat is None: smat = np.eye(3, dtype='intc', order='C') if primitive_matrix is not None: pmat = get_primitive_matrix(primitive_matrix, symprec=symprec) else: pmat = phpy_yaml.primitive_matrix if nac_params is not None: _nac_params = nac_params elif is_nac: _nac_params = phpy_yaml.nac_params else: _nac_params = None _dataset = phpy_yaml.dataset _fc = phpy_yaml.force_constants if calculator is None: _calculator = phpy_yaml.calculator else: _calculator = calculator else: msg = ("Cell information could not found. " "Phonopy instance loading failed.") raise RuntimeError(msg) if log_level and _calculator is not None: print("Set \"%s\" mode." % _calculator) # units keywords: factor, nac_factor, distance_to_A units = get_default_physical_units(_calculator) if factor is None: _factor = units['factor'] else: _factor = factor phonon = Phonopy(cell, smat, primitive_matrix=pmat, factor=_factor, frequency_scale_factor=frequency_scale_factor, symprec=symprec, is_symmetry=is_symmetry, calculator=_calculator, log_level=log_level) # NAC params if born_filename is not None or _nac_params is not None or is_nac: ret_nac_params = load_helper.get_nac_params( primitive=phonon.primitive, nac_params=_nac_params, born_filename=born_filename, is_nac=is_nac, nac_factor=units['nac_factor'], log_level=log_level) if ret_nac_params is not None: phonon.nac_params = ret_nac_params # Displacements, forces, and force constants load_helper.set_dataset_and_force_constants( phonon, _dataset, _fc, force_constants_filename=force_constants_filename, force_sets_filename=force_sets_filename, fc_calculator=fc_calculator, fc_calculator_options=fc_calculator_options, produce_fc=produce_fc, symmetrize_fc=symmetrize_fc, is_compact_fc=is_compact_fc, log_level=log_level) return phonon
the-stack_106_19508
#!/usr/bin/env python from mininet.cli import CLI from mininet.node import Link, Host from mininet.net import Mininet from mininet.node import RemoteController from mininet.term import makeTerm from mininet.topo import Topo from functools import partial class VLANHost( Host ): "Host connected to VLAN interface" def config( self, vlan=10, **params ): """Configure VLANHost according to (optional) parameters: vlan: VLAN ID for default interface""" r = super( VLANHost, self ).config( **params ) intf = self.defaultIntf() # remove IP from default, "physical" interface self.cmd( 'ifconfig %s inet 0' % intf ) # create VLAN interface self.cmd( 'vconfig add %s %d' % ( intf, vlan ) ) # assign the host's IP to the VLAN interface self.cmd( 'ifconfig %s.%d inet %s' % ( intf, vlan, params['ip'] ) ) # update the intf name and host's intf map newName = '%s.%d' % ( intf, vlan ) # update the (Mininet) interface to refer to VLAN interface name intf.name = newName # add VLAN interface to host's name to intf map self.nameToIntf[ newName ] = intf return r class VplsTopo(Topo): ''' VPLS demo Topology ''' def __init__(self): Topo.__init__(self) s1 = self.addSwitch('s1') s2 = self.addSwitch('s2') s3 = self.addSwitch('s3') s4 = self.addSwitch('s4') s5 = self.addSwitch('s5') s6 = self.addSwitch('s6') h1 = self.addHost('h1', cls=VLANHost, vlan=100, mac='00:00:00:00:00:01', ip='10.0.0.1/24') h2 = self.addHost('h2', cls=VLANHost, vlan=200, mac='00:00:00:00:00:02', ip='10.0.0.2/24') h3 = self.addHost('h3', mac='00:00:00:00:00:03', ip='10.0.0.3/24') h4 = self.addHost('h4', cls=VLANHost, vlan=400, mac='00:00:00:00:00:04', ip='10.0.0.4/24') h5 = self.addHost('h5', mac='00:00:00:00:00:05', ip='10.0.0.5/24') h6 = self.addHost('h6', mac='00:00:00:00:00:06', ip='10.0.0.6/24') self.addLink(s1, h1, port1=1, port2=0) self.addLink(s2, h2, port1=1, port2=0) self.addLink(s3, h3, port1=1, port2=0) self.addLink(s4, h4, port1=1, port2=0) self.addLink(s5, h5, port1=1, port2=0) self.addLink(s6, h6, port1=1, port2=0) self.addLink(s1, s2) self.addLink(s2, s3) self.addLink(s3, s4) self.addLink(s4, s1) self.addLink(s4, s2) self.addLink(s1, s5) self.addLink(s4, s5) self.addLink(s2, s6) self.addLink(s3, s6) topos = { 'vpls': ( lambda: VplsTopo() ) } if __name__ == '__main__': from onosnet import run run(VplsTopo())
the-stack_106_19510
from skyfield.api import Topos, load import math import random import logging import sys import os from datetime import datetime, timedelta, timezone logging.disable(logging.INFO) #Challenge #Grab data from local text file for speed and consistency #-------------------------------------------# satellites = load.tle('stations.txt') #-------------------------------------------# SEED = int(os.getenv("SEED", 0)) random.seed(SEED) #Calculate random time for player #-------------------------------------------# ts = load.timescale() random_hour = random.randint(1, 23) random_minute = random.randint(0, 59) random_second = random.randint(0, 59) t = ts.utc(2020, 3, 18, random_hour, random_minute, random_second) #Return dynamically generated time to player #print(f'DEBUG: {t.utc}') # OLD. Bad, very bad. print(f'Please use the following time to find the correct satellite:(2020, 3, 18, {random_hour}, {random_minute}, {random_second}.0)') sys.stdout.flush() #-------------------------------------------# #Satellite list from website has both integers and strings and we need only objects utilizing the strings #-------------------------------------------# string_only_satellites = [] for satellite in satellites: if isinstance(satellite, str): string_only_satellites.append(satellites[satellite]) #-------------------------------------------# sys.stderr.write("Number of Satellites: %d\n" % len(string_only_satellites)) #Generate random satellite coordinates for player #-------------------------------------------# while True: random_satellite_number = random.randint(0, len(string_only_satellites) - 1) player_satellite_for_input_solver = string_only_satellites[random_satellite_number] string_only_satellites.pop(random_satellite_number) #Create first topocentric for comparison, testing to ensure satellites are not in a collision path bluffton = Topos('36.17237297 N','-115.13431754 W') difference = player_satellite_for_input_solver - bluffton #The result will be the position of the satellite relative to you as an observer (bluffton vairable). topocentric = difference.at(t) restart = False for satellite in string_only_satellites: bluffton = Topos('36.17237297 N','-115.13431754 W') difference = satellite - bluffton #The result will be the position of the satellite relative to you as an observer (bluffton vairable). topocentric2 = difference.at(t) difference_km = (topocentric2 - topocentric).distance().km if difference_km < 10.0: #Another satellite is within 10km restart = True sys.stderr.write("Satellite too close: %d\n" % difference_km) break if restart: continue sys.stderr.write("Using Satellite: %s\n" % player_satellite_for_input_solver) sys.stderr.flush() geocentric = player_satellite_for_input_solver.at(t) coordinates = geocentric.position.km.tolist() #Return dynamically generated geocentric coordinates to player print(f'Please use the following Earth Centered Inertial reference frame coordinates to find the satellite:{coordinates}') sys.stdout.flush() break #-------------------------------------------# #Player Input Solver #-------------------------------------------# random_times = [] r_times_pretty = [] amount_of_times = 0 random.seed(datetime.now()) while True: if amount_of_times < 3: amount_of_times = amount_of_times + 1 ts = load.timescale() random_hour = random.randint(1, 23) random_minute = random.randint(0, 59) random_second = random.randint(0, 59) random_times.append(ts.utc(2020, 3, 18, random_hour, random_minute, random_second)) r_times_pretty.append(f'(2020, 3, 18, {random_hour}, {random_minute}, {random_second}.0)') else: break #Upped it to 5 to give the users a couple of attempts if they accidently fat fingered their input or something times_allowed = 0 while True: try: if times_allowed < 5: print(f'Current attempt:{times_allowed + 1}') sys.stdout.flush() times_allowed = times_allowed + 1 geocentric = player_satellite_for_input_solver.at(random_times[0]) coordinates = geocentric.position.km.tolist() print(f"What is the X coordinate at the time of:{r_times_pretty[0]}?") sys.stdout.flush() line = sys.stdin.readline().strip() user_input_coordinate = float(line) if isinstance(user_input_coordinate, float): if math.isclose(user_input_coordinate, coordinates[0], rel_tol=1e-2): sys.stderr.write(f'The X coordinate for {r_times_pretty[0]} is correct!') sys.stdout.flush() else: print(f"DEBUG: {coordinates[0]}") print(f'{user_input_coordinate} is incorrect, please try again and enter the the X coordinate for the satellite at {r_times_pretty[0]}.') sys.stdout.flush() continue else: print('Your input must be a floating point coordinate (J2000) in KM') sys.stdout.flush() continue print(f"What is the Y coordinate at the time of:{r_times_pretty[0]}?") sys.stdout.flush() line = sys.stdin.readline().strip() user_input_coordinate = float(line) if isinstance(user_input_coordinate, float): if math.isclose(user_input_coordinate, coordinates[1], rel_tol=1e-2): print(f'The Y coordinate for {r_times_pretty[0]} is correct!') sys.stdout.flush() else: print(f'{user_input_coordinate} is incorrect, please try again and enter the the Y coordinate for the satellite at {r_times_pretty[0].utc}.') sys.stdout.flush() continue else: print('Your input must be a floating point coordinate (J2000) in KM') sys.stdout.flush() continue print(f"What is the Z coordinate at the time of:{r_times_pretty[0]}?") sys.stdout.flush() line = sys.stdin.readline().strip() user_input_coordinate = float(line) if isinstance(user_input_coordinate, float): if math.isclose(user_input_coordinate, coordinates[2], rel_tol=1e-1): print(f'The Z axis coordinate for {r_times_pretty[0]} is correct!') sys.stdout.flush() random_times.pop(0) r_times_pretty.pop(0) #Check to see if there are any more times in the list to be solved. if random_times: continue else: flag = os.getenv("FLAG", "FLAG{Placeholder}") if flag: print(flag) sys.stdout.flush() else: print("This is to be removed but for final testing - !!!!FLAG_PLACEHOLDER!!!!") sys.stdout.flush() break else: print(f'{user_input_coordinate} is incorrect, please try again and enter the the Z coordinate for the satellite at {r_times_pretty[0].utc}.') sys.stdout.flush() continue else: print('Your input must be a floating point coordinate (J2000) in KM') sys.stdout.flush() continue else: break except: import sys sys.exc_info() if times_allowed == 5: print('Please try again!') sys.stdout.flush() else: print(f'Please enter the proper coordinate for the satellite at {r_times_pretty[0]}.') sys.stdout.flush() #-------------------------------------------#
the-stack_106_19512
import sys from datetime import datetime from threading import RLock from .CacheStorage import CachedItem, ItemNotCached from .MemoryStorage import MemoryStorage class ItemExpired(ItemNotCached): pass class LRUCache: ''' Collection of data where data may be removed to make room Each peace of data is indexed by a unique key. Least Recent Used implies that when room is needed in the collection, whatever key has been accessed least recently is silently removed from the collection. Actual storage of the data depends on the storage object attached, and defaults to in-memory (MemoryStorage) ''' def __init__(self, storage=None, max_size=None, sizeof=None, max_age=None): ''' :param storage: Storage for data (CacheStorage) :param max_size: Maximum size to store in cache :param sizeof: Function to use for calculating the size of data cached :param max_age: Max time to hold cached items for (timedelta) ''' self.storage = storage or MemoryStorage() self.max_size = max_size self.__sizeof = sizeof self.max_age = max_age self.lock = RLock() def put(self, key, data, expires_in=None, size=None): ''' Add an object to the cache :param key: Key to use to retrieve this item. :param data: The actual item to cache. :param expires_in: timedelta to specify when object should expire :param size: Size of the entry if known (will skip sizeof calc) :return: ''' # Determine size of data if size is None: if self.__sizeof is not None: size = self.__sizeof(data) else: size = sys.getsizeof(key) + sys.getsizeof(data) # Time to expire if expires_in is not None: expire_after = datetime.now() + expires_in elif self.max_age is not None: expire_after = datetime.now() + self.max_age else: expire_after = None item = CachedItem(data, size=size, expires=expire_after) # Manipulate storage with self.lock: # Remove item if already exists if self.storage.has_key(key): self._remove_item_from_storage(key) # Sanity check: Data too big for storage if self.max_size is not None and size > self.max_size: return # Make sure there is space if self.max_size is not None: self.make_room_for(size) # Save item self.storage.add(key, item) def get(self, key): return self[key] def __getitem__(self, key): '''Get data from cache''' with self.lock: item = self.storage.get(key) if item.expires_at is not None and item.expires_at < datetime.now(): self.remove(key) raise ItemExpired() self.storage.touch_last_used(key) return item.data def __setitem__(self, key, data): '''Add item to the cache''' self.put(key, data) def keys(self): with self.lock: return self.storage.keys() def items(self): with self.lock: for key, item in self.storage.items(): yield key, item.data def _remove_item_from_storage(self, key): ''' Remove an item from storage Intended for internal use. No state checking ''' with self.lock: self.storage.remove(key) def __delitem__(self, key): self._remove_item_from_storage(key) def remove(self, key): self._remove_item_from_storage(key) @property def num_items(self): return self.storage.num_items def close(self): with self.lock: self.storage.close() self.storage = None def clean_expired(self): '''Clean old entries out of cache''' with self.lock: for key, item in self.storage.expired_items(): self.remove(key) @property def total_size_stored(self): return self.storage.total_size_stored def make_room_for(self, size): ''' Make room for a new item of the given size Note: Possible race condition if storage supports multiple LRUCache objects in separate processes and called concurrently. Solve this in storage engine implementation if needed. :param size: Size of the new object coming in :param max_size: Size limit for the cache storage ''' with self.lock: if self.max_size > 0 and size > 0: while self.storage.total_size_stored + size > self.max_size: self.storage.pop_oldest()
the-stack_106_19513
# encoding=utf-8 import numpy as np import math import sys import os import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.autograd import Variable import torch.nn.functional as F BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'utils')) # add for shape-preserving Loss from lib.pointops.functions import pointops from datasets_4point import PartDataset,ModelNetDataset from collections import namedtuple # from pointnet2.pointnet2_modules import PointNet2SAModule, PointNet2SAModuleMSG from utils import chamfer_loss cudnn.benchnark=True class PDGN_v1(object): def __init__(self, args): self.model_name = args.network self.workers = args.workers self.checkpoint_dir = args.checkpoint_dir self.model_dir = args.model_dir self.data_root = args.data_root self.pretrain_model_G = args.pretrain_model_G self.pretrain_model_D = args.pretrain_model_D # softmax for bilaterl interpolation if args.softmax == 'True': self.softmax = True print('use softmax') else: self.softmax = False print('do not use softmax') self.epoch = args.max_epoch # 300 self.batch_size = args.batch_size # 50 self.noise_dim = args.noise_dim # 128 self.learning_rate = args.learning_rate # 0.0001 self.num_point = args.num_point # 2048 self.num_k = args.num_k # 20 self.choice = args.choice # which class self.snapshot = args.snapshot # 20 epochs / one self.savename = args.savename if self.choice is None: self.category = 'full' else: self.category = self.choice self.chamfer_loss = chamfer_loss.ChamferLoss() if args.dataset == 'shapenet': print('-------------use dataset shapenet-------------') self.dataset = PartDataset(root=self.data_root, batch_size=self.batch_size, class_choice=self.choice, classification=True) self.test_dataset = PartDataset(root=self.data_root, batch_size=self.batch_size, class_choice=self.choice, classification=True, train=False) elif args.dataset == 'modelnet10': print('-------------use dataset modelnet10-------------') self.dataset = ModelNetDataset(root=self.data_root, batch_size=self.batch_size, npoints=self.num_point, split='train', normalize=True, normal_channel=False, modelnet10=True,class_choice=self.choice) self.test_dataset = ModelNetDataset(root=self.data_root, batch_size=self.batch_size, npoints=self.num_point, split='test', normalize=True, normal_channel=False, modelnet10=True,class_choice=self.choice) elif args.dataset == 'modelnet40': print('-------------use dataset modelnet40-------------') self.dataset = ModelNetDataset(root=self.data_root, batch_size=self.batch_size, npoints=self.num_point, split='train', normalize=True, normal_channel=False, modelnet10=False,class_choice=self.choice) self.test_dataset = ModelNetDataset(root=self.data_root, batch_size=self.batch_size, npoints=self.num_point, split='test', normalize=True, normal_channel=False, modelnet10=False,class_choice=self.choice) self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, shuffle=True, num_workers=int(self.workers)) self.num_batches = len(self.dataset) // self.batch_size self.test_dataloader = torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size, shuffle=True, num_workers=int(self.workers)) self.test_num_batches = len(self.test_dataset) // self.batch_size if args.phase == 'train': print('training...') self.log_info = args.log_info self.LOG_FOUT = open(os.path.join(self.checkpoint_dir, self.model_dir, self.log_info), 'w') self.LOG_FOUT.write(str(args)+'\n') elif args.phase == 'test': print('testing...') elif args.phase == 'cls': print('extract feature') cudnn.benchmark = True # cudnn def build_model(self): """ Models """ self.generator = PointGenerator(self.num_point, self.num_k, self.softmax) self.discriminator1 = PointDiscriminator_1() self.discriminator2 = PointDiscriminator_2() self.discriminator3 = PointDiscriminator_3() self.discriminator4 = PointDiscriminator_4() self.generator = nn.DataParallel(self.generator) self.discriminator1 = nn.DataParallel(self.discriminator1) self.discriminator2 = nn.DataParallel(self.discriminator2) self.discriminator3 = nn.DataParallel(self.discriminator3) self.discriminator4 = nn.DataParallel(self.discriminator4) self.generator.cuda() self.discriminator1.cuda() self.discriminator2.cuda() self.discriminator3.cuda() self.discriminator4.cuda() """ Loss Function """ #self.group = pointops.Gen_QueryAndGroupXYZ(radius=0.1, nsample=10, use_xyz=False) self.group = pointops.Gen_QueryAndGroupXYZ(radius=None, nsample=20, use_xyz=False) self.loss_fn = nn.MSELoss() self.shape_loss_fn = nn.MSELoss() """ Training """ self.optimizerG = optim.Adam(self.generator.parameters(), lr=self.learning_rate, betas=(0.5, 0.999)) self.optimizerD1 = optim.Adam(self.discriminator1.parameters(), lr=self.learning_rate, betas=(0.5, 0.999)) self.optimizerD2 = optim.Adam(self.discriminator2.parameters(), lr=self.learning_rate, betas=(0.5, 0.999)) self.optimizerD3 = optim.Adam(self.discriminator3.parameters(), lr=self.learning_rate, betas=(0.5, 0.999)) self.optimizerD4 = optim.Adam(self.discriminator4.parameters(), lr=self.learning_rate, betas=(0.5, 0.999)) def compute_mean_covariance(self, points): bs, ch, nump = points.size() # ---------------------------------------------------------------- mu = points.mean(dim=-1, keepdim=True) # Bx3xN -> Bx3x1 # ---------------------------------------------------------------- tmp = points - mu.repeat(1, 1, nump) # Bx3xN - Bx3xN -> Bx3xN tmp_transpose = tmp.transpose(1, 2) # Bx3xN -> BxNx3 covariance = torch.bmm(tmp, tmp_transpose) covariance = covariance / nump return mu, covariance # Bx3x1 Bx3x3 def get_local_pair(self, pt1, pt2): pt1_batch,pt1_N,pt1_M = pt1.size() pt2_batch,pt2_N,pt2_M = pt2.size() # pt1: Bx3xM pt2: Bx3XN (N > M) #print('pt1: {} pt2: {}'.format(pt1.size(), pt2.size())) new_xyz = pt1.transpose(1, 2).contiguous() # Bx3xM -> BxMx3 pt1_trans = pt1.transpose(1, 2).contiguous() # Bx3xM -> BxMx3 pt2_trans = pt2.transpose(1, 2).contiguous() # Bx3xN -> BxNx3 g_xyz1 = self.group(pt1_trans, new_xyz) # Bx3xMxK #print('g_xyz1: {}'.format(g_xyz1.size())) g_xyz2 = self.group(pt2_trans, new_xyz) # Bx3xMxK #print('g_xyz2: {}'.format(g_xyz2.size())) g_xyz1 = g_xyz1.transpose(1, 2).contiguous().view(-1, 3, 20) # Bx3xMxK -> BxMx3xK -> (BM)x3xK #print('g_xyz1: {}'.format(g_xyz1.size())) g_xyz2 = g_xyz2.transpose(1, 2).contiguous().view(-1, 3, 20) # Bx3xMxK -> BxMx3xK -> (BM)x3xK #print('g_xyz2: {}'.format(g_xyz2.size())) # print('====================== FPS ========================') # print(pt1.shape,g_xyz1.shape) # print(pt2.shape,g_xyz2.shape) mu1, var1 = self.compute_mean_covariance(g_xyz1) mu2, var2 = self.compute_mean_covariance(g_xyz2) #print('mu1: {} var1: {}'.format(mu1.size(), var1.size())) #print('mu2: {} var2: {}'.format(mu2.size(), var2.size())) #-------------------------------------------------- # like_mu12 = self.shape_loss_fn(mu1, mu2) # like_var12 = self.shape_loss_fn(var1, var2) #---------------------------------------------------- #=========$$$ CD loss $$$=============== # print("p1,p2:",pt1.shape,pt2.shape) # print("mu2:",mu1.shape,mu2.shape,pt1_batch,pt1_N,pt1_M) mu1 = mu1.view(pt1_batch,-1,3) mu2 = mu2.view(pt2_batch,-1,3) var1 = var1.view(pt1_batch,-1,9) var2 = var2.view(pt2_batch,-1,9) like_mu12 = self.chamfer_loss(mu1,mu2) / float(pt1_M) like_var12 = self.chamfer_loss(var1,var2) / float(pt1_M) # import pdb # pdb.set_trace() #print('mu: {} var: {}'.format(like_mu12.item(), like_var12.item())) return like_mu12, like_var12 def train(self): # restore check-point if it exits could_load, save_epoch = self.load(self.checkpoint_dir) if could_load: start_epoch = save_epoch print(" [*] Load SUCCESS") else: start_epoch = 1 print(" [!] start epoch: {}".format(start_epoch)) # loop for epoch start_time = time.time() for epoch in range(start_epoch, self.epoch+1): for idx, data in enumerate(self.dataloader, 0): if idx+1 > self.num_batches: continue # exit() # ----------------train D----------------------- points1, points2, points3, points4, _ = data points1 = Variable(points1) points2 = Variable(points2) points3 = Variable(points3) points4 = Variable(points4) target = Variable(torch.from_numpy(np.ones(self.batch_size,).astype(np.int64))).cuda().float().reshape(self.batch_size, 1) sim_noise = Variable(torch.Tensor(np.random.normal(0, 0.2, (self.batch_size, self.noise_dim)))).cuda() fake1, fake2, fake3, fake4 = self.generator(sim_noise) fake_target = Variable(torch.from_numpy(np.zeros(self.batch_size,).astype(np.int64))).cuda().float().reshape(self.batch_size, 1) # ------------------D1--------------- self.optimizerD1.zero_grad() # self.discriminator1.zero_grad() points1 = points1.transpose(2, 1).cuda() pred1 = self.discriminator1(points1) pred1_fake = self.discriminator1(fake1.detach()) loss1_1 = self.loss_fn(pred1, target) loss2_1 = self.loss_fn(pred1_fake, fake_target) lossD1 = (loss1_1 + loss2_1) / 2.0 lossD1.backward() self.optimizerD1.step() # ------------------D2--------------- self.optimizerD2.zero_grad() points2 = points2.transpose(2, 1).cuda() pred2 = self.discriminator2(points2) pred2_fake = self.discriminator2(fake2.detach()) loss1_2 = self.loss_fn(pred2, target) loss2_2 = self.loss_fn(pred2_fake, fake_target) lossD2 = (loss1_2 + loss2_2) / 2.0 lossD2.backward() self.optimizerD2.step() # ------------------D3--------------- self.optimizerD3.zero_grad() points3 = points3.transpose(2, 1).cuda() pred3 = self.discriminator3(points3) pred3_fake = self.discriminator3(fake3.detach()) loss1_3 = self.loss_fn(pred3, target) loss2_3 = self.loss_fn(pred3_fake, fake_target) lossD3 = (loss1_3 + loss2_3) / 2.0 lossD3.backward() self.optimizerD3.step() # ------------------D4--------------- self.optimizerD4.zero_grad() points4 = points4.transpose(2, 1).cuda() pred4 = self.discriminator4(points4) pred4_fake = self.discriminator4(fake4.detach()) loss1_4 = self.loss_fn(pred4, target) loss2_4 = self.loss_fn(pred4_fake, fake_target) lossD4 = (loss1_4 + loss2_4) / 2.0 lossD4.backward() self.optimizerD4.step() # -----------------------------------train G----------------------------------- self.optimizerG.zero_grad() sim_noise = Variable(torch.Tensor(np.random.normal(0, 0.2, (self.batch_size, self.noise_dim)))).cuda() points1_gen, points2_gen, points3_gen, points4_gen = self.generator(sim_noise) # p1=Bx3x256 p2=Bx3x512 p3=Bx3x1024 p4=Bx3x2048 #print('points1_gen: {}'.format(points1_gen.size())) like_mu12, like_cov12 = self.get_local_pair(points1_gen, points2_gen) like_mu13, like_cov13 = self.get_local_pair(points1_gen, points3_gen) like_mu14, like_cov14 = self.get_local_pair(points1_gen, points4_gen) like_mu23, like_cov23 = self.get_local_pair(points2_gen, points3_gen) like_mu24, like_cov24 = self.get_local_pair(points2_gen, points4_gen) like_mu34, like_cov34 = self.get_local_pair(points3_gen, points4_gen) #exit() #mu1, covariance1 = self.compute_mean_covariance(points1_gen) #print('mu1: {} var1: {}'.format(mu1.size(), covariance1.size())) #mu2, covariance2 = self.compute_mean_covariance(points2_gen) #mu3, covariance3 = self.compute_mean_covariance(points3_gen) #mu4, covariance4 = self.compute_mean_covariance(points4_gen) #like_mu12 = self.shape_loss_fn(mu1, mu2) #like_cov12 = self.shape_loss_fn(covariance1, covariance2) #like_mu13 = self.shape_loss_fn(mu1, mu3) #like_cov13 = self.shape_loss_fn(covariance1, covariance3) #like_mu14 = self.shape_loss_fn(mu1, mu4) #like_cov14 = self.shape_loss_fn(covariance1, covariance4) #like_mu23 = self.shape_loss_fn(mu2, mu3) #like_cov23 = self.shape_loss_fn(covariance2, covariance3) #like_mu24 = self.shape_loss_fn(mu2, mu4) #like_cov24 = self.shape_loss_fn(covariance2, covariance4) #like_mu34 = self.shape_loss_fn(mu3, mu4) #like_cov34 = self.shape_loss_fn(covariance3, covariance4) pred_g1 = self.discriminator1(points1_gen) pred_g2 = self.discriminator2(points2_gen) pred_g3 = self.discriminator3(points3_gen) pred_g4 = self.discriminator4(points4_gen) target_g = Variable(torch.from_numpy(np.ones(self.batch_size, ).astype(np.int64))).cuda().float().reshape(self.batch_size, 1) #print(pred_g, target) g_loss_1 = self.loss_fn(pred_g1, target_g) g_loss_2 = self.loss_fn(pred_g2, target_g) g_loss_3 = self.loss_fn(pred_g3, target_g) g_loss_4 = self.loss_fn(pred_g4, target_g) w = 30.0 similar_loss = w * 1.0 * (like_mu12 + like_mu13 + like_mu14 + like_mu23 + like_mu24 + like_mu34) + \ w * 5.0 * (like_cov12 + like_cov13 + like_cov14 + like_cov23 + like_cov24 + like_cov34) lossG = (1.2*g_loss_1 + 1.2*g_loss_2 + 1.2*g_loss_3 + g_loss_4) + 0.5*similar_loss lossG.backward() self.optimizerG.step() # display training status print("Epoch: [%2d] [%4d/%4d] time: %2dm %2ds d_loss1: %.8f d_loss2: %.8f d_loss3: %.8f d_loss4: %.8f, g_loss: %.8f, similar_loss: %.8f" \ % (epoch, idx+1, self.num_batches, (time.time()-start_time)/60,(time.time()-start_time)%60, lossD1.item(), lossD2.item(), lossD3.item(), lossD4.item(), lossG.item(), similar_loss.item())) self.log_string("Epoch: [%2d] [%4d/%4d] time: %2dm %2ds d_loss1: %.8f d_loss2: %.8f d_loss3: %.8f d_loss4: %.8f, g_loss: %.8f, similar_loss: %.8f" \ % (epoch, idx+1, self.num_batches, (time.time()-start_time)/60,(time.time()-start_time)%60, lossD1.item(), lossD2.item(), lossD3.item(), lossD4.item(), lossG.item(), similar_loss.item())) if epoch % self.snapshot == 0: self.save(self.checkpoint_dir, epoch) self.save(self.checkpoint_dir, self.epoch) self.LOG_FOUT.close() def test(self): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else : print(" [!] Load failed...") sim_noise = Variable(torch.Tensor(np.random.normal(0, 0.2, (self.batch_size, self.noise_dim)))).cuda() gen_points1, gen_points2, gen_points3, gen_points4 = self.generator(sim_noise) # print(gen_points.shape) gen_points1 = gen_points1.transpose(2, 1).cpu().data.numpy() # Bx3x256 -> Bx256x3 print(gen_points1.shape) gen_points2 = gen_points2.transpose(2, 1).cpu().data.numpy() # Bx3x512 -> Bx512x3 print(gen_points2.shape) gen_points3 = gen_points3.transpose(2, 1).cpu().data.numpy() # Bx3x1024 -> Bx1024x3 print(gen_points3.shape) gen_points4 = gen_points4.transpose(2, 1).cpu().data.numpy() # Bx3x2048 -> Bx2048x3 print(gen_points4.shape) save_dir = os.path.join(self.checkpoint_dir, self.model_dir, self.savename) # save_dir = ( '../latent_3d_points/generated_data') np.save(save_dir+'_1', gen_points1) np.save(save_dir+'_2', gen_points2) np.save(save_dir+'_3', gen_points3) np.save(save_dir+'_4', gen_points4) print('save generate data at: {}'.format(save_dir)) def log_string(self, out_str): self.LOG_FOUT.write(out_str+'\n') self.LOG_FOUT.flush() # print(out_str) def load(self, checkpoint_dir): if self.pretrain_model_G is None and self.pretrain_model_D is None: print('################ new training ################') return False, 1 print(" [*] Reading checkpoints...") checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name) # ----------------- load G ------------------- if not self.pretrain_model_G is None: resume_file_G = os.path.join(checkpoint_dir, self.pretrain_model_G) flag_G = os.path.isfile(resume_file_G), if flag_G == False: print('G--> Error: no checkpoint directory found!') exit() else: print('resume_file_G------>: {}'.format(resume_file_G)) checkpoint = torch.load(resume_file_G) self.generator.load_state_dict(checkpoint['G_model']) self.optimizerG.load_state_dict(checkpoint['G_optimizer']) G_epoch = checkpoint['G_epoch'] else: print(" [*] Failed to find the pretrain_model_G") exit() # ----------------- load D ------------------- if not self.pretrain_model_D is None: resume_file_D = os.path.join(checkpoint_dir, self.pretrain_model_D) flag_D = os.path.isfile(resume_file_D) if flag_D == False: print('D--> Error: no checkpoint directory found!') exit() else: print('resume_file_D------>: {}'.format(resume_file_D)) checkpoint = torch.load(resume_file_D) self.discriminator1.load_state_dict(checkpoint['D_model1']) self.discriminator2.load_state_dict(checkpoint['D_model2']) self.discriminator3.load_state_dict(checkpoint['D_model3']) self.discriminator4.load_state_dict(checkpoint['D_model4']) self.optimizerD1.load_state_dict(checkpoint['D_optimizer1']) self.optimizerD2.load_state_dict(checkpoint['D_optimizer2']) self.optimizerD3.load_state_dict(checkpoint['D_optimizer3']) self.optimizerD4.load_state_dict(checkpoint['D_optimizer4']) D_epoch = checkpoint['D_epoch'] else: print(" [*] Failed to find the pretrain_model_D") exit() print(" [*] Success to load model --> {} & {}".format(self.pretrain_model_G, self.pretrain_model_D)) return True, G_epoch def save(self, checkpoint_dir, index_epoch): checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir, self.model_name) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) save_name = str(index_epoch)+'_'+self.category path_save_G = os.path.join(checkpoint_dir, save_name+'_G.pth') path_save_D = os.path.join(checkpoint_dir, save_name+'_D.pth') print('Save Path for G: {}'.format(path_save_G)) print('Save Path for D: {}'.format(path_save_D)) torch.save({ 'G_model': self.generator.state_dict(), 'G_optimizer': self.optimizerG.state_dict(), 'G_epoch': index_epoch, }, path_save_G) torch.save({ 'D_model1': self.discriminator1.state_dict(), 'D_model2': self.discriminator2.state_dict(), 'D_model3': self.discriminator3.state_dict(), 'D_model4': self.discriminator4.state_dict(), 'D_optimizer1': self.optimizerD1.state_dict(), 'D_optimizer2': self.optimizerD2.state_dict(), 'D_optimizer3': self.optimizerD3.state_dict(), 'D_optimizer4': self.optimizerD4.state_dict(), 'D_epoch': index_epoch, }, path_save_D) def MSE_LOSS(self, label, pred): return tf.losses.mean_squared_error(label, pred) ################################################################################################ # -------------------------------- class of nework structure ----------------------------------- ################################################################################################ # ---------------------------------------G--------------------------------------- import nn_utils def get_edge_features(x, k, num=-1): """ Args: x: point cloud [B, dims, N] k: kNN neighbours Return: [B, 2dims, N, k] """ B, dims, N = x.shape # batched pair-wise distance xt = x.permute(0, 2, 1) xi = -2 * torch.bmm(xt, x) xs = torch.sum(xt**2, dim=2, keepdim=True) xst = xs.permute(0, 2, 1) dist = xi + xs + xst # [B, N, N] # get k NN id _, idx_o = torch.sort(dist, dim=2) idx = idx_o[: ,: ,1:k+1] # [B, N, k] idx = idx.contiguous().view(B, N*k) # gather neighbors = [] for b in range(B): tmp = torch.index_select(x[b], 1, idx[b]) # [d, N*k] <- [d, N], 0, [N*k] tmp = tmp.view(dims, N, k) neighbors.append(tmp) neighbors = torch.stack(neighbors) # [B, d, N, k] # centralize central = x.unsqueeze(3) # [B, d, N, 1] central = central.repeat(1, 1, 1, k) # [B, d, N, k] ee = torch.cat([central, neighbors-central], dim=1) assert ee.shape == (B, 2*dims, N, k) return ee def get_edge_features_xyz(x, pc, k, num=-1): """ Args: x: point cloud [B, dims, N] k: kNN neighbours Return: [B, 2dims, N, k] idx """ B, dims, N = x.shape # ---------------------------------------------------------------- # batched pair-wise distance in feature space maybe is can be changed to coordinate space # ---------------------------------------------------------------- xt = x.permute(0, 2, 1) xi = -2 * torch.bmm(xt, x) xs = torch.sum(xt**2, dim=2, keepdim=True) xst = xs.permute(0, 2, 1) dist = xi + xs + xst # [B, N, N] # get k NN id _, idx_o = torch.sort(dist, dim=2) idx = idx_o[: ,: ,1:k+1] # [B, N, k] idx = idx.contiguous().view(B, N*k) # gather neighbors = [] xyz =[] for b in range(B): tmp = torch.index_select(x[b], 1, idx[b]) # [d, N*k] <- [d, N], 0, [N*k] tmp = tmp.view(dims, N, k) neighbors.append(tmp) tp = torch.index_select(pc[b], 1, idx[b]) tp = tp.view(3, N, k) xyz.append(tp) neighbors = torch.stack(neighbors) # [B, d, N, k] xyz = torch.stack(xyz) # [B, 3, N, k] # centralize central = x.unsqueeze(3).repeat(1, 1, 1, k) # [B, d, N, 1] -> [B, d, N, k] central_xyz = pc.unsqueeze(3).repeat(1, 1, 1, k) # [B, 3, N, 1] -> [B, 3, N, k] e_fea = torch.cat([central, neighbors-central], dim=1) e_xyz = torch.cat([central_xyz, xyz-central_xyz], dim=1) assert e_fea.size() == (B, 2*dims, N, k) and e_xyz.size() == (B, 2*3, N, k) return e_fea, e_xyz class conv2dbr(nn.Module): """ Conv2d-bn-relu [B, Fin, H, W] -> [B, Fout, H, W] """ def __init__(self, Fin, Fout, kernel_size, stride=1): super(conv2dbr, self).__init__() self.conv = nn.Conv2d(Fin, Fout, kernel_size, stride) self.bn = nn.BatchNorm2d(Fout) self.ac = nn.ReLU(True) def forward(self, x): x = self.conv(x) # [B, Fout, H, W] x = self.bn(x) x = self.ac(x) return x class upsample_edgeConv(nn.Module): """ Edge Convolution using 1x1 Conv h [B, Fin, N] -> [B, Fout, N] """ def __init__(self, Fin, Fout, k, num): super(upsample_edgeConv, self).__init__() self.k = k self.Fin = Fin self.Fout = Fout self.num = num #self.conv1 = conv2dbr(2*Fin, 2*Fin, 1, 1) #self.conv2 = conv2dbr(2*Fin, 2*Fout, [1, 2*k+2], [1, 1]) self.conv2 = conv2dbr(2*Fin, 2*Fout, [1, 2*k], [1, 1]) self.inte_conv_hk = nn.Sequential( #nn.Conv2d(2*Fin, 4*Fin, [1, k//2], [1, 1]), # Fin, Fout, kernel_size, stride nn.Conv2d(2*Fin, 4*Fin, [1, k//2+1], [1, 1]), # Fin, Fout, kernel_size, stride nn.BatchNorm2d(4*Fin), nn.LeakyReLU(inplace=True) ) def forward(self, x): B, Fin, N = x.shape x = get_edge_features(x, self.k, self.num); # [B, 2Fin, N, k] # -------------learn_v2---------------------- BB, CC, NN, KK = x.size() #x = self.conv1(x) inte_x = self.inte_conv_hk(x) # Bx2CxNxk/2 inte_x = inte_x.transpose(2, 1) # BxNx2Cxk/2 #inte_x = inte_x.contiguous().view(BB, NN, CC, 2, KK//2+1) # BxNxCx2x(k//2+1) #inte_x = inte_x.contiguous().view(BB, NN, CC, KK+2) # BxNxCx(k+2) inte_x = inte_x.contiguous().view(BB, NN, CC, 2, KK//2) # BxNxCx2x(k//2+1) inte_x = inte_x.contiguous().view(BB, NN, CC, KK) # BxNxCx(k+2) inte_x = inte_x.permute(0, 2, 1, 3) # BxCxNxk merge_x = torch.cat((x, inte_x), 3) # BxCxNx2k x = self.conv2(merge_x) # [B, 2*Fout, N, 1] x = x.unsqueeze(3) # BxkcxN x = x.contiguous().view(B, self.Fout, 2, N) x = x.contiguous().view(B, self.Fout, 2*N) assert x.shape == (B, self.Fout, 2*N) return x class bilateral_upsample_edgeConv(nn.Module): """ Edge Convolution using 1x1 Conv h [B, Fin, N] -> [B, Fout, N] """ def __init__(self, Fin, Fout, k, num, softmax=True): super(bilateral_upsample_edgeConv, self).__init__() self.k = k self.Fin = Fin self.Fout = Fout self.softmax = softmax self.num = num # self.conv = conv2dbr(2*Fin, Fout, [1, 20], [1, 20]) #self.conv1 = conv2dbr(2*Fin, 2*Fin, 1 ,1) self.conv2 = conv2dbr(2*Fin, 2*Fout, [1, 2*k], [1, 1]) self.conv_xyz = nn.Sequential( nn.Conv2d(6, 16, 1), nn.BatchNorm2d(16), nn.LeakyReLU(inplace=True) ) self.conv_fea = nn.Sequential( nn.Conv2d(2*Fin, 16, 1), nn.BatchNorm2d(16), nn.LeakyReLU(inplace=True) ) self.conv_all = nn.Sequential( nn.Conv2d(16, 64, 1), nn.BatchNorm2d(64), nn.LeakyReLU(inplace=True), nn.Conv2d(64, 2*Fin, 1), nn.BatchNorm2d(2*Fin), nn.LeakyReLU(inplace=True) ) self.inte_conv_hk = nn.Sequential( #nn.Conv2d(2*Fin, 4*Fin, [1, k//2], [1, 1]), # Fin, Fout, kernel_size, stride nn.Conv2d(2*Fin, 4*Fin, [1, k//2+1], [1, 1]), # Fin, Fout, kernel_size, stride nn.BatchNorm2d(4*Fin), nn.LeakyReLU(inplace = True) ) def forward(self, x, pc): B, Fin, N = x.size() #x = get_edge_features(x, self.k, self.num); # [B, 2Fin, N, k] x, y = get_edge_features_xyz(x, pc, self.k, self.num); # feature x: [B, 2Fin, N, k] coordinate y: [B, 6, N, k] w_fea = self.conv_fea(x) w_xyz = self.conv_xyz(y) w = w_fea * w_xyz w = self.conv_all(w) if self.softmax == True: w = F.softmax(w, dim=-1) # [B, Fout, N, k] -> [B, Fout, N, k] # -------------learn_v2---------------------- BB, CC, NN, KK = x.size() #x = self.conv1(x) inte_x = self.inte_conv_hk(x) # Bx2CxNxk/2 inte_x = inte_x.transpose(2, 1) # BxNx2Cxk/2 inte_x = inte_x.contiguous().view(BB, NN, CC, 2, KK//2) # BxNxCx2x(k//2+1) inte_x = inte_x.contiguous().view(BB, NN, CC, KK) # BxNxCx(k+2) inte_x = inte_x.permute(0, 2, 1, 3) # BxCxNx(k+2) inte_x = inte_x * w # Here we concatenate the interpolated feature with the original feature. merge_x = torch.cat((x, inte_x), 3) # BxCxNx2k # Since conv2 uses a wide kernel size, the process of sorting by distance can be omitted. x = self.conv2(merge_x) # [B, 2*Fout, N, 1] x = x.unsqueeze(3) # BxkcxN x = x.contiguous().view(B, self.Fout, 2, N) x = x.contiguous().view(B, self.Fout, 2*N) assert x.shape == (B, self.Fout, 2*N) return x class edgeConv(nn.Module): """ Edge Convolution using 1x1 Conv h [B, Fin, N] -> [B, Fout, N] """ def __init__(self, Fin, Fout, k): super(edgeConv, self).__init__() self.k = k self.Fin = Fin self.Fout = Fout self.conv = nn_utils.conv2dbr(2*Fin, Fout, 1) def forward(self, x): B, Fin, N = x.shape x = get_edge_features(x, self.k); # [B, 2Fin, N, k] x = self.conv(x) # [B, Fout, N, k] x, _ = torch.max(x, 3) # [B, Fout, N] assert x.shape == (B, self.Fout, N) return x class bilateral_block_l1(nn.Module): def __init__(self,Fin,Fout,maxpool,stride=1,num_k = 20): super(bilateral_block_l1,self).__init__() self.maxpool = nn.MaxPool2d((1,maxpool),(1,1)) self.upsample_cov = nn.Sequential( upsample_edgeConv(Fin, Fout, num_k//2,1), #(128->256) nn.BatchNorm1d(Fout), nn.LeakyReLU(inplace=True) ) self.fc = nn.Sequential( nn.Linear(Fin, Fin), nn.BatchNorm1d(Fin), nn.LeakyReLU(inplace=True), #nn.Linear(Fin, 2*Fin), #nn.BatchNorm1d(2*Fin), #nn.LeakyReLU(inplace=True), nn.Linear(Fin, Fout), nn.BatchNorm1d(Fout), nn.LeakyReLU(inplace=True), ) self.g_fc = nn.Sequential( nn.Linear(Fout,512), nn.BatchNorm1d(512), nn.LeakyReLU(inplace=True), ) def forward(self,x): batchsize = x.size()[0] point_num = x.size()[2] xs = self.maxpool(x) xs = xs.view(batchsize,-1) xs = self.fc(xs) g = self.g_fc(xs) g = g.view(batchsize, -1, 1) g = g.repeat(1, 1, 2*point_num) xs = xs.view(batchsize,-1,1) xs = xs.repeat(1,1,2*point_num) x_ec = self.upsample_cov(x) x_out = torch.cat((xs,x_ec),1) g_out = torch.cat((g, x_ec), dim=1) return x_out, g_out class bilateral_block_l2(nn.Module): def __init__(self, Fin, Fout, maxpool, stride=1, num_k=20, softmax=True): super(bilateral_block_l2,self).__init__() self.maxpool = nn.MaxPool2d((1,maxpool),(1,1)) self.upsample_cov = bilateral_upsample_edgeConv(Fin, Fout, num_k//2, 1, softmax=softmax) #(256->512) self.bn_uc = nn.BatchNorm1d(Fout) self.relu_uc = nn.LeakyReLU(inplace=True) self.fc = nn.Sequential( nn.Linear(Fin, Fin), nn.BatchNorm1d(Fin), nn.LeakyReLU(inplace=True), #nn.Linear(Fin, 2*Fin), #nn.BatchNorm1d(2*Fin), #nn.LeakyReLU(inplace=True), nn.Linear(Fin, Fout), nn.BatchNorm1d(Fout), nn.LeakyReLU(inplace=True), ) self.g_fc = nn.Sequential( nn.Linear(Fout,512), nn.BatchNorm1d(512), nn.LeakyReLU(inplace=True), ) def forward(self, x, pc): batchsize, _, point_num = x.size() xs = self.maxpool(x) xs = xs.view(batchsize,-1) xs = self.fc(xs) g = self.g_fc(xs) g = g.view(batchsize, -1, 1) g = g.repeat(1, 1, 2*point_num) xs = xs.view(batchsize,-1,1) xs = xs.repeat(1, 1, 2*point_num) x_ec = self.relu_uc(self.bn_uc(self.upsample_cov(x, pc))) x_out = torch.cat((xs, x_ec), 1) g_out = torch.cat((g, x_ec), dim=1) return x_out, g_out class bilateral_block_l3(nn.Module): def __init__(self, Fin, Fout, maxpool, stride=1, num_k=20, softmax=True): super(bilateral_block_l3,self).__init__() self.maxpool = nn.MaxPool2d((1,maxpool),(1,1)) self.upsample_cov = bilateral_upsample_edgeConv(Fin, Fout, num_k//2, 1, softmax=softmax) #(256->512) self.bn_uc = nn.BatchNorm1d(Fout) self.relu_uc = nn.LeakyReLU(inplace=True) self.fc = nn.Sequential( nn.Linear(Fin, Fin), nn.BatchNorm1d(Fin), nn.LeakyReLU(inplace=True), #nn.Linear(Fin,2*Fin), #nn.BatchNorm1d(2*Fin), #nn.LeakyReLU(inplace=True), nn.Linear(Fin, Fout), nn.BatchNorm1d(Fout), nn.LeakyReLU(inplace=True), ) self.g_fc = nn.Sequential( nn.Linear(Fout, 512), nn.BatchNorm1d(512), nn.LeakyReLU(inplace=True), ) def forward(self, x, pc): batchsize = x.size()[0] point_num = x.size()[2] xs = self.maxpool(x) xs = xs.view(batchsize,-1) xs = self.fc(xs) g = self.g_fc(xs) g = g.view(batchsize, -1, 1) g = g.repeat(1, 1, 2*point_num) xs = xs.view(batchsize,-1,1) xs = xs.repeat(1,1,2*point_num) #x_ec = self.upsample_cov(x) x_ec = self.relu_uc(self.bn_uc(self.upsample_cov(x, pc))) x_out = torch.cat((xs,x_ec),1) g_out = torch.cat((g, x_ec), dim=1) return x_out, g_out class bilateral_block_l4(nn.Module): def __init__(self, Fin, Fout, maxpool, stride=1, num_k=20, softmax=True): super(bilateral_block_l4, self).__init__() self.maxpool = nn.MaxPool2d((1,maxpool),(1,1)) self.upsample_cov = bilateral_upsample_edgeConv(Fin, Fout, num_k//2, 1, softmax=softmax) #(256->512) self.bn_uc = nn.BatchNorm1d(Fout) self.relu_uc = nn.LeakyReLU(inplace=True) self.fc = nn.Sequential( nn.Linear(Fin, Fin), nn.BatchNorm1d(Fin), nn.LeakyReLU(inplace=True), #nn.Linear(Fin,2*Fin), #nn.BatchNorm1d(2*Fin), #nn.LeakyReLU(inplace=True), nn.Linear(Fin, Fout), nn.BatchNorm1d(Fout), nn.LeakyReLU(inplace=True), ) def forward(self, x, pc): batchsize = x.size()[0] point_num = x.size()[2] xs = self.maxpool(x) xs = xs.view(batchsize,-1) xs = self.fc(xs) xs = xs.view(batchsize,-1,1) xs = xs.repeat(1,1,2*point_num) #x_ec = self.upsample_cov(x) x_ec = self.relu_uc(self.bn_uc(self.upsample_cov(x, pc))) x_out = torch.cat((xs,x_ec),1) return x_out class PointGenerator(nn.Module): def __init__(self, num_point=2048, num_k=20, softmax=True): super(PointGenerator, self).__init__() self.num_point = num_point self.num_k = num_k self.fc1 = nn.Sequential( nn.Linear(128, 4096), nn.BatchNorm1d(4096), # 128,32 nn.LeakyReLU(inplace=True) ) self.bilateral1 = bilateral_block_l1(32, 32, 128, num_k=num_k) self.bilateral2 = bilateral_block_l2(64, 64, 256, num_k=num_k, softmax=softmax) self.bilateral3 = bilateral_block_l3(128, 128, 512, num_k=num_k, softmax=softmax) self.bilateral4 = bilateral_block_l4(256, 256, 1024, num_k=num_k, softmax=softmax) self.mlp1 = nn.Sequential( nn.Conv1d(512+32, 256, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(256, 64, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(64, 3, 1), nn.Tanh() ) self.mlp2 = nn.Sequential( nn.Conv1d(512+64, 256, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(256, 64, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(64, 3, 1), nn.Tanh() ) self.mlp3 = nn.Sequential( nn.Conv1d(512+128, 256, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(256, 64, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(64, 3, 1), nn.Tanh() ) self.mlp4 = nn.Sequential( nn.Conv1d(512, 256, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(256, 64, 1), nn.LeakyReLU(inplace=True), nn.Conv1d(64, 3, 1), nn.Tanh() ) def forward(self, x): batchsize = x.size()[0] x = self.fc1(x) x = x.view(batchsize, 32, 128) # Bx32x128 x1, g_x1 = self.bilateral1(x) # x1: Bx64x256 x1s = self.mlp1(g_x1) # Bx3x256 #print('x1: {} x1s: {}'.format(x1.size(), x1s.size())) x2, g_x2 = self.bilateral2(x1, x1s) # x2: Bx128x512 x2s = self.mlp2(g_x2) # Bx3x512 #print('x2: {} x2s: {}'.format(x2.size(), x2s.size())) x3, g_x3 = self.bilateral3(x2, x2s) # x3: Bx256x1024 x3s = self.mlp3(g_x3) # Bx3x1024 #print('x3: {} x3s: {}'.format(x3.size(), x3s.size())) x4 = self.bilateral4(x3, x3s) # x4: Bx512x2048 x4s = self.mlp4(x4) # Bx3x2048 #print('x4: {} x4s: {}'.format(x4.size(), x4s.size())) #exit() return x1s, x2s, x3s, x4s # ---------------------------------------D--------------------------------------- class PointDiscriminator_1(nn.Module): def __init__(self, num_point=256): super(PointDiscriminator_1, self).__init__() self.num_point = num_point self.fc1 = nn.Sequential( nn.Conv1d(3,64,1), nn.BatchNorm1d(64), nn.LeakyReLU(inplace=True), nn.Conv1d(64,128,1), nn.BatchNorm1d(128), nn.LeakyReLU(inplace=True), nn.Conv1d(128,256,1), nn.BatchNorm1d(256), nn.LeakyReLU(inplace=True), #nn.Conv1d(256,1024,1), #nn.BatchNorm1d(1024), #nn.LeakyReLU() ) self.maxpool = nn.MaxPool1d(num_point,1) self.mlp = nn.Sequential( #nn.Linear(1024,512), #nn.LeakyReLU(), nn.Linear(256,128), nn.LeakyReLU(inplace=True), nn.Linear(128,64), nn.LeakyReLU(inplace=True), nn.Linear(64,1) ) def forward(self, x): batchsize = x.size()[0] #print('d1: x', x.size()) #x = x.view(batchsize,3,self.num_point) x1 = self.fc1(x) x2 = self.maxpool(x1) x2 = x2.view(batchsize,256) x3 = self.mlp(x2) return x3 class PointDiscriminator_2(nn.Module): def __init__(self, num_point=512): super(PointDiscriminator_2, self).__init__() self.num_point = num_point self.fc1 = nn.Sequential( nn.Conv1d(3,64,1), nn.BatchNorm1d(64), nn.LeakyReLU(inplace=True), nn.Conv1d(64,128,1), nn.BatchNorm1d(128), nn.LeakyReLU(inplace=True), nn.Conv1d(128,256,1), nn.BatchNorm1d(256), nn.LeakyReLU(inplace=True), nn.Conv1d(256,512,1), nn.BatchNorm1d(512), nn.LeakyReLU(inplace=True) ) self.maxpool = nn.MaxPool1d(num_point,1) self.mlp = nn.Sequential( nn.Linear(512,256), nn.LeakyReLU(inplace=True), nn.Linear(256,64), nn.LeakyReLU(inplace=True), nn.Linear(64,1) ) def forward(self, x): batchsize = x.size()[0] x1 = self.fc1(x) x2 = self.maxpool(x1) x2 = x2.view(batchsize,512) x3 = self.mlp(x2) return x3 class PointDiscriminator_3(nn.Module): def __init__(self, num_point=1024): super(PointDiscriminator_3, self).__init__() self.num_point = num_point self.fc1 = nn.Sequential( nn.Conv1d(3,64,1), nn.BatchNorm1d(64), nn.LeakyReLU(inplace=True), nn.Conv1d(64,128,1), nn.BatchNorm1d(128), nn.LeakyReLU(inplace=True), nn.Conv1d(128,256,1), nn.BatchNorm1d(256), nn.LeakyReLU(inplace=True), nn.Conv1d(256,512,1), nn.BatchNorm1d(512), nn.LeakyReLU(inplace=True) ) self.maxpool = nn.MaxPool1d(num_point,1) self.mlp = nn.Sequential( #nn.Linear(1024,512), #nn.LeakyReLU(), nn.Linear(512,256), nn.LeakyReLU(inplace=True), nn.Linear(256,64), nn.LeakyReLU(inplace=True), nn.Linear(64,1) ) def forward(self, x): batchsize = x.size()[0] #print('d2: x', x.size()) #x = x.view(batchsize,3,self.num_point) x1 = self.fc1(x) x2 = self.maxpool(x1) x2 = x2.view(batchsize,512) x3 = self.mlp(x2) return x3 class PointDiscriminator_4(nn.Module): def __init__(self, num_point=2048): super(PointDiscriminator_4, self).__init__() self.num_point = num_point self.fc1 = nn.Sequential( nn.Conv1d(3,64,1), nn.BatchNorm1d(64), nn.LeakyReLU(inplace=True), nn.Conv1d(64,128,1), nn.BatchNorm1d(128), nn.LeakyReLU(inplace=True), nn.Conv1d(128,256,1), nn.BatchNorm1d(256), nn.LeakyReLU(inplace=True), nn.Conv1d(256,1024,1), nn.BatchNorm1d(1024), nn.LeakyReLU(inplace=True) ) self.maxpool = nn.MaxPool1d(num_point,1) self.mlp = nn.Sequential( nn.Linear(1024,512), nn.LeakyReLU(inplace=True), nn.Linear(512,256), nn.LeakyReLU(inplace=True), nn.Linear(256,64), nn.LeakyReLU(inplace=True), nn.Linear(64,1) ) def forward(self, x): batchsize = x.size()[0] #print('d3: x', x.size()) #x = x.view(batchsize,3,self.num_point) x1 = self.fc1(x) x2 = self.maxpool(x1) x2 = x2.view(batchsize,1024) x3 = self.mlp(x2) return x3
the-stack_106_19515
# coding: utf-8 """ NiFi Rest Api The Rest Api provides programmatic access to command and control a NiFi instance in real time. Start and stop processors, monitor queues, query provenance data, and more. Each endpoint below includes a description, definitions of the expected input and output, potential response codes, and the authorizations required to invoke each service. OpenAPI spec version: 1.11.1-SNAPSHOT Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class VariableRegistryDTO(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'variables': 'list[VariableEntity]', 'process_group_id': 'str' } attribute_map = { 'variables': 'variables', 'process_group_id': 'processGroupId' } def __init__(self, variables=None, process_group_id=None): """ VariableRegistryDTO - a model defined in Swagger """ self._variables = None self._process_group_id = None if variables is not None: self.variables = variables if process_group_id is not None: self.process_group_id = process_group_id @property def variables(self): """ Gets the variables of this VariableRegistryDTO. The variables that are available in this Variable Registry :return: The variables of this VariableRegistryDTO. :rtype: list[VariableEntity] """ return self._variables @variables.setter def variables(self, variables): """ Sets the variables of this VariableRegistryDTO. The variables that are available in this Variable Registry :param variables: The variables of this VariableRegistryDTO. :type: list[VariableEntity] """ self._variables = variables @property def process_group_id(self): """ Gets the process_group_id of this VariableRegistryDTO. The UUID of the Process Group that this Variable Registry belongs to :return: The process_group_id of this VariableRegistryDTO. :rtype: str """ return self._process_group_id @process_group_id.setter def process_group_id(self, process_group_id): """ Sets the process_group_id of this VariableRegistryDTO. The UUID of the Process Group that this Variable Registry belongs to :param process_group_id: The process_group_id of this VariableRegistryDTO. :type: str """ self._process_group_id = process_group_id def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, VariableRegistryDTO): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
the-stack_106_19516
from board import SCL, SDA import busio from PIL import Image, ImageDraw, ImageFont import adafruit_ssd1306 class display: def __init__( self, config:object ): self.i2c = busio.I2C(SCL,SDA) self.display = adafruit_ssd1306.SSD1306_I2C( config['DISPLAY']['WIDTH'], config['DISPLAY']['HEIGHT'], Self.i2c) self.padding = config['DISPLAY']['PADDING'] self.top = self.padding self.bottom = self.display.height - self.padding self.x = 0 self.txt_height = 8 self.font = ImageFont.load_default() def clear_display(self): self.display.fill(0) self.display.show() def print_lines( self,lines:list ): image = Image.new("1", (self.display.width, self.display.height)) # Get drawing object to draw on image. draw = ImageDraw.Draw(image) # Draw a black filled box to clear the image. draw.rectangle((0, 0, self.display.width, self.display.height), outline=0, fill=0) y = 0 for line in lines: draw.text((self.x, self.top + y), line, font=self.font, fill= 255) y+=self.txt_height self.display.image(image) self.display.show()
the-stack_106_19517
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from absl.testing import absltest, parameterized import numpy as np import jax from jax.config import config import jax.dlpack import jax.numpy as jnp from jax import test_util as jtu config.parse_flags_with_absl() try: import torch import torch.utils.dlpack except ImportError: torch = None try: import cupy except ImportError: cupy = None dlpack_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64, jnp.uint8, jnp.uint16, jnp.uint32, jnp.uint64, jnp.float16, jnp.float32, jnp.float64] all_dtypes = dlpack_dtypes + [jnp.bool_, jnp.bfloat16] torch_dtypes = [jnp.int8, jnp.int16, jnp.int32, jnp.int64, jnp.uint8, jnp.float16, jnp.float32, jnp.float64] nonempty_nonscalar_array_shapes = [(4,), (3, 4), (2, 3, 4)] empty_array_shapes = [] empty_array_shapes += [(0,), (0, 4), (3, 0),] nonempty_nonscalar_array_shapes += [(3, 1), (1, 4), (2, 1, 4)] nonempty_array_shapes = [()] + nonempty_nonscalar_array_shapes all_shapes = nonempty_array_shapes + empty_array_shapes class DLPackTest(jtu.JaxTestCase): def setUp(self): if jtu.device_under_test() == "tpu": self.skipTest("DLPack not supported on TPU") @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in dlpack_dtypes)) def testJaxRoundTrip(self, shape, dtype): rng = jtu.rand_default() np = rng(shape, dtype) x = jnp.array(np) dlpack = jax.dlpack.to_dlpack(x) y = jax.dlpack.from_dlpack(dlpack) self.assertAllClose(x, y, check_dtypes=True) self.assertRaisesRegex(RuntimeError, "DLPack tensor may be consumed at most once", lambda: jax.dlpack.from_dlpack(dlpack)) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in torch_dtypes)) @unittest.skipIf(not torch, "Test requires PyTorch") def testTorchToJax(self, shape, dtype): rng = jtu.rand_default() np = rng(shape, dtype) x = torch.from_numpy(np) x = x.cuda() if jtu.device_under_test() == "gpu" else x dlpack = torch.utils.dlpack.to_dlpack(x) y = jax.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y, check_dtypes=True) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in torch_dtypes)) @unittest.skipIf(not torch, "Test requires PyTorch") # TODO(phawkins): the dlpack destructor issues errors in jaxlib 0.1.38. def testJaxToTorch(self, shape, dtype): rng = jtu.rand_default() np = rng(shape, dtype) x = jnp.array(np) dlpack = jax.dlpack.to_dlpack(x) y = torch.utils.dlpack.from_dlpack(dlpack) self.assertAllClose(np, y.numpy(), check_dtypes=True) class CudaArrayInterfaceTest(jtu.JaxTestCase): def setUp(self): if jtu.device_under_test() != "gpu": self.skipTest("__cuda_array_interface__ is only supported on GPU") @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_{}".format( jtu.format_shape_dtype_string(shape, dtype)), "shape": shape, "dtype": dtype} for shape in all_shapes for dtype in dlpack_dtypes)) @unittest.skipIf(not cupy, "Test requires CuPy") def testJaxToCuPy(self, shape, dtype): rng = jtu.rand_default() x = rng(shape, dtype) y = jnp.array(x) z = cupy.asarray(y) self.assertEqual(y.__cuda_array_interface__["data"][0], z.__cuda_array_interface__["data"][0]) self.assertAllClose(x, cupy.asnumpy(z), check_dtypes=True) if __name__ == "__main__": absltest.main()
the-stack_106_19519
