licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 296 | # API
```@meta
CollapsedDocStrings = true
```
## Index
```@index
Pages = ["api.md"]
Modules = [CTBase]
Order = [:module, :constant, :type, :function, :macro]
```
## Documentation
```@autodocs
Modules = [CTBase]
Order = [:module, :constant, :type, :function, :macro]
Private = false
``` | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 310 | # Private functions
```@meta
CollapsedDocStrings = true
```
## Index
```@index
Pages = ["dev.md"]
Modules = [CTBase]
Order = [:module, :constant, :type, :function, :macro]
```
## Documentation
```@autodocs
Modules = [CTBase]
Order = [:module, :constant, :type, :function, :macro]
Public = false
``` | CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.14.0 | 68e9ab3053e0b38e8e574f2809dd280c9dafa338 | docs | 608 | # CTBase.jl
```@meta
CurrentModule = CTBase
```
The `CTBase.jl` package is part of the [control-toolbox ecosystem](https://github.com/control-toolbox).
```mermaid
flowchart TD
O(<a href='https://control-toolbox.org/OptimalControl.jl/stable/'>OptimalControl</a>) --> B(<a href='https://control-toolbox.org/OptimalControl.jl/stable/api-ctbase.html'>CTBase</a>)
O --> D(<a href='https://control-toolbox.org/OptimalControl.jl/stable/api-ctdirect.html'>CTDirect</a>)
O --> F(<a href='https://control-toolbox.org/OptimalControl.jl/stable/api-ctflows.html'>CTFlows</a>)
F --> B
D --> B
style B fill:#FBF275
```
| CTBase | https://github.com/control-toolbox/CTBase.jl.git |
|
[
"MIT"
] | 0.1.2 | decb6ccca24c54748e740cc42076b13fcccf384a | code | 134 | module ApproxLogFunction
export Approxlog
export toclang
include("./core.jl")
include("./clang.jl")
end # module ApproxLogFunction
| ApproxLogFunction | https://github.com/sonosole/ApproxLogFunction.jl.git |
|
[
"MIT"
] | 0.1.2 | decb6ccca24c54748e740cc42076b13fcccf384a | code | 2249 | function hcsrc(filename::String, funcname::String, f::Approxlog{I,F}) where {I,F}
four = " "
fmax = floatmax(F)
ftype = nothing
itype = nothing
logᵦ = f.logtable
N = length(logᵦ)
dotc = """
#include <stdint.h>
#include "$(filename).h"\n
"""
if I <: Int32
ftype = "float"
itype = "int32_t"
dotc *= "static float table[$N] = \n{\n"
end
if I <: Int64
ftype = "double"
itype = "int64_t"
dotc *= "static double table[$N] = \n{\n"
end
for i = 1 : N - 1
dotc *= "$four$(logᵦ[i]),\n"
end;dotc *= "$four$(logᵦ[N])\n};\n\n"
fracbits = f.fracbits
expobias = f.expobias
fracmask = f.fracmask
shiftbits = f.shiftbits
logbase2 = f.logbase2
dotc *= """
$ftype $funcname($ftype x)
{
if(x <= 0){
return -$fmax;
}
$itype z = *( ($itype*) (&x) );
$itype e = (z >> $fracbits) - $expobias;
$itype i = (z & $fracmask) >> $shiftbits;
return $logbase2 * e + table[i];
}
"""
FILENAME = uppercase(filename)
doth = """
#ifndef $(FILENAME)_H
#define $(FILENAME)_H
$ftype $funcname($ftype x);
#endif
"""
return doth, dotc
end
"""
toclang(dstdir::String, filename::String, funcname::String, f::Approxlog)
generate C language `.h` and `.c` files for an `Approxlog` functor `f`.
+ `dstdir` is the directory to save the C language files (`dir` would be made if it doesn't exist before)
+ `filename` is the name of the generated `.c` and `.h` files
+ `funcname` is the name of the generated approximate function
# Example
```julia
alog₂ = Approxlog(2, abserror=0.12, dtype=Float32);
toclang("./cfolder/", "approxlog", "alog", alog₂);
```
"""
function toclang(dstdir::String, filename::String, funcname::String, f::Approxlog{I,F}) where {I,F}
if !isdir(dstdir)
mkdir(dstdir)
end
nowdir = pwd()
cd(dstdir)
doth, dotc = hcsrc(filename, funcname, f)
hdst = touch(filename * ".h")
cdst = touch(filename * ".c")
open(hdst, "w") do io
write(io, doth)
end
open(cdst, "w") do io
write(io, dotc)
end
cd(nowdir)
return nothing
end
| ApproxLogFunction | https://github.com/sonosole/ApproxLogFunction.jl.git |
|
[
"MIT"
] | 0.1.2 | decb6ccca24c54748e740cc42076b13fcccf384a | code | 4367 | @inline function f2i(::Type{F}) where F <: AbstractFloat
(F <: Float16) && return Int16
(F <: Float32) && return Int32
(F <: Float64) && return Int64
end
struct Approxlog{XInt, XFloat}
expobits :: XInt
fracbits :: XInt
expobias :: XInt
fracmask :: XInt
shiftbits :: XInt
logbase :: Real
logbase2 :: XFloat
maxerror :: XFloat
logtable :: Vector{XFloat}
function Approxlog{XInt,XFloat}(expobits :: XInt,
fracbits :: XInt,
expobias :: XInt,
fracmask :: XInt,
shiftbits :: XInt,
logbase :: Real,
logbase2 :: XFloat,
maxerror :: XFloat,
logtable :: Vector{XFloat}) where {XInt <: Integer, XFloat <: AbstractFloat}
new{XInt,XFloat}(expobits, fracbits, expobias, fracmask,
shiftbits, logbase, logbase2, maxerror, logtable)
end
end
function Base.show(io::IO, ::MIME"text/plain", a::Approxlog{I,F}) where {I,F}
logbase = a.logbase
maxerror = a.maxerror
expobits = a.expobits
fracbits = a.fracbits
expobias = a.expobias
fracmask = a.fracmask
shiftbits = a.shiftbits
println("Approxlog{$logbase, $F}:")
println(" maxerror = $maxerror")
println(" signbits = 1")
println(" expobits = $expobits")
println(" fracbits = $fracbits")
println(" expobias = $expobias")
println(" fracmask = $fracmask")
print(" shiftbits = $shiftbits")
end
function table(f::Approxlog)
return f.logtable
end
function maxerror(f::Approxlog)
return f.maxerror
end
"""
Approxlog(base::Real; dtype::Type{<:AbstractFloat}, abserror::Real)
A lookup table based method to calculate `y` = log(base, `x`) with controllable error
+ `base` is the radix of logarithm operation
+ `dtype` is the data type of input `x` and output `y`
+ `abserror` is the required absolute error of the output `y`
# Example
```julia
alog₂ = Approxlog(2, abserror=0.1, dtype=Float32);
input = 5.20f2;
output = alog₂(input);
```
"""
function Approxlog(base::Real; dtype::Type{F}, abserror::Real) where F <: AbstractFloat
@assert base > 0 "base > 0 shall be met, but got $base"
@assert base ≠ 1 "base ≠ 1 shall be met, but got $base"
if abs(1-base) < 1e-2
@warn("the base of log is too much closing to 1")
end
I = f2i(F) # the right integer type corresponding to float type F
l = one(I) # alias for integer 1
inputerror = abserror * abs(log(base))
usedfracbits = floor(I, log2(nextpow(2, 1 / inputerror)))
tablelength = l << usedfracbits
if usedfracbits > 14
kbs = 2^usedfracbits * sizeof(F) / 1024
@warn("the table buffer would occupy $kbs KiB")
end
Δx = F(1 / tablelength) # the actual input error
Δy = F(Δx / abs(log(base))) # the actual output error
expobits = nothing
fracbits = nothing
if F <: Float16
expobits = I(5)
fracbits = I(10)
end
if F <: Float32
expobits = I(8)
fracbits = I(23)
end
if F <: Float64
expobits = I(11)
fracbits = I(52)
end
expobias = ( (l << (expobits-1)) - l ) # exponent part's bias number for float type F
fracmask = ( (l << (fracbits )) - l ) # to set non-fracbits 0
shiftbits = fracbits - usedfracbits
@assert fracbits > usedfracbits "using too much bits for fraction, we only have $fracbits for $F, but you want $usedfracbits"
table = Vector{F}(undef, tablelength)
for i = 1 : tablelength
table[i] = log(base, 1 + (i-1) * Δx)
end
return Approxlog{I,F}(expobits,
fracbits,
expobias,
fracmask,
shiftbits,
base, F(log(base,2)), Δy, table)
end
function (f::Approxlog{I,F})(x::F) where {I,F}
x < 0 && error("input shall be greater than 0")
x == 0 && return -floatmax(F)
xint = reinterpret(I, x)
e = (xint >> f.fracbits) - f.expobias
i = (xint & f.fracmask) >> f.shiftbits
return @inbounds e * f.logbase2 + f.logtable[i+1]
end
| ApproxLogFunction | https://github.com/sonosole/ApproxLogFunction.jl.git |
|
[
"MIT"
] | 0.1.2 | decb6ccca24c54748e740cc42076b13fcccf384a | code | 410 | using Test
using ApproxLogFunction
@testset "checking error requirement" begin
N = 32;
for type in [Float16, Float32, Float64],
base in [1.997, π, 10],
Δout in [0.2, 0.1, 0.05]
alog = Approxlog(base, abserror=Δout, dtype=type);
k = type(17)
x = rand(type, N) .* k;
y = alog.(x)
z = log.(base, x)
@test sum(y - z)/N ≤ Δout
end
end
| ApproxLogFunction | https://github.com/sonosole/ApproxLogFunction.jl.git |
|
[
"MIT"
] | 0.1.2 | decb6ccca24c54748e740cc42076b13fcccf384a | docs | 4257 | # ApproxLogFunction
A lookup table based method to calculate $y = {\rm log}_b(x)$ with a controllable error, where $b > 0$, $b ≠ 1$, $x > 0$, and $x$ shall be the **IEEE754** floating-point **normal** numbers.
## 💽 Installation
```julia
julia> import Pkg;
julia> Pkg.add("ApproxLogFunction");
```
## 👨🏫 Usage
### 🔌 Exposed Functor
The exposed constructor :
```julia
Approxlog(base::Real; abserror::Real, dtype::Type{<:AbstractFloat})
```
where `base` is the radix of logarithm operation, `abserror` is the maximum absolute error of the output and `dtype` is the data type of input and output value, for example :
```julia
alog₂ = Approxlog(2, abserror=0.1, dtype=Float32);
input = 5.20f2;
output = alog₂(input);
```
### 📈 Error Visualization
```julia
using Plots, ApproxLogFunction
figs = []
base = 2
t = -2f-0 : 1f-4 : 5f0;
x = 2 .^ t;
y₁ = log.(base, x)
for Δout in [0.6, 0.3]
alog = Approxlog(base, abserror=Δout, dtype=Float32)
y₂ = alog.(x)
fg = plot(x, y₁, linewidth=1.1, xscale=:log10);
plot!(x, y₂, linewidth=1.1, titlefontsize=10)
title!("abserror=$Δout")
push!(figs, fg)
end
plot(figs..., layout=(1,2), leg=nothing, size=(999,666))
```

## 🥇 Benchmark
Some unimportant information was omitted when benchmarking.
### 💃🏻 Scalar Input
```julia
julia> using ApproxLogFunction, BenchmarkTools;
julia> begin
type = Float32;
base = type(2.0);
Δout = 0.1;
alog = Approxlog(base, abserror=Δout, dtype=type);
end;
julia> x = 1.23456f0;
julia> @benchmark y₁ = log($base, $x)
Time (median): 21.643 ns
julia> @benchmark y₁ = log2($x)
Time (median): 14.800 ns
julia> @benchmark y₂ = alog($x)
Time (median): 74.129 ns
```
### 👨👨👧👧 Array Input
```julia
julia> using ApproxLogFunction, BenchmarkTools;
julia> begin
type = Float32;
base = type(2.0);
Δout = 0.1;
alog = Approxlog(base, abserror=Δout, dtype=type);
end;
julia> x = rand(type, 1024, 1024);
julia> @benchmark y₁ = log.($base, $x)
Time (median): 21.422 ms
julia> @benchmark y₁ = log2.($x)
Time (median): 11.626 ms
julia> @benchmark y₂ = alog.($x)
Time (median): 5.207 ms
```
Calculating scaler input is slower, but why calculating array input is faster ? 😂😂😂
## ⚠️ Attention
### About The Input Range
Error is well controlled when using IEEE754 floating-point positive **normal** numbers, which is represented as :
$$
x = 2^{E-B} \ (1 + F × 2^{-|F|})
$$
where $0 < E < (2^{|E|} - 1)$ is the value of exponent part, $|E|$ is the bit width of $E$, $F$ is the value of fraction part, $|F|$ is the bit width of $F$, and $B=(2 ^ {|E| - 1} - 1)$ is the bias for $E$. So the range for an `Approxlog` object's input is $[X_{\rm min}, X_{\rm max}]$, where
$$
\begin{aligned}
X_{\rm min} &= 2^{1-B} \ (1 + 0 × 2^{-|F|}) &&= 2^{1-B} \\
X_{\rm max} &= 2^{(2^{|E|}-2)-B} \ \big(1 + (2^{|F|}-1) × 2^{-|F|}\big) &&= 2^{B} \ \big(1 + (2^{|F|}-1) × 2^{-|F|}\big)
\end{aligned}
$$
In short, for `Float16` input, its range is :
$$
2^{1-15} \le
X_{\rm Float16} \le 2^{15} \ \left( 1 + (2^{10} -1) × 2^{-10} \right)
$$
for `Float32` input :
$$
2^{1-127} \le
X_{\rm Float32} \le 2^{127} \ \left(1 + (2^{23} -1) × 2^{-23}\right)
$$
and for `Float64` input :
$$
2^{1-1023} \le
X_{\rm Float64} \le 2^{1023} \ \left(1 + (2^{52} -1) × 2^{-52}\right)
$$
As to positive **subnormal** numbers, the result is not reliable.
### About The Base Range
We have mentioned $b ≠ 1$, but base value closing to $1$ is not recommended, e.g. $1.0001$, $0.9999$.
## 📁 C-Lang Files
Interface function :
```julia
toclang(dir::String, filename::String, funcname::String, f::Approxlog)
```
`dir` is the directory to save the C language files (`dir` would be made if it doesn't exist before), `filename` is the name of the generated `.c` and `.h` files, `funcname` is the name of the generated approximate function and `f` is the approximate log functor, for example :
```julia
alog₂ = Approxlog(2, abserror=0.12, dtype=Float32)
toclang("./cfolder/", "approxlog", "alog", alog₂)
```
this would generate `approxlog.c` and `approxlog.h` files in `./cfolder/`, the function is named as `alog` .
| ApproxLogFunction | https://github.com/sonosole/ApproxLogFunction.jl.git |
|
[
"MIT"
] | 0.0.1 | 4fe353b814d2306e297db626a1669e6b6aa9f2af | code | 2452 | module DefaultFields
using Parameters
export @with_fields
""" Add `fields` to a type definition. Fields format: `:(fieldname::Type)`. """
function add_field!(typedef, fields...)
@assert typedef.head == :struct
fdef = typedef.args[3]
dupl = intersect(_fieldnames.(fields), _fieldnames(fdef))
length(dupl) == 0 || error("syntax: duplicate field name: $(dupl...)")
push!(fdef.args, fields...)
typedef
end
"""
```julia
@with_fields atypename fields...
```
Macro to define an abstract type `atypename` that automatically adds `fields` to its subtypes.
The subtypes are declared using the macro `@atypename`.
# Examples:
```julia
julia> @with_fields abs_type a::Int b
julia> @abs_type struct mystruct
c::Float64
end
julia> fieldnames(mystruct)
(:c, :a, :b)
julia> fieldtypes(mystruct)
(Float64, Int64, Any)
julia> mystruct <: abs_type
true
julia> abstract type supertype end
julia> @with_fields abs_type <: supertype field_a field_b
julia> abs_type <: supertype
true
```
"""
macro with_fields(namedef, fields...)
allunique(_fieldnames.(fields)) || error("syntax: duplicate field name: $(_duplicates(_fieldnames.(fields))...)")
macroname = namedef isa Expr ? (namedef.head == :<: ? namedef.args[1] : error("Invalid abstract type declaration")) : namedef
absdef = Expr(:abstract, namedef)
macrodef = quote
macro $(macroname)(typedef)
typedef.args[2] = :($(typedef.args[2]) <: $$macroname)
total_def = $add_field!(typedef, $fields...)
if $_has_kwdefs(typedef)
# evaluate the with_kw function (not macro), interpolating from this module
esc($Parameters.with_kw(total_def, @__MODULE__))
else
esc(total_def)
end
end
end
esc(:($absdef, $macrodef))
end
""" Return the names of fields defined in `fdef`. """
function _fieldnames(fdef::Expr)
fdef.head == :block && return Symbol.(filter(!isnothing, (_fieldnames.(fdef.args))))
fdef.head == :(::) && return fdef.args[1]
fdef.head == :(=) && return _fieldnames(fdef.args[1])
nothing
end
_fieldnames(s::Symbol) = s
_fieldnames(arb) = nothing
""" Return the list of elements in array which occur more than once. """
_duplicates(a) = filter( el -> length(findall(==(el), a)) > 1, unique(a) )
_has_kwdefs(typedef::Expr) = any( (f isa Expr && f.head == :(=) for f in typedef.args[3].args) )
end | DefaultFields | https://github.com/jkosata/DefaultFields.jl.git |
|
[
"MIT"
] | 0.0.1 | 4fe353b814d2306e297db626a1669e6b6aa9f2af | code | 1801 | using DefaultFields, Test, Parameters
abstract type supertype end
@with_fields abs_type <: supertype custom_float::Float64 custom_int::Int
@abs_type struct new_type
orig_field::Dict
end
@test fieldtype(new_type, :orig_field) == Dict
@test fieldtype(new_type, :custom_float) == Float64
@test fieldtype(new_type, :custom_int) == Int
@test new_type <: abs_type && new_type <: supertype
new_inst = new_type(Dict(), 1.0, 2)
@test new_inst isa abs_type
@test_throws "syntax: duplicate" @macroexpand @abs_type struct invalid_type; custom_int::Int end
@with_fields abs_type_weak custom_float custom_int
@abs_type_weak struct new_type_weak
orig_field::Dict
end
@test fieldtype(new_type_weak, :custom_float) == Any
@test fieldtype(new_type_weak, :custom_int) == Any
@test_throws "syntax: duplicate" @macroexpand @abs_type_weak struct invalid_type; custom_int end
@test_throws "syntax: duplicate" @macroexpand @with_fields invalid_type custom_field custom_field
###
# Parameters.jl compatibility
# to replace Base.@kwdef with @with_kw requires a modification of Parameters.jl to unwrap macrocalls
###
@abs_type struct kw_struct
new_field
new_field_def=1
end
@test Set([:new_field, :new_field_def, :custom_int, :custom_float]) == Set(fieldnames(kw_struct))
kw_inst = kw_struct(custom_float=1, custom_int=2, new_field=[])
@test kw_inst.new_field_def == 1
@with_fields abs_def custom_float=1.0 custom_int::Int=4
@abs_def struct struct_with_defs
particular
end
@test Set(fieldnames(struct_with_defs)) == Set([:custom_float, :custom_int, :particular])
@test struct_with_defs(particular=1).custom_int == 4
@test struct_with_defs(particular=1).custom_float == 1.0
@test struct_with_defs(particular=1, custom_int=2, custom_float=0).custom_int == 2
@test struct_with_defs <: abs_def
| DefaultFields | https://github.com/jkosata/DefaultFields.jl.git |
|
[
"MIT"
] | 0.0.1 | 4fe353b814d2306e297db626a1669e6b6aa9f2af | docs | 1640 | 
### DefaultFields.jl
This is a simple package to declare abstract types with default fields and their values in Julia. The idea of having this as base functionality is [somewhat disputed](https://github.com/JuliaLang/julia/issues/4935) in the Julia community. I just find it handy sometimes to have a family of types without copypasting blocks of field declarations around.
The macro `@with_fields` defines an abstract type and its default fields.
It then creates another macro to declare subtypes of this abstract type. The default fields are appended to type-particular field definitions.
```julia
julia> using DefaultFields
julia> @with_fields abs_type a_def::Int b_def
julia> @abs_type struct mystruct
c::Float64
end
julia> fieldnames(mystruct)
(:c, :a_def, :b_def)
julia> mystruct(1, 2, [])
mystruct(1.0, 2, Any[])
julia> mystruct <: abs_type
true
```
### Default values
Default field values can be entered in both the abstract and concrete declarations (see [`Parameters.jl`](https://github.com/mauro3/Parameters.jl) for syntax). With
```julia
julia> @with_fields abs_type a_def::Int=5 b_def
```
calling
```julia
julia> @abs_type struct mystruct
c::Float64=6.0
end
```
Is equivalent to
```julia
using Parameters
abstract type abs_type end
@with_kw struct mystruct <: abs_type
c::Float64 = 6.0
a_def::Int = 5
b_def
end
```
### Supertyping
```julia
julia> abstract type supertype end
julia> @with_fields abs_type <: supertype a_def b_def
julia> abs_type <: supertype
true
```
| DefaultFields | https://github.com/jkosata/DefaultFields.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 759 | using ItPropFit
using Documenter
DocMeta.setdocmeta!(ItPropFit, :DocTestSetup, :(using ItPropFit); recursive=true)
makedocs(;
modules=[ItPropFit],
authors="Erik-Jan van Kesteren",
repo="https://github.com/vankesteren/ItPropFit.jl/blob/{commit}{path}#{line}",
sitename="ItPropFit.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://vankesteren.github.io/ItPropFit.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
"Examples" => "examples.md",
"Benchmarks" => "benchmarks.md",
"Reference" => "reference.md"
],
)
deploydocs(;
repo="github.com/vankesteren/ItPropFit.jl",
devbranch="dev",
)
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 3179 | """
ArrayFactors(af::Vector{<:AbstractArray}, di::DimIndices)
ArrayFactors(af::Vector{<:AbstractArray}, di::Vector)
ArrayFactors(af::Vector{<:AbstractArray})
Array factors are defined such that the array's elements are their products:
`M[i, j, ..., l] = af[1][i] * af[2][j] * ... * af[3][l]`.
The array factors can be vectors or multidimensional arrays themselves.
The main use of ArrayFactors is as a memory-efficient representation of a
multidimensional array, which can be constructed using the `Array()`
method.
see also: [`ipf`](@ref), [`ArrayMargins`](@ref), [`DimIndices`](@ref)
# Fields
- `af::Vector{<:AbstractArray}`: Vector of (multidimensional) array factors
- `di::DimIndices`: Dimension indices to which the array factors belong.
# Examples
```julia-repl
julia> AF = ArrayFactors([[1,2,3], [4,5]])
Factors for array of size (3, 2):
[1]: [1, 2, 3]
[2]: [4, 5]
julia> eltype(AF)
Int64
julia> Array(AF)
3×2 Matrix{Int64}:
4 5
8 10
12 15
julia> AF = ArrayFactors([[1,2,3], [4 5; 6 7]], DimIndices([2, [1, 3]]))
Factors for 3D array:
[2]: [1, 2, 3]
[1, 3]: [4 5; 6 7]
julia> Array(AF)
2×3×2 Array{Int64, 3}:
[:, :, 1] =
4 8 12
6 12 18
[:, :, 2] =
5 10 15
7 14 21
```
"""
struct ArrayFactors{T}
af::Vector{<:AbstractArray{T}}
di::DimIndices
end
# Constructor for mixed-type arrayfactors needs promotion before construction
function ArrayFactors(af::Vector{<:AbstractArray}, di::DimIndices)
AT = eltype(af)
PT = promote_type(eltype.(af)...)
ArrayFactors(Vector{AT{PT}}(af), di)
end
# Constructor promoting vector to dimindices
ArrayFactors(af::Vector{<:AbstractArray}, di::Vector) = ArrayMargins(af, DimIndices(di))
# Constructor based on factors without dimindices
ArrayFactors(af::Vector{<:AbstractArray}) = ArrayFactors(af, default_dimindices(af))
# Overloading base methods
function Base.eltype(::Type{ArrayFactors{T}}) where {T}
return T
end
function Base.show(io::IO, AF::ArrayFactors)
print(io, "Factors for $(ndims(AF.di))D array:")
for i in 1:length(AF.af)
print(io, "\n $(AF.di.idx[i]): ")
show(io, AF.af[i])
end
end
Base.size(AF::ArrayFactors) = flatten(size.(AF.af)...)[sortperm(vcat(AF.di.idx...))]
Base.length(AF::ArrayFactors) = length(AF.af)
"""
Array(AF::ArrayFactors{T})
Create an array out of an ArrayFactors object.
# Arguments
- `A::ArrayFactors{T}`: Array factors
# Examples
```julia-repl
julia> fac = ArrayFactors([[1,2,3], [4,5], [6,7]])
Factors for array of size (3, 2, 2):
1: [1, 2, 3]
2: [4, 5]
3: [6, 7]
julia> Array(fac)
3×2×2 Array{Int64, 3}:
[:, :, 1] =
24 30
48 60
72 90
[:, :, 2] =
28 35
56 70
84 105
```
"""
function Base.Array(AF::ArrayFactors{T}) where {T}
D = length(AF.di)
asize = size(AF)
M = ones(T, asize)
for d in 1:D
idx = AF.di.idx[d]
af = AF.af[d]
if !issorted(idx)
sp = sortperm(idx)
idx = idx[sp]
af = permutedims(af, sp)
end
dims = [idx...]
shp = ntuple(i -> i ∉ dims ? 1 : asize[popfirst!(dims)], ndims(AF.di))
M .*= reshape(af, shp)
end
return M
end
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 3367 | """
ArrayMargins(am::Vector{<:AbstractArray}, di::DimIndices)
ArrayMargins(am::Vector{<:AbstractArray}, di::Vector)
ArrayMargins(am::Vector{<:AbstractArray})
ArrayMargins(X::AbstractArray, di::DimIndices)
ArrayMargins(X::AbstractArray)
ArrayMargins are marginal sums of an array, combined with the
indices of the dimensions these sums belong to. The marginal
sums can be multidimensional arrays themselves.
There are various constructors for ArrayMargins, based on either
raw margins or an actual array from which the margins are then
computed.
see also: [`DimIndices`](@ref), [`ArrayFactors`](@ref), [`ipf`](@ref)
# Fields
- `am::Vector{AbstractArray}`: Vector of marginal sums.
- `di::DimIndices`: Dimension indices to which the elements of `am` belong.
# Examples
```julia-repl
julia> X = reshape(1:12, 2, 3, 2)
2×3×2 reshape(::UnitRange{Int64}, 2, 3, 2) with eltype Int64:
[:, :, 1] =
1 3 5
2 4 6
[:, :, 2] =
7 9 11
8 10 12
julia> ArrayMargins(X)
Margins from 3D array:
[1]: [36, 42]
[2]: [18, 26, 34]
[3]: [21, 57]
julia> ArrayMargins(X, [1, [2, 3]])
Margins from 3D array:
[1]: [36, 42]
[2, 3]: [3 15; 7 19; 11 23]
julia> ArrayMargins(X, [2, [3, 1]])
Margins of 3D array:
[2]: [18, 26, 34]
[3, 1]: [9 12; 27 30]
```
"""
struct ArrayMargins{T}
am::Vector{<:AbstractArray{T}}
di::DimIndices
end
# Constructor for mixed-type arraymargins needs promotion before construction
function ArrayMargins(am::Vector{<:AbstractArray}, di::DimIndices)
AT = eltype(am)
PT = promote_type(eltype.(am)...)
ArrayFactors(Vector{AT{PT}}(am), di)
end
# Constructor promoting vector to dimindices
ArrayMargins(am::Vector{<:AbstractArray}, di::Vector) = ArrayMargins(am, DimIndices(di))
# Constructor based on margins without indices
ArrayMargins(am::Vector{<:AbstractArray}) = ArrayMargins(am, default_dimindices(am))
# Constructor based on array
function ArrayMargins(X::AbstractArray, di::DimIndices)
D = ndims(X)
if D != ndims(di)
throw(DimensionMismatch("Dimensions of X ($(ndims(X))) mismatch DI ($(ndims(di)))."))
end
# create the margins
am = Vector{AbstractArray{eltype(X)}}()
for dim in di.idx
notd = Tuple(setdiff(1:D, dim))
mar = dropdims(sum(X; dims = notd); dims = notd)
if !issorted(dim)
mar = permutedims(mar, sortperm(sortperm(dim)))
end
push!(am, mar)
end
return ArrayMargins(am, di)
end
ArrayMargins(X::AbstractArray) = ArrayMargins(X, DimIndices([1:ndims(X)...]))
ArrayMargins(X::AbstractArray, DI::Vector) = ArrayMargins(X, DimIndices(DI))
# Base methods
function Base.show(io::IO, AM::ArrayMargins)
print(io, "Margins of $(ndims(AM.di))D array:")
for i in 1:length(AM.am)
print(io, "\n $(AM.di.idx[i]): ")
show(io, AM.am[i])
end
end
Base.size(AM::ArrayMargins) = flatten(size.(AM.am)...)[sortperm(vcat(AM.di.idx...))]
Base.length(AM::ArrayMargins) = length(AM.am)
Base.ndims(AM::ArrayMargins) = sum(ndims.(AM.am))
# methods for consistency of margins
function isconsistent(AM::ArrayMargins; tol::Float64 = eps(Float64))
marsums = sum.(AM.am)
return (maximum(marsums) - minimum(marsums)) < tol
end
function proportion_transform(AM::ArrayMargins)
mar = convert.(Vector{Float64}, AM.am) ./ sum.(AM.am)
return ArrayMargins(mar, AM.di)
end | ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 2569 | """
DimIndices(idx::Vector{Vector{Int}})
DimIndices represent an exhaustive list of indices for the
dimensions of an array. It is an object containing a single
element, `idx`, which is a nested vector of integers;
e.g., `[[2], [1, 3], [4]]`. DimIndices objects are checked for
uniqueness and completeness, i.e., all indices up to the largest
index are used exactly once.
# Fields
- `idx::Vector{Vector{Int}}`: nested vector of dimension indices.
# Examples
```julia-repl
julia> DimIndices([2, [1, 3], 4])
Indices for 4D array:
[[2], [1, 3], [4]]
```
"""
struct DimIndices
idx::Vector{Vector{Int}}
# inner constructor checking uniqueness & completeness
function DimIndices(idx::Vector{Vector{Int}})
# uniqueness
if !allunique(vcat(idx...))
error("Some dimensions were duplicated.")
end
# completeness
D = maximum(maximum.(idx))
dmissing = setdiff(1:D, vcat(idx...))
if length(dmissing) > 0
error("Missing array dimensions: $dmissing.")
end
return new(idx)
end
end
# convenient constructor
DimIndices(X::Vector) = DimIndices(Vector{Union{Int, Vector{Int}}}(X))
function DimIndices(X::Vector{Union{Int, Vector{Int}}})
DimIndices(broadcast((x) -> [x...], X))
end
"""
default_dimindices(m::Vector{<:AbstractArray})
Create default dimensions from a vector of arrays. These dimensions
are assumed to be ordered. For example, for
the dimensions will be [[1], [2], [3]]. For [[1, 2], [2 1 ; 3 4]], it
will be [[1], [2, 3]].
See also: [`DimIndices`](@ref)
# Arguments
- `m::Vector{<:AbstractArray}`: Array margins or factors.
# Examples
```julia-repl
julia> default_dimindices([[1, 2], [2, 1], [3, 4]])
Indices for 3D array:
[[1], [2], [3]]
julia> default_dimindices([[1, 2], [2 1 ; 3 4]])
Indices for 3D array:
[[1], [2, 3]]
```
"""
function default_dimindices(m::Vector{<:AbstractArray})
nd = ndims.(m)
j = 0
dd = []
for i in nd
push!(dd, collect((j+1):(j+i)))
j += i
end
return DimIndices(dd)
end
# Base methods
Base.ndims(DI::DimIndices) = maximum(maximum.(DI.idx))
Base.length(DI::DimIndices) = length(DI.idx)
Base.issorted(DI::DimIndices) = issorted(vcat(maximum.(DI.idx)...))
Base.getindex(DI::DimIndices, varargs...) = getindex(DI.idx, varargs...)
function Base.show(io::IO, DI::DimIndices)
println(io, "Indices for $(ndims(DI))D array:")
print("[")
for i in 1:length(DI)
show(io, DI.idx[i])
if i != length(DI) print(", ") end
end
print("]")
end
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 254 | module ItPropFit
export
DimIndices,
ArrayMargins, isconsistent, proportion_transform,
ArrayFactors,
ipf
include("DimIndices.jl")
include("ArrayMargins.jl")
include("ArrayFactors.jl")
include("utils.jl")
include("ipf.jl")
end # module
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 5415 | """
ipf(X::AbstractArray{<:Real}, mar::ArrayMargins; maxiter::Int = 1000, tol::Float64 = 1e-10)
ipf(X::AbstractArray{<:Real}, mar::Vector{<:Vector{<:Real}})
ipf(mar::ArrayMargins)
ipf(mar::Vector{<:Vector{<:Real}})
Perform iterative proportional fitting (factor method). The array (X) can be
any number of dimensions, and the margins can be multidimensional as well.
If only the margins are given, then the seed matrix `X` is assumed
to be an array filled with ones of the correct size and element type.
If the margins are not an ArrayMargins object, they will be coerced to this type.
This function returns the update matrix as an ArrayFactors object. To compute
the updated matrix, use `Array(result) .* X` (see examples).
see also: [`ArrayFactors`](@ref), [`ArrayMargins`](@ref)
# Arguments
- `X::AbstractArray{<:Real}`: Array to be adjusted
- `mar::ArrayMargins`: Target margins as an ArrayMargins object
- `maxiter::Int=1000`: Maximum number of iterations
- `tol::Float64=1e-10`: Factor change tolerance for convergence
# Examples
```julia-repl
julia> X = [40 30 20 10; 35 50 100 75; 30 80 70 120; 20 30 40 50]
julia> u = [150, 300, 400, 150]
julia> v = [200, 300, 400, 100]
julia> AF = ipf(X, [u, v])
Factors for 2D array:
[1]: [0.9986403503185242, 0.8833622306385376, 1.1698911437112522, 0.8895042701910321]
[2]: [1.616160156063788, 1.5431801747375655, 1.771623700829941, 0.38299396265192226]
julia> Z = Array(AF) .* X
4×4 Matrix{Float64}:
64.5585 46.2325 35.3843 3.82473
49.9679 68.1594 156.499 25.3742
56.7219 144.428 145.082 53.7673
28.7516 41.18 63.0347 17.0337
julia> ArrayMargins(Z)
Margins of 2D array:
[1]: [150.0000000009452, 299.99999999962523, 399.99999999949796, 149.99999999993148]
[2]: [200.0, 299.99999999999994, 399.99999999999994, 99.99999999999997]
```
"""
function ipf(X::AbstractArray{<:Real}, mar::ArrayMargins; maxiter::Int = 1000, tol::Float64 = 1e-10)
# dimension check
if ndims(X) != ndims(mar)
throw(DimensionMismatch("The number of margins ($(ndims(mar))) needs to equal ndims(X) = $(ndims(X))."))
end
array_size = size(X)
if array_size != size(mar)
throw(DimensionMismatch("The size of the margins $(size(mar)) needs to equal size(X) = $array_size."))
end
# margin consistency check
if !isconsistent(mar; tol = tol)
# transform to proportions
@info "Inconsistent target margins, converting `X` and `mar` to proportions. Margin totals: $(sum.(mar.am))"
X /= sum(X)
mar = proportion_transform(mar)
end
# initialization (simplified first iteration)
J = length(mar)
di = mar.di
mar_seed = ArrayMargins(X, di)
fac = [mar.am[i] ./ mar_seed.am[i] for i in 1:J]
X_prod = copy(X)
# start iteration
iter = 0
crit = 0.
for i in 1:maxiter
iter += 1
oldfac = deepcopy(fac)
for j in 1:J # loop over margin elements
# get complement dimensions
notj = setdiff(1:J, j)
notd = di[notj]
# create X multiplied by complement factors
for k in 1:(J-1) # loop over complement dimensions
# get current dimindex & current factor
cur_idx = di[notj[k]]
cur_fac = fac[notj[k]]
# reorder if necessary for elementwise multiplication
if !issorted(cur_idx)
sp = sortperm(cur_idx)
cur_idx = cur_idx[sp]
cur_fac = permutedims(cur_fac, sp)
end
# create correct shape for elementwise multiplication
dims = copy(cur_idx)
shp = ntuple(i -> i ∉ dims ? 1 : array_size[popfirst!(dims)], ndims(di))
# perform elementwise multiplication
if k == 1
X_prod = X .* reshape(cur_fac, shp)
else
X_prod .*= reshape(cur_fac, shp)
end
end
# then we compute the margin by summing over all complement dimensions
complement_dims = Tuple(vcat(notd...))
cur_sum = dropdims(sum(X_prod; dims = complement_dims), dims = complement_dims)
if !issorted(di[j])
# reorder if necessary for elementwise division
cur_sum = permutedims(cur_sum, sortperm(sortperm(di[j])))
end
# update this factor
fac[j] = mar.am[j] ./ cur_sum
end
# convergence check
crit = maximum(broadcast(x -> maximum(abs.(x)), fac - oldfac))
if crit < tol break end
end
if iter == maxiter
@warn "Did not converge. Try increasing the number of iterations. Maximum absolute difference between subsequent iterations: $crit"
else
@info "Converged in $iter iterations."
end
return ArrayFactors(fac, di)
end
function ipf(X::AbstractArray{<:Real}, mar::Vector{<:Vector{<:Real}}; maxiter::Int = 1000, tol::Float64 = 1e-10)
ipf(X, ArrayMargins(mar); maxiter = maxiter, tol = tol)
end
function ipf(mar::ArrayMargins{T}; maxiter::Int = 1000, tol::Float64 = 1e-10) where T
ipf(ones(T, size(mar)), mar; maxiter = maxiter, tol = tol)
end
function ipf(mar::Vector{<:Vector{<:Real}}; maxiter::Int = 1000, tol::Float64 = 1e-10)
ipf(ArrayMargins(mar); maxiter = maxiter, tol = tol)
end | ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 446 | # flatten nested tuples into single tuple
# https://discourse.julialang.org/t/efficient-tuple-concatenation/5398/10
flatten(x::Tuple) = x
flatten(x::Tuple, y::Tuple) = (x..., y...)
flatten(x::Tuple, y::Tuple, z::Tuple...) = (x..., flatten(y, z...)...)
# dict methods for future reference
Base.Dict(AM::ArrayMargins) = Dict(AM.di[i] => AM.am[i] for i in 1:length(AM))
Base.Dict(AF::ArrayFactors) = Dict(AF.di[i] => AF.af[i] for i in 1:length(AF)) | ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | code | 4342 | using Test, ItPropFit
@testset "DimIndices" begin
# Basic object & method
di = DimIndices([1, [2, 3], [4, 5, 6]])
@test typeof(di) == DimIndices
@test length(di) == 3
@test ndims(di) == 6
# test completeness
@test_throws ErrorException DimIndices([2, 1, [5, 4, 6]])
# test uniqueness
@test_throws ErrorException DimIndices([[2, 3, 2], 1, [5, 4, 6]])
end
@testset "ArrayMargins" begin
# Basic object & methods
di = DimIndices([1, 2])
mar = ArrayMargins([[22, 26, 30], [6, 15, 24, 33]], di)
@test typeof(mar) == ArrayMargins{Int}
@test length(mar) == 2
@test size(mar) == (3, 4)
# Consistency check
@test isconsistent(mar)
mar_p = proportion_transform(mar)
@test sum.(mar_p.am) == [1., 1.]
# Constructors
mar2 = ArrayMargins([[22, 26, 30], [6, 15, 24, 33]])
@test mar.am == mar2.am && mar.di.idx == mar2.di.idx
X = [1 4 7 10
2 5 8 11
3 6 9 12]
mar3 = ArrayMargins(X)
@test mar.am == mar3.am && mar.di.idx == mar3.di.idx
mar4 = ArrayMargins(X, DimIndices([2, 1]))
@test mar.am == reverse(mar4.am) && mar.di.idx == reverse(mar4.di.idx)
mar5 = ArrayMargins(X, DimIndices([[2, 1]]))
@test mar5.am[1] == X'
end
@testset "ArrayFactors" begin
# Basic object & methods
di = DimIndices([1, 2])
fac = ArrayFactors([[1,2,3], [4,5]], di)
@test size(fac) == (3, 2)
@test eltype(fac) == Int64
@test Array(fac) == [4 5 ; 8 10 ; 12 15]
# constructors
fac2 = ArrayFactors([[1,2,3], [4, 5]])
@test fac.af == fac2.af && fac.di.idx == fac2.di.idx
fac3 = ArrayFactors([[4, 5], [1, 2, 3]], DimIndices([2, 1]))
@test Array(fac) == Array(fac3)
# multidimensional madness
di = DimIndices([1, [2, 3], 4, [5, 6, 7]])
f1 = [.1, .6]
f2 = [3. 2. 1. ; 6. 5. 4.]
f3 = [.5, .1, .9]
f4 = reshape(1.0:12.0, 2, 3, 2)
fac4 = ArrayFactors([f1, f2, f3, f4], di)
@test length(Array(fac4)) == prod(size(fac4))
di = DimIndices([1, [3, 2], 4, [5, 6, 7]])
fac5 = ArrayFactors([f1, f2', f3, f4], di)
@test Array(fac4) ≈ Array(fac5) # nb: approx because floating point errors
di = DimIndices([4, [3, 2], 1, [5, 6, 7]])
fac6 = ArrayFactors([f3, f2', f1, f4], di)
@test Array(fac4) ≈ Array(fac6)
di = DimIndices([4, [3, 2], 1, [7, 5, 6]])
fac7 = ArrayFactors([f3, f2', f1, permutedims(f4, [3, 1, 2])], di)
@test Array(fac4) ≈ Array(fac7)
end
@testset "Two-dimensional ipf" begin
# Basic example with convenient interface
X = [40 30 20 10; 35 50 100 75; 30 80 70 120; 20 30 40 50]
u = [150, 300, 400, 150]
v = [200, 300, 400, 100]
AF = ipf(X, [u, v])
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime)
@test AM.am ≈ [u, v]
# Margins only
AF = ipf([u, v])
AM = ArrayMargins(Array(AF))
@test AM.am ≈ [u, v]
# Inconsistent margins
w = [15, 30, 40, 15]
AF = ipf(X, [w, v])
AM = ArrayMargins(X ./ sum(X) .* Array(AF))
@test AM.am ≈ [w ./ sum(w), v ./ sum(v)]
# Large 100 x 100 matrix
X = reshape(repeat(1:16, 625), 100, 100)
Y = reshape(repeat(1:5, 2000), 100, 100) + X
m = ArrayMargins(Y)
AF = ipf(X, m)
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime)
@test AM.am ≈ m.am
end
@testset "Multidimensional ipf" begin
# Small three-dimensional case
X = reshape(1:12, 2, 3, 2)
m = ArrayMargins([[48, 60], [28, 36, 44], [34, 74]])
AF = ipf(X, m)
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime)
@test AM.am ≈ m.am
# large five-dimensional case
X = reshape(repeat(1:12, 100), 6, 4, 2, 5, 5)
Y = reshape(repeat(1:5, 240), 6, 4, 2, 5, 5) + X
m = ArrayMargins(Y)
AF = ipf(X, m)
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime)
@test AM.am ≈ m.am
# large five-dimensional case with multidimensional margins
di = DimIndices([[1, 2], [3, 4, 5]])
m = ArrayMargins(Y, di)
AF = ipf(X, m)
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime, di)
@test AM.am ≈ m.am
# large five-dimensional case with unordered multidimensional margins
di = DimIndices([[1, 4], [5, 2, 3]])
m = ArrayMargins(Y, di)
AF = ipf(X, m)
X_prime = Array(AF) .* X
AM = ArrayMargins(X_prime, di)
@test AM.am ≈ m.am
end
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | docs | 1657 | # ItPropFit.jl
[](https://github.com/vankesteren/ItPropFit.jl/actions/workflows/CI.yml)
Multidimensional iterative proportional fitting in Julia.
[ItPropFit](https://github.com/vankesteren/ItPropFit.jl) implements a multidimensional version of the [factor estimation method](https://en.wikipedia.org/wiki/Iterative_proportional_fitting#Algorithm_2_(factor_estimation)) for performing iterative proportional fitting (also called RAS algorithm, raking, matrix scaling)
## Showcase
See the full documentation and getting started [here](https://vankesteren.github.io/ItPropFit.jl/).
```julia
using ItPropFit
# matrix to be adjusted
X = [40 30 20 10; 35 50 100 75; 30 80 70 120; 20 30 40 50]
# target margins
u = [150, 300, 400, 150]
v = [200, 300, 400, 100]
# Perform iterative proportional fitting
fac = ipf(X, [u, v])
```
```
[ Info: Converged in 8 iterations.
Factors for 2D array:
[1]: [0.9986403503185242, 0.8833622306385376, 1.1698911437112522, 0.8895042701910321]
[2]: [1.616160156063788, 1.5431801747375655, 1.771623700829941, 0.38299396265192226]
```
```julia
# compute adjusted matrix
Z = Array(fac) .* X
```
```
4×4 Matrix{Float64}:
64.5585 46.2325 35.3843 3.82473
49.9679 68.1594 156.499 25.3742
56.7219 144.428 145.082 53.7673
28.7516 41.18 63.0347 17.0337
```
```julia
# check that the margins are indeed [u, v]
ArrayMargins(Z)
```
```
Margins of 2D array:
[1]: [150.0000000009452, 299.99999999962523, 399.99999999949796, 149.99999999993148]
[2]: [200.0, 299.99999999999994, 399.99999999999994, 99.99999999999997]
```
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | docs | 711 | # Benchmarks
```@setup bench
using BenchmarkTools, ItPropFit, Logging
Logging.disable_logging(Logging.Info)
```
The benchmarks below were run on Julia 1.7.2.
### Default example
```@example bench
X = [40 30 20 10; 35 50 100 75; 30 80 70 120; 20 30 40 50]
u = [150, 300, 400, 150]
v = [200, 300, 400, 100]
@benchmark ipf(X, [u, v])
```
### Large contingency table
```@example bench
X = reshape(repeat(1:16, 625), 100, 100)
Y = reshape(repeat(1:5, 2000), 100, 100) + X
m = ArrayMargins(Y)
@benchmark ipf(X, m)
```
### Six-dimensional contingency table
```@example bench
X = reshape(repeat(1:12, 100), 6, 4, 2, 5, 5)
Y = reshape(repeat(1:5, 240), 6, 4, 2, 5, 5) + X
m = ArrayMargins(Y)
@benchmark ipf(X, m)
``` | ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | docs | 1823 | # Examples
## Regression poststratification
```@example pstrat
using StatsKit, FreqTables, ItPropFit
```
First, we generate some fake data with demographic characteristics.
```@example pstrat
N = 100
p_sex = Categorical([0.49, 0.51])
p_edu = Categorical([0.1, 0.3, 0.4, 0.2])
p_age = Categorical([0.1, 0.3, 0.3, 0.2, 0.1])
p_inc = LogNormal(5, 3)
p_opn = Normal(0, 3)
df = DataFrame(
:sex => CategoricalArray(["m", "f"][rand(p_sex, N)]),
:edu => CategoricalArray(["no", "lo", "med", "hi"][rand(p_edu, N)], ordered = true),
:age => CategoricalArray(["<10", "11<25", "26<50", "51<70", ">70"][rand(p_age, N)], ordered = true),
:inc => rand(p_inc, N)
)
df.opn = 1.5 .+ log.(df.inc) .* .1 + rand(p_opn, N)
df
```
Then, we create post-stratification weights based on population-level margins using the background characteristics through ItPropFit.
```@example pstrat
# Create a cross-table of background characteristics
tab = freqtable(df, :sex, :edu, :age)
# Create margins from the population (aggregates obtained from statistical agency)
pop_margins = ArrayMargins([[0.49, 0.51], [0.05, 0.2, 0.5, 0.25], [0.1, 0.2, 0.4, 0.15, 0.15]])
# Compute array factors
fac = ipf(Array(tab), pop_margins)
# Compute adjusted table
tab_adj = Array(fac) .* tab
```
Create weights by looking up the adjusted counts and then performing normalization.
```@example pstrat
# Create a poststratification weight variable by lookup from the table
df.w = [tab_adj[row...] for row in eachrow(df[:, [:sex, :edu, :age]])]
df.w = df.w ./ sum(df.w) .* N # normalize the weights
```
Let's take a look at how our regression estimates change!
```@example pstrat
# perform unweighted regression
frm = @formula(opn ~ log(inc))
res = lm(frm, df)
```
```@example pstrat
# perform weighted regression
res_w = lm(frm, df, wts = df.w)
``` | ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | docs | 3486 | # ItPropFit
Multidimensional iterative proportional fitting in Julia.
[ItPropFit](https://github.com/vankesteren/ItPropFit.jl) implements a multidimensional version of the [factor estimation method](https://en.wikipedia.org/wiki/Iterative_proportional_fitting#Algorithm_2_(factor_estimation)) for performing iterative proportional fitting (also called RAS algorithm, raking, matrix scaling).
In the two-dimensional case, iterative proportional fitting means changing a matrix $X$ to have marginal sum totals $u, v$. One prime use is in survey data analysis, where $X$ could be your data's cross-tabulation of demographic characteristics, and $u, v$ the known population proportions of those characteristics.
## Getting started
```@setup ex
using ItPropFit
```
Assume you have a matrix `X`:
```@example ex
X = [40 30 20 10; 35 50 100 75; 30 80 70 120; 20 30 40 50]
```
And the row and column margins of another matrix `Y` (`u` and `v`, respectively) but not the full matrix:
```@example ex
u = [150, 300, 400, 150]
v = [200, 300, 400, 100]
```
Then the `ipf` function from ItPropFit will find the array factors which adjust matrix `X` to have the margins `u` and `v`:
```@example ex
fac = ipf(X, [u, v])
```
Array factors (`ArrayFactors`) are a specific type exported by ItPropFit with a few methods, for example `Array()`:
```@example ex
Array(fac)
```
To create the adjusted matrix `Z` with the margins `u` and `v`, we perform elementwise multiplication of this matrix with `X`:
```@example ex
Z = Array(fac) .* X
```
We can then check that the marginal sum totals are correct:
```@example ex
ArrayMargins(Z)
```
## Inconsistent margins
If the margins are inconsistent (i.e., the margins do not sum to the same amounts) then both `X` and the margins will be transformed to proportions.
```@example ex
m = ArrayMargins([[12, 23, 14, 35], [17, 44, 12, 33]])
af = ipf(X, m)
```
Then, `Z` needs to be computed in a different way as well:
```@example ex
X_prop = X ./ sum(X)
Z = X_prop .* Array(af)
```
## Multidimensional arrays
ItPropFit can also deal with multidimensional arrays of arbitrary shape. For example, consider the following `(3, 2, 3)` array and target margins:
```@example ex
X = reshape(1:12, 2, 3, 2)
m = [[48, 60], [28, 36, 44], [34, 74]]
```
Now we can run `ipf` to compute the adjustment:
```@example ex
fac = ipf(X, m)
```
And we can create the adjusted array `Z`:
```@example ex
Array(fac) .* X
```
## Multidimensional margins
ItPropFit can also deal with multidimensional margins of arbitrary shape. For example, consider the same `(3, 2, 3)` array as before:
```@example ex
X = reshape(1:12, 2, 3, 2)
```
We have multidimensional target margins (a 1D vector and a 2D matrix):
```@example ex
m1 = [48, 60]
m2 = [9 11 14; 19 25 30]
mar = [m1, m2]
```
Here, `m1` belongs to the first dimension of target matrix, and `m2` belongs to the third and second dimension (in that order). This can be encoded in a `DimIndices` object as follows:
```@example ex
dimid = DimIndices([1, [3, 2]])
```
Together, the margins and dimension indices they belong to constitute an `ArrayMargins` object:
```@example ex
m = ArrayMargins(mar, dimid)
```
Now we can run `ipf` to compute the adjustment:
```@example ex
fac = ipf(X, m)
```
And we can create the adjusted array `Z`:
```@example ex
Z = Array(fac) .* X
```
We then also use `ArrayMargins` to check whether the margins of this array are indeed as expected!
```@example ex
ArrayMargins(Z, dimid)
```
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 0.2.0 | 8fe5d02b92242d50f2507d7d3f045a4cdde8a6c2 | docs | 107 | ```@meta
CurrentModule = ItPropFit
```
# Reference
```@index
```
```@autodocs
Modules = [ItPropFit]
```
| ItPropFit | https://github.com/vankesteren/ProportionalFitting.jl.git |
|
[
"MIT"
] | 1.0.0 | 793203c510c8c1c6f496c75c75588c4c94d082f2 | code | 1744 | module Smoothing
export binomial
"""
binomial(data::Vector{any}, Nₚ::Int)
Takes a 1d data array and smooths the data with a 2Nₚ+1 binomial filter.
This is computed using the method outlined in :<br>
*Binomial smoothing filter: A way to avoid some pitfalls of least‐squares
polynomial smoothing* in Review of Scientific Instruments 54, 1034 (1983);
https://doi.org/10.1063/1.1137498 <br>
or see <br>
https://aip.scitation.org/doi/abs/10.1063/1.1137498
The method implements a 2Nₚ+1 binomial filter by Nₚ passes of the three point
binomial filter; and this is computationally implemented by two passess of the
{1,1}/2 smoothing implemented below. The filter preserves the values starting
and ending values of the initial data set.
