licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | docs | 255 | # Solution Extension
Similar to extending the entities Problem and Algorithm, the Solution entity can be extended by subclassing :
```@docs
Sol{T,O}
```
A current implemented concrete solution type is:
```@docs
QuantizedSystemSolver.LightSol{T,O}
``` | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | docs | 7006 |
# Tutorial
## Solving a Nonlinear ODE Problem with NLodeProblem in Julia
In this tutorial, we will go through the process of setting up, solving, querying, and plotting a nonlinear ordinary differential equation (ODE) problem using the NLodeProblem function. We will use a buck converter circuit model as an example.
## Step 1: Define the ODE Problem
The first step is to define the ODE problem using the NLodeProblem function. We provide the function with user code that specifies the parameters, variables, and differential equations.
Here is the example code for a buck converter circuit model with detailed explanations:
```julia
odeprob = NLodeProblem(quote
name = (buck,) # Define the name of the problem for identification
# Parameters
C = 1e-4 # Capacitance in farads
L = 1e-4 # Inductance in henrys
R = 10.0 # Resistance in ohms
U = 24.0 # Input voltage in volts
T = 1e-4 # Switching period in seconds
DC = 0.5 # Duty cycle
ROn = 1e-5 # On-state resistance of the switch in ohms
ROff = 1e5 # Off-state resistance of the switch in ohms
# Discrete and continuous variables
discrete = [1e5, 1e-5, 1e-4, 0.0, 0.0] # Initial discrete states
u = [0.0, 0.0] # Initial continuous states
# Rename for convenience
rd = discrete[1] # Diode resistance
rs = discrete[2] # Switch resistance
nextT = discrete[3] # Next switching time
lastT = discrete[4] # Last switching time
diodeon = discrete[5] # Diode state (on/off)
il = u[1] # Inductor current
uc = u[2] # Capacitor voltage
# Helper equations
id = (il * rs - U) / (rd + rs) # Diode current calculation
# Differential equations
du[1] = (-id * rd - uc) / L # Derivative of inductor current
du[2] = (il - uc / R) / C # Derivative of capacitor voltage
# Events
if t - nextT > 0.0
lastT = nextT # Update last switching time
nextT = nextT + T # Schedule next switching time
rs = ROn # Set switch to on-state
end
if t - lastT - DC * T > 0.0
rs = ROff # Set switch to off-state
end
if diodeon * id + (1.0 - diodeon) * (id * rd - 0.6) > 0
rd = ROn # Diode is on
diodeon = 1.0
else
rd = ROff # Diode is off
diodeon = 0.0
end
end)
```
### Explanation:
Parameters: These are constants used in the model.
C, L, R, U, T, DC, ROn, ROff are physical constants related to the buck converter circuit.\
Discrete and continuous variables: These represent the initial states of discrete and continuous variables in the model.\
Renaming variables: For convenience, the elements of discrete and u are renamed to more descriptive variable names (rd, rs, nextT, lastT, diodeon, il, uc).\
Helper equations: These are intermediate expressions needed for the differential equations.
id is the current through the diode.\
Differential equations: These represent the system's dynamics.
du[1] is the rate of change of the inductor current.
du[2] is the rate of change of the capacitor voltage.\
Events: These are conditions that modify the continous and discrete variables.
They handle the switching behavior of the buck converter and the diode's state transitions.
## Step 2: Solve the ODE Problem
Next, we solve the ODE problem using the solve function. We need to specify the problem, the algorithm, and the simulation settings.
```julia
# Define the time span for the simulation
tspan = (0.0, 0.001) # Start at 0 seconds, end at 0.001 seconds
# Solve the ODE problem with the chosen algorithm and settings
sol = solve(odeprob, nmliqss2(), tspan, abstol=1e-4, reltol=1e-3)
```
### Explanation:
Time span: tspan defines the interval over which the solution is computed, from 0.0 to 0.001 seconds.\
Solver function: solve is used to compute the solution.\
odeprob is the ODE problem we defined.\
nmliqss2() specifies the algorithm used to solve the problem (e.g., qss2,nmliqss1... might be other algorithms).\
abstol and reltol are the absolute and relative tolerances for the solver, controlling the accuracy of the solution.
## Step 3: Query the Solution
After solving the problem, we can query the solution to extract useful information such as variable values at specific times, the number of steps, events, and more.
```julia
# Get the value of variable 2 at time 0.0005
value_at_time = sol(2, 0.0005)
# Get the total number of steps to end the simulation
total_steps = sol.totalSteps
# Get the number of simultaneous steps during the simulation
simul_step_count = sol.simulStepCount
# Get the total number of events during the simulation
event_count = sol.evCount
# Get the saved times and variables
saved_times = sol.savedTimes
saved_vars = sol.savedVars
# Print the results
println("Value of variable 2 at time 0.0005: ", value_at_time)
println("Total number of steps: ", total_steps)
println("Number of simultaneous steps: ", simul_step_count)
println("Total number of events: ", event_count)
```
### Explanation:
Value of variable 2 at a specific time: sol(2, 0.0005) returns the value of the second variable (capacitor voltage uc) at time 0.0005 seconds.
Total steps: sol.totalSteps gives the total number of steps taken by the solver to reach the end of the simulation.\
Simultaneous steps: sol.simulStepCount provides the number of steps where simultaneous updates occurred.\
Total events: sol.evCount gives the total number of events (e.g., switch state changes) during the simulation.\
Saved times and variables: sol.savedTimes and sol.savedVars store the time points and corresponding variable values computed during the simulation.
## Step 4: Plot the Solution
Finally, we can plot the solution to visualize the results. We have two options: generate a plot object for further customization or save the plot directly to a file.
``` julia
# Generate a plot object for all variables of the solution
plot_obj = plot_Sol(sol)
# Generate a plot object for variable 1 of the solution
plot_Sol(sol,1)
# Display the plot
display(plot_obj)
#plot variables 1 and 2 of the solution
plot_Sol(sol,1,2,note=" ",xlims=(0.0,1.0),ylims=(-0.5,0.5),legend=false)
#plot the sum of variables 1 and 2 of the solution
plot_SolSum(sol,1,2)
# Save the plot to a file
save_Sol(sol, note=" ",xlims=(0.0,1.0),ylims=(-0.5,0.5),legend=false)
```
### Explanation:
Generate plot object: plot_Sol(sol) creates a plot object from the solution data.
Display the plot: display(plot_obj) shows the plot in the current environment.
Save the plot: save_Sol(sol, ...) saves the plot to a file *.png.

## User Documentation
More about the user documentation can be found in:
### [Application Programming Interface](@ref)
### [Available Algorithms](@ref)
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 951 | using Documenter, PDDL
makedocs(
sitename="PDDL.jl",
format=Documenter.HTML(
prettyurls=get(ENV, "CI", nothing) == "true",
canonical="https://juliaplanners.github.io/PDDL.jl/stable",
description="Documentation for the PDDL.jl automated planning library.",
assets = ["assets/logo.ico"],
highlights=["lisp"] # Use Lisp highlighting as PDDL substitute
),
pages=[
"PDDL.jl" => "index.md",
"Tutorials" => [
"tutorials/getting_started.md",
"tutorials/writing_planners.md",
"tutorials/speeding_up.md"
],
"Reference" => [
"ref/overview.md",
"ref/datatypes.md",
"ref/interface.md",
"ref/parser_writer.md",
"ref/interpreter.md",
"ref/compiler.md",
"ref/absint.md",
"ref/extensions.md",
"ref/utilities.md"
]
]
)
deploydocs(
repo = "github.com/JuliaPlanners/PDDL.jl.git",
)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2621 | module PDDL
using Base: @kwdef
using AutoHashEquals
using Julog
using ValSplit
using DocStringExtensions
# Logical formulae and terms
export Term, Compound, Var, Const, Clause
# Abstract data types
export Domain, Problem, State, Action
# Generic concrete data types
export GenericDomain, GenericProblem, GenericState, GenericAction
# Interface methods
export satisfy, satisfiers, evaluate
export initstate, goalstate, transition, transition!
export available, execute, execute!, relevant, regress, regress!
# Parsing and writing
export parse_domain, parse_problem, parse_pddl, @pddl, @pddl_str
export write_domain, write_problem, write_pddl
export load_domain, load_problem
export save_domain, save_problem
# Simulators
export Simulator, EndStateSimulator, StateRecorder
# Abstract interpretation
export abstracted, abstractstate
export AbstractedDomain
# Domain compilation
export compiled, compilestate
export CompiledDomain, CompiledAction, CompiledState
# Domain and action grounding
export ground, groundargs, groundactions, groundaxioms
export GroundDomain, GroundAction, GroundActionGroup
# Domain and method caching
export CachedDomain
# Extension interfaces
export attach!, register!, @register, @pddltheory
# Analysis tools
export infer_affected_fluents, infer_static_fluents, infer_relevant_fluents
export infer_axiom_hierarchy
# Utilities
export effect_diff, precond_diff
# PDDL requirement definitions and dependencies
include("requirements.jl")
# Abstract interface for PDDL-based planners and applications
include("interface/interface.jl")
# Generic concrete representations of PDDL types
include("generic/generic.jl")
# Parser for PDDL files and formulae
include("parser/parser.jl")
# Writer for PDDL files and formulae
include("writer/writer.jl")
using .Parser, .Writer
# Simulators for executing action sequences and recording outputs
include("simulators/simulators.jl")
# Built-in functions and operators recognized by interpreters / compilers
include("builtins.jl")
# Methods for extending built-in functions and operators
include("extensions.jl")
# Abstractions for fluents of various types
include("abstractions/abstractions.jl")
# Theories for fluents with non-standard data types (e.g. sets, arrays)
include("theories/theories.jl")
# Interpreter-based interface implementation
include("interpreter/interpreter.jl")
# Compiler-based interface implementations
include("compiler/compiler.jl")
# Domain and action grounding
include("grounding/grounding.jl")
# Caching for interface methods
include("caching/caching.jl")
# Tools for analyzing domains
include("analysis/analysis.jl")
end # module
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 5347 | # Built in operators, functions, and effects
"""
equiv(a, b)
Equivalence in concrete and abstract domains. Defaults to `a == b`.
"""
equiv(a, b) = a == b
"""
nequiv(a, b)
Non-equivalence in concrete and abstract domains. Defaults to `a != b`.
"""
nequiv(a, b) = a != b
"""
val_to_term(datatype::Symbol, val)
val_to_term(val)
Express `val` as a `Term` based on the `datatype`. Wraps in `Const` by default.
If `datatype` is unspecified, it will be inferred.
"""
@valsplit val_to_term(Val(datatype::Symbol), val) = val_to_term(nothing, val)
val_to_term(datatype::Nothing, val) = Const(val)
val_to_term(val::T) where {T} = val_to_term(infer_datatype(T), val)
"""
$(SIGNATURES)
Mapping from PDDL data types to Julia types and default values.
"""
@valsplit datatype_def(Val(name::Symbol)) =
error("Unknown datatype: $name")
datatype_def(::Val{:boolean}) = (type=Bool, default=false)
datatype_def(::Val{:integer}) = (type=Int, default=0)
datatype_def(::Val{:number}) = (type=Float64, default=1.0)
datatype_def(::Val{:numeric}) = (type=Float64, default=1.0)
"""
$(SIGNATURES)
Mapping from PDDL datatype to Julia type.
"""
datatype_typedef(name::Symbol) = datatype_def(name).type
"""
$(SIGNATURES)
Mapping from PDDL datatype to default value.
"""
datatype_default(name::Symbol) = datatype_def(name).default
"""
$(SIGNATURES)
Return list of global datatypes.
"""
global_datatype_names() =
valarg_params(datatype_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return whether a symbol refers to global datatype.
"""
is_global_datatype(name::Symbol) =
valarg_has_param(name, datatype_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return dictionary mapping global datatype names to implementations.
"""
function global_datatypes()
names = global_datatype_names()
types = Base.to_tuple_type(getindex.(datatype_def.(names), 1))
return _generate_dict(Val(names), Val(types))
end
"""
$(SIGNATURES)
Infer PDDL datatype from Julia type.
"""
function infer_datatype(T::Type)
inferred = nothing
mintype = Any
for (name, type) in global_datatypes()
if T <: type <: mintype
inferred = name
mintype = type
end
end
return inferred
end
infer_datatype(val::T) where {T} = infer_datatype(T)
"""
$(SIGNATURES)
Mapping from PDDL built-in predicates to Julia functions.
"""
@valsplit predicate_def(Val(name::Symbol)) =
error("Unknown predicate or function: $name")
predicate_def(::Val{:(==)}) = equiv
predicate_def(::Val{:<=}) = <=
predicate_def(::Val{:>=}) = >=
predicate_def(::Val{:<}) = <
predicate_def(::Val{:>}) = >
"""
$(SIGNATURES)
Return list of all global predicate names.
"""
global_predicate_names() =
valarg_params(predicate_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return whether a symbol refers to global predicate.
"""
is_global_pred(name::Symbol) =
valarg_has_param(name, predicate_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return dictionary mapping global predicate names to implementations.
"""
function global_predicates()
names = global_predicate_names()
defs = predicate_def.(names)
return _generate_dict(Val(names), Val(defs))
end
"""
$(SIGNATURES)
Mapping from PDDL built-in functions to Julia functions.
"""
@valsplit function_def(Val(name::Symbol)) =
predicate_def(name) # All predicates are also functions
function_def(::Val{:+}) = +
function_def(::Val{:-}) = -
function_def(::Val{:*}) = *
function_def(::Val{:/}) = /
"""
$(SIGNATURES)
Return list of all global function names.
"""
global_function_names() =
(valarg_params(function_def, Tuple{Val}, Val(1), Symbol)...,
valarg_params(predicate_def, Tuple{Val}, Val(1), Symbol)...)
"""
$(SIGNATURES)
Return whether a symbol refers to global function.
"""
is_global_func(name::Symbol) =
valarg_has_param(name, function_def, Tuple{Val}, Val(1), Symbol) ||
is_global_pred(name)
"""
$(SIGNATURES)
Return dictionary mapping global function names to implementations.
"""
function global_functions()
names = global_function_names()
defs = function_def.(names)
return _generate_dict(Val(names), Val(defs))
end
"""
$(SIGNATURES)
Mapping from PDDL modifiers (i.e. in-place assignments) to PDDL functions.
"""
@valsplit modifier_def(Val(name::Symbol)) =
error("Unknown modifier: $name")
modifier_def(::Val{:increase}) = :+
modifier_def(::Val{:decrease}) = :-
modifier_def(::Val{Symbol("scale-up")}) = :*
modifier_def(::Val{Symbol("scale-down")}) = :/
"""
$(SIGNATURES)
Return list of all global modifier names.
"""
global_modifier_names() =
valarg_params(modifier_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return whether a symbol refers to global modifier.
"""
is_global_modifier(name::Symbol) =
valarg_has_param(name, modifier_def, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return dictionary mapping global modifier names to implementations.
"""
function global_modifiers()
names = global_modifier_names()
defs = modifier_def.(names)
return _generate_dict(Val(names), Val(defs))
end
"Helper function that generates dictionary at compile time."
@generated function _generate_dict(keys::Val{Ks}, values::Val{Vs}) where {Ks, Vs}
Vs = Vs isa Tuple ? Vs : Tuple(Vs.parameters) # Handle tuple types
dict = Dict(zip(Ks, Vs))
return :($dict)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 5752 | """
@register([:datatype|:predicate|:function|:modifier|:converter], name, x)
Register `x` as a global datatype, predicate, function, modifier, or term
converter under the specified `name`.
"""
macro register(category, name, x)
return register_expr(category, name, x)
end
function register_expr(category::Symbol, name::Symbol, x)
if category == :datatype
fname = GlobalRef(@__MODULE__, :datatype_def)
elseif category == :abstraction
fname = GlobalRef(@__MODULE__, :default_abstype)
elseif category == :predicate
fname = GlobalRef(@__MODULE__, :predicate_def)
elseif category == :function
fname = GlobalRef(@__MODULE__, :function_def)
elseif category == :modifier
fname = GlobalRef(@__MODULE__, :modifier_def)
elseif category == :converter
return register_converter_expr(name, x)
else
error("Unrecognized category: $category.")
end
return :($fname(::Val{$(QuoteNode(name))}) = $(esc(x)))
end
register_expr(category::QuoteNode, name, x) =
register_expr(category.value, name, x)
register_expr(category::Symbol, name::QuoteNode, x) =
register_expr(category, name.value, x)
register_expr(category::Symbol, name::AbstractString, x) =
register_expr(category, Symbol(name), x)
function register_converter_expr(name::Symbol, f)
_val_to_term = GlobalRef(@__MODULE__, :val_to_term)
return :($_val_to_term(::Val{$(QuoteNode(name))}, val)= $(esc(f))(val))
end
"""
register!([:datatype|:predicate|:function|:modifier|:converter], name, x)
Register `x` as a global datatype, predicate, function or modifier, or term
converter under the specified `name`.
!!! warning "Top-Level Only"
Because `register!` defines new methods, it should only be called at the
top-level in order to avoid world-age errors.
!!! warning "Precompilation Not Supported"
Because `register!` evaluates code in the `PDDL` module, it will lead to
precompilation errors when used in another module. For this reason, the
`@register` macro is preferred, and this function should only be used in
scripting contexts.
"""
function register!(category::Symbol, name::Symbol, x)
if category == :datatype
fname = GlobalRef(@__MODULE__, :datatype_def)
elseif category == :abstraction
fname = GlobalRef(@__MODULE__, :default_abstype)
elseif category == :predicate
fname = GlobalRef(@__MODULE__, :predicate_def)
elseif category == :function
fname = GlobalRef(@__MODULE__, :function_def)
elseif category == :modifier
fname = GlobalRef(@__MODULE__, :modifier_def)
elseif category == :converter
return register_converter!(name, x)
else
error("Unrecognized category: $category.")
end
@eval $fname(::Val{$(QuoteNode(name))}) = $(QuoteNode(x))
end
register!(category::Symbol, name::AbstractString, x) =
register!(category, Symbol(name), x)
function register_converter!(name::Symbol, f)
_val_to_term = GlobalRef(@__MODULE__, :val_to_term)
@eval $_val_to_term(::Val{$(QuoteNode(name))}, val) = $(QuoteNode(f))(val)
end
"""
deregister!([:datatype|:predicate|:function|:modifier|:converter], name)
Deregister the datatype, predicate, function or modifier specified by `name`.
!!! warning "Top-Level Only"
Because `deregister!` deletes existing methods, it should only be called
at the top-level in order to avoid world-age errors. It should primarily
be used in scripting contexts, and not by other packages or modules.
"""
function deregister!(category::Symbol, name::Symbol)
if category == :datatype
f = datatype_def
elseif category == :abstraction
f = default_abstype
elseif category == :predicate
f = predicate_def
elseif category == :function
f = function_def
elseif category == :modifier
f = modifier_def
elseif category == :converter
return deregister_converter!(name)
else
error("Category must be :datatype, :predicate, :function or :modifier.")
end
if hasmethod(f, Tuple{Val{name}})
m = first(methods(f, Tuple{Val{name}}))
Base.delete_method(m)
else
@warn "No registered $f :$name to deregister."
end
end
deregister!(category::Symbol, name::AbstractString) =
deregister!(category, Symbol(name))
function deregister_converter!(name::Symbol)
if hasmethod(val_to_term, Tuple{Val{name}, Any})
m = first(methods(val_to_term, Tuple{Val{name}, Any}))
Base.delete_method(m)
else
@warn "No registered converter for type $name to deregister."
end
end
"""
attach!(domain, :function, name, f)
Attach the function `f` as the implementation of the functional fluent
specified by `name`.
attach!(domain, :datatype, name, ty)
Attach the type `ty` as the implementation of the PDDL datatype
specified by `name`.
"""
function attach!(domain::GenericDomain, category::Symbol, name::Symbol, f)
if category == :datatype
attach_datatype!(domain, name, f)
elseif category == :function
attach_function!(domain, name, f)
else
error("Category must be :datatype or :function.")
end
end
attach!(domain::GenericDomain, category::Symbol, name::AbstractString, f) =
attach!(domain, category, Symbol(name), f)
"""
$(SIGNATURES)
Attach datatype to domain.
"""
function attach_datatype!(domain::GenericDomain, name::Symbol, ty)
domain.datatypes[name] = ty
end
"""
$(SIGNATURES)
Attach function to domain.
"""
function attach_function!(domain::GenericDomain, name::Symbol, f)
if name in keys(get_functions(domain))
domain.funcdefs[name] = f
else
error("Domain does not have a function named $name.")
end
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1040 | "Default PDDL requirements."
const DEFAULT_REQUIREMENTS = Dict{Symbol,Bool}(
Symbol("strips") => true,
Symbol("typing") => false,
Symbol("fluents") => false,
Symbol("negative-preconditions") => false,
Symbol("disjunctive-preconditions") => false,
Symbol("equality") => false,
Symbol("existential-preconditions") => false,
Symbol("universal-preconditions") => false,
Symbol("quantified-preconditions") => false,
Symbol("conditional-effects") => false,
Symbol("adl") => false,
Symbol("derived-predicates") => false
)
const IMPLIED_REQUIREMENTS = Dict{Symbol,Vector{Symbol}}(
Symbol("adl") => [
Symbol("strips"),
Symbol("typing"),
Symbol("negative-preconditions"),
Symbol("disjunctive-preconditions"),
Symbol("equality"),
Symbol("quantified-preconditions"),
Symbol("conditional-effects")
],
Symbol("quantified-preconditions") => [
Symbol("existential-preconditions"),
Symbol("universal-preconditions")
]
)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1541 | # Semantics for abstract values #
"""
lub(a, b)
Compute the least upper bound (i.e. join) of abstract values `a` and `b`.
lub(T, iter)
Compute the least upper bound (i.e. join) of abstract values in `iter`, assuming
that all values in `iter` are of type `T`.
"""
function lub end
"""
glb(a, b)
Compute the greatest lower bound (i.e. meet) of abstract values `a` and `b`.
glb(T, iter)
Compute the greatest lower bound (i.e. meet) of abstract values in `iter`,
assuming that all values in `iter` are of type `T`.
"""
function glb end
"""
widen(a, b)
Compute the widening of abstract values `a` and `b`.
"""
function widen end
include("boolean.jl")
include("interval.jl")
include("set.jl")
"""
$(SIGNATURES)
Mapping from PDDL types to default abstraction types.
"""
@valsplit default_abstype(Val(name::Symbol)) =
error("Unknown datatype: $name")
default_abstype(::Val{:boolean}) = BooleanAbs
default_abstype(::Val{:integer}) = IntervalAbs{Int}
default_abstype(::Val{:number}) = IntervalAbs{Float64}
default_abstype(::Val{:numeric}) = IntervalAbs{Float64}
"""
$(SIGNATURES)
Return list of datatypes with default abstractions defined for them.
"""
default_abstype_names() =
valarg_params(default_abstype, Tuple{Val}, Val(1), Symbol)
"""
$(SIGNATURES)
Return dictionary mapping datatype names to default abstraction types.
"""
function default_abstypes()
names = default_abstype_names()
types = Base.to_tuple_type(default_abstype.(names))
return _generate_dict(Val(names), Val(types))
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2942 | """
Both
Type whose singleton instance `both` represents both `false` and `true`.
"""
struct Both end
"""
both
Singleton value of type `Both` representing both `false` and `true`.
"""
const both = Both()
Base.copy(::Both) = both
Base.show(io::IO, ::Both) = print(io, "both")
isboth(b::Both) = true
isboth(b) = false
"""
BooleanAbs
Belnap logic abstraction for Boolean values. In addition to `true`, `false` and
`missing`, the abstract value `both` can be used to represent when a predicate
is both false and true.
"""
const BooleanAbs = Union{Missing,Bool,Both}
BooleanAbs(x::BooleanAbs) = x
lub(a::Both, b::Both) = both
lub(a::Both, b::Bool) = both
lub(a::Bool, b::Bool) = a === b ? a : both
lub(a::Both, b::Missing) = both
lub(a::Bool, b::Missing) = a
lub(a::BooleanAbs, b::BooleanAbs) = lub(b, a)
function lub(::Type{BooleanAbs}, iter)
val::BooleanAbs = missing
for x in iter
val = lub(val, x)
isboth(val) && return val
end
return val
end
glb(a::Both, b::Both) = both
glb(a::Both, b::Bool) = b
glb(a::Bool, b::Bool) = a === b ? a : missing
glb(a::Both, b::Missing) = missing
glb(a::Bool, b::Missing) = missing
glb(a::BooleanAbs, b::BooleanAbs) = glb(b, a)
function glb(::Type{BooleanAbs}, iter)
val::BooleanAbs = both
for x in iter
val = glb(val, x)
ismissing(val) && return val
end
return val
end
widen(a::BooleanAbs, b::BooleanAbs) = lub(a, b)
equiv(a::Both, b::Both) = both
equiv(a::Both, b::Bool) = both
equiv(a::Bool, b::Both) = both
Base.:(!)(::Both) = both
Base.:(&)(a::Both, b::Both) = both
Base.:(&)(a::Both, b::Missing) = missing
Base.:(&)(a::Both, b::Bool) = b ? both : false
Base.:(&)(a::BooleanAbs, b::Both) = b & a
Base.:(|)(a::Both, b::Both) = both
Base.:(|)(a::Both, b::Missing) = missing
Base.:(|)(a::Both, b::Bool) = b ? true : both
Base.:(|)(a::BooleanAbs, b::Both) = b | a
"Four-valued logical version of `Base.any`."
function any4(itr)
anymissing = false
anyboth = false
for x in itr
if ismissing(x)
anymissing = true
elseif isboth(x)
anyboth = true
elseif x
return true
end
end
return anymissing ? missing : anyboth ? both : false
end
"Four-valued logical version of `Base.all`."
function all4(itr)
anymissing = false
anyboth = false
for x in itr
if ismissing(x)
anymissing = true
elseif isboth(x)
anyboth = true
elseif x
continue
else
return false
end
end
return anymissing ? missing : anyboth ? both : true
end
# Teach GenericState the way of true contradictions
function set_fluent!(state::GenericState, val::Both, term::Const)
push!(state.facts, term, negate(term))
return val
end
function set_fluent!(state::GenericState, val::Both, term::Compound)
push!(state.facts, term, negate(term))
return val
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4972 | """
IntervalAbs(lo::Real, hi::Real)
Interval abstraction for real-valued numbers.
"""
struct IntervalAbs{T <: Real}
lo::T
hi::T
function IntervalAbs{T}(lo::T, hi::T) where {T <: Real}
lo > hi ? new{T}(typemax(T), typemin(T)) : new{T}(lo, hi)
end
end
IntervalAbs{T}(x::Real) where {T} =
IntervalAbs{T}(x, x)
IntervalAbs(x::T) where {T <: Real} =
IntervalAbs{T}(x, x)
IntervalAbs{T}(lo::Real, hi::Real) where {T} =
IntervalAbs{T}(convert(T, lo), convert(T, hi))
IntervalAbs(lo::T, hi::U) where {T <: Real, U <: Real} =
IntervalAbs{promote_type(T, U)}(lo, hi)
empty_interval(I::Type{IntervalAbs{T}}) where {T <: Real} =
I(typemax(T), typemin(T))
empty_interval(x::IntervalAbs) =
empty_interval(typeof(x))
Base.copy(x::IntervalAbs) = x
Base.convert(I::Type{IntervalAbs{T}}, x::Real) where {T <: Real} = I(x)
Base.show(io::IO, x::IntervalAbs) =
print(io, "IntervalAbs($(x.lo), $(x.hi))")
Base.hash(x::IntervalAbs, h::UInt) = hash(x.lo, hash(x.hi, h))
lub(a::IntervalAbs, b::IntervalAbs) = a ∪ b
function lub(I::Type{IntervalAbs{T}}, iter) where {T}
val = empty_interval(I)
for x in iter
val = lub(val, x)
end
return val
end
glb(a::IntervalAbs, b::IntervalAbs) = a ∩ b
function glb(I::Type{IntervalAbs{T}}, iter) where {T}
val = I(typemin(T), typemax(T))
for x in iter
val = glb(val, x)
end
return val
end
widen(a::IntervalAbs, b::IntervalAbs) = a ∪ b
Base.:(==)(a::IntervalAbs, b::IntervalAbs) =
a.lo == b.lo && a.hi == b.hi
Base.isapprox(a::IntervalAbs, b::IntervalAbs; kwargs...) =
isapprox(a.lo, b.lo; kwargs...) && isapprox(a.hi, b.hi; kwargs...)
Base.:+(a::IntervalAbs) = a
Base.:-(a::IntervalAbs) = IntervalAbs(-a.hi, -a.lo)
function Base.:+(a::IntervalAbs, b::IntervalAbs)
return IntervalAbs(a.lo + b.lo, a.hi + b.hi)
end
function Base.:-(a::IntervalAbs, b::IntervalAbs)
return IntervalAbs(a.lo - b.hi, a.hi - b.lo)
end
function Base.:*(a::IntervalAbs, b::IntervalAbs)
lo = min(a.lo * b.lo, a.lo * b.hi, a.hi * b.lo, a.hi * b.hi)
hi = max(a.lo * b.lo, a.lo * b.hi, a.hi * b.lo, a.hi * b.hi)
return IntervalAbs(lo, hi)
end
function Base.:/(a::IntervalAbs, b::IntervalAbs)
a * inv(b)
end
function Base.inv(a::IntervalAbs{T}) where {T}
if a.lo == 0 && a.hi == 0
if T <: Integer
throw(DivideError())
elseif signbit(a.lo) != signbit(a.hi)
return IntervalAbs{T}(T(-Inf), T(Inf))
else
return IntervalAbs{T}(T(copysign(Inf, a.lo)))
end
elseif a.lo < 0 && a.hi > 0
T <: Integer ? throw(DivideError()) : return IntervalAbs(-Inf, Inf)
elseif a.lo == 0
return IntervalAbs(1 / a.hi, Inf)
elseif a.hi == 0
return IntervalAbs(-Inf, 1 / a.lo)
else
return IntervalAbs(1 / a.hi, 1 / a.lo)
end
end
Base.:+(a::IntervalAbs, b::Real) =
IntervalAbs(a.lo + b, a.hi + b)
Base.:-(a::IntervalAbs, b::Real) =
IntervalAbs(a.lo - b, a.hi - b)
Base.:*(a::IntervalAbs, b::Real) =
signbit(b) ? IntervalAbs(a.hi*b, a.lo*b) : IntervalAbs(a.lo*b, a.hi*b)
Base.:/(a::IntervalAbs, b::Real) =
signbit(b) ? IntervalAbs(a.hi/b, a.lo/b) : IntervalAbs(a.lo/b, a.hi/b)
Base.:+(a::Real, b::IntervalAbs) = b + a
Base.:-(a::Real, b::IntervalAbs) = -b + a
Base.:*(a::Real, b::IntervalAbs) = b * a
Base.:/(a::Real, b::IntervalAbs) = inv(b) * a
function Base.union(a::IntervalAbs, b::IntervalAbs)
IntervalAbs(min(a.lo, b.lo), max(a.hi, b.hi))
end
function Base.intersect(a::IntervalAbs{T}, b::IntervalAbs{U}) where {T, U}
if a.lo > b.hi || a.hi < b.lo
return empty_interval(promote_type{T, U})
else
return IntervalAbs(max(a.lo, b.lo), min(a.hi, b.hi))
end
end
Base.issubset(a::IntervalAbs, b::IntervalAbs) =
a.lo >= b.lo && a.hi <= b.hi
Base.in(a::Real, b::IntervalAbs) =
a >= b.lo && a <= b.hi
equiv(a::IntervalAbs, b::IntervalAbs) = (a.lo > b.hi || a.hi < b.lo) ?
false : ((a.lo == a.hi == b.lo == b.hi) ? true : both)
nequiv(a::IntervalAbs, b::IntervalAbs) = (a.lo > b.hi || a.hi < b.lo) ?
true : ((a.lo == a.hi == b.lo == b.hi) ? false : both)
Base.:<(a::IntervalAbs, b::IntervalAbs) =
a.hi < b.lo ? true : ((a.lo < b.hi) ? both : false)
Base.:<=(a::IntervalAbs, b::IntervalAbs) =
a.hi <= b.lo ? true : ((a.lo <= b.hi) ? both : false)
equiv(a::IntervalAbs, b::Real) =
(b in a) ? ((a.lo == a.hi) ? true : both) : false
nequiv(a::IntervalAbs, b::Real) =
(b in a) ? ((a.lo == a.hi) ? false : both) : true
Base.:<(a::IntervalAbs, b::Real) =
(a.hi < b) ? true : ((a.lo < b) ? both : false)
Base.:<=(a::IntervalAbs, b::Real) =
(a.hi <= b) ? true : ((a.lo <= b) ? both : false)
equiv(a::Real, b::IntervalAbs) = equiv(b, a)
nequiv(a::Real, b::IntervalAbs) = nequiv(b, a)
Base.:<(a::Real, b::IntervalAbs) =
(a < b.lo) ? true : ((a < b.hi) ? both : false)
Base.:<=(a::Real, b::IntervalAbs) =
(a <= b.lo) ? true : ((a <= b.hi) ? both : false)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3092 | """
SetAbs(xs...)
Set abstraction for arbitrary objects.
"""
struct SetAbs{T}
set::Set{T}
SetAbs{T}(; iter=(), set::Set{T} = Set{T}(iter)) where {T} = new(set)
end
function SetAbs{T}(x::T, xs::T...) where {T}
y = SetAbs{T}()
push!(y.set, x)
for x in xs
push!(y.set, x)
end
return y
end
SetAbs(xs::T...) where {T} = SetAbs{T}(xs...)
SetAbs(xs...) = SetAbs{Any}(xs...)