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, List, Optional, Tuple, Type, TypeVar, Union from . import enums, flags, utils from .asset import Asset from .colour import Colour from .invite import Invite from .mixins import Hashable from .object import Object from .permissions import PermissionOverwrite, Permissions __all__ = ( 'AuditLogDiff', 'AuditLogChanges', 'AuditLogEntry', ) if TYPE_CHECKING: import datetime from . import abc from .emoji import Emoji from .guild import Guild from .member import Member from .role import Role from .scheduled_event import ScheduledEvent from .types.audit_log import ( AuditLogChange as AuditLogChangePayload, AuditLogEntry as AuditLogEntryPayload, ) from .types.channel import ( PartialChannel as PartialChannelPayload, PermissionOverwrite as PermissionOverwritePayload, ) from .types.invite import Invite as InvitePayload from .types.role import Role as RolePayload from .types.snowflake import Snowflake from .user import User from .stage_instance import StageInstance from .sticker import GuildSticker from .threads import Thread TargetType = Union[ Guild, abc.GuildChannel, Member, User, Role, Invite, Emoji, StageInstance, GuildSticker, Thread, Object, None ] def _transform_timestamp(entry: AuditLogEntry, data: Optional[str]) -> Optional[datetime.datetime]: return utils.parse_time(data) def _transform_color(entry: AuditLogEntry, data: int) -> Colour: return Colour(data) def _transform_snowflake(entry: AuditLogEntry, data: Snowflake) -> int: return int(data) def _transform_channel(entry: AuditLogEntry, data: Optional[Snowflake]) -> Optional[Union[abc.GuildChannel, Object]]: if data is None: return None return entry.guild.get_channel(int(data)) or Object(id=data) def _transform_member_id(entry: AuditLogEntry, data: Optional[Snowflake]) -> Union[Member, User, None]: if data is None: return None return entry._get_member(int(data)) def _transform_guild_id(entry: AuditLogEntry, data: Optional[Snowflake]) -> Optional[Guild]: if data is None: return None return entry._state._get_guild(int(data)) def _transform_overwrites( entry: AuditLogEntry, data: List[PermissionOverwritePayload] ) -> List[Tuple[Object, PermissionOverwrite]]: overwrites = [] for elem in data: allow = Permissions(int(elem['allow'])) deny = Permissions(int(elem['deny'])) ow = PermissionOverwrite.from_pair(allow, deny) ow_type = elem['type'] ow_id = int(elem['id']) target = None if ow_type == '0': target = entry.guild.get_role(ow_id) elif ow_type == '1': target = entry._get_member(ow_id) if target is None: target = Object(id=ow_id) overwrites.append((target, ow)) return overwrites def _transform_icon(entry: AuditLogEntry, data: Optional[str]) -> Optional[Asset]: if data is None: return None if entry.action is enums.AuditLogAction.guild_update: return Asset._from_guild_icon(entry._state, entry.guild.id, data) else: return Asset._from_icon(entry._state, entry._target_id, data, path='role') # type: ignore - target_id won't be None in this case def _transform_avatar(entry: AuditLogEntry, data: Optional[str]) -> Optional[Asset]: if data is None: return None return Asset._from_avatar(entry._state, entry._target_id, data) # type: ignore - target_id won't be None in this case def _guild_hash_transformer(path: str) -> Callable[[AuditLogEntry, Optional[str]], Optional[Asset]]: def _transform(entry: AuditLogEntry, data: Optional[str]) -> Optional[Asset]: if data is None: return None return Asset._from_guild_image(entry._state, entry.guild.id, data, path=path) return _transform E = TypeVar('E', bound=enums.Enum) def _enum_transformer(enum: Type[E]) -> Callable[[AuditLogEntry, int], E]: def _transform(entry: AuditLogEntry, data: int) -> E: return enums.try_enum(enum, data) return _transform F = TypeVar('F', bound=flags.BaseFlags) def _flag_transformer(cls: Type[F]) -> Callable[[AuditLogEntry, Union[int, str]], F]: def _transform(entry: AuditLogEntry, data: Union[int, str]) -> F: return cls._from_value(int(data)) return _transform def _transform_type(entry: AuditLogEntry, data: int) -> Union[enums.ChannelType, enums.StickerType]: if entry.action.name.startswith('sticker_'): return enums.try_enum(enums.StickerType, data) else: return enums.try_enum(enums.ChannelType, data) class AuditLogDiff: def __len__(self) -> int: return len(self.__dict__) def __iter__(self) -> Generator[Tuple[str, Any], None, None]: yield from self.__dict__.items() def __repr__(self) -> str: values = ' '.join('%s=%r' % item for item in self.__dict__.items()) return f'<AuditLogDiff {values}>' if TYPE_CHECKING: def __getattr__(self, item: str) -> Any: ... def __setattr__(self, key: str, value: Any) -> Any: ... Transformer = Callable[["AuditLogEntry", Any], Any] class AuditLogChanges: # fmt: off TRANSFORMERS: ClassVar[Dict[str, Tuple[Optional[str], Optional[Transformer]]]] = { 'verification_level': (None, _enum_transformer(enums.VerificationLevel)), 'explicit_content_filter': (None, _enum_transformer(enums.ContentFilter)), 'allow': (None, _flag_transformer(Permissions)), 'deny': (None, _flag_transformer(Permissions)), 'permissions': (None, _flag_transformer(Permissions)), 'id': (None, _transform_snowflake), 'color': ('colour', _transform_color), 'owner_id': ('owner', _transform_member_id), 'inviter_id': ('inviter', _transform_member_id), 'channel_id': ('channel', _transform_channel), 'afk_channel_id': ('afk_channel', _transform_channel), 'system_channel_id': ('system_channel', _transform_channel), 'system_channel_flags': (None, _flag_transformer(flags.SystemChannelFlags)), 'widget_channel_id': ('widget_channel', _transform_channel), 'rules_channel_id': ('rules_channel', _transform_channel), 'public_updates_channel_id': ('public_updates_channel', _transform_channel), 'permission_overwrites': ('overwrites', _transform_overwrites), 'splash_hash': ('splash', _guild_hash_transformer('splashes')), 'banner_hash': ('banner', _guild_hash_transformer('banners')), 'discovery_splash_hash': ('discovery_splash', _guild_hash_transformer('discovery-splashes')), 'icon_hash': ('icon', _transform_icon), 'avatar_hash': ('avatar', _transform_avatar), 'rate_limit_per_user': ('slowmode_delay', None), 'guild_id': ('guild', _transform_guild_id), 'tags': ('emoji', None), 'default_message_notifications': ('default_notifications', _enum_transformer(enums.NotificationLevel)), 'video_quality_mode': (None, _enum_transformer(enums.VideoQualityMode)), 'privacy_level': (None, _enum_transformer(enums.PrivacyLevel)), 'format_type': (None, _enum_transformer(enums.StickerFormatType)), 'type': (None, _transform_type), 'communication_disabled_until': ('timed_out_until', _transform_timestamp), 'expire_behavior': (None, _enum_transformer(enums.ExpireBehaviour)), 'mfa_level': (None, _enum_transformer(enums.MFALevel)), 'status': (None, _enum_transformer(enums.EventStatus)), 'entity_type': (None, _enum_transformer(enums.EntityType)), } # fmt: on def __init__(self, entry: AuditLogEntry, data: List[AuditLogChangePayload]): self.before = AuditLogDiff() self.after = AuditLogDiff() for elem in data: attr = elem['key'] # special cases for role add/remove if attr == '$add': self._handle_role(self.before, self.after, entry, elem['new_value']) # type: ignore - new_value is a list of roles in this case continue elif attr == '$remove': self._handle_role(self.after, self.before, entry, elem['new_value']) # type: ignore - new_value is a list of roles in this case continue try: key, transformer = self.TRANSFORMERS[attr] except (ValueError, KeyError): transformer = None else: if key: attr = key transformer: Optional[Transformer] try: before = elem['old_value'] except KeyError: before = None else: if transformer: before = transformer(entry, before) setattr(self.before, attr, before) try: after = elem['new_value'] except KeyError: after = None else: if transformer: after = transformer(entry, after) setattr(self.after, attr, after) # add an alias if hasattr(self.after, 'colour'): self.after.color = self.after.colour self.before.color = self.before.colour if hasattr(self.after, 'expire_behavior'): self.after.expire_behaviour = self.after.expire_behavior self.before.expire_behaviour = self.before.expire_behavior def __repr__(self) -> str: return f'<AuditLogChanges before={self.before!r} after={self.after!r}>' def _handle_role(self, first: AuditLogDiff, second: AuditLogDiff, entry: AuditLogEntry, elem: List[RolePayload]) -> None: if not hasattr(first, 'roles'): setattr(first, 'roles', []) data = [] g: Guild = entry.guild for e in elem: role_id = int(e['id']) role = g.get_role(role_id) if role is None: role = Object(id=role_id) role.name = e['name'] # type: ignore - Object doesn't usually have name data.append(role) setattr(second, 'roles', data) class _AuditLogProxy: def __init__(self, **kwargs: Any) -> None: for k, v in kwargs.items(): setattr(self, k, v) class _AuditLogProxyMemberPrune(_AuditLogProxy): delete_member_days: int members_removed: int class _AuditLogProxyMemberMoveOrMessageDelete(_AuditLogProxy): channel: abc.GuildChannel count: int class _AuditLogProxyMemberDisconnect(_AuditLogProxy): count: int class _AuditLogProxyPinAction(_AuditLogProxy): channel: abc.GuildChannel message_id: int class _AuditLogProxyStageInstanceAction(_AuditLogProxy): channel: abc.GuildChannel class AuditLogEntry(Hashable): r"""Represents an Audit Log entry. You retrieve these via :meth:`Guild.audit_logs`. .. container:: operations .. describe:: x == y Checks if two entries are equal. .. describe:: x != y Checks if two entries are not equal. .. describe:: hash(x) Returns the entry's hash. .. versionchanged:: 1.7 Audit log entries are now comparable and hashable. Attributes ----------- action: :class:`AuditLogAction` The action that was done. user: :class:`abc.User` The user who initiated this action. Usually a :class:`Member`\, unless gone then it's a :class:`User`. id: :class:`int` The entry ID. target: Any The target that got changed. The exact type of this depends on the action being done. reason: Optional[:class:`str`] The reason this action was done. extra: Any Extra information that this entry has that might be useful. For most actions, this is ``None``. However in some cases it contains extra information. See :class:`AuditLogAction` for which actions have this field filled out. """ def __init__(self, *, users: Dict[int, User], data: AuditLogEntryPayload, guild: Guild): self._state = guild._state self.guild = guild self._users = users self._from_data(data) def _from_data(self, data: AuditLogEntryPayload) -> None: self.action = enums.try_enum(enums.AuditLogAction, data['action_type']) self.id = int(data['id']) # this key is technically not usually present self.reason = data.get('reason') extra = data.get('options') # fmt: off self.extra: Union[ _AuditLogProxyMemberPrune, _AuditLogProxyMemberMoveOrMessageDelete, _AuditLogProxyMemberDisconnect, _AuditLogProxyPinAction, _AuditLogProxyStageInstanceAction, Member, User, None, Role, Object ] = None # fmt: on if isinstance(self.action, enums.AuditLogAction) and extra: if self.action is enums.AuditLogAction.member_prune: # member prune has two keys with useful information self.extra = _AuditLogProxyMemberPrune( delete_member_days=int(extra['delete_member_days']), members_removed=int(extra['members_removed']), ) elif self.action is enums.AuditLogAction.member_move or self.action is enums.AuditLogAction.message_delete: channel_id = int(extra['channel_id']) self.extra = _AuditLogProxyMemberMoveOrMessageDelete( count=int(extra['count']), channel=self.guild.get_channel(channel_id) or Object(id=channel_id), ) elif self.action is enums.AuditLogAction.member_disconnect: # The member disconnect action has a dict with some information self.extra = _AuditLogProxyMemberDisconnect(count=int(extra['count'])) elif self.action.name.endswith('pin'): # the pin actions have a dict with some information channel_id = int(extra['channel_id']) self.extra = _AuditLogProxyPinAction( channel=self.guild.get_channel(channel_id) or Object(id=channel_id), message_id=int(extra['message_id']), ) elif self.action.name.startswith('overwrite_'): # the overwrite_ actions have a dict with some information instance_id = int(extra['id']) the_type = extra.get('type') if the_type == '1': self.extra = self._get_member(instance_id) elif the_type == '0': role = self.guild.get_role(instance_id) if role is None: role = Object(id=instance_id) role.name = self.extra.get('role_name') # type: ignore - Object doesn't usually have name self.extra = role elif self.action.name.startswith('stage_instance'): channel_id = int(extra['channel_id']) self.extra = _AuditLogProxyStageInstanceAction( channel=self.guild.get_channel(channel_id) or Object(id=channel_id) ) # this key is not present when the above is present, typically. # It's a list of { new_value: a, old_value: b, key: c } # where new_value and old_value are not guaranteed to be there depending # on the action type, so let's just fetch it for now and only turn it # into meaningful data when requested self._changes = data.get('changes', []) user_id = utils._get_as_snowflake(data, 'user_id') self.user = user_id and self._get_member(user_id) self._target_id = utils._get_as_snowflake(data, 'target_id') def _get_member(self, user_id: int) -> Union[Member, User, None]: return self.guild.get_member(user_id) or self._users.get(user_id) def __repr__(self) -> str: return f'<AuditLogEntry id={self.id} action={self.action} user={self.user!r}>' @utils.cached_property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns the entry's creation time in UTC.""" return utils.snowflake_time(self.id) @utils.cached_property def target(self) -> TargetType: if self._target_id is None or self.action.target_type is None: return None try: converter = getattr(self, '_convert_target_' + self.action.target_type) except AttributeError: return Object(id=self._target_id) else: return converter(self._target_id) @utils.cached_property def category(self) -> Optional[enums.AuditLogActionCategory]: """Optional[:class:`AuditLogActionCategory`]: The category of the action, if applicable.""" return self.action.category @utils.cached_property def changes(self) -> AuditLogChanges: """:class:`AuditLogChanges`: The list of changes this entry has.""" obj = AuditLogChanges(self, self._changes) del self._changes return obj @utils.cached_property def before(self) -> AuditLogDiff: """:class:`AuditLogDiff`: The target's prior state.""" return self.changes.before @utils.cached_property def after(self) -> AuditLogDiff: """:class:`AuditLogDiff`: The target's subsequent state.""" return self.changes.after def _convert_target_guild(self, target_id: int) -> Guild: return self.guild def _convert_target_channel(self, target_id: int) -> Union[abc.GuildChannel, Object]: return self.guild.get_channel(target_id) or Object(id=target_id) def _convert_target_user(self, target_id: int) -> Union[Member, User, None]: return self._get_member(target_id) def _convert_target_role(self, target_id: int) -> Union[Role, Object]: return self.guild.get_role(target_id) or Object(id=target_id) def _convert_target_invite(self, target_id: int) -> Invite: # invites have target_id set to null # so figure out which change has the full invite data changeset = self.before if self.action is enums.AuditLogAction.invite_delete else self.after fake_payload: InvitePayload = { 'max_age': changeset.max_age, 'max_uses': changeset.max_uses, 'code': changeset.code, 'temporary': changeset.temporary, 'uses': changeset.uses, 'channel': None, # type: ignore - the channel is passed to the Invite constructor directly } obj = Invite(state=self._state, data=fake_payload, guild=self.guild, channel=changeset.channel) try: obj.inviter = changeset.inviter except AttributeError: pass return obj def _convert_target_emoji(self, target_id: int) -> Union[Emoji, Object]: return self._state.get_emoji(target_id) or Object(id=target_id) def _convert_target_message(self, target_id: int) -> Union[Member, User, None]: return self._get_member(target_id) def _convert_target_stage_instance(self, target_id: int) -> Union[StageInstance, Object]: return self.guild.get_stage_instance(target_id) or Object(id=target_id) def _convert_target_sticker(self, target_id: int) -> Union[GuildSticker, Object]: return self._state.get_sticker(target_id) or Object(id=target_id) def _convert_target_thread(self, target_id: int) -> Union[Thread, Object]: return self.guild.get_thread(target_id) or Object(id=target_id) def _convert_target_guild_scheduled_event(self, target_id: int) -> Union[ScheduledEvent, Object]: return self.guild.get_scheduled_event(target_id) or Object(id=target_id)
the-stack_106_19520
''' Created by auto_sdk on 2020.05.19 ''' from aliexpress.top.api.base import RestApi class AliexpressAffiliateProductdetailGetRequest(RestApi): def __init__(self,domain='gw.api.taobao.com',port=80): RestApi.__init__(self,domain, port) self.app_signature = None self.fields = None self.product_ids = None self.target_currency = None self.target_language = None self.tracking_id = None def getapiname(self): return 'aliexpress.affiliate.productdetail.get'
the-stack_106_19521
# Write a program (using functions!) that asks the user for a long string containing multiple words. Print back to the user the same string, except with the words in backwards order. For example, say I type the string: # My name is Michele # Then I would see the string: # Michele is name My # shown back to me. sentence = input("Sentence: ") words = sentence.split(" ") for x in range(len(words)): print(words[-x-1] + (", " if x != len(words)-1 else "") ,end="") # print()
the-stack_106_19522
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyDatrie(PythonPackage): """Super-fast, efficiently stored Trie for Python (2.x and 3.x). Uses libdatrie.""" pypi = "datrie/datrie-0.8.2.tar.gz" maintainers = ['marcusboden'] version('0.8.2', '525b08f638d5cf6115df6ccd818e5a01298cd230b2dac91c8ff2e6499d18765d') depends_on('[email protected]:2.8,3.4:', type=('build', 'run')) depends_on('[email protected]:', type=('build')) depends_on('[email protected]:', type='build') depends_on('py-pytest-runner', type='build')
the-stack_106_19524
#Compounding style Simple = 0 # 1+rt Compounded = 1 # (1+r)^t Continuous = 2 # e^{rt} SimpleThenCompounded = 3 # Simple up to the first period then Compounded def compounding_from_name(name): dic = {'Simple': Simple, 'Compounded': Compounded, 'Continuous': Continuous, 'SimpleThenCompounded': SimpleThenCompounded} try: cp = dic[name] return cp except ValueError: print('Compounding style %s is unknown' % name)
the-stack_106_19526
import re from itertools import permutations def calculate(prev, next, op): if op == '+': return prev + next elif op == '-': return prev - next else: return prev * next def getNodes(string): numbers = re.findall(r'(\d+)', string) operators = re.findall(r'[+*-]', string) return numbers, operators def convertQueue(numbers, operators): que = [] for i in range(len(numbers)): que.append(numbers[i]) if i < len(operators): que.append(operators[i]) return que def solution(expression): answer = 0 nums, ops = getNodes(expression) # operators priority operators = set(ops) combos = permutations(operators, len(operators)) # make queue que = convertQueue(nums, ops) for combo in combos: # search tempOP = list(combo).copy() tempQue = que.copy() while tempOP: front = tempOP.pop(0) i = 0 while i + 1 < len(tempQue): if tempQue[i + 1] == front: prev = tempQue.pop(i) curr = tempQue.pop(i) next = tempQue.pop(i) now = str(calculate(int(prev), int(next), curr)) tempQue.insert(i, now) else: i += 1 if len(tempQue) == 1: res = abs(int(tempQue[0])) if res > answer: answer = res return answer print(solution("200-300-500-600*40+500+500")) # print(solution("100-200*300-500+20")) # print(solution("50*6-3*2"))
the-stack_106_19528
import unittest from glif import parsing from glif import Glif from glif import commands from glif import utils class TestBasicParsing(unittest.TestCase): def test_parse_argument(self): def test(s,k,v): pr = parsing.parseCommandArg(s) if not pr.success: print(pr.logs) self.assertTrue(pr.success) expected = parsing.CommandArgument(key=k, value=v) self.assertEqual(pr.value[0], expected) test('-lang=Eng "test"', 'lang', 'Eng') test('-lang=Eng', 'lang', 'Eng') test('-val="test"', 'val', 'test') test('-val=""', 'val', '') test('-val="te st\\\\" " "', 'val', 'te st\\') test('-val="test\\""', 'val', 'test"') test('-level=3', 'level', '3') test('-simple', 'simple', '') test('-simple "test"', 'simple', '') class TestCommandParsing(unittest.TestCase): def parseBCtest(self, cmdStr: str, cmdname: str = '', args: list[tuple[str,str]] = [], mainargs: list[str] = [], success: bool = True, remainder: str = ''): cmd = parsing.parseBasicCommand(cmdStr) if success: self.assertTrue(cmd.success) assert cmd.value self.assertEqual(cmd.value[1].strip(), remainder) self.assertEqual(len(cmd.value[0].args), len(args)) for (a,b) in zip(args, cmd.value[0].args): self.assertEqual(a[0], b.key) self.assertEqual(a[1], b.value) self.assertEqual(len(cmd.value[0].mainargs), len(mainargs)) for (x,y) in zip(mainargs, cmd.value[0].mainargs): self.assertEqual(x, y) else: self.assertFalse(cmd.success) def test_basic(self): self.parseBCtest('parse -lang=Eng "hello world"', 'parse', [('lang', 'Eng')], ['hello world']) self.parseBCtest('parse -lang=Eng -cat=S', 'parse', [('lang', 'Eng'), ('cat', 'S')]) self.parseBCtest('parse -lang=Eng "hello world" | l -lang=Ger', 'parse', [('lang', 'Eng')], ['hello world'], remainder='l -lang=Ger') self.parseBCtest('parse "hello world"', 'parse', [], ['hello world']) self.parseBCtest('parse', 'parse') self.parseBCtest('l -lang=Eng hello', 'l', [('lang','Eng')], ['hello']) self.parseBCtest('l -lang=Eng exclaim (hello world)', 'l', [('lang','Eng')], ['exclaim (hello world)']) def test_incomplete(self): self.parseBCtest('parse -lang=', success=False) self.parseBCtest('parse -lang=Eng "hello world', success=False) self.parseBCtest('parse -', success=False) def test_args(self): self.parseBCtest('c -arg="value"', 'c', [('arg', 'value')]) self.parseBCtest('c -bracket', 'c', [('bracket', '')]) self.parseBCtest('c -depth=3', 'c', [('depth', '3')]) self.parseBCtest('c -ignore-includes', 'c', [('ignore-includes', '')]) self.parseBCtest('c -file=input.txt', 'c', [('file', 'input.txt')]) def test_escape(self): self.parseBCtest('parse "\\""', 'parse', [], ['"']) self.parseBCtest('parse "\\"', success=False) self.parseBCtest('parse "\\\\"', 'parse', [], ['\\']) self.parseBCtest('parse "|" | l', 'parse', [], ['|'], remainder='l') def test_space(self): self.parseBCtest('parse -lang=Eng "hello world" | l -lang=Ger', 'parse', [('lang', 'Eng')], ['hello world'], remainder='l -lang=Ger') self.parseBCtest('parse -lang=Eng "hello world"| l -lang=Ger', 'parse', [('lang', 'Eng')], ['hello world'], remainder='l -lang=Ger') def test_mainargs(self): self.parseBCtest('parse "hello" "world"', 'parse', [], ['hello', 'world']) class TestFileIdentification(unittest.TestCase): def idTest(self, content: str, expected: utils.Result[tuple[str,str]]): r = parsing.identifyFile(content) if expected.success: self.assertTrue(r.success) assert r.value self.assertEqual(r.value[0:2], expected.value) else: self.assertFalse(r.success) def test_basic(self): self.idTest('abstract Grammar = { cat T; }', utils.Result(True, ('gf-abstract', 'Grammar'))) self.idTest('concrete GrammarEng of Grammar = { lin T = Str; }', utils.Result(True, ('gf-concrete', 'GrammarEng'))) self.idTest('theory DDT : ur:?LF = ❚', utils.Result(True, ('mmt-theory', 'DDT'))) self.idTest('view V : ?A -> ?B = ❚', utils.Result(True, ('mmt-view', 'V'))) self.idTest('parse "Hello world"', utils.Result(False)) self.idTest('-- The abstract syntax\nabstract Grammar = { cat T; }', utils.Result(True, ('gf-abstract', 'Grammar'))) self.idTest('// Example MMT theory ❚ theory DDT : ur:?LF = ❚', utils.Result(True, ('mmt-theory', 'DDT'))) if __name__ == '__main__': unittest.main()
the-stack_106_19529
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt import frappe, unittest class TestDynamicLinks(unittest.TestCase): def setUp(self): frappe.db.sql('delete from `tabEmail Unsubscribe`') def test_delete_normal(self): event = frappe.get_doc({ 'doctype': 'Event', 'subject':'test-for-delete', 'starts_on': '2014-01-01', 'event_type': 'Public' }).insert() unsub = frappe.get_doc({ 'doctype': 'Email Unsubscribe', 'email': '[email protected]', 'reference_doctype': event.doctype, 'reference_name': event.name }).insert() event.delete() self.assertFalse(frappe.db.exists('Email Unsubscribe', unsub.name)) def test_delete_with_comment(self): event = frappe.get_doc({ 'doctype': 'Event', 'subject':'test-for-delete-1', 'starts_on': '2014-01-01', 'event_type': 'Public' }).insert() event.add_comment('Comment', 'test') self.assertTrue(frappe.get_all('Comment', filters={'reference_doctype':'Event', 'reference_name':event.name})) event.delete() self.assertFalse(frappe.get_all('Comment', filters={'reference_doctype':'Event', 'reference_name':event.name})) def test_custom_fields(self): from frappe.utils.testutils import add_custom_field, clear_custom_fields add_custom_field('Event', 'test_ref_doc', 'Link', 'DocType') add_custom_field('Event', 'test_ref_name', 'Dynamic Link', 'test_ref_doc') unsub = frappe.get_doc({ 'doctype': 'Email Unsubscribe', 'email': '[email protected]', 'global_unsubscribe': 1 }).insert() event = frappe.get_doc({ 'doctype': 'Event', 'subject':'test-for-delete-2', 'starts_on': '2014-01-01', 'event_type': 'Public', 'test_ref_doc': unsub.doctype, 'test_ref_name': unsub.name }).insert() self.assertRaises(frappe.LinkExistsError, unsub.delete) event.test_ref_doc = None event.test_ref_name = None event.save() unsub.delete() clear_custom_fields('Event')
the-stack_106_19530
#!/usr/bin/env python # -*- coding: utf-8 -*- # # fake_enrichment documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import fake_enrichment # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'fake_enrichment' copyright = u"2018, Chris Churas" author = u"Chris Churas" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = fake_enrichment.__version__ # The full version, including alpha/beta/rc tags. release = fake_enrichment.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'fake_enrichment_restdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'fake_enrichment.tex', u'fake_enrichment Documentation', u'Chris Churas', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'fake_enrichment', u'fake_enrichment Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'fake_enrichment', u'fake_enrichment Documentation', author, 'fake_enrichment', 'One line description of project.', 'Miscellaneous'), ]
the-stack_106_19532
import unittest from aiohttp.test_utils import unittest_run_loop from ws.tests.testcase import MyHomeTestCase class ApplianceTestCase(MyHomeTestCase): @unittest_run_loop async def test_get(self): for collection in self.app.resources.appliances: for appliance in self.app.resources.appliances[collection]: request = await self.client.request( "GET", "/appliance/{}".format(appliance.name.replace(" ", "%20")) ) assert request.status == 200 text = await request.text() assert appliance.name in text @unittest_run_loop async def test_post(self): request = await self.client.request( "POST", "/appliance/simple%20light", data={ "module": "home.appliance.light.event.forced", "klass": "Event", "value": "Off", }, ) assert request.status == 200 text = await request.text() assert "simple light" in text assert "Off" in text if __name__ == "__main__": unittest.main()
the-stack_106_19533
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' Albert finetune and evaluation script. ''' import os from src.Albert_Callback_class import albert_callback from src.albert_for_finetune import AlbertFinetuneCell, AlbertCLS from src.dataset import create_classification_dataset from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation from src.utils import make_directory, LossCallBack, LoadNewestCkpt, AlbertLearningRate from src.model_utils.config import config as args_opt, optimizer_cfg, albert_net_cfg from src.model_utils.moxing_adapter import moxing_wrapper from src.model_utils.device_adapter import get_device_id, get_device_num from mindspore import context from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum from mindspore.train.model import Model from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank from mindspore.common import set_seed _cur_dir = os.getcwd() def do_train(dataset=None, ds_eval=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1, args=None): """ do train """ if load_checkpoint_path == "": raise ValueError("Pretrain model missed, finetune task must load pretrain model!") steps_per_epoch = dataset.get_dataset_size() print("========steps_per_epoch: ========", steps_per_epoch) # optimizer if optimizer_cfg.optimizer == 'AdamWeightDecay': lr_schedule = AlbertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate, end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate, warmup_steps=optimizer_cfg.AdamWeightDecay.warmup_steps, decay_steps=steps_per_epoch * epoch_num, power=optimizer_cfg.AdamWeightDecay.power) params = network.trainable_params() decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params)) other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params)) group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay}, {'params': other_params, 'weight_decay': 0.0}] optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps) elif optimizer_cfg.optimizer == 'Lamb': lr_schedule = AlbertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate, end_learning_rate=optimizer_cfg.Lamb.end_learning_rate, warmup_steps=optimizer_cfg.Lamb.warmup_steps, decay_steps=steps_per_epoch * epoch_num, power=optimizer_cfg.Lamb.power) optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule) elif optimizer_cfg.optimizer == 'Momentum': optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate, momentum=optimizer_cfg.Momentum.momentum) else: raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]") # load checkpoint into network ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1) ckpoint_cb = ModelCheckpoint(prefix="classifier", directory=None if save_checkpoint_path == "" else save_checkpoint_path, config=ckpt_config) param_dict = load_checkpoint(load_checkpoint_path) load_param_into_net(network, param_dict) update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2 ** 32, scale_factor=2, scale_window=1000) netwithgrads = AlbertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell) model = Model(netwithgrads) eval_callback = albert_callback(netwithgrads, args, steps_per_epoch, ds_eval, save_checkpoint_path) model.train(epoch_num, dataset, callbacks=[TimeMonitor(dataset.get_dataset_size()), eval_callback, LossCallBack(dataset.get_dataset_size()), ckpoint_cb]) def eval_result_print(assessment_method="accuracy", callback=None): """ print eval result """ f1 = 0.0 if assessment_method == "accuracy": print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num, callback.acc_num / callback.total_num)) elif assessment_method == "f1": print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP))) print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN))) print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN))) f1 = round(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN), 6) elif assessment_method == "mcc": print("MCC {:.6f} ".format(callback.cal())) elif assessment_method == "spearman_correlation": print("Spearman Correlation is {:.6f} ".format(callback.cal()[0])) else: raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]") return f1 def do_eval(dataset=None, network=None, num_class=2, assessment_method="accuracy", load_checkpoint_path=""): """ do eval """ if load_checkpoint_path == "": raise ValueError("Finetune model missed, evaluation task must load finetune model!") net_for_pretraining = network(albert_net_cfg, False, num_class) net_for_pretraining.set_train(False) param_dict = load_checkpoint(load_checkpoint_path) load_param_into_net(net_for_pretraining, param_dict) model = Model(net_for_pretraining) if assessment_method == "accuracy": callback = Accuracy() elif assessment_method == "f1": callback = F1(False, num_class) elif assessment_method == "mcc": callback = MCC() elif assessment_method == "spearman_correlation": callback = Spearman_Correlation() else: raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]") columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"] for data in dataset.create_dict_iterator(num_epochs=1): input_data = [] for i in columns_list: input_data.append(data[i]) input_ids, input_mask, token_type_id, label_ids = input_data logits = model.predict(input_ids, input_mask, token_type_id, label_ids) callback.update(logits, label_ids) print("==============================================================") eval_result_print(assessment_method, callback) print("==============================================================") def modelarts_pre_process(): '''modelarts pre process function.''' args_opt.device_id = get_device_id() args_opt.device_num = get_device_num() args_opt.load_pretrain_checkpoint_path = os.path.join(args_opt.load_path, args_opt.load_pretrain_checkpoint_path) args_opt.load_finetune_checkpoint_path = os.path.join(args_opt.output_path, args_opt.load_finetune_checkpoint_path) args_opt.save_finetune_checkpoint_path = os.path.join(args_opt.output_path, args_opt.save_finetune_checkpoint_path) if args_opt.schema_file_path: args_opt.schema_file_path = os.path.join(args_opt.data_path, args_opt.schema_file_path) args_opt.train_data_file_path = os.path.join(args_opt.data_path, args_opt.train_data_file_path) args_opt.eval_data_file_path = os.path.join(args_opt.data_path, args_opt.eval_data_file_path) @moxing_wrapper(pre_process=modelarts_pre_process) def run_classifier(): """run classifier task""" set_seed(45556) epoch_num = args_opt.epoch_num assessment_method = args_opt.assessment_method.lower() load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false": raise ValueError("At least one of 'do_train' or 'do_eval' must be true") if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "": raise ValueError("'train_data_file_path' must be set when do finetune task") if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "": raise ValueError("'eval_data_file_path' must be set when do evaluation task") if args_opt.device_target == "Ascend": context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id) else: context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(reserve_class_name_in_scope=False) if args_opt.device_target == "GPU": # Enable graph kernel context.set_context(enable_graph_kernel=True, graph_kernel_flags="--enable_parallel_fusion") if args_opt.distribute == 'true': if args_opt.device_target == "Ascend": # rank = args_opt.rank_id device_num = args_opt.device_num print("device_num: ", device_num) context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() rank = get_rank() elif args_opt.device_target == "GPU": init("nccl") context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, gradients_mean=True) else: raise ValueError(args_opt.device_target) save_ckpt_path = os.path.join(args_opt.save_finetune_checkpoint_path, 'ckpt_' + str(get_rank()) + '/') else: rank = 0 device_num = 1 save_ckpt_path = os.path.join(args_opt.save_finetune_checkpoint_path, 'ckpt_0/') make_directory(save_ckpt_path) netwithloss = AlbertCLS(albert_net_cfg, True, num_labels=args_opt.num_class, dropout_prob=0.1, assessment_method=assessment_method) if args_opt.do_train.lower() == "true": print("create_classification_dataset") ds = create_classification_dataset(batch_size=args_opt.train_batch_size, repeat_count=1, assessment_method=assessment_method, data_file_path=args_opt.train_data_file_path, schema_file_path=args_opt.schema_file_path, do_shuffle=(args_opt.train_data_shuffle.lower() == "true"), rank_size=args_opt.device_num, rank_id=rank) ds_eval = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1, assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, schema_file_path=args_opt.schema_file_path, do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"), rank_size=1, rank_id=0) do_train(ds, ds_eval, netwithloss, load_pretrain_checkpoint_path, save_ckpt_path, epoch_num, args_opt) if args_opt.do_eval.lower() == "true": if save_finetune_checkpoint_path == "": load_finetune_checkpoint_dir = _cur_dir else: load_finetune_checkpoint_dir = make_directory(save_ckpt_path) load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir, ds.get_dataset_size(), epoch_num, "classifier") if args_opt.do_eval.lower() == "true": ds = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1, assessment_method=assessment_method, data_file_path=args_opt.eval_data_file_path, schema_file_path=args_opt.schema_file_path, do_shuffle=(args_opt.eval_data_shuffle.lower() == "true")) do_eval(ds, AlbertCLS, args_opt.num_class, assessment_method, load_finetune_checkpoint_path) if __name__ == "__main__": run_classifier()
the-stack_106_19534
# Copyright (c) 2017 Quilt Data, Inc. All rights reserved. """ Version tests """ import json import requests from unittest.mock import patch from quilt_server.core import hash_contents, GroupNode, RootNode from .utils import QuiltTestCase class VersionTestCase(QuiltTestCase): """ Test version endpoints. """ def setUp(self): super(VersionTestCase, self).setUp() self.user = "test_user" self.pkg = "pkg" self.contents_list = [ RootNode(dict( foo=GroupNode(dict()) )), RootNode(dict( bar=GroupNode(dict()) )), RootNode(dict( baz=GroupNode(dict()) )) ] self.hashes = [hash_contents(contents) for contents in self.contents_list] # Upload three package instances. for contents in self.contents_list: self.put_package(self.user, self.pkg, contents) def _add_version(self, version, pkghash): return self.app.put( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version=version ), data=json.dumps(dict( hash=pkghash )), content_type='application/json', headers={ 'Authorization': self.user } ) def testGetVersion(self): resp = self._add_version('1', self.hashes[0]) assert resp.status_code == requests.codes.ok # Access the same version. resp = self.app.get( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version='1' ), headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.ok data = json.loads(resp.data.decode('utf8')) assert data['hash'] == self.hashes[0] # Access the same version, but with whitespace. resp = self.app.get( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version=' 1\t' ), headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.ok data = json.loads(resp.data.decode('utf8')) assert data['hash'] == self.hashes[0] assert data['created_by'] == data['updated_by'] == self.user assert data['created_at'] == data['updated_at'] def testListVersions(self): # Add a few versions in a random order, with random whitespace. resp = self._add_version('2.0.1+foo123', self.hashes[2]) assert resp.status_code == requests.codes.ok resp = self._add_version(' 2.0 ', self.hashes[1]) assert resp.status_code == requests.codes.ok resp = self._add_version('1.0', self.hashes[0]) assert resp.status_code == requests.codes.ok resp = self._add_version('2.0pre1', self.hashes[1]) assert resp.status_code == requests.codes.ok # List versions. resp = self.app.get( '/api/version/{usr}/{pkg}/'.format( usr=self.user, pkg=self.pkg ), headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.ok # Verify that the response is sorted by version, # but preserves the original formatting - whitespace, etc. data = json.loads(resp.data.decode('utf8')) versions = data['versions'] assert versions == [ dict( version='1.0', hash=self.hashes[0] ), dict( version='2.0pre1', hash=self.hashes[1] ), dict( version=' 2.0 ', hash=self.hashes[1] ), dict( version='2.0.1+foo123', hash=self.hashes[2] ) ] def testInvalidVersion(self): resp = self._add_version('foo', self.hashes[0]) assert resp.status_code == requests.codes.bad_request data = json.loads(resp.data.decode('utf8')) assert 'message' in data resp = self._add_version('1x', self.hashes[0]) assert resp.status_code == requests.codes.bad_request data = json.loads(resp.data.decode('utf8')) assert 'message' in data resp = self._add_version('1. 0', self.hashes[0]) assert resp.status_code == requests.codes.bad_request data = json.loads(resp.data.decode('utf8')) assert 'message' in data def testInvalidHash(self): resp = self._add_version('1.0', '000') assert resp.status_code == requests.codes.not_found data = json.loads(resp.data.decode('utf8')) assert 'message' in data def testDuplicateVersion(self): resp = self._add_version('1.0', self.hashes[0]) assert resp.status_code == requests.codes.ok # Same hash resp = self._add_version('1.0 ', self.hashes[0]) assert resp.status_code == requests.codes.conflict data = json.loads(resp.data.decode('utf8')) assert 'message' in data # Different hash resp = self._add_version(' 1.0 ', self.hashes[1]) assert resp.status_code == requests.codes.conflict data = json.loads(resp.data.decode('utf8')) assert 'message' in data def testDelete(self): resp = self._add_version('1.0', self.hashes[0]) assert resp.status_code == requests.codes.ok resp = self.app.delete( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version='1.0' ), headers={ 'Authorization': self.user } ) assert resp.status_code == requests.codes.method_not_allowed def testAccess(self): resp = self._add_version('1.0', self.hashes[0]) assert resp.status_code == requests.codes.ok sharewith = "share_with" resp = self._share_package(self.user, self.pkg, sharewith) assert resp.status_code == requests.codes.ok # Can view resp = self.app.get( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version='1.0' ), headers={ 'Authorization': sharewith } ) assert resp.status_code == requests.codes.ok # Can't modify resp = self.app.put( '/api/version/{usr}/{pkg}/{version}'.format( usr=self.user, pkg=self.pkg, version='1.0' ), data=json.dumps(dict( hash=self.hashes[1] )), content_type='application/json', headers={ 'Authorization': sharewith } ) assert resp.status_code == requests.codes.forbidden data = json.loads(resp.data.decode('utf8')) assert 'message' in data
the-stack_106_19536
""" Ory APIs Documentation for all public and administrative Ory APIs. Administrative APIs can only be accessed with a valid Personal Access Token. Public APIs are mostly used in browsers. # noqa: E501 The version of the OpenAPI document: v0.0.1-alpha.187 Contact: [email protected] Generated by: https://openapi-generator.tech """ import io import json import logging import re import ssl from urllib.parse import urlencode from urllib.parse import urlparse from urllib.request import proxy_bypass_environment import urllib3 import ipaddress from ory_client.exceptions import ApiException, UnauthorizedException, ForbiddenException, NotFoundException, ServiceException, ApiValueError logger = logging.getLogger(__name__) class RESTResponse(io.IOBase): def __init__(self, resp): self.urllib3_response = resp self.status = resp.status self.reason = resp.reason self.data = resp.data def getheaders(self): """Returns a dictionary of the response headers.""" return self.urllib3_response.getheaders() def getheader(self, name, default=None): """Returns a given response header.""" return self.urllib3_response.getheader(name, default) class RESTClientObject(object): def __init__(self, configuration, pools_size=4, maxsize=None): # urllib3.PoolManager will pass all kw parameters to connectionpool # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/poolmanager.py#L75 # noqa: E501 # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/connectionpool.py#L680 # noqa: E501 # maxsize is the number of requests to host that are allowed in parallel # noqa: E501 # Custom SSL certificates and client certificates: http://urllib3.readthedocs.io/en/latest/advanced-usage.html # noqa: E501 # cert_reqs if configuration.verify_ssl: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE addition_pool_args = {} if configuration.assert_hostname is not None: addition_pool_args['assert_hostname'] = configuration.assert_hostname # noqa: E501 if configuration.retries is not None: addition_pool_args['retries'] = configuration.retries if configuration.socket_options is not None: addition_pool_args['socket_options'] = configuration.socket_options if maxsize is None: if configuration.connection_pool_maxsize is not None: maxsize = configuration.connection_pool_maxsize else: maxsize = 4 # https pool manager if configuration.proxy and not should_bypass_proxies(configuration.host, no_proxy=configuration.no_proxy or ''): self.pool_manager = urllib3.ProxyManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=configuration.ssl_ca_cert, cert_file=configuration.cert_file, key_file=configuration.key_file, proxy_url=configuration.proxy, proxy_headers=configuration.proxy_headers, **addition_pool_args ) else: self.pool_manager = urllib3.PoolManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=configuration.ssl_ca_cert, cert_file=configuration.cert_file, key_file=configuration.key_file, **addition_pool_args ) def request(self, method, url, query_params=None, headers=None, body=None, post_params=None, _preload_content=True, _request_timeout=None): """Perform requests. :param method: http request method :param url: http request url :param query_params: query parameters in the url :param headers: http request headers :param body: request json body, for `application/json` :param post_params: request post parameters, `application/x-www-form-urlencoded` and `multipart/form-data` :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. """ method = method.upper() assert method in ['GET', 'HEAD', 'DELETE', 'POST', 'PUT', 'PATCH', 'OPTIONS'] if post_params and body: raise ApiValueError( "body parameter cannot be used with post_params parameter." ) post_params = post_params or {} headers = headers or {} timeout = None if _request_timeout: if isinstance(_request_timeout, (int, float)): # noqa: E501,F821 timeout = urllib3.Timeout(total=_request_timeout) elif (isinstance(_request_timeout, tuple) and len(_request_timeout) == 2): timeout = urllib3.Timeout( connect=_request_timeout[0], read=_request_timeout[1]) try: # For `POST`, `PUT`, `PATCH`, `OPTIONS`, `DELETE` if method in ['POST', 'PUT', 'PATCH', 'OPTIONS', 'DELETE']: # Only set a default Content-Type for POST, PUT, PATCH and OPTIONS requests if (method != 'DELETE') and ('Content-Type' not in headers): headers['Content-Type'] = 'application/json' if query_params: url += '?' + urlencode(query_params) if ('Content-Type' not in headers) or (re.search('json', headers['Content-Type'], re.IGNORECASE)): request_body = None if body is not None: request_body = json.dumps(body) r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'application/x-www-form-urlencoded': # noqa: E501 r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=False, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'multipart/form-data': # must del headers['Content-Type'], or the correct # Content-Type which generated by urllib3 will be # overwritten. del headers['Content-Type'] r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=True, preload_content=_preload_content, timeout=timeout, headers=headers) # Pass a `string` parameter directly in the body to support # other content types than Json when `body` argument is # provided in serialized form elif isinstance(body, str) or isinstance(body, bytes): request_body = body r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) else: # Cannot generate the request from given parameters msg = """Cannot prepare a request message for provided arguments. Please check that your arguments match declared content type.""" raise ApiException(status=0, reason=msg) # For `GET`, `HEAD` else: r = self.pool_manager.request(method, url, fields=query_params, preload_content=_preload_content, timeout=timeout, headers=headers) except urllib3.exceptions.SSLError as e: msg = "{0}\n{1}".format(type(e).__name__, str(e)) raise ApiException(status=0, reason=msg) if _preload_content: r = RESTResponse(r) # log response body logger.debug("response body: %s", r.data) if not 200 <= r.status <= 299: if r.status == 401: raise UnauthorizedException(http_resp=r) if r.status == 403: raise ForbiddenException(http_resp=r) if r.status == 404: raise NotFoundException(http_resp=r) if 500 <= r.status <= 599: raise ServiceException(http_resp=r) raise ApiException(http_resp=r) return r def GET(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("GET", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def HEAD(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("HEAD", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def OPTIONS(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("OPTIONS", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def DELETE(self, url, headers=None, query_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("DELETE", url, headers=headers, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def POST(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("POST", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PUT(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PUT", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PATCH(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PATCH", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) # end of class RESTClientObject def is_ipv4(target): """ Test if IPv4 address or not """ try: chk = ipaddress.IPv4Address(target) return True except ipaddress.AddressValueError: return False def in_ipv4net(target, net): """ Test if target belongs to given IPv4 network """ try: nw = ipaddress.IPv4Network(net) ip = ipaddress.IPv4Address(target) if ip in nw: return True return False except ipaddress.AddressValueError: return False except ipaddress.NetmaskValueError: return False def should_bypass_proxies(url, no_proxy=None): """ Yet another requests.should_bypass_proxies Test if proxies should not be used for a particular url. """ parsed = urlparse(url) # special cases if parsed.hostname in [None, '']: return True # special cases if no_proxy in [None , '']: return False if no_proxy == '*': return True no_proxy = no_proxy.lower().replace(' ',''); entries = ( host for host in no_proxy.split(',') if host ) if is_ipv4(parsed.hostname): for item in entries: if in_ipv4net(parsed.hostname, item): return True return proxy_bypass_environment(parsed.hostname, {'no': no_proxy} )
the-stack_106_19538
#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import time import unittest import node LEADER = 1 ROUTER = 2 class Test_MacScan(unittest.TestCase): def setUp(self): self.nodes = {} for i in range(1, 3): self.nodes[i] = node.Node(i) self.nodes[LEADER].set_panid(0xface) self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[ROUTER].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[LEADER].set_channel(12) self.nodes[LEADER].set_network_name('OpenThread') self.nodes[ROUTER].set_panid(0xface) self.nodes[ROUTER].set_mode('rsdn') self.nodes[ROUTER].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ROUTER].enable_whitelist() self.nodes[ROUTER].set_channel(12) self.nodes[ROUTER].set_network_name('OpenThread') def tearDown(self): for n in list(self.nodes.values()): n.stop() n.destroy() def test(self): self.nodes[LEADER].start() self.nodes[LEADER].set_state('leader') self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ROUTER].start() time.sleep(5) self.assertEqual(self.nodes[ROUTER].get_state(), 'router') results = self.nodes[LEADER].scan() self.assertEqual(len(results), 16) if __name__ == '__main__': unittest.main()
the-stack_106_19539
import os import sys import random import math import time class BadInputError(Exception): pass class Player(): def __init__(self, name): self.id = None self.name = name self.type = 'Human' self.hand = Hand() self.legalCards = [] self.wildCards = [] self.valueChangeCards = [] self.zeroCards = [] self.canSkip = False self.canReverse = False self.canDrawTwo = False self.canDrawFour = False self.canValueChange = False self.drew = False self.scrollMax = 0 self.points = 0 self.forceDraw = 0 def addCard(self, card): self.drew = True if self.forceDraw > 0: self.forceDraw -= 1 self.drew = False self.hand.addCard(card) def beginTurn(self): self.drew = False def didDraw(self): return self.drew def getLegalCards(self, color, value, zeroChange=False): self.canSkip = False self.canReverse = False self.canDrawTwo = False self.canDrawFour = False self.canValueChange = False self.canZeroChange = False self.legalCards = [] self.wildCards = [] self.valueChangeCards = [] self.zeroCards = [] plusFours = [] for card in self.hand: if card.isWild(): if card.getValue() == '+4': plusFours.append(card) else: self.wildCards.append(card) elif zeroChange and card.isZero(): self.canZero = True self.zeroCards.append(card) elif card.getColor() == color or card.getValue() == value: if card.getColor() != color: self.canValueChange = True self.valueChangeCards.append(card) if card.getValue() == "+2": self.canDrawTwo = True elif card.getValue() == 'R': self.canReverse = True elif card.getValue() == 'X': self.canSkip = True self.legalCards.append(card) if len(self.legalCards) == 0 and len(plusFours) > 0: self.canDrawFour = True self.wildCards += plusFours def getValidCards(self): return self.legalCards def getAllValidCards(self): return self.legalCards + self.wildCards + self.zeroCards def hasLegalCard(self): return len(self.legalCards) > 0 def addPoints(self, amount): if (self.points + amount) <= 999999999999999999999: self.points += amount def removeCard(self, index): return self.hand.removeCard(index) def assignID(self, identity): self.id = identity def getName(self): return self.name def getID(self): return self.id def getPoints(self): return self.points def getType(self): return self.type def getCardNum(self): return len(self.hand) def getHand(self, scrollNum=0, hide=False): return self.hand.show(scrollNum, hide) def getForceDraws(self): return self.forceDraw def addForceDraw(self, num): self.forceDraw += num def decreaseForceDraw(self): self.forceDraw -= 1 def removeForceDraw(self): self.forceDraw = 0 def checkCard(self, index): return self.hand.getCard(int(index)) def discardHand(self): self.hand.discard() def __str__(self): return self.name def __repr__(self): return '({},{})'.format(self.name, self.points) class Hand(): ''''deck' (Deck) : Card's Color (rgby) 'numberOfCards' (int) : Card's Value (0-9, R, X, W, +2, +4)''' def __init__(self, deck=None,numberOfCards=0): self.hand = [] if deck != None: self.draw(deck,numberOfCards) def __iter__(self): return iter(self.hand) def __len__(self): return len(self.hand) def __getitem__(self, item): try: return self.hand[item] except: return '' def addCard(self, card): self.hand.append(card) def removeCard(self, index): index = int(index) if (0 <= index < len(self)): return self.hand.pop(index) def discard(self): self.hand = [] def show(self, scrollNum=0, hide=False): if scrollNum == -1: scrollNum = 0 output = '' num = 0 header, footer, upper, lower = '', '', '', '' header += ('\033[97m\u2666--\u2666\033[0m ') upper += ('\033[97m|<-|\033[0m ') lower += ('\033[97m|<-|\033[0m ') footer += ('\033[97m\u2666--\u2666\033[0m ') for i in range(10): indexNum = i+(10*scrollNum) if indexNum < len(self): header += (self[indexNum].getRow(0,hide)+' ') upper += (self[indexNum].getRow(1,hide)+' ') lower += (self[indexNum].getRow(2,hide)+' ') footer += (self[indexNum].getRow(3,hide)+' ') num += 1 for j in range(10-num): j #unused header += (' ') footer += (' ') upper += (' ') lower += (' ') header += ('\033[97m\u2666--\u2666\033[0m ') upper += ('\033[97m|->|\033[0m ') lower += ('\033[97m|->|\033[0m ') footer += ('\033[97m\u2666--\u2666\033[0m ') output += (' '+header+'\n '+upper+'\n '+lower+'\n '+footer+'\n\033[97m|-(<)--') for k in range(num): output += '({})'.format(k) output += '--' for l in range(10-num): l #unused output += '-----' output += '(>)--|\033[0m\n' return output def getCard(self, index): return self.hand[index] def indexCard(self, card): return self.hand.index(card) class GameSettings(): playerIdentities = ('play1','play2','play3','play4') computerNames = ('Watson','SkyNet','Hal','Metal Gear') def __init__(self): self.playerStaging = [] # Where Player Objs Are Stored Before Game Starts self.players = {} # ID : Player Obj self.numPlayers = 0 self.useColor = True self.displayEffects = True self.hideComputerHands = True self.zeroChange = False self.computerSimulation = False self.mainMenuError = '' self.computerSpeed = 'normal' def canAddPlayer(self): return (self.numPlayers < 4) def canRemovePlayer(self): return (self.numPlayers > 0) def canBegin(self): return (self.numPlayers > 1) def addPlayer(self, player): self.playerStaging.append(player) self.numPlayers += 1 def removePlayer(self, number): number -= 1 del self.playerStaging[number] self.numPlayers -= 1 def clearStaging(self): self.numPlayers = 0 self.playerStaging = [] def finalizePlayers(self): self.players.clear() identity = 0 for player in self.playerStaging: playerID = self.playerIdentities[identity] player.assignID(playerID) self.players[playerID] = player identity += 1 def getPlayerNum(self): return self.numPlayers def getComputerName(self): complete = False index = self.numPlayers while not complete: name = self.computerNames[index] complete = True for player in self.playerStaging: if player.getName() == name: index += 1 if index >= len(self.computerNames): index = 0 complete = False return self.computerNames[index] def getRandomIdentity(self): '''For Getting a Random Player for First Turn.''' return random.choice(self.players.keys()) def compileMainMenuElements(self): def getBlankSpace(word, total): return " "*(total-len(word)) def getPlayerBox(playerNum, rowNum): if rowNum == 1: name = self.playerStaging[playerNum-1].getName() return '{}{}'.format(name, getBlankSpace(name, 29)) elif rowNum == 2: points = self.playerStaging[playerNum-1].getPoints() return 'Points: {}{}'.format(points, getBlankSpace(str(points), 21)) self.mainMenuElements= {'play1row1':'No Player ','play1row2':' ', 'play2row1':'No Player ', 'play2row2':' ', 'play3row1':'No Player ','play3row2':' ', 'play4row1':'No Player ', 'play4row2':' ', 'play1box':'\033[90m','play2box':'\033[90m','play3box':'\033[90m','play4box':'\033[90m', 'beginBox':'\033[90m','addBox':'\033[97m','removeBox':'\033[90m' } playerBoxKey = 'play{}box' playerRowKey = 'play{}row{}' i = 1 for j in self.playerStaging: j colorCode = ['\033[91m','\033[94m','\033[92m','\033[93m'] key = playerBoxKey.format(i) self.mainMenuElements[key] = colorCode[i-1] self.mainMenuElements[playerRowKey.format(i,1)] = getPlayerBox(i, 1) self.mainMenuElements[playerRowKey.format(i,2)] = getPlayerBox(i, 2) i+=1 if self.canBegin(): self.mainMenuElements['beginBox'] = '\033[95m' if not self.canAddPlayer(): self.mainMenuElements['addBox'] = '\033[90m' if self.canRemovePlayer(): self.mainMenuElements['removeBox'] = '\033[97m' def changeComputerSpeed(self): if self.computerSpeed == 'slow': self.computerSpeed = 'normal' elif self.computerSpeed == 'normal': self.computerSpeed = 'fast' elif self.computerSpeed == 'fast': self.computerSpeed = 'slow' def getMainMenuElements(self): return self.mainMenuElements class Deck(): ''''shuffle' (bool) : shuffle deck.''' colors = ('red','yellow','green','blue') values = ('0','1','2','3','4','5','6','7','8','9','X','R','+2') def __init__(self, populate): '''Initializes proper deck of 108 Uno Cards.''' self.deck = [] if populate: self.populate(True) def __getitem__(self, index): return self.deck[index] def populate(self, shuffle=True): for color in self.colors: for value in self.values: self.deck.append(Card(color, value)) if value != '0': self.deck.append(Card(color, value)) for i in range(4): i #unused self.deck.append(Card('wild', '+4')) self.deck.append(Card('wild', 'W')) if shuffle: self.shuffle() def __iter__(self): return iter(self.deck) def __len__(self): return len(self.deck) def draw(self): return self.deck.pop() def place(self, card): return self.deck.append(card) def insert(self, card): self.deck.insert(0, card) def shuffle(self): random.shuffle(self.deck) class ComputerPlayer(Player): def __init__(self, name): super().__init__(name) self.type = 'Computer' self.begun = False self.colorsInHand = {'red':0, 'blue':0, 'green':0, 'yellow':0, 'wild':0} self.colorsOutHand = {} self.currentColor = "" def addCard(self, card): Player.addCard(self, card) color = card.getColor() self.colorsInHand[color] += 1 def indexCard(self, cardColor, cardValue): for card in self.hand: if card.getValue() == cardValue: if cardValue in ('+4', 'W'): return self.hand.indexCard(card) else: if card.getColor() == cardColor: return self.hand.indexCard(card) raise ValueError("Card Cannot Be Found") def think(self, match): card = None self.currentColor = match.currentColor currentValue = match.currentValue zeroChangeRule = match.zeroChange twoPlayers = False previousTurnID = match.getNextTurn(True) nextTurnID = match.getNextTurn(False) previousPlayer = match.getPlayer(previousTurnID) #nextPlayer = match.getPlayer(nextTurnID) if previousTurnID == nextTurnID: twoPlayers = True if self.canSkip == False and self.canReverse == True: self.canSkip = True self.canReverse = False self.getLegalCards(self.currentColor, currentValue, zeroChangeRule) ### DRAW CASE ### if len(self.legalCards) == 0 and len(self.wildCards) == 0: return "d" else: ### NO LEGAL CARD, USE WILD CARD ### if len(self.legalCards) == 0: if zeroChangeRule and self.canZeroChange: bestZeroColor = self.getBestColor(self.zeroCards) card = self.getCardByColor(self.zeroCards, bestZeroColor) else: if self.canDrawFour: card = self.getCardByValue(self.wildCards, "+4") print(card) else: card = random.choice(self.wildCards) else: ### HAS LEGAL CARD ### if twoPlayers and self.canSkip: #Always play a skip card in a two player game #print("Shed Skip Strategy") card = self.getCardByValue(self.legalCards,"R", "X") if self.canReverse and previousPlayer.didDraw(): #print("Reverse Strategy") reverseCards = self.getAllCardsByValue(self.legalCards, "R") for reverseCard in reverseCards: if reverseCard.getColor() == self.currentColor: card = reverseCard if self.canValueChange: # Computer Can Value Change, However, Should it? # Computer Checks to See if Value Change Color is Better Than Current currentColorNum = self.colorsInHand[self.currentColor] bestValueChangeColor = self.getBestColor(self.valueChangeCards) if self.colorsInHand[bestValueChangeColor] > currentColorNum or len(self.valueChangeCards) == len(self.legalCards): card = self.getCardByColor(self.valueChangeCards, bestValueChangeColor) if card == None: #print("Random Strategy") card = random.choice(list(set(self.legalCards) - set(self.valueChangeCards))) color = card.getColor() self.colorsInHand[color] -= 1 return str(self.indexCard(card.getColor(), card.getValue())) def getWildColor(self): maxKey = max(self.colorsInHand, key=self.colorsInHand.get) if maxKey == 'wild': return random.choice(('r','g','b','y')) else: return maxKey def getCardByValue(self, cardList, *values): for card in cardList: if card.getValue() in values: return card def getAllCardsByValue(self, cardList, *values): cards = [] for card in cardList: if card.getValue() in values: cards.append(card) return cards def getCardByColor(self, cardList, *colors): for card in cardList: if card.getColor() in colors: return card def getBestColor(self, cardList): bestColor = None bestColorNum = 0 for card in cardList: color = card.getColor() if self.colorsInHand[color] > bestColorNum: bestColor = color bestColorNum = self.colorsInHand[color] return bestColor class Card(): ''' 'suit' (string) : Card's Color (rgby) 'rank' (string) : Card's Value (0-9, R, X, W, +2, +4) ''' colors = { 'red' : '\033[91m', 'green' : '\033[92m', 'yellow' : '\033[93m', 'blue' : '\033[94m', 'purple' : '\033[95m', 'cyan' : '\033[96m', 'white' : '\033[97m', 'wild' : '', 'dwild' : '', 'dred' : '\033[31m', 'dgreen' : '\033[32m', 'dyellow' : '\033[33m', 'dblue' : '\033[34m', 'dpurple' : '\033[35m', 'dcyan' : '\033[36m', 'dwhite' : '\033[37m', } idMap = { 'red':'R','blue':'B','green':'G','yellow':'Y','wild':'W', '0':'0','1':'1','2':'2','3':'3','4':'4','5':'5','6':'6','7':'7','8':'8','9':'9', '+2':'+','R':'R','W':'W','+4':'$','X':'X' } bigNums = { "0" : [" .d888b. ","d88P Y88b","888 888","888 888","888 888","888 888","d88P Y88b"," \"Y888P\" "], "1" : [" d888 "," d8888 "," 888 "," 888 "," 888 "," 888 "," 888 "," 8888888 "], "2" : [".d8888b. ","d88P Y88","d8 888"," .d88P",".od888P\" ","d88P\" ","888\" ","888888888"], "3" : [" .d8888b.","d88P Y88"," .d88"," 8888\" "," \"Y8b","888 88","Y88b d88"," \"Y8888P\""], "4" : [" d88b "," d8P88 "," d8 88 "," d8 88 ","d8 88 ","888888888"," 88 "," 88 "], "5" : ["888888888","888 ","888 ","8888888b "," \"Y88b "," 888","Y88b d88P","\"Y8888P\" "], "6" : [" .d888b. ","d88P Y88b","888 ","888d888b ","888P \"Y8b","888 888","Y88b d88b"," \"Y888P\" "], "7" : ["888888888"," d8P"," d8P "," d8P "," 8888888 "," d8P "," d8P ","d8P "], "8" : [" .d888b. ","d8P Y8b","Y8b. d8P"," \"Y8888\" "," .dP\"Yb. ","888 888","Y88b d88P"," \"Y888P\" "], "9" : [" .d888b. ","d8P Y8b","88 88","Y8b. d88"," \"Y88P888"," 888","Y88b d88P"," \"Y888P\" "], "X" : ["Y8b d8P"," Y8b d8P "," Y8o8P "," Y8P "," d8b "," d888b "," d8P Y8b ","d8P Y8b"], "W" : ["88 88","88 88","88 o 88","88 d8b 88","88d888b88","88P Y88","8P Y8","P Y"], "+2" : [" db "," 88 ","C8888D "," 88 8888"," VP 8"," 8888"," 8 "," 8888"], "+4" : [" db "," 88 ","C8888D "," 88 d "," VP d8 "," d 8 "," d8888"," 8 "], "R9" : [" d88P "," d88P "," d88P "," d88P "," Y88b "," Y88b "," Y88b "," Y88b "], "R8" : [" d88P "," d88P "," d88P ","d88P ","Y88b "," Y88b "," Y88b "," Y88b "], "R7" : [" d88P Y"," d88P ","d88P ","88P ","88b ","Y88b "," Y88b "," Y88b d"], "R6" : [" d88P Y8","d88P Y","88P ","8P ","8b ","88b ","Y88b d"," Y88b d8"], "R5" : ["d88P Y88","88P Y8","8P Y","P ","b ","8b d","88b d8","Y88b d88"], "R4" : ["88P Y88b","8P Y88","P Y8"," Y"," d","b d8","8b d88","88b d88P"], "R3" : ["8P Y88b ","P Y88b"," Y88"," Y8"," d8"," d88","b d88P","8b d88P "], "R2" : ["P Y88b "," Y88b "," Y88b"," Y88"," d88"," d88P"," d88P ","b d88P "], "R1" : [" Y88b "," Y88b "," Y88b "," Y88b"," d88P"," d88P "," d88P "," d88P "], "R0" : [" Y88b "," Y88b "," Y88b "," Y88b "," d88P "," d88P "," d88P "," d88P "], } def __init__(self, color, value): '''Initializes Uno Card w/ Color and Value.''' self.wild = False #Is wild card? self.zero = False self.cardID = '{}{}'.format(self.idMap[color],self.idMap[value]) self.setColor(color) self.setValue(value) self.setPoints(value) ############################################# ### -\/- Retrieve Card Information -\/- ### def __repr__(self): return "{},{}".format(self.color, self.value) def getBigNum(self, reverse, reverseSeed=0): '''Returns list of strings to draw card's value on the pile.''' bigNums = [] colorCode = self.colorCode colorCodeDark = self.colorCodeDark value = self.value if value == 'R': if not reverse: value += str(reverseSeed) else: value += str(9-reverseSeed) for mid in self.bigNums[value]: bigNums += ['{}| |{}'.format(colorCode,colorCodeDark)+mid+'{}| |\033[0m\t'.format(colorCode)] return bigNums def getColor(self): '''Returns card's color.''' return self.color def getColorCode(self): '''Returns card's color code.''' return self.colorCode def getValue(self): '''Returns card's value.''' return self.value def getPoints(self): '''Returns card's point value.''' return self.points def getRow(self,rowNum,hide=False): value = self.value displaySpace = self.displaySpace if hide: colorCode = '\033[97m' value = '?' displaySpace = ' ' else: colorCode = self.colorCode if self.isWild(): if rowNum == 0: colorCode = '\033[91m' elif rowNum == 1: colorCode = '\033[93m' elif rowNum == 2: colorCode = '\033[92m' elif rowNum == 3: colorCode = '\033[94m' if rowNum == 0: return '{}\u2666--\u2666\033[0m'.format(colorCode) elif rowNum == 1: return '{}|{}{}|\033[0m'.format(colorCode, displaySpace, value) elif rowNum == 2: if hide: return '{}|? |\033[0m'.format(colorCode) else: return '{}| |\033[0m'.format(colorCode) elif rowNum == 3: return '{}\u2666--\u2666\033[0m'.format(colorCode) ############################################# ### -\/- Set Card Information -\/- ### def setColor(self, color): '''Sets Card's color and escape code.''' if color == 'blue': self.color = 'blue' self.colorCode = self.colors['blue'] self.colorCodeDark = self.colors['dblue'] elif color == 'red': self.color = 'red' self.colorCode = self.colors['red'] self.colorCodeDark = self.colors['dred'] elif color == 'yellow': self.color = 'yellow' self.colorCode = self.colors['yellow'] self.colorCodeDark = self.colors['dyellow'] elif color == 'green': self.color = 'green' self.colorCode = self.colors['green'] self.colorCodeDark = self.colors['dgreen'] elif color == 'wild': #No color modification self.wild = True self.color = 'wild' self.colorCodeDark = self.colors['dwild'] self.colorCode = self.colors['wild'] def setValue(self, value): if value in ('0','1','2','3','4','5','6','7','8','9','X','R','+2','+4','W'): self.value = value self.displaySpace = ' ' if len(value) == 2: self.displaySpace = '' if value == '0': self.zero = True def setPoints(self, value): if value in ('0','1','2','3','4','5','6','7','8','9'): self.points = int(value) elif value in ("W", "+4"): self.points = 50 else: self.points = 20 ############################################# ### -\/- Wild Card Methods -\/- ### def changeColor(self, color): '''Changes Card's Color, Intended for Wild Cards.''' self.setColor(color) def isWild(self): '''Returns if card is a wild card.''' return self.wild def isZero(self): return self.zero class Match(): elementsInit = { ### Names (final) ### 'P1Name':' ', 'P2Name':' ', 'P3Name':' ', 'P4Name':' ', ### Card Values ### 'P1Cards':' ', 'P2Cards':' ', 'P3Cards':' ', 'P4Cards':' ', ### Turn Colors / Hand### 'P1Turn':'', 'P2Turn':'', 'P3Turn':'', 'P4Turn':'', 'HName':'\t\t', 'HVisual':'' ,'Hand':'', ### Deck ### 'DNum':'', 'Deck':['','','','','','','','',''], 'PostDNum':'', ### Pile ### 'uHeader':'\t\t\t\t', 'uMiddle':' ', 'uLower':' ', 'oHeader':'\t\t\t', 'oMiddle':['\t\t\t','\t\t\t','\t\t\t','\t\t\t','\t\t\t','\t\t\t','\t\t\t','\t\t\t'], ### Messages ### 'Console':'', 'Error':'' } speeds = {'slow':2,'normal':1,'fast':0} def __init__(self, gs): ### Decks ### self.deck = Deck(True) self.pile = Deck(False) ### Player Information ### self.players = gs.players self.turnList = [] self.handTitles = {'play1':'','play2':'','play3':'','play4':''} ### Carry Information ### self.displayEffects = gs.displayEffects self.hideComputerHands = gs.hideComputerHands self.zeroChange = gs.zeroChange self.computerSpeed = self.speeds[gs.computerSpeed] self.simulation = gs.computerSimulation ### Data ### self.handPosition = 0 # For hand displays self.drawAmount = 0 # Used for force draws self.passes = 0 # Keep track of consecutive passes for emergency color change self.passMax = 0 # Max passes before color change self.turn = '' # Current turn self.event = '' # Wild, Reverse, Skip, etc self.wildColorChange = '' # Specifies color to change wild card to self.currentColor = '' # Current color self.currentValue = '' # Current value self.winnerID = '' # ID of Player who Won self.reverse = False # Is turn order reversed self.turnComplete = False # Is turn complete self.matchComplete = False # Is the Game over? self.matchAbort = False # Did the match conclude without a winner? self.forcedWild = False # Force change wild ### Initialize Names / Cards / Deck (Assuming New Game) ### self.elements = dict(self.elementsInit) keyStringName = 'P{}Name' keyStringCards = 'P{}Cards' for i in self.players: self.elements[keyStringName.format(i[-1])] = self.players[i].getName()+(' '*(11-len(self.players[i].getName()))) self.elements[keyStringCards.format(i[-1])] = ' '+(' '*(3-len(str(self.players[i].getCardNum()))))+str(self.players[i].getCardNum())+' Cards' self.elements['DNum'] = len(self.deck) if len(str(len(self.deck))) < 2: self.elements['PostDNum'] = '\t' j = 8 for i in range(int(math.ceil(len(self.deck)/12))): self.elements['Deck'][j] = '=' j -= 1 for key in GameSettings.playerIdentities: try: self.buildHandString(key) self.turnList += [key] except KeyError: pass self.passMax = len(self.turnList) def clearShell(self): os.system('cls' if os.name == 'nt' else 'clear') def begin(self): self.elements['Console'] = 'Beginning Game, Press Enter.' print(self.drawScreen()) self.enterBreak() self.eventDealCards() self.turn = random.choice(self.turnList) self.elements['Console'] = 'First turn will be {}. Press Enter.'