# Examples (you can easily manually verify data1's smoothing is correct.)
```julia-repl
julia> data1 = [1.0, 2.0, 3.0, 4.0, 5.0]
julia> data2 = [3.0, 6.0, 1.0, 4.0, 0.0]
julia> binomial(data1, 1)
5-element Vector{Float64}:
1.0
2.0
3.0
4.0
5.0
julia> binomial(data2, 20)
5-element Vector{Float64}:
3.0
2.3162835515104234
1.5937387603335083
0.8162830746732652
0.0
```
"""
function binomial(data::Vector, Nₚ::Int)
y = data
for pass in 1:Nₚ
x = zeros(length(data))
for i in 1:length(y)
if i==1
x[i] = (y[i] + y[i+1])/2.0
elseif i>1 && i<length(y)
x[i] = (y[i] + y[i+1])/2.0
end
end
y = zeros(length(data))
for j in 1:length(x)
if j==1
y[j] = data[j]
elseif j>1 && j<length(x)
y[j] = (x[j-1] + x[j])/2.0
else
y[j] = data[j]
end
end
end
return y
end
end # module
| Smoothing | https://github.com/paulnakroshis/Smoothing.jl.git |
|
[
"MIT"
] | 1.0.0 | 793203c510c8c1c6f496c75c75588c4c94d082f2 | code | 442 | using Smoothing
using Test
@test Smoothing.binomial([1.0,2.0,3.0,4.0,5.0], 1) == [1.0,2.0,3.0,4.0,5.0]
@test Smoothing.binomial([1.0,2.0,3.0,4.0,5.0], 3) == [1.0,2.0,3.0,4.0,5.0]
println("Passed Smoothing of counting numbers tests (1 and 3 pass)")
@test Smoothing.binomial([0.0,2.0,4.0,6.0,4.0, 2.0, 0.0], 1) == [0.0, 2.0, 4.0, 5.0, 4.0, 2.0, 0.0]
println("Passed Smoothing of manually created triangle pulse")
println("3 Tests passed!")
| Smoothing | https://github.com/paulnakroshis/Smoothing.jl.git |
|
[
"MIT"
] | 1.0.0 | 793203c510c8c1c6f496c75c75588c4c94d082f2 | docs | 784 | # Smoothing.jl
A package to smooth time series data in Julia. <br>
Currently v1.0 only includes binomial smoothing.
Takes a 1d data array and smooths the data with a 2Nₚ+1 binomial filter.
This is computed using the method outlined in :<br>
*Binomial smoothing filter: A way to avoid some pitfalls of least‐squares
polynomial smoothing* <br>
in Review of Scientific Instruments 54, 1034 (1983);
https://doi.org/10.1063/1.1137498 <br>
The filter preserves the values starting
and ending values of the initial data set.
### Example (you can easily manually verify my_data's smoothing is correct.)
Usage:
```julia-repl
julia> using Smoothing
julia> my_data = [1.0, 2.0, 3.0, 4.0, 5.0]
julia> Smoothing.binomial(my_data, 1)
5-element Vector{Float64}:
1.0
2.0
3.0
4.0
5.0
```
| Smoothing | https://github.com/paulnakroshis/Smoothing.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 401 | using Documenter
using SolverLogging
makedocs(
sitename = "SolverLogging.jl",
format = Documenter.HTML(
prettyurls = !("local" in ARGS),
ansicolor=true
),
pages = [
"Introduction" => "index.md",
"API" => "api.md",
"Examples" => "examples.md"
]
)
deploydocs(
repo = "github.com/bjack205/SolverLogging.jl.git",
devbranch = "master"
) | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 1585 | module SolverLogging
using Printf
using Formatting
using Crayons
using Logging
include("utils.jl")
include("conditional_crayon.jl")
include("logger.jl")
# include("default_logger.jl")
include("setentry.jl")
# Set entries in default logger
"""
@log [logger] args...
Logs the data with `logger`, which is the default logger if not provided.
Can be any of the following forms:
@log "name" 1.0 # literal value
@log "name" 2a # an expression
@log "name" name # a variable
@log name # shortcut for previous
If the specified entry is active at the current verbosity level,
"""
macro log(args...)
return log_expr(args...)
end
# Use the symbol as the string name
# e.g. `@log α`` logs the value of α in the "α" field
function log_expr(logger, ex::Symbol)
name = string(ex)
_log_expr(logger, name, ex)
end
# Pass-through to actual function
log_expr(logger, name::String, ex) = _log_expr(logger, name, ex)
log_expr(logger, name::String, ex, op::QuoteNode) = _log_expr(logger, name, ex, op)
function _log_expr(logger, name::String, expr, op::QuoteNode=QuoteNode(:replace))
quote
let lg = $(esc(logger))
# @debug "Calling @log on $name"
if isenabled(lg)
# espec = lg.fmt[$name]
# if lg.opts.curlevel <= espec.level
_log!(lg, $name, $(esc(expr)), $op)
# end
end
end
end
end
export
setentry,
Logger,
@log,
printheader,
printrow,
printlog,
setlevel!,
ConditionalCrayon
end # module
| SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 2433 | """
ConditionalCrayon
Sets conditional formatting for printing to the terminal. Each `ConditionalCrayon`
specifies a function `bad(x)` that returns `true` if the argument `x` is not acceptable,
printing with color `cbad`, and a function `good(x)` that returns `true` if `x` is
acceptable, printing with color `cgood`. If neither are true then `cdefault` is the
color. The `bad` function will be checked before `good`, so takes precedence if both
happen to return `true`. This is not checked.
All colors must be specified as a Crayon type from Crayons.jl
# Constructors
Usage will generally be through the following constructor:
ConditionalCrayon(badfun::Function, goodfun::Function; [goodcolor, badcolor, defaultcolor])
The colors default to green for good, red for bad, and default color (`Crayon(reset=true)`)
for the default.
For convenience when working with ranges, the following constructor is also provided:
ConditionalCrayon(lo, hi; [reverse, goodcolor, badcolor, defaultcolor])
Which will be good if the value is less than `lo` and bad if it's higher than `hi`.
This is reversed if `reverse=true`.
A default constructor
ConditionalCrayon()
Is also provided, which always returns the default color.
# Usage
The `ConditionalCrayon` is a functor object that accepts a single argument of any type,
and returns the `Crayon` according to the output of the `good` and `bad` functions on that
input. It's the user's responsibility to make sure the input type is appropriate for the
functions (since these are all user-specified).
"""
struct ConditionalCrayon
cgood::Crayon
cdefault::Crayon
cbad::Crayon
bad::Function
good::Function
end
ConditionalCrayon() = ConditionalCrayon(x->false, x->false)
function ConditionalCrayon(badfun::Function, goodfun::Function;
goodcolor=crayon"green", badcolor=crayon"red", defaultcolor=Crayon(reset=true)
)
ConditionalCrayon(goodcolor, defaultcolor, badcolor, badfun, goodfun)
end
function ConditionalCrayon(lo, hi; reverse::Bool=false, kwargs...)
@assert lo <= hi
if reverse
badfun = x->x < lo
goodfun = x->x >= hi
else
badfun = x->x > hi
goodfun = x->x <= lo
end
ConditionalCrayon(badfun, goodfun; kwargs...)
end
function (c::ConditionalCrayon)(v)
if c.bad(v)
return c.cbad
elseif c.good(v)
return c.cgood
else
return c.cdefault
end
end | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 11749 | const DEFAULT_LEVEL = 1
const DEFAULT_WIDTH = 10
struct EntrySpec
type::DataType
fmt::String # C-style format string
uid::UInt16 # unique ID, corresponds to the order the entry was added
level::UInt8 # verbosity level. 0 always prints. Higher number -> lower priority
width::UInt8 # column width in characters
ccrayon::ConditionalCrayon
end
EntrySpec(T::DataType, fmt::String, eid, level=DEFAULT_LEVEL, width=DEFAULT_WIDTH;
ccrayon=ConditionalCrayon()) = EntrySpec(T, fmt, UInt16(eid), UInt8(level), UInt8(width), ccrayon)
Base.@kwdef mutable struct LoggerOpts
curlevel::UInt8 = DEFAULT_LEVEL
freq::UInt16 = 10 # how often header prints
_count::UInt16 = 0 # internal counter
headerstyle::Crayon = crayon"bold blue"
linechar::Char = '—'
enable::Bool = true
autosize::Bool = true # automatically expand columns
end
"""
SolverLogger.Logger
A logger designed to print tabulated data that can be updated at any point.
It supports varying verbosity levels, each including all of the information
from previous levels.
# Constructor
SolverLogger.Logger(io=stdout; opts...)
SolverLogger.Logger(filename; opts...)
The constructor can take either an `IO` object or a filename, in which case it will
be opened with write permissions, replacing any existing contents.
The keyword arguments `opts` are one of the following:
* `curlevel` Current verbosity level of the solver. A non-negative integer.
* `freq` A non-negative integer specifying how often the header row should be printed.
* `headerstyle` A `Crayon` specifying the style of the header.
* `linechar` A `Char` that is used for the deliminating row underneath the header. Set to `\0` to not print a row below the header.
* `enable` Enabled/disabled state of the logger at construction.
# Typical Usage
The fields to be printed are specified before use via [`setentry`](@ref). Here the
user can specify properties of the field such as the width of the column, format
specifications (such as number of decimal places, numeric format, alignment, etc.),
column index, and even conditional formatting via a [`ConditionalCrayon`](@ref).
Each field is assigned a fixed verbosity level, and is only printed if the current
verbosity level of the logger, set via [`setlevel!`](@ref) is greater than or equal
to the level of the field.
Once all the fields for the logger have been specified, typical usage is via the
[`@log`](@ref) macro:
@log logger "iter" 1
@log logger "cost" cost * 10 # supports expressions
@log logger "alpha" alpha
@log logger alpha # shortcut for the previous
All calls to `@log` overwrite any previous data. Data is only stored in the logger
if the field is active at the current verbosity.
To print the log, the easiest is via the [`printlog`](@ref) function, which will
automatically print the header rows for you, at the frequency specified by
`logger.opts.freq`. The period can be reset (printing a header at the next call to
`printlog`) via [`resetcount!`](@ref). For more control, the header and rows can
be printed directly via [`printheader`](@ref) and [`printrow`](@ref).
The logger can be completely reset via [`resetlogger!`](@ref).
# Enabling / Disabling
The logger can be enable/disabled via `SolverLogging.enable` and `SolverLogging.disable`.
This overwrites the verbosity level.
"""
struct Logger
io::IO
fmt::Dict{String,EntrySpec} # Collection of entry specifications. UID for each entry is automatically assigned
fmtfun::Dict{String,Function}
idx::Vector{Int16} # determines column order. idx[id] gives the column for entry with id.
data::Vector{String}
crayons::Vector{Crayon}
defaults::Dict{DataType,String}
opts::LoggerOpts
end
function Logger(io::IO=Base.stdout; opts...)
fmt = Dict{String,EntrySpec}()
fmtfun = Dict{String,Function}()
idx = UInt16[]
data = String[]
crayons = Crayon[]
defaults = _default_formats()
Logger(io, fmt, fmtfun, idx, data, crayons, defaults, LoggerOpts(; opts...))
end
Logger(filename::AbstractString; kwargs...) = Logger(open(filename, "w"); kwargs...)
isenabled(log::Logger) = log.opts.enable
enable(log::Logger) = log.opts.enable = true
disable(log::Logger) = log.opts.enable = false
function _default_formats()
Dict(
AbstractFloat => "%.2e",
AbstractString => "%s",
Integer => "%d",
Any => "%s" # default to string printing
)
end
"""
empty!(log::Logger)
Clears out all data from logger and restores it to the default configuration.
Users should prefer to use [`resetlogger!`](@ref) which calls this function.
"""
function Base.empty!(log::Logger)
empty!(log.fmt)
empty!(log.fmtfun)
empty!(log.idx)
empty!(log.data)
empty!(log.defaults)
merge!(log.defaults, _default_formats())
return log
end
function clear!(log::Logger)
level = getlevel(log)
for (k,v) in pairs(log.fmt)
idx = log.idx[v.uid]
if v.level > level
log.data[idx] = ""
else
log.data[idx] = " "^v.width
end
end
end
"""
resetcount!(logger)
Resets the row counter such that the subsequent call to [`printlog`](@ref) will
print a header row, and start the count from that point.
"""
resetcount!(log::Logger) = log.opts._count = 0
"""
resetlogger!(logger)
Resets the logger to the default configuration. All current data will be lost, including
all fields and default formats.
"""
resetlogger!(log::Logger) = begin empty!(log); resetcount!(log) end
"""
_log!(logger, name, val)
Internal method for logging a value with the logger. Users should prefer to use the
[`@log`](@ref) macro. If `name` is a registered field, `val` will be stored in the logger.
Internally, this method converts `val` to a string using the format specifications
and calculates the color using the [`ConditionalCrayon`](@ref) for the entry.
"""
function _log!(log::Logger, name::String, val, op::Symbol=:replace)
if haskey(log.fmt, name)
espec = log.fmt[name]
if espec.level <= log.opts.curlevel
idx = log.idx[espec.uid]
fun = log.fmtfun[espec.fmt]
crayon = espec.ccrayon(val)
if op == :replace
log.data[idx] = rpad(log.fmtfun[espec.fmt](val), espec.width)
elseif op == :append
if espec.type <: AbstractString
data0 = rstrip(log.data[idx])
newdata = log.fmtfun[espec.fmt](string(val))
if all(isspace, data0)
data = newdata
elseif data0[end] == '.'
data = data0 * " " * newdata
else
data = data0 * ". " * newdata
end
log.data[idx] = rpad( data, espec.width)
else
@warn "Cannot append to a non-string entry."
end
elseif op == :add
if espec.type <: Number
data0 = parse(espec.type, rstrip(log.data[idx]))
log.data[idx] = rpad(log.fmtfun[espec.fmt](val + data0), espec.width)
else
@warn "Cannot add to a non-numeric field. Use :append for strings."
end
end
log.crayons[idx] = crayon
@debug "Logging $name with value $val at index $idx"
if length(log.data[idx]) > espec.width
if log.opts.autosize
newwidth = round(Int, length(log.data[idx])*1.5)
setentry(log, name, width = newwidth)
log.opts._count = 0
log.data[idx] = rpad(log.data[idx], newwidth)
else
@warn "Entry for $name ($(log.data[idx])) is longer than field width ($(espec.width)). Alignment may be affected. Try increasing the field width."
end
end
else
@debug "Not logging $name, level not high enough"
end
return nothing
else
@debug "Rejecting log for $name with value $val"
end
end
"""
getlevel(logger)
Gets the current verbosity level for the logger.
"""
getlevel(logger::Logger) = logger.opts.curlevel
"""
setlevel!(logger, level)
Set the verbosity level for the logger. High levels prints more information.
Returns the previous verbosity level.
"""
function setlevel!(log::Logger, level)
prevlvl = log.opts.curlevel
log.opts.curlevel = level
# Reset all levels that are no longer active
for (k,v) in pairs(log.fmt)
idx = log.idx[v.uid]
if v.level > level
log.data[idx] = ""
else
log.data[idx] = rpad(log.data[idx], v.width)
end
end
return prevlvl
end
"""
printheader(logger)
Prints the header row(s) for the logger, including only the entries that are active
at the current verbosity level. The style of the header can be changed via
`logger.opts.headerstyle`, which is a Crayon that applies to the entire header.
The repeated character under the header can be specified via `logger.opts.linechar`.
This value can be set to the null character `\0` if this line should be excluded.
"""
function printheader(log::Logger)
isenabled(log) || return
_printheader(log.io, log)
return nothing
end
function _printheader(io::IOStream, log::Logger)
header = formheader(log)
println(io, header)
if log.opts.linechar != '\0'
println(io, repeat(log.opts.linechar, length(header)))
end
end
function _printheader(io::IO, log::Logger)
header = formheader(log)
println(log.opts.headerstyle(header))
if log.opts.linechar != '\0'
println(log.opts.headerstyle(repeat(log.opts.linechar, length(header))))
end
end
"""
formheader(logger)
Outputs the header as a string
"""
function formheader(log::Logger)
names = fill("", length(log.idx))
for (k,v) in pairs(log.fmt)
idx = log.idx[v.uid]
if v.level <= log.opts.curlevel
names[idx] = rpad(k, v.width)
end
end
header = ""
for name in names
header *= name
end
return header
end
"""
printrow(logger)
Prints the data currently stored in the logger. Any entries with a
[`ConditionalCrayon`](@ref) will be printed in the specified color.
Only prints the data for the current verbosity level.
"""
function printrow(log::Logger)
isenabled(log) || return
_printrow(log.io, log)
log.opts._count += 1
return nothing
end
function _printrow(io::IOStream, log::Logger)
for v in log.data
print(io,v)
end
println(io)
flush(io)
end
function _printrow(io::IO, log::Logger)
for (c,v) in zip(log.crayons, log.data)
print(c,v)
end
println()
flush(stdout)
end
"""
formrow(logger)
Outputs the data for the current verbosity level as a string.
"""
function formrow(log::Logger)
row = ""
for v in log.data
row *= v
end
return row
end
"""
printlog(logger)
Prints the data currently in the logger, automatically printing the header
at the frequency specified by `logger.opts.freq`.
The period of the header can be reset using [`resetcount!`](@ref).
"""
function printlog(log::Logger)
cnt, freq = log.opts._count, log.opts.freq
if cnt % freq == 0
printheader(log)
resetcount!(log)
end
printrow(log)
end
# Gets the index of the field `name`
@inline getidx(log::Logger, name::String) = log.idx[log.fmt[name].uid]
_getdata(log::Logger, name::String) = log.data[getidx(log, name)] | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 5229 |
"""
setentry(logger, name::String, type; kwargs...)
Used to add a new entry/field or modify an existing entry/field in the `logger`.
# Adding a new entry
Specify a unique `name` to add a new entry to the logger. The `type` is used to provide
reasonable formatting defaults and must be included. The keyword arguments control
the behavior/formatting of the field:
* `fmt` A C-style format string used to control the format of the field
* `index` Column for the entry in the output. Negative numbers insert from the end.
* `level` Verbosity level for the entry. A higher level will be printed less often.
Level 0 will always be printed, unless the logger is disabled. Prefer to use
a minimum level of 1.
* `width` Width of the column. Data is left-aligned to this width.
* `ccrayon` A [`ConditionalCrayon`](@ref) for conditional formatting.
# Modified an existing entry
This method can also modify an existing entry, if `name` is already a field int the logger.
The `type` can be omitted in this case. Simply specify any of the keyword arguments
with the new setting.
"""
function setentry(log::Logger, name::String, type::Type{T}=Float64;
fmt::String=default_format(log, name, T),
index::Integer=default_index(log, name),
level=default_level(log, name),
width::Integer=default_width(log, name, fmt),
ccrayon=nothing
) where T
@assert width > 0 "Field width must be positive"
# Check if index is valid
newentry = !haskey(log.fmt, name)
index == 0 && error("Index can't be zero. Must be positive or negative")
if length(log.data) == 0 && abs(index) == 1
index = 1
elseif index < 0
if index >= -length(log.data)
index = length(log.data) + index + 1 + newentry # add one to the end
else
error("Invalid index. Negative indices must be greater than $(-length(log.data))")
end
elseif index > length(log.data)
error("Invalid index. Must be less than $(length(log.data))")
end
# Check if the field already exists
if haskey(log.fmt, name)
espec = log.fmt[name]
fid = espec.uid
oldindex = log.idx[fid]
# Shift data
if oldindex != index
shiftswap!(log.data, index, oldindex)
shiftswap!(log.crayons, index, oldindex)
shiftidx!(log.idx, fid, index)
end
if isnothing(ccrayon)
ccrayon = espec.ccrayon
end
if fmt != espec.fmt || level != espec.level || width != espec.width ||
ccrayon != espec.ccrayon
log.fmt[name] = EntrySpec(espec.type, fmt, fid, level, width, ccrayon)
end
else
@assert type != Nothing "Must specify type for a new field"
# Insert new field
fid = length(log.idx) + 1
insert!(log.data, index, " "^width)
insert!(log.crayons, index, Crayon(reset=true))
push!(log.idx, fid)
shiftidx!(log.idx, fid, index)
if isnothing(ccrayon)
ccrayon = ConditionalCrayon()
end
# Set field format and index
log.fmt[name] = EntrySpec(T, fmt, fid, level, width, ccrayon)
end
# Add formatter if it doesn't exist
if !haskey(log.fmtfun, fmt)
log.fmtfun[fmt] = generate_formatter(fmt)
end
return
end
function default_index(log::Logger, name::String)
if haskey(log.fmt, name)
uid = log.fmt[name].uid
return log.idx[uid]::Int16
end
Int16(-1)
end
function default_level(log::Logger, name::String)
if haskey(log.fmt, name)
return log.fmt[name].level::UInt8
end
UInt8(DEFAULT_LEVEL)
end
function default_width(log::Logger, name::String, fmt::String)::UInt8
if haskey(log.fmt, name)
width = log.fmt[name].width::UInt8
else
width = getwidth(fmt)
if width <= 0
width = DEFAULT_WIDTH
else
width += 1
end
end
return UInt8(max(length(name) + 1, width))
end
# Default Formatting
function default_format(log::Logger, name::String, ::Type{T}) where T
if haskey(log.fmt, name)
return log.fmt[name].fmt
end
_getformat(log.defaults, T)
end
default_format(log::Logger, ::Type{T}) where T = _getformat(log.defaults, T)
"""
set_default_format(logger, type, fmt)
Set the default format for entries type type is a sub-type of `type`. For example:
set_default_format(logger, AbstractFloat, "%0.2d")
Will print all floating point fields with 2 decimal places. The most format for the
type closest to the default is always chosen, such that if we specified
set_default_format(logger, Float64, "%0.1d")
This would override the previous behavior for `Float64`s.
"""
function set_default_format(log::Logger, ::Type{T}, fmt::String) where T
log.defaults[T] = fmt
end
function _getformat(fmt::Dict, ::Type{T}) where T
if haskey(fmt, T)
return fmt[T]
else
return _newdefault(fmt, T)
end
end
function _newdefault(fmt::Dict, ::Type{T}) where T
Tsuper = Any
for (k,v) in pairs(fmt)
if (T <: k) && (k <: Tsuper)
Tsuper = k
end
end
fmt[T] = fmt[Tsuper]
end | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 1581 |
"""
shiftswap!(a, inew, iold)
Move an entry in vector `iold` to `inew`, shifting the other arguments.
"""
function shiftswap!(a::AbstractVector, inew, iold)
if inew != iold
v = a[iold]
deleteat!(a, iold)
insert!(a, inew, v)
end
return a
end
"""
shiftidx!(idx, fid, inew)
For a vector of unique, consecutive indices `idx`, set the index of entry `fid` to the
new index `inew`. Update the other entries, maintaining relative ordering, such that
`idx` is still a vector of unique, consecutive integers. Runs in O(n).
"""
function shiftidx!(idx::AbstractVector{<:Integer}, fid::Integer, inew::Integer)
iold = idx[fid]
ilo = min(iold,inew)
ihi = max(iold,inew)
s = -sign(inew - iold)
for j = 1:length(idx)
if ilo <= idx[j] <= ihi
idx[j] += s
end
end
idx[fid] = inew
return idx
end
"""
getwidth(fmt::String)
Get the width field from a C-style printf format string.
It looks for a set of numbers followed by a decimal or letter, but not preceded by a decimal
or digit. Returns -1 if no width is found.
"""
function getwidth(fmt::String)::Int
period = findlast(".", fmt)
# search for a set of characters followed by a decimal or letter, but not
# preceded by a decimal or digit
regex = r"(?<![0-9|.])[0-9]+(?=[a-zA-Z|.])"
inds = findfirst(regex, fmt)
if !isnothing(inds)
width = parse(Int, fmt[inds])
if width == 0
return -1
else
return width
end
else
return -1
end
end | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 7801 | using SolverLogging
using Test
using Crayons
using SolverLogging: EntrySpec
# using BenchmarkTools # using Formatting
## Formatting defaults
lg = SolverLogging.Logger()
def = SolverLogging._default_formats()
@test !haskey(def, Float64)
# Add a new entry
@test SolverLogging.default_format(lg, Float64) == def[AbstractFloat]
@test haskey(lg.defaults, Float64)
# Set default
@test !haskey(lg.defaults, Int)
SolverLogging.set_default_format(lg, Int, "%3d")
@test haskey(lg.defaults, Int)
@test SolverLogging.default_format(lg, Int) !==
SolverLogging.default_format(lg, Int32)
@test haskey(lg.defaults, Int32)
# Insert fields
@test length(lg.data) == 0
SolverLogging.setentry(lg, "alpha", Float64)
@test length(lg.data) == 1
@test lg.fmt["alpha"] == EntrySpec(Float64, def[AbstractFloat],1, 1, SolverLogging.DEFAULT_WIDTH)
@test lg.idx[1] == 1
@test SolverLogging.getidx(lg, "alpha") == 1
lg.data[1] = "alpha"
# Add an integer entry
SolverLogging.setentry(lg, "iter", Int, fmt="%10d")
@test lg.fmt["iter"] == EntrySpec(Int,"%10d",2,1,11)
@test length(lg.data) == 2
@test SolverLogging.getidx(lg, "iter") == 2
lg.data[2] = "iter"
# Insert twice
SolverLogging.setentry(lg, "iter", Int, fmt="%3d", index=2)
@test length(lg.data) == 2
@test lg.data[2] == "iter"
@test length(keys(lg.fmt)) == 2
@test lg.data == ["alpha","iter"]
@test SolverLogging.getidx(lg, "iter") == 2
# New string field
SolverLogging.setentry(lg, "info", String, index=1, width=20)
@test lg.fmt["info"] == EntrySpec(String,"%s",3,1,20)
@test SolverLogging.getidx(lg, "info") == 1
@test SolverLogging.getidx(lg, "alpha") == 2
@test SolverLogging.getidx(lg, "iter") == 3
lg.data[1] = "info"
@test lg.data == ["info", "alpha","iter"]
# Move an existing field (1 to 3)
SolverLogging.setentry(lg, "info", String, index=-1)
@test lg.fmt["info"] == EntrySpec(String,"%s",3,1,20)
@test lg.data == ["alpha","iter","info"]
@test lg.idx == [1,2,3]
# Change the width (not specifying type)
@test lg.fmt["alpha"].width == SolverLogging.DEFAULT_WIDTH
SolverLogging.setentry(lg, "alpha", width=12)
@test lg.fmt["alpha"].width == 12
# Change the ccrayon and test
SolverLogging.setentry(lg, "alpha", ccrayon=ConditionalCrayon(1, 10))
entry = lg.fmt["alpha"]
@test entry.ccrayon(5) == Crayon(reset=true)
@test entry.ccrayon(0) == crayon"green"
@test entry.ccrayon(11) == crayon"red"
# Make sure it doesn't erase the previous crayon if another field is modified
SolverLogging.setentry(lg, "alpha", width=9)
entry = lg.fmt["alpha"]
@test entry.ccrayon(5) == Crayon(reset=true)
@test entry.ccrayon(0) == crayon"green"
@test entry.ccrayon(11) == crayon"red"
# # Try adding new field without the type
# @test_throws AssertionError SolverLogging.setentry(lg, "ϕ")
# Add to 2nd to last field
SolverLogging.setentry(lg, "ϕ", Int32, index=-2)
@test lg.fmt["ϕ"] == EntrySpec(Int32,def[Integer],4,1, 10)
lg.data[3] = "phi"
@test lg.data == ["alpha","iter","phi","info"]
@test lg.idx == [1,2,4,3]
# move and use new format (3 to 2)
SolverLogging.setentry(lg, "ϕ", Int32, index=-3, fmt="%5d")
@test lg.fmt["ϕ"] == EntrySpec(Int32,"%5d", 4, 1, 10)
@test lg.data == ["alpha","phi","iter","info"]
@test lg.idx == [1,3,4,2]
# Change level
SolverLogging.setentry(lg, "ϕ", Int32, level=2)
@test lg.fmt["ϕ"] == EntrySpec(Int32,"%5d", 4, 2, 10)
# Change Width
SolverLogging.setentry(lg, "ϕ", Int32, width=12)
@test lg.fmt["ϕ"] == EntrySpec(Int32,"%5d", 4, 2, 12)
# Test clear
SolverLogging.clear!(lg)
for i in (1,3,4)
@test all(isspace, lg.data[1])
end
@test isempty(lg.data[2])
#############################################
## Log values
#############################################
SolverLogging._log!(lg, "iter", 1)
@test lg.data[3] == " 1 "
@test parse(Int,lg.data[3]) == 1
SolverLogging._log!(lg, "iter", 200)
@test parse(Int,lg.data[3]) == 200
SolverLogging._log!(lg, "info", "hi there")
@test lg.data[4] == rpad("hi there", 20)
SolverLogging.setentry(lg, "alpha", Float64, width=6)
lg.opts.autosize = false
@test_logs (:warn,) SolverLogging._log!(lg, "alpha", 1.234567e-3)
@test lg.data[1] == "1.23e-03"
SolverLogging.setentry(lg, "alpha", Float64, width=10)
SolverLogging._log!(lg, "alpha", 1e-3)
@test lg.data[1] == "1.00e-03 "
@test lg.crayons[1] == crayon"green"
# Move alpha and make sure the crayon moves too
SolverLogging.setentry(lg, "alpha", index=2)
@test lg.data[2] == "1.00e-03 "
@test lg.crayons[2] == crayon"green"
SolverLogging.setentry(lg, "alpha", index=1)
# Test append operation
lg.opts.autosize = false
SolverLogging._log!(lg, "info", "hi there")
info = SolverLogging._getdata(lg, "info")
length(info) == 20
SolverLogging._log!(lg, "info", "Something", :append)
newinfo = SolverLogging._getdata(lg, "info")
@test newinfo == rpad("hi there. Something", 20)
@test_logs (:warn,) SolverLogging._log!(lg, "info", "new", :append)
info = SolverLogging._getdata(lg, "info")
@test length(info) > 20
lg.opts.autosize = true
SolverLogging._log!(lg, "info", "hi there")
info = SolverLogging._getdata(lg, "info")
length(info) == 20
SolverLogging._log!(lg, "info", "Something", :append)
newinfo = SolverLogging._getdata(lg, "info")
@test newinfo == rpad("hi there. Something", 20)
@test_nowarn SolverLogging._log!(lg, "info", "new", :append)
info = SolverLogging._getdata(lg, "info")
@test length(info) > 20
@test Int(lg.fmt["info"].width) == length(info)
@test_logs (:warn,) SolverLogging._log!(lg, "iter", 1, :append)
SolverLogging._log!(lg, "iter", "new", :append)
newinfo = SolverLogging._getdata(lg, "info")
# Test add operation
SolverLogging._log!(lg, "iter", 11)
iter = parse(Int,SolverLogging._getdata(lg, "iter"))
SolverLogging._log!(lg, "iter", 2, :add)
newiter = parse(Int,SolverLogging._getdata(lg, "iter"))
@test newiter == iter + 2
SolverLogging._log!(lg, "info", "hi there")
@test_logs (:warn,r"Cannot add*") SolverLogging._log!(lg, "info", "a", :add)
## Test printing and verbosity
setentry(lg, "info", width=20)
SolverLogging._log!(lg, "info", "")
SolverLogging.setlevel!(lg, 1)
@test lg.data[2] == ""
SolverLogging._log!(lg, "ϕ", 3)
@test lg.data[2] == ""
@test !occursin("ϕ", SolverLogging.formheader(lg))
@test length(SolverLogging.formrow(lg)) == 41
setentry(lg, "info", index=2)
setentry(lg, "info", width=20)
SolverLogging._log!(lg, "info", "hi there")
SolverLogging.printheader(lg)
for i = 1:10
SolverLogging._log!(lg, "alpha", 2i-5)
SolverLogging.printrow(lg)
end
# Try expanding column
setentry(lg, "info", width=20)
SolverLogging._log!(lg, "info", "hi there")
lg.opts.freq = 10
SolverLogging.resetcount!(lg)
for i = 1:10
SolverLogging._log!(lg, "alpha", 2i-5)
SolverLogging._log!(lg, "info", "$i", :append)
SolverLogging.printlog(lg)
end
@test SolverLogging.setlevel!(lg, 2) == 1
SolverLogging._log!(lg, "ϕ", 3)
@test lg.data[3] == rpad(" 3", 12)
@test occursin("ϕ", SolverLogging.formheader(lg))
@test length(SolverLogging.formrow(lg)) == 85
begin
SolverLogging.printheader(lg)
for i = 1:3
SolverLogging._log!(lg, "iter", i)
SolverLogging.printrow(lg)
end
end
# Try append operation for strings
setentry(lg, "info", width=25)
SolverLogging._log!(lg, "info", "more info", :append)
@test occursin("more info", lg.data[SolverLogging.getidx(lg, "info")]) &&
occursin("hi there.", lg.data[SolverLogging.getidx(lg, "info")])
printlog(lg)
# Print a lower verbosity level and make sure there
# aren't any extra entries
@test SolverLogging.setlevel!(lg, 1) == 2
begin
SolverLogging.printheader(lg)
for i = 1:3
SolverLogging._log!(lg, "alpha", 10(i-1)-5)
SolverLogging._log!(lg, "iter", i)
SolverLogging.printrow(lg)
end
end
SolverLogging._log!(lg, "ϕ", 21.2)
header = SolverLogging.formheader(lg)
@test !occursin("ϕ", header)
row = SolverLogging.formrow(lg)
@test !occursin("21.5", row)
| SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 3178 | using SolverLogging
using Crayons
using Test
##
lg = SolverLogging.Logger()
SolverLogging.resetlogger!(lg)
setentry(lg, "iter", Int64, width=5)
setentry(lg, "cost")
setentry(lg, "ΔJ")
setentry(lg, "α", fmt="%6.4f")
setentry(lg, "info", String)
a = 1+2
itr = 1
@log lg "iter" itr
@log lg "cost" 10a
@log lg "ΔJ" 1e-3
cost = 12.0
@log lg cost
printheader(lg)
SolverLogging.formrow(lg)
printrow(lg)
@test lg.opts._count == 1
printrow(lg)
@test lg.opts._count == 2
iter = 2
@log lg iter
lg.data
printlog(lg)
# Test the add operation
@log lg "iter" 1 :add
@test parse(Int,lg.data[1]) == 3
setentry(lg, "info", String, width=25)
@log lg "info" "Some info"
SolverLogging.resetcount!(lg)
for iter = 1:12
@log lg iter
iter == 12 && @log lg "info" "last iter" :append
printlog(lg)
end
@test occursin("Some info. last iter", SolverLogging.formrow(lg))
@test SolverLogging.isenabled(lg)
println("\nNothing should print between this line...")
SolverLogging.disable(lg)
SolverLogging.resetcount!(lg)
for iter = 1:12
@log lg iter
printlog(lg)
end
println("...and this line")
SolverLogging.enable(lg)
@test lg.opts.enable == true
SolverLogging.resetlogger!(lg)
@test length(lg.data) == 0
## Test Info field
setentry(lg, "info", String, width=20)
@log lg "info" "Cost Increase"
occursin("Cost Increase", lg.data[1])
# Should insert a period
@log lg "info" "Max Iters." :append
occursin("Cost Increase. Max Iters", lg.data[1])
# Try inserting spaces
@log lg "info" " "
@log lg "info" "New message"
@test lg.data[1][1:3] == "New"
ENV["JULIA_DEBUG"] = "SolverLogging"
@test_logs (:debug,r"Rejecting") @log lg "new" 1.0
## Test output to a file
filename = joinpath(@__DIR__, "log.out")
lg = SolverLogging.Logger(filename)
setentry(lg, "iter", Int)
setentry(lg, "cost", Float64)
setentry(lg, "tol", Float64, level=2)
lg.opts.freq = 5
lg.opts.linechar = 0
iter = 1
for i = 1:10
local iter = i
@log lg iter
@log lg "cost" log(10*i)
@log lg "tol" exp(-i)
printlog(lg)
end
SolverLogging.resetcount!(lg)
lg.opts.linechar = '*'
for i = 1:10
local iter = i
@log lg iter
@log lg "cost" log(10*i)
@log lg "tol" exp(-i)
printlog(lg)
end
@test lg.io isa IOStream
lines = readlines(filename)
@test length(lines) == 26
for i in (1,7)
@test occursin("iter", lines[i])
@test occursin("cost", lines[i])
@test !occursin("tol", lines[i])
end
for i = 2:6
@test occursin("$(i-1)", lines[i])
end
@test length(filter(x->occursin("***", x), lines)) == 2
rm(filename)
## Test Condition formatting
ccrayon_tol = ConditionalCrayon(1e-6,Inf, reverse=false)
goodctrl = x->abs(x) < 1
badctrl = x->abs(x) > 10
defcolor = crayon"208" # the ANSI color for a dark orange.
ccrayon_control = ConditionalCrayon(badctrl, goodctrl, defaultcolor=defcolor)
logger = SolverLogging.Logger()
setentry(logger, "iter", Int, width=5)
setentry(logger, "tol", Float64, ccrayon=ccrayon_tol)
setentry(logger, "ctrl", Float64, fmt="%.1f", ccrayon=ccrayon_control)
logger.fmt["iter"].ccrayon(10)
for iter = 1:10
tol = exp10(-iter)
ctrl = 0.1*(iter-1)*iter^2
@log logger iter
@log logger tol
@log logger ctrl
printlog(logger)
end | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 161 | using SolverLogging
using Test
@testset "Basics" begin
include("basic.jl")
include("utils.jl")
end
@testset "Macros" begin
include("macros.jl")
end | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | code | 452 | @test SolverLogging.getwidth("%0.24e") == -1
@test SolverLogging.getwidth("%01.24e") == 1
@test SolverLogging.getwidth("%0112.24e") == 112
@test SolverLogging.getwidth("%-1.24e") == 1
@test SolverLogging.getwidth("012%-13.24e") == 13
@test SolverLogging.getwidth("%.24e") == -1
@test SolverLogging.getwidth("%e") == -1
@test SolverLogging.getwidth("%5d") == 5
@test SolverLogging.getwidth("%512d") == 512
@test SolverLogging.getwidth("%0512d") == 512
| SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | docs | 2635 | [](https://github.com/bjack205/SolverLogging.jl/actions/workflows/CI.yml)
[](https://bjack205.github.io/SolverLogging.jl/)
# SolverLogging.jl
This package provides a logger that is designed for use in iterative solvers.
The logger presents data in a tabulated format, with each line representing
the data from an iteration of the solver. The key features of this package are:
* The ability to handle different verbosity levels. Assumes each verbosity level
contains all information from previous levels. Allows the user to scale the
information based on current needs.
* Precise control over output formatting. The location, column width, and entry
formatting for each field can be controlled.
* Color printing to the terminal thanks to [Crayons.jl](https://github.com/KristofferC/Crayons.jl)
* Conditional formatting that allows values to be automatically formatted
based on a the current value.
## Quickstart
To use the default logger provided by the package, start by specifying the fields
you want to log:
```@example quickstart; continued=true
using SolverLogging
SolverLogging.resetlogger!() # good idea to always reset the global logger
setentry("iter", Int, width=5)
setentry("cost")
setentry("info", String, width=25)
setentry("α", fmt="%6.4f") # sets the numeric formatting
setentry("ΔJ", index=-2) # sets it to penultimate column
setentry("tol", level=2) # sets it to verbosity level 2 (prints less often)
```
After specifying the data we want to log, we log the data using the [`@log`](@ref)
macro:
```@example quickstart; continued=true
@log "iter" 1
@log "cost" 10.2
```
Note this macro allows expressions:
```@example quickstart; continued=true
dJ = 1e-3
str = "Some Error Code: "
@log "ΔJ" dJ
@log "info" str * string(10)
```
As a convenient shortcut, we if the local variable name matches the name of the field
we can just pass the local variable and the name will be automatically extracted:
```@example quickstart; continued=true
iter = 2
@log iter
```
To print the output use [`printlog`](@ref):
```@example quickstart; continued=true
iter = 2
@log iter
```
which will automatically handle printing the header lines. Here we call it in a loop,
updating the iteration field each time:
```@example quickstart; continued=false
for iter = 1:15
@log iter
printlog()
end
```
## Sample Output
A simple output with conditional formatting looks like this:

| SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | docs | 383 | # [API](@id api_section)
```@meta
CurrentModule = SolverLogging
```
## The Logger
```@docs
Logger
```
### Main Methods
```@docs
printlog
printheader
printrow
formheader
formrow
getlevel
setlevel!
resetcount!
resetlogger!
```
## Defining Entries
```@docs
setentry
set_default_format
```
## Logging
```@docs
@log
_log!
```
## Conditional Formatting
```@docs
ConditionalCrayon
``` | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | docs | 4797 | # [Examples](@id examples_section)
```@meta
CurrentModule = SolverLogging
```
## Setting up a Logger
The [Quickstart](@ref) used the default logger provided by this package. It's
usually a better idea to have your own local logger you can use, to avoid
possible conflicts.
```@example ex1; continue=true
using SolverLogging
logger = SolverLogging.Logger()
setentry(logger, "iter", Int, width=5)
setentry(logger, "cost")
setentry(logger, "dJ", level=2)
setentry(logger, "info", String, width=25)
```
We can change a few things about the behavior of our logger by accessing the
logger options. Here we change the header print frequency to print every 5
iterations instead of the default 10, eliminate the line under the header, and
set the header to print in bold yellow:
```@example ex1; continue=true
using Crayons
logger.opts.freq = 5
logger.opts.linechar = '\0'
logger.opts.headerstyle = crayon"bold yellow";
```
If we set the verbosity to 1 and print, we'll see that it doesn't print the `dJ`
field:
```@example ex1; continue=true
setlevel!(logger, 1)
Jprev = 100
for iter = 1:3
global Jprev
J = 100/iter
@log logger iter
@log logger "cost" J
@log logger "dJ" Jprev - J # note this is disregarded
Jprev = J
if iter == 5
@log logger "info" "Last Iteration"
end
printlog(logger)
end
```
If we change the verbosity to 2, we now see `dJ` printed out:
```@example ex1; continue=true
setlevel!(logger, 2) # note the change to 2
Jprev = 100
for iter = 1:5
global Jprev
J = 100/iter
@log logger iter
@log logger "cost" J
@log logger "dJ" Jprev - J
Jprev = J
if iter == 5
@log logger "info" "Last Iteration"
end
printlog(logger)
end
```
Note how the new output doesn't start with a header, since it's continuing the
count from before. We can change this by resetting the count with [`resetcount!`](@ref):
```@example ex1; continue=false
setlevel!(logger, 1) # note the change back to 1
SolverLogging.resetcount!(logger) # this resets the print count
Jprev = 100
for iter = 1:5
global Jprev
J = 100/iter
@log logger iter
@log logger "cost" J
@log logger "dJ" Jprev - J
Jprev = J
if iter == 5
@log logger "info" "Last Iteration"
end
printlog(logger)
end
```
So that, as you can see, we now get a nice output with the header at the top. By
changing the verbosity level back to 1, you see that it got rid of the `dJ` column
again.
## Conditional Formatting
In this example we cover how to use the conditional formatting. Lets say we have a
field `tol` that we want below `1e-6`. We also have another field `control` that
we want to be "good" if it's absolute value is less than 1, and "bad" if it's
greater than 10.
We create 2 [`ConditionalCrayon`](@ref) types to encode this behavior. Our first one
can be covered using the constructor that takes a `lo` and `hi` value:
```@example ex2; continue=true
using SolverLogging
ccrayon_tol = ConditionalCrayon(1e-6,Inf, reverse=false)
nothing # hide
```
Which by default will consider any values less than `lo` good and any values greater
than `hi` bad. We can reverse this with the optional `reverse` keyword.
For our control formatting, let's say we want it to print orange if it's absolute
value is in between 1 and 10 and cyan if it's less than 1:
```@example ex2; continue=true
using Crayons
goodctrl = x->abs(x) < 1
badctrl = x->abs(x) > 10
lowcolor = crayon"blue"
defcolor = crayon"208" # the ANSI color for a dark orange.
ccrayon_control = ConditionalCrayon(badctrl, goodctrl,
defaultcolor=defcolor, goodcolor=crayon"cyan")
nothing # hide
```
!!! tip
Use `Crayons.test_256_colors()` to generate a sample of all the ANSI color codes.
We can now specify these when we set up our fields:
```@example ex2; continue=true
logger = SolverLogging.Logger()
setentry(logger, "iter", Int, width=5)
setentry(logger, "tol", Float64, ccrayon=ccrayon_tol)
setentry(logger, "ctrl", Float64, fmt="%.1f", ccrayon=ccrayon_control)
```
We should see the desired behavior when we print out some test values:
```@example ex2; continue=false
for iter = 1:10
tol = exp10(-iter)
ctrl = 0.1*(iter-1)*iter^2
@log logger iter
@log logger tol
@log logger ctrl
printlog(logger)
end
```
## Saving to a File
Instead of writing to `stdout`, we can write a to a file. This interface is exactly
the same, but we pass a filename or an `IOStream` to the logger when we create it:
```
using SolverLogging
filename = "log.out"
logger = SolverLogging.Logger(filename)
```
Note that this will automatically open the file with read privileges, overwritting
any contents in the file. The stream is flushed after every write so it should
populate the contents of the file in real time. | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.2.0 | ebe090fc0a0f83685b5bfd7d1eb3fd870bbd1773 | docs | 2404 | # SolverLogging.jl
## Overview
This package provides a logger that is designed for use in iterative solvers.
The logger presents data in a tabulated format, with each line representing
the data from an iteration of the solver. The key features of this package are:
* The ability to handle different verbosity levels. Assumes each verbosity level
contains all information from previous levels. Allows the user to scale the
information based on current needs.
* Precise control over output formatting. The location, column width, and entry
formatting for each field can be controlled.
* Color printing to the terminal thanks to [Crayons.jl](https://github.com/KristofferC/Crayons.jl)
* Conditional formatting that allows values to be automatically formatted
based on a the current value.
## Quickstart
To use the logger provided by the package, start by specifying the fields
you want to log:
```@example quickstart; continue=true
using SolverLogging
lg = SolverLogging.Logger()
SolverLogging.resetlogger!(lg) # good idea to always reset the global logger
setentry(lg, "iter", Int, width=5)
setentry(lg, "cost")
setentry(lg, "info", String, width=25)
setentry(lg, "α", fmt="%6.4f") # sets the numeric formatting
setentry(lg, "ΔJ", index=-2) # sets it to penultimate column
setentry(lg, "tol", level=2) # sets it to verbosity level 2 (prints less often)
```
After specifying the data we want to log, we log the data using the [`@log`](@ref)
macro:
```@example quickstart; continue=true
@log lg "iter" 1
@log lg "cost" 10.2
```
Note this macro allows expressions:
```@example quickstart; continue=true
dJ = 1e-3
str = "Some Error Code: "
@log lg "ΔJ" dJ
@log lg "info" str * string(10)
```
As a convenient shortcut, we if the local variable name matches the name of the field
we can just pass the local variable and the name will be automatically extracted:
```@example quickstart; continue=true
iter = 2
@log lg iter
```
To print the output use [`printlog`](@ref),
which will automatically handle printing the header lines. Here we call it in a loop,
updating the iteration field each time:
```@example quickstart; continue=false
for iter = 1:15
@log lg iter
printlog(lg)
end
```
## API
See the [API](@ref api_section) page for details on how to use the logger in your application.
## Examples
See the [Examples](@ref) page for a few example to help you get started. | SolverLogging | https://github.com/bjack205/SolverLogging.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 539 | push!(LOAD_PATH,"../src/")
using Documenter, RDates
makedocs(
modules = [RDates],
clean = false,
format = Documenter.HTML(),
sitename = "RDates.jl",
authors = "Iain Skett",
pages = [
"Introduction" => "index.md",
"Primitives" => "primitives.md",
"Months and Years" => "months_and_years.md",
"Combinations" => "combinations.md",
"Business Days" => "business_days.md",
"Ranges" => "ranges.md"
],
)
deploydocs(
repo = "github.com/InfiniteChai/RDates.jl.git"
)
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 679 | module RDates
include("abstracts.jl")
# Rounding and Compounds defined upfront as we need them for the grammar
include("rounding.jl")
include("compounds.jl")
include("grammar.jl")
include("monthinc.jl")
include("invalidday.jl")
# The various basic implementations (along with shows and grammar registrations)
include("primitives.jl")
include("ranges.jl")
include("calendars.jl")
# include("io.jl")
# Export the macro and non-macro parsers.
export @rd_str
export rdate
export is_holiday, holidays, holidaycount, bizdaycount
export calendar
export apply
export SimpleCalendarManager, setcalendar!, setcachedcalendar!
export WeekendCalendar, CachedCalendar
end # module RDates
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 5687 | import Dates
using Compat
@compat abstract type RDate end
# Calendars
@compat abstract type CalendarManager end
@compat abstract type Calendar end
"""
HolidayRoundingConvention
The convention used in conjunction with holiday calendars to determine what
to do if an adjustments falls on a holiday.
"""
@compat abstract type HolidayRoundingConvention end
"""
InvalidDayConvention
The convention used for handling month or year increments which fall on a day
which is not valid.
"""
@compat abstract type InvalidDayConvention end
"""
MonthIncrementConvention
The convention used for handling month or year increments and how they should
be applied. Should handle invalid days explicitly, as these wil be handled
separately by the InvalidDayConvention
"""
@compat abstract type MonthIncrementConvention end
"""
NullCalendarManager()
The most primitive calendar manager, that will return an error for any request to
get a calendar. The default calendar manager that is available when applying rdates
using the + operator, without an explicit calendar manager.
"""
struct NullCalendarManager <: CalendarManager end
"""
is_holiday(calendar::Calendar, date::Dates.Date)::Bool
Determine whether the date requested is a holiday for this calendar or not.
"""
is_holiday(x::Calendar, ::Dates.Date) = error("$(typeof(x)) does not support is_holiday")
"""
holidays(calendar::Calendar, from::Dates.Date, to::Dates.Date)::Vector{Bool}
Get the vector of each day and whether its a holiday or not, inclusive of from and to.
"""
holidays(::C, ::Dates.Date, ::Dates.Date) where {C<:Calendar} = error("holidays not implemented by $C")
"""
holidaycount(calendar::Calendar, from::Dates.Date, to::Dates.Date)::Int
Get the number of holidays in the calendar between two dates (inclusive)
"""
holidaycount(cal::Calendar, from::Dates.Date, to::Dates.Date) = Base.sum(holidays(cal, from, to))
"""
bizdaycount(calendar::Calendar, from::Dates.Date, to::Dates.Date)::Int
Get the number of business days in the calendar between two dates (inclusive)
"""
bizdaycount(cal::Calendar, from::Dates.Date, to::Dates.Date) = 1 + (to-from).value - holidaycount(cal, from, to)
"""
calendar(calendarmgr::CalendarManager, names::Vector)::Calendar
Given a set of calendar names, request the calendar manager to retrieve the associated
calendar that supports the union of them.
"""
calendar(x::CalendarManager, names::Vector)::Calendar = error("$(typeof(x)) does not support calendar")
calendar(x::CalendarManager, name::String)::Calendar = calendar(x, split(name, "|"))
"""
apply(rdate::RDate, date::Dates.Date, calendarmgr::CalendarManager)::Dates.Date
The application of an rdate to a specific date, given an explicit calendar manager.
### Examples
```jula-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(rd"1b@WEEKEND", Date(2021,7,9), cal_mgr)
2021-07-12
```
"""
apply(rd::RDate, ::Dates.Date, ::CalendarManager)::Dates.Date = error("$(typeof(rd)) does not support date apply")
"""
multiply(rdate::RDate, count::Integer)::RDate
An internalised multiplication of an rdate which is generated without reapplication of a relative date multiple
times. To apply an rdate multiple times, then use a `Repeat`.
For example "6m" + "6m" != "12m" for all dates, due to the fact that there are different days in each month
and invalid day conventions will kick in.
"""
multiply(rd::R, count::Integer) where {R<:RDate} = error("multiply not implemented by $R")
Base.:*(rdate::RDate, count::Integer) = multiply(rdate, count)
Base.:*(count::Integer, rdate::RDate) = multiply(rdate, count)
"""
apply(rdate::RDate, date::Dates.Date)::Dates.Date
The application of an rdate to a specific date, without an explicit calendar manager. This
will use the `NullCalendarManager()`.
"""
apply(rd::RDate, date::Dates.Date) = apply(rd, date, NullCalendarManager())
Base.:+(rd::RDate, date::Dates.Date) = apply(rd, date)
Base.:+(date::Dates.Date, rd::RDate) = apply(rd, date)
Base.:-(date::Dates.Date, rd::RDate) = apply(-rd, date)
Base.:-(x::RDate)::RDate = error("$(typeof(x)) does not support negation")
"""
apply(rounding::HolidayRoundingConvention, date::Dates.Date, calendar::Calendar)::Dates.Date
Apply the holiday rounding to a given date. There is no strict requirement that the resolved date
will not be a holiday for the given date.
"""
apply(x::HolidayRoundingConvention, date::Dates.Date, calendar::Calendar) = error("$(typeof(x)) does not support apply")
"""
apply(rounding::InvalidDayConvention, day::Integer, month::Integer, year::Integer)::Dates.Date
Given a day, month and year which do not generate a valid date, adjust them in some form to a valid date.
"""
adjust(x::InvalidDayConvention, day, month, year) = error("$(typeof(x)) does not support adjust")
"""
apply(rounding::MonthIncrementConvention, from::Dates.Date, new_month::Integer, new_year::Integer, calendar_mgr::CalendarManager)::Tuple{Integer, Integer, Integer}
Given the initial day, month and year that we're moving from and a generated new month and new year, determine the new
day, month and year that should be used. Generally used to handle specific features around preservation of month ends
or days of week, if required.
Note that the generated (day, month, year) do not need to be able to produce a valid date. The invalid day convention
should be applied, if required, after this calculation.