SetAbs(; set::Set{T}=Set{T}()) where {T} = SetAbs{T}(set=set)
Base.copy(x::SetAbs{T}) where {T} = SetAbs{T}(set=copy(x.set))
Base.convert(S::Type{SetAbs{T}}, x::T) where {T} = S(x)
Base.show(io::IO, x::SetAbs{T}) where {T} =
print(io, "SetAbs", "(", join(x.set, ", "), ")")
Base.hash(x::SetAbs, h::UInt) = hash(x.set, h)
lub(a::SetAbs{T}, b::SetAbs{T}) where {T} = SetAbs{T}(; set=(a.set ∪ b.set))
function lub(S::Type{SetAbs{T}}, iter) where {T}
val = SetAbs{T}()
for x in iter
union!(val.set, x)
end
return val
end
glb(a::SetAbs{T}, b::SetAbs{T}) where {T} = SetAbs{T}(; set=(a.set ∩ b.set))
function glb(S::Type{SetAbs{T}}, iter) where {T}
val = SetAbs{T}()
isfirst = true
for x in iter
if isfirst
union!(val.set, x)
isfirst = false
else
intersect!(val.set, x)
isempty(val.set) && break
end
end
return val
end
widen(a::SetAbs, b::SetAbs) = SetAbs(; set=(a.set ∪ b.set))
Base.:(==)(a::SetAbs, b::SetAbs) = a.set == b.set
for f in (:+, :-, :inv)
@eval Base.$f(a::SetAbs) = SetAbs(set=Set(($f(x) for x in a.set)))
end
for f in (:+, :-, :*, :/)
@eval Base.$f(a::SetAbs, b::SetAbs) =
SetAbs(set=Set(($f(x, y) for x in a.set, y in b.set)))
@eval Base.$f(a::SetAbs, b::Real) =
SetAbs(set=Set(($f(x, b) for x in a.set)))
@eval Base.$f(a::Real, b::SetAbs) =
SetAbs(set=Set(($f(a, y) for y in b.set)))
end
uniquely_equal(a::SetAbs, b::SetAbs) =
(length(a.set) == length(b.set) == 1) && first(a.set) == first(b.set)
equiv(a::SetAbs, b::SetAbs) =
isdisjoint(a.set, b.set) ? false : (uniquely_equal(a, b) ? true : both)
nequiv(a::SetAbs, b::SetAbs) =
isdisjoint(a.set, b.set) ? true : (uniquely_equal(a, b) ? false : both)
Base.:<(a::SetAbs, b::SetAbs) =
lub(BooleanAbs, (x < y for x in a.set, y in b.set))
Base.:<=(a::SetAbs, b::SetAbs) =
lub(BooleanAbs, (x <= y for x in a.set, y in b.set))
equiv(a::SetAbs{T}, b::T) where {T} =
b in a.set ? (length(a.set) == 1 ? true : both) : false
nequiv(a::SetAbs{T}, b::T) where {T} =
b in a.set ? (length(a.set) == 1 ? false : both) : true
Base.:<(a::SetAbs, b::Real) =
lub(BooleanAbs, (x < b for x in a.set))
Base.:<=(a::SetAbs, b::Real) =
lub(BooleanAbs, (x <= b for x in a.set))
equiv(a::T, b::SetAbs{T}) where {T} =
a in b.set ? (length(b.set) == 1 ? true : both) : false
nequiv(a::T, b::SetAbs{T}) where {T} =
a in b.set ? (length(b.set) == 1 ? false : both) : true
Base.:<(a::Real, b::SetAbs) =
lub(BooleanAbs, (a < y for y in b.set))
Base.:<=(a::Real, b::SetAbs) =
lub(BooleanAbs, (a <= y for y in b.set))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2163 | """
$(SIGNATURES)
Check if term is affected by some action or composed of affected subterms.
"""
function is_affected(term::Term, domain::Domain,
affected=infer_affected_fluents(domain))
if term.name in affected return true end
fluents = constituents(term, domain)
return any(f.name in affected for f in fluents)
end
"""
$(SIGNATURES)
Infer fluents that are modified by some action in a domain.
"""
function infer_affected_fluents(domain::Domain)
# Infer fluents directly changed by actions
affected = Symbol[]
for action in values(get_actions(domain))
append!(affected, get_affected(action))
end
# Infer affected derived predicates
_, children = infer_axiom_hierarchy(domain)
queue = copy(affected)
while !isempty(queue)
fluent = pop!(queue)
derived = get!(children, fluent, Symbol[])
filter!(x -> !(x in affected), derived)
append!(queue, derived)
append!(affected, derived)
end
return unique!(affected)
end
"""
$(SIGNATURES)
Return the names of all fluents affected by an action.
"""
get_affected(action::Action) = get_affected(get_effect(action))
get_affected(effect::Term) = unique!(get_affected!(Symbol[], effect))
"""
$(SIGNATURES)
Accumulate affected fluent names given an effect formula.
"""
get_affected!(fluents::Vector{Symbol}, effect::Term) =
get_affected!(effect.name, fluents, effect)
# Use valsplit to switch on effect expression head
@valsplit function get_affected!(Val(name::Symbol), fluents, effect)
if is_global_modifier(effect.name)
push!(fluents, effect.args[1].name)
else
push!(fluents, effect.name)
end
end
get_affected!(::Val{:and}, fluents, effect) =
(for e in effect.args get_affected!(fluents, e) end; fluents)
get_affected!(::Val{:when}, fluents, effect) =
get_affected!(fluents, effect.args[2])
get_affected!(::Val{:forall}, fluents, effect) =
get_affected!(fluents, effect.args[2])
get_affected!(::Val{:assign}, fluents, effect) =
push!(fluents, effect.args[1].name)
get_affected!(::Val{:not}, fluents, effect) =
push!(fluents, effect.args[1].name)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 137 | # Tools for analyzing domains
include("utils.jl")
include("affected.jl")
include("static.jl")
include("relevant.jl")
include("axiom.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1463 |
"""
$(SIGNATURES)
Infer dependency structure between axioms.
"""
function infer_axiom_hierarchy(domain::Domain)
parents = Dict{Symbol,Vector{Symbol}}()
for (name, ax) in pairs(get_axioms(domain))
body = length(ax.body) == 1 ? ax.body[1] : Compound(:and, ax.body)
parents[name] = unique!([c.name for c in constituents(body, domain)])
end
children = Dict{Symbol,Vector{Symbol}}()
for (name, ps) in parents
for p in ps
cs = get!(children, p, Symbol[])
push!(cs, name)
end
end
return parents, children
end
"""
$(SIGNATURES)
Substitute derived predicates in a term with their axiom bodies.
"""
function substitute_axioms(term::Term, domain::Domain; ignore=[])
if term.name in ignore
return term
elseif is_derived(term, domain)
# Substitute with axiom body, avoiding recursion
axiom = Julog.freshen(get_axiom(domain, term.name))
subst = unify(axiom.head, term)
body = length(axiom.body) == 1 ?
axiom.body[1] : Compound(:and, axiom.body)
body = substitute(body, subst)
body = substitute_axioms(body, domain, ignore=[term.name])
return body
elseif term isa Compound
# Substitute each constituent term
args = Term[substitute_axioms(a, domain, ignore=ignore)
for a in term.args]
return Compound(term.name, args)
else
return term
end
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3479 | """
$(SIGNATURES)
Infer fluents that are relevant to some action precondition.
"""
function infer_relevant_fluents(domain::Domain)
fluents = Symbol[]
for action in values(get_actions(domain))
append!(fluents, get_relevant(action))
end
return unique!(fluents)
end
"""
$(SIGNATURES)
Infer fluents that are relevant to achieving a set of goal fluents.
"""
function infer_relevant_fluents(domain::Domain, goals::Vector{Symbol},
axiom_parents=infer_axiom_hierarchy(domain)[1])
new_goals = copy(goals)
for g in goals
append!(new_goals, get(axiom_parents, g, Symbol[]))
end
for action in values(get_actions(domain))
if any(eff in goals for eff in get_affected(action))
append!(new_goals, get_relevant(action))
end
end
unique!(new_goals)
return issubset(new_goals, goals) ?
new_goals : infer_relevant_fluents(domain, new_goals, axiom_parents)
end
infer_relevant_fluents(domain, goal::Nothing) =
infer_relevant_fluents(domain)
infer_relevant_fluents(domain, goal::Term) =
infer_relevant_fluents(domain, [c.name::Symbol for c in constituents(goal, domain)])
infer_relevant_fluents(domain, goals::AbstractVector{<:Term}) =
infer_relevant_fluents(domain, Compound(:and, goals))
"""
$(SIGNATURES)
Return the names of all fluents relevant to the preconditions of an action.
"""
function get_relevant(action::Action)
fluents = Symbol[]
get_relevant_preconds!(fluents, get_precond(action))
get_relevant_effconds!(fluents, get_effect(action))
return unique!(fluents)
end
"""
$(SIGNATURES)
Accumulate relevant fluent names given a precondition formula.
"""
get_relevant_preconds!(fluents::Vector{Symbol}, precond::Term) =
get_relevant_preconds!(precond.name, fluents, precond)
# Use valsplit to switch on precond expression head
@valsplit get_relevant_preconds!(Val(name::Symbol), fluents, precond) =
push!(fluents, precond.name)
get_relevant_preconds!(::Val{:and}, fluents, precond) =
(for e in precond.args get_relevant_preconds!(fluents, e) end; fluents)
get_relevant_preconds!(::Val{:or}, fluents, precond) =
(for e in precond.args get_relevant_preconds!(fluents, e) end; fluents)
get_relevant_preconds!(::Val{:imply}, fluents, precond) =
(get_relevant_preconds!(fluents, precond.args[1]);
get_relevant_preconds!(fluents, precond.args[2]))
get_relevant_preconds!(::Val{:forall}, fluents, precond) =
get_relevant_preconds!(fluents, precond.args[2])
get_relevant_preconds!(::Val{:exists}, fluents, precond) =
get_relevant_preconds!(fluents, precond.args[2])
get_relevant_preconds!(::Val{:not}, fluents, precond) =
push!(fluents, precond.args[1].name)
"""
$(SIGNATURES)
Accumulate relevant fluent names given an effect formula.
"""
get_relevant_effconds!(fluents::Vector{Symbol}, effect::Term) =
get_relevant_effconds!(effect.name, fluents, effect)
# Use valsplit to switch on effect expression head
@valsplit get_relevant_effconds!(Val(name::Symbol), fluents, effect) =
fluents
get_relevant_effconds!(::Val{:and}, fluents, effect) =
(for e in effect.args get_relevant_effconds!(fluents, e) end; fluents)
get_relevant_effconds!(::Val{:when}, fluents, effect) =
(get_relevant_preconds!(fluents, effect.args[1]);
get_relevant_effconds!(fluents, effect.args[2]))
get_relevant_effconds!(::Val{:forall}, fluents, effect) =
get_relevant_effconds!(fluents, effect.args[2])
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3295 | """
$(SIGNATURES)
Check if term is static or composed of static subterms.
"""
function is_static(term::Term, domain::Domain,
statics=infer_static_fluents(domain))
if term.name in statics return true end
fluents = constituents(term, domain)
return all(f.name in statics for f in fluents)
end
"""
$(SIGNATURES)
Infer fluents that are never modified by some action in a domain.
"""
function infer_static_fluents(domain::Domain)
affected = infer_affected_fluents(domain)
static = setdiff(keys(get_fluents(domain)), affected)
return collect(static)
end
"Simplify away static fluents within a `term`."
function simplify_statics(term::Term, domain::Domain, state::State,
statics=infer_static_fluents(domain))
# Simplify logical compounds
if term.name == :and
new_args = nothing
for (i, a) in enumerate(term.args)
new_a = simplify_statics(a, domain, state, statics)
new_a.name === false && return Const(false)
if new_a !== a || new_args !== nothing
new_args === nothing && (new_args = term.args[1:i-1])
new_a.name !== true && push!(new_args, new_a)
end
end
new_args === nothing && return term # All subterms were preserved
isempty(new_args) && return Const(true) # All subterms were true
return length(new_args) == 1 ? new_args[1] : Compound(:and, new_args)
elseif term.name == :or
new_args = nothing
for (i, a) in enumerate(term.args)
new_a = simplify_statics(a, domain, state, statics)
new_a.name === true && return Const(true)
if new_a !== a || new_args !== nothing
new_args === nothing && (new_args = term.args[1:i-1])
new_a.name !== false && push!(new_args, new_a)
end
end
new_args === nothing && return term # All subterms were preserved
isempty(new_args) && return Const(false) # All subterms were false
return length(new_args) == 1 ? new_args[1] : Compound(:or, new_args)
elseif term.name == :imply
cond, query = term.args
cond = simplify_statics(cond, domain, state, statics)
cond.name == false && return Const(true)
query = simplify_statics(query, domain, state, statics)
cond.name == true && return query
return Compound(:imply, Term[cond, query])
elseif term.name == :not
new_arg = simplify_statics(term.args[1], domain, state, statics)
new_arg === term.args[1] && return term
val = new_arg.name
return val isa Bool ? Const(!val) : Compound(:not, Term[new_arg])
elseif is_quantifier(term)
typecond, body = term.args
body = simplify_statics(body, domain, state, statics)
body === term.args[2] && return term
return Compound(term.name, Term[typecond, body])
elseif is_static(term, domain, statics) && is_ground(term)
# Simplify predicates that are static and ground
if is_pred(term, domain)
return Const(satisfy(domain, state, term))
else
return Const(evaluate(domain, state, term)::Bool)
end
else # Return term without simplifying
return term
end
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4757 | """
$(SIGNATURES)
Check if term is a predicate.
"""
is_pred(term::Term, domain::Domain) =
term.name in keys(get_predicates(domain))
"""
$(SIGNATURES)
Check if term is a non-Boolean fluent (i.e. function).
"""
is_func(term::Term, domain::Domain) =
term.name in keys(get_functions(domain))
"""
$(SIGNATURES)
Check if term is an external function attached to a domain.
"""
is_attached_func(term::Term, domain::Domain) =
term.name in keys(get_funcdefs(domain))
"""
$(SIGNATURES)
Check if term is an external function (attached or global).
"""
is_external_func(term::Term, domain::Domain) =
is_global_func(term) || is_attached_func(term, domain)
"""
$(SIGNATURES)
Check if term is a derived predicate
"""
is_derived(term::Term, domain::Domain) =
term.name in keys(get_axioms(domain))
"""
$(SIGNATURES)
Check if term is a (non-external) domain fluent.
"""
is_fluent(term::Term, domain::Domain) =
is_pred(term, domain) || is_func(term, domain) && !is_attached_func(term, domain)
"""
$(SIGNATURES)
Check if term is a negation of another term.
"""
is_negation(term::Term) =
term.name == :not
"""
$(SIGNATURES)
Check if term is a universal or existential quantifier.
"""
is_quantifier(term::Term) =
term.name == :forall || term.name == :exists
"""
$(SIGNATURES)
Check if term is a global predicate (comparison, equality, etc.).
"""
is_global_pred(term::Term) =
term.name isa Symbol && is_global_pred(term.name)
"""
$(SIGNATURES)
Check if term is a global function, including global predicates.
"""
is_global_func(term::Term) =
term.name isa Symbol && is_global_func(term.name)
"""
$(SIGNATURES)
Check if term is a logical operator.
"""
is_logical_op(term::Term) =
term.name in (:and, :or, :not, :imply, :exists, :forall)
"""
$(SIGNATURES)
Check if term is a literal (an atomic formula or its negation.)
"""
is_literal(term::Term) =
!is_logical_op(term) || term.name == :not && !is_logical_op(term)
"""
$(SIGNATURES)
Check if term is a type predicate.
"""
is_type(term::Term, domain::Domain) =
term.name in get_types(domain)
"""
$(SIGNATURES)
Check if term is a type predicate with subtypes.
"""
has_subtypes(term::Term, domain::Domain) =
!isempty(get_subtypes(domain, term.name))
"Check if `term` has a (sub-term with a) name in `names`."
has_name(term::Const, names) = term.name in names
has_name(term::Var, names) = false
has_name(term::Compound, names) =
term.name in names || any(has_name(f, names) for f in term.args)
"""
$(SIGNATURES)
Check if term contains a predicate.
"""
has_pred(term::Term, domain::Domain) =
has_name(term, keys(get_predicates(domain)))
"""
$(SIGNATURES)
Check if term contains a global predicate.
"""
has_global_pred(term::Term) =
has_name(term, global_predicate_names())
"""
$(SIGNATURES)
Check if term contains a non-Boolean fluent (i.e. function).
"""
has_func(term::Term, domain::Domain) =
has_name(term, keys(get_functions(domain)))
"""
$(SIGNATURES)
Check if term contains an external function attached to a domain.
"""
has_attached_func(term::Term, domain::Domain) =
has_name(term, keys(get_funcdefs(domain)))
"""
$(SIGNATURES)
Check if term contains a global function.
"""
has_global_func(term::Term) =
has_name(term, global_function_names())
"""
$(SIGNATURES)
Check if term contains a logical operator.
"""
has_logical_op(term::Term) =
has_name(term, (:and, :or, :not, :imply, :exists, :forall))
"""
$(SIGNATURES)
Check if term contains a derived predicate
"""
has_derived(term::Term, domain::Domain) =
has_name(term, keys(get_axioms(domain)))
"""
$(SIGNATURES)
Check if term contains a universal or existential quantifier.
"""
has_quantifier(term::Term) =
has_name(term, (:forall, :exists))
"""
$(SIGNATURES)
Check if term contains a negated literal.
"""
has_negation(term::Term) =
has_name(term, (:not,))
"""
$(SIGNATURES)
Check if term contains a fluent name.
"""
has_fluent(term::Term, domain::Domain) =
has_pred(term, domain) || has_func(term, domain)
"""
$(SIGNATURES)
Check if term contains a type predicate.
"""
has_type(term::Term, domain::Domain) =
has_type(term, keys(get_types(domain)))
"""
$(SIGNATURES)
Returns list of constituent fluents.
"""
constituents(term::Term, domain::Domain) =
constituents!(Term[], term, domain)
constituents!(fluents, term::Const, domain::Domain) =
is_fluent(term, domain) ? push!(fluents, term) : fluents
constituents!(fluents, term::Var, domain::Domain) =
fluents
function constituents!(fluents, term::Compound, domain::Domain)
if is_fluent(term, domain)
push!(fluents, term)
else
for arg in term.args
constituents!(fluents, arg, domain)
end
end
return fluents
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2475 | "Helper macro for defining cached method implementations."
macro _cached(key, signature, postcall=nothing)
@assert signature.head == :call "Signature must be a typed function call."
# Extract function name and arguments
fname = signature.args[1]::Symbol
if signature.args[2].head == :parameters
args = signature.args[3:end]
kwargs = signature.args[2]
else
args = signature.args[2:end]
kwargs = nothing
end
argnames = map(args) do arg
arg.head == :(::) ? arg.args[1] : arg
end
argtypes = map(args) do arg
arg.head == :(::) ? arg.args[2] : :Any
end
domain = argnames[1]
argnames = argnames[2:end]
# Construct function expression for cached method
call_expr = if isnothing(kwargs)
:($fname($domain.source, $(argnames...)))
else
:($fname($kwargs, $domain.source, $(argnames...)))
end
orig_call_expr = call_expr
if !isnothing(postcall)
call_expr = :($postcall($call_expr))
end
body = :(
if haskey($domain.caches, $key)
cache = domain.caches[$key]
get!(cache, ($(argnames...),)) do
$call_expr
end
else
$orig_call_expr
end
)
signature.args[1] = GlobalRef(PDDL, fname)
if isnothing(kwargs)
signature.args[2]= :($domain::CachedDomain)
else
signature.args[3]= :($domain::CachedDomain)
end
f_expr = Expr(:function, signature, body)
# Construct mapping from key to method type
m_expr = :(
function $(GlobalRef(PDDL, :_cached_method_type))(::Val{$key})
($fname, ($(argtypes...),))
end
)
return Expr(:block, f_expr, m_expr)
end
"Return type signature for method associated with key."
@valsplit _cached_method_type(Val(key::Symbol)) =
error("Unrecognized method key :$key")
"Return inferred cache type for a domain type and method key."
function _infer_cache_type(D::Type{<:Domain}, key::Symbol)
S = statetype(D)
f, argtypes = _cached_method_type(key)
argtypes = map(argtypes) do type
type === Domain ? D : (type === State ? S : type)
end
K = Tuple{argtypes[2:end]...}
rtypes = Base.return_types(f, argtypes)
if f in (available, relevant)
V = Vector{Compound}
else
V = length(rtypes) > 1 ? Union{rtypes...} : rtypes[1]
end
return Dict{K, V}
end
include("domain.jl")
include("interface.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2372 | """
CachedDomain{D, Ks, Vs}
Wraps an existing domain of type `D`, caching the outputs of calls to a subset
of interface methods. `Ks` is a tuple of method identifiers, and `Vs` is a
a tuple of corresponding cache types.
"""
struct CachedDomain{D <: Domain, Ks, Vs} <: Domain
source::D
caches::NamedTuple{Ks,Vs}
end
"Default methods to cache in a CachedDomain."
const DEFAULT_CACHED_METHODS = [
:available,
:relevant,
:infer_static_fluents,
:infer_affected_fluents,
:infer_axiom_hierarchy
]
"""
CachedDomain(source::Domain)
CachedDomain(source::Domain, method_keys)
Construct a `CachedDomain` from a `source` domain, along with the associated
caches for each cached method. A list of `method_keys` can be provided, where
each key is a `Symbol` specifying the method to be cached.
By default, the following methods are cached: `$DEFAULT_CACHED_METHODS`.
"""
function CachedDomain(source::D, method_keys=DEFAULT_CACHED_METHODS) where {D <: Domain}
caches = (; (key => _infer_cache_type(D, key)() for key in method_keys)...)
return CachedDomain(source, caches)
end
function CachedDomain(source::CachedDomain, method_keys=DEFAULT_CACHED_METHODS)
return CachedDomain(source.source, method_keys)
end
get_name(domain::CachedDomain) = get_name(domain.source)
get_source(domain::CachedDomain) = domain.source
get_requirements(domain::CachedDomain) = get_requirements(domain.source)
get_typetree(domain::CachedDomain) = get_typetree(domain.source)
get_datatypes(domain::CachedDomain) = get_datatypes(domain.source)
get_constants(domain::CachedDomain) = get_constants(domain.source)
get_constypes(domain::CachedDomain) = get_constypes(domain.source)
get_predicates(domain::CachedDomain) = get_predicates(domain.source)
get_functions(domain::CachedDomain) = get_functions(domain.source)
get_funcdefs(domain::CachedDomain) = get_funcdefs(domain.source)
get_fluents(domain::CachedDomain) = get_fluents(domain.source)
get_axioms(domain::CachedDomain) = get_axioms(domain.source)
get_actions(domain::CachedDomain) = get_actions(domain.source)
statetype(::Type{CachedDomain{D}}) where {D} = statetype(D)
@_cached :infer_static_fluents infer_static_fluents(domain::Domain)
@_cached :infer_affected_fluents infer_affected_fluents(domain::Domain)
@_cached :infer_axiom_hierarchy infer_axiom_hierarchy(domain::Domain)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3421 | # Define cached interface methods
function maybe_collect(xs::AbstractVector{<:Term})
if all(isa.(xs, Compound))
return collect(Compound, xs)
else
return xs
end
end
maybe_collect(xs::AbstractVector) = xs
maybe_collect(xs::AbstractVector{Compound}) = collect(Compound, xs)
maybe_collect(xs::Vector{Compound}) = xs
maybe_collect(xs) = maybe_collect(collect(xs))
@_cached :satisfy satisfy(domain::Domain, state::State, terms::AbstractVector{<:Term})
@_cached :satisfiers satisfiers(domain::Domain, state::State, terms::AbstractVector{<:Term}) maybe_collect
@_cached :evaluate evaluate(domain::Domain, state::State, term::Term)
@_cached :available available(domain::Domain, state::State) maybe_collect
@_cached :relevant relevant(domain::Domain, state::State) maybe_collect
@_cached :is_available available(domain::Domain, state::State, term::Term)
@_cached :is_relevant relevant(domain::Domain, state::State, term::Term)
@_cached :transition transition(domain::Domain, state::State, term::Term; options...)
@_cached :execute execute(domain::Domain, state::State, term::Term; options...)
@_cached :regress regress(domain::Domain, state::State, term::Term; options...)
# Forward uncached interface methods
satisfy(domain::CachedDomain, state::State, term::Term) =
satisfy(domain, state, [term])
satisfiers(domain::CachedDomain, state::State, term::Term) =
satisfiers(domain.source, state, [term])
initstate(domain::CachedDomain, problem::Problem) =
initstate(domain.source, problem)
initstate(domain::CachedDomain, objtypes::AbstractDict, fluents) =
initstate(domain.source, objtypes, fluents)
goalstate(domain::CachedDomain, problem::Problem) =
goalstate(domain.source, problem)
goalstate(domain::CachedDomain, objtypes::AbstractDict, terms) =
goalstate(domain.source, objtypes, terms)
transition!(domain::CachedDomain, state::State, action::Term; options...) =
transition!(domain.source, state, action; options...)
transition!(domain::CachedDomain, state::State, actions; options...) =
transition!(domain.source, state, action; options...)
available(domain::CachedDomain, state::State, action::Action, args) =
available(domain, state, Compound(get_name(action), args))
execute(domain::CachedDomain, state::State, action::Action, args; options...) =
execute(domain, state, Compound(get_name(action), args); options...)
execute!(domain::CachedDomain, state::State, action::Action, args; options...) =
execute!(domain.source, state, action, args; options...)
execute!(domain::CachedDomain, state::State, action::Term; options...) =
execute!(domain.source, state, action; options...)
relevant(domain::CachedDomain, state::State, action::Action, args) =
relevant(domain, state, Compound(get_name(action), args))
regress(domain::CachedDomain, state::State, action::Action, args; options...) =
regress(domain, state, Compound(get_name(action), args); options...)
regress!(domain::CachedDomain, state::State, action::Action, args; options...) =
regress!(domain.source, state, action, args; options...)
regress!(domain::CachedDomain, state::State, action::Term; options...) =
regress!(domain.source, state, action; options...)
update!(domain::CachedDomain, state::State, diff::Diff) =
update!(domain.source, state, diff)
update(domain::CachedDomain, state::State, diff::Diff) =
update(domain.source, state, diff)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3341 |
function generate_get_expr(domain::Domain, state::State, term::Const,
varmap=Dict{Var,Any}(), state_var=:state)
if is_derived(term, domain)
return :(get_fluent($state_var, $(QuoteNode(term.name))))
else
return :($state_var.$(term.name))
end
end
function generate_get_expr(domain::Domain, state::State, term::Var,
varmap=Dict{Var,Any}(), state_var=:state)
return :($(varmap[term]))
end
function generate_get_expr(domain::Domain, state::State, term::Compound,
varmap=Dict{Var,Any}(), state_var=:state)
if is_derived(term, domain)
args = [varmap[a] for a in term.args]
return :(get_fluent($state_var, $(QuoteNode(term.name)), $(args...)))
else
sig = get_fluent(domain, term.name)
indices = generate_fluent_ids(domain, state, term, sig,
varmap, state_var)
return :($state_var.$(term.name)[$(indices...)])
end
end
function generate_set_expr(domain::Domain, state::State, term::Const,
val, varmap=Dict{Var,Any}(), state_var=:state)
if domain isa AbstractedDomain && domain.interpreter.autowiden && is_abstracted(term, domain)
prev_val = generate_get_expr(domain, state, term, varmap, :prev_state)
return :(setfield!($state_var, $(QuoteNode(term.name)), widen($prev_val, $val)))
else
return :(setfield!($state_var, $(QuoteNode(term.name)), $val))
end
end
function generate_set_expr(domain::Domain, state::State, term::Compound,
val, varmap=Dict{Var,Any}(), state_var=:state)
indices = generate_fluent_ids(domain, state, term,
get_fluent(domain, term.name), varmap, state_var)
if domain isa AbstractedDomain && domain.interpreter.autowiden && is_abstracted(term, domain)
prev_val = generate_get_expr(domain, state, term, varmap, :prev_state)
return :($state_var.$(term.name)[$(indices...)] = widen($prev_val, $val))
else
return :($state_var.$(term.name)[$(indices...)] = $val)
end
end
function generate_fluent_ids(domain::Domain, state::State, term::Term,
sig::Signature, varmap=Dict{Var,Any}(),
state_var=:state)
if get_requirements(domain)[:typing]
ids = map(zip(term.args, sig.argtypes)) do (arg, type)
if arg isa Var
:(objectindex($state_var, $(QuoteNode(type)), $(varmap[arg])))
else
objects = sort(get_objects(domain, state, type), by=x->x.name)
findfirst(isequal(arg), objects)
end
end
else
objects = sort(collect(get_objects(state)), by=x->x.name)
ids = map(term.args) do arg
if arg isa Var
:(objectindex($state_var, $(varmap[arg])))
else
findfirst(isequal(arg), objects)
end
end
end
return ids
end
function generate_fluent_dims(domain::Domain, state::State, pred::Signature)
if get_requirements(domain)[:typing]
dims = [length(get_objects(domain, state, ty)) for ty in pred.argtypes]
else
dims = fill(length(get_objects(state)), length(pred.args))
end
return dims
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3664 | function generate_action_defs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
available_def =
generate_available(domain, state, domain_type, state_type)
execute_def =
generate_execute(domain, state, domain_type, state_type)
all_action_defs = [available_def, execute_def]
all_action_names = sortedkeys(get_actions(domain))
all_action_types = Symbol[]
for name in all_action_names
action_defs =
generate_action_defs(domain, state, domain_type, state_type, name)
push!(all_action_types, action_defs[1])
append!(all_action_defs, action_defs[2:end])
end
action_map = Expr(:tuple, (Expr(:(=), n, Expr(:call, act)) for (n, act)
in zip(all_action_names, all_action_types))...)
get_actions_def = :(get_actions(::$domain_type) = $action_map)
push!(all_action_defs, get_actions_def)
return Expr(:block, all_action_defs...)
end
function generate_action_defs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
action_name::Symbol)
action_type = gensym("Compiled" * pddl_to_type_name(action_name) * "Action")
action_typedef = :(struct $action_type <: CompiledAction end)
groundargs_def =
generate_groundargs(domain, state, domain_type, state_type,
action_name, action_type)
available_def =
generate_available(domain, state, domain_type, state_type,
action_name, action_type)
execute_def =
generate_execute(domain, state, domain_type, state_type,
action_name, action_type)
method_defs =
generate_action_methods(domain, state, domain_type, state_type,
action_name, action_type)
return (action_type, action_typedef, method_defs,
groundargs_def, available_def, execute_def)
end
function generate_action_methods(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
action_name::Symbol, action_type::Symbol)
action = get_action(domain, action_name)
get_name_def =
:(get_name(::$action_type) = $(QuoteNode(get_name(action))))
get_argvars_def =
:(get_argvars(::$action_type) = $(QuoteNode(get_argvars(action))))
get_argtypes_def =
:(get_argtypes(::$action_type) = $(QuoteNode(get_argtypes(action))))
get_precond_def =
:(get_precond(::$action_type) = $(QuoteNode(get_precond(action))))
get_effect_def =
:(get_effect(::$action_type) = $(QuoteNode(get_effect(action))))
method_defs = Expr(:block, get_name_def, get_argvars_def, get_argtypes_def,
get_precond_def, get_effect_def)
return method_defs
end
function generate_groundargs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
action_name::Symbol, action_type::Symbol)
action = get_action(domain, action_name)
argtypes = get_argtypes(action)
if get_requirements(domain)[:typing]
objs_exprs = [:(get_objects(state, $(QuoteNode(ty)))) for ty in argtypes]
else
objs_exprs = [:(get_objects(state)) for ty in argtypes]
end
iter_expr = :(Iterators.product($(objs_exprs...)))
groundargs_def = quote
function groundargs(domain::$domain_type, state::$state_type,
action::$action_type)
return $iter_expr
end
end
return groundargs_def
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1949 | function generate_available(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
action_name::Symbol, action_type::Symbol)
action = get_actions(domain)[action_name]
varmap = Dict{Var,Any}(a => :(args[$i].name) for (i, a) in
enumerate(get_argvars(action)))
precond = to_nnf(get_precond(action))
precond = generate_check_expr(domain, state, precond, varmap)
if domain isa AbstractedDomain
available_def = quote
function available(domain::$domain_type, state::$state_type,
action::$action_type, args)
precond = @inbounds $precond
return precond == true || precond == both
end
end
else
available_def = quote
function available(domain::$domain_type, state::$state_type,
action::$action_type, args)
return @inbounds $precond
end
end
end
return available_def
end
function generate_available(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
available_def = quote
function available(domain::$domain_type, state::$state_type, term::Term)
available(domain, state, get_actions(domain)[term.name], term.args)
end
function available(domain::$domain_type, state::$state_type)
f = named_action -> begin
name, action = named_action
grounded_args = groundargs(domain, state, action)
return (Compound(name, collect(args)) for args in grounded_args
if available(domain, state, action, args))
end
actions = Base.Generator(f, pairs(get_actions(domain)))
return Iterators.flatten(actions)
end
end
return available_def
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4043 |
abstract type CompiledAction <: Action end
# Utility functions
include("utils.jl")
# Compiled types
include("domain.jl")
include("state.jl")
include("action.jl")
# Helper functions for objects/accessors/formulas
include("objects.jl")
include("accessors.jl")
include("formulas.jl")
# Interface functions
include("satisfy.jl")
include("evaluate.jl")
include("initstate.jl")
include("transition.jl")
include("available.jl")
include("execute.jl")
"""
compiled(domain, state)
compiled(domain, problem)
Compile a `domain` and `state` and return the resulting compiled domain
and compiled state. A `problem` maybe provided instead of a state.
!!! warning "Top-Level Only"
Because `compiled` defines new types and methods, it should only be
called at the top-level in order to avoid world-age errors.
!!! warning "Precompilation Not Supported"
Because `compiled` evaluates code in the `PDDL` module, it will lead to
precompilation errors when used in another module or package. Modules
which call `compiled` should hence disable precompilation.