.format(self.players[self.turn].getName()) print(self.drawScreen(True)) self.enterBreak() self.placeCard() self.elements['P{}Turn'.format(self.turn[-1])] = '\033[93m' if self.event == 'wild': self.eventWildCard() elif self.event == 'reverse': self.eventReverse() def end(self, gs): if not self.matchAbort: points = 0 self.elements['P{}Turn'.format(self.turn[-1])] = '' self.elements['Console'] = '{} Wins! Press Enter to Begin Point Tally'.format(self.players[self.winnerID].getName()) print(self.drawScreen()) self.enterBreak() for identity in self.turnList: if identity != self.winnerID: self.turn = identity self.elements['HName'] = self.handTitles[self.turn] self.elements['P{}Turn'.format(self.turn[-1])] = '\033[93m' while self.players[identity].getCardNum() > 0: card = self.players[identity].removeCard(0) points += card.getPoints() self.elements['Console'] = '{} Won {} Points!'.format(self.players[self.winnerID].getName(),points) keyStringCards = 'P{}Cards' self.elements[keyStringCards.format(identity[-1])] = ' '+(' '*(3-len(str(self.players[identity].getCardNum()))))+str(self.players[identity].getCardNum())+' Cards' self.players[identity].maxScroll = math.ceil((self.players[identity].getCardNum() / 10)-1) if self.handPosition > self.players[identity].maxScroll: self.handPosition -= 1 self.buildHandVisual(identity) if self.displayEffects and not self.simulation: print(self.drawScreen()) time.sleep(.1) self.elements['P{}Turn'.format(self.turn[-1])] = '' self.players[self.winnerID].addPoints(points) self.elements['Console'] = '{} Won {} Points! Press Enter'.format(self.players[self.winnerID].getName(),points) print(self.drawScreen()) self.enterBreak() gs.clearStaging() for identity in self.turnList: self.players[identity].discardHand() gs.addPlayer(self.players[identity]) return gs def adjustCardAmount(self, playerID): keyStringCards = 'P{}Cards' self.elements[keyStringCards.format(playerID[-1])] = ' '+(' '*(3-len(str(self.players[playerID].getCardNum()))))+str(self.players[playerID].getCardNum())+' Cards' self.players[playerID].maxScroll = math.ceil((self.players[playerID].getCardNum() / 10)-1) if self.handPosition > self.players[playerID].maxScroll: self.handPosition -= 1 self.buildHandVisual(playerID) def buildHandString(self, playerID): playerName = self.players[playerID].getName() if len(playerName) < 9: self.handTitles[playerID] = "{}'s Hand\t".format(self.players[playerID].getName()) else: self.handTitles[playerID] = "{}'s Hand".format(self.players[playerID].getName()) def buildHandVisual(self, playerID): string = '[' for i in range(self.players[playerID].maxScroll+1): if i == self.handPosition: string += '|' else: string += '-' string += ']' self.elements['HVisual'] = string def checkInput(self, playerInput): if playerInput == '': return {'valid':False,'entry':playerInput} if playerInput.isnumeric(): if int(playerInput)+(10*self.handPosition) < self.players[self.turn].getCardNum(): return {'valid':True,'entry':str(int(playerInput)+(10*self.handPosition)),'type':'card'} else: self.elements['Error'] = '{} is not a card.'.format(playerInput) return {'valid':False,'entry':playerInput} else: playerInput = playerInput.lower()[0] if playerInput in ['<','>','u','d','p','q','s']: return {'valid':True,'entry':playerInput} else: self.elements['Error'] = '{} is not a valid selection.'.format(playerInput) return {'valid':False,'entry':playerInput} def checkColorInput(self, playerInput): if playerInput == '': return {'valid':False,'entry':playerInput} playerInput = str(playerInput).lower()[0] if playerInput[0] == 'b': return {'valid':True,'entry':'blue'} elif playerInput[0] == 'r': return {'valid':True,'entry':'red'} elif playerInput[0] == 'g': return {'valid':True,'entry':'green'} elif playerInput[0] == 'y': return {'valid':True,'entry':'yellow'} return {'valid':False,'entry':playerInput} def eventDealCards(self): if self.displayEffects and not self.simulation: self.elements['Console'] = 'Dealing Cards...' for i in ('play1','play2','play3','play4'): if i in self.players: for j in range(7): j #unused self.dealCard(i) if self.displayEffects and not self.simulation: print(self.drawScreen(True)) time.sleep(.1) def eventReverse(self): if self.displayEffects and not self.simulation: hide = False if self.players[self.turn].getType() == "Computer": hide = self.hideComputerHands self.elements['Console'] = "Reverse Card Played! Reversing Turn Order.".format(self.players[self.turn].getName()) print(self.drawScreen(hide)) time.sleep(1) for i in range(10): cardBigNums = self.pile[0].getBigNum(self.reverse,i) self.elements['oMiddle'] = cardBigNums print(self.drawScreen(hide)) if self.displayEffects and not self.simulation: time.sleep(.1) cardBigNums = self.pile[0].getBigNum(self.reverse,9) self.elements['oMiddle'] = cardBigNums self.reverse = not self.reverse self.event = '' def eventSkip(self): if self.displayEffects and not self.simulation: hide = False if self.players[self.turn].getType() == "Computer": hide = self.hideComputerHands self.elements['Console'] = "Skip Card Placed! Skipping {}'s Turn.".format(self.players[self.turn].getName()) print(self.drawScreen(hide)) time.sleep(1) for i in range(2): i #unused self.elements['P{}Turn'.format(self.turn[-1])] = '\033[91m' print(self.drawScreen(hide)) time.sleep(.3) self.elements['P{}Turn'.format(self.turn[-1])] = '' print(self.drawScreen(hide)) time.sleep(.3) self.turnComplete = True self.event = '' def eventWildCard(self): hide = False if not self.forcedWild: if self.players[self.turn].getType() == 'Human': self.elements['Console'] = 'Wild Card! Specifiy a Color: (B)lue, (R)ed, (G)reen, (Y)ellow' self.elements['Error'] = 'Specifiy A Color' print(self.drawScreen()) playerInput = str(input("Color Change: ")) checked = self.checkColorInput(playerInput) while not checked['valid']: if checked['entry'] == '<': self.handPosition -= 1 if self.handPosition == -1: self.handPosition = self.players[self.turn].maxScroll self.buildHandVisual(self.turn) elif checked['entry'] == '>': self.handPosition += 1 if self.handPosition > self.players[self.turn].maxScroll: self.handPosition = 0 self.buildHandVisual(self.turn) print(self.drawScreen()) playerInput = str(input("Color Change: ")) checked = self.checkColorInput(playerInput) else: hide = self.hideComputerHands checked = self.checkColorInput(self.players[self.turn].getWildColor()) self.wildColorChange = checked['entry'] else: self.wildColorChange = self.checkColorInput(random.choice(('r','b','g','y')))['entry'] self.forcedWild = False self.currentColor = self.wildColorChange self.elements['Error'] = "" if self.displayEffects and not self.simulation: self.elements['Console'] = 'Wild Card! Changing Color.' seed = 1 for i in range(10): i #unused if seed > 4: seed = 1 print(self.drawScreen(hide,wildSeed=seed)) time.sleep(.1) seed += 1 self.pile[0].changeColor(self.wildColorChange) self.wildColorChange = '' cardBigNums = self.pile[0].getBigNum(self.reverse) self.elements['oHeader'] = '{}\u2666\u2666\u2666=========\u2666\u2666\u2666\033[0m\t'.format(self.pile[0].getColorCode()) self.elements['oMiddle'] = cardBigNums self.event = '' def eventDraw(self): self.players[self.turn].addForceDraw(self.drawAmount) self.drawAmount = 0 self.event = '' def dealCard(self, playerID): card = self.deck.draw() self.players[playerID].addCard(card) ### Adjust Hand Visual ### self.players[playerID].maxScroll = math.ceil((self.players[playerID].getCardNum() / 10)-1) self.handPosition = self.players[playerID].maxScroll self.buildHandVisual(playerID) ### Adjust Player Tile ### keyStringCards = 'P{}Cards' self.elements[keyStringCards.format(playerID[-1])] = ' '+(' '*(3-len(str(self.players[playerID].getCardNum()))))+str(self.players[playerID].getCardNum())+' Cards' ### Adjust Deck ### self.elements['DNum'] = len(self.deck) if len(str(len(self.deck))) < 2: self.elements['PostDNum'] = '\t' j = 8 self.elements['Deck'] = [' ',' ',' ',' ',' ',' ',' ',' ', ' '] for i in range(math.ceil(len(self.deck)/12)): i #unused self.elements['Deck'][j] = '=' j -= 1 def placeCard(self, card=None): if card == None: ### Used At Beginning For First Card ### card = self.deck.draw() self.elements['DNum'] = len(self.deck) cardColor = card.getColorCode() cardBigNums = card.getBigNum(self.reverse) self.currentColor = card.getColor() self.currentValue = card.getValue() self.pile.insert(card) self.elements['oHeader'] = '{}\u2666\u2666\u2666=========\u2666\u2666\u2666\033[0m\t'.format(cardColor) self.elements['oMiddle'] = cardBigNums if len(self.pile) > 1: previousCard = self.pile[1] previousCardColor = previousCard.getColorCode() self.elements['uHeader'] = '{} \u2666\u2666\u2666=========\u2666\u2666\u2666\033[0m\t\t'.format(previousCardColor) self.elements['uMiddle'] = '{}| |\033[0m'.format(previousCardColor) self.elements['uLower'] = '{}\u2666\u2666\u2666\033[0m'.format(previousCardColor) if self.currentColor == 'wild': self.event = 'wild' if self.currentValue == 'X': self.event = 'skip' elif self.currentValue == 'R': if len(self.players) > 2: self.event = 'reverse' else: self.event = 'skip' elif self.currentValue == '+4': self.drawAmount = 4 elif self.currentValue == '+2': self.drawAmount = 2 self.passes = 0 def extractCard(self, playerID, index): card = self.players[playerID].removeCard(index) if self.players[playerID].getCardNum() == 0: self.matchComplete = True self.winnerID = self.turn self.adjustCardAmount(playerID) return card def enterBreak(self): if not self.simulation: str(input()) return def nextTurn(self): self.turnComplete = False self.handPosition = 0 turnType = self.players[self.turn].getType() self.players[self.turn].beginTurn() ### Prepare Hand Visuals ### self.elements['HName'] = self.handTitles[self.turn] self.buildHandVisual(self.turn) if self.event == 'skip': self.eventSkip() elif self.drawAmount > 0: self.eventDraw() while not self.turnComplete: if turnType == 'Human': self.players[self.turn].getLegalCards(self.currentColor, self.currentValue, self.zeroChange) if len(self.deck) > 0: self.elements['Console'] = 'Select a card, (D)raw, or (P)ause.' else: self.players[self.turn].removeForceDraw() self.elements['Console'] = 'Select a card, (D)raw, (P)ause, or Pas(s).' if self.players[self.turn].getForceDraws() > 0: self.elements['Error'] = 'Draw Card Played! Draw {} cards.'.format(self.players[self.turn].getForceDraws()) print(self.drawScreen()) playerInput = str(input("\033[97mSelection: \033[92m")) checked = self.checkInput(playerInput) while not checked['valid']: print(self.drawScreen()) playerInput = str(input("\033[97mSelection: \033[92m")) checked = self.checkInput(playerInput) playerInput = checked['entry'] if playerInput == '<': self.handPosition -= 1 if self.handPosition == -1: self.handPosition = self.players[self.turn].maxScroll self.buildHandVisual(self.turn) elif playerInput == '>': self.handPosition += 1 if self.handPosition > self.players[self.turn].maxScroll: self.handPosition = 0 self.buildHandVisual(self.turn) elif playerInput == 'd': if len(self.deck) > 0: self.elements['Error'] = '' self.dealCard(self.turn) else: self.elements['Error'] = "Cannot Draw. Deck is Empty" elif playerInput == 'p': pauseOutput = self.pauseScreen() if pauseOutput == 'quit': self.matchComplete = True self.turnComplete = True self.winnerID = 'play1' self.matchAbort = True elif playerInput == 's': if len(self.deck) > 0: self.elements['Error'] = "Cannot pass until Deck is empty." elif len(self.players[self.turn].getAllValidCards()) > 0: self.elements['Error'] = "Cannot pass while having playable cards." else: self.turnComplete = True self.passes += 1 if self.passes == self.passMax: self.forcedWild = True self.event = 'wild' self.passes = 0 elif playerInput.isnumeric(): if self.players[self.turn].getForceDraws() == 0: cardCheck = self.players[self.turn].checkCard(playerInput) if cardCheck in self.players[self.turn].getAllValidCards(): card = self.extractCard(self.turn, playerInput) self.placeCard(card) self.elements['Error'] = "" self.turnComplete = True else: self.elements['Error'] = "Card Doesn't Match The Color {} or Value {}!".format(self.currentColor, self.currentValue) else: pass elif turnType == 'Computer': self.elements['Console'] = '{}\'s Turn'.format(self.players[self.turn].getName()) print(self.drawScreen(self.hideComputerHands)) if not self.simulation: time.sleep(self.computerSpeed) #str(input()) while (True): if self.displayEffects and not self.simulation: time.sleep(.2) if self.players[self.turn].getForceDraws() > 0 and len(self.deck) > 0: cardIndex = 'd' else: cardIndex = self.players[self.turn].think(self) if cardIndex.isnumeric(): card = self.extractCard(self.turn, int(cardIndex)) if card.getColor() != self.currentColor: self.resetDrawBool() self.placeCard(card) self.turnComplete = True break else: if cardIndex == 'd': if len(self.deck) > 0: self.dealCard(self.turn) print(self.drawScreen(self.hideComputerHands)) else: self.turnComplete = True self.players[self.turn].removeForceDraw() self.passes += 1 if self.passes == self.passMax: self.forcedWild = True self.event = 'wild' self.passes = 0 break ### DECODE INPUT ### if self.event == 'reverse': self.eventReverse() elif self.event == 'wild': self.eventWildCard() # Clear Current Turn self.elements['P{}Turn'.format(self.turn[-1])] = '' # Prepare Next Turn self.turn = self.getNextTurn() self.elements['P{}Turn'.format(self.turn[-1])] = '\033[93m' def drawScreen(self, hide=False, wildSeed=0): if self.simulation: return '' colorCombos = { 1 : ['\033[91m','\033[93m','\033[92m','\033[94m'], 2 : ['\033[94m','\033[91m','\033[93m','\033[92m'], 3 : ['\033[92m','\033[94m','\033[91m','\033[93m'], 4 : ['\033[93m','\033[92m','\033[94m','\033[91m'] } currentTurn = self.turn if currentTurn == '': currentTurn = self.turnList[-1] hide = True if wildSeed != 0: colorMod = colorCombos[wildSeed] else: colorMod = ['','','',''] self.clearShell() screenout = '' screenout += '\t\t\033[94m || ||\033[92m ||\ || \033[91m// \\\\\n\033[0m' screenout += '\t\t\033[94m || ||\033[92m ||\\\|| \033[91m(( ))\n\033[0m' screenout += '\t\t\033[94m \\\ //\033[92m || \|| \033[91m \\\ //\n\033[0m' screenout += '\033[97m===============================================================\n' screenout += '\033[93m{}\033[0m\n'.format(self.elements['Console']) screenout += '\033[97m===============================================================\n' screenout += '\t\t\t\t\t\t' + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P1Turn']) screenout += '\033[97mDeck:\t\t' + '{}'.format(self.elements['uHeader']) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P1Turn'],self.elements['P1Name']) screenout += '\033[97m{} Cards'.format(self.elements['DNum']) + '{}'.format(self.elements['PostDNum'])+'\t' + '{}'.format(self.elements['uHeader']) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P1Turn'],self.elements['P1Cards']) screenout += '\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[0],self.elements['oHeader']) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P1Turn']) screenout += '\033[97m _+_ \t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[1],self.elements['oHeader']) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P2Turn']) screenout += '\033[97m | ' + '\033[92m{}\033[0m'.format(self.elements['Deck'][0]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[2],self.elements['oMiddle'][0]) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P2Turn'],self.elements['P2Name']) screenout += '\033[97m | ' + '\033[92m{}\033[0m'.format(self.elements['Deck'][1]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[3],self.elements['oMiddle'][1]) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P2Turn'],self.elements['P2Cards']) screenout += '\033[97m | ' + '\033[92m{}\033[0m'.format(self.elements['Deck'][2]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[0],self.elements['oMiddle'][2]) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P2Turn']) screenout += '\033[97m | ' + '\033[93m{}\033[0m'.format(self.elements['Deck'][3]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[1],self.elements['oMiddle'][3]) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P3Turn']) screenout += '\033[97m | ' + '\033[93m{}\033[0m'.format(self.elements['Deck'][4]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[2],self.elements['oMiddle'][4]) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P3Turn'],self.elements['P3Name']) screenout += '\033[97m | ' + '\033[93m{}\033[0m'.format(self.elements['Deck'][5]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uMiddle']) + '\033[97m{}{}'.format(colorMod[3],self.elements['oMiddle'][5]) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P3Turn'],self.elements['P3Cards']) screenout += '\033[97m | ' + '\033[91m{}\033[0m'.format(self.elements['Deck'][6]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uLower']) + '\033[97m{}{}'.format(colorMod[0],self.elements['oMiddle'][6]) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P3Turn']) screenout += '\033[97m | ' + '\033[91m{}\033[0m'.format(self.elements['Deck'][7]) + '\033[97m |\t\t ' + '{}'.format(self.elements['uLower']) + '\033[97m{}{}'.format(colorMod[1],self.elements['oMiddle'][7]) + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P4Turn']) screenout += '\033[97m |_' + '\033[91m{}\033[0m'.format(self.elements['Deck'][8]) + '\033[97m_|\t\t ' + '\033[97m{}{}'.format(colorMod[2],self.elements['oHeader']) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P4Turn'],self.elements['P4Name']) screenout += '\033[97m\t\t ' + '\033[97m{}{}'.format(colorMod[3],self.elements['oHeader']) + ' \033[97m{}|{}|\033[0m\n'.format(self.elements['P4Turn'],self.elements['P4Cards']) screenout += '\t\t\t\t\t\t' + ' \033[97m{}\u2666-----------\u2666\033[0m\n'.format(self.elements['P4Turn']) screenout += "\033[97m{}".format(self.elements['HName']) + "\t\t\t\t {}\n".format(self.elements['HVisual']) screenout += '\033[97m===============================================================\n' screenout += self.players[currentTurn].getHand(self.handPosition,hide) screenout += '\033[91m{}\033[0m'.format(self.elements['Error']) return screenout def pauseScreen(self): while True: self.clearShell() print('\n\t\t\tPause') print('\n\t\t1. Resume') print('\t\t2. Quit') selection = str(input('\nSelection: ')).upper() while selection not in ['1', '2']: print('\nSelection Invalid') selection = str(input('\nSelection: ')).upper() if selection == '1' or "": return "" elif selection == '2': return "quit" def isComplete(self): return self.matchComplete def next(self): self.turn = self.getNextTurn() def getNextTurn(self, forceReverse=False): if forceReverse: reverse = not self.reverse else: reverse = self.reverse currentIndex = self.turnList.index(self.turn) if not reverse: if (currentIndex + 1) == len(self.turnList): return self.turnList[0] else: return self.turnList[currentIndex+1] else: if currentIndex == 0: return self.turnList[len(self.turnList) - 1] else: return self.turnList[currentIndex-1] def getPlayer(self, playerID): return self.players[playerID] def resetDrawBool(self): for identity in self.players: self.players[identity].drew = False def Uno(debugging=False): ###MENUS### def clearShell(): os.system('cls' if os.name == 'nt' else 'clear') def mainMenu(): sys.stdout.write("\x1b[8;32;63t") sys.stdout.flush() gs = GameSettings() while True: print(drawMainMenu(gs)) selection = str(input('\033[97mSelection: \033[92m')) while selection not in ['1', '2', '3', '4', '5']: gs.mainMenuError = "Invalid Selection" print(drawMainMenu(gs)) selection = str(input('\033[97mSelection: \033[92m')) if selection == '1': if gs.canBegin(): gs.mainMenuError = "" gs.finalizePlayers() gs = playMatch(gs) else: gs.mainMenuError = "Two Players Required to Begin" elif selection == '2': if gs.canAddPlayer(): gs.mainMenuError = "" gs = addPlayer(gs) else: gs.mainMenuError = "Max Number of Players Reached" elif selection == '3': if gs.canAddPlayer(): gs.mainMenuError = "" gs = addComputer(gs) else: gs.mainMenuError = "Max Number of Players Reached" elif selection == '4': if gs.canRemovePlayer(): gs.mainMenuError = "" gs = removePlayer(gs) else: gs.mainMenuError = "No Players to Remove" elif selection == '5': gs.mainMenuError = "" gs = settingsMenu(gs) else: raise BadInputError('Data Provided Has No Function') def playMatch(gs): for i in range(1): i m = Match(gs) m.begin() while (not m.isComplete()): m.nextTurn() gs = m.end(gs) return gs def addPlayer(gs): colors = ['\033[91m','\033[94m', '\033[92m', '\033[93m'] nameOkay = False playerNum = gs.getPlayerNum() + 1 colorIndex = playerNum - 1 message = "\033[97mPlease Enter Player {}'s Name: {}".format(playerNum, colors[colorIndex]) while not nameOkay: print(drawMainMenu(gs)) name = str(input(message)).title() if len(name) > 11: gs.mainMenuError = "Name Must Be 11 Characters or Less!" elif len(name) == 0: gs.mainMenuError = "" return gs else: nameOkay = True for player in gs.playerStaging: if player.getName() == name: nameOkay = False if nameOkay == False or name in GameSettings.computerNames: gs.mainMenuError = "Name Cannot Match Another Player's Name!" p = Player(name) gs.addPlayer(p) gs.mainMenuError = "" return gs def addComputer(gs): name = gs.getComputerName() c = ComputerPlayer(name) gs.addPlayer(c) return gs def removePlayer(gs): sys.stdout.write("\x1b[8;{rows};{cols}t".format(rows=32, cols=63)) sys.stdout.flush() clearShell() complete = False playerNum = gs.getPlayerNum() message = "\033[97mPlease Enter Player Number to Remove: \033[91m".format(playerNum) while (not complete): print(drawMainMenu(gs)) number = str(input(message)) if len(number) == 0: gs.mainMenuError = "" return gs try: number = int(number) if 0 < number <= playerNum: complete = True else: gs.mainMenuError = "Invalid Player Number!" except: gs.mainMenuError = "Please Enter the Player Number, not Name!" gs.mainMenuError = "" gs.removePlayer(number) return gs def settingsMenu(gs): while True: sys.stdout.write("\x1b[8;32;63t") sys.stdout.flush() clearShell() print('\n\t\tSettings') print('\n\t1. Draw Effects\t\t\t{}'.format(gs.displayEffects)) print('\t2. Hide Computer Hands\t\t{}'.format(gs.hideComputerHands)) print('\t3. Computer Speed\t\t{}'.format(gs.computerSpeed.title())) #print('\t4. Zero Card Changes Color\t{}'.format(gs.zeroChange)) #print('\t5. Run Simulations\t\t{}'.format(gs.computerSimulation)) print('\n\tA. Exit') selection = str(input('\nSelection: ')).upper() while selection not in ('1', '2', '3', '4', '5', 'A', ''): print('\nSelection Invalid') selection = str(input('\nSelection: ')).upper() if selection == '1': gs.displayEffects = not gs.displayEffects elif selection == '2': gs.hideComputerHands = not gs.hideComputerHands elif selection == '3': gs.changeComputerSpeed() ''' elif selection == '4': gs.zeroChange = not gs.zeroChange elif selection == '5': gs.computerSimulation = not gs.computerSimulation ''' elif selection == 'A' or selection == '' or selection in ('4','5'): return gs def drawMainMenu(gs): clearShell() gs.compileMainMenuElements() menuElements = gs.getMainMenuElements() screenout = '' screenout += '\t\t\033[94m || ||\033[92m ||\ || \033[91m// \\\\\n\033[0m' screenout += '\t\t\033[94m || ||\033[92m ||\\\|| \033[91m(( ))\n\033[0m' screenout += '\t\t\033[94m \\\ //\033[92m || \|| \033[91m \\\ //\n\033[0m' screenout += '\033[97m===============================================================\033[0m\n' screenout += "{}1-----------------------------1\033[0m {}2-----------------------------2\033[0m\n".format(menuElements['play1box'],menuElements['play2box']) screenout += "{}|{}|\033[0m {}|{}|\033[0m\n".format(menuElements['play1box'],menuElements['play1row1'],menuElements['play2box'],menuElements['play2row1']) screenout += "{}|{}|\033[0m {}|{}|\033[0m\n".format(menuElements['play1box'],menuElements['play1row2'],menuElements['play2box'],menuElements['play2row2']) screenout += "{}1-----------------------------1\033[0m {}2-----------------------------2\033[0m\n".format(menuElements['play1box'],menuElements['play2box']) screenout += "{}3-----------------------------3\033[0m {}4-----------------------------4\033[0m\n".format(menuElements['play3box'],menuElements['play4box']) screenout += "{}|{}|\033[0m {}|{}|\033[0m\n".format(menuElements['play3box'],menuElements['play3row1'],menuElements['play4box'],menuElements['play4row1']) screenout += "{}|{}|\033[0m {}|{}|\033[0m\n".format(menuElements['play3box'],menuElements['play3row2'],menuElements['play4box'],menuElements['play4row2']) screenout += "{}3-----------------------------3\033[0m {}4-----------------------------4\033[0m\n".format(menuElements['play3box'],menuElements['play4box']) screenout += "\033[97m===============================================================\033[0m\n" screenout += " {}\u2666---------------------------\u2666\033[0m \u2666===========================\u2666\n".format(menuElements['beginBox']) screenout += " {}|1. Begin Match |\033[0m | High Scores |\n".format(menuElements['beginBox']) screenout += " {}\u2666---------------------------\u2666\033[0m \u2666---------------------------\u2666\n".format(menuElements['beginBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['addBox']) screenout += " {}|2. Add Player |\033[0m | |\n".format(menuElements['addBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['addBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['addBox']) screenout += " {}|3. Add Computer |\033[0m | |\n".format(menuElements['addBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['addBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['removeBox']) screenout += " {}|4. Remove Player |\033[0m | |\n".format(menuElements['removeBox']) screenout += " {}\u2666---------------------------\u2666\033[0m | |\n".format(menuElements['removeBox']) screenout += " \033[97m\u2666---------------------------\u2666\033[0m | |\n" screenout += " \033[97m|5. Settings |\033[0m | |\n" screenout += " \033[97m\u2666---------------------------\u2666\033[0m \u2666===========================\u2666\n" screenout += "\033[97m===============================================================\033[0m\n" screenout += '\033[91m{}\033[0m'.format(gs.mainMenuError) return screenout mainMenu() if __name__ == "__main__": Uno()
the-stack_106_19540
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or https://www.opensource.org/licenses/mit-license.php . # # Helpful routines for regression testing # import os import sys from binascii import hexlify, unhexlify from base64 import b64encode from decimal import Decimal, ROUND_DOWN import json import http.client import random import shutil import subprocess import tempfile import time import re import errno from . import coverage from .authproxy import AuthServiceProxy, JSONRPCException ZCASHD_BINARY = os.path.join('src', 'zcashd') DEFAULT_FEE = Decimal('0.00001') DEFAULT_FEE_ZATS = 1000 COVERAGE_DIR = None PRE_BLOSSOM_BLOCK_TARGET_SPACING = 150 POST_BLOSSOM_BLOCK_TARGET_SPACING = 75 SPROUT_BRANCH_ID = 0x00000000 OVERWINTER_BRANCH_ID = 0x5BA81B19 SAPLING_BRANCH_ID = 0x76B809BB BLOSSOM_BRANCH_ID = 0x2BB40E60 HEARTWOOD_BRANCH_ID = 0xF5B9230B CANOPY_BRANCH_ID = 0xE9FF75A6 NU5_BRANCH_ID = 0xC2D6D0B4 # The maximum number of nodes a single test can spawn MAX_NODES = 8 # Don't assign rpc or p2p ports lower than this PORT_MIN = 11000 # The number of ports to "reserve" for p2p and rpc, each PORT_RANGE = 5000 class PortSeed: # Must be initialized with a unique integer for each process n = None def enable_coverage(dirname): """Maintain a log of which RPC calls are made during testing.""" global COVERAGE_DIR COVERAGE_DIR = dirname def get_rpc_proxy(url, node_number, timeout=None): """ Args: url (str): URL of the RPC server to call node_number (int): the node number (or id) that this calls to Kwargs: timeout (int): HTTP timeout in seconds Returns: AuthServiceProxy. convenience object for making RPC calls. """ proxy_kwargs = {} if timeout is not None: proxy_kwargs['timeout'] = timeout proxy = AuthServiceProxy(url, **proxy_kwargs) proxy.url = url # store URL on proxy for info coverage_logfile = coverage.get_filename( COVERAGE_DIR, node_number) if COVERAGE_DIR else None return coverage.AuthServiceProxyWrapper(proxy, coverage_logfile) def p2p_port(n): assert(n <= MAX_NODES) return PORT_MIN + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def rpc_port(n): return PORT_MIN + PORT_RANGE + n + (MAX_NODES * PortSeed.n) % (PORT_RANGE - 1 - MAX_NODES) def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def bytes_to_hex_str(byte_str): return hexlify(byte_str).decode('ascii') def hex_str_to_bytes(hex_str): return unhexlify(hex_str.encode('ascii')) def str_to_b64str(string): return b64encode(string.encode('utf-8')).decode('ascii') def sync_blocks(rpc_connections, wait=0.125, timeout=60, allow_different_tips=False): """ Wait until everybody has the same tip, and has notified all internal listeners of them. If allow_different_tips is True, waits until everyone has the same block count. """ while timeout > 0: if allow_different_tips: tips = [ x.getblockcount() for x in rpc_connections ] else: tips = [ x.getbestblockhash() for x in rpc_connections ] if tips == [ tips[0] ]*len(tips): break time.sleep(wait) timeout -= wait # Now that the block counts are in sync, wait for the internal # notifications to finish while timeout > 0: notified = [ x.getblockchaininfo()['fullyNotified'] for x in rpc_connections ] if notified == [ True ] * len(notified): return True time.sleep(wait) timeout -= wait raise AssertionError("Block sync failed") def sync_mempools(rpc_connections, wait=0.5, timeout=60): """ Wait until everybody has the same transactions in their memory pools, and has notified all internal listeners of them """ while timeout > 0: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(wait) timeout -= wait # Now that the mempools are in sync, wait for the internal # notifications to finish while timeout > 0: notified = [ x.getmempoolinfo()['fullyNotified'] for x in rpc_connections ] if notified == [ True ] * len(notified): return True time.sleep(wait) timeout -= wait raise AssertionError("Mempool sync failed") bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) rpc_u, rpc_p = rpc_auth_pair(n) with open(os.path.join(datadir, "zcash.conf"), 'w', encoding='utf8') as f: f.write("regtest=1\n") f.write("showmetrics=0\n") f.write("rpcuser=" + rpc_u + "\n") f.write("rpcpassword=" + rpc_p + "\n") f.write("port="+str(p2p_port(n))+"\n") f.write("rpcport="+str(rpc_port(n))+"\n") f.write("listenonion=0\n") return datadir def rpc_auth_pair(n): return 'rpcuser💻' + str(n), 'rpcpass🔑' + str(n) def rpc_url(i, rpchost=None): rpc_u, rpc_p = rpc_auth_pair(i) host = '127.0.0.1' port = rpc_port(i) if rpchost: parts = rpchost.split(':') if len(parts) == 2: host, port = parts else: host = rpchost return "http://%s:%s@%s:%d" % (rpc_u, rpc_p, host, int(port)) def wait_for_bitcoind_start(process, url, i): ''' Wait for bitcoind to start. This means that RPC is accessible and fully initialized. Raise an exception if bitcoind exits during initialization. ''' while True: if process.poll() is not None: raise Exception('bitcoind exited with status %i during initialization' % process.returncode) try: rpc = get_rpc_proxy(url, i) rpc.getblockcount() break # break out of loop on success except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unknown JSON RPC exception time.sleep(0.25) def initialize_chain(test_dir, num_nodes, cachedir): """ Create a cache of a 200-block-long chain (with wallet) for MAX_NODES Afterward, create num_nodes copies from the cache """ # Due to the consensus change fix for the timejacking attack, we need to # ensure that the cache is pretty fresh. Specifically, we need the median # time past of the chain tip of the cache to be no more than 90 minutes # behind the current local time, or else mined blocks will be rejected by # all nodes, halting the test. With Sapling active by default, this requires # the chain tip itself to be no more than 75 minutes behind the current # local time. # # We address this here, by regenerating the cache if it is more than 60 # minutes old. This gives 15 minutes of slack initially that an RPC test has # to complete in, if it is started right at the oldest cache time. Within an # individual test, the first five calls to `generate` will each advance the # median time past of the chain tip by 2.5 minutes (with Sapling active by # default). Therefore, if the logic between the completion of any two # adjacent calls to `generate` within a test takes longer than 2.5 minutes, # the excess will subtract from the slack. if os.path.isdir(os.path.join(cachedir, "node0")): if os.stat(cachedir).st_mtime + (60 * 60) < time.time(): print("initialize_chain(): Removing stale cache") shutil.rmtree(cachedir) assert num_nodes <= MAX_NODES create_cache = False for i in range(MAX_NODES): if not os.path.isdir(os.path.join(cachedir, 'node'+str(i))): create_cache = True break if create_cache: #find and delete old cache directories if any exist for i in range(MAX_NODES): if os.path.isdir(os.path.join(cachedir,"node"+str(i))): shutil.rmtree(os.path.join(cachedir,"node"+str(i))) # Create cache directories, run bitcoinds: for i in range(MAX_NODES): datadir=initialize_datadir(cachedir, i) args = [ os.getenv("ZCASHD", ZCASHD_BINARY), "-keypool=1", "-datadir="+datadir, "-discover=0" ] args.extend([ '-nuparams=5ba81b19:1', # Overwinter '-nuparams=76b809bb:1', # Sapling ]) if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: bitcoind started, waiting for RPC to come up") wait_for_bitcoind_start(bitcoind_processes[i], rpc_url(i), i) if os.getenv("PYTHON_DEBUG", ""): print("initialize_chain: RPC successfully started") rpcs = [] for i in range(MAX_NODES): try: rpcs.append(get_rpc_proxy(rpc_url(i), i)) except: sys.stderr.write("Error connecting to "+rpc_url(i)+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 first nodes # gets 25 mature blocks and 25 immature. # Note: To preserve compatibility with older versions of # initialize_chain, only 4 nodes will generate coins. # # Blocks are created with timestamps 2.5 minutes apart (matching the # chain defaulting above to Sapling active), starting 200 * 2.5 minutes # before the current time. block_time = int(time.time()) - (200 * PRE_BLOSSOM_BLOCK_TARGET_SPACING) for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].generate(1) block_time += PRE_BLOSSOM_BLOCK_TARGET_SPACING # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Check that local time isn't going backwards assert_greater_than(time.time() + 1, block_time) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(MAX_NODES): os.remove(log_filename(cachedir, i, "debug.log")) os.remove(log_filename(cachedir, i, "db.log")) os.remove(log_filename(cachedir, i, "peers.dat")) os.remove(log_filename(cachedir, i, "fee_estimates.dat")) for i in range(num_nodes): from_dir = os.path.join(cachedir, "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in zcash.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None, timewait=None, binary=None, stderr=None): """ Start a bitcoind and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) if binary is None: binary = os.getenv("ZCASHD", ZCASHD_BINARY) args = [ binary, "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] args.extend([ '-nuparams=5ba81b19:1', # Overwinter '-nuparams=76b809bb:1', # Sapling ]) if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args, stderr=stderr) if os.getenv("PYTHON_DEBUG", ""): print("start_node: bitcoind started, waiting for RPC to come up") url = rpc_url(i, rpchost) wait_for_bitcoind_start(bitcoind_processes[i], url, i) if os.getenv("PYTHON_DEBUG", ""): print("start_node: RPC successfully started") proxy = get_rpc_proxy(url, i, timeout=timewait) if COVERAGE_DIR: coverage.write_all_rpc_commands(COVERAGE_DIR, proxy) return proxy def assert_start_raises_init_error(i, dirname, extra_args=None, expected_msg=None): with tempfile.SpooledTemporaryFile(max_size=2**16) as log_stderr: try: node = start_node(i, dirname, extra_args, stderr=log_stderr) stop_node(node, i) except Exception as e: assert 'bitcoind exited' in str(e) #node must have shutdown if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8') if expected_msg not in stderr: raise AssertionError("Expected error \"" + expected_msg + "\" not found in:\n" + stderr) else: if expected_msg is None: assert_msg = "bitcoind should have exited with an error" else: assert_msg = "bitcoind should have exited with expected error " + expected_msg raise AssertionError(assert_msg) def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None, binary=None): """ Start multiple bitcoinds, return RPC connections to them """ if extra_args is None: extra_args = [ None for _ in range(num_nodes) ] if binary is None: binary = [ None for _ in range(num_nodes) ] rpcs = [] try: for i in range(num_nodes): rpcs.append(start_node(i, dirname, extra_args[i], rpchost, binary=binary[i])) except: # If one node failed to start, stop the others stop_nodes(rpcs) raise return rpcs def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def check_node(i): bitcoind_processes[i].poll() return bitcoind_processes[i].returncode def stop_node(node, i): try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: try: node.stop() except http.client.CannotSendRequest as e: print("WARN: Unable to stop node: " + repr(e)) del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in list(bitcoind_processes.values()): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using its output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(expected, actual, message=""): if expected != actual: if message: message = "; %s" % message raise AssertionError("(left == right)%s\n left: <%s>\n right: <%s>" % (message, str(expected), str(actual))) def assert_true(condition, message = ""): if not condition: raise AssertionError(message) def assert_false(condition, message = ""): assert_true(not condition, message) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): assert_raises_message(exc, None, fun, *args, **kwds) def assert_raises_message(ExceptionType, errstr, func, *args, **kwargs): """ Asserts that func throws and that the exception contains 'errstr' in its message. """ try: func(*args, **kwargs) except ExceptionType as e: if errstr is not None and errstr not in str(e): raise AssertionError("Invalid exception string: Couldn't find %r in %r" % ( errstr, str(e))) except Exception as e: raise AssertionError("Unexpected exception raised: " + type(e).__name__) else: raise AssertionError("No exception raised") def fail(message=""): raise AssertionError(message) # Returns an async operation result def wait_and_assert_operationid_status_result(node, myopid, in_status='success', in_errormsg=None, timeout=300): print('waiting for async operation {}'.format(myopid)) result = None for _ in range(1, timeout): results = node.z_getoperationresult([myopid]) if len(results) > 0: result = results[0] break time.sleep(1) assert_true(result is not None, "timeout occurred") status = result['status'] debug = os.getenv("PYTHON_DEBUG", "") if debug: print('...returned status: {}'.format(status)) errormsg = None if status == "failed": errormsg = result['error']['message'] if debug: print('...returned error: {}'.format(errormsg)) assert_equal(in_errormsg, errormsg) assert_equal(in_status, status, "Operation returned mismatched status. Error Message: {}".format(errormsg)) return result # Returns txid if operation was a success or None def wait_and_assert_operationid_status(node, myopid, in_status='success', in_errormsg=None, timeout=300): result = wait_and_assert_operationid_status_result(node, myopid, in_status, in_errormsg, timeout) if result['status'] == "success": return result['result']['txid'] else: return None # Find a coinbase address on the node, filtering by the number of UTXOs it has. # If no filter is provided, returns the coinbase address on the node containing # the greatest number of spendable UTXOs. # The default cached chain has one address per coinbase output. def get_coinbase_address(node, expected_utxos=None): addrs = [utxo['address'] for utxo in node.listunspent() if utxo['generated']] assert(len(set(addrs)) > 0) if expected_utxos is None: addrs = [(addrs.count(a), a) for a in set(addrs)] return sorted(addrs, reverse=True)[0][1] addrs = [a for a in set(addrs) if addrs.count(a) == expected_utxos] assert(len(addrs) > 0) return addrs[0] def check_node_log(self, node_number, line_to_check, stop_node = True): print("Checking node " + str(node_number) + " logs") if stop_node: self.nodes[node_number].stop() bitcoind_processes[node_number].wait() logpath = self.options.tmpdir + "/node" + str(node_number) + "/regtest/debug.log" with open(logpath, "r", encoding="utf8") as myfile: logdata = myfile.readlines() for (n, logline) in enumerate(logdata): if line_to_check in logline: return n raise AssertionError(repr(line_to_check) + " not found") def nustr(branch_id): return '%08x' % branch_id def nuparams(branch_id, height): return '-nuparams=%s:%d' % (nustr(branch_id), height)
the-stack_106_19541
from injector import inject from domain.connection.DeleteConnection.DeleteConnectionCommand import DeleteConnectionCommand from domain.connection.services.ConnectionService import ConnectionService from domain.notification.SendNotification.SendNotificationCommand import SendNotificationCommand from domain.notification.SendNotification.SendNotificationRequest import SendNotificationRequest, \ NotificationAdditionalData from infrastructure.cqrs.Dispatcher import Dispatcher from infrastructure.cqrs.ICommandHandler import ICommandHandler from infrastructure.data.RepositoryProvider import RepositoryProvider class DeleteConnectionHandler(ICommandHandler[DeleteConnectionCommand]): @inject def __init__(self, dispatcher: Dispatcher, connection_service: ConnectionService, repository_provider: RepositoryProvider, *args, **kwargs): super().__init__(*args, **kwargs) self.repository_provider = repository_provider self.dispatcher = dispatcher self.connection_service = connection_service def handle(self, command: DeleteConnectionCommand): result = self.connection_service.delete_connection(id=command.request.Id) self.repository_provider.commit() self.notify(message=result, id=command.request.Id) def notify(self, message: str, id: int): data_list = [] data = NotificationAdditionalData(Key="Type", Value="Connection") data_list.append(data) data = NotificationAdditionalData(Key="Id", Value=id) data_list.append(data) send_notification_request = SendNotificationRequest(Message=message, Type=1, Action=3, AdditionalData=data_list) self.dispatcher.dispatch(SendNotificationCommand(request=send_notification_request))
the-stack_106_19543
import pybullet as p from time import sleep import pybullet_data physicsClient = p.connect(p.GUI) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.setGravity(0, 0, -10) planeId = p.loadURDF("plane.urdf", [0,0,-2]) boxId = p.loadURDF("cube.urdf", [0,3,2],useMaximalCoordinates = True) bunnyId = p.loadSoftBody("bunny.obj")#.obj")#.vtk") #meshData = p.getMeshData(bunnyId) #print("meshData=",meshData) #p.loadURDF("cube_small.urdf", [1, 0, 1]) useRealTimeSimulation = 1 if (useRealTimeSimulation): p.setRealTimeSimulation(1) print(p.getDynamicsInfo(planeId, -1)) #print(p.getDynamicsInfo(bunnyId, 0)) print(p.getDynamicsInfo(boxId, -1)) p.changeDynamics(boxId,-1,mass=10) while p.isConnected(): p.setGravity(0, 0, -10) if (useRealTimeSimulation): sleep(0.01) # Time in seconds. #p.getCameraImage(320,200,renderer=p.ER_BULLET_HARDWARE_OPENGL ) else: p.stepSimulation()
the-stack_106_19545
default_client_config = { 'exception_on_negative_response' : True, 'exception_on_invalid_response' : True, 'exception_on_unexpected_response' : True, 'security_algo' : None, 'security_algo_params' : None, 'tolerate_zero_padding' : True, 'ignore_all_zero_dtc' : True, 'dtc_snapshot_did_size' : 2, # Not specified in standard. 2 bytes matches other services format. 'server_address_format' : None, # 8,16,24,32,40 'server_memorysize_format' : None, # 8,16,24,32,40 'data_identifiers' : {}, 'input_output' : {}, 'request_timeout' : 5, 'p2_timeout' : 1, 'p2_star_timeout' : 5, }
the-stack_106_19546
"""Several helper functions to convert between data objects and JSON.""" import json from tinycards.model import Card, Concept, Deck, Fact, Favorite from tinycards.model import SearchableData, Side, Trendable, TrendableData from tinycards.model import User # --- User conversion def json_to_user(json_data): """Convert a JSON dict into a User object.""" user_obj = User( creation_date=json_data['creationDate'], email=json_data['email'], fullname=json_data['fullname'], user_id=json_data['id'], learning_language=json_data['learningLanguage'], picture_url=json_data['picture'], subscribed=json_data['subscribed'], subscriber_count=json_data['subscriberCount'], subscription_count=json_data['subscriptionCount'], ui_language=json_data['uiLanguage'], username=json_data['username'] ) return user_obj # --- Fact conversion def json_to_fact(json_data): """Convert a JSON dict into a Fact object.""" fact_obj = Fact( fact_id=json_data['id'], fact_type=json_data['type'], text=json_data.get('text'), image_url=json_data.get('imageUrl'), tts_url=json_data.get('ttsUrl') ) return fact_obj def fact_to_json(fact_obj): """Convert a Fact object into a JSON dict.""" json_data = { # 'id': fact_obj.id, 'text': fact_obj.text, 'type': fact_obj.type } return json_data # --- Concept conversion def json_to_concept(json_data): """Convert a JSON dict into a Concept object.""" concept_obj = Concept( fact=json_to_fact(json_data['fact']), concept_id=json_data['id'], creation_timestamp=json_data['createdAt'], update_timestamp=json_data['updatedAt'] ) return concept_obj def concept_to_json(concept_obj): """Convert a Concept object into a JSON dict.""" json_data = { # 'createdAt': concept_obj.creation_timestamp, 'fact': fact_to_json(concept_obj.fact), # 'id': concept_obj.id, # 'noteFacts': [], # 'updatedAt': concept_obj.update_timestamp, } return json_data # --- Side conversion def json_to_side(json_data): """Convert a JSON dict into a Side object.""" side_obj = Side( side_id=json_data['id'], concepts=[json_to_concept(c) for c in json_data['concepts']] ) return side_obj def side_to_json(side_obj): """Convert a Side object into a JSON dict.""" json_data = { 'concepts': [concept_to_json(c) for c in side_obj.concepts], # 'id': side_obj.side_id, } return json_data # --- Card conversion def json_to_card(json_data): """Convert a JSON dict into a Card object.""" card_obj = Card( front=json_to_side(json_data['sides'][0]), back=json_to_side(json_data['sides'][1]), card_id=json_data['id'] ) return card_obj def card_to_json(card_obj): """Convert a Card object into a JSON dict.""" json_data = { # 'id': card_obj.id, 'creationTimestamp': card_obj.creation_timestamp, 'sides': [ side_to_json(card_obj.front), side_to_json(card_obj.back) ], } # Add additional fields if not None. # if card_obj.creation_timestamp: # json_data['creationTimestamp'] = card_obj.creation_timestamp return json_data # --- Deck conversion def json_to_deck(json_data): """Convert a JSON dict into a Deck object.""" deck = Deck( title=json_data['name'], description=json_data['description'], deck_id=json_data['id'], compact_id=json_data['compactId'], slug=json_data['slug'], cards=([json_to_card(c) for c in json_data['cards']] if 'cards' in json_data else []), private=bool(json_data['private']), shareable=bool(json_data['shareable']), blacklisted_side_indices=json_data['blacklistedSideIndices'], blacklisted_question_types=json_data['blacklistedQuestionTypes'], grading_modes=json_data['gradingModes'], tts_languages=json_data['ttsLanguages'], ) deck.image_url = json_data['imageUrl'] deck.cover_image_url = json_data['coverImageUrl'] return deck def deck_to_json(deck_obj, as_json_str=False): """Convert a Deck object into a JSON dict. Contains a lot of placeholder values at the moment. Args: as_json_str (bool): Convert lists into a single JSON string (required for PATCH with content-type: application/json). """ cards = [card_to_json(c) for c in deck_obj.cards] json_data = { 'name': deck_obj.title, 'description': deck_obj.description, 'private': deck_obj.private, 'shareable': deck_obj.shareable, 'cards': as_obj_or_json_str(cards, as_json_str), 'ttsLanguages': as_obj_or_json_str( deck_obj.tts_languages, as_json_str ), 'blacklistedSideIndices': as_obj_or_json_str( deck_obj.blacklisted_side_indices, as_json_str ), 'blacklistedQuestionTypes': as_obj_or_json_str( deck_obj.blacklisted_question_types, as_json_str ), 'gradingModes': as_obj_or_json_str( deck_obj.grading_modes, as_json_str ), 'fromLanguage': 'en', 'imageFile': deck_obj.cover, 'coverImageUrl': deck_obj.cover_image_url, } return json_data def as_obj_or_json_str(obj, as_json_str): return json.dumps(obj) if as_json_str else obj # --- Trendable conversion def json_to_trendable(json_data): """Convert a JSON dict into a Trendable object.""" json_trendable_data = json_data.get('data') if not json_trendable_data: raise ValueError("JSON object contains no 'data' field") try: trendable_data = TrendableData( json_trendable_data['blacklistedQuestionTypes'], json_trendable_data['blacklistedSideIndices'], json_trendable_data['cardCount'], json_trendable_data['compactId'], json_trendable_data['coverImageUrl'], json_trendable_data['createdAt'], json_trendable_data['deckGroups'], json_trendable_data['description'], json_trendable_data['enabled'], json_trendable_data['favoriteCount'], json_trendable_data['fromLanguage'], json_trendable_data.get('fullname'), json_trendable_data['gradingModes'], json_trendable_data['hashes'], json_trendable_data['id'], json_trendable_data['imageUrl'], json_trendable_data['name'], json_trendable_data['picture'], json_trendable_data['private'], json_trendable_data['shareable'], json_trendable_data['slug'], json_trendable_data['tagIds'], json_trendable_data['ttsLanguages'], json_trendable_data['uiLanguage'], json_trendable_data['updatedAt'], json_trendable_data['userId'], json_trendable_data['username'] ) except KeyError as ke: raise ke trendable_obj = Trendable(id_=json_data['id'], type_=json_data['type'], data=trendable_data) return trendable_obj def trendable_to_json(trendable_obj: Trendable): """Convert a Trendable object into a JSON dict.""" trendable_data = trendable_obj.data json_trendable_data = { 'blacklistedQuestionTypes': trendable_data.blacklisted_question_types, 'blacklistedSideIndices': trendable_data.blacklisted_side_indices, 'cardCount': trendable_data.card_count, 'compactId': trendable_data.compact_id, 'coverImageUrl': trendable_data.cover_image_url, 'createdAt': trendable_data.created_at, 'deckGroups': trendable_data.deck_groups, 'description': trendable_data.description, 'enabled': trendable_data.enabled, 'favoriteCount': trendable_data.favorite_count, 'fromLanguage': trendable_data.from_language, 'fullname': trendable_data.fullname, 'gradingModes': trendable_data.grading_modes, 'hashes': trendable_data.hashes, 'id': trendable_data.id, 'imageUrl': trendable_data.image_url, 'name': trendable_data.name, 'picture': trendable_data.picture, 'private': trendable_data.private, 'shareable': trendable_data.shareable, 'slug': trendable_data.slug, 'tagIds': trendable_data.tagIds, 'ttsLanguages': trendable_data.tts_languages, 'uiLanguage': trendable_data.ui_language, 'updatedAt': trendable_data.updated_at, 'username': trendable_data.username } json_data = { 'id': trendable_obj.id, 'type': trendable_obj.type, 'data': json_trendable_data } return json_data # --- Searchable conversion def json_to_searchable(json_data): """Convert a JSON dict into a Searchable object.""" json_searchable_data = json_data.get('data') if not json_searchable_data: raise ValueError("JSON object contains no 'data' field") try: searchable_data = SearchableData( json_searchable_data['id'], json_searchable_data['name'], json_searchable_data['description'], json_searchable_data.get('averageFreshness') ) except KeyError as ke: raise ke searchable_obj = Trendable(id_=json_data['id'], type_=json_data['type'], data=searchable_data) return searchable_obj # --- Favorite conversion def json_to_favorite(json_data): """Convert a JSON dict into a Favorite object.""" favorite_obj = Favorite(id_=json_data['id'], deck=json_to_deck(json_data['deck'])) return favorite_obj def favorite_to_json(favorite_obj: Favorite): """Convert a Favorite object into a JSON dict.""" json_data = { 'id': favorite_obj.id, 'deck': deck_to_json(favorite_obj.deck) } return json_data
the-stack_106_19547
n = int(input("Digite o termo da sequência Fibonacci: ")) a = 1 b = 1 k = 1 while k <= n - 2: tmp = a a = b b = tmp + b k = k + 1 print("O {}º da Sequência de Fibonacci é ocupado pelo número {}.".format(n,b)) #https://pt.stackoverflow.com/q/358586/101
the-stack_106_19548
#!/usr/bin/env python3 from time import sleep import os import RPi.GPIO as GPIO pin = 14 # GPIO pin maxTMP = 55 # The temperature in Celsius after which we trigger the fan minTMP = 40 # The temperature in Celsius after which we stop the fan sleepTime = 5 debug = False GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(pin, GPIO.OUT) def getCPUtemperature(): res = os.popen("vcgencmd measure_temp").readline() temp =(res.replace("temp=","").replace("'C\n","")) if (debug): print("temp is {0}".format(temp)) #Uncomment here for testing return temp def fanON(): setPin(True) return() def fanOFF(): setPin(False) return() def getTEMP(): CPU_temp = float(getCPUtemperature()) if CPU_temp>maxTMP: fanON() elif CPU_temp<minTMP: fanOFF() return() def setPin(mode): GPIO.output(pin, mode) return() try: while True: getTEMP() sleep(5) except KeyboardInterrupt: # trap a CTRL+C keyboard interrupt GPIO.cleanup() # resets all GPIO ports used by this program
the-stack_106_19549
from django.forms import ModelForm, TextInput from django.core.exceptions import ValidationError from .models import Paquete, Promocion ''' PaqueteForm -> Creacion, modificacion y validacion de Paquetes Clase relacionada -> CD18 [Control] Casos de Uso relacionados -> {BE15, BE16} ''' class PaqueteForm(ModelForm): class Meta: model = Paquete fields = '__all__' def clean(self): precio_base = self.cleaned_data.get('precio_base') if precio_base < 0: raise ValidationError("El valor del precio base debe ser un número no negativo.") """ Promoción ->creación, modificación de promociones clase relacionada ->CD08 [control] caso de Uso relacionado -> {BE17, BE18} """ class PromocionForm(ModelForm): class Meta: model = Promocion fields = '__all__' widgets = { 'porcentaje_descuento': TextInput(attrs={"type": "number", "min": "0", "max": "100"}) } def clean(self): descuento = self.cleaned_data.get('porcentaje_descuento') if descuento < 0 or descuento > 100: raise ValidationError("El valor del descuento debe ser un número de 0 a 100.")