May use a calendar manager if required as well
"""
adjust(x::MonthIncrementConvention, from::Dates.Date, new_month, new_year, calendar_mgr::CalendarManager) = error("$(typeof(x)) does not support adjust")
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 8384 | import Dates
"""
NullCalendar()
A holiday calendar for which there is never a holiday. *sigh*
"""
struct NullCalendar <: Calendar end
is_holiday(::NullCalendar, ::Dates.Date) = false
holidays(::NullCalendar, from::Dates.Date, to::Dates.Date) = Base.repeat([false], (to - from).value + 1)
"""
WeekendCalendar()
A calendar which will mark every Saturday and Sunday as a holiday
"""
struct WeekendCalendar <: Calendar end
function is_holiday(::WeekendCalendar, date::Dates.Date)
signbit(5 - Dates.dayofweek(date))
end
function holidays(::WeekendCalendar, from::Dates.Date, to::Dates.Date)
dow = Dates.dayofweek(from)
days = (to - from).value + 1
hols = Base.repeat([false], days)
satstart = dow == 7 ? 7 : 7 - dow
sunstart = 8 - dow
for i in Iterators.flatten([satstart:7:days, sunstart:7:days])
@inbounds hols[i] = true
end
hols
end
mutable struct CalendarCache
bdays::Vector{Bool}
bdayscounter::Vector{UInt32}
dtmin::Dates.Date
dtmax::Dates.Date
initialised::Bool
CalendarCache() = new([], [], Dates.Date(1900,1,1), Dates.Date(1900,1,1), false)
end
function needsupdate(cache::CalendarCache, d0::Dates.Date, d1::Dates.Date)
!cache.initialised || d0 < cache.dtmin || d1 > cache.dtmax
end
"""
CachedCalendar(cal::Calendar)
Creating a wrapping calendar that will cache the holidays lazily as retrieved
for a given year, rather than loading them in one go.
"""
struct CachedCalendar <: Calendar
calendar::Calendar
cache::CalendarCache
period::UInt8
CachedCalendar(cal::Calendar) = new(cal, CalendarCache(), 10)
end
Base.show(io::IO, mgr::CachedCalendar) = (print(io, "CachedCalendar("); show(io, mgr.calendar); print(io, ")"))
function updatecache!(cal::CachedCalendar, d0::Dates.Date, d1::Dates.Date)
needsupdate(cal.cache, d0, d1) || return
if cal.cache.initialised
if d0 < cal.cache.dtmin
days = (cal.cache.dtmin-d0).value
bdays = holidays(cal.calendar, d0, cal.cache.dtmin-Dates.Day(1))
cal.cache.bdays = vcat(bdays, cal.cache.bdays)
counters = Base.sum(bdays) .+ cal.cache.bdayscounter
lcounters = Vector{UInt32}(undef, days)
lcounters[1] = UInt32(bdays[1])
for i in 2:days
@inbounds lcounters[i] = lcounters[i-1] + bdays[i]
end
cal.cache.bdayscounter = vcat(lcounters, counters)
cal.cache.dtmin = d0
end
if d1 > cal.cache.dtmax
days = (d1-cal.cache.dtmax).value
bdays = holidays(cal.calendar, cal.cache.dtmax+Dates.Day(1), d1)
cal.cache.bdays = vcat(cal.cache.bdays, bdays)
rcounters = Vector{UInt32}(undef, days)
rcounters[1] = cal.cache.bdayscounter[end] + UInt32(bdays[1])
for i in 2:days
@inbounds rcounters[i] = rcounters[i-1] + bdays[i]
end
cal.cache.bdayscounter = vcat(cal.cache.bdayscounter, rcounters)
cal.cache.dtmax = d1
end
else
days = (d1-d0).value + 1
cal.cache.bdays = holidays(cal.calendar, d0, d1)
cal.cache.bdayscounter = Vector{UInt32}(undef, days)
cal.cache.bdayscounter[1] = UInt32(cal.cache.bdays[1])
for i in 2:days
@inbounds cal.cache.bdayscounter[i] = cal.cache.bdayscounter[i-1] + cal.cache.bdays[i]
end
cal.cache.dtmin = d0
cal.cache.dtmax = d1
cal.cache.initialised = true
end
end
function is_holiday(cal::CachedCalendar, date::Dates.Date)
if needsupdate(cal.cache, date, date)
d0 = Dates.Date(cal.period*div(Dates.year(date), cal.period), 1, 1)
d1 = Dates.Date(cal.period*(1+div(Dates.year(date), cal.period)), 12, 31)
updatecache!(cal, d0, d1)
end
t0 = (date-cal.cache.dtmin).value + 1
cal.cache.bdays[t0]
end
function holidaycount(cal::CachedCalendar, from::Dates.Date, to::Dates.Date)
if needsupdate(cal.cache, from, to)
d0 = Dates.Date(cal.period*div(Dates.year(from), cal.period), 1, 1)
d1 = Dates.Date(cal.period*(1+div(Dates.year(to), cal.period)), 12, 31)
updatecache!(cal, d0, d1)
end
t0 = (from-cal.cache.dtmin).value + 1
t1 = (to-from).value
Int(cal.cache.bdayscounter[t1+t0] - cal.cache.bdayscounter[t0] + cal.cache.bdays[t0])
end
function holidays(cal::CachedCalendar, from::Dates.Date, to::Dates.Date)
if needsupdate(cal.cache, from, to)
d0 = Dates.Date(cal.period*div(Dates.year(from), cal.period), 1, 1)
d1 = Dates.Date(cal.period*(1+div(Dates.year(to), cal.period)), 12, 31)
updatecache!(cal, d0, d1)
end
t0 = (from-cal.cache.dtmin).value + 1
t1 = (to-from).value
cal.cache.bdays[t0:t0+t1]
end
"""
JointCalendar(calendars::Vector{Calendar}) <: Calendar
A grouping of calendars, for which it is a holiday if it's marked as a holiday
for any of the underlying calendars.
By default addition of calendars will generate a joint calendar for you.
"""
struct JointCalendar <: Calendar
calendars::Vector{Calendar}
end
function is_holiday(cal::JointCalendar, date::Dates.Date)
foldl(
(acc, val) -> acc || is_holiday(val, date),
cal.calendars;
init = false,
)
end
function holidays(cal::JointCalendar, from::Dates.Date, to::Dates.Date)
hols = Base.repeat([false], (to-from).value+1)
for subcal in cal.calendars
hols = hols .| holidays(subcal, from, to)
end
hols
end
Base.:+(cal1::Calendar, cal2::Calendar) = JointCalendar([cal1, cal2])
Base.:+(cal1::Calendar, cal2::JointCalendar) =
JointCalendar(vcat(cal1, cal2.calendars))
Base.:+(cal1::JointCalendar, cal2::Calendar) =
JointCalendar(vcat(cal1.calendars, cal2))
Base.:+(cal1::JointCalendar, cal2::JointCalendar) =
JointCalendar(vcat(cal1.calendars, cal2.calendars))
"""
SimpleCalendarManager()
SimpleCalendarManager(calendars::Dict{String, Calendar})
A basic calendar manager which just holds a reference to each underlying calendar, by name,
and will generate a joint calendar if multiple names are requested.
To set a calendar on this manager then use `setcalendar!`
```julia-repl
julia> mgr = SimpleCalendarManager()
julia> setcalendar!(mgr, "WEEKEND", WeekendCalendar())
WeekendCalendar()
```
If you want to set a cached wrapping of a calendar then use `setcachedcalendar!`
```julia-repl
julia> mgr = SimpleCalendarManager()
julia> setcachedcalendar!(mgr, "WEEKEND", WeekendCalendar())
CachedCalendar(WeekendCalendar())
```
### Examples
```julia-repl
julia> mgr = SimpleCalendarManager()
julia> setcalendar!(mgr, "WEEKEND", WeekendCalendar())
julia> is_holiday(calendar(mgr, ["WEEKEND"]), Date(2019,9,28))
true
```
"""
struct SimpleCalendarManager <: CalendarManager
calendars::Dict{String,Calendar}
SimpleCalendarManager(calendars) = new(calendars)
SimpleCalendarManager() = new(Dict())
end
Base.show(io::IO, mgr::SimpleCalendarManager) = (print(io, "SimpleCalendarManager($(length(mgr.calendars)) calendars)"))
setcalendar!(mgr::SimpleCalendarManager, name::String, cal::Calendar) = (mgr.calendars[name] = cal;)
setcachedcalendar!(mgr::SimpleCalendarManager, name::String, cal::Calendar) = (mgr.calendars[name] = CachedCalendar(cal);)
setcachedcalendar!(mgr::SimpleCalendarManager, name::String, cal::CachedCalendar) = setcalendar!(mgr, name, cal)
function calendar(cal_mgr::SimpleCalendarManager, names::Vector)::Calendar
if length(names) == 0
NullCalendar()
elseif length(names) == 1
cal_mgr.calendars[names[1]]
else
foldl(
(acc, val) -> acc + cal_mgr.calendars[val],
names[2:end],
cal_mgr.calendars[names[1]],
)
end
end
"""
get_calendar_names(rdate::RDate)::Vector{String}
A helper method to get all of the calendar names that could potentially be requested by this rdate. This
mechanism can be used to mark the minimal set of calendars on which adjustments depend.
"""
get_calendar_names(::RDate) = Vector{String}()
get_calendar_names(rdate::Union{BizDays,CalendarAdj}) = rdate.calendar_names
get_calendar_names(rdate::Compound) = Base.foldl((val, acc) -> vcat(
acc,
get_calendar_names(val),
rdate.parts,
init = Vector{String}(),
))
get_calendar_names(rdate::Repeat) = get_calendar_names(rdate.part)
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 8131 | using AutoHashEquals
"""
Compound <: RDate
Apply a list of rdates in order
"""
@auto_hash_equals struct Compound <: RDate
parts::Vector{RDate}
end
apply(rdate::Compound, date::Dates.Date, cal_mgr::CalendarManager) = Base.foldl((x,y) -> apply(y, x, cal_mgr), rdate.parts, init=date)
multiply(rdate::Compound, count::Integer) = Compound(map(x -> multiply(x, count), rdate.parts))
combine(left::RDate, right::RDate) = Compound([left,right])
Base.:+(left::RDate, right::RDate) = combine(left, right)
Base.:-(left::RDate, right::RDate) = combine(left, -right)
Base.:-(rdate::Compound) = Compound(map(-, rdate.parts))
Base.:+(x::Compound, y::RDate) = Compound(vcat(x.parts, y))
Base.:+(x::RDate, y::Compound) = Compound(vcat(x, y.parts))
function Base.show(io::IO, rdate::Compound)
for (i,part) in enumerate(rdate.parts)
if i > 1 print(io, "+") end
show(io, part)
end
end
"""
Repeat <: RDate
Repeat the application of an rdate n times.
"""
@auto_hash_equals struct Repeat <: RDate
count::Int64
part::RDate
function Repeat(count::Int64, part::RDate)
count > 0 || error("Repeat must use a positive count, not $count")
new(count, part)
end
Repeat(part::RDate) = new(1, part)
end
function apply(rdate::Repeat, date::Dates.Date, cal_mgr::CalendarManager)
for _ in 1:rdate.count
date = apply(rdate.part, date, cal_mgr)
end
date
end
multiply(rdate::Repeat, count::Integer) = Repeat(count*rdate.count, rdate.part)
Base.:-(rdate::Repeat) = Repeat(rdate.count, -rdate.part)
Base.show(io::IO, rdate::Repeat) = (print(io, "$(rdate.count)*Repeat("), show(io, rdate.part), print(io,")"))
"""
CalendarAdj(calendars, rdate::RDate, rounding::HolidayRoundingConvention)
Apply a calendar adjustment to an underlying rdate, applying an appropriate convention if
our final date falls on a holiday.
The calendars can only use alphanumeric characters, plus `/`, `-` and ` `.
In the string-form, you can apply a calendar adjustment using the `@` character and
provide `|` separated calendar names to apply it on. The convention is finally provided in
square brackets using its string-form name.
### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(rd"1d", Date(2019,9,27), cal_mgr)
2019-09-28
julia> apply(rd"1d@WEEKEND[NBD]", Date(2019,9,27), cal_mgr)
2019-09-30
julia> apply(rd"2m - 1d", Date(2019,7,23), cal_mgr)
2019-09-22
julia> apply(rd"(2m - 1d)@WEEKEND[PBD]", Date(2019,7,23), cal_mgr)
2019-09-20
```
"""
@auto_hash_equals struct CalendarAdj{R <: RDate, S <: HolidayRoundingConvention} <: RDate
calendar_names::Vector{String}
part::R
rounding::S
CalendarAdj(calendar_names, part::R, rounding::S) where {R <: RDate, S <: HolidayRoundingConvention} = new{R, S}(calendar_names, part, rounding)
CalendarAdj(calendar_names::String, part::R, rounding::S) where {R<:RDate, S <: HolidayRoundingConvention} = new{R,S}(split(calendar_names, "|"), part, rounding)
end
function apply(rdate::CalendarAdj, date::Dates.Date, cal_mgr::CalendarManager)
base_date = apply(rdate.part, date, cal_mgr)
cal = calendar(cal_mgr, rdate.calendar_names)
apply(rdate.rounding, base_date, cal)
end
multiply(rdate::CalendarAdj, count::Integer) = CalendarAdj(rdate.calendar_names, multiply(rdate.part, count), rdate.rounding)
Base.:-(x::CalendarAdj) = CalendarAdj(x.calendar_names, -x.part, x.rounding)
Base.show(io::IO, rdate::CalendarAdj) = print(io, "($(rdate.part))@$(join(rdate.calendar_names, "|"))[$(rdate.rounding)]")
"""
Next(parts, inclusive::Bool = false)
Next is a mechanism through which we can find the next closest date in the future, given a list of
rdates to apply. We can choose whether today is also deemed a valid date.
This is commonly used in conjunction with rdates which don't necessarily always give a date in the
future, such as asking for the next Easter from today.
### Examples
```julia-repl
julia> RDates.Next([RDates.Easter(0), RDates.Easter(1)]) + Date(2019,1,1)
2019-04-21
julia> rd"Next(0E,1E)" + Date(2019,1,1)
2019-04-21
julia> RDates.Next([RDates.Easter(0), RDates.Easter(1)]) + Date(2019,4,21)
2020-04-12
julia> RDates.Next([RDates.Easter(0), RDates.Easter(1)], true) + Date(2019,4,21)
2019-04-21
julia> rd"Next!(0E,1E)" + Date(2019,4,21)
2019-04-21
```
!!! note
The negation of `Next` will actually produce a `Previous`.
```julia-repl
julia> -rd"Next(1d,2d)"
Previous(-1d, -2d)
julia> -3 * rd"Next(1d,2d)"
Previous(-3d, -6d)
```
!!! warning
While `Next` is a powerful operator, it does require application of every rdate
every time, so can be expensive.
When combining with ranges, it can often be useful to use an appropriate pivot
point to start from instead.
"""
@auto_hash_equals struct Next <: RDate
parts::Vector{RDate}
inclusive::Bool
Next(parts, inclusive::Bool = false) = new(parts, inclusive)
end
"""
Previous(parts, inclusive::Bool = false)
Previous is a mechanism through which we can find the next closest date in the past, given a list of
rdates to apply. We can choose whether today is also deemed a valid date.
This is commonly used in conjunction with rdates which don't necessarily always give a date in the
future, such as asking for the previous Easter from today.
### Examples
```julia-repl
julia> RDates.Previous([RDates.Easter(0), RDates.Easter(-1)]) + Date(2019,12,31)
2019-04-21
julia> rd"Previous(0E,-1E)" + Date(2019,12,31)
2019-04-21
julia> RDates.Previous([RDates.Easter(0), RDates.Easter(-1)]) + Date(2019,4,21)
2018-04-01
julia> RDates.Previous([RDates.Easter(0), RDates.Easter(-1)], true) + Date(2019,4,21)
2019-04-21
julia> rd"Previous!(0E,-1E)" + Date(2019,4,21)
2019-04-21
```
!!! note
The negation of `Previous` will actually produce a `Next`.
```julia-repl
julia> -rd"Previous(-1d,-2d)"
Next(1d, 2d)
julia> -3 * rd"Previous(-1d,-2d)"
Next(3d, 6d)
```
!!! warning
While `Previous` is a powerful operator, it does require application of every rdate
every time, so can be expensive.
When combining with ranges, it can often be useful to use an appropriate pivot
point to start from instead.
"""
@auto_hash_equals struct Previous <: RDate
parts::Vector{RDate}
inclusive::Bool
Previous(parts, inclusive::Bool = false) = new(parts, inclusive)
end
function apply(rdate::Next, date::Dates.Date, cal_mgr::CalendarManager)
dates = map(part -> apply(part, date, cal_mgr), rdate.parts)
op = rdate.inclusive ? Base.:>= : Base.:>
dates = [d for d in dates if op(d, date)]
length(dates) > 0 || error("$rdate failed to apply to $date")
min(dates...)
end
function apply(rdate::Previous, date::Dates.Date, cal_mgr::CalendarManager)
dates = map(part -> apply(part, date, cal_mgr), rdate.parts)
op = rdate.inclusive ? Base.:<= : Base.:<
dates = [d for d in dates if op(d, date)]
length(dates) > 0 || error("$rdate failed to apply to $date")
max(dates...)
end
function multiply(rdate::Next, count::Integer)
method = count >= 0 ? Next : Previous
method(map(x -> multiply(x, count), rdate.parts), rdate.inclusive)
end
function multiply(rdate::Previous, count::Integer)
method = count >= 0 ? Previous : Next
method(map(x -> multiply(x, count), rdate.parts), rdate.inclusive)
end
Base.:-(rdate::Next) = Previous(map(-, rdate.parts), rdate.inclusive)
Base.:-(rdate::Previous) = Next(map(-, rdate.parts), rdate.inclusive)
function Base.show(io::IO, rdate::Next)
incsign = rdate.inclusive ? "!" : ""
print(io, "Next$incsign(")
for (i,part) in enumerate(rdate.parts)
show(io, part)
if i < length(rdate.parts)
print(io, ", ")
end
end
print(io, ")")
end
function Base.show(io::IO, rdate::Previous)
incsign = rdate.inclusive ? "!" : ""
print(io, "Previous$incsign(")
for (i,part) in enumerate(rdate.parts)
show(io, part)
if i < length(rdate.parts)
print(io, ", ")
end
end
print(io, ")")
end
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 2359 | import ParserCombinator: PInt64, Eos, set_fix, Drop, Star, Space, @with_pre, Parse, @p_str, Pattern, Alt, Delayed, parse_one, @E_str
import Dates
space = Drop(Star(Space()))
PNonZeroInt64() = Parse(p"-?[1-9][0-9]*", Int64)
PPosInt64() = Parse(p"[1-9][0-9]*", Int64)
PPosZeroInt64() = Parse(p"[0-9][0-9]*", Int64)
PCalendarNames() = p"[a-zA-Z0-9-\/\s|]+"
@with_pre space begin
sum = Delayed()
weekday_short = Alt(map(x -> Pattern(uppercase(x)), Dates.ENGLISH.days_of_week_abbr)...)
month_short = Alt(map(x -> Pattern(uppercase(x)), Dates.ENGLISH.months_abbr)...)
brackets = E"(" + space + sum + space + E")"
repeat = E"Repeat(" + space + sum + space + E")" > rd -> Repeat(rd)
rdate_term = Alt()
next = E"Next(" + (space + sum) + (E"," + space + sum)[0:end] + space + E")" |> parts -> Next(parts)
next_inc = E"Next!(" + (space + sum) + (E"," + space + sum)[0:end] + space + E")" |> parts -> Next(parts, true)
previous = E"Previous(" + (space + sum) + (E"," + space + sum)[0:end] + space + E")" |> parts -> Previous(parts)
previous_inc = E"Previous!(" + (space + sum) + (E"," + space + sum)[0:end] + space + E")" |> parts -> Previous(parts, true)
rdate_expr = rdate_term | brackets | repeat | next | next_inc | previous | previous_inc
neg = Delayed()
neg.matcher = rdate_expr | (E"-" + neg > -)
cal_adj = neg + (E"@" + PCalendarNames() + E"[" + Alt(map(Pattern, collect(keys(HOLIDAY_ROUNDING_MAPPINGS)))...) + E"]")[0:1] |> xs -> length(xs) == 1 ? xs[1] : CalendarAdj(map(String, split(xs[2], "|")), xs[1], HOLIDAY_ROUNDING_MAPPINGS[xs[3]])
mult = Delayed()
mult = cal_adj | ((PPosInt64() + space + E"*" + space + cal_adj) > (c,rd) -> multiply(rd, c)) | ((cal_adj + space + E"*" + space + PPosInt64()) > (rd,c) -> multiply(rd, c))
add = E"+" + mult
sub = E"-" + mult > -
sum.matcher = (sub | mult) + (add | mult)[0:end] |> Base.sum
entry = sum + Eos()
end
function register_grammar!(term)
# Handle the spacing correctly
push!(rdate_term.matchers[2].matchers, term)
end
macro rd_str(arg::String)
val = parse_one(arg, entry)[1]
isa(val, RDate) || error("Unable to parse $(arg) as RDate")
return val
end
function rdate(arg::String)
val = parse_one(arg, entry)[1]
isa(val, RDate) || error("Unable to parse $(arg) as RDate")
return val
end
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 1352 | import Dates
"""
InvalidDayLDOM()
When the day calculated is invalid, move to the last day of the month. Will
use the "LDOM" short hand.
"""
struct InvalidDayLDOM <: InvalidDayConvention end
adjust(::InvalidDayLDOM, day, month, year) = Dates.Date(year, month, Dates.daysinmonth(year, month))
Base.show(io::IO, ::InvalidDayLDOM) = print(io, "LDOM")
"""
InvalidDayFDONM()
When the day calculated is invalid, move to the first day of the next month.
Uses the "FDONM" short hand.
"""
struct InvalidDayFDONM <: InvalidDayConvention end
adjust(::InvalidDayFDONM, day, month, year) = month == 12 ? Dates.Date(year+1, 1, 1) : Dates.Date(year, month+1, 1)
Base.show(io::IO, ::InvalidDayFDONM) = print(io, "FDONM")
"""
InvalidDayNDONM()
When the day calculated is invalid, move to the nth day of the next month where
n is the number of days past the last day of the month. Uses the "NDONM" short
hand.
"""
struct InvalidDayNDONM <: InvalidDayConvention end
function adjust(::InvalidDayNDONM, day, month, year)
dayδ = day - Dates.daysinmonth(year, month)
return month == 12 ? Dates.Date(year+1, 1, dayδ) : Dates.Date(year, month+1, dayδ)
end
Base.show(io::IO, ::InvalidDayNDONM) = print(io, "NDONM")
const INVALID_DAY_MAPPINGS = Dict(
"LDOM" => InvalidDayLDOM(),
"FDONM" => InvalidDayFDONM(),
"NDONM" => InvalidDayNDONM()
)
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 1768 | import Dates
using AutoHashEquals
"""
MonthIncrementPDOM()
When incrementing by months (or years) then preserve the day of month from
originally requested. Uses the "PDOM" shorthand
"""
struct MonthIncrementPDOM <: MonthIncrementConvention end
adjust(::MonthIncrementPDOM, date::Dates.Date, new_month, new_year, cal_mgr::CalendarManager) = (new_year, new_month, Dates.day(date))
Base.show(io::IO, ::MonthIncrementPDOM) = print(io, "PDOM")
"""
MonthIncrementPDOMEOM()
MonthIncrementPDOMEOM(calendars)
When incrementing by months (or years) then preserve the day of month from
originally requested, unless it's the last day of the month then maintain that.
Uses the "PDOMEOM" short hand.
To preserve the last business day of the month, then you can pass calendars as
well.
"""
@auto_hash_equals struct MonthIncrementPDOMEOM <: MonthIncrementConvention
calendars::Union{Vector{String}, Nothing}
MonthIncrementPDOMEOM() = new(nothing)
MonthIncrementPDOMEOM(calendars) = new(calendars)
MonthIncrementPDOMEOM(calendars::String) = new(split(calendars, "|"))
end
function adjust(mic::MonthIncrementPDOMEOM, date::Dates.Date, new_month, new_year, cal_mgr::CalendarManager)
ldom_rdate = LDOM(mic.calendars)
ldom = apply(ldom_rdate, date, cal_mgr)
if ldom == date
new_ldom = apply(ldom_rdate, Dates.Date(new_year, new_month), cal_mgr)
return Dates.yearmonthday(new_ldom)
else
return (new_year, new_month, Dates.day(date))
end
end
Base.show(io::IO, mic::MonthIncrementPDOMEOM) = mic.calendars === nothing ? print(io, "PDOMEOM") : print(io, "PDOMEOM@$(join(mic.calendars, "|"))")
const MONTH_INCREMENT_MAPPINGS = Dict(
"PDOM" => MonthIncrementPDOM(),
"PDOMEOM" => MonthIncrementPDOMEOM()
)
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 22348 | import Dates
using AutoHashEquals
const WEEKDAYS = Dict(map(reverse,enumerate(map(Symbol ∘ uppercase, Dates.ENGLISH.days_of_week_abbr))))
const NTH_PERIODS = ["1st", "2nd", "3rd", "4th", "5th"]
const NTH_LAST_PERIODS = ["Last", "2nd Last", "3rd Last", "4th Last", "5th Last"]
const PERIODS = merge(Dict(map(reverse,enumerate(NTH_PERIODS))), Dict(map(reverse,enumerate(NTH_LAST_PERIODS))))
const MONTHS = Dict(zip(map(Symbol ∘ uppercase, Dates.ENGLISH.months_abbr),range(1,stop=12)))
"""
FDOM()
FDOM(calendars)
Calculate the first day of the month. Optionally can also take calendar names to determine
the first business day of the month.
### Examples
```julia-repl
julia> RDates.FDOM() + Date(2019,1,13)
2019-01-01
julia> rd"FDOM" + Date(2019,1,13)
2019-01-01
julia> cals = SimpleCalendarManager()
julia> setcalendar!(cals, "WEEKEND", WeekendCalendar())
julia> apply(RDates.FDOM("WEEKEND"), Date(2017,1,13), cals)
2017-01-02
julia> apply(rd"FDOM@WEEKEND", Date(2017,1,13), cals)
2017-01-02
```
"""
struct FDOM <: RDate
FDOM() = new()
FDOM(calendars::Nothing) = new()
FDOM(calendars) = CalendarAdj(calendars, new(), HolidayRoundingNBD())
end
apply(::FDOM, d::Dates.Date, ::CalendarManager) = Dates.firstdayofmonth(d)
multiply(x::FDOM, ::Integer) = x
Base.:-(x::FDOM) = x
Base.show(io::IO, ::FDOM) = print(io, "FDOM")
register_grammar!(E"FDOM" > FDOM)
register_grammar!(E"FDOM@" + PCalendarNames() > calendar_name -> FDOM(map(String, split(calendar_name, "|"))))
"""
LDOM()
LDOM(calendars)
Calculate the last day of the month. Optionally can also take calendar names to determine
the last business day of the month.
### Examples
```julia-repl
julia> RDates.LDOM() + Date(2019,1,13)
2019-01-31
julia> rd"LDOM" + Date(2019,1,13)
2019-01-31
julia> cals = SimpleCalendarManager()
julia> setcalendar!(cals, "WEEKEND", WeekendCalendar())
julia> apply(RDates.LDOM("WEEKEND"), Date(2021,1,13), cals)
2021-01-29
julia> apply(rd"LDOM@WEEKEND", Date(2021,1,13), cals)
2021-01-29
```
"""
struct LDOM <: RDate
LDOM() = new()
LDOM(calendars::Nothing) = new()
LDOM(calendars) = CalendarAdj(calendars, new(), HolidayRoundingPBD())
end
apply(::LDOM, d::Dates.Date, ::CalendarManager) = Dates.lastdayofmonth(d)
multiply(x::LDOM, ::Integer) = x
Base.:-(x::LDOM) = x
Base.show(io::IO, ::LDOM) = print(io, "LDOM")
register_grammar!(E"LDOM" > LDOM)
register_grammar!(E"LDOM@" + PCalendarNames() > calendar_name -> LDOM(map(String, split(calendar_name, "|"))))
"""
Easter(yearδ::Int64)
A date that is well known from hunting eggs and pictures of bunnies, it's a rather
tricky calculation to perform. We provide a simple method to allow you to get the
Easter for the given year (plus some delta).
!!! note
`0E` will get the Easter of the current year, so it could be before or
after the date you've provided.
### Examples
```julia-repl
julia> RDates.Easter(0) + Date(2019,1,1)
2019-04-21
julia> rd"0E" + Date(2019,1,1)
2019-04-21
julia> RDates.Easter(0) + Date(2019,8,1)
2019-04-21
julia> RDates.Easter(10) + Date(2019,8,1)
2029-04-01
```
"""
struct Easter <: RDate
yearδ::Int64
end
function apply(rdate::Easter, date::Dates.Date, cal_mgr::CalendarManager)
y = Dates.year(date) + rdate.yearδ
a = rem(y, 19)
b = div(y, 100)
c = rem(y, 100)
d = div(b, 4)
e = rem(b, 4)
f = div(b + 8, 25)
g = div(b - f + 1, 3)
h = rem(19*a + b - d - g + 15, 30)
i = div(c, 4)
k = rem(c, 4)
l = rem(32 + 2*e + 2*i - h - k, 7)
m = div(a + 11*h + 22*l, 451)
n = div(h + l - 7*m + 114, 31)
p = rem(h + l - 7*m + 114, 31)
return Dates.Date(y, n, p + 1)
end
multiply(x::Easter, count::Integer) = Easter(x.yearδ*count)
Base.:-(rdate::Easter) = Easter(-rdate.yearδ)
Base.show(io::IO, rdate::Easter) = print(io, "$(rdate.yearδ)E")
register_grammar!(PInt64() + E"E" > Easter)
"""
Day(days::Int64)
Provides us with the ability to add or subtract days from a date. This is
equivalent to the `Dates.Day` struct.
### Examples
```julia-repl
julia> RDates.Day(3) + Date(2019,1,1)
2019-01-04
julia> rd"3d" + Date(2019,1,1)
2019-01-04
julia> RDates.Day(-2) + Date(2019,1,1)
2018-12-30
```
"""
struct Day <: RDate
days::Int64
end
apply(x::Day, y::Dates.Date, cal_mgr::CalendarManager) = y + Dates.Day(x.days)
multiply(x::Day, count::Integer) = Day(x.days*count)
Base.:-(x::Day) = Day(-x.days)
Base.:+(x::Day, y::Day) = Day(x.days + y.days)
Base.show(io::IO, rdate::Day) = print(io, "$(rdate.days)d")
register_grammar!(PInt64() + E"d" > Day)
"""
Week(weeks::Int64)
Provides us with the ability to add or subtract weeks from a date. This is
equivalent to the `Dates.Week` struct.
### Examples
```julia-repl
julia> RDates.Week(3) + Date(2019,1,1)
2019-01-22
julia> rd"3w" + Date(2019,1,1)
2019-01-22
julia> RDates.Week(-2) + Date(2019,1,1)
2018-12-18
```
"""
struct Week <: RDate
weeks::Int64
end
apply(x::Week, y::Dates.Date, cal_mgr::CalendarManager) = y + Dates.Week(x.weeks)
multiply(x::Week, count::Integer) = Week(x.weeks*count)
Base.:-(x::Week) = Week(-x.weeks)
Base.:+(x::Week, y::Week) = Week(x.weeks + y.weeks)
Base.:+(x::Day, y::Week) = Day(x.days + 7*y.weeks)
Base.:+(x::Week, y::Day) = Day(7*x.weeks + y.days)
Base.show(io::IO, rdate::Week) = print(io, "$(rdate.weeks)w")
register_grammar!(PInt64() + E"w" > Week)
"""
Month(months::Int64)
Month(months::Int64, idc::InvalidDayConvention, mic::MonthIncrementConvention)
Provides us with the ability to move a specified number of months, with conventions
to handle how we should increment and what to do if we fall on an invalid day.
### Examples
```julia-repl
julia> RDates.Month(1) + Date(2019,1,31)
2019-02-28
julia> rd"1m" + Date(2019,1,31)
2019-02-28
julia> RDates.Month(1, RDates.InvalidDayFDONM(), RDates.MonthIncrementPDOM()) + Date(2019,1,31)
2019-03-01
julia> rd"1m[FDONM;PDOM]" + Date(2019,1,31)
2019-03-01
julia> RDates.Month(1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOM()) + Date(2019,1,31)
2019-03-03
julia> rd"1m[NDONM;PDOM]" + Date(2019,1,31)
2019-03-03
julia> RDates.Month(1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOMEOM()) + Date(2019,1,31)
2019-02-28
julia> rd"1m[NDONM;PDOMEOM]" + Date(2019,1,31)
2019-02-28
julia> RDates.Month(-1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOMEOM()) + Date(2019,2,28)
2019-01-31
julia> rd"-1m[NDONM;PDOMEOM]" + Date(2019,2,28)
2019-01-31
```
"""
struct Month <: RDate
months::Int64
idc::InvalidDayConvention
mic::MonthIncrementConvention
Month(months::Int64) = new(months, InvalidDayLDOM(), MonthIncrementPDOM())
Month(months::Int64, idc::InvalidDayConvention, mic::MonthIncrementConvention) = new(months, idc, mic)
end
function apply(rdate::Month, date::Dates.Date, cal_mgr::CalendarManager)
y, m = Dates.yearmonth(date)
ny = Dates.yearwrap(y, m, rdate.months)
nm = Dates.monthwrap(m, rdate.months)
ay, am, ad = adjust(rdate.mic, date, nm, ny, cal_mgr)
ld = Dates.daysinmonth(ay, am)
return ad <= ld ? Dates.Date(ay, am, ad) : adjust(rdate.idc, ad, am, ay)
end
multiply(x::Month, count::Integer) = Month(x.months*count, x.idc, x.mic)
Base.:-(x::Month) = Month(-x.months)
Base.show(io::IO, rdate::Month) = (print(io, "$(rdate.months)m["), show(io, rdate.idc), print(io, ";"), show(io, rdate.mic), print(io,"]"))
register_grammar!(PInt64() + E"m" > Month)
register_grammar!(PInt64() + E"m[" + Alt(map(Pattern, collect(keys(INVALID_DAY_MAPPINGS)))...) + E";" + Alt(map(Pattern, collect(keys(MONTH_INCREMENT_MAPPINGS)))...) + E"]" > (d,idc,mic) -> Month(d, INVALID_DAY_MAPPINGS[idc], MONTH_INCREMENT_MAPPINGS[mic]))
# We also have the more complex PDOMEOM month increment which we handle separately.
register_grammar!(PInt64() + E"m[" + Alt(map(Pattern, collect(keys(INVALID_DAY_MAPPINGS)))...) + E";PDOMEOM@" + PCalendarNames() + E"]" > (d,idc,calendar_name) -> Month(d, INVALID_DAY_MAPPINGS[idc], MonthIncrementPDOMEOM(map(String, split(calendar_name, "|")))))
"""
Year(years::Int64)
Year(years::Int64, idc::InvalidDayConvention, mic::MonthIncrementConvention)
Provides us with the ability to move a specified number of months, with conventions
to handle how we should increment and what to do if we fall on an invalid day.
!!! note
While these conventions are necessary, it's only around the handling of leap years
and when we're on the last day of the February that it actually matters.
### Examples
```julia-repl
julia> RDates.Year(1) + Date(2019,2,28)
2020-02-28
julia> rd"1y" + Date(2019,2,28)
2020-02-28
julia> RDates.Year(1, RDates.InvalidDayFDONM(), RDates.MonthIncrementPDOMEOM()) + Date(2019,2,28)
2020-02-29
julia> rd"1y[FDONM;PDOMEOM]" + Date(2019,2,28)
2020-02-29
julia> RDates.Year(1, RDates.InvalidDayLDOM(), RDates.MonthIncrementPDOM()) + Date(2020,2,29)
2021-02-28
julia> rd"1y[LDOM;PDOM]" + Date(2020,2,29)
2021-02-28
julia> RDates.Year(1, RDates.InvalidDayFDONM(), RDates.MonthIncrementPDOM()) + Date(2020,2,29)
2021-03-01
julia> rd"1y[FDONM;PDOM]" + Date(2020,2,29)
2021-03-01
```
"""
struct Year <: RDate
years::Int64
idc::InvalidDayConvention
mic::MonthIncrementConvention
Year(years::Int64) = new(years, InvalidDayLDOM(), MonthIncrementPDOM())
Year(years::Int64, idc::InvalidDayConvention, mic::MonthIncrementConvention) = new(years, idc, mic)
end
function apply(rdate::Year, date::Dates.Date, cal_mgr::CalendarManager)
oy, m = Dates.yearmonth(date)
ny = oy + rdate.years
(ay, am, ad) = adjust(rdate.mic, date, m, ny, cal_mgr)
ld = Dates.daysinmonth(ay, am)
return ad <= ld ? Dates.Date(ay, am, ad) : adjust(rdate.idc, ad, am, ay)
end
multiply(x::Year, count::Integer) = Year(x.years*count, x.idc, x.mic)
Base.:-(x::Year) = Year(-x.years)
Base.show(io::IO, rdate::Year) = (print(io, "$(rdate.years)y["), show(io, rdate.idc), print(io, ";"), show(io, rdate.mic), print(io,"]"))
register_grammar!(PInt64() + E"y" > Year)
register_grammar!(PInt64() + E"y[" + Alt(map(Pattern, collect(keys(INVALID_DAY_MAPPINGS)))...) + E";" + Alt(map(Pattern, collect(keys(MONTH_INCREMENT_MAPPINGS)))...) + E"]" > (d,idc,mic) -> Year(d, INVALID_DAY_MAPPINGS[idc], MONTH_INCREMENT_MAPPINGS[mic]))
# We also have the more complex PDOMEOM month increment which we handle separately.
register_grammar!(PInt64() + E"y[" + Alt(map(Pattern, collect(keys(INVALID_DAY_MAPPINGS)))...) + E";PDOMEOM@" + PCalendarNames() + E"]" > (d,idc,calendar_name) -> Year(d, INVALID_DAY_MAPPINGS[idc], MonthIncrementPDOMEOM(map(String, split(calendar_name, "|")))))
"""
DayMonth(day::Int64, month::Int64)
DayMonth(day::Int64, month::Symbol)
Provides us with the ability to move to a specific day and month in the provided
year.
!!! note
`1MAR` will get the 1st of March of the current year, so it could be before
or after the date you've provided.
### Examples
```julia-repl
julia> RDates.DayMonth(23, 10) + Date(2019,1,1)
2019-10-23
julia> RDates.DayMonth(23, :OCT) + Date(2019,1,1)
2019-10-23
julia> rd"23OCT" + Date(2019,1,1)
2019-10-23
```
"""
struct DayMonth <: RDate
day::Int64
month::Int64
DayMonth(day::Int64, month::Int64) = new(day, month)
DayMonth(day::Int64, month::Symbol) = new(day, RDates.MONTHS[month])
end
apply(rdate::DayMonth, date::Dates.Date, cal_mgr::CalendarManager) = Dates.Date(Dates.year(date), rdate.month, rdate.day)
multiply(x::DayMonth, ::Integer) = x
Base.:-(x::DayMonth) = x
Base.show(io::IO, rdate::DayMonth) = print(io, "$(rdate.day)$(uppercase(Dates.ENGLISH.months_abbr[rdate.month]))")
register_grammar!(PPosInt64() + month_short > (d,m) -> DayMonth(d,MONTHS[Symbol(m)]))
"""
Date(date::Dates.Date)
Date(year::Int64, month::Int64, day::Int64)
Provides us with the ability to move to a specific date, irrespective of the date
passed in. This is primarily used when you want to provide a pivot point for ranges
which doesn't relate to the start or end.
### Examples
```julia-repl
julia> RDates.Date(Dates.Date(2017,10,23)) + Date(2019,1,1)
2017-10-23
julia> RDates.Date(2017,10,23) + Date(2019,1,1)
2017-10-23
julia> rd"23OCT2017" + Date(2019,1,1)
2017-10-23
```
"""
struct Date <: RDate
date::Dates.Date
Date(date::Dates.Date) = new(date)
Date(y::Int64, m::Int64, d::Int64) = new(Dates.Date(y, m, d))
end
multiply(x::Date, ::Integer) = x
Base.:-(x::Date) = x
apply(rdate::Date, date::Dates.Date, cal_mgr::CalendarManager) = rdate.date
Base.show(io::IO, rdate::Date) = print(io, "$(Dates.day(rdate.date))$(uppercase(Dates.ENGLISH.months_abbr[Dates.month(rdate.date)]))$(Dates.year(rdate.date))")
register_grammar!(PPosInt64() + month_short + PPosInt64() > (d,m,y) -> Date(Dates.Date(y, MONTHS[Symbol(m)], d)))
"""
NthWeekdays(dayofweek::Int64, period::Int64)
NthWeekdays(dayofweek::Symbol, period::Int64)
Move to the nth weekday in the given month and year. This is commonly used for holiday
calendars, such as [Thanksgiving](https://en.wikipedia.org/wiki/Thanksgiving) which in
the U.S. falls on the 4th Thursday in November.
!!! note
It's possible that a given period (such as the 5th weekday) may exist for only
a subsection of dates. While it's a valid RDate it may not produce valid results
when applied (and will throw an exception)
### Examples
```julia-repl
julia> RDates.NthWeekdays(:MON, 2) + Date(2019,1,1)
2019-01-14
julia> RDates.NthWeekdays(1, 2) + Date(2019,1,1)
2019-01-14
julia> rd"2nd MON" + Date(2019,1,1)
2019-01-14
julia> RDates.NthWeekdays(:MON, 5) + Date(2019,1,1)
ERROR: ArgumentError: Day: 35 out of range (1:31)
```
"""
struct NthWeekdays <: RDate
dayofweek::Int64
period::Int64
NthWeekdays(dayofweek::Int64, period::Int64) = new(dayofweek, period)
NthWeekdays(dayofweek::Symbol, period::Int64) = new(RDates.WEEKDAYS[dayofweek], period)
end
function apply(rdate::NthWeekdays, date::Dates.Date, cal_mgr::CalendarManager)
wd = Dates.dayofweek(date)
wd1st = mod(wd - mod(Dates.day(date), 7), 7) + 1
wd1stdiff = wd1st - rdate.dayofweek
period = wd1stdiff > 0 ? rdate.period : rdate.period - 1
days = 7*period - wd1stdiff + 1
return Dates.Date(Dates.year(date), Dates.month(date), days)
end
multiply(x::NthWeekdays, ::Integer) = x
Base.:-(x::NthWeekdays) = x
Base.show(io::IO, rdate::NthWeekdays) = print(io, "$(NTH_PERIODS[rdate.period]) $(uppercase(Dates.ENGLISH.days_of_week_abbr[rdate.dayofweek]))")
register_grammar!(Alt(map(Pattern, NTH_PERIODS)...) + space + weekday_short > (p,wd) -> NthWeekdays(WEEKDAYS[Symbol(wd)], PERIODS[p]))
"""
NthLastWeekdays(dayofweek::Int64, period::Int64)
NthLastWeekdays(dayofweek::Symbol, period::Int64)
Move to the nth last weekday in the given month and year. This is commonly used for holiday
calendars, such as the Spring Bank Holiday in the UK, which is the last Monday in May.
!!! note
It's possible that a given period (such as the 5th Last weekday) may exist for only
a subsection of dates. While it's a valid RDate it may not produce valid results
when applied (and will throw an exception)
### Examples
```julia-repl
julia> RDates.NthLastWeekdays(:MON, 2) + Date(2019,1,1)
2019-01-21
julia> RDates.NthLastWeekdays(1, 2) + Date(2019,1,1)
2019-01-21
julia> rd"2nd Last MON" + Date(2019,1,1)
2019-01-21
julia> RDates.NthLastWeekdays(:MON, 5) + Date(2019,1,1)
ERROR: ArgumentError: Day: 0 out of range (1:31)
```
"""
struct NthLastWeekdays <: RDate
dayofweek::Int64
period::Int64
NthLastWeekdays(dayofweek::Int64, period::Int64) = new(dayofweek, period)
NthLastWeekdays(dayofweek::Symbol, period::Int64) = new(RDates.WEEKDAYS[dayofweek], period)
end
function apply(rdate::NthLastWeekdays, date::Dates.Date, cal_mgr::CalendarManager)
ldom = LDOM() + date
ldom_dow = Dates.dayofweek(ldom)
ldom_dow_diff = ldom_dow - rdate.dayofweek
period = ldom_dow_diff >= 0 ? rdate.period - 1 : rdate.period
days_to_sub = 7*period + ldom_dow_diff
days = Dates.day(ldom) - days_to_sub
return Dates.Date(Dates.year(date), Dates.month(date), days)
end
multiply(x::NthLastWeekdays, ::Integer) = x
Base.:-(x::NthLastWeekdays) = x
Base.show(io::IO, rdate::NthLastWeekdays) = print(io, "$(NTH_LAST_PERIODS[rdate.period]) $(uppercase(Dates.ENGLISH.days_of_week_abbr[rdate.dayofweek]))")
register_grammar!(Alt(map(Pattern, NTH_LAST_PERIODS)...) + space + weekday_short > (p,wd) -> NthLastWeekdays(WEEKDAYS[Symbol(wd)], PERIODS[p]))
"""
Weekdays(dayofweek::Int64, count::Int64, inclusive::Bool = false)
Weekdays(dayofweek::Symbol, count::Int64, inclusive::Bool = false)
Provides a mechanism to ask for the next Saturday or the last Tuesday. The count specifies
what we're looking for. `Weekdays(:MON, 1)` will ask for the next Monday, exclusive of the
date started from. You can make it inclusive by passing the inclusive parameter with
`Weekdays(:MON, 1, true)`.
!!! note
A count of `0` is not supported as it doesn't specify what you're actually looking for!
Incrementing the count will then be additional weeks (forward or backwards) from the single
count point.
### Examples
```julia-repl
julia> RDates.Weekdays(:WED, 1) + Date(2019,9,24) # Tuesday
2019-09-25
julia> RDates.Weekdays(3, 1) + Date(2019,9,24)
2019-09-25
julia> rd"1WED" + Date(2019,9,24)
2019-09-25
julia> RDates.Weekdays(:WED, 1) + Date(2019,9,25)
2019-10-02
julia> RDates.Weekdays(:WED, 1, true) + Date(2019,9,25)
2019-09-25
julia> rd"1WED!" + Date(2019,9,25)
2019-09-25
julia> RDates.Weekdays(:WED, -1) + Date(2019,9,24)
2019-09-18
```
"""
struct Weekdays <: RDate
dayofweek::Int64
count::Int64
inclusive::Bool
function Weekdays(dayofweek::Int64, count::Int64, inclusive::Bool = false)
count != 0 || error("Cannot create 0 Weekdays")
new(dayofweek, count, inclusive)
end
function Weekdays(dayofweek::Symbol, count::Int64, inclusive::Bool = false)
count != 0 || error("Cannot create 0 Weekdays")
new(WEEKDAYS[dayofweek], count, inclusive)
end
end
function apply(rdate::Weekdays, date::Dates.Date, cal_mgr::CalendarManager)
dayδ = Dates.dayofweek(date) - rdate.dayofweek
weekδ = rdate.count
if rdate.count < 0 && (dayδ > 0 || (rdate.inclusive && dayδ == 0))
weekδ += 1
elseif rdate.count > 0 && (dayδ < 0 || (rdate.inclusive && dayδ == 0))
weekδ -= 1
end
return date + Dates.Day(weekδ*7 - dayδ)
end
multiply(x::Weekdays, count::Integer) = Weekdays(x.dayofweek, x.count * count, x.inclusive)
Base.:-(rdate::Weekdays) = Weekdays(rdate.dayofweek, -rdate.count)
function Base.show(io::IO, rdate::Weekdays)
weekday = uppercase(Dates.ENGLISH.days_of_week_abbr[rdate.dayofweek])
inclusive = rdate.inclusive ? "!" : ""
print(io, "$(rdate.count)$weekday$inclusive")
end
register_grammar!(PNonZeroInt64() + weekday_short > (i,wd) -> Weekdays(WEEKDAYS[Symbol(wd)], i))
register_grammar!(PNonZeroInt64() + weekday_short + E"!" > (i,wd) -> Weekdays(WEEKDAYS[Symbol(wd)], i, true))
"""
BizDayZero
Wrapper for a zero day count in business days, which holds the direction. Direction
can either be :next or :prev
"""
struct BizDayZero
direction::Symbol
function BizDayZero(direction::Symbol)
direction in (:next, :prev) || error("unknown direction $direction for BizDayZero")
new(direction)
end
end
function Base.:-(x::BizDayZero)
BizDayZero(x.direction == :next ? :prev : :next)
end
"""
BizDays(days::Int64, calendars)
BizDays(days::BizDayZero)
It can be handy to work in business days at times, rather than calendar days. This
allows us to move forwards or backwards `n` days.
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.BizDays(1, "WEEKEND"), Date(2021,7,9), cal_mgr)
2021-07-12
julia> apply(rd"1b@WEEKEND", Date(2021,7,9), cal_mgr)
2021-07-12
julia> apply(RDates.BizDays(-10, "WEEKEND"), Date(2021,7,9), cal_mgr)
2021-06-25
```
If the date falls on a holiday, then it is first moved forward (or backwards) to a valid
business day.
```julia-repl
julia> apply(RDates.BizDays(1, "WEEKEND"), Date(2021,7,10), cal_mgr)
2021-07-13
```
For zero business days, we could either want to move forwards or backwards. As such we
provide `BizDayZero` which can be used to provide each. By default, `0b` will move forward
```julia-repl
julia> apply(RDates.BizDays(RDates.BizDayZero(:next), "WEEKEND"), Date(2021,7,10), cal_mgr)
2021-07-12
julia> apply(RDates.BizDays(RDates.BizDayZero(:prev), "WEEKEND"), Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0b@WEEKEND", Date(2021,7,10), cal_mgr)
2021-07-12
julia> apply(rd"-0b@WEEKEND", Date(2021,7,10), cal_mgr)
2021-07-09
```
"""
@auto_hash_equals struct BizDays <: RDate
days::Union{Int64, BizDayZero}
calendar_names::Vector{String}
function BizDays(days::Int64, calendar_names)
days = days != 0 ? days : BizDayZero(:next)
new(days, calendar_names)
end
BizDays(days::Int64, calendar_names::String) = BizDays(days, split(calendar_names, "|"))
BizDays(days::BizDayZero, calendar_names) = new(days, calendar_names)
BizDays(days::BizDayZero, calendar_names::String) = new(days, split(calendar_names, "|"))
end
function apply(rdate::BizDays, date::Dates.Date, cal_mgr::CalendarManager)
cal = calendar(cal_mgr, rdate.calendar_names)
if isa(rdate.days, BizDayZero)
rounding = rdate.days.direction == :next ? HolidayRoundingNBD() : HolidayRoundingPBD()
apply(rounding, date, cal)
else
rounding = rdate.days > 0 ? HolidayRoundingNBD() : HolidayRoundingPBD()
date = apply(rounding, date, cal)
count = rdate.days
if rdate.days > 0
while count > 0
date = apply(rounding, date + Dates.Day(1), cal)
count -= 1
end
elseif rdate.days < 0
while count < 0
date = apply(rounding, date - Dates.Day(1), cal)
count += 1
end
end
date
end
end
function multiply(x::BizDays, count::Integer)
x = count < 0 ? -x : x
days = isa(x.days, BizDayZero) ? x.days : x.days * abs(count)
return BizDays(days, x.calendar_names)
end
Base.:-(x::BizDays) = BizDays(-x.days, x.calendar_names)
register_grammar!(PPosZeroInt64() + E"b@" + PCalendarNames() > (days,calendar_name) -> BizDays(days, map(String, split(calendar_name, "|"))))
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 3051 | """
range(from::Date, rdate::RDate; inc_from=true, cal_mgr=nothing)
range(from::Date, to::Date, rdate::RDate; inc_from=true, inc_to=true, cal_mgr=nothing)
The range provides a mechanism for iterating over a range of dates given a period. This can
provide a mechanism for getting an infinite range (from a given date) or appropriately
clipped.
```julia-repl
julia> collect(Iterators.take(range(Date(2017,1,25), rd"1d"), 3))
3-element Vector{Date}:
2017-01-25
2017-01-26
2017-01-27
julia> collect(Iterators.take(range(Date(2017,1,25), rd"1d"; inc_from=false), 3))
3-element Vector{Date}:
2017-01-26
2017-01-27
2017-01-28
julia> collect(range(Date(2019,4,17), Date(2019,4,22), rd"2d"))
3-element Vector{Date}:
2019-04-17
2019-04-19
2019-04-21
```
Under the hoods, the range will `multiply` the period. Since non-periodic RDates will
always give back self when you multiply it allows us to set a reference point.