"""
function compiled(domain::Domain, state::State)
# Generate definitions
domain_type, domain_typedef, domain_defs =
generate_domain_type(domain, state)
state_type, state_typedef, state_defs =
generate_state_type(domain, state, domain_type)
object_defs =
generate_object_defs(domain, state, domain_type, state_type)
evaluate_def =
generate_evaluate(domain, state, domain_type, state_type)
satisfy_def =
generate_satisfy(domain, state, domain_type, state_type)
action_defs =
generate_action_defs(domain, state, domain_type, state_type)
transition_def =
generate_transition(domain, state, domain_type, state_type)
# Generate warm-up and return expressions
warmup_expr = :(_compiler_warmup($domain_type(), $state_type($state)))
return_expr = :($domain_type(), $state_type($state))
# Evaluate definitions
expr = Expr(:block,
domain_typedef, domain_defs, state_typedef, state_defs, object_defs,
evaluate_def, satisfy_def, action_defs, transition_def,
warmup_expr, return_expr)
return eval(expr)
end
function compiled(domain::Domain, problem::Problem)
return compiled(domain, initstate(domain, problem))
end
"""
compilestate(domain, state)
Return compiled version of a state compatible with the compiled `domain`.
"""
function compilestate(domain::CompiledDomain, state::State)
S = statetype(domain)
return S(state)
end
# Abstract a domain that is already compiled
function abstracted(domain::CompiledDomain, state::State; options...)
absdom = abstracted(get_source(domain); options...)
return compiled(absdom, GenericState(state))
end
# If compiled state is abstract, we can just copy construct
function abstractstate(domain::CompiledDomain, state::State)
S = statetype(domain)
return S(state)
end
"Warm up interface functions for a compiled domain and state."
function _compiler_warmup(domain::CompiledDomain, state::CompiledState)
# Warm up state constructors and accessors
hash(state)
copy(state)
state == state
term = first(get_fluent_names(state))
state[term] = state[term]
# Warm up satisfy and evaluate
for term in get_fluent_names(state)
is_pred(term, domain) || continue
satisfy(domain, state, term)
evaluate(domain, state, term)
break
end
# Warm up action availability, execution, and state transition
available(domain, state)
for (name, act) in pairs(get_actions(domain))
all_args = groundargs(domain, state, act)
isempty(all_args) && continue
args = first(all_args)
term = Compound(name, collect(Term, args))
if available(domain, state, term)
execute!(domain, copy(state), term)
execute(domain, state, term)
transition!(domain, copy(state), term)
transition(domain, state, term)
end
end
return nothing
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2054 | abstract type CompiledDomain <: Domain end
get_source(::CompiledDomain) = error("Not implemented.")
function generate_domain_type(domain::Domain, state::State)
name = pddl_to_type_name(get_name(domain))
if domain isa AbstractedDomain
domain_type = gensym("CompiledAbstracted" * name * "Domain")
else
domain_type = gensym("Compiled" * name * "Domain")
end
domain_typedef = :(struct $domain_type <: CompiledDomain end)
domain_method_defs = generate_domain_methods(domain, domain_type)
return (domain_type, domain_typedef, domain_method_defs)
end
function generate_domain_methods(domain::Domain, domain_type::Symbol)
get_name_def = :(get_name(::$domain_type) = $(QuoteNode(get_name(domain))))
get_source_def = :(get_source(::$domain_type) = $(QuoteNode(domain)))
get_requirements_def = :(get_requirements(::$domain_type) =
$(QuoteNode((; get_requirements(domain)...))))
get_typetree_def = :(get_typetree(::$domain_type) =
$(QuoteNode((; get_typetree(domain)...))))
get_constants_def = :(get_constants(::$domain_type) =
$(QuoteNode(Tuple(get_constants(domain)))))
get_constypes_def = :(get_constypes(domain::$domain_type) =
get_constypes(get_source(domain)))
get_predicates_def = :(get_predicates(::$domain_type) =
$(QuoteNode((; get_predicates(domain)...))))
get_functions_def = :(get_functions(::$domain_type) =
$(QuoteNode((; get_functions(domain)...))))
get_funcdefs_def = :(get_funcdefs(::$domain_type) =
$(QuoteNode((; get_funcdefs(domain)...))))
get_fluents_def = :(get_fluents(::$domain_type) =
$(QuoteNode((; get_fluents(domain)...))))
get_axioms_def = :(get_axioms(::$domain_type) =
$(QuoteNode((; get_axioms(domain)...))))
domain_defs = Expr(:block, get_name_def, get_source_def,
get_requirements_def, get_typetree_def, get_constants_def,
get_constypes_def, get_predicates_def, get_functions_def,
get_funcdefs_def, get_fluents_def, get_axioms_def)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1174 | function generate_evaluate(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
evaluate_def = quote
function evaluate(domain::$domain_type, state::$state_type, term::Const)
val = if !(term.name isa Symbol)
term.name
elseif hasfield($state_type, term.name)
getfield(state, term.name)
elseif is_global_func(term)
function_def(term.name)()
elseif is_derived(term, domain)
get_fluent(state, term)
else
term.name
end
return val
end
function evaluate(domain::$domain_type, state::$state_type, term::Compound)
val = if is_global_func(term.name)
func = function_def(term.name)
argvals = (evaluate(domain, state, arg) for arg in term.args)
func(argvals...)
elseif is_logical_op(term)
satisfy(domain, state, term)
else
get_fluent(state, term)
end
return val
end
end
return evaluate_def
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2571 | function generate_execute(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
execute_def = quote
function execute(domain::$domain_type, state::$state_type, term::Term;
check::Bool=false)
execute(domain, state, get_action(domain, term.name), term.args;
check=check)
end
function execute!(domain::$domain_type, state::$state_type, term::Term;
check::Bool=false)
execute!(domain, state, get_action(domain, term.name), term.args;
check=check)
end
end
return execute_def
end
function generate_execute(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
action_name::Symbol, action_type::Symbol)
action = get_actions(domain)[action_name]
varmap = Dict{Var,Any}(a => :(args[$i].name) for (i, a) in
enumerate(get_argvars(action)))
# TODO: Fix mutating execute to ensure parallel composition of effects
precond = to_nnf(get_precond(action))
precond = generate_check_expr(domain, state, precond, varmap, :prev_state)
if domain isa AbstractedDomain
precond = :($precond == true || $precond == both)
end
effect = generate_effect_expr(domain, state, get_effect(action), varmap)
meffect = generate_effect_expr(domain, state, get_effect(action), varmap,
:prev_state, :prev_state)
execute_def = quote
function execute(domain::$domain_type, prev_state::$state_type,
action::$action_type, args; check::Bool=false)
if check && !(@inbounds $precond)
action_str = Writer.write_formula(get_name(action), args)
error("Could not execute $action_str: " *
"Precondition does not hold.")
end
state = copy(prev_state)
@inbounds $effect
return state
end
function execute!(domain::$domain_type, prev_state::$state_type,
action::$action_type, args; check::Bool=false)
if check && !(@inbounds $precond)
action_str = Writer.write_formula(get_name(action), args)
error("Could not execute $action_str: " *
"Precondition does not hold.")
end
@inbounds $meffect
return prev_state
end
end
return execute_def
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 8547 | function generate_eval_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(), state_var=:state)
if (term.name in keys(get_fluents(domain)) || term isa Var)
return generate_get_expr(domain, state, term, varmap, state_var)
elseif term isa Const
return QuoteNode(term.name)
end
subexprs = [generate_eval_expr(domain, state, a, varmap, state_var)
for a in term.args]
expr = if is_global_func(term)
op = function_def(term.name)
Expr(:call, QuoteNode(op), subexprs...)
else
error("Unrecognized predicate or operator $(term.name).")
end
return expr
end
function generate_quantified_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(), state_var=:state)
@assert length(term.args) == 2 "$(term.name) takes two arguments"
varmap = copy(varmap) # Make local copy of variable context
typeconds, query = flatten_conjs(term.args[1]), term.args[2]
types, vars = Symbol[], Symbol[]
for (i, cond) in enumerate(typeconds)
v = gensym("o$i") # Create local variable name
push!(vars, v)
push!(types, cond.name) # Extract type name
varmap[cond.args[1]] = :($v.name)
end
# Generate query expression with local variable context
expr = generate_check_expr(domain, state, query, varmap, state_var)
# Construct iterator over (typed) objects
v, ty = pop!(vars), QuoteNode(pop!(types))
expr = :($expr for $v in get_objects($state_var, $ty))
while !isempty(types)
v, ty = pop!(vars), QuoteNode(pop!(types))
expr = Expr(:flatten, :($expr for $v in get_objects($state_var, $ty)))
end
if domain isa AbstractedDomain
accum = term.name == :forall ? :all4 : :any4
return :($accum($expr))
else
accum = term.name == :forall ? :all : :any
return :($accum($expr))
end
end
function generate_axiom_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(), state_var=:state)
axiom = Julog.freshen(get_axiom(domain, term.name))
subst = unify(axiom.head, term)
@assert subst !== nothing "Malformed derived predicate: $term"
body = length(axiom.body) == 1 ? axiom.body[1] : Compound(:and, axiom.body)
body = to_nnf(substitute(body, subst))
return generate_check_expr(domain, state, body, varmap, state_var)
end
function generate_check_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(), state_var=:state)
if (is_global_func(term) || term.name in keys(get_funcdefs(domain)))
return generate_eval_expr(domain, state, term, varmap, state_var)
elseif (term.name in keys(get_fluents(domain)) || term isa Var)
return generate_get_expr(domain, state, term, varmap, state_var)
elseif term.name in (:forall, :exists)
return generate_quantified_expr(domain, state, term, varmap, state_var)
elseif term isa Const
return QuoteNode(term.name::Bool)
end
subexprs = [generate_check_expr(domain, state, a, varmap, state_var)
for a in term.args]
expr = if term.name == :and
foldr((a, b) -> Expr(:&&, a, b), subexprs)
elseif term.name == :or
foldr((a, b) -> Expr(:||, a, b), subexprs)
elseif term.name == :imply
@assert length(term.args) == 2 "imply takes two arguments"
:(!$(subexprs[1]) || $(subexprs[2]))
elseif term.name == :not
@assert length(term.args) == 1 "not takes one argument"
:(!$(subexprs[1]))
else
error("Unrecognized predicate or operator $(term.name).")
end
return expr
end
function generate_check_expr(domain::AbstractedDomain, state::State, term::Term,
varmap=Dict{Var,Any}(), state_var=:state)
if (is_global_func(term) || term.name in keys(get_funcdefs(domain)))
return generate_eval_expr(domain, state, term, varmap, state_var)
elseif (term.name in keys(get_fluents(domain)) || term isa Var)
return generate_get_expr(domain, state, term, varmap, state_var)
elseif term.name in (:forall, :exists)
return generate_quantified_expr(domain, state, term, varmap, state_var)
elseif term isa Const
return QuoteNode(term.name::Bool)
end
subexprs = [generate_check_expr(domain, state, a, varmap, state_var)
for a in term.args]
expr = if term.name == :and
generate_abstract_and_stmt(subexprs)
elseif term.name == :or
generate_abstract_or_stmt(subexprs)
elseif term.name == :imply
@assert length(term.args) == 2 "imply takes two arguments"
:(!$(subexprs[1]) | $(subexprs[2]))
elseif term.name == :not
@assert length(term.args) == 1 "not takes one argument"
:(!$(subexprs[1]))
else
error("Unrecognized predicate or operator $(term.name).")
end
return expr
end
function generate_forall_effect_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(),
state_var=:state, prev_var=:prev_state)
@assert length(term.args) == 2 "$(term.name) takes two arguments"
varmap = copy(varmap) # Make local copy of variable context
typeconds, effect = flatten_conjs(term.args[1]), term.args[2]
types, vars = Symbol[], Symbol[]
for (i, cond) in enumerate(typeconds)
v = gensym("o$i") # Create local variable name
push!(vars, v)
push!(types, cond.name) # Extract type name
varmap[cond.args[1]] = :($v.name)
end
# Generate effect expression with local variable context
expr = generate_effect_expr(domain, state, effect, varmap,
state_var, prev_var)
# Special case if only one object variable is enumerated over
if length(vars) == 1
v, ty = vars[1], QuoteNode(types[1])
expr = quote for $v in get_objects($state_var, $ty)
$expr
end end
return expr
end
# Construct iterator over (typed) objects
obj_exprs = (:(get_objects($state_var, $(QuoteNode(ty)))) for ty in types)
expr = quote for ($(vars...),) in zip($(obj_exprs...))
$expr
end end
return expr
end
function generate_effect_expr(domain::Domain, state::State, term::Term,
varmap=Dict{Var,Any}(),
state_var=:state, prev_var=:prev_state)
expr = if term.name == :and
subexprs = [generate_effect_expr(domain, state, a, varmap,
state_var, prev_var)
for a in term.args]
Expr(:block, subexprs...)
elseif term.name == :assign
@assert length(term.args) == 2 "assign takes two arguments"
term, val = term.args
val = generate_eval_expr(domain, state, val, varmap, prev_var)
generate_set_expr(domain, state, term, val, varmap, state_var)
elseif term.name == :not
@assert length(term.args) == 1 "not takes one argument"
term = term.args[1]
@assert term.name in keys(get_predicates(domain)) "unrecognized predicate"
generate_set_expr(domain, state, term, false, varmap, state_var)
elseif term.name == :when
@assert length(term.args) == 2 "when takes two arguments"
cond, effect = term.args
cond = generate_check_expr(domain, state, cond, varmap, prev_var)
effect = generate_effect_expr(domain, state, effect, varmap,
state_var, prev_var)
:(cond = $cond; (cond == true || cond == both) && $effect)
elseif term.name == :forall
generate_forall_effect_expr(domain, state, term, varmap,
state_var, prev_var)
elseif is_global_modifier(term.name)
@assert length(term.args) == 2 "$(term.name) takes two arguments"
op = modifier_def(term.name)
term, val = term.args
prev_val = generate_get_expr(domain, state, term, varmap, prev_var)
val = generate_eval_expr(domain, state, val, varmap, prev_var)
new_val = Expr(:call, op, prev_val, val)
generate_set_expr(domain, state, term, new_val, varmap, state_var)
elseif term.name in keys(get_predicates(domain))
generate_set_expr(domain, state, term, true, varmap, state_var)
else
error("Unrecognized predicate or operator $(term.name).")
end
return expr
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 573 | function initstate(domain::CompiledDomain, problem::GenericProblem)
# Construct state using interpreter, then convert to compiled
generic_state = initstate(get_source(domain), problem)
compiled_state = statetype(domain)(generic_state)
return compiled_state
end
function initstate(domain::CompiledDomain, objtypes::AbstractDict, fluents)
# Construct state using interpreter, then convert to compiled
generic_state = initstate(get_source(domain), objtypes, fluents)
compiled_state = statetype(domain)(generic_state)
return compiled_state
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1808 | function generate_object_defs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
objects = sort(collect(get_objects(state)), by=x->x.name)
object_ids = (; ((o.name, i) for (i, o) in enumerate(objects))...)
get_objects_def =
:(get_objects(::$state_type) = $(QuoteNode(Tuple(objects))))
get_objtypes_def =
:(get_objtypes(::$state_type) = $(QuoteNode(get_objtypes(state))))
objectindices_def =
:(objectindices(::$state_type) = $(QuoteNode(object_ids)))
objectindex_def =
:(objectindex(state::$state_type, o::Symbol) =
getfield(objectindices(state), o))
typed_defs =
generate_object_typed_defs(domain, state, domain_type, state_type)
return Expr(:block, get_objects_def, get_objtypes_def,
objectindices_def, objectindex_def, typed_defs)
end
function generate_object_typed_defs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
object_ids = Dict()
for type in get_types(domain)
objs = sort(get_objects(domain, state, type), by=x->x.name)
object_ids[type] = (; ((o.name, i) for (i, o) in enumerate(objs))...)
end
object_ids = (; (ty => ids for (ty, ids) in object_ids)...)
get_objects_def =
:(get_objects(state::$state_type, type::Symbol) =
Const.(keys(objectindices(state, type))))
objectindices_def =
:(objectindices(state::$state_type, type::Symbol) =
getfield($(QuoteNode(object_ids)), type))
objectindex_def =
:(objectindex(state::$state_type, type::Symbol, obj::Symbol) =
getfield(objectindices(state, type), obj))
return Expr(:block, get_objects_def, objectindices_def, objectindex_def)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 5268 | function generate_satisfy(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
satisfy_def = quote
function check(domain::$domain_type, state::$state_type, term::Var)
return missing
end
function check(domain::$domain_type, state::$state_type, term::Const)
val = if term.name isa Bool
return term.name
elseif hasfield($state_type, term.name)
getfield(state, term.name)
elseif is_global_pred(term)
predicate_def(term.name)()
elseif is_derived(term, domain)
get_fluent(state, term)
else
false
end
return val
end
function check(domain::$domain_type, state::$state_type, term::Compound)
val = if term.name == :and
all(check(domain, state, a) for a in term.args)
elseif term.name == :or
any(check(domain, state, a) for a in term.args)
elseif term.name == :imply
!check(domain, state, term.args[1]) |
check(domain, state, term.args[2])
elseif term.name == :not
!check(domain, state, term.args[1])
elseif is_type(term, domain)
term.args[1].name in keys(objectindices(state, term.name))
elseif !is_ground(term)
missing
elseif is_global_pred(term)
predicate_def(term.name)(evaluate(domain, state, term.args[1]),
evaluate(domain, state, term.args[2]))
elseif is_derived(term, domain)
get_fluent(state, term)
else
evaluate(domain, state, term)
end
return val
end
function satisfy(domain::$domain_type, state::$state_type, term::Term)
val = check(domain, state, term)
val !== missing ? val : !isempty(satisfiers(domain, state, term))
end
function satisfy(domain::$domain_type, state::$state_type,
terms::AbstractVector{<:Term})
val = all(check(domain, state, t) for t in terms)
val !== missing ? val : !isempty(satisfiers(domain, state, terms))
end
end
return satisfy_def
end
function generate_satisfy(domain::AbstractedDomain, state::State,
domain_type::Symbol, state_type::Symbol)
satisfy_def = quote
function check(domain::$domain_type, state::$state_type, term::Var)
return missing
end
function check(domain::$domain_type, state::$state_type, term::Const)
val = if term.name isa Bool
return term.name
elseif hasfield($state_type, term.name)
getfield(state, term.name)
elseif is_global_pred(term)
predicate_def(term.name)()
elseif is_derived(term, domain)
get_fluent(state, term)
else
false
end
return val
end
function check(domain::$domain_type, state::$state_type, term::Compound)
val = if term.name == :and
all4(check(domain, state, a) for a in term.args)
elseif term.name == :or
any4(check(domain, state, a) for a in term.args)
elseif term.name == :imply
!check(domain, state, term.args[1]) |
check(domain, state, term.args[2])
elseif term.name == :not
!check(domain, state, term.args[1])
elseif is_type(term, domain)
term.args[1].name in keys(objectindices(state, term.name))
elseif !is_ground(term)
missing
elseif is_global_pred(term)
predicate_def(term.name)(evaluate(domain, state, term.args[1]),
evaluate(domain, state, term.args[2]))
elseif is_derived(term, domain)
get_fluent(state, term)
else
evaluate(domain, state, term)
end
return val
end
function satisfy(domain::$domain_type, state::$state_type, term::Term)
val = check(domain, state, term)
return val !== missing ? (val == true || val == both) :
!isempty(satisfiers(domain, state, term))
end
function satisfy(domain::$domain_type, state::$state_type,
terms::AbstractVector{<:Term})
val = all4(check(domain, state, t) for t in terms)
return val !== missing ? (val == true || val == both) :
!isempty(satisfiers(domain, state, terms))
end
end
return satisfy_def
end
function satisfiers(domain::CompiledDomain, state::CompiledState,
terms::AbstractVector{<:Term})
gen_state = GenericState(state)
return satisfiers(get_source(domain), gen_state, terms)
end
function satisfiers(domain::CompiledDomain, state::CompiledState, term::Term)
gen_state = GenericState(state)
return satisfiers(get_source(domain), gen_state, term)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 10640 | abstract type CompiledState <: State end
function generate_field_type(domain::Domain, sig::Signature{N}) where {N}
dtype = get(get_datatypes(domain), sig.type, datatype_def(sig.type).type)
return N == 0 ? dtype : (dtype == Bool ? BitArray{N} : Array{dtype,N})
end
function generate_field_type(domain::AbstractedDomain, sig::Signature{N}) where {N}
dtype = get(domain.interpreter.fluent_abstractions, sig.name) do
get(domain.interpreter.type_abstractions, sig.type) do
get(get_datatypes(domain), sig.type) do
datatype_def(sig.type).type
end
end
end
return N == 0 ? dtype : Array{dtype,N}
end
function generate_pred_init(domain::Domain, state::State,
sig::Signature{N}) where {N}
if N == 0 return false end
dims = generate_fluent_dims(domain, state, sig)
return :(falses($(dims...)))
end
function generate_func_init(domain::Domain, state::State,
sig::Signature{N}) where {N}
default = QuoteNode(datatype_def(sig.type).default)
if N == 0 return default end
dims = generate_fluent_dims(domain, state, sig)
return :(fill($default, $(dims...)))
end
function generate_func_init(domain::AbstractedDomain, state::State,
sig::Signature{N}) where {N}
abstype = get(domain.interpreter.fluent_abstractions, sig.name) do
get(domain.interpreter.type_abstractions, sig.type, nothing)
end
if isnothing(abstype)
default = QuoteNode(datatype_def(sig.type).default)
else
default = QuoteNode(abstype(datatype_def(sig.type).default))
end
if N == 0 return default end
dims = generate_fluent_dims(domain, state, sig)
return :(fill($default, $(dims...)))
end
function generate_state_type(domain::Domain, state::State, domain_type::Symbol)
# Generate type definition
state_fields = Expr[]
for (name, pred) in sortedpairs(get_predicates(domain))
name in keys(get_axioms(domain)) && continue # Skip derived predicates
type = generate_field_type(domain, pred)
field = Expr(:(::), pred.name, QuoteNode(type))
push!(state_fields, field)
end
for (name, fn) in sortedpairs(get_functions(domain))
type = generate_field_type(domain, fn)
field = Expr(:(::), fn.name, QuoteNode(type))
push!(state_fields, field)
end
if domain isa AbstractedDomain
name = "CompiledAbstracted" * pddl_to_type_name(get_name(domain)) * "State"
else
name = "Compiled" * pddl_to_type_name(get_name(domain)) * "State"
end
state_type = gensym(name)
state_typesig = Expr(:(<:), state_type, QuoteNode(CompiledState))
state_typedef = :(@auto_hash_equals $(Expr(:struct, true, state_typesig,
Expr(:block, state_fields...))))
state_constructor_defs =
generate_state_constructors(domain, state, domain_type, state_type)
state_method_defs =
generate_state_methods(domain, state, domain_type, state_type)
state_defs = Expr(:block, state_constructor_defs, state_method_defs)
return (state_type, state_typedef, state_defs)
end
function generate_state_constructors(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
# Generate constructor with no arguments
state_inits = []
state_copies = Expr[]
for (name, pred) in sortedpairs(get_predicates(domain))
name in keys(get_axioms(domain)) && continue # Skip derived predicates
push!(state_inits, generate_pred_init(domain, state, pred))
copy_expr = arity(pred) == 0 ? :(state.$name) : :(copy(state.$name))
push!(state_copies, copy_expr)
end
for (name, fn) in sortedpairs(get_functions(domain))
push!(state_inits, generate_func_init(domain, state, fn))
if arity(fn) == 0
copy_expr = :(isbits(state.$name) ?
state.$name : copy(state.$name))
else
copy_expr = :(isbitstype(eltype(state.$name)) ?
copy(state.$name) : deepcopy(state.$name))
end
push!(state_copies, copy_expr)
end
state_constructor_defs = quote
$state_type() = $state_type($(state_inits...))
$state_type(state::$state_type) = $state_type($(state_copies...))
function $state_type(state::State)
new = $state_type()
for (term, val) in get_fluents(state)
if val === false continue end
set_fluent!(new, val, term)
end
return new
end
end
return state_constructor_defs
end
function generate_state_methods(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
# Construct domaintype and statetype methods
types_def = quote
domaintype(::Type{$state_type}) = $domain_type
domaintype(::$state_type) = $domain_type
statetype(::Type{$domain_type}) = $state_type
statetype(::$domain_type) = $state_type
get_domain(::$state_type) = $domain_type()
end
# Fluent name listing
get_fluent_names_def = quote
function get_fluent_names(state::$state_type)
domain = get_domain(state)
f = name -> begin
grounded_args = groundargs(domain, state, name)
return (!isempty(args) ? Compound(name, collect(args)) :
Const(name) for args in grounded_args)
end
fluents = Base.Generator(f, fieldnames($state_type))
return Iterators.flatten(fluents)
end
end
# Fluent accessors
fluent_conds, get_fluent_brs, set_fluent_brs, groundargs_defs =
Expr[], Expr[], Expr[], Expr[]
unpacked_conds, unpacked_get_brs, unpacked_set_brs = Expr[], Expr[], Expr[]
for (name, sig) in pairs(get_fluents(domain))
# Ground args
def = generate_groundargs(domain, state, domain_type, state_type, name)
push!(groundargs_defs, def)
# Generate accessor branch conditions
push!(fluent_conds, :(term.name == $(QuoteNode(name))))
push!(unpacked_conds, :(name == $(QuoteNode(name))))
# Generate accesor branch defs for derived predicates
if name in keys(get_axioms(domain))
term = convert(Term, sig)
varmap = Dict(a => :(term.args[$i].name)
for (i, a) in enumerate(sig.args))
get_expr = generate_axiom_expr(domain, state, term, varmap)
set_expr = :(error("Cannot set value of derived predicate: $name"))
push!(get_fluent_brs, get_expr)
push!(set_fluent_brs, set_expr)
varmap = Dict(a => :(args[$i]) for (i, a) in enumerate(sig.args))
get_expr = generate_axiom_expr(domain, state, term, varmap)
push!(unpacked_get_brs, get_expr)
push!(unpacked_set_brs, set_expr)
continue
end
# Generate accessor branch defs for 0-arity fluents
if length(sig.args) == 0
get_expr = :(state.$name)
set_expr = :(state.$name = val)
push!(get_fluent_brs, get_expr)
push!(set_fluent_brs, set_expr)
push!(unpacked_get_brs, get_expr)
push!(unpacked_set_brs, set_expr)
continue
end
# Generate accessor branch defs multiple-arity fluents
term = convert(Term, sig)
varmap = Dict(a => :(term.args[$i].name)
for (i, a) in enumerate(sig.args))
idxs = generate_fluent_ids(domain, state, term, sig, varmap)
push!(get_fluent_brs, :(@inbounds state.$name[$(idxs...)]))
push!(set_fluent_brs, :(@inbounds state.$name[$(idxs...)] = val))
varmap = Dict(a => :(args[$i]) for (i, a) in enumerate(sig.args))
idxs = generate_fluent_ids(domain, state, term, sig, varmap)
push!(unpacked_get_brs, :(@inbounds state.$name[$(idxs...)]))
push!(unpacked_set_brs, :(@inbounds state.$name[$(idxs...)] = val))
end
err_br = :(error("Unrecognized fluent: $(term.name)"))
unpacked_err_br = :(error("Unrecognized fluent: $name"))
get_fluent_def = quote
function get_fluent(state::$state_type, term::Term)
return $(generate_switch_stmt(fluent_conds, get_fluent_brs, err_br))
end
function get_fluent(state::$state_type, name::Symbol, args...)
return $(generate_switch_stmt(unpacked_conds, unpacked_get_brs,
unpacked_err_br))
end
end
set_fluent_def = quote
function set_fluent!(state::$state_type, val, term::Term)
return $(generate_switch_stmt(fluent_conds, set_fluent_brs, err_br))
end
function set_fluent!(state::$state_type, val, name::Symbol, args...)
return $(generate_switch_stmt(unpacked_conds, unpacked_set_brs,
unpacked_err_br))
end
end
state_method_defs = Expr(:block, types_def,
get_fluent_names_def, groundargs_defs...,
get_fluent_def, set_fluent_def)
return state_method_defs
end
function generate_groundargs(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol,
fluent::Symbol)
sig = get_fluent(domain, fluent)
argtypes = sig.argtypes
if get_requirements(domain)[:typing]
objs_exprs = [:(get_objects(state, $(QuoteNode(ty)))) for ty in argtypes]
else
objs_exprs = [:(get_objects(state)) for ty in argtypes]
end
iter_expr = :(Iterators.product($(objs_exprs...)))
valtype = QuoteNode(Val{fluent})
groundargs_def = quote
function groundargs(domain::$domain_type, state::$state_type,
fluent::$valtype)
return $iter_expr
end
end
return groundargs_def
end
function (::Type{S})(state::State) where {S <: CompiledState}
new = S()
for (term, val) in get_fluents(state)
if val === false continue end
set_fluent!(new, val, term)
end
return new
end
Base.copy(state::S) where {S <: CompiledState} =
S(state)
groundargs(domain::CompiledDomain, state::State, fluent::Symbol) =
groundargs(domain, state, Val(fluent))
get_fluents(state::CompiledState) =
(term => get_fluent(state, term) for term in get_fluent_names(state))
get_facts(state::CompiledState) =
(term for term in get_fluent_names(state)
if get_fluent(state, term) in (true, both))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1064 | function generate_transition(domain::Domain, state::State,
domain_type::Symbol, state_type::Symbol)
transition_def = quote
function transition(domain::$domain_type, state::$state_type,
term::Term; check::Bool=false)
if term.name == PDDL.no_op.name && isempty(term.args)
execute(domain, state, PDDL.NoOp(), term.args; check=check)
else
execute(domain, state, get_action(domain, term.name), term.args;
check=check)
end
end
function transition!(domain::$domain_type, state::$state_type,
term::Term; check::Bool=false)
if term.name == PDDL.no_op.name && isempty(term.args)
execute(domain, state, PDDL.NoOp(), term.args; check=check)
else
execute(domain, state, get_action(domain, term.name), term.args;
check=check)
end
end
end
return transition_def
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1696 | "Convert PDDL name-with-hyphens to CamelCase type name."
function pddl_to_type_name(name)
words = split(lowercase(string(name)), '-', keepempty=false)
return join(uppercasefirst.(words))
end
"Returns a list of pairs from a collection, sorted by key."
sortedpairs(collection) = sort(collect(pairs(collection)), by=first)
"Returns the sorted list of keys for a collection."
sortedkeys(collection) = sort(collect(keys(collection)))
"Generates a switch statement using `if` and `elseif`."
function generate_switch_stmt(cond_exprs, branch_exprs, default_expr=:nothing)
@assert length(cond_exprs) == length(branch_exprs)
expr = default_expr
for i in length(cond_exprs):-1:1
head = i == 1 ? :if : :elseif
expr = Expr(head, cond_exprs[i], branch_exprs[i], expr)
end
return expr
end
"Generate short-circuiting and statement which handles `both` values."
function generate_abstract_and_stmt(subexprs)
foldr(subexprs) do a, b
quote
let u = $a
if isboth(u)
$b === false ? false : both
elseif u
$b
else
false
end
end
end
end |> Base.remove_linenums!
end
"Generate short-circuiting or statement which handles `both` values."
function generate_abstract_or_stmt(subexprs)
foldr(subexprs) do a, b
quote
let u = $a
if isboth(u)
$b === true ? true : both
elseif u
true
else
$b
end
end
end
end |> Base.remove_linenums!
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 859 | "Generic PDDL action definition."
struct GenericAction <: Action
name::Symbol # Name of action
args::Vector{Var} # GenericAction parameters
types::Vector{Symbol} # Parameter types
precond::Term # Precondition of action
effect::Term # Effect of action
end
GenericAction(term::Term, precond::Term, effect::Term) =
GenericAction(term.name, get_args(term), Symbol[], precond, effect)
Base.:(==)(a1::GenericAction, a2::GenericAction) = (a1.name == a2.name &&
Set(a1.args) == Set(a2.args) && Set(a1.types) == Set(a2.types) &&
a1.precond == a2.precond && a1.effect == a2.effect)
get_name(action::GenericAction) = action.name
get_argvars(action::GenericAction) = action.args
get_argtypes(action::GenericAction) = action.types
get_precond(action::GenericAction) = action.precond
get_effect(action::GenericAction) = action.effect
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2433 | """
GenericDiff(add, del, ops)
Generic state difference represented as additions, deletions, and assignments.
# Fields
$(FIELDS)
"""
struct GenericDiff <: Diff
"List of added `Term`s"
add::Vector{Term}
"List of deleted `Term`s"
del::Vector{Term}
"Dictionary mapping fluents to their assigned expressions."
ops::Dict{Term,Term}
end
GenericDiff() = GenericDiff(Term[], Term[], Dict{Term,Any}())
function combine!(d1::GenericDiff, d2::GenericDiff)
append!(d1.add, d2.add)
append!(d1.del, d2.del)
merge!(d1.ops, d2.ops)
return d1
end
function as_term(diff::GenericDiff)
add = diff.add
del = [Compound(:not, [t]) for t in diff.del]
ops = [Compound(:assign, [t, v]) for (t, v) in diff.ops]
return Compound(:and, [add; del; ops])
end
is_redundant(diff::GenericDiff) =
issetequal(diff.add, diff.del) && all(k == v for (k, v) in diff.ops)
Base.empty(diff::GenericDiff) = GenericDiff()
Base.isempty(diff::GenericDiff) =
isempty(diff.add) && isempty(diff.del) && isempty(diff.ops)
"""
ConditionalDiff(conds, diffs)
Conditional state difference, represented as paired conditions and sub-diffs.