the-stack_106_19550
""" Private utilities. """ import os from typing import Any, Callable, Mapping, Optional, cast import pyramid.config def get_base_path(config: pyramid.config.Configurator) -> str: return cast(str, env_or_config(config, "C2C_BASE_PATH", "c2c.base_path", "/c2c")) def env_or_config( config: Optional[pyramid.config.Configurator], env_name: Optional[str] = None, config_name: Optional[str] = None, default: Any = None, type_: Callable[[str], Any] = str, ) -> Any: return env_or_settings( config.get_settings() if config is not None else {}, env_name, config_name, default, type_ ) def env_or_settings( settings: Optional[Mapping[str, Any]], env_name: Optional[str] = None, settings_name: Optional[str] = None, default: Any = None, type_: Callable[[str], Any] = str, ) -> Any: if env_name is not None and env_name in os.environ and os.environ[env_name] != "": return type_(os.environ[env_name]) if settings is not None and settings_name is not None and settings_name in settings: return type_(settings[settings_name]) return default def config_bool(value: Optional[str]) -> bool: if value is None: return False return value.lower() in ("true", "t", "yes", "1")
the-stack_106_19551
""" Return records as named tuples. This saves a lot of memory. """ from collections import namedtuple from dbfread import DBF table = DBF('files/people.dbf', lowernames=True) # Set record factory. This must be done after # the table is opened because it needs the field # names. Record = namedtuple('Record', table.field_names) factory = lambda lst: Record(**dict(lst)) table.recfactory = factory for record in table: print(record.name)
the-stack_106_19553
import numpy as np import scipy.sparse as sp import time import scipy.linalg as la class CLPerceptron(): S_X = np.array([[0, 1], [1, 0]], dtype=complex) S_Y = np.array([[0, complex(0, -1)], [complex(0, 1), 0]], dtype=complex) S_Z = np.array([[1, 0], [0, -1]], dtype=complex) S = np.array([S_X, S_Y, S_Z]) def __init__(self, D, y, bias=False, manual_lookup=False): self.D = D self.bias = bias self.y = y self.n_samples = D.shape[0] if bias: self.add_bias() self.dim = self.D.shape[1] if not manual_lookup: self._create_statistics_lookup_table() def _create_statistics_lookup_table(self): self.bx_lookup = np.zeros(self.n_samples) self.qx_lookup = np.zeros(self.n_samples) # gather statistics for each sample, store these based on index for i in range(self.n_samples): self.bx_lookup[i] = self._bx(self.D, self.D[i, :], self.y) self.qx_lookup[i] = self._qx(self.D, self.D[i, :]) def train(self, max_iter, eta, calculate_loss=False, tol=10e-8, verbose=True): _w = np.random.uniform(low=-1, high=1, size=self.dim) _loss = [] _lh = [] _lh.append(self.likelihood(_w)) for i in range(max_iter): h = np.dot(self.D, _w) h_x = np.sqrt(np.square(h)) _delta_z = self.qx_lookup * (self.bx_lookup - np.tanh(h_x) * (h / h_x)) _w += eta * np.einsum(_delta_z, [0, ], self.D, [0, 1], [1, ]) # reg - 10e-10 * np.sum(_w) _lh.append(self.likelihood(_w)) if abs(_lh[i] - _lh[i - 1]) < tol: if verbose: print("Convergence reached after {} steps".format(i)) self.w = _w self.lh = _lh self.loss = _loss return if verbose: print("No convergence after {} steps!".format(max_iter)) self.w = _w self.lh = _lh self.loss = _loss return def predict(self, samples, ev=True): def get_evalue(sample): h = np.dot(self.w.T, sample) p_one = 0.5 * (np.tanh(h) + 1) return p_one, 1-p_one # add bias if our training was done with bias if self.bias: samples = np.hstack([samples, np.ones(samples.shape[0]).reshape(-1, 1)]) # works similarly as calculate loss, but now returns the expectation value p = np.apply_along_axis(get_evalue, axis=1, arr=samples) if ev: return p[:,0] - p[:,1] return p[:,0], p[:,1] def get_loss(self): y_pred = self.predict(self.D) loss = 0.5 * np.sum(np.absolute(y_pred - self.y)) return loss / self.n_samples # def predict(self, _samples): # return np.sign(np.dot(self.w, _samples.T)) def predict_sigm(self, _samples): return self._sigmoid(np.dot(self.w, _samples.T)) def _H_x(self, _x,): # calculate parameterised hamiltonian, in pauli basis. _h = np.dot(self.w.T, _x) _H = _h * CLQPerceptron.S[2] return _H @staticmethod def _bx(X, sample, y): _idx = np.where((X == tuple(sample)).all(axis=1))[0] return np.sum(y[_idx]) / len(_idx) @staticmethod def _qx(X, sample): _idx = np.where((X == tuple(sample)).all(axis=1))[0] return len(_idx) / X.shape[0] def likelihood(self, _w): h = np.dot(_w.T, self.D.T) h_x = np.sqrt(np.square(h)) L = np.sum(self.qx_lookup * (h * self.bx_lookup - np.logaddexp(h_x, -h_x))) return L def _delta_w(self, idx): h = np.dot(self.w.T, self.D[idx, :]) return self.qx_lookup[idx] * (self.bx_lookup[idx] - np.tanh(h)) @staticmethod def _sigmoid(x): return 1 / (1 + np.exp(-x)) def add_bias(self): self.D = np.hstack([self.D, np.ones(self.n_samples).reshape(-1, 1)])
the-stack_106_19554
# MIT License # # Copyright (c) 2019 ABN AMRO Bank N.V. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from supporting import generalConstants from supporting import generalSettings from cicd.informatica import infaConstants from cicd.informatica import infaSettings from supporting import log import logging logger = logging.getLogger(__name__) entrynr = 0 def build(**KeyWordArguments): """Build an IDQ command, return it as string Process the input aruguments to compose the IDQ command This is done by first creating a list of strings, that are then joined to form the actual command The syntax used is as follows: $InfaPath + $InfaProgram + $InfaCommand + $InfaArguments """ procName = "build" # Create the list that will hold the parts of the command, in order InfaArguments = [] # Process each input argument. # The Tool arguments are processed separately, because those have to go first # For the other arguments, the order does not matter, so they can be processed together for key, value in KeyWordArguments.items(): log(logger, logging.DEBUG, procName, "key =>" + key + "<.") if isinstance(value, str): if key.lower().__contains__("password"): log(logger, logging.DEBUG, procName, "value =>" + "***" + "<.") else: log(logger, logging.DEBUG, procName, "value =>" + value + "<.") # If the argument is "Tool" , assign the value to the variable Tool, and lookup the Program and # Command in AvailableTools, assign those to InfaProgram, InfaCommand if key == "Tool": Tool = KeyWordArguments["Tool"] (InfaProgram, InfaCommand) = infaConstants.AvailableTools[value] elif key == "Project": projectName = value InfaArguments.append(infaConstants.AvailableArguments[key] + " " + '"' + value + '"') elif key == "ExportRefData": if value == generalConstants.YES: InfaArguments.append( "-oo " + '"' + "rtm:disName=" + infaSettings.sourceDIS + ",codePage=UTF-8,refDataFile=" + generalSettings.artifactDir + "/" + projectName + ".zip" + '"') # If the argument is anything else, look it up in AvailableArguments and add the found # value to InfaArguments elif key in infaConstants.AvailableArguments: InfaArguments.append(infaConstants.AvailableArguments[key] + " " + '"' + value + '"') elif value is not None and value != "NONE": if key == "AsIsOptions": new_value = value.lstrip('"').rstrip('"') log(logger, logging.DEBUG, procName, "stripped value =>" + new_value + "<.") InfaArguments.append(" " + new_value + " ") elif key == "OutputFile": InfaArguments.append(" >" + value + " ") elif key != "OnError": InfaArguments.append("-" + key + " " + '"' + value + '"') # Put all parts of the command in the same list, in correct order, and join them into one # string IDQCommandParts = [infaSettings.sourceInfacmd, InfaProgram, InfaCommand] + InfaArguments IDQCommand = " ".join(IDQCommandParts) return (IDQCommand)
the-stack_106_19555
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the strategy class (extended from the generic_seller skill).""" import json from typing import Any, Dict from packages.fetchai.skills.generic_seller.strategy import GenericStrategy class Strategy(GenericStrategy): """This class defines a strategy for the agent.""" def __init__(self, **kwargs: Any) -> None: """ Initialize the strategy of the agent. :return: None """ self.shared_state_key = kwargs.pop("shared_state_key", None) if self.shared_state_key is None: raise ValueError("No shared_state_key provided!") super().__init__(**kwargs) def collect_from_data_source(self) -> Dict[str, str]: """ Build the data payload. :return: a dict of the data found in the shared state. """ data = self.context.shared_state.get(self.shared_state_key, b"{}") formatted_data = self._format_data(data) return formatted_data def _format_data(self, data: bytes) -> Dict[str, str]: """ Convert to dict. :return: a dict with key and values as strings """ result: Dict[str, str] = {} try: loaded = json.loads(data) if isinstance(loaded, dict) and all( [ isinstance(key, str) and isinstance(value, str) for key, value in loaded.items() ] ): result = loaded else: result = {"data": json.dumps(loaded)} except json.decoder.JSONDecodeError as e: self.context.logger.warning(f"error when loading json: {e}") return result
the-stack_106_19560
from abc import ABC from abc import abstractmethod from functools import wraps import inspect import re import types from typing import List import syft from syft.generic.pointers import PointerTensor from syft.generic.pointers import MultiPointerTensor from syft.generic.tensor import initialize_tensor from syft.generic.tensor import _apply_args from syft.workers import BaseWorker from syft.exceptions import route_method_exception from syft.exceptions import TensorsNotCollocatedException class FrameworkHook(ABC): @abstractmethod def __init__(self, framework_module, local_worker: BaseWorker = None, is_client: bool = True): pass ### Public API: framework-specific factory methods ### @classmethod @abstractmethod def create_shape(cls, shape_dims): """Factory method for creating a generic FrameworkShape.""" pass @classmethod @abstractmethod def create_wrapper(cls, child_to_wrap, *args, **kwargs): """Factory method for creating a generic FrameworkTensor wrapper.""" pass @classmethod @abstractmethod def create_zeros(cls, shape, dtype, **kwargs): """Factory method for creating a generic zero FrameworkTensor.""" pass ### Standardized, framework-specific methods ### @abstractmethod def _hook_native_tensor(self, tensor_type: type, syft_type: type): """Add PySyft-specific tensor functionality to the given tensor type. See framework-specific implementations for more details. """ # _hook_native_tensor is framework-specific, but it calls the methods # defined below! pass @classmethod @abstractmethod def _add_methods_from_native_tensor( cls, tensor_type: type, syft_type: type, exclude: List[str] ): """Adds methods from the syft_type class to the tensor_type class. The class syft_type is a proxy class useful to avoid extending the native tensor class directly. Args: tensor_type: The tensor type to which we are adding methods. syft_type: The tensor from which we are adding methods. exclude: A list of method names to exclude from the hooking process. """ # For all methods defined in syft_type which are not internal methods # (like __class__, etc) for attr in dir(syft_type): if attr not in exclude: if hasattr(tensor_type, attr): setattr(tensor_type, f"native_{attr}", getattr(tensor_type, attr)) # Add to the native tensor this method setattr(tensor_type, attr, getattr(syft_type, attr)) ### Generics methods ### def _hook_native_methods(self, tensor_type: type): """ Add hooked version of all methods of to_auto_overload[tensor_type] to the tensor_type; instead of performing the native tensor method, the hooked version will be called Args: tensor_type: the tensor_type which holds the methods """ # Use a pre-defined list to select the methods to overload for attr in self.to_auto_overload[tensor_type]: # if we haven't already overloaded this function if f"native_{attr}" not in dir(tensor_type): native_method = getattr(tensor_type, attr) setattr(tensor_type, f"native_{attr}", native_method) new_method = self._get_hooked_method(attr) setattr(tensor_type, attr, new_method) def _hook_properties(hook_self, tensor_type: type): """Overloads tensor_type properties. If you're not sure how properties work, read: https://www.programiz.com/python-programming/property Args: tensor_type: The tensor class which is having properties added to it. """ @property def location(self): return self.child.location tensor_type.location = location @property def id_at_location(self): return self.child.id_at_location tensor_type.id_at_location = id_at_location @property def id(self): if not hasattr(self, "_syft_id"): self._syft_id = syft.ID_PROVIDER.pop() return self._syft_id @id.setter def id(self, new_syft_id): self._syft_id = new_syft_id return self tensor_type.id = id @property def owner(self): if not hasattr(self, "_owner"): self._owner = hook_self.local_worker return self._owner @owner.setter def owner(self, new_owner): self._owner = new_owner return self tensor_type.owner = owner @property def is_wrapper(self): if not hasattr(self, "_is_wrapper"): self._is_wrapper = False return self._is_wrapper @is_wrapper.setter def is_wrapper(self, it_is_a_wrapper): self._is_wrapper = it_is_a_wrapper return self tensor_type.is_wrapper = is_wrapper tensor_type.native_shape = tensor_type.shape def dim(self): return len(self.shape) tensor_type.dim = dim def _which_methods_should_we_auto_overload(self, tensor_type: type): """Creates a list of Torch methods to auto overload. By default, it looks for the intersection between the methods of tensor_type and torch_type minus those in the exception list (syft.torch.exclude). Args: tensor_type: Iterate through the properties of this tensor type. syft_type: Iterate through all attributes in this type. Returns: A list of methods to be overloaded. """ boolean_comparators = ["__gt__", "__ge__", "__lt__", "__le__"] to_overload = boolean_comparators native_pattern = re.compile("native*") for attr in dir(tensor_type): # Conditions for not overloading the method if attr in syft.framework.exclude: continue if not hasattr(tensor_type, attr): continue lit = getattr(tensor_type, attr) is_base = attr in dir(object) is_desc = inspect.ismethoddescriptor(lit) is_func = isinstance(lit, types.FunctionType) is_overloaded = native_pattern.match(attr) is not None if (is_desc or is_func) and not is_base and not is_overloaded: to_overload.append(attr) return set(to_overload) def _hook_syft_tensor_methods(self, tensor_type: type, syft_type: type): """ Add hooked version of all methods of to_auto_overload[tensor_type] to the syft_type, so that they act like regular tensors in terms of functionality, but instead of performing the native tensor method, it will be forwarded to each share when it is relevant Args: tensor_type: The tensor type to which we are adding methods. syft_type: the syft_type which holds the methods """ # Use a pre-defined list to select the methods to overload for attr in self.to_auto_overload[tensor_type]: if attr not in dir(syft_type): new_method = self._get_hooked_syft_method(attr) setattr(syft_type, attr, new_method) def _hook_pointer_tensor_methods(self, tensor_type): """ Add hooked version of all methods of the tensor_type to the Pointer tensor: instead of performing the native tensor method, it will be sent remotely to the location the pointer is pointing at. """ boolean_comparators = ["__gt__", "__ge__", "__lt__", "__le__"] # Use a pre-defined list to select the methods to overload for attr in self.to_auto_overload[tensor_type]: if attr not in dir(PointerTensor) or attr in boolean_comparators: new_method = self._get_hooked_pointer_method(attr) setattr(PointerTensor, attr, new_method) def _hook_multi_pointer_tensor_methods(self, tensor_type): """ Add hooked version of all methods of the torch Tensor to the Multi Pointer tensor: instead of performing the native tensor method, it will be sent remotely for each pointer to the location it is pointing at. """ # Use a pre-defined list to select the methods to overload for attr in self.to_auto_overload[tensor_type]: if attr not in dir(MultiPointerTensor): new_method = self._get_hooked_multi_pointer_method(attr) setattr(MultiPointerTensor, attr, new_method) def _add_registration_to___init__(hook_self, tensor_type: type, is_tensor: bool = False): """Adds several attributes to the tensor. Overload tensor_type.__init__ to add several attributes to the tensor as well as (optionally) registering the tensor automatically. TODO: auto-registration is disabled at the moment, this might be bad. Args: tensor_type: The class of the tensor being hooked torch_tensor: An optional boolean parameter (default False) to specify whether to skip running the native initialization logic. TODO: this flag might never get used. """ if "native___init__" not in dir(tensor_type): tensor_type.native___init__ = tensor_type.__init__ def new___init__(cls, *args, owner=None, id=None, register=True, **kwargs): initialize_tensor( hook_self=hook_self, cls=cls, id=id, is_tensor=is_tensor, init_args=args, init_kwargs=kwargs, ) tensor_type.__init__ = new___init__ def _get_hooked_syft_method(hook_self, attr): """ Hook a method in order to replace all args/kwargs syft/torch tensors with their child attribute, forward this method with the new args and new self, get response and "rebuild" the syft tensor wrapper upon all tensors found Args: attr (str): the method to hook Return: the hooked method """ @wraps(attr) def overloaded_syft_method(self, *args, **kwargs): """ Operate the hooking """ # TODO: I can't manage the import issue, can you? # Replace all syft tensor with their child attribute new_self, new_args, new_kwargs = syft.frameworks.torch.hook_args.unwrap_args_from_method( attr, self, args, kwargs ) # Send it to the appropriate class and get the response response = getattr(new_self, attr)(*new_args, **new_kwargs) # Put back SyftTensor on the tensors found in the response response = syft.frameworks.torch.hook_args.hook_response( attr, response, wrap_type=type(self), wrap_args=self.get_class_attributes() ) return response return overloaded_syft_method def _get_hooked_method(hook_self, method_name): """ Hook a method in order to replace all args/kwargs syft/torch tensors with their child attribute if they exist If so, forward this method with the new args and new self, get response and "rebuild" the torch tensor wrapper upon all tensors found If not, just execute the native torch methodn Args: attr (str): the method to hook Return: the hooked method """ @wraps(method_name) def overloaded_native_method(self, *args, **kwargs): """ Operate the hooking """ if not hasattr(self, "child"): # means that it's not a wrapper method = getattr(self, f"native_{method_name}") # Run the native function with the new args try: response = method(*args, **kwargs) except BaseException as e: # we can make some errors more descriptive with this method raise route_method_exception(e, self, args, kwargs) else: # means that there is a wrapper to remove try: # Replace all torch tensor with their child attribute new_self, new_args, new_kwargs = syft.frameworks.torch.hook_args.unwrap_args_from_method( method_name, self, args, kwargs ) except BaseException as e: # we can make some errors more descriptive with this method raise route_method_exception(e, self, args, kwargs) # Send the new command to the appropriate class and get the response method = getattr(new_self, method_name) response = method(*new_args, **new_kwargs) # For inplace methods, just directly return self if syft.framework.is_inplace_method(method_name): return self # Put back the wrappers where needed response = syft.frameworks.torch.hook_args.hook_response( method_name, response, wrap_type=type(self), new_self=self ) return response return overloaded_native_method def _get_hooked_func(hook_self, attr): """ Hook a function in order to inspect its args and search for pointer or other syft tensors. - Calls to this function with normal tensors or numbers / string trigger usual behaviour - Calls with pointers send the command to the location of the pointer(s) - Calls with syft tensor will in the future trigger specific behaviour Args: attr (str): the method to hook Return: the hooked method """ if attr.__module__ is None: attr.__module__ = "torch" cmd_name = f"{attr.__module__}.{attr.__name__}" @wraps(attr) def overloaded_func(*args, **kwargs): """ Operate the hooking """ try: tensor_type = ( type(args[0]) if not isinstance(args[0], (tuple, list)) else type(args[0][0]) ) except IndexError: tensor_type = syft.framework.Tensor command = (cmd_name, None, args, kwargs) try: handle_func_command = tensor_type.handle_func_command except AttributeError: handle_func_command = syft.framework.Tensor.handle_func_command response = handle_func_command(command) return response return overloaded_func def _get_hooked_pointer_method(hook_self, attr): """ Hook a method to send it to remote worker Args: attr (str): the method to hook Return: the hooked method """ @wraps(attr) def overloaded_pointer_method(self, *args, **kwargs): """ Operate the hooking """ pointer = self # Get info on who needs to send where the command owner = pointer.owner location = pointer.location if len(args) > 0: if isinstance(args[0], PointerTensor): if args[0].location.id != location.id: raise TensorsNotCollocatedException(pointer, args[0], attr) # Send the command command = (attr, self, args, kwargs) response = owner.send_command(location, command) # For inplace methods, just directly return self if syft.framework.is_inplace_method(attr): return self return response return overloaded_pointer_method def _get_hooked_multi_pointer_method(hook_self, attr): """ Hook a method to send it multiple recmote workers Args: attr (str): the method to hook Return: the hooked method """ def dispatch(args, k): return map(lambda x: x[k] if isinstance(x, dict) else x, args) @wraps(attr) def overloaded_attr(self, *args, **kwargs): """ Operate the hooking """ # Replace all syft tensor with their child attribute new_self, new_args, new_kwargs = syft.frameworks.torch.hook_args.unwrap_args_from_method( attr, self, args, kwargs ) results = {} for k, v in new_self.items(): results[k] = v.__getattribute__(attr)(*dispatch(new_args, k), **new_kwargs) # Put back MultiPointerTensor on the tensors found in the response response = syft.frameworks.torch.hook_args.hook_response( attr, results, wrap_type=MultiPointerTensor, wrap_args=self.get_class_attributes() ) return response return overloaded_attr
the-stack_106_19561
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from status_dock.bar import Bar CONFIG_FILE = f"{os.environ['HOME']}/.i3/status.conf.json" if __name__ == "__main__": import sys try: layout = sys.argv[1] except IndexError: raise ValueError("Please supply the layout as the only argument.") b = Bar(CONFIG_FILE, layout) b.run()
the-stack_106_19562
from django.core.management.base import BaseCommand, CommandError from django.core.management import call_command from django.conf import settings from django.db import connection from django.utils.text import slugify from django.db import IntegrityError from contactnetwork.cube import compute_interactions from contactnetwork.models import * import contactnetwork.interaction as ci from residue.models import ResidueGenericNumber, ResidueNumberingScheme, Residue, ResidueGenericNumberEquivalent from structure.models import (Structure, StructureType, StructureSegment, StructureStabilizingAgent,PdbData, Rotamer, StructureSegmentModeling, StructureCoordinates, StructureCoordinatesDescription, StructureEngineering, StructureEngineeringDescription, Fragment) import os, time import yaml from interaction.views import runcalculation,parsecalculation from multiprocessing import Queue, Process, Value, Lock class Command(BaseCommand): help = "Output all uniprot mappings" update = True purge = True processes = 8 def prepare_input(self, proc, items, iteration=1): q = Queue() procs = list() num_items = len(items) num = Value('i', 0) lock = Lock() if not num_items: return False # make sure not to use more jobs than proteins (chunk size will be 0, which is not good) if proc > num_items: proc = num_items chunk_size = int(num_items / proc) connection.close() for i in range(0, proc): first = chunk_size * i if i == proc - 1: last = False else: last = chunk_size * (i + 1) p = Process(target=self.main_func, args=([(first, last), iteration,num,lock])) procs.append(p) p.start() for p in procs: p.join() def purge_contact_network(self): InteractingResiduePair.truncate() Distance.truncate() Interaction.truncate() def build_contact_network(self,s,pdb_code): interacting_pairs, distances = compute_interactions(pdb_code, save_to_db=True) def handle(self, *args, **options): self.ss = Structure.objects.all() self.structure_data_dir = os.sep.join([settings.DATA_DIR, 'structure_data', 'structures']) if self.purge: self.purge_contact_network() print(len(self.ss),'structures') self.prepare_input(self.processes, self.ss) # for s in Structure.objects.all(): # self.purge_contact_network(s) # self.build_contact_network(s,s.pdb_code.index) def main_func(self, positions, iteration,count,lock): # filenames # if not positions[1]: # filenames = self.filenames[positions[0]:] # else: # filenames = self.filenames[positions[0]:positions[1]] ss = self.ss while count.value<len(ss): with lock: if count.value<len(ss): s = ss[count.value] count.value +=1 # print(s, count.value) else: break source_file_path = os.sep.join([self.structure_data_dir, s.pdb_code.index.upper() + ".yaml"]) if os.path.isfile(source_file_path): with open(source_file_path, 'r') as f: sd = yaml.load(f, Loader=yaml.FullLoader) peptide_chain = "" if 'ligand' in sd and sd['ligand'] and sd['ligand']!='None': if isinstance(sd['ligand'], list): ligands = sd['ligand'] else: ligands = [sd['ligand']] for ligand in ligands: peptide_chain = "" if 'chain' in ligand: peptide_chain = ligand['chain'] # self.purge_contact_network(s) current = time.time() if self.update: if Distance.objects.filter(structure=s).count(): print(s,'already done - skipping') continue try: self.build_contact_network(s,s.pdb_code.index) print(s,"Contact Network",time.time()-current) except: print(s,'Failed contact network') # current = time.time() #runcalculation(s.pdb_code.index,peptide_chain) #parsecalculation(s.pdb_code.index,False) #print(s,"Ligand Interactions",time.time()-current)
the-stack_106_19563
import sqlite3 from sqlite3 import Error def create_connection(db_file): conn = None try: conn = sqlite3.connect(db_file) return conn except Error as e: print(e) return conn def fetch_user(conn, username): cur = conn.cursor() cur.execute(f'SELECT * FROM users where name = "{username}"') rows = cur.fetchall() for row in rows: print(row) def fetch_slots(conn, user_id): cur = conn.cursor() cur.execute(f'SELECT * FROM calender where user_id = "{user_id}"') rows = cur.fetchall() for row in rows: print(row) def main(): # Enter Path where you want your database to be: database = r"database.db" # create a database connection => Db will be created if there does not exists one. conn = create_connection(database) with conn: print("Get User: ") fetch_user(conn, "Poornartha Sawant") fetch_slots(conn, 1) if __name__ == '__main__': main()
the-stack_106_19565
import dataclasses import numpy as np import tensorflow as tf def _standard_scaled_mse(std): std = tf.constant(std, dtype=std.dtype) def custom_loss(y_true, y_pred): return tf.math.reduce_mean( tf.math.reduce_mean(tf.math.square((y_pred - y_true) / std), axis=0) ) return custom_loss def _standard_scaled_mae(std): std = tf.constant(std, dtype=std.dtype) def custom_loss(y_true, y_pred): return tf.math.reduce_mean( tf.math.reduce_mean(tf.math.abs((y_pred - y_true) / std), axis=0) ) return custom_loss def _uniform_scaled_mse(std): factor = tf.constant(1.0 / np.mean(std ** 2), dtype=std.dtype) def custom_loss(y_true, y_pred): return tf.math.scalar_mul(factor, tf.losses.mse(y_true, y_pred)) return custom_loss def _uniform_scaled_mae(std): factor = tf.constant(1.0 / np.mean(std), dtype=std.dtype) def custom_loss(y_true, y_pred): return tf.math.scalar_mul(factor, tf.losses.mae(y_true, y_pred)) return custom_loss def multiply_loss_by_factor(original_loss, factor): def loss(y_true, y_pred): return tf.math.scalar_mul(factor, original_loss(y_true, y_pred)) return loss @dataclasses.dataclass class LossConfig: """ Attributes: loss_type: one of "mse" or "mae" scaling: "standard" corresponds to scaling each feature's lossby its scale, "standard_uniform" corresponds to scaling each feature's loss by the mean of all feature scales, where the scale is variance for MSE loss or standard deviation for MAE loss weight: A scaling factor by which to modify this loss """ loss_type: str = "mse" scaling: str = "standard_uniform" weight: float = 1.0 def __post_init__(self): if self.loss_type not in ("mse", "mae"): raise ValueError( f"loss_type must be 'mse' or 'mae', got '{self.loss_type}'" ) if self.scaling not in ("standard", "standard_uniform"): raise ValueError( "loss_type must be 'standard' or 'standard_uniform', " f"got '{self.scaling}'" ) def loss(self, std: np.ndarray) -> tf.keras.losses.Loss: """ Returns the loss function described by the configuration. Args: std: standard deviation of the output features Returns: loss: keras loss function """ if self.loss_type == "mse": if self.scaling == "standard_uniform": loss = _uniform_scaled_mse(std) elif self.scaling == "standard": loss = _standard_scaled_mse(std) elif self.loss_type == "mae": if self.scaling == "standard_uniform": loss = _uniform_scaled_mae(std) elif self.scaling == "standard": loss = _standard_scaled_mae(std) else: raise NotImplementedError(f"loss_type {self.loss_type} is not implemented") if self.weight != 1.0: loss = multiply_loss_by_factor(loss, self.weight) return loss
the-stack_106_19566
from typing import Any, List, cast from src.helpers.general import findInListOfDicts from src.libs.Web3Client.exceptions import NetworkNotFound from src.libs.Web3Client.types import NetworkConfig from web3.middleware import geth_poa_middleware supportedNetworks: List[NetworkConfig] = [ # Ethereum { "name": "Ethereum", "txType": 1, "chainId": 1, "middlewares": [], }, # Avalanche C Chain { "name": "Avalanche", "txType": 2, "chainId": 43114, "middlewares": [geth_poa_middleware], }, # Swimmer Network Avalanche subnet { "name": "SwimmerNetwork", "txType": 1, "chainId": 73772, "middlewares": [geth_poa_middleware], }, ] def getNetworkConfig(networkName: str) -> NetworkConfig: """ Return the configuration for the network with the given name; raises an exception if not found """ network: NetworkConfig = findInListOfDicts( cast(Any, supportedNetworks), "name", networkName ) if network is None: raise NetworkNotFound(f"Network '{networkName}' not supported") return network def isNetworkSupported(networkName: str) -> bool: """ Return true if the given network is supported by the client """ try: getNetworkConfig(networkName) return True except NetworkNotFound: return False
the-stack_106_19567
#!/usr/bin/python # (c) 2018, NetApp, Inc # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified'} DOCUMENTATION = ''' module: na_ontap_svm short_description: Manage NetApp ONTAP svm extends_documentation_fragment: - netapp.na_ontap version_added: '2.6' author: NetApp Ansible Team ([email protected]) description: - Create, modify or delete svm on NetApp ONTAP options: state: description: - Whether the specified SVM should exist or not. choices: ['present', 'absent'] default: 'present' name: description: - The name of the SVM to manage. required: true from_name: description: - Name of the SVM to be renamed version_added: '2.7' root_volume: description: - Root volume of the SVM. - Cannot be modified after creation. root_volume_aggregate: description: - The aggregate on which the root volume will be created. - Cannot be modified after creation. root_volume_security_style: description: - Security Style of the root volume. - When specified as part of the vserver-create, this field represents the security style for the Vserver root volume. - When specified as part of vserver-get-iter call, this will return the list of matching Vservers. - The 'unified' security style, which applies only to Infinite Volumes, cannot be applied to a Vserver's root volume. - Cannot be modified after creation. choices: ['unix', 'ntfs', 'mixed', 'unified'] allowed_protocols: description: - Allowed Protocols. - When specified as part of a vserver-create, this field represent the list of protocols allowed on the Vserver. - When part of vserver-get-iter call, this will return the list of Vservers which have any of the protocols specified as part of the allowed-protocols. - When part of vserver-modify, this field should include the existing list along with new protocol list to be added to prevent data disruptions. - Possible values - nfs NFS protocol, - cifs CIFS protocol, - fcp FCP protocol, - iscsi iSCSI protocol, - ndmp NDMP protocol, - http HTTP protocol, - nvme NVMe protocol aggr_list: description: - List of aggregates assigned for volume operations. - These aggregates could be shared for use with other Vservers. - When specified as part of a vserver-create, this field represents the list of aggregates that are assigned to the Vserver for volume operations. - When part of vserver-get-iter call, this will return the list of Vservers which have any of the aggregates specified as part of the aggr-list. ipspace: description: - IPSpace name - Cannot be modified after creation. version_added: '2.7' snapshot_policy: description: - Default snapshot policy setting for all volumes of the Vserver. This policy will be assigned to all volumes created in this Vserver unless the volume create request explicitly provides a snapshot policy or volume is modified later with a specific snapshot policy. A volume-level snapshot policy always overrides the default Vserver-wide snapshot policy. version_added: '2.7' language: description: - Language to use for the SVM - Default to C.UTF-8 - Possible values Language - c POSIX - ar Arabic - cs Czech - da Danish - de German - en English - en_us English (US) - es Spanish - fi Finnish - fr French - he Hebrew - hr Croatian - hu Hungarian - it Italian - ja Japanese euc-j - ja_v1 Japanese euc-j - ja_jp.pck Japanese PCK (sjis) - ja_jp.932 Japanese cp932 - ja_jp.pck_v2 Japanese PCK (sjis) - ko Korean - no Norwegian - nl Dutch - pl Polish - pt Portuguese - ro Romanian - ru Russian - sk Slovak - sl Slovenian - sv Swedish - tr Turkish - zh Simplified Chinese - zh.gbk Simplified Chinese (GBK) - zh_tw Traditional Chinese euc-tw - zh_tw.big5 Traditional Chinese Big 5 version_added: '2.7' subtype: description: - The subtype for vserver to be created. - Cannot be modified after creation. choices: ['default', 'dp_destination', 'sync_source', 'sync_destination'] version_added: '2.7' ''' EXAMPLES = """ - name: Create SVM na_ontap_svm: state: present name: ansibleVServer root_volume: vol1 root_volume_aggregate: aggr1 root_volume_security_style: mixed hostname: "{{ netapp_hostname }}" username: "{{ netapp_username }}" password: "{{ netapp_password }}" """ RETURN = """ """ import traceback import ansible.module_utils.netapp as netapp_utils from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native HAS_NETAPP_LIB = netapp_utils.has_netapp_lib() class NetAppOntapSVM(object): def __init__(self): self.argument_spec = netapp_utils.na_ontap_host_argument_spec() self.argument_spec.update(dict( state=dict(required=False, choices=[ 'present', 'absent'], default='present'), name=dict(required=True, type='str'), from_name=dict(required=False, type='str'), root_volume=dict(type='str'), root_volume_aggregate=dict(type='str'), root_volume_security_style=dict(type='str', choices=['unix', 'ntfs', 'mixed', 'unified' ]), allowed_protocols=dict(type='list'), aggr_list=dict(type='list'), ipspace=dict(type='str', required=False), snapshot_policy=dict(type='str', required=False), language=dict(type='str', required=False), subtype=dict(choices=['default', 'dp_destination', 'sync_source', 'sync_destination']) )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) p = self.module.params # set up state variables self.state = p['state'] self.name = p['name'] self.from_name = p['from_name'] self.root_volume = p['root_volume'] self.root_volume_aggregate = p['root_volume_aggregate'] self.root_volume_security_style = p['root_volume_security_style'] self.allowed_protocols = p['allowed_protocols'] self.aggr_list = p['aggr_list'] self.language = p['language'] self.ipspace = p['ipspace'] self.snapshot_policy = p['snapshot_policy'] self.subtype = p['subtype'] if HAS_NETAPP_LIB is False: self.module.fail_json( msg="the python NetApp-Lib module is required") else: self.server = netapp_utils.setup_na_ontap_zapi(module=self.module) def get_vserver(self, vserver_name=None): """ Checks if vserver exists. :return: vserver object if vserver found None if vserver is not found :rtype: object/None """ if vserver_name is None: vserver_name = self.name vserver_info = netapp_utils.zapi.NaElement('vserver-get-iter') query_details = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-info', **{'vserver-name': vserver_name}) query = netapp_utils.zapi.NaElement('query') query.add_child_elem(query_details) vserver_info.add_child_elem(query) result = self.server.invoke_successfully(vserver_info, enable_tunneling=False) vserver_details = None if (result.get_child_by_name('num-records') and int(result.get_child_content('num-records')) >= 1): attributes_list = result.get_child_by_name('attributes-list') vserver_info = attributes_list.get_child_by_name('vserver-info') aggr_list = list() ''' vserver aggr-list can be empty by default''' get_list = vserver_info.get_child_by_name('aggr-list') if get_list is not None: aggregates = get_list.get_children() for aggr in aggregates: aggr_list.append(aggr.get_content()) protocols = list() '''allowed-protocols is not empty by default''' get_protocols = vserver_info.get_child_by_name( 'allowed-protocols').get_children() for protocol in get_protocols: protocols.append(protocol.get_content()) vserver_details = {'name': vserver_info.get_child_content('vserver-name'), 'root_volume': vserver_info.get_child_content('root-volume'), 'root_volume_aggregate': vserver_info.get_child_content('root-volume-aggregate'), 'root_volume_security_style': vserver_info.get_child_content('root-volume-security-style'), 'subtype': vserver_info.get_child_content('vserver-subtype'), 'aggr_list': aggr_list, 'language': vserver_info.get_child_content('language'), 'snapshot_policy': vserver_info.get_child_content('snapshot-policy'), 'allowed_protocols': protocols} return vserver_details def create_vserver(self): options = {'vserver-name': self.name, 'root-volume': self.root_volume} if self.root_volume_aggregate is not None: options['root-volume-aggregate'] = self.root_volume_aggregate if self.root_volume_security_style is not None: options['root-volume-security-style'] = self.root_volume_security_style if self.language is not None: options['language'] = self.language if self.ipspace is not None: options['ipspace'] = self.ipspace if self.snapshot_policy is not None: options['snapshot-policy'] = self.snapshot_policy if self.subtype is not None: options['vserver-subtype'] = self.subtype vserver_create = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-create', **options) try: self.server.invoke_successfully(vserver_create, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error provisioning SVM %s \ with root volume %s on aggregate %s: %s' % (self.name, self.root_volume, self.root_volume_aggregate, to_native(e)), exception=traceback.format_exc()) def delete_vserver(self): vserver_delete = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-destroy', **{'vserver-name': self.name}) try: self.server.invoke_successfully(vserver_delete, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error deleting SVM %s \ with root volume %s on aggregate %s: %s' % (self.name, self.root_volume, self.root_volume_aggregate, to_native(e)), exception=traceback.format_exc()) def rename_vserver(self): vserver_rename = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-rename', **{'vserver-name': self.from_name, 'new-name': self.name}) try: self.server.invoke_successfully(vserver_rename, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error renaming SVM %s: %s' % (self.name, to_native(e)), exception=traceback.format_exc()) def modify_vserver(self, allowed_protocols, aggr_list, language, snapshot_policy): options = {'vserver-name': self.name} if language: options['language'] = self.language if snapshot_policy: options['snapshot-policy'] = self.snapshot_policy vserver_modify = netapp_utils.zapi.NaElement.create_node_with_children( 'vserver-modify', **options) if allowed_protocols: allowed_protocols = netapp_utils.zapi.NaElement( 'allowed-protocols') for protocol in self.allowed_protocols: allowed_protocols.add_new_child('protocol', protocol) vserver_modify.add_child_elem(allowed_protocols) if aggr_list: aggregates = netapp_utils.zapi.NaElement('aggr-list') for aggr in self.aggr_list: aggregates.add_new_child('aggr-name', aggr) vserver_modify.add_child_elem(aggregates) try: self.server.invoke_successfully(vserver_modify, enable_tunneling=False) except netapp_utils.zapi.NaApiError as e: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, to_native(e)), exception=traceback.format_exc()) def apply(self): changed = False vserver_details = self.get_vserver() # These are being commentted out as part of bugfix 595. # if vserver_details is not None: # results = netapp_utils.get_cserver(self.server) # cserver = netapp_utils.setup_ontap_zapi( # module=self.module, vserver=results) # netapp_utils.ems_log_event("na_ontap_svm", cserver) rename_vserver = False modify_protocols = False modify_aggr_list = False modify_snapshot_policy = False modify_language = False if vserver_details is not None: if self.state == 'absent': changed = True elif self.state == 'present': # SVM is present, is it a modify? if self.allowed_protocols is not None: self.allowed_protocols.sort() vserver_details['allowed_protocols'].sort() if self.allowed_protocols != vserver_details['allowed_protocols']: modify_protocols = True changed = True if self.aggr_list is not None: self.aggr_list.sort() vserver_details['aggr_list'].sort() if self.aggr_list != vserver_details['aggr_list']: modify_aggr_list = True changed = True if self.snapshot_policy is not None: if self.snapshot_policy != vserver_details['snapshot_policy']: modify_snapshot_policy = True changed = True if self.language is not None: if self.language != vserver_details['language']: modify_language = True changed = True if self.root_volume is not None and self.root_volume != vserver_details['root_volume']: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, 'cannot change root volume')) if self.root_volume_aggregate is not None and self.root_volume_aggregate != vserver_details['root_volume_aggregate']: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, 'cannot change root volume aggregate')) if self.root_volume_security_style is not None and self.root_volume_security_style != vserver_details['root_volume_security_style']: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, 'cannot change root volume security style')) if self.subtype is not None and self.subtype != vserver_details['subtype']: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, 'cannot change subtype')) if self.ipspace is not None and self.ipspace != vserver_details['ipspace']: self.module.fail_json(msg='Error modifying SVM %s: %s' % (self.name, 'cannot change ipspace')) else: if self.state == 'present': changed = True if changed: if self.module.check_mode: pass else: if self.state == 'present': if vserver_details is None: # create or rename if self.from_name is not None and self.get_vserver(self.from_name): self.rename_vserver() else: self.create_vserver() else: if modify_protocols or modify_aggr_list: self.modify_vserver( modify_protocols, modify_aggr_list, modify_language, modify_snapshot_policy) elif self.state == 'absent': self.delete_vserver() self.module.exit_json(changed=changed) def main(): v = NetAppOntapSVM() v.apply() if __name__ == '__main__': main()
the-stack_106_19568
import pickle from typing import IO, Optional import numpy as np from ..definitions import (DenseMatrix, DenseScoreArray, InteractionMatrix, UserIndexArray) from ._ials import IALSLearningConfigBuilder from ._ials import IALSTrainer as CoreTrainer from .base import (BaseRecommenderWithItemEmbedding, BaseRecommenderWithThreadingSupport, BaseRecommenderWithUserEmbedding) from .base_earlystop import BaseRecommenderWithEarlyStopping, TrainerBase class IALSTrainer(TrainerBase): def __init__( self, X: InteractionMatrix, n_components: int, alpha: float, reg: float, init_std: float, n_thread: int, ): X_all_f32 = X.astype(np.int32) config = ( IALSLearningConfigBuilder() .set_K(n_components) .set_init_stdev(init_std) .set_alpha(alpha) .set_reg(reg) .set_n_threads(n_thread) .build() ) self.core_trainer = CoreTrainer(config, X_all_f32) def load_state(self, ifs: IO) -> None: params = pickle.load(ifs) self.core_trainer.user = params["user"] self.core_trainer.item = params["item"] def save_state(self, ofs: IO) -> None: pickle.dump( dict(user=self.core_trainer.user, item=self.core_trainer.item), ofs, protocol=pickle.HIGHEST_PROTOCOL, ) def run_epoch(self) -> None: self.core_trainer.step() class IALSRecommender( BaseRecommenderWithEarlyStopping, BaseRecommenderWithThreadingSupport, BaseRecommenderWithUserEmbedding, BaseRecommenderWithItemEmbedding, ): """ Implicit Alternating Least Squares (IALS). See: Y. Hu, Y. Koren and C. Volinsky, Collaborative filtering for implicit feedback datasets, ICDM 2008. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.5120&rep=rep1&type=pdf """ def __init__( self, X_all: InteractionMatrix, n_components: int = 20, alpha: float = 1.0, reg: float = 1e-3, init_std: float = 0.1, validate_epoch: int = 5, score_degradation_max: int = 5, n_thread: Optional[int] = 1, max_epoch: int = 300, ): super().__init__( X_all, max_epoch=max_epoch, validate_epoch=validate_epoch, score_degration_max=score_degradation_max, n_thread=n_thread, ) self.n_components = n_components self.alpha = alpha self.reg = reg self.init_std = init_std self.trainer: Optional[IALSTrainer] = None def create_trainer(self) -> TrainerBase: return IALSTrainer( self.X_all, self.n_components, self.alpha, self.reg, self.init_std, self.n_thread, ) def get_score(self, index: UserIndexArray) -> DenseScoreArray: if self.trainer is None: raise RuntimeError("'get_score' called before training") return self.trainer.core_trainer.user[index].dot( self.trainer.core_trainer.item.T ) def get_score_block(self, begin: int, end: int) -> DenseScoreArray: if self.trainer is None: raise RuntimeError("'get_score_block' called before training") return self.trainer.core_trainer.user_scores(begin, end) def get_score_cold_user(self, X: InteractionMatrix) -> DenseScoreArray: if self.trainer is None: raise RuntimeError("'get_score_cols_user' called before training") user_vector = self.trainer.core_trainer.transform_user( X.astype(np.float32).tocsr() ) return user_vector.dot(self.trainer.core_trainer.item.T).astype(np.float64) def get_user_embedding(self) -> DenseMatrix: if self.trainer is None: raise RuntimeError("'get_user_embedding' called before training") return self.trainer.core_trainer.user.astype(np.float64) def get_score_from_user_embedding( self, user_embedding: DenseMatrix ) -> DenseScoreArray: if self.trainer is None: raise RuntimeError("'get_score_from_user_embedding' called before training") return user_embedding.dot(self.trainer.core_trainer.item.T) def get_item_embedding(self) -> DenseMatrix: if self.trainer is None: raise RuntimeError("'get_item_embedding' called before training") return self.trainer.core_trainer.item.astype(np.float64) def get_score_from_item_embedding( self, user_indices: UserIndexArray, item_embedding: DenseMatrix ) -> DenseScoreArray: if self.trainer is None: raise RuntimeError("'get_score_from_item_embedding' called before training") return ( self.trainer.core_trainer.user[user_indices] .dot(item_embedding.T) .astype(np.float64) )
the-stack_106_19571
from freefall.falling_objects import frc_power_cell from freefall.simulators import simulate_earth_surface from freefall.simulators import terminate_vy_less_zero from freefall.utilities import find_vx_vy, float_range import matplotlib.pyplot as plt X_INITIAL = 0 # m Y_INITIAL = 27 / 40 # m SPEED = 5 # m/s ANGLE = 50 # degrees fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2) # Plot the trajectory over several valves of speed ax0.set( title="Power Cell Trajectory by Speed", xlabel="Distance (m)", ylabel="Height (m)" ) ax0.grid() for i in float_range(2, 8, 0.1): # run the simulation vx_initial, vy_initial = find_vx_vy(speed=i, angle=ANGLE) results = simulate_earth_surface( frc_power_cell, X_INITIAL, Y_INITIAL, vx_initial, vy_initial, terminator=terminate_vy_less_zero, ) # Plot the results ax0.plot(results.x, results.y) # Plot the trajectory over several valves of angle ax1.set(title="Power Cell Trajectory by Angle", xlabel="Distance (m)") ax1.grid() for i in float_range(10, 90, 2): # run the simulation vx_initial, vy_initial = find_vx_vy(speed=SPEED, angle=i) results = simulate_earth_surface( frc_power_cell, X_INITIAL, Y_INITIAL, vx_initial, vy_initial, terminator=terminate_vy_less_zero, ) # Plot the results ax1.plot(results.x, results.y) # Display the graph plt.show()
the-stack_106_19572
# # Copyright (c) 2017 NORDUnet A/S # Copyright (c) 2018 SUNET # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # 3. Neither the name of the NORDUnet nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # from flask import request from eduid_common.authn import fido_tokens from eduid_common.session import session from eduid_webapp.actions.action_abc import ActionPlugin from eduid_webapp.actions.app import ActionsApp from eduid_webapp.actions.app import current_actions_app as current_app from eduid_webapp.actions.helpers import ActionsMsg __author__ = 'ft' class Plugin(ActionPlugin): PLUGIN_NAME = 'mfa' PACKAGE_NAME = 'eduid_webapp.actions.actions.mfa' steps = 1 @classmethod def includeme(cls, app: ActionsApp): if not app.conf.eidas_url: app.logger.error(f'The configuration option eidas_url is required with plugin MFA') if not app.conf.mfa_authn_idp: app.logger.error(f'The configuration option mfa_authn_idp is required with plugin MFA') app.conf.mfa_testing = False def get_config_for_bundle(self, action): eppn = action.eppn user = current_app.central_userdb.get_user_by_eppn(eppn, raise_on_missing=False) current_app.logger.debug('Loaded User {} from db'.format(user)) if not user: raise self.ActionError(ActionsMsg.user_not_found) config = fido_tokens.start_token_verification(user, self.PACKAGE_NAME, current_app.conf.fido2_rp_id) # Explicit check for boolean True if current_app.conf.mfa_testing is True: current_app.logger.info('MFA test mode is enabled') config['testing'] = True else: config['testing'] = False # Add config for external mfa auth config['eidas_url'] = current_app.conf.eidas_url config['mfa_authn_idp'] = current_app.conf.mfa_authn_idp return config def perform_step(self, action): current_app.logger.debug('Performing MFA step') if current_app.conf.mfa_testing: current_app.logger.debug('Test mode is on, faking authentication') return { 'success': True, 'testing': True, } eppn = action.eppn user = current_app.central_userdb.get_user_by_eppn(eppn, raise_on_missing=False) current_app.logger.debug('Loaded User {} from db (in perform_action)'.format(user)) # Third party service MFA if session.mfa_action.success is True: # Explicit check that success is the boolean True issuer = session.mfa_action.issuer authn_instant = session.mfa_action.authn_instant authn_context = session.mfa_action.authn_context current_app.logger.info('User {} logged in using external mfa service {}'.format(user, issuer)) action.result = { 'success': True, 'issuer': issuer, 'authn_instant': authn_instant, 'authn_context': authn_context, } current_app.actions_db.update_action(action) # Clear mfa_action from session del session.mfa_action return action.result req_json = request.get_json() if not req_json: current_app.logger.error('No data in request to authn {}'.format(user)) raise self.ActionError(ActionsMsg.no_data) # Process POSTed data if 'tokenResponse' in req_json: # CTAP1/U2F token_response = request.get_json().get('tokenResponse', '') current_app.logger.debug('U2F token response: {}'.format(token_response)) challenge = session.get(self.PACKAGE_NAME + '.u2f.challenge') current_app.logger.debug('Challenge: {!r}'.format(challenge)) result = fido_tokens.verify_u2f(user, challenge, token_response, current_app.conf.u2f_valid_facets) if result is not None: action.result = result current_app.actions_db.update_action(action) return action.result elif 'authenticatorData' in req_json: # CTAP2/Webauthn try: result = fido_tokens.verify_webauthn(user, req_json, self.PACKAGE_NAME, current_app.conf.fido2_rp_id) except fido_tokens.VerificationProblem as exc: raise self.ActionError(exc.msg) action.result = result current_app.actions_db.update_action(action) return action.result else: current_app.logger.error('Neither U2F nor Webauthn data in request to authn {}'.format(user)) current_app.logger.debug('Request: {}'.format(req_json)) raise self.ActionError(ActionsMsg.no_response) raise self.ActionError(ActionsMsg.unknown_token)
the-stack_106_19573