```julia-repl
julia> rd"1JAN2001+3m+3rd WED"
1JAN2001+3m[LDOM;PDOM]+3rd WED
julia> 3*rd"1JAN2001+3m+3rd WED"
1JAN2001+9m[LDOM;PDOM]+3rd WED
```
This provides the basic building blocks to come up with more complex functionality. For
example to get the next four [IMM dates](https://en.wikipedia.org/wiki/IMM_dates)
```julia-repl
julia> d = Date(2017,1,1)
julia> collect(Iterators.take(range(d, rd"1MAR+3m+3rd WED"), 4))
4-element Vector{Date}:
2017-03-15
2017-06-21
2017-09-20
2017-12-20
```
"""
struct RDateRange
from::Dates.Date
to::Union{Dates.Date, Nothing}
period::RDate
inc_from::Bool
inc_to::Bool
calendar_mgr::CalendarManager
end
function Base.iterate(iter::RDateRange, state=nothing)
if state === nothing
count = 0
elem = apply(multiply(iter.period, count), iter.from, iter.calendar_mgr)
while elem > iter.from
count -= 1
elem = apply(multiply(iter.period, count), iter.from, iter.calendar_mgr)
end
from_op = iter.inc_from ? Base.:< : Base.:<=
while from_op(elem, iter.from)
count += 1
elem = apply(multiply(iter.period, count), iter.from, iter.calendar_mgr)
end
state = (elem, count)
end
elem, count = state
op = iter.inc_to ? Base.:> : Base.:>=
if iter.to !== nothing && op(elem,iter.to)
return nothing
end
return (elem, (apply(multiply(iter.period, count+1), iter.from, iter.calendar_mgr), count+1))
end
Base.IteratorSize(::Type{RDateRange}) = Base.SizeUnknown()
Base.eltype(::Type{RDateRange}) = Dates.Date
function Base.range(from::Dates.Date, period::RDate; inc_from::Bool=true, cal_mgr::Union{CalendarManager,Nothing}=nothing)
return RDateRange(from, nothing, period, inc_from, false, cal_mgr !== nothing ? cal_mgr : NullCalendarManager())
end
function Base.range(from::Dates.Date, to::Dates.Date, period::RDate; inc_from::Bool=true, inc_to::Bool=true, cal_mgr::Union{CalendarManager,Nothing}=nothing)
return RDateRange(from, to, period, inc_from, inc_to, cal_mgr !== nothing ? cal_mgr : NullCalendarManager())
end
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 5810 | import Dates
"""
HolidayRoundingNBD()
Move to the next business day when a date falls on a holiday.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingNBD()), Date(2021,7,10), cal_mgr)
2021-07-12
julia> apply(rd"0d@WEEKEND[NBD]", Date(2021,7,10), cal_mgr)
2021-07-12
```
"""
struct HolidayRoundingNBD <: HolidayRoundingConvention end
function apply(::HolidayRoundingNBD, date::Dates.Date, calendar::Calendar)::Dates.Date
while is_holiday(calendar, date)
date += Dates.Day(1)
end
date
end
Base.show(io::IO, ::HolidayRoundingNBD) = print(io, "NBD")
"""
HolidayRoundingPBD()
Move to the previous business day when a date falls on a holiday.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingPBD()), Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0d@WEEKEND[PBD]", Date(2021,7,10), cal_mgr)
2021-07-09
```
"""
struct HolidayRoundingPBD <: HolidayRoundingConvention end
function apply(::HolidayRoundingPBD, date::Dates.Date, calendar::Calendar)::Dates.Date
while is_holiday(calendar, date)
date -= Dates.Day(1)
end
date
end
Base.show(io::IO, ::HolidayRoundingPBD) = print(io, "PBD")
"""
HolidayRoundingNBDSM()
Move to the next business day when a date falls on a holiday, unless the adjusted
date would be in the next month, then go the previous business date instead.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingNBDSM()), Date(2021,7,10), cal_mgr)
2021-07-12
julia> apply(rd"0d@WEEKEND[NBDSM]", Date(2021,7,10), cal_mgr)
2021-07-12
julia> apply(rd"0d@WEEKEND[NBDSM]", Date(2021,7,31), cal_mgr)
2021-07-30
```
"""
struct HolidayRoundingNBDSM <: HolidayRoundingConvention end
function apply(::HolidayRoundingNBDSM, date::Dates.Date, calendar::Calendar)::Dates.Date
new_date = date
while is_holiday(calendar, new_date)
new_date += Dates.Day(1)
end
if Dates.month(new_date) != Dates.month(date)
new_date = date
while is_holiday(calendar, new_date)
new_date -= Dates.Day(1)
end
end
new_date
end
Base.show(io::IO, ::HolidayRoundingNBDSM) = print(io, "NBDSM")
"""
HolidayRoundingPBDSM()
Move to the previous business day when a date falls on a holiday, unless the adjusted
date would be in the previous month, then go the next business date instead.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingPBDSM()), Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0d@WEEKEND[PBDSM]", Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0d@WEEKEND[NBDSM]", Date(2021,8,1), cal_mgr)
2021-08-02
```
"""
struct HolidayRoundingPBDSM <: HolidayRoundingConvention end
function apply(::HolidayRoundingPBDSM, date::Dates.Date, calendar::Calendar)::Dates.Date
new_date = date
while is_holiday(calendar, new_date)
new_date -= Dates.Day(1)
end
if Dates.month(new_date) != Dates.month(date)
new_date = date
while is_holiday(calendar, new_date)
new_date += Dates.Day(1)
end
end
new_date
end
Base.show(io::IO, ::HolidayRoundingPBDSM) = print(io, "PBDSM")
"""
HolidayRoundingNR()
No rounding, so just give back the same date even though it's a holiday. Uses
"NR" for short hand.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingNR()), Date(2021,7,10), cal_mgr)
2021-07-10
julia> apply(rd"0d@WEEKEND[NR]", Date(2021,7,10), cal_mgr)
2021-07-10
```
"""
struct HolidayRoundingNR <: HolidayRoundingConvention end
apply(::HolidayRoundingNR, date::Dates.Date, ::Calendar) = date
Base.show(io::IO, ::HolidayRoundingNR) = print(io, "NR")
"""
HolidayRoundingNearest()
Move to the nearest business day, with the next one taking precedence in a tie.
This is commonly used for U.S. calendars which will adjust Sat to Fri and Sun to Mon
for their fixed date holidays.
#### Examples
```julia-repl
julia> cal_mgr = SimpleCalendarManager()
julia> setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
julia> apply(RDates.CalendarAdj("WEEKEND", rd"0d", RDates.HolidayRoundingNearest()), Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0d@WEEKEND[NEAR]", Date(2021,7,10), cal_mgr)
2021-07-09
julia> apply(rd"0d@WEEKEND[NEAR]", Date(2021,7,11), cal_mgr)
2021-07-12
```
"""
struct HolidayRoundingNearest <: HolidayRoundingConvention end
function apply(::HolidayRoundingNearest, date::Dates.Date, cal::Calendar)
is_holiday(cal, date) || return date
count = 0
result = nothing
while result === nothing
up_date = date + Dates.Day(count)
if !is_holiday(cal, up_date)
result = up_date
else
down_date = date - Dates.Day(count)
if !is_holiday(cal, down_date)
result = down_date
end
end
count += 1
end
result
end
Base.show(io::IO, ::HolidayRoundingNearest) = print(io, "NEAR")
const HOLIDAY_ROUNDING_MAPPINGS = Dict(
"NR" => HolidayRoundingNR(),
"NBD" => HolidayRoundingNBD(),
"PBD" => HolidayRoundingPBD(),
"NBDSM" => HolidayRoundingNBDSM(),
"PBDSM" => HolidayRoundingPBDSM(),
"NEAR" => HolidayRoundingNearest()
)
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | code | 15158 | using Test
using RDates
using Dates
using ParserCombinator
cal_mgr = SimpleCalendarManager()
setcalendar!(cal_mgr, "WEEKEND", WeekendCalendar())
setcalendar!(cal_mgr, "WEEK/END", calendar(cal_mgr, "WEEKEND"))
setcalendar!(cal_mgr, "WEEK-END", calendar(cal_mgr, "WEEKEND"))
setcalendar!(cal_mgr, "WEEK END", calendar(cal_mgr, "WEEKEND"))
setcachedcalendar!(cal_mgr, "CACHED WEEKEND", calendar(cal_mgr, "WEEKEND"))
@testset "RDates" verbose=true begin
@testset "Calendar Holidays" begin
@test holidays(calendar(cal_mgr, "WEEKEND"), Date(2021,7,8), Date(2021,7,11)) == Bool[0, 0, 1, 1]
@test holidays(calendar(cal_mgr, "WEEKEND"), Date(2021,7,8), Date(2021,7,9)) == Bool[0, 0]
@test holidaycount(calendar(cal_mgr, "WEEKEND"), Date(2021,7,4), Date(2021,7,20)) == 5
@test bizdaycount(calendar(cal_mgr, "WEEKEND"), Date(2021,7,4), Date(2021,7,20)) == 12
@test holidays(calendar(cal_mgr, "CACHED WEEKEND"), Date(2021,7,8), Date(2021,7,11)) == Bool[0, 0, 1, 1]
@test holidays(calendar(cal_mgr, "CACHED WEEKEND"), Date(2021,7,8), Date(2021,7,9)) == Bool[0, 0]
@test holidaycount(calendar(cal_mgr, "CACHED WEEKEND"), Date(2021,7,4), Date(2021,7,20)) == 5
@test bizdaycount(calendar(cal_mgr, "CACHED WEEKEND"), Date(2021,7,4), Date(2021,7,20)) == 12
@test holidays(calendar(cal_mgr, "CACHED WEEKEND"), Date(2031,1,30), Date(2031,2,3)) == Bool[0, 0, 1, 1, 0]
@test holidays(calendar(cal_mgr, "CACHED WEEKEND"), Date(2011,2,3), Date(2011,2,6)) == Bool[0, 0, 1, 1]
end
@testset "Next and Previous" begin
@test rd"Next(0E, 1E)" + Date(2021,1,1) == Date(2021,4,4)
@test rd"Next(0E, 1E)" + Date(2021,4,3) == Date(2021,4,4)
@test rd"Next(0E, 1E)" + Date(2021,4,4) == Date(2022,4,17)
@test rd"Next!(0E, 1E)" + Date(2021,4,4) == Date(2021,4,4)
@test rd"Next!(0E, 1E)" + Date(2021,4,5) == Date(2022,4,17)
@test rd"Next(0E, -1E)" + Date(2021,1,1) == Date(2021,4,4)
@test_throws ErrorException rd"Next(0E, -1E)" + Date(2021,12,31)
@test rd"Previous(0E, -1E)" + Date(2021,1,1) == Date(2020,4,12)
@test rd"Previous(0E, -1E)" + Date(2020,4,13) == Date(2020,4,12)
@test rd"Previous(0E, -1E)" + Date(2020,4,12) == Date(2019,4,21)
@test rd"Previous!(0E, -1E)" + Date(2020,4,12) == Date(2020,4,12)
@test rd"Previous!(0E, -1E)" + Date(2020,4,11) == Date(2019,4,21)
@test rd"Previous(0E, 1E)" + Date(2021,12,31) == Date(2021,4,4)
@test_throws ErrorException rd"Previous(0E, 1E)" + Date(2021,1,1)
@test -rd"Next(1d)" == rd"Previous(-1d)"
@test rd"-Next(1d)" == rd"Previous(-1d)"
@test -2*rd"Next(1d)" == rd"Previous(-2d)"
@test rd"-2*Next(1d)" == rd"Previous(-2d)"
@test -rd"Previous(-1d)" == rd"Next(1d)"
@test rd"-Previous(-1d)" == rd"Next(1d)"
@test -2*rd"Previous(-1d)" == rd"Next(2d)"
@test rd"-2*Previous(-1d)" == rd"Next(2d)"
end
@testset "Rounding Conventions" begin
@test apply(rd"0d@WEEKEND[NBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEKEND[NBD]", Date(2021,7,11), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEKEND[NBDSM]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEKEND[NBDSM]", Date(2021,7,11), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEKEND[PBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,9)
@test apply(rd"0d@WEEKEND[PBD]", Date(2021,7,11), cal_mgr) == Date(2021,7,9)
@test apply(rd"0d@WEEKEND[PBDSM]", Date(2021,7,10), cal_mgr) == Date(2021,7,9)
@test apply(rd"0d@WEEKEND[PBDSM]", Date(2021,7,11), cal_mgr) == Date(2021,7,9)
@test apply(rd"0d@WEEKEND[NR]", Date(2021,7,10), cal_mgr) == Date(2021,7,10)
@test apply(rd"0d@WEEKEND[NR]", Date(2021,7,11), cal_mgr) == Date(2021,7,11)
@test apply(rd"0d@WEEKEND[NEAR]", Date(2021,7,10), cal_mgr) == Date(2021,7,9)
@test apply(rd"0d@WEEKEND[NEAR]", Date(2021,7,11), cal_mgr) == Date(2021,7,12)
# same month special casing
@test apply(rd"0d@WEEKEND[NBDSM]", Date(2021,7,31), cal_mgr) == Date(2021,7,30)
@test apply(rd"0d@WEEKEND[NBDSM]", Date(2021,8,1), cal_mgr) == Date(2021,8,2)
@test apply(rd"0d@WEEKEND[PBDSM]", Date(2021,7,31), cal_mgr) == Date(2021,7,30)
@test apply(rd"0d@WEEKEND[PBDSM]", Date(2021,8,1), cal_mgr) == Date(2021,8,2)
end
@testset "Calendar Formats" begin
@test apply(rd"0d@WEEKEND[NBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEK/END[NBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEK END[NBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0d@WEEK-END[NBD]", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0b@WEEKEND", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0b@WEEK/END", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0b@WEEK END", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
@test apply(rd"0b@WEEK-END", Date(2021,7,10), cal_mgr) == Date(2021,7,12)
end
@testset "Calendar Adjustments" begin
cal_mgr = RDates.SimpleCalendarManager(Dict("WEEKEND" => RDates.WeekendCalendar()))
@test apply(RDates.CalendarAdj(["WEEKEND"], rd"1d", RDates.HolidayRoundingNBD()), Date(2019,4,16), cal_mgr) == Date(2019,4,17)
@test apply(RDates.CalendarAdj(["WEEKEND"], rd"1d", RDates.HolidayRoundingNBD()), Date(2019,9,27), cal_mgr) == Date(2019,9,30)
@test apply(RDates.CalendarAdj(["WEEKEND"], rd"1d", RDates.HolidayRoundingNBD()), Date(2019,11,29), cal_mgr) == Date(2019,12,2)
@test apply(RDates.CalendarAdj(["WEEKEND"], rd"1d", RDates.HolidayRoundingNBDSM()), Date(2019,11,29), cal_mgr) == Date(2019,11,29)
end
@testset "Business Days" begin
@test apply(rd"0b@WEEKEND", Date(2019,9,28), cal_mgr) == Date(2019,9,30)
@test apply(rd"-0b@WEEKEND", Date(2019,9,28), cal_mgr) == Date(2019,9,27)
@test apply(rd"1b@WEEKEND", Date(2019,9,28), cal_mgr) == Date(2019,10,1)
@test apply(rd"-1b@WEEKEND", Date(2019,9,28), cal_mgr) == Date(2019,9,26)
@test apply(rd"2b@WEEKEND", Date(2019,9,28), cal_mgr) == Date(2019,10,2)
end
@testset "Add Ordering" begin
@test rd"1d" + Date(2019,4,16) == Date(2019,4,17)
@test Date(2019,4,16) + rd"1d" == Date(2019,4,17)
@test rd"1d+2d" == rd"1d" + rd"2d"
@test rd"3*1d" == rd"3d"
end
@testset "Month and Year Conventions" begin
@test RDates.Year(1) + Date(2016,2,29) == Date(2017,2,28)
@test Dates.Year(1) + Date(2016,2,29) == Date(2017,2,28)
@test rd"1y" + Date(2016,2,29) == Date(2017,2,28)
@test RDates.Year(1, RDates.InvalidDayLDOM(), RDates.MonthIncrementPDOM()) + Date(2016,2,29) == Date(2017,2,28)
@test rd"1y[LDOM;PDOM]" + Date(2016,2,29) == Date(2017,2,28)
@test RDates.Year(1, RDates.InvalidDayFDONM(), RDates.MonthIncrementPDOM()) + Date(2016,2,29) == Date(2017,3,1)
@test rd"1y[FDONM;PDOM]" + Date(2016,2,29) == Date(2017,3,1)
@test RDates.Month(1) + Date(2019,1,31) == Date(2019,2,28)
@test Dates.Month(1) + Date(2019,1,31) == Date(2019,2,28)
@test rd"1m" + Date(2019,1,31) == Date(2019,2,28)
@test RDates.Month(1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOM()) + Date(2019,1,31) == Date(2019,3,3)
@test rd"1m[NDONM;PDOM]" + Date(2019,1,31) == Date(2019,3,3)
@test RDates.Month(1, RDates.InvalidDayFDONM(), RDates.MonthIncrementPDOM()) + Date(2019,1,31) == Date(2019,3,1)
@test rd"1m[FDONM;PDOM]" + Date(2019,1,31) == Date(2019,3,1)
@test RDates.Month(1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOMEOM()) + Date(2019,1,31) == Date(2019,2,28)
@test rd"1m[NDONM;PDOMEOM]" + Date(2019,1,31) == Date(2019,2,28)
@test RDates.Month(1, RDates.InvalidDayNDONM(), RDates.MonthIncrementPDOMEOM()) + Date(2019,1,30) == Date(2019,3,2)
@test rd"1m[NDONM;PDOMEOM]" + Date(2019,1,30) == Date(2019,3,2)
# PDOMEOM can also support calendars to work off the last business day of the month
@test apply(rd"3m[LDOM;PDOMEOM@WEEKEND]", Date(2019,8,30), cal_mgr) == Date(2019,11,29)
end
@testset "Parsing Whitespace" begin
@test rd" 1d" == rd"1d"
@test rd"1d + 3d" == rd"1d+3d"
@test rd"--1d" == rd"1d"
end
@testset "Days" begin
@test rd"1d" + Date(2019,4,16) == Date(2019,4,17)
@test rd"1d" + Date(2019,4,30) == Date(2019,5,1)
@test rd"0d" + Date(2015,3,23) == Date(2015,3,23)
@test rd"7d" + Date(2017,10,25) == Date(2017,11,1)
@test rd"-1d" + Date(2014,1,1) == Date(2013,12,31)
end
@testset "Weeks" begin
@test rd"1w" + Date(2019,4,16) == Date(2019,4,23)
@test rd"1w" + Date(2019,4,30) == Date(2019,5,7)
@test rd"0w" + Date(2015,3,23) == Date(2015,3,23)
@test rd"7w" + Date(2017,10,25) == Date(2017,12,13)
@test rd"-1w" + Date(2014,1,1) == Date(2013,12,25)
end
@testset "Months" begin
@test rd"1m" + Date(2019,4,16) == Date(2019,5,16)
@test rd"1m" + Date(2019,4,30) == Date(2019,5,30)
@test rd"0m" + Date(2015,3,23) == Date(2015,3,23)
@test rd"12m" + Date(2017,10,25) == Date(2018,10,25)
@test rd"-1m" + Date(2014,1,1) == Date(2013,12,1)
end
@testset "Years" begin
@test rd"1y" + Date(2019,4,16) == Date(2020,4,16)
@test rd"1y" + Date(2019,4,30) == Date(2020,4,30)
@test rd"0m" + Date(2015,3,23) == Date(2015,3,23)
@test rd"12y" + Date(2017,10,25) == Date(2029,10,25)
@test rd"-1y" + Date(2014,1,1) == Date(2013,1,1)
end
@testset "Day Months" begin
@test rd"12MAR" + Date(2018,3,3) == Date(2018,3,12)
@test rd"1JAN" + Date(2019,12,31) == Date(2019,1,1)
@test rd"1JAN" + Date(2020,1,1) == Date(2020,1,1)
end
@testset "Easters" begin
@test rd"0E" + Date(2018,3,3) == Date(2018,4,1)
@test rd"0E" + Date(2018,12,3) == Date(2018,4,1)
@test rd"1E" + Date(2018,3,3) == Date(2019,4,21)
@test rd"-1E" + Date(2018,3,3) == Date(2017,4,16)
end
@testset "Weekdays" begin
@test rd"1MON" + Date(2017,10,25) == Date(2017,10,30)
@test rd"10SAT" + Date(2017,10,25) == Date(2017,12,30)
@test rd"-1WED" + Date(2017,10,25) == Date(2017,10,18)
@test rd"-10FRI" + Date(2017,10,25) == Date(2017,8,18)
@test rd"-1TUE" + Date(2017,10,25) == Date(2017,10,24)
end
@testset "Dates" begin
@test rd"1JAN2019" + Date(2017,10,25) == Date(2019,1,1)
@test RDates.Date(Date(2019,1,1)) + Date(2017,10,25) == Date(2019,1,1)
end
@testset "Non Supported Negations" begin
@test rd"1d" - rd"1st MON" == rd"1d" + rd"1st MON"
end
@testset "Nth Weekdays" begin
@test rd"1st MON" + Date(2017,10,25) == Date(2017,10,2)
@test rd"2nd FRI" + Date(2017,10,25) == Date(2017,10,13)
@test rd"4th SAT" + Date(2017,11,25) == Date(2017,11,25)
@test rd"5th SUN" + Date(2017,12,25) == Date(2017,12,31)
end
@testset "Nth Last Weekdays" begin
@test rd"Last MON" + Date(2017,10,24) == Date(2017,10,30)
@test rd"2nd Last FRI" + Date(2017,10,24) == Date(2017,10,20)
@test rd"5th Last SUN" + Date(2017,12,24) == Date(2017,12,3)
end
@testset "Bad Nth Weekdays" begin
@test_throws ArgumentError rd"5th WED" + Date(2017,10,25)
@test_throws ArgumentError rd"5th MON" + Date(2017,6,1)
end
@testset "First/Last Day of Month" begin
@test rd"FDOM" + Date(2017,10,25) == Date(2017,10,1)
@test rd"LDOM" + Date(2017,10,25) == Date(2017,10,31)
# FDOM and LDOM can support calendars as well.
@test apply(rd"FDOM@WEEKEND", Date(2019,9,25), cal_mgr) == Date(2019,9,2)
@test apply(rd"LDOM@WEEKEND", Date(2019,8,25), cal_mgr) == Date(2019,8,30)
end
@testset "Basic Compounds" begin
@test rd"1d+1d" + Date(2017,10,26) == Date(2017,10,28)
@test rd"2*1d" + Date(2017,10,26) == Date(2017,10,28)
@test rd"1d+1d+1d+1d" + Date(2017,10,26) == Date(2017,10,30)
@test rd"4*1d" + Date(2017,10,26) == Date(2017,10,30)
@test rd"2*2d" + Date(2017,10,26) == Date(2017,10,30)
@test rd"1d-1d+1d-1d" + Date(2017,10,26) == Date(2017,10,26)
@test rd"2*3d+1d" + Date(2019,4,16) == Date(2019,4,23)
@test rd"2*(3d+1d)" + Date(2019,4,16) == Date(2019,4,24)
@test rd"2d-1E" + Date(2019,4,16) == Date(2018,4,1)
@test rd"1d" - rd"2*1d" + Date(2019,5,1) == Date(2019,4,30)
@test RDates.multiply(rd"1d", 3) + Date(2017,4,14) == Date(2017,4,17)
end
@testset "Roll vs No-Roll Multiplication" begin
# If we apply each 1m addition individually, then invalid days in Feb kicks in.
@test rd"1m+1m" + Date(2019,1,31) == Date(2019,3,28)
@test rd"2*Repeat(1m)" + Date(2019,1,31) == Date(2019,3,28)
# Normal multiplication will embed this in the period instead.
@test rd"2m" + Date(2019,1,31) == Date(2019,3,31)
@test rd"2*1m" + Date(2019,1,31) == Date(2019,3,31)
end
@testset "Ranges" begin
@test collect(range(Date(2017,1,1), Date(2017,1,3), rd"1d")) == [Date(2017,1,1), Date(2017,1,2), Date(2017,1,3)]
@test collect(range(Date(2017,1,1), Date(2017,1,3), rd"2d")) == [Date(2017,1,1), Date(2017,1,3)]
@test collect(range(Date(2017,1,1), Date(2017,1,18), rd"1d+1w")) == [Date(2017,1,1), Date(2017,1,9), Date(2017,1,17)]
@test collect(range(Date(2017,1,1), Date(2017,1,3), rd"1d", inc_from=false)) == [Date(2017,1,2), Date(2017,1,3)]
@test collect(range(Date(2017,1,1), Date(2017,1,3), rd"1d", inc_to=false)) == [Date(2017,1,1), Date(2017,1,2)]
@test collect(range(Date(2017,1,1), Date(2017,1,3), rd"1d", inc_from=false, inc_to=false)) == [Date(2017,1,2)]
@test collect(range(Date(2017,1,1), Date(2018,1,1), rd"1DEC2017 + 3m + 3rd WED")) == [Date(2017,3,15), Date(2017,6,21), Date(2017,9,20), Date(2017,12,20)]
end
@testset "Parsing Methods" begin
@test rdate("1d") == rd"1d"
@test rdate("3*2d") == rd"3*2d"
@test rd"3*2d" == 3*rd"2d"
end
@testset "Failed Parsing" begin
@test_throws ParserCombinator.ParserException rdate("1*2")
@test_throws ParserCombinator.ParserException rdate("1dw")
@test_throws ParserCombinator.ParserException rdate("+2d")
@test_throws ParserCombinator.ParserException rdate("2d+")
@test_throws ParserCombinator.ParserException rdate("d")
end
@testset "String Forms" begin
@test string(rd"1d") == "1d"
@test string(rd"3d + 2w") == "17d"
@test string(rd"2*(1m + 1y)") == "2m[LDOM;PDOM]+2y[LDOM;PDOM]"
@test string(rd"2*Repeat(1m)") == "2*Repeat(1m[LDOM;PDOM])"
@test string(rd"1m[LDOM;PDOMEOM@A]@B[NBD]") == "(1m[LDOM;PDOMEOM@A])@B[NBD]"
@test string(rd"(1m+2d)@A[PBD]") == "(1m[LDOM;PDOM]+2d)@A[PBD]"
end
end
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 2050 | # RDates
*A relative date library for Julia*
| **Documentation** | **Build Status** |
|:-------------------------------------------------------------------------:|:-------------------------------------------------------------:|
| [![][docs-stable-img]][docs-stable-url] [![][docs-latest-img]][docs-latest-url] | [![][travis-img]][travis-url] [![][codecov-img]][codecov-url] |
This is a project that builds around the [Dates](https://docs.julialang.org/en/v1/stdlib/Dates/) module to allow complex date operations.
The aim is to provide a standard toolset to allow you to answer questions such as *when is the next Easter* or *what is the 3rd Wednesday of March next year?*
## Package Features ##
- A generic, extendable algebra for date operations with a rich set of primitives.
- A composable design to allow complex combinations of relative date operations.
- An extendable parsing library to provide a language to describe relative dates.
- An interface for integrating holiday calendar systems.
## Installation
RDates can be installed using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run
```julia-repl
pkg> add RDates
```
At this point you can now start using RDates in your current Julia session using the following command
```julia-repl
julia> using RDates
```
[docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg
[docs-latest-url]: https://infinitechai.github.io/RDates.jl/latest
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://infinitechai.github.io/RDates.jl/stable
[travis-img]: https://travis-ci.com/InfiniteChai/RDates.jl.svg?branch=master
[travis-url]: https://travis-ci.com/InfiniteChai/RDates.jl
[codecov-img]: https://codecov.io/gh/InfiniteChai/RDates.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/InfiniteChai/RDates.jl
[issues-url]: https://github.com/JuliaDocs/Documenter.jl/issues
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 2772 | # Business Days
Up to now we have dealt with date operations that do not take into consideration one of the key features, holidays. Whether its working around weekends or the UK's bank holidays, operations involving holidays (or equivalently *business days*) is essential.
As such the RDate package provides the construct to allow you to work with holiday calendars, without tying you to a specific implementation.
!!! note
`RDates` will never provide an explicit implementation of the calendar system, but do check out
[HolidayCalendars](https://github.com/InfiniteChai/HolidayCalendars.jl) which will get released soon
which builds rule-based calendar systems.
Before we walk through how this is integrated into the RDate language, we'll look at how calendars are modelled.
## Calendars
A calendar defines whether a given day is a holiday. To implement a calendar you need to inherit from `RDates.Calendar` and define the following methods.
```@docs
RDates.is_holiday
RDates.holidays
```
Calendars also come with a number of helpful wrapper methods
```@docs
RDates.holidaycount
RDates.bizdaycount
```
RDate provides some primitive calendar implementations to get started with
```@docs
RDates.NullCalendar
RDates.WeekendCalendar
RDates.JointCalendar
RDates.CachedCalendar
```
## Calendar Manager
To access calendars within the relative date library, we use a calendar manager. It provides the interface to access calendars based on their name, a string identifier.
A calendar manager must inherit from `RDates.CalendarManager` and implement the following
```@docs
calendar(::RDates.CalendarManager, ::Vector)
```
RDates provides some primitive calendar manager implementations to get started with
```@docs
RDates.NullCalendarManager
RDates.SimpleCalendarManager
```
When you just add a `Date` and an `RDate` then we'll use the `NullCalendarManager()` by
default. To pass a calendar manager to the rdate when it's been applied, use the `apply` function.
```@docs
RDates.apply
```
## Calendar Adjustments
Now that we have a way for checking whether a given day is a holiday and can use your calendar manager, let's introduce calendar adjustments.
These allow us to apply a holiday calendar adjustment, after a base rdate has been applied. To support this we need to introduce the concept of *Holiday Rounding*.
### Holiday Rounding Convention
The holiday rounding convention provides the details on what to do if we fall on a holiday.
```@docs
RDates.HolidayRoundingNBD
RDates.HolidayRoundingPBD
RDates.HolidayRoundingNBDSM
RDates.HolidayRoundingPBDSM
RDates.HolidayRoundingNR
RDates.HolidayRoundingNearest
```
Now we have everything we need to define calendar adjustments and business days
```@docs
RDates.CalendarAdj
RDates.BizDays
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 2811 | # Combinations
One of the key features of RDates is to allow us to combine primitive operations to provide a generalised method to describe date adjustments.
## Negation
All our primitive operations provide a negative operation, which is achieved by applying the `-` operator
to the `RDate`.
```julia-repl
julia> Date(2019,1,1) - RDates.Day(1)
2018-12-31
julia> -RDates.Week(3) + Date(2019,1,1)
2018-12-11
```
!!! note
While all our RDates support negation, they may not have an effect and will just return itself.
```julia-repl
julia> -rd"1st WED" == rd"1st WED"
true
```
## Addition
All RDates can be combined together via addition. The components are applied from left to right.
```julia-repl
julia> rd"1d + 1y" + Date(2019,1,1)
2020-01-02
julia> rd"1MAR + 3rd WED" + Date(2019,1,1)
2019-03-20
```
!!! note
Where possible, addition operations may be optimised to reduce down to simpler state. This will
always be done in a way in which we maintain the expected behaviour.
```julia-repl
julia> rd"1d + 1d" == rd"2d"
true
```
!!! warning
The alegbra of month addition is not always straight forward. Make sure you're clear on exactly what you want to achieve.
```julia-repl
julia> rd"2m" + Date(2019,1,31)
2019-03-31
julia> rd"1m + 1m" + Date(2019,1,31)
2019-03-28
```
## Multiplication and Repeats
Every RDate supports multiplication and this will usually multiply it's underlying count. For most primitives
this is completely understandable due to the inherent link between addition and multiplication.
```julia-repl
julia> RDates.Day(2) * 5
10d
julia> RDates.Week(2) * -5
-10w
```
For RDates which do not have a natural count then the multiplication will just return itself
```julia-repl
julia> 10 * RDates.NthWeekdays(:MON, 1)
1st MON
```
However when we come to handling months (and by extension years, though in rarer cases) we need to
be more careful. We set a convention that multiplication is equivalent to multiplication of the internal
count and so we won't get the same result as adding it n times.
```julia-repl
julia> 2 * RDates.Month(1)
2m[LDOM;PDOM]
julia> rd"2 * 1m"
2m[LDOM;PDOM]
julia> 2 * RDates.Month(1) + Date(2019,1,31)
2019-03-31
julia> RDates.Month(1) + RDates.Month(1) + Date(2019,1,31)
2019-03-28
```
It may be though that you want that handling and so we introduce the `Repeat` operator to support that.
This operator will repeat the application of the internalised rdate, rather than passing the multiplier
through.
```julia-repl
julia> 2 * RDates.Repeat(RDates.Month(1))
2*Repeat(1m[PDOM;LDOM])
julia> 2 * RDates.Repeat(RDates.Month(1)) + Date(2019,1,31)
2019-03-28
julia> rd"2*Repeat(1m)" + Date(2019,1,31)
2019-03-28
```
## Other Operators
```@docs
RDates.Next
RDates.Previous
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 1518 | # Introduction
*A relative date library for Julia*
This is a project that builds around the [Dates](https://docs.julialang.org/en/v1/stdlib/Dates/) module to allow complex date arithmetic.
The aim is to provide a standard toolset to allow you to answer questions such as *when is the next Easter* or *what are the next 4 [IMM](https://en.wikipedia.org/wiki/IMM_dates) dates from today?*
## Package Features ##
- A generic, extendable algebra for date operations with a rich set of primitives.
- A composable design to allow complex combinations of relative date operations.
- An extendable parsing library to provide a language to describe relative dates.
- An interface for integrating holiday calendar systems.
## Installation
RDates can be installed using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run
```julia-repl
pkg> add RDates
```
At this point you can now start using RDates in your current Julia session using the following command
```julia-repl
julia> using RDates
```
## Answering Those Questions
So while the documentation will provide the details, let's see a quick start on how it works
- When is the next Easter?
```julia-repl
julia> rd"Next(0E,1E)" + Date(2021,7,12)
2022-04-17
```
- What are the next 4 [IMM](https://en.wikipedia.org/wiki/IMM_dates) dates?
```julia-repl
julia> d = Date(2021,7,12)
julia> collect(Iterators.take(range(d, rd"1MAR+3m+3rd WED"), 4))
4-element Vector{Date}:
2021-09-15
2021-12-15
2022-03-16
2022-06-15
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 1208 | # Months and Years
Adding months to a date is a surprisingly complex operation and so we've created a
dedicated page to go through the details. For example
- What should happen if I add one month to the 31st January?
- Should adding one month to the 30th April maintain the end of month?
Years are less complex, but still suffer from the same edge case due to leap years
and the 29th February. As such, we incorporate the same conventions.
To give us the level of flexibility, we need to introduce two conventions to support
us.
## Month Increment Convention
When we add a month to a date, we need to determine what we should do with the day. Most of the
time we'll maintain the same day, but sometimes we may want to maintain the last day of the month,
which is a common feature in financial contracts.
```@docs
RDates.MonthIncrementPDOM
RDates.MonthIncrementPDOMEOM
```
## Invalid Day Convention
The next convention we need is what to do if our increment leaves us on an invalid day of the month.
```@docs
RDates.InvalidDayLDOM
RDates.InvalidDayFDONM
RDates.InvalidDayNDONM
```
We now have all the conventions we need to handle month and year adjustments
```@docs
RDates.Month
RDates.Year
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 607 | # Primitives
RDates is designed to allow complex date operations to be completed using basic primitive types. Each of these primitive types and operations are explained in more detail in subsequent sections.
We now go through each of the primitive types, from which we can combine together using compounding operations. Also take note of the examples and the associated short-hand that we can use to define them
with the `rd""` macro.
```@docs
RDates.Day
RDates.Week
RDates.FDOM
RDates.LDOM
RDates.Easter
RDates.DayMonth
RDates.Date
RDates.NthWeekdays
RDates.NthLastWeekdays
RDates.Weekdays
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.5.1 | 62bf589fb964a59f52cca21acb9562a5fc587fdb | docs | 41 | # Ranges
```@docs
RDates.RDateRange
```
| RDates | https://github.com/InfiniteChai/RDates.jl.git |
|
[
"MIT"
] | 0.2.0 | fe65c9d5b0c46c99cffd64c30ad332440c8b8c42 | code | 11965 | module SimplePolynomialRing
using SparseArrays
import Primes: isprime, factor
import Base: (+), (-), (*), (^), (÷), (%), (/)
include("tools.jl")
"""
Pℤ{P, X}
Polynomial of ℤₚ[X].
# Examples
```jldoctest
julia> a = Pℤ{3, :x}(:(1 + x + 2x^2))
1 + x + 2x^2
julia> b = Pℤ{3, :x}("1 + x + 2x^2")
1 + x + 2x^2
julia> c = Pℤ{3}(2)
2
julia> d = Pℤ{3}(5)
2
julia> e = Pℤ₂([1,0,0,1,1,0,1])
1 + x^3 + x^4 + x^6
```
"""
struct Pℤ{P,X}
coeffs::SparseVector{Int,Int}
function Pℤ{P,X}(coeffs::SparseVector{Int,Int}) where {P,X}
(typeof(P) != Int || P < 2) && throw("`P` must be natural number")
typeof(X) != Symbol && throw("`X` must be Symbol")
for d in coeffs.nzind
if coeffs[d] < 0
while coeffs[d] < 0
coeffs[d] += P
end
else
coeffs[d] %= P
end
end
dropzeros!(coeffs)
# coeffs = sparsevec(coeffs.nzind, coeffs.nzval)
# coeffs = length(coeffs.nzind)==0 ? sparsevec([0]) : coeffs
new{P,X}(coeffs)
end
function Pℤ{P,X}(coeffs::Vector{Int}) where {P,X}
coeffs = sparsevec(coeffs)
Pℤ{P,X}(coeffs)
end
function Pℤ{P,X}(poly::Int) where {P,X}
Pℤ{P,X}(sparsevec([(poly + P) % P]))
end
function Pℤ{P,X}(poly::Symbol) where {P,X}
Pℤ{P,poly}(sparsevec([0, 1]))
end
function Pℤ{P,X}(poly::Expr) where {P,X}
(typeof(P) != Int || P < 2) && throw("`P` must be natural number")
typeof(X) != Symbol && throw("`X` must be Symbol")
coeffs = Dict{Int,Int}()
if length(poly.args) == 0
coeffs[1] = 0
elseif poly.args[1] == :+
for arg in poly.args[2:end]
if typeof(arg) == Int
coeffs[1] = arg
elseif typeof(arg) == Symbol
coeffs[2] = 1
elseif typeof(arg) == Expr
inner = arg.args[2:end]
if typeof.(inner) == [Symbol, Int]
coeffs[inner[2]+1] = 1
elseif typeof.(inner) == [Int, Expr]
coeffs[inner[2].args[3]+1] = inner[1]
elseif typeof.(inner) == [Int, Symbol]
coeffs[2] = inner[1]
end
end
end
elseif poly.args[1] == :^
coeffs[poly.args[end]+1] = 1
elseif poly.args[1] == :*
if typeof(poly.args[end]) == Expr
coeffs[poly.args[end].args[3]+1] = poly.args[2]
elseif typeof(poly.args[end]) == Symbol
coeffs[2] = poly.args[2]
end
end
Pℤ{P,X}(coeffs |> sparsevec)
end
function Pℤ{P,X}(poly::String) where {P,X}
Pℤ{P,X}(poly |> Meta.parse)
end
Pℤ{P}(poly::Union{Expr,String,Int,Symbol,Vector{Int}}) where {P} = Pℤ{P,:x}(poly)
end
Base.one(::Pℤ{P,X}) where {P,X} = Pℤ{P,X}(1)
Base.zero(::Pℤ{P,X}) where {P,X} = Pℤ{P,X}(0)
Base.one(::Type{Pℤ{P,X}}) where {P,X} = Pℤ{P,X}(1)
Base.zero(::Type{Pℤ{P,X}}) where {P,X} = Pℤ{P,X}(0)
function Base.getproperty(p::Pℤ{P,X}, name::Symbol) where {P,X}
if name == :P
return P
elseif name == :X
return X
else
return getfield(p, name)
end
end
Base.copy(p::Pℤ{P,X}) where {P,X} = Pℤ{P,X}(p.coeffs)
Base.hash(p::Pℤ{P,X}, h::UInt) where {P,X} = hash((p.coeffs, p.P, p.X), h)
"""
degree(p::Pℤ)
Return the degree of the polynomial `p`.
"""
degree(p::Pℤ{P,X}) where {P,X} = length(p.coeffs.nzind) == 0 ? 0 : (p.coeffs.nzind |> maximum) - 1
import Base: (==), (!=)
Base.isequal(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X} = left.coeffs.nzind == right.coeffs.nzind && left.coeffs.nzval == right.coeffs.nzval
(==)(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X} = isequal(left, right)
(==)(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(==, v, p)
(==)(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(==, p, v)
Base.Vector(p::Pℤ{P,X}) where {P,X} = length(p.coeffs.nzind) == 0 ? [0] :
let v = zeros(Int, maximum(p.coeffs.nzind[p.coeffs.nzval.!=0]))
v[p.coeffs.nzind[p.coeffs.nzval.!=0]] .= p.coeffs.nzval[p.coeffs.nzval.!=0]
return v
end
function Base.unique(v::Vector{Pℤ{P,X}}) where {P,X}
uv = []
while length(v) > 0
push!(uv, v[1])
v = v[.!(v == v[1])]
end
sort!(uv, by=x -> degree(x))
end
Base.Symbol(p::Pℤ) = Symbol(string(p))
Base.size(::Pℤ) = ()
Base.getindex(p::Pℤ, i) = p
Base.Broadcast.broadcastable(p::Pℤ) = Ref(p)
function Base.show(io::IO, p::Pℤ{P,X}) where {P,X}
degrees = p.coeffs.nzind
if length(degrees) == 0
return print(io, "0")
end
p_str = ""
for i in 1:length(degrees)-1
if degrees[i] == 1 # x ^ 0
p_str *= "$(p.coeffs[1])"
elseif degrees[i] == 2 # x ^ 1
if p.coeffs[2] != 1
p_str *= "$(p.coeffs[2])"
end
p_str *= String(X)
else
if p.coeffs[degrees[i]] != 1
p_str *= "$(p.coeffs[degrees[i]])"
end
p_str *= String(X) * "^$(degrees[i]-1)"
end
p_str *= " + "
end
if degrees[end] == 1
p_str *= "$(p.coeffs[1])"
elseif degrees[end] == 2 # x ^ 1
if p.coeffs[2] != 1
p_str *= "$(p.coeffs[2])"
end
p_str *= String(X)
else
if p.coeffs[degrees[end]] != 1
p_str *= "$(p.coeffs[degrees[end]])"
end
p_str *= String(X) * "^$(degrees[end]-1)"
end
print(io, p_str)
end
function +(left::Pℤ{P,X}, right::Pℤ{P,X})::Pℤ{P,X} where {P,X}
left_length = left.coeffs |> length
right_length = right.coeffs |> length
ans_length = max(left_length, right_length)
Pℤ{P,X}(
[left.coeffs; spzeros(Int, ans_length - left_length)] +
[right.coeffs; spzeros(Int, ans_length - right_length)]
)
end
function -(left::Pℤ{P,X}, right::Pℤ{P,X})::Pℤ{P,X} where {P,X}
left_length = left.coeffs |> length
right_length = right.coeffs |> length
ans_length = max(left_length, right_length)
Pℤ{P,X}(
[left.coeffs; spzeros(Int, ans_length - left_length)] -
[right.coeffs; spzeros(Int, ans_length - right_length)]
)
end
(*)(left::Pℤ{P,X}, right::Int) where {P,X} = degree(left) == 0 ? left : Pℤ{P,X}(left.coeffs .* right)
(*)(left::Int, right::Pℤ{P,X}) where {P,X} = right * left
function *(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X}
left_degrees = left.coeffs.nzind
right_degrees = right.coeffs.nzind
coeffs = spzeros(Int, degree(left) + degree(right) + 1)
for ld in left_degrees
for rd in right_degrees
coeffs[ld+rd-1] +=
left.coeffs[ld] * right.coeffs[rd]
end
end
Pℤ{P,X}(coeffs)
end
(^)(left::Pℤ{P,X}, right::Int) where {P,X} = Base.power_by_squaring(left, right)
function ÷(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X}
div = Pℤ{P,X}(:())
rc = right.coeffs[degree(right)+1]
while degree(left) >= degree(right) && left != Pℤ{P,X}(:())
c = 1
while c * rc % P != left.coeffs[degree(left)+1]
c += 1
end
div += Pℤ{P,X}("$(c)$(X)^$(degree(left)-degree(right))")
left -= right * Pℤ{P,X}("$(c)$(X)^$(degree(left)-degree(right))")
end
(div, left)
end
function /(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X}
return ÷(left, right)[1]
end
function %(left::Pℤ{P,X}, right::Pℤ{P,X}) where {P,X}
return ÷(left, right)[2]
end
+(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(+, v, p)
+(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(+, p, v)
-(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(-, v, p)
-(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(-, p, v)
*(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(*, v, p)
*(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(*, p, v)
*(v::Vector{Pℤ{P,X}}, n::Int) where {P,X} = broadcast(*, v, n)
^(v::Vector{Pℤ{P,X}}, n::Int) where {P,X} = broadcast(^, v, n)
%(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(%, v, p)
%(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(%, p, v)
/(v::Vector{Pℤ{P,X}}, p::Pℤ{P,X}) where {P,X} = broadcast(/, v, p)
/(p::Pℤ{P,X}, v::Vector{Pℤ{P,X}}) where {P,X} = broadcast(/, p, v)
"""
gcdx(a::Pℤ{P,X}, b::Pℤ{P,X})
Computes the greatest common divisor of `a` and `b` and their Bézout coefficients, i.e. the polynomials `u` and `v` that satisfy `ua+vb = d = gcd(a, b)`. `gcdx(a, b) returns `(d, u, v)`.
"""
function Base.gcdx(a::Pℤ{P,X}, b::Pℤ{P,X}) where {P,X}
if a == Pℤ{P,X}(0)
return b, Pℤ{P,X}(0), Pℤ{P,X}(1)
end
d, x₁, y₁ = gcdx(b % a, a)
return d, y₁ - (b / a) * x₁, x₁
end
# Factorization
struct PℤGenerator{P,X}
a::UnitRange
t::Int
function PℤGenerator{P,X}(n::Int) where {P,X}
(typeof(P) != Int || P < 2) && throw("`P` must be natural number")
typeof(X) != Symbol && throw("`X` must be Symbol")
n < 0 && throw("`n` (degree of polynomial) must be non negative number")
new{P,X}(0:(P-1), n + 1)
end
end
Base.eltype(::Type{PℤGenerator{P,X}}) where {P,X} = Pℤ{P,X}
Base.length(p::PℤGenerator) = p.t == 1 ? length(p.a) : length(p.a)^(p.t) - length(p.a)^(p.t - 1)
function Base.iterate(p::PℤGenerator{P,X}, s=[ones(Int, p.t - 1); [1, 2][Int(p.t != 1)+1]]) where {P,X}
(!isempty(s) && s[end] > length(p.a) || p.t < 0) && return
perm = p.a[s]
s[1] += 1
i = 1
while i < length(s) && s[i] > length(p.a)
s[i] = 1
s[i+1] += 1
i += 1
end
(Pℤ{P,X}(perm), s)
end
"""
generate(n::Int, p::Int; x::Symbol=:x)
Generates all the polynomials over ℤₚ up to degree `n`.
"""
function generate(n::Int, p::Int; x::Symbol=:x)
n < 0 && throw("`n` (degree of polynomial) must be non negative number")
p < 1 && throw("`p` must be natural number")
n == 0 ? Pℤ{p,x}.(0:(p-1)) : Pℤ{p,x}.(Permutations(0:(p-1), n + 1))
end
"""
primes(n::Int, p::Int; x::Symbol=:x)
Returns a collection of the prime polynomials over ℤₚ up to degree `n`.
"""
function primes(n::Int, p::Int; x::Symbol=:x)
!isprime(p) && throw("`p` must be prime number")
ZERO = Pℤ{p,x}(0)
primes_list = generate(1, p, x=x) |> collect
for i in 2:n
gen_list = generate(i, p, x=x) |> collect
append!(primes_list, gen_list[sum([
gen_list % primes_list[j] == ZERO
for j in 1:round(Int, length(primes_list) / 2)
]).==0])
end
primes_list
end
"""
factor(p::Pℤ)
Compute the prime factorization of a polynomial `p`.
"""
function factor(p::Pℤ{P,X}) where {P,X}
(p == Pℤ{P,X}(1) || p == Pℤ{P,X}(0)) && return Dict(p => 1)
!isprime(P) && throw("`P` must be prime number")
ZERO = Pℤ{P,X}(0)
rainbow = primes(round(Int, degree(p) / 2), P; x=X)
factorization = Dict{Pℤ{P,X},Int}()
for r in rainbow
if p % r == ZERO
factorization[r] = 0
while p % r == ZERO
factorization[r] += 1
p = p / r
end
end
end
if p != Pℤ{P,X}(1)
factorization[p] = 1
end
factorization
end
"""
isprime(p::Pℤ) -> Bool
Returns `true` if polynomial `p` is prime, and `false` otherwise.
"""
isprime(p::Pℤ) = length(factor(p)) == 1
"""
irreducible(n::Int, p::Int; x::Symbol=:x)
Generates irreducible polynomials over ℤₚ of degree `n`.
"""
function irreducible(n::Int, p::Int; x::Symbol=:x)
n < 1 && throw("`n` (degree of polynomial) must be natural number")
p < 1 && throw("`p` must be natural number")
!isprime(p) && throw("`p` must be prime number")
filter(
p -> degree(p) == n,
primes(n, p; x=x)
)
end
"""
Pℤ₂
Alias for Pℤ{2, :x}
"""
Pℤ₂ = Pℤ{2}
export Pℤ, Pℤ₂, degree, generate, irreducible, primes, factor, isprime
end # module PolynomialRing
| SimplePolynomialRing | https://github.com/Scurrra/SimplePolynomialRing.jl.git |
|
[
"MIT"
] | 0.2.0 | fe65c9d5b0c46c99cffd64c30ad332440c8b8c42 | code | 554 | # Combinatorics
"""
Permutations{T}(a, t)
Returns permutations except that has first element of `a` at the end
"""
struct Permutations{T}
a::T
t::Int
end
Base.eltype(::Type{Permutations{T}}) where {T} = Vector{eltype(T)}
Base.length(p::Permutations) = length(p.a)^(p.t) - length(p.a)^(p.t-1)
function Base.iterate(p::Permutations, s=[ones(Int, p.t-1); 2])
(!isempty(s) && s[end] > length(p.a) || p.t < 0) && return
perm = p.a[s]
s[1] += 1
i = 1
while i < length(s) && s[i] > length(p.a)
s[i] = 1
s[i+1] += 1
i += 1
end
(perm, s)
end | SimplePolynomialRing | https://github.com/Scurrra/SimplePolynomialRing.jl.git |
|
[
"MIT"
] | 0.2.0 | fe65c9d5b0c46c99cffd64c30ad332440c8b8c42 | docs | 3045 | # Simple Polynomial Ring
[](https://juliahub.com/docs/SimplePolynomialRing/uWGaY)
Polynomial ring realization.
## Installation
```julia
(v1.8) pkg> add SimplePolynomialRing
```
This package supports Julia 1.8 and later.
## Usage
```julia
julia> using SimplePolynomialRing
```
## Construction
Polynomial could be constructed from Julia Expr or String.
```julia
julia> a = Pℤ{3, :x}(:(1 + x + 2x^2))
1 + x + 2x^2
julia> b = Pℤ{3, :x}("1 + x + 2x^2")
1 + x + 2x^2
```
As polynom's coefficients are modulo `P`, then the following polynomials are the same.
```julia
julia> c = Pℤ{3}(2)
2
julia> d = Pℤ{3}(5)
2
julia> c == d
true
```
```julia
julia> e = Pℤ₂([1,0,0,1,1,0,1]) # alias for `Pℤ{2, :x}`
1 + x^3 + x^4 + x^6
```
## Arithmetic
Operaions with two polynomials.
```julia
julia> p = Pℤ{3, :x}(:(1 + 2x + x^3 + 2x^5))
1 + 2x + x^3 + 2x^5
julia> q = Pℤ{3, :x}(:(1 + x + 2x^2))
1 + x + 2x^2
julia> p + q
2 + 2x^2 + x^3 + 2x^5
julia> p - q
x + x^2 + x^3 + 2x^5
julia> p * q
1 + x^2 + 2x^3 + x^4 + x^5 + 2x^6 + x^7
julia> p ÷ q
(2 + x + x^2 + x^3, 2 + 2x)
julia> p / q
2 + x + x^2 + x^3
julia> p % q
2 + 2x
```
Operations with a polynomial and a number.
```julia
julia> p = Pℤ{3, :x}(:(1 + 2x + x^3 + 2x^5))
1 + 2x + x^3 + 2x^5
julia> p * 5
2 + x + 2x^3 + x^5
julia> p ^ 5
1 + x + x^2 + x^3 + x^6 + 2x^7 + x^9 + 2x^10 + 2x^12 + x^14 + 2x^15 + 2x^16 + x^18 + 2x^20 + 2x^23 + 2x^25
```
## Some useful functions on polynomials
Extended GCD.
```julia
julia> p = Pℤ{3, :x}(:(1 + 2x + x^3 + 2x^5))
1 + 2x + x^3 + 2x^5
julia> q = Pℤ{3, :x}(:(1 + x + 2x^2))
1 + x + 2x^2
julia> gcdx(p, q)
(2, 2 + 2x, 2x^2 + 2x^3 + x^4)
```
Factorization and primality test.
```julia
julia> p = Pℤ{3, :x}(:(1 + 2x + x^3 + 2x^5))
1 + 2x + x^3 + 2x^5
julia> isprime(p)
false
julia> factor(p)
Dict{Pℤ{3, :x}, Int64} with 2 entries:
2 + x => 2
1 + x + x^2 + 2x^3 => 1
```
Polynomial generation: all possible and prime.