# Fields
$(FIELDS)
"""
struct ConditionalDiff{D <: Diff} <: Diff
"List of list of condition `Term`s for each sub-diff."
conds::Vector{Vector{Term}}
"List of sub-diffs."
diffs::Vector{D}
end
ConditionalDiff{D}() where {D} = ConditionalDiff{D}([], Vector{D}())
function combine!(d1::ConditionalDiff{D}, d2::D) where {D}
for (i, cs) in enumerate(d1.conds)
if isempty(cs)
combine!(d1.diffs[i], d2)
return d1
end
end
push!(d1.conds, Term[])
push!(d1.diffs, d2)
return d1
end
function combine!(d1::ConditionalDiff{D}, d2::ConditionalDiff{D}) where {D}
append!(d1.conds, d2.conds)
append!(d1.diffs, d2.diffs)
return d1
end
function as_term(diff::ConditionalDiff)
branches = map(zip(diff.conds, diff.diffs)) do (cs, d)
effect = as_term(d)
isempty(cs) && return effect
cond = length(cs) == 1 ? cs[1] : Compound(:and, cs)
return Compound(:when, [cond, effect])
end
return Compound(:and, branches)
end
is_redundant(diff::ConditionalDiff) = all(is_redundant.(diff.diffs))
Base.empty(diff::ConditionalDiff{D}) where {D} = ConditionalDiff{D}()
Base.isempty(diff::ConditionalDiff) =
all(isempty.(diff.conds)) && all(isempty.(diff.diffs))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3666 | "Generic PDDL planning domain."
@kwdef mutable struct GenericDomain <: Domain
name::Symbol # Name of domain
requirements::Dict{Symbol,Bool} = # PDDL requirements
copy(DEFAULT_REQUIREMENTS)
typetree::Dict{Symbol,Vector{Symbol}} = # Types and their subtypes
Dict(:object => Symbol[])
datatypes::Dict{Symbol,Type} = # Non-object data types
Dict{Symbol,Type}()
constants::Vector{Const} = # List of object constants
Const[]
constypes::Dict{Const,Symbol} = # Types of constants
Dict{Const,Symbol}()
predicates::Dict{Symbol,Signature} = # Predicate signatures
Dict{Symbol,Signature}()
functions::Dict{Symbol,Signature} = # Function signatures
Dict{Symbol,Signature}()
funcdefs::Dict{Symbol,Any} = # External function implementations
Dict{Symbol,Any}()
axioms::Dict{Symbol,Clause} = # Axioms / derived predicates
Dict{Symbol,Clause}()
actions::Dict{Symbol,Action} = # Action definitions
Dict{Symbol,Any}()
_extras::Dict{Symbol,Any} = # Extra fields for PDDL extensions
Dict{Symbol,Any}()
end
function GenericDomain(name::Symbol, header::Dict{Symbol,Any}, body::Dict{Symbol,Any})
h_extras = filter(item -> !(first(item) in fieldnames(GenericDomain)), header)
b_extras = filter(item -> !(first(item) in fieldnames(GenericDomain)), body)
extras = merge!(h_extras, b_extras)
header = filter(item -> first(item) in fieldnames(GenericDomain), header)
axioms = Clause[get(body, :axioms, []); get(body, :deriveds, [])]
body = filter(item -> first(item) in fieldnames(GenericDomain), body)
body[:axioms] = Dict(ax.head.name => ax for ax in axioms)
body[:actions] = Dict(act.name => act for act in body[:actions])
return GenericDomain(;name=name, _extras=extras, header..., body...)
end
Base.getproperty(d::GenericDomain, s::Symbol) =
hasfield(GenericDomain, s) ? getfield(d, s) : d._extras[s]
Base.setproperty!(d::GenericDomain, s::Symbol, val) =
hasfield(GenericDomain, s) && s != :_extras ?
setfield!(d, s, val) : setindex!(d._extras, val, s)
function Base.propertynames(d::GenericDomain, private::Bool=false)
if private
tuple(fieldnames(GenericDomain)..., keys(d._extras)...)
else
tuple(filter(f -> f != :_extras, fieldnames(GenericDomain))...,
keys(d._extras)...)
end
end
Base.copy(domain::GenericDomain) = deepcopy(domain)
get_name(domain::GenericDomain) = domain.name
get_source(domain::GenericDomain) = domain
get_requirements(domain::GenericDomain) = domain.requirements
get_typetree(domain::GenericDomain) = domain.typetree
get_datatypes(domain::GenericDomain) = domain.datatypes
get_constants(domain::GenericDomain) = domain.constants
get_constypes(domain::GenericDomain) = domain.constypes
get_predicates(domain::GenericDomain) = domain.predicates
get_functions(domain::GenericDomain) = domain.functions
get_funcdefs(domain::GenericDomain) = domain.funcdefs
get_fluents(domain::GenericDomain) = merge(domain.predicates, domain.functions)
get_axioms(domain::GenericDomain) = domain.axioms
get_actions(domain::GenericDomain) = domain.actions
"""
include_no_op!(domain::GenericDomain)
Adds the [`NoOp`](@ref) action to the set of available actions.
"""
function include_no_op!(domain::GenericDomain)
domain.actions[get_name(PDDL.NoOp())] = PDDL.NoOp()
return domain
end
"""
include_no_op(domain::GenericDomain)
Returns a copy of the domain with the [`NoOp`](@ref) action added to the set
of available actions.
"""
function include_no_op(domain::GenericDomain)
return include_no_op!(deepcopy(domain))
end | PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 278 | # Generic concrete representations of PDDL domains, states, actions, etc. #
include("domain.jl")
include("problem.jl")
include("state.jl")
include("action.jl")
include("diff.jl")
domaintype(::Type{GenericState}) = GenericDomain
statetype(::Type{GenericDomain}) = GenericState
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2640 | "Generic PDDL planning problem."
@kwdef mutable struct GenericProblem <: Problem
name::Symbol # Name of problem
domain::Symbol = gensym() # Name of associated domain
objects::Vector{Const} = Const[] # List of objects
objtypes::Dict{Const,Symbol} = Dict{Const,Symbol}() # Types of objects
init::Vector{Term} = Term[] # Predicates that hold in initial state
goal::Term = Compound(:and, []) # Goal formula
metric::Union{Term,Nothing} = nothing # Metric formula
constraints::Union{Term,Nothing} = nothing # Constraints formula
end
GenericProblem(problem::GenericProblem) = copy(problem)
function GenericProblem(problem::Problem)
return GenericProblem(
get_name(problem),
get_domain_name(problem),
collect(Const, get_objects(problem)),
Dict{Const,Symbol}(pairs(get_objtypes(state))...),
collect(Term, get_init_terms(problem)),
get_goal(problem),
get_metric(problem),
get_constraints(problem)
)
end
function GenericProblem(
name::Symbol, header::Dict{Symbol,Any}, body::Dict{Symbol,Any}
)
header = filter(item -> first(item) in fieldnames(GenericProblem), header)
body = filter(item -> first(item) in fieldnames(GenericProblem), body)
return GenericProblem(;name=name, header..., body...)
end
function GenericProblem(
state::State;
domain=:domain,
name=Symbol(domain, "-problem"),
goal::Term=Compound(:and, []),
metric=nothing,
constraints=nothing,
)
objtypes = Dict{Const,Symbol}(pairs(get_objtypes(state))...)
objects = collect(get_objects(state))
init = Term[]
for (name, val) in get_fluents(state)
if val isa Bool && val == true # Handle Boolean predicates
term = name
else # Handle non-Boolean fluents
val = val_to_term(val) # Express value as term
term = Compound(:(==), Term[name, val]) # Assignment expression
end
push!(init, term)
end
return GenericProblem(Symbol(name), Symbol(domain),
objects, objtypes, init,
goal, metric, constraints)
end
Base.copy(problem::GenericProblem) = deepcopy(problem)
get_name(problem::GenericProblem) = problem.name
get_domain_name(problem::GenericProblem) = problem.domain
get_objects(problem::GenericProblem) = problem.objects
get_objtypes(problem::GenericProblem) = problem.objtypes
get_init_terms(problem::GenericProblem) = problem.init
get_goal(problem::GenericProblem) = problem.goal
get_metric(problem::GenericProblem) = problem.metric
get_constraints(problem::GenericProblem) = problem.constraints
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3899 | "Generic PDDL state description."
mutable struct GenericState <: State
types::Set{Compound} # Object type declarations
facts::Set{Term} # Boolean-valued fluents
values::Dict{Symbol,Any} # All other fluents
end
GenericState(types) = GenericState(types, Set{Term}(), Dict{Symbol,Any}())
GenericState(types, facts) = GenericState(types, facts, Dict{Symbol,Any}())
GenericState(state::GenericState) = copy(state)
function GenericState(state::State)
types = Set{Compound}((Compound(ty, [o]) for (o, ty) in get_objtypes(state)))
new = GenericState(types)
for (term, val) in get_fluents(state)
if val === false continue end
set_fluent!(new, val, term)
end
return new
end
Base.copy(s::GenericState) =
GenericState(copy(s.types), copy(s.facts), deepcopy(s.values))
Base.:(==)(s1::GenericState, s2::GenericState) =
issetequal(s1.types, s2.types) && issetequal(s1.facts, s2.facts) &&
isequal(s1.values, s2.values)
Base.hash(s::GenericState, h::UInt) =
hash(s.values, hash(s.facts, hash(s.types, h)))
Base.issubset(s1::GenericState, s2::GenericState) =
s1.types ⊆ s2.types && s1.facts ⊆ s2.facts
stateindex(domain::GenericDomain, state::GenericState) =
hash(state)
get_objects(state::GenericState) =
Const[ty.args[1] for ty in state.types]
get_objects(state::GenericState, type::Symbol) =
Const[ty.args[1] for ty in state.types if ty.name == type]
get_objtypes(state::GenericState) =
Dict(ty.args[1] => ty.name for ty in state.types)
get_facts(state::GenericState) =
state.facts
function get_fluent(state::GenericState, term::Const)
if term in state.facts
return true
elseif !(term.name isa Symbol) || is_global_func(term)
error("$(write_pddl(term)) is not a fluent, use `evaluate` instead.")
else
return get(state.values, term.name, false)
end
end
function get_fluent(state::GenericState, term::Compound)
if term in state.facts
return true
else
d = get(state.values, term.name, nothing)
if !isnothing(d)
return get(d, Tuple(a.name for a in term.args)) do
error("Fluent $term undefined for arguments $(term.args)")
end
elseif is_logical_op(term) || is_global_func(term)
error("$(write_pddl(term)) is not a fluent, use `evaluate` instead.")
else
return false
end
end
end
function set_fluent!(state::GenericState, val::Bool, term::Compound)
if val push!(state.facts, term) else delete!(state.facts, term) end
return val
end
function set_fluent!(state::GenericState, val::Bool, term::Const)
if val push!(state.facts, term) else delete!(state.facts, term) end
return val
end
function set_fluent!(state::GenericState, val::Any, term::Const)
if !(term.name isa Symbol) || is_global_func(term)
error("$(write_pddl(term)) is not a fluent and cannot be set.")
end
state.values[term.name] = val
end
function set_fluent!(state::GenericState, val::Any, term::Compound)
d = get!(state.values, term.name) do
is_logical_op(term) || is_global_func(term) ?
error("$(write_pddl(term)) is not a fluent and cannot be set") : Dict()
end
d[Tuple(a.name for a in term.args)] = val
end
get_fluents(state::GenericState) =
((name => get_fluent(state, name)) for name in get_fluent_names(state))
function get_fluent_names(state::GenericState)
f = x -> begin
name, val = x
if isa(val, Dict)
return (Compound(name, Const.(collect(args))) for args in keys(val))
else
return (Const(name),)
end
end
fluent_names = Iterators.flatten(Base.Generator(f, state.values))
return Iterators.flatten((state.facts, fluent_names))
end
get_fluent_values(state::GenericState) =
(get_fluent(state, name) for name in get_fluent_names(state))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 8469 | """
GroundAction(name, term, preconds, effect)
Ground action definition, represented by the `name` of its corresponding action
schema, a `term` with grounded arguments, a list of `preconds`, and an `effect`,
represented as a [`PDDL.GenericDiff`](@ref) or [`PDDL.ConditionalDiff`](@ref).
"""
struct GroundAction <: Action
name::Symbol
term::Compound
preconds::Vector{Term}
effect::Union{GenericDiff,ConditionalDiff}
end
get_name(action::GroundAction) = action.name
get_argvals(action::GroundAction) = term.args
get_precond(action::GroundAction) = Compound(:and, action.preconds)
get_precond(action::GroundAction, args) =
all(args .== action.term.args) ? get_precond(action) : error("Argument mismatch.")
get_effect(action::GroundAction) = as_term(action.effect)
get_effect(action::GroundAction, args) =
all(args .== action.term.args) ? get_effect(action) : error("Argument mismatch.")
Base.convert(::Type{Compound}, action::GroundAction) = action.term
Base.convert(::Type{Const}, action::GroundAction) =
isempty(action.term.args) ? action.term : error("Action has arguments.")
"Group of ground actions with a shared schema."
struct GroundActionGroup <: Action
name::Symbol
args::Vector{Var}
types::Vector{Symbol}
actions::Dict{Compound,GroundAction}
end
function GroundActionGroup(name::Symbol, args, types,
actions::AbstractVector{GroundAction})
actions = Dict(act.term => act for act in actions)
return GroundActionGroup(name, args, types, actions)
end
get_name(action::GroundActionGroup) = action.name
get_argvars(action::GroundActionGroup) = action.args
get_argtypes(action::GroundActionGroup) = action.types
function get_precond(action::GroundActionGroup, args)
term = Compound(action.name, args)
return get_precond(action.actions[term])
end
function get_effect(action::GroundActionGroup, args)
term = Compound(action.name, args)
return get_effect(action.actions[term])
end
"Maximum limit for grounding by enumerating over typed objects."
const MAX_GROUND_BY_TYPE_LIMIT = 250
"Minimum number of static conditions for grounding by static satisfaction."
const MIN_GROUND_BY_STATIC_LIMIT = 1
"Returns an iterator over all ground arguments of an `action`."
function groundargs(domain::Domain, state::State, action::Action;
statics=nothing)
if isempty(get_argtypes(action))
return ((),)
end
# Extract static preconditions
statics = (statics === nothing) ? infer_static_fluents(domain) : statics
preconds = flatten_conjs(get_precond(action))
filter!(p -> p.name in statics, preconds)
# Decide whether to generate by satisfying static preconditions
n_groundings = prod(get_object_count(domain, state, ty)
for ty in get_argtypes(action))
use_preconds = n_groundings > MAX_GROUND_BY_TYPE_LIMIT &&
length(preconds) >= MIN_GROUND_BY_STATIC_LIMIT
if use_preconds # Filter using preconditions
# Add type conditions for correctness
act_vars, act_types = get_argvars(action), get_argtypes(action)
typeconds = (pddl"($ty $v)" for (v, ty) in zip(act_vars, act_types))
conds = [preconds; typeconds...]
# Find all arguments that satisfy static preconditions
argvars = get_argvars(action)
iter = ([subst[v] for v in argvars] for
subst in satisfiers(domain, state, conds))
return iter
else # Iterate over domain of each type
iters = (get_objects(domain, state, ty) for ty in get_argtypes(action))
return Iterators.product(iters...)
end
end
"""
groundactions(domain::Domain, state::State, action::Action)
Returns ground actions for a lifted `action` in a `domain` and initial `state`.
"""
function groundactions(domain::Domain, state::State, action::Action;
statics=infer_static_fluents(domain))
ground_acts = GroundAction[]
# Dequantify and flatten preconditions and effects
precond = to_nnf(dequantify(get_precond(action),
domain, state, statics))
effects = flatten_conditions(dequantify(get_effect(action),
domain, state, statics))
# Iterate over possible groundings
for args in groundargs(domain, state, action; statics=statics)
# Construct ground action for each set of arguments
act = ground(domain, state, action, args;
statics=statics, precond=precond, effects=effects)
# Skip actions that are never satisfiable
if (act === nothing) continue end
push!(ground_acts, act)
end
return ground_acts
end
function groundactions(domain::Domain, state::State, action::GroundActionGroup,
statics=nothing)
return values(action.actions)
end
"""
groundactions(domain::Domain, state::State)
Returns all ground actions for a `domain` and initial `state`.
"""
function groundactions(domain::Domain, state::State;
statics=infer_static_fluents(domain))
iters = (groundactions(domain, state, act; statics=statics)
for act in values(get_actions(domain)))
return collect(Iterators.flatten(iters))
end
"""
ground(domain::Domain, state::State, action::Action, args)
Return ground action given a lifted `action` and action `args`. If the action
is never satisfiable given the `domain` and `state`, return `nothing`.
"""
function ground(domain::Domain, state::State, action::Action, args;
statics=infer_static_fluents(domain),
precond=to_nnf(dequantify(get_precond(action),
domain, state, statics)),
effects=flatten_conditions(dequantify(get_effect(action),
domain, state, statics))
)
act_name = get_name(action)
act_vars = get_argvars(action)
term = Compound(act_name, collect(args))
# Substitute and simplify precondition
subst = Subst(var => val for (var, val) in zip(act_vars, args))
precond = substitute(precond, subst)
precond = simplify_statics(precond, domain, state, statics)
# Return nothing if unsatisfiable
if (precond.name == false) return nothing end
# Unpack effects into conditions and effects
conds, effects = effects
# Simplify conditions of conditional effects
conds = map(conds) do cs
isempty(cs) && return cs
cond = substitute(Compound(:and, cs), subst)
cond = simplify_statics(cond, domain, state, statics)
return to_cnf_clauses(cond)
end
# Construct diffs from conditional effect terms
diffs = map(effects) do es
eff = substitute(Compound(:and, es), subst)
return effect_diff(domain, state, eff)
end
# Delete unsatisfiable branches
unsat_idxs = findall(cs -> Const(false) in cs, conds)
deleteat!(conds, unsat_idxs)
deleteat!(diffs, unsat_idxs)
# Decide whether to simplify precondition to CNF
if is_dnf(precond) # Split disjunctive precondition into conditional effects
conds = map(precond.args) do clause
terms = flatten_conjs(clause)
return [Term[terms; cs] for cs in conds]
end
conds = reduce(vcat, conds)
diffs = repeat(diffs, length(precond.args))
preconds = Term[]
elseif is_cnf(precond) # Keep as CNF if possible
preconds = precond.args
else # Otherwise convert to CNF
preconds = to_cnf_clauses(precond)
end
# Construct conditional diff if necessary
if length(diffs) > 1
effect = ConditionalDiff(conds, diffs)
elseif length(diffs) == 1
effect = diffs[1]
preconds = append!(preconds, conds[1])
filter!(c -> c != Const(true), preconds)
else # Return nothing if no satisfiable branches
return nothing
end
# Return ground action
return GroundAction(act_name, term, preconds, effect)
end
"""
ground(domain::Domain, state::State, action::Action)
Grounds a lifted `action` in a `domain` and initial `state`, returning a
group of grounded actions.
"""
function ground(domain::Domain, state::State, action::Action;
statics=infer_static_fluents(domain))
ground_acts = groundactions(domain, state, action; statics=statics)
vars, types = get_argvars(action), get_argtypes(action)
return GroundActionGroup(get_name(action), vars, types, ground_acts)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 837 | function available(domain::GroundDomain, state::State)
iters = ((t for (t, a) in group.actions if available(domain, state, a))
for (_, group) in domain.actions)
return Iterators.flatten(iters)
end
function available(domain::GroundDomain, state::State,
group::GroundActionGroup, args)
term = Compound(group.name, args)
return available(domain, state, group.actions[term])
end
function available(domain::GroundDomain, state::State, term::Term)
if term.name == PDDL.no_op.name return true end
if (term isa Const) term = Compound(term.name, []) end
action = domain.actions[term.name].actions[term]
return available(domain, state, action)
end
function available(domain::GroundDomain, state::State, action::GroundAction)
return satisfy(domain, state, action.preconds)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1471 | # Utilities for converting axioms to ground actions
"Converts a domain axiom to an action."
function GenericAction(domain::Domain, axiom::Clause; negated::Bool=false)
term = axiom.head
name = term.name
args = term.args
types = collect(get_predicate(domain, name).argtypes)
precond = Compound(:and, axiom.body)
effect = axiom.head
if negated
name = Symbol(:not, :-, name)
precond = Compound(:not, Term[precond])
effect = Compound(:not, Term[effect])
end
return GenericAction(name, args, types, to_nnf(precond), effect)
end
"""
groundaxioms(domain::Domain, state::State, axiom::Clause)
Converts a PDDL axiom to a set of ground actions.
"""
function groundaxioms(domain::Domain, state::State, axiom::Clause;
statics=infer_static_fluents(domain))
action = GenericAction(domain, axiom)
neg_action = GenericAction(domain, axiom; negated=true)
return [groundactions(domain, state, action; statics=statics);
groundactions(domain, state, neg_action; statics=statics)]
end
"""
groundaxioms(domain::Domain, state::State)
Convert all axioms into ground actions for a `domain` and initial `state`.
"""
function groundaxioms(domain::Domain, state::State)
statics = infer_static_fluents(domain)
iters = (groundaxioms(domain, state, axiom; statics=statics)
for axiom in values(get_axioms(domain)))
return collect(Iterators.flatten(iters))
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1852 | """
GroundDomain(name, source, actions)
Ground PDDL domain, constructed from a lifted `source` domain, with a dictionary
of ground `actions`.
"""
struct GroundDomain <: Domain
name::Symbol # Domain name
source::GenericDomain # Lifted source domain
actions::Dict{Symbol,GroundActionGroup}
end
get_name(domain::GroundDomain) = domain.name
get_source(domain::GroundDomain) = domain.source
get_requirements(domain::GroundDomain) = get_requirements(domain.source)
get_typetree(domain::GroundDomain) = get_typetree(domain.source)
get_datatypes(domain::GroundDomain) = get_datatypes(domain.source)
get_constants(domain::GroundDomain) = get_constants(domain.source)
get_constypes(domain::GroundDomain) = get_constypes(domain.source)
get_predicates(domain::GroundDomain) = get_predicates(domain.source)
get_functions(domain::GroundDomain) = get_functions(domain.source)
get_funcdefs(domain::GroundDomain) = get_funcdefs(domain.source)
get_fluents(domain::GroundDomain) = get_fluents(domain.source)
get_axioms(domain::GroundDomain) = get_axioms(domain.source)
get_actions(domain::GroundDomain) = domain.actions
"""
ground(domain::Domain, state::State)
ground(domain::Domain, problem::Problem)
Grounds a lifted `domain` with respect to a initial `state` or `problem`.
"""
ground(domain::Domain, state::State) =
ground(get_source(domain), GenericState(state))
ground(domain::Domain, problem::Problem) =
ground(domain, initstate(domain, problem))
function ground(domain::GenericDomain, state::State)
statics = infer_static_fluents(domain)
ground_domain = GroundDomain(domain.name, domain, Dict())
for (name, act) in get_actions(domain)
ground_domain.actions[name] = ground(domain, state, act;
statics=statics)
end
return ground_domain
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1530 | function execute(domain::GroundDomain, state::State, term::Term, options...)
if term.name == PDDL.no_op.name return state end
return execute!(domain, copy(state), term; options...)
end
function execute(domain::GroundDomain, state::State,
action::GroundActionGroup, args; options...)
return execute!(domain, copy(state), action, args; options...)
end
function execute(domain::GroundDomain, state::State,
action::GroundAction; options...)
return execute!(domain, copy(state), action; options...)
end
function execute!(domain::GroundDomain, state::State, term::Term; options...)
if term.name == PDDL.no_op.name return state end
if (term isa Const) term = Compound(term.name, []) end
action = domain.actions[term.name].actions[term]
return execute!(domain, state, action; options...)
end
function execute!(domain::GroundDomain, state::State,
group::GroundActionGroup, args; options...)
term = Compound(group.name, args)
return execute!(domain, state, group.actions[term]; options...)
end
function execute!(domain::GroundDomain, state::State,
action::GroundAction; check::Bool=true)
# Check whether preconditions hold
if check && !available(domain, state, action)
action_str = write_pddl(action.term)
error("Could not execute $action_str:\n" *
"Precondition $(get_precond(action)) does not hold.")
end
# Update state with diff
return update!(domain, state, action.effect)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 216 | # Domain, action, and axiom grounding
include("action.jl")
include("axiom.jl")
include("domain.jl")
include("interface.jl")
include("available.jl")
include("execute.jl")
include("transition.jl")
include("utils.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1380 | # Forward interface methods to concrete interpreter #
satisfy(domain::GroundDomain, state::State, term::Term) =
satisfy(ConcreteInterpreter(), domain, state, term)
satisfy(domain::GroundDomain, state::State, terms::AbstractVector{<:Term}) =
satisfy(ConcreteInterpreter(), domain, state, terms)
satisfiers(domain::GroundDomain, state::State, term::Term) =
satisfiers(ConcreteInterpreter(), domain, state, term)
satisfiers(domain::GroundDomain, state::State, terms::AbstractVector{<:Term}) =
satisfiers(ConcreteInterpreter(), domain, state, terms)
evaluate(domain::GroundDomain, state::State, term::Term) =
evaluate(ConcreteInterpreter(), domain, state, term)
initstate(domain::GroundDomain, problem::Problem) =
initstate(ConcreteInterpreter(), domain, problem)
initstate(domain::GroundDomain, objtypes::AbstractDict, fluents) =
initstate(ConcreteInterpreter(), domain, objtypes, fluents)
goalstate(domain::GroundDomain, problem::Problem) =
goalstate(ConcreteInterpreter(), domain, problem)
goalstate(domain::GroundDomain, objtypes::AbstractDict, terms) =
goalstate(ConcreteInterpreter(), domain, objtypes, terms)
update!(domain::GroundDomain, state::State, diff::Diff) =
update!(ConcreteInterpreter(), domain, state, diff)
update(domain::GroundDomain, state::State, diff::Diff) =
update(ConcreteInterpreter(), domain, state, diff)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 246 | transition(domain::GroundDomain, state::State, action::Term; options...) =
execute(domain, state, action; options...)
transition!(domain::GroundDomain, state::State, action::Term; options...) =
execute!(domain, state, action; options...)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 8606 | # Various term manipulation utilities
"Returns an iterator over all ground arguments of a `fluent`."
function groundargs(domain::Domain, state::State, fluent::Symbol)
if get_requirements(domain)[:typing]
argtypes = get_fluent(domain, fluent).argtypes
obj_iters = (get_objects(domain, state, ty) for ty in argtypes)
else
n = arity(get_fluent(domain, fluent))
obj_iters = (get_objects(state) for i in 1:n)
end
return Iterators.product(obj_iters...)
end
"""
dequantify(term::Term, domain::Domain, state::State)
Replaces universally or existentially quantified expressions with their
corresponding conjuctions or disjunctions over the object types they quantify.
"""
function dequantify(term::Term, domain::Domain, state::State,
statics=infer_static_fluents(domain))
if is_quantifier(term)
conds, query = flatten_conjs(term.args[1]), term.args[2]
query = dequantify(query, domain, state, statics)
# Dequantify by type if no static fluents
if statics === nothing || isempty(statics)
return dequantify_by_type(term.name, conds, query, domain, state)
else # Dequantify by static conditions otherwise
return dequantify_by_stat_conds(term.name, conds, query,
domain, state, statics)
end
elseif term.name in (:and, :or, :imply, :not, :when)
args = Term[dequantify(arg, domain, state, statics)
for arg in term.args]
return Compound(term.name, args)
else
return term
end
end
"Dequantifies a quantified expression by the types it is quantified over."
function dequantify_by_type(
name::Symbol, typeconds::Vector{Term}, query::Term,
domain::Domain, state::State
)
# Accumulate list of ground terms
stack = Term[]
subterms = Term[query]
for cond in typeconds
# Swap array references
stack, subterms = subterms, stack
# Substitute all objects of each type
type, var = cond.name, cond.args[1]
objects = get_objects(domain, state, type)
while !isempty(stack)
term = pop!(stack)
for obj in objects
push!(subterms, substitute(term, Subst(var => obj)))
end
end
end
# Return conjunction / disjunction of ground terms
if name == :forall
return isempty(subterms) ? Const(true) : Compound(:and, subterms)
else # name == :exists
return isempty(subterms) ? Const(false) : Compound(:or, subterms)
end
end
"Dequantifies a quantified expression via static satisfaction (where useful)."
function dequantify_by_stat_conds(
name::Symbol, conds::Vector{Term}, query::Term,
domain::Domain, state::State, statics::Vector{Symbol}
)
vars = Var[c.args[1] for c in conds]
types = Symbol[c.name for c in conds]
# Determine conditions that potentially restrict dequantification
if name == :forall
extra_conds = query.name in (:when, :imply) ? query.args[1] : Term[]
else # name == :exists
extra_conds = query
end
# Add static conditions
for c in flatten_conjs(extra_conds)
c.name in statics || continue
push!(conds, c)
end
# Default to dequantifying by types if no static conditions were added
if length(conds) == length(vars)
return dequantify_by_type(name, conds, query, domain, state)
end
# Check if static conditions actually restrict the number of groundings
substs = satisfiers(domain, state, conds)
if prod(get_object_count(domain, state, ty) for ty in types) < length(substs)
conds = resize!(conds, length(vars))
return dequantify_by_type(name, conds, query, domain, state)
end
# Accumulate list of ground terms
subterms = Term[]
for s in substs
length(s) > length(vars) && filter!(p -> first(p) in vars, s)
push!(subterms, substitute(query, s))
end
# Return conjunction / disjunction of ground terms
if name == :forall
return isempty(subterms) ? Const(true) : Compound(:and, subterms)
else # name == :exists
return isempty(subterms) ? Const(false) : Compound(:or, subterms)
end
end
"""
conds, effects = flatten_conditions(term::Term)
Flattens a (potentially nested) conditional effect `term` into a list of
condition lists (`conds`) and a list of effect lists (`effects`).
"""
function flatten_conditions(term::Term)
if term.name == :when # Conditional case
cond, effect = term.args[1], term.args[2]
subconds, subeffects = flatten_conditions(effect)
for sc in subconds prepend!(sc, flatten_conjs(cond)) end
return subconds, subeffects
elseif term.name == :and # Conjunctive case
conds, effects = [Term[]], [Term[]]
for effect in term.args
subconds, subeffects = flatten_conditions(effect)
for (c, e) in zip(subconds, subeffects)
if isempty(c)
append!(effects[1], e)
else
push!(conds, c)
push!(effects, e)
end
end
end
if isempty(effects[1])
popfirst!(conds)
popfirst!(effects)
end
return conds, effects
elseif term.name == true # Empty effects (due to simplification)
cond, effect = Term[], Term[]
return [cond], [effect]
else # Base case
cond, effect = Term[], Term[term]
return [cond], [effect]
end
end
"""
actions = flatten_conditions(action::GroundAction)
Flattens ground actions with conditional effects into multiple ground actions.
"""
function flatten_conditions(action::GroundAction)
if (action.effect isa GenericDiff) return [action] end
actions = GroundAction[]
for (conds, diff) in zip(action.effect.conds, action.effect.diffs)
preconds = [action.preconds; conds]
push!(actions, GroundAction(action.name, action.term, preconds, diff))
end
return actions
end
"Checks if a term or list of terms is in conjunctive normal form."
is_cnf(term::Term) =
term.name == :and && is_cnf(term.args)
is_cnf(terms::AbstractVector{<:Term}) =
all(is_cnf_clause(t) for t in terms)
"Checks if a term or list of terms is a CNF clause."
is_cnf_clause(term::Term) =
(term.name == :or && is_cnf_clause(term.args)) || is_literal(term)
is_cnf_clause(terms::AbstractVector{<:Term}) =
all(is_literal(t) for t in terms)
"Checks if a term or list of terms is in disjunctive normal form."
is_dnf(term::Term) =
term.name == :or && is_dnf(term.args)
is_dnf(terms::AbstractVector{<:Term}) =
all(is_dnf_clause(t) for t in terms)
"Checks if a term or list of terms is a CNF clause."
is_dnf_clause(term::Term) =
(term.name == :and && is_dnf_clause(term.args)) || is_literal(term)
is_dnf_clause(terms::AbstractVector{<:Term}) =
all(is_literal(t) for t in terms)
"""
clauses = to_cnf_clauses(term)
Convert a `term` to CNF and return a list of the clauses as terms. Clauses with
multiple literals have an `or` around them, but single-literal clauses do not.
"""
function to_cnf_clauses(term::Term)
term = to_cnf(term)
clauses = map!(similar(term.args), term.args) do c
(length(c.args) == 1) ? c.args[1] : Compound(c.name, unique!(c.args))
end
filter!(clauses) do c # Filter out clauses with conflicting literals
c.name != :or && return true
negated = [term.args[1] for term in c.args if term.name == :not]
return !any(term in c.args for term in negated)
end
return clauses
end
to_cnf_clauses(terms::AbstractVector{<:Term}) =
isempty(terms) ? Term[] : reduce(vcat, (to_cnf_clauses(t) for t in terms))
"""
clauses = to_dnf_clauses(term)
Convert a `term` to DNF and return a list of the clauses as terms. Clauses with
multiple literals have an `and` around them, but single-literal clauses do not.
"""
function to_dnf_clauses(term::Term)
term = to_dnf(term)
clauses = map!(similar(term.args), term.args) do c
(length(c.args) == 1) ? c.args[1] : Compound(c.name, unique!(c.args))
end
filter!(clauses) do c # Filter out clauses with conflicting literals
c.name != :and && return true
negated = [term.args[1] for term in c.args if term.name == :not]
return !any(term in c.args for term in negated)
end
return clauses
end
to_dnf_clauses(terms::AbstractVector{<:Term}) =
isempty(terms) ? Term[] : reduce(vcat, (to_dnf_clauses(t) for t in terms))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3341 | """
Action
Abstract supertype for action schemas, which specify the general semantics of
an action parameterized by a set of arguments.
"""
abstract type Action end
"""
$(SIGNATURES)
Returns the name of an action schema.
"""
get_name(action::Action) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the argument variables for an action schema.
"""
get_argvars(action::Action) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the argument types for an action schema.
"""
get_argtypes(action::Action) = error("Not implemented.")
"""
get_precond(action::Action)
get_precond(action::Action, args)
get_precond(domain::Domain, action::Term)
Returns the precondition of an action schema as a `Term`, optionally
parameterized by `args`. Alternatively, an action and its arguments
can be specified as a `Term`.