# Authors: Robert Luke <[email protected]> # Eric Larson <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import os.path as op import pytest import numpy as np from mne.datasets.testing import data_path from mne.io import read_raw_nirx, BaseRaw, read_raw_fif from mne.preprocessing.nirs import optical_density, beer_lambert_law from mne.utils import _validate_type from mne.datasets import testing from mne.externals.pymatreader import read_mat fname_nirx_15_0 = op.join(data_path(download=False), 'NIRx', 'nirx_15_0_recording') fname_nirx_15_2 = op.join(data_path(download=False), 'NIRx', 'nirx_15_2_recording') fname_nirx_15_2_short = op.join(data_path(download=False), 'NIRx', 'nirx_15_2_recording_w_short') @testing.requires_testing_data @pytest.mark.parametrize('fname', ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])) @pytest.mark.parametrize('fmt', ('nirx', 'fif')) def test_beer_lambert(fname, fmt, tmpdir): """Test converting NIRX files.""" assert fmt in ('nirx', 'fif') raw = read_raw_nirx(fname) if fmt == 'fif': raw.save(tmpdir.join('test_raw.fif')) raw = read_raw_fif(tmpdir.join('test_raw.fif')) assert 'fnirs_raw' in raw assert 'fnirs_od' not in raw raw = optical_density(raw) _validate_type(raw, BaseRaw, 'raw') assert 'fnirs_raw' not in raw assert 'fnirs_od' in raw raw = beer_lambert_law(raw) _validate_type(raw, BaseRaw, 'raw') assert 'fnirs_raw' not in raw assert 'fnirs_od' not in raw assert 'hbo' in raw assert 'hbr' in raw @testing.requires_testing_data def test_beer_lambert_unordered_errors(): """NIRS data requires specific ordering and naming of channels.""" raw = read_raw_nirx(fname_nirx_15_0) raw_od = optical_density(raw) raw_od.pick([0, 1, 2]) with pytest.raises(ValueError, match='ordered'): beer_lambert_law(raw_od) # Test that an error is thrown if channel naming frequency doesn't match # what is stored in loc[9], which should hold the light frequency too. raw_od = optical_density(raw) raw_od.rename_channels({'S2_D2 760': 'S2_D2 770'}) with pytest.raises(ValueError, match='frequency do not match'): beer_lambert_law(raw_od) # Test that an error is thrown if inconsistent frequencies used in data raw_od.info['chs'][2]['loc'][9] = 770.0 with pytest.raises(ValueError, match='pairs with frequencies'): beer_lambert_law(raw_od) @testing.requires_testing_data def test_beer_lambert_v_matlab(): """Compare MNE results to MATLAB toolbox.""" raw = read_raw_nirx(fname_nirx_15_0) raw = optical_density(raw) raw = beer_lambert_law(raw, ppf=0.121) raw._data *= 1e6 # Scale to uM for comparison to MATLAB matlab_fname = op.join(data_path(download=False), 'NIRx', 'validation', 'nirx_15_0_recording_bl.mat') matlab_data = read_mat(matlab_fname) for idx in range(raw.get_data().shape[0]): mean_error = np.mean(matlab_data['data'][:, idx] - raw._data[idx]) assert mean_error < 0.1 matlab_name = ("S" + str(int(matlab_data['sources'][idx])) + "_D" + str(int(matlab_data['detectors'][idx])) + " " + matlab_data['type'][idx]) assert raw.info['ch_names'][idx] == matlab_name
the-stack_106_19575
import hydra import os import torch from tqdm import tqdm, trange from tacotron.utils import reset_logging, set_seed, get_abspath, ResultWriter from tacotron import get_process, get_model, get_vocgan from tacotron.configs import NonAttentiveTacotronConfig from hydra.core.config_store import ConfigStore import logging from transformers import ( get_linear_schedule_with_warmup, ) from tacotron.vocgan_generator import Generator import soundfile as sf def init(): cs = ConfigStore.instance() ## base cs.store(group="base", name='non_taco', node=NonAttentiveTacotronConfig) @hydra.main(config_path=os.path.join(".", "configs"), config_name="train") def main(cfg): ## Resent Logging reset_logging() args = cfg.base ## GPU setting if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device set_seed(args.seed) ## load_dataset processor = get_process(args)(args) tokenizer = processor.build_tokenizer() train_dataset = processor.get_dataset(tokenizer, split='train') valid_dataset = processor.get_dataset(tokenizer, split='valid') args.num_labels = tokenizer.get_num_labels() args.num_special_labels = tokenizer.get_num_special_labels() model = get_model(args)(args) model.to(args.device) generator = None generator_path = get_abspath(args.generator_path) if os.path.exists(generator_path): generator = get_vocgan(generator_path) generator.to(args.device) generator.eval() ## test # train_dataloader = train_dataset.load_dataloader( # shuffle=False, batch_size=2 # ) # batch = train_dataset.__getitem__(2) # batch = {key: (item.to(args.device) if type(item) == torch.Tensor else item) for key, item in batch.items()} # print(batch) # # print(tokenizer.decode(batch['input_ids'], batch['special_input_ids'])) # # print("shape", batch['mel_specs'].shape) # print(batch['mel_specs']) # # audio = generator.generate_audio(batch['mel_specs']) # sf.write('sample1.wav', audio, args.sampling_rate, 'PCM_24') # # for batch in train_dataloader: # print('confirm1', tokenizer.decode(batch['input_ids'][0], batch['special_input_ids'][0])) # print('confirm2', tokenizer.decode(batch['input_ids'][1], batch['special_input_ids'][1])) # # batch = {key: (item.to(args.device) if type(item) == torch.Tensor else item) for key, item in batch.items()} # # #print(batch['durations']) # #print(batch['input_ids']) # mel_specs = batch['mel_specs'].squeeze() # print("shape", mel_specs.shape) # print(mel_specs) # # #net_output = model(**batch) # # ## generate audio # audio = generator.generate_audio(mel_specs[0]) # ## save audio # sf.write('sample1.wav', audio, args.sampling_rate, 'PCM_24') # # # #loss = model.get_loss(**net_output, **batch) # #print('loss', loss) # break # ## train model writer = ResultWriter(args.experiments_path) results = {} ## training train_results = train(args, train_dataset, valid_dataset, model, tokenizer, generator) results.update(**train_results) writer.update(args, **results) def train(args, train_dataset, valid_dataset, model, tokenizer, generator=None): logging.info("start training") ## load dataloader train_dataloader = train_dataset.load_dataloader( shuffle=True, batch_size=args.train_batch_size ) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = ( args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 ) else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, eps=args.weight_decay) args.warmup_steps = int(args.warmup_percent * t_total) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) logging.info(" Num Epochs = %d", args.num_train_epochs) logging.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logging.info(" Total optimization steps = %d", t_total) logging.info(" Train Batch size = %d", args.train_batch_size) logging.info(" Train Data size = %d", len(train_dataset)) step = 0 global_step = 0 best_loss = 1e10 best_loss_step = 0 stop_iter = False #train_iterator = trange(0, int(args.num_train_epochs), desc="Epoch") model.zero_grad() for epoch_idx in range(0, int(args.num_train_epochs)): ## load dataloader train_dataloader = train_dataset.load_dataloader( shuffle=True, batch_size=args.train_batch_size ) for batch in train_dataloader: step += 1 model.train() batch = {key: (item.to(args.device) if type(item) == torch.Tensor else item) for key, item in batch.items()} net_output = model(**batch) loss = model.get_loss(**net_output, **batch) final_loss = loss['loss'] if args.gradient_accumulation_steps > 1: final_loss = final_loss / args.gradient_accumulation_steps if args.n_gpu > 1: final_loss = final_loss.mean() if args.fp16: with amp.scale_loss(final_loss, optimizer) as scaled_loss: scaled_loss.backward() else: final_loss.backward() #train_iterator.set_postfix_str(s="loss = {:.8f}".format(float(final_loss)), refresh=True) if step % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.grad_clip_thresh) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_thresh) optimizer.step() scheduler.step() model.zero_grad() global_step += 1 ## logging if (args.logging_steps > 0 and global_step % args.logging_steps == 0 and global_step > 0): logging.info("***** epoch [{}] loss [{:.4}] b_mse [{:.4}] b_mae [{:.4}] a_mse [{:.4}] a_mae [{:.4}] duration [{:.4}] *****".format( str(epoch_idx), loss['loss'].detach().cpu().item(), loss['predicted_mse'].detach().cpu().item(), loss['predicted_mae'].detach().cpu().item(), loss['predicted_postnet_mse'].detach().cpu().item(), loss['predicted_postnet_mae'].detach().cpu().item(), loss['predicted_durations_mse'].detach().cpu().item(), ) ) if (args.steps_per_evaluate > 0 and global_step % args.steps_per_evaluate == 0 and global_step > 0): ## audio prepare path audio_save_path = os.path.join(args.save_path, 'audio', str(global_step)) audio_save_path = get_abspath(audio_save_path) os.makedirs(audio_save_path, exist_ok=True) # if (args.logging_steps > 0 and global_step % args.logging_steps == 0): results = evaluate(args, valid_dataset, model, generator, audio_save_path) eval_loss = results['loss'] if eval_loss < best_loss: best_loss = eval_loss best_loss_step = global_step logging.info("***** best_loss : %.4f *****", best_loss) if (args.steps_per_checkpoint > 0 and global_step % args.steps_per_checkpoint == 0 and global_step > 0): model_save_path = os.path.join(args.save_path, 'model', str(global_step)) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(model_save_path) tokenizer.save_pretrained(model_save_path) if args.max_steps > 0 and global_step > args.max_steps: stop_iter = True break if stop_iter: break return {'best_valid_loss': best_loss, 'best_valid_loss_step': best_loss_step, } def evaluate(args, test_dataset, model, generator=None, save_path=''): ## load dataloader test_dataloader = test_dataset.load_dataloader( shuffle=False, batch_size=1 ) if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) logging.info("***** Running evaluation *****") eval_loss = 0.0 nb_eval_steps = 0 model.eval() for batch in tqdm(test_dataloader, desc="Evaluating"): batch = {key: (item.to(args.device) if type(item) == torch.Tensor else item) for key, item in batch.items()} with torch.no_grad(): net_output = model(**batch) loss = model.get_loss(**net_output, **batch) eval_loss += loss['loss'].cpu().item() if generator is not None: net_output = model.inference(**batch) ## generate audio audio = generator.generate_audio(**net_output) ## save audio sf.write(os.path.join(save_path, '{}.wav'.format(str(nb_eval_steps))), audio, args.sampling_rate, 'PCM_24') nb_eval_steps += 1 eval_loss = eval_loss/nb_eval_steps results = { 'loss' : eval_loss, } logging.info(" %s = %s", 'loss', str(results['loss'])) model.train() return results if __name__ == "__main__": init() main()
the-stack_106_19577
#!/usr/bin/env python3 # # This file is part of the MicroPython project, http://micropython.org/ # # The MIT License (MIT) # # Copyright (c) 2020 Damien P. George # Copyright (c) 2020 Jim Mussared # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import argparse import glob import itertools import os import re import subprocess # Relative to top-level repo dir. PATHS = [ # C "drivers/ninaw10/*.[ch]", "extmod/*.[ch]", "extmod/btstack/*.[ch]", "extmod/nimble/*.[ch]", "lib/mbedtls_errors/tester.c", "shared/netutils/*.[ch]", "shared/timeutils/*.[ch]", "shared/runtime/*.[ch]", "mpy-cross/*.[ch]", "ports/*/*.[ch]", "ports/windows/msvc/**/*.[ch]", "ports/nrf/modules/nrf/*.[ch]", "py/*.[ch]", # Python "drivers/**/*.py", "examples/**/*.py", "extmod/**/*.py", "ports/**/*.py", "ports/mimxrt/**/*.[ch]", "py/**/*.py", "tools/**/*.py", "tests/**/*.py", ] EXCLUSIONS = [ # STM32 build includes generated Python code. "ports/*/build*", # gitignore in ports/unix ignores *.py, so also do it here. "ports/unix/*.py", # not real python files "tests/**/repl_*.py", # needs careful attention before applying automatic formatting "tests/basics/*.py", ] # Path to repo top-level dir. TOP = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) UNCRUSTIFY_CFG = os.path.join(TOP, "tools/uncrustify.cfg") C_EXTS = ( ".c", ".h", ) PY_EXTS = (".py",) def list_files(paths, exclusions=None, prefix=""): files = set() for pattern in paths: files.update(glob.glob(os.path.join(prefix, pattern), recursive=True)) for pattern in exclusions or []: files.difference_update(glob.fnmatch.filter(files, os.path.join(prefix, pattern))) return sorted(files) def fixup_c(filename): # Read file. with open(filename) as f: lines = f.readlines() # Write out file with fixups. with open(filename, "w", newline="") as f: dedent_stack = [] while lines: # Get next line. l = lines.pop(0) # Dedent #'s to match indent of following line (not previous line). m = re.match(r"( +)#(if |ifdef |ifndef |elif |else|endif)", l) if m: indent = len(m.group(1)) directive = m.group(2) if directive in ("if ", "ifdef ", "ifndef "): l_next = lines[0] indent_next = len(re.match(r"( *)", l_next).group(1)) if indent - 4 == indent_next and re.match(r" +(} else |case )", l_next): # This #-line (and all associated ones) needs dedenting by 4 spaces. l = l[4:] dedent_stack.append(indent - 4) else: # This #-line does not need dedenting. dedent_stack.append(-1) else: if dedent_stack[-1] >= 0: # This associated #-line needs dedenting to match the #if. indent_diff = indent - dedent_stack[-1] assert indent_diff >= 0 l = l[indent_diff:] if directive == "endif": dedent_stack.pop() # Write out line. f.write(l) assert not dedent_stack, filename def main(): cmd_parser = argparse.ArgumentParser(description="Auto-format C and Python files.") cmd_parser.add_argument("-c", action="store_true", help="Format C code only") cmd_parser.add_argument("-p", action="store_true", help="Format Python code only") cmd_parser.add_argument("-v", action="store_true", help="Enable verbose output") cmd_parser.add_argument("files", nargs="*", help="Run on specific globs") args = cmd_parser.parse_args() # Setting only one of -c or -p disables the other. If both or neither are set, then do both. format_c = args.c or not args.p format_py = args.p or not args.c # Expand the globs passed on the command line, or use the default globs above. files = [] if args.files: files = list_files(args.files) else: files = list_files(PATHS, EXCLUSIONS, TOP) # Extract files matching a specific language. def lang_files(exts): for file in files: if os.path.splitext(file)[1].lower() in exts: yield file # Run tool on N files at a time (to avoid making the command line too long). def batch(cmd, files, N=200): while True: file_args = list(itertools.islice(files, N)) if not file_args: break subprocess.check_call(cmd + file_args) # Format C files with uncrustify. if format_c: command = ["uncrustify", "-c", UNCRUSTIFY_CFG, "-lC", "--no-backup"] if not args.v: command.append("-q") batch(command, lang_files(C_EXTS)) for file in lang_files(C_EXTS): fixup_c(file) # Format Python files with black. if format_py: command = ["black", "--fast", "--line-length=99"] if args.v: command.append("-v") else: command.append("-q") batch(command, lang_files(PY_EXTS)) if __name__ == "__main__": main()
the-stack_106_19580
def notaPostulanteEstMultiple(): #Definir Variables notaFinal=0 #Datos de entrada areaCarrera=input("Introduce el area a la que corresponde tu carrera:\nB=Biomedicas\nI=Ingenieria\nS=Sociales") notaEP=float(input("Ingrese la nota de EP:")) notaRM=float(input("Ingrese la nota de RM:")) notaRV=float(input("Ingrese la nota de RV:")) notaAB=float(input("Ingrese la nota de AB:")) #Proceso if areaCarrera=="B": notaFinal=(notaEP*0.40)+(notaRM*0.10)+(notaRV*0.20)+(notaAB*0.30) areaCarrera="Biomedicas" elif areaCarrera=="I": notaFinal=(notaEP*0.40)+(notaRM*0.30)+(notaRV*0.15)+(notaAB*0.15) areaCarrera="Ingenierias" elif areaCarrera=="S": notaFinal=(notaEP*0.40)+(notaRM*0.10)+(notaRV*0.30)+(notaAB*0.20) areaCarrera="Sociales" else: print("La opcion que ingreso no es valida...intente nuevamente!.") print("El postulante obtuvo un nota de:",notaFinal,"\nY su carrera corresponde al area de:",areaCarrera) notaPostulanteEstMultiple()
the-stack_106_19582
import abc import sys import time from collections import OrderedDict from functools import reduce import numba import numpy as np from det3d.core.bbox import box_np_ops from det3d.core.bbox.geometry import ( is_line_segment_intersection_jit, points_in_convex_polygon_3d_jit, points_in_convex_polygon_jit, ) import copy class BatchSampler: def __init__( self, sampled_list, name=None, epoch=None, shuffle=True, drop_reminder=False ): self._sampled_list = sampled_list self._indices = np.arange(len(sampled_list)) if shuffle: np.random.shuffle(self._indices) self._idx = 0 self._example_num = len(sampled_list) self._name = name self._shuffle = shuffle self._epoch = epoch self._epoch_counter = 0 self._drop_reminder = drop_reminder def _sample(self, num): if self._idx + num >= self._example_num: ret = self._indices[self._idx :].copy() self._reset() else: ret = self._indices[self._idx : self._idx + num] self._idx += num return ret def _reset(self): # if self._name is not None: # print("reset", self._name) if self._shuffle: np.random.shuffle(self._indices) self._idx = 0 def sample(self, num): indices = self._sample(num) return [self._sampled_list[i] for i in indices] # return np.random.choice(self._sampled_list, num) class DataBasePreprocessing: def __call__(self, db_infos): return self._preprocess(db_infos) @abc.abstractclassmethod def _preprocess(self, db_infos): pass class DBFilterByDifficulty(DataBasePreprocessing): def __init__(self, removed_difficulties, logger=None): self._removed_difficulties = removed_difficulties logger.info(f"{removed_difficulties}") def _preprocess(self, db_infos): new_db_infos = {} for key, dinfos in db_infos.items(): new_db_infos[key] = [ info for info in dinfos if info["difficulty"] not in self._removed_difficulties ] return new_db_infos class DBFilterByMinNumPoint(DataBasePreprocessing): def __init__(self, min_gt_point_dict, logger=None): self._min_gt_point_dict = min_gt_point_dict logger.info(f"{min_gt_point_dict}") def _preprocess(self, db_infos): for name, min_num in self._min_gt_point_dict.items(): if min_num > 0: filtered_infos = [] for info in db_infos[name]: if info["num_points_in_gt"] >= min_num: filtered_infos.append(info) db_infos[name] = filtered_infos return db_infos class DataBasePreprocessor: def __init__(self, preprocessors): self._preprocessors = preprocessors def __call__(self, db_infos): for prepor in self._preprocessors: db_infos = prepor(db_infos) return db_infos def random_crop_frustum( bboxes, rect, Trv2c, P2, max_crop_height=1.0, max_crop_width=0.9 ): num_gt = bboxes.shape[0] crop_minxy = np.random.uniform( [1 - max_crop_width, 1 - max_crop_height], [0.3, 0.3], size=[num_gt, 2] ) crop_maxxy = np.ones([num_gt, 2], dtype=bboxes.dtype) crop_bboxes = np.concatenate([crop_minxy, crop_maxxy], axis=1) left = np.random.choice([False, True], replace=False, p=[0.5, 0.5]) if left: crop_bboxes[:, [0, 2]] -= crop_bboxes[:, 0:1] # crop_relative_bboxes to real bboxes crop_bboxes *= np.tile(bboxes[:, 2:] - bboxes[:, :2], [1, 2]) crop_bboxes += np.tile(bboxes[:, :2], [1, 2]) C, R, T = box_np_ops.projection_matrix_to_CRT_kitti(P2) frustums = box_np_ops.get_frustum_v2(crop_bboxes, C) frustums -= T # frustums = np.linalg.inv(R) @ frustums.T frustums = np.einsum("ij, akj->aki", np.linalg.inv(R), frustums) frustums = box_np_ops.camera_to_lidar(frustums, rect, Trv2c) return frustums def filter_gt_box_outside_range(gt_boxes, limit_range): """remove gtbox outside training range. this function should be applied after other prep functions Args: gt_boxes ([type]): [description] limit_range ([type]): [description] """ gt_boxes_bv = box_np_ops.center_to_corner_box2d( gt_boxes[:, [0, 1]], gt_boxes[:, [3, 3 + 1]], gt_boxes[:, -1] ) bounding_box = box_np_ops.minmax_to_corner_2d( np.asarray(limit_range)[np.newaxis, ...] ) ret = points_in_convex_polygon_jit(gt_boxes_bv.reshape(-1, 2), bounding_box) return np.any(ret.reshape(-1, 4), axis=1) def filter_gt_box_outside_range_by_center(gt_boxes, limit_range): """remove gtbox outside training range. this function should be applied after other prep functions Args: gt_boxes ([type]): [description] limit_range ([type]): [description] """ gt_box_centers = gt_boxes[:, :2] bounding_box = box_np_ops.minmax_to_corner_2d( np.asarray(limit_range)[np.newaxis, ...] ) ret = points_in_convex_polygon_jit(gt_box_centers, bounding_box) return ret.reshape(-1) def filter_gt_low_points(gt_boxes, points, num_gt_points, point_num_threshold=2): points_mask = np.ones([points.shape[0]], np.bool) gt_boxes_mask = np.ones([gt_boxes.shape[0]], np.bool) for i, num in enumerate(num_gt_points): if num <= point_num_threshold: masks = box_np_ops.points_in_rbbox(points, gt_boxes[i : i + 1]) masks = masks.reshape([-1]) points_mask &= np.logical_not(masks) gt_boxes_mask[i] = False return gt_boxes[gt_boxes_mask], points[points_mask] def mask_points_in_corners(points, box_corners): surfaces = box_np_ops.corner_to_surfaces_3d(box_corners) mask = points_in_convex_polygon_3d_jit(points[:, :3], surfaces) return mask @numba.njit def _rotation_matrix_3d_(rot_mat_T, angle, axis): rot_sin = np.sin(angle) rot_cos = np.cos(angle) rot_mat_T[:] = np.eye(3) if axis == 1: rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 2] = -rot_sin rot_mat_T[2, 0] = rot_sin rot_mat_T[2, 2] = rot_cos elif axis == 2 or axis == -1: rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos elif axis == 0: rot_mat_T[1, 1] = rot_cos rot_mat_T[1, 2] = -rot_sin rot_mat_T[2, 1] = rot_sin rot_mat_T[2, 2] = rot_cos @numba.njit def _rotation_box2d_jit_(corners, angle, rot_mat_T): rot_sin = np.sin(angle) rot_cos = np.cos(angle) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos corners[:] = corners @ rot_mat_T @numba.jit(nopython=True) def _box_single_to_corner_jit(boxes): num_box = boxes.shape[0] corners_norm = np.zeros((4, 2), dtype=boxes.dtype) corners_norm[1, 1] = 1.0 corners_norm[2] = 1.0 corners_norm[3, 0] = 1.0 corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) corners = boxes.reshape(num_box, 1, 5)[:, :, 2:4] * corners_norm.reshape(1, 4, 2) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) box_corners = np.zeros((num_box, 4, 2), dtype=boxes.dtype) for i in range(num_box): rot_sin = np.sin(boxes[i, -1]) rot_cos = np.cos(boxes[i, -1]) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos box_corners[i] = corners[i] @ rot_mat_T + boxes[i, :2] return box_corners @numba.njit def noise_per_box(boxes, valid_mask, loc_noises, rot_noises): # boxes: [N, 5] # valid_mask: [N] # loc_noises: [N, M, 3] # rot_noises: [N, M] num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) current_corners = np.zeros((4, 2), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) success_mask = -np.ones((num_boxes,), dtype=np.int64) # print(valid_mask) for i in range(num_boxes): if valid_mask[i]: for j in range(num_tests): current_corners[:] = box_corners[i] current_corners -= boxes[i, :2] _rotation_box2d_jit_(current_corners, rot_noises[i, j], rot_mat_T) current_corners += boxes[i, :2] + loc_noises[i, j, :2] coll_mat = box_collision_test( current_corners.reshape(1, 4, 2), box_corners ) coll_mat[0, i] = False # print(coll_mat) if not coll_mat.any(): success_mask[i] = j box_corners[i] = current_corners break return success_mask @numba.njit def noise_per_box_group(boxes, valid_mask, loc_noises, rot_noises, group_nums): # WARNING: this function need boxes to be sorted by group id. # boxes: [N, 5] # valid_mask: [N] # loc_noises: [N, M, 3] # rot_noises: [N, M] num_groups = group_nums.shape[0] num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) max_group_num = group_nums.max() current_corners = np.zeros((max_group_num, 4, 2), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) success_mask = -np.ones((num_boxes,), dtype=np.int64) # print(valid_mask) idx = 0 for num in group_nums: if valid_mask[idx]: for j in range(num_tests): for i in range(num): current_corners[i] = box_corners[i + idx] current_corners[i] -= boxes[i + idx, :2] _rotation_box2d_jit_( current_corners[i], rot_noises[idx + i, j], rot_mat_T ) current_corners[i] += ( boxes[i + idx, :2] + loc_noises[i + idx, j, :2] ) coll_mat = box_collision_test( current_corners[:num].reshape(num, 4, 2), box_corners ) for i in range(num): # remove self-coll coll_mat[i, idx : idx + num] = False if not coll_mat.any(): for i in range(num): success_mask[i + idx] = j box_corners[i + idx] = current_corners[i] break idx += num return success_mask @numba.njit def noise_per_box_group_v2_( boxes, valid_mask, loc_noises, rot_noises, group_nums, global_rot_noises ): # WARNING: this function need boxes to be sorted by group id. # boxes: [N, 5] # valid_mask: [N] # loc_noises: [N, M, 3] # rot_noises: [N, M] num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) max_group_num = group_nums.max() current_box = np.zeros((1, 5), dtype=boxes.dtype) current_corners = np.zeros((max_group_num, 4, 2), dtype=boxes.dtype) dst_pos = np.zeros((max_group_num, 2), dtype=boxes.dtype) current_grot = np.zeros((max_group_num,), dtype=boxes.dtype) dst_grot = np.zeros((max_group_num,), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) success_mask = -np.ones((num_boxes,), dtype=np.int64) corners_norm = np.zeros((4, 2), dtype=boxes.dtype) corners_norm[1, 1] = 1.0 corners_norm[2] = 1.0 corners_norm[3, 0] = 1.0 corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) corners_norm = corners_norm.reshape(4, 2) # print(valid_mask) idx = 0 for num in group_nums: if valid_mask[idx]: for j in range(num_tests): for i in range(num): current_box[0, :] = boxes[i + idx] current_radius = np.sqrt( current_box[0, 0] ** 2 + current_box[0, 1] ** 2 ) current_grot[i] = np.arctan2(current_box[0, 0], current_box[0, 1]) dst_grot[i] = current_grot[i] + global_rot_noises[idx + i, j] dst_pos[i, 0] = current_radius * np.sin(dst_grot[i]) dst_pos[i, 1] = current_radius * np.cos(dst_grot[i]) current_box[0, :2] = dst_pos[i] current_box[0, -1] += dst_grot[i] - current_grot[i] rot_sin = np.sin(current_box[0, -1]) rot_cos = np.cos(current_box[0, -1]) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos current_corners[i] = ( current_box[0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2] ) current_corners[i] -= current_box[0, :2] _rotation_box2d_jit_( current_corners[i], rot_noises[idx + i, j], rot_mat_T ) current_corners[i] += ( current_box[0, :2] + loc_noises[i + idx, j, :2] ) coll_mat = box_collision_test( current_corners[:num].reshape(num, 4, 2), box_corners ) for i in range(num): # remove self-coll coll_mat[i, idx : idx + num] = False if not coll_mat.any(): for i in range(num): success_mask[i + idx] = j box_corners[i + idx] = current_corners[i] loc_noises[i + idx, j, :2] += dst_pos[i] - boxes[i + idx, :2] rot_noises[i + idx, j] += dst_grot[i] - current_grot[i] break idx += num return success_mask @numba.njit def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises, global_rot_noises): # boxes: [N, 5] # valid_mask: [N] # loc_noises: [N, M, 3] # rot_noises: [N, M] num_boxes = boxes.shape[0] num_tests = loc_noises.shape[1] box_corners = box_np_ops.box2d_to_corner_jit(boxes) current_corners = np.zeros((4, 2), dtype=boxes.dtype) current_box = np.zeros((1, 5), dtype=boxes.dtype) rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype) dst_pos = np.zeros((2,), dtype=boxes.dtype) success_mask = -np.ones((num_boxes,), dtype=np.int64) corners_norm = np.zeros((4, 2), dtype=boxes.dtype) corners_norm[1, 1] = 1.0 corners_norm[2] = 1.0 corners_norm[3, 0] = 1.0 corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype) corners_norm = corners_norm.reshape(4, 2) for i in range(num_boxes): if valid_mask[i]: for j in range(num_tests): current_box[0, :] = boxes[i] current_radius = np.sqrt(boxes[i, 0] ** 2 + boxes[i, 1] ** 2) current_grot = np.arctan2(boxes[i, 0], boxes[i, 1]) dst_grot = current_grot + global_rot_noises[i, j] dst_pos[0] = current_radius * np.sin(dst_grot) dst_pos[1] = current_radius * np.cos(dst_grot) current_box[0, :2] = dst_pos current_box[0, -1] += dst_grot - current_grot rot_sin = np.sin(current_box[0, -1]) rot_cos = np.cos(current_box[0, -1]) rot_mat_T[0, 0] = rot_cos rot_mat_T[0, 1] = -rot_sin rot_mat_T[1, 0] = rot_sin rot_mat_T[1, 1] = rot_cos current_corners[:] = ( current_box[0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2] ) current_corners -= current_box[0, :2] _rotation_box2d_jit_(current_corners, rot_noises[i, j], rot_mat_T) current_corners += current_box[0, :2] + loc_noises[i, j, :2] coll_mat = box_collision_test( current_corners.reshape(1, 4, 2), box_corners ) coll_mat[0, i] = False if not coll_mat.any(): success_mask[i] = j box_corners[i] = current_corners loc_noises[i, j, :2] += dst_pos - boxes[i, :2] rot_noises[i, j] += dst_grot - current_grot break return success_mask @numba.njit def points_transform_( points, centers, point_masks, loc_transform, rot_transform, valid_mask ): num_box = centers.shape[0] num_points = points.shape[0] rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype) for i in range(num_box): _rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2) for i in range(num_points): for j in range(num_box): if valid_mask[j]: if point_masks[i, j] == 1: points[i, :3] -= centers[j, :3] points[i : i + 1, :3] = points[i : i + 1, :3] @ rot_mat_T[j] points[i, :3] += centers[j, :3] points[i, :3] += loc_transform[j] break # only apply first box's transform @numba.njit def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask): num_box = boxes.shape[0] for i in range(num_box): if valid_mask[i]: boxes[i, :3] += loc_transform[i] boxes[i, 6] += rot_transform[i] def _select_transform(transform, indices): result = np.zeros((transform.shape[0], *transform.shape[2:]), dtype=transform.dtype) for i in range(transform.shape[0]): if indices[i] != -1: result[i] = transform[i, indices[i]] return result @numba.njit def group_transform_(loc_noise, rot_noise, locs, rots, group_center, valid_mask): # loc_noise: [N, M, 3], locs: [N, 3] # rot_noise: [N, M] # group_center: [N, 3] num_try = loc_noise.shape[1] r = 0.0 x = 0.0 y = 0.0 rot_center = 0.0 for i in range(loc_noise.shape[0]): if valid_mask[i]: x = locs[i, 0] - group_center[i, 0] y = locs[i, 1] - group_center[i, 1] r = np.sqrt(x ** 2 + y ** 2) # calculate rots related to group center rot_center = np.arctan2(x, y) for j in range(num_try): loc_noise[i, j, 0] += r * ( np.sin(rot_center + rot_noise[i, j]) - np.sin(rot_center) ) loc_noise[i, j, 1] += r * ( np.cos(rot_center + rot_noise[i, j]) - np.cos(rot_center) ) @numba.njit def group_transform_v2_( loc_noise, rot_noise, locs, rots, group_center, grot_noise, valid_mask ): # loc_noise: [N, M, 3], locs: [N, 3] # rot_noise: [N, M] # group_center: [N, 3] num_try = loc_noise.shape[1] r = 0.0 x = 0.0 y = 0.0 rot_center = 0.0 for i in range(loc_noise.shape[0]): if valid_mask[i]: x = locs[i, 0] - group_center[i, 0] y = locs[i, 1] - group_center[i, 1] r = np.sqrt(x ** 2 + y ** 2) # calculate rots related to group center rot_center = np.arctan2(x, y) for j in range(num_try): loc_noise[i, j, 0] += r * ( np.sin(rot_center + rot_noise[i, j] + grot_noise[i, j]) - np.sin(rot_center + grot_noise[i, j]) ) loc_noise[i, j, 1] += r * ( np.cos(rot_center + rot_noise[i, j] + grot_noise[i, j]) - np.cos(rot_center + grot_noise[i, j]) ) def set_group_noise_same_(loc_noise, rot_noise, group_ids): gid_to_index_dict = {} for i, gid in enumerate(group_ids): if gid not in gid_to_index_dict: gid_to_index_dict[gid] = i for i in range(loc_noise.shape[0]): loc_noise[i] = loc_noise[gid_to_index_dict[group_ids[i]]] rot_noise[i] = rot_noise[gid_to_index_dict[group_ids[i]]] def set_group_noise_same_v2_(loc_noise, rot_noise, grot_noise, group_ids): gid_to_index_dict = {} for i, gid in enumerate(group_ids): if gid not in gid_to_index_dict: gid_to_index_dict[gid] = i for i in range(loc_noise.shape[0]): loc_noise[i] = loc_noise[gid_to_index_dict[group_ids[i]]] rot_noise[i] = rot_noise[gid_to_index_dict[group_ids[i]]] grot_noise[i] = grot_noise[gid_to_index_dict[group_ids[i]]] def get_group_center(locs, group_ids): num_groups = 0 group_centers = np.zeros_like(locs) group_centers_ret = np.zeros_like(locs) group_id_dict = {} group_id_num_dict = OrderedDict() for i, gid in enumerate(group_ids): if gid >= 0: if gid in group_id_dict: group_centers[group_id_dict[gid]] += locs[i] group_id_num_dict[gid] += 1 else: group_id_dict[gid] = num_groups num_groups += 1 group_id_num_dict[gid] = 1 group_centers[group_id_dict[gid]] = locs[i] for i, gid in enumerate(group_ids): group_centers_ret[i] = ( group_centers[group_id_dict[gid]] / group_id_num_dict[gid] ) return group_centers_ret, group_id_num_dict def noise_per_object_v3_( gt_boxes, points=None, valid_mask=None, rotation_perturb=np.pi / 4, center_noise_std=1.0, global_random_rot_range=np.pi / 4, num_try=5, group_ids=None, ): """random rotate or remove each groundtrutn independently. use kitti viewer to test this function points_transform_ Args: gt_boxes: [N, 7], gt box in lidar.points_transform_ points: [M, 4], point cloud in lidar. """ num_boxes = gt_boxes.shape[0] if not isinstance(rotation_perturb, (list, tuple, np.ndarray)): rotation_perturb = [-rotation_perturb, rotation_perturb] if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)): global_random_rot_range = [-global_random_rot_range, global_random_rot_range] enable_grot = ( np.abs(global_random_rot_range[0] - global_random_rot_range[1]) >= 1e-3 ) if not isinstance(center_noise_std, (list, tuple, np.ndarray)): center_noise_std = [center_noise_std, center_noise_std, center_noise_std] if valid_mask is None: valid_mask = np.ones((num_boxes,), dtype=np.bool_) center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype) loc_noises = np.random.normal(scale=center_noise_std, size=[num_boxes, num_try, 3]) # loc_noises = np.random.uniform( # -center_noise_std, center_noise_std, size=[num_boxes, num_try, 3]) rot_noises = np.random.uniform( rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try] ) gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1]) grot_lowers = global_random_rot_range[0] - gt_grots grot_uppers = global_random_rot_range[1] - gt_grots global_rot_noises = np.random.uniform( grot_lowers[..., np.newaxis], grot_uppers[..., np.newaxis], size=[num_boxes, num_try], ) if group_ids is not None: if enable_grot: set_group_noise_same_v2_( loc_noises, rot_noises, global_rot_noises, group_ids ) else: set_group_noise_same_(loc_noises, rot_noises, group_ids) group_centers, group_id_num_dict = get_group_center(gt_boxes[:, :3], group_ids) if enable_grot: group_transform_v2_( loc_noises, rot_noises, gt_boxes[:, :3], gt_boxes[:, 6], group_centers, global_rot_noises, valid_mask, ) else: group_transform_( loc_noises, rot_noises, gt_boxes[:, :3], gt_boxes[:, 6], group_centers, valid_mask, ) group_nums = np.array(list(group_id_num_dict.values()), dtype=np.int64) origin = [0.5, 0.5, 0.5] gt_box_corners = box_np_ops.center_to_corner_box3d( gt_boxes[:, :3], gt_boxes[:, 3:6], gt_boxes[:, 6], origin=origin, axis=2 ) if group_ids is not None: if not enable_grot: selected_noise = noise_per_box_group( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises, group_nums, ) else: selected_noise = noise_per_box_group_v2_( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises, group_nums, global_rot_noises, ) else: if not enable_grot: selected_noise = noise_per_box( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises ) else: selected_noise = noise_per_box_v2_( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises, global_rot_noises, ) loc_transforms = _select_transform(loc_noises, selected_noise) rot_transforms = _select_transform(rot_noises, selected_noise) surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners) if points is not None: point_masks = points_in_convex_polygon_3d_jit(points[:, :3], surfaces) points_transform_( points, gt_boxes[:, :3], point_masks, loc_transforms, rot_transforms, valid_mask, ) box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask) def noise_per_object_v2_( gt_boxes, points=None, valid_mask=None, rotation_perturb=np.pi / 4, center_noise_std=1.0, global_random_rot_range=np.pi / 4, num_try=100, ): """random rotate or remove each groundtrutn independently. use kitti viewer to test this function points_transform_ Args: gt_boxes: [N, 7], gt box in lidar.points_transform_ points: [M, 4], point cloud in lidar. """ num_boxes = gt_boxes.shape[0] if not isinstance(rotation_perturb, (list, tuple, np.ndarray)): rotation_perturb = [-rotation_perturb, rotation_perturb] if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)): global_random_rot_range = [-global_random_rot_range, global_random_rot_range] if not isinstance(center_noise_std, (list, tuple, np.ndarray)): center_noise_std = [center_noise_std, center_noise_std, center_noise_std] if valid_mask is None: valid_mask = np.ones((num_boxes,), dtype=np.bool_) center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype) loc_noises = np.random.normal(scale=center_noise_std, size=[num_boxes, num_try, 3]) # loc_noises = np.random.uniform( # -center_noise_std, center_noise_std, size=[num_boxes, num_try, 3]) rot_noises = np.random.uniform( rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try] ) gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1]) grot_lowers = global_random_rot_range[0] - gt_grots grot_uppers = global_random_rot_range[1] - gt_grots global_rot_noises = np.random.uniform( grot_lowers[..., np.newaxis], grot_uppers[..., np.newaxis], size=[num_boxes, num_try], ) origin = [0.5, 0.5, 0] gt_box_corners = box_np_ops.center_to_corner_box3d( gt_boxes[:, :3], gt_boxes[:, 3:6], gt_boxes[:, 6], origin=origin, axis=2 ) if np.abs(global_random_rot_range[0] - global_random_rot_range[1]) < 1e-3: selected_noise = noise_per_box( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises ) else: selected_noise = noise_per_box_v2_( gt_boxes[:, [0, 1, 3, 4, 6]], valid_mask, loc_noises, rot_noises, global_rot_noises, ) loc_transforms = _select_transform(loc_noises, selected_noise) rot_transforms = _select_transform(rot_noises, selected_noise) if points is not None: surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners) point_masks = points_in_convex_polygon_3d_jit(points[:, :3], surfaces) points_transform_( points, gt_boxes[:, :3], point_masks, loc_transforms, rot_transforms, valid_mask, ) box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask) def global_scaling(gt_boxes, points, scale=0.05): if not isinstance(scale, list): scale = [-scale, scale] noise_scale = np.random.uniform(scale[0] + 1, scale[1] + 1) points[:, :3] *= noise_scale gt_boxes[:, :6] *= noise_scale return gt_boxes, points def global_rotation(gt_boxes, points, rotation=np.pi / 4): if not isinstance(rotation, list): rotation = [-rotation, rotation] noise_rotation = np.random.uniform(rotation[0], rotation[1]) points[:, :3] = box_np_ops.rotation_points_single_angle( points[:, :3], noise_rotation, axis=2 ) gt_boxes[:, :3] = box_np_ops.rotation_points_single_angle( gt_boxes[:, :3], noise_rotation, axis=2 ) if gt_boxes.shape[1] > 7: gt_boxes[:, 6:8] = box_np_ops.rotation_points_single_angle( np.hstack([gt_boxes[:, 6:8], np.zeros((gt_boxes.shape[0], 1))]), noise_rotation, axis=2, )[:, :2] gt_boxes[:, -1] += noise_rotation return gt_boxes, points def random_flip(gt_boxes, points, probability=0.5): enable = np.random.choice( [False, True], replace=False, p=[1 - probability, probability] ) if enable: gt_boxes[:, 1] = -gt_boxes[:, 1] gt_boxes[:, -1] = -gt_boxes[:, -1] + np.pi points[:, 1] = -points[:, 1] if gt_boxes.shape[1] > 7: # y axis: x, y, z, w, h, l, vx, vy, r gt_boxes[:, 7] = -gt_boxes[:, 7] return gt_boxes, points def global_scaling_v2(gt_boxes, points, min_scale=0.95, max_scale=1.05): noise_scale = np.random.uniform(min_scale, max_scale) points[:, :3] *= noise_scale gt_boxes[:, :-1] *= noise_scale return gt_boxes, points def global_rotation_v2(gt_boxes, points, min_rad=-np.pi / 4, max_rad=np.pi / 4): noise_rotation = np.random.uniform(min_rad, max_rad) points[:, :3] = box_np_ops.rotation_points_single_angle( points[:, :3], noise_rotation, axis=2 ) gt_boxes[:, :3] = box_np_ops.rotation_points_single_angle( gt_boxes[:, :3], noise_rotation, axis=2 ) gt_boxes[:, -1] += noise_rotation return gt_boxes, points @numba.jit(nopython=True) def box_collision_test(boxes, qboxes, clockwise=True): N = boxes.shape[0] K = qboxes.shape[0] ret = np.zeros((N, K), dtype=np.bool_) slices = np.array([1, 2, 3, 0]) lines_boxes = np.stack( (boxes, boxes[:, slices, :]), axis=2 ) # [N, 4, 2(line), 2(xy)] lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2) # vec = np.zeros((2,), dtype=boxes.dtype) boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes) qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes) for i in range(N): for j in range(K): # calculate standup first iw = min(boxes_standup[i, 2], qboxes_standup[j, 2]) - max( boxes_standup[i, 0], qboxes_standup[j, 0] ) if iw > 0: ih = min(boxes_standup[i, 3], qboxes_standup[j, 3]) - max( boxes_standup[i, 1], qboxes_standup[j, 1] ) if ih > 0: for k in range(4): for l in range(4): A = lines_boxes[i, k, 0] B = lines_boxes[i, k, 1] C = lines_qboxes[j, l, 0] D = lines_qboxes[j, l, 1] acd = (D[1] - A[1]) * (C[0] - A[0]) > (C[1] - A[1]) * ( D[0] - A[0] ) bcd = (D[1] - B[1]) * (C[0] - B[0]) > (C[1] - B[1]) * ( D[0] - B[0] ) if acd != bcd: abc = (C[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * ( C[0] - A[0] ) abd = (D[1] - A[1]) * (B[0] - A[0]) > (B[1] - A[1]) * ( D[0] - A[0] ) if abc != abd: ret[i, j] = True # collision. break if ret[i, j] is True: break if ret[i, j] is False: # now check complete overlap. # box overlap qbox: box_overlap_qbox = True for l in range(4): # point l in qboxes for k in range(4): # corner k in boxes vec = boxes[i, k] - boxes[i, (k + 1) % 4] if clockwise: vec = -vec cross = vec[1] * (boxes[i, k, 0] - qboxes[j, l, 0]) cross -= vec[0] * (boxes[i, k, 1] - qboxes[j, l, 1]) if cross >= 0: box_overlap_qbox = False break if box_overlap_qbox is False: break if box_overlap_qbox is False: qbox_overlap_box = True for l in range(4): # point l in boxes for k in range(4): # corner k in qboxes vec = qboxes[j, k] - qboxes[j, (k + 1) % 4] if clockwise: vec = -vec cross = vec[1] * (qboxes[j, k, 0] - boxes[i, l, 0]) cross -= vec[0] * (qboxes[j, k, 1] - boxes[i, l, 1]) if cross >= 0: # qbox_overlap_box = False break if qbox_overlap_box is False: break if qbox_overlap_box: ret[i, j] = True # collision. else: ret[i, j] = True # collision. return ret def global_translate_(gt_boxes, points, noise_translate_std): """ Apply global translation to gt_boxes and points. """ if not isinstance(noise_translate_std, (list, tuple, np.ndarray)): noise_translate_std = np.array( [noise_translate_std, noise_translate_std, noise_translate_std] ) if all([e == 0 for e in noise_translate_std]): return gt_boxes, points noise_translate = np.array( [ np.random.normal(0, noise_translate_std[0], 1), np.random.normal(0, noise_translate_std[1], 1), np.random.normal(0, noise_translate_std[0], 1), ] ).T points[:, :3] += noise_translate gt_boxes[:, :3] += noise_translate return gt_boxes, points if __name__ == "__main__": bboxes = np.array( [ [0.0, 0.0, 0.5, 0.5], [0.2, 0.2, 0.6, 0.6], [0.7, 0.7, 0.9, 0.9], [0.55, 0.55, 0.8, 0.8], ] ) bbox_corners = box_np_ops.minmax_to_corner_2d(bboxes) print(bbox_corners.shape) print(box_collision_test(bbox_corners, bbox_corners))
the-stack_106_19583
# -*- coding: utf-8 -*- # Copyright 2015 Cyan, Inc. # Copyright 2017, 2018 Ciena Corporation. import collections import struct from six import string_types, text_type from .common import BufferUnderflowError _NULL_SHORT_STRING = struct.pack('>h', -1) def _buffer_underflow(what, buf, offset, size): return BufferUnderflowError(( "Not enough data to read {what} at offset {offset:,d}: {size:,d} bytes required," " but {available:,d} available." ).format( what=what, offset=offset, size=size, available=len(buf) - offset, )) def _coerce_topic(topic): """ Ensure that the topic name is text string of a valid length. :param topic: Kafka topic name. Valid characters are in the set ``[a-zA-Z0-9._-]``. :raises ValueError: when the topic name exceeds 249 bytes :raises TypeError: when the topic is not :class:`unicode` or :class:`str` """ if not isinstance(topic, string_types): raise TypeError('topic={!r} must be text'.format(topic)) if not isinstance(topic, text_type): topic = topic.decode('ascii') if len(topic) < 1: raise ValueError('invalid empty topic name') if len(topic) > 249: raise ValueError('topic={!r} name is too long: {} > 249'.format( topic, len(topic))) return topic def _coerce_consumer_group(consumer_group): """ Ensure that the consumer group is a text string. :param consumer_group: :class:`bytes` or :class:`str` instance :raises TypeError: when `consumer_group` is not :class:`bytes` or :class:`str` """ if not isinstance(consumer_group, string_types): raise TypeError('consumer_group={!r} must be text'.format(consumer_group)) if not isinstance(consumer_group, text_type): consumer_group = consumer_group.decode('utf-8') return consumer_group def _coerce_client_id(client_id): """ Ensure the provided client ID is a byte string. If a text string is provided, it is encoded as UTF-8 bytes. :param client_id: :class:`bytes` or :class:`str` instance """ if isinstance(client_id, type(u'')): client_id = client_id.encode('utf-8') if not isinstance(client_id, bytes): raise TypeError('{!r} is not a valid consumer group (must be' ' str or bytes)'.format(client_id)) return client_id def write_int_string(s): if s is None: return struct.pack('>i', -1) return struct.pack('>i', len(s)) + s def write_short_ascii(s): """ Encode a Kafka short string which represents ASCII text. :param str s: Text string (`str` on Python 3, `str` or `unicode` on Python 2) or ``None``. The string will be ASCII-encoded. :returns: length-prefixed `bytes` :raises: `struct.error` for strings longer than 32767 characters """ if s is None: return _NULL_SHORT_STRING if not isinstance(s, string_types): raise TypeError('{!r} is not text'.format(s)) return write_short_bytes(s.encode('ascii')) def write_short_text(s): """ Encode a Kafka short string which represents Unicode text. :param str s: Text string (`str` on Python 3, `str` or `unicode` on Python 2) or ``None``. The string will be UTF-8 encoded. :returns: length-prefixed `bytes` :raises: `struct.error` when the UTF-8 encoded form of the string exceeds 32767 bytes. """ if s is None: return _NULL_SHORT_STRING if not isinstance(s, string_types): raise TypeError('{!r} is not text'.format(s)) return write_short_bytes(s.encode('utf-8')) def write_short_bytes(b): """ Encode a Kafka short string which contains arbitrary bytes. A short string is limited to 32767 bytes in length by the signed 16-bit length prefix. A length prefix of -1 indicates ``null``, represented as ``None`` in Python. :param bytes b: No more than 32767 bytes, or ``None`` for the null encoding. :return: length-prefixed `bytes` :raises: `struct.error` for strings longer than 32767 characters """ if b is None: return _NULL_SHORT_STRING if not isinstance(b, bytes): raise TypeError('{!r} is not bytes'.format(b)) elif len(b) > 32767: raise struct.error(len(b)) else: return struct.pack('>h', len(b)) + b def read_short_bytes(data, cur): if len(data) < cur + 2: raise _buffer_underflow('short string length', data, cur, 2) (strlen,) = struct.unpack('>h', data[cur:cur + 2]) if strlen == -1: return None, cur + 2 cur += 2 if len(data) < cur + strlen: raise _buffer_underflow('short string', data, cur, strlen) out = data[cur:cur + strlen] return out, cur + strlen def read_short_ascii(data, cur): b, cur = read_short_bytes(data, cur) return b.decode('ascii'), cur def read_short_text(data, cur): b, cur = read_short_bytes(data, cur) return b.decode('utf-8'), cur def read_int_string(data, cur): if len(data) < cur + 4: raise _buffer_underflow('long string length', data, cur, 4) (strlen,) = struct.unpack('>i', data[cur:cur + 4]) if strlen == -1: return None, cur + 4 cur += 4 if len(data) < cur + strlen: raise _buffer_underflow('long string', data, cur, strlen) out = data[cur:cur + strlen] return out, cur + strlen def relative_unpack(fmt, data, cur): size = struct.calcsize(fmt) if len(data) < cur + size: raise _buffer_underflow(fmt, data, cur, size) out = struct.unpack(fmt, data[cur:cur + size]) return out, cur + size def group_by_topic_and_partition(tuples): out = collections.defaultdict(dict) for t in tuples: out[t.topic][t.partition] = t return out
the-stack_106_19584
import argparse import numpy as np import torch import model def run_grad_weight(kcnn, sentence): out = kcnn.rank(sentence) h = kcnn.compute_grad_norm(torch.sum(out[1])) for w, score in zip(sentence.split(), h): print(w, score) def run_grad_pca(kcnn, sentence): out = kcnn.rank(sentence) print("Prediction: {}".format(out[0].cpu().data[0])) toks = sentence.split() mat = kcnn.compute_corr_matrix(torch.sum(out[1])) max_len = max([len(tok) for tok in toks]) fmt_str = " " * (max_len + 1) + " ".join(["{:>%s}" % max(len(word), 6) for word in toks]) print(fmt_str.format(*toks)) for i, (word, row) in enumerate(zip(toks, mat)): print(("{:>%s}" % max_len).format(word), end=" ") for j, (w2, val) in enumerate(zip(toks, row)): if i == j and abs(val) > 0.1: print("\x1b[1;33m", end="") print(("{:>%s}" % max(len(w2), 6)).format(round(val, 3)), end=" ") print("\x1b[1;0m", end="") print() s, v = np.linalg.eig(mat) fmt_str = " ".join(["{:>%s}" % max(len(word), 6) for word in toks]) v = v.transpose() print(fmt_str.format(*toks) + " [lambda]") for row, s_val in zip(v, s): for word, val in zip(toks, row): if abs(val) > 0.25: print("\x1b[1;33m", end="") print(("{:>%s}" % max(len(word), 6)).format(round(val, 3)), end=" ") print("\x1b[1;0m", end="") print(round(s_val, 3)) def main(): parser = argparse.ArgumentParser() parser.add_argument("sentence", type=str) parser.add_argument("--input_file", type=str, default="model.pt") parser.add_argument("--mode", type=str, choices=["grad_pca", "grad_weight"], default="grad_pca") args = parser.parse_args() kcnn = torch.load(args.input_file) kcnn.eval() if args.mode == "grad_pca": run_grad_pca(kcnn, args.sentence) else: run_grad_weight(kcnn, args.sentence) main()
the-stack_106_19585
from mission.constants.missions import Gate, Path from mission.constants import teagle from conf.vehicle import is_mainsub # HYDROPHONES_PINGER_DEPTH = 4.7 NONSURFACE_MIN_DEPTH = 0.5 # if is_mainsub else 1.5 # Note: These values are copied straight from the Teagle configuration. # They need to be updated for Transdec!! # gate = Gate( # depth=2.0, # gate_width_threshold=0.4, # charge_dist=16 if is_mainsub() else 12 # ) path = Path( depth=1.0, search_forward=6 if is_mainsub else 2, search_stride = 10 if is_mainsub else 8, search_right_first=True, search_speed=0.1, post_dist=2.5, failure_back_up_dist=0.5 if is_mainsub else 0.1, failure_back_up_speed=0.2 if is_mainsub else 0.1, ) # #dice = Dice( # depth=3.3, # max_depth=4, # search_forward=4, # search_stride=8, # search_speed=0.2, # min_dot_radius=0.04, # ram_dist=1.5, # ram_speed=0.16, # rammed_back_up_timeout=20, # lost_sight_back_up_timeout=5, # search_default_zero_timeout=60, #) # #highway = Highway( # high_depth=1.6, # low_depth=1.6, # dist=6 if is_mainsub() else 2, # speed=0.4 if is_mainsub() else 0.2, #) # #track = Track( # depth=2.2 if is_mainsub() else 2.2, # slow_down_dist=5, # max_speed=0.3 if is_mainsub() else 0.2, # min_speed=0.1, # vision_frame_period=0.5, #) # #roulette = Roulette( # depth_search=1.5, # depth_realign=3.2, # depth_drop=3.9, # heading_offset=-30, #) # #cash_in = CashIn( # approach_funnel_depth=0.5, # drop_approach_dist=0.2, # # (right, left) # drop_dvl_forward_correct_dist=(0.1, -0.13), # drop_heading_correct=(0, -7), # pick_up_both_depth=2.0, # pick_up_search_depth_1=2.5, # pick_up_search_depth_2=3.0, # pick_up_search_depth_3=3.5, # pick_up_start_follow_depth=4.5, # attempt_surface_depth=-1, # attempt_funnel_depth=0, #)
the-stack_106_19587
""" """ import os import h5py import numpy as np from ..subhalo_mass_function import log10_cumulative_shmf from ..subhalo_mass_function import DEFAULT_SHMF_PARAMS, DEFAULT_SHMF_PARAM_BOUNDS _THIS_DRNAME = os.path.dirname(os.path.abspath(__file__)) def test_default_shmf_agrees_with_bpl(): fname = os.path.join(_THIS_DRNAME, "testing_data", "bpl_shmf_z0.h5") with h5py.File(fname, "r") as hdf: logmp_table = hdf["logmp_table"][...] lognd_table = hdf["lognd_table"][...] lognd_pred = log10_cumulative_shmf(logmp_table) mse = np.mean((lognd_pred - lognd_table) ** 2) assert mse < 0.005 def test_default_shmf_params_are_in_bounds(): for param_name, bounds in DEFAULT_SHMF_PARAM_BOUNDS.items(): default_value = DEFAULT_SHMF_PARAMS[param_name] assert bounds[0] < default_value < bounds[1]
the-stack_106_19588
import torch from .base_model import BaseModel from . import networks from typing import Union class IntrinsicUnetModel(BaseModel): """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data. The model training requires '--dataset_mode aligned' dataset. By default, it uses a '--netG unet256' U-Net generator, a '--netD basic' discriminator (PatchGAN), and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For pix2pix, we do not use image buffer The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. """ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned') parser.add_argument('--netG_dec', type=int, default='1', help='The number of generator output') if is_train: parser.set_defaults(pool_size=0, gan_mode='vanilla') parser.add_argument('--lambda_S', type=float, default=100.0, help='weight for Shading loss') parser.add_argument('--lambda_R', type=float, default=100.0, help='weight for Reflection loss') parser.add_argument('--loss_mask', action='store_true', help='Masked image when calculating loss') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> if opt.netG_dec==1: self.loss_names = ['G_R'] self.visual_names = ['real_I', 'fake_R', 'real_R', 'fake_S', 'real_S', 'mask'] else: self.loss_names = ['G_R', 'G_S'] self.visual_names = ['fake_I', 'real_I', 'fake_R', 'real_R', 'fake_S', 'fake_I_R', 'real_S', 'mask'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> if self.isTrain: self.model_names = ['G'] else: # during test time, only load G self.model_names = ['G'] # define networks (both generator and discriminator) output = opt.output_nc*opt.netG_dec print('generator output:', output) self.netG = networks.define_G(opt.input_nc, output, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define loss functions self.criterionL1 = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap images in domain A and domain B. """ self.real_I = torch.squeeze(input['A'],0).to(self.device) # [bn, 3, 256, 256] self.real_R = torch.squeeze(input['B'],0).to(self.device) # [bn, 3, 256, 256] self.real_S = torch.squeeze(input['C'],0).to(self.device) # [bn, 3, 256, 256] self.mask = torch.squeeze(input['D'],0).to(self.device) # [bn, 3, 256, 256] self.image_paths = input['A_paths'] def percentile(self, t: torch.tensor, q: float) -> Union[int, float]: k = 1 + round(.01 * float(q) * (t.numel() - 1)) result = t.view(-1).kthvalue(k).values.item() return result def calc_shading(self, img, albedo, mask): img = torch.clamp(img * 0.5 + 0.5, min=0.0, max=1.0) # 0~1 albedo = torch.clamp(albedo * 0.5 + 0.5, min=1e-6, max=1.0) # 0~1 shading = img**2.2/albedo if self.opt.shading_norm: if torch.sum(mask) < 10: max_S = 1.0 else: max_S = self.percentile(shading[self.mask.expand(shading.size()) > 0.5], 90) shading = shading/max_S shading = (shading - 0.5) / 0.5 return torch.clamp(shading, min=-1.0, max=1.0) # -1~1 def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" if self.opt.netG_dec==1: self.fake_R = self.netG(self.real_I) # G(A) self.fake_S = self.calc_shading(self.real_I, self.fake_R, self.mask) else: fake_RS = self.netG(self.real_I) # G(A) self.fake_R = fake_RS[:,:self.opt.output_nc,:,:] self.fake_S = fake_RS[:,self.opt.output_nc:,:,:] self.fake_I_R = self.calc_shading(self.real_I, self.fake_R, self.mask) self.fake_I = self.fake_R + self.fake_S def backward_G(self): """Calculate GAN and L1 loss for the generator""" if self.opt.netG_dec==1: if self.opt.loss_mask: mask = self.mask*0.5 + 0.5 self.loss_G_R = self.criterionL1(self.fake_R*mask, self.real_R*mask) * self.opt.lambda_R else: self.loss_G_R = self.criterionL1(self.fake_R, self.real_R) * self.opt.lambda_R self.loss_G = self.loss_G_R else: if self.opt.loss_mask: mask = self.mask*0.5 + 0.5 self.loss_G_R = self.criterionL1(self.fake_R*mask, self.real_R*mask) * self.opt.lambda_R self.loss_G_S = self.criterionL1(self.fake_S*mask, self.real_S*mask) * self.opt.lambda_S else: self.loss_G_R = self.criterionL1(self.fake_R, self.real_R) * self.opt.lambda_R self.loss_G_S = self.criterionL1(self.fake_S, self.real_S) * self.opt.lambda_S self.loss_G = self.loss_G_R + self.loss_G_S self.loss_G.backward() def optimize_parameters(self): self.forward() # compute fake images: G(A) self.optimizer_G.zero_grad() # set G's gradients to zero self.backward_G() # calculate graidents for G self.optimizer_G.step() # udpate G's weights