```julia
julia> generate(3, 3)
54-element Vector{Pℤ{3, :x}}:
x^3
1 + x^3
2 + x^3
x + x^3
1 + x + x^3
2 + x + x^3
2x + x^3
1 + 2x + x^3
2 + 2x + x^3
x^2 + x^3
1 + x^2 + x^3
⋮
2 + 2x + x^2 + 2x^3
2x^2 + 2x^3
1 + 2x^2 + 2x^3
2 + 2x^2 + 2x^3
x + 2x^2 + 2x^3
1 + x + 2x^2 + 2x^3
2 + x + 2x^2 + 2x^3
2x + 2x^2 + 2x^3
1 + 2x + 2x^2 + 2x^3
2 + 2x + 2x^2 + 2x^3
julia> primes(3, 3)
28-element Vector{Pℤ{3, :x}}:
x
1 + x
2 + x
2x
1 + 2x
2 + 2x
1 + x^2
2 + x + x^2
2 + 2x + x^2
2 + 2x^2
1 + x + 2x^2
⋮
1 + x + 2x^2 + x^3
2 + 2x + 2x^2 + x^3
1 + x + 2x^3
2 + x + 2x^3
2 + x^2 + 2x^3
1 + x + x^2 + 2x^3
2 + 2x + x^2 + 2x^3
1 + 2x^2 + 2x^3
2 + x + 2x^2 + 2x^3
1 + 2x + 2x^2 + 2x^3
julia> irreducible(3, 3)
16-element Vector{Pℤ{3, :x}}:
1 + 2x + x^3
2 + 2x + x^3
2 + x^2 + x^3
2 + x + x^2 + x^3
1 + 2x + x^2 + x^3
1 + 2x^2 + x^3
1 + x + 2x^2 + x^3
2 + 2x + 2x^2 + x^3
1 + x + 2x^3
2 + x + 2x^3
2 + x^2 + 2x^3
1 + x + x^2 + 2x^3
2 + 2x + x^2 + 2x^3
1 + 2x^2 + 2x^3
2 + x + 2x^2 + 2x^3
1 + 2x + 2x^2 + 2x^3
``` | SimplePolynomialRing | https://github.com/Scurrra/SimplePolynomialRing.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 590 | using Documenter, Literate, Recombinase
@info "makedocs"
for filename in ["tutorial.jl", "digging_deeper.jl"]
Literate.markdown(
joinpath(@__DIR__, "src", filename),
joinpath(@__DIR__, "src", "generated")
)
end
makedocs(
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
sitename = "Recombinase.jl",
pages = [
"index.md",
"generated/tutorial.md",
"interactive_interface.md",
"generated/digging_deeper.md",
]
)
@info "deploydocs"
deploydocs(
repo = "github.com/piever/Recombinase.jl.git",
)
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 2779 | # # Digging deeper
# The core functioning of Recombinase is based on a set of preimplemented analysis
# functions and on the [OnlineStats](https://github.com/joshday/OnlineStats.jl) package
# to compute summary statistics efficiently.
# ## Analysis functions
# Under the hood, the actual computations are implemented in some built-in `Analysis`
# objects. Each `Analysis` takes some vectors (a varying number, one for `density`
# and two for `prediction` for example), an optional `axis` argument to specify
# the `x` axis argument and returns an iterator of `(x, y)` values, representing
# the `y` value corresponding to each point of the `x` axis.
using Recombinase: density, hazard, cumulative, prediction
x = randn(100)
res = density(x)
collect(Iterators.take(res, 5)) # let's see the first few elements
# We can collect the iterator in a table container to see
# that we recover the `x` and `y` axis, ready for plotting
using JuliaDB
s = table(res)
# `prediction` is similar but requrires two arguments:
xs = 10 .* rand(100)
ys = sin.(xs) .+ 0.5 .* rand(100)
res = prediction(xs, ys)
table(res)
# The function `discrete` can turn any analysis into its discrete counter-part
# (analyses are continuous for numerical axes and discrete otherwise by default).
# It also automatically comutes the error of the prediction (s.e.m).
using Recombinase: discrete
x = rand(1:3, 1000)
y = rand(1000) .+ 0.1 .* x
res = discrete(prediction)(x, y)
table(res)
# ## OnlineStats integration
# Summary statistics are computed using the excellent [OnlineStats](https://github.com/joshday/OnlineStats.jl)
# package. First the data is split by the splitting variable (in this case `School`),
# then the analysis is computed on each split chunk on the selected column(s).
# Finally the results from different schools are put together in summary statistics
# (default is `mean` and `s.e.m`):
using Recombinase: datafolder, compute_summary
data = loadtable(joinpath(datafolder, "school.csv"))
compute_summary(density, data, :School; select = :MAch)
# Any summary statistic can be used. If we only want the mean we can use
using OnlineStats
compute_summary(density, data, :School; select = :MAch, stats = Mean())
# We can also pass a `Tuple` of statistics to compute many at the same time:
using OnlineStats
compute_summary(density, data, :School; select = :MAch, stats = Series(Mean(), Variance()))
# One can optionally pass pairs of `OnlineStat` and function to apply the function to the
# `OnlineStat` before plotting (default is just taking the `value`).
# To compute a different error bar (for example just the standard deviation) you can simply do:
stats = (Mean(), Variance() => t -> sqrt(value(t)))
compute_summary(density, data, :School; select = :MAch, stats = stats)
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 4849 | # # Tutorial
#
# First, let us load the relevant packages and an example dataset:
#
using Statistics, StatsBase, StatsPlots, JuliaDB
using OnlineStats: Mean, Variance
using Recombinase
using Recombinase: cumulative, density, hazard, prediction
data = loadtable(joinpath(Recombinase.datafolder, "school.csv"))
#
# ### Simple scatter plots
#
# Then we can compute a simple scatter plot of one variable against an other. This is done in two steps: first the positional and named arguments of the plot call are computed, then they are passed to a plotting function:
#
args, kwargs = series2D(
data,
Group(:Sx),
select = (:MAch, :SSS),
)
scatter(args...; kwargs...)
# This creates an overcrowded plot. We could instead compute the average value of our columns of interest for each school and then plot just one point per school (with error bars representing variability within the school):
#
args, kwargs = series2D(
data,
Group(:Sx),
error = :School,
select = (:MAch, :SSS),
)
scatter(args...; kwargs...)
# By default, this computes the mean and standard error, we can pass `stats = Mean()` to only compute the mean.
#
# ### Splitting by many variables
#
# We can use different attributes to split the data as follows:
#
args, kwargs = series2D(
data,
Group(color = :Sx, markershape = :Sector),
error = :School,
select = (:MAch, :SSS),
stats = Mean(),
)
scatter(args...; kwargs...)
# ### Styling the plot
#
# There are two ways in which we can style the plot: first, we can pass a custom set of colors instead of the default palette:
#
args, kwargs = series2D(
data,
Group(:Sx),
error = :School,
select = (:MAch, :SSS),
stats = Mean(),
color = [:red, :blue]
)
scatter(args...; kwargs...)
# Second, we can style plat attributes as we would normally do:
#
args, kwargs = series2D(
data,
Group(:Sx),
error = :School,
select = (:MAch, :SSS),
stats = Mean(),
)
scatter(args...; legend = :topleft, markersize = 10, kwargs...)
# ### Computing summaries
#
# It is also possible to get average value and variability of a given analysis (density, cumulative, hazard rate and local regression are supported so far, but one can also add their own function) across groups.
#
# For example (here we use `ribbon` to signal we want a shaded ribbon to denote the error estimate):
#
args, kwargs = series2D(
cumulative,
data,
Group(:Sx),
error = :School,
select = :MAch,
ribbon = true
)
plot(args...; kwargs..., legend = :topleft)
# Note that extra keyword arguments can be passed to the analysis:
#
args, kwargs = series2D(
density(bandwidth = 1),
data,
Group(color=:Sx, linestyle=:Sector),
error = :School,
select = :MAch,
ribbon = true
)
plot(args...; kwargs..., legend = :bottom)
# If we do not specify `error`, it defaults to the "analyses specific error". For discrete prediction it is the standard error of the mean across observations.
#
args, kwargs = series2D(
prediction,
data,
Group(color = :Minrty),
select = (:Sx, :MAch),
)
groupedbar(args...; kwargs...)
# ### Axis style selection
#
# Analyses try to infer the axis type (continuous if the variable is numeric, categorical otherwise). If that is not appropriate for your data you can use `discrete(prediction)` or `continuous(prediction)` (works for `hazard`, `density` and `cumulative` as well).
# A special type of axis type is vectorial: the `x` and `y` axes can be contain `AbstractArray` elements, in which case
# we take views of elements of `y` corresponding to elements of `x`. This can be useful to compute averages of time varying signals.
using Recombinase: offsetrange
signal = sin.(range(0, 10π, length = 1000)) .+ 0.1 .* rand.()
events = range(50, 950, step = 100)
z = repeat([true, false], outer = 5)
x = [offsetrange(signal, ev) for ev in events]
y = fill(signal, length(x))
t = table(x, y, z, names = [:offsets, :signals, :peak])
args, kwargs = series2D(
prediction(axis = -60:60),
t,
Group(:peak),
select = (:offsets, :signals),
ribbon = true,
)
plot(args...; kwargs...)
# ### Post processing
#
# Finally, for some analyses it can be useful to postprocess the result. For example, in the case
# of the "signal plot" above, we may wish to rescale the `x` axis. This is done by passing a named
# tuple of functions as a `postprocess` keyword argument, which will be applied element-wise to the relative column of the output. For example, if our signal was sampled at `60 Hz`, we may wish to divide the `:offsets` column by `60` to show the result in seconds:
args, kwargs = series2D(
prediction(axis = -60:60),
t,
Group(:peak),
select = (:offsets, :signals),
ribbon = true,
postprocess = (; offsets = t -> t/60),
)
plot(args...; kwargs...)
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 1017 | module Recombinase
using IterTools
using Statistics
using StatsBase: countmap, ecdf, sem
using Loess: loess, predict
using KernelDensity: pdf, kde, InterpKDE
using StructArrays: StructVector, StructArray, finduniquesorted, uniquesorted, fieldarrays, GroupPerm, StructArrays
using IndexedTables: collect_columns, collect_columns_flattened, rows, columns, IndexedTable, colnames, pushcol, table, dropmissing
import IndexedTables: sortpermby, lowerselection
using ColorTypes: RGB
import Widgets
using Observables: AbstractObservable, Observable, @map, @map!
using Widgets: Widget, dropdown, toggle, button
using OrderedCollections: OrderedDict
using OnlineStatsBase: Mean, Variance, FTSeries, fit!, OnlineStat, nobs, value
import Tables, TableOperations
export Group, compute_summary, series2D
export discrete
datafolder = joinpath(@__DIR__, "..", "data")
include("analysisfunctions.jl")
include("timeseries.jl")
include("compute_summary.jl")
include("styles.jl")
include("plots.jl")
include("gui.jl")
end # module
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 5154 | struct Analysis{S, F, NT<:NamedTuple}
f::F
kwargs::NT
Analysis{S}(f::F, kwargs::NT) where {S, F, NT<:NamedTuple} =
new{S, F, NT}(f, kwargs)
end
Analysis{S}(f; kwargs...) where {S} = Analysis{S}(f, values(kwargs))
Analysis{S}(a::Analysis; kwargs...) where {S} = Analysis{S}(a.f, merge(a.kwargs, values(kwargs)))
Analysis(args...; kwargs...) = Analysis{:automatic}(args...; kwargs...)
getfunction(funcs, S) = funcs
getfunction(funcs::NamedTuple, S::Symbol) = getfield(funcs, S)
getfunction(a::Analysis{S}) where {S} = getfunction(a.f, S)
(a::Analysis{S})(; kwargs...) where {S} = Analysis{S}(a; kwargs...)
(a::Analysis{:automatic})(; kwargs...) = Analysis{:automatic}(a; kwargs...)
(a::Analysis{S})(args...) where {S} = getfunction(a)(args...; a.kwargs...)
(a::Analysis{:automatic})(args...) = (infer_axis(args...)(a))(args...)
discrete(a::Analysis) = Analysis{:discrete}(a.f, a.kwargs)
continuous(a::Analysis) = Analysis{:continuous}(a.f, a.kwargs)
vectorial(a::Analysis) = Analysis{:vectorial}(a.f, a.kwargs)
discrete(::Nothing) = nothing
continuous(::Nothing) = nothing
vectorial(::Nothing) = nothing
Base.get(a::Analysis, s::Symbol, def) = get(a.kwargs, s, def)
Base.get(f::Function, a::Analysis, s::Symbol) = get(f, a.kwargs, s)
function set(f::Function, a::Analysis, s::Symbol)
val = get(f, a, s)
nt = NamedTuple{(s,)}((val,))
a(; nt...)
end
const FunctionOrAnalysis = Union{Function, Analysis}
# TODO compute axis if called standalone!
compute_axis(f::Function, args...) = compute_axis(Analysis(f), args...)
infer_axis(x::AbstractVector{T}, args...) where {T<:Union{Missing, Number}} = Analysis{:continuous}
infer_axis(x::AbstractVector{T}, args...) where {T<:Union{Missing, AbstractArray}} = Analysis{:vectorial}
infer_axis(x::AbstractVector{Missing}, args...) = error("All data is missing")
infer_axis(x, args...) = Analysis{:discrete}
get_axis(s::Analysis) = s.kwargs.axis
function compute_axis(a::Analysis, args...)
a_inf = infer_axis(args...)(a)
compute_axis(a_inf, args...)
end
continuous_axis(x, args...; npoints = 100) = range(extrema(x)...; length = npoints)
function compute_axis(a::Analysis{:continuous}, args...)
set(a, :axis) do
npoints = get(a, :npoints, 100)
continuous_axis(args..., npoints = npoints)
end
end
discrete_axis(x, args...) = unique(sort(x))
function compute_axis(a::Analysis{:discrete}, args...)
set(a, :axis) do
discrete_axis(args...)
end
end
vectorial_axis(x, args...) = axes(x[1], 1)
function compute_axis(a::Analysis{:vectorial}, args...)
set(a, :axis) do
vectorial_axis(args...)
end
end
has_error(a::Analysis) = has_error(getfunction(a))
has_error(a::Analysis, args...) = has_error(infer_axis(args...)(a))
has_error(args...) = false
_expectedvalue(x, y; axis = nothing, kwargs...) = lazy_summary(x, y; kwargs...)
has_error(::typeof(_expectedvalue)) = true
function _localregression(x, y; npoints = 100, axis = continuous_axis(x, y; npoints = npoints), kwargs...)
min, max = extrema(x)
model = loess(convert(Vector{Float64}, x), convert(Vector{Float64}, y); kwargs...)
return ((val, predict(model, val)) for (ind, val) in enumerate(axis) if min < val < max)
end
function _alignedsummary(xs, ys; axis = vectorial_axis(xs, ys), min_nobs = 2, stats = summary, kwargs...)
stat, func = initstat(stats; kwargs...)
iter = (view(y, x) for (x, y) in zip(xs, ys))
stats = OffsetArray([copy(stat) for _ in axis], axis)
fitvecmany!(stats, iter)
((val, func(st)) for (val, st) in zip(axis, stats) if nobs(st) >= min_nobs)
end
has_error(::typeof(_alignedsummary)) = true
const prediction = Analysis((continuous = _localregression, discrete = _expectedvalue, vectorial = _alignedsummary))
function _density(x; npoints = 100, axis = continuous_axis(x, npoints = npoints), kwargs...)
d = InterpKDE(kde(x; kwargs...))
return ((val, pdf(d, val)) for val in axis)
end
function _frequency(x; axis = discrete_axis(x), npoints = 100)
c = countmap(x)
s = sum(values(c))
return ((val, get(c, val, 0)/s) for val in axis)
end
const density = Analysis((continuous = _density, discrete = _frequency))
function _cumulative(x; npoints = 100, axis = continuous_axis(x, npoints = npoints), kwargs...)
func = ecdf(x)
return ((val, func(val)) for val in axis)
end
function _cumulative_frequency(x; axis = discrete_axis(x, npoints = npoints), kwargs...)
func = ecdf(x)
return ((val, func(val)) for val in axis)
end
const cumulative = Analysis((continuous = _cumulative, discrete = _cumulative_frequency))
function _hazard(t; npoints = 100, axis = continuous_axis(t, npoints = npoints), kwargs...)
pdf_iter = _density(t; axis = axis, kwargs...)
cdf_func = ecdf(t)
((val, pdf / (1 + step(axis) * pdf - cdf_func(val))) for (val, pdf) in pdf_iter)
end
function _hazard_frequency(t; axis = discrete_axis(t), kwargs...)
pdf_iter = _frequency(t; axis = axis, kwargs...)
cdf_func = ecdf(t)
((val, pdf / (1 + pdf - cdf_func(val))) for (val, pdf) in pdf_iter)
end
const hazard = Analysis((continuous = _hazard, discrete = _hazard_frequency))
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 4507 | const Tup = Union{Tuple, NamedTuple}
struct Automatic; end
const automatic = Automatic()
Base.string(::Automatic) = "automatic"
apply(f::Function, a::Automatic) = a
apply(f::Function, val) = f(val)
apply(f::Tup, val::Tup) = map(apply, f, val)
apply(f::Function, val::Tup) = map(f, val)
_all(f::Function, tup::Tup) = all(f, tup)
_all(f::Function, t) = f(t)
isfinitevalue(::Missing) = false
isfinitevalue(x::Number) = isfinite(x)
statpost(m::OnlineStat) = m => value
statpost(sp::Pair{<:OnlineStat}) = sp
initstat(m::OnlineStat; kwargs...) = initstat(m => value; kwargs...)
function initstat(sp::Pair{<:OnlineStat}; filter = isfinitevalue, transform = identity)
stat, func = sp
FTSeries(stat; filter = filter, transform = transform) => t -> func(first(t.stats))
end
function initstat(stats::Tuple; filter = isfinitevalue, transform = identity)
statsfuncs = map(statpost, stats)
stats = map(first, statsfuncs)
funcs = map(last, statsfuncs)
FTSeries(stats...; filter = filter, transform = transform) => t -> apply(funcs, t.stats)
end
const summary = (Mean(), Variance() => t -> sqrt(value(t)/nobs(t)))
function lazy_summary(keys::AbstractVector, cols; perm = sortperm(keys), min_nobs = 2, stats = summary, kwargs...)
stat, func = initstat(stats; kwargs...)
function process(idxs)
apply(cols) do col
init = copy(stat)
for i in idxs
val = col[perm[i]]
fit!(init, val)
end
return init
end
end
iter = (keys[perm[first(idxs)]] => process(idxs) for idxs in GroupPerm(keys, perm))
return (key => apply(func, vals) for (key, vals) in iter if _all(t -> nobs(t) >= min_nobs, vals))
end
compute_summary(keys::AbstractVector, cols::AbstractVector; kwargs...) = compute_summary(keys, (cols,); kwargs...)
function compute_summary(keys::AbstractVector, cols::Tup; kwargs...)
collect_columns(val for (_, val) in lazy_summary(keys, cols; kwargs...))
end
function compute_summary(f::FunctionOrAnalysis, keys::AbstractVector, cols::AbstractVector; kwargs...)
compute_summary(f, keys, (cols,); kwargs...)
end
function compute_summary(f::FunctionOrAnalysis, keys::AbstractVector, cols::Tup;
min_nobs = 2, perm = sortperm(keys), stats = summary, kwargs...)
stat, func = initstat(stats; kwargs...)
analysis = compute_axis(f, cols...)
axis = get_axis(analysis)
summaries = [copy(stat) for _ in axis]
data = StructVector(cols)
_compute_summary!(axis, summaries, analysis, keys, perm, data)
return collect_columns((ax, func(s)) for (ax, s) in zip(axis, summaries) if nobs(s) >= min_nobs)
end
_first(t) = t
_first(t::Union{Tuple, NamedTuple}) = first(t)
function fititer!(axis, summaries, iter)
lo, hi = extrema(axes(axis, 1))
for (key, val) in iter
ind = searchsortedfirst(axis, key, lo, hi, Base.Order.Forward)
lo = ind + 1
ind > hi && break
fit!(summaries[ind], _first(val))
end
end
function _compute_summary!(axis, summaries, analysis, keys, perm, data)
for (_, idxs) in finduniquesorted(keys, perm)
res = analysis(tupleofarrays(view(data, idxs))...)
fititer!(axis, summaries, res)
end
end
compute_summary(::Nothing, args...; kwargs...) = compute_summary(args...; kwargs...)
compute_summary(t::IndexedTable, ::Automatic; select, kwargs...) =
compute_summary(t; select = select, kwargs...)
function compute_summary(t::IndexedTable; select, kwargs...)
rows(t, select)
end
function compute_summary(t::IndexedTable, keys; select, kwargs...)
perm, keys = sortpermby(t, keys, return_keys=true)
compute_summary(keys, columntuple(t, select); perm=perm, kwargs...)
end
function compute_summary(f::FunctionOrAnalysis, t::IndexedTable, keys; select, kwargs...)
perm, keys = sortpermby(t, keys, return_keys=true)
compute_summary(f, keys, columntuple(t, select); perm=perm, kwargs...)
end
function compute_summary(f::FunctionOrAnalysis, t::IndexedTable; select, kwargs...)
args = columntuple(t, select)
has_error(f, args...) && (f = f(; kwargs...))
collect_columns(f(args...))
end
compute_summary(f::FunctionOrAnalysis, t::IndexedTable, ::Automatic; select, kwargs...) =
compute_summary(f, t; select=select, kwargs...)
tupleofarrays(s::Tup) = Tuple(s)
tupleofarrays(s::StructVector) = Tuple(fieldarrays(s))
to_tuple(s::Tup) = s
to_tuple(v) = (v,)
columntuple(t, cols) = to_tuple(columns(t, cols))
columntuple(t) = to_tuple(columns(t))
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 4202 | _hbox(args...) = Widgets.div(args...; style = Dict("display" => "flex", "flex-direction"=>"row"))
_vbox(args...) = Widgets.div(args...; style = Dict("display" => "flex", "flex-direction"=>"column"))
get_kwargs(; kwargs...) = kwargs
string2kwargs(s::AbstractString) = eval(Meta.parse("get_kwargs($s)"))
const analysis_options = OrderedDict(
"" => nothing,
"Cumulative" => Recombinase.cumulative,
"Density" => Recombinase.density,
"Hazard" => Recombinase.hazard,
"Prediction" => Recombinase.prediction,
)
function is_small(col, n = 100)
for (ind, _) in enumerate(IterTools.distinct(col))
ind > n && return false
end
return true
end
function take_small(t, vec::AbstractVector{Symbol}, n = 100)
filter(vec) do sym
col = get(columns(t), sym, ())
return is_small(col, n)
end
end
"""
`gui(data, plotters; postprocess = NamedTuple())`
Create a gui around `data::IndexedTable` given a list of plotting
functions plotters.
## Examples
```julia
using StatsPlots, Recombinase, JuliaDB, Interact
school = loadtable(joinpath(Recombinase.datafolder, "school.csv"))
plotters = [plot, scatter, groupedbar]
Recombinase.gui(school, plotters)
```
"""
function gui(data′, plotters; postprocess = NamedTuple())
(data′ isa AbstractObservable) || (data′ = Observable{Any}(data′))
data = @map table(&data′, copy = false, presorted = true)
ns = @map collect(colnames(&data))
maybens = @map vcat(Symbol(), &ns)
xaxis = dropdown(ns,label = "X")
yaxis = dropdown(maybens,label = "Y")
an_opt = dropdown(analysis_options, label = "Analysis")
axis_type = dropdown([:automatic, :continuous, :discrete, :vectorial], label = "Axis type")
error = dropdown(@map(vcat(automatic, &ns)), label="Error")
styles = collect(keys(style_dict))
sort!(styles)
smallns = map(take_small, data, maybens)
splitters = [dropdown(smallns, label = string(style)) for style in styles]
plotter = dropdown(plotters, label = "Plotter")
ribbon = toggle("Ribbon", value = false)
btn = button("Plot")
output = Observable{Any}("Set the dropdown menus and press plot to get started.")
plot_kwargs = Widgets.textbox("Insert optional plot attributes")
@map! output begin
&btn
select = yaxis[] == Symbol() ? xaxis[] : (xaxis[], yaxis[])
grps = Dict(key => val[] for (key, val) in zip(styles, splitters) if val[] != Symbol())
an = an_opt[]
an_inf = isnothing(an) ? nothing : Analysis{axis_type[]}(an)
args, kwargs = series2D(
an_inf,
&data,
Group(; grps...);
postprocess = postprocess,
select = select,
error = error[],
ribbon = ribbon[]
)
plotter[](args...; kwargs..., string2kwargs(plot_kwargs[])...)
end
ui = Widget(
OrderedDict(
:xaxis => xaxis,
:yaxis => yaxis,
:analysis => an_opt,
:axis_type => axis_type,
:error => error,
:plotter => plotter,
:plot_button => btn,
:plot_kwargs => plot_kwargs,
:ribbon => ribbon,
:splitters => splitters,
),
output = output
)
Widgets.@layout! ui Widgets.div(
_hbox(
:xaxis,
:yaxis,
:analysis,
:axis_type,
:error,
:plotter
),
:ribbon,
:plot_button,
_hbox(
_vbox(:splitters...),
_vbox(output, :plot_kwargs)
)
)
end
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 4276 | struct Group{NT}
kwargs::NT
function Group(; kwargs...)
nt = values(kwargs)
NT = typeof(nt)
return new{NT}(nt)
end
end
Group(s) = Group(color = s)
apply(f::Function, g::Group) = Group(; map(t -> apply(f, t), g.kwargs)...)
to_string(t::Tuple) = join(t, ", ")
to_string(t::Any) = string(t)
to_string(nt::NamedTuple) = join(("$a = $b" for (a, b) in pairs(nt)), ", ")
struct Observations; end
const observations = Observations()
Base.string(::Observations) = "observations"
function sortpermby(t::IndexedTable, ::Observations; return_keys = false)
perm = Base.OneTo(length(t))
return return_keys ? (perm, perm) : perm
end
function apply_postprocess(t::IndexedTable, res; select, postprocess)
cols = Tuple(fieldarrays(res))
colinds = to_tuple(lowerselection(t, select))
N = length(colinds)
cols_trimmed = cols[1:N]
res = map(cols_trimmed, colinds) do col, ind
isa(ind, Integer) && ind > 0 || return col
name = colnames(t)[ind]
haskey(postprocess, name) || return col
f = postprocess[name]
return collect_columns(apply(f, el) for el in col)
end
StructArray((res..., cols[N+1:end]...))
end
function series2D(s::StructVector; ribbon = false)
kwargs = Dict{Symbol, Any}()
xcols, ycols = map(columntuple, fieldarrays(s))
x, y = xcols[1], ycols[1]
yerr = ifelse(ribbon, :ribbon, :yerr)
length(xcols) == 2 && (kwargs[:xerr] = xcols[2])
length(ycols) == 2 && (kwargs[yerr] = ycols[2])
return (x, y), kwargs
end
series2D(t, g = Group(); kwargs...) = series2D(nothing, t, g; kwargs...)
function series2D(f::Union{Nothing, FunctionOrAnalysis}, t, g = Group();
select, error = automatic, kwargs...)
isa(g, Group) || (g = Group(g))
by = _flatten(g.kwargs)
err_cols = error === automatic ? () : to_tuple(error)
sel_cols = (to_tuple(by)..., to_tuple(select)..., err_cols...)
coltable = Tables.columntable(TableOperations.select(t, sel_cols...))
coldict = Dict(zip(sel_cols, keys(coltable)))
to_symbol = i -> coldict[i]
t = table(coltable, copy=false)
return series2D(f, t, apply(to_symbol, g);
select = apply(to_symbol, select),
error = apply(to_symbol, error),
kwargs...)
end
function series2D(f::Union{Nothing, FunctionOrAnalysis}, t′::IndexedTable, g = Group(); select, postprocess = NamedTuple(),
error = automatic, ribbon=false, stats=summary, filter=isfinitevalue, transform=identity, min_nobs=2, kwargs...)
t = dropmissing(t′, select)
isa(g, Group) || (g = Group(g))
group = g.kwargs
if isempty(group)
itr = ("" => :,)
else
by = _flatten(group)
perm, group_rows = sortpermby(t, by, return_keys = true)
itr = finduniquesorted(group_rows, perm)
end
keys = similar(group_rows, 0)
vals = collect_columns_flattened(
Base.Generator(itr) do (key, idxs)
v = compute_summary(
f,
view(t, idxs),
error;
min_nobs=min_nobs,
select=select,
stats=stats,
filter=filter,
transform=transform,
)
append!(keys, fill(key, length(v)))
return v
end
)
res = apply_postprocess(t, vals; select = select, postprocess = postprocess)
plot_args, plot_kwargs = series2D(res; ribbon = ribbon)
plot_kwargs[:group] = columns(keys)
grpd = collect_columns(key for (key, _) in itr)
style_kwargs = Dict(kwargs)
for (key, val) in pairs(group)
col = rows(grpd, val)
s = unique(sort(col))
d = Dict(zip(s, 1:length(s)))
style = get(style_kwargs, key) do
style_dict[key]
end
plot_kwargs[key] = permutedims(access_style(style, getindex.(Ref(d), col)))
end
get!(plot_kwargs, :color, "black")
plot_args, plot_kwargs
end
function access_style(st, n::AbstractArray)
[access_style(st, i) for i in n]
end
function access_style(st, n::Integer)
v = vec(st)
m = ((n-1) % length(v))+1
v[m]
end
_flatten(t) = IterTools.imap(to_tuple, t) |>
Iterators.flatten |>
IterTools.distinct |>
Tuple
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 937 | #=
Conservative 7-color palette from Points of view: Color blindness, Bang Wong - Nature Methods
https://www.nature.com/articles/nmeth.1618?WT.ec_id=NMETH-201106
=#
const wong_colors = [
RGB(230/255, 159/255, 0/255),
RGB(86/255, 180/255, 233/255),
RGB(0/255, 158/255, 115/255),
RGB(240/255, 228/255, 66/255),
RGB(0/255, 114/255, 178/255),
RGB(213/255, 94/255, 0/255),
RGB(204/255, 121/255, 167/255),
]
const default_style_dict = Dict{Symbol, Any}(
:color => wong_colors,
:markershape => [:circle, :diamond, :utriangle, :star5, :cross],
:linestyle => [:solid, :dash, :dot, :dashdot],
:linewidth => [1,4,2,3],
:markersize => [3,9,5,7]
)
const style_dict = copy(default_style_dict)
function set_theme!(; kwargs...)
empty!(style_dict)
for (key, val) in default_style_dict
style_dict[key] = val
end
for (key, val) in kwargs
style_dict[key] = val
end
end
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 1909 | using OffsetArrays: OffsetArray
# replace first entries in a by b
merge_tups(a::Tuple, b) = merge_tups(a, to_tuple(b)::Tuple)
merge_tups(a::Tuple, ::Tuple{}) = a
merge_tups(a::Tuple, b::Tuple) = (first(b), merge_tups(Base.tail(a), Base.tail(b))...)
# only take first few entries of a so that result is as long as b
cut_tup(a::Tuple, b) = cut_tup(a, to_tuple(b)::Tuple)
cut_tup(a::Tuple, ::Tuple{}) = ()
cut_tup(a::Tuple, b::Tuple) = (first(a), cut_tup(Base.tail(a), Base.tail(b))...)
to_indexarray(t::Tuple{AbstractArray}) = t[1]
to_indexarray(t::Tuple{AbstractArray, Vararg{AbstractArray}}) = CartesianIndices(t)
_view(a::AbstractArray{<:Any, M}, b::AbstractArray{<:Any, N}) where {M, N} = view(a, b, ntuple(_ -> :, M-N)...)
_view(a::AbstractArray{<:Any, N}, b::AbstractArray{<:Any, N}) where {N} = view(a, b)
offsetrange(v, offset, range=()) = offsetrange(v, to_tuple(offset)::Tuple, to_tuple(range)::Tuple)
function offsetrange(v, offset::Tuple, range::Tuple=())
short_axes = cut_tup(axes(v), offset)
padded_range = merge_tups(short_axes, range)
rel_offset = map(short_axes, offset, padded_range) do ax, off, r
- off + first(r) - first(ax)
end
OffsetArray(to_indexarray(padded_range), rel_offset)
end
aroundindex(v, args...) = _view(v, offsetrange(v, args...))
function initstats(stat, ranges)
ranges = to_tuple(ranges)
itr = Iterators.product(ranges...)
vec = [copy(stat) for _ in itr]
return OffsetArray(vec, ranges)
end
# TODO combine fititer! and fitvec!
function fitvec!(m, val, shared_indices = eachindex(m, val))
for cart in shared_indices
@inbounds fit!(m[cart], val[cart])
end
return m
end
function fitvecmany!(m, iter)
for el in iter
am, ael = axes(m), axes(el)
shared = (am == ael) ? eachindex(m, el) : CartesianIndices(map(intersect, am, ael))
fitvec!(m, el, shared)
end
return m
end
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | code | 2310 | using Statistics, StatsBase
using StructArrays
using Recombinase
using Recombinase: compute_summary, aroundindex, discrete,
prediction, density
using Test
using IndexedTables
using OnlineStatsBase
@testset "discrete" begin
x = [1, 2, 3, 1, 2, 3]
y = [0.3, 0.1, 0.3, 0.4, 0.2, 0.1]
across = [1, 1, 1, 2, 2, 2]
res = compute_summary(
discrete(prediction)(min_nobs = 1),
across,
(x, y),
stats = Mean()
)
xcol, ycol = fieldarrays(res)
@test xcol == [1, 2, 3]
@test map(Recombinase._first, ycol) ≈ [0.35, 0.15, 0.2]
res = compute_summary(
discrete(density),
across,
(x,),
stats = Mean()
)
xcol, ycol = fieldarrays(res)
@test xcol == [1, 2, 3]
@test map(Recombinase._first, ycol) ≈ [1, 1, 1]./3
end
# example function to test initstats and fitvecmany!
function fitvec(stats, iter, ranges)
start = iterate(iter)
start === nothing && error("Nothing to fit!")
val, state = start
init = Recombinase.initstats(stats, Recombinase.merge_tups(axes(val), ranges))
Recombinase.fitvecmany!(init, Iterators.rest(iter, state))
StructArray(((nobs = nobs(el), value = value(el)) for el in init);
unwrap = t -> t <: Union{Tuple, NamedTuple})
end
@testset "timeseries" begin
v1 = rand(1000) # day 1
v2 = rand(50) # day 2
traces = [v1, v1, v1, v2, v2, v2]
ts = [10, 501, 733, 1, 20, 30]
trims = [7:13, 498:504, 730:736, 1:4, 17:23, 27:33]
stats = Series(mean = Mean(), variance = Variance())
s = fitvec(stats, (aroundindex(trace, t) for (trace, t) in zip(traces, ts)), -5:5);
@test axes(s) == (-5:5,)
@test s[-3].nobs == 4
@test s[-3].value isa NamedTuple{(:mean, :variance)}
s = fitvec(stats, (aroundindex(trace, t, trim) for (trace, t, trim) in zip(traces, ts, trims)), -5:5);
@test axes(s) == (-5:5,)
@test s[-3].nobs == 4
@test s[-3].value isa NamedTuple{(:mean, :variance)}
@test s[-4].nobs == 0
stats = Mean()
s = fitvec(stats, (aroundindex(trace, t) for (trace, t) in zip(traces, ts)), -5:5);
@test axes(s) == (-5:5,)
@test s[-3].nobs == 4
@test s[-3].value isa Float64
g() = aroundindex(rand(4, 4, 4), (2, 2), (1:3, 1:3))
@inferred g()
@test axes(g()) == (-1:1, -1:1, 1:4)
end
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | docs | 530 | # Recombinase
[](https://travis-ci.org/piever/Recombinase.jl)
[](https://piever.github.io/Recombinase.jl/latest/index.html)
A simple package to do data analyses and visualizations. See the [docs](https://piever.github.io/Recombinase.jl/latest/index.html) to learn how to use it.

| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | docs | 432 | # Index
Recombinase allows to do simple data analyses and visualizations in Julia, especially
in the case of grouped data.
## Getting started
To install Recombinase, simply activate the package REPL with `]` in the Julia console and then
add the package using the repository URL:
```julia
julia> ]
pkg> add https://github.com/piever/Recombinase.jl.git
```
See the [Tutorial](@ref) for a quick guide on how to use this package.
| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 0.1.1 | 067aabe9bb023e12ccac4e52574891de7bfde242 | docs | 502 | # Interactive interface
Most of the available analyses can be selected from a simple [Interact](http://juliagizmos.github.io/Interact.jl/latest/)-based UI. To launch the UI simply do:
```julia
using Recombinase, Interact, StatsPlots, Blink
# here we give the functions we want to use for plotting
ui = Recombinase.gui(data, [plot, scatter, groupedbar]);
w = Window()
body!(w, ui)
```

| Recombinase | https://github.com/piever/Recombinase.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 5593 | module QuantizedSystemSolver
const global VERBOSE=false
const global DEBUG=false
const global DEBUG2=false
#using ResumableFunctions
using RuntimeGeneratedFunctions
using StaticArrays
using SymEngine
using PolynomialRoots
#using Reexport
#@reexport using StaticArrays
#@reexport using ResumableFunctions
#using SymEngine##########might not need
using ExprTools #combineddef
using MacroTools: postwalk,prewalk, @capture#, isexpr,
#= import Base.:-
import Base.:+
import Base.:* =#
using Plots: plot!,plot,savefig
using Dates: now,year,month,day,hour,minute,second #fortimestamp
#using TimerOutputs########################################################temporary
#using Profile################################################################temporary
RuntimeGeneratedFunctions.init(@__MODULE__)
#this section belongs to taylorseries subcomponent
import Base: ==, +, -, *, /, ^
#import Plots:plot!
#import Base: Base.gc_enable
import Base: iterate, size, eachindex, firstindex, lastindex,
eltype, length, getindex, setindex!, axes, copyto!
import Base: sqrt, exp, log, sin, cos, sincos, tan,
asin, acos, atan, sinh, cosh, tanh, atanh, asinh, acosh,
zero, one, zeros, ones, isinf, isnan, iszero,
convert, promote_rule, promote, show,abs
#= real, imag, conj, adjoint,
rem, mod, mod2pi, abs2, =#
#= power_by_squaring,
rtoldefault, isfinite, isapprox, rad2deg, deg2rad =#
#end of taylorseries section of imports
# list of public (API) to the user, not between files as those are linked as if in one file
export qss1,qss2,qss3,liqss1,liqss2,liqss3,mliqss1,mliqss2,mliqss3,light,heavy,sparse,dense,saveat,nliqss1,nliqss2,nliqss3,nmliqss1,nmliqss2,nmliqss3
export save_Sol,save_SolDer,save_SimulSol#,stacksave_Sol,plotSol,stackplotSol,plot_save_Sol,stackplot_save_Sol,plot_save_SolVars,plotSol_Der1,evaluateSol,save_SolVar,save_SolZoomed
export save_SolSum,plotRelativeError#,stackplotRelativeError,plot_save_RelativeError,stackplot_save_RelativeError,saveRelativeError,stacksaveRelativeError
export plotAbsoluteError#,stackplotAbsoluteError,plot_save_AbsoluteError,stackplot_save_AbsoluteError,saveAbsoluteError,stacksaveAbsoluteError
export getError,getPlot,getPlot!#,plotCumulativeSquaredRelativeError,plotMSE,getIntervalError,plotElapsed
export NLODEProblem
export NLodeProblem#= , @NLodeProblem,@saveNLodeProblem =#,solve,save_prob_to_model,QSS_Solve_from_model,solInterpolated
export Sol,getErrorByRodas,getAllErrorsByRefs,getAverageErrorByRefs
export Taylor0,mulT,mulTT,createT,addsub,negateT,subsub,subadd,subT,addT,muladdT,mulsub,divT # in case to save into a file, otherwise remove
export savedNLODEContProblem,savedNLODEDiscProblem,EventDependencyStruct
export testfunc
"""testfunc(expression)
creates a problem from the user code
"""
testfunc(x) = 2x + 1
#include section of ts subcomponent
# include("ownTaylor/parameters.jl")
include("ownTaylor/constructors.jl")
# include("ownTaylor/conversion.jl")
include("ownTaylor/arithmetic.jl")
include("ownTaylor/arithmeticT.jl")
include("ownTaylor/functions.jl")
include("ownTaylor/functionsT.jl")
include("ownTaylor/power.jl")
include("ownTaylor/powerT.jl")
include("ownTaylor/auxiliary.jl")
include("ownTaylor/calculus.jl")
include("ownTaylor/other_functions.jl")
include("ownTaylor/evaluate.jl")
#Utils
include("Utils/rootfinders/SimUtils.jl")
# include("Utils/rootfinders/intervalNewton.jl")
include("Utils/rootfinders/inter9-var.jl")
include("Utils/rootfinders/compare_cubics_smallPos.jl")
#Common
include("Common/TaylorEquationConstruction.jl")
include("Common/QSSNL_AbstractTypes.jl")
include("Common/Solution.jl")
include("Common/SolutionPlot.jl")
include("Common/SolutionDerPlot.jl")
include("Common/SolutionError.jl")
include("Common/Helper_QSSNLProblem.jl")
include("Common/Helper_QSSNLDiscreteProblem.jl")
include("Common/QSSNLContinousProblem.jl")
include("Common/QSSNLdiscrProblem.jl")
include("Common/QSS_Algorithm.jl")
include("Common/QSS_data.jl")
include("Common/Scheduler.jl")
# integrator
# include("dense/NL_integrators/NL_QSS_Integrator.jl")
# include("dense/NL_integrators/NL_QSS_discreteIntegrator.jl")
# implicit integrator when large entries on the main diagonal of the jacobian
# include("dense/NL_integrators/NL_LiQSS_Integrator.jl")
# include("dense/NL_integrators/NL_LiQSS_discreteIntegrator.jl")
# implicit integrator when large entries NOT on the main diagonal of the jacobian
include("dense/NL_integrators/NL_nmLiQSS_Integrator.jl")
include("dense/NL_integrators/NL_nmLiQSS_discreteIntegrator.jl")
#implicit intgrators used to show improvement of modifications
# include("dense/NL_integrators/NL_mLiQSS_Integrator.jl")
# include("dense/NL_integrators/NL_nLiQSS_Integrator.jl")
include("dense/Quantizers/Quantizer_Common.jl")
include("dense/Quantizers/QSS_quantizer.jl")
include("dense/Quantizers/LiQSS_quantizer1.jl")
include("dense/Quantizers/LiQSS_quantizer2.jl")
include("dense/Quantizers/LiQSS_quantizer3.jl")
include("dense/Quantizers/mLiQSS_quantizer1.jl")
include("dense/Quantizers/mLiQSS_quantizer2.jl")
include("dense/Quantizers/mLiQSS_quantizer3.jl")
#main entrance/ Interface
include("Interface/indexMacro.jl")
include("Interface/QSS_Solve.jl")
end # module
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 8219 |
struct EventDependencyStruct
id::Int
evCont::Vector{Int} #index tracking used for HD & HZ. Also it is used to update q,quantum,recomputeNext when x is modified in an event
evDisc::Vector{Int} #index tracking used for HD & HZ.
evContRHS::Vector{Int} #index tracking used to update other Qs before executing the event
end
# the following functions handle discrete problems
# to extract jac & dD....SD can be extracted from jac later
function extractJacDepNormal(varNum::Int,rhs::Union{Symbol,Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr},dD :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}})
jacSet=Set{Union{Int,Symbol,Expr}}()
#jacDiscrSet=Set{Union{Int,Symbol,Expr}}()
m=postwalk(rhs) do a #
if a isa Expr && a.head == :ref && a.args[1]==:q# q[2]
push!(jacSet, (a.args[2])) # du[varNum=1]=rhs=u[5]+u[2] : 2 and 5 are stored in jacset one at a time
a=eliminateRef(a)#q[i] -> qi
elseif a isa Expr && a.head == :ref && a.args[1]==:d# d[3]
# push!(jacDiscrSet, (a.args[2])) #
dDset=Set{Union{Int,Symbol,Expr}}()
if haskey(dD, (a.args[2])) # dict dD already contains key a.args[2] (in this case var 3)
dDset=get(dD,(a.args[2]),dDset) # if var d3 first time to influence some var, dDset is empty, otherwise get its set of influences
end
push!(dDset, varNum) # d3 also influences varNum
dD[(a.args[2])]=dDset #update the dict
a=eliminateRef(a)#d[i] -> di
end
return a
end
# extract the jac
basi = convert(Basic, m) # m ready: all refs are symbols
for i in jacSet # jacset contains vars in RHS
symarg=symbolFromRef(i) # specific to elements in jacSet: get q1 from 1 for exple
coef = diff(basi, symarg) # symbolic differentiation: returns type Basic
coefstr=string(coef);coefExpr=Meta.parse(coefstr)#convert from basic to expression
jacEntry=restoreRef(coefExpr,symDict)# get back ref: qi->q[i][0] ...0 because later in exactJac fun cache[1]::Float64=jacEntry
exacteJacExpr[:(($varNum,$i))]=jacEntry # entry (varNum,i) is jacEntry
end
if length(jacSet)>0 jac[varNum]=jacSet end
#if length(jacDiscrSet)>0 jacDiscr[varNum]=jacDiscrSet end
end
# like above except (b,niter) instead of varNum
function extractJacDepLoop(b::Int,niter::Int,rhs::Union{Symbol,Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr},dD :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}})
#dD is for the saving-function case
jacSet=Set{Union{Int,Symbol,Expr}}()
# jacDiscrSet=Set{Union{Int,Symbol,Expr}}()
#sdSet=Set{Union{Int,Symbol,Expr}}() # when the index is a symbol or expr SD will be filled like Jac and later (the caller outside) will extract SDFunction. SDset uppercase is for numbers
#dDSet=Set{Union{Int,Symbol,Expr}}() # feature not implemented: I will restrict d[---] to integers ie --- == intger
m=postwalk(rhs) do a
if a isa Expr && a.head == :ref && a.args[1]==:q#
push!(jacSet, (a.args[2])) #
a=eliminateRef(a)#q[i] -> qi
elseif a isa Expr && a.head == :ref && a.args[1]==:d
# push!(jacDiscrSet, (a.args[2]))
if a.args[2] isa Int #for now allow only d[integer]
dDset=Set{Union{Int,Symbol,Expr}}()
if haskey(dD, (a.args[2]))
dDset=get(dD,(a.args[2]),dDset)
end
push!(dDset, :(($b,$niter)))
dD[(a.args[2])]=dDset
#= elseif a.args[2] isa Symbol
push!(dDSet, (a.args[2]))
elseif a.args[2] isa Expr
temp=deepcopy(a.args[2])
if a.args[2].args[1]== :+
temp.args[1]= :-
elseif a.args[2].args[1]== :-
temp.args[1]= :+
elseif a.args[2].args[1]== :*
temp.args[1]= :/
elseif a.args[2].args[1]== :/
temp.args[1]= :*
end
push!(dDSet, temp)
=#
end
a=eliminateRef(a)#q[i] -> qi
end
return a
end
basi = convert(Basic, m)
for i in jacSet
symarg=symbolFromRef(i);
coef = diff(basi, symarg)
coefstr=string(coef);
coefExpr=Meta.parse(coefstr)
jacEntry=restoreRef(coefExpr,symDict)
exacteJacExpr[:((($b,$niter),$i))]=jacEntry
end
jac[:(($b,$niter))]=jacSet
# jacDiscr[:(($b,$niter))]=jacDiscrSet
# SD[:(($b,$niter))]=sdSet #symbol and expressions stored like jac
end
function extractZCJacDepNormal(counter::Int,zcf::Expr,zcjac :: Vector{Vector{Int}},SZ ::Dict{Int,Set{Int}},dZ :: Dict{Int,Set{Int}})
zcjacSet=Set{Int}()
#zcjacDiscrSet=Set{Int}()
postwalk(zcf) do a #
if a isa Expr && a.head == :ref && a.args[1]==:q#
push!(zcjacSet, (a.args[2])) #
SZset=Set{Int}()
if haskey(SZ, (a.args[2]))
SZset=get(SZ,(a.args[2]),SZset)
end
push!(SZset, counter)
SZ[(a.args[2])]=SZset
elseif a isa Expr && a.head == :ref && a.args[1]==:d#
# push!(zcjacDiscrSet, (a.args[2])) #
dZset=Set{Int}()
if haskey(dZ, (a.args[2]))
dZset=get(dZ,(a.args[2]),dZset)
end
push!(dZset, counter)
dZ[(a.args[2])]=dZset
end
return a
end
push!(zcjac,collect(zcjacSet))#convert set to vector
#push!(zcjacDiscr,collect(zcjacDiscrSet))
end
function createDependencyToEventsDiscr(dD::Vector{Vector{Int}},dZ::Dict{Int64, Set{Int64}},eventDep::Vector{EventDependencyStruct})
Y=length(eventDep)
lendD=length(dD)
HD2 = Vector{Vector{Int}}(undef, Y)
HZ2 = Vector{Vector{Int}}(undef, Y)
for ii=1:Y
HD2[ii] =Vector{Int}()# define it so i can push elements as i find them below
HZ2[ii] =Vector{Int}()# define it so i can push elements as i find them below
end
for j=1:Y
hdSet=Set{Int}()
hzSet=Set{Int}()
evdiscrete=eventDep[j].evDisc
for i in evdiscrete
if i<=lendD
for k in dD[i]
push!(hdSet,k)
end
end
tempSet=Set{Int}()
if haskey(dZ, i)
tempSet=get(dZ,i,tempSet)
end
for kk in tempSet
push!(hzSet,kk)
end
end
HD2[j] =collect(hdSet)# define it so i can push elements as i find them below
HZ2[j] =collect(hzSet)
end #end for j (events)
return (HZ2,HD2)
end
function createDependencyToEventsCont(SD::Vector{Vector{Int}},sZ::Dict{Int64, Set{Int64}},eventDep::Vector{EventDependencyStruct})
Y=length(eventDep)
HD2 = Vector{Vector{Int}}(undef, Y)
HZ2 = Vector{Vector{Int}}(undef, Y)
for ii=1:Y
HD2[ii] =Vector{Int}()# define it so i can push elements as i find them below
HZ2[ii] =Vector{Int}()# define it so i can push elements as i find them below
end
for j=1:Y
hdSet=Set{Int}()
hzSet=Set{Int}()
evContin=eventDep[j].evCont
for i in evContin
for k in SD[i]
push!(hdSet,k)
end
tempSet=Set{Int}()
if haskey(sZ, i)
tempSet=get(sZ,i,tempSet)
end
for kk in tempSet
push!(hzSet,kk)
end
end
HD2[j] =collect(hdSet)# define it so i can push elements as i find them below
HZ2[j] =collect(hzSet)
end #end for j (events)
return (HZ2,HD2)
end
#function unionDependency(HZ1::SVector{Y,SVector{Z,Int}},HZ2::SVector{Y,SVector{Z,Int}})where{Z,Y}
function unionDependency(HZ1::Vector{Vector{Int}},HZ2::Vector{Vector{Int}})
Y=length(HZ1)
HZ = Vector{Vector{Int}}(undef, Y)
for ii=1:Y
HZ[ii] =Vector{Int}()# define it so i can push elements as i find them below
end
for j=1:Y
hzSet=Set{Int}()
for kk in HZ1[j]
push!(hzSet,kk)
end
for kk in HZ2[j]
push!(hzSet,kk)
end
HZ[j]=collect(hzSet)
end
HZ
end
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 6504 | function changeExprToFirstValue(ex::Expr)##
newEx=postwalk(ex) do a # change u[1] to u[1][0]
if a isa Expr && a.head == :ref && a.args[1]==:q # change q[1] to q[1][0]
outerRef=Expr(:ref)
push!(outerRef.args,a)
push!(outerRef.args,:(0))
a=outerRef
end
return a
end
newEx
end
function eliminateRef(a)#q[i] -> qi
if a.args[2] isa Expr
if a.args[2].args[1]==:+
a=Symbol((a.args[1]),(a.args[2].args[2]), "plus",(a.args[2].args[3]))
elseif a.args[2].args[1]==:-
a=Symbol((a.args[1]),(a.args[2].args[2]), "minus",(a.args[2].args[3]))
elseif a.args[2].args[1]==:*
a=Symbol((a.args[1]),(a.args[2].args[2]), "times",(a.args[2].args[3]))
elseif a.args[2].args[1]==:/
a=Symbol((a.args[1]),(a.args[2].args[2]), "over",(a.args[2].args[3]))
end
else
a=Symbol((a.args[1]),(a.args[2]))
end
return a
end
function symbolFromRef(refEx)#refEx is i+1 in q[i+1] for example
if refEx isa Expr #
if refEx.args[1]==:+
refEx=Symbol("q",(refEx.args[2]), "plus",(refEx.args[3]))
elseif refEx.args[1]==:-
refEx=Symbol("q",(refEx.args[2]), "minus",(refEx.args[3]))
elseif refEx.args[1]==:*
refEx=Symbol("q",(refEx.args[2]), "times",(refEx.args[3]))
elseif refEx.args[1]==:/
refEx=Symbol("q",(refEx.args[2]), "over",(refEx.args[3]))
end
else
refEx=Symbol("q",(refEx))
end
return refEx
end
function symbolFromRefd(refEx)#refEx is i+1 in q[i+1] for example
if refEx isa Expr #
if refEx.args[1]==:+
refEx=Symbol("d",(refEx.args[2]), "plus",(refEx.args[3]))
elseif refEx.args[1]==:-
refEx=Symbol("d",(refEx.args[2]), "minus",(refEx.args[3]))
elseif refEx.args[1]==:*
refEx=Symbol("d",(refEx.args[2]), "times",(refEx.args[3]))
elseif refEx.args[1]==:/
refEx=Symbol("d",(refEx.args[2]), "over",(refEx.args[3]))
end
else
refEx=Symbol("d",(refEx))
end
return refEx
end
function restoreRef(coefExpr,symDict)
newEx=postwalk(coefExpr) do element#
if element isa Symbol && !(element in (:+,:-,:*,:/)) && haskey(symDict, element) && element != :d
element=symDict[element]
element=changeExprToFirstValue(element)# change u[1] to u[1][0]
elseif element== :d
element=symDict[element]
end
return element
end#end postwalk
newEx
end
function changeVarNames_params(ex::Expr,stateVarName::Symbol,muteVar::Symbol,param::Dict{Symbol,Union{Float64,Expr}},symDict::Dict{Symbol,Expr})#
newEx=postwalk(ex) do element#postwalk to change var names and parameters
if element isa Symbol
if haskey(param, element)#symbol is a parameter
element=copy(param[element]) # copy needed in the case symbol id=expression substitued in equations...do not want all eqs reference same expression...ie if 1 eq changes, other eqs change
elseif element==stateVarName #symbol is a var
element=:q
elseif element==:discrete #symbol is a discr var
element=:d
elseif element==muteVar #symbol is a mute var
element=:i
#= else # + - * /
=#
end
elseif element isa Expr && element.head == :ref && element.args[1]==:q#
symarg=symbolFromRef(element.args[2]) #q[i] -> qi
symDict[symarg]=element #store this translation q[i] <-> qi for later use
elseif element isa Expr && element.head == :ref && element.args[1]==:d#
symarg=symbolFromRefd(element.args[2]) #d[i] -> di
symDict[symarg]=element #store this translation d[i] <-> di
end
return element
end#end postwalk
newEx
end
function changeVarNames_params(ex::Expr,stateVarName::Symbol,muteVar::Symbol,param::Dict{Symbol,Union{Float64,Expr}})######special for if statements and events
newEx=postwalk(ex) do element#postwalk to change var names and parameters
if element isa Symbol
if haskey(param, element)#symbol is a parameter
element=copy(param[element])
elseif element==stateVarName #symbol is a var
element=:q
elseif element==:discrete #symbol is a discr var
element=:d
elseif element==muteVar #symbol is a mute var
element=:i
#= else # + - * /
=#
end
end
return element
end#end postwalk
newEx
end
# these 2 function handle continuous problems only
function extractJacDepNormal(varNum::Int,rhs::Union{Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}, exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr})
jacSet=Set{Union{Int,Symbol,Expr}}()
m=postwalk(rhs) do a #
if a isa Expr && a.head == :ref #
push!(jacSet, (a.args[2])) # du[varNum=1]=rhs=u[5]+u[2] : 2 and 5 are stored in jacset
a=eliminateRef(a)#q[i] -> qi
end
return a
end
basi = convert(Basic, m)
for i in jacSet
symarg=symbolFromRef(i) # specific to elements in jacSet: get q1 from 1 for exple
coef = diff(basi, symarg) # symbolic differentiation: returns type Basic
coefstr=string(coef);coefExpr=Meta.parse(coefstr)#convert from basic to expression
jacEntry=restoreRef(coefExpr,symDict)# get back ref: qi->q[i][0] ...0 because later in exactJac fun cache[1]::Float64=jacEntry
exacteJacExpr[:(($varNum,$i))]=jacEntry # entry (varNum,i) is jacEntry
end
if length(jacSet)>0 jac[varNum]=jacSet end # jac={1->(2,5)}
#@show jac
end
function extractJacDepLoop(b::Int,niter::Int,rhs::Union{Int,Expr},jac :: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}} ,exacteJacExpr :: Dict{Expr,Union{Float64,Int,Symbol,Expr}},symDict::Dict{Symbol,Expr})
jacSet=Set{Union{Int,Symbol,Expr}}()
m=postwalk(rhs) do a
if a isa Expr && a.head == :ref #
push!(jacSet, (a.args[2])) #
a=eliminateRef(a)
end
return a
end
basi = convert(Basic, m)
for i in jacSet
symarg=symbolFromRef(i);
coef = diff(basi, symarg)
coefstr=string(coef);
#= coef1 = diff(basi, symarg)#df
coef2 = diff(coef1, symarg)#ddf
coefstr=string(coef1,-,"(",coef2,")*",symarg,*,0.5) =#
# coefstr=string("(",basi,")/",symarg)
coefExpr=Meta.parse(coefstr)
jacEntry=restoreRef(coefExpr,symDict)
exacteJacExpr[:((($b,$niter),$i))]=jacEntry
end
if length(jacSet)>0 jac[:(($b,$niter))]=jacSet end
end | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 14448 |
struct NLODEContProblem{PRTYPE,T,Z,Y,CS}<: NLODEProblem{PRTYPE,T,Z,Y,CS}
prname::Symbol # problem name used to distinguish printed results
prtype::Val{PRTYPE} # problem type: not used but created in case in the future we want to handle problems differently
a::Val{T} #problem size based on number of vars: T is used not a: 'a' is a mute var
b::Val{Z} #number of Zero crossing functions (ZCF) based on number of 'if statements': Z is used not b: 'b' is a mute var
c::Val{Y} #number of discrete events=2*ZCF: Z is used not c: 'c' is a mute var
cacheSize::Val{CS}# CS= cache size is used : 'cacheSize' is a mute var
initConditions::Vector{Float64} #
eqs::Function#function that holds all ODEs
jac::Vector{Vector{Int}}#Jacobian dependency..I have a der and I want to know which vars affect it...opposite of SD...is a vect for direct method (later @resumable..closure..for saved method)
SD::Vector{Vector{Int}}# I have a var and I want the der that are affected by it
exactJac::Function # used only in the implicit intgration
#map::Function # if sparsity to be exploited: it maps a[i][j] to a[i][γ] where γ usually=1,2,3...(a small int)
jacDim::Function # if sparsity to be exploited: gives length of each row
end
# to create NLODEContProblem above
function NLodeProblemFunc(odeExprs::Expr,::Val{T},::Val{0},::Val{0}, initConditions::Vector{Float64} ,du::Symbol,symDict::Dict{Symbol,Expr})where {T}
if VERBOSE println("nlodeprobfun T= $T") end
equs=Dict{Union{Int,Expr},Expr}() #du[int] or du[i]==du[a<i<b]==du[(a:b)]
jac = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# datastrucutre 'Set' used because we do not want to insert an existing varNum
exacteJacExpr = Dict{Expr,Union{Float64,Int,Symbol,Expr}}()
# NO need to constrcut SD...SDVect will be extracted from Jac
num_cache_equs=1#initial cachesize::will hold the number of caches (vectors) of the longest equation
for argI in odeExprs.args
#only diff eqs: du[]= number || ref || call
if argI isa Expr && argI.head == :(=) && argI.args[1] isa Expr && argI.args[1].head == :ref && argI.args[1].args[1]==du#expr LHS=RHS and LHS is du
y=argI.args[1];rhs=argI.args[2]
varNum=y.args[2] # order/index of variable
if rhs isa Number # rhs of equ =number
equs[varNum]=:($((transformFSimplecase(:($(rhs)))))) #change rhs from N to cache=taylor0=[[N,0,0],2] for order 2 for exple
elseif rhs isa Symbol # case du=t
#equs[varNum ]=quote $rhs end
equs[varNum ]=:($((transformFSimplecase(:($(rhs))))))#
elseif rhs.head==:ref #rhs is only one var
extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict ) #extract jacobian and exactJac approx form from normal equation
equs[varNum ]=:($((transformFSimplecase(:($(rhs))))))#change rhs from q[i] to cache=q[i] ...just put taylor var in cache
else #rhs head==call...to be tested later for math functions and other possible scenarios or user erros
extractJacDepNormal(varNum,rhs,jac,exacteJacExpr,symDict )
temp=(transformF(:($(rhs),1))).args[2] #temp=number of caches distibuted...rhs already changed inside
if num_cache_equs<temp
num_cache_equs=temp
end
equs[varNum]=rhs
end
elseif @capture(argI, for counter_ in b_:niter_ loopbody__ end) #case where diff equation is an expr in for loop
specRHS=loopbody[1].args[2]
extractJacDepLoop(b,niter,specRHS,jac,exacteJacExpr,symDict ) #extract jacobian and SD dependencies from loop
temp=(transformF(:($(specRHS),1))).args[2]
if num_cache_equs<temp
num_cache_equs=temp
end
equs[:(($b,$niter))]=specRHS
else#end of equations and user enter something weird...handle later
# error("expression $x: top level contains only expressions 'A=B' or 'if a b' or for loop... ")#
end #end for x in
end #end for args #########################################################################################################
fname= :f #default problem name
#path="./temp.jl" #default path
if odeExprs.args[1] isa Expr && odeExprs.args[1].args[2] isa Expr && odeExprs.args[1].args[2].head == :tuple#user has to enter problem info in a tuple
fname= odeExprs.args[1].args[2].args[1]
#path=odeExprs.args[1].args[2].args[2]
end
exacteJacfunction=createExactJacFun(exacteJacExpr,fname)
#= open("./temp.jl", "a") do io
println(io,string(exacteJacfunction))
end =#
exactJacfunctionF=@RuntimeGeneratedFunction(exacteJacfunction)
diffEqfunction=createContEqFun(equs,fname)# diff equations before this are stored in a dict:: now we have a giant function that holds all diff equations
jacVect=createJacVect(jac,Val(T)) #jacobian dependency
SDVect=createSDVect(jac,Val(T)) # state derivative dependency
# mapFun=createMapFun(jac,fname) # for sparsity
jacDimFunction=createJacDimensionFun(jac,fname) #for sparsity
diffEqfunctionF=@RuntimeGeneratedFunction(diffEqfunction) # @RuntimeGeneratedFunction changes a fun expression to actual fun without running into world age problems
# mapFunF=@RuntimeGeneratedFunction(mapFun)
jacDimFunctionF=@RuntimeGeneratedFunction(jacDimFunction)
prob=NLODEContProblem(fname,Val(1),Val(T),Val(0),Val(0),Val(num_cache_equs),initConditions,diffEqfunctionF,jacVect,SDVect,exactJacfunctionF,jacDimFunctionF)# prtype type 1...prob not saved and struct contains vects
end
function createContEqFun(equs::Dict{Union{Int,Expr},Expr},funName::Symbol)
s="if i==0 return nothing\n" # :i is the mute var
for elmt in equs
Base.remove_linenums!(elmt[1])
Base.remove_linenums!(elmt[2])
if elmt[1] isa Int
s*="elseif i==$(elmt[1]) $(elmt[2]) ;return nothing\n"
end
if elmt[1] isa Expr
s*="elseif $(elmt[1].args[1])<=i<=$(elmt[1].args[2]) $(elmt[2]) ;return nothing\n"
end
end
s*=" end "
myex1=Meta.parse(s)
Base.remove_linenums!(myex1)
def=Dict{Symbol,Any}()
def[:head] = :function
def[:name] = funName
def[:args] = [:(i::Int),:(q::Vector{Taylor0}),:(t::Taylor0),:(cache::Vector{Taylor0})]
def[:body] = myex1
functioncode=combinedef(def)
# @show functioncode;functioncode
end
function createJacDimensionFun(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},funName::Symbol)
ss="if i==0 return 0\n"
for dictElement in jac
#= Base.remove_linenums!(dictElement[1])
Base.remove_linenums!(dictElement[2]) =#
# counterJac=1
if dictElement[1] isa Int
ss*="elseif i==$(dictElement[1]) \n"
ss*="return $(length(dictElement[2])) \n"
# ss*=" return nothing \n"
elseif dictElement[1] isa Expr
ss*="elseif $(dictElement[1].args[1])<=i<=$(dictElement[1].args[2]) \n"
ss*="return $(length(dictElement[2])) \n"
end
end
ss*=" end \n"
myex1=Meta.parse(ss)
Base.remove_linenums!(myex1)
def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ????