"""
get_precond(action::Action) = error("Not implemented.")
function get_precond(action::Action, args)
argvars = get_argvars(action)
subst = Subst(k => v for (k, v) in zip(argvars, args))
return substitute(get_precond(action), subst)
end
get_precond(domain::Domain, action::Term) =
get_precond(get_actions(domain)[action.name], action.args)
"""
get_effect(action::Action)
get_effect(action::Action, args)
get_effect(domain::Domain, action::Term)
Returns the effect of an action schema as a `Term`, optionally
parameterized by `args`. Alternatively, an action and its arguments
can be specified as a `Term`.
"""
get_effect(action::Action) = error("Not implemented.")
function get_effect(action::Action, args)
argvars = get_argvars(action)
subst = Subst(k => v for (k, v) in zip(argvars, args))
return substitute(get_effect(action), subst)
end
get_effect(domain::Domain, term::Term) =
get_effect(get_actions(domain)[term.name], term.args)
Base.convert(::Type{Term}, action::Action) =
convert(Compound, action)
Base.convert(::Type{Compound}, action::Action) =
Compound(get_name(action), get_argvars(action))
Base.convert(::Type{Const}, action::Action) = isempty(get_argvars(action)) ?
Const(get_name(action)) : error("Action has arguments.")
"""
NoOp()
Constructs a no-op action which has no preconditions or effects.
"""
struct NoOp <: Action end
get_name(action::NoOp) = Symbol("--")
get_argvars(action::NoOp) = ()
get_argtypes(action::NoOp) = ()
get_precond(action::NoOp) = Compound(:and, [])
get_precond(action::NoOp, args) = Compound(:and, [])
get_effect(action::NoOp) = Compound(:and, [])
get_effect(action::NoOp, args) = Compound(:and, [])
available(::Domain, state::State, ::NoOp, args) = true
execute(::Domain, state::State, ::NoOp, args; options...) = state
execute!(::Domain, state::State, ::NoOp, args; options...) = state
relevant(::Domain, state::State, ::NoOp, args; options...) = false
regress(::Domain, state::State, ::NoOp, args; options...) = state
regress!(::Domain, state::State, ::NoOp, args; options...) = state
Base.convert(::Type{Term}, ::NoOp) = convert(Compound, NoOp())
Base.convert(::Type{Compound}, act::NoOp) = Compound(get_name(act), Term[])
Base.convert(::Type{Const}, act::NoOp) = Const(get_name(act))
"""
PDDL.no_op
An alias for pddl"(--)", the action `Term` for a [`NoOp`](@ref) action which has
no preconditions or effects.
"""
const no_op = Compound(get_name(NoOp()), Term[])
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1031 | """
Diff
Abstract type representing differences between states.
"""
abstract type Diff end
"""
combine!(diff::Diff, ds::Diff...)
Combine state differences, modifying the first `Diff` in place.
"""
combine!(d::Diff) = d
combine!(d1::Diff, d2::Diff) = error("Not implemented.")
combine!(d1::Diff, d2::Diff, diffs::Diff...) =
combine!(combine!(d1, d2), diffs...)
"""
combine(diff::Diff, ds::Diff...)
Combine state differences, returning a fresh `Diff`.
"""
combine(diffs::Diff...) =
combine!(empty(diffs[1]), diffs...)
"""
$(SIGNATURES)
Convert a `Diff` to an equivalent `Term`.
"""
as_term(diff::Diff) = error("Not implemented.")
"""
$(SIGNATURES)
Return whether a `Diff` is redundant (i.e. does nothing).
"""
is_redundant(diff::Diff) = error("Not implemented.")
"""
$(SIGNATURES)
Return an empty `Diff` of the same type as the input `Diff`.
"""
Base.empty(diff::Diff) = error("Not implemented.")
"""
$(SIGNATURES)
Returns if a Diff is empty.
"""
Base.isempty(diff::Diff) = error("Not implemented.")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3337 | """
Domain
Abstract supertype for planning domains, which specify a symbolic model of the
environment and its transition dynamics.
"""
abstract type Domain end
"""
$(SIGNATURES)
Returns the name of a domain.
"""
get_name(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns domain requirements as a map from requirement names to Boolean values.
"""
get_requirements(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a map from domain types to subtypes.
"""
get_typetree(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns an iterator over types in the domain.
"""
get_types(domain::Domain) = keys(get_typetree(domain))
"""
$(SIGNATURES)
Returns an iterator over (immediate) subtypes of `type` in the domain.
"""
get_subtypes(domain::Domain, type::Symbol) = get_typetree(domain)[type]
"""
$(SIGNATURES)
Returns a map from domain datatypes to Julia types.
"""
get_datatypes(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the Julia type associated with the domain `datatype`.
"""
get_datatype(domain::Domain, datatype::Symbol) = get_datatype(domain)[datatype]
"""
$(SIGNATURES)
Returns the list of domain object constants.
"""
get_constants(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a map from domain constants to their types.
"""
get_constypes(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the type of the domain constant `obj`.
"""
get_constype(domain::Domain, obj) = get_constypes[obj]
"""
$(SIGNATURES)
Returns a map from predicate names to predicate [`Signature`](@ref)s.
"""
get_predicates(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the signature associated with a predicate `name`.
"""
get_predicate(domain::Domain, name::Symbol) = get_predicates(domain)[name]
"""
$(SIGNATURES)
Returns a map from function names to function [`Signature`](@ref)s.
"""
get_functions(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the signature associated with a function `name`.
"""
get_function(domain::Domain, name::Symbol) = get_functions(domain)[name]
"""
$(SIGNATURES)
Returns a map from function names to attached function definitions.
"""
get_funcdefs(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the definition associated with a function `name`.
"""
get_funcdef(domain::Domain, name::Symbol) = get_funcdefs(domain)[name]
"""
$(SIGNATURES)
Returns a map from domain fluent names to fluent [`Signature`](@ref)s.
"""
get_fluents(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the signature associated with a fluent `name`.
"""
get_fluent(domain::Domain, name::Symbol) = get_fluents(domain)[name]
"""
$(SIGNATURES)
Returns a map from names of derived predicates to their corresponding axioms.
"""
get_axioms(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the axiom assocated with a derived predicate `name`.
"""
get_axiom(domain::Domain, name::Symbol) = get_axioms(domain)[name]
"""
$(SIGNATURES)
Returns a map from action names to action schemata.
"""
get_actions(domain::Domain) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the action schema specified by `name`.
"""
get_action(domain::Domain, name::Symbol) = get_actions(domain)[name]
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 8141 | include("signature.jl")
include("domain.jl")
include("problem.jl")
include("state.jl")
include("action.jl")
include("diff.jl")
include("utils.jl")
include("show.jl")
"""
satisfy(domain::Domain, state::State, term::Term)
satisfy(domain::Domain, state::State, terms::AbstractVector{<:Term})
Returns whether the queried `term` or `terms` can be satisfied in the given
`domain` and `state`.
"""
satisfy(domain::Domain, state::State, term::Term) =
satisfy(domain, state, [term])
satisfy(domain::Domain, state::State, terms::AbstractVector{<:Term}) =
error("Not implemented.")
"""
satisfiers(domain::Domain, state::State, term::Term)
satisfiers(domain::Domain, state::State, terms::AbstractVector{<:Term})
Returns a list of satisfying substitutions of the queried `term` or `terms`
within the given `domain` and `state`.
"""
satisfiers(domain::Domain, state::State, term::Term) =
satisfiers(domain, state, [term])
satisfiers(domain::Domain, state::State, terms::AbstractVector{<:Term}) =
error("Not implemented.")
"""
evaluate(domain::Domain, state::State, term::Term)
Evaluates a grounded `term` in the given `domain` and `state`. If `term`
refers to a numeric fluent, the value of the fluent is returned.
For logical predicates, `evaluate` is equivalent to `satisfy`.
"""
evaluate(domain::Domain, state::State, term::Term) =
error("Not implemented.")
"""
initstate(domain::Domain, problem::Problem)
initstate(domain::Domain, objtypes[, fluents])
Construct the initial state for a given planning `domain` and `problem`, or
from a `domain`, a map of objects to their types (`objtypes`), and an optional
list of `fluents`.
Fluents can either be provided as a list of `Term`s representing the initial
fluents in a PDDL problem, or as a map from fluent names to fluent values.
"""
initstate(domain::Domain, problem::Problem) =
error("Not implemented.")
initstate(domain::Domain, objtypes::AbstractDict, fluents=Term[]) =
error("Not implemented.")
"""
goalstate(domain::Domain, problem::Problem)
goalstate(domain::Domain, objtypes, terms)
Construct a (partial) goal state from a `domain` and `problem`, or from
a `domain`, a map of objects to their types (`objtypes`), and goal `terms`.
"""
goalstate(domain::Domain, problem::Problem) =
error("Not implemented.")
goalstate(domain::Domain, objtypes::AbstractDict, terms) =
error("Not implemented.")
"""
transition(domain::Domain, state::State, action::Term)
transition(domain::Domain, state::State, actions)
Returns the successor to `state` in the given `domain` after applying a single
`action` or a set of `actions` in parallel.
"""
transition(domain::Domain, state::State, action::Term; options...) =
error("Not implemented.")
transition(domain::Domain, state::State, actions; options...) =
error("Not implemented.")
"""
transition!(domain::Domain, state::State, action::Term)
transition!(domain::Domain, state::State, actions)
Variant of [`transition`](@ref) that modifies `state` in place.
"""
transition!(domain::Domain, state::State, action::Term; options...) =
error("Not implemented.")
transition!(domain::Domain, state::State, actions; options...) =
error("Not implemented.")
"""
available(domain::Domain, state::State, action::Action, args)
available(domain::Domain, state::State, action::Term)
Check if an `action` parameterized by `args` can be executed in the given
`state` and `domain`. Action parameters can also be specified as the arguments
of a compound `Term`.
"""
available(domain::Domain, state::State, action::Action, args)::Bool =
error("Not implemented.")
available(domain::Domain, state::State, action::Term)::Bool =
available(domain, state, get_actions(domain)[action.name], action.args)
"""
available(domain::Domain, state::State)
Return an iterator over available actions in a given `state` and `domain`.
"""
available(domain::Domain, state::State) =
error("Not implemented.")
"""
execute(domain::Domain, state::State, action::Action, args)
execute(domain::Domain, state::State, action::Term)
Execute an `action` parameterized by `args` in the given `state`, returning
the resulting state. Action parameters can also be specified as the arguments
of a compound `Term`.
"""
execute(domain::Domain, state::State, action::Action, args; options...) =
error("Not implemented.")
execute(domain::Domain, state::State, action::Term; options...) =
if action.name == PDDL.no_op.name
execute(domain, state, PDDL.NoOp(), (); options...)
else
execute(domain, state, get_actions(domain)[action.name],
action.args; options...)
end
"""
execute!(domain::Domain, state::State, action::Action, args)
execute!(domain::Domain, state::State, action::Term)
Variant of [`execute`](@ref) that modifies `state` in-place.
"""
execute!(domain::Domain, state::State, action::Action, args; options...) =
error("Not implemented.")
execute!(domain::Domain, state::State, action::Term; options...) =
if action.name == PDDL.no_op.name
execute!(domain, state, PDDL.NoOp(), (); options...)
else
execute!(domain, state, get_actions(domain)[action.name],
action.args; options...)
end
"""
relevant(domain::Domain, state::State, action::Action, args)
relevant(domain::Domain, state::State, action::Term)
Check if an `action` parameterized by `args` is relevant (can lead to) a `state`
in the given `domain`. Action parameters can also be specified as the arguments
of a compound `Term`.
"""
relevant(domain::Domain, state::State, action::Action, args)::Bool =
error("Not implemented.")
relevant(domain::Domain, state::State, action::Term)::Bool =
relevant(domain, state, get_actions(domain)[action.name], action.args)
"""
relevant(domain::Domain, state::State)
Return an iterator over relevant actions in a given `state` and `domain`.
"""
relevant(domain::Domain, state::State) =
error("Not implemented.")
"""
regress(domain::Domain, state::State, action::Action, args)
regress(domain::Domain, state::State, action::Term)
Compute the pre-image of an `action` parameterized by `args` with respect to
a `state`. Action parameters can also be specified as the arguments of a
compound `Term`.
"""
regress(domain::Domain, state::State, action::Action, args; options...)=
error("Not implemented.")
regress(domain::Domain, state::State, action::Term; options...) =
if action.name == PDDL.no_op.name
regress(domain, state, PDDL.NoOp(), (); options...)
else
regress(domain, state, get_actions(domain)[action.name],
action.args; options...)
end
"""
regress!(domain::Domain, state::State, action::Action, args)
regress!(domain::Domain, state::State, action::Term)
Variant of [`regress`](@ref) that modifies `state` in-place.
"""
regress!(domain::Domain, state::State, action::Action, args; options...)=
error("Not implemented.")
regress!(domain::Domain, state::State, action::Term; options...) =
if action.name == PDDL.no_op.name
regress!(domain, state, PDDL.NoOp(), (); options...)
else
regress!(domain, state, get_actions(domain)[action.name],
action.args; options...)
end
"""
update(domain::Domain, state::State, diff::Diff)
Updates a PDDL `state` with a state difference.
"""
update(domain::Domain, state::State, diff::Diff) =
update(domain, copy(state), diff)
"""
update!(domain::Domain, state::State, diff::Diff)
Updates a PDDL `state` in-place with a state difference.
"""
update!(domain::Domain, state::State, diff::Diff) =
error("Not implemented.")
"""
domaintype(state::State)
domaintype(S::Type{<:State})
Return the type of domain associated with the state.
"""
domaintype(state::S) where {S <: State} = domaintype(S)
domaintype(::Type{<:State}) = Domain
"""
statetype(domain::Domain)
statetype(D::Type{<:Domain})
Return the type of state associated with the domain.
"""
statetype(domain::D) where {D <: Domain} = statetype(D)
statetype(::Type{<:Domain}) = State
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1218 | """
Problem
Abstract supertype for planning problems, which specify the initial state of
a planning domain and the task specification to be achieved.
"""
abstract type Problem end
"""
$(SIGNATURES)
Returns the name of a problem.
"""
get_name(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the name of a problem's domain.
"""
get_domain_name(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns an iterator over objects in a `problem`.
"""
get_objects(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a map from problem objects to their types.
"""
get_objtypes(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a list of terms that determine the initial state.
"""
get_init_terms(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the goal specification of a problem.
"""
get_goal(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the metric specification of a problem.
"""
get_metric(problem::Problem) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the constraint specification of a problem.
"""
get_constraints(problem::Problem) = error("Not implemented.")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 9923 | # Utilities #
macro _maybe(call_expr, default_expr)
@assert call_expr.head == :call "Must be a call expression."
return quote
try
$(esc(call_expr))
catch MethodError
$(esc(default_expr))
end
end
end
function _line_limit(n_items::Int, remaining::Int)
n_items == 0 && return 0
n_items + 1 <= remaining && return n_items + 1
n_displayed = min(remaining-1, n_items)
return n_displayed <= 3 ? 1 : n_displayed + 1
end
function _show_list(io::IO, list, limit::Int, indent)
if length(list) > limit
limit < 3 && return
for line in list[1:(limit÷2-1)]
print(io, "\n", indent, line)
end
print(io, "\n", indent, "⋮")
for line in list[end-(limit÷2)+1:end]
print(io, "\n", indent, line)
end
else
for line in list
print(io, "\n", indent, line)
end
end
end
function _show_objects(io::IO, objects, category, indent, limit::Int)
isempty(objects) && return
objects, objtypes = collect(keys(objects)), collect(values(objects))
print(io, "\n", indent, "$category: ", summary(objects))
if all(objtypes .== :object)
objects = sort!(string.(objects))
_show_list(io, objects, limit, indent * " ")
else
objects = string.(objects)
objtypes = string.(objtypes)
order = sortperm(collect(zip(objtypes, objects)))
objects = objects[order]
objtypes = objtypes[order]
max_chars = maximum(length.(objects))
lines = ["$(rpad(obj, max_chars)) - $type"
for (obj, type) in zip(objects, objtypes)]
_show_list(io, lines, limit-1, indent * " ")
end
end
# Domains #
function Base.show(io::IO, ::MIME"text/plain", domain::Domain)
print(io, typeof(domain))
print(io, "\n", " name: ", get_name(domain))
# Extract fields
typetree = @_maybe(get_typetree(domain), Dict())
predicates = @_maybe(get_predicates(domain), Dict())
functions = @_maybe(get_functions(domain), Dict())
constants = @_maybe(get_constypes(domain), Dict())
axioms = @_maybe(get_axioms(domain), Dict())
actions = @_maybe(get_actions(domain), Dict())
typing = !isempty(typetree) && collect(keys(typetree)) != [:object]
# Compute line quotas based on display size
remaining = get(io, :limit, false) ? first(displaysize(io)) - 6 : 80
max_action_lines = _line_limit(length(actions), remaining)
remaining -= max_action_lines
max_axiom_lines = _line_limit(length(axioms), remaining)
remaining -= max_axiom_lines
max_constant_lines = _line_limit(length(constants), remaining)
remaining -= max_constant_lines
max_function_lines = _line_limit(length(functions), remaining)
remaining -= max_function_lines
max_predicate_lines = _line_limit(length(predicates), remaining)
remaining -= max_predicate_lines
max_typetree_lines = _line_limit(length(typetree), remaining)
# Display fields
typing && _show_typetree(io, typetree, " ", max_typetree_lines)
_show_predicates(io, predicates, " ", typing, max_predicate_lines)
_show_functions(io, functions, " ", typing, max_function_lines)
_show_objects(io, constants, "constants", " ", max_constant_lines)
_show_axioms(io, axioms, " ", max_axiom_lines)
_show_actions(io, actions, " ", max_action_lines)
end
function _show_typetree(io::IO, typetree, indent, limit::Int)
isempty(typetree) && return
print(io, "\n", indent, "typetree: ", summary(typetree))
max_chars = maximum(length.(repr.(keys(typetree))))
types = get_sorted_types(typetree)
subtypes = [typetree[ty] for ty in types]
typetree = ["$(rpad(repr(name), max_chars)) => $(isempty(ts) ? "[]" : ts)"
for (name, ts) in zip(types, subtypes)]
_show_list(io, typetree, limit-1, " " * indent)
end
function _show_fluents(io::IO, fluents, category, indent,
typing::Bool, limit::Int)
isempty(fluents) && return
print(io, "\n", indent, "$category: ", summary(fluents))
max_chars = maximum(length.(repr.(keys(fluents))))
names = [rpad(repr(name), max_chars) for name in keys(fluents)]
sigs = [typing ? repr(sig) : write_pddl(convert(Term, sig))
for sig in values(fluents)]
fluents = ["$name => $sig" for (name, sig) in zip(names, sigs)] |> sort!
_show_list(io, fluents, limit-1, " " * indent)
end
_show_predicates(io::IO, predicates, indent, typing::Bool, limit::Int) =
_show_fluents(io, predicates, "predicates", indent, typing, limit)
_show_functions(io::IO, functions, indent, typing::Bool, limit::Int) =
_show_fluents(io, functions, "functions", indent, typing, limit)
function _show_axioms(io::IO, axioms, indent, limit::Int)
isempty(axioms) && return
print(io, "\n", indent, "axioms: ", summary(axioms))
max_chars = maximum(length.(repr.(keys(axioms))))
axioms = ["$(rpad(repr(name), max_chars)) => " *
Writer.write_axiom(ax) for (name, ax) in pairs(axioms)]
sort!(axioms)
_show_list(io, axioms, limit-1, " " * indent)
end
function _show_actions(io::IO, actions, indent, limit::Int)
isempty(actions) && return
print(io, "\n", indent, "actions: ")
max_chars = maximum(length.(repr.(keys(actions))))
actions = ["$(rpad(repr(name), max_chars)) => " *
Writer.write_action_sig(act) for (name, act) in pairs(actions)]
sort!(actions)
_show_list(io, actions, limit-1, " " * indent)
end
# Problems #
function Base.show(io::IO, ::MIME"text/plain", problem::Problem)
print(io, typeof(problem))
print(io, "\n", " name: ", get_name(problem))
# Extract fields
domain = @_maybe(get_domain_name(domain), nothing)
objects = @_maybe(get_objtypes(problem), Dict())
init = @_maybe(get_init_terms(problem), Term[])
goal = @_maybe(get_goal(problem), nothing)
metric = @_maybe(get_metric(problem), nothing)
constraints = @_maybe(get_constraints(problem), nothing)
# Compute line quotas based on display size
remaining = get(io, :limit, false) ? first(displaysize(io)) - 10 : 80
max_object_lines = _line_limit(length(objects), remaining)
remaining -= max_object_lines
max_init_lines = _line_limit(length(init), remaining)
# Display fields
if !isnothing(domain)
print(io, "\n", " domain: ", domain)
end
_show_objects(io, objects, "objects", " ", max_object_lines)
_show_init(io, init, " ", max_init_lines)
if !isnothing(goal)
print(io, "\n", " goal: ", write_pddl(goal))
end
if !isnothing(metric)
print(io, "\n", " metric: ", write_pddl(metric))
end
if !isnothing(constraints)
print(io, "\n", " constraints: ", write_pddl(constraints))
end
end
function _show_init(io::IO, init, indent, limit::Int)
isempty(init) && return
print(io, "\n", indent, "init: ", summary(init))
init = sort!(write_pddl.(init))
_show_list(io, init, limit-1, " " * indent)
end
# States #
function Base.show(io::IO, ::MIME"text/plain", state::State)
print(io, typeof(state))
# Extract fields
objects = @_maybe(get_objtypes(state), Dict())
fluents = @_maybe(Dict(get_fluents(state)), Dict())
# Compute line quotas based on display size
remaining = get(io, :limit, false) ? first(displaysize(io)) - 5 : 80
max_fluent_lines = _line_limit(length(fluents), remaining)
remaining -= max_fluent_lines
max_object_lines = _line_limit(length(objects), remaining)
# Display fields
_show_state_objects(io, objects, " ", max_object_lines)
_show_state_fluents(io, fluents, " ", max_fluent_lines)
end
function _show_state_objects(io::IO, objects, indent, limit::Int)
isempty(objects) && return
objects, objtypes = collect(keys(objects)), collect(values(objects))
if all(objtypes .== :object)
print(io, "\n", indent, "objects: ", length(objects), " (untyped)")
objects = sort!(string.(objects))
_show_list(io, objects, limit, indent * " ")
else
print(io, "\n", indent, "objects: ", length(objects), " (typed)")
objects = string.(objects)
objtypes = string.(objtypes)
order = sortperm(collect(zip(objtypes, objects)))
objects = objects[order]
objtypes = objtypes[order]
max_chars = maximum(length.(objects))
lines = ["$(rpad(obj, max_chars)) - $type"
for (obj, type) in zip(objects, objtypes)]
_show_list(io, lines, limit - 1, indent * " ")
end
end
function _show_state_fluents(io::IO, fluents, indent, limit::Int)
isempty(fluents) && return
fluents, vals = collect(keys(fluents)), collect(values(fluents))
ftype = infer_datatype(eltype(vals))
type_desc = isnothing(ftype) ? " (mixed)" : " ($ftype)"
print(io, "\n", indent, "fluents: ", length(fluents), type_desc)
fluents = write_pddl.(fluents)
max_chars = maximum(length.(fluents))
lines = ["$(rpad(f, max_chars)) => $v" for (f, v) in zip(fluents, vals)]
sort!(lines)
_show_list(io, lines, limit, indent * " ")
end
# Actions #
function Base.show(io::IO, ::MIME"text/plain", action::Action)
print(io, typeof(action))
print(io, "\n", " name: ", get_name(action))
# Extract fields
vars = @_maybe(get_argvars(action), Var[])
types = @_maybe(get_argtypes(action), Symbol[])
precond = @_maybe(get_precond(action), nothing)
effect = @_maybe(get_effect(action), nothing)
# Display fields
if !isempty(vars)
parameters = "(" * Writer.write_typed_list(vars, types) * ")"
print(io, "\n", " parameters: ", parameters)
end
if !isnothing(precond) && precond != Const(true)
print(io, "\n", " precond: ", write_pddl(precond))
end
if !isnothing(effect)
print(io, "\n", " effect: ", write_pddl(effect))
end
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1132 | """
Signature
Type signature for a PDDL fluent (i.e. predicate or function).
# Fields
$(FIELDS)
"""
struct Signature{N}
"Name of fluent."
name::Symbol
"Output datatype of fluent, represented as a `Symbol`."
type::Symbol
"Argument variables."
args::NTuple{N, Var}
"Argument datatypes, represented as `Symbol`s."
argtypes::NTuple{N, Symbol}
end
Signature(name, type, args, argtypes) =
Signature{length(args)}(name, type, Tuple(args), Tuple(argtypes))
Signature(term::Term, argtypes, type) =
Signature(term.name, type, term.args, argtypes)
"""
$(SIGNATURES)
Returns the arity (i.e. number of arguments) of a fluent signature.
"""
arity(signature::Signature{N}) where {N} = N
function Base.convert(::Type{Term}, sig::Signature{0})
return Const(sig.name)
end
function Base.convert(::Type{Term}, sig::Signature)
return Compound(sig.name, collect(sig.args))
end
function Base.show(io::IO, sig::Signature)
args = ["?$(lowercase(string(a.name))) - $t"
for (a, t) in zip(sig.args, sig.argtypes)]
print(io, "($(join([sig.name; args], " "))) - $(sig.type)")
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2641 | """
State
Abstract supertype for symbolic states. A `State` is a symbolic description of
the environment and its objects at a particular point in time. It consists of
a set of objects, and a set of ground fluents (predicates or functions)
with values defined over those objects.
"""
abstract type State end
"""
$(SIGNATURES)
Returns an integer index for specified `state`. Defaults to hashing.
"""
stateindex(domain::Domain, state::State) = hash(state)
"""
get_objects(state::State, [type::Symbol])
get_objects(domain::Domain, state::State, type::Symbol)
Returns an iterator over objects in the `state`. If a `type` is specified,
the iterator will contain objects only of that type (but not its subtypes).
If a `domain` is provided, then the iterator will contain all objects of that
type or any of its subtypes.
"""
get_objects(state::State) = error("Not implemented.")
get_objects(state::State, type::Symbol) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a map (dictionary, named tuple, etc.) from state objects to their types.
"""
get_objtypes(state::State) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the type of an `object` in a `state`.
"""
get_objtype(state::State, object) = get_objtypes(state)[object]
"""
$(SIGNATURES)
Returns an iterator over true Boolean predicates in a `state`.
"""
get_facts(state::State) = error("Not implemented.")
"""
$(SIGNATURES)
Gets the value of a (non-derived) fluent.Equivalent to using the index
notation `state[term]`.
"""
get_fluent(state::State, term::Term) = error("Not implemented.")
"""
$(SIGNATURES)
Sets the value of a (non-derived) fluent. Equivalent to using the index
notation `state[term] = val`.
"""
set_fluent!(state::State, val, term::Term) = error("Not implemented.")
"""
$(SIGNATURES)
Returns a map from fluent names to values (false predicates may be omitted).
`Base.pairs` is an alias.
"""
get_fluents(state::State) = error("Not implemented.")
"""
$(SIGNATURES)
Returns the names of fluents in a state (false predicates may be omitted).
`Base.keys` is an alias.
"""
get_fluent_names(state::State) = (k for (k, v) in get_fluents(state))
"""
$(SIGNATURES)
Returns the values of fluents in a state (false predicates may be omitted).
`Base.values` is an alias.
"""
get_fluent_values(state::State) = (v for (k, v) in get_fluents(state))
Base.getindex(state::State, term::Term) = get_fluent(state, term)
Base.setindex!(state::State, val, term::Term) = set_fluent!(state, val, term)
Base.pairs(state::State) = get_fluents(state)
Base.keys(state::State) = get_fluent_names(state)
Base.values(state::State) = get_fluent_values(state)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1830 | # domain[state => f] shorthand for evaluating `f` within a domain and state
Base.getindex(domain::Domain, statevar::Pair{<:State, <:Term}) =
evaluate(domain, first(statevar), last(statevar))
Base.getindex(domain::Domain, statevar::Pair{<:State, Symbol}) =
evaluate(domain, first(statevar), Const(last(statevar)))
Base.getindex(domain::Domain, statevar::Pair{<:State, String}) =
evaluate(domain, first(statevar), Parser.parse_formula(last(statevar)))
get_objects(domain::Domain, state::State) = get_objects(state)
function get_objects(domain::Domain, state::State, type::Symbol)
return Const[o for (o, ty) in get_objtypes(state)
if ty == type || ty in get_all_subtypes(domain, type)]
end
"""
$(SIGNATURES)
Return all (recursive) subtypes of `type` in a domain.
"""
function get_all_subtypes(domain::Domain, type::Symbol)
subtypes = get_subtypes(domain, type)
if isempty(subtypes) return subtypes end
return reduce(vcat, [get_all_subtypes(domain, ty) for ty in subtypes],
init=subtypes)
end
"""
$(SIGNATURES)
Return number of objects of particular type.
"""
get_object_count(domain::Domain, state::State, type::Symbol) =
length(get_objects(domain, state, type))
"""
$(SIGNATURES)
Return number of objects of each type as a dictionary.
"""
get_object_counts(domain::Domain, state::State) =
Dict(ty => get_object_count(domain, state, ty) for ty in get_types(domain))
"""
$(SIGNATURES)
Return types in a domain as a topologically sorted list.
"""
get_sorted_types(domain::Domain) =
get_sorted_types(get_typetree(domain))
function get_sorted_types(typetree)
types = Symbol[]
queue = [:object]
while !isempty(queue)
ty = popfirst!(queue)
push!(types, ty)
append!(queue, typetree[ty])
end
return types
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1918 | function available(interpreter::Interpreter, domain::Domain, state::State)
# Ground all action definitions with arguments
actions = Compound[]
for act in values(get_actions(domain))
act_name = get_name(act)
act_vars, act_types = get_argvars(act), get_argtypes(act)
# Directly check precondition if action has no parameters
if isempty(act_vars) && satisfy(domain, state, get_precond(act))
push!(actions, Compound(act_name, Term[]))
continue
end
# Include type conditions when necessary for correctness
typecond = (pddl"($ty $v)" for (v, ty) in zip(act_vars, act_types))
conds = [get_precond(act); typecond...]
# Find all substitutions that satisfy preconditions
subst = satisfiers(interpreter, domain, state, conds)
if isempty(subst) continue end
for s in subst
args = [s[v] for v in act_vars if v in keys(s)]
if any(!is_ground(a) for a in args) continue end
push!(actions, Compound(act_name, args))
end
end
return actions
end
function available(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args)
if any(!is_ground(a) for a in args)
error("Not all arguments are ground.")
end
act_vars, act_types = get_argvars(action), get_argtypes(action)
subst = Subst(var => val for (var, val) in zip(act_vars, args))
# Construct type conditions of the form "type(val)"
typecond = (all(ty == :object for ty in action.types) ? Term[] :
[pddl"($ty $v)" for (v, ty) in zip(args, act_types)])
# Check whether preconditions hold
precond = substitute(get_precond(action), subst)
conds = has_func(precond, domain) || has_quantifier(precond) ?