the-stack_106_19590
""" OXASL_OPTPCASL: Widget to control the optimization process Copyright (c) 2019 University of Oxford """ import os import wx import wx.grid from ..structures import ScanParams, PhysParams, ATTDist, Limits from ..cost import CBFCost, ATTCost, DOptimalCost from .widgets import TabPage, NumberChooser class OptimizerOptions(TabPage): """ Tab page for specifying options for the optimization """ def __init__(self, parent, idx, n): TabPage.__init__(self, parent, "Optimization", idx, n, name="optimization") self.section("Optimization type") self._opttype = self.choice("Method", choices=["Optimize CBF and ATT", "Optimize CBF only", "Optimize ATT only"]) self.section("ATT prior distribution") self._att_start = self.number("Starting value (s)", minval=0, maxval=1.0, initial=0.2, digits=4) self._att_end = self.number("Starting value (s)", minval=0, maxval=5.0, initial=2.3, digits=4) self._att_step = self.number("Step (s)", minval=0, maxval=0.01, initial=0.001, digits=4) self._att_taper = self.number("Taper value (s)", minval=0, maxval=1.0, initial=0.3, digits=4) self.section("PLD search limits") self._pld_min = self.number("Min PLD (s)", minval=0, maxval=1.0, initial=0.075, digits=4) self._pld_max = self.number("Max PLD (s)", minval=1.0, maxval=5.0, initial=2.3, digits=4) self._pld_step = self.number("Search step (s)", minval=0, maxval=0.1, initial=0.025, digits=4) self.section("LD search limits") self._ld_min = self.number("Min LD (s)", minval=0, maxval=1.0, initial=0.1, digits=4) self._ld_max = self.number("Max LD (s)", minval=1.0, maxval=5.0, initial=1.8, digits=4) self._ld_step = self.number("Search step (s)", minval=0, maxval=0.1, initial=0.025, digits=4) self.section("Optimization loop") self._niters = self.integer("Number of times to repeat optimization", minval=1, maxval=100, initial=10) self._ngridpoints = self.integer("Initial grid search - number of points", minval=100, maxval=1000000, initial=10000, optional=True, handler=self._gridpts_changed) self._set_btn = self.button("Optimize", handler=self._optimize) self.sizer.AddGrowableCol(1, 1) self.SetSizer(self.sizer) @property def att_dist(self): return ATTDist(self._att_start.GetValue(), self._att_end.GetValue(), self._att_step.GetValue(), self._att_taper.GetValue()) @property def pld_lims(self): return Limits(self._pld_min.GetValue(), self._pld_max.GetValue(), self._pld_step.GetValue(), name="PLD") @property def ld_lims(self): return Limits(self._ld_min.GetValue(), self._ld_max.GetValue(), self._ld_step.GetValue(), name="LD") @property def gridpts(self): if self._ngridpoints.checkbox.GetValue(): return self._ngridpoints.GetValue() else: return None @property def cost_model(self): if self._opttype.GetSelection() == 1: return CBFCost() if self._opttype.GetSelection() == 2: return ATTCost() else: return DOptimalCost() def _gridpts_changed(self, _event=None): if self._ngridpoints.checkbox.GetValue(): self._ngridpoints.Enable() else: self._ngridpoints.Disable() def _optimize(self, _event=None): self._set_btn.Disable() self.notebook.win.optimize(self._niters.GetValue())
the-stack_106_19591
__all__ = ["model"] from icevision.imports import * from icevision.backbones import resnet_fpn from icevision.models.torchvision.utils import * from torchvision.models.detection.keypoint_rcnn import ( keypointrcnn_resnet50_fpn, KeypointRCNNPredictor, KeypointRCNN, ) from torchvision.models.detection.faster_rcnn import FastRCNNPredictor def model( num_keypoints: int, num_classes: int = 2, backbone: Optional[nn.Module] = None, remove_internal_transforms: bool = True, pretrained: bool = True, **keypoint_rcnn_kwargs ) -> nn.Module: """KeypointRCNN model implemented by torchvision. # Arguments num_keypoints: Number of keypoints (e.g. 17 in case of COCO). num_classes: Number of classes (including background). backbone: Backbone model to use. Defaults to a resnet50_fpn model. remove_internal_transforms: The torchvision model internally applies transforms like resizing and normalization, but we already do this at the `Dataset` level, so it's safe to remove those internal transforms. pretrained: Argument passed to `keypointrcnn_resnet50_fpn` if `backbone is None`. By default it is set to True: this is generally used when training a new model (transfer learning). `pretrained = False` is used during inference (prediction) for cases where the users have their own pretrained weights. **keypoint_rcnn_kwargs: Keyword arguments that internally are going to be passed to `torchvision.models.detection.keypoint_rcnn.KeypointRCNN`. # Returns A Pytorch `nn.Module`. """ if backbone is None: model = keypointrcnn_resnet50_fpn( pretrained=pretrained, pretrained_backbone=pretrained, **keypoint_rcnn_kwargs ) in_channels = model.roi_heads.keypoint_predictor.kps_score_lowres.in_channels model.roi_heads.keypoint_predictor = KeypointRCNNPredictor( in_channels, num_keypoints ) if num_classes != 2: in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) resnet_fpn.patch_param_groups(model.backbone) else: model = KeypointRCNN( backbone, num_classes=num_classes, num_keypoints=num_keypoints, **keypoint_rcnn_kwargs ) patch_rcnn_param_groups(model=model) if remove_internal_transforms: remove_internal_model_transforms(model) return model
the-stack_106_19592
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- ''' Internal exception with freetype error message ''' class FT_Exception(Exception): def __init__(self, errcode, message=''): self.message = message self.errcode = errcode def __str__(self): return '%s: %s (%s)'%(self.__class__.__name__, self.message, self._errors.get(self.errcode, 'unknown error')) _errors = { 0x00: "no error" , 0x01: "cannot open resource" , 0x02: "unknown file format" , 0x03: "broken file" , 0x04: "invalid FreeType version" , 0x05: "module version is too low" , 0x06: "invalid argument" , 0x07: "unimplemented feature" , 0x08: "broken table" , 0x09: "broken offset within table" , 0x10: "invalid glyph index" , 0x11: "invalid character code" , 0x12: "unsupported glyph image format" , 0x13: "cannot render this glyph format" , 0x14: "invalid outline" , 0x15: "invalid composite glyph" , 0x16: "too many hints" , 0x17: "invalid pixel size" , 0x20: "invalid object handle" , 0x21: "invalid library handle" , 0x22: "invalid module handle" , 0x23: "invalid face handle" , 0x24: "invalid size handle" , 0x25: "invalid glyph slot handle" , 0x26: "invalid charmap handle" , 0x27: "invalid cache manager handle" , 0x28: "invalid stream handle" , 0x30: "too many modules" , 0x31: "too many extensions" , 0x40: "out of memory" , 0x41: "unlisted object" , 0x51: "cannot open stream" , 0x52: "invalid stream seek" , 0x53: "invalid stream skip" , 0x54: "invalid stream read" , 0x55: "invalid stream operation" , 0x56: "invalid frame operation" , 0x57: "nested frame access" , 0x58: "invalid frame read" , 0x60: "raster uninitialized" , 0x61: "raster corrupted" , 0x62: "raster overflow" , 0x63: "negative height while rastering" , 0x70: "too many registered caches" , 0x80: "invalid opcode" , 0x81: "too few arguments" , 0x82: "stack overflow" , 0x83: "code overflow" , 0x84: "bad argument" , 0x85: "division by zero" , 0x86: "invalid reference" , 0x87: "found debug opcode" , 0x88: "found ENDF opcode in execution stream" , 0x89: "nested DEFS" , 0x8A: "invalid code range" , 0x8B: "execution context too long" , 0x8C: "too many function definitions" , 0x8D: "too many instruction definitions" , 0x8E: "SFNT font table missing" , 0x8F: "horizontal header (hhea, table missing" , 0x90: "locations (loca, table missing" , 0x91: "name table missing" , 0x92: "character map (cmap, table missing" , 0x93: "horizontal metrics (hmtx, table missing" , 0x94: "PostScript (post, table missing" , 0x95: "invalid horizontal metrics" , 0x96: "invalid character map (cmap, format" , 0x97: "invalid ppem value" , 0x98: "invalid vertical metrics" , 0x99: "could not find context" , 0x9A: "invalid PostScript (post, table format" , 0x9B: "invalid PostScript (post, table" , 0xA0: "opcode syntax error" , 0xA1: "argument stack underflow" , 0xA2: "ignore" , 0xB0: "`STARTFONT' field missing" , 0xB1: "`FONT' field missing" , 0xB2: "`SIZE' field missing" , 0xB3: "`CHARS' field missing" , 0xB4: "`STARTCHAR' field missing" , 0xB5: "`ENCODING' field missing" , 0xB6: "`BBX' field missing" , 0xB7: "`BBX' too big" , }
the-stack_106_19593
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ # Basic list exercises # Fill in the code for the functions below. main() is already set up # to call the functions with a few different inputs, # printing 'OK' when each function is correct. # The starter code for each function includes a 'return' # which is just a placeholder for your code. # It's ok if you do not complete all the functions, and there # are some additional functions to try in list2.py. # A. match_ends # Given a list of strings, return the count of the number of # strings where the string length is 2 or more and the first # and last chars of the string are the same. # Note: python does not have a ++ operator, but += works. def match_ends(words): aux = list(filter(lambda x: len(x) >= 2, words)) aux = list(filter(lambda x: x[0] == x[-1], aux)) return len(aux) # B. front_x # Given a list of strings, return a list with the strings # in sorted order, except group all the strings that begin with 'x' first. # e.g. ['mix', 'xyz', 'apple', 'xanadu', 'aardvark'] yields # ['xanadu', 'xyz', 'aardvark', 'apple', 'mix'] # Hint: this can be done by making 2 lists and sorting each of them # before combining them. def front_x(words): ord_x = sorted(filter(lambda x: x[0] == 'x', words)) ord_resto = sorted(filter(lambda x: x[0] != 'x', words)) for i in ord_resto: ord_x.append(i) return ord_x # C. sort_last # Given a list of non-empty tuples, return a list sorted in increasing # order by the last element in each tuple. # e.g. [(1, 7), (1, 3), (3, 4, 5), (2, 2)] yields # [(2, 2), (1, 3), (3, 4, 5), (1, 7)] # Hint: use a custom key= function to extract the last element form each tuple. def sort_last(tuples): return sorted(tuples, key=lambda x: x[-1]) # Simple provided test() function used in main() to print # what each function returns vs. what it's supposed to return. def test(got, expected): if got == expected: prefix = ' OK ' else: prefix = ' X ' print('%s got: %s expected: %s' % (prefix, repr(got), repr(expected))) # Calls the above functions with interesting inputs. def main(): print('match_ends') test(match_ends(['aba', 'xyz', 'aa', 'x', 'bbb']), 3) test(match_ends(['', 'x', 'xy', 'xyx', 'xx']), 2) test(match_ends(['aaa', 'be', 'abc', 'hello']), 1) print() print('front_x') test(front_x(['bbb', 'ccc', 'axx', 'xzz', 'xaa']), ['xaa', 'xzz', 'axx', 'bbb', 'ccc']) test(front_x(['ccc', 'bbb', 'aaa', 'xcc', 'xaa']), ['xaa', 'xcc', 'aaa', 'bbb', 'ccc']) test(front_x(['mix', 'xyz', 'apple', 'xanadu', 'aardvark']), ['xanadu', 'xyz', 'aardvark', 'apple', 'mix']) print() print('sort_last') test(sort_last([(1, 3), (3, 2), (2, 1)]), [(2, 1), (3, 2), (1, 3)]) test(sort_last([(2, 3), (1, 2), (3, 1)]), [(3, 1), (1, 2), (2, 3)]) test(sort_last([(1, 7), (1, 3), (3, 4, 5), (2, 2)]), [(2, 2), (1, 3), (3, 4, 5), (1, 7)]) if __name__ == '__main__': main()
the-stack_106_19594
import unittest from torpido.pmpi import Communication class PmpiTest(unittest.TestCase): def test_communication(self): sent = {"mydata", 200} def my_function(data): self.assertEqual(data, sent) comm = Communication() comm.register("ID", my_function) sender = comm.sender() sender.send("ID", sent) comm.end() def test_dtype(self): sent = {"mydata", 200} def my_function(data): self.assertEqual(dict, type(data)) comm = Communication() comm.register("ID", my_function) comm.unregister("ID") sender = comm.sender() sender.send("ID", sent) comm.end() def test_multiple_id(self): sent = {"mydata", 200} def my_function(data): self.assertEqual(dict, type(data)) comm = Communication() comm.register("ID", my_function) comm.register("IDE", my_function) sender = comm.sender() from time import sleep sleep(0.1) sender.send("ID", sent) sender.send("IDE", sent) comm.end() if __name__ == '__main__': unittest.main()
the-stack_106_19596
import pandas import xlwt from srblib import abs_path def excel_to_data(inp_path): inp_path = abs_path(inp_path) raw_data = pandas.read_excel(inp_path) header = list(raw_data.columns) if(len(header) == 0): return [] temp_data = [] for head in header: col = list(raw_data[head]) temp_data.append(col) data = [header] for i in range(len(temp_data[0])): row = [] for j in range(len(header)): row.append(temp_data[j][i]) data.append(row) return data def data_to_excel(data,out_path): out_path = abs_path(out_path) book = xlwt.Workbook(encoding="utf-8") sheet = book.add_sheet("Sheet1") for i in range(len(data)): row = data[i] for j in range(len(row)): sheet.write(i,j,row[j]) book.save(out_path) data = excel_to_data('excel.xlsx') print(data) data_to_excel(data,'output.xlsx') data = excel_to_data('output.xlsx') print(data)
the-stack_106_19597
from statsmodels.compat.python import (lrange, iterkeys, iteritems, lzip, reduce, itervalues, zip, string_types, range) from collections import OrderedDict import datetime import re import textwrap import numpy as np import pandas as pd from .table import SimpleTable from .tableformatting import fmt_latex, fmt_txt class Summary(object): def __init__(self): self.tables = [] self.settings = [] self.extra_txt = [] self.title = None self._merge_latex = False def __str__(self): return self.as_text() def __repr__(self): return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_df(self, df, index=True, header=True, float_format='%.4f', align='r'): '''Add the contents of a DataFrame to summary table Parameters ---------- df : DataFrame header: bool Reproduce the DataFrame column labels in summary table index: bool Reproduce the DataFrame row labels in summary table float_format: string Formatting to float data columns align : string Data alignment (l/c/r) ''' settings = {'index': index, 'header': header, 'float_format': float_format, 'align': align} self.tables.append(df) self.settings.append(settings) def add_array(self, array, align='r', float_format="%.4f"): '''Add the contents of a Numpy array to summary table Parameters ---------- array : numpy array (2D) float_format: string Formatting to array if type is float align : string Data alignment (l/c/r) ''' table = pd.DataFrame(array) self.add_df(table, index=False, header=False, float_format=float_format, align=align) def add_dict(self, d, ncols=2, align='l', float_format="%.4f"): '''Add the contents of a Dict to summary table Parameters ---------- d : dict Keys and values are automatically coerced to strings with str(). Users are encouraged to format them before using add_dict. ncols: int Number of columns of the output table align : string Data alignment (l/c/r) ''' keys = [_formatter(x, float_format) for x in iterkeys(d)] vals = [_formatter(x, float_format) for x in itervalues(d)] data = np.array(lzip(keys, vals)) if data.shape[0] % ncols != 0: pad = ncols - (data.shape[0] % ncols) data = np.vstack([data, np.array(pad * [['', '']])]) data = np.split(data, ncols) data = reduce(lambda x, y: np.hstack([x, y]), data) self.add_array(data, align=align) def add_text(self, string): '''Append a note to the bottom of the summary table. In ASCII tables, the note will be wrapped to table width. Notes are not indendented. ''' self.extra_txt.append(string) def add_title(self, title=None, results=None): '''Insert a title on top of the summary table. If a string is provided in the title argument, that string is printed. If no title string is provided but a results instance is provided, statsmodels attempts to construct a useful title automatically. ''' if isinstance(title, string_types): self.title = title else: try: model = results.model.__class__.__name__ if model in _model_types: model = _model_types[model] self.title = 'Results: ' + model except: self.title = '' def add_base(self, results, alpha=0.05, float_format="%.4f", title=None, xname=None, yname=None): '''Try to construct a basic summary instance. Parameters ---------- results : Model results instance alpha : float significance level for the confidence intervals (optional) float_formatting: string Float formatting for summary of parameters (optional) title : string Title of the summary table (optional) xname : List of strings of length equal to the number of parameters Names of the independent variables (optional) yname : string Name of the dependent variable (optional) ''' param = summary_params(results, alpha=alpha, use_t=results.use_t) info = summary_model(results) if xname is not None: param.index = xname if yname is not None: info['Dependent Variable:'] = yname self.add_dict(info, align='l') self.add_df(param, float_format=float_format) self.add_title(title=title, results=results) def as_text(self): '''Generate ASCII Summary Table ''' tables = self.tables settings = self.settings title = self.title extra_txt = self.extra_txt pad_col, pad_index, widest = _measure_tables(tables, settings) rule_equal = widest * '=' #TODO: this isn't used anywhere? rule_dash = widest * '-' simple_tables = _simple_tables(tables, settings, pad_col, pad_index) tab = [x.as_text() for x in simple_tables] tab = '\n'.join(tab) tab = tab.split('\n') tab[0] = rule_equal tab.append(rule_equal) tab = '\n'.join(tab) if title is not None: title = title if len(title) < widest: title = ' ' * int(widest/2 - len(title)/2) + title else: title = '' txt = [textwrap.wrap(x, widest) for x in extra_txt] txt = ['\n'.join(x) for x in txt] txt = '\n'.join(txt) out = '\n'.join([title, tab, txt]) return out def as_html(self): '''Generate HTML Summary Table ''' tables = self.tables settings = self.settings #TODO: this isn't used anywhere title = self.title simple_tables = _simple_tables(tables, settings) tab = [x.as_html() for x in simple_tables] tab = '\n'.join(tab) return tab def as_latex(self): '''Generate LaTeX Summary Table ''' tables = self.tables settings = self.settings title = self.title if title is not None: title = '\\caption{' + title + '}' else: title = '\\caption{}' simple_tables = _simple_tables(tables, settings) tab = [x.as_latex_tabular() for x in simple_tables] tab = '\n\\hline\n'.join(tab) to_replace = ('\\\\hline\\n\\\\hline\\n\\\\' 'end{tabular}\\n\\\\begin{tabular}{.*}\\n') if self._merge_latex: # create single tabular object for summary_col tab = re.sub(to_replace,r'\\midrule\n\\midrule\n', tab) out = '\\begin{table}', title, tab, '\\end{table}' out = '\n'.join(out) return out def _measure_tables(tables, settings): '''Compare width of ascii tables in a list and calculate padding values. We add space to each col_sep to get us as close as possible to the width of the largest table. Then, we add a few spaces to the first column to pad the rest. ''' simple_tables = _simple_tables(tables, settings) tab = [x.as_text() for x in simple_tables] length = [len(x.splitlines()[0]) for x in tab] len_max = max(length) pad_sep = [] pad_index = [] for i in range(len(tab)): nsep = max(tables[i].shape[1] - 1, 1) pad = int((len_max - length[i]) / nsep) pad_sep.append(pad) len_new = length[i] + nsep * pad pad_index.append(len_max - len_new) return pad_sep, pad_index, max(length) # Useful stuff _model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weighted least squares', 'RLM' : 'Robust linear model', 'NBin': 'Negative binomial model', 'GLM' : 'Generalized linear model' } def summary_model(results): '''Create a dict with information about the model ''' def time_now(*args, **kwds): now = datetime.datetime.now() return now.strftime('%Y-%m-%d %H:%M') info = OrderedDict() info['Model:'] = lambda x: x.model.__class__.__name__ info['Model Family:'] = lambda x: x.family.__class.__name__ info['Link Function:'] = lambda x: x.family.link.__class__.__name__ info['Dependent Variable:'] = lambda x: x.model.endog_names info['Date:'] = time_now info['No. Observations:'] = lambda x: "%#6d" % x.nobs info['Df Model:'] = lambda x: "%#6d" % x.df_model info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid info['Converged:'] = lambda x: x.mle_retvals['converged'] info['No. Iterations:'] = lambda x: x.mle_retvals['iterations'] info['Method:'] = lambda x: x.method info['Norm:'] = lambda x: x.fit_options['norm'] info['Scale Est.:'] = lambda x: x.fit_options['scale_est'] info['Cov. Type:'] = lambda x: x.fit_options['cov'] rsquared_type = '' if results.k_constant else ' (uncentered)' info['R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared info['Adj. R-squared' + rsquared_type + ':'] = lambda x: "%#8.3f" % x.rsquared_adj info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared info['AIC:'] = lambda x: "%8.4f" % x.aic info['BIC:'] = lambda x: "%8.4f" % x.bic info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue info['Deviance:'] = lambda x: "%#8.5g" % x.deviance info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2 info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue info['Scale:'] = lambda x: "%#8.5g" % x.scale out = OrderedDict() for key, func in iteritems(info): try: out[key] = func(results) # NOTE: some models don't have loglike defined (RLM), so that's NIE except (AttributeError, KeyError, NotImplementedError): pass return out def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, float_format="%.4f"): '''create a summary table of parameters from results instance Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. float_format : string float formatting options (e.g. ".3g") Returns ------- params_table : SimpleTable instance ''' if isinstance(results, tuple): results, params, bse, tvalues, pvalues, conf_int = results else: params = results.params bse = results.bse tvalues = results.tvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) data = np.array([params, bse, tvalues, pvalues]).T data = np.hstack([data, conf_int]) data = pd.DataFrame(data) if use_t: data.columns = ['Coef.', 'Std.Err.', 't', 'P>|t|', '[' + str(alpha/2), str(1-alpha/2) + ']'] else: data.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] if not xname: try: data.index = results.model.data.param_names except AttributeError: data.index = results.model.exog_names else: data.index = xname return data # Vertical summary instance for multiple models def _col_params(result, float_format='%.4f', stars=True): '''Stack coefficients and standard errors in single column ''' # Extract parameters res = summary_params(result) # Format float for col in res.columns[:2]: res[col] = res[col].apply(lambda x: float_format % x) # Std.Errors in parentheses res.iloc[:, 1] = '(' + res.iloc[:, 1] + ')' # Significance stars if stars: idx = res.iloc[:, 3] < .1 res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*' idx = res.iloc[:, 3] < .05 res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*' idx = res.iloc[:, 3] < .01 res.loc[idx, res.columns[0]] = res.loc[idx, res.columns[0]] + '*' # Stack Coefs and Std.Errors res = res.iloc[:, :2] res = res.stack() res = pd.DataFrame(res) res.columns = [str(result.model.endog_names)] return res def _col_info(result, info_dict=None): '''Stack model info in a column ''' if info_dict is None: info_dict = {} out = [] index = [] for i in info_dict: if isinstance(info_dict[i], dict): # this is a specific model info_dict, but not for this result... continue try: out.append(info_dict[i](result)) except: out.append('') index.append(i) out = pd.DataFrame({str(result.model.endog_names): out}, index=index) return out def _make_unique(list_of_names): if len(set(list_of_names)) == len(list_of_names): return list_of_names # pandas does not like it if multiple columns have the same names from collections import defaultdict name_counter = defaultdict(str) header = [] for _name in list_of_names: name_counter[_name] += "I" header.append(_name+" " + name_counter[_name]) return header def summary_col(results, float_format='%.4f', model_names=(), stars=False, info_dict=None, regressor_order=(), drop_omitted=False): """ Summarize multiple results instances side-by-side (coefs and SEs) Parameters ---------- results : statsmodels results instance or list of result instances float_format : string, optional float format for coefficients and standard errors Default : '%.4f' model_names : list of strings, optional Must have same length as the number of results. If the names are not unique, a roman number will be appended to all model names stars : bool print significance stars info_dict : dict dict of functions to be applied to results instances to retrieve model info. To use specific information for different models, add a (nested) info_dict with model name as the key. Example: `info_dict = {"N":..., "R2": ..., "OLS":{"R2":...}}` would only show `R2` for OLS regression models, but additionally `N` for all other results. Default : None (use the info_dict specified in result.default_model_infos, if this property exists) regressor_order : list of strings, optional list of names of the regressors in the desired order. All regressors not specified will be appended to the end of the list. drop_omitted : bool, optional Includes regressors that are not specified in regressor_order. If False, regressors not specified will be appended to end of the list. If True, only regressors in regressors_list will be included. """ if not isinstance(results, list): results = [results] cols = [_col_params(x, stars=stars, float_format=float_format) for x in results] # Unique column names (pandas has problems merging otherwise) if model_names: colnames = _make_unique(model_names) else: colnames = _make_unique([x.columns[0] for x in cols]) for i in range(len(cols)): cols[i].columns = [colnames[i]] merg = lambda x, y: x.merge(y, how='outer', right_index=True, left_index=True) summ = reduce(merg, cols) if regressor_order: varnames = summ.index.get_level_values(0).tolist() ordered = [x for x in regressor_order if x in varnames] unordered = [x for x in varnames if x not in regressor_order + ['']] order = ordered + list(np.unique(unordered)) f = lambda idx: sum([[x + 'coef', x + 'stde'] for x in idx], []) summ.index = f(pd.unique(varnames)) summ = summ.reindex(f(order)) summ.index = [x[:-4] for x in summ.index] if drop_omitted: summ = summ.loc[regressor_order] idx = pd.Series(lrange(summ.shape[0])) % 2 == 1 summ.index = np.where(idx, '', summ.index.get_level_values(0)) # add infos about the models. if info_dict: cols = [_col_info(x, info_dict.get(x.model.__class__.__name__, info_dict)) for x in results] else: cols = [_col_info(x, getattr(x, "default_model_infos", None)) for x in results] # use unique column names, otherwise the merge will not succeed for df, name in zip(cols, _make_unique([df.columns[0] for df in cols])): df.columns = [name] merg = lambda x, y: x.merge(y, how='outer', right_index=True, left_index=True) info = reduce(merg, cols) dat = pd.DataFrame(np.vstack([summ, info])) # pd.concat better, but error dat.columns = summ.columns dat.index = pd.Index(summ.index.tolist() + info.index.tolist()) summ = dat summ = summ.fillna('') smry = Summary() smry._merge_latex = True smry.add_df(summ, header=True, align='l') smry.add_text('Standard errors in parentheses.') if stars: smry.add_text('* p<.1, ** p<.05, ***p<.01') return smry def _formatter(element, float_format='%.4f'): try: out = float_format % element except: out = str(element) return out.strip() def _df_to_simpletable(df, align='r', float_format="%.4f", header=True, index=True, table_dec_above='-', table_dec_below=None, header_dec_below='-', pad_col=0, pad_index=0): dat = df.copy() dat = dat.applymap(lambda x: _formatter(x, float_format)) if header: headers = [str(x) for x in dat.columns.tolist()] else: headers = None if index: stubs = [str(x) + int(pad_index) * ' ' for x in dat.index.tolist()] else: dat.iloc[:, 0] = [str(x) + int(pad_index) * ' ' for x in dat.iloc[:, 0]] stubs = None st = SimpleTable(np.array(dat), headers=headers, stubs=stubs, ltx_fmt=fmt_latex, txt_fmt=fmt_txt) st.output_formats['latex']['data_aligns'] = align st.output_formats['txt']['data_aligns'] = align st.output_formats['txt']['table_dec_above'] = table_dec_above st.output_formats['txt']['table_dec_below'] = table_dec_below st.output_formats['txt']['header_dec_below'] = header_dec_below st.output_formats['txt']['colsep'] = ' ' * int(pad_col + 1) return st def _simple_tables(tables, settings, pad_col=None, pad_index=None): simple_tables = [] float_format = '%.4f' if pad_col is None: pad_col = [0] * len(tables) if pad_index is None: pad_index = [0] * len(tables) for i, v in enumerate(tables): index = settings[i]['index'] header = settings[i]['header'] align = settings[i]['align'] simple_tables.append(_df_to_simpletable(v, align=align, float_format=float_format, header=header, index=index, pad_col=pad_col[i], pad_index=pad_index[i])) return simple_tables
the-stack_106_19598
import copy import torchvision.models as models from ptsemseg.models.fcn import fcn8s, fcn16s, fcn32s from ptsemseg.models.segnet import segnet from ptsemseg.models.unet import unet from ptsemseg.models.pspnet import pspnet from ptsemseg.models.icnet import icnet from ptsemseg.models.linknet import linknet from ptsemseg.models.frrn import frrn from ptsemseg.models.tlcnet import TLCNet, TLCNetU, TLCNetUmux, TLCNetUtlc, TLCNetUtlcmux def get_model(model_dict, n_maxdisp=256, n_classes=1, version=None): name = model_dict["arch"] model = _get_model_instance(name) param_dict = copy.deepcopy(model_dict) param_dict.pop("arch") if name in ["frrnA", "frrnB"]: model = model(n_classes, **param_dict) elif name in ["fcn32s", "fcn16s", "fcn8s"]: model = model(n_classes=n_classes, **param_dict) vgg16 = models.vgg16(pretrained=True) model.init_vgg16_params(vgg16) elif name == "segnet": model = model(n_classes=n_classes, **param_dict) vgg16 = models.vgg16(pretrained=True) model.init_vgg16_params(vgg16) elif name == "unet": model = model(n_classes=n_classes, **param_dict) elif name == "pspnet": model = model(n_classes=n_classes, **param_dict) elif name == "icnet": model = model(n_classes=n_classes, **param_dict) elif name == "icnetBN": model = model(n_classes=n_classes, **param_dict) elif name == "tlcnet": model = model(maxdisp=n_maxdisp, **param_dict) elif name == "tlcnetu": model = model(n_classes=n_classes, **param_dict) elif name=="tlcnetumux": # 2020.10.3 add model = model(n_classes=n_classes, **param_dict) elif name=="tlcnetutlc": # 2020.10.3 add model = model(n_classes=n_classes, **param_dict) elif name=="tlcnetutlcmux": # 2020.10.5 add model = model(n_classes=n_classes, **param_dict) else: model = model(n_classes=n_classes, **param_dict) return model def _get_model_instance(name): try: return { "fcn32s": fcn32s, "fcn8s": fcn8s, "fcn16s": fcn16s, "unet": unet, "segnet": segnet, "pspnet": pspnet, "icnet": icnet, "icnetBN": icnet, "linknet": linknet, "frrnA": frrn, "frrnB": frrn, "tlcnet": TLCNet, "tlcnetu": TLCNetU, "tlcnetumux": TLCNetUmux, "tlcnetutlc": TLCNetUtlc, "tlcnetutlcmux": TLCNetUtlcmux }[name] except: raise ("Model {} not available".format(name))
the-stack_106_19599
#!/usr/bin/env python # coding=utf-8 """ Copyright (c) 2017 Gabriel Pacheco <[email protected]> Guilherme Sousa <[email protected]> Joao Paulo Bastos <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import struct import utils # Logging setup logging.basicConfig(level=logging.DEBUG, format="[%(asctime)s][%(levelname)s] %(message)s", datefmt="%m-%d-%Y %I:%M:%S %p") """ | =================================================================== | read_input_file: gets a list of services from input_file | =================================================================== """ def read_input_file(input_file): services = dict() with open(input_file) as input_file: for line in input_file.readlines(): line = ''.join(line).strip(' ') if line != "#" and not line.isspace(): splitted_line = line.replace('\t', ' ').replace(' ', ' ').split() service_key = splitted_line[0] # Extracts service name services[service_key] = " ".join(splitted_line[1:]) # Service port, protocol and any more info return services """ | =================================================================== | local_db_search: takes a key searches for it in local storage | =================================================================== """ def local_db_search(srv_sock, service_list, recv_message, ip_addr): logger = logging.getLogger(__name__) # Check if key is locally stored if recv_message in service_list: # Prepare response send_header = struct.pack(utils.MESSAGE_FORMAT["RESPONSE"], utils.MESSAGE_TYPES["RESPONSE"]) send_message = send_header + recv_message + '\t' + service_list[recv_message] + '\x00\x00' try: srv_sock.sendto(send_message, (ip_addr[0], ip_addr[1])) logger.info("Answer sent successfully to %s:%d", ip_addr[0], ip_addr[1]) except: pass finally: return True else: return False """ | =================================================================== | forward_query: takes a query and forward it to other peers | =================================================================== """ def forward_query(srv_sock, recv_data, recv_header_size, ttl, from_addr, exclude_list, seq, other_peers): logger = logging.getLogger(__name__) # Prepare forward query send_header = struct.pack(utils.MESSAGE_FORMAT["QUERY"], utils.MESSAGE_TYPES["QUERY"], ttl, utils.ip_to_int(from_addr[0]), from_addr[1], seq) send_message = send_header + recv_data[recv_header_size:] for peer in other_peers: # As opt args are stored as string, here we convert peer port to int in order # to properly forward query message peer = tuple([peer.split(":")[0], int(peer.split(":")[1])]) # print ("%s:%d => %s:%d" % (peer[0], int(peer[1]), peer_addr[0], int(peer_addr[1]))) if peer not in exclude_list: try: srv_sock.sendto(send_message, peer) logger.info("Query forwarded successfully to %s", peer) except: pass
the-stack_106_19603
from sys import maxsize from networkx.algorithms.shortest_paths.weighted \ import dijkstra_predecessor_and_distance from domino_puzzle import BoardGraph, BadPositionError, find_boards_with_deap class BlockingBoardGraph(BoardGraph): def walk(self, board, size_limit=maxsize): states = super().walk(board, size_limit=size_limit) _preds, distances = dijkstra_predecessor_and_distance(self.graph, board.display()) _dist, state = max((d, s) for s, d in distances.items()) self.last = self.start self.start = state return states def move(self, domino, dx, dy): """ Move a domino and calculate the new board state. Afterward, put the board back in its original state. @return: the new board state and remaining moves @raise BadPositionError: if the move is illegal """ remaining = 1 # ignored for this puzzle domino.move(dx, dy) try: board = domino.head.board if not board.is_connected(): raise BadPositionError('Board is not connected.') if board.hasMatch(): raise BadPositionError('Board has a match.') return board.display(cropped=True), remaining finally: domino.move(-dx, -dy) def main(): find_boards_with_deap(graph_class=BlockingBoardGraph) if __name__ == '__main__': main()
the-stack_106_19605
import time from test.querybuildertestcase import QueryBuilderTestCase from selenium.webdriver.common.alert import Alert class QueryHistoryTest(QueryBuilderTestCase): def test_query_history(self): self.load_queries_into_history() time.sleep(3) self.assertIn('Custom query', self.browser.title) self.assertEquals(2, len(self.elems('#modifyQueryForm tbody tr'))) self.assertEquals('query_2', self.elem('#modifyQueryForm tbody tr:nth-child(2) td:nth-child(2)').text) root = self.elem('#modifyQueryForm tbody tr:nth-child(2) .historySummaryRoot').text self.assertEquals('Bank', root) showing = self.elems('#modifyQueryForm tbody tr:nth-child(2) .historySummaryShowing') self.assertEquals(2, len(showing)) self.assertEquals(['Name', 'Debt'], [s.text for s in showing]) def test_delete_query_from_history(self): self.load_queries_into_history() self.assertEquals(2, len(self.elems('#modifyQueryForm tbody tr'))) self.elem('#selected_history_1').click() self.elem('#delete_button').click() Alert(self.browser).accept() self.assertEquals(1, len(self.elems('#modifyQueryForm tbody tr'))) def load_queries_into_history(self): query_1 = ''.join([ '<query model="testmodel" view="Bank.debtors.debt" sortOrder="Bank.debtors.debt asc">', '</query>' ]) query_2 = ''.join([ '<query model="testmodel" view="Bank.name Bank.debtors.debt" sortOrder="Bank.debtors.debt asc">', '<constraint path="Bank.debtors.debt" op="&gt;" value="35,000,000"/>', '</query>' ]) # Load queries into session history. for q in [query_1, query_2]: self.browser.get(self.base_url + '/customQuery.do') self.findLink("Import query from XML").click() self.elem('#xml').send_keys(q) self.elem('#importQueriesForm input[type="submit"]').click() self.elem('#showResult').click() self.browser.get(self.base_url + '/customQuery.do') def test_run_query_in_query_history(self): self.load_queries_into_history() self.elem('#modifyQueryForm tbody tr:nth-child(2) td:nth-child(7) span.fakelink:nth-child(1)').click() self.assertRowCountIs(16) def test_edit_query_in_query_history(self): self.load_queries_into_history() self.elem('#modifyQueryForm tbody tr:nth-child(2) td:nth-child(7) span.fakelink:nth-child(2)').click() time.sleep(3) self.assertIn('Query builder', self.browser.title) self.assertEquals('Bank', self.elem('.typeSelected').text) # Edit a constraint. self.elem('img[title="Edit this constraint"]').click() con_value = self.elem('#attribute8') con_value.clear() con_value.send_keys('40,000,000') self.elem('#attributeSubmit').click() # Check results. self.elem('#showResult').click() self.assertRowCountIs(15) def test_export_query_in_query_history(self): self.load_queries_into_history() expected_query = '\n'.join([ ' '.join([ '<query', 'name="query_2"', 'model="testmodel"', 'view="Bank.name Bank.debtors.debt"', 'longDescription=""', 'sortOrder="Bank.debtors.debt asc">' ]), ' <constraint path="Bank.debtors.debt" op="&gt;" value="35,000,000"/>', '</query>']) self.elem('#modifyQueryForm tbody tr:nth-child(2) td:nth-child(7) span.fakelink:nth-child(3)').click() self.assertEquals(expected_query, self.elem('body').text)
the-stack_106_19607
#!/usr/bin/env python3 import bs4 import requests url = "https://github.com/trending?l=Python" soup = bs4.BeautifulSoup(requests.get(url).content, "lxml") # or 'html5lib' repos = soup.find("ol", class_="repo-list").find_all("a", href=True) repos = (r.text.strip().replace(" ", "") for r in repos if "/" in r.text) print("\n".join(repos))
the-stack_106_19608
"""Test methods for `zcode/inout/timer.py`. Can be run with: $ nosetests inout/tests/test_timer.py """ from __future__ import absolute_import, division, print_function, unicode_literals from six.moves import xrange from numpy.testing import run_module_suite import numpy as np # from nose.tools import assert_true, assert_false, assert_equal class TestTimer(object): @classmethod def setup_class(cls): cls.NUM_ITER = 10 pass @classmethod def teardown_class(cls): pass def test_timer(self): from zcode.inout.timer import Timings # Create `Timer` object times = Timings() for ii in xrange(self.NUM_ITER): times.start('one') np.random.randint(-1000, 1000, size=1000000) times.stop('one') times.start('two') NUM = 200 ss = np.arange(3, NUM+1, 2) mroot = NUM ** 0.5 half = (NUM + 1)//2 - 1 ii = 0 mm = 3 while mm <= mroot: if ss[ii]: jj = np.int((mm * mm - 3)/2) ss[jj] = 0 while jj < half: ss[jj] = 0 jj += mm ii += 1 mm = 2*ii + 3 times.stop('two') times.start('three') np.sort(np.random.permutation(np.arange(1000000))) times.stop('three') # for ii in xrange(len(times)): # names = times.names() # print(names[ii]) # for jj in times.durations[ii]: # print(jj, end=' ') # print("\n") # # print("Averages = ", times.average()) times.report() # Run all methods as if with `nosetests ...` if __name__ == "__main__": run_module_suite()
the-stack_106_19609
"""add application draft status Revision ID: 5a4b8a4896fb Revises: a2327cf14296 Create Date: 2022-05-29 01:14:04.196440+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "5a4b8a4896fb" down_revision = "a2327cf14296" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "applications", sa.Column( "draft_status", sa.Enum("PENDING", "REJECTED", "ACCEPTED", name="status"), server_default="PENDING", nullable=False, ), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("applications", "draft_status") # ### end Alembic commands ###
the-stack_106_19610
from setuptools import setup with open("README.md", "r") as f: long_description = f.read() setup( name="qwhale_client", # How you named your package folder packages=["qwhale_client"], # Chose the same as "name" include_package_data=True, version="v0.1.20", # Start with a small number and increase it with every change you make license="MIT", # Chose a license from here: https://help.github.com/articles/licensing-a-repository description="Python client for Qwhale API", # Give a short description about your library long_description=long_description, long_description_content_type="text/markdown", author="Yehoyada.s", # Type in your name author_email="[email protected]", # Type in your E-Mail url="https://qwhale.ml", # Provide either the link to your github or to your website download_url="https://github.com/hvuhsg/qwhale_client/archive/0.1.2.tar.gz", keywords=[ "API", "Client", "Qwhale", "QWhale", "client", "storage", "MongoDB", ], # Keywords that define your package best install_requires=["pymongo", "requests"], # I get to this in a second classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", # Define that your audience are developers "Topic :: Software Development :: Build Tools", "License :: OSI Approved :: MIT License", # Again, pick a license "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
the-stack_106_19612
"""Recursive Policy Gradients.""" import os import sys import numpy as np import tensorflow as tf from ray import tune from . import utils as U from .meta import make_with_custom_variables def stop_forward(x): """Implements the Magic Box operator.""" with tf.name_scope("stop_forward"): op = tf.exp(x - tf.stop_gradient(x)) return op def build_policy(env, make_policy, scope, reuse=None, prev=None): """Creates and builds a new policy.""" print("env.ob_space_shape", env.ob_space_shape) pi = make_policy( env.ob_space_shape, env.NUM_ACTIONS, prev=prev, batch_size=env.batch_size, ) pi.build(scope, reuse=reuse) return pi def build_losses(scope, policies, use_baseline=True, use_dice=True): """Builds policy and value loss tensors for the given policies. Args: scope (str): The name of the scope to use for internals. policies (list): A list of Policy objects. Assumed to be built. use_baseline (bool): A flag for whether to use a baseline for PG. use_dice (bool): Whether to use the DiCE operator. Returns: policy_losses: list of <float32> [] tensors for policy losses. value_losses: list of <float32> [] tensors for value function losses. """ with tf.name_scope(scope): # Build return weights. if use_dice: ret_weights = stop_forward( sum(pi.log_pi_acs_cumsum for pi in policies) ) else: ret_weights = sum(pi.log_pi_acs_cumsum for pi in policies) # Build policy losses. if use_baseline: with tf.name_scope("baseline"): if use_dice: baseline_weights = 1 - stop_forward( sum(pi.log_pi_acs for pi in policies) ) else: baseline_weights = -sum(pi.log_pi_acs for pi in policies) baselines = [ tf.multiply(tf.stop_gradient(pi.vpred), pi.discount) for pi in policies ] policy_losses = [ -tf.reduce_mean( tf.reduce_sum(tf.multiply(pi.rets_ph, ret_weights), axis=0) ) - tf.reduce_mean( tf.reduce_sum(tf.multiply(b, baseline_weights), axis=0) ) for pi, b in zip(policies, baselines) ] else: rets = [ pi.rets_ph - tf.reduce_mean(pi.rets_ph, axis=1, keepdims=True) for pi in policies ] policy_losses = [ -tf.reduce_mean( tf.reduce_sum(tf.multiply(ret, ret_weights), axis=0) ) for pi, ret in zip(policies, rets) ] # Build value function losses. value_losses = [ tf.reduce_mean(tf.square(pi.vpred - pi.values_ph)) for pi in policies ] return policy_losses, value_losses def build_grads(scope, losses, params): """Builds gradients of the loss functions w.r.t. parameters. Args: scope (str): The name of the scope to use for internals. losses (list): A list of loss tensors. params (list): A list of (lists of) tf.Variables. Returns: grads: A list of gradient tensors of the losses w.r.t. params. """ assert len(losses) == len(params) with tf.name_scope(scope): grads = [ tf.gradients(loss, param) for loss, param in zip(losses, params) ] return grads def build_new_params( scope, policies, k, *, lr, asymm=True, use_baseline=True, use_dice=True ): """Builds new parameters for each policy performing a MAML-like update. To understand how this works, consider 3 policies with parameters `old_params_1`, `old_params_2`, `old_params_3`. If `k == 1` and `asymm == True`, we have: new_params_1 = old_params_1 new_params_2 = old_params_2 - lr * grad loss_2 new_params_3 = old_params_3 - lr * grad loss_3 If `asymm == False`, `new_params_1` will be also updated. The asymmetric updates are used as lookahead steps performed by the LOLA agents. In the given example, agent 1 "imagines" other agents do gradient updates with the specified learning rate (lr); it will then backpropagate through these updates and update its own parameters respectively. Args: scope (str): The name of the scope to use for internals. policies (list): A list of Policy objects. Assumed to be built. k (int): The policy index which parameters are NOT updated but instead copied over. asymm (bool): Whether to perform symmetric or asymmetric update. use_baseline (bool): A flag for whether to use a baseline for PG. use_dice (bool): Whether to use the DiCE operator. """ with tf.name_scope(scope): # Build inner losses. policy_losses, value_losses = build_losses( None, policies, use_baseline=use_baseline, use_dice=use_dice ) losses = policy_losses # losses = [pl + vl for pl, vl in zip(policy_losses, value_losses)] params = [pi.parameters for pi in policies] # Build gradients. grads = build_grads(None, losses, params) # Build new parameters. new_params = [] for i, (pi, grad) in enumerate(zip(policies, grads)): if (i != k) or (not asymm): new_p = [ (p - lr * g) if g is not None else p for p, g in zip(pi.parameters, grad) ] else: new_p = pi.root.parameters new_params.append(new_p) return new_params def get_update(policies, losses, update_ops, sess, gamma=0.96): """Creates an update function. Args: policies (list): A list of Policy objects. Assumed to be built. Used to construct the `feed_dict` for the `sess.run`. losses (list): A list of <float32> [] tensors values for which will be computed and returned. update_ops (list): A list of update ops. sess (tf.Session): A tf.Session instance that will be used for running. gamma (float): The discount factor that will be fed into the graph. TODO: perhaps move this argument somewhere else? """ def update(traces, *, parent_traces=[]): feed_list = sum( [ pi.get_feed_list(trace) + [(pi.gamma_ph, [[gamma]])] for pi, trace in zip(policies, traces) ], [], ) # Construct the parent feed list. parent_policies = zip(*[pi.parents for pi in policies]) parent_feed_list = sum( [ pi.get_feed_list(trace) + [(pi.gamma_ph, [[gamma]])] for parents, traces in zip(parent_policies, parent_traces) for pi, trace in zip(parents, traces) ], [], ) # Compute. feed_dict = dict(feed_list + parent_feed_list) results = sess.run(losses + update_ops, feed_dict=feed_dict) return results[: len(losses)] return update def compute_values(rews, last_vpreds, *, gamma, use_gae=False): """Compute the estimated values for the given sequence of rewards.""" # TODO: add GAE as an option. T = len(rews) values = [last_vpreds] for t in reversed(range(T)): values_t = [gamma * v + r for v, r in zip(values[-1], rews[t])] values.append(values_t) return list(reversed(values[1:])) def rollout( env, policies, rollout_policies, sess, *, gamma, parent_traces=[], use_toolbox_env=False, ): """Rolls out a single batch of episode of the policies in the given environment. To avoid quadratic time complexity of the rollout in the number time steps for the recursively generated policies, we never use their graphs directly for rollouts. Instead, we copy the values of the policy parameters into the corresponding rollout policies and run those in the environment. Args: env (gym.Env): An instance of the environment. policies (list): A list of Policy objects. Assumed to be built. rollout_policies (list): Another set of policies which parameters are plain variables (not function of other policies and rollouts). sess (tf.Session): A tf.Session instance that will be used for running. gamma (float): The discount factor that will be fed into the graph. parent_traces (list): A list of traces that are fed into the corresponding placeholders if the parameters of the policies depend on other (parent) policies. Returns: trace: A list of obs, acs, rets, values, infos. """ obs, acs, rets, rews, values, infos = [], [], [], [], [], [] to_log = [] # Construct the parent feed list. parent_policies = zip(*[pi.parents for pi in policies]) parent_feed_list = sum( [ pi.get_feed_list(trace) + [(pi.gamma_ph, [[gamma]])] for parents, traces in zip(parent_policies, parent_traces) for pi, trace in zip(parents, traces) ], [], ) # Cache parameters and push them into rollout policies. assign_ops = [ tf.assign(pr, p) for pi, pi_roll in zip(policies, rollout_policies) for p, pr in zip(pi.parameters, pi_roll.parameters) ] sess.run(assign_ops, feed_dict=dict(parent_feed_list)) # Roll out if use_toolbox_env: raise NotImplementedError() obs = env.reset() ob = obs["player_red"] else: ob, all_info = env.reset() info = all_info.pop("available_actions") done = False gamma_t = 1.0 t = 0 while not done: obs.append(ob) infos.append(info) ac = [ pi.act(o, i, sess) for pi, o, i in zip(rollout_policies, ob, info) ] ob, rew, done, all_info = env.step(ac) acs.append(ac) rews.append(rew) rets.append([r * gamma_t for r in rew]) gamma_t *= gamma t += 1 info = all_info.pop("available_actions") to_log.append(all_info) # Adjust rets and compute value estimates last_vpreds = [ pi.predict(o, sess) * 0 for pi, o in zip(rollout_policies, ob) ] # for k, last_vpred in enumerate(last_vpreds): # rets[-1][k] += gamma_t * last_vpred values = compute_values(rews, last_vpreds, gamma=gamma) obs = list(map(np.asarray, zip(*obs))) acs = list(map(np.asarray, zip(*acs))) rets = list(map(np.asarray, zip(*rets))) values = list(map(np.asarray, zip(*values))) infos = list(map(np.asarray, zip(*infos))) trace = list(zip(obs, acs, rets, values, infos)) return trace, to_log def gen_trace_batches(trace, *, batch_size): """Splits the trace and yields batches.""" obs, acs, rets, values, infos = zip(*trace) permutation = np.random.permutation(len(obs[0])) for i in range(0, len(obs[0]), batch_size): idx = permutation[i : i + batch_size] trace_batch = list( zip( [ob[idx] for ob in obs], [ac[idx] for ac in acs], [ret[idx] for ret in rets], [val[idx] for val in values], [info[idx] for info in infos], ) ) yield trace_batch def build_graph( env, make_policy, make_optimizer, *, lr_inner=1.0, # lr for the inner loop steps lr_outer=1.0, # lr for the outer loop steps lr_value=0.1, # lr for the value function estimator lr_om=1.0, # lr for opponent modeling n_agents=2, n_inner_steps=1, inner_asymm=True, use_baseline=True, use_dice=True, use_opp_modeling=False, batch_size=64, ): """Builds all components of the graph.""" # Root policies. print("Building root policies...", end="") sys.stdout.flush() root_policies = [] for k in range(n_agents): pi = build_policy(env, make_policy, "root/pi_%d" % k) root_policies.append(pi) print("Done.") # Opponent models. if use_opp_modeling: for k, pi in enumerate(root_policies): pi.opponents = [ build_policy(env, make_policy, "root/pi_%d/opp_%d" % (k, j)) for j in range(n_agents - 1) ] else: for k, pi in enumerate(root_policies): pi.opponents = [ make_with_custom_variables( lambda: build_policy( env, make_policy, "root/pi_%d/opp_%d" % (k, j - (j > k)), ), opp.parameters, ) for j, opp in enumerate(root_policies) if j != k ] # Rollout policies (used to speed up rollouts). print("Building