def1[:head] = :function
def1[:name] = Symbol(:jacDimension,funName)
def1[:args] = [:(i::Int)]
def1[:body] = myex1
functioncode1=combinedef(def1)
end
function createMapFun(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},funName::Symbol)
ss="if i==0 return nothing\n"
for dictElement in jac
#= Base.remove_linenums!(dictElement[1])
Base.remove_linenums!(dictElement[2]) =#
# counterJac=1
if dictElement[1] isa Int
ss*="elseif i==$(dictElement[1]) \n"
ns=sort!(collect(dictElement[2]))
ss*="if j==0 return nothing\n"
iter=1
for k in ns
ss*="elseif j==$k \n"
ss*="cache[1]=$iter \n"
ss*=" return nothing \n"
iter+=1
end
ss*=" end \n"
elseif dictElement[1] isa Expr
ss*="elseif $(dictElement[1].args[1])<=i<=$(dictElement[1].args[2]) \n"
@show dictElement[2]
ns=sort!(collect(dictElement[2]))
ss*="if j==0 return nothing\n"
iter=1
for k in ns
ss*="elseif j==$k \n"
ss*="cache[1]=$iter \n"
ss*=" return nothing \n"
iter+=1
end
ss*=" end \n"
end
end
ss*=" end \n"
myex1=Meta.parse(ss)
Base.remove_linenums!(myex1)
def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ????
def1[:head] = :function
def1[:name] = Symbol(:map,funName)
def1[:args] = [:(cache::MVector{1,Int}),:(i::Int),:(j::Int)]
def1[:body] = myex1
functioncode1=combinedef(def1)
end
function createExactJacFun(jac:: Dict{Expr,Union{Float64,Int,Symbol,Expr}},funName::Symbol)
ss="if i==0 return nothing\n"
for dictElement in jac
if dictElement[1].args[1] isa Int
ss*="elseif i==$(dictElement[1].args[1]) && j==$(dictElement[1].args[2]) \n"
ss*="cache[1]=$(dictElement[2]) \n"
ss*=" return nothing \n"
elseif dictElement[1].args[1] isa Expr
ss*="elseif $(dictElement[1].args[1].args[1])<=i<=$(dictElement[1].args[1].args[2]) && j==$(dictElement[1].args[2]) \n"
ss*="cache[1]=$(dictElement[2]) \n"
ss*=" return nothing \n"
end
end
ss*=" end \n"
myex1=Meta.parse(ss)
Base.remove_linenums!(myex1)
def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ????
def1[:head] = :function
def1[:name] = Symbol(:exactJac,funName)
def1[:args] = [:(q::Vector{Taylor0}),:(d::Vector{Float64}),:(cache::MVector{1,Float64}),:(i::Int),:(j::Int),:(t::Float64)]
def1[:body] = myex1
functioncode1=combinedef(def1)
end
function createExactJacDiscreteFun(jac:: Dict{Expr,Union{Float64,Int,Symbol,Expr}},funName::Symbol)
ss="if i==0 return nothing\n"
for dictElement in jac
if dictElement[1].args[1] isa Int
ss*="elseif i==$(dictElement[1].args[1]) && j==$(dictElement[1].args[2]) \n"
ss*="cache[1]=$(dictElement[2]) \n"
ss*=" return nothing \n"
elseif dictElement[1].args[1] isa Expr
ss*="elseif $(dictElement[1].args[1].args[1])<=i<=$(dictElement[1].args[1].args[2]) && j==$(dictElement[1].args[2]) \n"
ss*="cache[1]=$(dictElement[2]) \n"
ss*=" return nothing \n"
end
end
ss*=" end \n"
myex1=Meta.parse(ss)
Base.remove_linenums!(myex1)
def1=Dict{Symbol,Any}() #any changeto Union{expr,Symbol} ????
def1[:head] = :function
def1[:name] = Symbol(:exactJac,funName)
def1[:args] = [:(q::Vector{Taylor0}),:(d::Vector{Float64}),:(cache::MVector{1,Float64}),:(i::Int),:(j::Int),:(t::Float64)] # in jac t does not need to be a taylor
def1[:body] = myex1
functioncode1=combinedef(def1)
end
function createJacVect(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},::Val{T}) where{T}#
jacVect = Vector{Vector{Int}}(undef, T)
for i=1:T
jacVect[i]=Vector{Int}()# define it so i can push elements as i find them below
end
for dictElement in jac
if dictElement[1] isa Int #jac[varNum]=jacSet
jacVect[dictElement[1]]=collect(dictElement[2])
elseif dictElement[1] isa Expr #jac[:(($b,$niter))]=jacSet
for j_=(dictElement[1].args[1]):(dictElement[1].args[2])
temp=Vector{Int}()
for element in dictElement[2]
if element isa Expr || element isa Symbol#can split symbol alone since no need to postwalk
fa= postwalk(a -> a isa Symbol && a==:i ? j_ : a, element) # change each symbol i to exact number
push!(temp,eval(fa))
else #element is int
push!(temp,element)
end
end
jacVect[j_]=temp
end
end
end
jacVect
end
function createSDVect(jac:: Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}},::Val{T}) where{T}
sdVect = Vector{Vector{Int}}(undef, T)
for ii=1:T
sdVect[ii]=Vector{Int}()# define it so i can push elements as i find them below
end
#SD = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}(2 => Set([1]), 10 => Set([10]), :((2, 9)) => Set([:k, :(k - 1), :(k + 1)]), 9 => Set([10]), 1 => Set([1]))
for dictElement in jac
if dictElement[1] isa Int # key is an int
for k in dictElement[2] #elments values
push!(sdVect[k],dictElement[1])
end
elseif dictElement[1] isa Expr # key is an expression
for j_=(dictElement[1].args[1]):(dictElement[1].args[2]) # j_=b:N this can be expensive when N is large::this is why it is recommended to use a function createsd (save) for large prob
for element in dictElement[2]
if element isa Expr || element isa Symbol#element=
fa= postwalk(a -> a isa Symbol && a==:i ? j_ : a, element)
push!(sdVect[eval(fa)],j_)
else#element is int
push!(sdVect[element],j_)
end
end
end
end
end
sdVect
end
#helper funs used in lines 136 and 150
function Base.isless(ex1::Expr, ex2::Expr)#:i is the mute var that prob is now using
fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex1)# check isa symbol not needed
fb=postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex2)
eval(fa)<eval(fb)
end
function Base.isless(ex1::Expr, ex2::Symbol)
fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex1)
eval(fa)<1
end
function Base.isless(ex1::Symbol, ex2::Expr)
fa= postwalk(a -> a isa Symbol && a==:i ? 1 : a, ex2)
1<eval(fa)
end | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 201 |
abstract type NLODEProblem{PRTYPE,T,Z,Y,CS} end
abstract type ALGORITHM{N,O} end
abstract type Sol{T,O} end
abstract type SpecialQSS_data{O1,Lightness} end
abstract type SpecialLiqssQSS_data end
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 18118 |
#helper struct that holds dependency metadata of an event (which vars exist on which side lhs=rhs
#= struct EventDependencyStruct
id::Int
evCont::Vector{Int}
evDisc::Vector{Int}
evContRHS::Vector{Int}
end =#
#struct that holds prob data
struct NLODEDiscProblem{PRTYPE,T,Z,D,CS}<: NLODEProblem{PRTYPE,T,Z,D,CS}
prname::Symbol
prtype::Val{PRTYPE}
a::Val{T}
b::Val{Z}
c::Val{D}
cacheSize::Val{CS}
initConditions::Vector{Float64}
discreteVars::Vector{Float64}
jac::Vector{Vector{Int}}#Jacobian dependency..I have a der and I want to know which vars affect it...opposite of SD
ZCjac::Vector{Vector{Int}} # to update other Qs before checking ZCfunction
eqs::Function#function that holds all ODEs
eventDependencies::Vector{EventDependencyStruct}#
SD::Vector{Vector{Int}}# I have a var and I want the der that are affected by it
HZ::Vector{Vector{Int}}# an ev occured and I want the ZC that are affected by it
HD::Vector{Vector{Int}}# an ev occured and I want the der that are affected by it
SZ::Vector{Vector{Int}}# I have a var and I want the ZC that are affected by it
exactJac::Function #used only in the implicit integration: linear approximation
end
function getInitCond(prob::NLODEDiscProblem,i::Int)
return prob.initConditions[i]
end
#= function getInitCond(prob::savedNLODEDiscProblem,i::Int)
return prob.initConditions(i)
end =#
# receives user code and creates the problem struct
function NLodeProblemFunc(odeExprs::Expr,::Val{T},::Val{D},::Val{Z},initCond::Vector{Float64},du::Symbol,symDict::Dict{Symbol,Expr})where {T,D,Z}
if VERBOSE println("discrete nlodeprobfun T D Z= $T $D $Z") end
# @show odeExprs
discrVars=Vector{Float64}()
equs=Dict{Union{Int,Expr},Union{Int,Symbol,Expr}}()
jac = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# set used because do not want to insert an existing varNum
#SD = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}() # NO need to constrcut SD...SDVect will be extracted from Jac (needed for func-save case)
#jacDiscrete = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}()# for now is similar to continous jac...if feature of d[i] not to be added then jacDiscr=Dict{Union{Int,Expr},Set{Int}}()...later
dD = Dict{Union{Int,Expr},Set{Union{Int,Symbol,Expr}}}() # similarly if feature not given then dD=Dict{Int,Set{Union{Int,Symbol,Expr}}}()
exacteJacExpr = Dict{Expr,Union{Float64,Int,Symbol,Expr}}()
zcequs=Vector{Expr}()#vect to collect if-statements
eventequs=Vector{Expr}()#vect to collect events
ZCjac=Vector{Vector{Int}}()#zeros(SVector{Z,SVector{T,Int}}) # bad when T is large...it is a good idea to use Vector{Vector{Int}}(undef, Z)
ZCFCounter=0
#SZ=Vector{Vector{Int}}()#zeros(SVector{T,SVector{Z,Int}}) # bad when T is large...(opposite of ZCjac)...many vars dont influence zcf so it is better to use dict
# dZ=Vector{Vector{Int}}()#zeros(SVector{D,SVector{Z,Int}})# usually D (num of disc vars) and Z (num of zcfunctions) are small even for real problems
SZ= Dict{Int,Set{Int}}()
dZ= Dict{Int,Set{Int}}() #since D is not large ...i can use zeros(SVector{D,SVector{Z,Int}})
evsArr = EventDependencyStruct[]
num_cache_equs=1#cachesize
for argI in odeExprs.args
if argI isa Expr && argI.head == :(=) && argI.args[1]== :discrete
discrVars = Vector{Float64}(argI.args[2].args)
#only diff eqs: du[]= number/one ref/call
elseif argI isa Expr && argI.head == :(=) && argI.args[1] isa Expr && argI.args[1].head == :ref && argI.args[1].args[1]==du#&& ((argI.args[2] isa Expr && (argI.args[2].head ==:ref || argI.args[2].head ==:call ))||argI.args[2] isa Number)
y=argI.args[1];rhs=argI.args[2]
varNum=y.args[2] # order of variable
if rhs isa Number || rhs isa Symbol # rhs of equ =number or symbol
equs[varNum]=:($((transformFSimplecase(:($(rhs))))))
elseif rhs isa Expr && rhs.head==:ref && rhs.args[1]==:q #rhs is only one var...# rhs.args[1]==:q # check not needed?
extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict,dD )
# end
equs[varNum ]=:($((transformFSimplecase(:($(rhs))))))
#elseif rhs isa Symbol #time t
else #rhs head==call...to be tested later for math functions and other possible scenarios or user erros
extractJacDepNormal(varNum,rhs,jac,exacteJacExpr ,symDict,dD )
temp=(transformF(:($(rhs),1))).args[2] #number of caches distibuted ...no need interpolation and wrap in expr?....before was cuz quote....
if num_cache_equs<temp
num_cache_equs=temp
end
equs[varNum]=rhs
end
elseif @capture(argI, for counter_ in b_:niter_ loopbody__ end)
specRHS=loopbody[1].args[2]
# extractJacDepLoop(b,niter,specRHS,jac ,jacDiscrete ,SD,dD )
extractJacDepLoop(b,niter,specRHS,jac,exacteJacExpr,symDict ,dD )
temp=(transformF(:($(specRHS),1))).args[2]
if num_cache_equs<temp
num_cache_equs=temp
end
equs[:(($b,$niter))]=specRHS
elseif argI isa Expr && argI.head==:if #@capture if did not work
zcf=argI.args[1].args[2]
ZCFCounter+=1
extractZCJacDepNormal(ZCFCounter,zcf,ZCjac ,SZ ,dZ )
if zcf.head==:ref #if one_Var
push!(zcequs,(transformFSimplecase(:($(zcf)))))
########################push!(zcequs,:($((transformFSimplecase(:($(zcf)))))))
# push!(num_cache_zcequs,1) #to be deleted later
else # if whole expre ops with many vars
temp=:($((transformF(:($(zcf),1))).args[2])) #number of caches distibuted, given 1 place holder for ex.args[2] to be filled inside and returned
if num_cache_equs<temp
num_cache_equs=temp
end
push!(zcequs,(zcf))
end
##################################################################################################################
# events
##################################################################################################################
# each 'if-statmets' has 2 events (arg[2]=posEv and arg[3]=NegEv) each pos or neg event has a function...later i can try one event for zc
if length(argI.args)==2 #if user only wrote the positive evnt, here I added the negative event wich does nothing
nothingexpr = quote nothing end # neg dummy event
push!(argI.args, nothingexpr)
Base.remove_linenums!(argI.args[3])
end
# end#end temporary if
# end#end temporay for argI
#pos event
newPosEventExprToFunc=changeExprToFirstValue(argI.args[2]) #change u[1] to u[1][0] # pos ev can't be a symbol ...later maybe add check anyway
push!(eventequs,newPosEventExprToFunc)
#neg eve
if argI.args[3].args[1] isa Expr # argI.args[3] isa expr and is either an equation or :block symbol end ...so lets check .args[1]
newNegEventExprToFunc=changeExprToFirstValue(argI.args[3])
push!(eventequs,newNegEventExprToFunc)
else
push!(eventequs,argI.args[3]) #symbol nothing
end
#after constructing the equations we move to dependencies: we need to change A[n] to An so that they become symbols
posEvExp = argI.args[2]
negEvExp = argI.args[3]
#dump(negEvExp)
indexPosEv = 2 * length(zcequs) - 1 # store events in order
indexNegEv = 2 * length(zcequs)
#------------------pos Event--------------------#
posEv_disArrLHS= Vector{Int}()#@SVector fill(NaN, D) #...better than @SVector zeros(D), I can use NaN
posEv_conArrLHS= Vector{Int}()#@SVector fill(NaN, T)
posEv_conArrRHS=Vector{Int}()#@SVector zeros(T) #to be used inside intgrator to updateOtherQs (intgrateState) before executing the event there is no discArrRHS because d is not changing overtime to be updated
for j = 1:length(posEvExp.args) # j coressponds the number of statements under one posEvent
# !(posEvExp.args[j] isa Expr && posEvExp.args[j].head == :(=)) && error("event should be A=B")
if (posEvExp.args[j] isa Expr && posEvExp.args[j].head == :(=))
poslhs=posEvExp.args[j].args[1];posrhs=posEvExp.args[j].args[2]
# !(poslhs isa Expr && poslhs.head == :ref && (poslhs.args[1]==:q || poslhs.args[1]==:d)) && error("lhs of events must be a continuous or a discrete variable")
if (poslhs isa Expr && poslhs.head == :ref && (poslhs.args[1]==:q || poslhs.args[1]==:d))
if poslhs.args[1]==:q
push!(posEv_conArrLHS,poslhs.args[2])
else # lhs is a disc var
push!(posEv_disArrLHS,poslhs.args[2])
end
#@show poslhs,posrhs
postwalk(posrhs) do a #
if a isa Expr && a.head == :ref && a.args[1]==:q#
push!(posEv_conArrRHS, (a.args[2])) #
end
return a
end
end
end
end
#------------------neg Event--------------------#
negEv_disArrLHS= Vector{Int}()#@SVector fill(NaN, D) #...better than @SVector zeros(D), I can use NaN
negEv_conArrLHS= Vector{Int}()#@SVector fill(NaN, T)
negEv_conArrRHS=Vector{Int}()#@SVector zeros(T) #to be used inside intgrator to updateOtherQs (intgrateState) before executing the event there is no discArrRHS because d is not changing overtime to be updated
if negEvExp.args[1] != :nothing
for j = 1:length(negEvExp.args) # j coressponds the number of statements under one negEvent
# !(negEvExp.args[j] isa Expr && negEvExp.args[j].head == :(=)) && error("event should be A=B")
neglhs=negEvExp.args[j].args[1];negrhs=negEvExp.args[j].args[1]
# !(neglhs isa Expr && neglhs.head == :ref && (neglhs.args[1]==:q || neglhs.args[1]==:d)) && error("lhs of events must be a continuous or a discrete variable")
if (neglhs isa Expr && neglhs.head == :ref && (neglhs.args[1]==:q || neglhs.args[1]==:d))
if neglhs.args[1]==:q
push!(negEv_conArrLHS,neglhs.args[2])
else # lhs is a disc var
push!(negEv_disArrLHS,neglhs.args[2])
end
postwalk(negrhs) do a #
if a isa Expr && a.head == :ref && a.args[1]==:q#
push!(negEv_conArrRHS, (a.args[2])) #
end
return a
end
end
end
end
structposEvent = EventDependencyStruct(indexPosEv, posEv_conArrLHS, posEv_disArrLHS,posEv_conArrRHS) # right now posEv_conArr is vect of ...
push!(evsArr, structposEvent)
structnegEvent = EventDependencyStruct(indexNegEv, negEv_conArrLHS, negEv_disArrLHS,negEv_conArrRHS)
push!(evsArr, structnegEvent)
end #end cases
end #end for #########################################################################################################
############@show evsArr
#println("end of useless convesrion to svector")
allEpxpr=Expr(:block)
##############diffEqua######################
#= io = IOBuffer() # i guess this is a sys of diff equ solver so I am not optimizing for case 1 equ
write(io, "if j==1 $(equs[1]) ;return nothing") =#
s="if i==0 return nothing\n" # :i is the mute var
for elmt in equs
Base.remove_linenums!(elmt[1])
Base.remove_linenums!(elmt[2])
if elmt[1] isa Int
s*="elseif i==$(elmt[1]) $(elmt[2]) ;return nothing\n"
end
if elmt[1] isa Expr
s*="elseif $(elmt[1].args[1])<=i<=$(elmt[1].args[2]) $(elmt[2]) ;return nothing\n"
end
end
s*=" end "
myex1=Meta.parse(s)
push!(allEpxpr.args,myex1)
##############ZCF######################
if length(zcequs)>0
#= io = IOBuffer()
write(io, "if zc==1 $(zcequs[1]) ;return nothing") =#
s="if zc==1 $(zcequs[1]) ;return nothing"
for i=2:length(zcequs)
s*= " elseif zc==$i $(zcequs[i]) ;return nothing"
end
# write(io, " else $(zcequs[length(zcequs)]) ;return nothing end ")
s*= " end "
myex2=Meta.parse(s)
push!(allEpxpr.args,myex2)
end
##############events######################
if length(eventequs)>0
s= "if ev==1 $(eventequs[1]) ;return nothing"
for i=2:length(eventequs)
s*= " elseif ev==$i $(eventequs[i]) ;return nothing"
end
# write(io, " else $(zcequs[length(zcequs)]) ;return nothing end ")
s*= " end "
myex3=Meta.parse(s)
push!(allEpxpr.args,myex3)
end
fname= :f #default problem name
#path="./temp.jl" #default path
if odeExprs.args[1] isa Expr && odeExprs.args[1].args[2] isa Expr && odeExprs.args[1].args[2].head == :tuple#user has to enter problem info in a tuple
fname= odeExprs.args[1].args[2].args[1]
#path=odeExprs.args[1].args[2].args[2]
end
Base.remove_linenums!(allEpxpr)
def=Dict{Symbol,Any}()
def[:head] = :function
def[:name] = fname
def[:args] = [:(i::Int),:(zc::Int),:(ev::Int),:(q::Vector{Taylor0}),:(d::Vector{Float64}), :(t::Taylor0),:(cache::Vector{Taylor0})]
def[:body] = allEpxpr
#def[:rtype]=:nothing# test if cache1 always holds sol
functioncode=combinedef(def)
functioncodeF=@RuntimeGeneratedFunction(functioncode)
#=
jac = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}(1 => Set([2]))
SD = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}(2 => Set([1]))
jacDiscrete = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}(1 => Set())
dD = Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}}()
ZCjac = [[1], [2]]
ZCFCounter = 2
SZ = Dict{Int64, Set{Int64}}(2 => Set([2]), 1 => Set([1]))
dZ = Dict{Int64, Set{Int64}}(1 => Set([1])) =#
jacVect=createJacVect(jac,Val(T))
SDVect=createSDVect(jac,Val(T))
#@show dD
dDVect =createdDvect(dD,Val(D))
#jacDiscreteVect=createJacVect(jacDiscrete,Val(T)) #
SZvect=createSZvect(SZ,Val(T))
#@show evsArr
#@show jacVect,SDVect,dDVect,SZvect
#= SDVect = [Int64[], [2, 1], [3], [4], Int64[]]
jacVect = [[2], [2], [3], [4], Int64[]]
jacDiscreteVect = [[2, 1], [1], [1], [1], [2, 1]]
dDVect = [[5, 2, 3, 4, 1], [5, 1]] =#
# temporary dependencies to be used to determine HD and HZ...determine HD: event-->Derivative && determine HZ:Event-->ZCfunction....influence of events on derivatives and zcfunctions:
#an event is a discrteVar change or a cont Var change. So HD=HD1 UNION HD2 (same for HZ=HZ1 UNION HZ2)
# (1) through a discrete Var:
# ============================
# HD1=Hd-->dD where Hd comes from the eventDependecies Struct.
# HZ1=Hd-->dZ where Hd comes from the eventDependecies Struct.
HZ1HD1=createDependencyToEventsDiscr(dDVect,dZ,evsArr)
# @show HZ1HD1
# (2) through a continous Var:
# ==============================
# HD2=Hs-->sD where Hs comes from the eventDependecies Struct.(sd already created)
# HZ2=Hs-->sZ where Hs comes from the eventDependecies Struct.(sZ already created)
HZ2HD2=createDependencyToEventsCont(SDVect,SZ,evsArr)
# @show HZ2HD2
##########UNION##############
HZ=unionDependency(HZ1HD1[1],HZ2HD2[1])
# @show HZ
HD=unionDependency(HZ1HD1[2],HZ2HD2[2])
# @show HD
# mapFun=createMapFun(jac,fname)
# mapFunF=@RuntimeGeneratedFunction(mapFun)
exacteJacfunction=createExactJacDiscreteFun(exacteJacExpr,fname)
exacteJacfunctionF=@RuntimeGeneratedFunction(exacteJacfunction)
if VERBOSE println("discrete problem created") end
myodeProblem = NLODEDiscProblem(fname,Val(1),Val(T),Val(Z),Val(D),Val(num_cache_equs),initCond, discrVars, jacVect ,ZCjac ,functioncodeF, evsArr,SDVect,HZ,HD,SZvect,exacteJacfunctionF)
end
function createdDvect(dD::Dict{Union{Int64, Expr}, Set{Union{Int64, Expr, Symbol}}},::Val{D})where{D}
dDVect = Vector{Vector{Int}}(undef, D)
for ii=1:D
dDVect[ii]=Vector{Int}()# define it so i can push elements as i find them below
end
for dictElement in dD
temp=Vector{Int}()
for k in dictElement[2]
if k isa Int
push!(temp,k)
elseif k isa Expr #tuple
for j_=(k.args[1]):(k.args[2])
push!(temp,j_)
end
end
end
dDVect[dictElement[1]]=temp
end
dDVect
end
function createSZvect(SZ :: Dict{Int64, Set{Int64}},::Val{T})where{T}
szVect = Vector{Vector{Int}}(undef, T)
for ii=1:T
szVect[ii]=Vector{Int}()# define it so i can push elements as i find them below
end
for ele in SZ
szVect[ele[1]]=collect(ele[2])
end
szVect
end | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 790 | #
struct QSSAlgorithm{N,O}#<:QSSAlgorithm{N,O}
name::Val{N}
order::Val{O}
end
qss1()=QSSAlgorithm(Val(:qss),Val(1))
qss2()=QSSAlgorithm(Val(:qss),Val(2))
qss3()=QSSAlgorithm(Val(:qss),Val(3))
nmliqss1()=QSSAlgorithm(Val(:nmliqss),Val(1))
nmliqss2()=QSSAlgorithm(Val(:nmliqss),Val(2))
nmliqss3()=QSSAlgorithm(Val(:nmliqss),Val(3))
nliqss1()=QSSAlgorithm(Val(:nliqss),Val(1))
nliqss2()=QSSAlgorithm(Val(:nliqss),Val(2))
nliqss3()=QSSAlgorithm(Val(:nliqss),Val(3))
mliqss1()=QSSAlgorithm(Val(:mliqss),Val(1))
mliqss2()=QSSAlgorithm(Val(:mliqss),Val(2))
mliqss3()=QSSAlgorithm(Val(:mliqss),Val(3))
liqss1()=QSSAlgorithm(Val(:liqss),Val(1))
liqss2()=QSSAlgorithm(Val(:liqss),Val(2))
liqss3()=QSSAlgorithm(Val(:liqss),Val(3))
sparse()=Val(true)
dense()=Val(false)
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 2128 |
#= """ hold helper datastructures needed for simulation, can be seen as the model in the qss architecture (model-integrator-quantizer)""" =#
struct CommonQSS_data{Z}
quantum :: Vector{Float64}
x :: Vector{Taylor0} #MVector cannot hold non-isbits
q :: Vector{Taylor0}
tx :: Vector{Float64}
tq :: Vector{Float64}
d::Vector{Float64}
nextStateTime :: Vector{Float64}
nextInputTime :: Vector{Float64} #
nextEventTime :: MVector{Z,Float64}
t::Taylor0# mute taylor var to be used with math functions to represent time
integratorCache::Taylor0
taylorOpsCache::Vector{Taylor0}
finalTime:: Float64
savetimeincrement::Float64
initialTime :: Float64
dQmin ::Float64
dQrel ::Float64
maxErr ::Float64
savedTimes :: Vector{Vector{Float64}}
savedVars:: Vector{Vector{Float64}}
end
#= ```
data needed only for implicit case
``` =#
struct LiQSS_data{O,Sparsity}
vs::Val{Sparsity}
a::Vector{Vector{Float64}}
# u:: Vector{Vector{MVector{O,Float64}}}
qaux::Vector{MVector{O,Float64}}
olddx::Vector{MVector{O,Float64}}
dxaux::Vector{MVector{O,Float64}}
olddxSpec::Vector{MVector{O,Float64}}
end
struct LightSpecialQSS_data{O1,Lightness}<:SpecialQSS_data{O1,Lightness}
ls::Val{Lightness}
p::Val{O1}
savedVars :: Vector{Vector{Float64}} #has to be vector (not SA) cuz to be resized in integrator
end
#= struct HeavySpecialQSS_data{T,O1,Lightness}<:SpecialQSS_data{T,O1,Lightness}
ls::Val{Lightness}
savedVars :: Vector{Array{Taylor0}} #has to be vector (not SA) cuz to be resized in integrator
prevStepVal ::MVector{T,MVector{O1,Float64}} #use
end =#
struct SpecialLiQSS_data<:SpecialLiqssQSS_data
cacheA::MVector{1,Float64}
direction::Vector{Float64}
qminus::Vector{Float64}
buddySimul::MVector{2,Int}
prevStepVal ::Vector{Float64}
end
#= function createSpecialQSS_data(savedVars :: Vector{Array{Taylor0}}, prevStepVal::MVector{T,MVector{O1,Float64}},cacheA::MVector{1,Int}) where {T,O1}
hv=HeavySpecialQSS_data(savedVars,prevStepVal,cacheA)
end
=#
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 1456 |
function updateScheduler(::Val{T},nextStateTime::Vector{Float64},nextEventTime :: MVector{Z,Float64},nextInputTime :: Vector{Float64})where{T,Z} #later MVect for nextInput
minStateTime=Inf
minState_index=0 # what if all nextstateTime= Inf ...especially at begining????? min_index stays 0!!!
minEventTime=Inf
minEvent_index=0
minInputTime=Inf
minInput_index=0
returnedVar=() # used to print something if something is bad
for i=1:T
if nextStateTime[i]<minStateTime
minStateTime=nextStateTime[i]
minState_index=i
end
if nextInputTime[i] < minInputTime
minInputTime=nextInputTime[i]
minInput_index=i
end
end
for i=1:Z
if nextEventTime[i] < minEventTime
minEventTime=nextEventTime[i]
minEvent_index=i
end
end
if minEventTime<minStateTime
if minInputTime<minEventTime
returnedVar=(minInput_index,minInputTime,:ST_INPUT)
else
returnedVar=(minEvent_index,minEventTime,:ST_EVENT)
end
else
if minInputTime<minStateTime
returnedVar=(minInput_index,minInputTime,:ST_INPUT)
else
returnedVar=(minState_index,minStateTime,:ST_STATE)
end
end
if returnedVar[1]==0
returnedVar=(1,Inf,:ST_STATE)
println("null step made state step")
end
return returnedVar
end
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 6348 |
struct LightSol{T,O}<:Sol{T,O}
size::Val{T}
order::Val{O}
savedTimes::Vector{Vector{Float64}}
savedVars::Vector{Vector{Float64}}
#savedVarsQ::Vector{Vector{Float64}}
algName::String
sysName::String
absQ::Float64
totalSteps::Int
simulStepCount::Int
evCount::Int
numSteps ::Vector{Int}
ft::Float64
end
struct HeavySol{T,O}<:Sol{T,O}
size::Val{T}
order::Val{O}
savedTimes::Vector{Vector{Float64}}
savedVars::Vector{Vector{Float64}}
savedDers::Vector{Vector{Float64}}
#savedVarsQ::Vector{Vector{Float64}}
algName::String
sysName::String
absQ::Float64
totalSteps::Int
simulStepCount::Int
evCount::Int
numSteps ::Vector{Int}
ft::Float64
end
@inline function createSol(::Val{T},::Val{O}, savedTimes:: Vector{Vector{Float64}},savedVars :: Vector{Vector{Float64}},solver::String,nameof_F::String,absQ::Float64,totalSteps::Int#= ,stepsaftersimul::Int =#,simulStepCount::Int,evCount::Int,numSteps ::Vector{Int},ft::Float64#= ,simulStepsVals :: Vector{Vector{Float64}}, simulStepsDers :: Vector{Vector{Float64}} ,simulStepsTimes :: Vector{Vector{Float64}} =#)where {T,O}
# println("light")
sol=LightSol(Val(T),Val(O),savedTimes, savedVars,solver,nameof_F,absQ,totalSteps#= ,stepsaftersimul =#,simulStepCount,evCount,numSteps,ft#= ,simulStepsVals,simulStepsDers,simulStepsTimes =#)
end
@inline function createSol(::Val{T},::Val{O}, savedTimes:: Vector{Vector{Float64}},savedVars :: Vector{Vector{Float64}},savedDers :: Vector{Vector{Float64}},solver::String,nameof_F::String,absQ::Float64,totalSteps::Int#= ,stepsaftersimul::Int =#,simulStepCount::Int,evCount::Int,numSteps ::Vector{Int},ft::Float64#= ,simulStepsVals :: Vector{Vector{Float64}}, simulStepsDers :: Vector{Vector{Float64}} ,simulStepsTimes :: Vector{Vector{Float64}} =#)where {T,O}
# println("light")
sol=HeavySol(Val(T),Val(O),savedTimes, savedVars,savedDers,solver,nameof_F,absQ,totalSteps#= ,stepsaftersimul =#,simulStepCount,evCount,numSteps,ft#= ,simulStepsVals,simulStepsDers,simulStepsTimes =#)
end
function getindex(s::Sol, i::Int64)
if i==1
return s.savedTimes
elseif i==2
return s.savedVars
else
error("sol has 2 attributes: time and states")
end
end
@inline function evaluateSol(sol::LightSol{T,O},index::Int,t::Float64)where {T,O}
(t>sol.ft) && error("given point is outside the sol range")
x=sol[2][index][end]
#integratorCache=Taylor0(zeros(O+1),O)
for i=2:length(sol[1][index])#savedTimes after the init time...init time is at index i=1
if sol[1][index][i]>t # i-1 is closest lower point
f1=sol[2][index][i-1];f2=sol[2][index][i];t1=sol[1][index][i-1] ;t2=sol[1][index][i]# find x=f(t)=at+b...linear interpolation
a=(f2-f1)/(t2-t1)
b=(f1*t2-f2*t1)/(t2-t1)
x=a*t+b
# println("1st case")
return x#taylor evaluation after small elapsed with the point before (i-1)
elseif sol[1][index][i]==t # i-1 is closest lower point
x=sol[2][index][i]
# println("2nd case")
return x
end
end
# println("3rd case")
return x #if var never changed then return init cond or if t>lastSavedTime for this var then return last value
end
function solInterpolated(sol::Sol{T,O},step::Float64)where {T,O}
#(sol.ft>sol[1][end]) && error("given point is outside the sol range")
#numPoints=length(sol.savedTimes)
interpTimes=Float64[]
allInterpTimes=Vector{Vector{Float64}}(undef, T)
t=0.0 #later can change to init_time which could be diff than zero
push!(interpTimes,t)
while t+step<sol.ft
t=t+step
push!(interpTimes,t)
end
push!(interpTimes,sol.ft)
numInterpPoints=length(interpTimes)
#display(interpTimes)
interpValues=nothing
if sol isa LightSol
interpValues=Vector{Vector{Float64}}(undef, T)
#= elseif sol isa HeavySol
interpValues=Vector{Array{Taylor0}}(undef, T) =#
end
for index=1:T
interpValues[index]=[]
push!(interpValues[index],sol[2][index][1]) #1st element is the init cond (true value)
# end
for i=2:numInterpPoints-1
# for index=1:T
#
push!(interpValues[index],evaluateSol(sol,index,interpTimes[i]))
# end
end
# for index=1:T
push!(interpValues[index],sol[2][index][end]) #last pt @ft
allInterpTimes[index]=interpTimes
end
#(interpTimes,interpValues)
createSol(Val(T),Val(O),allInterpTimes,interpValues,sol.algName,sol.sysName,sol.absQ,sol.totalSteps#= ,sol.stepsaftersimul =#,sol.simulStepCount,sol.evCount,sol.numSteps,sol.ft#= ,sol.simulStepsVals,sol.simulStepsDers,sol.simulStepsVals =#)
end
function evaluateSimpleSol(sol::Sol,index::Int,t::Float64)
for i=2:length(sol[1])#savedTimes after the init time...init time is at index i=1
if sol[1][i]>=t # i-1 is closest lower point
return sol[2][index][i-1](t-sol[1][i-1])#taylor evaluation after small elapsed with the point before (i-1)
end
end
end
function simpleSolInterpolated(sol::Sol,index::Int,step::Float64,ft::Float64)
numPoints=length(sol.savedTimes)
interpTimes=[]
t=0.0 #later can change to init_time which could be diff than zero
push!(interpTimes,t)
while t+step<ft
t=t+step
push!(interpTimes,t)
end
push!(interpTimes,ft)
numInterpPoints=length(interpTimes)
#display(interpTimes)
interpValues=[]
push!(interpValues,sol[2][index][1][0]) #1st element is the init cond (true value)
for i=2:numInterpPoints-1
push!(interpValues,evaluateSol(sol,index,interpTimes[i]))
end
push!(interpValues,sol[2][index][numPoints][0]) #last pt @ft
(interpTimes,interpValues)
end
(sol::Sol)(index::Int,t::Float64) = evaluateSol(sol,index,t)
####################################################################################################
function plotElapsed(sol::Sol)
numVars=length(sol.savedVars)
p1=plot()
for k=1:numVars#T
p1=plot!(p1,sol.et[k], sol.hv[k],marker=(:xcross),markersize=3,label="x$(k)_hqThrow"#= ,xlims=(877.5,877.8),ylims=(-0.01,0.03) =#)
p1=plot!(p1,sol.ets[k], sol.hvs[k],marker=(:star8),markersize=3,title="$(sol.algName)_$(sol.absQ)",label="x$(k)_SimulhqThrow"#= ,xlims=(877.5,877.8),ylims=(-0.01,0.03) =#)
p1=plot!(legend=:topleft,xlims=(16.0,20.0),ylims=(0.0,0.5))
end
savefig(p1, "trackELAPSED_$(sol.sysName)_$(sol.algName)_$(sol.absQ).png")
end | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 6577 |
#if you want to put a note and lims in the graph
function plot_SolDer(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1=plot()
#= if sol.algName=="nmliqss1"
mycolor=:green
stle=:dash
else
mycolor=:blue
end =#
if xvars!=()
for k in xvars
if k==1
stle=:dash
sze=2
elseif k==2
stle=:solid
sze=4
elseif k==3
stle=:dot
sze=3
elseif k==4
stle=:dashdot
sze=2
elseif k==5
stle=:dashdotdot
sze=2
else
sze=1
stle=:solid
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
# p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k]#= ,marker=(:circle) =#,markersize=2,label="x$k ",legend=:bottomright)
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],line=(sze,stle),marker=(:circle),label="dx$k $(sol.numSteps[k])"#= ,legend=:right =#)
end
else
for k=1:T
if k==1
mycolor=:red
else
mycolor=:purple
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],marker=(:circle),markersize=2,label="dx$k $(sol.numSteps[k])"#= ,legend=:false =#)
end
end
if xlims!=(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims ,ylims=ylims)
elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims #= ,ylims=ylims =#)
elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note"#= , xlims=xlims =#,ylims=ylims)
else
p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note",legend=legend)
end
p1
#savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function save_SolDer(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1= plot_SolDer(sol,xvars...;note=note,xlims=xlims,ylims=ylims,legend=legend)
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(xvars)_$(sol.absQ)_$(note)_ftt_$(sol.ft)_$(timestamp).png")
end
#= #for debug to be deleted later: simultaneous steps plot
function save_SimulSol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64}) where{T,O}
p1=plot()
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
if xvars[1]!=()
for k in xvars
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])")
p1=plot!(p1,sol.simulStepsTimes[k], sol.simulStepsVals[k],marker=(:circle),markersize=4,label="x$k ")
end
else
for k=1:T
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])")
p1=plot!(p1,sol.simulStepsTimes[k], sol.simulStepsVals[k],marker=(:circle),markersize=4,label="x$k ")
end
end
if xlims!=(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note", xlims=xlims ,ylims=ylims)
elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note", xlims=xlims #= ,ylims=ylims =#)
elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note"#= , xlims=xlims =#,ylims=ylims)
else
p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note")
end
savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function getPlot(sol::Sol{T,O}) where{T,O}
p1=plot(title="$(sol.sysName)")#;p2=nothing
for k=1:T
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k]) ")
end
p1
end
function getPlot(sol::Sol{T,O},k::Int) where{T,O}
p1=plot!(sol.savedTimes[k], sol.savedDers[k],marker=(:circle),markersize=2,#= title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.simulStepCount) ", =#label="x$index ")
end
function getPlot!(sol::Sol{T,O}) where{T,O}
p1=plot!(title="$(sol.sysName)")
if sol.algName=="nmliqss1"
mycolor=:red
else
mycolor=:blue
end
for k=1:T
#p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],line=(1,mycolor),marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])$(sol.algName)_$(sol.totalSteps)_$(sol.stepsaftersimul)_$(sol.simulStepCount)")
end
p1
end
function getPlot!(sol::Sol{T,O},k::Int) where{T,O}
p1=plot!(title="$(sol.sysName)")
if sol.algName=="nmliqss1"
mycolor=:red;linsty=:dash
else
mycolor=:blue;linsty=:dot
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedDers[k],line=(1,mycolor),marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])$(sol.algName)_$(sol.totalSteps)_$(sol.simulStepCount)")
end
=#
#= function plotSol(sol::Sol{T,O}) where{T,O}
numPoints=length(sol.savedTimes)
#numVars=length(sol.savedDers)
p1=plot()
for k=1:T
temp = []
for i = 1:numPoints #each point is a taylor
push!(temp, sol.savedDers[k][i].coeffs[1])
end
display(plot!(p1,sol.savedTimes, temp,marker=(:circle),markersize=3,title="$(sol.algName) _$(sol.absQ)_$(sol.simulStepCount)",label="x$k"#= ,xlims=(877.5,877.8),ylims=(-0.01,0.03) =#))
end
println("press enter to exit")
readline()
end =#
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 7245 |
function getError(sol::Sol{T,O},index::Int,f::Function)where{T,O}
index>T && error("the system contains only $T variables!")
numPoints=length(sol.savedTimes[index])
sumTrueSqr=0.0
sumDiffSqr=0.0
relerror=0.0
for i = 1:numPoints-1 #each point is a taylor
ts=f(sol.savedTimes[index][i])
sumDiffSqr+=(sol.savedVars[index][i]-ts)*(sol.savedVars[index][i]-ts)
sumTrueSqr+=ts*ts
end
relerror=sqrt(sumDiffSqr/sumTrueSqr)
return relerror
end
function getErrorByRefs(solRef::Vector{Any},solmliqss::Sol{T,O},index::Int)where{T,O}
#numVars=length(solmliqss.savedVars)
index>T && error("the system contains only $T variables!")
numPoints=length(solmliqss.savedTimes[index])
sumTrueSqr=0.0
sumDiffSqr=0.0
relerror=0.0
for i = 1:numPoints-1 #-1 because savedtimes holds init cond at begining
ts=solRef[i][index]
sumDiffSqr+=(solmliqss.savedVars[index][i]-ts)*(solmliqss.savedVars[index][i]-ts)
sumTrueSqr+=ts*ts
end
relerror=sqrt(sumDiffSqr/sumTrueSqr)
return relerror
end
function getAllErrorsByRefs(solRef::Vector{Any},solmliqss::Sol{T,O})where{T,O}
numPoints=length(solmliqss.savedTimes[1])
allErrors=Array{Float64}(undef, T)
for index=1:T
sumTrueSqr=0.0
sumDiffSqr=0.0
relerror=0.0
for i = 1:numPoints-1 #each point is a taylor
ts=solRef[i][index]
Ns=getX_fromSavedVars(solmliqss.savedVars,index,i)
sumDiffSqr+=(Ns-ts)*(Ns-ts)
sumTrueSqr+=ts*ts
end
relerror=sqrt(sumDiffSqr/sumTrueSqr)
allErrors[index]= relerror
end
return allErrors
end
@inline function getX_fromSavedVars(savedVars :: Vector{Array{Taylor0}},index::Int,i::Int)
return savedVars[index][i].coeffs[1]
end
@inline function getX_fromSavedVars(savedVars :: Vector{Vector{Float64}},index::Int,i::Int)
return savedVars[index][i]
end
function getAverageErrorByRefs(solRef::Vector{Any},solmliqss::Sol{T,O})where{T,O}
numPoints=length(solmliqss.savedTimes[1])
allErrors=0.0
for index=1:T
sumTrueSqr=0.0
sumDiffSqr=0.0
relerror=0.0
for i = 1:numPoints-1 #each point is a taylor
ts=solRef[i][index]
Ns=getX_fromSavedVars(solmliqss.savedVars,index,i)
sumDiffSqr+=(Ns-ts)*(Ns-ts)
sumTrueSqr+=ts*ts
end
if abs(sumTrueSqr)>1e-12
relerror=sqrt(sumDiffSqr/sumTrueSqr)
else
relerror=0.0
end
allErrors+= relerror
end
return allErrors/T
end
function plotRelativeError(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
if index<=numVars
temp = []
tempt = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
if ft>1e-12 || ft < -1e-12
push!(temp, abs((sol.savedVars[index][i].coeffs[1]-ft)/ft))
push!(tempt,sol.savedTimes[i])
end
end
display(plot(tempt, temp,title="RelError:(S-T)/T for x$(index)_$(sol.absQ)",label="$(sol.algName)"#= ,xlims=(80,200),ylims=(0.0,0.0002) =#) )
println("press enter to exit")
readline()
else
error("the system contains only $numVars variables!")