[typecond; precond] : [precond; typecond]
return satisfy(interpreter, domain, state, conds)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4777 | ## Effect differences ##
"Convert effect formula to a state difference (additions, deletions, etc.)"
function effect_diff(domain::Domain, state::State, effect::Term)
return effect_diff!(GenericDiff(), domain, state, effect)
end
function effect_diff!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
return effect_diff!(effect.name, diff, domain, state, effect)
end
@valsplit function effect_diff!(Val(name::Symbol), diff::GenericDiff,
domain::Domain, state::State, effect::Term)
# Assume addition by default
return add_effect!(diff, domain, state, effect)
end
function add_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
push!(diff.add, effect)
return diff
end
function del_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
effect = effect.args[1]
push!(diff.del, effect)
return diff
end
effect_diff!(::Val{:not}, diff::Diff, d::Domain, s::State, e::Term) =
del_effect!(diff, d, s, e)
function and_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
for eff in get_args(effect)
effect_diff!(diff, domain, state, eff)
end
return diff
end
effect_diff!(::Val{:and}, diff::Diff, d::Domain, s::State, e::Term) =
and_effect!(diff, d, s, e)
function when_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
cond, eff = effect.args[1], effect.args[2]
if !satisfy(domain, state, cond) return diff end
return effect_diff!(diff, domain, state, eff)
end
effect_diff!(::Val{:when}, diff::Diff, d::Domain, s::State, e::Term) =
when_effect!(diff, d, s, e)
function forall_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
cond, eff = effect.args[1], effect.args[2]
for s in satisfiers(domain, state, cond)
effect_diff!(diff, domain, state, substitute(eff, s))
end
return diff
end
effect_diff!(::Val{:forall}, diff::Diff, d::Domain, s::State, e::Term) =
forall_effect!(diff, d, s, e)
function assign_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
term, val = effect.args[1], effect.args[2]
diff.ops[term] = val
return diff
end
effect_diff!(::Val{:assign}, diff::Diff, d::Domain, s::State, e::Term) =
assign_effect!(diff, d, s, e)
function modify_effect!(diff::GenericDiff,
domain::Domain, state::State, effect::Term)
term, val = effect.args[1], effect.args[2]
op = modifier_def(effect.name)
diff.ops[term] = Compound(op, Term[term, val])
return diff
end
for name in global_modifier_names()
name = QuoteNode(name)
@eval effect_diff!(::Val{$name}, diff::Diff, d::Domain, s::State, e::Term) =
modify_effect!(diff, d, s, e)
end
## Precondition differences ##
const PRECOND_FUNCS = Dict{Symbol,Function}()
"Convert precondition formula to a state difference."
function precond_diff(domain::Domain, state::State, precond::Term)
return precond_diff!(GenericDiff(), domain, state, precond)
end
function precond_diff!(diff::GenericDiff,
domain::Domain, state::State, precond::Term)
return precond_diff!(precond.name, diff, domain, state, precond)
end
@valsplit function precond_diff!(Val(name::Symbol), diff::GenericDiff,
domain::Domain, state::State, precond::Term)
# Assume addition by default
return add_precond!(diff, domain, state, precond)
end
function add_precond!(diff::GenericDiff,
domain::Domain, state::State, precond::Term)
push!(diff.add, precond)
return diff
end
function del_precond!(diff::GenericDiff,
domain::Domain, state::State, precond::Term)
push!(diff.del, precond.args[1])
return diff
end
precond_diff!(::Val{:not}, diff::Diff, d::Domain, s::State, p::Term) =
del_precond!(diff, d, s, p)
function and_precond!(diff::GenericDiff,
domain::Domain, state::State, precond::Term)
for pre in get_args(precond)
precond_diff!(diff, domain, state, pre)
end
return diff
end
precond_diff!(::Val{:and}, diff::Diff, d::Domain, s::State, p::Term) =
and_precond!(diff, d, s, p)
function forall_precond!(diff::GenericDiff,
domain::Domain, state::State, precond::Term)
cond, pre = precond.args[1], precond.args[2]
for s in satisfiers(domain, state, cond)
precond_diff!(diff, domain, state, substitute(pre, s))
end
return diff
end
precond_diff!(::Val{:forall}, diff::Diff, d::Domain, s::State, p::Term) =
forall_precond!(diff, d, s, p)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 822 | function evaluate(interpreter::Interpreter,
domain::Domain, state::GenericState, term::Term)
# Evaluate formula as fully as possible
val = partialeval(domain, state, term)
# Return if formula evaluates to a Const
if isa(val, Const) && (!isa(val.name, Symbol) || !is_pred(val, domain))
return val.name
elseif is_pred(val, domain) || is_type(val, domain) || is_logical_op(val)
return satisfy(interpreter, domain, state, val)
elseif val in get_objects(state) # Return object constant
return val
else
error("Unrecognized term $term.")
end
end
"Evaluate formula as fully as possible."
function partialeval(domain::Domain, state::GenericState, term::Term)
funcs = get_eval_funcs(domain, state)
return eval_term(term, Subst(), funcs)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2129 | function execute(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args;
check::Bool=true, fail_mode::Symbol=:error)
# Check whether references resolve and preconditions hold
if check && !available(interpreter, domain, state, action, args)
if fail_mode == :no_op return state end
action_str = Writer.write_formula(get_name(action), args)
error("Could not execute $action_str:\n" *
"Precondition $(write_pddl(get_precond(action))) does not hold.")
end
return execute!(interpreter, domain, copy(state), action, args; check=false)
end
function execute(interpreter::Interpreter,
domain::Domain, state::State, action::Term; options...)
if action.name == PDDL.no_op.name return state end
return execute(interpreter, domain, state, get_action(domain, action.name),
action.args; options...)
end
function execute!(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args;
check::Bool=true, fail_mode::Symbol=:error)
# Check whether references resolve and preconditions hold
if check && !available(interpreter, domain, state, action, args)
if fail_mode == :no_op return state end
action_str = Writer.write_formula(get_name(action), args)
error("Could not execute $action_str:\n" *
"Precondition $(write_pddl(get_precond(action))) does not hold.")
end
# Substitute arguments and preconditions
subst = Subst(var => val for (var, val) in zip(get_argvars(action), args))
effect = substitute(get_effect(action), subst)
# Compute effect as a state diffference
diff = effect_diff(domain, state, effect)
return update!(interpreter, domain, state, diff)
end
function execute!(interpreter::Interpreter,
domain::Domain, state::State, action::Term; options...)
if action.name == PDDL.no_op.name return state end
return execute!(interpreter, domain, state, get_action(domain, action.name),
action.args; options...)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 359 | # Interpreter-based implementations of the PDDL.jl interface #
abstract type Interpreter end
include("utils.jl")
include("diff.jl")
include("evaluate.jl")
include("transition.jl")
include("available.jl")
include("execute.jl")
include("relevant.jl")
include("regress.jl")
include("update.jl")
include("concrete/concrete.jl")
include("abstract/abstract.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1660 | function regress(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args;
check::Bool=true, fail_mode::Symbol=:error)
# Check whether action is relevant
if check && !relevant(interpreter, domain, state, action, args)
if fail_mode == :no_op return state end
action_str = Writer.write_formula(get_name(action), args)
error("Could not revert $action_str:\n" *
"Effect $(write_pddl(get_effect(action))) is not relevant.")
end
return regress!(interpreter, domain, copy(state), action, args; check=false)
end
function regress!(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args;
check::Bool=true, fail_mode::Symbol=:error)
# Check whether action is relevant
if check && !relevant(interpreter, domain, state, action, args)
if fail_mode == :no_op return state end
action_str = Writer.write_formula(get_name(action), args)
error("Could not revert $action_str:\n" *
"Effect $(write_pddl(get_effect(action))) is not relevant.")
end
subst = Subst(var => val for (var, val) in zip(get_argvars(action), args))
precond = substitute(get_precond(action), subst)
effect = substitute(get_effect(action), subst)
# Compute regression difference as Precond - Additions
# TODO: Handle conditional effects, disjunctive preconditions, etc.
pre_diff = precond_diff(domain, state, precond)
eff_diff = effect_diff(domain, state, effect)
append!(pre_diff.del, eff_diff.add)
return update!(interpreter, domain, state, pre_diff)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1830 | function relevant(interpreter::Interpreter, domain::Domain, state::State)
actions = Compound[]
for act in values(get_actions(domain))
act_name = get_name(act)
act_vars, act_types = get_argvars(act), get_argtypes(act)
# Compute postconditions from the action's effect
diff = effect_diff(domain, state, get_effect(act))
addcond = [Compound(:or, diff.add)]
delcond = [pddl"(not $t)" for t in diff.del]
typecond = [pddl"($ty $v)" for (v, ty) in zip(act_vars, act_types)]
conds = [addcond; typecond; delcond]
# Find all substitutions that satisfy the postconditions
subst = satisfiers(interpreter, domain, state, conds)
if isempty(subst) continue end
for s in subst
args = [get(s, var, var) for var in act_vars]
if any(!is_ground(a) for a in args) continue end
push!(actions, Compound(act_name, args))
end
end
return actions
end
function relevant(interpreter::Interpreter,
domain::Domain, state::State, action::Action, args)
if any(!is_ground(a) for a in args)
error("Not all arguments are ground.")
end
act_vars, act_types = get_argvars(action), get_argtypes(action)
subst = Subst(var => val for (var, val) in zip(act_vars, args))
# Compute postconditions from the action's effect
diff = effect_diff(domain, state, substitute(get_effect(action), subst))
postcond = Term[Compound(:or, diff.add); [pddl"(not $t)" for t in diff.del]]
# Construct type conditions of the form "type(val)"
typecond = (all(ty == :object for ty in act_types) ? Term[] :
[pddl"($ty $v)" for (v, ty) in zip(args, act_types)])
# Check whether postconditions hold
return satisfy(interpreter, domain, state, [postcond; typecond])
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 390 | function transition(interpreter::Interpreter,
domain::Domain, state::State, action::Term; options...)
return execute(interpreter, domain, state, action; options...)
end
function transition!(interpreter::Interpreter,
domain::Domain, state::State, action::Term; options...)
return execute!(interpreter, domain, state, action; options...)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 691 | ## State updates ##
function update!(interpreter::Interpreter,
domain::Domain, state::State, diff::Diff)
error("Not implemented.")
end
function update!(interpreter::Interpreter,
domain::Domain, state::State, diff::ConditionalDiff)
if isempty(diff.diffs) return state end
combined = empty(diff.diffs[1])
for (cs, d) in zip(diff.conds, diff.diffs)
satisfy(domain, state, cs) && combine!(combined, d)
end
return update!(interpreter, domain, state, combined)
end
function update(interpreter::Interpreter,
domain::Domain, state::State, diff::Diff)
return update!(interpreter, domain, copy(state), diff)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2352 | "Get all functions needed for formula evaluation in a domain and state."
function get_eval_funcs(domain::Domain, state::GenericState;
include_both::Bool = false)
if include_both
funcs = merge!(Dict{Any, Any}(both => true), global_functions(),
state.values, get_funcdefs(domain))
elseif isempty(state.values) && isempty(get_funcdefs(domain))
funcs = global_functions()
else
funcs = merge(global_functions(), state.values, get_funcdefs(domain))
end
return funcs
end
"Get domain constant type declarations as a list of clauses."
function get_const_clauses(domain::Domain)
return [Clause(pddl"($ty $o)", Term[]) for (o, ty) in get_constypes(domain)]
end
"Get domain type hierarchy as a list of clauses."
function get_type_clauses(domain::Domain)
clauses = [[Clause(pddl"($ty ?x)", Term[pddl"($s ?x)"]) for s in subtys]
for (ty, subtys) in get_typetree(domain) if length(subtys) > 0]
return length(clauses) > 0 ? reduce(vcat, clauses) : Clause[]
end
"Get all proof-relevant Horn clauses for PDDL domain."
function get_clauses(domain::Domain)
return [collect(values(get_axioms(domain)));
get_const_clauses(domain); get_type_clauses(domain)]
end
"Reorder query to ensure correctness while reducing search time."
function reorder_query(domain::Domain, query::Term)
query = flatten_conjs(query)
reorder_query!(domain, query)
return query
end
function reorder_query(domain::Domain, query::Vector{<:Term})
query = flatten_conjs(query)
reorder_query!(domain, query)
return query
end
function reorder_query!(domain::Domain, query::Vector{Term})
if isempty(query) return 1 end
priorities = Vector{Int}(undef, length(query))
for (i, q) in enumerate(query)
if q.name == :and || q.name == :or || q.name == :imply
priorities[i] = reorder_query!(domain, q.args)
elseif is_global_func(q) || is_func(q, domain)
priorities[i] = 4
elseif is_negation(q) || is_quantifier(q) || is_derived(q, domain)
priorities[i] = 3
elseif is_type(q, domain)
priorities[i] = 2
else
priorities[i] = 1
end
end
order = sortperm(priorities)
permute!(query, order)
return maximum(priorities)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3253 | # Abstract interpreter semantics
"""
AbstractInterpreter(
type_abstractions = PDDL.default_abstypes(),
fluent_abstractions = Dict(),
autowiden = false
)
Abstract PDDL interpreter based on Cartesian abstract interpretation of the
PDDL state. Fluents in the state are converted to abstract values based on
either their concrete type or fluent name, with fluent-specific abstractions
overriding type-based abstractions.
# Arguments
$(FIELDS)
"""
@kwdef struct AbstractInterpreter <: Interpreter
"Mapping from PDDL types to the Julia type for abstract fluent values."
type_abstractions::Dict{Symbol,Any} = default_abstypes()
"Mapping from fluent names to the Julia type for abstract fluent values."
fluent_abstractions::Dict{Symbol,Any} = Dict{Symbol,Any}()
"Flag for automatic widening of values after a state transition."
autowiden::Bool = false
end
include("domain.jl")
include("interface.jl")
include("satisfy.jl")
include("initstate.jl")
include("update.jl")
include("utils.jl")
"""
abstracted(domain; options...)
Construct an abstract domain from a concrete domain.
See [`PDDL.AbstractInterpreter`](@ref) for the list of `options`.
"""
abstracted(domain::GenericDomain; options...) =
AbstractedDomain(domain; options...)
"""
abstracted(domain, state; options...)
abstracted(domain, problem; options...)
Construct an abstract domain and state from a concrete `domain` and `state`.
A `problem` can be provided instead of a `state`.
See [`PDDL.AbstractInterpreter`](@ref) for the list of `options`.
"""
function abstracted(domain::GenericDomain, state::GenericState; options...)
absdom = abstracted(domain; options...)
return (absdom, abstractstate(absdom, state))
end
abstracted(domain::GenericDomain, problem::GenericProblem) =
abstracted(domain, initstate(domain, problem))
"""
abstractstate(domain, state)
Construct a state in an abstract `domain` from a concrete `state`.
"""
function abstractstate(domain::AbstractedDomain, state::GenericState)
# Copy over facts
abs_state = GenericState(copy(state.types), copy(state.facts))
# Abstract non-Boolean values if necessary
funcsigs = get_functions(domain)
if isempty(funcsigs) return abs_state end
type_abstractions = domain.interpreter.type_abstractions
fluent_abstractions = domain.interpreter.fluent_abstractions
for (term, val) in get_fluents(state)
if is_pred(term, domain) continue end
abstype = get(fluent_abstractions, term.name) do
get(type_abstractions, funcsigs[term.name].type, identity)
end
abs_state[term] = abstype(val)
end
return abs_state
end
abstractstate(domain::AbstractedDomain, problem::GenericProblem) =
initstate(domain, problem)
"""
$(SIGNATURES)
Check if term is an abstracted fluent.
"""
function is_abstracted(term::Term, domain::AbstractedDomain)
return is_abstracted(term.name, domain)
end
function is_abstracted(name::Symbol, domain::AbstractedDomain)
haskey(domain.interpreter.fluent_abstractions, name) && return true
sigs = get_functions(domain)
return (haskey(sigs, name) &&
haskey(domain.interpreter.type_abstractions, sigs[name].type))
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1152 | "Abstractly interpreted PDDL domain."
struct AbstractedDomain{D <: Domain} <: Domain
domain::D
interpreter::AbstractInterpreter
end
AbstractedDomain(domain::Domain; options...) =
AbstractedDomain(domain, AbstractInterpreter(; options...))
Base.copy(domain::AbstractedDomain) = deepcopy(domain)
get_name(domain::AbstractedDomain) = get_name(domain.domain)
get_requirements(domain::AbstractedDomain) = get_requirements(domain.domain)
get_typetree(domain::AbstractedDomain) = get_typetree(domain.domain)
get_datatypes(domain::AbstractedDomain) = get_datatypes(domain.domain)
get_constants(domain::AbstractedDomain) = get_constants(domain.domain)
get_constypes(domain::AbstractedDomain) = get_constypes(domain.domain)
get_predicates(domain::AbstractedDomain) = get_predicates(domain.domain)
get_functions(domain::AbstractedDomain) = get_functions(domain.domain)
get_funcdefs(domain::AbstractedDomain) = get_funcdefs(domain.domain)
get_fluents(domain::AbstractedDomain) = get_fluents(domain.domain)
get_axioms(domain::AbstractedDomain) = get_axioms(domain.domain)
get_actions(domain::AbstractedDomain) = get_actions(domain.domain)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 966 | function initstate(interpreter::AbstractInterpreter,
domain::AbstractedDomain, problem::GenericProblem)
concrete_state = initstate(ConcreteInterpreter(), domain.domain, problem)
absdom = AbstractedDomain(domain, interpreter)
return abstractstate(absdom, concrete_state)
end
function initstate(interpreter::AbstractInterpreter,
domain::AbstractedDomain, objtypes::AbstractDict)
concrete_state = initstate(ConcreteInterpreter(), domain.domain, objtypes)
absdom = AbstractedDomain(domain, interpreter)
return abstractstate(absdom, concrete_state)
end
function initstate(interpreter::AbstractInterpreter,
domain::AbstractedDomain, objtypes::AbstractDict, fluents)
concrete_state = initstate(ConcreteInterpreter(),
domain.domain, objtypes, fluents)
absdom = AbstractedDomain(domain, interpreter)
return abstractstate(absdom, concrete_state)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2917 | # Forward methods from abstracted domains to abstract interpreter #
satisfy(domain::AbstractedDomain, state::State, term::Term) =
satisfy(domain.interpreter, domain, state, term)
satisfy(domain::AbstractedDomain, state::State, terms::AbstractVector{<:Term}) =
satisfy(domain.interpreter, domain, state, terms)
satisfiers(domain::AbstractedDomain, state::State, term::Term) =
satisfiers(domain.interpreter, domain, state, term)
satisfiers(domain::AbstractedDomain, state::State, terms::AbstractVector{<:Term}) =
satisfiers(domain.interpreter, domain, state, terms)
evaluate(domain::AbstractedDomain, state::State, term::Term) =
evaluate(domain.interpreter, domain, state, term)
initstate(domain::AbstractedDomain, problem::Problem) =
initstate(domain.interpreter, domain, problem)
initstate(domain::AbstractedDomain, objtypes::AbstractDict) =
initstate(domain.interpreter, domain, objtypes)
initstate(domain::AbstractedDomain, objtypes::AbstractDict, fluents) =
initstate(domain.interpreter, domain, objtypes, fluents)
transition(domain::AbstractedDomain, state::State, action::Term; options...) =
transition(domain.interpreter, domain, state, action; options...)
transition!(domain::AbstractedDomain, state::State, action::Term; options...) =
transition!(domain.interpreter, domain, state, action; options...)
available(domain::AbstractedDomain, state::State, action::Action, args) =
available(domain.interpreter, domain, state, action, args)
available(domain::AbstractedDomain, state::State) =
available(domain.interpreter, domain, state)
execute(domain::AbstractedDomain, state::State, action::Action, args; options...) =
execute(domain.interpreter, domain, state, action, args; options...)
execute!(domain::AbstractedDomain, state::State, action::Action, args; options...) =
execute!(domain.interpreter, domain, state, action, args; options...)
relevant(domain::AbstractedDomain, state::State, action::Action, args) =
relevant(domain.interpreter, domain, state, action, args)
relevant(domain::AbstractedDomain, state::State) =
relevant(domain.interpreter, domain, state)
regress(domain::AbstractedDomain, state::State, action::Action, args; options...) =
regress(domain.interpreter, domain, state, action, args; options...)
regress!(domain::AbstractedDomain, state::State, action::Action, args; options...) =
regress!(domain.interpreter, domain, state, action, args; options...)
update!(domain::AbstractedDomain, state::State, diff::Diff) =
update!(domain.interpreter, domain, state, diff)
update(domain::AbstractedDomain, state::State, diff::Diff) =
update(domain.interpreter, domain, state, diff)
widen!(domain::AbstractedDomain, state::State, diff::Diff) =
widen!(domain.interpreter, domain, state, diff)
widen(domain::AbstractedDomain, state::State, diff::Diff) =
widen(domain.interpreter, domain, state, diff)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3775 | function satisfy(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState,
terms::AbstractVector{<:Term})
# Quick check that avoids SLD resolution unless necessary
sat = all4(check(interpreter, domain, state, to_nnf(t)) for t in terms)
if sat !== missing return (sat == true || sat == both) end
# Call SLD resolution only if there are free variables or axioms
return !isempty(satisfiers(interpreter, domain, state, terms))
end
function satisfy(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, term::Term)
# Convert to NNF
term = to_nnf(term)
# Quick check that avoids SLD resolution unless necessary
sat = check(interpreter, domain, state, term)
if sat !== missing return (sat == true || sat == both) end
# Call SLD resolution only if there are free variables or axioms
return !isempty(satisfiers(interpreter, domain, state, term))
end
function satisfiers(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState,
terms::AbstractVector{<:Term})
# Reify negations
terms = [reify_negations(to_nnf(t), domain) for t in terms]
# Initialize Julog knowledge base
clauses = Clause[get_clauses(domain); # get_negation_clauses(domain);
collect(state.types); collect(state.facts)]
# Pass in fluents and function definitions as a dictionary of functions
funcs = get_eval_funcs(domain, state, include_both=true)
# Reorder query to reduce search time
terms = reorder_query(domain, collect(terms))
# Find satisfying substitutions via SLD-resolution
_, subst = resolve(terms, clauses; funcs=funcs, mode=:all, search=:dfs)
return subst
end
function satisfiers(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, term::Term)
return satisfiers(domain, state, [term])
end
function check(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, term::Compound)
sat = if term.name == :and
all4(check(interpreter, domain, state, a) for a in term.args)
elseif term.name == :or
any4(check(interpreter, domain, state, a) for a in term.args)
elseif term.name == :imply
!check(interpreter, domain, state, term.args[1]) |
check(interpreter, domain, state, term.args[2])
elseif term.name == :not
!check(interpreter, domain, state, term.args[1]) |
check(interpreter, domain, state, negate(term.args[1]))
elseif term.name == :forall
missing
elseif term.name == :exists
missing
elseif !is_ground(term)
missing
elseif is_derived(term, domain)
missing
elseif is_type(term, domain)
if has_subtypes(term, domain)
missing
elseif term in state.types
true
elseif !isempty(get_constants(domain))
domain.constypes[term.args[1]] == term.name
else
false
end
elseif is_global_pred(term)
evaluate(interpreter, domain, state, term)::BooleanAbs
elseif is_func(term, domain)
evaluate(interpreter, domain, state, term)::BooleanAbs
else
term in state.facts
end
return sat
end
function check(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, term::Const)
if term in state.facts || term in state.types || term.name == true
return true
elseif is_func(term, domain) || is_derived(term, domain)
return missing
else
return false
end
end
function check(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, term::Var)
return missing
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2355 | ## State updates ##
function update!(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, diff::GenericDiff)
if interpreter.autowiden
return widen!(interpreter, domain, state, diff)
end
union!(state.facts, negate.(diff.del))
setdiff!(state.facts, diff.del)
union!(state.facts, diff.add)
setdiff!(state.facts, negate.(diff.del))
vals = [evaluate(domain, state, v) for v in values(diff.ops)]
for (term, val) in zip(keys(diff.ops), vals)
set_fluent!(state, val, term)
end
return state
end
"Widen a state (in-place) with a state difference."
function widen!(interpreter::AbstractInterpreter,
domain::Domain, state::GenericState, diff::GenericDiff)
union!(state.facts, negate.(diff.del))
if !haskey(interpreter.type_abstractions, :boolean)
for term in diff.del
is_abstracted(term, domain) && continue
delete!(state.facts, term)
end
end
union!(state.facts, diff.add)
if !haskey(interpreter.type_abstractions, :boolean)
for term in diff.add
is_abstracted(term, domain) && continue
delete!(state.facts, negate(term))
end
end
vals = [evaluate(domain, state, v) for v in values(diff.ops)]
for (term, val) in zip(keys(diff.ops), vals)
if is_abstracted(term, domain)
widened = widen(get_fluent(state, term), val)
set_fluent!(state, widened, term)
else
set_fluent!(state, val, term)
end
end
return state
end
"Widen a state with a state difference."
function widen(interpreter::AbstractInterpreter,
state::GenericState, diff::Diff)
return widen!(interpreter, copy(state), diff)
end
"Widen a state (in-place) with another state."
function widen!(domain::AbstractedDomain,
s1::GenericState, s2::GenericState)
union!(s1.facts, s2.facts)
if isempty(get_functions(domain)) return s1 end
for (term, val) in get_fluents(s2)
if is_pred(term, domain) continue end
widened = widen(get_fluent(s1, term), val)
set_fluent!(s1, widened, term)
end
return s1
end
"Widen a state with another state."
widen(domain::AbstractedDomain, s1::GenericState, s2::GenericState) =
widen!(domain.interpreter, copy(s1), s2)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1198 | negate(term::Const) = Const(Symbol(:¬, term.name))
negate(term::Compound) = Compound(Symbol(:¬, term.name), term.args)
function reify_negations(term::Compound, domain::Domain)
if term.name == :not && is_pred(term.args[1], domain)
negate(term.args[1])
else
Compound(term.name, [reify_negations(a, domain) for a in term.args])
end
end
reify_negations(term::Var, domain) =
term
reify_negations(term::Const, domain) =
term
function abstract_negations(term::Compound, domain::Domain)
if term.name == :not && is_pred(term.args[1], domain)
Compound(:or, Term[negate(term.args[1]), term])
else
Compound(term.name, [abstract_negations(a, domain) for a in term.args])
end
end
abstract_negations(term::Var, domain) =
term
abstract_negations(term::Const, domain) =
term
function get_clauses(domain::AbstractedDomain)
# Abstract negations in axioms
axioms = map(collect(values(get_axioms(domain)))) do ax
head = ax.head
body = abstract_negations(to_nnf(Compound(:and, ax.body)), domain)
return Clause(head, Term[body])
end
return [axioms; get_const_clauses(domain); get_type_clauses(domain)]
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 225 | # Concrete interpreter semantics
"Concrete PDDL interpreter."
struct ConcreteInterpreter <: Interpreter end
include("interface.jl")
include("satisfy.jl")
include("initstate.jl")
include("goalstate.jl")
include("update.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1290 | function goalstate(interpreter::ConcreteInterpreter,
domain::Domain, problem::GenericProblem)
types = Set{Term}([Compound(ty, Term[o]) for (o, ty) in problem.objtypes])
facts = Set{Term}(flatten_conjs(problem.goal))
state = GenericState(types, facts, Dict{Symbol,Any}())
return state
end
function goalstate(interpreter::ConcreteInterpreter,
domain::Domain, objtypes::AbstractDict, terms)
types = Set{Term}([Compound(ty, Term[o]) for (o, ty) in objtypes])
goal = GenericState(types, Set{Term}(), Dict{Symbol,Any}())
for t in flatten_conjs(terms)
if t.name == :(==) # Function equality
@assert length(t.args) == 2 "Assignments must have two arguments."
term, val = t.args[1], t.args[2]
@assert(is_func(term, domain) && !is_attached_func(term, domain),
"Unrecognized function $(term.name).")
@assert(is_ground(term), "Assigned terms must be ground.")
@assert(isa(val, Const), "Terms must be equal to constants.")
goal[term] = val.name
elseif is_pred(t, domain) # Predicates
push!(goal.facts, t)
else
error("Term $t in $terms cannot be handled.")
end
end
return goal
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1393 | function initstate(interpreter::ConcreteInterpreter,
domain::Domain, problem::GenericProblem)
return initstate(interpreter, domain, problem.objtypes, problem.init)
end
function initstate(interpreter::ConcreteInterpreter,
domain::Domain, objtypes::AbstractDict)
types = Set{Term}([Compound(ty, Term[o]) for (o, ty) in objtypes])
return GenericState(types, Set{Term}(), Dict{Symbol,Any}())
end
function initstate(interpreter::ConcreteInterpreter,
domain::Domain, objtypes::AbstractDict,
fluents::AbstractVector)
state = initstate(interpreter, domain, objtypes)
for t in fluents
if t.name == :(==) # Non-Boolean fluents
@assert length(t.args) == 2 "Assignments must have two arguments."
term, val = t.args[1], t.args[2]
@assert !isa(term, Var) "Initial terms cannot be unbound variables."
state[term] = evaluate(domain, state, val)
else # Boolean fluents
push!(state.facts, t)
end
end
return state
end
function initstate(interpreter::ConcreteInterpreter,
domain::Domain, objtypes::AbstractDict,
fluents::AbstractDict)
state = initstate(interpreter, domain, objtypes)
for (name, val) in fluents
set_fluent!(state, val, name)
end
return state
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2925 | # Forward methods from generic domains to concrete interpreter #
satisfy(domain::GenericDomain, state::State, term::Term) =
satisfy(ConcreteInterpreter(), domain, state, term)
satisfy(domain::GenericDomain, state::State, terms::AbstractVector{<:Term}) =
satisfy(ConcreteInterpreter(), domain, state, terms)
satisfiers(domain::GenericDomain, state::State, term::Term) =
satisfiers(ConcreteInterpreter(), domain, state, term)
satisfiers(domain::GenericDomain, state::State, terms::AbstractVector{<:Term}) =
satisfiers(ConcreteInterpreter(), domain, state, terms)
evaluate(domain::GenericDomain, state::State, term::Term) =
evaluate(ConcreteInterpreter(), domain, state, term)
initstate(domain::GenericDomain, problem::Problem) =
initstate(ConcreteInterpreter(), domain, problem)
initstate(domain::GenericDomain, objtypes::AbstractDict) =
initstate(ConcreteInterpreter(), domain, objtypes)
initstate(domain::GenericDomain, objtypes::AbstractDict, fluents) =
initstate(ConcreteInterpreter(), domain, objtypes, fluents)
goalstate(domain::GenericDomain, problem::Problem) =
goalstate(ConcreteInterpreter(), domain, problem)
goalstate(domain::GenericDomain, objtypes::AbstractDict, terms) =
goalstate(ConcreteInterpreter(), domain, objtypes, terms)
transition(domain::GenericDomain, state::State, action::Term; options...) =
transition(ConcreteInterpreter(), domain, state, action; options...)
transition!(domain::GenericDomain, state::State, action::Term; options...) =
transition!(ConcreteInterpreter(), domain, state, action; options...)
available(domain::GenericDomain, state::State, action::Action, args) =
available(ConcreteInterpreter(), domain, state, action, args)
available(domain::GenericDomain, state::State) =
available(ConcreteInterpreter(), domain, state)
execute(domain::GenericDomain, state::State, action::Action, args; options...) =
execute(ConcreteInterpreter(), domain, state, action, args; options...)
execute!(domain::GenericDomain, state::State, action::Action, args; options...) =
execute!(ConcreteInterpreter(), domain, state, action, args; options...)
relevant(domain::GenericDomain, state::State, action::Action, args) =
relevant(ConcreteInterpreter(), domain, state, action, args)
relevant(domain::GenericDomain, state::State) =
relevant(ConcreteInterpreter(), domain, state)
regress(domain::GenericDomain, state::State, action::Action, args; options...) =
regress(ConcreteInterpreter(), domain, state, action, args; options...)
regress!(domain::GenericDomain, state::State, action::Action, args; options...) =
regress!(ConcreteInterpreter(), domain, state, action, args; options...)
update!(domain::GenericDomain, state::State, diff::Diff) =
update!(ConcreteInterpreter(), domain, state, diff)
update(domain::GenericDomain, state::State, diff::Diff) =
update(ConcreteInterpreter(), domain, state, diff)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3397 | function satisfy(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState,
terms::AbstractVector{<:Term})
# Quick check that avoids SLD resolution unless necessary
sat = all(check(interpreter, domain, state, t) for t in terms)
if sat !== missing return sat end
# Call SLD resolution only if there are free variables or axioms
return !isempty(satisfiers(interpreter, domain, state, terms))
end
function satisfy(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, term::Term)
# Quick check that avoids SLD resolution unless necessary
sat = check(interpreter, domain, state, term)
if sat !== missing return sat end
# Call SLD resolution only if there are free variables or axioms
return !isempty(satisfiers(interpreter, domain, state, term))
end
function satisfiers(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState,
terms::AbstractVector{<:Term})
# Initialize Julog knowledge base
clauses = Clause[get_clauses(domain); collect(state.types); collect(state.facts)]
# Pass in fluents and function definitions as a dictionary of functions
funcs = get_eval_funcs(domain, state)
# Reorder query to reduce search time
terms = reorder_query(domain, collect(terms))
# Find satisfying substitutions via SLD-resolution
_, subst = resolve(terms, clauses; funcs=funcs, mode=:all, search=:dfs)
return subst
end
function satisfiers(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, term::Term)
return satisfiers(interpreter, domain, state, [term])
end
function check(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, term::Compound)
sat = if term.name == :and
all(check(interpreter, domain, state, a) for a in term.args)
elseif term.name == :or
any(check(interpreter, domain, state, a) for a in term.args)
elseif term.name == :imply
!check(interpreter, domain, state, term.args[1]) |
check(interpreter, domain, state, term.args[2])
elseif term.name == :not
!check(interpreter, domain, state, term.args[1])
elseif is_quantifier(term)
missing
elseif !is_ground(term)
missing
elseif is_derived(term, domain)
missing
elseif is_type(term, domain)
if has_subtypes(term, domain)
missing
elseif term in state.types
true
elseif !isempty(get_constants(domain))
domain.constypes[term.args[1]] == term.name
else
false
end
elseif is_global_pred(term)
evaluate(interpreter, domain, state, term)::Bool
elseif is_func(term, domain)
evaluate(interpreter, domain, state, term)::Bool
else
term in state.facts
end
return sat
end
function check(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, term::Const)
if term in state.facts || term in state.types || term.name == true
return true
elseif is_func(term, domain) || is_derived(term, domain)
return missing
else
return false
end
end
function check(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, term::Var)
return missing
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 397 | ## State updates ##
function update!(interpreter::ConcreteInterpreter,
domain::Domain, state::GenericState, diff::GenericDiff)
setdiff!(state.facts, diff.del)
union!(state.facts, diff.add)
vals = [evaluate(domain, state, v) for v in values(diff.ops)]
for (term, val) in zip(keys(diff.ops), vals)
set_fluent!(state, val, term)
end
return state
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1353 | """
$(SIGNATURES)
Parse top-level PDDL descriptions (domains, problems, etc.).
"""
function parse_description(desc::Symbol, expr::Vector)
@assert (expr[1] == :define) "'define' keyword is missing."
@assert (expr[2][1] == desc) "'$desc' keyword is missing."
name = expr[2][2]
field_exprs = ((e[1].name, e) for e in expr[3:end])
# Parse description header (requirements, types, etc.)
header = Dict{Symbol,Any}()
for (fieldname::Symbol, e) in field_exprs
if !is_header_field(Val(desc), fieldname) continue end
if haskey(header, fieldname)
error("Header field :$fieldname appears more than once.")
end
field = parse_header_field(Val(desc), fieldname, e)
if isa(field, NamedTuple)
merge!(header, Dict(pairs(field)))
else
header[fieldname] = field
end
end
# Parse description body (actions, etc.)
body = Dict{Symbol,Any}()
for (fieldname::Symbol, e) in field_exprs
if !is_body_field(Val(desc), fieldname) continue end
field = parse_body_field(Val(desc), fieldname, e)
fields = get!(body, Symbol(string(fieldname) * "s"), [])
push!(fields, field)
end
return name, header, body
end
parse_description(desc::Symbol, str::AbstractString) =
parse_description(desc, parse_string(str))
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4584 | """
$(SIGNATURES)
Parse PDDL domain description.
"""
parse_domain(expr::Vector) =
parse_domain(expr, GenericDomain)
parse_domain(str::AbstractString) =
parse_domain(parse_string(str))
parse_domain(expr::Vector, domain_type::Type) =
domain_type(parse_description(:domain, expr)...)
parse_domain(str::AbstractString, domain_type::Type) =
parse_domain(parse_string(str), domain_type)
@add_top_level(:domain, parse_domain)
"""
$(SIGNATURES)
Parse domain requirements.