rollout policies...", end="") sys.stdout.flush() rollout_policies = [] for k in range(n_agents): pi = build_policy(env, make_policy, "rollout/pi_%d" % k) rollout_policies.append(pi) print("Done.") # Build asymmetric inner loops recursively. print("Building asymmetric inner loops...", end="") sys.stdout.flush() policies = root_policies for m in range(n_inner_steps): new_policies = [] for k in range(n_agents): # Build new parameters. new_params, *new_params_opp = build_new_params( "inner_%d/params_%d" % (m + 1, k), [policies[k]] + policies[k].opponents, 0, lr=lr_inner, asymm=inner_asymm, use_baseline=use_baseline, use_dice=use_dice, ) # Build new policy and opponents. new_policy = make_with_custom_variables( lambda: build_policy( env, make_policy, "inner_%d/pi_%d" % (m + 1, k), prev=policies[k], ), new_params, ) new_policy.opponents = [ make_with_custom_variables( lambda: build_policy( env, make_policy, "inner_%d/pi_%d/opp_%d" % (m + 1, k, i), prev=prev_opp, ), opp_params, ) for i, (opp_params, prev_opp) in enumerate( zip(new_params_opp, policies[k].opponents) ) ] new_policies.append(new_policy) policies = new_policies print("%d..." % (m + 1), end="") sys.stdout.flush() print("Done.") # Build the outer loop. print("Building the outer loop...", end="") sys.stdout.flush() pol_losses, val_losses = [], [] update_pol_ops, update_val_ops = [], [] for k in range(n_agents): params = policies[k].root.parameters pol_loss, val_loss = build_losses( "outer_%d" % k, [policies[k]] + policies[k].opponents, use_baseline=use_baseline, use_dice=use_dice, ) pol_losses.append([pol_loss[0]]) val_losses.append([val_loss[0]]) opt_pol = make_optimizer(lr=lr_outer) opt_val = make_optimizer(lr=lr_value) upd_pol = [opt_pol.minimize(pol_loss[0], var_list=params)] upd_val = [opt_val.minimize(val_loss[0], var_list=params)] update_pol_ops.append(upd_pol) update_val_ops.append(upd_val) print("Done.") # Build opponent modeling. om_losses = [] update_om_ops = [] if use_opp_modeling: for k in range(n_agents): opp_models = policies[k].root.opponents true_opponents = [ pi.root for j, pi in enumerate(policies) if j != k ] losses = [-tf.reduce_mean(opp.log_pi_acs) for opp in opp_models] params = [opp.parameters for opp in opp_models] opts = [ make_optimizer(lr=lr_om) for opp in policies[k].root.opponents ] upds = [ opt.minimize(loss, var_list=param) for opt, loss, param in zip(opts, losses, params) ] om_losses.append(losses) update_om_ops.append(upds) return ( policies, rollout_policies, pol_losses, val_losses, om_losses, update_pol_ops, update_val_ops, update_om_ops, ) def train( env, make_policy, make_optimizer, *, epochs=100, gamma=0.96, lr_inner=1.0, # lr for the inner loop steps lr_outer=1.0, # lr for the outer loop steps lr_value=0.1, # lr for the value function estimator lr_om=0.1, # lr for opponent modeling n_agents=2, n_inner_steps=1, inner_asymm=True, om_batch_size=64, # batch size used for fitting opponent models om_epochs=5, # epochs per iteration to fit opponent models value_batch_size=64, # batch size used for fitting the values value_epochs=5, # epochs per iteration to fit value functions use_baseline=True, use_dice=True, use_opp_modeling=False, save_dir=".", ): """The main training function.""" os.makedirs(save_dir, exist_ok=True) # Build. tf.reset_default_graph() ( policies, rollout_policies, pol_losses, val_losses, om_losses, update_pol_ops, update_val_ops, update_om_ops, ) = build_graph( env, make_policy, make_optimizer, lr_inner=lr_inner, lr_outer=lr_outer, lr_value=lr_value, lr_om=lr_om, n_agents=n_agents, n_inner_steps=n_inner_steps, use_baseline=use_baseline, use_dice=use_dice, use_opp_modeling=use_opp_modeling, inner_asymm=inner_asymm, ) # Train. acs_all = [] rets_all = [] params_all = [] params_om_all = [] times_all = [] pick_speed_all = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Construct update functions. update_funcs = { "policy": [ get_update( [policies[k]] + policies[k].opponents, pol_losses[k], update_pol_ops[k], sess, gamma=gamma, ) for k in range(n_agents) ], "value": [ get_update( [policies[k]], val_losses[k], update_val_ops[k], sess, gamma=gamma, ) for k in range(n_agents) ], "opp": [ get_update( policies[k].root.opponents, om_losses[k], update_om_ops[k], sess, gamma=gamma, ) for k in range(n_agents) ] if om_losses else None, } root_policies = [pi.root for pi in policies] # Train for a number of epochs. for e in range(epochs): times = [] # Model opponents. if use_opp_modeling: with U.elapsed_timer() as om_timer: # Fit opponent models for several epochs. om_losses = np.zeros((n_agents, n_agents - 1)) for om_ep in range(om_epochs): traces, _ = rollout( env, root_policies, rollout_policies, sess, gamma=gamma, parent_traces=[], ) om_traces = [ [tr for j, tr in enumerate(traces) if j != k] for k in range(n_agents) ] for k in range(n_agents): update_om = update_funcs["opp"][k] for trace_batch in gen_trace_batches( om_traces[k], batch_size=om_batch_size ): update_om(trace_batch) loss = update_om(om_traces[k]) om_losses[k] += np.asarray(loss) om_losses /= om_epochs times.append(om_timer()) else: om_losses = np.array([]) print("start Fit function") # Fit value functions. with U.elapsed_timer() as val_timer: # Fit value functions for several epochs. value_losses = np.zeros(n_agents) for v_ep in range(value_epochs): traces, _ = rollout( env, root_policies, rollout_policies, sess, gamma=gamma, parent_traces=[], ) for k in range(n_agents): update_val = update_funcs["value"][k] for trace_batch in gen_trace_batches( [traces[k]], batch_size=value_batch_size ): update_val(trace_batch) loss = update_val([traces[k]]) value_losses[k] += loss[0] value_losses /= value_epochs times.append(val_timer()) # Save parameters of the agents (for debug purposes). params = sess.run( [tf.squeeze(pi.root.parameters[0]) for pi in policies] ) params_all.append(params) # Save parameters of the opponent models (for debug purposes). params = [ sess.run( [ tf.squeeze(opp.root.parameters[0]) for opp in pi.opponents ] ) for pi in policies ] params_om_all.append(params) print("start Inner loops") # Inner loop rollouts (lookahead steps). inner_all_to_log = [] with U.elapsed_timer() as inner_timer: inner_traces = [] for k in range(n_agents): parent_traces = [] to_log = [] for m in range(n_inner_steps): policies_k = [policies[k].parents[m]] + [ opp.parents[m] for opp in policies[k].opponents ] traces, sub_to_log = rollout( env, policies_k, rollout_policies, sess, gamma=gamma, parent_traces=parent_traces, ) parent_traces.append(traces) to_log.append(sub_to_log) inner_traces.append(parent_traces) inner_all_to_log.append(to_log) times.append(inner_timer()) print("start Outer loops") # Outer loop rollouts (each agent plays against updated opponents). outer_all_to_log = [] with U.elapsed_timer() as outer_timer: outer_traces = [] for k in range(n_agents): parent_traces = inner_traces[k] policies_k = [policies[k]] + policies[k].opponents traces, to_log = rollout( env, policies_k, rollout_policies, sess, gamma=gamma, parent_traces=parent_traces, ) outer_traces.append(traces) outer_all_to_log.append([to_log]) times.append(outer_timer()) # Updates. update_time = 0 policy_losses = [] for k in range(n_agents): # Policy with U.elapsed_timer() as pol_upd_timer: parent_traces = inner_traces[k] update_pol = update_funcs["policy"][k] loss = update_pol( outer_traces[k], parent_traces=parent_traces ) policy_losses.append(loss) update_time += pol_upd_timer() to_report = {} for ag_idx in range(n_agents): print("== For ag_idx", ag_idx, "==") # Logging. if n_inner_steps > 0: # obs, acs, rets, vals, infos = list(zip(*inner_traces[0][ag_idx])) obs, acs, rets, vals, infos = list( zip(*inner_traces[ag_idx][0]) ) all_to_log = inner_all_to_log else: obs, acs, rets, vals, infos = list( zip(*outer_traces[ag_idx]) ) all_to_log = outer_all_to_log all_to_log = [ per_agent_to_log[0] for per_agent_to_log in all_to_log ][ag_idx] policy_loss = policy_losses[ag_idx] times_all.append(times) acs_all.append([ac.mean() for ac in acs]) generate_rate_trace = [ all_to_log[i].pop("generate_rate") for i in range(len(all_to_log)) if "generate_rate" in all_to_log[i].keys() ] pick_speed_all.append( sum(generate_rate_trace) / len(generate_rate_trace) if len(generate_rate_trace) > 0 else -1 ) rets_all.append( [r.sum(axis=0).mean() * (1 - gamma) for r in rets] ) # rets_all.append([r.sum(axis=0).mean() for r in rets]) print("Epoch:", e + 1, "-" * 60) # print("Policy losses:", list(map(sum, policy_losses))) print("Value losses:", value_losses.tolist()) print("OM losses:", om_losses.tolist()) print("Returns:", rets_all[-1]) print("Defection rate:", acs_all[-1]) print("Pick speed:", pick_speed_all[-1]) # # Save stuff # np.save(save_dir + '/acs.npy', acs_all) # np.save(save_dir + '/rets.npy', rets_all) # np.save(save_dir + '/params.npy', params_all) # np.save(save_dir + '/params_om.npy', params_om_all) # np.save(save_dir + '/times.npy', times_all) # np.save(save_dir + '/pick_speed.npy', pick_speed_all) info_from_env = {} # Only keep the last info for to_log in all_to_log: info_from_env.update(to_log) initial_info = { "returns_player_1": rets_all[-1][0], "returns_player_2": rets_all[-1][1], "defection_rate_player_1": acs_all[-1][0], "defection_rate_player_2": acs_all[-1][1], "pick_speed_global": pick_speed_all[-1], "policy_loss": policy_loss, } for k, v in info_from_env.items(): to_report[f"ag_{ag_idx}_{k}"] = v for k, v in initial_info.items(): to_report[f"ag_{ag_idx}_{k}"] = v tune.report(**to_report)
the-stack_106_19614
# -*- coding: utf-8 -*- """ """ from __future__ import print_function import numpy as np from openmdao.api import Component ''' Component which combines the mass design variables with the masses of the points not defined as design variables to create a single input vector for the Nastran components ''' class MixedInputDesvarM(Component): def __init__(self, mn, m_desvar_list=[]): super(MixedInputDesvarM, self).__init__() #Number of concentrated masses self.mn = mn #List containing the indices of the thickness vector defined as design variables self.m_desvar_list = m_desvar_list #Vector containing the baseline or default concentrated masses' values self.add_param('m_indep', val=np.zeros(self.mn)) #Vector containing concentrated masses design variables self.add_param('m_desvar', val=np.zeros(len(m_desvar_list))) #Vector containing the concentrated masses' values self.add_output('m', val=np.zeros(self.mn)) def solve_nonlinear(self, params, unknowns, resids): m_desvar_list = self.m_desvar_list m_indep = params['m_indep'] m_desvar = params['m_desvar'] m = m_indep #Substitute the design variables to create the thickness and mass vectors that are the inputs of Nastran components for i in range(len(m_desvar_list)): m[m_desvar_list[i]] = m_desvar[i] unknowns['m'] = m
the-stack_106_19615
# orm/state.py # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Defines instrumentation of instances. This module is usually not directly visible to user applications, but defines a large part of the ORM's interactivity. """ import weakref from .. import util from .. import inspection from .. import exc as sa_exc from . import exc as orm_exc, interfaces from .path_registry import PathRegistry from .base import PASSIVE_NO_RESULT, SQL_OK, NEVER_SET, ATTR_WAS_SET, \ NO_VALUE, PASSIVE_NO_INITIALIZE, INIT_OK, PASSIVE_OFF from . import base @inspection._self_inspects class InstanceState(interfaces.InspectionAttr): """tracks state information at the instance level. The :class:`.InstanceState` is a key object used by the SQLAlchemy ORM in order to track the state of an object; it is created the moment an object is instantiated, typically as a result of :term:`instrumentation` which SQLAlchemy applies to the ``__init__()`` method of the class. :class:`.InstanceState` is also a semi-public object, available for runtime inspection as to the state of a mapped instance, including information such as its current status within a particular :class:`.Session` and details about data on individual attributes. The public API in order to acquire a :class:`.InstanceState` object is to use the :func:`.inspect` system:: >>> from sqlalchemy import inspect >>> insp = inspect(some_mapped_object) .. seealso:: :ref:`core_inspection_toplevel` """ session_id = None key = None runid = None load_options = util.EMPTY_SET load_path = () insert_order = None _strong_obj = None modified = False expired = False _deleted = False _load_pending = False _orphaned_outside_of_session = False is_instance = True identity_token = None callables = () """A namespace where a per-state loader callable can be associated. In SQLAlchemy 1.0, this is only used for lazy loaders / deferred loaders that were set up via query option. Previously, callables was used also to indicate expired attributes by storing a link to the InstanceState itself in this dictionary. This role is now handled by the expired_attributes set. """ def __init__(self, obj, manager): self.class_ = obj.__class__ self.manager = manager self.obj = weakref.ref(obj, self._cleanup) self.committed_state = {} self.expired_attributes = set() expired_attributes = None """The set of keys which are 'expired' to be loaded by the manager's deferred scalar loader, assuming no pending changes. see also the ``unmodified`` collection which is intersected against this set when a refresh operation occurs.""" @util.memoized_property def attrs(self): """Return a namespace representing each attribute on the mapped object, including its current value and history. The returned object is an instance of :class:`.AttributeState`. This object allows inspection of the current data within an attribute as well as attribute history since the last flush. """ return util.ImmutableProperties( dict( (key, AttributeState(self, key)) for key in self.manager ) ) @property def transient(self): """Return true if the object is :term:`transient`. .. seealso:: :ref:`session_object_states` """ return self.key is None and \ not self._attached @property def pending(self): """Return true if the object is :term:`pending`. .. seealso:: :ref:`session_object_states` """ return self.key is None and \ self._attached @property def deleted(self): """Return true if the object is :term:`deleted`. An object that is in the deleted state is guaranteed to not be within the :attr:`.Session.identity_map` of its parent :class:`.Session`; however if the session's transaction is rolled back, the object will be restored to the persistent state and the identity map. .. note:: The :attr:`.InstanceState.deleted` attribute refers to a specific state of the object that occurs between the "persistent" and "detached" states; once the object is :term:`detached`, the :attr:`.InstanceState.deleted` attribute **no longer returns True**; in order to detect that a state was deleted, regardless of whether or not the object is associated with a :class:`.Session`, use the :attr:`.InstanceState.was_deleted` accessor. .. versionadded: 1.1 .. seealso:: :ref:`session_object_states` """ return self.key is not None and \ self._attached and self._deleted @property def was_deleted(self): """Return True if this object is or was previously in the "deleted" state and has not been reverted to persistent. This flag returns True once the object was deleted in flush. When the object is expunged from the session either explicitly or via transaction commit and enters the "detached" state, this flag will continue to report True. .. versionadded:: 1.1 - added a local method form of :func:`.orm.util.was_deleted`. .. seealso:: :attr:`.InstanceState.deleted` - refers to the "deleted" state :func:`.orm.util.was_deleted` - standalone function :ref:`session_object_states` """ return self._deleted @property def persistent(self): """Return true if the object is :term:`persistent`. An object that is in the persistent state is guaranteed to be within the :attr:`.Session.identity_map` of its parent :class:`.Session`. .. versionchanged:: 1.1 The :attr:`.InstanceState.persistent` accessor no longer returns True for an object that was "deleted" within a flush; use the :attr:`.InstanceState.deleted` accessor to detect this state. This allows the "persistent" state to guarantee membership in the identity map. .. seealso:: :ref:`session_object_states` """ return self.key is not None and \ self._attached and not self._deleted @property def detached(self): """Return true if the object is :term:`detached`. .. seealso:: :ref:`session_object_states` """ return self.key is not None and not self._attached @property @util.dependencies("sqlalchemy.orm.session") def _attached(self, sessionlib): return self.session_id is not None and \ self.session_id in sessionlib._sessions @property @util.dependencies("sqlalchemy.orm.session") def session(self, sessionlib): """Return the owning :class:`.Session` for this instance, or ``None`` if none available. Note that the result here can in some cases be *different* from that of ``obj in session``; an object that's been deleted will report as not ``in session``, however if the transaction is still in progress, this attribute will still refer to that session. Only when the transaction is completed does the object become fully detached under normal circumstances. """ return sessionlib._state_session(self) @property def object(self): """Return the mapped object represented by this :class:`.InstanceState`.""" return self.obj() @property def identity(self): """Return the mapped identity of the mapped object. This is the primary key identity as persisted by the ORM which can always be passed directly to :meth:`.Query.get`. Returns ``None`` if the object has no primary key identity. .. note:: An object which is :term:`transient` or :term:`pending` does **not** have a mapped identity until it is flushed, even if its attributes include primary key values. """ if self.key is None: return None else: return self.key[1] @property def identity_key(self): """Return the identity key for the mapped object. This is the key used to locate the object within the :attr:`.Session.identity_map` mapping. It contains the identity as returned by :attr:`.identity` within it. """ # TODO: just change .key to .identity_key across # the board ? probably return self.key @util.memoized_property def parents(self): return {} @util.memoized_property def _pending_mutations(self): return {} @util.memoized_property def mapper(self): """Return the :class:`.Mapper` used for this mapepd object.""" return self.manager.mapper @property def has_identity(self): """Return ``True`` if this object has an identity key. This should always have the same value as the expression ``state.persistent or state.detached``. """ return bool(self.key) @classmethod def _detach_states(self, states, session, to_transient=False): persistent_to_detached = \ session.dispatch.persistent_to_detached or None deleted_to_detached = \ session.dispatch.deleted_to_detached or None pending_to_transient = \ session.dispatch.pending_to_transient or None persistent_to_transient = \ session.dispatch.persistent_to_transient or None for state in states: deleted = state._deleted pending = state.key is None persistent = not pending and not deleted state.session_id = None if to_transient and state.key: del state.key if persistent: if to_transient: if persistent_to_transient is not None: obj = state.obj() if obj is not None: persistent_to_transient(session, obj) elif persistent_to_detached is not None: obj = state.obj() if obj is not None: persistent_to_detached(session, obj) elif deleted and deleted_to_detached is not None: obj = state.obj() if obj is not None: deleted_to_detached(session, obj) elif pending and pending_to_transient is not None: obj = state.obj() if obj is not None: pending_to_transient(session, obj) state._strong_obj = None def _detach(self, session=None): if session: InstanceState._detach_states([self], session) else: self.session_id = self._strong_obj = None def _dispose(self): self._detach() del self.obj def _cleanup(self, ref): """Weakref callback cleanup. This callable cleans out the state when it is being garbage collected. this _cleanup **assumes** that there are no strong refs to us! Will not work otherwise! """ instance_dict = self._instance_dict() if instance_dict is not None: instance_dict._fast_discard(self) del self._instance_dict # we can't possibly be in instance_dict._modified # b.c. this is weakref cleanup only, that set # is strong referencing! # assert self not in instance_dict._modified self.session_id = self._strong_obj = None del self.obj def obj(self): return None @property def dict(self): """Return the instance dict used by the object. Under normal circumstances, this is always synonymous with the ``__dict__`` attribute of the mapped object, unless an alternative instrumentation system has been configured. In the case that the actual object has been garbage collected, this accessor returns a blank dictionary. """ o = self.obj() if o is not None: return base.instance_dict(o) else: return {} def _initialize_instance(*mixed, **kwargs): self, instance, args = mixed[0], mixed[1], mixed[2:] # noqa manager = self.manager manager.dispatch.init(self, args, kwargs) try: return manager.original_init(*mixed[1:], **kwargs) except: with util.safe_reraise(): manager.dispatch.init_failure(self, args, kwargs) def get_history(self, key, passive): return self.manager[key].impl.get_history(self, self.dict, passive) def get_impl(self, key): return self.manager[key].impl def _get_pending_mutation(self, key): if key not in self._pending_mutations: self._pending_mutations[key] = PendingCollection() return self._pending_mutations[key] def __getstate__(self): state_dict = {'instance': self.obj()} state_dict.update( (k, self.__dict__[k]) for k in ( 'committed_state', '_pending_mutations', 'modified', 'expired', 'callables', 'key', 'parents', 'load_options', 'class_', 'expired_attributes' ) if k in self.__dict__ ) if self.load_path: state_dict['load_path'] = self.load_path.serialize() state_dict['manager'] = self.manager._serialize(self, state_dict) return state_dict def __setstate__(self, state_dict): inst = state_dict['instance'] if inst is not None: self.obj = weakref.ref(inst, self._cleanup) self.class_ = inst.__class__ else: # None being possible here generally new as of 0.7.4 # due to storage of state in "parents". "class_" # also new. self.obj = None self.class_ = state_dict['class_'] self.committed_state = state_dict.get('committed_state', {}) self._pending_mutations = state_dict.get('_pending_mutations', {}) self.parents = state_dict.get('parents', {}) self.modified = state_dict.get('modified', False) self.expired = state_dict.get('expired', False) if 'callables' in state_dict: self.callables = state_dict['callables'] try: self.expired_attributes = state_dict['expired_attributes'] except KeyError: self.expired_attributes = set() # 0.9 and earlier compat for k in list(self.callables): if self.callables[k] is self: self.expired_attributes.add(k) del self.callables[k] else: if 'expired_attributes' in state_dict: self.expired_attributes = state_dict['expired_attributes'] else: self.expired_attributes = set() self.__dict__.update([ (k, state_dict[k]) for k in ( 'key', 'load_options' ) if k in state_dict ]) if self.key: try: self.identity_token = self.key[2] except IndexError: # 1.1 and earlier compat before identity_token assert len(self.key) == 2 self.key = self.key + (None, ) self.identity_token = None if 'load_path' in state_dict: self.load_path = PathRegistry.\ deserialize(state_dict['load_path']) state_dict['manager'](self, inst, state_dict) def _reset(self, dict_, key): """Remove the given attribute and any callables associated with it.""" old = dict_.pop(key, None) if old is not None and self.manager[key].impl.collection: self.manager[key].impl._invalidate_collection(old) self.expired_attributes.discard(key) if self.callables: self.callables.pop(key, None) def _copy_callables(self, from_): if 'callables' in from_.__dict__: self.callables = dict(from_.callables) @classmethod def _instance_level_callable_processor(cls, manager, fn, key): impl = manager[key].impl if impl.collection: def _set_callable(state, dict_, row): if 'callables' not in state.__dict__: state.callables = {} old = dict_.pop(key, None) if old is not None: impl._invalidate_collection(old) state.callables[key] = fn else: def _set_callable(state, dict_, row): if 'callables' not in state.__dict__: state.callables = {} state.callables[key] = fn return _set_callable def _expire(self, dict_, modified_set): self.expired = True if self.modified: modified_set.discard(self) self.committed_state.clear() self.modified = False self._strong_obj = None if '_pending_mutations' in self.__dict__: del self.__dict__['_pending_mutations'] if 'parents' in self.__dict__: del self.__dict__['parents'] self.expired_attributes.update( [impl.key for impl in self.manager._scalar_loader_impls if impl.expire_missing or impl.key in dict_] ) if self.callables: for k in self.expired_attributes.intersection(self.callables): del self.callables[k] for k in self.manager._collection_impl_keys.intersection(dict_): collection = dict_.pop(k) collection._sa_adapter.invalidated = True for key in self.manager._all_key_set.intersection(dict_): del dict_[key] self.manager.dispatch.expire(self, None) def _expire_attributes(self, dict_, attribute_names, no_loader=False): pending = self.__dict__.get('_pending_mutations', None) callables = self.callables for key in attribute_names: impl = self.manager[key].impl if impl.accepts_scalar_loader: if no_loader and ( impl.callable_ or key in callables ): continue self.expired_attributes.add(key) if callables and key in callables: del callables[key] old = dict_.pop(key, None) if impl.collection and old is not None: impl._invalidate_collection(old) self.committed_state.pop(key, None) if pending: pending.pop(key, None) self.manager.dispatch.expire(self, attribute_names) def _load_expired(self, state, passive): """__call__ allows the InstanceState to act as a deferred callable for loading expired attributes, which is also serializable (picklable). """ if not passive & SQL_OK: return PASSIVE_NO_RESULT toload = self.expired_attributes.\ intersection(self.unmodified) self.manager.deferred_scalar_loader(self, toload) # if the loader failed, or this # instance state didn't have an identity, # the attributes still might be in the callables # dict. ensure they are removed. self.expired_attributes.clear() return ATTR_WAS_SET @property def unmodified(self): """Return the set of keys which have no uncommitted changes""" return set(self.manager).difference(self.committed_state) def unmodified_intersection(self, keys): """Return self.unmodified.intersection(keys).""" return set(keys).intersection(self.manager).\ difference(self.committed_state) @property def unloaded(self): """Return the set of keys which do not have a loaded value. This includes expired attributes and any other attribute that was never populated or modified. """ return set(self.manager).\ difference(self.committed_state).\ difference(self.dict) @property def unloaded_expirable(self): """Return the set of keys which do not have a loaded value. This includes expired attributes and any other attribute that was never populated or modified. """ return self.unloaded.intersection( attr for attr in self.manager if self.manager[attr].impl.expire_missing) @property def _unloaded_non_object(self): return self.unloaded.intersection( attr for attr in self.manager if self.manager[attr].impl.accepts_scalar_loader ) def _instance_dict(self): return None def _modified_event( self, dict_, attr, previous, collection=False, is_userland=False): if attr: if not attr.send_modified_events: return if is_userland and attr.key not in dict_: raise sa_exc.InvalidRequestError( "Can't flag attribute '%s' modified; it's not present in " "the object state" % attr.key) if attr.key not in self.committed_state or is_userland: if collection: if previous is NEVER_SET: if attr.key in dict_: previous = dict_[attr.key] if previous not in (None, NO_VALUE, NEVER_SET): previous = attr.copy(previous) self.committed_state[attr.key] = previous # assert self._strong_obj is None or self.modified if (self.session_id and self._strong_obj is None) \ or not self.modified: self.modified = True instance_dict = self._instance_dict() if instance_dict: instance_dict._modified.add(self) # only create _strong_obj link if attached # to a session inst = self.obj() if self.session_id: self._strong_obj = inst if inst is None and attr: raise orm_exc.ObjectDereferencedError( "Can't emit change event for attribute '%s' - " "parent object of type %s has been garbage " "collected." % ( self.manager[attr.key], base.state_class_str(self) )) def _commit(self, dict_, keys): """Commit attributes. This is used by a partial-attribute load operation to mark committed those attributes which were refreshed from the database. Attributes marked as "expired" can potentially remain "expired" after this step if a value was not populated in state.dict. """ for key in keys: self.committed_state.pop(key, None) self.expired = False self.expired_attributes.difference_update( set(keys).intersection(dict_)) # the per-keys commit removes object-level callables, # while that of commit_all does not. it's not clear # if this behavior has a clear rationale, however tests do # ensure this is what it does. if self.callables: for key in set(self.callables).\ intersection(keys).\ intersection(dict_): del self.callables[key] def _commit_all(self, dict_, instance_dict=None): """commit all attributes unconditionally. This is used after a flush() or a full load/refresh to remove all pending state from the instance. - all attributes are marked as "committed" - the "strong dirty reference" is removed - the "modified" flag is set to False - any "expired" markers for scalar attributes loaded are removed. - lazy load callables for objects / collections *stay* Attributes marked as "expired" can potentially remain "expired" after this step if a value was not populated in state.dict. """ self._commit_all_states([(self, dict_)], instance_dict) @classmethod def _commit_all_states(self, iter, instance_dict=None): """Mass / highly inlined version of commit_all().""" for state, dict_ in iter: state_dict = state.__dict__ state.committed_state.clear() if '_pending_mutations' in state_dict: del state_dict['_pending_mutations'] state.expired_attributes.difference_update(dict_) if instance_dict and state.modified: instance_dict._modified.discard(state) state.modified = state.expired = False state._strong_obj = None class AttributeState(object): """Provide an inspection interface corresponding to a particular attribute on a particular mapped object. The :class:`.AttributeState` object is accessed via the :attr:`.InstanceState.attrs` collection of a particular :class:`.InstanceState`:: from sqlalchemy import inspect insp = inspect(some_mapped_object) attr_state = insp.attrs.some_attribute """ def __init__(self, state, key): self.state = state self.key = key @property def loaded_value(self): """The current value of this attribute as loaded from the database. If the value has not been loaded, or is otherwise not present in the object's dictionary, returns NO_VALUE. """ return self.state.dict.get(self.key, NO_VALUE) @property def value(self): """Return the value of this attribute. This operation is equivalent to accessing the object's attribute directly or via ``getattr()``, and will fire off any pending loader callables if needed. """ return self.state.manager[self.key].__get__( self.state.obj(), self.state.class_) @property def history(self): """Return the current pre-flush change history for this attribute, via the :class:`.History` interface. This method will **not** emit loader callables if the value of the attribute is unloaded. .. seealso:: :meth:`.AttributeState.load_history` - retrieve history using loader callables if the value is not locally present. :func:`.attributes.get_history` - underlying function """ return self.state.get_history(self.key, PASSIVE_NO_INITIALIZE) def load_history(self): """Return the current pre-flush change history for this attribute, via the :class:`.History` interface. This method **will** emit loader callables if the value of the attribute is unloaded. .. seealso:: :attr:`.AttributeState.history` :func:`.attributes.get_history` - underlying function .. versionadded:: 0.9.0 """ return self.state.get_history(self.key, PASSIVE_OFF ^ INIT_OK) class PendingCollection(object): """A writable placeholder for an unloaded collection. Stores items appended to and removed from a collection that has not yet been loaded. When the collection is loaded, the changes stored in PendingCollection are applied to it to produce the final result. """ def __init__(self): self.deleted_items = util.IdentitySet() self.added_items = util.OrderedIdentitySet() def append(self, value): if value in self.deleted_items: self.deleted_items.remove(value) else: self.added_items.add(value) def remove(self, value): if value in self.added_items: self.added_items.remove(value) else: self.deleted_items.add(value)
the-stack_106_19617
import random as rd lst=[] lst2=[] numberlst=[] variationArray=[] weightl=[] #READING INPUT FROM FILE with open('F:\\CSE422\\New folder\\genetic.txt') as file: lst=file.read().split()[1:] #LIST HANDELING def listAdjust(): for item in lst: if item=='l' : lst2.append('l') lst.remove(item) elif item=='d': lst2.append('d') lst.remove(item) iterate=len(lst2) return iterate #GENERATE INITIAL POPULATION def generate_popuation(iterate): population_size=2**len(lst2)-1 check=1 while check<=population_size: variation="" for j in range (iterate): variant=str(rd.randrange(0,2)) variation+=variant if variation not in variationArray: variationArray.append(variation) check=check+1 variationArray.sort() variationArray.pop(0) # print("This is Population Generation") # print(variationArray) return population_size #FITNESS CALCULATION def FitnessGeneration(): weight=[] value='0' for i in variationArray: weightv=0 iterator=0 for j in i: if(j=='1') and (lst2[iterator]=='l'): weightv=weightv-int(lst[iterator]) elif (j=='1') and (lst2[iterator]=='d'): weightv=weightv+int(lst[iterator]) iterator+=1 weight.append(weightv) if(weightv==0): value= i weightl=weight #print(weightl) return value #PARENTSELECTION def parentSelection(): parent=variationArray #CROSSOVER def crossover(iterate,population_size): j=0 i=0 #print(f'{"Variation len"}{len(variationArray)}') if(len(variationArray)%2==0): #print("WOK") while i <=(population_size-1): j=i+1 if(j<=population_size-1): # print(f'{variationArray[i]}{" "}{variationArray[j]}' ,end=" ") value=rd.randrange(0, iterate) temp=variationArray[i] p1=variationArray[i] p2=variationArray[j] p1=p1[:value]+p2[value:] variationArray[i]=p1 p2=p2[:value]+temp[value:] variationArray[j]=p2 i=j+1 elif(len(variationArray)%2!=0): #print("WWOK") while i <=(population_size-1): j=i+1 if(i==(population_size-1)): #print("WWOK") j=i-1 value=rd.randrange(0, iterate) print(f'{"Randrange "}{value}') temp=variationArray[i] p1=variationArray[i] p2=variationArray[j] p1=p1[:value]+p2[value:] variationArray[i]=p1 p2=p2[:value]+temp[value:] variationArray[j]=p2 break elif(j<=population_size-1): # print(f'{variationArray[i]}{" "}{variationArray[j]}' ,end=" ") value=rd.randrange(0, iterate) temp=variationArray[i] p1=variationArray[i] p2=variationArray[j] p1=p1[:value]+p2[value:] variationArray[i]=p1 p2=p2[:value]+temp[value:] variationArray[j]=p2 i=j+1 #print(variationArray) #print(f'{"Variation len"}{len(variationArray)}') variationArray.sort() if(int(variationArray[0])==0): variationArray.pop(0) #print("This is Crossover") #Mutation def Mutation(iterate): bit_flip=rd.randrange(0, iterate) # print(f'{"bit_flip "}{bit_flip}') i=0 while(i<len(variationArray)): l=variationArray[i] if(l[bit_flip]=='1'): l=l[:bit_flip]+'0'+l[bit_flip+1:] variationArray[i]=l elif(l[bit_flip]=='0'): l=l[:bit_flip]+'1'+l[bit_flip+1:] variationArray[i]=l i=i+1 variationArray.sort() if(int(variationArray[0])==0): variationArray.pop(0) #print("After Mutation") #print(variationArray) # x=listAdjust() # population_size=generate_popuation(x) # l=FitnessGeneration() # print(f'{"Hello "}{l}') # crossover(x,population_size) # l=FitnessGeneration() # print(f'{"Hello "}{l}') # Mutation(x) # l=FitnessGeneration() # print(f'{"Hello "}{l}') #This is Method def geneticAlgoMain(): parentSelection() x=listAdjust() population_size=generate_popuation(x) l=FitnessGeneration() cross=0 mute=0 while(True): if(l=='0' and cross==0): crossover(x,population_size) l=FitnessGeneration() cross=cross+1 if(len(l)>0 and int(l)!=0): #print("Cross") print(f'{"Output "}{l}') break elif(l=='0' and mute==0): Mutation(x) l=FitnessGeneration() mute=mute+1 if(len(l)>0 and int(l)!=0): #print("Mute") print(f'{"Output "}{l}') break elif(len(l)>0 and int(l)!=0): print(f'{"Output "}{l}') break elif(mute>0 and cross>0): print(f'{"Output "}{-1}') break geneticAlgoMain()
the-stack_106_19619
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.launcher.PiratesDummyLauncher from otp.launcher.DummyLauncherBase import DummyLauncherBase from pirates.launcher.PiratesQuickLauncher import PiratesQuickLauncher class PiratesDummyLauncher(DummyLauncherBase, PiratesQuickLauncher): __module__ = __name__ def __init__(self): DummyLauncherBase.__init__(self) self.setPhaseComplete(1, 100) self.setPhaseComplete(2, 100) self.firstPhase = 3 self.startFakeDownload()
the-stack_106_19620
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2016 Shunta Saito # https://github.com/mitmul/chainer-faster-rcnn/ import chainer import chainer.functions as F import chainer.links as L class VGG16(chainer.Chain): def __init__(self, train=False): super(VGG16, self).__init__() self.trunk = [ ('conv1_1', L.Convolution2D(3, 64, 3, 1, 1)), ('relu1_1', F.ReLU()), ('conv1_2', L.Convolution2D(64, 64, 3, 1, 1)), ('relu1_2', F.ReLU()), ('pool1', F.MaxPooling2D(2, 2)), ('conv2_1', L.Convolution2D(64, 128, 3, 1, 1)), ('relu2_1', F.ReLU()), ('conv2_2', L.Convolution2D(128, 128, 3, 1, 1)), ('relu2_2', F.ReLU()), ('pool2', F.MaxPooling2D(2, 2)), ('conv3_1', L.Convolution2D(128, 256, 3, 1, 1)), ('relu3_1', F.ReLU()), ('conv3_2', L.Convolution2D(256, 256, 3, 1, 1)), ('relu3_2', F.ReLU()), ('conv3_3', L.Convolution2D(256, 256, 3, 1, 1)), ('relu3_3', F.ReLU()), ('pool3', F.MaxPooling2D(2, 2)), ('conv4_1', L.Convolution2D(256, 512, 3, 1, 1)), ('relu4_1', F.ReLU()), ('conv4_2', L.Convolution2D(512, 512, 3, 1, 1)), ('relu4_2', F.ReLU()), ('conv4_3', L.Convolution2D(512, 512, 3, 1, 1)), ('relu4_3', F.ReLU()), ('pool4', F.MaxPooling2D(2, 2)), ('conv5_1', L.Convolution2D(512, 512, 3, 1, 1)), ('relu5_1', F.ReLU()), ('conv5_2', L.Convolution2D(512, 512, 3, 1, 1)), ('relu5_2', F.ReLU()), ('conv5_3', L.Convolution2D(512, 512, 3, 1, 1)), ('relu5_3', F.ReLU()), ('rpn_conv_3x3', L.Convolution2D(512, 512, 3, 1, 1)), ('rpn_relu_3x3', F.ReLU()), ] for name, link in self.trunk: if 'conv' in name: self.add_link(name, link) def __call__(self, x): for name, f in self.trunk: x = (getattr(self, name) if 'conv' in name else f)(x) if 'relu5_3' in name: self.feature = x return x
the-stack_106_19624
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.util import CLIError from knack.log import get_logger from ._constants import get_managed_sku, get_premium_sku from ._utils import ( get_registry_by_name, validate_managed_registry, validate_sku_update, get_resource_group_name_by_registry_name, user_confirmation ) from ._docker_utils import get_login_credentials, EMPTY_GUID from .network_rule import NETWORK_RULE_NOT_SUPPORTED logger = get_logger(__name__) DEF_DIAG_SETTINGS_NAME_TEMPLATE = '{}-diagnostic-settings' SYSTEM_ASSIGNED_IDENTITY_ALIAS = '[system]' def acr_check_name(client, registry_name): return client.check_name_availability(registry_name) def acr_list(client, resource_group_name=None): if resource_group_name: return client.list_by_resource_group(resource_group_name) return client.list() def acr_create(cmd, client, registry_name, resource_group_name, sku, location=None, admin_enabled=False, default_action=None, tags=None, workspace=None, identity=None, key_encryption_key=None): if default_action and sku not in get_premium_sku(cmd): raise CLIError(NETWORK_RULE_NOT_SUPPORTED) if sku not in get_managed_sku(cmd): raise CLIError("Classic SKU is no longer supported. Please select a managed SKU.") Registry, Sku, NetworkRuleSet = cmd.get_models('Registry', 'Sku', 'NetworkRuleSet') registry = Registry(location=location, sku=Sku(name=sku), admin_user_enabled=admin_enabled, tags=tags) if default_action: registry.network_rule_set = NetworkRuleSet(default_action=default_action) if identity or key_encryption_key: _configure_cmk(cmd, registry, resource_group_name, identity, key_encryption_key) lro_poller = client.create(resource_group_name, registry_name, registry) if workspace: from msrestazure.tools import is_valid_resource_id, resource_id from azure.cli.core.commands import LongRunningOperation from azure.cli.core.commands.client_factory import get_subscription_id acr = LongRunningOperation(cmd.cli_ctx)(lro_poller) if not is_valid_resource_id(workspace): workspace = resource_id(subscription=get_subscription_id(cmd.cli_ctx), resource_group=resource_group_name, namespace='microsoft.OperationalInsights', type='workspaces', name=workspace) _create_diagnostic_settings(cmd.cli_ctx, acr, workspace) return acr return lro_poller def acr_delete(cmd, client, registry_name, resource_group_name=None, yes=False): user_confirmation("Are you sure you want to delete the registry '{}'?".format(registry_name), yes) resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.delete(resource_group_name, registry_name) def acr_show(cmd, client, registry_name, resource_group_name=None): resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.get(resource_group_name, registry_name) def acr_update_custom(cmd, instance, sku=None, admin_enabled=None, default_action=None, tags=None): if sku is not None: Sku = cmd.get_models('Sku') instance.sku = Sku(name=sku) if admin_enabled is not None: instance.admin_user_enabled = admin_enabled if tags is not None: instance.tags = tags if default_action is not None: NetworkRuleSet = cmd.get_models('NetworkRuleSet') instance.network_rule_set = NetworkRuleSet(default_action=default_action) return instance def acr_update_get(cmd): """Returns an empty RegistryUpdateParameters object. """ RegistryUpdateParameters = cmd.get_models('RegistryUpdateParameters') return RegistryUpdateParameters() def acr_update_set(cmd, client, registry_name, resource_group_name=None, parameters=None): registry, resource_group_name = get_registry_by_name(cmd.cli_ctx, registry_name, resource_group_name) if parameters.network_rule_set and registry.sku.name not in get_premium_sku(cmd): raise CLIError(NETWORK_RULE_NOT_SUPPORTED) validate_sku_update(cmd, registry.sku.name, parameters.sku) return client.update(resource_group_name, registry_name, parameters) def acr_login(cmd, registry_name, resource_group_name=None, # pylint: disable=unused-argument tenant_suffix=None, username=None, password=None, expose_token=False): if expose_token: login_server, _, password = get_login_credentials( cmd=cmd, registry_name=registry_name, tenant_suffix=tenant_suffix, username=username, password=password) logger.warning("You can perform manual login using the provided access token below, " "for example: 'docker login loginServer -u %s -p accessToken'", EMPTY_GUID) token_info = { "loginServer": login_server, "accessToken": password } return token_info tips = "You may want to use 'az acr login -n {} --expose-token' to get an access token, " \ "which does not require Docker to be installed.".format(registry_name) from azure.cli.core.util import in_cloud_console if in_cloud_console(): raise CLIError("This command requires running the docker daemon, " "which is not supported in Azure Cloud Shell. " + tips) try: docker_command, _ = get_docker_command() except CLIError as e: logger.warning(tips) raise e login_server, username, password = get_login_credentials( cmd=cmd, registry_name=registry_name, tenant_suffix=tenant_suffix, username=username, password=password) # warn casing difference caused by ACR normalizing to lower on login_server parts = login_server.split('.') if registry_name != parts[0] and registry_name.lower() == parts[0]: logger.warning('Uppercase characters are detected in the registry name. When using its server url in ' 'docker commands, to avoid authentication errors, use all lowercase.') from subprocess import PIPE, Popen p = Popen([docker_command, "login", "--username", username, "--password", password, login_server], stderr=PIPE) _, stderr = p.communicate() return_code = p.returncode if stderr: if b'error storing credentials' in stderr and b'stub received bad data' in stderr \ and _check_wincred(login_server): # Retry once after disabling wincred p = Popen([docker_command, "login", "--username", username, "--password", password, login_server]) p.wait() else: stderr_messages = stderr.decode() # Dismiss the '--password-stdin' warning if b'--password-stdin' in stderr: errors = [err for err in stderr_messages.split('\n') if err and '--password-stdin' not in err] # Will not raise CLIError if there is no error other than '--password-stdin' if not errors: return None stderr_messages = '\n'.join(errors) logger.warning(stderr_messages) # Raise error only if docker returns non-zero if return_code != 0: raise CLIError('Login failed.') return None def acr_show_usage(cmd, client, registry_name, resource_group_name=None): _, resource_group_name = validate_managed_registry(cmd, registry_name, resource_group_name, "Usage is only supported for managed registries.") return client.list_usages(resource_group_name, registry_name) def get_docker_command(is_diagnostics_context=False): from ._errors import DOCKER_COMMAND_ERROR, DOCKER_DAEMON_ERROR docker_command = 'docker' from subprocess import PIPE, Popen, CalledProcessError try: p = Popen([docker_command, "ps"], stdout=PIPE, stderr=PIPE) _, stderr = p.communicate() except OSError as e: logger.debug("Could not run '%s' command. Exception: %s", docker_command, str(e)) # The executable may not be discoverable in WSL so retry *.exe once try: docker_command = 'docker.exe' p = Popen([docker_command, "ps"], stdout=PIPE, stderr=PIPE) _, stderr = p.communicate() except OSError as inner: logger.debug("Could not run '%s' command. Exception: %s", docker_command, str(inner)) if is_diagnostics_context: return None, DOCKER_COMMAND_ERROR raise CLIError(DOCKER_COMMAND_ERROR.get_error_message()) except CalledProcessError as inner: logger.debug("Could not run '%s' command. Exception: %s", docker_command, str(inner)) if is_diagnostics_context: return docker_command, DOCKER_DAEMON_ERROR raise CLIError(DOCKER_DAEMON_ERROR.get_error_message()) except CalledProcessError as e: logger.debug("Could not run '%s' command. Exception: %s", docker_command, str(e)) if is_diagnostics_context: return docker_command, DOCKER_DAEMON_ERROR raise CLIError(DOCKER_DAEMON_ERROR.get_error_message()) if stderr: if is_diagnostics_context: return None, DOCKER_COMMAND_ERROR.set_error_message(stderr.decode()) raise CLIError(DOCKER_COMMAND_ERROR.set_error_message(stderr.decode()).get_error_message()) return docker_command, None def _check_wincred(login_server): import platform if platform.system() == 'Windows': import json from os.path import expanduser, isfile, join docker_directory = join(expanduser('~'), '.docker') config_path = join(docker_directory, 'config.json') logger.debug("Docker config file path %s", config_path) if isfile(config_path): with open(config_path) as input_file: content = json.load(input_file) input_file.close() wincred = content.pop('credsStore', None) if wincred and wincred.lower() == 'wincred': # Ask for confirmation from knack.prompting import prompt_y_n, NoTTYException message = "This operation will disable wincred and use file system to store docker credentials." \ " All registries that are currently logged in will be logged out." \ "\nAre you sure you want to continue?" try: if prompt_y_n(message): with open(config_path, 'w') as output_file: json.dump(content, output_file, indent=4) output_file.close() return True return False except NoTTYException: return False # Don't update config file or retry as this doesn't seem to be a wincred issue return False import os content = { "auths": { login_server: {} } } try: os.makedirs(docker_directory) except OSError as e: logger.debug("Could not create docker directory '%s'. Exception: %s", docker_directory, str(e)) with open(config_path, 'w') as output_file: json.dump(content, output_file, indent=4) output_file.close() return True return False def _create_diagnostic_settings(cli_ctx, acr, workspace): from azure.mgmt.monitor import MonitorManagementClient from azure.mgmt.monitor.models import (DiagnosticSettingsResource, RetentionPolicy, LogSettings, MetricSettings) from azure.cli.core.commands.client_factory import get_mgmt_service_client client = get_mgmt_service_client(cli_ctx, MonitorManagementClient) def_retention_policy = RetentionPolicy(enabled=True, days=0) logs = [ LogSettings(enabled=True, category="ContainerRegistryRepositoryEvents", retention_policy=def_retention_policy), LogSettings(enabled=True, category="ContainerRegistryLoginEvents", retention_policy=def_retention_policy) ] metrics = [MetricSettings(enabled=True, category="AllMetrics", retention_policy=def_retention_policy)] parameters = DiagnosticSettingsResource(workspace_id=workspace, metrics=metrics, logs=logs) client.diagnostic_settings.create_or_update(resource_uri=acr.id, parameters=parameters, name=DEF_DIAG_SETTINGS_NAME_TEMPLATE.format(acr.name)) def _configure_cmk(cmd, registry, resource_group_name, identity, key_encryption_key): from azure.cli.core.commands.client_factory import get_subscription_id if bool(identity) != bool(key_encryption_key): raise CLIError("Usage error: --identity and --key-encryption-key must be both supplied") identity = _ensure_identity_resource_id(subscription_id=get_subscription_id(cmd.cli_ctx), resource_group=resource_group_name, resource=identity) identity_client_id = _resolve_identity_client_id(cmd.cli_ctx, identity) KeyVaultProperties, EncryptionProperty = cmd.get_models('KeyVaultProperties', 'EncryptionProperty') registry.encryption = EncryptionProperty(status='enabled', key_vault_properties=KeyVaultProperties( key_identifier=key_encryption_key, identity=identity_client_id)) ResourceIdentityType, IdentityProperties = cmd.get_models('ResourceIdentityType', 'IdentityProperties') registry.identity = IdentityProperties(type=ResourceIdentityType.user_assigned, user_assigned_identities={identity: {}}) def assign_identity(cmd, client, registry_name, identities, resource_group_name=None): from azure.cli.core.commands.client_factory import get_subscription_id assign_system_identity, assign_user_identities = _analyze_identities(identities) registry, resource_group_name = get_registry_by_name(cmd.cli_ctx, registry_name, resource_group_name) IdentityProperties, ResourceIdentityType = cmd.get_models('IdentityProperties', 'ResourceIdentityType') # ensure registry.identity is set and is of type IdentityProperties registry.identity = registry.identity or IdentityProperties(type=ResourceIdentityType.none) if assign_system_identity and registry.identity.type != ResourceIdentityType.system_assigned: registry.identity.type = (ResourceIdentityType.system_assigned if registry.identity.type == ResourceIdentityType.none else ResourceIdentityType.system_assigned_user_assigned) if assign_user_identities and registry.identity.type != ResourceIdentityType.user_assigned: registry.identity.type = (ResourceIdentityType.user_assigned if registry.identity.type == ResourceIdentityType.none else ResourceIdentityType.system_assigned_user_assigned) if assign_user_identities: subscription_id = get_subscription_id(cmd.cli_ctx) registry.identity.user_assigned_identities = registry.identity.user_assigned_identities or {} for r in assign_user_identities: r = _ensure_identity_resource_id(subscription_id, resource_group_name, r) registry.identity.user_assigned_identities[r] = {} return client.update(resource_group_name, registry_name, registry) def show_identity(cmd, client, registry_name, resource_group_name=None): return acr_show(cmd, client, registry_name, resource_group_name).identity def remove_identity(cmd, client, registry_name, identities, resource_group_name=None): from azure.cli.core.commands.client_factory import get_subscription_id remove_system_identity, remove_user_identities = _analyze_identities(identities) registry, resource_group_name = get_registry_by_name(cmd.cli_ctx, registry_name, resource_group_name) ResourceIdentityType = cmd.get_models('ResourceIdentityType') # if registry.identity is not set or is none, return the registry. if not registry.identity or registry.identity.type == ResourceIdentityType.none: raise CLIError("The registry {} has no system or user assigned identities.".format(registry_name)) if remove_system_identity: if registry.identity.type == ResourceIdentityType.user_assigned: raise CLIError("The registry does not have a system identity assigned.") registry.identity.type = (ResourceIdentityType.none if registry.identity.type == ResourceIdentityType.system_assigned else ResourceIdentityType.user_assigned) if remove_user_identities: subscription_id = get_subscription_id(cmd.cli_ctx) registry.identity.user_assigned_identities = registry.identity.user_assigned_identities or {} for id_to_remove in remove_user_identities: original_identity = id_to_remove was_removed = False id_to_remove = _ensure_identity_resource_id(subscription_id, resource_group_name, id_to_remove) # remove identity if it exists even if case is different for existing_identity in registry.identity.user_assigned_identities.copy(): if existing_identity.lower() == id_to_remove.lower(): registry.identity.user_assigned_identities.pop(existing_identity) was_removed = True break if not was_removed: raise CLIError("The registry does not have specified user identity '{}' assigned, " "so it cannot be removed.".format(original_identity)) # all user assigned identities are gone if not registry.identity.user_assigned_identities: registry.identity.user_assigned_identities = None # required for put registry.identity.type = (ResourceIdentityType.none if registry.identity.type == ResourceIdentityType.user_assigned else ResourceIdentityType.system_assigned) # this method should be named create_or_update as it calls the PUT method return client.create(resource_group_name, registry_name, registry) def show_encryption(cmd, client, registry_name, resource_group_name=None): return acr_show(cmd, client, registry_name, resource_group_name).encryption def rotate_key(cmd, client, registry_name, identity=None, key_encryption_key=None, resource_group_name=None): registry, resource_group_name = get_registry_by_name(cmd.cli_ctx, registry_name, resource_group_name) if key_encryption_key: registry.encryption.key_vault_properties.key_identifier = key_encryption_key if identity: try: import uuid uuid.UUID(identity) client_id = identity except ValueError: from azure.cli.core.commands.client_factory import get_subscription_id if identity == SYSTEM_ASSIGNED_IDENTITY_ALIAS: client_id = 'system' # reserved word on ACR service else: identity = _ensure_identity_resource_id(subscription_id=get_subscription_id(cmd.cli_ctx), resource_group=resource_group_name, resource=identity) client_id = _resolve_identity_client_id(cmd.cli_ctx, identity) registry.encryption.key_vault_properties.identity = client_id return client.update(resource_group_name, registry_name, registry) def _analyze_identities(identities): identities = identities or [] return SYSTEM_ASSIGNED_IDENTITY_ALIAS in identities, [x for x in identities if x != SYSTEM_ASSIGNED_IDENTITY_ALIAS] def _ensure_identity_resource_id(subscription_id, resource_group, resource): from msrestazure.tools import resource_id, is_valid_resource_id if is_valid_resource_id(resource): return resource return resource_id(subscription=subscription_id, resource_group=resource_group, namespace='Microsoft.ManagedIdentity', type='userAssignedIdentities', name=resource) def _resolve_identity_client_id(cli_ctx, managed_identity_resource_id): from azure.mgmt.msi import ManagedServiceIdentityClient from azure.cli.core.commands.client_factory import get_mgmt_service_client from msrestazure.tools import parse_resource_id res = parse_resource_id(managed_identity_resource_id) client = get_mgmt_service_client(cli_ctx, ManagedServiceIdentityClient, subscription_id=res['subscription']) return client.user_assigned_identities.get(res['resource_group'], res['name']).client_id def list_private_link_resources(cmd, client, registry_name, resource_group_name=None): resource_group_name = get_resource_group_name_by_registry_name(cmd.cli_ctx, registry_name, resource_group_name) return client.list_private_link_resources(resource_group_name, registry_name)