end
end
function saveRelativeError(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
if index<=numVars
temp = []
tempt = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
if ft>1e-12 || ft < -1e-12
push!(temp, abs((sol.savedVars[index][i].coeffs[1]-ft)/ft))
push!(tempt,sol.savedTimes[i])
end
end
# display(plot!(tempt, temp,title="RelError:(S-T)/T for x$index",label="$(sol.algName)"))
p1=plot(tempt, temp,title="RelError:(S-T)/T for x$(index)_$(sol.absQ)",label="$(sol.algName)"#= ,xlims=(80,200),ylims=(0.0,0.0002) =#)
savefig(p1, "relError_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_x$(index)_$(timestamp).png")
else
error("the system contains only $numVars variables!")
end
end
function plotAbsoluteError(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
if index<=numVars
temp = []
# tempt = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
#if ft>1e-2 || ft < -1e-2
push!(temp, abs((sol.savedVars[index][i].coeffs[1]-ft)))
# push!(tempt,sol.savedTimes[i])
# end
end
#display(plot!(sol.savedTimes, temp,title="AbsError:(S-T) for x$index",label="$(sol.algName)"))
display(plot(sol.savedTimes, temp,title="AbsError:(S-T) for x$(index)_$(sol.absQ)",label="$(sol.algName)"#= ,xlims=(80,200),ylims=(0.0,0.0002) =#))
println("press enter to exit")
readline()
else
error("the system contains only $numVars variables!")
end
end
function saveAbsoluteError(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
if index<=numVars
temp = []
# tempt = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
#if ft>1e-2 || ft < -1e-2
push!(temp, abs((sol.savedVars[index][i].coeffs[1]-ft)))
# push!(tempt,sol.savedTimes[i])
# end
end
#display(plot!(sol.savedTimes, temp,title="AbsError:(S-T) for x$index",label="$(sol.algName)"))
p1=plot(sol.savedTimes, temp,title="AbsError:(S-T) for x$(index)_$(sol.absQ)",label="$(sol.algName)"#= ,xlims=(80,200),ylims=(0.0,0.0002) =#)
savefig(p1, "absError_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_x$(index)_$(timestamp).png")
else
error("the system contains only $numVars variables!")
end
end
function plotCumulativeSquaredRelativeError(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
sumTrueSqr=0.0
sumDiffSqr=0.0
if index<=numVars
temp = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
sumDiffSqr+=(sol.savedVars[index][i].coeffs[1]-ft)*(sol.savedVars[index][i].coeffs[1]-ft)
sumTrueSqr+=ft*ft
push!(temp, sqrt(sumDiffSqr/sumTrueSqr))
end
display(plot!(sol.savedTimes, temp,title="Error:sqrt(∑(S-T)^2/∑T^2) for x$index",label="$(sol.algName)"))
else
error("the system contains only $numVars variables!")
end
println("press enter to exit")
readline()
end
function plotMSE(sol::Sol,index::Int,f::Function)
numPoints=length(sol.savedTimes)
numVars=length(sol.savedVars)
# sumTrueSqr=0.0
sumDiffSqr=0.0
if index<=numVars
temp = []
for i = 1:numPoints #each point is a taylor
ft=f(sol.savedTimes[i])
sumDiffSqr+=(sol.savedVars[index][i].coeffs[1]-ft)*(sol.savedVars[index][i].coeffs[1]-ft)
# sumTrueSqr+=ft*ft
push!(temp, (sumDiffSqr/i))
end
display(plot!(sol.savedTimes, temp,title="Error:(∑(S-T)^2/i) for x$index",label="$(sol.algName)"))
else
error("the system contains only $numVars variables!")
end
println("press enter to exit")
readline()
end
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 8967 |
#plot the sum of variables
function plot_SolSum(sol::Sol{T,O},xvars::Int...;interp=0.0001,note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1=plot()
#= if sol.algName=="nmliqss1"
mycolor=:green
stle=:dash
else
mycolor=:blue
end =#
if xvars!=()
solInterp=solInterpolated(sol,interp) # for now interpl all
sumV=solInterp.savedVars[xvars[1]]
sumT=solInterp.savedTimes[xvars[1]]#
numPoints=length(sumT)
for i=1:numPoints
for k=2: length(xvars)
sumV[i]+=solInterp.savedVars[xvars[k]][i]
end
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
# p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k]#= ,marker=(:circle) =#,markersize=2,label="x$k ",legend=:bottomright)
p1=plot!(p1,sumT, sumV,marker=(:circle),#= ,legend=:right =#)
else
println("pick vars to plot their sum")
end
if xlims!=(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims ,ylims=ylims)
elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims #= ,ylims=ylims =#)
elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note"#= , xlims=xlims =#,ylims=ylims)
else
p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note",legend=legend)
end
p1
#savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function plot_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1=plot()
#= if sol.algName=="nmliqss1"
mycolor=:green
stle=:dash
else
mycolor=:blue
end =#
if xvars!=()
for k in xvars
if k==1
stle=:dash
sze=2
elseif k==2
stle=:solid
sze=4
elseif k==3
stle=:dot
sze=3
elseif k==4
stle=:dashdot
sze=2
elseif k==5
stle=:dashdotdot
sze=2
else
sze=1
stle=:solid
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
# p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k]#= ,marker=(:circle) =#,markersize=2,label="x$k ",legend=:bottomright)
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],line=(sze,stle),marker=(:circle),label="x$k $(sol.numSteps[k])"#= ,legend=:right =#)
end
else
for k=1:T
if k==1
mycolor=:red
else
mycolor=:purple
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])"#= ,legend=:false =#)
end
end
if xlims!=(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims ,ylims=ylims)
elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note", xlims=xlims #= ,ylims=ylims =#)
elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note"#= , xlims=xlims =#,ylims=ylims)
else
p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount)_$(sol.evCount) \n $note",legend=legend)
end
p1
#savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function save_Sol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1= plot_Sol(sol,xvars...;note=note,xlims=xlims,ylims=ylims,legend=legend)
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(xvars)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function save_SolSum(sol::Sol{T,O},xvars::Int...;interp=0.0001,note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64},legend=:true::Bool) where{T,O}
p1= plot_SolSum(sol,xvars...;interp=interp,note=note,xlims=xlims,ylims=ylims,legend=legend)
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(xvars)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
#for debug to be deleted later: simultaneous steps plot
function save_SimulSol(sol::Sol{T,O},xvars::Int...;note=" "::String,xlims=(0.0,0.0)::Tuple{Float64, Float64},ylims=(0.0,0.0)::Tuple{Float64, Float64}) where{T,O}
p1=plot()
mydate=now()
timestamp=(string(year(mydate),"_",month(mydate),"_",day(mydate),"_",hour(mydate),"_",minute(mydate),"_",second(mydate)))
if xvars[1]!=()
for k in xvars
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])")
p1=plot!(p1,sol.simulStepsTimes[k], sol.simulStepsVals[k],marker=(:circle),markersize=4,label="x$k ")
end
else
for k=1:T
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])")
p1=plot!(p1,sol.simulStepsTimes[k], sol.simulStepsVals[k],marker=(:circle),markersize=4,label="x$k ")
end
end
if xlims!=(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note", xlims=xlims ,ylims=ylims)
elseif xlims!=(0.0,0.0) && ylims==(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note", xlims=xlims #= ,ylims=ylims =#)
elseif xlims==(0.0,0.0) && ylims!=(0.0,0.0)
p1=plot!(p1,title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note"#= , xlims=xlims =#,ylims=ylims)
else
p1=plot!(p1, title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.totalSteps)_$(sol.simulStepCount) \n $note")
end
savefig(p1, "plot_$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(note)_ft_$(sol.ft)_$(timestamp).png")
end
function getPlot(sol::Sol{T,O}) where{T,O}
p1=plot(title="$(sol.sysName)")#;p2=nothing
for k=1:T
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k]) ")
end
p1
end
function getPlot(sol::Sol{T,O},k::Int) where{T,O}
p1=plot!(sol.savedTimes[k], sol.savedVars[k],marker=(:circle),markersize=2,#= title="$(sol.sysName)_$(sol.algName)_$(sol.absQ)_$(sol.simulStepCount) ", =#label="x$k ")
end
function getPlot!(sol::Sol{T,O}) where{T,O}
p1=plot!(title="$(sol.sysName)")
if sol.algName=="nmliqss1"
mycolor=:red
else
mycolor=:blue
end
for k=1:T
#p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],line=(1,mycolor),marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])$(sol.algName)_$(sol.totalSteps)_$(sol.stepsaftersimul)_$(sol.simulStepCount)")
end
p1
end
function getPlot!(sol::Sol{T,O},k::Int) where{T,O}
p1=plot!(title="$(sol.sysName)")
if sol.algName=="nmliqss1"
mycolor=:red;linsty=:dash
else
mycolor=:blue;linsty=:dot
end
# p1=plot!(p1,sol.savedTimes[k], sol.savedVarsQ[k],line=(1,mycolor,:dash),marker=(:star),label="q$k $(sol.algName)")
p1=plot!(p1,sol.savedTimes[k], sol.savedVars[k],line=(1,mycolor),marker=(:circle),markersize=2,label="x$k $(sol.numSteps[k])$(sol.algName)_$(sol.totalSteps)_$(sol.simulStepCount)")
end
#= function plotSol(sol::Sol{T,O}) where{T,O}
numPoints=length(sol.savedTimes)
#numVars=length(sol.savedVars)
p1=plot()
for k=1:T
temp = []
for i = 1:numPoints #each point is a taylor
push!(temp, sol.savedVars[k][i].coeffs[1])
end
display(plot!(p1,sol.savedTimes, temp,marker=(:circle),markersize=3,title="$(sol.algName) _$(sol.absQ)_$(sol.simulStepCount)",label="x$k"#= ,xlims=(877.5,877.8),ylims=(-0.01,0.03) =#))
end
println("press enter to exit")
readline()
end =#
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 10586 |
function transformFSimplecase(ex)# it s easier and healthier to leave the big case alone in one prewalk (below) when returning the size of the distributed cahce
ex=Expr(:call, :createT,ex)# case where rhs of eq is a number needed to change to taylor (in cache) to be used for qss || #case where rhs is q[i]...reutrn cache that contains it
cachexpr = Expr(:ref, :cache) # add cache[1] to createT(ex,....)
push!(cachexpr.args,1)
push!( ex.args, cachexpr)
return ex
end
function transformF(ex)# name to be changed later....i call this funciton in the docs the function that does the transformation
cachexpr_lengthtracker = Expr(:mongi)# an expr to track the number of distributed caches
prewalk(ex) do x
#############################minus sign#############################################
if x isa Expr && x.head == :call && x.args[1] == :- && length(x.args) == 3 && !(x.args[2] isa Int) && !(x.args[3] isa Int) #last 2 to avoid changing u[i-1] #MacroTools.isexpr(x, :call) replaces the begining
if x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :- && length(x.args[2].args) == 3
push!(x.args, x.args[3])# args[4]=c
x.args[3] = x.args[2].args[3]# args[3]=b
x.args[2] = x.args[2].args[2]# args[2]=a
x.args[1] = :subsub
push!(cachexpr_lengthtracker.args,:b) #b is anything ...not needed, just to fill vector tracker
cachexpr = Expr(:ref, :cache) #prepare cache
push!(cachexpr.args,length(cachexpr_lengthtracker.args))#constrcut cache with index cache[1]
push!(x.args, cachexpr)
elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :+ && length(x.args[2].args) == 3
push!(x.args, x.args[3])# args[4]=c
x.args[3] = x.args[2].args[3]# args[3]=b
x.args[2] = x.args[2].args[2]# args[2]=a
x.args[1] = :addsub # £ µ § ~....
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
#cachexpr.args[2] = index[i]
push!(x.args, cachexpr)
elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :* && length(x.args[2].args) == 3
push!(x.args, x.args[3])# args[4]=c
x.args[3] = x.args[2].args[3]# args[3]=b
x.args[2] = x.args[2].args[2]# args[2]=a
x.args[1] = :mulsub # £ µ § ~....
push!(cachexpr_lengthtracker.args,:b)
cachexpr1 = Expr(:ref, :cache)
push!(cachexpr1.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr1)
else
x.args[1] = :subT # symbol changed cuz avoid type taylor piracy
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
end
elseif x isa Expr && x.head == :call && x.args[1] == :- && length(x.args) == 2 && !(x.args[2] isa Number)#negate
x.args[1] = :negateT # symbol changed cuz avoid type taylor piracy
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
############################### plus sign#######################################
elseif x isa Expr && x.head == :call && x.args[1] == :+ && length(x.args) == 3 && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i+1]
if x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :- && length(x.args[2].args) == 3
push!(x.args, x.args[3])# args[4]=c
x.args[3] = x.args[2].args[3]# args[3]=b
x.args[2] = x.args[2].args[2]# args[2]=a
x.args[1] = :subadd#:µ # £ § ....
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
#cachexpr.args[2] = index[i]
push!(x.args, cachexpr)
elseif x.args[2] isa Expr && x.args[2].head == :call && x.args[2].args[1] == :* && length(x.args[2].args) == 3
push!(x.args, x.args[3])# args[4]=c
x.args[3] = x.args[2].args[3]# args[3]=b
x.args[2] = x.args[2].args[2]# args[2]=a
x.args[1] = :muladdT#:µ # £ § ....
push!(cachexpr_lengthtracker.args,:b)
cachexpr1 = Expr(:ref, :cache)
push!(cachexpr1.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr1)
else
x.args[1] = :addT
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
end
elseif x isa Expr && x.head == :call && x.args[1] == :+ && (4 <= length(x.args) <= 9) # special add :i stopped at 9 cuz by testing it was allocating anyway after 9
x.args[1] = :addT
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
############################### multiply sign#######################################
#never happens :# elseif x isa Expr && x.head == :call && x.args[1]==:* && length(x.args)==3 to get addmul or submul
elseif x isa Expr && x.head == :call && (x.args[1] == :*) && (3 == length(x.args)) && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i*1]
x.args[1] = :mulT
push!(cachexpr_lengthtracker.args,:b)
cachexpr1 = Expr(:ref, :cache)
push!(cachexpr1.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr1)
elseif x isa Expr && x.head == :call && (x.args[1] == :*) && (4 <= length(x.args) <= 7)# i stopped at 7 cuz by testing it was allocating anyway after 7
x.args[1] = :mulTT
push!(cachexpr_lengthtracker.args,:b)
cachexpr1 = Expr(:ref, :cache)
push!(cachexpr1.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr1)
push!(cachexpr_lengthtracker.args,:b)
cachexpr2 = Expr(:ref, :cache) #multiply needs two caches
push!(cachexpr2.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr2)
elseif x isa Expr && x.head == :call && (x.args[1] == :/) && typeof(x.args[2])!=Int && typeof(x.args[3])!=Int #last 2 to avoid changing u[i/1]
x.args[1] = :divT
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
elseif x isa Expr && x.head == :call && (x.args[1] == :exp ||x.args[1] == :log ||x.args[1] == :sqrt ||x.args[1] == :abs )
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
elseif x isa Expr && x.head == :call && (x.args[1] == :^ )
x.args[1] = :powerT # should be like above but for lets keep it now...in test qss.^ caused a problem...fix later
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
elseif x isa Expr && x.head == :call && (x.args[1] == :cos ||x.args[1] == :sin ||x.args[1] == :tan||x.args[1] == :atan )
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
#second cache
push!(cachexpr_lengthtracker.args,:b)#index2
cachexpr2 = Expr(:ref, :cache)
push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2]
push!(x.args, cachexpr2)
elseif x isa Expr && x.head == :call && (x.args[1] == :acos ||x.args[1] == :asin)
#did not change symbol here
push!(cachexpr_lengthtracker.args,:b)
cachexpr = Expr(:ref, :cache)
push!(cachexpr.args,length(cachexpr_lengthtracker.args))
push!(x.args, cachexpr)
#second cache
push!(cachexpr_lengthtracker.args,:b)#index2
cachexpr2 = Expr(:ref, :cache)
push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2]
push!(x.args, cachexpr2)
#third cache
push!(cachexpr_lengthtracker.args,:b)#index3
cachexpr2 = Expr(:ref, :cache)
push!(cachexpr2.args,length(cachexpr_lengthtracker.args))#construct cache[2]
push!(x.args, cachexpr2)
elseif false #holder for "myviewing" for next symbol for other functions...
end
return x # this is the line that actually enables modification of the original expression (prewalk only)
end#end prewalk
#return ex ########################################************************
ex.args[2]=length(cachexpr_lengthtracker.args)# return the number of caches distributed...later clean the max of all these
return ex
# end #end if number else prewalk
end#end function
#this macro is to be deleted : created for testing
#= macro changeAST(ex)
Base.remove_linenums!(ex)
# dump(ex; maxdepth=18)
transformF(ex)
# dump( ex.args[1])
#= @show ex.args[1]# return
return nothing =#
esc(ex.args[1])# return
end =# | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 7947 |
# user does not provide solver. default mliqss2
"""solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false)::Float64,saveat=1e-9::Float64::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64) where {PRTYPE,T,Z,D,CS,Sparsity}
dispatches on a specific integrator based on the algorithm provided.
After the simulation, the solution is returned as a Solution object.
"""
function solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false)::Float64,saveat=1e-9::Float64::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64) where {PRTYPE,T,Z,D,CS,Sparsity}
solve(prob,QSSAlgorithm(Val(:nmliqss),Val(2)),tspan;sparsity=sparsity,saveat=saveat,abstol=abstol,reltol=reltol,maxErr=maxErr)
end
#main solve interface
function solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{SolverType, OrderType},tspan::Tuple{Float64, Float64};sparsity::Val{Sparsity}=Val(false),saveat=1e-9::Float64,abstol=1e-4::Float64,reltol=1e-3::Float64,maxErr=Inf::Float64) where{PRTYPE,T,Z,D,CS,SolverType,OrderType,Sparsity}
custom_Solve(prob,al,Val(Sparsity),tspan[2],saveat,tspan[1],abstol,reltol,maxErr)
end
#default solve method: this is not to be touched...extension or modification is done through creating another custom_solve with different PRTYPE
function custom_Solve(prob::NLODEProblem{PRTYPE,T,Z,D,CS},al::QSSAlgorithm{Solver, Order},::Val{Sparsity},finalTime::Float64,saveat::Float64,initialTime::Float64,abstol::Float64,reltol::Float64,maxErr::Float64) where{PRTYPE,T,Z,D,CS,Solver,Order,Sparsity}
# sizehint=floor(Int64, 1.0+(finalTime/saveat)*0.6)
commonQSSdata=createCommonData(prob,Val(Order),finalTime,saveat, initialTime,abstol,reltol,maxErr)
jac=getClosure(prob.jac)::Function #if in future jac and SD are different datastructures
SD=getClosure(prob.SD)::Function
if Solver==:qss
integrate(al,commonQSSdata,prob,prob.eqs,jac,SD)
else
liqssdata=createLiqssData(prob,Val(Sparsity),Val(T),Val(Order))
specialLiqssData=createSpecialLiqssData(Val(T))
if VERBOSE println("begin dispatch on liqss algorithm") end
#integrate()
integrate(al,commonQSSdata,liqssdata,specialLiqssData,prob)
integrate(al,commonQSSdata,liqssdata,specialLiqssData,prob,prob.eqs,jac,SD,prob.exactJac)
#= if Solver==:nmliqss
nmLiQSS_integrate(commonQSSdata,liqssdata,specialLiqssData,prob,prob.eqs,jac,SD,prob.exactJac)
elseif Solver==:nliqss
nLiQSS_integrate(commonQSSdata,liqssdata,specialLiqssData,prob,prob.eqs,jac,SD,prob.exactJac)
elseif Solver==:mliqss
mLiQSS_integrate(commonQSSdata,liqssdata,specialLiqssData,prob,prob.eqs,jac,SD,prob.exactJac)
elseif Solver==:liqss
LiQSS_integrate(commonQSSdata,liqssdata,specialLiqssData,prob,prob.eqs,jac,SD,prob.exactJac)
end =#
end
end
function getClosure(jacSD::Function)::Function #
function closureJacSD(i::Int)
jacSD(i)
end
return closureJacSD
end
function getClosure(jacSD::Vector{Vector{Int}})::Function
function closureJacSD(i::Int)
jacSD[i]
end
return closureJacSD
end
#helper methods...not to be touched...extension can be done through creating others via specializing on one PRTYPE or more of the symbols (PRTYPE,T,Z,D,Order) if in the future...
#################################################################################################################################################################################
function createCommonData(prob::NLODEProblem{PRTYPE,T,Z,D,CS},::Val{Order},finalTime::Float64,saveat::Float64,initialTime::Float64,abstol::Float64,reltol::Float64,maxErr::Float64)where{PRTYPE,T,Z,D,CS,Order}
if VERBOSE println("begin create common data") end
quantum = zeros(T)
x = Vector{Taylor0}(undef, T)
q = Vector{Taylor0}(undef, T)
savedTimes=Vector{Vector{Float64}}(undef, T)
savedVars = Vector{Vector{Float64}}(undef, T)
nextStateTime = zeros(T)
nextInputTime = zeros(T)
tx = zeros(T)
tq = zeros(T)
nextEventTime=@MVector zeros(Z)# only Z number of zcf is usually under 100...so use of SA is ok
t = Taylor0(zeros(Order + 1), Order)
t[1]=1.0
t[0]=initialTime
integratorCache=Taylor0(zeros(Order+1),Order) #for integratestate only
d=zeros(D)
for i=1:D
d[i]=prob.discreteVars[i]
end
for i = 1:T
nextInputTime[i]=Inf
x[i]=Taylor0(zeros(Order + 1), Order)
x[i][0]= getInitCond(prob,i) # x[i][0]= prob.initConditions[i] if to remove saving as func
q[i]=Taylor0(zeros(Order+1), Order)#q normally 1order lower than x but since we want f(q) to be a taylor that holds all info (1,2,3), lets have q of same Order and not update last coeff
tx[i] = initialTime
tq[i] = initialTime
savedTimes[i]=Vector{Float64}()
savedVars[i]=Vector{Float64}()
end
taylorOpsCache=Array{Taylor0,1}()# cache= vector of taylor0s of size CS
for i=1:CS
push!(taylorOpsCache,Taylor0(zeros(Order+1),Order))
end
if VERBOSE println("END create common data") end
commonQSSdata= CommonQSS_data(quantum,x,q,tx,tq,d,nextStateTime,nextInputTime ,nextEventTime , t, integratorCache,taylorOpsCache,finalTime,saveat, initialTime,abstol,reltol,maxErr,savedTimes,savedVars)
end
#no sparsity
function createLiqssData(prob::NLODEProblem{PRTYPE,T,Z,D,CS},::Val{false},::Val{T},::Val{Order})where{PRTYPE,T,Z,D,CS,Order}
if VERBOSE println("begin create Liqss data") end
a = Vector{Vector{Float64}}(undef, T)
# u=Vector{Vector{MVector{Order,Float64}}}(undef, T)
qaux = Vector{MVector{Order,Float64}}(undef, T)
dxaux=Vector{MVector{Order,Float64}}(undef, T)
olddx = Vector{MVector{Order,Float64}}(undef, T)
olddxSpec = Vector{MVector{Order,Float64}}(undef, T)
for i=1:T
#= temparr=Vector{MVector{Order,Float64}}(undef, T)
for j=1:T
temparr[j]=zeros(MVector{Order,Float64})
end
u[i]=temparr =#
a[i]=zeros(T)
qaux[i]=zeros(MVector{Order,Float64})
olddx[i]=zeros(MVector{Order,Float64})
dxaux[i]=zeros(MVector{Order,Float64})
olddxSpec[i]=zeros(MVector{Order,Float64})
end
if VERBOSE println("END create Liqss data") end
liqssdata= LiQSS_data(Val(false),a#= ,u =#,qaux,olddx,dxaux,olddxSpec)
end
#to be removed if sparsity did not help
function createLiqssData(prob::NLODEProblem{PRTYPE,T,Z,D,CS},::Val{true},::Val{T},::Val{Order})where{PRTYPE,T,Z,D,CS,Order}
a = Vector{Vector{Float64}}(undef, T)
u=Vector{Vector{MVector{Order,Float64}}}(undef, T)
qaux = Vector{MVector{Order,Float64}}(undef, T)
olddx = Vector{MVector{Order,Float64}}(undef, T)
olddxSpec = Vector{MVector{Order,Float64}}(undef, T)
jacDim=prob.jacDim
#= @timeit "liqsssparse" =# for i=1:T
temparr=Vector{MVector{Order,Float64}}(undef, T)
for j=1:T
temparr[j]=zeros(MVector{Order,Float64})
end
u[i]=temparr
a[i]=zeros(jacDim(i))
qaux[i]=zeros(MVector{Order,Float64})
olddx[i]=zeros(MVector{Order,Float64})
olddxSpec[i]=zeros(MVector{Order,Float64})
end
liqssdata= LiQSS_data(Val(true),a,u,qaux,olddx,olddxSpec)
end
function createSpecialLiqssData(::Val{T})where{T}
cacheA=zeros(MVector{1,Float64})
direction= zeros(T)
qminus= zeros(T)
buddySimul=zeros(MVector{2,Int})
prevStepVal = zeros(T)
specialLiqssData=SpecialLiQSS_data(cacheA,direction,qminus,buddySimul,prevStepVal)
end
# get init conds for normal vect...getinitcond for fun can be found with qssnlsavedprob file
function getInitCond(prob::NLODEContProblem,i::Int)
return prob.initConditions[i]
end
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 5632 |
#macro NLodeProblem(odeExprs)
function NLodeProblem(odeExprs)
Base.remove_linenums!(odeExprs)
if VERBOSE println("starting prob parsing...") end
probHelper=arrangeProb(odeExprs)# replace symbols and params , extract info about size,symbols,initconds
probSize=probHelper.problemSize
discSize=probHelper.discreteSize
zcSize=probHelper.numZC
initConds=probHelper.initConditions # vector
symDict=probHelper.symDict
du=probHelper.du
if length(initConds)==0 #user chose shortcuts...initcond saved in a dict
initConds=zeros(probSize)# vector of init conds to be created
savedinitConds=probHelper.savedInitCond #init conds already created in a dict
for i in savedinitConds
if i[1] isa Int #if key (i[1]) is an integer
initConds[i[1]]=i[2]
else # key is an expression
for j=(i[1].args[1]):(i[1].args[2])
initConds[j]=i[2]
end
end
end
end
# @show odeExprs
NLodeProblemFunc(odeExprs,Val(probSize),Val(discSize),Val(zcSize),initConds,du,symDict) #returns prob
end
struct probHelper #helper struct to return stuff from arrangeProb
problemSize::Int
discreteSize::Int
numZC::Int
savedInitCond::Dict{Union{Int,Expr},Float64}
initConditions::Vector{Float64}
du::Symbol
symDict::Dict{Symbol,Expr}
end
function arrangeProb(x::Expr) # replace symbols and params , extract info about sizes,symbols,initconds
param=Dict{Symbol,Union{Float64,Expr}}()
symDict=Dict{Symbol,Expr}()
stateVarName=:q
du=:nothing #default anything
problemSize=0
discreteSize=0
numZC=0
savedInitCond=Dict{Union{Int,Expr},Float64}()
initConditions=Vector{Float64}()
for argI in x.args
if argI isa Expr && argI.head == :(=) #&& @capture(argI, y_ = rhs_)
y=argI.args[1];rhs=argI.args[2]
if y isa Symbol && rhs isa Number #params: fill dict of param
param[y]=rhs
elseif y isa Symbol && rhs isa Expr && (rhs.head==:call || rhs.head==:ref) #params=epression fill dict of param
argI.args[2]=changeVarNames_params(rhs,stateVarName,:nothing,param,symDict)
param[y]=argI.args[2]
elseif y isa Expr && y.head == :ref && rhs isa Number #initial conds "1st way" u[a]=N or u[a:b]=N...
if string(y.args[1])[1] !='d' #prevent the case diffEq du[]=Number
stateVarName=y.args[1] #extract var name
if du==:nothing du=Symbol(:d,stateVarName) end # construct symbol du
if y.args[2] isa Expr && y.args[2].args[1]== :(:) #u[a:b]=N
length(y.args[2].args)==3 || error(" use syntax u[a:b]") # not needed
savedInitCond[:(($(y.args[2].args[2]),$(y.args[2].args[3])))]=rhs# dict {expr->float}
if problemSize < y.args[2].args[3]
problemSize=y.args[2].args[3] #largest b determines probSize
end
elseif y.args[2] isa Int #u[a]=N
problemSize+=1
savedInitCond[y.args[2]]=rhs#.args[1]
end
end
elseif y isa Symbol && rhs isa Expr && rhs.head==:vect # cont vars u=[] "2nd way" or discrete vars d=[]
if y!=:discrete
stateVarName=y
du=Symbol(:d,stateVarName)
initConditions= convert(Array{Float64,1}, rhs.args)
problemSize=length(rhs.args)
else
discreteSize = length(rhs.args)
end
elseif y isa Expr && y.head == :ref && (rhs isa Expr && rhs.head !=:vect)#&& rhs.head==:call or ref # a diff equa not in a loop
argI.args[2]=changeVarNames_params(rhs,stateVarName,:nothing,param,symDict)
elseif y isa Expr && y.head == :ref && rhs isa Symbol
if haskey(param, rhs)#symbol is a parameter
argI.args[2]=copy(param[rhs])
end
end
elseif @capture(argI, for var_ in b_:niter_ loopbody__ end)
argI.args[2]=changeVarNames_params(loopbody[1],stateVarName,var,param,symDict)
elseif argI isa Expr && argI.head==:if
numZC+=1
(length(argI.args)!=3 && length(argI.args)!=2) && error("use format if A>0 B else C or if A>0 B")
!(argI.args[1] isa Expr && argI.args[1].head==:call && argI.args[1].args[1]==:> && (argI.args[1].args[3]==0||argI.args[1].args[3]==0.0)) && error("use the format 'if a>0: change if a>b to if a-b>0")
# !(argI.args[1].args[2] isa Expr) && error("LHS of > must be be an expression!")
argI.args[1].args[2]=changeVarNames_params(argI.args[1].args[2],stateVarName,:nothing,param)#zcf
# name changes have to be per block
if length(argI.args)==2 #user used if a b
argI.args[2]=changeVarNames_params(argI.args[2],stateVarName,:nothing,param) #posEv
elseif length(argI.args)==3 #user used if a b else c
argI.args[2]=changeVarNames_params(argI.args[2],stateVarName,:nothing,param)#posEv
argI.args[3]=changeVarNames_params(argI.args[3],stateVarName,:nothing,param)#negEv
end
end#end cases of argI
end#end for argI in args
p=probHelper(problemSize,discreteSize,numZC,savedInitCond,initConditions,du,symDict)
end#end function
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 17705 | #using StaticArrays
function minPosRoot(coeff::SVector{2,Float64}, ::Val{1}) # coming from val(1) means coef has x and derx only...size 2
mpr=-1
if coeff[2] == 0
mpr = Inf
else
mpr = -coeff[1] / coeff[2];
end
if mpr < 0
mpr = Inf
end
# println("mpr inside minPosRoot in utils= ",mpr)
return mpr
end
function minPosRoot(coeff::Taylor0, ::Val{1}) # coming from val(1) means coef has x and derx only...size 2
mpr=-1
if coeff[1] == 0
mpr = Inf
else
mpr = -coeff[0] / coeff[1];
end
if mpr < 0
mpr = Inf
end
# println("mpr inside minPosRoot in utils= ",mpr)
return mpr
end
function minPosRootv1(coeff::NTuple{3,Float64}) #
a=coeff[1];b=coeff[2];c=coeff[3]
mpr=-1 #coef1=c, coef2=b, coef3=a
if a== 0 || 10000 * abs(a) < abs(b)# coef3 is the coef of t^2
if b == 0 # julia allows to divide by zero and result is Inf ...so no need to check
mpr = Inf
else
mpr = -c / b
end
if mpr < 0
mpr = Inf
end
else
#double disc;
disc = b* b - 4 * a * c#b^2-4ac
if disc < 0 # no real roots
mpr = Inf
else
#double sd, r1;
sd = sqrt(disc);
r1 = (-b + sd) / (2 * a);
if r1 > 0
mpr = r1;
else
mpr = Inf;
end
r1 = (-b - sd) / (2 * a);
if ((r1 > 0) && (r1 < mpr))
mpr = r1;
end
end
end
return mpr
end
function minPosRoot(coeff::SVector{3,Float64}, ::Val{2}) # credit goes to github.com/CIFASIS/qss-solver
mpr=-1
a=coeff[3];b=coeff[2];c=coeff[1]; # a is coeff 3 because in taylor representation 1 is var 2 is der 3 is derder
if a == 0 || (10000 * abs(a)) < abs(b)# coef3 is the coef of t^2
if b == 0
mpr = Inf
else
mpr = -c / b
#@show mpr
end
if mpr < 0
mpr = Inf
end
else
#double disc;
disc = b * b - 4 * a * c#b^2-4ac
if disc < 0 # no real roots
mpr = Inf
else
#double sd, r1;
sd = sqrt(disc);
r1 = (-b + sd) / (2 * a);
if r1 > 0
mpr = r1;
else
mpr = Inf;
end
r1 = (-b - sd) / (2 * a);
if ((r1 > 0) && (r1 < mpr))
mpr = r1;
end
end
end
if DEBUG2 && mpr!=Inf
sl=c+mpr*b+a*mpr*mpr
@show sl
end
return mpr
end
function minPosRoot(coeff::Taylor0, ::Val{2}) # credit goes to github.com/CIFASIS/qss-solver
mpr=-1
a=coeff[2];b=coeff[1];c=coeff[0]; # a is coeff 3 because in taylor representation 1 is var 2 is der 3 is derder
if a == 0 || (100000 * abs(a)) < abs(b)# coef3 is the coef of t^2
if b == 0
mpr = Inf
else
mpr = -c / b
#@show mpr
end
if mpr < 0
mpr = Inf
end
else
#double disc;
disc = b * b - 4 * a * c#b^2-4ac
if disc < 0 # no real roots
mpr = Inf
else
#double sd, r1;
sd = sqrt(disc);
r1 = (-b + sd) / (2 * a);
if r1 > 0
mpr = r1;
else
mpr = Inf;
end
r1 = (-b - sd) / (2 * a);
if ((r1 > 0) && (r1 < mpr))
mpr = r1;
end
end
end
if DEBUG2 && mpr!=Inf
sl=c+mpr*b+a*mpr*mpr
@show sl
end
return mpr
end
function minPosRoot2(coeff::SVector{3,Float64}, ::Val{2}) # ben lauwens
mpr=-1 #coef1=c, coef2=b, coef3=a
a=coeff[3];b=coeff[2];c=coeff[1]
if a == 0 #|| (10000 * abs(coeff[3])) < abs(coeff[2])# coef3 is the coef of t^2
if b == 0
mpr = Inf
else
mpr = -c / b
end
if mpr <= 0
mpr = Inf
end
else
#double disc;
Δ = 1.0 - 4c*a / (b*b)
if Δ < 0.0
mpr=Inf
else
sq=sqrt(Δ)
mpr = -0.5*(1.0+sq)*b/a
if mpr<=0
mpr=Inf
end
mpr2=-0.5*(1.0-sq)*b/a
if mpr2>0 && mpr2<mpr
mpr=mpr2
end
end
end
return mpr
end
#= @inline function minPosRoot(coeffs::SVector{4,Float64}, ::Val{3})#where F <: AbstractFloat
if coeffs[4] == 0.0
coeffs2=@SVector[coeffs[1],coeffs[2],coeffs[3]]
return minPosRoot(coeffs2, Val(2))
end
_a = 1.0 / coeffs[4]
b, c, d = coeffs[3] * _a, coeffs[2] * _a, coeffs[1] * _a
m = b < c ? b : c
m = d < m ? d : m
m > eps(Float64) && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 4eps(Float64) # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > -eps(Float64) ? z : Inf#typemax(Float64)
elseif Δ < -4eps(Float64) # three real roots
θ = abs(yₙ) < eps(Float64) ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > -eps(Float64) ? x₁ : Inf# typemax(F)
x = x₂ > -eps(Float64) && x₂ < x ? x₂ : x
x₃ > -eps(Float64) && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > -eps(Float64) ? x₁ : Inf#typemax(F)
x₂ > -eps(Float64) && x₂ < x ? x₂ : x
end
end =#
function minPosRoot(ZCFun::Taylor0, ::Val{3})
coeffs=@SVector [ZCFun[0],ZCFun[1],ZCFun[2],ZCFun[3]]
minPosRoot(coeffs,Val(3))
end
@inline function minPosRoot(coeffs::SVector{4,Float64}, ::Val{3})#where F <: AbstractFloat
if coeffs[4] == 0.0
coeffs2=@SVector[coeffs[1],coeffs[2],coeffs[3]]
return minPosRoot(coeffs2, Val(2))
end
_a = 1.0 / coeffs[4]
b, c, d = coeffs[3] * _a, coeffs[2] * _a, coeffs[1] * _a
m = b < c ? b : c
m = d < m ? d : m
m > 0.0 && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 0.0 # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > 0.0 ? z : Inf#typemax(Float64)
elseif Δ < 0.0 # three real roots
θ = abs(yₙ) < 0.0 ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > 0.0 ? x₁ : Inf# typemax(F)
x = x₂ > 0.0 && x₂ < x ? x₂ : x
x₃ > 0.0 && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > 0.0 ? x₁ : Inf#typemax(F)
x₂ > 0.0 && x₂ < x ? x₂ : x
end
end
###########later optimize
#= @inline function minPosRoot(coeffs::NTuple{3,Float64}, ::Val{2})
_a = 1.0 / coeffs[1]
b, c = -0.5coeffs[2] * _a, coeffs[3] * _a
Δ = muladd(b, b, -c) # b * b - c
if Δ < -4eps() # Complex roots
Inf
elseif Δ > 4eps() # Real roots
if b > eps()
c > eps() ? c / (b + sqrt(Δ)) : b + sqrt(Δ)
elseif b < -eps()
c < eps() ? c / (b - sqrt(Δ)) : Inf
else
sqrt(-c)
end
else # Double real root
b > -eps() ? b : Inf
end
end =#
#coef=@SVector [-5.144241008311048e7, -8938.3815305787700, -0.2906652780025, 1e-6]
#coef=@SVector [17, -239999.2196676244, -2.5768276401549883e-12]
#= coef=@SVector [-2.5768276401549883e-12, 23999.2196676244, 0.7]
x=minPosRoot(coef, Val(2))
@show x
#x=7.23046371232382538e9
sl=coef[1]+x*coef[2]+coef[3]*x*x
@show sl =#
#coef=@SVector [-5.144241008311048e7, -8938.3815305787700, -0.2906652780025, 1e-6]
#= coef=@SVector [1e-6, -0.040323840000000166, -3914.116824448214, 1.021243315770821e8]
x=minPosRoot(coef, Val(3))
@show x =#
#= function PosRoot(coeff::SVector{3,Float64}, ::Val{2}) # credit goes to github.com/CIFASIS/qss-solver
mpr=() #coef1=c, coef2=b, coef3=a
if coeff[3] == 0 #|| (10000 * abs(coeff[3])) < abs(coeff[2])# coef3 is the coef of t^2
if coeff[2] != 0
if -coeff[1] / coeff[2]>0
mpr = (-coeff[1] / coeff[2],)
end
end
else
#double disc;
disc = coeff[2] * coeff[2] - 4 * coeff[3] * coeff[1]#b^2-4ac
if disc >0
#double sd, r1;
sd = sqrt(disc);
r1 = (-coeff[2] + sd) / (2 * coeff[3]);
r2 = (-coeff[2] - sd) / (2 * coeff[3]);
if ((r1 > 0) && (r2 >0))
mpr = (r1,r2)
elseif ((r1 > 0) && (r2 <0))
mpr = (r1,)
elseif ((r1 < 0) && (r2 >0))
mpr = (r2,)
end
end
end
return mpr
end =#
#= function PosRoot(coeff::NTuple{3,Float64}) #
mpr=() #coef1=c, coef2=b, coef3=a
a=coeff[3];b=coeff[2];c=coeff[1]
if a == 0 #|| (10000 * abs(coeff[3])) < abs(coeff[2])# coef3 is the coef of t^2
if b != 0
if -c / b>0
mpr = (-c / b,)
end
end
else
#double disc;
Δ = 1.0 - 4c*a / (b*b)
if Δ >0
q = -0.5*(1.0+sign(b)*sqrt(Δ))*b
r1 = q / a
r2=c / q
#@show r1,r2
if ((r1 > 0) && (r2 >0))
mpr = (r1,r2)
elseif ((r1 > 0) && (r2 <=0))
mpr = (r1,)
elseif ((r1 < 0) && (r2 >0))
mpr = (r2,)
end
end
end
return mpr
end =#
function constructIntrval2(cache::Vector{Vector{Float64}},t1::Float64,t2::Float64)
h1=min(t1,t2)
h4=max(t1,t2)
# res=((0.0,h1),(h4,Inf))
cache[1][1]=0.0;cache[1][2]=h1;
cache[2][1]=h4;cache[2][2]=Inf;
return nothing
end
#constructIntrval(tup2::Tuple{},tup::NTuple{2, Float64})=constructIntrval(tup,tup2)
#merge has 3 elements
function constructIntrval3(cache::Vector{Vector{Float64}},t1::Float64,t2::Float64,t3::Float64)
#t1=tup[1];t2=tup[2];t3=tup2[1]
t12=min(t1,t2);t21=max(t1,t2)
#= if t1<t2
t12=t1;t21=t2
else
t12=t2;t21=t1
end =#
if t3<t12
# res=((0.0,t3),(t12,t21))
cache[1][1]=0.0;cache[1][2]=t3;
cache[2][1]=t12;cache[2][2]=t21;
else
if t3<t21
# res=((0.0,t12),(t3,t21))
cache[1][1]=0.0;cache[1][2]=t12;
cache[2][1]=t3;cache[2][2]=t21;
else
#res=((0.0,t12),(t21,t3))
cache[1][1]=0.0;cache[1][2]=t12;
cache[2][1]=t21;cache[2][2]=t3;
end
end
return nothing
end
#merge has 4 elements
function constructIntrval4(cache::Vector{Vector{Float64}},t1::Float64,t2::Float64,t3::Float64,t4::Float64,)
# t1=tup[1];t2=tup[2];t3=tup2[1];t4=tup2[2]
h1=min(t1,t2,t3,t4);h4=max(t1,t2,t3,t4)
if t1==h1
if t2==h4
# res=((0,t1),(min(t3,t4),max(t3,t4)),(t2,Inf))
cache[1][1]=0.0;cache[1][2]=t1;
cache[2][1]=min(t3,t4);cache[2][2]=max(t3,t4);
cache[3][1]=t2;cache[3][2]=Inf;
elseif t3==h4
#res=((0,t1),(min(t2,t4),max(t2,t4)),(t3,Inf))
cache[1][1]=0.0;cache[1][2]=t1;
cache[2][1]=min(t2,t4);cache[2][2]=max(t2,t4);
cache[3][1]=t3;cache[3][2]=Inf;
else
# res=((0,t1),(min(t2,t3),max(t2,t3)),(t4,Inf))
cache[1][1]=0.0;cache[1][2]=t1;
cache[2][1]=min(t3,t2);cache[2][2]=max(t3,t2);
cache[3][1]=t4;cache[3][2]=Inf;
end
elseif t2==h1
if t1==h4
#res=((0,t2),(min(t3,t4),max(t3,t4)),(t1,Inf))
cache[1][1]=0.0;cache[1][2]=t2;
cache[2][1]=min(t3,t4);cache[2][2]=max(t3,t4);
cache[3][1]=t1;cache[3][2]=Inf;
elseif t3==h4
#res=((0,t2),(min(t1,t4),max(t1,t4)),(t3,Inf))
cache[1][1]=0.0;cache[1][2]=t2;
cache[2][1]=min(t1,t4);cache[2][2]=max(t1,t4);
cache[3][1]=t3;cache[3][2]=Inf;
else
# res=((0,t2),(min(t1,t3),max(t1,t3)),(t4,Inf))
cache[1][1]=0.0;cache[1][2]=t2;
cache[2][1]=min(t3,t1);cache[2][2]=max(t3,t1);
cache[3][1]=t4;cache[3][2]=Inf;
end
elseif t3==h1
if t1==h4
#res=((0,t3),(min(t2,t4),max(t2,t4)),(t1,Inf))
cache[1][1]=0.0;cache[1][2]=t3;
cache[2][1]=min(t2,t4);cache[2][2]=max(t2,t4);
cache[3][1]=t1;cache[3][2]=Inf;
elseif t2==h4
#res=((0,t3),(min(t1,t4),max(t1,t4)),(t2,Inf))
cache[1][1]=0.0;cache[1][2]=t3;
cache[2][1]=min(t1,t4);cache[2][2]=max(t1,t4);
cache[3][1]=t2;cache[3][2]=Inf;
else
#res=((0,t3),(min(t1,t2),max(t1,t2)),(t4,Inf))
cache[1][1]=0.0;cache[1][2]=t3;
cache[2][1]=min(t1,t2);cache[2][2]=max(t1,t2);
cache[3][1]=t4;cache[3][2]=Inf;
end
else
if t1==h4
#res=((0,t4),(min(t2,t3),max(t2,t3)),(t1,Inf))
cache[1][1]=0.0;cache[1][2]=t4;
cache[2][1]=min(t3,t2);cache[2][2]=max(t3,t2);
cache[3][1]=t1;cache[3][2]=Inf;
elseif t2==h4
# res=((0,t4),(min(t1,t3),max(t1,t3)),(t2,Inf))
cache[1][1]=0.0;cache[1][2]=t4;
cache[2][1]=min(t3,t1);cache[2][2]=max(t3,t1);
cache[3][1]=t2;cache[3][2]=Inf;
else
#res=((0,t4),(min(t1,t2),max(t1,t2)),(t3,Inf))
cache[1][1]=0.0;cache[1][2]=t4;
cache[2][1]=min(t1,t2);cache[2][2]=max(t1,t2);
cache[3][1]=t3;cache[3][2]=Inf;
end
end
return nothing
end
#order1
@inline function constructIntrval(cache::Vector{Vector{Float64}},res1::Float64,res2::Float64,res3::Float64,res4::Float64)
#= vec1=(1.2,3.3)
vec2=() =#
if res1<=0.0 && res2<=0.0 && res3<=0.0 && res4<=0.0
#res=((0.0,Inf),)
cache[1][1]=0.0;cache[1][2]=Inf;
elseif res1>0.0 && res2<=0.0 && res3<=0.0 && res4<=0.0
cache[1][1]=0.0;cache[1][2]=res1;
elseif res2>0.0 && res1<=0.0 && res3<=0.0 && res4<=0.0
cache[1][1]=0.0;cache[1][2]=res2;
elseif res3>0.0 && res2<=0.0 && res1<=0.0 && res4<=0.0
cache[1][1]=0.0;cache[1][2]=res3;
elseif res4>0.0 && res2<=0.0 && res3<=0.0 && res1<=0.0
cache[1][1]=0.0;cache[1][2]=res4;
elseif res1>0.0 && res2>0.0 && res3<=0.0 && res4<=0.0
constructIntrval2(cache,res1,res2)
elseif res1>0.0 && res3>0.0 && res2<=0.0 && res4<=0.0
constructIntrval2(cache,res1,res3)
elseif res1>0.0 && res4>0.0 && res2<=0.0 && res4<=0.0
constructIntrval2(cache,res1,res4)
elseif res2>0.0 && res3>0.0 && res1<=0.0 && res4<=0.0
constructIntrval2(cache,res2,res3)
elseif res2>0.0 && res4>0.0 && res1<=0.0 && res3<=0.0
constructIntrval2(cache,res2,res4)
elseif res3>0.0 && res4>0.0 && res1<=0.0 && res2<=0.0
constructIntrval2(cache,res3,res4)
elseif res1>0.0 && res2>0.0 && res3>0.0 && res4<=0.0
constructIntrval3(cache,res1,res2,res3)
elseif res1>0.0 && res2>0.0 && res4>0.0 && res3<=0.0
constructIntrval3(cache,res1,res2,res4)
elseif res1>0.0 && res3>0.0 && res4>0.0 && res2<=0.0
constructIntrval3(cache,res1,res3,res4)
elseif res1<=0.0 && res3>0.0 && res4>0.0 && res2>0.0
constructIntrval3(cache,res2,res3,res4)
else
constructIntrval4(cache,res1,res2,res3,res4)
end
return nothing
end
#order2 bigfloat
function constructIntrval(accepted::Vector{Vector{BigFloat}},cacheRoots::Vector{BigFloat})
enterFlag=true
foundStart=false #nonzero entry found?