"""
function parse_requirements(expr::Vector)
reqs = Dict{Symbol,Bool}(e.name => true for e in expr[2:end])
reqs = merge(DEFAULT_REQUIREMENTS, reqs)
unchecked = [k for (k, v) in reqs if v == true]
while length(unchecked) > 0
req = pop!(unchecked)
deps = get(IMPLIED_REQUIREMENTS, req, Symbol[])
if length(deps) == 0 continue end
reqs = merge(reqs, Dict{Symbol,Bool}(d => true for d in deps))
append!(unchecked, deps)
end
return reqs
end
@add_header_field(:domain, :requirements, parse_requirements)
"""
$(SIGNATURES)
Parse type hierarchy.
"""
function parse_types(expr::Vector)
@assert (expr[1].name == :types) ":types keyword is missing."
types = Dict{Symbol,Vector{Symbol}}(:object => Symbol[])
all_subtypes = Set{Symbol}()
accum = Symbol[]
is_supertype = false
for e in expr[2:end]
if e == :-
is_supertype = true
continue
end
subtypes = get!(types, e, Symbol[])
if is_supertype
append!(subtypes, accum)
union!(all_subtypes, accum)
accum = Symbol[]
is_supertype = false
else
push!(accum, e)
end
end
maxtypes = setdiff(keys(types), all_subtypes, [:object])
append!(types[:object], collect(maxtypes))
return (typetree=types,)
end
@add_header_field(:domain, :types, parse_types)
"""
$(SIGNATURES)
Parse constants in a planning domain.
"""
function parse_constants(expr::Vector)
@assert (expr[1].name == :constants) ":constants keyword is missing."
objs, types = parse_typed_consts(expr[2:end])
types = Dict{Const,Symbol}(o => t for (o, t) in zip(objs, types))
return (constants=objs, constypes=types)
end
parse_constants(::Nothing) =
(constants=Const[], constypes=Dict{Const,Symbol}())
@add_header_field(:domain, :constants, parse_constants)
"""
$(SIGNATURES)
Parse predicate list.
"""
function parse_predicates(expr::Vector)
@assert (expr[1].name == :predicates) ":predicates keyword is missing."
preds = Dict{Symbol,Signature}()
declarations, types = parse_typed_declarations(expr[2:end], :boolean)
for ((term, argtypes), type) in zip(declarations, types)
if type !== :boolean error("Predicate $term is not boolean.") end
preds[term.name] = Signature(term, argtypes, type)
end
return preds
end
parse_predicates(::Nothing) = Dict{Symbol,Signature}()
@add_header_field(:domain, :predicates, parse_predicates)
"""
$(SIGNATURES)
Parse list of function (i.e. fluent) declarations.
"""
function parse_functions(expr::Vector)
@assert (expr[1].name == :functions) ":functions keyword is missing."
funcs = Dict{Symbol,Signature}()
declarations, types = parse_typed_declarations(expr[2:end], :numeric)
for ((term, argtypes), type) in zip(declarations, types)
funcs[term.name] = Signature(term, argtypes, type)
end
return funcs
end
parse_functions(::Nothing) = Dict{Symbol,Signature}()
@add_header_field(:domain, :functions, parse_functions)
"""
$(SIGNATURES)
Parse axioms (a.k.a. derived predicates).
"""
function parse_axiom(expr::Vector)
@assert (expr[1].name in [:axiom, :derived]) ":derived keyword is missing."
head = parse_formula(expr[2])
body = parse_formula(expr[3])
return Clause(head, Term[body])
end
@add_body_field(:domain, :axiom, parse_axiom)
"""
$(SIGNATURES)
Parse axioms (a.k.a. derived predicates).
"""
parse_derived(expr::Vector) = parse_axiom(expr)
@add_body_field(:domain, :derived, parse_derived)
"""
$(SIGNATURES)
Parse action definition.
"""
function parse_action(expr::Vector)
args = Dict(expr[i].name => expr[i+1] for i in 1:2:length(expr))
@assert (:action in keys(args)) ":action keyword is missing"
name = args[:action]
params, types = parse_typed_vars(get(args, :parameters, []))
precondition = parse_formula(get(args, :precondition, []))
effect = parse_formula(args[:effect])
return GenericAction(name, params, types, precondition, effect)
end
@add_body_field(:domain, :action, parse_action)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 4998 | ## Parsers for PDDL formulas ##
"""
$(SIGNATURES)
Parse to first-order-logic formula.
"""
function parse_formula(expr::Vector; interpolate::Bool = false)
if length(expr) == 0
return Const(:true)
elseif length(expr) == 1
return parse_term(expr[1])
elseif length(expr) > 1
name = expr[1]
if name in (:exists, :forall)
# Handle exists and forall separately
if interpolate
vars, types = parse_typed_vars(expr[2]; interpolate = true)
typeconds = [:(Compound($ty, Term[$v]))
for (v, ty) in zip(vars, types)]
cond = length(typeconds) > 1 ?
:(Compound(:and, Term[$(typeconds...)])) : typeconds[1]
body = parse_term(expr[3]; interpolate = true)
return :(Compound($(QuoteNode(name)), Term[$cond, $body]))
else
vars, types = parse_typed_vars(expr[2])
typeconds =
Term[Compound(ty, Term[v]) for (v, ty) in zip(vars, types)]
cond = length(typeconds) > 1 ?
Compound(:and, typeconds) : typeconds[1]
body = parse_term(expr[3])
return Compound(name, Term[cond, body])
end
else
# Convert = to == so that Julog can handle equality checks
name = (name == :(=)) ? :(==) : name
if interpolate
name = name isa Symbol ? QuoteNode(name) : name
args = Any[parse_term(expr[i]; interpolate = true)
for i in 2:length(expr)]
return :(Compound($name, Term[$(args...)]))
else
args = Term[parse_term(expr[i]) for i in 2:length(expr)]
return Compound(name, args)
end
end
else
error("Could not parse $(unparse(expr)) to PDDL formula.")
end
end
parse_formula(expr::Union{Symbol,Number,Var}; interpolate::Bool = false) =
parse_term(expr; interpolate = interpolate)
parse_formula(str::AbstractString; interpolate::Bool = false) =
parse_formula(parse_string(str); interpolate = interpolate)
function parse_term(expr; interpolate::Bool = false)
if expr isa Vector
return parse_formula(expr; interpolate = interpolate)
elseif expr isa Var
return expr
elseif expr isa Union{Symbol,Number,String}
return Const(expr)
elseif expr isa Expr
if interpolate
return :($expr isa Term ? $expr : Const($expr))
else
error("Interpolation only supported in macro parsing of formulas.")
end
else
error("Could not parse $(unparse(expr)) to PDDL term.")
end
end
"""
$(SIGNATURES)
Parse predicates or function declarations with type signatures.
"""
function parse_declaration(expr::Vector)
if length(expr) == 1 && isa(expr[1], Symbol)
return Const(expr[1]), Symbol[]
elseif length(expr) > 1 && isa(expr[1], Symbol)
name = expr[1]
args, types = parse_typed_vars(expr[2:end])
return Compound(name, Vector{Term}(args)), types
else
error("Could not parse $(unparse(expr)) to typed declaration.")
end
end
"""
$(SIGNATURES)
Parse list of typed expressions.
"""
function parse_typed_list(expr::Vector, T::Type, default, parse_fn;
interpolate::Bool = false)
# TODO : Handle either-types
terms = Vector{T}()
types = interpolate ? Union{QuoteNode, Expr}[] : Symbol[]
count, is_type = 0, false
for e in expr
if e == :-
if is_type error("Repeated hyphens in $(unparse(expr)).") end
is_type = true
continue
elseif is_type
if interpolate
e = e isa Symbol ? QuoteNode(e) : :($e::Symbol)
end
append!(types, fill(e, count))
count, is_type = 0, false
else
push!(terms, parse_fn(e))
count += 1
end
end
if interpolate
default = default isa Symbol ? QuoteNode(default) : :($default::Symbol)
end
append!(types, fill(default, count))
return terms, types
end
"""
$(SIGNATURES)
Parse list of typed variables.
"""
function parse_typed_vars(expr::Vector, default=:object;
interpolate::Bool = false)
if interpolate
varcheck(e) = e isa Var ? e : :($e::Var)
return parse_typed_list(expr, Union{Var, Expr}, default, varcheck;
interpolate = true)
else
return parse_typed_list(expr, Var, default, identity)
end
end
"""
$(SIGNATURES)
Parse list of typed constants.
"""
parse_typed_consts(expr::Vector, default=:object) =
parse_typed_list(expr, Const, default, Const)
"""
$(SIGNATURES)
Parse list of typed declarations.
"""
parse_typed_declarations(expr::Vector, default=:boolean) =
parse_typed_list(expr, Any, default, parse_declaration)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1880 | ## Parser combinator from strings to Julia expressions
# Adapted from LispSyntax.jl (https://github.com/swadey/LispSyntax.jl)
"Parser combinator for PDDL Lisp syntax."
lisp = Delayed()
white_space = p"(([\s\n\r]*(?<!\\);[^\n\r]+[\n\r\s]*)+|[\s\n\r]+)"
opt_ws = white_space | e""
doubley = p"[-+]?[0-9]*\.[0-9]+([eE][-+]?[0-9]+)?" > (x -> parse(Float64, x))
floaty_dot = p"[-+]?[0-9]*\.[0-9]+([eE][-+]?[0-9]+)?[Ff]" > (x -> parse(Float32, x[1:end-1]))
floaty_nodot = p"[-+]?[0-9]*[0-9]+([eE][-+]?[0-9]+)?[Ff]" > (x -> parse(Float32, x[1:end-1]))
floaty = Alt!(floaty_dot, floaty_nodot)
inty = p"[-+]?\d+" > (x -> parse(Int, x))
booly = p"(true|false)" > (x -> x == "true" ? true : false)
stringy = p"(?<!\\)\".*?(?<!\\)\"" > (x -> convert(String, x[2:end-1]))
keywordy = E":" + p"[\w_][\w_\-]*" > (x -> Keyword(lowercase(x)))
vary = E"?" + p"[\w_][\w_\-]*" > (x -> Var(Symbol(uppercasefirst(lowercase(x)))))
symboly = p"[\w_][\w_\-]*" > (x -> Symbol(lowercase(x)))
opsymy = p"[^\d():\?{}'`,;~\[\]\s\w$]+" > Symbol
insymy = E"$" + p"[\w_]+" > (x -> esc(Symbol(x)))
inopeny = Seq!(E"${", ~opt_ws)
inclosey = Alt!(E"}", Error("expected closing brace"))
inexpr = Seq!(~inopeny, p"[^{}]+", ~inclosey) > (x -> esc(Meta.parse(x)))
openy = Seq!(E"(", ~opt_ws)
closey = Alt!(E")", Error("invalid expression"))
sexpr = Seq!(~openy, Repeat(lisp + ~opt_ws; backtrack=false), ~closey) |> (x -> x)
lisp.matcher = Alt!(floaty, doubley, inty, booly, stringy,
keywordy, vary, symboly, opsymy,
insymy, inexpr, sexpr)
const top_level = Seq!(Repeat(~opt_ws + lisp; backtrack=false), ~opt_ws, Eos())
function parse_string(str::AbstractString)
try
return parse_one(str, top_level)[1]
catch e
error(e.msg)
end
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 6597 | module Parser
export parse_domain, parse_problem, parse_pddl, @pddl, @pddl_str
export load_domain, load_problem
using ParserCombinator, Julog, ValSplit, DocStringExtensions
using ..PDDL: Signature, GenericDomain, GenericProblem, GenericAction
using ..PDDL: DEFAULT_REQUIREMENTS, IMPLIED_REQUIREMENTS
"PDDL keyword."
struct Keyword
name::Symbol
end
Keyword(name::AbstractString) = Keyword(Symbol(name))
Base.show(io::IO, kw::Keyword) = print(io, "KW:", kw.name)
"""
$(SIGNATURES)
Parse top level description to a PDDL.jl data structure.
"""
@valsplit parse_top_level(Val(name::Symbol), expr) =
error("Unrecognized description: :$name")
"""
$(SIGNATURES)
Returns whether `name` is associated with a top-level description.
"""
@valsplit is_top_level(Val(name::Symbol)) = false
"""
@add_top_level(name, f)
Register `f` as a top-level parser for PDDL descriptions (e.g domains, problems).
"""
macro add_top_level(name, f)
f = esc(f)
_parse_top_level = GlobalRef(@__MODULE__, :parse_top_level)
_is_top_level = GlobalRef(@__MODULE__, :is_top_level)
quote
$_parse_top_level(::Val{$name}, expr) = $f(expr)
$_is_top_level(::Val{$name}) = true
end
end
"""
$(SIGNATURES)
Parse header field for a PDDL description.
"""
@valsplit parse_header_field(Val(desc::Symbol), fieldname, expr) =
error("Unrecognized description: :$desc")
@valsplit parse_header_field(desc::Union{Val,Nothing}, Val(fieldname::Symbol), expr) =
error("Unrecognized fieldname: :$fieldname")
"""
$(SIGNATURES)
Returns whether `fieldname` is a header field for a PDDL description.
"""
@valsplit is_header_field(Val(desc::Symbol), fieldname::Symbol) = false
@valsplit is_header_field(desc::Union{Val,Nothing}, Val(fieldname::Symbol)) = false
"""
@add_header_field(desc, fieldname, f)
Register `f` as a parser for a header field in a PDDL description.
"""
macro add_header_field(desc, fieldname, f)
f = esc(f)
_parse_header_field = GlobalRef(@__MODULE__, :parse_header_field)
_is_header_field = GlobalRef(@__MODULE__, :is_header_field)
quote
$_parse_header_field(::Val{$desc}, ::Val{$fieldname}, expr) = $f(expr)
$_parse_header_field(::Nothing, ::Val{$fieldname}, expr) = $f(expr)
$_is_header_field(::Val{$desc}, ::Val{$fieldname}) = true
$_is_header_field(::Nothing, ::Val{$fieldname}) = true
end
end
"""
$(SIGNATURES)
Parse body field for a PDDL description.
"""
@valsplit parse_body_field(Val(desc::Symbol), fieldname, expr) =
error("Unrecognized description: :$desc")
@valsplit parse_body_field(desc::Union{Val,Nothing}, Val(fieldname::Symbol), expr) =
error("Unrecognized fieldname: :$fieldname")
"""
$(SIGNATURES)
Returns whether `fieldname` is a body field for a PDDL description.
"""
@valsplit is_body_field(Val(desc::Symbol), fieldname::Symbol) = false
@valsplit is_body_field(desc::Union{Val,Nothing}, Val(fieldname::Symbol)) = false
"""
@add_body_field(desc, fieldname, f)
Register `f` as a parser for a body field in a PDDL description.
"""
macro add_body_field(desc, fieldname, f)
f = esc(f)
_parse_body_field = GlobalRef(@__MODULE__, :parse_body_field)
_is_body_field = GlobalRef(@__MODULE__, :is_body_field)
quote
$_parse_body_field(::Val{$desc}, ::Val{$fieldname}, expr) = $f(expr)
$_parse_body_field(::Nothing, ::Val{$fieldname}, expr) = $f(expr)
$_is_body_field(::Val{$desc}, ::Val{$fieldname}) = true
$_is_body_field(::Nothing, ::Val{$fieldname}) = true
end
end
# Utility functions
include("utils.jl")
# Lisp-style grammar for PDDL
include("grammar.jl")
# Parsers for PDDL formulas
include("formulas.jl")
# Parser for top-level PDDL descriptions
include("descriptions.jl")
# Parsers for PDDL domains
include("domain.jl")
# Parsers for PDDL problems
include("problem.jl")
"""
parse_pddl(str)
Parse to PDDL structure based on initial keyword.
"""
function parse_pddl(expr::Vector; interpolate::Bool = false)
if isa(expr[1], Keyword)
kw = expr[1].name
if is_header_field(nothing, kw)
return parse_header_field(nothing, kw, expr)
elseif is_body_field(nothing, kw)
return parse_body_field(nothing, kw, expr)
end
error("Keyword $kw not recognized.")
elseif expr[1] == :define
kw = expr[2][1]
return parse_top_level(kw, expr)
else
return parse_formula(expr; interpolate = interpolate)
end
end
parse_pddl(sym::Union{Symbol,Number,Var}; interpolate::Bool = false) =
parse_formula(sym; interpolate = interpolate)
parse_pddl(str::AbstractString; interpolate::Bool = false) =
parse_pddl(parse_string(str); interpolate = interpolate)
parse_pddl(strs::AbstractString...; interpolate::Bool = false) =
[parse_pddl(parse_string(s); interpolate = interpolate) for s in strs]
"""
@pddl(strs...)
Parse string(s) to PDDL construct(s).
When parsing PDDL formulae, the variable `x` can be interpolated into the
string using the syntax `\\\$x`. For example, `@pddl("(on \\\$x \\\$y)")` will
parse to `Compound(:on, Term[x, y])` if `x` and `y` are [`Term`](@ref)s.
Julia expressions can be interpolated by surrounding the expression with curly
braces, i.e. `\\\${...}`.
"""
macro pddl(str::AbstractString)
return parse_pddl(str; interpolate = true)
end
macro pddl(strs::AbstractString...)
results = parse_pddl.(strs; interpolate = true)
if any(r isa Expr for r in results)
return Expr(:vect, results...)
else
return collect(results)
end
end
"""
pddl"..."
Parse string `"..."` to PDDL construct.
When parsing PDDL formulae, the variable `x` can be interpolated into the
string using the syntax `\$x`. For example, `pddl"(on \$x \$y)"` will
parse to `Compound(:on, Term[x, y])` if `x` and `y` are [`Term`](@ref)s.
Julia expressions can be interpolated by surrounding the expression with curly
braces, i.e. `\${...}`.
"""
macro pddl_str(str::AbstractString)
return parse_pddl(str; interpolate = true)
end
"""
load_domain(path::AbstractString)
load_domain(io::IO)
Load PDDL domain from specified path or IO object.
"""
function load_domain(io::IO)
str = read(io, String)
return parse_domain(str)
end
load_domain(path::AbstractString) = open(io->load_domain(io), path)
"""
load_problem(path::AbstractString)
load_problem(io::IO)
Load PDDL problem from specified path or IO object.
"""
function load_problem(io::IO)
str = read(io, String)
return parse_problem(str)
end
load_problem(path::AbstractString) = open(io->load_problem(io), path)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2194 | """
$(SIGNATURES)
Parse PDDL problem description.
"""
parse_problem(expr::Vector) =
GenericProblem(parse_description(:problem, expr)...)
parse_problem(str::AbstractString) =
parse_problem(parse_string(str))
@add_top_level(:problem, parse_problem)
"""
$(SIGNATURES)
Parse domain for planning problem.
"""
parse_domain_name(expr::Vector) = expr[2]
@add_header_field(:problem, :domain, parse_domain_name)
"""
$(SIGNATURES)
Parse objects in planning problem.
"""
function parse_objects(expr::Vector)
@assert (expr[1].name == :objects) ":objects keyword is missing."
objs, types = parse_typed_consts(expr[2:end])
types = Dict{Const,Symbol}(o => t for (o, t) in zip(objs, types))
return (objects=objs, objtypes=types)
end
parse_objects(::Nothing) =
(objects=Const[], objtypes=Dict{Const,Symbol}())
@add_header_field(:problem, :objects, parse_objects)
"""
$(SIGNATURES)
Parse initial formula literals in planning problem.
"""
function parse_init(expr::Vector)
@assert (expr[1].name == :init) ":init keyword is missing."
return [parse_formula(e) for e in expr[2:end]]
end
parse_init(::Nothing) = Term[]
@add_header_field(:problem, :init, parse_init)
"""
$(SIGNATURES)
Parse goal formula in planning problem.
"""
function parse_goal(expr::Vector)
@assert (expr[1].name == :goal) ":goal keyword is missing."
return parse_formula(expr[2])
end
parse_goal(::Nothing) = Const(true)
@add_header_field(:problem, :goal, parse_goal)
"""
$(SIGNATURES)
Parse metric expression in planning problem.
"""
function parse_metric(expr::Vector)
@assert (expr[1].name == :metric) ":metric keyword is missing."
@assert (expr[2] in (:minimize, :maximize)) "Unrecognized optimization."
return Compound(expr[2], [parse_formula(expr[3])])
end
parse_metric(expr::Nothing) = nothing
@add_header_field(:problem, :metric, parse_metric)
"""
$(SIGNATURES)
Parse constraints formula in planning problem.
"""
function parse_constraints(expr::Vector)
@assert (expr[1].name == :constraints) ":constraints keyword is missing."
return parse_formula(expr[2])
end
parse_constraints(::Nothing) = nothing
@add_header_field(:problem, :constraints, parse_constraints)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 235 | ## Convert expressions back to strings
unparse(expr) = string(expr)
unparse(expr::Vector) = "(" * join(unparse.(expr), " ") * ")"
unparse(expr::Var) = "?" * lowercase(string(expr.name))
unparse(expr::Keyword) = ":" * string(expr.name)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 501 | """
EndStateSimulator(max_steps::Union{Int,Nothing} = nothing)
Simulator that returns the end state of simulation.
"""
@kwdef struct EndStateSimulator <: Simulator
max_steps::Union{Int,Nothing} = nothing
end
function simulate(sim::EndStateSimulator, domain::Domain, state::State, actions)
state = copy(state)
for (t, act) in enumerate(actions)
state = transition!(domain, state, act)
sim.max_steps !== nothing && t >= sim.max_steps && break
end
return state
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 960 | "Abstract type for PDDL simulators."
abstract type Simulator end
"""
(sim::Simulator)(domain::Domain, state::State, actions)
Simulates the evolution of a PDDL `domain` as a sequence of `actions` are
executed from an initial `state`.
"""
(sim::Simulator)(domain::Domain, state::State, actions) =
simulate(sim, domain, state, actions)
"""
simulate([sim=StateRecorder()], domain::Domain, state::State, actions)
Simulates the evolution of a PDDL `domain` as a sequence of `actions` are
executed from an initial `state`. The type of simulator, `sim`, specifies
what information is collected and returned.
By default, `sim` is a [`StateRecorder`](@ref), which records and returns the
state trajectory.
"""
simulate(sim::Simulator, domain::Domain, state::State, actions) =
error("Not implemented.")
include("state_recorder.jl")
include("end_state.jl")
simulate(domain::Domain, state::State, actions) =
simulate(StateRecorder(), domain, state, actions)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 532 | """
StateRecorder(max_steps::Union{Int,Nothing} = nothing)
Simulator that records the state trajectory, including the start state.
"""
@kwdef struct StateRecorder <: Simulator
max_steps::Union{Int,Nothing} = nothing
end
function simulate(sim::StateRecorder, domain::Domain, state::State, actions)
trajectory = [state]
for (t, act) in enumerate(actions)
state = transition(domain, state, act)
push!(trajectory, state)
sim.max_steps !== nothing && t >= sim.max_steps && break
end
return trajectory
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 15085 | """
PDDL.Arrays
Extends PDDL with array-valued fluents. Register by calling `PDDL.Arrays.@register()`.
Attach to a specific `domain` by calling `PDDL.Arrays.attach!(domain)`.
# Datatypes
## Generic Arrays
- `array`: A multidimensional array with untyped elements.
- `vector`: A 1D array with untyped elements.
- `matrix`: A 2D array with untyped elements.
## Bit Arrays
- `bit-array`: A multidimensional array with `boolean` elements.
- `bit-vector`: A 1D array with `boolean` elements.
- `bit-matrix`: A 2D array with `boolean` elements.
## Integer Arrays
- `int-array`: A multidimensional array with `integer` elements.
- `int-vector`: A 1D array with `integer` elements.
- `int-matrix`: A 2D array with `integer` elements.
## Numeric Arrays
- `num-array`: A multidimensional array with `number` elements.
- `num-vector`: A 1D array with `number` elements.
- `num-matrix`: A 2D array with `number` elements.
## Array Indices
- `array-index`: A multidimensional array index, represented as a `Tuple`.
- `vector-index`: A 1D array index, represented as an `Int`.
- `matrix-index`: A 2D array index, represented as a 2-tuple.
# Predicates
- `(has-index ?a ?i)`: Checks if `?i` is a valid index for `?a`.
- `(has-row ?m ?i)`: Checks if `?i` is a valid row index for matrix `?m`.
- `(has-col ?m ?i)`: Checks if `?i` is a valid column index for matrix `?m`.
# Functions
## Array Constructors
- `(new-array ?v ?n1 ?n2 ...)`: Construct a new array filled with `?v`.
- `(new-matrix ?v ?h ?w)`: Construct a new `?h` x `?w` matrix filled with `?v`.
- `(new-vector ?v ?n)`: Construct a new vector of length `?n` filled with `?v`.
- `(vec ?x1 ?x2 ... ?xn)`: Construct a vector from `?x1`, `?x2`, etc.
- `(mat ?v1 ?v2 ... ?vn)`: Construct a matrix from column vectors `?v1`, `?v2`, etc.
Similar constructors are available for bit arrays, integer arrays, and numeric arrays.
## Index Constructors
- `(index ?i1 ?i2 ...)`: Construct an array index from `?i1`, `?i2`, etc.
- `(vec-index ?i)`: Construct a 1D array index from `?i`.
- `(mat-index ?i1 ?i2)`: Construct a 2D array index from `?i1`, `?i2`.
## Accessors
- `(get-index ?a ?i ?j ...)`: Get element `(?i, ?j, ...)` of `?a`.
- `(set-index ?a ?v ?i ?j ...)`: Set element `(?i, ?j, ...)` of `?a` to `?v`.
## Array Dimensions
- `(length ?a)`: Get the number of elements in an array `?a`.
- `(height ?a)`: Get the height of a matrix `?m`.
- `(width ?a)`: Get the width of a matrix `?m`.
- `(ndims ?a)`: Get the number of dimensions of an array `?a`.
## Array Manipulation
- `(push ?v ?x)`: Push `?x` onto the end of `?v`.
- `(pop ?v)`: Pop the last element of `?v`.
- `(transpose ?m)`: Transpose a matrix `?m`.
## Index Manipulation
- `(get-row ?idx)`: Get the row number of a `matrix-index`.
- `(get-col ?idx)`: Get the column number of a `matrix-index`.
- `(set-row ?idx ?row)`: Set the row number of a `matrix-index` to `?row`.
- `(set-col ?idx ?col)`: Set the column number of a `matrix-index` to `?col`.
- `(increase-row ?idx ?d)`: Increase the row number of a `matrix-index` by `?d`.
- `(increase-col ?idx ?d)`: Increase the column number of a `matrix-index` by `?d`.
- `(decrease-row ?idx ?d)`: Decrease the row number of a `matrix-index` by `?d`.
- `(decrease-col ?idx ?d)`: Decrease the column number of a `matrix-index` by `?d`.
"""
@pddltheory module Arrays
using ..PDDL
using ..PDDL: BooleanAbs, IntervalAbs, SetAbs, lub, isboth, empty_interval
# Generic array constructors
new_array(val, dims...) = fill!(Array{Any}(undef, dims), val)
new_matrix(val, h, w) = fill!(Matrix{Any}(undef, h, w), val)
new_vector(val, n) = fill!(Vector{Any}(undef, n), val)
vec(xs...) = collect(Any, xs)
mat(vs::Vector{Any}...) = Matrix{Any}(hcat(vs...))
# Bit array constructors
new_bit_array(val::Bool, dims...) = val ? trues(dims) : falses(dims)
new_bit_matrix(val::Bool, h, w) = val ? trues(h, w) : falses(h, w)
new_bit_vector(val::Bool, n) = val ? trues(n) : falses(n)
bit_vec(xs...) = BitVector(collect(xs))
bit_mat(vs::BitVector...) = hcat(vs...)::BitMatrix
# Integer array constructors
new_int_array(val::Integer, dims...) = fill!(Array{Int}(undef, dims), val)
new_int_matrix(val::Integer, h, w) = fill!(Matrix{Int}(undef, h, w), val)
new_int_vector(val::Integer, n) = fill!(Vector{Int}(undef, n), val)
int_vec(xs...) = collect(Int, xs)
int_mat(vs::Vector{Int}...) = Matrix{Int}(hcat(vs...))
# Numeric array constructors
new_num_array(val::Real, dims...) = fill!(Array{Float64}(undef, dims), val)
new_num_matrix(val::Real, h, w) = fill!(Matrix{Float64}(undef, h, w), val)
new_num_vector(val::Real, n) = fill!(Vector{Float64}(undef, n), val)
num_vec(xs...) = collect(Float64, xs)
num_mat(vs::Vector{Float64}...) = Matrix{Float64}(hcat(vs...))
# Index constructors
index(idxs::Int...) = idxs
vec_index(i::Int) = i
mat_index(i::Int, j::Int) = (i, j)
# Array accessors
get_index(a::AbstractArray{T,N}, idxs::Vararg{Int,N}) where {T,N} =
getindex(a, idxs...)
get_index(a::AbstractArray{T,N}, idxs::NTuple{N,Int}) where {T,N} =
getindex(a, idxs...)
set_index(a::AbstractArray{T,N}, val, idxs::Vararg{Int,N}) where {T,N} =
setindex!(copy(a), val, idxs...)
set_index(a::AbstractArray{T,N}, val, idxs::NTuple{N,Int}) where {T,N} =
setindex!(copy(a), val, idxs...)