the-stack_106_19625
from datetime import datetime from django.utils.translation import ugettext_lazy as _ from django_prbac.utils import has_privilege as prbac_has_privilege from corehq import feature_previews, toggles from corehq.apps.app_manager.exceptions import AddOnNotFoundException from corehq.apps.app_manager.models import AdvancedModule, Module, ShadowModule from corehq.apps.domain.models import Domain from corehq.privileges import CHILD_CASES, LOOKUP_TABLES # Similar to feature flags and/or feature previews, but specific to an individual application # and with the additional notion of a feature being "in use" in a specific module or form # even if the add-on isn't enabled. class AddOn(object): def __init__(self, name, description, help_link=None, privilege=None, used_in_module=None, used_in_form=None, upgrade_text=None): self.name = name self.description = description self.help_link = help_link self.privilege = privilege self.upgrade_text = upgrade_text self.used_in_module = used_in_module if used_in_module else lambda m: False self.used_in_form = used_in_form if used_in_form else lambda f: False def has_privilege(self, request): if not self.privilege: return True return prbac_has_privilege(request, self.privilege) def _uses_case_list_menu_item(module): if getattr(module, 'case_list', False) and module.case_list.show: return True if getattr(module, 'task_list', False) and module.task_list.show: return True if getattr(module, 'referral_list', False) and module.referral_list.show: return True return False def _uses_conditional_form_actions(form): if form.form_type != 'module_form': # Don't bother restricting non-basic forms return True return form.actions.open_case.condition.type == 'if' or form.actions.close_case.condition.type == 'if' def _uses_detail_format(module, column_format): details = [] if isinstance(module, Module) or isinstance(module, ShadowModule): details = [module.case_details, module.ref_details] elif isinstance(module, AdvancedModule): details = [module.case_details, module.product_details] return any([c.format for d in details for c in d.short.columns + d.long.columns if c.format == column_format]) def _uses_calculated_property(module): def _column_is_calculated_property(col): return col.useXpathExpression return hasattr(module, 'case_details') and ( any(_column_is_calculated_property(column) for column in module.case_details.short.columns) or any(_column_is_calculated_property(column) for column in module.case_details.long.columns) ) # Apps that were created before add-ons were released get the original set of add-ons enabled # automatically, so they wouldn't get functionality suddenly turned off during the release. def _grandfathered(slug, app): if app.add_ons: return False release_date = datetime(2017, 7, 31, 20) if slug not in [ "conditional_form_actions", "subcases", "case_list_menu_item", "enum_image", "menu_mode", "register_from_case_list", "display_conditions", "conditional_enum", "calc_xpaths", "advanced_itemsets", "case_detail_overwrite", ]: return False domain_obj = Domain.get_by_name(app.domain) return (getattr(domain_obj, 'date_created') or datetime(2000, 1, 1)) < release_date _ADD_ONS = { "advanced_itemsets": AddOn( name=feature_previews.VELLUM_ADVANCED_ITEMSETS.label, description=feature_previews.VELLUM_ADVANCED_ITEMSETS.description, privilege=LOOKUP_TABLES, ), "calc_xpaths": AddOn( name=feature_previews.CALC_XPATHS.label, description=feature_previews.CALC_XPATHS.description, used_in_module=_uses_calculated_property, help_link=feature_previews.CALC_XPATHS.help_link, ), "case_detail_overwrite": AddOn( name=_("Case Detail Overwrite"), description=_("Ability to overwrite one case list or detail's settings with another's. " "Available in menu settings, in the actions tab."), ), "case_list_menu_item": AddOn( name=_("Case List Menu Item"), description=_("Allows the mobile user to view the case list and case details without actually opening " "a form. Available in menu settings."), used_in_module=lambda m: _uses_case_list_menu_item(m), ), "conditional_enum": AddOn( name=feature_previews.CONDITIONAL_ENUM.label, description=feature_previews.CONDITIONAL_ENUM.description, used_in_module=lambda m: _uses_detail_format(m, 'conditional-enum'), ), "conditional_form_actions": AddOn( name=_('Case Conditions'), description=_("Open or close a case only if a specific question has a particular answer. " "Available in form settings, under Case Management."), help_link="https://confluence.dimagi.com/display/commcarepublic/Case+Configuration", used_in_form=lambda f: _uses_conditional_form_actions(f) ), "display_conditions": AddOn( name=_("Display Conditions"), description=_("Write logic to show or hide forms and menus on the mobile device. " "Available in form and menu settings."), help_link="https://confluence.dimagi.com/display/commcarepublic/Application+Design", used_in_form=lambda f: bool(getattr(f, 'form_filter', False)), used_in_module=lambda m: bool(m.module_filter), ), "enum_image": AddOn( name=feature_previews.ENUM_IMAGE.label, description=feature_previews.ENUM_IMAGE.description, help_link=feature_previews.ENUM_IMAGE.help_link, used_in_module=lambda m: _uses_detail_format(m, 'enum-image'), ), "menu_mode": AddOn( name=_("Menu Mode"), description=_("Control whether a form's enclosing menu is displayed on the mobile device or not. " "Available in menu settings."), used_in_module=lambda m: getattr(m, 'put_in_root', False), ), "register_from_case_list": AddOn( name=_("Register from case list"), description=_("Minimize duplicates by making registration forms available directly from the case list " "on the mobile device. Availabe in menu settings."), help_link="https://confluence.dimagi.com/pages/viewpage.action?pageId=30605985", used_in_module=lambda m: m.case_list_form.form_id, ), "subcases": AddOn( name=_("Child Cases"), description=_("Open other types of cases, linking them to the case that " "created them. Available in form settings."), help_link="https://confluence.dimagi.com/display/commcarepublic/Child+Cases", used_in_form=lambda f: f.form_type != "module_form" or bool(f.actions.subcases), privilege=CHILD_CASES, upgrade_text=_("Child cases are not available on your subscription. " "This feature is only available on our Pro plan or higher.") ), "submenus": AddOn( name=_("Sub Menus"), description=_("Nest menus inside of other menus."), help_link="https://confluence.dimagi.com/display/commcarepublic/Sub+Menus", used_in_module=lambda m: hasattr(m, 'root_module_id') and m.root_module_id, ), "empty_case_lists": AddOn( name=_("New Case Lists Created Empty"), description=_("When adding a new case list, don't include a registration and followup form."), ), } _LAYOUT = [ { "slug": "case_management", "collapse": False, "name": _("Case Management"), "description": _("Build more complex workflows"), "slugs": ["conditional_form_actions", "empty_case_lists", "subcases"], }, { "slug": "mobile", "collapse": True, "name": _("Mobile Experience"), "description": _("Improve the user experience of your mobile workers"), "slugs": [ "case_list_menu_item", "enum_image", "menu_mode", "register_from_case_list", "submenus", ], }, { "slug": "xpath", "collapse": True, "name": _("Calculations"), "description": _("Add logic to your app with XPath expressions"), "slugs": ["display_conditions", "conditional_enum", "calc_xpaths", "advanced_itemsets"], }, { "slug": "efficiency", "collapse": True, "name": _("App Building Efficiency"), "description": _("Tools to help build your apps faster"), "slugs": ["case_detail_overwrite"], }, ] # Determine whether or not UI should show a feature, based on # availability and whether or not it's in use. def show(slug, request, app, module=None, form=None): if slug not in _ADD_ONS: raise AddOnNotFoundException(slug) add_on = _ADD_ONS[slug] # Do not show if there's a required privilege missing if not add_on.has_privilege(request) and add_on.upgrade_text is None: return False # Show if flag to enable all toggles is on if toggles.ENABLE_ALL_ADD_ONS.enabled_for_request(request): return True if _grandfathered(slug, app): return True # Show if add-on has been enabled for app show = slug in app.add_ons and app.add_ons[slug] # Show if add-on is also a feature preview this domain has on # (that has not been turned off for this app specifically) if slug not in app.add_ons: previews = feature_previews.previews_dict(app.domain) if slug in previews: show = show or previews[slug] # Show if add-on is being used by the current form/module if form: show = show or add_on.used_in_form(form) elif module: show = show or add_on.used_in_module(module) return show # Get a slug => bool dictionary signifying which add-ons to display in UI def get_dict(request, app, module=None, form=None): init_app(request, app) return {slug: show(slug, request, app, module, form) for slug in _ADD_ONS.keys()} # Get a slug => bool dictionary signifying which add-ons have privileges def get_privileges_dict(request): return {slug: _ADD_ONS[slug].has_privilege(request) for slug in _ADD_ONS.keys()} # Get add-ons for display in settings UI def get_layout(request): all_slugs = set(_ADD_ONS.keys()) layout_slugs = set([slug for section in _LAYOUT for slug in section['slugs']]) if all_slugs != layout_slugs: difference = ", ".join(all_slugs ^ layout_slugs) if all_slugs - layout_slugs: raise AddOnNotFoundException("Add-ons not in layout: {}".format(difference)) raise AddOnNotFoundException("Add-ons in layout do not exist: {}".format(difference)) return [dict({'add_ons': [{ 'slug': slug, 'name': _ADD_ONS[slug].name, 'description': _ADD_ONS[slug].description, 'help_link': _ADD_ONS[slug].help_link, 'upgrade_text': _ADD_ONS[slug].upgrade_text, 'show_upgrade': (not _ADD_ONS[slug].has_privilege(request) and _ADD_ONS[slug].upgrade_text is not None), } for slug in section['slugs'] if _ADD_ONS[slug].has_privilege(request) or _ADD_ONS[slug].upgrade_text is not None]}, **section) for section in _LAYOUT] # Lazily migrate an app that doesn't have any add_ons configured yet. # Turns on any add-ons that map to feature previews, leaves the rest off. def init_app(request, app): if app.add_ons: return # Don't use previews_dict because it doesn't include disabled previews previews = {p.slug: p.enabled(app.domain) for p in feature_previews.all_previews()} for slug in _ADD_ONS.keys(): add_on = _ADD_ONS[slug] enable = False if add_on.has_privilege(request): # Enable if it's an enabled preview if slug in previews: enable = previews[slug] # Turn on if it's used anywhere enable = enable or any([add_on.used_in_module(m) for m in app.modules]) enable = enable or any([add_on.used_in_form(f) for m in app.modules for f in m.forms]) enable = enable or _grandfathered(slug, app) app.add_ons[slug] = enable
the-stack_106_19627
import matplotlib.pyplot as plt import numpy as np def plot_errors(policy_error, value_error): """ Method to plot the errors collected for each key in the value and policy errors :param policy_error: Policy error as an array :param value_error: Value error as an array :return: None """ def _plot_data(param, value, error_type): episodes = np.arange(len(value)) + 1 plt.plot(episodes, value) plt.xlabel("Episodes/Iterations") plt.ylabel(error_type) plt.title("{} vs Episodes/Iterations\nfor {} environment, {} algorithm ".format(error_type, *param)) plt.show() for key in value_error.keys(): value_data = value_error[key] policy_data = policy_error[key] _plot_data(key, value_data, "Value error (mse)") _plot_data(key, policy_data, "Policy error")
the-stack_106_19628
""" Ideia: Gerar todas as combinações de livros possívei e salvar o preço de cada combinação em uma lista, aí foi sí ordernar a lista e somar os n primeiros. complexidade: O(n^5) Complexidade das funções do python: .sort() -> O(n*log(n)) .reverse() -> O(n) list() -> O(n) map() -> O(n) """ def somar(*livros): soma = 0 for i in livros: soma += i return soma p = list(map(int, input().split()[1:])) m = list(map(int, input().split()[1:])) q = list(map(int, input().split()[1:])) f = list(map(int, input().split()[1:])) b = list(map(int, input().split()[1:])) n = int(input()) catalogos = [] for jp in p: for jm in m: for jq in q: for jf in f: for jb in b: catalogos.append(somar(jp, jm, jq, jf, jb)) catalogos.sort() catalogos.reverse() print(somar(*catalogos[:n]))
the-stack_106_19629
# BY @Deonnn """ Game of Thrones Dialogues That You Can Use In Everyday Situations command .gotm by @Deonnn """ import asyncio import random from telethon import events @borg.on(events.NewMessage(pattern=r"\.gotm", outgoing=True)) async def _(event): if event.fwd_from: return await event.edit("Thinking... 🤔") await asyncio.sleep(2) x = random.randrange(1, 30) if x == 1: await event.edit( "[To your teachers on failing you in all your papers confidently, every time...](https://telegra.ph/file/431d178780f9bff353047.jpg)", link_preview=True, ) if x == 2: await event.edit( "[A shift from the mainstream darling, sweetheart, jaanu, and what not...](https://telegra.ph/file/6bbb86a6c7d2c4a61e102.jpg)", link_preview=True, ) if x == 3: await event.edit( "[To the guy who's friendzone-ing you...](https://telegra.ph/file/8930b05e9535e9b9b8229.jpg)", link_preview=True, ) if x == 4: await event.edit( "[When your friend asks for his money back...](https://telegra.ph/file/2df575ab38df5ce9dbf5e.jpg)", link_preview=True, ) if x == 5: await event.edit( "[A bad-ass reply to who do you think you are?](https://telegra.ph/file/3a35a0c37f4418da9f702.jpg)", link_preview=True, ) if x == 6: await event.edit( "[When the traffic police stops your car and asks for documents...](https://telegra.ph/file/52612d58d6a61315a4c3a.jpg)", link_preview=True, ) if x == 7: await event.edit( "[ When your friend asks about the food he/she just cooked and you don't want to break his/her heart...](https://telegra.ph/file/702df36088f5c26fef931.jpg)", link_preview=True, ) if x == 8: await event.edit( "[When you're out of words...](https://telegra.ph/file/ba748a74bcab4a1135d2a.jpg)", link_preview=True, ) if x == 9: await event.edit( "[When you realize your wallet is empty...](https://telegra.ph/file/a4508324b496d3d4580df.jpg)", link_preview=True, ) if x == 10: await event.edit( "[When shit is about to happen...](https://telegra.ph/file/e15d9d64f9f25e8d05f19.jpg)", link_preview=True, ) if x == 11: await event.edit( "[When that oversmart classmate shouts a wrong answer in class...](https://telegra.ph/file/1a225a2e4b7bfd7f7a809.jpg)", link_preview=True, ) if x == 12: await event.edit( "[When things go wrong in a big fat Indian wedding...](https://telegra.ph/file/db69e17e85bb444caca32.jpg)", link_preview=True, ) if x == 13: await event.edit( "[A perfect justification for breaking a promise...](https://telegra.ph/file/0b8fb8fb729d157844ac9.jpg)", link_preview=True, ) if x == 14: await event.edit( "[When your friend just won't stop LOL-ing on something silly you said...](https://telegra.ph/file/247fa54106c32318797ae.jpg)", link_preview=True, ) if x == 15: await event.edit( "[When someone makes a joke on you...](https://telegra.ph/file/2ee216651443524eaafcf.jpg)", link_preview=True, ) if x == 16: await event.edit( "[When your professor insults you in front of the class...](https://telegra.ph/file/a2dc7317627e514a8e180.jpg)", link_preview=True, ) if x == 17: await event.edit( "[When your job interviewer asks if you're nervous...](https://telegra.ph/file/9cc147d0bf8adbebf164b.jpg)", link_preview=True, ) if x == 18: await event.edit( "[When you're sick of someone complaining about the heat outside...](https://telegra.ph/file/9248635263c52b968f968.jpg)", link_preview=True, ) if x == 19: await event.edit( "[When your adda is occupied by outsiders...](https://telegra.ph/file/ef537007ba6d9d4cbd384.jpg)", link_preview=True, ) if x == 20: await event.edit( "[When you don't have the right words to motivate somebody...](https://telegra.ph/file/2c932d769ae4c5fbed368.jpg)", link_preview=True, ) if x == 21: await event.edit( "[When the bouncer won't let you and your group of friends in because you're all under-aged...](https://telegra.ph/file/6c8ca79f1e20ebd04391c.jpg)", link_preview=True, ) if x == 22: await event.edit( "[To the friend who wants you to take the fall for his actions...](https://telegra.ph/file/d4171b9bc9104b5d972d9.jpg)", link_preview=True, ) if x == 23: await event.edit( "[When that prick of a bully wouldn't take your words seriously...](https://telegra.ph/file/188d73bd24cf866d8d8d0.jpg)", link_preview=True, ) if x == 24: await event.edit( "[ When you're forced to go shopping/watch a football match with your partner...](https://telegra.ph/file/6e129f138c99c1886cb2b.jpg)", link_preview=True, ) if x == 25: await event.edit( "[To the large queue behind you after you get the last concert/movie ticket...](https://telegra.ph/file/2423f213dd4e4282a31ea.jpg)", link_preview=True, ) if x == 26: await event.edit( "[When your parents thought you'd fail but you prove them wrong...](https://telegra.ph/file/39cc5098466f622bf21e3.jpg)", link_preview=True, ) if x == 27: await event.edit( "[A justification for not voting!](https://telegra.ph/file/87d475a8f9a8350d2450e.jpg)", link_preview=True, ) if x == 28: await event.edit( "[When your partner expects you to do too many things...](https://telegra.ph/file/68bc768d36e08862bf94e.jpg)", link_preview=True, ) if x == 29: await event.edit( "[When your friends cancel on the plan you made at the last minute...](https://telegra.ph/file/960b58c8f625b17613307.jpg)", link_preview=True, ) if x == 30: await event.edit( "[For that friend of yours who does not like loud music and head banging...](https://telegra.ph/file/acbce070d3c52b921b2bd.jpg)", link_preview=True, )
the-stack_106_19630
"""Unit tests for read orientation inference module.""" from pathlib import Path import pytest from htsinfer import infer_read_orientation test_files_dir = Path(__file__).parent.absolute() / "test_files" file_1 = str(test_files_dir / "first_mate.fastq") file_2 = str(test_files_dir / "second_mate.fastq") fasta_human = str(test_files_dir / "transcripts_human.fa") fasta_mixed = str(test_files_dir / "transcripts_mixed.fa") fasta_no_orgs = str(test_files_dir / "transcripts_no_orgs.fa") def _raise(exception) -> None: """General purpose exception raiser.""" raise exception def file_len(fname): """Count lines in file.""" return sum(1 for line in open(fname)) class TestInfer: """Tests for the main function `infer()`.""" def test_single_file(self): """Function returns without errors.""" assert infer_read_orientation.infer( fasta=fasta_human, file_1=file_1, ) == "U" def test_cannot_create_tmp_dir(self, monkeypatch): """Fails to create temporary directory.""" monkeypatch.setattr( 'tempfile.mkdtemp', lambda *args, **kwargs: _raise(OSError), ) with pytest.raises(OSError): infer_read_orientation.infer( fasta=fasta_human, file_1=file_1, ) def test_cannot_delete_tmp_dir(self, monkeypatch, tmp_path): """Fails to deleted temporary directory.""" monkeypatch.setattr( 'tempfile.mkdtemp', lambda *args, **kwargs: str(tmp_path), ) monkeypatch.setattr( 'shutil.rmtree', lambda *args, **kwargs: _raise(OSError), ) with pytest.raises(OSError): infer_read_orientation.infer( fasta=fasta_human, file_1=file_1, ) class TestSubsetFastaByOrgansim: """Test for function `subset_fasta_by_organism()`.""" def test_fasta_subsetting(self, tmp_path): """Writes FASTA records of specified organism only.""" fasta_out = str(tmp_path / "out.fa") infer_read_orientation.subset_fasta_by_organism( fasta_in=fasta_mixed, fasta_out=fasta_out, organism="hsapiens", ) assert file_len(fasta_out) == file_len(fasta_human) def test_no_orgs(self, tmp_path): """All FASTA records are skipped because organism information is absent. """ fasta_out = str(tmp_path / "out.fa") infer_read_orientation.subset_fasta_by_organism( fasta_in=fasta_no_orgs, fasta_out=str(tmp_path / "out.fa"), organism="hsapiens", ) assert file_len(fasta_out) == 0 def test_invalid_fasta(self, tmp_path): """No FASTA records are written because input file is not of FASTA format. """ fasta_out = str(tmp_path / "out.fa") infer_read_orientation.subset_fasta_by_organism( fasta_in=file_1, fasta_out=str(tmp_path / "out.fa"), organism="hsapiens", ) assert file_len(fasta_out) == 0 def test_fasta_na(self, monkeypatch, tmp_path): """Input FASTA file cannot be opened.""" fasta_out = str(tmp_path / "out.fa") monkeypatch.setattr( 'Bio.SeqIO.parse', lambda *args, **kwargs: _raise(OSError), ) with pytest.raises(OSError): infer_read_orientation.subset_fasta_by_organism( fasta_in=fasta_human, fasta_out=fasta_out, organism="hsapiens", ) def test_out_path_not_writable(self, monkeypatch, tmp_path): """Output FASTA file cannot be written.""" fasta_out = str(tmp_path / "out.fa") monkeypatch.setattr( 'Bio.SeqIO.write', lambda *args, **kwargs: _raise(OSError), ) with pytest.raises(OSError): infer_read_orientation.subset_fasta_by_organism( fasta_in=fasta_human, fasta_out=fasta_out, organism="hsapiens", )
the-stack_106_19631
from deephyper.benchmark import Problem from candlepb.Combo.models.candle_mlp_9 import create_structure # We create our Problem object with the Problem class, you don't have to name your Problem object 'Problem' it can be any name you want. You can also define different problems in the same module. Problem = Problem() # You define the create structure function. This function will return an object following the Structure interface. You can also have kwargs arguments such as 'num_cells' for this function. Problem.add_dim('create_structure', { 'func': create_structure }) # You define the hyperparameters used to train your generated models during the search. Problem.add_dim('hyperparameters', { 'num_epochs': 1, }) Problem.add_dim('load_data', { 'prop': 0.3 }) # Just to print your problem, to test its definition and imports in the current python environment. if __name__ == '__main__': print(Problem)
the-stack_106_19635
# --- Simple example of Langmuir oscillations in a uniform plasma from pywarpx import picmi constants = picmi.constants ########################## # physics parameters ########################## plasma_density = 1.e25 plasma_xmin = 0. plasma_x_velocity = 0.1*constants.c ########################## # numerics parameters ########################## # --- Number of time steps max_steps = 40 diagnostic_interval = 10 # --- Grid nx = 64 ny = 64 nz = 64 xmin = -20.e-6 ymin = -20.e-6 zmin = -20.e-6 xmax = +20.e-6 ymax = +20.e-6 zmax = +20.e-6 number_per_cell_each_dim = [2,2,2] ########################## # physics components ########################## uniform_plasma = picmi.UniformDistribution(density = 1.e25, upper_bound = [0., None, None], directed_velocity = [0.1*constants.c, 0., 0.]) electrons = picmi.Species(particle_type='electron', name='electrons', initial_distribution=uniform_plasma) ########################## # numerics components ########################## grid = picmi.Cartesian3DGrid(number_of_cells = [nx, ny, nz], lower_bound = [xmin, ymin, zmin], upper_bound = [xmax, ymax, zmax], lower_boundary_conditions = ['periodic', 'periodic', 'periodic'], upper_boundary_conditions = ['periodic', 'periodic', 'periodic'], moving_window_velocity = [0., 0., 0.], warpx_max_grid_size = 32) solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.) ########################## # diagnostics ########################## field_diag1 = picmi.FieldDiagnostic(name = 'diag1', grid = grid, period = diagnostic_interval, data_list = ['Ex', 'Jx'], warpx_file_prefix = 'plotfiles/plt') part_diag1 = picmi.ParticleDiagnostic(name = 'diag1', period = diagnostic_interval, species = [electrons], data_list = ['weighting', 'ux', 'Ex']) ########################## # simulation setup ########################## sim = picmi.Simulation(solver = solver, max_steps = max_steps, verbose = 1, warpx_current_deposition_algo = 'direct') sim.add_species(electrons, layout = picmi.GriddedLayout(n_macroparticle_per_cell=number_per_cell_each_dim, grid=grid)) sim.add_diagnostic(field_diag1) sim.add_diagnostic(part_diag1) ########################## # simulation run ########################## # write_inputs will create an inputs file that can be used to run # with the compiled version. #sim.write_input_file(file_name = 'inputs_from_PICMI') # Alternatively, sim.step will run WarpX, controlling it from Python sim.step()
the-stack_106_19636
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import pandas from modin.data_management.utils import compute_chunksize from modin.engines.base.io.file_dispatcher import FileDispatcher class ColumnStoreDispatcher(FileDispatcher): @classmethod def call_deploy(cls, fname, col_partitions, **kwargs): from modin.pandas import DEFAULT_NPARTITIONS return np.array( [ cls.deploy( cls.parse, DEFAULT_NPARTITIONS + 2, dict( fname=fname, columns=cols, num_splits=DEFAULT_NPARTITIONS, **kwargs, ), ) for cols in col_partitions ] ).T @classmethod def build_partition(cls, partition_ids, row_lengths, column_widths): return np.array( [ [ cls.frame_partition_cls( partition_ids[i][j], length=row_lengths[i], width=column_widths[j], ) for j in range(len(partition_ids[i])) ] for i in range(len(partition_ids)) ] ) @classmethod def build_index(cls, partition_ids): from modin.pandas import DEFAULT_NPARTITIONS index_len = cls.materialize(partition_ids[-2][0]) if isinstance(index_len, int): index = pandas.RangeIndex(index_len) else: index = index_len index_len = len(index) index_chunksize = compute_chunksize( pandas.DataFrame(index=index), DEFAULT_NPARTITIONS, axis=0 ) if index_chunksize > index_len: row_lengths = [index_len] + [0 for _ in range(DEFAULT_NPARTITIONS - 1)] else: row_lengths = [ index_chunksize if i != DEFAULT_NPARTITIONS - 1 else index_len - (index_chunksize * (DEFAULT_NPARTITIONS - 1)) for i in range(DEFAULT_NPARTITIONS) ] return index, row_lengths @classmethod def build_columns(cls, columns): from modin.pandas import DEFAULT_NPARTITIONS column_splits = ( len(columns) // DEFAULT_NPARTITIONS if len(columns) % DEFAULT_NPARTITIONS == 0 else len(columns) // DEFAULT_NPARTITIONS + 1 ) col_partitions = [ columns[i : i + column_splits] for i in range(0, len(columns), column_splits) ] column_widths = [len(c) for c in col_partitions] return col_partitions, column_widths @classmethod def build_dtypes(cls, partition_ids, columns): # Compute dtypes concatenating the results from each of the columns splits # determined above. This creates a pandas Series that contains a dtype for every # column. dtypes = pandas.concat(cls.materialize(list(partition_ids)), axis=0) dtypes.index = columns return dtypes @classmethod def build_query_compiler(cls, path, columns, **kwargs): col_partitions, column_widths = cls.build_columns(columns) partition_ids = cls.call_deploy(path, col_partitions, **kwargs) index, row_lens = cls.build_index(partition_ids) remote_parts = cls.build_partition(partition_ids[:-2], row_lens, column_widths) dtypes = cls.build_dtypes(partition_ids[-1], columns) new_query_compiler = cls.query_compiler_cls( cls.frame_cls( remote_parts, index, columns, row_lens, column_widths, dtypes=dtypes, ) ) return new_query_compiler
the-stack_106_19639
import json import sys from os import path import vk from PyQt5 import QtGui from PyQt5.QtCore import QRegExp, QObject, pyqtSignal, QEventLoop from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.uic import loadUi import google_export import vktests class Window(QMainWindow): def __init__(self, parent=None): super().__init__() QMainWindow.__init__(self) loadUi('MainWindow.ui', self) self.GauthIco.setPixmap(QtGui.QPixmap("ico/question.png")) self.vkdialog = VKauthWindow() self.gsheetdialog = GSheets() self.VKauthExists = False self.vkauth = {} self.client = [] self.targetQ = "" self.data = [] self.nums = {} # Centering window # From https://pythonprogramminglanguage.com/pyqt5-center-window/ qtRectangle = self.frameGeometry() centerPoint = QDesktopWidget().availableGeometry().center() qtRectangle.moveCenter(centerPoint) self.move(qtRectangle.topLeft()) self._stdout = StdoutRedirect() self._stdout.start() self._stdout.printOccur.connect(lambda x: self._append_text(x)) def SaveBtn_clicked(self): if self.txtCheck.checkState(): vktests.save_to_txt(self.data) if self.csvCheck.checkState(): vktests.save_to_csv(self.data) if self.googleCheck.checkState(): self.gsheetdialog.show() def BtnsDisable(self): self.startBtn.setEnabled(False) self.saveBtn.setEnabled(False) if len(self.targetQLine.text()) > 0: self.targetQ = self.targetQLine.text() self.startBtn.setEnabled(True) if self.txtCheck.checkState() or self.csvCheck.checkState() or self.googleCheck.checkState(): self.saveBtn.setEnabled(True) def StartBtn_clicked(self): self.consoleOut.setEnabled(True) self.data = [] self.data = vktests.all_for_msgs(self.vkapi, self.data, self.targetQ, self.vkauth["ADMIN_ID"]) if len(self.data) == 0: print("По запросу не найдено результатов") self.outputBox.setEnabled(False) else: self.outputBox.setEnabled(True) def GSheetsExport(self, sheet_name, wsheet_name): google_export.main_export(self.client, self.data, sheet_name, wsheet_name) def VKauthExists_get(self): return self.VKauthExists def vkauth_get(self): return self.vkauth def VKauthBtn_clicked(self): self.vkdialog.show() self.vkdialog.load() def GauthBtn_clicked(self): temp = QFileDialog.getOpenFileName(self, None, "", "JSON (*.json)") GauthFile = path.basename(temp[0]) if GauthFile: print(f"Выбран {GauthFile}") self.GauthTest(GauthFile) def GauthTest(self, GauthFile): self.client = google_export.login(GauthFile) if self.client == -1: self.GauthLabel.setText("Файл аутентификации Google не принят") self.GauthIco.setPixmap(QtGui.QPixmap("ico/question.png")) self.googleCheck.setEnabled(False) ErrorMsg(2) else: self.GauthLabel.setText("Файл аутентификации Google принят") self.GauthIco.setPixmap(QtGui.QPixmap("ico/tick.png")) self.googleCheck.setEnabled(True) def AuthTest(self): try: with open("vk-auth.json") as f: self.vkauth = json.load(f) self.VKauthExists = True self.vkapi = vktests.login(self.vkauth["TOKEN"]) self.nums = vktests.starting_info(self.vkapi, self.vkauth["ADMIN_ID"]) if self.nums['num'] == 0: raise WrongAdmIDEx self.auth_UI([0]) except FileNotFoundError: self.VKauthExists = False self.auth_UI([1, 0]) except vk.exceptions.VkAPIError: self.auth_UI([1, 1]) ErrorMsg(0) except WrongAdmIDEx: self.auth_UI([1, 1]) ErrorMsg(1) def auth_UI(self, mode): if mode[0] == 0: self.msgsNumLabel.setText(f"Всего сообщений в диалоге — {self.nums['num']}") self.VKauthLabel.setText("Файл аутентификации VK принят") self.VKauthIco.setPixmap(QtGui.QPixmap("ico/tick.png")) self.VKauthBtn.setText("Изменить?") self.groupLabel.setText(f"Целевое сообщество — {self.nums['grpname']}") self.adminLabel.setText(f"Выбранный администратор — {self.nums['admname']}") self.functionBox.setEnabled(True) elif mode[0] == 1: self.VKauthIco.setPixmap(QtGui.QPixmap("ico/cross.png")) self.groupLabel.setText("Целевое сообщество — ?") self.adminLabel.setText("Выбранный администратор — ?") self.msgsNumLabel.setText("Всего сообщений в диалоге — ?") if mode[1] == 0: self.VKauthLabel.setText("Файл аутентификации VK не найден") self.VKauthBtn.setText("Создать") elif mode[1] == 1: self.VKauthLabel.setText("Файл аутентификации VK не принят") self.VKauthBtn.setText("Изменить") def _append_text(self, msg): self.consoleOut.moveCursor(QtGui.QTextCursor.End) self.consoleOut.insertPlainText(msg) # refresh textedit show, refer) https://doc.qt.io/qt-5/qeventloop.html#ProcessEventsFlag-enum QApplication.processEvents(QEventLoop.ExcludeUserInputEvents) # Redirecting stdout/stderr output to QEditLine # From https://4uwingnet.tistory.com/9 class StdoutRedirect(QObject): printOccur = pyqtSignal(str, str, name="print") def __init__(self, *param): QObject.__init__(self, None) self.daemon = True self.sysstdout = sys.stdout.write self.sysstderr = sys.stderr.write def stop(self): sys.stdout.write = self.sysstdout sys.stderr.write = self.sysstderr def start(self): sys.stdout.write = self.write sys.stderr.write = lambda msg: self.write(msg, color="red") def write(self, s, color="black"): sys.stdout.flush() self.printOccur.emit(s, color) class GSheets(QDialog): def __init__(self, parent=None): super().__init__() QDialog.__init__(self) loadUi('GSheets.ui', self) def OKDisable(self): self.OKBtn.setEnabled(False) if len(self.sheet_name.text()) > 0 and len(self.wsheet_name.text()) > 0: self.OKBtn.setEnabled(True) def accept(self): Window.GSheetsExport(myWindow, self.sheet_name.text(), self.wsheet_name.text()) self.close() # Dialog for vk-auth.json file generating class VKauthWindow(QDialog): def __init__(self, parent=None): super().__init__() QDialog.__init__(self) loadUi('VKauthWin.ui', self) self.tokenLine.setValidator(QRegExpValidator(QRegExp('([a-z0-9])*'))) self.adminLine.setValidator(QIntValidator()) def load(self): VKauthExists = Window.VKauthExists_get(myWindow) if not VKauthExists: self.OKBtn.setEnabled(False) else: self.tokenLine.setText(Window.vkauth_get(myWindow)["TOKEN"]) self.adminLine.setText(Window.vkauth_get(myWindow)["ADMIN_ID"]) def help(self): pixmap = QPixmap('help.jpg') helpMsg = QMessageBox() helpMsg.setWindowTitle("Помощь по аутентификации") helpMsg.setIconPixmap(pixmap) helpMsg.resize(pixmap.height(), pixmap.width()) helpMsg.exec_() def OKDisable(self): self.OKBtn.setEnabled(False) if len(self.tokenLine.text()) > 0 and len(self.adminLine.text()) > 0: self.OKBtn.setEnabled(True) def accept(self): auth = {"TOKEN": f"{self.tokenLine.text()}", "ADMIN_ID": f"{self.adminLine.text()}"} with open('vk-auth.json', 'w') as outfile: json.dump(auth, outfile, indent=4) Window.AuthTest(myWindow) self.close() class WrongAdmIDEx(Exception): """"Raised when number of messages in dialogue equals 0 | Dialogue not exists""" pass def ErrorMsg(ErrNum): msg = QMessageBox() msg.setWindowTitle("Ошибка") msg.setIcon(QMessageBox.Warning) if ErrNum == 0: msg.setText("Упс, токен аутентификации VK недействителен.") elif ErrNum == 1: msg.setText("Упс, введен неправильный ID администратора или диалог пуст.") elif ErrNum == 2: msg.setText("Упс, проверьте ваш файл аутентификации.") msg.exec_() if __name__ == '__main__': app = QApplication(sys.argv) myWindow = Window(None) myWindow.show() myWindow.AuthTest() app.exec_()
the-stack_106_19640
for _ in range(int(input())): N,A,B = map(int, input().split()) s=input() time=0 for i in s: if(i=="1"): time+=B if(i=="0"): time+=A print(time)
the-stack_106_19643
import os import sys import numpy as np import pandas as pd import logging import gc import tqdm import pickle import json import time import tempfile from gensim.models import Word2Vec from sklearn.metrics import accuracy_score, roc_auc_score import torch from torch import nn import torch.nn.functional as F from data_loader import train_data_loader, test_data_loader from transformer_encoder_classifier import Transformer_Encoder_Classifier cwd = os.getcwd() train_path = os.path.join(cwd, 'train_artifact') test_path = os.path.join(cwd, 'test_artifact') input_path = os.path.join(cwd, 'input_artifact') input_split_path = os.path.join(cwd, 'input_split_artifact') embed_path = os.path.join(cwd, 'embed_artifact') model_path = os.path.join(cwd, 'model_artifact') registry_path = os.path.join(embed_path, 'w2v_registry.json') with open(registry_path, 'r') as f: w2v_registry = json.load(f) def initiate_logger(log_path): """ Initialize a logger with file handler and stream handler """ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s %(levelname)-s: %(message)s', datefmt='%H:%M:%S') fh = logging.FileHandler(log_path) fh.setLevel(logging.INFO) fh.setFormatter(formatter) logger.addHandler(fh) sh = logging.StreamHandler(sys.stdout) sh.setLevel(logging.INFO) sh.setFormatter(formatter) logger.addHandler(sh) logger.info('===================================') logger.info('Begin executing at {}'.format(time.ctime())) logger.info('===================================') return logger def get_torch_module_num_of_parameter(model): """ Get # of parameters in a torch module. """ model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) return params def train(model, train_inp_tuple, validation_inp_tuple, checkpoint_dir, checkpoint_prefix, device, epoches=5, batch_size=1024, logger=None, epoch_start=0, max_seq_len=100, lr=1e-3): """ : model (torch.nn.module): model to be trained : train_inp_tuple (list[tuple(str, list[str], list[str])]): list of input for train_data_loader : str: path to label data : list[str]: list of embedding variables : list[str]: list of paths to a pkl file : validation_inp_tuple (list[tuple(str, list[str], list[str])]): list of input for train_data_loader : str: path to label data : list[str]: list of embedding variables : list[str]: list of paths to a pkl file : checkpoint_dir (str): path to checkpoint directory : checkpoint_prefix (str): prefix of checkpoint file : device (str): device to train the model : epoches (int): number of epoches to train : batch_size (int): size of mini batch : epoch_start (int): if = 0 then train a new model, else load an existing model and continue to train, default 0 : max_seq_len (int): max length for sequence input, default 100 : lr (float): learning rate for Adam, default 1e-3 """ global w2v_registry, model_path gc.enable() # Check checkpoint directory if not os.path.isdir(checkpoint_dir): os.mkdir(checkpoint_dir) # Load model if not train from scratch if epoch_start != 0: model_artifact_path = os.path.join(checkpoint_dir, '{}_{}.pth'.format(checkpoint_prefix, epoch_start)) model.load_state_dict(torch.load(model_artifact_path)) if logger: logger.info('Start retraining from epoch {}'.format(epoch_start)) print("#####model_artifact_path=", model_artifact_path) # Set up loss function and optimizer model.to(device) loss_fn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=lr, amsgrad=True) div, mod = divmod(810000, batch_size) n_batch_estimate = div + min(mod, 1) # Main Loop for epoch in range(1+epoch_start, epoches+1+epoch_start): if logger: logger.info('=========================') logger.info('Processing Epoch {}/{}'.format(epoch, epoches+epoch_start)) logger.info('=========================') # Train model model.train() train_running_loss, train_n_batch = 0, 0 for index, (label_artifact_path, seq_inp_target, seq_inp_path) in enumerate(train_inp_tuple, start=1): print("#####epoch=", epoch, "index=", index, "label_artifac_path=", label_artifact_path, "\nseq_inp_target=", seq_inp_target, "seq_inp_path=", seq_inp_path) train_loader = train_data_loader(label_artifact_path, seq_inp_target, seq_inp_path, w2v_registry, batch_size=batch_size, max_seq_len=max_seq_len) train_iterator = iter(train_loader) while True: try: y, x_seq, x_last_idx = next(train_iterator) # 6输入,6个序列 [6, batch_size, max_seq_len, embed_size] y = torch.from_numpy(y).long().to(device) x = [] for s in x_seq: x.append(s.to(device)) x.append(x_last_idx) # x中加入序列长度-1 optimizer.zero_grad() yp = F.softmax(model(*x), dim=1) loss = loss_fn(yp, y) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=100) optimizer.step() train_running_loss += loss.item() train_n_batch += 1 if train_n_batch%4000==0 and logger: logger.info('Epoch {}/{} - Batch {}/{} Done - Train Loss: {:.6f}'.format(epoch, epoches+epoch_start, train_n_batch, n_batch_estimate, train_running_loss/train_n_batch)) del x, y, yp, x_seq, x_last_idx _ = gc.collect() torch.cuda.empty_cache() except StopIteration: break del train_loader, train_iterator _ = gc.collect() torch.cuda.empty_cache() if logger: logger.info('Epoch {}/{} - Batch {}/{} Done - Train Loss: {:.6f}'.format(epoch, epoches+epoch_start, train_n_batch, n_batch_estimate, train_running_loss/train_n_batch)) # Evaluate model model.eval() test_running_loss, test_n_batch = 0, 0 true_y, pred_y = [], [] for index, (label_artifact_path, seq_inp_target, seq_inp_path) in enumerate(validation_inp_tuple, start=1): train_loader = train_data_loader(label_artifact_path, seq_inp_target, seq_inp_path, w2v_registry, batch_size=batch_size, max_seq_len=max_seq_len) train_iterator = iter(train_loader) while True: try: y, x_seq, x_last_idx = next(train_iterator) y = torch.from_numpy(y).long().to(device) x = [] for s in x_seq: x.append(s.to(device)) x.append(x_last_idx) yp = F.softmax(model(*x), dim=1) loss = loss_fn(yp, y) pred_y.extend(list(yp.cpu().detach().numpy())) true_y.extend(list(y.cpu().detach().numpy())) test_running_loss += loss.item() test_n_batch += 1 del x, y, yp, x_seq, x_last_idx _ = gc.collect() torch.cuda.empty_cache() except StopIteration: break del train_loader, train_iterator _ = gc.collect() torch.cuda.empty_cache() pred = np.argmax(np.array(pred_y), 1) true = np.array(true_y).reshape((-1,)) acc_score = accuracy_score(true, pred) del pred, true, pred_y, true_y _ = gc.collect() torch.cuda.empty_cache() if logger: logger.info('Epoch {}/{} Done - Test Loss: {:.6f}, Test Accuracy: {:.6f}'.format(epoch, epoches+epoch_start, test_running_loss/test_n_batch, acc_score)) # Save model state dict ck_file_name = '{}_{}.pth'.format(checkpoint_prefix, epoch) ck_file_path = os.path.join(checkpoint_dir, ck_file_name) torch.save(model.state_dict(), ck_file_path) if __name__=='__main__': assert len(sys.argv)>=6 epoch_start = int(sys.argv[1]) epoches = int(sys.argv[2]) batch_size = int(sys.argv[3]) max_seq_len = int(sys.argv[4]) lr = float(sys.argv[5]) print("get params=", sys.argv) if len(sys.argv)>6: train_inp_tuple = [(os.path.join(input_split_path, 'train_age_{}.npy'.format(i)), ['creative'], [os.path.join(input_split_path, 'train_creative_id_seq_{}.pkl'.format(i))]) for i in range(1,10)] validation_inp_tuple = [(os.path.join(input_split_path, 'train_age_{}.npy'.format(i)), ['creative'], [os.path.join(input_split_path, 'train_creative_id_seq_{}.pkl'.format(i))]) for i in range(10,11)] checkpoint_dir = os.path.join(model_path, 'Transformer_Encoder_Classifier_Creative_Age') checkpoint_prefix = 'Transformer_Encoder_Classifier_Creative_Age' else: embs = ['product'] # ,,'product', 'advertiser', 'ad' 'creative' train_inp_tuple = [(os.path.join(input_path, 'train_age_tra.npy'), embs, [os.path.join(input_path, 'train_' + emb +'_id_seq_tra.pkl') for emb in embs])] validation_inp_tuple = [(os.path.join(input_path, 'train_age_val.npy'), embs, [os.path.join(input_path, 'train_' + emb +'_id_seq_val.pkl') for emb in embs])] checkpoint_dir = os.path.join(model_path, 'Transformer_Encoder_Classifier_Creative_Age') checkpoint_prefix = 'Transformer_Encoder_Classifier_Creative_Age' print("get train_inp_tuple=", train_inp_tuple, "\n\nvalidation_inp_tupe=", validation_inp_tuple, "\n\ncheckpoint_dir=", checkpoint_dir, "\n\ncheckpoint_prefix=", checkpoint_prefix) logger = initiate_logger('Transformer_Encoder_Classifier_Creative_Age.log') logger.info('Epoch Start: {}, Epoch to Train: {}, Batch Size: {}, Max Sequence Length: {}, Learning Rate: {}'.format(epoch_start, epoches, batch_size, max_seq_len, lr)) DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info('Device in Use: {}'.format(DEVICE)) if torch.cuda.is_available(): torch.cuda.empty_cache() t = torch.cuda.get_device_properties(DEVICE).total_memory/1024**3 c = torch.cuda.memory_cached(DEVICE)/1024**3 a = torch.cuda.memory_allocated(DEVICE)/1024**3 logger.info('CUDA Memory: Total {:.2f} GB, Cached {:.2f} GB, Allocated {:.2f} GB'.format(t,c,a)) #embed_size, out_size, n_enc_layer, n_head, intermediate_size, device, transformer_dropout=0.1, mlp_dropout=0.4, model = Transformer_Encoder_Classifier(embed_size=128, out_size=10, n_enc_layer=1, n_head=8, intermediate_size=1024, device=DEVICE).to(DEVICE) logger.info('Model Parameter #: {}'.format(get_torch_module_num_of_parameter(model))) train(model, train_inp_tuple, validation_inp_tuple, checkpoint_dir, checkpoint_prefix, DEVICE, epoches=epoches, batch_size=batch_size, logger=logger, epoch_start=epoch_start, max_seq_len=max_seq_len, lr=lr)
the-stack_106_19644
#!/usr/bin/python3 import numpy as np import helper.basis import helper.function class FinanceInterpolant(helper.function.Interpolant): def __init__( self, basis, X, L, I, fX, aX=None, bounds=None, boundsTransformed=None, gridType=None, p=None, struct=None, info=None): super().__init__(basis, X, L, I, fX, aX=aX) self.bounds = bounds self.boundsTransformed = boundsTransformed self.gridType = gridType self.p = p self.struct = struct self.info = info @staticmethod def fromStruct(struct, info=None): X = struct["gridPoints"] gridString = struct["gridString"][0] L, I = FinanceInterpolant.parseGridString(gridString) d = X.shape[1] bounds = np.row_stack((struct["lowerBounds"], struct["upperBounds"])) boundsTransformed = np.row_stack((struct["lbt"], struct["ubt"])) fX = struct["values"] aX = struct["surpluses"] gridType = struct["gridType"][0] p = struct["degree"] struct = struct domainTrafo = struct["DomainTrafo"] valueTrafo = struct["ValueTrafo"] p = (p[0,0] if len(p) > 0 else 1) if gridType == "lagrange-notaknot-spline-boundary": basis1D = helper.basis.HierarchicalWeaklyFundamentalSpline(p) elif gridType == "linear-boundary": assert p == 1 basis1D = helper.basis.HierarchicalBSpline(p) else: raise ValueError("Unknown grid type.") basis = helper.basis.TensorProduct(basis1D, d) assert domainTrafo.size == 0 assert valueTrafo.size == 0 interpolant = FinanceInterpolant( basis, X, L, I, fX, aX=aX, bounds=bounds, boundsTransformed=boundsTransformed, gridType=gridType, p=p, struct=struct, info=info) return interpolant @staticmethod def parseGridString(gridString): lines = [x.strip() for x in gridString.splitlines()] gridType = lines[0] del lines[0] version, d, N = [int(x) for x in lines[0].split()] del lines[0] stretchingMode = int(lines[0]) assert stretchingMode == 0 del lines[0] boundingBox = lines[0] assert boundingBox == " ".join(d * ["0.000000e+00 1.000000e+00 0 0"]) del lines[0] L, I = [], [] for k in range(N): d2 = int(lines[0]) assert d == d2 li = [int(x) for x in lines[1].split()] L.append(li[0::2]) I.append(li[1::2]) leaf = bool(int(lines[2])) del lines[:3] L, I = np.array(L), np.array(I) return L, I def _evaluateBasis(self, k, XX): XXunitCube = (XX - self.bounds[0]) / (self.bounds[1] - self.bounds[0]) return super()._evaluateBasis(k, XXunitCube) def createJInterpolant(solution, t, discreteStateName, name="interpOptJ"): if t < 0: t += solution.size return FinanceInterpolant.fromStruct( solution[0,t][name][discreteStateName][0,0][0,0], info={"name" : name, "t" : t, "T" : solution.size, "discreteStateName" : discreteStateName}) def createGradJInterpolant( solution, t, discreteStateName, gradientStateName, name="interpGradJ"): if t < 0: t += solution.size return FinanceInterpolant.fromStruct( solution[0,t][name][discreteStateName][0,0][gradientStateName][0,0][0,0], info={"name" : name, "t" : t, "T" : solution.size, "discreteStateName" : discreteStateName, "gradientStateName" : gradientStateName}) def createPolicyInterpolant(interpPolicy, t, discreteStateName, policyName): if t < 0: t += interpPolicy.size return FinanceInterpolant.fromStruct( interpPolicy[0,t][discreteStateName][0,0][policyName][0,0], info={"name" : "interpPolicy", "t" : t, "T" : interpPolicy.size, "discreteStateName" : discreteStateName, "policyName" : policyName})
the-stack_106_19645
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from tests import unittest from ibm_boto3.session import Session from ibm_boto3.resources.collection import ResourceCollection class TestCollection(unittest.TestCase): def setUp(self): self.session = Session( aws_access_key_id='dummy', aws_secret_access_key='dummy', region_name='us-east-1') # Pick an arbitrary resource. self.s3_resource = self.session.resource('s3') def test_can_use_collection_methods(self): self.assertIsInstance( self.s3_resource.instances.all(), ResourceCollection) def test_can_chain_methods(self): self.assertIsInstance( self.s3_resource.instances.all().page_size(5), ResourceCollection)
the-stack_106_19646
# pybatch # github.com/sbritorodr/pybatch # This program executes any instruction for all files inside a folder # (e.g. convert all these mp4 files into mkv using ffmpeg) # the idea is to take, for example: # ffmpeg -i [i] [o] # sustitute input for each instance and generate an output with the same # name inside an ./output folder # Title screen print(''' ______ _ _ | ___ \ | | | | _ __ _ _| |_/ / __ _| |_ ___| |__ | '_ \| | | | ___ \/ _` | __/ __| '_ \ | |_) | |_| | |_/ / (_| | || (__| | | | | .__/ \__, \____/ \__,_|\__\___|_| |_| | | __/ | |_| |___/ Make orders automatically github.com/sbritorodr/pybatch ''') import os # help function def help(): print( ''' This program needs a command, an input [i] and output [o] For example, in order to convert some files in ffmpeg you need to write this: ffmpeg -i [i] [o].mkv ''') # get working directoy pwd = os.path.dirname(os.path.abspath(__file__)) # get folder: input_folder = str(input("Add your folder path or leave it blank to select \"./ \": \n")) or "./" print("You selected this folder: " + input_folder) directory = pwd if input_folder.startswith('.'): input_folder = input_folder.replace('.', '') directory += input_folder elif input_folder.startswith('/'): directory = input_folder print(directory) # select file type: file_type = str(input("select file type (.txt, .pdf, .rar...)")) or "" print("you selected \"" + file_type + "\"") # delete all whitespaces def remove_whitespaces(parent): for path, folders, files in os.walk(parent): for f in files: os.rename(os.path.join(path, f), os.path.join(path, f.replace(' ', '_'))) for i in range(len(folders)): new_name = folders[i].replace(' ', '_') os.rename(os.path.join(path, folders[i]), os.path.join(path, new_name)) folders[i] = new_name remove_whitespaces(directory) # Loop to get all files list_files = [] for file in os.listdir(directory): if file.endswith(file_type): list_files.append(file) print(list_files) # check if you mess up something if list_files == []: raise Exception("No files are selected. Check if you have some files or you input folder exists") # command string. It substitutes the [i] selection and the [o] with the algorithm command = str(input("Add your command here. Write h if you need help:\n" )) or "ffmpeg -i [i] [o].mp3" command_def = command # save the variable anywhere for the "main" loop if command == 'h': help() elif "[i]" not in command: raise Exception("you didn't add [i] or [o].") if '[o]' in command: try: os.mkdir("output") except: 0 # Command loop with [i] and [o] replacement for file in list_files: command = command_def output_file = file.split('.', 1)[0] # remove the file extension, to avoid '.mp4.mp3' gibberish command = command.replace('[i]', directory + file) if "[o]" not in command: command = command.replace('[o]', "") else: command = command.replace('[o]', pwd + "/output/" + output_file) print(command) os.system(command) # End message print("\n \n Script finished with no errors. If something has gone wrong, check if you write the command correctly")
the-stack_106_19647
# -*- coding: utf-8 -*- """Windows Registry custom event formatter helpers.""" from plaso.formatters import interface from plaso.formatters import manager class WindowsRegistryValuesFormatterHelper( interface.CustomEventFormatterHelper): """Windows Registry values formatter helper.""" IDENTIFIER = 'windows_registry_values' def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ values = event_values.get('values', None) if not values: event_values['values'] = '(empty)' manager.FormattersManager.RegisterEventFormatterHelper( WindowsRegistryValuesFormatterHelper)