acceptedCounter=1
len=length(cacheRoots)
for i=1:len
if !foundStart && cacheRoots[i]!=0.0
foundStart=true#never execute this code again
accepted[acceptedCounter][1]=0.0;accepted[acceptedCounter][2]=cacheRoots[i];
acceptedCounter+=1
continue #use next i
end
if foundStart
if enterFlag
if i!=len #not last
enterFlag=false #prevent next elemt from constructing cuz already covered with elements
accepted[acceptedCounter][1]=cacheRoots[i];accepted[acceptedCounter][2]=cacheRoots[i+1];
acceptedCounter+=1
else #i=len=(12 order2) ..last
accepted[acceptedCounter][1]=cacheRoots[i];accepted[acceptedCounter][2]=Inf;
acceptedCounter+=1
end
else# root where function is exiting
enterFlag=true #next root makes function enters acceptable range
end
end
end
if !foundStart #never found non zero....ie zero roots
accepted[acceptedCounter][1]=0.0;accepted[acceptedCounter][2]=Inf;
#acceptedCounter+=1
end
end
function constructIntrval(accepted::Vector{Vector{Float64}},cacheRoots::Vector{Float64})
enterFlag=true
foundStart=false
acceptedCounter=1
len=length(cacheRoots)
for i=1:len
if !foundStart && cacheRoots[i]!=0.0
foundStart=true#never execute this code again
accepted[acceptedCounter][1]=0.0;accepted[acceptedCounter][2]=cacheRoots[i];
acceptedCounter+=1
continue
end
if foundStart
if enterFlag
if i!=len #not last
enterFlag=false #prevent next elemt from constructing cuz already covered with elements
accepted[acceptedCounter][1]=cacheRoots[i];accepted[acceptedCounter][2]=cacheRoots[i+1];
acceptedCounter+=1
else #i=len=(12 order2) ..last
accepted[acceptedCounter][1]=cacheRoots[i];accepted[acceptedCounter][2]=Inf;
acceptedCounter+=1
end
else# root where function is exiting
enterFlag=true #next root makes function enters acceptable range
end
end
end
if !foundStart #never found non zero....ie zero roots
accepted[acceptedCounter][1]=0.0;accepted[acceptedCounter][2]=Inf;
acceptedCounter+=1
end
end | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 11232 |
#= using StaticArrays
function linear(a::Float64, b::Float64)
if a == 0.0
res = Inf
else
res = -b / a
if res<=0
res=Inf
end
end
return res
end
function quadratic(a::Float64, b::Float64, c::Float64)
if a == 0.0
res = linear(b,c)
else
if c == 0.0
res = linear(a,b)
else
if b == 0.0
r = -c / a
if r <= 0.0
res=Inf
else
res = sqrt(r)
end
else
Δ = 1.0 - 4c*a / (b*b)
if Δ < 0.0
res=Inf
else
q = -0.5*(1.0+sign(b)*sqrt(Δ))*b
res = q / a
if res<=0
res=Inf
end
res2=c / q
if res2>0 && res2<res
res=res2
end
end
end
end
end
return res
end =#
#= function cubic1(a::Float64, b::Float64, c::Float64, d::Float64)
if isnan(a)
@show b,c,d
end
if a == 0.0
res = quadratic(b,c,d)
else
if d == 0.0
res = quadratic(a,b,c)
else
A = b/a
B = c/a
C = d/a
Q = (A^2-3B)/9
R = (2*A^3-9A*B+27C)/54
S = -A/3
if R^2 < Q^3
P = -2*sqrt(Q)
ϕ = acos(R/sqrt(Q^3))
res = P*cos(ϕ/3)+S
#@show res
if res<=0
res=Inf
end
res2 = P*cos((ϕ+2π)/3)+S
#@show res2
if res2>0 && res2 <res
res=res2
end
res3 = P*cos((ϕ-2π)/3)+S
#@show res3
if res3>0 && res3 <res
res=res3
end
if isnan(res)
@show P,R,Q,ϕ,S
@show a
end
else
T = -sign(R)*cbrt(abs(R)+sqrt(R^2-Q^3))
U = 0.0
if T != 0.0
U = Q/T
end
res= 0.5*(T+U)
if isnan(res)
@show T,R,Q,U
@show a
end
#println("1root= ",res)
if res<=0
res=Inf
end
end
end
end
return res
end
function cubic2(a::Float64, b::Float64, c::Float64, d::Float64)
if a == 0.0
res = quadratic(b,c,d)
else
if d == 0.0
res = quadratic(a,b,c)
else
A = b/a
B = c/a
C = d/a
Q = (A^2-3B)/9
R = (2*A^3-9A*B+27C)/54
p=-3*Q
q=2*R
S = -A/3
if 4p*p*p+27q*q>0
m=sqrt((q*q/4)+p*p*p/27)
c=cbrt(-q/2+m)
res=c-p/(3c)+S
#if <0 Inf
else
res=Inf
end
end
end
return res
end
function cubic3(a::Float64, b::Float64, c::Float64, d::Float64)
if a == 0.0
res = quadratic(b,c,d)
else
if d == 0.0
res = quadratic(a,b,c)
else
A = b/a
B = c/a
C = d/a
Q = (A^2-3B)/9
R = (2*A^3-9A*B+27C)/54
p=-3*Q
q=2*R
S = -A/3
if 4p*p*p+27q*q>0
m=sqrt((q*q/4)+p*p*p/27)
res=cbrt(-q/2+m)+cbrt(-q/2-m)+S
else
res=Inf
end
end
end
return res
end
function cubic4(a::Float64, b::Float64, c::Float64, d::Float64) #Cardano’s method:
if a == 0.0
res = quadratic(b,c,d)
else
if d == 0.0
res = quadratic(a,b,c)
else
A = b/a
B = c/a
C = d/a
Q = (A^2-3B)/9
R = (2*A^3-9A*B+27C)/54
p=-3*Q
q=2*R
S = -A/3
if 4p*p*p+27q*q>0
resVect = allrealquadratic(1.0,q,-(p^3)/27)
z=resVect[1]
# @show resVect
α=cbrt(resVect[1])
β=-p/(3α)
res=α+β+S
if res<=0
res=Inf
end
α=cbrt(resVect[2])
β=-p/(3α)
res2=α+β+S
if res2 < res && res2 >0
res=res2
end
else
res=Inf
end
end
end
return res#,res2#,res3
end =#
function cubic5(a::Float64, b::Float64, c::Float64, d::Float64) #
_a = 1.0 / a
b, c, d = b * _a, c * _a, d * _a
m = b < c ? b : c
m = d < m ? d : m
m > 0.0 && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 0.0 # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > 0.0 ? z : Inf#typemax(Float64)
elseif Δ < 0.0 # three real roots
θ = abs(yₙ) < 0.0 ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > 0.0 ? x₁ : Inf# typemax(Float64)
x = x₂ > 0.0 && x₂ < x ? x₂ : x
x₃ > 0.0 && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > 0.0 ? x₁ : Inf#typemax(Float64)
x₂ > 0.0 && x₂ < x ? x₂ : x
end
end
#= function cubic55(a::Float64, b::Float64, c::Float64, d::Float64) #
_a = 1.0 / a
b, c, d = b * _a, c * _a, d * _a
m = b < c ? b : c
m = d < m ? d : m
m > eps(Float64) && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 4eps(Float64) # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > -eps(Float64) ? z : Inf#typemax(Float64)
elseif Δ < -4eps(Float64) # three real roots
θ = abs(yₙ) < eps(Float64) ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > -eps(Float64) ? x₁ : Inf# typemax(Float64)
x = x₂ > -eps(Float64) && x₂ < x ? x₂ : x
x₃ > -eps(Float64) && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > -eps(Float64) ? x₁ : Inf#typemax(Float64)
x₂ > -eps(Float64) && x₂ < x ? x₂ : x
end
end =#
#= function cubic6(coeffs::NTuple{4,Float64})#
_a = 1.0 / coeffs[4]
b, c, d = coeffs[3] * _a, coeffs[2] * _a, coeffs[1] * _a
m = b < c ? b : c
m = d < m ? d : m
m > eps(Float64) && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 4eps(Float64) # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > -eps(Float64) ? z : Inf#typemax(Float64)
elseif Δ < -4eps(Float64) # three real roots
θ = abs(yₙ) < eps(Float64) ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > -eps(Float64) ? x₁ : Inf# typemax(Float64)
x = x₂ > -eps(Float64) && x₂ < x ? x₂ : x
x₃ > -eps(Float64) && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > -eps(Float64) ? x₁ : Inf#typemax(Float64)
x₂ > -eps(Float64) && x₂ < x ? x₂ : x
end
end =#
#= function cubic7(coeffs::SVector{4,Float64})#
_a = 1.0 / coeffs[4]
b, c, d = coeffs[3] * _a, coeffs[2] * _a, coeffs[1] * _a
m = b < c ? b : c
m = d < m ? d : m
m > 0.0 && return Inf#typemax(Float64) # Cauchy bound
_3 = 1.0 / 3
_9 = 1.0 / 9
SQ3 = sqrt(3.0)
xₙ = -b * _3
b²_9 = b * b * _9
yₙ = muladd(muladd(-2, b²_9, c), xₙ, d) #eq to 2R
δ² = muladd(-_3, c, b²_9) #eq to Q
h² = 4δ² * δ² * δ²
Δ = muladd(yₙ, yₙ, -h²)
if Δ > 0.0 # one real root and two complex roots
p = yₙ < 0 ? cbrt(0.5 * (-yₙ + √Δ)) : cbrt(0.5 * (-yₙ - √Δ))
q = δ² / p
z = xₙ + p + q
z > 0.0 ? z : Inf#typemax(Float64)
elseif Δ < 0.0 # three real roots
θ = abs(yₙ) < 0.0 ? 0.5π * _3 : atan(√abs(Δ) / abs(yₙ)) * _3 # acos(-yₙ / √h²)
δ = yₙ < 0 ? √abs(δ²) : -√abs(δ²)
z₁ = 2δ * cos(θ)
z₂ = muladd(-0.5, z₁, xₙ)
z₃ = SQ3 * δ * sin(θ)
x₁ = xₙ + z₁
x₂ = z₂ + z₃
x₃ = z₂ - z₃
x = x₁ > 0.0 ? x₁ : Inf# typemax(Float64)
x = x₂ > 0.0 && x₂ < x ? x₂ : x
x₃ > 0.0 && x₃ < x ? x₃ : x
else # double or triple real roots
δ = cbrt(0.5yₙ)
x₁ = xₙ + δ
x₂ = xₙ - 2δ
x = x₁ > 0.0 ? x₁ : Inf#typemax(Float64)
x₂ > 0.0 && x₂ < x ? x₂ : x
end
end =#
#=
d=1e-6
#= a=-5.144241008311048e7
b=-8938.381530578772
c=-0.2906652780025244 =#
c=-0.040323840000000166
b=-3914.116824448214
a=1.021243315770821e8
@show cubic1(a,b,c,d)#-0.8186606842427812
@show cubic2(a,b,c,d) #Inf
@show cubic3(a,b,c,d) #2.515556238254017
@show cubic4(a,b,c,d) # 2.5155562382540193
@show cubic5(a,b,c,d)#2.515556238254016
coeffs2=NTuple{4,Float64}((d,c,b,a))
coeffs3=@SVector [d,c,b,a]
@show cubic7(coeffs3)
@show cubic6(coeffs2)
=# | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 8513 |
@inline function smallest(args::NTuple{N,F}) where {N, F <: Float64}
@inbounds m = args[1]
for i in 2:N
@inbounds arg = args[i]
m = arg < m ? arg : m
end
m
end
@inline function horner(x::F, coeffs::NTuple{N,F}) where {N, F <: Float64}
@inbounds v = coeffs[1]
for i in 2:N
@inbounds coeff = coeffs[i]
v = muladd(x, v, coeff)
end
v
end
@inline function horner2(x::F, y::F, coeffs::NTuple{N,F}) where {N, F <: Float64}
@inbounds v = coeffs[1]
w = v
for i in 2:N
@inbounds coeff = coeffs[i]
v = muladd(x, v, coeff)
w = muladd(y, w, coeff)
end
v, w
end
@inline function hornerd(x::F, coeffs::NTuple{N,F}) where {N, F <: Float64}
@inbounds v = coeffs[1]
d = zero(F)
for i in 2:N
@inbounds coeff = coeffs[i]
d = muladd(x, d, v)
v = muladd(x, v, coeff)
end
v, d
end
@inline function intervalhorner(low::F, high::F, coeffs::NTuple{N,F}) where {N, F <: Float64}
@inbounds colow = coeffs[1]
cohigh = colow
if low < zero(F)
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, cohigh, coeff), muladd(high, colow, coeff)
elseif cohigh < zero(F)
muladd(high, cohigh, coeff), muladd(low, colow, coeff)
else
muladd(low, cohigh, coeff), muladd(low, colow, coeff)
end
end
else
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, colow, coeff), muladd(high, cohigh, coeff)
elseif cohigh < zero(F)
muladd(high, colow, coeff), muladd(low, cohigh, coeff)
else
muladd(high, colow, coeff), muladd(high, cohigh, coeff)
end
end
end
colow, cohigh
end
@inline function posintervalhorner(low::F, high::F, coeffs::NTuple{N,F}) where {N, F <: Float64}
@inbounds colow = coeffs[1]
cohigh = colow
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, colow, coeff), muladd(high, cohigh, coeff)
elseif cohigh < zero(F)
muladd(high, colow, coeff), muladd(low, cohigh, coeff)
else
muladd(high, colow, coeff), muladd(high, cohigh, coeff)
end
end
colow, cohigh
end
#function allrealrootintervalnewtonregulafalsi(coeffs::NTuple{N,F}, res::Ptr{F}, doms::Ptr{NTuple{2,F}}) where {N, F <: Float64}
function allrealrootintervalnewtonregulafalsi(coeffs::NTuple{N,F}, res::Ptr{F}, doms::Ptr{NTuple{2,F}}) where {N, F <: Float64}
if N == 1
return 0
elseif N == 2
#println("fix setIndex Ptr error")
@inbounds res[1] = -coeffs[2] / coeffs[1]
return 1
end
@inbounds _coeff1 = inv(coeffs[1])
poly = ntuple(N) do i
@inbounds _coeff1 * coeffs[i]
end
poly′ = ntuple(N - 1) do i
@inbounds (N-i) * poly[i]
end
mm = zero(F)
MM = zero(F)
s = -one(F)
for i in 2:N
@inbounds coeff = poly[i]
if coeff < MM; MM = coeff end
_coeff = s * coeff
if _coeff < mm; mm = _coeff end
s = -s
end
if mm == zero(F) && MM == zero(F) return 0 end
index = 0
domlow, domhigh = if mm < zero(F)
if MM < zero(F)
index = 1
unsafe_store!(doms, (zero(F), one(F) - MM), 1)
end
mm - one(F), zero(F)
else
zero(F), one(F) - MM
end
counter = 0
while true
#@show domlow domhigh
mid = 0.5(domlow + domhigh)
comid = horner(mid, poly)
codom′low, codom′high = intervalhorner(domlow, domhigh, poly′)
#@show mid comid codom′low codom′high
if codom′low < zero(F) < codom′high
leftlow, lefthigh, rightlow, righthigh = if comid < zero(F)
domlow, mid - comid / codom′low, mid - comid / codom′high, domhigh
else
domlow, mid - comid / codom′high, mid - comid / codom′low, domhigh
end
#@show leftlow lefthigh rightlow righthigh
if leftlow < lefthigh
if rightlow < righthigh
index += 1
unsafe_store!(doms, (rightlow, righthigh), index)
end
domlow, domhigh = leftlow, lefthigh
continue
elseif rightlow < righthigh
domlow, domhigh = rightlow, righthigh
continue
end
else
codomlow, codomhigh = horner2(domlow, domhigh, poly)
#@show domlow domhigh codomlow codomhigh
if codomlow * codomhigh < zero(F)
while true
comid, comid′ = hornerd(mid, poly)
delta = comid / comid′
#@show mid comid comid′
newmid = mid - delta
if abs(delta) < 1.0e-15abs(mid)
counter += 1
unsafe_store!(res, newmid, counter)
break
elseif domlow < newmid < domhigh
mid = newmid
else
if comid * codomlow < zero(F)
domhigh, codomhigh = mid, comid
else
domlow, codomlow = mid, comid
end
mid = (domlow*codomhigh - domhigh*codomlow) / (codomhigh - codomlow) # regula falsi
end
end
end
end
if index == 0 || counter == N-1 break end
domlow, domhigh = unsafe_load(doms, index)
index -= 1
end
return counter
end
function smallestpositiverootintervalnewtonregulafalsi(coeffs::NTuple{N,F}, doms::Ptr{NTuple{2,F}}) where {N, F <: AbstractFloat}
if N == 1
return typemax(F)
elseif N == 2
@inbounds ret = -coeffs[2] / coeffs[1]
if ret < zero(F)
return typemax(F)
else
return ret
end
end
@inbounds _coeff1 = inv(coeffs[1])
poly = ntuple(N) do i
@inbounds _coeff1 * coeffs[i]
end
poly′ = ntuple(N - 1) do i
@inbounds (N-i) * poly[i]
end
MM = smallest(poly)
if MM > zero(F) return typemax(F) end
domlow, domhigh = zero(F), one(F) - MM
index = 0
while true
#@show domlow domhigh
mid = 0.5(domlow + domhigh)
comid = horner(mid, poly)
codom′low, codom′high = posintervalhorner(domlow, domhigh, poly′)
#@show comid codom′low codom′high
if codom′low < zero(F) < codom′high
leftlow, lefthigh, rightlow, righthigh = if comid < zero(F)
domlow, mid - comid / codom′low, mid - comid / codom′high, domhigh
else
domlow, mid - comid / codom′high, mid - comid / codom′low, domhigh
end
#@show leftlow lefthigh rightlow righthigh
if leftlow < lefthigh
if rightlow < righthigh
index += 1
unsafe_store!(doms, (rightlow, righthigh), index)
end
domlow, domhigh = leftlow, lefthigh
continue
elseif rightlow < righthigh
domlow, domhigh = rightlow, righthigh
continue
end
else
codomlow, codomhigh = horner2(domlow, domhigh, poly)
#@show domlow domhigh codomlow codomhigh
if codomlow * codomhigh < zero(F)
while true
comid, comid′ = hornerd(mid, poly)
delta = comid / comid′
newmid = mid - delta
if abs(delta) < 1.0e-8mid
return newmid
elseif domlow < newmid < domhigh
mid = newmid
else
if comid * codomlow < zero(F)
domhigh, codomhigh = mid, comid
else
domlow, codomlow = mid, comid
end
mid = (domlow*codomhigh - domhigh*codomlow) / (codomhigh - codomlow) # regula falsi
end
end
end
end
if index == 0 break end
domlow, domhigh = unsafe_load(doms, index)
index -= 1
end
return typemax(F)
end
a,b,c,d,e,f,g=2.4794107580075693e12, 1.228418015847665e15, -6.091596024738817e15, -1.5165486073419932e18, -4.545138347948389e12, -6.054155392961131e6, -3.024053636764291
coefi=NTuple{7,Float64}((2.4794107580075693e12, 1.228418015847665e15, -6.091596024738817e15, -1.5165486073419932e18, -4.545138347948389e12, -6.054155392961131e6, -3.024053636764291))
#coefi=NTuple{7,Float64}((Float64(a), Float64(b), Float64(c), Float64(d), Float64(e), Float64(f), Float64(g)))
#coefi=NTuple{7,Float64}((Float64(2.4855534831418154e12), Float64(1.2375936757103965e15), Float64(-1.1620693333574219e9), Float64(-1.21270658290325e12), Float64(-4.129153524641228e7), Float64(-80.08000016083042), Float64(-4.0000000000000105e-5)))
#pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
#respp = pointer(Vector{Float64}(undef, 6))
pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
respp = pointer(Vector{Float64}(undef, 6))
unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6)
#= allrealrootintervalnewtonregulafalsi(coefi,respp,pp)
resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6)
for h in(resi1,resi2,resi3,resi4,resi5,resi6)
ff(x)=coefi[1]*x^6+coefi[2]*x^5+coefi[3]*x^4+coefi[4]*x^3+coefi[5]*x^2+coefi[6]*x+coefi[7]
@show h
@show ff(h)
end =#
h=smallestpositiverootintervalnewtonregulafalsi(coefi,pp)
ff(x)=coefi[1]*x^6+coefi[2]*x^5+coefi[3]*x^4+coefi[4]*x^3+coefi[5]*x^2+coefi[6]*x+coefi[7]
@show h
@show ff(h)
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 14450 | #using BenchmarkTools
@inline function smallest(args::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds m = args[1]
for i in 2:N
@inbounds arg = args[i]
m = arg < m ? arg : m
end
m
end
@inline function horner(x::F, coeffs::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds v = coeffs[1]
for i in 2:N
@inbounds coeff = coeffs[i]
v = muladd(x, v, coeff)
end
v
end
@inline function horner2(x::F, y::F, coeffs::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds v = coeffs[1]
w = v
for i in 2:N
@inbounds coeff = coeffs[i]
v = muladd(x, v, coeff)
w = muladd(y, w, coeff)
end
v, w
end
@inline function hornerd(x::F, coeffs::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds v = coeffs[1]
d = zero(F)
for i in 2:N
@inbounds coeff = coeffs[i]
d = muladd(x, d, v)
v = muladd(x, v, coeff)
end
v, d
end
@inline function intervalhorner(low::F, high::F, coeffs::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds colow = coeffs[1]
cohigh = colow
if low < zero(F)
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, cohigh, coeff), muladd(high, colow, coeff)
elseif cohigh < zero(F)
muladd(high, cohigh, coeff), muladd(low, colow, coeff)
else
muladd(low, cohigh, coeff), muladd(low, colow, coeff)
end
end
else
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, colow, coeff), muladd(high, cohigh, coeff)
elseif cohigh < zero(F)
muladd(high, colow, coeff), muladd(low, cohigh, coeff)
else
muladd(high, colow, coeff), muladd(high, cohigh, coeff)
end
end
end
colow, cohigh
end
@inline function posintervalhorner(low::F, high::F, coeffs::NTuple{N,F}) where {N, F <: AbstractFloat}
@inbounds colow = coeffs[1]
cohigh = colow
for i in 2:N
@inbounds coeff = coeffs[i]
colow, cohigh = if colow > zero(F)
muladd(low, colow, coeff), muladd(high, cohigh, coeff)
elseif cohigh < zero(F)
muladd(high, colow, coeff), muladd(low, cohigh, coeff)
else
muladd(high, colow, coeff), muladd(high, cohigh, coeff)
end
end
colow, cohigh
end
function smallestpositiverootintervalnewtonregulafalsi(coeffs::NTuple{N,F}, doms::Ptr{NTuple{2,F}}) where {N, F <: AbstractFloat}
if N == 1
return typemax(F)
elseif N == 2
@inbounds ret = -coeffs[2] / coeffs[1]
if ret < zero(F)
return typemax(F)
else
return ret
end
end
@inbounds _coeff1 = inv(coeffs[1])
poly = ntuple(N) do i
@inbounds _coeff1 * coeffs[i]
end
poly′ = ntuple(N - 1) do i
@inbounds (N-i) * poly[i]
end
MM = smallest(poly)
if MM > zero(F) return typemax(F) end
domlow, domhigh = zero(F), one(F) - MM
index = 0
while true
#@show domlow domhigh
mid = 0.5(domlow + domhigh)
comid = horner(mid, poly)
codom′low, codom′high = posintervalhorner(domlow, domhigh, poly′)
#@show comid codom′low codom′high
if codom′low < zero(F) < codom′high
leftlow, lefthigh, rightlow, righthigh = if comid < zero(F)
domlow, mid - comid / codom′low, mid - comid / codom′high, domhigh
else
domlow, mid - comid / codom′high, mid - comid / codom′low, domhigh
end
#@show leftlow lefthigh rightlow righthigh
if leftlow < lefthigh
if rightlow < righthigh
index += 1
unsafe_store!(doms, (rightlow, righthigh), index)
end
domlow, domhigh = leftlow, lefthigh
continue
elseif rightlow < righthigh
domlow, domhigh = rightlow, righthigh
continue
end
else
codomlow, codomhigh = horner2(domlow, domhigh, poly)
#@show domlow domhigh codomlow codomhigh
if codomlow * codomhigh < zero(F)
while true
comid, comid′ = hornerd(mid, poly)
delta = comid / comid′
newmid = mid - delta
if abs(delta) < 1.0e-8mid
return newmid
elseif domlow < newmid < domhigh
mid = newmid
else
if comid * codomlow < zero(F)
domhigh, codomhigh = mid, comid
else
domlow, codomlow = mid, comid
end
mid = (domlow*codomhigh - domhigh*codomlow) / (codomhigh - codomlow) # regula falsi
end
end
end
end
if index == 0 break end
domlow, domhigh = unsafe_load(doms, index)
index -= 1
end
return typemax(F)
end
function allrealrootintervalnewtonregulafalsi(coeffs::NTuple{N,F}, res::Ptr{F}, doms::Ptr{NTuple{2,F}}) where {N, F <: AbstractFloat}
if N == 1
unsafe_store!(res, typemax(F), 1)
return 1#typemax(F)
elseif N == 2
if coeffs[1]!=zero(F)
@inbounds ret = -coeffs[2] / coeffs[1]
unsafe_store!(res, ret, 1)
return 1#ret
else
unsafe_store!(res, typemax(F), 1)
return 1#typemax(F)
end
end
if coeffs[1]==0.0 #abs(coeffs[1])<1e-25
nCoef=coeffs[2:end]
#Base.GC.enable(false)
ret=allrealrootintervalnewtonregulafalsi(nCoef, res, doms)
#Base.GC.enable(true)
return ret
end
@inbounds _coeff1 = inv(coeffs[1])
poly = ntuple(N) do i
@inbounds _coeff1 * coeffs[i]
end
poly′ = ntuple(N - 1) do i
@inbounds (N-i) * poly[i]
end
mm = zero(F)
MM = zero(F)
s = -one(F)
for i in 2:N
@inbounds coeff = poly[i]
if coeff < MM; MM = coeff end
_coeff = s * coeff
if _coeff < mm; mm = _coeff end
s = -s
end
if mm == zero(F) && MM == zero(F) return 0 end
index = 0
domlow, domhigh = if mm < zero(F)
if MM < zero(F)
index = 1
unsafe_store!(doms, (zero(F), one(F) - MM), 1)
end
mm - one(F), zero(F)
else
zero(F), one(F) - MM
end
counter = 0
while true
#@show domlow domhigh
mid = 0.5(domlow + domhigh)
comid = horner(mid, poly)
codom′low, codom′high = intervalhorner(domlow, domhigh, poly′)
#@show mid comid codom′low codom′high
if codom′low < zero(F) < codom′high
leftlow, lefthigh, rightlow, righthigh = if comid < zero(F)
domlow, mid - comid / codom′low, mid - comid / codom′high, domhigh
else
domlow, mid - comid / codom′high, mid - comid / codom′low, domhigh
end
#@show leftlow lefthigh rightlow righthigh
if leftlow < lefthigh
if rightlow < righthigh
index += 1
unsafe_store!(doms, (rightlow, righthigh), index)
end
domlow, domhigh = leftlow, lefthigh
continue
elseif rightlow < righthigh
domlow, domhigh = rightlow, righthigh
continue
end
else
codomlow, codomhigh = horner2(domlow, domhigh, poly)
#@show domlow domhigh codomlow codomhigh
if codomlow * codomhigh < zero(F)
while true
comid, comid′ = hornerd(mid, poly)
delta = comid / comid′
#@show mid comid comid′
newmid = mid - delta
if abs(delta) < 1.0e-14abs(mid)
counter += 1
unsafe_store!(res, newmid, counter)
break
elseif domlow < newmid < domhigh
mid = newmid
else
if comid * codomlow < zero(F)
domhigh, codomhigh = mid, comid
else
domlow, codomlow = mid, comid
end
mid = (domlow*codomhigh - domhigh*codomlow) / (codomhigh - codomlow) # regula falsi
end
end
end
end
if index == 0 || counter == N-1 break end
domlow, domhigh = unsafe_load(doms, index)
index -= 1
end
return counter
end
function classicRoot(coeff::NTuple{3,Float64}) # credit goes to github.com/CIFASIS/qss-solver
mpr=(-1.0,-1.0) #
a=coeff[1];b=coeff[2];c=coeff[3]
if a == 0.0 #|| (10000 * abs(a)) < abs(b)# coef3 is the coef of t^2
if b != 0.0
if -c / b>0.0
mpr = (-c / b,-1.0)
end
end
else
#double disc;
disc = b * b - 4.0 * a * c#b^2-4ac
if disc > 0.0 # no real roots
#double sd, r1;
sd = sqrt(disc);
r1 = (-b + sd) / (2.0 * a);
r2 = (-b - sd) / (2.0 * a);
mpr = (r1,r2)
elseif disc == 0.0
r1 = (-b ) / (2.0 * a);
mpr = (r1,-1.0)
end
end
return mpr
end
function quadRootv2(coeff::NTuple{3,Float64}) #
mpr=(-1.0,-1.0) #size 2 to use mpr[2] in quantizer
a=coeff[1];b=coeff[2];c=coeff[3]
if a == 0.0 || (1e7 * abs(a)) < abs(b)# coef3 is the coef of t^2
if b != 0.0
if 0<-c / b<1e7 # neglecting a small 'a' then having a large h would cause an error 'a*h*h' because large
mpr = (-c / b,-1.0)
end
end
elseif b==0.0
if -c/a>0
mpr = (sqrt(-c / a),-1.0)
end
elseif c==0.0
mpr=(-1.0,-b/a)
else
#double disc;
Δ = 1.0 - 4.0*c*a / (b*b)
if Δ >0.0
#= q = -0.5*(1.0+sign(b)*sqrt(Δ))*b
r1 = q / a
r2=c / q =#
sq=sqrt(Δ)
#@show sq
r1=-0.5*(1.0+sq)*b/a
r2=-0.5*(1.0-sq)*b/a
mpr = (r1,r2)
#@show mpr
elseif Δ ==0.0
r1=-0.5*b/a
mpr = (r1,r1-1e-12)
end
end
return mpr
end
function mprv2(coeff::NTuple{3,Float64}) #
mpr=Inf
a=coeff[1];b=coeff[2];c=coeff[3]
if a == 0.0 #|| (10000 * abs(a)) < abs(b)# coef3 is the coef of t^2
if b != 0.0
if -c / b>0.0
mpr = -c / b
end
end
elseif b==0.0
if -c/a>0
mpr = sqrt(-c / a)
end
elseif c==0.0
if -b/a>0.0
mpr = -b/a
end
else
#double disc;
Δ = 1.0 - 4.0*c*a / (b*b)
if Δ >0.0
#= q = -0.5*(1.0+sign(b)*sqrt(Δ))*b
r1 = q / a
r2=c / q =#
sq=sqrt(Δ)
r1=-0.5*(1.0+sq)*b/a
if r1 > 0
mpr = r1;
end
r1=-0.5*(1.0-sq)*b/a
if ((r1 > 0) && (r1 < mpr))
mpr = r1;
end
elseif Δ ==0.0
r1=-0.5*b/a
if r1 > 0
mpr = r1;
end
end
end
return mpr
end
#=
coef=NTuple{3,Float64}( (-54.5, 676862.94717592, 0.015584725741558765))
x=quadRootv2(coef)
@show x =#
#= sl=coef[3]+x*coef[2]+coef[1]*x*x
@show sl =#
#= coef=NTuple{3,Float64}((-2.5768276401549883e-12, -239999.2196676244,1735305783508325))
x=quadRootv2(coef)
@show x
sl=coef[3]+x*coef[2]+coef[1]*x*x
@show sl =#
# 1735305783508325, -239999.2196676244, -2.5768276401549883
#= coeffs2=NTuple{3,Float64}((0.7,23999.2196676244,-2.5768276401549883e-12))
#coeffs2=NTuple{3,Float64}((-2.5768276401549883e-12,-239999.2196676244,17))
#coeffs2=NTuple{3,Float64}((14.691504647354595,-747452.6968034876,1.0e-6))
function iter(res1::Ptr{Float64}, pp::Ptr{NTuple{2,Float64}},coeffs2::NTuple{3,Float64})
#coeffs2=NTuple{3,Float64}((1.0, -2.0, -1.06))
pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
res1 = pointer(Vector{Float64}(undef, 2))
unsafe_store!(res1, -1.0, 1);unsafe_store!(res1, -1.0, 2)
allrealrootintervalnewtonregulafalsi(coeffs2,res1,pp)
resTup=(unsafe_load(res1,1),unsafe_load(res1,2))
#@show resTup
resfilterd=filter((x) -> x >0.0 , resTup)
# display(resfilterd)
end
function anal1(coeffs2::NTuple{3,Float64})
#coeffs2=NTuple{3,Float64}((1.0, -2.0, -1.06))
classicRoot(coeffs2)
end
function anal2(coeffs2::NTuple{3,Float64})
#coeffs2=NTuple{3,Float64}((1.0, -2.0, -1.06))
quadRootv2(coeffs2)
end
pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
res1 = pointer(Vector{Float64}(undef, 2))
@show iter(res1,pp,coeffs2)
@show anal1(coeffs2)
@show anal2(coeffs2)
x= smallestpositiverootintervalnewtonregulafalsi(coeffs2,pp)
@show x
sl=coeffs2[3]+x*coeffs2[2]+coeffs2[1]*x*x
@show sl =#
#= @btime iter(res1,pp)
@btime anal1()
@btime anal2() =#
#= coeffs=NTuple{3,Float64}((29160.956861496, 67.56376290717117, 0.014452560693316113))
#coeffs2=NTuple{3,Float64}((201011.0777843986, 106.4755863000737, 0.014452560693316113))
coeffs2=NTuple{4,Float64}((1.021243315770821e8, -3914.116824448214, -0.040323840000000166,1e-6))
pp=pointer(Vector{NTuple{2,Float64}}(undef, 11))
res1 = pointer(Vector{Float64}(undef, 3))
res2 = pointer(Vector{Float64}(undef, 3)) =#
#= count=allrealrootintervalnewtonregulafalsi(coeffs2,res2,pp)
@show count
resTup2=(unsafe_load(res2,1),unsafe_load(res2,2),unsafe_load(res2,3))
@show resTup2
resfilterd2=filter((x) -> x >0.0 , resTup2)
display(resfilterd2) =#
#coefi=NTuple{7,Float64}((2.4855534831418154e12, 1.2375936757103965e15, -1.1620693333574219e9, -1.21270658290325e12, -4.129153524641228e7, -80.08000016083042, -4.0000000000000105e-5))
#coefi=NTuple{7,Float64}((2.4794107580075693e12, 1.228418015847665e15, -6.091596024738817e15, -1.5165486073419932e18, -4.545138347948389e12, -6.054155392961131e6, -3.024053636764291))
#= coefi=NTuple{7,Float64}((-2.5668078295588949092296481e+16, 1.0474193043858423245087585e+18,1.7114669426922051413515583e+13, -2.8508122708869649897226691e+14, -8.5524376124873223589469262e+08, -1140.3250641304001419575054, -0.00057016254603761695740615778))
pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
respp = pointer(Vector{Float64}(undef, 6))
unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6)
allrealrootintervalnewtonregulafalsi(coefi,respp,pp)
resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6)
for h in(resi1,resi2,resi3,resi4,resi5,resi6)
#@show h
if h>0
f(x)=coefi[1]*x^6+coefi[2]*x^5+coefi[3]*x^4+coefi[4]*x^3+coefi[5]*x^2+coefi[6]*x+coefi[7]
g(x)=coefi[7]+coefi[6]*x+coefi[5]*x^2+coefi[4]*x^3+coefi[3]*x^4+coefi[2]*x^5+coefi[1]*x^6
@show h
@show f(h),g(h)
end
end =#
#=
coefi=NTuple{7,Float64}((-2.5668078295588949092296481e+16, 1.0474193043858423245087585e+18,1.7114669426922051413515583e+13, -2.8508122708869649897226691e+14, -8.5524376124873223589469262e+08, -1140.3250641304001419575054, -0.00057016254603761695740615778))
pp=pointer(Vector{NTuple{2,Float64}}(undef, 7))
respp = pointer(Vector{Float64}(undef, 6))
Base.GC.enable(false)
unsafe_store!(respp, -1.0, 1);unsafe_store!(respp, -1.0, 2);unsafe_store!(respp, -1.0, 3);unsafe_store!(respp, -1.0, 4);unsafe_store!(respp, -1.0, 5);unsafe_store!(respp, -1.0, 6)
allrealrootintervalnewtonregulafalsi(coefi,respp,pp)
resi1,resi2,resi3,resi4,resi5,resi6=unsafe_load(respp,1),unsafe_load(respp,2),unsafe_load(respp,3),unsafe_load(respp,4),unsafe_load(respp,5),unsafe_load(respp,6)
Base.GC.enable(true)
for h in(resi1,resi2,resi3,resi4,resi5,resi6)
#@show h
if h>0
f(x)=coefi[1]*x^6+coefi[2]*x^5+coefi[3]*x^4+coefi[4]*x^3+coefi[5]*x^2+coefi[6]*x+coefi[7]
g(x)=coefi[7]+coefi[6]*x+coefi[5]*x^2+coefi[4]*x^3+coefi[3]*x^4+coefi[2]*x^5+coefi[1]*x^6
@show h
@show f(h),g(h)
end
end =# | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 9043 | #using TimerOutputs
#using InteractiveUtils
function LiQSS_integrate(Al::QSSAlgorithm{:nmliqss,O},CommonqssData::CommonQSS_data{0},liqssdata::LiQSS_data{O,false},specialLiqssData::SpecialLiqssQSS_data, odep::NLODEProblem{PRTYPE,T,0,0,CS},f::Function,jac::Function,SD::Function,exacteA::Function ) where {PRTYPE,CS,O,T}
cacheA=specialLiqssData.cacheA
ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr;
savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement
quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime;nextInputTime = CommonqssData.nextInputTime
tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t
savedVars=CommonqssData.savedVars;
savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;#Val(CS)=odep.Val(CS)
#a=liqssdata.a
#u=liqssdata.u;
#***************************************************************
qaux=liqssdata.qaux;olddx=liqssdata.olddx;dxaux=liqssdata.dxaux;olddxSpec=liqssdata.olddxSpec
numSteps = Vector{Int}(undef, T)
simulStepsVals = Vector{Vector{Float64}}(undef, T)
simulStepsDers = Vector{Vector{Float64}}(undef, T)
simulStepsTimes = Vector{Vector{Float64}}(undef, T)
exacteA(q,cacheA,1,1)
#######################################compute initial values##################################################
n=1
for k = 1:O # compute initial derivatives for x and q (similar to a recursive way )
n=n*k
for i = 1:T
q[i].coeffs[k] = x[i].coeffs[k] # q computed from x and it is going to be used in the next x
end
for i = 1:T
clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t ,taylorOpsCache)
ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1)
x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2)
end
end
for i = 1:T
#= p=1
for k=1:O
p=p*k
m=p/k
for j=1:T
if j!=i
u[i][j][k]=p*x[i][k]-a[i][i]*m*q[i][k-1]-a[i][j]*m*q[j][k-1]
else
u[i][j][k]=p*x[i][k]-a[i][i]*m*q[i][k-1]
end
end
end =#
numSteps[i]=0
simulStepsTimes[i]=Vector{Float64}()
simulStepsVals[i]=Vector{Float64}()
simulStepsDers[i]=Vector{Float64}()
push!(savedVars[i],x[i][0])
push!(savedTimes[i],0.0)
quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i]
# exacteA(q,cacheA,i,i)
updateQ(Val(O),i,x,q,quantum,exacteA,cacheA,dxaux,qaux,tx,tq,initTime,ft,nextStateTime)
#display(@code_warntype updateQ(Val(O),i,x,q,quantum,exacteA,cacheA,dxaux,qaux,olddx,tx,tq,initTime,ft,nextStateTime))
end
for i = 1:T
clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q,t,taylorOpsCache);
computeDerivative(Val(O), x[i], taylorOpsCache[1]#= ,0.0 =#)#0.0 used to be elapsed...even down below not neeeded anymore
Liqss_reComputeNextTime(Val(O), i, initTime, nextStateTime, x, q, quantum)
computeNextInputTime(Val(O), i, initTime, 0.1,taylorOpsCache[1] , nextInputTime, x, quantum)# not complete, currently elapsed=0.1 is temp until fixed
end
###################################################################################################################################################################
####################################################################################################################################################################
#---------------------------------------------------------------------------------while loop-------------------------------------------------------------------------
###################################################################################################################################################################
####################################################################################################################################################################
simt = initTime ;simulStepCount=0;totalSteps=0;prevStepTime=initTime
simul=false
while simt < ft && totalSteps < 200000000
sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime)
simt = sch[2];index = sch[1]
if simt>ft
#simt=ft
break
end
numSteps[index]+=1;totalSteps+=1
t[0]=simt
##########################################state########################################
if sch[3] == :ST_STATE
elapsed = simt - tx[index];
integrateState(Val(O),x[index],elapsed)
tx[index] = simt
quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index]
#= elapsedq = simt - tq[index]
integrateState(Val(O-1),q[index],elapsedq) =#
#= @timeit "exacteA" =# #exacteA(q,cacheA,index,index)
# a=cacheA[1]
updateQ(Val(O),index,x,q,quantum, exacteA,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[index] = simt
for j in SD(index)
elapsedx = simt - tx[j]
if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt
elapsedq = simt - tq[j]
if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end
end
for b in jac(j)
elapsedq = simt - tq[b]
if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O)); f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1])
Liqss_reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
end#end for SD
###exacteA no need: updateLinearApprox(index,x,q,a,qaux,olddx)#
##################################input########################################
elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself
@show 55
elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt
quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index]
if abs(x[index].coeffs[2])>1e7 quantum[index]=10*quantum[index] end
for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt
for b in jac(index)
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache)
computeNextInputTime(Val(O), index, simt, elapsed,taylorOpsCache[1] , nextInputTime, x, quantum)
computeDerivative(Val(O), x[index], taylorOpsCache[1]#= ,elapsed =#)
# reComputeNextTime(Val(O), index, simt, nextStateTime, x, q, quantum)
for j in (SD(index))
elapsedx = simt - tx[j];
if elapsedx > 0
x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt
# quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j]
end
elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext
for b in jac(j)
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1]#= ,elapsed =#)
reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
end#end for
end#end state/input/event
push!(savedVars[index],x[index][0])
push!(savedTimes[index],simt)
end#end while
# createSol(Val(T),Val(O),savedTimes,savedVars, "liqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,numSteps,ft,simulStepsVals,simulStepsDers,simulStepsTimes)
createSol(Val(T),Val(O),savedTimes,savedVars, "Liqss$O",string(odep.prname),absQ,totalSteps,simulStepCount,0,numSteps,ft)
end#end integrate
#= function exacteA(q, cache, i, j)
if i == 0
return nothing
elseif i == 1 && j == 1
cache[1] = -20.0
return nothing
elseif i == 2 && j == 2
cache[1] = -0.01
return nothing
elseif i == 1 && j == 2
cache[1] = -80.0
return nothing
elseif i == 2 && j == 1
cache[1] = 1.24
return nothing
end
end =#
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 8561 | #using TimerOutputs
function integrate(Al::QSSAlgorithm{:qss,O},CommonqssData::CommonQSS_data{0}, odep::NLODEProblem{PRTYPE,T,0,0,CS},f::Function,jac::Function,SD::Function) where {PRTYPE,O,T,CS}
ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr;
#= savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement =#
quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime;nextInputTime = CommonqssData.nextInputTime
tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t
savedVars=CommonqssData.savedVars;
savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;
#a=deepcopy(odep.initJac);
#********************************helper values*******************************
# qaux=CommonqssData.qaux;olddx=CommonqssData.olddx;olddxSpec = zeros(MVector{T,MVector{O,Float64}}) # later can only care about 1st der
numSteps = Vector{Int}(undef, T)
savedVarsQ = Vector{Vector{Float64}}(undef, T)
for i=1:T
savedVarsQ[i]=Vector{Float64}()
end
#######################################compute initial values##################################################
n=1
for k = 1:O # compute initial derivatives for x and q (similar to a recursive way )
n=n*k
for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end # q computed from x and it is going to be used in the next x
for i = 1:T
clearCache(taylorOpsCache,Val(CS),Val(O));f(i,q, t ,taylorOpsCache)
ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1)
x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2)
end
end
for i = 1:T
numSteps[i]=0
push!(savedVarsQ[i],q[i][0])
push!(savedVars[i],x[i][0])
push!(savedTimes[i],0.0)
quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i]
computeNextTime(Val(O), i, initTime, nextStateTime, x, quantum)
initSmallAdvance=0.1
#t[0]=initTime#initSmallAdvance
# clearCache(taylorOpsCache,Val(CS),Val(O));
#@timeit "f"
f(i,q,t,taylorOpsCache);#@show taylorOpsCache
computeNextInputTime(Val(O), i, initTime, initSmallAdvance,taylorOpsCache[1] , nextInputTime, x, quantum)
#= assignXPrevStepVals(Val(O),prevStepVal,x,i) =#
end
###################################################################################################################################################################
####################################################################################################################################################################
#---------------------------------------------------------------------------------while loop-------------------------------------------------------------------------
###################################################################################################################################################################
####################################################################################################################################################################
simt = initTime ;totalSteps=0;prevStepTime=initTime
# breakloop= zeros(MVector{1,Float64})
#@timeit "qssintgrateWhile"
while simt < ft && totalSteps < 200000000
#= if breakloop[1]>5.0
break
end =#
sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime)
simt = sch[2]
# @timeit "saveLast"
#= if simt>ft
saveLast!(Val(T),Val(O),savedVars, savedTimes,saveVarsHelper,ft,prevStepTime,integratorCache, x)
break ###################################################break##########################################
end =#
index = sch[1]
totalSteps+=1
t[0]=simt
##########################################state########################################
if sch[3] == :ST_STATE
numSteps[index]+=1;
elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt
quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index]
if abs(x[index].coeffs[2])>1e7 quantum[index]=10*quantum[index] end
for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt
computeNextTime(Val(O), index, simt, nextStateTime, x, quantum) #
for j in (SD(index))
elapsedx = simt - tx[j];if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt end
# quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j]
elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext
for b in (jac(j) )
elapsedq = simt - tq[b]
if elapsedq>0
integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt
end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1])
reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
end#end for SD
##################################input########################################
elseif sch[3] == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself
@show index
elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt
quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index]
for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt
for b in jac(index)
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(index,q,t,taylorOpsCache)
computeNextInputTime(Val(O), index, simt, elapsed,taylorOpsCache[1] , nextInputTime, x, quantum)
computeDerivative(Val(O), x[index], taylorOpsCache[1])
for j in(SD(index))
elapsedx = simt - tx[j];
if elapsedx > 0
x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt
quantum[j] = relQ * abs(x[j].coeffs[1]) ;quantum[j]=quantum[j] < absQ ? absQ : quantum[j];quantum[j]=quantum[j] > maxErr ? maxErr : quantum[j]
end
elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext
# elapsed update all other vars that this derj depends upon.
for b in jac(j)
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(j,q,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1])
reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
end#end for
end#end state/input/event
#= if simt > savetime #|| sch[3] ==:ST_EVENT
save!(Val(O),savedVars , savedTimes , saveVarsHelper,prevStepTime ,simt,tx ,tq , integratorCache,x , q,prevStepVal)
savetime += savetimeincrement #next savetime
else#end if save
for k = 1:T
elapsed = simt - tx[k];integrateState(Val(O),x[k],elapsed);tx[k] = simt #in case this point did not get updated.
elapsedq = simt - tq[k];integrateState(Val(O-1),q[k],elapsedq);tq[k]=simt
assignXPrevStepVals(Val(O),prevStepVal,x,k)
end
end
prevStepTime=simt =#
push!(savedVars[index],x[index][0])
push!(savedTimes[index],simt)
# push!(savedVarsQ[index],q[index][0])
#= for i=1:T
push!(savedVars[i],x[i][0])
push!(savedTimes[i],simt)
push!(savedVarsQ[i],q[i][0])
end =#
end#end while
#= for i=1:T# throw away empty points
resize!(savedVars[i],saveVarsHelper[1])
end
resize!(savedTimes,saveVarsHelper[1]) =#
createSol(Val(T),Val(O),savedTimes,savedVars, "qss$O",string(odep.prname),absQ,totalSteps,0,0,numSteps,ft)
end#end integrate
| QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
|
[
"MIT"
] | 1.0.1 | b4bf1003586f2ee6cb98d8df29e88cbbfacd2ea1 | code | 12722 | #using TimerOutputs
function integrate(Al::QSSAlgorithm{:qss,O},CommonqssData::CommonQSS_data{Z}, odep::NLODEProblem{PRTYPE,T,Z,Y,CS},f::Function,jac::Function,SD::Function) where {PRTYPE,O,T,Z,Y,CS}
ft = CommonqssData.finalTime;initTime = CommonqssData.initialTime;relQ = CommonqssData.dQrel;absQ = CommonqssData.dQmin;maxErr=CommonqssData.maxErr;
#savetimeincrement=CommonqssData.savetimeincrement;savetime = savetimeincrement
quantum = CommonqssData.quantum;nextStateTime = CommonqssData.nextStateTime;nextEventTime = CommonqssData.nextEventTime;nextInputTime = CommonqssData.nextInputTime
tx = CommonqssData.tx;tq = CommonqssData.tq;x = CommonqssData.x;q = CommonqssData.q;t=CommonqssData.t
savedVars=CommonqssData.savedVars;
savedTimes=CommonqssData.savedTimes;integratorCache=CommonqssData.integratorCache;taylorOpsCache=CommonqssData.taylorOpsCache;#cacheSize=odep.cacheSize
#prevStepVal = specialLiqssData.prevStepVal
#*********************************problem info*****************************************
d = odep.discreteVars
zc_SimpleJac=odep.ZCjac
HZ=odep.HZ
HD=odep.HD
SZ=odep.SZ
evDep = odep.eventDependencies
if DEBUG2 @show HD,HZ,SZ,zc_SimpleJac,d end
if DEBUG2 @show evDep end
if DEBUG2 @show f end
#********************************helper values*******************************
oldsignValue = MMatrix{Z,2}(zeros(Z*2)) #usedto track if zc changed sign; each zc has a value and a sign
numSteps = Vector{Int}(undef, T)
#######################################compute initial values##################################################
n=1
for k = 1:O # compute initial derivatives for x and q (similar to a recursive way )
n=n*k
for i = 1:T q[i].coeffs[k] = x[i].coeffs[k] end # q computed from x and it is going to be used in the next x
for i = 1:T
clearCache(taylorOpsCache,Val(CS),Val(O));f(i,-1,-1,q,d, t ,taylorOpsCache)
ndifferentiate!(integratorCache,taylorOpsCache[1] , k - 1)
x[i].coeffs[k+1] = (integratorCache.coeffs[1]) / n # /fact cuz i will store der/fac like the convention...to extract the derivatives (at endof sim) multiply by fac derderx=coef[3]*fac(2)
end
end
for i = 1:T
numSteps[i]=0
push!(savedVars[i],x[i][0])
push!(savedTimes[i],0.0)
quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i]
computeNextTime(Val(O), i, initTime, nextStateTime, x, quantum)
#updateQ(Val(O),i,x,q,quantum,exacteA,cacheA,dxaux,qaux,tx,tq,initTime,ft,nextStateTime)
end
for i=1:Z
clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,i,-1,x,d,t,taylorOpsCache)
oldsignValue[i,2]=taylorOpsCache[1][0] #value
oldsignValue[i,1]=sign(taylorOpsCache[1][0]) #sign modify
computeNextEventTime(Val(O),i,taylorOpsCache[1],oldsignValue,initTime, nextEventTime, quantum,absQ)
end
###################################################################################################################################################################
####################################################################################################################################################################
#---------------------------------------------------------------------------------while loop-------------------------------------------------------------------------
###################################################################################################################################################################
####################################################################################################################################################################
simt = initTime ;totalSteps=0;prevStepTime=initTime;modifiedIndex=0;statestep=0; countEvents=0;#needSaveEvent=false
while simt<ft && totalSteps < 50000000
sch = updateScheduler(Val(T),nextStateTime,nextEventTime, nextInputTime)
simt = sch[2];index = sch[1];stepType=sch[3]
if simt>ft
#saveLast!(Val(T),Val(O),savedVars, savedTimes,saveVarsHelper,ft,prevStepTime, x)
break ###################################################break##########################################
end
totalSteps+=1
t[0]=simt
DEBUG_time=DEBUG && 0.0<=simt<=ft
##########################################state########################################
if stepType == :ST_STATE
statestep+=1
numSteps[index]+=1;
elapsed = simt - tx[index];integrateState(Val(O),x[index],elapsed);tx[index] = simt
quantum[index] = relQ * abs(x[index].coeffs[1]) ;quantum[index]=quantum[index] < absQ ? absQ : quantum[index];quantum[index]=quantum[index] > maxErr ? maxErr : quantum[index]
if abs(x[index].coeffs[2])>1e7 quantum[index]=10*quantum[index] end
for k = 1:O q[index].coeffs[k] = x[index].coeffs[k] end; tq[index] = simt
computeNextTime(Val(O), index, simt, nextStateTime, x, quantum) #
for j in (SD(index))
elapsedx = simt - tx[j];if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt end
elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt end#q needs to be updated here for recomputeNext
for b in (jac(j) )
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(j,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1])
reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
end#end for SD
for j in (SZ[index])
for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon.
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,q,d,t,taylorOpsCache) # run ZCF--------
computeNextEventTime(Val(O),j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ)
end#end for SZ
##################################input########################################
elseif stepType == :ST_INPUT # time of change has come to a state var that does not depend on anything...no one will give you a chance to change but yourself
#################################################################event########################################
else
if DEBUG println("at start of event simt=$simt index=$index") end
for b in zc_SimpleJac[index] # elapsed update all other vars that this zc depends upon.
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,index,-1,q,d,t,taylorOpsCache) # run ZCF--------
if DEBUG @show oldsignValue[index,2],taylorOpsCache[1][0] end
#= if oldsignValue[index,2]*taylorOpsCache[1][0]>=0 && abs(taylorOpsCache[1][0])>1e-9*absQ # if both have same sign and zcf is not very small
computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ)
if DEBUG println("wrong estimation of event at $simt") end
continue
end
# needSaveEvent=true
countEvents+=1
if taylorOpsCache[1][0]>oldsignValue[index,2] # rise
modifiedIndex=2*index-1
elseif taylorOpsCache[1][0]<oldsignValue[index,2] # drop
modifiedIndex=2*index
else # == ( zcf==oldZCF)
if DEBUG println("ZCF==oldZCF at $simt") end
continue
end
oldsignValue[index,2]=taylorOpsCache[1][0]
oldsignValue[index,1]=sign(taylorOpsCache[1][0]) =#
if oldsignValue[index,2]*taylorOpsCache[1][0]>=0
if abs(taylorOpsCache[1][0])>1e-9*absQ # if both have same sign and zcf is not very small: zc=1e-9*absQ is allowed as an event
computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ)
# @show index,countEvents
# @show oldsignValue[index,2],taylorOpsCache[1][0]
if DEBUG_time println("wrong estimation of event at $simt") end
continue
end
end
if abs(oldsignValue[index,2]) <=1e-9*absQ #earlier zc=1e-9*absQ was considered event , so now it should be prevented from passing
nextEventTime[index]=Inf # at this instant next zc will be triggered now, and this will lead to infinite events, so cannot computenextevent here
continue
end
# needSaveEvent=true
if taylorOpsCache[1][0]>oldsignValue[index,2] #scheduled rise
modifiedIndex=2*index-1
elseif taylorOpsCache[1][0]<oldsignValue[index,2] #scheduled drop
modifiedIndex=2*index
else # == ( zcf==oldZCF)
if DEBUG_time println("this should never be reached ZCF==oldZCF at $simt cuz small old not allowed and large zc not allowed!!") end
computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ)
continue
end
countEvents+=1
oldsignValue[index,2]=taylorOpsCache[1][0]
oldsignValue[index,1]=sign(taylorOpsCache[1][0])
#= if DEBUG
@show modifiedIndex,x
@show q
end =#
for b in evDep[modifiedIndex].evContRHS
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
f(-1,-1,modifiedIndex,x,d,t,taylorOpsCache)# execute event--------
for i in evDep[modifiedIndex].evCont
#------------event influences a Continete var: x already updated in event...here update quantum and q and computenext
quantum[i] = relQ * abs(x[i].coeffs[1]) ;quantum[i]=quantum[i] < absQ ? absQ : quantum[i];quantum[i]=quantum[i] > maxErr ? maxErr : quantum[i]
for k = 0:O-1 q[i][k]=x[i][k] end;tx[i] = simt;tq[i] = simt # for liqss updateQ?
# firstguess=updateQ(Val(O),i,x,q,quantum,exacteA,cacheA,dxaux,qaux,tx,tq,simt,ft,nextStateTime) ;tq[i] = simt
computeNextTime(Val(O), i, simt, nextStateTime, x, quantum)
end
# nextEventTime[index]=Inf #investigate more
computeNextEventTime(Val(O),index,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ) # it could happen zcf=0.0 then infinite event
for j in (HD[modifiedIndex]) # care about dependency to this event only
elapsedx = simt - tx[j];if elapsedx > 0 x[j].coeffs[1] = x[j](elapsedx);tx[j] = simt;#= @show j,x[j] =# end
elapsedq = simt - tq[j];if elapsedq > 0 integrateState(Val(O-1),q[j],elapsedq);tq[j] = simt;#= @show q[j] =# end#q needs to be updated here for recomputeNext
for b = 1:T # elapsed update all other vars that this derj depends upon.
if b in jac(j)
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt;#= @show q[b] =# end
end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(j,-1,-1,q,d,t,taylorOpsCache);computeDerivative(Val(O), x[j], taylorOpsCache[1])
reComputeNextTime(Val(O), j, simt, nextStateTime, x, q, quantum)
# @show simt,j,x
end
for j in (HZ[modifiedIndex])
for b in zc_SimpleJac[j] # elapsed update all other vars that this derj depends upon.
elapsedq = simt - tq[b];if elapsedq>0 integrateState(Val(O-1),q[b],elapsedq);tq[b]=simt end
end
clearCache(taylorOpsCache,Val(CS),Val(O));f(-1,j,-1,q,d,t,taylorOpsCache) # run ZCF--------
if VERBOSE @show j,oldsignValue[j,2],taylorOpsCache[1][0] end
computeNextEventTime(Val(O),j,taylorOpsCache[1],oldsignValue,simt, nextEventTime, quantum,absQ)
end
if DEBUG
println("x at end of event simt=$simt x=$x")
println("q at end of event simt=$simt q=$q")
@show countEvents,totalSteps,statestep
@show nextStateTime,quantum
end
end#end state/input/event
if stepType != :ST_EVENT
push!(savedVars[index],x[index][0])
push!(savedTimes[index],simt)
#= for i =1:T
push!(savedVars[i],x[i][0])
push!(savedTimes[i],simt)
end =#
else
#if needSaveEvent
for j in (HD[modifiedIndex])
push!(savedVars[j],x[j][0])
push!(savedTimes[j],simt)
end
# end
end
prevStepTime=simt
end#end while
#@show countEvents,totalSteps
createSol(Val(T),Val(O),savedTimes,savedVars, "qss$O",string(odep.prname),absQ,totalSteps,0,countEvents,numSteps,ft)
end#end integrate | QuantizedSystemSolver | https://github.com/mongibellili/QuantizedSystemSolver.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.