# Bounds checking
has_index(a::AbstractArray{T,N}, idxs::Vararg{Int,N}) where {T,N} =
checkbounds(Bool, a, idxs...)
has_index(a::AbstractArray{T,N}, idxs::NTuple{N,Int}) where {T,N} =
checkbounds(Bool, a, idxs...)
has_row(m::AbstractMatrix, i::Int) =
checkbounds(Bool, m, i, :)
has_col(m::AbstractMatrix, j::Int) =
checkbounds(Bool, m, :, j)
# Index component accessors
get_index(idx::NTuple{N, Int}, i::Int) where {N} =
getindex(idx, i)
get_row(idx::Tuple{Int, Int}) = idx[1]
get_col(idx::Tuple{Int, Int}) = idx[2]
set_index(idx::NTuple{N, Int}, val::Int, i::Int) where {N} =
(idx[1:i-1]..., val, idx[i+1:end]...)
set_row(idx::Tuple{Int, Int}, val::Int) = (val, idx[2])
set_col(idx::Tuple{Int, Int}, val::Int) = (idx[1], val)
# Index component modifiers
increase_index(idx::NTuple{N, Int}, i::Int, val::Int) where {N} =
(idx[1:i-1]..., idx[i] + val, idx[i+1:end]...)
increase_row(idx::Tuple{Int, Int}, val::Int) = (idx[1] + val, idx[2])
increase_col(idx::Tuple{Int, Int}, val::Int) = (idx[1], idx[2] + val)
decrease_index(idx::NTuple{N, Int}, i::Int, val::Int) where {N} =
(idx[1:i-1]..., idx[i] - val, idx[i+1:end]...)
decrease_row(idx::Tuple{Int, Int}, val::Int) = (idx[1] - val, idx[2])
decrease_col(idx::Tuple{Int, Int}, val::Int) = (idx[1], idx[2] - val)
# Array dimensions
length(a::AbstractArray) = Base.length(a)
height(m::AbstractMatrix) = size(m, 1)
width(m::AbstractMatrix) = size(m, 2)
ndims(a::AbstractArray) = Base.ndims(a)
# Push and pop
push(v::AbstractVector, x) = push!(copy(v), x)
pop(v::AbstractVector) = (v = copy(v); pop!(v); v)
# Transformations
_transpose(v::AbstractVector) = permutedims(v)
_transpose(m::AbstractMatrix) = permutedims(m)
# Accessors with abstract indices
function get_index(
a::AbstractArray{T,N}, idxs::Vararg{SetAbs{Int},N}
) where {T,N}
val = SetAbs{T}()
for i in Iterators.product((i.set for i in idxs)...)
has_index(a, i) && push!(val.set, get_index(a, i))
end
return val
end
function get_index(
a::AbstractArray{T,N}, idxs::SetAbs{NTuple{N, Int}}
) where {T,N}
val = SetAbs{T}()
for i in idxs.set
has_index(a, i) && push!(val.set, get_index(a, i))
end
return val
end
function get_index(
a::AbstractArray{T,N}, idxs::SetAbs{NTuple{N, Int}}
) where {T <: BooleanAbs, N}
val::BooleanAbs = missing
for i in idxs.set
has_index(a, i) || continue
val = lub(val, get_index(a, i))
end
return val
end
function get_index(
a::AbstractArray{T,N}, idxs::Vararg{IntervalAbs{Int},N}
) where {T <: Real,N}
val = empty_interval(IntervalAbs{T})
for i in Iterators.product((i.lo:i.hi for i in idxs)...)
has_index(a, i) || continue
val = lub(val, IntervalAbs{T}(get_index(a, i)))
end
return val
end
function get_index(
a::AbstractArray{T,N}, idxs::Vararg{IntervalAbs{Int},N}
) where {T <: BooleanAbs,N}
val::BooleanAbs = missing
for i in Iterators.product((i.lo:i.hi for i in idxs)...)
has_index(a, i) || continue
val = lub(val, get_index(a, i))
end
return val
end
# Bounds checking with abstract indices
function has_index(
a::AbstractArray{T,N}, idxs::Vararg{SetAbs{Int},N}
) where {T, N}
iter = (has_index(a, i) for i in Iterators.product((i.set for i in idxs)...))
return lub(BooleanAbs, iter)
end
function has_index(
a::AbstractArray{T,N}, idxs::SetAbs{NTuple{N, Int}}
) where {T,N}
iter = (has_index(a, i) for i in idxs.set)
return lub(BooleanAbs, iter)
end
function has_index(
a::AbstractArray{T,N}, idxs::Vararg{IntervalAbs{Int},N}
) where {T, N}
iter = (has_index(a, i) for i in
Iterators.product(((i.lo, i.hi) for i in idxs)...))
return lub(BooleanAbs, iter)
end
has_row(m::AbstractMatrix, idxs::SetAbs{Int}) =
lub(BooleanAbs, (has_row(m, i) for i in idxs.set))
has_row(m::AbstractMatrix, i::IntervalAbs{Int}) =
lub(has_row(m, i.lo), has_row(m, i.hi))
has_col(m::AbstractMatrix, idxs::SetAbs{Int}) =
lub(BooleanAbs, (has_col(m, j) for j in idxs.set))
has_col(m::AbstractMatrix, j::IntervalAbs{Int}) =
lub(has_col(m, j.lo), has_col(m, j.hi))
# Abstract index component accessors
get_index(idxs::SetAbs{T}, i::Int) where {T <: Tuple} =
SetAbs{Int}(;iter=(idx[i] for idx in idxs.set))
get_row(idxs::SetAbs{T}) where {T <: Tuple} =
SetAbs{Int}(;iter=(idx[1] for idx in idxs.set))
get_col(idxs::SetAbs{T}) where {T <: Tuple} =
SetAbs{Int}(;iter=(idx[2] for idx in idxs.set))
set_index(idxs::SetAbs{T}, i::Int, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(set_index(idx, i, val) for idx in idxs.set))
set_row(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(set_row(idx, val) for idx in idxs.set))
set_col(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(set_col(idx, val) for idx in idxs.set))
# Abstract index component modifiers
increase_index(idxs::SetAbs{T}, i::Int, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(increase_index(idx, i, val) for idx in idxs.set))
increase_row(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(increase_row(idx, val) for idx in idxs.set))
increase_col(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(increase_col(idx, val) for idx in idxs.set))
decrease_index(idxs::SetAbs{T}, i::Int, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(decrease_index(idx, i, val) for idx in idxs.set))
decrease_row(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(decrease_row(idx, val) for idx in idxs.set))
decrease_col(idxs::SetAbs{T}, val::Int) where {T <: Tuple} =
SetAbs{T}(;iter=(decrease_col(idx, val) for idx in idxs.set))
# Conversions to terms
vec_to_term(v::AbstractVector) =
Compound(:vec, PDDL.val_to_term.(v))
bitvec_to_term(v::BitVector) =
Compound(Symbol("bit-vec"), Const.(Int.(v)))
intvec_to_term(v::Vector{<:Integer}) =
Compound(Symbol("int-vec"), Const.(Int.(v)))
numvec_to_term(v::Vector{<:Real}) =
Compound(Symbol("num-vec"), Const.(Float64.(v)))
mat_to_term(m::AbstractMatrix) =
Compound(:transpose, [Compound(:mat, vec_to_term.(eachrow(m)))])
bitmat_to_term(m::BitMatrix) =
Compound(:transpose, [Compound(Symbol("bit-mat"), bitvec_to_term.(BitVector.(eachrow(m))))])
intmat_to_term(m::Matrix{<:Integer}) =
Compound(:transpose, [Compound(Symbol("int-mat"), intvec_to_term.(eachrow(m)))])
nummat_to_term(m::Matrix{<:Real}) =
Compound(:transpose, [Compound(Symbol("num-mat"), numvec_to_term.(eachrow(m)))])
index_to_term(idxs::NTuple{N,Int}) where {N} =
Compound(:index, [Const(i) for i in idxs])
const DATATYPES = Dict(
"array" => (type=Array{Any}, default=Array{Any}(undef, ())),
"vector" => (type=Vector{Any}, default=Vector{Any}(undef, 0)),
"matrix" => (type=Matrix{Any}, default=Matrix{Any}(undef, 0, 0)),
"bit-array" => (type=BitArray, default=falses()),
"bit-vector" => (type=BitVector, default=falses(0)),
"bit-matrix" => (type=BitMatrix, default=falses(0, 0)),
"int-array" => (type=Array{Int64}, default=zeros(Int64)),
"int-vector" => (type=Vector{Int64}, default=zeros(Int64, 0)),
"int-matrix" => (type=Matrix{Int64}, default=zeros(Int64, 0, 0)),
"num-array" => (type=Array{Float64}, default=zeros(Float64)),
"num-vector" => (type=Vector{Float64}, default=zeros(Float64, 0)),
"num-matrix" => (type=Matrix{Float64}, default=zeros(Float64, 0, 0)),
"array-index" => (type=NTuple{N, Int} where {N}, default=()),
"vector-index" => (type=Int, default=1),
"matrix-index" => (type=Tuple{Int, Int}, default=(1, 1))
)
const ABSTRACTIONS = Dict(
"index" => SetAbs,
"vector-index" => SetAbs{Int},
"matrix-index" => SetAbs{Tuple{Int, Int}}
)
const CONVERTERS = Dict(
"vector" => vec_to_term,
"matrix" => mat_to_term,
"bit-vector" => bitvec_to_term,
"bit-matrix" => bitmat_to_term,
"int-vector" => intvec_to_term,
"int-matrix" => intmat_to_term,
"num-vector" => numvec_to_term,
"num-matrix" => nummat_to_term,
"array-index" => index_to_term,
"matrix-index" => index_to_term
)
const PREDICATES = Dict(
# Bounds checking
"has-index" => has_index,
"has-row" => has_row,
"has-col" => has_col
)
const FUNCTIONS = Dict(
# Generic array constructors
"new-array" => new_array,
"new-vector" => new_vector,
"new-matrix" => new_matrix,
"vec" => vec,
"mat" => mat,
# Bit array constructors
"new-bit-array" => new_bit_array,
"new-bit-vector" => new_bit_vector,
"new-bit-matrix" => new_bit_matrix,
"bit-vec" => bit_vec,
"bit-mat" => bit_mat,
# Integer array constructors
"new-int-array" => new_int_array,
"new-int-vector" => new_int_vector,
"new-int-matrix" => new_int_matrix,
"int-vec" => int_vec,
"int-mat" => int_mat,
# Numeric array constructors
"new-num-array" => new_num_array,
"new-num-vector" => new_num_vector,
"new-num-matrix" => new_num_matrix,
"num-vec" => num_vec,
"num-mat" => num_mat,
# Array index constructors
"index" => index,
"vec-index" => vec_index,
"mat-index" => mat_index,
# Array accessors
"get-index" => get_index,
"set-index" => set_index,
# Index accessors
"get-row" => get_row,
"get-col" => get_col,
"set-row" => set_row,
"set-col" => set_col,
# Index modifiers
"increase-index" => increase_index,
"increase-row" => increase_row,
"increase-col" => increase_col,
"decrease-index" => decrease_index,
"decrease-row" => decrease_row,
"decrease-col" => decrease_col,
# Array dimensions
"length" => length,
"height" => height,
"width" => width,
"ndims" => ndims,
# Push and pop
"push" => push,
"pop" => pop,
# Transformations
"transpose" => _transpose
)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2051 | """
PDDL.Sets
Extends PDDL with set-valued fluents. Set members must be PDDL objects.
Register by calling `PDDL.Sets.@register()`. Attach to a specific `domain`
by calling `PDDL.Sets.attach!(domain)`.
# Datatypes
- `set`: A set of PDDL objects.
# Predicates
- `(member ?x - object ?s - set)`: Is `?x` a member of `?s`?
- `(subset ?s1 ?s2 - set)`: Is `?s1` a subset of `?s2`?
# Functions
- `(construct-set ?x ?y ... - object)`: Constructs a set from `?x`, `?y`, etc.
- `(empty-set)`: Constructs an empty set.
- `(cardinality ?s - set)`: The number of elements in `?s`.
- `(union ?s1 ?s2 - set)`: The union of `?s1` and `?s2`.
- `(intersect ?s1 ?s2 - set)`: The intersection of `?s1` and `?s2`.
- `(difference ?s1 ?s2 - set)`: The set difference of `?s1` and `?s2`.
- `(add-element ?s - set? ?x - object)`: Add `?x` to `?s`.
- `(rem-element ?s - set? ?x - object)`: Remove `?x` from `?s`.
"""
@pddltheory module Sets
using ..PDDL
using ..PDDL: SetAbs
construct_set(xs::Symbol...) = Set{Symbol}(xs)
empty_set() = Set{Symbol}()
cardinality(s::Set) = length(s)
member(s::Set, x) = in(x, s)
subset(x::Set, y::Set) = issubset(x, y)
union(x::Set, y::Set) = Base.union(x, y)
intersect(x::Set, y::Set) = Base.intersect(x, y)
difference(x::Set, y::Set) = setdiff(x, y)
add_element(s::Set, x) = push!(copy(s), x)
rem_element(s::Set, x) = pop!(copy(s), x)
set_to_term(s::Set) = isempty(s) ? Const(Symbol("(empty-set)")) :
Compound(Symbol("construct-set"), PDDL.val_to_term.(collect(s)))
const DATATYPES = Dict(
"set" => (type=Set{Symbol}, default=Set{Symbol}())
)
const ABSTRACTIONS = Dict(
"set" => SetAbs{Set{Symbol}}
)
const CONVERTERS = Dict(
"set" => set_to_term
)
const PREDICATES = Dict(
"member" => member,
"subset" => subset
)
const FUNCTIONS = Dict(
"construct-set" => construct_set,
"empty-set" => empty_set,
"cardinality" => cardinality,
"union" => union,
"intersect" => intersect,
"difference" => difference,
"add-element" => add_element,
"rem-element" => rem_element
)
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3461 | # Theories for data types
"Generate expression to register definitions in a theory module."
function register_theory_expr(theory::Module)
expr = Expr(:block)
for (name, ty) in theory.DATATYPES
push!(expr.args, register_expr(:datatype, name, QuoteNode(ty)))
end
for (name, ty) in theory.ABSTRACTIONS
push!(expr.args, register_expr(:abstraction, name, QuoteNode(ty)))
end
for (name, ty) in theory.CONVERTERS
push!(expr.args, register_expr(:converter, name, QuoteNode(ty)))
end
for (name, f) in theory.PREDICATES
push!(expr.args, register_expr(:predicate, name, QuoteNode(f)))
end
for (name, f) in theory.FUNCTIONS
push!(expr.args, register_expr(:function, name, QuoteNode(f)))
end
push!(expr.args, nothing)
return expr
end
"Runtime registration of the definitions in a theory module."
function register_theory!(theory::Module)
for (name, ty) in theory.DATATYPES
PDDL.register!(:datatype, name, ty)
end
for (name, ty) in theory.ABSTRACTIONS
PDDL.register!(:abstraction, name, ty)
end
for (name, ty) in theory.CONVERTERS
PDDL.register!(:converter, name, ty)
end
for (name, f) in theory.PREDICATES
PDDL.register!(:predicate, name, f)
end
for (name, f) in theory.FUNCTIONS
PDDL.register!(:function, name, f)
end
return nothing
end
"Runtime deregistration of the definitions in a theory module."
function deregister_theory!(theory::Module)
for (name, ty) in theory.DATATYPES
PDDL.deregister!(:datatype, name)
end
for (name, ty) in theory.ABSTRACTIONS
PDDL.deregister!(:abstraction, name)
end
for (name, ty) in theory.CONVERTERS
PDDL.deregister!(:converter, name)
end
for (name, f) in theory.PREDICATES
PDDL.deregister!(:predicate, name)
end
for (name, f) in theory.FUNCTIONS
PDDL.deregister!(:function, name)
end
return nothing
end
"Attach a custom theory to a PDDL domain."
function attach_theory!(domain::Domain, theory::Module)
for (name, ty) in theory.DATATYPES
PDDL.attach!(domain, :datatype, name, ty)
end
for (name, f) in theory.PREDICATES
PDDL.attach!(domain, :function, name, f)
end
for (name, f) in theory.FUNCTIONS
PDDL.attach!(domain, :function, name, f)
end
return nothing
end
"""
@pddltheory module M ... end
Declares a module `M` as a PDDL theory. This defines the `M.@register`,
`M.register!`, `M.deregister!` and `M.attach!` functions automatically.
"""
macro pddltheory(module_expr)
if !Meta.isexpr(module_expr, :module)
error("Only `module` expressions can be declared as PDDL theories.")
end
autodefs = quote
macro register()
return $(GlobalRef(PDDL, :register_theory_expr))(@__MODULE__)
end
function register!()
return $(GlobalRef(PDDL, :register_theory!))(@__MODULE__)
end
function deregister!()
return $(GlobalRef(PDDL, :deregister_theory!))(@__MODULE__)
end
function attach!(domain::$(GlobalRef(PDDL, :Domain)))
return $(GlobalRef(PDDL, :attach_theory!))(domain, @__MODULE__)
end
end
module_block = module_expr.args[3]
append!(module_block.args, autodefs.args)
return esc(module_expr)
end
# Array-valued fluents
include("arrays.jl")
# Set-valued fluents
include("sets.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 9703 | module Writer
export write_pddl, write_domain, write_problem
export save_domain, save_problem
using Julog, DocStringExtensions
using ..PDDL:
IMPLIED_REQUIREMENTS, Domain, Problem, Action,
get_name, get_requirements, get_typetree, get_constants, get_constypes,
get_predicates, get_functions, get_actions, get_axioms,
get_domain_name, get_objects, get_objtypes,
get_init_terms, get_goal, get_metric, get_constraints,
get_argvars, get_argtypes, get_precond, get_effect
"""
$(SIGNATURES)
Write list of typed formulae in PDDL syntax.
"""
function write_typed_list(formulae::Vector{<:Term}, types::Vector{Symbol})
if all(x -> x == :object, types)
return join(write_subformula.(formulae), " ")
end
str = ""
for (i, (f, t)) in enumerate(zip(formulae, types))
str *= "$(write_subformula(f)) "
if i == length(formulae) || t != types[i+1]
str *= "- $t "
end
end
return str[1:end-1]
end
function write_typed_list(formulae::Vector{<:Term})
formulae, types = zip([(t.args[1], t.name) for t in formulae]...)
return write_typed_list(collect(formulae), collect(types))
end
function write_typed_list(formulae::Vector{<:Term}, types::Dict{<:Term,Symbol})
types = Symbol[types[f] for f in formulae]
return write_typed_list(formulae, types)
end
"""
$(SIGNATURES)
Indent list of PDDL constants.
"""
function indent_const_list(str::String, indent::Int, maxchars::Int=80)
if length(str) < maxchars - indent return str end
lines = String[]
while length(str) > 0
l_end = min(maxchars - indent, length(str))
if l_end != length(str) l_end = findlast(' ', str[1:l_end]) end
if isnothing(l_end) l_end = findfirst(' ', str) end
if isnothing(l_end) l_end = length(str) end
push!(lines, str[1:l_end])
str = str[l_end+1:end]
end
return join(lines, "\n" * ' '^indent)
end
"""
$(SIGNATURES)
Indent list of typed PDDL constants.
"""
function indent_typed_list(str::String, indent::Int, maxchars::Int=80)
if length(str) < maxchars - indent return str end
if !occursin(" - ", str)
return indent_const_list(str, indent, maxchars)
end
substrs = String[]
while length(str) > 0
idxs = findnext(r" - (\S+)", str, 1)
if isnothing(idxs) idxs = [length(str)] end
push!(substrs, str[1:idxs[end]])
str = strip(str[idxs[end]+1:end])
end
substrs = indent_const_list.(substrs, indent, maxchars)
return join(substrs, "\n" * ' '^indent)
end
"""
write_formula(f::Term)
Write formula in PDDL syntax.
"""
function write_formula end
function write_formula(name::Symbol, args)
if name in [:exists, :forall]
typecond, body = args
var_str = write_typed_list(flatten_conjs(typecond))
body_str = write_formula(body)
return "($name ($var_str) $body_str)"
elseif name in [:and, :or, :not, :when, :imply,
:(==), :>, :<, :!=, :>=, :<=, :+, :-, :*, :/,
:assign, :increase, :decrease,
Symbol("scale-up"), Symbol("scale-down")]
name = name == :(==) ? :(=) : name
args = join((write_formula(a) for a in args), " ")
return "($name $args)"
elseif isempty(args)
return "($name)"
else
args = join((write_subformula(a) for a in args), " ")
return "($name $args)"
end
end
function write_formula(f::Const)
if f.name isa Symbol
return "(" * repr(f) * ")"
elseif f.name isa AbstractString
return "\"" * repr(f) * "\""
else
return repr(f)
end
end
write_formula(f::Compound) = write_formula(f.name, f.args)
write_formula(f::Var) = "?" * lowercasefirst(repr(f))
write_formula(::Nothing) = ""
write_subformula(f::Compound) = write_formula(f)
write_subformula(f::Var) = "?" * lowercasefirst(repr(f))
write_subformula(f::Const) =
f.name isa AbstractString ? "\"" * repr(f) * "\"" : repr(f)
"""
$(SIGNATURES)
Write to string in PDDL syntax.
"""
write_pddl(f::Term) = write_formula(f)
"""
$(SIGNATURES)
Write domain in PDDL syntax.
"""
function write_domain(domain::Domain, indent::Int=2)
strs = Dict{Symbol,String}()
fields = [:requirements, :types, :constants, :predicates, :functions]
strs[:requirements] = write_requirements(get_requirements(domain))
strs[:types] = write_typetree(get_typetree(domain))
strs[:constants] = indent_typed_list(
write_typed_list(get_constants(domain), get_constypes(domain)), 14)
strs[:predicates] = write_signatures(get_predicates(domain))
strs[:functions] = write_signatures(get_functions(domain))
strs = ["($(repr(k)) $(strs[k]))" for k in fields
if haskey(strs, k) && length(strs[k]) > 0]
append!(strs, write_axiom.(values(get_axioms(domain))))
append!(strs, write_action.(values(get_actions(domain)), indent=3))
pushfirst!(strs, "(define (domain $(domain.name))")
return join(strs, "\n" * ' '^indent) * "\n)"
end
write_pddl(domain::Domain) = write_domain(domain)
"""
$(SIGNATURES)
Write domain requirements.
"""
function write_requirements(requirements::Dict{Symbol,Bool})
reqs = Set(k for (k, v) in requirements if v)
for (k, implied) in IMPLIED_REQUIREMENTS
if haskey(requirements, k)
setdiff!(reqs, implied)
end
end
return join([":$r" for r in reqs], " ")
end
"""
$(SIGNATURES)
Write domain typetree.
"""
function write_typetree(typetree)
strs = Dict{Symbol,String}()
for (type, subtypes) in pairs(typetree)
if isempty(subtypes) || type == :object continue end
subtype_str = join(subtypes, " ")
strs[type] = "$subtype_str - $type"
end
maxtypes = collect(union(get(typetree, :object, Symbol[]), keys(strs)))
strs[:object] = join(sort(maxtypes), " ")
return strip(join(values(strs), " "))
end
"""
$(SIGNATURES)
Write domain predicates or functions.
"""
function write_signatures(signatures)
strs = String[]
for (name, sig) in pairs(signatures)
args = collect(Term, sig.args)
types = collect(Symbol, sig.argtypes)
args_str = write_typed_list(args, types)
sig_str = isempty(args_str) ? "($name)" : "($name $args_str)"
if sig.type != :boolean && sig.type != :numeric
sig_str = "$sig_str - $(sig.type)"
end
push!(strs, sig_str)
end
return join(strs, " ")
end
"""
$(SIGNATURES)
Write PDDL axiom / derived predicate.
"""
function write_axiom(c::Clause; key=":derived")
head_str = write_formula(c.head)
body_str = length(c.body) == 1 ? write_formula(c.body[1]) :
"(and " * join(write_formula.(c.body), " ") * ")"
return "($key $head_str $body_str)"
end
"""
$(SIGNATURES)
Write action in PDDL syntax.
"""
function write_action(action::Action; indent::Int=1)
strs = Dict{Symbol,String}()
fields = [:action, :parameters, :precondition, :effect]
strs[:action] = string(get_name(action))
strs[:parameters] =
"(" * write_typed_list(get_argvars(action), get_argtypes(action)) * ")"
strs[:precondition] = write_formula(get_precond(action))
strs[:effect] = write_formula(get_effect(action))
strs = ["$(repr(k)) $(strs[k])" for k in fields]
return "(" * join(strs, "\n" * ' '^indent) * ")"
end
write_pddl(action::Action) = write_action(action)
"""
$(SIGNATURES)
Write action signature in PDDL syntax.
"""
function write_action_sig(action::Action)
name = get_name(action)
vars = get_argvars(action)
types = get_argtypes(action)
if isempty(vars)
return "($name)"
else
return "($name " * write_typed_list(vars, types) * ")"
end
end
"""
$(SIGNATURES)
Write problem in PDDL syntax.
"""
function write_problem(problem::Problem, indent::Int=2)
strs = Dict{Symbol,String}()
fields = [:domain, :objects, :init, :goal, :metric, :constraints]
strs[:domain] = string(problem.domain)
strs[:objects] = indent_typed_list(
write_typed_list(get_objects(problem), get_objtypes(problem)), 12)
strs[:init] = write_init(get_init_terms(problem), 9)
strs[:goal] = write_formula(get_goal(problem))
strs[:metric] = write_formula(get_metric(problem))[2:end-1]
strs[:constraints] = write_formula(get_constraints(problem))
strs = ["($(repr(k)) $(strs[k]))" for k in fields
if haskey(strs, k) && length(strs[k]) > 0]
pushfirst!(strs, "(define (problem $(get_name(problem)))")
return join(strs, "\n" * ' '^indent) * "\n)"
end
write_pddl(problem::Problem) = write_problem(problem)
"""
$(SIGNATURES)
Write initial problem formulae in PDDL syntax.
"""
function write_init(init::Vector{<:Term}, indent::Int=2, maxchars::Int=80)
strs = write_formula.(init)
if sum(length.(strs)) + length("(:init )") < maxchars
return join(strs, " ") end
return join(strs, "\n" * ' '^indent)
end
"""
save_domain(path::String, domain::Domain)
Save PDDL domain to specified path.
"""
function save_domain(path::String, domain::Domain)
open(f->write(f, write_domain(domain)), path, "w")
return path
end
"""
save_problem(path::String, problem::Problem)
Save PDDL problem to specified path.
"""
function save_problem(path::String, problem::Problem)
open(f->write(f, write_problem(problem)), path, "w")
return path
end
Base.show(io::IO, ::MIME"text/pddl", domain::Domain) =
print(io, write_pddl(domain))
Base.show(io::IO, ::MIME"text/pddl", problem::Problem) =
print(io, write_pddl(problem))
Base.show(io::IO, ::MIME"text/pddl", action::Action) =
print(io, write_pddl(action))
Base.show(io::IO, ::MIME"text/pddl", term::Term) =
print(io, write_pddl(term))
end
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 453 | using PDDL, PDDL.Parser, Test
# Define equivalence shorthand for abstract interpreter testing
function ≃(a, b)
val = PDDL.equiv(a, b)
return (val == true) || (val == PDDL.both)
end
include("parser/test.jl")
include("strips/test.jl")
include("typing/test.jl")
include("axioms/test.jl")
include("adl/test.jl")
include("numeric/test.jl")
include("constants/test.jl")
include("arrays/test.jl")
include("sets/test.jl")
include("functions/test.jl")
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 3572 | # Test ADL features in a grid flipping domain & assembly domain
@testset "action description language (adl)" begin
path = joinpath(dirname(pathof(PDDL)), "..", "test", "adl")
domain = load_domain(joinpath(path, "flip-domain.pddl"))
@test domain.name == Symbol("flip")
problem = load_problem(joinpath(path, "flip-problem.pddl"))
@test problem.name == Symbol("flip-problem")
Base.show(IOBuffer(), "text/plain", problem)
state = initstate(domain, problem)
implementations = [
"concrete interpreter" => domain,
"ground interpreter" => ground(domain, state),
"cached interpreter" => CachedDomain(domain),
"concrete compiler" => first(compiled(domain, state)),
"cached compiler" => CachedDomain(first(compiled(domain, state))),
]
@testset "flip ($name)" for (name, domain) in implementations
state = initstate(domain, problem)
state = execute(domain, state, pddl"(flip_column c1)", check=true)
state = execute(domain, state, pddl"(flip_column c3)", check=true)
state = execute(domain, state, pddl"(flip_row r2)", check=true)
@test satisfy(domain, state, problem.goal) == true
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", state)
Base.show(buffer, "text/plain", action)
close(buffer)
end
# Test all ADL features in assembly domain
path = joinpath(dirname(pathof(PDDL)), "..", "test", "adl")
domain = load_domain(joinpath(path, "assembly-domain.pddl"))
problem = load_problem(joinpath(path, "assembly-problem.pddl"))
Base.show(IOBuffer(), "text/plain", problem)
state = initstate(domain, problem)
implementations = [
"concrete interpreter" => domain,
"ground interpreter" => ground(domain, state),
"cached interpreter" => CachedDomain(domain),
"concrete compiler" => first(compiled(domain, state)),
"cached compiler" => CachedDomain(first(compiled(domain, state))),
]
@testset "assembly ($name)" for (name, domain) in implementations
# Test for static fluents
if name != "ground interpreter"
static_fluents = infer_static_fluents(domain)
@test :requires in static_fluents
@test length(static_fluents) == 6
end
# Execute plan to assemble a frob
state = initstate(domain, problem)
# Commit charger to assembly of frob
state = execute(domain, state, pddl"(commit charger frob)", check=true)
# Once commited, we can't commit again
@test available(domain, state, pddl"(commit charger frob)") == false
# We can't add a tube to the frob before adding the widget and fastener
@test available(domain, state, pddl"(assemble tube frob)") == false
state = execute(domain, state, pddl"(assemble widget frob)", check=true)
@test available(domain, state, pddl"(assemble tube frob)") == false
state = execute(domain, state, pddl"(assemble fastener frob)", check=true)
# Having added both widget and fastener, now we can add the tube
@test available(domain, state, pddl"(assemble tube frob)") == true
state = execute(domain, state, pddl"(assemble tube frob)", check=true)
# We've completely assembled a frob!
@test satisfy(domain, state, problem.goal) == true
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", state)
Base.show(buffer, "text/plain", action)
close(buffer)
end
end # action description language (adl)
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 5136 | @testset "array fluents" begin
# Register array theory
PDDL.Arrays.@register()
# Load gridworld domain and problem
path = joinpath(dirname(pathof(PDDL)), "..", "test", "arrays")
domain = load_domain(joinpath(path, "gridworld-domain.pddl"))
problem = load_problem(joinpath(path, "gridworld-problem.pddl"))
# Ensure that Base.show does not error
Base.show(IOBuffer(), "text/plain", problem)
# Make sure function declarations have the right output type
@test PDDL.get_function(domain, :walls).type == Symbol("bit-matrix")
@test PDDL.get_function(domain, :pos).type == Symbol("matrix-index")
state = initstate(domain, problem)
implementations = [
"concrete interpreter" => domain,
"ground interpreter" => ground(domain, state),
"abstracted interpreter" => abstracted(domain),
"cached interpreter" => CachedDomain(domain),
"concrete compiler" => first(compiled(domain, state)),
"abstract compiler" => first(compiled(abstracted(domain), state)),
"cached compiler" => CachedDomain(first(compiled(domain, state))),
]
@testset "gridworld ($name)" for (name, domain) in implementations
# Initialize state, test array dimensios, access and goal
state = initstate(domain, problem)
@test domain[state => pddl"(width (walls))"] == 3
@test domain[state => pddl"(height (walls))"] == 3
@test domain[state => pddl"(get-index walls 2 2)"] == true
@test domain[state => pddl"(get-index walls 1 2)"] == true
@test domain[state => pddl"(get-index walls (index 2 2))"] == true
@test domain[state => pddl"(get-index walls (index 1 2))"] == true
@test satisfy(domain, state, problem.goal) == false
# Check that we can only move down because of wall
actions = available(domain, state) |> collect
@test length(actions) == 1 && actions[1].name == :down
# Execute plan to reach goal
state = execute(domain, state, pddl"(down)", check=true)
state = execute(domain, state, pddl"(down)", check=true)
state = execute(domain, state, pddl"(right)", check=true)
state = execute(domain, state, pddl"(right)", check=true)
state = execute(domain, state, pddl"(up)", check=true)
state = execute(domain, state, pddl"(up)", check=true)
# Check that goal is achieved
@test satisfy(domain, state, problem.goal) == true
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", action)
close(buffer)
end
# Test writing of array-valued fluents
original_state = initstate(domain, problem)
problem_str = write_problem(GenericProblem(original_state))
reparsed_state = initstate(domain, parse_problem(problem_str))
@test reparsed_state == original_state
# Load stairs domain and problem
path = joinpath(dirname(pathof(PDDL)), "..", "test", "arrays")
domain = load_domain(joinpath(path, "stairs-domain.pddl"))
problem = load_problem(joinpath(path, "stairs-problem.pddl"))
# Make sure function declarations have the right output type
@test PDDL.get_function(domain, :stairs).type == Symbol("num-vector")
state = initstate(domain, problem)
implementations = [
"concrete interpreter" => domain,
"ground interpreter" => ground(domain, state),
"abstracted interpreter" => abstracted(domain),
"cached interpreter" => CachedDomain(domain),
"concrete compiler" => first(compiled(domain, state)),
"abstract compiler" => first(compiled(abstracted(domain), state)),
"cached compiler" => CachedDomain(first(compiled(domain, state))),
]
@testset "stairs ($name)" for (name, domain) in implementations
# Initialize state, test array dimensios, access and goal
state = initstate(domain, problem)
@test domain[state => pddl"(length (stairs))"] == 5
@test domain[state => pddl"(get-index stairs 1)"] == 1.0
@test domain[state => pddl"(get-index stairs 2)"] == 3.0
@test satisfy(domain, state, problem.goal) == false
# Check that we can only jump because first stair is too high
actions = available(domain, state) |> collect
@test length(actions) == 1 && actions[1].name == Symbol("jump-up")
# Execute plan to reach goal
state = execute(domain, state, pddl"(jump-up)", check=true)
state = execute(domain, state, pddl"(climb-up)", check=true)
state = execute(domain, state, pddl"(jump-down)", check=true)
state = execute(domain, state, pddl"(jump-up)", check=true)
state = execute(domain, state, pddl"(jump-up)", check=true)
state = execute(domain, state, pddl"(jump-down)", check=true)
state = execute(domain, state, pddl"(climb-up)", check=true)
state = execute(domain, state, pddl"(jump-up)", check=true)
# Check that goal is achieved
@test satisfy(domain, state, problem.goal) == true
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", state)
Base.show(buffer, "text/plain", action)
close(buffer)
end
# Deregister array theory
PDDL.Arrays.deregister!()
end # array fluents
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 2205 | # Test functionality of PDDL axioms / derived predicates
@testset "axioms" begin
path = joinpath(dirname(pathof(PDDL)), "..", "test", "axioms")
domain = load_domain(joinpath(path, "domain.pddl"))
@test domain.name == Symbol("blocksworld-axioms")
@test convert(Term, domain.predicates[:above]) == pddl"(above ?x ?y)"
@test Clause(pddl"(handempty)", [pddl"(forall (?x) (not (holding ?x)))"]) in
values(domain.axioms)
problem = load_problem(joinpath(path, "problem.pddl"))
@test problem.name == Symbol("blocksworld-problem")
@test problem.objects == @pddl("a", "b", "c")
Base.show(IOBuffer(), "text/plain", problem)
state = initstate(domain, problem)
implementations = [
"concrete interpreter" => domain,
"ground interpreter" => ground(domain, state),
"abstracted interpreter" => abstracted(domain),
"cached interpreter" => CachedDomain(domain),
"concrete compiler" => first(compiled(domain, state)),
"abstract compiler" => first(compiled(abstracted(domain), state)),
"cached compiler" => CachedDomain(first(compiled(domain, state))),
]
@testset "axioms ($name)" for (name, domain) in implementations
# Test forward execution of plans
state = initstate(domain, problem)
state = execute(domain, state, pddl"(pickup b)", check=true)
@test domain[state => pddl"(holding b)"] ≃ true
state = execute(domain, state, pddl"(stack b c)", check=true)
@test domain[state => pddl"(on b c)"] ≃ true
state = execute(domain, state, pddl"(pickup a)", check=true)
@test domain[state => pddl"(holding a)"] ≃ true
state = execute(domain, state, pddl"(stack a b)", check=true)
@test domain[state => pddl"(above a c)"] ≃ true
@test satisfy(domain, state, problem.goal) ≃ true
# Test action availability
state = initstate(domain, problem)
@test Set{Term}(available(domain, state)) ==
Set{Term}(@pddl("(pickup a)", "(pickup b)", "(pickup c)"))
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", state)
Base.show(buffer, "text/plain", action)
close(buffer)
end
end # axioms
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
|
[
"Apache-2.0"
] | 0.2.18 | df1e12fb86d1f081833a74249335aa02657be774 | code | 1446 | # Test functionality of domain constants
@testset "domain constants" begin
path = joinpath(dirname(pathof(PDDL)), "..", "test", "constants")
domain = load_domain(joinpath(path, "domain.pddl"))
@test domain.name == Symbol("taxi")
problem = load_problem(joinpath(path, "problem.pddl"))
@test problem.name == Symbol("taxi-problem")
Base.show(IOBuffer(), "text/plain", problem)
# Check that constants are loaded correctly
@test domain.constants == @pddl("red", "green", "yellow", "blue", "intaxi")
# Check that types of constants resolve
state = initstate(domain, problem)
@test domain[state => pddl"(pasloc red)"] == true
# Execute plan and check that it succeeds
plan = @pddl(
"(move loc6 loc5 west)",
"(move loc5 loc0 north)",
"(pickup loc0 red)",
"(move loc0 loc1 east)",
"(move loc1 loc6 south)",
"(move loc6 loc11 south)",
"(move loc11 loc12 east)",
"(move loc12 loc13 east)",
"(move loc13 loc14 east)",
"(move loc14 loc9 north)",
"(move loc9 loc4 north)",
"(dropoff loc4 green)"
)
sim = EndStateSimulator()
state = sim(domain, state, plan)
@test satisfy(domain, state, problem.goal) == true
# Ensure that Base.show does not error
buffer = IOBuffer()
action = first(PDDL.get_actions(domain))
Base.show(buffer, "text/plain", domain)
Base.show(buffer, "text/plain", problem)
Base.show(buffer, "text/plain", state)
Base.show(buffer, "text/plain", action)
close(buffer)
end # domain constants
| PDDL | https://github.com/JuliaPlanners/PDDL.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.